WorldWideScience

Sample records for factor-1 induces cyclin

  1. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    International Nuclear Information System (INIS)

    Yasmin, Tania; Takahashi-Yanaga, Fumi; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-01-01

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of β-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3β (GSK-3β) and inhibition of GSK-3β attenuated the DIF-1-induced β-catenin degradation, indicating the involvement of GSK-3β in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/β-catenin signaling, resulting in the suppression of cyclin D1 promoter activity

  2. Differentiation-inducing factor-1 induces cyclin D1 degradation through the phosphorylation of Thr286 in squamous cell carcinoma

    International Nuclear Information System (INIS)

    Mori, Jun; Takahashi-Yanaga, Fumi; Miwa, Yoshikazu; Watanabe, Yutaka; Hirata, Masato; Morimoto, Sachio; Shirasuna, Kanemitsu; Sasaguri, Toshiyuki

    2005-01-01

    Differentiation-inducing factors (DIFs) are morphogens which induce cell differentiation in Dictyostelium. We reported that DIF-1 and DIF-3 inhibit proliferation and induce differentiation in mammalian cells. In this study, we investigated the effect of DIF-1 on oral squamous cell carcinoma cell lines NA and SAS, well differentiated and poorly differentiated cell lines, respectively. Although DIF-1 did not induce the expression of cell differentiation makers in these cell lines, it inhibited the proliferation of NA and SAS in a dose-dependent manner by restricting the cell cycle in the G 0 /G 1 phase. DIF-1 induced cyclin D1 degradation, but this effect was prevented by treatment with lithium chloride and SB216763, the inhibitors of glycogen synthase kinase-3β (GSK-3β). Depletion of endogenous GSK-3β by RNA interference also attenuated the effect of DIF-1 on cyclin D1 degradation. Therefore, we investigated the effect of DIF-1 on GSK-3β and found that DIF-1 dephosphorylated GSK-3β on Ser 9 and induced the nuclear translocation of GSK-3β, suggesting that DIF-1 activated GSK-3β. Then, we examined the effect of DIF-1 on cyclin D1 mutants (Thr286Ala, Thr288Ala, and Thr286/288Ala). We revealed that Thr286Ala and Thr286/288Ala mutants were highly resistant to DIF-1-induced degradation compared with wild-type cyclin D1, indicating that the phosphorylation of Thr 286 was critical for cyclin D1 degradation induced by DIF-1. These results suggest that DIF-1 induces degradation of cyclin D1 through the GSK-3β-mediated phosphorylation of Thr 286

  3. Cardiac insulin-like growth factor-1 and cyclins gene expression in canine models of ischemic or overpacing cardiomyopathy.

    Science.gov (United States)

    Mahmoudabady, Maryam; Mathieu, Myrielle; Touihri, Karim; Hadad, Ielham; Da Costa, Agnes Mendes; Naeije, Robert; Mc Entee, Kathleen

    2009-10-09

    Insulin-like growth factor-1 (IGF-1), transforming growth factor beta (TGFbeta) and cyclins are thought to play a role in myocardial hypertrophic response to insults. We investigated these signaling pathways in canine models of ischemic or overpacing-induced cardiomyopathy. Echocardiographic recordings and myocardial sampling for measurements of gene expressions of IGF-1, its receptor (IGF-1R), TGFbeta and of cyclins A, B, D1, D2, D3 and E, were obtained in 8 dogs with a healed myocardial infarction, 8 dogs after 7 weeks of overpacing and in 7 healthy control dogs. Ischemic cardiomyopathy was characterized by moderate left ventricular systolic dysfunction and eccentric hypertrophy, with increased expressions of IGF-1, IGF-1R and cyclins B, D1, D3 and E. Tachycardiomyopathy was characterized by severe left ventricular systolic dysfunction and dilation with no identifiable hypertrophic response. In the latter model, only IGF-1 was overexpressed while IGF-1R, cyclins B, D1, D3 and E stayed unchanged as compared to controls. The expressions of TGFbeta, cyclins A and D2 were comparable in the 3 groups. The expression of IGF-1R was correlated with the thickness of the interventricular septum, in systole and diastole, and to cyclins B, D1, D3 and E expression. These results agree with the notion that IGF-1/IGF-1R and cyclins are involved in the hypertrophic response observed in cardiomyopathies.

  4. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    International Nuclear Information System (INIS)

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-01-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  5. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Hyeok; Seo, Sung-Keum [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); An, Sungkwan; Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-10-24

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lung cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.

  6. A decrease in cyclin B1 levels leads to polyploidization in DNA damage-induced senescence.

    Science.gov (United States)

    Kikuchi, Ikue; Nakayama, Yuji; Morinaga, Takao; Fukumoto, Yasunori; Yamaguchi, Naoto

    2010-05-04

    Adriamycin, an anthracycline antibiotic, has been used for the treatment of various types of tumours. Adriamycin induces at least two distinct types of growth repression, such as senescence and apoptosis, in a concentration-dependent manner. Cellular senescence is a condition in which cells are unable to proliferate further, and senescent cells frequently show polyploidy. Although abrogation of cell division is thought to correlate with polyploidization, the mechanisms underlying induction of polyploidization in senescent cells are largely unclear. We wished, therefore, to explore the role of cyclin B1 level in polyploidization of Adriamycin-induced senescent cells. A subcytotoxic concentration of Adriamycin induced polyploid cells having the features of senescence, such as flattened and enlarged cell shape and activated beta-galactosidase activity. In DNA damage-induced senescent cells, the levels of cyclin B1 were transiently increased and subsequently decreased. The decrease in cyclin B1 levels occurred in G2 cells during polyploidization upon treatment with a subcytotoxic concentration of Adriamycin. In contrast, neither polyploidy nor a decrease in cyclin B1 levels was induced by treatment with a cytotoxic concentration of Adriamycin. These results suggest that a decrease in cyclin B1 levels is induced by DNA damage, resulting in polyploidization in DNA damage-induced senescence.

  7. Histone deacetylase inhibitor, Trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Charles Coombes R

    2006-02-01

    Full Text Available Abstract Background Cyclin D1 is an important regulator of G1-S phase cell cycle transition and has been shown to be important for breast cancer development. GSK3β phosphorylates cyclin D1 on Thr-286, resulting in enhanced ubiquitylation, nuclear export and degradation of the cyclin in the cytoplasm. Recent findings suggest that the development of small-molecule cyclin D1 ablative agents is of clinical relevance. We have previously shown that the histone deacetylase inhibitor trichostatin A (TSA induces the rapid ubiquitin-dependent degradation of cyclin D1 in MCF-7 breast cancer cells prior to repression of cyclin D1 gene (CCND1 transcription. TSA treatment also resulted in accumulation of polyubiquitylated GFP-cyclin D1 species and reduced levels of the recombinant protein within the nucleus. Results Here we provide further evidence for TSA-induced ubiquitin-dependent degradation of cyclin D1 and demonstrate that GSK3β-mediated nuclear export facilitates this activity. Our observations suggest that TSA treatment results in enhanced cyclin D1 degradation via the GSK3β/CRM1-dependent nuclear export/26S proteasomal degradation pathway in MCF-7 cells. Conclusion We have demonstrated that rapid TSA-induced cyclin D1 degradation in MCF-7 cells requires GSK3β-mediated Thr-286 phosphorylation and the ubiquitin-dependent 26S proteasome pathway. Drug induced cyclin D1 repression contributes to the inhibition of breast cancer cell proliferation and can sensitize cells to CDK and Akt inhibitors. In addition, anti-cyclin D1 therapy may be highly specific for treating human breast cancer. The development of potent and effective cyclin D1 ablative agents is therefore of clinical relevance. Our findings suggest that HDAC inhibitors may have therapeutic potential as small-molecule cyclin D1 ablative agents.

  8. Induced ICER Iγ down-regulates cyclin A expression and cell proliferation in insulin-producing β cells

    International Nuclear Information System (INIS)

    Inada, Akari; Weir, Gordon C.; Bonner-Weir, Susan

    2005-01-01

    We have previously found that cyclin A expression is markedly reduced in pancreatic β-cells by cell-specific overexpression of repressor inducible cyclic AMP early repressor (ICER Iγ) in transgenic mice. Here we further examined regulatory effects of ICER Iγ on cyclin A gene expression using Min6 cells, an insulin-producing cell line. The cyclin A promoter luciferase assay showed that ICER Iγ directly repressed cyclin A gene transcription. In addition, upon ICER Iγ overexpression, cyclin A mRNA levels markedly decreased, thereby confirming an inhibitory effect of ICER Iγ on cyclin A expression. Suppression of cyclin A results in inhibition of BrdU incorporation. Under normal culture conditions endogenous cyclin A is abundant in these cells, whereas ICER is hardly detectable. However, serum starvation of Min6 cells induces ICER Iγ expression with a concomitant very low expression level of cyclin A. Cyclin A protein is not expressed unless the cells are in active DNA replication. These results indicate a potentially important anti-proliferative effect of ICER Iγ in pancreatic β cells. Since ICER Iγ is greatly increased in diabetes as well as in FFA- or high glucose-treated islets, this effect may in part exacerbate diabetes by limiting β-cell proliferation

  9. Cyclin D2 is a critical mediator of exercise-induced cardiac hypertrophy.

    Science.gov (United States)

    Luckey, Stephen W; Haines, Chris D; Konhilas, John P; Luczak, Elizabeth D; Messmer-Kratzsch, Antke; Leinwand, Leslie A

    2017-12-01

    A number of signaling pathways underlying pathological cardiac hypertrophy have been identified. However, few studies have probed the functional significance of these signaling pathways in the context of exercise or physiological pathways. Exercise studies were performed on females from six different genetic mouse models that have been shown to exhibit alterations in pathological cardiac adaptation and hypertrophy. These include mice expressing constitutively active glycogen synthase kinase-3β (GSK-3βS9A), an inhibitor of CaMK II (AC3-I), both GSK-3βS9A and AC3-I (GSK-3βS9A/AC3-I), constitutively active Akt (myrAkt), mice deficient in MAPK/ERK kinase kinase-1 (MEKK1 -/- ), and mice deficient in cyclin D2 (cyclin D2 -/- ). Voluntary wheel running performance was similar to NTG littermates for five of the mouse lines. Exercise induced significant cardiac growth in all mouse models except the cyclin D2 -/- mice. Cardiac function was not impacted in the cyclin D2 -/- mice and studies using a phospho-antibody array identified six proteins with increased phosphorylation (greater than 150%) and nine proteins with decreased phosphorylation (greater than 33% decrease) in the hearts of exercised cyclin D2 -/- mice compared to exercised NTG littermate controls. Our results demonstrate that unlike the other hypertrophic signaling molecules tested here, cyclin D2 is an important regulator of both pathologic and physiological hypertrophy. Impact statement This research is relevant as the hypertrophic signaling pathways tested here have only been characterized for their role in pathological hypertrophy, and not in the context of exercise or physiological hypertrophy. By using the same transgenic mouse lines utilized in previous studies, our findings provide a novel and important understanding for the role of these signaling pathways in physiological hypertrophy. We found that alterations in the signaling pathways tested here had no impact on exercise performance. Exercise

  10. Dexamethasone impairs hypoxia-inducible factor-1 function

    International Nuclear Information System (INIS)

    Wagner, A.E.; Huck, G.; Stiehl, D.P.; Jelkmann, W.; Hellwig-Buergel, T.

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription-factor composed of α- and β-subunits. HIF-1 is not only necessary for the cellular adaptation to hypoxia, but it is also involved in inflammatory processes and wound healing. Glucocorticoids (GC) are therapeutically used to suppress inflammatory responses. Herein, we investigated whether GC modulate HIF-1 function using GC receptor (GR) possessing (HepG2) and GR deficient (Hep3B) human hepatoma cell cultures as model systems. Dexamethasone (DEX) treatment increased HIF-1α levels in the cytosol of HepG2 cells, while nuclear HIF-1α levels and HIF-1 DNA-binding was reduced. In addition, DEX dose-dependently lowered the hypoxia-induced luciferase activity in a reporter gene system. DEX suppressed the hypoxic stimulation of the expression of the HIF-1 target gene VEGF (vascular endothelial growth factor) in HepG2 cultures. DEX did not reduce hypoxically induced luciferase activity in HRB5 cells, a Hep3B derivative lacking GR. Transient expression of the GR in HRB5 cells restored the susceptibility to DEX. Our study discloses the inhibitory action of GC on HIF-1 dependent gene expression, which may be important with respect to the impaired wound healing in DEX-treated patients

  11. High glucose concentration induces endothelial cell proliferation by regulating cyclin-D2-related miR-98.

    Science.gov (United States)

    Li, Xin-Xin; Liu, Yue-Mei; Li, You-Jie; Xie, Ning; Yan, Yun-Fei; Chi, Yong-Liang; Zhou, Ling; Xie, Shu-Yang; Wang, Ping-Yu

    2016-06-01

    Cyclin D2 is involved in the pathology of vascular complications of type 2 diabetes mellitus (T2DM). This study investigated the role of cyclin-D2-regulated miRNAs in endothelial cell proliferation of T2DM. Results showed that higher glucose concentration (4.5 g/l) significantly promoted the proliferation of rat aortic endothelial cells (RAOECs), and significantly increased the expression of cyclin D2 and phosphorylation of retinoblastoma 1 (p-RB1) in RAOECs compared with those under low glucose concentration. The cyclin D2-3' untranslated region is targeted by miR-98, as demonstrated by miRNA analysis software. Western blot also confirmed that cyclin D2 and p-RB1 expression was regulated by miR-98. The results indicated that miR-98 treatment can induce RAOEC apoptosis. The suppression of RAOEC growth by miR-98 might be related to regulation of Bcl-2, Bax and Caspase 9 expression. Furthermore, the expression levels of miR-98 decreased in 4.5 g/l glucose-treated cells compared with those treated by low glucose concentration. Similarly, the expression of miR-98 significantly decreased in aortas of established streptozotocin (STZ)-induced diabetic rat model compared with that in control rats; but cyclin D2 and p-RB1 levels remarkably increased in aortas of STZ-induced diabetic rats compared with those in healthy control rats. In conclusion, this study demonstrated that high glucose concentration induces cyclin D2 up-regulation and miR-98 down-regulation in the RAOECs. By regulating cyclin D2, miR-98 can inhibit human endothelial cell growth, thereby providing novel therapeutic targets for vascular complication of T2DM. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. c-Jun induces apoptosis of starved BM2 monoblasts by activating cyclin A-CDK2

    International Nuclear Information System (INIS)

    Vanhara, Petr; Bryja, Vitezslav; Horvath, Viktor; Kozubik, Alois; Hampl, Ales; Smarda, Jan

    2007-01-01

    c-Jun is one of the major components of the activating protein-1 (AP-1), the transcription factor that participates in regulation of proliferation, differentiation, and apoptosis. In this study, we explored functional interactions of the c-Jun protein with several regulators of the G1/S transition in serum-deprived v-myb-transformed chicken monoblasts BM2. We show that the c-Jun protein induces expression of cyclin A, thus up-regulating activity of cyclin A-associated cyclin-dependent kinase 2 (CDK2), and causing massive programmed cell death of starved BM2cJUN cells. Specific inhibition of CDK2 suppresses frequency of apoptosis of BM2cJUN cells. We conclude that up-regulation of cyclin A expression and CDK2 activity can represent important link between the c-Jun protein, cell cycle machinery, and programmed cell death pathway in leukemic cells

  13. Cyclin D expression in plutonium-induced lung tumors in F344 rats

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, F.F.; Kelly, G. [SouthWest Scientific Resources, Inc., Albuquerque, NM (United States)

    1995-12-01

    The genetic mechanisms responsible for {alpha}-radiation-induced lung cancer in rats following inhalation of {sup 239}Pu is an ongoing area of research in our laboratory. Previous studies have examined the status of the p53 gene by immunohistochemistry. Only two tumors (2/26 squamous cell carcinomas) exhibited detectable levels of p53 products. Both were the result of mutations in codons 280 and 283. More recent studies of X-ray-induced lung tumors in rats showed a similar lack of involvement of p53. In conclusion, we found that {alpha}-radiation-induced rat lung tumors have a high incidence (31 of 39) of cyclin D{sub 1} overexpression.

  14. Obatoclax, a Pan-BCL-2 Inhibitor, Targets Cyclin D1 for Degradation to Induce Antiproliferation in Human Colorectal Carcinoma Cells.

    Science.gov (United States)

    Or, Chi-Hung R; Chang, Yachu; Lin, Wei-Cheng; Lee, Wee-Chyan; Su, Hong-Lin; Cheung, Muk-Wing; Huang, Chang-Po; Ho, Cheesang; Chang, Chia-Che

    2016-12-27

    Colorectal cancer is the third most common cancer worldwide. Aberrant overexpression of antiapoptotic BCL-2 (B-cell lymphoma 2) family proteins is closely linked to tumorigenesis and poor prognosis in colorectal cancer. Obatoclax is an inhibitor targeting all antiapoptotic BCL-2 proteins. A previous study has described the antiproliferative action of obatoclax in one human colorectal cancer cell line without elucidating the underlying mechanisms. We herein reported that, in a panel of human colorectal cancer cell lines, obatoclax inhibits cell proliferation, suppresses clonogenicity, and induces G₁-phase cell cycle arrest, along with cyclin D1 downregulation. Notably, ectopic cyclin D1 overexpression abrogated clonogenicity suppression but also G₁-phase arrest elicited by obatoclax. Mechanistically, pre-treatment with the proteasome inhibitor MG-132 restored cyclin D1 levels in all obatoclax-treated cell lines. Cycloheximide chase analyses further revealed an evident reduction in the half-life of cyclin D1 protein by obatoclax, confirming that obatoclax downregulates cyclin D1 through induction of cyclin D1 proteasomal degradation. Lastly, threonine 286 phosphorylation of cyclin D1, which is essential for initiating cyclin D1 proteasomal degradation, was induced by obatoclax in one cell line but not others. Collectively, we reveal a novel anticancer mechanism of obatoclax by validating that obatoclax targets cyclin D1 for proteasomal degradation to downregulate cyclin D1 for inducing antiproliferation.

  15. Expression of hypoxia-inducible factor-1α and cell cycle proteins in invasive breast cancer are estrogen receptor related

    International Nuclear Information System (INIS)

    Bos, Reinhard; Diest, Paul J van; Groep, Petra van der; Shvarts, Avi; Greijer, Astrid E; Wall, Elsken van der

    2004-01-01

    The transcription factor hypoxia-inducible factor-1 (HIF-1) is a key regulator of the cellular response to hypoxia. Previous studies showed that concentrations of its subunit HIF-1α, as a surrogate for HIF-1 activity, are increased during breast carcinogenesis and can independently predict prognosis in breast cancer. During carcinogenesis, the cell cycle is progressively deregulated, and proliferation rate is a strong prognostic factor in breast cancer. In this study we undertook a detailed evaluation of the relationships between HIF-1α and cell cycle-associated proteins. In a representative estrogen receptor (ER) group of 150 breast cancers, the expression of HIF-1α, vascular endothelial growth factor, the ER, HER-2/neu, Ki-67, cyclin A, cyclin D 1 , p21, p53, and Bcl-2 was investigated by immunohistochemistry. High concentrations (5% or more) of HIF-1α were associated with increased proliferation as shown by positive correlations with Ki-67 (P < 0.001) and the late S–G2-phase protein cyclin A (P < 0.001), but not with the G1-phase protein cyclin D 1 . High HIF-1α concentrations were also strongly associated with p53 positivity (P < 0.001) and loss of Bcl-2 expression (P = 0.013). No association was found between p21 and HIF-1α (P = 0.105) in the whole group of patients. However, the subgroup of ER-positive cancers was characterized by a strong positive association between HIF-1α and p21 (P = 0.023), and HIF-1α lacked any relation with proliferation. HIF-1α overexpression is associated with increased proliferation, which might explain the adverse prognostic impact of increased concentrations of HIF-1α in invasive breast cancer. In ER-positive tumors, HIF-1α is associated with p21 but not against proliferation. This shows the importance of further functional analysis to unravel the role of HIF-1 in late cell cycle progression, and the link between HIF-1, p21, and ER

  16. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor

    Science.gov (United States)

    Stamateris, Rachel E.; Sharma, Rohit B.; Kong, Yahui; Ebrahimpour, Pantea; Panday, Deepika; Ranganath, Pavana; Zou, Baobo; Levitt, Helena; Parambil, Nisha Abraham; O’Donnell, Christopher P.; García-Ocaña, Adolfo

    2016-01-01

    An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal–related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation. PMID:26740601

  17. Cyclin G2 is a centrosome-associated nucleocytoplasmic shuttling protein that influences microtubule stability and induces a p53-dependent cell cycle arrest

    International Nuclear Information System (INIS)

    Arachchige Don, Aruni S.; Dallapiazza, Robert F.; Bennin, David A.; Brake, Tiffany; Cowan, Colleen E.; Horne, Mary C.

    2006-01-01

    Cyclin G2 is an atypical cyclin that associates with active protein phosphatase 2A. Cyclin G2 gene expression correlates with cell cycle inhibition; it is significantly upregulated in response to DNA damage and diverse growth inhibitory stimuli, but repressed by mitogenic signals. Ectopic expression of cyclin G2 promotes cell cycle arrest, cyclin dependent kinase 2 inhibition and the formation of aberrant nuclei [Bennin, D. A., Don, A. S., Brake, T., McKenzie, J. L., Rosenbaum, H., Ortiz, L., DePaoli-Roach, A. A., and Horne, M. C. (2002). Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B' subunits in active complexes and induces nuclear aberrations and a G 1 /S-phase cell cycle arrest. J Biol Chem 277, 27449-67]. Here we report that endogenous cyclin G2 copurifies with centrosomes and microtubules (MT) and that ectopic G2 expression alters microtubule stability. We find exogenous and endogenous cyclin G2 present at microtubule organizing centers (MTOCs) where it colocalizes with centrosomal markers in a variety of cell lines. We previously reported that cyclin G2 forms complexes with active protein phosphatase 2A (PP2A) and colocalizes with PP2A in a detergent-resistant compartment. We now show that cyclin G2 and PP2A colocalize at MTOCs in transfected cells and that the endogenous proteins copurify with isolated centrosomes. Displacement of the endogenous centrosomal scaffolding protein AKAP450 that anchors PP2A at the centrosome resulted in the depletion of centrosomal cyclin G2. We find that ectopic expression of cyclin G2 induces microtubule bundling and resistance to depolymerization, inhibition of polymer regrowth from MTOCs and a p53-dependent cell cycle arrest. Furthermore, we determined that a 100 amino acid carboxy-terminal region of cyclin G2 is sufficient to both direct GFP localization to centrosomes and induce cell cycle inhibition. Colocalization of endogenous cyclin G2 with only one of two GFP-centrin-tagged centrioles, the

  18. Inhibition of Rac1 activity induces G1/S phase arrest through the GSK3/cyclin D1 pathway in human cancer cells.

    Science.gov (United States)

    Liu, Linna; Zhang, Hongmei; Shi, Lei; Zhang, Wenjuan; Yuan, Juanli; Chen, Xiang; Liu, Juanjuan; Zhang, Yan; Wang, Zhipeng

    2014-10-01

    Rac1 has been shown to regulate the cell cycle in cancer cells. Yet, the related mechanism remains unclear. Thus, the present study aimed to investigate the mechanism involved in the regulation of G1/S phase transition by Rac1 in cancer cells. Inhibition of Rac1 by inhibitor NSC23766 induced G1/S phase arrest and inhibited the proliferation of A431, SW480 and U2-OS cells. Suppression of GSK3 by shRNA partially rescued G1/S phase arrest and inhibition of proliferation. Incubation of cells with NSC23766 reduced p-AKT and inactivated p-GSK3α and p-GSK3β, increased p-cyclin D1 expression and decreased the level of cyclin D1 protein. Consequently, cyclin D1 targeting transcriptional factor E2F1 expression, which promotes G1 to S phase transition, was also reduced. In contrast, constitutive active Rac1 resulted in increased p-AKT and inactivated p-GSK3α and p-GSK3β, decreased p-cyclin D1 expression and enhanced levels of cyclin D1 and E2F1 expression. Moreover, suppression of GSK3 did not alter p-AKT or Rac1 activity, but decreased p-cyclin D1 and increased total cyclin D1 protein. However, neither Rac1 nor GSK3 inhibition altered cyclin D1 at the RNA level. Moreover, after inhibition of Rac1 or GSK3 following proteasome inhibitor MG132 treatment, cyclin D1 expression at the protein level remained constant, indicating that Rac1 and GSK3 may regulate cyclin D1 turnover through phosphorylation and degradation. Therefore, our findings suggest that inhibition of Rac1 induces cell cycle G1/S arrest in cancer cells by regulation of the GSK3/cyclin D1 pathway.

  19. ATP depletion during mitotic arrest induces mitotic slippage and APC/CCdh1-dependent cyclin B1 degradation.

    Science.gov (United States)

    Park, Yun Yeon; Ahn, Ju-Hyun; Cho, Min-Guk; Lee, Jae-Ho

    2018-04-27

    ATP depletion inhibits cell cycle progression, especially during the G1 phase and the G2 to M transition. However, the effect of ATP depletion on mitotic progression remains unclear. We observed that the reduction of ATP after prometaphase by simultaneous treatment with 2-deoxyglucose and NaN 3 did not arrest mitotic progression. Interestingly, ATP depletion during nocodazole-induced prometaphase arrest resulted in mitotic slippage, as indicated by a reduction in mitotic cells, APC/C-dependent degradation of cyclin B1, increased cell attachment, and increased nuclear membrane reassembly. Additionally, cells successfully progressed through the cell cycle after mitotic slippage, as indicated by EdU incorporation and time-lapse imaging. Although degradation of cyclin B during normal mitotic progression is primarily regulated by APC/C Cdc20 , we observed an unexpected decrease in Cdc20 prior to degradation of cyclin B during mitotic slippage. This decrease in Cdc20 was followed by a change in the binding partner preference of APC/C from Cdc20 to Cdh1; consequently, APC/C Cdh1 , but not APC/C Cdc20 , facilitated cyclin B degradation following ATP depletion. Pulse-chase analysis revealed that ATP depletion significantly abrogated global translation, including the translation of Cdc20 and Cdh1. Additionally, the half-life of Cdh1 was much longer than that of Cdc20. These data suggest that ATP depletion during mitotic arrest induces mitotic slippage facilitated by APC/C Cdh1 -dependent cyclin B degradation, which follows a decrease in Cdc20 resulting from reduced global translation and the differences in the half-lives of the Cdc20 and Cdh1 proteins.

  20. Evolutionarily conserved transcription factor Apontic controls the G1/S progression by inducing cyclin e during eye development

    KAUST Repository

    Liu, Qingxin; Wang, Xianfeng; Ikeo, Kazuho; Hirose, Susumu; Gehring, Walter Jakob; Gojobori, Takashi

    2014-01-01

    During Drosophila eye development, differentiation initiates in the posterior region of the eye disk and progresses anteriorly as a wave marked by the morphogenetic furrow (MF), which demarcates the boundary between anterior undifferentiated cells and posterior differentiated photoreceptors. However, the mechanism underlying the regulation of gene expression immediately before the onset of differentiation remains unclear. Here, we show that Apontic (Apt), which is an evolutionarily conserved transcription factor, is expressed in the differentiating cells posterior to the MF. Moreover, it directly induces the expression of cyclin E and is also required for the G1-to-S phase transition, which is known to be essential for the initiation of cell differentiation at the MF. These observations identify a pathway crucial for eye development, governed by a mechanism in which Cyclin E promotes the G1-to-S phase transition when regulated by Apt.

  1. Evolutionarily conserved transcription factor Apontic controls the G1/S progression by inducing cyclin e during eye development

    KAUST Repository

    Liu, Qingxin

    2014-06-16

    During Drosophila eye development, differentiation initiates in the posterior region of the eye disk and progresses anteriorly as a wave marked by the morphogenetic furrow (MF), which demarcates the boundary between anterior undifferentiated cells and posterior differentiated photoreceptors. However, the mechanism underlying the regulation of gene expression immediately before the onset of differentiation remains unclear. Here, we show that Apontic (Apt), which is an evolutionarily conserved transcription factor, is expressed in the differentiating cells posterior to the MF. Moreover, it directly induces the expression of cyclin E and is also required for the G1-to-S phase transition, which is known to be essential for the initiation of cell differentiation at the MF. These observations identify a pathway crucial for eye development, governed by a mechanism in which Cyclin E promotes the G1-to-S phase transition when regulated by Apt.

  2. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy

    NARCIS (Netherlands)

    Weijer, Ruud; Broekgaarden, Mans; Krekorian, Massis; Alles, Lindy K.; van Wijk, Albert C.; Mackaaij, Claire; Verheij, Joanne; van der Wal, Allard C.; van Gulik, Thomas M.; Storm, Gert; Heger, Michal

    2016-01-01

    Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression levels of

  3. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy

    NARCIS (Netherlands)

    Weijer, R.; Broekgaarden, M.; Krekorian, M.; Alles, L.K.; van Wijk, A.C; Mackaaij, C.; Verheij, J.; van der Wal, A.C.; van Gullik, T.M.; Storm, Gerrit; Heger, M.

    2016-01-01

    Background: Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression

  4. Overexpression of Hypoxia-Inducible Factor-1α Exacerbates Endothelial Barrier Dysfunction Induced by Hypoxia

    Directory of Open Access Journals (Sweden)

    Pei Wang

    2013-09-01

    Full Text Available Background/Aims: The mechanisms involved in endothelial barrier dysfunction induced by hypoxia are incompletely understood. There is debate about the role of hypoxia-inducible factor-1α (HIF-1α in endothelial barrier disruption. The aim of this study was to investigate the effect of genetic overexpression of HIF-1α on barrier function and the underlying mechanisms in hypoxic endothelial cells. Methods: The plasmid pcDNA3.1/V5-His-HIF-1α was stably transfected into human endothelial cells. The cells were exposed to normoxia or hypoxia. The mRNA and protein expressions of HIF-1α were detected by RT-PCR and Western blot respectively. The barrier function was assessed by measuring the transendothelial electrical resistance (TER. The Western blot analysis was used to determine the protein expression of glucose transporter-1 (GLUT-1, zonular occludens-1 (ZO-1, occludin, and myosin light chain kinase (MLCK in endothelial cells. The mRNA expression of proinflammatory cytokines was detected by qRT-PCR. Results: Genetic overexpression of HIF-1α significantly increased the mRNA and protein expression of HIF-1α in endothelial cells. The overexpression of HIF-1α enhanced the hypoxia-induced increase of HIF-1α and GLUT-1 protein expression. HIF-1α overexpression not only exacerbated hypoxia-induced endothelial barrier dysfunction but also augmented hypoxia-induced up-regulation of MLCK protein expression. HIF-1α overexpression also enhanced IL-1β, IL-6 and TNF-α mRNA expression. Conclusion: We provide evidence that genetic overexpression of HIF-1α aggravates the hypoxia-induced endothelial barrier dysfunction via enhancing the up-regulation of MLCK protein expression caused by hypoxia, suggesting a potential role for HIF-1α in the pathogenesis of endothelial barrier dysfunction in hypoxia.

  5. Reduced amyloidogenic processing of the amyloid beta-protein precursor by the small-molecule Differentiation Inducing Factor-1.

    Science.gov (United States)

    Myre, Michael A; Washicosky, Kevin; Moir, Robert D; Tesco, Giuseppina; Tanzi, Rudolph E; Wasco, Wilma

    2009-04-01

    The detection of cell cycle proteins in Alzheimer's disease (AD) brains may represent an early event leading to neurodegeneration. To identify cell cycle modifiers with anti-Abeta properties, we assessed the effect of Differentiation-Inducing Factor-1 (DIF-1), a unique, small-molecule from Dictyostelium discoideum, on the proteolysis of the amyloid beta-protein precursor (APP) in a variety of different cell types. We show that DIF-1 slows cell cycle progression through G0/G1 that correlates with a reduction in cyclin D1 protein levels. Western blot analysis of DIF-treated cells and conditioned medium revealed decreases in the levels of secreted APP, mature APP, and C-terminal fragments. Assessment of conditioned media by sandwich ELISA showed reduced levels of Abeta40 and Abeta42, also demonstrating that treatment with DIF-1 effectively decreases the ratio of Abeta42 to Abeta40. In addition, DIF-1 significantly diminished APP phosphorylation at residue T668. Interestingly, site-directed mutagenesis of APP residue Thr668 to alanine or glutamic acid abolished the effect of DIF-1 on APP proteolysis and restored secreted levels of Abeta. Finally, DIF-1 prevented the accumulation of APP C-terminal fragments induced by the proteasome inhibitor lactacystin, and calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Our findings suggest that DIF-1 affects G0/G1-associated amyloidogenic processing of APP by a gamma-secretase-, proteasome- and calpain-insensitive pathway, and that this effect requires the presence of residue Thr668.

  6. Reduced amyloidogenic processing of the amyloid β-protein precursor by the small-molecule Differentiation Inducing Factor-1

    Science.gov (United States)

    Myre, Michael A.; Washicosky, Kevin; Moir, Robert D.; Tesco, Giuseppina; Tanzi, Rudolph E.; Wasco, Wilma

    2013-01-01

    The detection of cell cycle proteins in Alzheimer’s disease (AD) brains may represent an early event leading to neurodegeneration. To identify cell cycle modifiers with anti-Aβ properties, we assessed the effect of Differentiation-Inducing Factor-1 (DIF-1), a unique, small-molecule from Dictyostelium discoideum, on the proteolysis of the amyloid β-protein precursor (APP) in a variety of different cell types. We show that DIF-1 slows cell cycle progression through G0/G1 that correlates with a reduction in cyclin D1 protein levels. Western blot analysis of DIF-treated cells and conditioned medium revealed decreases in the levels of secreted APP, mature APP, and C-terminal fragments. Assessment of conditioned media by sandwich ELISA showed reduced levels of Aβ40 and Aβ42, also demonstrating that treatment with DIF-1 effectively decreases the ratio of Aβ42 to Aβ40. In addition, DIF-1 significantly diminished APP phosphorylation at residue T668. Interestingly, site-directed mutagenesis of APP residue Thr668 to alanine or glutamic acid abolished the effect of DIF-1 on APP proteolysis and restored secreted levels of Aβ. Finally, DIF-1 prevented the accumulation of APP C-terminal fragments induced by the proteasome inhibitor lactacystin, and calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Our findings suggest that DIF-1 affects G0/G1-associated amyloidogenic processing of APP by a γ-secretase-, proteasome- and calpain-insensitive pathway, and that this effect requires the presence of residue Thr668. PMID:19154786

  7. The role of hypoxia inducible factor-1 alpha in bypassing oncogene-induced senescence.

    Directory of Open Access Journals (Sweden)

    Mehtap Kilic Eren

    Full Text Available Oncogene induced senescence (OIS is a sustained anti-proliferative response acutely induced in primary cells via activation of mitogenic oncogenes such as Ras/BRAF. This mechanism acts as an initial barrier preventing normal cells transformation into malignant cell. Besides oncogenic activation and DNA damage response (DDR, senescence is modulated by a plethora of other factors, and one of the most important one is oxygen tension of the tissue. The aim of this study was to determine the impact of hypoxia on RasV12-induced senescence in human diploid fibroblasts (HDFs. We showed here that hypoxia prevents execution of oncogene induced senescence (OIS, through a strong down-regulation of senescence hallmarks, such as SA- β-galactosidase, H3K9me3, HP1γ, p53, p21CIP1 and p16INK4a in association with induction of hypoxia inducible factor-1α (HIF-1α. In addition, hypoxia also decreased marks of H-RasV12-induced DDR in both cell lines through down-regulation of ATM/ATR, Chk1 and Chk2 phosphorylation as well as decreased γ-H2AX positivity. Utilizing shRNA system targeting HIF-1α we show that HIF-1α is directly involved in down regulation of p53 and its target p21CIP1 but not p16INK4a. In line with this finding we found that knock down of HIF-1α leads to a strong induction of apoptotic response, but not restoration of senescence in Ras expressing HDFs in hypoxia. This indicates that HIF-1α is an important player in early steps of tumorigenesis, leading to suppression of senescence through its negative regulation of p53 and p21CIP1. In our work we describe a mechanism through which hypoxia and specifically HIF-1α preclude cells from maintaining senescence-driven anti proliferative response. These findings indicate the possible mechanism through which hypoxic environment helps premalignant cells to evade impingement of cellular failsafe pathways.

  8. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer

    Directory of Open Access Journals (Sweden)

    Lv Y

    2015-07-01

    Full Text Available Yingqian Lv, Shan Zhao, Jinzhu Han, Likang Zheng, Zixin Yang, Li Zhao Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China Abstract: Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1 were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at -378 to -373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. Keywords: hypoxia, hypoxia-inducible factor-1α, multidrug resistance associated protein, transcriptional regulation, chemotherapy tolerance

  9. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Christopher C.; Bloodworth, Jeffrey C. [Division of Pharmacology, Columbus, OH 43210 (United States); Mythreye, Karthikeyan [Duke University, Department of Medicine, Durham, NC 27708 (United States); Lee, Nam Y., E-mail: lee.5064@osu.edu [Division of Pharmacology, Columbus, OH 43210 (United States); Davis Heart and Lung Research Institute, Columbus, OH 43210 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previously identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.

  10. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    DEFF Research Database (Denmark)

    Greenberger, Lee M; Horak, Ivan D; Filpula, David

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that plays a critical role in angiogenesis, survival, metastasis, drug resistance, and glucose metabolism. Elevated expression of the alpha-subunit of HIF-1 (HIF-1alpha), which occurs in response to hypoxia or activation of growth facto...

  11. Effect of hypoxia-inducible factor 1-alpha (HIF-1α) on proliferation ...

    African Journals Online (AJOL)

    Jane

    2011-07-25

    Jul 25, 2011 ... Full Length Research Paper. Effect of hypoxia-inducible factor 1-alpha ... 1Department of Neurosurgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025,. China. 2Department of Neurosurgery, Chaoyang Hospital, Huainan, Anhui, China. 3Department of Neurosurgery ...

  12. Expression of DDX3 is directly modulated by hypoxia inducible factor-1 alpha in breast epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mahendran Botlagunta

    2011-03-01

    Full Text Available DEAD box protein, DDX3, is aberrantly expressed in breast cancer cells ranging from weakly invasive to aggressive phenotypes and functions as an important regulator of cancer cell growth and survival. Here, we demonstrate that hypoxia inducible factor-1α is a transcriptional activator of DDX3 in breast cancer cells. Within the promoter region of the human DDX3 gene, we identified three putative hypoxia inducible factor-1 responsive elements. By luciferase reporter assays in combination with mutated hypoxia inducible factor-1 responsive elements, we determined that the hypoxia inducible factor-1 responsive element at position -153 relative to the translation start site is essential for transcriptional activation of DDX3 under hypoxic conditions. We also demonstrated that hypoxia inducible factor-1 binds to the DDX3 promoter and that the binding is specific, as revealed by siRNA against hypoxia inducible factor-1 and chromatin immunoprecipitation assays. Thus, the activation of DDX3 expression during hypoxia is due to the direct binding of hypoxia inducible factor-1 to hypoxia responsive elements in the DDX3 promoter. In addition, we observed a significant overlap in the protein expression pattern of hypoxia inducible factor-1α and DDX3 in MDA-MB-231 xenograft tumors. Taken together, our results demonstrate, for the first time, the role of DDX3 as a hypoxia-inducible gene that exhibits enhanced expression through the interaction of hypoxia inducible factor-1 with hypoxia inducible factor-1 responsive elements in its promoter region.

  13. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Directory of Open Access Journals (Sweden)

    Abel Martin-Garrido

    Full Text Available In adult tissue, vascular smooth muscle cells (VSMCs exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ and the pro-proliferative cytokine platelet derived growth factor (PDGF. In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  14. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Science.gov (United States)

    Martin-Garrido, Abel; Williams, Holly C; Lee, Minyoung; Seidel-Rogol, Bonnie; Ci, Xinpei; Dong, Jin-Tang; Lassègue, Bernard; Martín, Alejandra San; Griendling, Kathy K

    2013-01-01

    In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  15. Hypoxia-inducible factor-1 alpha has a key role in hypoxic preconditioning.

    Science.gov (United States)

    Taie, Satoshi; Ono, Junichiro; Iwanaga, Yasuyuki; Tomita, Shuhei; Asaga, Takehiko; Chujo, Kosuke; Ueki, Masaaki

    2009-08-01

    Sublethal hypoxia induces tolerance to subsequent hypoxic insults in a process known as hypoxic preconditioning (HP). Hypoxia-inducible factor-1 alpha (HIF-1 alpha) is a key transcription protein involved in the mechanism of HP. In this study, we investigated the effects of HP on tissue oxygenation and expression of HIF-1 alpha gene targets in the brain using neural cell-specific HIF-1 alpha-deficient mice. The animals were exposed to 8% oxygen for 3 hours. Twenty-four hours later, the oxygen partial pressure (pO(2)) of brain tissue and gene expression were measured during hypoxia. HP improved the pO(2) of brain tissue during subsequent hypoxia with upregulated inducible nitric oxide synthase in wild-type mice, whereas HP had no detectable effect in the mutant mice. Our results indicate that the protective effects of HP may be partially mediated by improving tissue oxygenation via HIF-1 alpha and inducible nitric oxide synthase.

  16. DNA repair and cyclin D1 polymorphisms and styrene-induced genotoxicity and immunotoxicity

    International Nuclear Information System (INIS)

    Kuricova, M.; Naccarati, A.; Kumar, R.; Koskinen, M.; Sanyal, S.; Dusinska, M.; Tulinska, J.; Vodickova, L.; Liskova, A.; Jahnova, E.; Fuortes, L.; Haufroid, V.; Hemminki, K.; Vodicka, P.

    2005-01-01

    1-SO-adenine DNA adducts, DNA single-strand breaks (SBs), chromosomal aberrations (CAs), mutant frequency (MF) at the HPRT gene, and immune parameters (hematological and of humoral immunity) were studied in styrene-exposed human subjects and controls. Results were correlated with genetic polymorphisms in DNA repair genes (XPD, exon 23, XPG, exon 15, XPC, exon 15, XRCC1, exon 10, XRCC3, exon 7) and cell cycle gene cyclin D1. Results for biomarkers of genotoxicity after stratification for the different DNA repair genetic polymorphisms showed that the polymorphism in exon 23 of the XPD gene modulates levels of chromosomal and DNA damage, HPRT MF, and moderately affects DNA adduct levels. The highest levels of biomarkers were associated with the wild-type homozygous AA genotype. The exposed individuals with the wild-type GG genotype for XRCC1 gene exhibited the lowest CA frequencies, compared to those with an A allele (P < 0.05). Cyclin D1 polymorphism seems to modulate the number of leukocytes and lymphocytes in the analyzed subjects. The number of eosinophiles was positively associated with XPD variant C allele and negatively with XRCC1 variant A allele (P < 0.05) and XPC variant C allele (P < 0.05). Immunoglobulin IgA was positively associated with an XRCC3 variant T allele (P < 0.01) and negatively with XPC variant C allele (P < 0.05). Both C3- and C4-complement components were lower in individuals with XRCC3 CT (P < 0.05) and TT genotypes (P < 0.01). Adhesion molecules sL-selectin and sICAM-1 were associated with XPC genotype (P < 0.05). Individual susceptibility may be reflected in genotoxic and immunotoxic responses to environmental and occupational exposures to xenobiotics

  17. Inducible Knockout of the Cyclin-Dependent Kinase 5 Activator p35 Alters Hippocampal Spatial Coding and Neuronal Excitability

    Directory of Open Access Journals (Sweden)

    Eriko Kamiki

    2018-05-01

    Full Text Available p35 is an activating co-factor of Cyclin-dependent kinase 5 (Cdk5, a protein whose dysfunction has been implicated in a wide-range of neurological disorders including cognitive impairment and disease. Inducible deletion of the p35 gene in adult mice results in profound deficits in hippocampal-dependent spatial learning and synaptic physiology, however the impact of the loss of p35 function on hippocampal in vivo physiology and spatial coding remains unknown. Here, we recorded CA1 pyramidal cell activity in freely behaving p35 cKO and control mice and found that place cells in the mutant mice have elevated firing rates and impaired spatial coding, accompanied by changes in the temporal organization of spiking both during exploration and rest. These data shed light on the role of p35 in maintaining cellular and network excitability and provide a physiological correlate of the spatial learning deficits in these mice.

  18. Inducible Knockout of the Cyclin-Dependent Kinase 5 Activator p35 Alters Hippocampal Spatial Coding and Neuronal Excitability

    Science.gov (United States)

    Kamiki, Eriko; Boehringer, Roman; Polygalov, Denis; Ohshima, Toshio; McHugh, Thomas J.

    2018-01-01

    p35 is an activating co-factor of Cyclin-dependent kinase 5 (Cdk5), a protein whose dysfunction has been implicated in a wide-range of neurological disorders including cognitive impairment and disease. Inducible deletion of the p35 gene in adult mice results in profound deficits in hippocampal-dependent spatial learning and synaptic physiology, however the impact of the loss of p35 function on hippocampal in vivo physiology and spatial coding remains unknown. Here, we recorded CA1 pyramidal cell activity in freely behaving p35 cKO and control mice and found that place cells in the mutant mice have elevated firing rates and impaired spatial coding, accompanied by changes in the temporal organization of spiking both during exploration and rest. These data shed light on the role of p35 in maintaining cellular and network excitability and provide a physiological correlate of the spatial learning deficits in these mice. PMID:29867369

  19. Expression of hypoxia-induced factor-1 alpha in early-stage and in metastatic oral squamous cell carcinoma.

    Science.gov (United States)

    Ribeiro, Maisa; Teixeira, Sarah R; Azevedo, Monarko N; Fraga, Ailton C; Gontijo, Antônio Pm; Vêncio, Eneida F

    2017-04-01

    To investigate hypoxia-induced factor-1 alpha expression in distinct oral squamous cell carcinoma subtypes and topographies and correlate with clinicopathological data. Hypoxia-induced factor-1 alpha expression was assessed by immunohistochemistry in 93 cases of OSCC. Clinical and histopathological data were reviewed from medical records. Hypoxia-induced factor-1 alpha status was distinct according to tumor location, subtype and topography affect. In superficial oral squamous cell carcinomas, most tumor cells overexpressed hypoxia-induced factor-1 alpha, whereas hypoxia-induced factor-1 alpha was restricted to the intratumoral region in conventional squamous cell carcinomas. All basaloid squamous cell carcinomas exhibited downregulation of hypoxia-induced factor-1 alpha. Interestingly, metastatic lymph nodes (91.7%, p = 0.001) and the intratumoral regions of corresponding primary tumors (58.3%, p = 0.142) showed hypoxia-induced factor-1 alpha-positive tumor cells. Overall survival was poor in patients with metastatic lymph nodes. Hypoxia-induced factor-1 alpha has distinct expression patterns in different oral squamous cell carcinoma subtypes and topographies, suggesting that low oxygen tension promotes the growth pattern of superficial and conventional squamous cell carcinoma, but not basaloid squamous cell carcinoma. Indeed, a hypoxic environment may facilitate regional metastasis, making it a useful diagnostic and prognostic marker in primary tumors.

  20. Rapid detection of hypoxia-inducible factor-1-active tumours: pretargeted imaging with a protein degrading in a mechanism similar to hypoxia-inducible factor-1{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Masashi [Kyoto University, Radioisotopes Research Laboratory, Kyoto University Hospital, Faculty of Medicine, Kyoto (Japan); Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Kudo, Takashi; Konishi, Hiroaki; Miyano, Azusa; Ono, Masahiro; Saji, Hideo [Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Kuge, Yuji [Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Hokkaido University, Central Institute of Isotope Science, Sapporo (Japan); Mukai, Takahiro [Kyushu University, Department of Biomolecular Recognition Chemistry, Graduate School of Pharmaceutical Sciences, Fukuoka (Japan); Tanaka, Shotaro; Kizaka-Kondoh, Shinae; Hiraoka, Masahiro [Kyoto University, Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto (Japan)

    2010-08-15

    Hypoxia-inducible factor-1 (HIF-1) plays an important role in malignant tumour progression. For the imaging of HIF-1-active tumours, we previously developed a protein, POS, which is effectively delivered to and selectively stabilized in HIF-1-active cells, and a radioiodinated biotin derivative, (3-{sup 123}I-iodobenzoyl)norbiotinamide ({sup 123}I-IBB), which can bind to the streptavidin moiety of POS. In this study, we aimed to investigate the feasibility of the pretargeting method using POS and {sup 123}I-IBB for rapid imaging of HIF-1-active tumours. Tumour-implanted mice were pretargeted with POS. After 24 h, {sup 125}I-IBB was administered and subsequently, the biodistribution of radioactivity was investigated at several time points. In vivo planar imaging, comparison between {sup 125}I-IBB accumulation and HIF-1 transcriptional activity, and autoradiography were performed at 6 h after the administration of {sup 125}I-IBB. The same sections that were used in autoradiographic analysis were subjected to HIF-1{alpha} immunohistochemistry. {sup 125}I-IBB accumulation was observed in tumours of mice pretargeted with POS (1.6%ID/g at 6 h). This result is comparable to the data derived from {sup 125}I-IBB-conjugated POS-treated mice (1.4%ID/g at 24 h). In vivo planar imaging provided clear tumour images. The tumoral accumulation of {sup 125}I-IBB significantly correlated with HIF-1-dependent luciferase bioluminescence (R=0.84, p<0.01). The intratumoral distribution of {sup 125}I-IBB was heterogeneous and was significantly correlated with HIF-1{alpha}-positive regions (R=0.58, p<0.0001). POS pretargeting with {sup 123}I-IBB is a useful technique in the rapid imaging and detection of HIF-1-active regions in tumours. (orig.)

  1. Cyclin E-induced S phase without activation of the pRb/E2F pathway

    DEFF Research Database (Denmark)

    Lukas, J; Herzinger, T; Hansen, Klaus

    1997-01-01

    In cells of higher eukaryotes, cyclin D-dependent kinases Cdk4 and Cdk6 and, possibly, cyclin E-dependent Cdk2 positively regulate the G1- to S-phase transition, by phosphorylating the retinoblastoma protein (pRb), thereby releasing E2F transcription factors that control S-phase genes. Here we...

  2. Expression of Flk-1 and Cyclin D2 mRNA in the Myocardium of Rats with Doxorubicin-Induced Cardiomyopathy and after Treatment with Betulonic Acid Amide.

    Science.gov (United States)

    Mzhelskaya, M M; Klinnikova, M G; Koldysheva, E V; Lushnikova, E L

    2017-10-01

    The expression of VEGFR2 (Flk-1, according to immunohistochemistry) and of cyclin D2 mRNA (according to real-time PCR) in the myocardium of rats is studied in doxorubicin-induced cardiomyopathy and in response to betulonic acid amide. Doxorubicin alone and in combination with betulonic acid amide causes after 3 days a manifest reduction of cyclin D2 mRNA expression (by 38 and 63%, respectively), while injection of betulonic acid amide alone causes a 23-fold increase of cyclin D2 mRNA expression. An increase of cyclin D2 mRNA expression has been detected in all experimental groups after 14 days of experiment, the most pronounced in response to betulonic acid amide (63 times). The expression of Flk-1 in cardiomyocytes increases significantly in response to both chemical agents starting from day 3 of experiment. These results indicate that doxorubicin and betulonic acid amide induce cytoprotective reactions in the myocardium, first at the intracellular, then at the cellular levels.

  3. BAFF induces spleen CD4+ T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    International Nuclear Information System (INIS)

    Ji, Fang; Chen, Rongjing; Liu, Baojun; Zhang, Xiaoping; Han, Junli; Wang, Haining; Shen, Gang; Tao, Jiang

    2012-01-01

    Highlights: ► Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4 + T cells. ► Carrying out siRNA technology to study FOXO3A protein function. ► Helpful to understand the T cell especially CD4 + T cell‘s role in immunological reaction. -- Abstract: The TNF ligand family member “B cell-activating factor belonging to the TNF family” (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4 + spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4 + T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4 + spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4 + T cell proliferation.

  4. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis

    NARCIS (Netherlands)

    Greijer, A.E.; Wall, E. van der

    2004-01-01

    Apoptosis can be induced in response to hypoxia. The severity of hypoxia determines whether cells become apoptotic or adapt to hypoxia and survive. A hypoxic environment devoid of nutrients prevents the cell undergoing energy dependent apoptosis and cells become necrotic. Apoptosis regulatory

  5. Hypoxic stress simultaneously stimulates vascular endothelial growth factor via hypoxia-inducible factor-1α and inhibits stromal cell-derived factor-1 in human endometrial stromal cells.

    Science.gov (United States)

    Tsuzuki, Tomoko; Okada, Hidetaka; Cho, Hisayuu; Tsuji, Shoko; Nishigaki, Akemi; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2012-02-01

    Hypoxia of the human endometrium is a physiologic event occurring during the perimenstrual period and the local stimulus for angiogenesis. The aim of this study was to investigate the effects of hypoxic stress on the regulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1/CXCL12), and the potential role of hypoxia-inducible factor-1α (HIF-1α) in the endometrium. Human endometrial stromal cells (ESCs, n= 22 samples) were studied in vitro. ESCs were cultured under hypoxic and normoxic conditions and treated with cobalt chloride (CoCl₂; a hypoxia-mimicking agent) and/or echinomycin, a small-molecule inhibitor of HIF-1α activity. The mRNA levels and production of VEGF and SDF-1 were assessed by real-time PCR and ELISA, respectively. The HIF-1α protein levels were measured using western blot analysis. Hypoxia simultaneously induced the expression of mRNA and production of VEGF and attenuated the expression and production of SDF-1 from ESCs in a time-dependent manner. Similar changes were observed in the ESCs after stimulation with CoCl₂ in a dose-dependent manner. CoCl₂ significantly induced the expression of HIF-1α protein, and its highest expression was observed at 6 h. Echinomycin inhibited hypoxia-induced VEGF production without affecting the HIF-1α protein level and cell toxicity and had no effect on SDF-1 secretion (P hypoxic conditions that could influence angiogenesis in the human endometrium.

  6. Ionizing Radiation–Inducible miR-27b Suppresses Leukemia Proliferation via Targeting Cyclin A2

    International Nuclear Information System (INIS)

    Wang, Bo; Li, Dongping; Kovalchuk, Anna; Litvinov, Dmitry; Kovalchuk, Olga

    2014-01-01

    Purpose: Ionizing radiation is a common carcinogen that is important for the development of leukemia. However, the underlying epigenetic mechanisms remain largely unknown. The goal of the study was to explore microRNAome alterations induced by ionizing radiation (IR) in murine thymus, and to determine the role of IR-inducible microRNA (miRNA/miR) in the development of leukemia. Methods and Materials: We used the well-established C57BL/6 mouse model and miRNA microarray profiling to identify miRNAs that are differentially expressed in murine thymus in response to irradiation. TIB152 human leukemia cell line was used to determine the role of estrogen receptor–α (ERα) in miR-27b transcription. The biological effects of ectopic miR-27b on leukemogenesis were measured by western immunoblotting, cell viability, apoptosis, and cell cycle analyses. Results: Here, we have shown that IR triggers the differential expression of miR-27b in murine thymus tissue in a dose-, time- and sex-dependent manner. miR-27b was significantly down-regulated in leukemia cell lines CCL119 and TIB152. Interestingly, ERα was overexpressed in those 2 cell lines, and it was inversely correlated with miR-27b expression. Therefore, we used TIB152 as a model system to determine the role of ERα in miR-27b expression and the contribution of miR-27b to leukemogenesis. β-Estradiol caused a rapid and transient reduction in miR-27b expression reversed by either ERα-neutralizing antibody or ERK1/2 inhibitor. Ectopic expression of miR-27b remarkably suppressed TIB152 cell proliferation, at least in part, by inducing S-phase arrest. In addition, it attenuated the expression of cyclin A2, although it had no effect on the levels of PCNA, PPARγ, CDK2, p21, p27, p-p53, and cleaved caspase-3. Conclusion: Our data reveal that β-estradiol/ERα signaling may contribute to the down-regulation of miR-27b in acute leukemia cell lines through the ERK1/2 pathway, and that miR-27b may function as a tumor

  7. Ionizing Radiation–Inducible miR-27b Suppresses Leukemia Proliferation via Targeting Cyclin A2

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Li, Dongping; Kovalchuk, Anna; Litvinov, Dmitry; Kovalchuk, Olga, E-mail: olga.kovalchuk@uleth.ca

    2014-09-01

    Purpose: Ionizing radiation is a common carcinogen that is important for the development of leukemia. However, the underlying epigenetic mechanisms remain largely unknown. The goal of the study was to explore microRNAome alterations induced by ionizing radiation (IR) in murine thymus, and to determine the role of IR-inducible microRNA (miRNA/miR) in the development of leukemia. Methods and Materials: We used the well-established C57BL/6 mouse model and miRNA microarray profiling to identify miRNAs that are differentially expressed in murine thymus in response to irradiation. TIB152 human leukemia cell line was used to determine the role of estrogen receptor–α (ERα) in miR-27b transcription. The biological effects of ectopic miR-27b on leukemogenesis were measured by western immunoblotting, cell viability, apoptosis, and cell cycle analyses. Results: Here, we have shown that IR triggers the differential expression of miR-27b in murine thymus tissue in a dose-, time- and sex-dependent manner. miR-27b was significantly down-regulated in leukemia cell lines CCL119 and TIB152. Interestingly, ERα was overexpressed in those 2 cell lines, and it was inversely correlated with miR-27b expression. Therefore, we used TIB152 as a model system to determine the role of ERα in miR-27b expression and the contribution of miR-27b to leukemogenesis. β-Estradiol caused a rapid and transient reduction in miR-27b expression reversed by either ERα-neutralizing antibody or ERK1/2 inhibitor. Ectopic expression of miR-27b remarkably suppressed TIB152 cell proliferation, at least in part, by inducing S-phase arrest. In addition, it attenuated the expression of cyclin A2, although it had no effect on the levels of PCNA, PPARγ, CDK2, p21, p27, p-p53, and cleaved caspase-3. Conclusion: Our data reveal that β-estradiol/ERα signaling may contribute to the down-regulation of miR-27b in acute leukemia cell lines through the ERK1/2 pathway, and that miR-27b may function as a tumor

  8. Hypoxia and hypoxia inducible factor-1α are required for normal endometrial repair during menstruation.

    Science.gov (United States)

    Maybin, Jacqueline A; Murray, Alison A; Saunders, Philippa T K; Hirani, Nikhil; Carmeliet, Peter; Critchley, Hilary O D

    2018-01-23

    Heavy menstrual bleeding (HMB) is common and debilitating, and often requires surgery due to hormonal side effects from medical therapies. Here we show that transient, physiological hypoxia occurs in the menstrual endometrium to stabilise hypoxia inducible factor 1 (HIF-1) and drive repair of the denuded surface. We report that women with HMB have decreased endometrial HIF-1α during menstruation and prolonged menstrual bleeding. In a mouse model of simulated menses, physiological endometrial hypoxia occurs during bleeding. Maintenance of mice under hyperoxia during menses decreases HIF-1α induction and delays endometrial repair. The same effects are observed upon genetic or pharmacological reduction of endometrial HIF-1α. Conversely, artificial induction of hypoxia by pharmacological stabilisation of HIF-1α rescues the delayed endometrial repair in hypoxia-deficient mice. These data reveal a role for HIF-1 in the endometrium and suggest its pharmacological stabilisation during menses offers an effective, non-hormonal treatment for women with HMB.

  9. Saururus cernuus lignans-Potent small molecule inhibitors of hypoxia-inducible factor-1

    International Nuclear Information System (INIS)

    Hossain, Chowdhury Faiz; Kim, Yong-Pil; Baerson, Scott R.; Zhang Lei; Bruick, Richard K.; Mohammed, Kaleem A.; Agarwal, Ameeta K.; Nagle, Dale G.; Zhou Yudong

    2005-01-01

    Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a cell-based reporter assay. Bioassay-guided fractionation and isolation, followed by structure elucidation, yielded three potent natural product-derived HIF-1 inhibitors and two structurally related inactive compounds. In a T47D cell-based reporter assay, manassantin B 1 , manassantin A, and 4-O-methylsaucerneol inhibited hypoxia-induced HIF-1 activation with IC 50 values of 3, 3, and 20 nM, respectively. All three compounds are relatively hypoxia-specific inhibitors of HIF-1 activation, in comparison to other stimuli. The hypoxic induction of HIF-1 target genes CDKN1A, VEGF, and GLUT-1 were also inhibited. These compounds inhibit HIF-1 by blocking hypoxia-induced nuclear HIF-1α protein accumulation without affecting HIF-1α mRNA levels. In addition, preliminary structure-activity studies suggest specific structural requirements for this class of HIF-1 inhibitors

  10. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    International Nuclear Information System (INIS)

    Zhang Dongyun; Li Jingxia; Gao Jimin; Huang Chuanshu

    2009-01-01

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure

  11. Hypoxia-inducible factor-1 signalling promotes goblet cell hyperplasia in airway epithelium

    Science.gov (United States)

    Polosukhin, Vasiliy V; Cates, Justin M; Lawson, William E; Milstone, Aaron P; Matafonov, Anton G; Massion, Pierre P; Lee, Jae Woo; Randell, Scott H; Blackwell, Timothy S

    2018-01-01

    Goblet cell hyperplasia is a common feature of chronic obstructive pulmonary disease (COPD) airways, but the mechanisms that underlie this epithelial remodelling in COPD are not understood. Based on our previous finding of hypoxia-inducible factor-1α (HIF-1α) nuclear localization in large airways from patients with COPD, we investigated whether hypoxia-inducible signalling could influence the development of goblet cell hyperplasia. We evaluated large airway samples obtained from 18 lifelong non-smokers and 13 former smokers without COPD, and 45 former smokers with COPD. In these specimens, HIF-1α nuclear staining occurred almost exclusively in COPD patients in areas of airway remodelling. In COPD patients, 93.2 ± 3.9% (range 65 – 100%) of goblet cells were HIF-1α positive in areas of goblet cell hyperplasia, whereas nuclear HIF-1α was not detected in individuals without COPD or in normal-appearing pseudostratified epithelium from COPD patients. To determine the direct effects of hypoxia-inducible signalling on epithelial cell differentiation in vitro, human bronchial epithelial cells (HBECs) were grown in air-liquid interface cultures under hypoxia (1% O2) or following treatment with a selective HIF-1α stabilizer, (2R)-[(4-biphenylylsulphonyl)amino]-N-hydroxy-3-phenyl-propionamide (BiPS). HBECs grown in hypoxia or with BiPS treatment were characterized by HIF-1α activation, carbonic anhydrase IX expression, mucus-producing cell hyperplasia and increased expression of MUC5AC. Analysis of signal transduction pathways in cells with HIF-1α activation showed increased ERK1/2 phosphorylation without activation of epidermal growth factor receptor, Ras, PI3K-Akt or STAT6. These data indicate an important effect of hypoxia-inducible signalling on airway epithelial cell differentiation and identify a new potential target to limit mucus production in COPD. PMID:21557221

  12. Hypoxia-inducible factor 1α mediates neuroprotection of hypoxic postconditioning against global cerebral ischemia.

    Science.gov (United States)

    Zhu, Tingna; Zhan, Lixuan; Liang, Donghai; Hu, Jiaoyue; Lu, Zhiwei; Zhu, Xinyong; Sun, Weiwen; Liu, Liu; Xu, En

    2014-10-01

    Hypoxia administered after transient global cerebral ischemia (tGCI) has been shown to induce neuroprotection in adult rats, but the underlying mechanisms for this protection are unclear. Here, we tested the hypothesis that hypoxic postconditioning (HPC) induces neuroprotection through upregulation of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF), and that this involves phosphatidylinositol-3-kinase (PI3K), p38 mitogen-activated protein kinase (p38 MAPK), and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) pathways. The expression of HIF-1α, VEGF, and cleaved caspase-9 were determined by immunohistochemistry and Western blot. As pharmacologic interventions, the HIF-1α inhibitor 2-methoxyestradiol (2ME2), PI3K inhibitor LY294002, p38 MAPK inhibitor SB203580, and MEK inhibitor U0126 were administered before HPC or after tGCI. We found that HPC maintained the higher expression of HIF-1α and VEGF and decreased cleaved caspase-9 levels in CA1 after tGCI. These effects were reversed by 2ME2 administered before HPC, and the neuroprotection of HPC was abolished. LY294002 and SB203580 decreased the expression of HIF-1α and VEGF after HPC, whereas U0126 increased HIF-1α and VEGF after tGCI. These findings suggested that HIF-1α exerts neuroprotection induced by HPC against tGCI through VEGF upregulation and cleaved caspase-9 downregulation, and that the PI3K, p38 MAPK, and MEK pathways are involved in the regulation of HIF-1α and VEGF.

  13. Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mushfiquddin Khan

    2017-01-01

    Full Text Available Mild traumatic brain injury (TBI, also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide (NO, the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha (HIF-1α, a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione (GSNO and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.

  14. Hypoxia-inducible factor 1–mediated characteristic features of cancer cells for tumor radioresistance

    International Nuclear Information System (INIS)

    Harada, Hiroshi

    2016-01-01

    Tumor hypoxia has been attracting increasing attention in the fields of radiation biology and oncology since Thomlinson and Gray detected hypoxic cells in malignant solid tumors and showed that they exert a negative impact on the outcome of radiation therapy. This unfavorable influence has, at least partly, been attributed to cancer cells acquiring a radioresistant phenotype through the activation of the transcription factor, hypoxia-inducible factor 1 (HIF-1). On the other hand, accumulating evidence has recently revealed that, even though HIF-1 is recognized as an important regulator of cellular adaptive responses to hypoxia, it may not become active and induce tumor radioresistance under hypoxic conditions only. The mechanisms by which HIF-1 is activated in cancer cells not only under hypoxic conditions, but also under normoxic conditions, through cancer-specific genetic alterations and the resultant imbalance in intermediate metabolites have been summarized herein. The relevance of the HIF-1–mediated characteristic features of cancer cells, such as the production of antioxidants through reprogramming of the glucose metabolic pathway and cell cycle regulation, for tumor radioresistance has also been reviewed

  15. Targeting CCl4 -induced liver fibrosis by RNA interference-mediated inhibition of cyclin E1 in mice.

    Science.gov (United States)

    Bangen, Jörg-Martin; Hammerich, Linda; Sonntag, Roland; Baues, Maike; Haas, Ute; Lambertz, Daniela; Longerich, Thomas; Lammers, Twan; Tacke, Frank; Trautwein, Christian; Liedtke, Christian

    2017-10-01

    Initiation and progression of liver fibrosis requires proliferation and activation of resting hepatic stellate cells (HSCs). Cyclin E1 (CcnE1) is the regulatory subunit of the cyclin-dependent kinase 2 (Cdk2) and controls cell cycle re-entry. We have recently shown that genetic inactivation of CcnE1 prevents activation, proliferation, and survival of HSCs and protects from liver fibrogenesis. The aim of the present study was to translate these findings into preclinical applications using an RNA interference (RNAi)-based approach. CcnE1-siRNA (small interfering RNA) efficiently inhibited CcnE1 gene expression in murine and human HSC cell lines and in primary HSCs, resulting in diminished proliferation and increased cell death. In C57BL/6 wild-type (WT) mice, delivery of stabilized siRNA using a liposome-based carrier targeted approximately 95% of HSCs, 70% of hepatocytes, and 40% of CD45 + cells after single injection. Acute CCl 4 -mediated liver injury in WT mice induced endogenous CcnE1 expression and proliferation of surviving hepatocytes and nonparenchymal cells, including CD45 + leukocytes. Pretreatment with CcnE1-siRNA reverted CcnE1 induction to baseline levels of healthy mice, which was associated with reduced liver injury, diminished proliferation of hepatocytes and leukocytes, and attenuated overall inflammatory response. For induction of liver fibrosis, WT mice were challenged with CCl 4 for 4-6 weeks. Co-treatment with CcnE1-siRNA once a week was sufficient to continuously block CcnE1 expression and cell-cycle activity of hepatocytes and nonparenchymal cells, resulting in significantly ameliorated liver fibrosis and inflammation. Importantly, CcnE1-siRNA also prevented progression of liver fibrosis if applied after onset of chronic liver injury. Therapeutic targeting of CcnE1 in vivo using RNAi is feasible and has high antifibrotic activity. (Hepatology 2017;66:1242-1257). © 2017 by the American Association for the Study of Liver Diseases.

  16. Differentiation-inducing factor-1 and -2 function also as modulators for Dictyostelium chemotaxis.

    Directory of Open Access Journals (Sweden)

    Hidekazu Kuwayama

    Full Text Available BACKGROUND: In the early stages of development of the cellular slime mold Dictyostelium discoideum, chemotaxis toward cAMP plays a pivotal role in organizing discrete cells into a multicellular structure. In this process, a series of signaling molecules, such as G-protein-coupled cell surface receptors for cAMP, phosphatidylinositol metabolites, and cyclic nucleotides, function as the signal transducers for controlling dynamics of cytoskeleton. Differentiation-inducing factor-1 and -2 (DIF-1 and DIF-2 were originally identified as the factors (chlorinated alkylphenones that induce Dictyostelium stalk cell differentiation, but it remained unknown whether the DIFs had any other physiologic functions. METHODOLOGY/PRINCIPAL FINDINGS: To further elucidate the functions of DIFs, in the present study we investigated their effects on chemotaxis under various conditions. Quite interestingly, in shallow cAMP gradients, DIF-1 suppressed chemotaxis whereas DIF-2 promoted it greatly. Analyses with various mutants revealed that DIF-1 may inhibit chemotaxis, at least in part, via GbpB (a phosphodiesterase and a decrease in the intracellular cGMP concentration ([cGMP](i. DIF-2, by contrast, may enhance chemotaxis, at least in part, via RegA (another phosphodiesterase and an increase in [cGMP](i. Using null mutants for DimA and DimB, the transcription factors that are required for DIF-dependent prestalk differentiation, we also showed that the mechanisms for the modulation of chemotaxis by DIFs differ from those for the induction of cell differentiation by DIFs, at least in part. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that DIF-1 and DIF-2 function as negative and positive modulators for Dictyostelium chemotaxis, respectively. To our knowledge, this is the first report in any organism of physiologic modulators (small molecules for chemotaxis having differentiation-inducing activity.

  17. Increased hypoxia-inducible factor-1α in striated muscle of tumor-bearing mice.

    Science.gov (United States)

    Devine, Raymond D; Bicer, Sabahattin; Reiser, Peter J; Wold, Loren E

    2017-06-01

    Cancer cachexia is a progressive wasting disease resulting in significant effects on the quality of life and high mortality. Most studies on cancer cachexia have focused on skeletal muscle; however, the heart is now recognized as a major site of cachexia-related effects. To elucidate possible mechanisms, a proteomic study was performed on the left ventricles of colon-26 (C26) adenocarcinoma tumor-bearing mice. The results revealed several changes in proteins involved in metabolism. An integrated pathway analysis of the results revealed a common mediator in hypoxia-inducible factor-1α (HIF-1α). Work by other laboratories has shown that extensive metabolic restructuring in the C26 mouse model causes changes in gene expression that may be affected directly by HIF-1α, such as glucose metabolic genes. M-mode echocardiography showed progressive decline in heart function by day 19 , exhibited by significantly decreased ejection fraction and fractional shortening, along with posterior wall thickness. Using Western blot analysis, we confirmed that HIF-1α is significantly upregulated in the heart, whereas there were no changes in its regulatory proteins, prolyl hydroxylase domain-containing protein 2 (PHD2) and von Hippel-Lindau protein (VHL). PHD2 requires both oxygen and iron as cofactors for the hydroxylation of HIF-1α, marking it for ubiquination via VHL and subsequent destruction by the proteasome complex. We examined venous blood gas values in the tumor-bearing mice and found significantly lower oxygen concentration compared with control animals in the third week after tumor inoculation. We also examined select skeletal muscles to determine whether they are similarly affected. In the diaphragm, extensor digitorum longus, and soleus, we found significantly increased HIF-1α in tumor-bearing mice, indicating a hypoxic response, not only in the heart, but also in skeletal muscle. These results indicate that HIF-1α may contribute, in part, to the metabolic changes

  18. The inhibition of LPS-induced splenocyte proliferation by ortho-substituted and microbially dechlorinated polychlorinated biphenyls is associated with a decreased expression of cyclin D2

    International Nuclear Information System (INIS)

    Smithwick, L. Ashley; Quensen, John F.; Smith, Andrew; Kurtz, David T.; London, Lucille; Morris, Pamela J.

    2004-01-01

    Immunological effects of polychlorinated biphenyls (PCBs) have been demonstrated in our laboratories with the preferential inhibition of lipopolysaccharide (LPS)-induced splenocyte proliferation by ortho-substituted PCB congeners. An investigation of the mechanism behind this immunotoxicity revealed an interruption in the progression of murine lymphocytes from G 0 /G 1 into S phase by Aroclor 1242 and the di-ortho-substituted congener, 2,2'-chlorobiphenyl (CB), whereas, a non-ortho-substituted congener, 4,4'-CB, did not affect cell cycle progression. This interruption of cell cycle progression by 2,2'-CB and Aroclor 1242 was associated with a decreased expression of the cell cycle regulatory protein, cyclin D2, while expression was not affected by exposure to the non-ortho-substituted 4,4'-CB. These results suggest the preferential inhibition of LPS-induced splenocyte proliferation by ortho-substituted congeners is a result of a decreased expression of cyclin D2, which leads to an interruption in cell cycle progression. In addition, PCB mixtures with an increased percentage of chlorines in the ortho position following an environmentally occurring degradation process inhibited LPS-induced proliferation, interrupted cell cycle progression, and decreased cyclin D2 expression. This study provides evidence for a mechanism of action of the immunological effects of ortho-substituted individual congeners as well as environmentally relevant mixtures enriched in congeners with this substitution pattern

  19. Decay-accelerating factor 1 deficiency exacerbates Trypanosoma cruzi-induced murine chronic myositis.

    Science.gov (United States)

    Solana, María E; Ferrer, María F; Novoa, María Mercedes; Song, Wen-Chao; Gómez, Ricardo M

    2012-10-01

    Murine infection with Trypanosoma cruzi (Tc) has been used to study the role of T-cells in the pathogenesis of human inflammatory idiopathic myositis. Absence of decay-accelerating factor 1 (Daf1) has been shown to enhance murine T-cell responses and autoimmunity. To determine whether Daf1 deficiency can exacerbate Tc-induced myositis, C57BL/6 DAF(+/+) and DAF(-/-) mice were inoculated with 5 × 10(4) trypomastigotes, and their morbidity, parasitemia, parasite burden, histopathology, and T-cell expansion were studied in the acute and chronic stages. DAF(-/-) mice had lower parasitemia and parasite burden but higher morbidity, muscle histopathology, and increased number of CD44(+) (activated/memory phenotype) splenic CD4(+) and CD8(+) T-cells. An enhanced CD8(+) T-cell immune-specific response may explain the lower parasitemia and parasite burden levels and the increase in histopathological lesions. We propose that Tc-inoculated DAF(-/-) mice are a useful model to study T-cell mediated immunity in skeletal muscle tissues. Copyright © 2012 Wiley Periodicals, Inc.

  20. Interleukin-17 limits hypoxia-inducible factor 1α and development of hypoxic granulomas during tuberculosis.

    Science.gov (United States)

    Domingo-Gonzalez, Racquel; Das, Shibali; Griffiths, Kristin L; Ahmed, Mushtaq; Bambouskova, Monika; Gopal, Radha; Gondi, Suhas; Muñoz-Torrico, Marcela; Salazar-Lezama, Miguel A; Cruz-Lagunas, Alfredo; Jiménez-Álvarez, Luis; Ramirez-Martinez, Gustavo; Espinosa-Soto, Ramón; Sultana, Tamanna; Lyons-Weiler, James; Reinhart, Todd A; Arcos, Jesus; de la Luz Garcia-Hernandez, Maria; Mastrangelo, Michael A; Al-Hammadi, Noor; Townsend, Reid; Balada-Llasat, Joan-Miquel; Torrelles, Jordi B; Kaplan, Gilla; Horne, William; Kolls, Jay K; Artyomov, Maxim N; Rangel-Moreno, Javier; Zúñiga, Joaquín; Khader, Shabaana A

    2017-10-05

    Mycobacterium tuberculosis (Mtb) is a global health threat, compounded by the emergence of drug-resistant strains. A hallmark of pulmonary tuberculosis (TB) is the formation of hypoxic necrotic granulomas, which upon disintegration, release infectious Mtb. Furthermore, hypoxic necrotic granulomas are associated with increased disease severity and provide a niche for drug-resistant Mtb. However, the host immune responses that promote the development of hypoxic TB granulomas are not well described. Using a necrotic Mtb mouse model, we show that loss of Mtb virulence factors, such as phenolic glycolipids, decreases the production of the proinflammatory cytokine IL-17 (also referred to as IL-17A). IL-17 production negatively regulates the development of hypoxic TB granulomas by limiting the expression of the transcription factor hypoxia-inducible factor 1α (HIF1α). In human TB patients, HIF1α mRNA expression is increased. Through genotyping and association analyses in human samples, we identified a link between the single nucleotide polymorphism rs2275913 in the IL-17 promoter (-197G/G), which is associated with decreased IL-17 production upon stimulation with Mtb cell wall. Together, our data highlight a potentially novel role for IL-17 in limiting the development of hypoxic necrotic granulomas and reducing disease severity in TB.

  1. Cell physiology regulation by hypoxia inducible factor-1: Targeting oxygen-related nanomachineries of hypoxic cells.

    Science.gov (United States)

    Eskandani, Morteza; Vandghanooni, Somayeh; Barar, Jaleh; Nazemiyeh, Hossein; Omidi, Yadollah

    2017-06-01

    Any dysfunctionality in maintaining the oxygen homeostasis by mammalian cells may elicit hypoxia/anoxia, which results in inescapable oxidative stress and possible subsequent detrimental impacts on certain cells/tissues with high demands to oxygen molecules. The ischemic damage in turn can trigger initiation of a number of diseases including organs ischemia, metabolic disorders, inflammatory diseases, different types of malignancies, and alteration in wound healing process. Thus, full comprehension of molecular mechanism(s) and cellular physiology of the oxygen homeostasis is the cornerstone of the mammalian cells metabolism, energetic pathways and health and disease conditions. An imbalance in oxygen content within the cellular microenvironment activates a cascade of molecular events that are often compensated, otherwise pathologic condition occurs through a complexed network of biomolecules. Hypoxia inducible factor-1 (HIF-1) plays a key transcriptional role in the adaptation of cell physiology in relation with the oxygen content within a cell. In this current study, we provide a comprehensive review on the molecular mechanisms of oxygen sensing and homeostasis and the impacts of HIF-1 in hypoxic/anoxic conditions. Moreover, different molecular and biochemical responses of the cells to the surrounding environment are discussed in details. Finally, modern technological approaches for targeting the hypoxia related proteins are articulated. Copyright © 2017. Published by Elsevier B.V.

  2. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies

    Science.gov (United States)

    Zimna, Agnieszka; Kurpisz, Maciej

    2015-01-01

    The cardiovascular system ensures the delivery of oxygen and nutrients to all cells, tissues, and organs. Under extended exposure to reduced oxygen levels, cells are able to survive through the transcriptional activation of a series of genes that participate in angiogenesis, glucose metabolism, and cell proliferation. The oxygen-sensitive transcriptional activator HIF-1 (hypoxia-inducible factor-1) is a key transcriptional mediator of the response to hypoxic conditions. The HIF-1 pathway was found to be a master regulator of angiogenesis. Whether the process is physiological or pathological, HIF-1 seems to participate in vasculature formation by synergistic correlations with other proangiogenic factors such as VEGF (vascular endothelial growth factor), PlGF (placental growth factor), or angiopoietins. Considering the important contributions of HIF-1 in angiogenesis and vasculogenesis, it should be considered a promising target for treating ischaemic diseases or cancer. In this review, we discuss the roles of HIF-1 in both physiological/pathophysiological angiogenesis and potential strategies for clinical therapy. PMID:26146622

  3. Radiolabeled Probes Targeting Hypoxia-Inducible Factor-1-Active Tumor Microenvironments

    Directory of Open Access Journals (Sweden)

    Masashi Ueda

    2014-01-01

    Full Text Available Because tumor cells grow rapidly and randomly, hypoxic regions arise from the lack of oxygen supply in solid tumors. Hypoxic regions in tumors are known to be resistant to chemotherapy and radiotherapy. Hypoxia-inducible factor-1 (HIF-1 expressed in hypoxic regions regulates the expression of genes related to tumor growth, angiogenesis, metastasis, and therapy resistance. Thus, imaging of HIF-1-active regions in tumors is of great interest. HIF-1 activity is regulated by the expression and degradation of its α subunit (HIF-1α, which is degraded in the proteasome under normoxic conditions, but escapes degradation under hypoxic conditions, allowing it to activate transcription of HIF-1-target genes. Therefore, to image HIF-1-active regions, HIF-1-dependent reporter systems and injectable probes that are degraded in a manner similar to HIF-1α have been recently developed and used in preclinical studies. However, no probe currently used in clinical practice directly assesses HIF-1 activity. Whether the accumulation of 18F-FDG or 18F-FMISO can be utilized as an index of HIF-1 activity has been investigated in clinical studies. In this review, the current status of HIF-1 imaging in preclinical and clinical studies is discussed.

  4. Diacetoxyscirpenol as a new anticancer agent to target hypoxia-inducible factor 1

    Science.gov (United States)

    Choi, Yong-Joon; Shin, Hyun-Woo; Chun, Yang-Sook; Leutou, Alain Simplice; Son, Byeng Wha; Park, Jong-Wan

    2016-01-01

    Hypoxia activates hypoxia-inducible factor 1, which promotes the progression of malignancy by stimulating angiogenesis and by augmenting the ability of tumors to survive. Thus, HIF-1 is one of the most compelling targets for treating cancers. The aim of this study was to find a small molecule that inhibits HIF-1 under hypoxia in cancer cells. 7,280 compounds in a chemical library were tested in a cancer cell line expressing luciferase HIF-dependently. Through three rounds of screening, we finally picked up a compound that originates from a marine bacterium parasitizing red alga. The antibiotic potently inhibited HIF-1 expression and its transcriptional activity in cancer cells exposed to hypoxia. Through two-step fractionation, diacetoxyscirpenol was purified and identified as a HIF-inhibiting ingredient. Mechanistically, diacetoxyscirpenol inhibits the synthesis of HIF-1α protein and also interferes with the dimerization of HIF-1α and ARNT. It attenuates HIF-mediated gene expression in cancer cells exposed to hypoxia, and by doing so reduces tumorigenic and angiogenic potentials of cancer cells. More importantly, diacetoxyscirpenol retarded tumor growth in mice, and reduced HIF-1α expression and vascular formation in the tumors. Overall, diacetoxyscirpenol is considered a potential drug deregulating the HIF-1 signaling pathway, and it could be beneficially employed for treating malignant tumors with hypoxic microenvironment. PMID:27613833

  5. Anti-vascular agent Combretastatin A-4-P modulates Hypoxia Inducible Factor-1 and gene expression

    Directory of Open Access Journals (Sweden)

    Currie Margaret J

    2006-12-01

    Full Text Available Abstract Background A functional vascular network is essential for the survival, growth and spread of solid tumours, making blood vessels a key target for therapeutic strategies. Combretastatin A-4 phosphate (CA-4-P is a tubulin-depolymerising agent in Phase II clinical trials as a vascular disrupting agent. Not much is known of the molecular effect of CA-4-P under tumour conditions. The tumour microenvironment differs markedly from that in normal tissue, specifically with respect to oxygenation (hypoxia. Gene regulation under tumour conditions is governed by hypoxia inducible factor 1 (HIF-1, controlling angiogenic and metastatic pathways. Methods We investigated the effect of CA-4-P on factors of the upstream and downstream signalling pathway of HIF-1 in vitro. Results CA-4-P treatment under hypoxia tended to reduce HIF-1 accumulation in a concentration-dependent manner, an effect which was more prominent in endothelial cells than in cancer cell lines. Conversely, CA-4-P increased HIF-1 accumulation under aerobic conditions in vitro. At these concentrations of CA-4-P under aerobic conditions, nuclear factor κB was activated via the small GTPase RhoA, and expression of the HIF-1 downstream angiogenic effector gene, vascular endothelial growth factor (VEGF-A, was increased. Conclusion Our findings advance the understanding of signal transduction pathways involved in the actions of the anti-vascular agent CA-4-P.

  6. Hypoxia-Inducible Factor-1 as a Therapeutic Target in Endometrial Cancer Management

    Directory of Open Access Journals (Sweden)

    Laura M. S. Seeber

    2010-01-01

    Full Text Available In the Western world, endometrial cancer (EC is the most common malignant tumor of the female genital tract. Solid tumors like EC outgrow their vasculature resulting in hypoxia. Tumor hypoxia is important because it renders an aggressive phenotype and leads to radio- and chemo-therapy resistance. Hypoxia-inducible factor-1 (HIF-1 plays an essential role in the adaptive cellular response to hypoxia and is associated with poor clinical outcome in EC. Therefore, HIF-1 could be an attractive therapeutic target. Selective HIF-1 inhibitors have not been identified. A number of nonselective inhibitors which target signaling pathways upstream or downstream HIF-1 are known to decrease HIF-1 protein levels. In clinical trials for the treatment of advanced and/or recurrent EC are the topoisomerase I inhibitor Topotecan, mTOR-inhibitor Rapamycin, and angiogenesis inhibitor Bevacizumab. Preliminary data shows encouraging results for these agents. Further work is needed to identify selective HIF-1 inhibitors and to translate these into clinical trials.

  7. The histone deacetylase inhibitor, Vorinostat, represses hypoxia inducible factor 1 alpha expression through translational inhibition.

    Directory of Open Access Journals (Sweden)

    Darren M Hutt

    Full Text Available Hypoxia inducible factor 1α (HIF-1α is a master regulator of tumor angiogenesis being one of the major targets for cancer therapy. Previous studies have shown that Histone Deacetylase Inhibitors (HDACi block tumor angiogenesis through the inhibition of HIF-1α expression. As such, Vorinostat (Suberoylanilide Hydroxamic Acid/SAHA and Romidepsin, two HDACis, were recently approved by the Food and Drug Administration (FDA for the treatment of cutaneous T cell lymphoma. Although HDACis have been shown to affect HIF-1α expression by modulating its interactions with the Hsp70/Hsp90 chaperone axis or its acetylation status, the molecular mechanisms by which HDACis inhibit HIF-1α expression need to be further characterized. Here, we report that the FDA-approved HDACi Vorinostat/SAHA inhibits HIF-1α expression in liver cancer-derived cell lines, by a new mechanism independent of p53, prolyl-hydroxylases, autophagy and proteasome degradation. We found that SAHA or silencing of HDAC9 mechanism of action is due to inhibition of HIF-1α translation, which in turn, is mediated by the eukaryotic translation initiation factor--eIF3G. We also highlighted that HIF-1α translation is dramatically inhibited when SAHA is combined with eIF3H silencing. Taken together, we show that HDAC activity regulates HIF-1α translation, with HDACis such as SAHA representing a potential novel approach for the treatment of hepatocellular carcinoma.

  8. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy.

    Science.gov (United States)

    Weijer, Ruud; Broekgaarden, Mans; Krekorian, Massis; Alles, Lindy K; van Wijk, Albert C; Mackaaij, Claire; Verheij, Joanne; van der Wal, Allard C; van Gulik, Thomas M; Storm, Gert; Heger, Michal

    2016-01-19

    Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression levels of HIF-1-associated proteins in human perihilar cholangiocarcinomas, (2) investigate the role of HIF-1 in PDT-treated human perihilar cholangiocarcinoma cells, and (3) determine whether HIF-1 inhibition reduces survival signaling and enhances PDT efficacy. Increased expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was confirmed in human perihilar cholangiocarcinomas. PDT with liposome-delivered zinc phthalocyanine caused HIF-1α stabilization in SK-ChA-1 cells and increased transcription of HIF-1α downstream genes. Acriflavine was taken up by SK-ChA-1 cells and translocated to the nucleus under hypoxic conditions. Importantly, pretreatment of SK-ChA-1 cells with acriflavine enhanced PDT efficacy via inhibition of HIF-1 and topoisomerases I and II. The expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was determined by immunohistochemistry in human perihilar cholangiocarcinomas. In addition, the response of human perihilar cholangiocarcinoma (SK-ChA-1) cells to PDT with liposome-delivered zinc phthalocyanine was investigated under both normoxic and hypoxic conditions. Acriflavine, a HIF-1α/HIF-1β dimerization inhibitor and a potential dual topoisomerase I/II inhibitor, was evaluated for its adjuvant effect on PDT efficacy. HIF-1, which is activated in human hilar cholangiocarcinomas, contributes to tumor cell survival following PDT in vitro. Combining PDT with acriflavine pretreatment improves PDT efficacy in cultured cells and therefore warrants further preclinical validation for therapy-recalcitrant perihilar cholangiocarcinomas.

  9. Suckling induced insulin-like growth factor-1 (IGF-1) release in mother rats.

    Science.gov (United States)

    Lékó, András H; Cservenák, Melinda; Dobolyi, Árpád

    2017-12-01

    Lactation involves significant neuroendocrine changes. The elevated prolactin (PRL) release from the pituitary, induced markedly by suckling, is the most relevant example. Suckling also causes a significant and rapid elevation in growth hormone (GH) levels. GH is necessary for milk synthesis as milk yield is stopped completely in the absence of PRL and GH, while the absence of PRL alone causes only a 50% reduction. Insulin-like growth factor-1 (IGF-1) plays an important role in the GH axis. GH exerts its effects through IGF-1 in the periphery, for example in the mammary gland. In addition, IGF-1 is responsible for the long-loop feedback control of GH secretion. IGF-1 secretion has not been established yet in mothers. Therefore, in the present study, we investigated the effect of suckling on serum IGF-1 level in rat mothers and correlated it with serum PRL levels. We examined a potential mechanism of the regulation of IGF-1 level during suckling by administering IGF-1 into the lateral ventricle of rat mothers continuously for 12days, or acutely, right before the start of suckling. We described that suckling affected IGF-1 release based on one-way repeated measures ANOVA (F=10.8 and pIGF-1 level 30min after the start of suckling (pIGF-1 release. The prolonged central IGF-1 administration diminished the suckling-induced IGF-1 surge (F=9.19 and pIGF-1 release either by elevating PRL or GH. Long-loop feedback via IGF-1 in the GH axis can diminish this action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Hypoxia Inducible Factor 1α Promotes Endogenous Adaptive Response in Rat Model of Chronic Cerebral Hypoperfusion

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2017-01-01

    Full Text Available Hypoxia inducible factor 1α (HIF-1α, a pivotal regulator of gene expression in response to hypoxia and ischemia, is now considered to regulate both pro-survival and pro-death responses depending on the duration and severity of the stress. We previously showed that chronic global cerebral hypoperfusion (CCH triggered long-lasting accumulation of HIF-1α protein in the hippocampus of rats. However, the role of the stabilized HIF-1α in CCH is obscure. Here, we knock down endogenous HIF-1α to determine whether and how HIF-1α affects the disease processes and phenotypes of CCH. Lentivirus expressing HIF-1α small hairpin RNA was injected into the bilateral hippocampus and bilateral ventricles to knock down HIF-1α gene expression in the hippocampus and other brain areas. Permanent bilateral common carotid artery occlusions, known as 2-vessel occlusions (2VOs, were used to induce CCH in rats. Angiogenesis, oxidative stress, histopathological changes of the brain, and cognitive function were tested. Knockdown of HIF-1α prior to 2VO significantly exacerbates the impairment of learning and memory after four weeks of CCH. Mechanically, reduced cerebral angiogenesis, increased oxidative damage, and increased density of astrocytes and microglia in the cortex and some subregions of hippocampus are also shown after four weeks of CCH. Furthermore, HIF-1α knockdown also disrupts upregulation of regulated downstream genes. Our findings suggest that HIF-1α-protects the brain from oxidative stress and inflammation response in the disease process of CCH. Accumulated HIF-1α during CCH mediates endogenous adaptive processes to defend against more severe hypoperfusion injury of the brain, which may provide a therapeutic benefit.

  11. Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression

    International Nuclear Information System (INIS)

    Simiantonaki, Nektaria; Taxeidis, Marios; Jayasinghe, Caren; Kurzik-Dumke, Ursula; Kirkpatrick, Charles James

    2008-01-01

    Hypoxia-inducible factor 1 alpha (HIF-1α) is involved in processes promoting carcinogenesis of many tumors. However, its role in the development of colorectal cancer is unknown. To investigate the significance of HIF-1α during colorectal carcinogenesis and progression we examined its expression in precursor lesions constituting the conventional and serrated pathways, as well as in non-metastatic and metastatic adenocarcinomas. Immunohistochemistry and Western blot is used to analyse HIF-1α expression in normal colonic mucosa, hyperplastic polyps (HPP), sessile serrated adenomas (SSA), low-grade (TA-LGD) and high-grade (TA-HGD) traditional adenomas as well as in non-metastatic and metastatic colorectal adenocarcinomas. Eight colorectal carcinoma cell lines are tested for their HIF-1α inducibility after lipopolysaccharide (LPS) stimulation using western blot and immunocytochemistry. In normal mucosa, HPP and TA-LGD HIF-1α was not expressed. In contast, perinuclear protein accumulation and nuclear expression of HIF-1α were shown in half of the examined SSA and TA-HGD. In all investigated colorectal carcinomas a significant nuclear HIF-1α overexpression compared to the premalignant lesions was observed but a significant correlation with the metastatic status was not found. Nuclear HIF-1α expression was strongly accumulated in perinecrotic regions. In these cases HIF-1α activation was seen in viable cohesive tumor epithelia surrounding necrosis and in dissociated tumor cells, which subsequently die. Enhanced distribution of HIF-1α was also seen in periiflammatory regions. In additional in vitro studies, treatment of diverse colorectal carcinoma cell lines with the potent pro-inflammatory factor lipopolysaccharide (LPS) led to HIF-1α expression and nuclear translocation. We conclude that HIF-1α expression occurs in early stages of colorectal carcinogenesis and achieves a maximum in the invasive stage independent of the metastatic status. Perinecrotic

  12. Identification of an hexapeptide that binds to a surface pocket in cyclin A and inhibits the catalytic activity of the complex cyclin-dependent kinase 2-cyclin A.

    Science.gov (United States)

    Canela, Núria; Orzáez, Mar; Fucho, Raquel; Mateo, Francesca; Gutierrez, Ricardo; Pineda-Lucena, Antonio; Bachs, Oriol; Pérez-Payá, Enrique

    2006-11-24

    The protein-protein complexes formed between different cyclins and cyclin-dependent kinases (CDKs) are central to cell cycle regulation. These complexes represent interesting points of chemical intervention for the development of antineoplastic molecules. Here we describe the identification of an all d-amino acid hexapeptide, termed NBI1, that inhibits the kinase activity of the cyclin-dependent kinase 2 (cdk2)-cyclin A complex through selective binding to cyclin A. The mechanism of inhibition is non-competitive for ATP and non-competitive for protein substrates. In contrast to the existing CDKs peptide inhibitors, the hexapeptide NBI1 interferes with the formation of the cdk2-cyclin A complex. Furthermore, a cell-permeable derivative of NBI1 induces apoptosis and inhibits proliferation of tumor cell lines. Thus, the NBI1-binding site on cyclin A may represent a new target site for the selective inhibition of activity cdk2-cyclin A complex.

  13. BAFF induces spleen CD4{sup +} T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Fang; Chen, Rongjing [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Liu, Baojun [Laboratory of Lung, Inflammation and Cancers, Huashan Hospital, Fudan University, Shanghai (China); Zhang, Xiaoping [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Han, Junli; Wang, Haining [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Shen, Gang [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Tao, Jiang, E-mail: taojiang2012@yahoo.cn [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4{sup +} T cells. Black-Right-Pointing-Pointer Carrying out siRNA technology to study FOXO3A protein function. Black-Right-Pointing-Pointer Helpful to understand the T cell especially CD4{sup +} T cell's role in immunological reaction. -- Abstract: The TNF ligand family member 'B cell-activating factor belonging to the TNF family' (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4{sup +} spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4{sup +} T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4{sup +} spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4{sup +} T cell proliferation.

  14. Hypoxia-inducible factor-1 plays a role in phosphate-induced vascular smooth muscle cell calcification.

    Science.gov (United States)

    Mokas, Sophie; Larivière, Richard; Lamalice, Laurent; Gobeil, Stéphane; Cornfield, David N; Agharazii, Mohsen; Richard, Darren E

    2016-09-01

    Medial vascular calcification is a common complication of chronic kidney disease (CKD). Although elevated inorganic phosphate stimulates vascular smooth muscle cell (VSMC) osteogenic transdifferentiation and calcification, the mechanisms involved in their calcification during CKD are not fully defined. Because hypoxic gene activation is linked to CKD and stimulates bone cell osteogenic differentiation, we used in vivo and in vitro rodent models to define the role of hypoxic signaling during elevated inorganic phosphate-induced VSMC calcification. Cell mineralization studies showed that elevated inorganic phosphate rapidly induced VSMC calcification. Hypoxia strongly enhanced elevated inorganic phosphate-induced VSMC calcification and osteogenic transdifferentiation, as seen by osteogenic marker expression. Hypoxia-inducible factor-1 (HIF-1), the key hypoxic transcription factor, was essential for enhanced VSMC calcification. Targeting HIF-1 expression in murine VSMC blocked calcification in hypoxia with elevated inorganic phosphate while HIF-1 activators, including clinically used FG-4592/Roxadustat, recreated a procalcifying environment. Elevated inorganic phosphate rapidly activated HIF-1, even in normal oxygenation; an effect mediated by HIF-1α subunit stabilization. Thus, hypoxia synergizes with elevated inorganic phosphate to enhance VSMC osteogenic transdifferentiation. Our work identifies HIF-1 as an early CKD-related pathological event, prospective marker, and potential target against vascular calcification in CKD-relevant conditions. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  15. MicroRNA-195 induced apoptosis in hypoxic chondrocytes by targeting hypoxia-inducible factor 1 alpha.

    Science.gov (United States)

    Bai, R; Zhao, A-Q; Zhao, Z-Q; Liu, W-L; Jian, D-M

    2015-02-01

    The chondrocytes, the resident cells of cartilage, are maintained and take effects in the whole life upon chronic hypoxic exposure, which hypoxia-inducible factor 1 alpha (HIF-1α) play pivotal roles in response to. Dysregulation of some microRNA (miRNAs) have also been identified to be involved in hypoxia-related physiologic and pathophysiologic responses in some tissues or cell lines. However, the mechanism of miRNAs reponse to hypoxia remain largely unknown in chondrocytes, including the microRNA-195 (miR-195). AIM To investigate the effects of microRNAs (miRNAs) and hypoxia-inducible factor 1 alpha (HIF-1α) on chondrocytes in physiologic environment. We compared the expression of miR-195 and HIF-1α mRNA on hypoxia with that on normoxia in ATDC 5 cells by qRT-PCR. Further experiments was performed to confirmed the relationships of miR-195 and HIF-1α by bioinformatics analysis and dual reporter gene assay. we also assessed the effect of miR-195 on apoptosis in hypoxic ATDC 5 cells by transfect with miR-195 mimics. It was found the downregulated miR-195 and upregulated HIF-1α were present in hypoxic ATDC 5 cells. miR-195 negatively regulated HIF-1α by targeting its 3'-untranslated region. Moreover, the founding indicated miR-195 greatly increased apoptosis and downregulated HIF-1α mRNA occurred simultaneously in hypoxic chondrocytes. We concluded that miR-195 induced apoptosis in hypoxic chondrocytes by directly targeting HIF-1α.

  16. Expression of hypoxia-inducible factor-1α and erythropoietin at corneal neovascularization in rats

    Directory of Open Access Journals (Sweden)

    Ji-Min Wang

    2014-12-01

    Full Text Available AIM: To describe the expression of hypoxia-inducible factor-1α(HIF-1αand erythropoietin(EPOin rats' corneal and evaluate its potential effect on corneal neovascularization(CNVgrowth. METHODS: The young SD rats(3mowas chosen and randomly divided into 2 groups, which were experimental group and normal control group. CNV model was established by alkali burn, and the length and area of CNV was observed everyday after operation by slit lamp. After that, the expression of HIF-1α and EPO was measured by SABC and RT-PCR methods at 1, 3, 5, 7, and 14d after alkali burn. The data was analyzed by SPSS 20.0. RESULTS: The area of CNV was increasing at 1, 3, 5, 7, and 14d after alkali burn, and the peak point appear at 7d. The growth speed was decreased after 14d. SABC method told us that no HIF-1α and very tiny amount EPO was detected at normal rats' corneal. The expression of the two factors increased at 1d after alkali burn in corneal epithelium and endoderm. The results of RT-PCR showed that a few amounts of HIF-1α and EPO mRNA were detected at normal group. The expression of the two factors was increased at 3d after alkali burn, and the peak value was found at 7d, however, it was decreased at 14d. Statistical difference was found at different time(PCONCLUSION: HIF-1α and EPO is closely related to CNV.

  17. Effect of Hypoxia-Inducible Factor 1α on Early Healing in Extraction Sockets

    Directory of Open Access Journals (Sweden)

    Hyun-Chang Lim

    2018-01-01

    Full Text Available The aim of the present study was to investigate the effect of hypoxia-inducible factor 1α (HIF1A on the early healing (4 weeks of extraction sockets exhibiting partial loss of the labial bone. Two extraction sockets of the maxillary incisors from each of six dogs were assigned to two treatment modalities: deproteinized bovine bone mineral (i with 10% collagen (DBBM-C soaked with HIF1A and covered by a collagen membrane (CM (HIF group or (ii treated with DBBM-C only and covered by a CM (control group. Microcomputed tomography revealed some degree of collapse of the labial contour. The totally augmented volume and new bone volume did not differ significantly between two groups (P>0.05. The histological analysis revealed that the apical area of the socket was mostly filled with newly formed bone, while there was less newly formed bone in the coronal area and incomplete cortex formation. The histomorphometric analysis revealed that the area of newly formed bone was significantly larger in the HIF group than the control group (12.16±3.04 versus 9.48±2.01 mm2, P<0.05, while there was no significant intergroup difference in the total augmented area. In conclusion, even though DBBM-C soaked with HIF1A enhanced histomorphometric bone formation, this intervention did not demonstrate superiority in preventing ridge shrinkage compared to DBBM-C alone. Clinical relevance of these findings should be further studied.

  18. Increased synaptophysin is involved in inflammation-induced heat hyperalgesia mediated by cyclin-dependent kinase 5 in rats.

    Directory of Open Access Journals (Sweden)

    Hong-Hai Zhang

    Full Text Available Mechanisms associated with cyclin-dependent kinase 5 (Cdk5-mediated heat hyperalgesia induced by inflammation remain undefined. This study was designed to examine whether Cdk5 mediates heat hyperalgesia resulting from peripheral injection of complete Freund's adjuvant (CFA in the spinal dorsal horns of rats by interacting with synaptophysin, a well known membrane protein mediating the endocytosis-exocytosis cycle of synaptic vesicles as a molecular marker associated with presynaptic vesicle membranes. The role of Cdk5 in mediating synaptophysin was examined through the combined use of behavioral approaches, imaging studies, and immunoprecipitation following CFA-induced inflammatory pain. Results showed that Cdk5 colocalized with both synaptophysin and soluble N-ethylmaleimide-sensitive factor (NSF attachment protein receptors (SNAREs consisting of VAMP-2, SNAP-25, and syntaxin 1A in spinal dorsal horn of rats. Increased synaptophysin expression of spinal cord horn neurons post intraplantar injection of CFA coincided with increased duration of heat hyperalgesia lasting from 6 h to 3 d. Intrathecal administration of roscovitine, a Cdk5 specific inhibitor, significantly depressed synaptophysin expression during peak heat hyperalgesia and heat hyperalgesia induced by peripheral injection of CFA. Data presented in this report indicated that calpain activity was transiently upregulated 6 h post CFA-treatment despite previous reports suggesting that calpain was capable of cleaving p35 into p25. Results from previous studies obtained by other laboratories demonstrated that significant changes in p35 expression levels within spinal cord horn neurons were not observed in the CFA-treated inflammatory pain model although significant upregulation of Cdk5 kinase was observed between 2 h to 7 d. Therefore, generation of p25 occurred in a calpain-independent fashion in a CFA-treated inflammatory pain model. Our results demonstrated that increased synaptophysin

  19. Protein S-glutathionylation induced by hypoxia increases hypoxia-inducible factor-1α in human colon cancer cells.

    Science.gov (United States)

    Jeon, Daun; Park, Heon Joo; Kim, Hong Seok

    2018-01-01

    Hypoxia is a common characteristic of many types of solid tumors. Intratumoral hypoxia selects for tumor cells that survive in a low oxygen environment, undergo epithelial-mesenchymal transition, are more motile and invasive, and show gene expression changes driven by hypoxia-inducible factor-1α (HIF-1α) activation. Therefore, targeting HIF-1α is an attractive strategy for disrupting multiple pathways crucial for tumor growth. In the present study, we demonstrated that hypoxia increases the S-glutathionylation of HIF-1α and its protein levels in colon cancer cells. This effect is significantly prevented by decreasing oxidized glutathione as well as glutathione depletion, indicating that S-glutathionylation and the formation of protein-glutathione mixed disulfides is related to HIF-1α protein levels. Moreover, colon cancer cells expressing glutaredoxin 1 are resistant to inducing HIF-1α and expressing hypoxia-responsive genes under hypoxic conditions. Therefore, S-glutathionylation of HIF-1α induced by tumor hypoxia may be a novel therapeutic target for the development of new drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) through inhibiting protein synthesis.

    Science.gov (United States)

    Lee, Dae-Hee; Lee, Yong J

    2008-10-01

    Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells and induce the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) in normoxia. In this study, under hypoxic conditions (1% O(2)), we examined the effect of quercetin on the intracellular level of HIF-1alpha and extracellular level of vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Surprisingly, we observed that quercetin suppressed the HIF-1alpha accumulation during hypoxia in human prostate cancer LNCaP, colon cancer CX-1, and breast cancer SkBr3 cells. Quercetin treatment also significantly reduced hypoxia-induced secretion of VEGF. Suppression of HIF-1alpha accumulation during treatment with quercetin in hypoxia was not prevented by treatment with 26S proteasome inhibitor MG132 or PI3K inhibitor LY294002. Interestingly, hypoxia (1% O(2)) in the presence of 100 microM quercetin inhibited protein synthesis by 94% during incubation for 8 h. Significant quercetin concentration-dependent inhibition of protein synthesis and suppression of HIF-1alpha accumulation were observed under hypoxic conditions. Treatment with 100 microM cycloheximide, a protein synthesis inhibitor, replicated the effect of quercetin by inhibiting HIF-1alpha accumulation during hypoxia. These results suggest that suppression of HIF-1alpha accumulation during treatment with quercetin under hypoxic conditions is due to inhibition of protein synthesis. (c) 2008 Wiley-Liss, Inc.

  1. Prognostic role of hypoxia-inducible factor-1 alpha expression in osteosarcoma: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Ren HY

    2016-03-01

    Full Text Available Hai-Yong Ren,1 Yin-Hua Zhang,1,2 Heng-Yuan Li,1 Tao Xie,1 Ling-Ling Sun,1 Ting Zhu,1 Sheng-Dong Wang,1 Zhao-Ming Ye1 1Department of Orthopaedics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 2The First Department of Orthopaedics, Hospital of Zhejiang General Corps of Armed Police Forces, Jiaxing, People’s Republic of China Background: Hypoxia-inducible factor-1α (HIF-1α plays an important role in tumor progression and metastasis. A number of studies have investigated the association of HIF-1α with prognosis and clinicopathological characteristics of osteosarcoma but yielded inconsistent results.  Method: Systematic computerized searches were performed in PubMed, Embase, and Web of Science databases for relevant original articles. The pooled hazard ratios (HRs and odds ratios (ORs with corresponding confidence intervals (CIs were calculated to assess the prognostic value of HIF-1α expression. The standard mean difference was used to analyze the continuous variable.  Results: Finally, nine studies comprising 486 patients were subjected to final analysis. Protein expression level of HIF-1α was found to be significantly related to overall survival (HR =3.0; 95% CI: 1.46–6.15, disease-free survival (HR =2.23; 95% CI: 1.26–3.92, pathologic grade (OR =21.33; 95% CI: 4.60–98.88, tumor stage (OR =10.29; 95% CI: 3.55–29.82, chemotherapy response (OR =9.68; 95% CI: 1.87–50.18, metastasis (OR =5.06; 95% CI: 2.87–8.92, and microvessel density (standard mean difference =2.83; 95% CI: 2.28–3.39.  Conclusion: This meta-analysis revealed that overexpression of HIF-1α is a predictive factor of poor outcomes for osteosarcoma. HIF-1α appeared to play an important role in prognostic evaluation and may be a potential target in antitumoral therapy. Keywords: HIF-1α, osteosarcoma, prognosis, meta-analysis

  2. Expression of hypoxia-inducible factor 1 alpha and its downstream targets in fibroepithelial tumors of the breast

    NARCIS (Netherlands)

    Kuijper, Arno; Groep, P. van der; Wall, E. van der; Diest, P.J. van

    2005-01-01

    INTRODUCTION Hypoxia-inducible factor 1 (HIF-1) alpha and its downstream targets carbonic anhydrase IX (CAIX) and vascular endothelial growth factor (VEGF) are key factors in the survival of proliferating tumor cells in a hypoxic microenvironment. We studied the expression and prognostic relevance

  3. Hypoxia-inducible factor-1α upregulation in microglia following hypoxia protects against ischemia-induced cerebral infarction.

    Science.gov (United States)

    Huang, Tao; Huang, Weiyi; Zhang, Zhiqiang; Yu, Lei; Xie, Caijun; Zhu, Dongan; Peng, Zizhuang; Chen, Jiehan

    2014-10-01

    Activated microglia were considered to be the toxic inflammatory mediators that induce neuron degeneration after brain ischemia. Hypoxia can enhance the expression of hypoxia-inducible factor-1α (HIF-1α) in microglia and cause microglial activation. However, intermittent hypoxia has been reported recently to be capable of protecting the body from myocardial ischemia. We established a high-altitude environment as the hypoxic condition in this study. The hypoxic condition displayed a neuroprotective effect after brain ischemia, and mice exposed to this condition presented better neurological performance and smaller infarct size. At the same time, a high level of HIF-1α, low level of isoform of nitric oxide synthase, and a reduction in microglial activation were also seen in ischemic focus of hypoxic mice. However, this neuroprotective effect could be blocked by 2-methoxyestradiol, the HIF-1α inhibitor. Our finding suggested that HIF-1α expression was involved in microglial activation in vitro and was regulated by oxygen supply. The microglia were inactivated by re-exposure to hypoxia, which might be due to overexpression of HIF-1α. These results indicated that hypoxic conditions can be exploited to achieve maximum neuroprotection after brain ischemia. This mechanism possibly lies in microglial inactivation through regulation of the expression of HIF-1α.

  4. Cyclin D1 represses p300 transactivation through a cyclin-dependent kinase-independent mechanism.

    Science.gov (United States)

    Fu, Maofu; Wang, Chenguang; Rao, Mahadev; Wu, Xiaofang; Bouras, Toula; Zhang, Xueping; Li, Zhiping; Jiao, Xuanmao; Yang, Jianguo; Li, Anping; Perkins, Neil D; Thimmapaya, Bayar; Kung, Andrew L; Munoz, Alberto; Giordano, Antonio; Lisanti, Michael P; Pestell, Richard G

    2005-08-19

    Cyclin D1 encodes a regulatory subunit, which with its cyclin-dependent kinase (Cdk)-binding partner forms a holoenzyme that phosphorylates and inactivates the retinoblastoma protein. In addition to its Cdk binding-dependent functions, cyclin D1 regulates cellular differentiation in part by modifying several transcription factors and nuclear receptors. The molecular mechanism through which cyclin D1 regulates the function of transcription factors involved in cellular differentiation remains to be clarified. The histone acetyltransferase protein p300 is a co-integrator required for regulation of multiple transcription factors. Here we show that cyclin D1 physically interacts with p300 and represses p300 transactivation. We demonstrated further that the interaction of the two proteins occurs at the peroxisome proliferator-activated receptor gamma-responsive element of the lipoprotein lipase promoter in the context of the local chromatin structure. We have mapped the domains in p300 and cyclin D1 involved in this interaction. The bromo domain and cysteine- and histidine-rich domains of p300 were required for repression by cyclin D1. Cyclin D1 repression of p300 was independent of the Cdk- and retinoblastoma protein-binding domains of cyclin D1. Cyclin D1 inhibits histone acetyltransferase activity of p300 in vitro. Microarray analysis identified a signature of genes repressed by cyclin D1 and induced by p300 that promotes cellular differentiation and induces cell cycle arrest. Together, our results suggest that cyclin D1 plays an important role in cellular proliferation and differentiation through regulation of p300.

  5. Role of hypoxia inducing factor-1β in alcohol-induced autophagy, steatosis and liver injury in mice.

    Directory of Open Access Journals (Sweden)

    Hong-Min Ni

    Full Text Available Chronic alcohol causes liver hypoxia and steatosis, which eventually develops into alcoholic liver disease (ALD. While it has been known that alcohol consumption activates hepatic hypoxia inducing factor-1α (HIF-1α, conflicting results regarding the role of HIF-1α in alcohol-induced liver injury and steatosis in mice have been reported. In the present study, we aimed to use hepatocyte-specific HIF-1β knockout mice to eliminate the possible compensatory effects of the single knockout of the 1α subunit of HIF to study the role of HIFs in ALD. C57BL/6 wild type mice were treated with acute ethanol to mimic human binge drinking. Matched wild-type and hepatocyte specific HIF-1β knockout mice were also subjected to a recently established Gao-binge alcohol model to mimic chronic plus binge conditions, which is quite common in human alcoholics. We found that acute alcohol treatment increased BNIP3 and BNIP3L/NIX expression in primary cultured hepatocytes and in mouse livers, suggesting that HIF may be activated in these models. We further found that hepatocyte-specific HIF-1β knockout mice developed less steatosis and liver injury following the Gao-binge model or acute ethanol treatment compared with their matched wild type mice. Mechanistically, protection against Gao-binge treatment-induced steatosis and liver injury was likely associated with increased FoxO3a activation and subsequent induction of autophagy in hepatocyte-specific HIF-1β knockout mice.

  6. TSA-induced JMJD2B downregulation is associated with cyclin B1-dependent survivin degradation and apoptosis in LNCap cells.

    Science.gov (United States)

    Zhu, Shan; Li, Yueyang; Zhao, Li; Hou, Pingfu; Shangguan, Chenyan; Yao, Ruosi; Zhang, Weina; Zhang, Yu; Tan, Jiang; Huang, Baiqu; Lu, Jun

    2012-07-01

    Histone deacetylase (HDAC) inhibitors are emerging as a novel class of anti-tumor agents and have manifested the ability to induce apoptosis of cancer cells, and a significant number of genes have been identified as potential effectors responsible for HDAC inhibitor-induced apoptosis. However, the mechanistic actions of these HDAC inhibitors in this process remain largely undefined. We here report that the treatment of LNCap prostate cancer cells with HDAC inhibitor trichostatin A (TSA) resulted in downregulation of the Jumonji domain-containing protein 2B (JMJD2B). We also found that the TSA-mediated decrease in survivin expression in LNCap cells was partly attributable to downregulation of JMJD2B expression. This effect was attributable to the promoted degradation of survivin protein through inhibition of Cyclin B1/Cdc2 complex-mediated survivin Thr34 phosphorylation. Consequently, knockdown of JMJD2B enhanced TSA-induced apoptosis by regulating the Cyclin B1-dependent survivin degradation to potentiate the apoptosis pathways. Copyright © 2012 Wiley Periodicals, Inc.

  7. Platelet lysate activates quiescent cell proliferation and reprogramming in human articular cartilage: Involvement of hypoxia inducible factor 1.

    Science.gov (United States)

    Nguyen, Van Thi; Cancedda, Ranieri; Descalzi, Fiorella

    2018-03-01

    The idea of rescuing the body self-repair capability lost during evolution is progressively gaining ground in regenerative medicine. In particular, growth factors and bioactive molecules derived from activated platelets emerged as promising therapeutic agents acting as trigger for repair of tissue lesions and restoration of tissue functions. Aim of this study was to assess the potential of a platelet lysate (PL) for human articular cartilage repair considering its activity on progenitor cells and differentiated chondrocytes. PL induced the re-entry in the cell cycle of confluent, growth-arrested dedifferentiated/progenitor cartilage cells. In a cartilage permissive culture environment, differentiated cells also resumed proliferation after exposure to PL. These findings correlated with an up-regulation of the proliferation/survival pathways ERKs and Akt and with an induction of cyclin D1. In short- and long-term cultures of articular cartilage explants, we observed a release of proliferating chondroprogenitors able to differentiate and form an "in vitro" tissue with properties of healthy articular cartilage. Moreover, in cultured cartilage cells, PL induced a hypoxia-inducible factor (HIF-1) alpha increase, its nuclear relocation and the binding to HIF-1 responsive elements. These events were possibly related to the cell proliferation because the HIF-1 inhibitor acriflavine inhibited HIF-1 binding to HIF-1 responsive elements and cell proliferation. Our study demonstrates that PL induces quiescent cartilage cell activation and proliferation leading to new cartilage formation, identifies PL activated pathways playing a role in these processes, and provides a rationale to the application of PL for therapeutic treatment of damaged articular cartilage. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    Science.gov (United States)

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Modulations of benzo[a]pyrene-induced DNA adduct, cyclin D1 and PCNA in oral tissue by 1,4-phenylenebis(methylene)selenocyanate

    International Nuclear Information System (INIS)

    Chen, Kun-Ming; Sacks, Peter G.; Spratt, Thomas E.; Lin, Jyh-Ming; Boyiri, Telih; Schwartz, Joel; Richie, John P.; Calcagnotto, Ana; Das, Arunangshu; Bortner, James; Zhao, Zonglin; Amin, Shantu; Guttenplan, Joseph; El-Bayoumy, Karam

    2009-01-01

    Tobacco smoking is an important cause of human oral squamous cell carcinoma (SCC). Tobacco smoke contains multiple carcinogens include polycyclic aromatic hydrocarbons typified by benzo[a]pyrene (B[a]P). Surgery is the conventional treatment approach for SCC, but it remains imperfect. However, chemoprevention is a plausible strategy and we had previously demonstrated that 1,4-phenylenebis(methylene)selenocyanate (p-XSC) significantly inhibited tongue tumors-induced by the synthetic 4-nitroquinoline-N-oxide (not present in tobacco smoke). In this study, we demonstrated that p-XSC is capable of inhibiting B[a]P-DNA adduct formation, cell proliferation, cyclin D1 expression in human oral cells in vitro. In addition, we showed that dietary p-XSC inhibits B[a]P-DNA adduct formation, cell proliferation and cyclin D1 protein expression in the mouse tongue in vivo. The results of this study are encouraging to further evaluate the chemopreventive efficacy of p-XSC initially against B[a]P-induced tongue tumors in mice and ultimately in the clinic.

  10. Hypoxia-Inducible Factor-1α in carcinogenesis and progression of breast cancer

    NARCIS (Netherlands)

    Bos, R.

    2004-01-01

    This thesis is primarily focused on the previously hardly explored role of HIF-1 in breast cancer. HIF-1 is a transcription factor induced by hypoxia, but also by some oncogenes, tumor suppressor genes and growth factors. Activated HIF-1 can induce angiogenesis, glycolysis, erythropoiesis, and other

  11. [Effects of intermittent hypoxic exposure on the parameter of erythrocyte and serum hypoxia inducible factor-1 alpha and erythropoietin levels].

    Science.gov (United States)

    Zhang, Cheng-yan; Zhang, Ji-xin; Lü, Xiao-tao; Li, Bao-yu

    2009-10-01

    To investigate the effects of intermittent hypoxic exposure and normoxic convalescence on the parameter of erythrocyte and serum hypoxia inducible factor-1 alpha (HIF-1alpha) and erythropoietin (EPO) levels. Rat models of intermittent hypoxic exposure were established, combined with the clinical research on volunteers experiencing the intermittent plateau work. Blood samples for red blood cell (RBC) counts, hemoglobin (Hb) and hematocrit (HCT) were collected, serum HIF-1alpha and EPO levels were measured using enzyme linked immunosorbent assay. RBC counts, Hb concentration and HCT were significantly higher than the normoxic group (P hypoxic exposure can enhance serum hypoxia inducible factor-1 alpha and erythropointin levels and the generation of red blood cells, which leads to an increase in hemoglobin concentration and hematocrit. The results have changed with the hypoxic exposure period prolonged. Normoxic convalescence after intermittent hypoxic exposure can make the related indexes reduced, and contribute to the organism recovery.

  12. A flavin-dependent halogenase catalyzes the chlorination step in the biosynthesis of Dictyostelium differentiation-inducing factor 1

    OpenAIRE

    Neumann, Christopher S.; Walsh, Christopher T.; Kay, Robert R.

    2010-01-01

    Differentiation-inducing factor 1 (DIF-1) is a polyketide-derived morphogen which drives stalk cell formation in the developmental cycle of Dictyostelium discoideum. Previous experiments demonstrated that the biosynthetic pathway proceeds via dichlorination of the precursor molecule THPH, but the enzyme responsible for this transformation has eluded characterization. Our recent studies on prokaryotic flavin-dependent halogenases and insights from the sequenced Dd genome led us to a candidate ...

  13. Tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces cell proliferation in normal human bronchial epithelial cells through NFκB activation and cyclin D1 up-regulation

    International Nuclear Information System (INIS)

    Ho, Y.-S.; Chen, Chien-Ho; Wang, Y.-J.; Pestell, Richard G.; Albanese, Chris; Chen, R.-J.; Chang, M.-C.; Jeng, J.-H.; Lin, S.-Y.; Liang, Y.-C.; Tseng, H.; Lee, W.-S.; Lin, J.-K.; Chu, J.-S.; Chen, L.-C.; Lee, C.-H.; Tso, W.-L.; Lai, Y.-C.; Wu, C.-H.

    2005-01-01

    Cigarette smoke contains several carcinogens known to initiate and promote tumorigenesis as well as metastasis. Nicotine is one of the major components of the cigarette smoke and the 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific carcinogen. Here, we demonstrated that NNK stimulated cell proliferation in normal human bronchial epithelial cells (NHBE) and small airway epithelial cells (SAEC). Cells exposed to NNK resulted in an increase in the level of cyclin D1 protein (as early as 3-6 h). Increased phosphorylation of the Rb Ser 795 was detected at 6-15 h after NNK treatment and thereby promoted cells entering into the S phase (at 15-21 h). The increased cyclin D1 protein level was induced through activation of the transcription factor, nuclear factor kB (NFκB), in the NHBE cells. Treatment of the NHBE cells with PD98059, an ERK1/2 (extracellular signal-regulated protein kinase)-specific inhibitor, specifically suppressed the NNK-induced IκBα phosphorylation at position 32 of the serine residue, suggesting that the ERK1/2 kinase was involved in the IκBα phosphorylation induced by NFκB activation. To determine whether the NNK-induced NFκB activation and cyclin D1 induction were also observed in vivo, A/J mice were treated with NNK (9.1 mg) for 20 weeks and the results showed a significant induction of cyclin D1 and NFκB translocation determined by immunoblotting analyses. We further demonstrated that the nicotine acetylcholine receptor (nAchR), which contains the α3-subunit, was the major target mediating NNK-induced cyclin D1 expression in the NHBE cells. In summary, our findings demonstrate for the first time that NNK could stimulate normal human bronchial cell proliferation through activation of the NFκB, which in turn up-regulated the cyclin D1 expression

  14. Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells.

    Science.gov (United States)

    Feng, Wan; Cai, Dawei; Zhang, Bin; Lou, Guochun; Zou, Xiaoping

    2015-08-01

    Histone deacetylases (HDAC) are involved in diverse biological processes and therefore emerge as potential targets for pancreatic cancer. Silibinin, an active component of silymarin, is known to inhibit growth of pancreatic cancer in vivo and in vitro. Herein, we examined the cytotoxic effects of TSA in combination with silibinin and investigated the possible mechanism in two pancreatic cancer cell lines (Panc1 and Capan2). Our study found that combination treatment of HDAC inhibitor and silibinin exerted additive growth inhibitory effect on pancreatic cancer cell. Annexin V-FITC/PI staining and flow cytometry analysis demonstrated that combination therapy induced G2/M cell cycle arrest and apoptosis in Panc1and Capan2 cells. The induction of apoptosis was further confirmed by evaluating the activation of caspases. Moreover, treatment with TSA and silibinin resulted in a profound reduction in the expression of cyclinA2, cyclinB1/Cdk1 and survivin. Taken together, our study might indicate that the novel combination of HDAC inhibitor and silibinin could offer therapeutic potential against pancreatic cancer. Copyright © 2015. Published by Elsevier Masson SAS.

  15. Extensive proteomic remodeling is induced by eukaryotic translation elongation factor 1Bγ deletion in Aspergillus fumigatus.

    Science.gov (United States)

    O'Keeffe, Grainne; Jöchl, Christoph; Kavanagh, Kevin; Doyle, Sean

    2013-11-01

    The opportunistic pathogen Aspergillus fumigatus is ubiquitous in the environment and predominantly infects immunocompromised patients. The functions of many genes remain unknown despite sequencing of the fungal genome. A putative translation elongation factor 1Bγ (eEF1Bγ, termed elfA; 750 bp) is expressed, and exhibits glutathione S-transferase activity, in A. fumigatus. Here, we demonstrate the role of ElfA in the oxidative stress response, as well as a possible involvement in translation and actin cytoskeleton organization, respectively. Comparative proteomics, in addition to phenotypic analysis, under basal and oxidative stress conditions, demonstrated a role for A. fumigatus elfA in the oxidative stress response. An elfA-deficient strain (A. fumigatus ΔelfA) was significantly more sensitive to the oxidants H2O2, diamide, and 4,4'-dipyridyl disulfide (DPS) than the wild-type. This was further supported with the identification of differentially expressed proteins of the oxidative stress response, including; mitochondrial peroxiredoxin Prx1, molecular chaperone Hsp70 and mitochondrial glycerol-3-phosphate dehydrogenase. Phenotypic analysis also revealed that A. fumigatus ΔelfA was significantly more tolerant to voriconazole than the wild-type. The differential expression of two aminoacyl-tRNA synthetases suggests a role for A. fumigatus elfA in translation, while the identification of actin-bundling protein Sac6 and vacuolar dynamin-like GTPase VpsA link A. fumigatus elfA to the actin cytoskeleton. Overall, this work highlights the diverse roles of A. fumigatus elfA, with respect to translation, oxidative stress and actin cytoskeleton organization. In addition to this, the strategy of combining targeted gene deletion with comparative proteomics for elucidating the role of proteins of unknown function is further revealed. © 2013 The Protein Society.

  16. Mipu1, a novel direct target gene, is involved in hypoxia inducible factor 1-mediated cytoprotection.

    Directory of Open Access Journals (Sweden)

    Kangkai Wang

    Full Text Available Mipu1 (myocardial ischemic preconditioning up-regulated protein 1, recently identified in our lab, is a novel zinc-finger transcription factor which is up-regulated during ischemic preconditioning. However, it is not clear what transcription factor contributes to its inducible expression. In the present study, we reported that HIF-1 regulates the inducible expression of Mipu1 which is involved in the cytoprotection of HIF-1α against oxidative stress by inhibiting Bax expression. Our results showed that the inducible expression of Mipu1 was associated with the expression and activation of transcription factor HIF-1 as indicated by cobalt chloride (CoCl2 treatment, HIF-1α overexpression and knockdown assays. EMSA and luciferase reporter gene assays showed that HIF-1α bound to the hypoxia response element (HRE within Mipu1 promoter region and promoted its transcription. Moreover, our results revealed that Mipu1 inhibited the expression of Bax, an important pro-apoptosis protein associated with the intrinsic pathway of apoptosis, elevating the cytoprotection of HIF-1 against hydrogen peroxide (H2O2-mediated injury in H9C2 cells. Our findings implied that Bax may be a potential target gene of transcription factor Mipu1, and provided a novel insight for understanding the cytoprotection of HIF-1 and new clues for further elucidating the mechanisms by which Mipu1 protects cell against pathological stress.

  17. Decay-accelerating factor 1 deficiency exacerbates leptospiral-induced murine chronic nephritis and renal fibrosis.

    Directory of Open Access Journals (Sweden)

    María F Ferrer

    Full Text Available Leptospirosis is a global zoonosis caused by pathogenic Leptospira, which can colonize the proximal renal tubules and persist for long periods in the kidneys of infected hosts. Here, we characterized the infection of C57BL/6J wild-type and Daf1-/- mice, which have an enhanced host response, with a virulent Leptospira interrogans strain at 14 days post-infection, its persistence in the kidney, and its link to kidney fibrosis at 90 days post-infection. We found that Leptospira interrogans can induce acute moderate nephritis in wild-type mice and is able to persist in some animals, inducing fibrosis in the absence of mortality. In contrast, Daf1-/- mice showed acute mortality, with a higher bacterial burden. At the chronic stage, Daf1-/- mice showed greater inflammation and fibrosis than at 14 days post-infection and higher levels at all times than the wild-type counterpart. Compared with uninfected mice, infected wild-type mice showed higher levels of IL-4, IL-10 and IL-13, with similar levels of α-smooth muscle actin, galectin-3, TGF-β1, IL-17, IFN-γ, and lower IL-12 levels at 90 days post-infection. In contrast, fibrosis in Daf1-/- mice was accompanied by high expression of α-smooth muscle actin, galectin-3, IL-10, IL-13, and IFN-γ, similar levels of TGF-β1, IL-12, and IL-17 and lower IL-4 levels. This study demonstrates the link between Leptospira-induced murine chronic nephritis with renal fibrosis and shows a protective role of Daf1.

  18. Hypoxia-inducible factor 1-mediated human GATA1 induction promotes erythroid differentiation under hypoxic conditions.

    Science.gov (United States)

    Zhang, Feng-Lin; Shen, Guo-Min; Liu, Xiao-Ling; Wang, Fang; Zhao, Ying-Ze; Zhang, Jun-Wu

    2012-08-01

    Hypoxia-inducible factor promotes erythropoiesis through coordinated cell type-specific hypoxia responses. GATA1 is essential to normal erythropoiesis and plays a crucial role in erythroid differentiation. In this study, we show that hypoxia-induced GATA1 expression is mediated by HIF1 in erythroid cells. Under hypoxic conditions, significantly increased GATA1 mRNA and protein levels were detected in K562 cells and erythroid induction cultures of CD34(+) haematopoietic stem/progenitor cells. Enforced HIF1α expression increased GATA1 expression, while HIF1α knockdown by RNA interference decreased GATA1 expression. In silico analysis revealed one potential hypoxia response element (HRE). The results from reporter gene and mutation analysis suggested that this element is necessary for hypoxic response. Chromatin immunoprecipitation (ChIP)-PCR showed that the putative HRE was recognized and bound by HIF1 in vivo. These results demonstrate that the up-regulation of GATA1 during hypoxia is directly mediated by HIF1.The mRNA expression of some erythroid differentiation markers was increased under hypoxic conditions, but decreased with RNA interference of HIF1α or GATA1. Flow cytometry analysis also indicated that hypoxia, desferrioxamine or CoCl(2) induced expression of erythroid surface markers CD71 and CD235a, while expression repression of HIF1α or GATA1 by RNA interference led to a decreased expression of CD235a. These results suggested that HIF1-mediated GATA1 up-regulation promotes erythropoiesis in order to satisfy the needs of an organism under hypoxic conditions. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  19. Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α.

    Directory of Open Access Journals (Sweden)

    Hyeong-Jun Han

    Full Text Available Peptidyl prolyl isomerase (PIN1 regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF-1α in human colon cancer (HCT116 cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target.

  20. Hypoxia Inducible Factor-1α (HIF-1 α and its Role in Tumour Progression to Malignancy

    Directory of Open Access Journals (Sweden)

    Gaurav Mrinal Sharma

    2008-07-01

    Full Text Available Hypoxia is a condition in which an area of the body or a tissue is deprived of sufficient supply of oxygen. The lack of nutrients in a hypoxic tissue generally causes apoptosis but some cells are able to adapt to this hypoxic environment and resist apoptosis. This adaptation occurs as a result of gene activation. Hypoxia is a characteristic feature of many cancers and is the stimulus for overexpression of HIF-1α - a basic loop-helix PAS protein family subunit of HIF, which allows the cell to adapt and survive in hostile environment. The presence of hypoxia and HIF-1α is correlated with an increased risk of metastasis and techniques that can inhibit hypoxia inducible factor may be instrumental in finding a cure for cancer.

  1. Hypoxia-inducible factor 1α regulates branching morphogenesis during kidney development.

    Science.gov (United States)

    Tsuji, Kenji; Kitamura, Shinji; Makino, Hirofumi

    2014-04-25

    The kidneys are exposed to hypoxic conditions during development. Hypoxia-inducible factor (HIF), an important mediator of the response to hypoxia, is believed to have an important role in development. However, the relationship between HIF and branching morphogenesis has not been elucidated clearly. In this study, we examined whether HIF regulates kidney development. We harvested kidneys from day 13 rat embryos (E13Ks) and cultured the organs under normoxic (20% O2/5% CO2) or hypoxic (5% O2/5% CO2) conditions. We evaluated the kidneys based on morphology and gene expression. E13Ks cultured under hypoxic conditions had significantly more ureteric bud (UB) branching than the E13Ks cultured under normoxic conditions. In addition, the mRNA levels of GDNF and GDNF receptor (GFR-α1), increased under hypoxic conditions in E13Ks. When we cultured E13Ks with the HIF-1α inhibitor digoxin or with siRNA targeting HIF-1α under hypoxic conditions, we did not observe increased UB branching. In addition, the expression of GDNF and GFR-α1 was inhibited under hypoxic conditions when the kidneys were treated with siRNA targeting HIF-1α. We also elucidated that hypoxia inhibited UB cell apoptosis and promoted the expression of FGF7 mRNA levels in metanephric mesenchymal (MM) cells in vitro. These findings suggest that hypoxic condition has important roles in inducing branching morphogenesis during kidney development. Hypoxia might mediate branching morphogenesis via not only GDNF/Ret but also FGF signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    International Nuclear Information System (INIS)

    Park, Choa; Lee, YoungJoo

    2014-01-01

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression

  3. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choa; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.

  4. Potent inhibition of tumoral hypoxia-inducible factor 1α by albendazole

    International Nuclear Information System (INIS)

    Pourgholami, Mohammad H; Cai, Zhao Y; Badar, Samina; Wangoo, Kiran; Poruchynsky, Marianne S; Morris, David L

    2010-01-01

    Emerging reports suggest resistance, increased tumor invasiveness and metastasis arising from treatment with drugs targeting vascular endothelial growth factor (VEGF). It is believed that increased tumoral hypoxia plays a prominent role in the development of these phenomena. Inhibition of tumoral hypoxia inducible factor (HIF-1α) is thus becoming an increasingly attractive therapeutic target in the treatment of cancer. We hypothesized that the anti-VEGF effect of albendazole (ABZ) could be mediated through inhibition of tumoral HIF-1α. In vitro, the effects of ABZ on HIF-1α levels in human ovarian cancer cells (OVCAR-3) were investigated using hypoxic chamber or desferrioxamine (DFO) induced-hypoxia. In vivo, the effects of ABZ (150 mg/kg, i.p., single dose) on the tumor levels of HIF-1α and VEGF protein and mRNA were investigated by western blotting, RT-PCR and real time-PCR. In vitro, ABZ inhibited cellular HIF-1α protein accumulation resulting from placement of cells under hypoxic chamber or exposure to DFO. In vivo, tumors excised from vehicle treated mice showed high levels of both HIF-1α and VEGF. Whereas, tumoral HIF-1α and VEGF protein levels were highly suppressed in ABZ treated mice. Tumoral VEGFmRNA (but not HIF-1αmRNA) was also found to be highly suppressed by ABZ. These results demonstrate for the first time the effects of an acute dose of ABZ in profoundly suppressing both HIF-1α and VEGF within the tumor. This dual inhibition may provide additional value in inhibiting angiogenesis and be at least partially effective in inhibiting tumoral HIF-1α surge, tumor invasiveness and metastasis

  5. [Research progress of mechanism of hypoxia-inducible factor-1α signaling pathway in condylar cartilage growth and remodeling].

    Science.gov (United States)

    Gaoli, Xu; Lili, Wu; Zhiwu, Wu; Zhiyuan, Gu

    2016-12-01

    The condylar cartilage was adapted to hypoxic conditions in vivo. However, condylar cartilage cells exposed in normoxia in vitro affect the chondrocyte phenotype and cartilage matrix formation. This condition also resulted in great difficulty in chondrocyte research. Culturing chondrocyte should be simulated in in vivo hypoxia environment as much as possible. The hypoxia-inducible factor-1α (HIF-1α) demonstrates an important transcription factor of adaptive response to hypoxic conditions. HIF-1α also plays an active role in maintaining homeostasis and function of chondrocytes. This review summarized current knowledge of the HIF-1α structure, signaling pathway, and mechanism of HIF-1α in the condylar cartilage repair.

  6. Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1

    International Nuclear Information System (INIS)

    Williams, Kaye J.; Telfer, Brian A.; Xenaki, Dia; Sheridan, Mary R.; Desbaillets, Isabelle; Peters, Hans J.W.; Honess, Davina; Harris, Adrian L.; Dachs, Gabi U.; Kogel, Albert van der; Stratford, Ian J.

    2005-01-01

    Background and purpose: To test the hypothesis that deficiency in expression of the transcription factor, HIF-1, renders tumours more radioresponsive than HIF-1 proficient tumours. Patients and methods: Tumours comprising mouse hepatoma cells lacking HIF-1β (and thereby HIF-1 function) were grown in nude mice and radiation-induced growth delay compared with that seen for wild-type tumours and tumours derived from HIF-1β negative cells where HIF-1 function had been restored. Results: The xenografts that lack HIF-1 activity take longer to establish their growth and are more radioresponsive than both parental xenografts and those with restored HIF-1 function. Pre-treatment of the HIF-1 deficient xenografts with the hypoxic radiosensitizer misonidazole, had little effect on radioresponse. In contrast this treatment radiosensitized the parental xenografts. In spite of this, no difference in oxygenation status was found between the tumour types as measured by Eppendorf O 2 -electrodes and by binding of the hypoxic cell marker NITP. Admixing wild type and HIF-1 deficient cells in the same tumour at ratios of 1 in 10 and 1 in 100 restores the growth of the mixed tumours to that of a 100% HIF-1 proficient cell population. However, when comparing the effects of radiation on the mixed tumours, radioresponsiveness is maintained in those tumours containing the high proportion of HIF-1 deficient cells. Conclusions: The differences in radioresponse do not correlate with tumour oxygenation, suggesting that the hypoxic cells within the HIF-1 deficient tumours do not contribute to the outcome of radiotherapy. Thus, hypoxia impacts on tumour radioresponsiveness not simply because of the physio-chemical mechanism of oxygen with radiation-induced radicals causing damage 'fixation', but also because hypoxia/HIF-1 promotes expression of genes that allow tumour cells to survive under these adverse conditions. Further, the results from the cell mixing experiments uncouple the growth

  7. Hypoxia-inducible factor 1 regulates heat and cold pain sensitivity and persistence.

    Science.gov (United States)

    Kanngiesser, Maike; Mair, Norbert; Lim, Hee-Young; Zschiebsch, Katja; Blees, Johanna; Häussler, Annett; Brüne, Bernhard; Ferreiròs, Nerea; Kress, Michaela; Tegeder, Irmgard

    2014-06-01

    The present study assessed the functions of the transcription factor hypoxia-inducible factor (HIF) in sensory neurons in models of acute, inflammatory, ischemic, and neuropathic pain. The alpha subunit, HIF1α, was specifically deleted in neurons of the dorsal root ganglia by mating HIF1α(fl/fl) mice with SNScre mice. SNS-HIF1α(-/-) mice were more sensitive to noxious heat and cold pain stimulation than were HIF1α(fl/fl) control mice. They also showed heightened first-phase nociceptive responses in the formalin and capsaicin tests with increased numbers of cFos-positive neurons in the dorsal horn, and intensified hyperalgesia in early phases after paw inflammation and hind limb ischemia/reperfusion. The behavioral cold and heat pain hypersensitivity was explained by increased calcium fluxes after transient receptor potential channel activation in primary sensory neurons of SNS-HIF1α(-/-) mice and lowered electrical activation thresholds of sensory fibers. SNS-HIF1α(-/-) mice however, developed less neuropathic pain after sciatic nerve injury, which was associated with an abrogation of HIF1-mediated gene up-regulation. The results suggest that HIF1α is protective in terms of acute heat and cold pain but in case of ongoing activation in injured neurons, it may promote the development of neuropathic pain. The duality of HIF1 in pain regulation may have an impact on the side effects of drugs targeting HIF1, which are being developed, for example, as anticancer agents. Specifically, in patients with cancer neuropathy, however, temporary HIF1 inhibition might provide a welcome combination of growth and pain reduction.

  8. IBMX protects human proximal tubular epithelial cells from hypoxic stress through suppressing hypoxia-inducible factor-1α expression.

    Science.gov (United States)

    Hasan, Arif Ul; Kittikulsuth, Wararat; Yamaguchi, Fuminori; Musarrat Ansary, Tuba; Rahman, Asadur; Shibayama, Yuki; Nakano, Daisuke; Hitomi, Hirofumi; Tokuda, Masaaki; Nishiyama, Akira

    2017-09-15

    Hypoxia predisposes renal fibrosis. This study was conducted to identify novel approaches to ameliorate the pathogenic effect of hypoxia. Using human proximal tubular epithelial cells we showed that a pan-phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylxanthine (IBMX) dose and time dependently downregulated hypoxia-inducible factor 1α (HIF-1α) mRNA expression, which was further augmented by addition of a transcriptional inhibitor, actinomycin D. IBMX also increased the cellular cyclic adenosine monophosphate (cAMP) level. Luciferase assay showed that blocking of protein kinase A (PKA) using H89 reduced, while 8-Br-cAMP agonized the repression of HIF-1α promoter activity in hypoxic condition. Deletion of cAMP response element binding sites from the HIF-1α promoter abrogated the effect of IBMX. Western blot and immunofluorescent study confirmed that the CoCl 2 induced increased HIF-1α protein in whole cell lysate and in nucleus was reduced by the IBMX. Through this process, IBMX attenuated both CoCl 2 and hypoxia induced mRNA expressions of two pro-fibrogenic factors, platelet-derived growth factor B and lysyl oxidase. Moreover, IBMX reduced production of a mesenchymal transformation factor, β-catenin; as well as protected against hypoxia induced cell-death. Taken together, our study showed novel evidence that the PDE inhibitor IBMX can downregulate the transcription of HIF-1α, and thus may attenuate hypoxia induced renal fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Anticancer activity of calyx of Diospyros kaki Thunb. through downregulation of cyclin D1 via inducing proteasomal degradation and transcriptional inhibition in human colorectal cancer cells.

    Science.gov (United States)

    Park, Su Bin; Park, Gwang Hun; Song, Hun Min; Son, Ho-Jun; Um, Yurry; Kim, Hyun-Seok; Jeong, Jin Boo

    2017-09-05

    Although it has been reported to contain high polyphenols, the pharmacological studies of the calyx of Diospyros kaki Thunb (DKC) have not been elucidated in detail. In this study, we elucidated anti-cancer activity and potential molecular mechanism of DKC against human colorectal cancer cells. Anti-cell proliferative effect of 70% ethanol extracts from the calyx of Diospyros kaki (DKC-E70) was evaluated by MTT assay. The effect of DKC-E70 on the expression of cyclin D1 in the protein and mRNA level was evaluated by Western blot and RT-PCR, respectively. DKC-E70 suppressed the proliferation of human colorectal cancer cell lines such as HCT116, SW480, LoVo and HT-29. Although DKC-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by DKC-E70 occurred at the earlier time than that of cyclin D1 mRNA, which indicates that DKC-E70-mediated downregulation of cyclin D1 protein may be a consequence of the induction of degradation and transcriptional inhibition of cyclin D1. In cyclin D1 degradation, we found that cyclin D1 downregulation by DKC-E70 was attenuated in presence of MG132. In addition, DKC-E70 phosphorylated threonine-286 (T286) of cyclin D1 and T286A abolished cyclin D1 downregulation by DKC-E70. We also observed that DKC-E70-mediated T286 phosphorylation and subsequent cyclin D1 degradation was blocked in presence of the inhibitors of ERK1/2, p38 or GSK3β. In cyclin D1 transcriptional inhibition, DKC-E70 inhibited the expression of β-catenin and TCF4, and β-catenin/TCF-dependent luciferase activity. Our results suggest that DKC-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through cyclin D1 degradation by T286 phosphorylation dependent on ERK1/2, p38 or GSK3β, and cyclin D1 transcriptional inhibition through Wnt signaling. From these findings, DKC-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

  10. Hypoxia-independent upregulation of placental hypoxia inducible factor-1α gene expression contributes to the pathogenesis of preeclampsia.

    Science.gov (United States)

    Iriyama, Takayuki; Wang, Wei; Parchim, Nicholas F; Song, Anren; Blackwell, Sean C; Sibai, Baha M; Kellems, Rodney E; Xia, Yang

    2015-06-01

    Accumulation of hypoxia inducible factor-1α (HIF-1α) is commonly an acute and beneficial response to hypoxia, whereas chronically elevated HIF-1α is associated with multiple disease conditions, including preeclampsia, a serious hypertensive disease of pregnancy. However, the molecular basis underlying the persistent elevation of placental HIF-1α in preeclampsia and its role in the pathogenesis of preeclampsia are poorly understood. Here we report that Hif-1α mRNA and HIF-1α protein were elevated in the placentas of pregnant mice infused with angiotensin II type I receptor agonistic autoantibody, a pathogenic factor in preeclampsia. Knockdown of placental Hif-1α mRNA by specific siRNA significantly attenuated hallmark features of preeclampsia induced by angiotensin II type I receptor agonistic autoantibody in pregnant mice, including hypertension, proteinuria, kidney damage, impaired placental vasculature, and elevated maternal circulating soluble fms-like tyrosine kinase-1 levels. Next, we discovered that Hif-1α mRNA levels and HIF-1α protein levels were induced in an independent preeclampsia model with infusion of the inflammatory cytokine tumor necrosis factor superfamily member 14 (LIGHT). SiRNA knockdown experiments also demonstrated that elevated HIF-1α contributed to LIGHT-induced preeclampsia features. Translational studies with human placentas showed that angiotensin II type I receptor agonistic autoantibody or LIGHT is capable of inducing HIF-1α in a hypoxia-independent manner. Moreover, increased HIF-1α was found to be responsible for angiotensin II type I receptor agonistic autoantibody or LIGHT-induced elevation of Flt-1 gene expression and production of soluble fms-like tyrosine kinase-1 in human villous explants. Overall, we demonstrated that hypoxia-independent stimulation of HIF-1α gene expression in the placenta is a common pathogenic mechanism promoting disease progression. Our findings reveal new insight to preeclampsia and highlight

  11. Sphingosine-1-Phosphate as a Regulator of Hypoxia-Induced Factor-1α in Thyroid Follicular Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Veronica Kalhori

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive lipid, which regulates several cancer-related processes including migration and angiogenesis. We have previously shown S1P to induce migration of follicular ML-1 thyroid cancer cells. Hypoxia-induced factor-1 (HIF-1 is an oxygen-sensitive transcription factor, which adapts cells to hypoxic conditions through increased survival, motility and angiogenesis. Due to these properties and its increased expression in response to intratumoral hypoxia, HIF-1 is considered a significant regulator of tumor biology. We found S1P to increase expression of the regulatory HIF-1α subunit in normoxic ML-1 cells. S1P also increased HIF-1 activity and expression of HIF-1 target genes. Importantly, inhibition or knockdown of HIF-1α attenuated the S1P-induced migration of ML-1 cells. S1P-induced HIF-1α expression was mediated by S1P receptor 3 (S1P3, Gi proteins and their downstream effectors MEK, PI3K, mTOR and PKCβI. Half-life measurements with cycloheximide indicated that S1P treatment stabilized the HIF-1α protein. On the other hand, S1P activated translational regulators eIF-4E and p70S6K, which are known to control HIF-1α synthesis. In conclusion, we have identified S1P as a non-hypoxic regulator of HIF-1 activity in thyroid cancer cells, studied the signaling involved in S1P-induced HIF-1α expression and shown S1P-induced migration to be mediated by HIF-1.

  12. Sphingosine-1-Phosphate as a Regulator of Hypoxia-Induced Factor-1α in Thyroid Follicular Carcinoma Cells

    Science.gov (United States)

    Asghar, Muhammad Yasir; Bergelin, Nina; Jaakkola, Panu; Törnquist, Kid

    2013-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid, which regulates several cancer-related processes including migration and angiogenesis. We have previously shown S1P to induce migration of follicular ML-1 thyroid cancer cells. Hypoxia-induced factor-1 (HIF-1) is an oxygen-sensitive transcription factor, which adapts cells to hypoxic conditions through increased survival, motility and angiogenesis. Due to these properties and its increased expression in response to intratumoral hypoxia, HIF-1 is considered a significant regulator of tumor biology. We found S1P to increase expression of the regulatory HIF-1α subunit in normoxic ML-1 cells. S1P also increased HIF-1 activity and expression of HIF-1 target genes. Importantly, inhibition or knockdown of HIF-1α attenuated the S1P-induced migration of ML-1 cells. S1P-induced HIF-1α expression was mediated by S1P receptor 3 (S1P3), Gi proteins and their downstream effectors MEK, PI3K, mTOR and PKCβI. Half-life measurements with cycloheximide indicated that S1P treatment stabilized the HIF-1α protein. On the other hand, S1P activated translational regulators eIF-4E and p70S6K, which are known to control HIF-1α synthesis. In conclusion, we have identified S1P as a non-hypoxic regulator of HIF-1 activity in thyroid cancer cells, studied the signaling involved in S1P-induced HIF-1α expression and shown S1P-induced migration to be mediated by HIF-1. PMID:23824493

  13. Involvement of cyclin D1/CDK4 and pRb mediated by PI3K/AKT pathway activation in Pb2+-induced neuronal death in cultured hippocampal neurons

    International Nuclear Information System (INIS)

    Li Chenchen; Xing Tairan; Tang Mingliang; Yong Wu; Yan Dan; Deng Hongmin; Wang Huili; Wang Ming; Chen Jutao; Ruan Diyun

    2008-01-01

    Lead (Pb) is widely recognized as a neurotoxicant. One of the suggested mechanisms of lead neurotoxicity is apoptotic cell death. And the mechanism by which Pb 2+ causes neuronal death is not well understood. The present study sought to examine the obligate nature of cyclin D1/cyclin-dependent kinase 4 (CDK4), phosphorylation of its substrate retinoblastoma protein (pRb) and its select upstream signal phosphoinositide 3-kinase (PI3K)/AKT pathway in the death of primary cultured rat hippocampal neurons evoked by Pb 2+ . Our data showed that lead treatment of primary hippocampal cultures results in dose-dependent cell death. Inhibition of CDK4 prevented Pb 2+ -induced neuronal death significantly but was incomplete. In addition, we demonstrated that the levels of cyclin D1 and pRb/p107 were increased during Pb 2+ treatment. These elevated expression persisted up to 48 h, returning to control levels after 72 h. We also presented pharmacological and morphological evidences that cyclin D1/CDK4 and pRb/p107 were required for such kind of neuronal death. Addition of the PI3K inhibitor LY294002 (30 μM) or wortmannin (100 nM) significantly rescued the cultured hippocampal neurons from death caused by Pb 2+ . And that Pb 2+ -elicited phospho-AKT (Ser473) participated in the induction of cyclin D1 and partial pRb/p107 expression. These results provide evidences that cell cycle elements play a required role in the death of neurons evoked by Pb 2+ and suggest that certain signaling elements upstream of cyclin D1/CDK4 are modified and/or required for this form of neuronal death

  14. Expression of hypoxia-inducible factor-1α and hepatocyte growth factor in development of fibrosis in the transplanted kidney

    DEFF Research Database (Denmark)

    Kellenberger, Terese; Marcussen, Niels; Nyengaard, Jens Randel

    2014-01-01

    Late renal graft loss is associated with interstitial fibrosis. Hypoxia-inducible factor-1α (HIF-1α) is thought to facilitate fibrosis through interaction with TGF-β1, while hepatocyte growth factor (HGF) may act antifibrotic in the kidney allograft. The aim of this study was to investigate...... transplantation, but an inverse significant correlation between the HGF expression and the fibrosis score 1 year after transplantation was shown. Even when adjusting for human leucocyte antigen mismatches, there was a significant relationship between fibrosis and HGF expression. Graft survival...... was not significantly correlated to HIF-1α or HGF at 1 year, although the trend was towards better graft survival with high HGF. HGF may have antifibrotic effects in human renal transplants. (Central.Denmark.Region.Committee number: 1-10-72-318-13)....

  15. A flavin-dependent halogenase catalyzes the chlorination step in the biosynthesis of Dictyostelium differentiation-inducing factor 1.

    Science.gov (United States)

    Neumann, Christopher S; Walsh, Christopher T; Kay, Robert R

    2010-03-30

    Differentiation-inducing factor 1 (DIF-1) is a polyketide-derived morphogen which drives stalk cell formation in the developmental cycle of Dictyostelium discoideum. Previous experiments demonstrated that the biosynthetic pathway proceeds via dichlorination of the precursor molecule THPH, but the enzyme responsible for this transformation has eluded characterization. Our recent studies on prokaryotic flavin-dependent halogenases and insights from the sequenced Dd genome led us to a candidate gene for this transformation. In this work, we present in vivo and in vitro evidence that chlA from Dd encodes a flavin-dependent halogenase capable of catalyzing both chlorinations in the biosynthesis of DIF-1. The results provide in vitro characterization of a eukaryotic oxygen-dependent halogenase and demonstrate a broad reach in biology for this molecular tailoring strategy, notably its involvement in the differentiation program of a social amoeba.

  16. Activation of Rho GTPases by Cytotoxic Necrotizing Factor 1 Induces Macropinocytosis and Scavenging Activity in Epithelial Cells

    Science.gov (United States)

    Fiorentini, Carla; Falzano, Loredana; Fabbri, Alessia; Stringaro, Annarita; Logozzi, Mariaantonia; Travaglione, Sara; Contamin, Stéphanette; Arancia, Giuseppe; Malorni, Walter; Fais, Stefano

    2001-01-01

    Macropinocytosis, a ruffling-driven process that allows the capture of large material, is an essential aspect of normal cell function. It can be either constitutive, as in professional phagocytes where it ends with the digestion of captured material, or induced, as in epithelial cells stimulated by growth factors. In this case, the internalized material recycles back to the cell surface. We herein show that activation of Rho GTPases by a bacterial protein toxin, the Escherichia coli cytotoxic necrotizing factor 1 (CNF1), allowed epithelial cells to engulf and digest apoptotic cells in a manner similar to that of professional phagocytes. In particular, we have demonstrated that 1) the activation of all Rho, Rac, and Cdc42 by CNF1 was essential for the capture and internalization of apoptotic cells; and 2) such activation allowed the discharge of macropinosomal content into Rab7 and lysosomal associated membrane protein-1 acidic lysosomal vesicles where the ingested particles underwent degradation. Taken together, these findings indicate that CNF1-induced “switching on” of Rho GTPases may induce in epithelial cells a scavenging activity, comparable to that exerted by professional phagocytes. The activation of such activity in epithelial cells may be relevant, in mucosal tissues, in supporting or integrating the scavenging activity of resident macrophages. PMID:11452003

  17. Study on radiation regulation of hypoxia inducible factor-1α expression and its correlation with hepatoma radiosensitivity

    International Nuclear Information System (INIS)

    Jin Wensen; Kong Zhaolu; Shen Zhifen; Tong Shungao; Ji Huajun; Jin Yizun

    2008-01-01

    Objective: To study the regulation of hypoxia inducible factor-1α (HIF-1α) expression in hepatoma cells after irradiation and the expression of HIF-1α effect on the radiosensitivity of heptoma cells. Methods: HepG2 cells were pretreated by Cobalt chloride (COCl 2 ), a chemical hypoxia agent, to induce and stabilize the expression of HIF-1α, and then exposed to different γ-irradiation doses. Clonogenic assay was used to evaluate HepG2 cell survival fraction (SF) after irradiation under normoxia and chemical hypoxia. Reverse transcriptase polymerase chain reaction (RT-PCR) and immunoblot assay (Western blot) were utilized to detect the changes of intracellular HIF-1α on the level of transcripation and translation. Results: Cell survival level was elevated by chemical hypoxia and there was a statistical difference between chemical hypoxic group and normoxic group. The ratios of SF(SF co /SF o 2 )on two different conditions were increased with irradiation doses. Meanwhile, the irradiation induced up-regulation of HIF-1α in dose-dependent manner. The expression of HIF-1α was correlated with HepG2 cell survival level to some extent. Conclusions: Irradiation could up-regulate the level of HIF-1α expression in HepG2 cells under chemical hypoxic condition. The cells survival level might be influenced by the changes in HIF-1α expression. (authors)

  18. Effect of Geranylgeranylacetone on Ultraviolet Radiation Type B-Induced Cataract in Heat-Shock Transcription Factor 1 Heterozygous Mouse.

    Science.gov (United States)

    Ogasawara, Satoshi; Hashizume, Kouhei; Okuno, Takashi; Imaizumi, Toshiyasu; Inomata, Yui; Tezuka, Yu; Sanbe, Atushi; Kurosaka, Daijiro

    2017-05-01

    We investigated whether heat-shock transcription factor 1 (HSF1) was involved in ultraviolet radiation type B (UVR-B)-induced lens opacity (cataract) using HSF1 heterozygous mice. We also examined the effects of geranylgeranylacetone (GGA), an inducer of heat-shock proteins via activation of HSF, on the UVR-B-induced cataract. Male HSF1 +/- and WT mice were unilaterally exposed to UVR-B (total: 1200mJ) at 16 weeks of age. At 48 h after the last UVR-B irradiation, the lens was isolated and the induction of the cataract was quantified as the cataract area ratio (opacity area/anterior capsule). GGA was orally administered at a dosage of 500 mg/kg once a day for two days before the first UVR-B exposure until the end of the experiment (21days in total). The HSF1 expression was more greatly decreased in the lens from HSF1 +/- mice than in that from WT mice (p B exposure could mainly induce cataracts in the anterior capsule in both HSF1 +/- and WT mice, while the opacity of the lens was markedly enhanced in HSF 1+/- mice compared to that in WT mice(p (0.01). GGA treatment could prevent the induction of lens opacity by UVR-B exposure in both WT and HSF1 +/- mice as compared with the non-administration group (p B radiation was seen in lens protein levels of αA-crystallin, αB-crystallin, or γ-crystallin with or without GGA administration among all groups of mice. In contrast to the crystallins, the lens protein level of HSP25 was decreased by UVR-B exposure in both HSF1 +/- and WT mice, and was significantly recovered in WT mice by the GGA treatment (p B-induced cataracts, possibly via regulation of HSPs such as HSP25.

  19. Foci of cyclin A2 interact with actin and RhoA in mitosis.

    Science.gov (United States)

    Loukil, Abdelhalim; Izard, Fanny; Georgieva, Mariya; Mashayekhan, Shaereh; Blanchard, Jean-Marie; Parmeggiani, Andrea; Peter, Marion

    2016-06-09

    Cyclin A2 is a key player in the regulation of the cell cycle. Its degradation in mid-mitosis depends primarily on the ubiquitin-proteasome system (UPS), while autophagy also contributes. However, a fraction of cyclin A2 persists beyond metaphase. In this work, we focus on cyclin A2-rich foci detected in mitosis by high resolution imaging and analyse their movements. We demonstrate that cyclin A2 interacts with actin and RhoA during mitosis, and that cyclin A2 depletion induces a dramatic decrease in active RhoA in mitosis. Our data suggest cyclin A2 participation in RhoA activation in late mitosis.

  20. Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 β-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyung-A; Park, Min-Ah; Kang, Nam-Hee; Yi, Bo-Rim; Hyun, Sang-Hwan; Jeung, Eui-Bae; Choi, Kyung-Chul, E-mail: kchoi@cbu.ac.kr

    2013-11-01

    The interaction between estrogen receptor (ER) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway plays an important role in proliferation of and resistance to endocrine therapy to estrogen dependent cancers. Estrogen (E2) upregulates the expression of components of IGF-1 system and induces the downstream of mitogenic signaling cascades via phosphorylation of insulin receptor substrate-1 (IRS-1). In the present study, we evaluated the xenoestrogenic effect of bisphenol A (BPA) and antiproliferative activity of genistein (GEN) in accordance with the influence on this crosstalk. BPA was determined to affect this crosstalk by upregulating mRNA expressions of ERα and IGF-1R and inducing phosphorylation of IRS-1 and Akt in protein level in BG-1 ovarian cancer cells as E2 did. In the mouse model xenografted with BG-1 cells, BPA significantly increased a tumor burden of mice and expressions of ERα, pIRS-1, and cyclin D1 in tumor mass compared to vehicle, indicating that BPA induces ovarian cancer growth by promoting the crosstalk between ER and IGF-1R signals. On the other hand, GEN effectively reversed estrogenicity of BPA by reversing mRNA and protein expressions of ERα, IGF-1R, pIRS-1, and pAkt induced by BPA in cellular model and also significantly decreased tumor growth and in vivo expressions of ERα, pIRS-1, and pAkt in xenografted mouse model. Also, GEN was confirmed to have an antiproliferative effect by inducing apoptotic signaling cascades. Taken together, these results suggest that GEN effectively reversed the increased proliferation of BG-1 ovarian cancer by suppressing the crosstalk between ERα and IGF-1R signaling pathways upregulated by BPA or E2.

  1. Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 β-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways

    International Nuclear Information System (INIS)

    Hwang, Kyung-A; Park, Min-Ah; Kang, Nam-Hee; Yi, Bo-Rim; Hyun, Sang-Hwan; Jeung, Eui-Bae; Choi, Kyung-Chul

    2013-01-01

    The interaction between estrogen receptor (ER) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway plays an important role in proliferation of and resistance to endocrine therapy to estrogen dependent cancers. Estrogen (E2) upregulates the expression of components of IGF-1 system and induces the downstream of mitogenic signaling cascades via phosphorylation of insulin receptor substrate-1 (IRS-1). In the present study, we evaluated the xenoestrogenic effect of bisphenol A (BPA) and antiproliferative activity of genistein (GEN) in accordance with the influence on this crosstalk. BPA was determined to affect this crosstalk by upregulating mRNA expressions of ERα and IGF-1R and inducing phosphorylation of IRS-1 and Akt in protein level in BG-1 ovarian cancer cells as E2 did. In the mouse model xenografted with BG-1 cells, BPA significantly increased a tumor burden of mice and expressions of ERα, pIRS-1, and cyclin D1 in tumor mass compared to vehicle, indicating that BPA induces ovarian cancer growth by promoting the crosstalk between ER and IGF-1R signals. On the other hand, GEN effectively reversed estrogenicity of BPA by reversing mRNA and protein expressions of ERα, IGF-1R, pIRS-1, and pAkt induced by BPA in cellular model and also significantly decreased tumor growth and in vivo expressions of ERα, pIRS-1, and pAkt in xenografted mouse model. Also, GEN was confirmed to have an antiproliferative effect by inducing apoptotic signaling cascades. Taken together, these results suggest that GEN effectively reversed the increased proliferation of BG-1 ovarian cancer by suppressing the crosstalk between ERα and IGF-1R signaling pathways upregulated by BPA or E2

  2. Expression of hypoxia-inducible factor 1 alpha and oligodendrocyte lineage gene-1 in cultured brain slices after oxygen-glucose deprivation☆

    OpenAIRE

    Cui, Hong; Han, Weijuan; Yang, Lijun; Chang, Yanzhong

    2013-01-01

    Oligodendrocyte lineage gene-1 expressed in oligodendrocytes may trigger the repair of neuronal myelin impairment, and play a crucial role in myelin repair. Hypoxia-inducible factor 1α, a transcription factor, is of great significance in premature infants with hypoxic-ischemic brain damage. There is little evidence of direct regulatory effects of hypoxia-inducible factor 1α on oligodendrocyte lineage gene-1. In this study, brain slices of Sprague-Dawley rats were cultured and subjected to oxy...

  3. CyclinG1 Amplification Enhances Aurora Kinase Inhibitor-Induced Polyploid Resistance and Inhibition of Bcl-2 Pathway Reverses the Resistance

    Directory of Open Access Journals (Sweden)

    Wenfeng Zhang

    2017-08-01

    Full Text Available Background/Aims: CyclinG1 (CycG1 is frequently overexpressed in solid tumors and overexpression of CycG1 promotes cell survival upon paclitaxel exposure by inducing polyploidy. Whether and how CycG1 regulates polyploidization caused by small molecular targeted inhibitors remains unclear. Methods: Immunohistochemistry and immunoblotting were utilized to examine protein expression. Cell proliferation was measured by ATPlite assay, and cell cycle distribution and apoptosis were measured by flow cytometry and/or DNA fragmentation assays. Results: Overexpression of CycG1 in breast cancer cells caused apoptosis-resistant polyploidy upon treatment with Aurora kinase inhibitor, ZM447439 (ZM. Addition of ABT-263, a small-molecule BH3 mimetic, to ZM, produced a synergistic loss of cell viability with greater sustained tumor growth inhibition in breast cancer cell lines. Decrease of Mcl-1 and increase of NOXA caused by ZM treatment, were responsible for the synergy. Furthermore, CycG1 was highly expressed in Triple-Negative-Breast-Cancer patients treated with paclitaxel and was paralleled by decreased cell survival. Conclusion: CycG1 is a crucial factor in ZM-induced polyploidy resistance, and ABT-263/ZM combination hold therapeutic utility in the CycG1-amplified subset of breast cancer and CycG1, thus, is a promising target in breast cancer.

  4. Menadione induces G2/M arrest in gastric cancer cells by down-regulation of CDC25C and proteasome mediated degradation of CDK1 and cyclin B1

    Science.gov (United States)

    Lee, Min Ho; Cho, Yoonjung; Kim, Do Hyun; Woo, Hyun Jun; Yang, Ji Yeong; Kwon, Hye Jin; Yeon, Min Ji; Park, Min; Kim, Sa-Hyun; Moon, Cheol; Tharmalingam, Nagendran; Kim, Tae Ue; Kim, Jong-Bae

    2016-01-01

    Menadione (vitamin K3) has been reported to induce apoptotic cell death and growth inhibition in various types of cancer cells. However, involvement of menadione in cell cycle control has not been considered in gastric cancer cells yet. In the current study, we have investigated whether menadione is involved in the cell cycle regulation and suppression of growth in gastric cancer cells. In the cell cycle analysis, we found that menadione induced G2/M cell cycle arrest in AGS cells. To elucidate the underlying mechanism, we investigated the cell cycle regulatory molecules involved in the G2/M cell cycle transition. After 24 h of menadione treatment, the protein level of CDK1, CDC25C and cyclin B1 in AGS cells was decreased in a menadione dose-dependent manner. In the time course experiment, the protein level of CDC25C decreased in 6 h, and CDK1and cyclin B1 protein levels began to decrease after 18 h of menadione treatment. We found that mRNA level of CDC25C decreased by menadione treatment in 6 h. Menadione did not have an influence on mRNA level of CDK1 and cyclin B1 though the protein levels were decreased. However, the decreased protein levels of CDK1 and cyclin B1 were recovered by inhibition of proteasome. Collectively, these results suggest that menadione inhibits growth of gastric cancer cells by reducing expression of CDC25C and promoting proteasome mediated degradation of CDK1 and cyclin B1 thereby blocking transition of the cell cycle from G2 phase to M phase. PMID:28077999

  5. Hypoxic Stress Upregulates the Expression of Slc38a1 in Brown Adipocytes via Hypoxia-Inducible Factor-1α.

    Science.gov (United States)

    Horie, Tetsuhiro; Fukasawa, Kazuya; Iezaki, Takashi; Park, Gyujin; Onishi, Yuki; Ozaki, Kakeru; Kanayama, Takashi; Hiraiwa, Manami; Kitaguchi, Yuka; Kaneda, Katsuyuki; Hinoi, Eiichi

    2018-01-01

    The availability of amino acid in the brown adipose tissue (BAT) has been shown to be altered under various conditions; however, little is known about the possible expression and pivotal role of amino acid transporters in BAT under physiological and pathological conditions. The present study comprehensively investigated whether amino acid transporters are regulated by obesogenic conditions in BAT in vivo. Moreover, we investigated the mechanism underlying the regulation of the expression of amino acid transporters by various stressors in brown adipocytes in vitro. The expression of solute carrier family 38 member 1 (Slc38a1; gene encoding sodium-coupled neutral amino acid transporter 1) was preferentially upregulated in the BAT of both genetic and acquired obesity mice in vivo. Moreover, the expression of Slc38a1 was induced by hypoxic stress through hypoxia-inducible factor-1α, which is a master transcription factor of the adaptive response to hypoxic stress, in brown adipocytes in vitro. These results indicate that Slc38a1 is an obesity-associated gene in BAT and a hypoxia-responsive gene in brown adipocytes. © 2017 S. Karger AG, Basel.

  6. Hypoxia regulates the expression of the neuromedin B receptor through a mechanism dependent on hypoxia-inducible factor-1α.

    Directory of Open Access Journals (Sweden)

    Hyun-Joo Park

    Full Text Available The neuromedin B receptor (NMB-R, a member of the mammalian bombesin receptor family, is frequently overexpressed in various tumors. In the present study, we found that exposure to hypoxic conditions increases the levels of NMBR mRNA and protein in breast cancer cells, which are tightly regulated by hypoxia-inducible factor-1α (HIF-1α. We confirmed the effect of HIF-1α on NMBR transcription by performing an NMBR promoter-driven reporter assay and then identified a functional hypoxia-responsive element (HRE in the human NMBR promoter region. Further, the binding of HIF-1α to the NMBR promoter was corroborated by electrophoretic mobility shift and chromatin immunoprecipitation assays, which showed that HIF-1α specifically and directly bound to the NMBR promoter in response to hypoxia. Immunohistochemical analysis of a xenograft and a human breast cancer tissue array revealed a significant correlation between NMB-R and HIF-1α expression. Taken together, our findings indicate that hypoxia induces NMB-R expression through a novel mechanism to regulate HIF-1α expression in breast cancer cells.

  7. A3 Adenosine Receptors Modulate Hypoxia-inducible Factor-1a Expression in Human A375 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Stefania Merighi

    2005-10-01

    Full Text Available Hypoxia-inducible factor-1 (HIF-1 is a key regulator of genes crucial to many aspects of cancer biology. The purine nucleoside, adenosine, accumulates within many tissues under hypoxic conditions, including that of tumors. Because the levels of both HIF-1 and adenosine are elevated within the hypoxic environment of solid tumors, we investigated whether adenosine may regulate HIF-1. Here we show that, under hypoxic conditions (< 2% 02, adenosine upregulates HIF-1α protein expression in a dose-dependent and timedependent manner, exclusively through the A3 receptor subtype. The response to adenosine was generated at the cell surface because the inhibition of A3 receptor expression, by using small interfering RNA, abolished nucleoside effects. A3 receptor stimulation in hypoxia also increases angiopoietin-2 (Ang-2 protein accumulation through the induction of HIF-1α. In particular, we found that A3 receptor stimulation activates p44/p42 and p38 mitogen-activated protein kinases, which are required for A3-induced increase of HIF-1a and Ang-2. Collectively, these results suggest a cooperation between hypoxic and adenosine signals that ultimately may lead to the increase in HIF-1-mediated effects in cancer cells.

  8. Steroid receptor coactivator-3 regulates glucose metabolism in bladder cancer cells through coactivation of hypoxia inducible factor 1α.

    Science.gov (United States)

    Zhao, Wei; Chang, Cunjie; Cui, Yangyan; Zhao, Xiaozhi; Yang, Jun; Shen, Lan; Zhou, Ji; Hou, Zhibo; Zhang, Zhen; Ye, Changxiao; Hasenmayer, Donald; Perkins, Robert; Huang, Xiaojing; Yao, Xin; Yu, Like; Huang, Ruimin; Zhang, Dianzheng; Guo, Hongqian; Yan, Jun

    2014-04-18

    Cancer cell proliferation is a metabolically demanding process, requiring high glycolysis, which is known as "Warburg effect," to support anabolic growth. Steroid receptor coactivator-3 (SRC-3), a steroid receptor coactivator, is overexpressed and/or amplified in multiple cancer types, including non-steroid targeted cancers, such as urinary bladder cancer (UBC). However, whether SRC-3 regulates the metabolic reprogramming for cancer cell growth is unknown. Here, we reported that overexpression of SRC-3 accelerated UBC cell growth, accompanied by the increased expression of genes involved in glycolysis. Knockdown of SRC-3 reduced the UBC cell glycolytic rate under hypoxia, decreased tumor growth in nude mice, with reduction of proliferating cell nuclear antigen and lactate dehydrogenase expression levels. We further revealed that SRC-3 could interact with hypoxia inducible factor 1α (HIF1α), which is a key transcription factor required for glycolysis, and coactivate its transcriptional activity. SRC-3 was recruited to the promoters of HIF1α-target genes, such as glut1 and pgk1. The positive correlation of expression levels between SRC-3 and Glut1 proteins was demonstrated in human UBC patient samples. Inhibition of glycolysis through targeting HK2 or LDHA decelerated SRC-3 overexpression-induced cell growth. In summary, overexpression of SRC-3 promoted glycolysis in bladder cancer cells through HIF1α to facilitate tumorigenesis, which may be an intriguing drug target for bladder cancer therapy.

  9. IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFN-stimulated genes.

    Science.gov (United States)

    Xu, Lei; Zhou, Xinying; Wang, Wenshi; Wang, Yijin; Yin, Yuebang; Laan, Luc J W van der; Sprengers, Dave; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2016-10-01

    IFN regulatory factor 1 (IRF1) is one of the most important IFN-stimulated genes (ISGs) in cellular antiviral immunity. Although hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide, how ISGs counteract HEV infection is largely unknown. This study was conducted to investigate the effect of IRF1 on HEV replication. Multiple cell lines were used in 2 models that harbor HEV. In different HEV cell culture systems, IRF1 effectively inhibited HEV replication. IRF1 did not trigger IFN production, and chromatin immunoprecipitation sequencing data analysis revealed that IRF1 bound to the promoter region of signal transducers and activators of transcription 1 (STAT1). Functional assay confirmed that IRF1 could drive the transcription of STAT1, resulting in elevation of total and phosphorylated STAT1 proteins and further activating the transcription of a panel of downstream antiviral ISGs. By pharmacological inhibitors and RNAi-mediated gene-silencing approaches, we revealed that antiviral function of IRF1 is dependent on the JAK-STAT cascade. Furthermore, induction of ISGs and the anti-HEV effect of IRF1 overlapped that of IFNα, but was potentiated by ribavirin. We demonstrated that IRF1 effectively inhibits HEV replication through the activation of the JAK-STAT pathway, and the subsequent transcription of antiviral ISGs, but independent of IFN production.-Xu, L., Zhou, X., Wang, W., Wang, Y., Yin, Y., van der Laan, L. J. W., Sprengers, D., Metselaar, H. J., Peppelenbosch, M. P., Pan, Q. IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFN-stimulated genes. © FASEB.

  10. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Han, Eun Hee [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Im, Ji Hye; Lee, Eun Ji; Jin, Sun Woo [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2015-09-25

    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Taken together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.

  11. Thiamine deficiency activates hypoxia inducible factor-1α to facilitate pro-apoptotic responses in mouse primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Kristy Zera

    Full Text Available Thiamine is an essential enzyme cofactor required for proper metabolic function and maintenance of metabolism and energy production in the brain. In developed countries, thiamine deficiency (TD is most often manifested following chronic alcohol consumption leading to impaired mitochondrial function, oxidative stress, inflammation and excitotoxicity. These biochemical lesions result in apoptotic cell death in both neurons and astrocytes. Comparable histological injuries in patients with hypoxia/ischemia and TD have been described in the thalamus and mammillary bodies, suggesting a congruency between the cellular responses to these stresses. Consistent with hypoxia/ischemia, TD stabilizes and activates Hypoxia Inducible Factor-1α (HIF-1α under physiological oxygen levels. However, the role of TD-induced HIF-1α in neurological injury is currently unknown. Using Western blot analysis and RT-PCR, we have demonstrated that TD induces HIF-1α expression and activity in primary mouse astrocytes. We observed a time-dependent increase in mRNA and protein expression of the pro-apoptotic and pro-inflammatory HIF-1α target genes MCP1, BNIP3, Nix and Noxa during TD. We also observed apoptotic cell death in TD as demonstrated by PI/Annexin V staining, TUNEL assay, and Cell Death ELISA. Pharmacological inhibition of HIF-1α activity using YC1 and thiamine repletion both reduced expression of pro-apoptotic HIF-1α target genes and apoptotic cell death in TD. These results demonstrate that induction of HIF-1α mediated transcriptional up-regulation of pro-apoptotic/inflammatory signaling contributes to astrocyte cell death during thiamine deficiency.

  12. Characteristics of adipose tissue macrophages and macrophage-derived insulin-like growth factor-1 in virus-induced obesity.

    Science.gov (United States)

    Park, S; Park, H-L; Lee, S-Y; Nam, J-H

    2016-03-01

    Various pathogens are implicated in the induction of obesity. Previous studies have confirmed that human adenovirus 36 (Ad36) is associated with increased adiposity, improved glycemic control and induction of inflammation. The Ad36-induced inflammation is reflected in the infiltration of macrophages into adipose tissue. However, the characteristics and role of adipose tissue macrophages (ATMs) and macrophage-secreted factors in virus-induced obesity (VIO) are unclear. Although insulin-like growth factor-1 (IGF-1) is involved in obesity metabolism, the contribution of IGF secreted by macrophages in VIO has not been studied. Four-week-old male mice were studied 1 week and 12 weeks after Ad36 infection for determining the characteristics of ATMs in VIO and diet-induced obesity (DIO). In addition, macrophage-specific IGF-1-deficient (MIKO) mice were used to study the involvement of IGF-1 in VIO. In the early stage of VIO (1 week after Ad36 infection), the M1 ATM sub-population increased, which increased the M1/M2 ratio, whereas DIO did not cause this change. In the late stage of VIO (12 weeks after Ad36 infection), the M1/M2 ratio did not change because the M1 and M2 ATM sub-populations increased to a similar extent, despite an increase in adiposity. By contrast, DIO increased the M1/M2 ratio. In addition, VIO in wild-type mice upregulated angiogenesis in adipose tissue and improved glycemic control. However, MIKO mice showed no increase in adiposity, angiogenesis, infiltration of macrophages into adipose tissue, or improvement in glycemic control after Ad36 infection. These data suggest that IGF-1 secreted by macrophages may contribute to hyperplasia and hypertrophy in adipose tissue by increasing angiogenesis, which helps to maintain the 'adipose tissue robustness'.

  13. Growth inhibition induced by antiprogestins RU-38486, ORG-31710, and CDB-2914 in ovarian cancer cells involves inhibition of cyclin dependent kinase 2.

    Science.gov (United States)

    Goyeneche, Alicia A; Seidel, Erin E; Telleria, Carlos M

    2012-06-01

    Antiprogestins have been largely utilized in reproductive medicine, yet their repositioning for oncologic use is rapidly emerging. In this study we investigated the molecular mediators of the anti-ovarian cancer activity of the structurally related antiprogestins RU-38486, ORG-31710 and CDB-2914. We studied the responses of wt p53 OV2008 and p53 null SK-OV-3 cells to varying doses of RU-38486, ORG-31710 and CDB-2914. The steroids inhibited the growth of both cell lines with a potency of RU-38486 > ORG-31710 > CDB-2914, and were cytostatic at lower doses but lethal at higher concentrations. Antiprogestin-induced lethality associated with morphological features of apoptosis, hypodiploid DNA content, DNA fragmentation, and cleavage of executer caspase substrate PARP. Cell death ensued despite RU-38486 caused transient up-regulation of anti-apoptotic Bcl-2, ORG-31710 induced transient up-regulation of inhibitor of apoptosis XIAP, and CDB-2914 up-regulated both XIAP and Bcl-2. The antiprogestins induced accumulation of Cdk inhibitors p21(cip1) and p27(kip1) and increased association of p21(cip1) and p27(kip1) with Cdk-2. They also promoted nuclear localization of p21(cip1) and p27(kip1), reduced the nuclear abundances of Cdk-2 and cyclin E, and blocked the activity of Cdk-2 in both nucleus and cytoplasm. The cytotoxic potency of the antiprogestins correlated with the magnitude of the inhibition of Cdk-2 activity, ranging from G1 cell cycle arrest towards cell death. Our results suggest that, as a consequence of their cytostatic and lethal effects, antiprogestin steroids of well-known contraceptive properties emerge as attractive new agents to be repositioned for ovarian cancer therapeutics.

  14. Gene expression of cyclin-dependent kinase inhibitors and effect of heparin on their expression in mice with hypoxia-induced pulmonary hypertension

    International Nuclear Information System (INIS)

    Yu Lunyin; Quinn, Deborah A.; Garg, Hari G.; Hales, Charles A.

    2006-01-01

    The balance between cell proliferation and cell quiescence is regulated delicately by a variety of mediators, in which cyclin-dependent kinases (CDK) and CDK inhibitors (CDKI) play a very important role. Heparin which inhibits pulmonary artery smooth muscle cell (PASMC) proliferation increases the levels of two CDKIs, p21 and p27, although only p27 is important in inhibition of PASMC growth in vitro and in vivo. In the present study we investigated the expression profile of all the cell cycle regulating genes, including all seven CDKIs (p21, p27, p57, p15, p16, p18, and p19), in the lungs of mice with hypoxia-induced pulmonary hypertension. A cell cycle pathway specific gene microarray was used to profile the 96 genes involved in cell cycle regulation. We also observed the effect of heparin on gene expression. We found that (a) hypoxic exposure for two weeks significantly inhibited p27 expression and stimulated p18 activity, showing a 98% decrease in p27 and 81% increase in p18; (b) other CDKIs, p21, p57, p15, p16, and p19 were not affected significantly in response to hypoxia; (c) heparin treatment restored p27 expression, but did not influence p18; (d) ERK1/2 and p38 were mediators in heparin upregulation of p27. This study provides an expression profile of cell cycle regulating genes under hypoxia in mice with hypoxia-induced pulmonary hypertension and strengthens the previous finding that p27 is the only CDKI involved in heparin regulation of PASMC proliferation and hypoxia-induced pulmonary hypertension

  15. Compound C prevents Hypoxia-Inducible Factor-1α protein stabilization by regulating the cellular oxygen availability via interaction with Mitochondrial Complex I

    Directory of Open Access Journals (Sweden)

    Hagen Thilo

    2011-04-01

    Full Text Available Abstract The transcription factor Hypoxia-Inducible Factor-1α is a master regulator of the cellular response to low oxygen concentration. Compound C, an inhibitor of AMP-activated kinase, has been reported to inhibit hypoxia dependent Hypoxia-Inducible Factor-1α activation via a mechanism that is independent of AMP-activated kinase but dependent on its interaction with the mitochondrial electron transport chain. The objective of this study is to characterize the interaction of Compound C with the mitochondrial electron transport chain and to determine the mechanism through which the drug influences the stability of the Hypoxia-Inducible Factor-1α protein. We found that Compound C functions as an inhibitor of complex I of the mitochondrial electron transport chain as demonstrated by its effect on mitochondrial respiration. It also prevents hypoxia-induced Hypoxia-Inducible Factor-1α stabilization in a dose dependent manner. In addition, Compound C does not have significant effects on reactive oxygen species production from complex I via both forward and reverse electron flux. This study provides evidence that similar to other mitochondrial electron transport chain inhibitors, Compound C regulates Hypoxia-Inducible Factor-1α stability by controlling the cellular oxygen concentration.

  16. Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth

    Directory of Open Access Journals (Sweden)

    Li J

    2015-02-01

    Full Text Available Jie Li,1 Chao Zhang,1 Hongchuan Jiang,1 Jiao Cheng21Department of General Surgery, 2Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital, Beijing, People’s Republic of ChinaAbstract: Hypoxia-inducible factor-1 (HIF-1 is a master regulator of the transcriptional response to hypoxia. HIF-1α is one of the most compelling anticancer targets. Andrographolide (Andro was newly identified to inhibit HIF-1 in T47D cells (a half maximal effective concentration [EC50] of 1.03×10-7 mol/L, by a dual-luciferase reporter assay. It suppressed HIF-1α protein and gene accumulation, which was dependent on the inhibition of upstream phosphatidylinositol 3-kinase (PI3K/AKT pathway. It also abrogated the expression of HIF-1 target vascular endothelial growth factor (VEGF gene and protein. Further, Andro inhibited T47D and MDA-MB-231 cell proliferation and colony formation. In addition, it exhibited significant in vivo efficacy and antitumor potential against the MDA-MB-231 xenograft in nude mice. In conclusion, these results highlighted the potential effects of Andro, which inhibits HIF-1, and hence may be developed as an antitumor agent for breast cancer therapy in future.Keywords: Andrographolide (Andro, HIF-1α, inhibit, breast cancer, hypoxia, PI3k/AKT/mTOR pathway

  17. Insulin-like growth factor-1 receptor in mature osteoblasts is required for periosteal bone formation induced by reloading

    Science.gov (United States)

    Kubota, Takuo; Elalieh, Hashem Z.; Saless, Neema; Fong, Chak; Wang, Yongmei; Babey, Muriel; Cheng, Zhiqiang; Bikle, Daniel D.

    2013-11-01

    Skeletal loading and unloading has a pronounced impact on bone remodeling, a process also regulated by insulin-like growth factor-1 (IGF-1) signaling. Skeletal unloading leads to resistance to the anabolic effect of IGF-1, while reloading after unloading restores responsiveness to IGF-1. However, a direct study of the importance of IGF-1 signaling in the skeletal response to mechanical loading remains to be tested. In this study, we assessed the skeletal response of osteoblast-specific Igf-1 receptor deficient (Igf-1r-/-) mice to unloading and reloading. The mice were hindlimb unloaded for 14 days and then reloaded for 16 days. Igf-1r-/- mice displayed smaller cortical bone and diminished periosteal and endosteal bone formation at baseline. Periosteal and endosteal bone formation decreased with unloading in Igf-1r+/+ mice. However, the recovery of periosteal bone formation with reloading was completely inhibited in Igf-1r-/- mice, although reloading-induced endosteal bone formation was not hampered. These changes in bone formation resulted in the abolishment of the expected increase in total cross-sectional area with reloading in Igf-1r-/- mice compared to the control mice. These results suggest that the Igf-1r in mature osteoblasts has a critical role in periosteal bone formation in the skeletal response to mechanical loading.

  18. Vaccination with Eimeria tenella elongation factor-1α recombinant protein induces protective immunity against E. tenella and E. maxima infections.

    Science.gov (United States)

    Lin, Rui-Qing; Lillehoj, Hyun S; Lee, Seung Kyoo; Oh, Sungtaek; Panebra, Alfredo; Lillehoj, Erik P

    2017-08-30

    Avian coccidiosis is caused by multiple species of the apicomplexan protozoan, Eimeria, and is one of the most economically devastating enteric diseases for the poultry industry worldwide. Host immunity to Eimeria infection, however, is relatively species-specific. The ability to immunize chickens against different species of Eimeria using a single vaccine will have a major beneficial impact on commercial poultry production. In this paper, we describe the molecular cloning, purification, and vaccination efficacy of a novel Eimeria vaccine candidate, elongation factor-1α (EF-1α). One day-old broiler chickens were given two subcutaneous immunizations one week apart with E. coli-expressed E. tenella recombinant (r)EF-1α protein and evaluated for protection against challenge infection with E. tenella or E. maxima. rEF-1α-vaccinated chickens exhibited increased body weight gains, decreased fecal oocyst output, and greater serum anti-EF-1α antibody levels following challenge infection with either E. tenella or E. maxima compared with unimmunized controls. Vaccination with EF-1α may represent a new approach to inducing cross-protective immunity against avian coccidiosis in the field. Published by Elsevier B.V.

  19. Neuroprotection by hypoxic preconditioning involves upregulation of hypoxia-inducible factor-1 in a prenatal model of acute hypoxia.

    Science.gov (United States)

    Giusti, Sebastián; Fiszer de Plazas, Sara

    2012-02-01

    The molecular pathways underlying the neuroprotective effects of preconditioning are promising, potentially drugable targets to promote cell survival. However, these pathways are complex and are not yet fully understood. In this study we have established a paradigm of hypoxic preconditioning based on a chick embryo model of normobaric acute hypoxia previously developed by our group. With this model, we analyzed the role of hypoxia-inducible factor-1α (HIF-1α) stabilization during preconditioning in HIF-1 signaling after the hypoxic injury and in the development of a neuroprotective effect against the insult. To this end, we used a pharmacological approach, based on the in vivo administration of positive (Fe(2+), ascorbate) and negative (CoCl(2)) modulators of the activity of HIF-prolyl hydroxylases (PHDs), the main regulators of HIF-1. We have found that preconditioning has a reinforcing effect on HIF-1 accumulation during the subsequent hypoxic injury. In addition, we have also demonstrated that HIF-1 induction during hypoxic preconditioning is necessary to obtain an enhancement in HIF-1 accumulation and to develop a tolerance against a subsequent hypoxic injury. We provide in vivo evidence that administration of Fe(2+) and ascorbate modulates HIF accumulation, suggesting that PHDs might be targets for neuroprotection in the CNS. Copyright © 2011 Wiley Periodicals, Inc.

  20. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis.

    Science.gov (United States)

    Yang, Tieshan; Yao, Qian; Cao, Fei; Liu, Qianqian; Liu, Binlei; Wang, Xiu-Hong

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that is activated upon exposure to hypoxic stress. It modulates a number of cellular responses including proliferation, apoptosis, angiogenesis, and metabolism by activating a panel of target genes in response to hypoxia. The HIF-1 level is often upregulated in the hypoxic microenvironment of solid tumors, which contributes to cancer treatment failure. Here we report that silver nanoparticles (AgNPs), which are widely used as an antimicrobial agent, are an effective inhibitor of HIF-1. AgNPs inhibited the activation of a HIF-dependent reporter construct after the cells were exposed to hypoxic conditions or treated with cobalt chloride, a hypoxia mimetic agent. The AgNPs also interfered with the accumulation of HIF-1α protein and the induction of the endogenous HIF target genes, VEGF-A and GLUT1. Since both HIF-1 and vascular endothelial growth factor-A play an important role in angiogenesis, AgNPs also inhibited angiogenesis in vitro. Our data reveal a new mechanism of how AgNPs act on cellular function, that is, they disrupt HIF signaling pathway. This finding provides a novel insight into how AgNPs can inhibit cancer cell growth and angiogenesis.

  1. Targeting Hypoxia-Inducible Factor 1α in a New Orthotopic Model of Glioblastoma Recapitulating the Hypoxic Tumor Microenvironment.

    Science.gov (United States)

    Nigim, Fares; Cavanaugh, Jill; Patel, Anoop P; Curry, William T; Esaki, Shin-ichi; Kasper, Ekkehard M; Chi, Andrew S; Louis, David N; Martuza, Robert L; Rabkin, Samuel D; Wakimoto, Hiroaki

    2015-07-01

    Tissue hypoxia and necrosis represent pathophysiologic and histologic hallmarks of glioblastoma (GBM). Although hypoxia inducible factor 1α (HIF-1α) plays crucial roles in the malignant phenotypes of GBM, developing HIF-1α-targeted agents has been hampered by the lack of a suitable preclinical model that recapitulates the complex biology of clinical GBM. We present a new GBM model, MGG123, which was established from a recurrent human GBM. Orthotopic xenografting of stem-like MGG123 cells reproducibly generated lethal tumors that were characterized by foci of palisading necrosis, hypervascularity, and robust stem cell marker expression. Perinecrotic neoplastic cells distinctively express HIF-1α and are proliferative in both xenografts and the patient tissue. The xenografts contain scattered hypoxic foci that were consistently greater than 50 μm distant from blood vessels, indicating intratumoral heterogeneity of oxygenation. Hypoxia enhanced HIF-1α expression in cultured MGG123 cells, which was abrogated by the HIF-1α inhibitors digoxin or ouabain. In vivo, treatment of orthotopic MGG123 xenografts with digoxin decreased HIF-1α expression, vascular endothelial growth factor mRNA levels, and CD34-positive vasculature within the tumors, and extended survival of mice bearing the aggressive MGG123 GBM. This preclinical tumor model faithfully recapitulates the GBM-relevant hypoxic microenvironment and stemness and is a suitable platform for studying disease biology and developing hypoxia-targeted agents.

  2. RNAi Knockdown of Hypoxia-Inducible Factor-1α Decreased the Proliferation, Migration, and Invasion of Hypoxic Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Chen, ChengShi; Liu, Rong; Wang, JianHua; Yan, ZhiPing; Qian, Sheng; Zhang, Wei

    2015-04-01

    The obstruction of hepatic arterial blood flow results in tumor tissue hypoxia and elevated expression of hypoxia-inducible factor-1alpha (HIF-1α). Our study evaluated whether lentivirus-mediated short interference RNA against HIF-1α inhibits proliferation, invasion, and migration of hepatocellular carcinoma (HCC) cells under hypoxia. RNA interference knockdown of HIF-1α was achieved by HIF-1α-directed lentiviral shRNA, in a rat HCC cell line cultured under hypoxia condition for varying length of times. The expression levels of HIF-1α and vascular endothelial growth factor were examined using reverse transcription polymerase chain reaction and western blot analyses. Cell proliferation, migration, and invasion were measured by cell viability, transwell migration, and invasion assays, respectively. Inhibition of HIF-1α expression by shRNA suppressed vascular endothelial growth factor mRNA and protein levels under both normoxia and hypoxia. It also suppressed cell migration and invasion, which were enhanced under hypoxic conditions. RNAi knockdown of HIF-1α further suppressed hypoxia-mediated inhibition of the cell proliferation. These data suggest that shRNA of HIF-1α could antagonize the hypoxia-mediated increase in hepatic cancer cell migration and invasion, and synergize with hypoxia to inhibit the cell proliferation in HCC cells.

  3. Hypoxia-Inducible Factor 1 Is an Inductor of Transcription Factor Activating Protein 2 Epsilon Expression during Chondrogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Stephan Niebler

    2015-01-01

    Full Text Available The transcription factor AP-2ε (activating enhancer-binding protein epsilon is expressed in cartilage of humans and mice. However, knowledge about regulatory mechanisms influencing AP-2ε expression is limited. Using quantitative real time PCR, we detected a significant increase in AP-2ε mRNA expression comparing initial and late stages of chondrogenic differentiation processes in vitro and in vivo. Interestingly, in these samples the expression pattern of the prominent hypoxia marker gene angiopoietin-like 4 (Angptl4 strongly correlated with that of AP-2ε suggesting that hypoxia might represent an external regulator of AP-2ε expression in mammals. In order to show this, experiments directly targeting the activity of hypoxia-inducible factor-1 (HIF1, the complex mediating responses to oxygen deprivation, were performed. While the HIF1-activating compounds 2,2′-dipyridyl and desferrioxamine resulted in significantly enhanced mRNA concentration of AP-2ε, siRNA against HIF1α led to a significantly reduced expression rate of AP-2ε. Additionally, we detected a significant upregulation of the AP-2ε mRNA level after oxygen deprivation. In sum, these different experimental approaches revealed a novel role for the HIF1 complex in the regulation of the AP-2ε gene in cartilaginous cells and underlined the important role of hypoxia as an important external regulatory stimulus during chondrogenic differentiation modulating the expression of downstream transcription factors.

  4. Relationship between serum hypoxia-inducible factor-1α and carotid plaque in patients with type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    E Weiqin; Shi Bimin

    2012-01-01

    Objective: To observe the changes of type 2 diabetes mellitus (T2DM) patients' serum hypoxia inducible factor-1α (HIF-1α), and evaluate the relationship between serum HIF-1α and vascular lesions of atherosclerosis. Methods: The serum level of HIF-1α in 32 T2DM with carotid plaques (T2DM+CP group), 24 T2DM without macrovascular complications (T2DM group), and 24 controls was studied with ELISA method. Results: The serum HIF-1α level in T2DM with and without carotid plaque group was significantly higher than that in the controls (all P<0.01). Furthermore, among T2DM, the level of HIF-1α was higher in patients with carotid plaque than that without carotid plaque (P<0.05) . The serum HIF-1α was positively correlated with fasting plasma glucose, HbAlc and HOMA-IR (all P<0.05). Multiple linear stepwise regression analysis showed that HbAlc was the independent determinants of HIF-1α. Conclusion: High level of serum HIF-1α in T2DM patients concerns with blood glucose and insulin resistance, which plays an important role in the development of macrovascular complications. (authors)

  5. n-Butyl benzyl phthalate promotes breast cancer progression by inducing expression of lymphoid enhancer factor 1.

    Directory of Open Access Journals (Sweden)

    Tsung-Hua Hsieh

    Full Text Available Environmental hormones play important roles in regulating the expression of genes involved in cell proliferation, drug resistance, and breast cancer risk; however, their precise role in human breast cancer cells during cancer progression remains unclear. To elucidate the effect of the most widely used industrial phthalate, n-butyl benzyl phthalate (BBP, on cancer progression, we evaluated the results of BBP treatment using a whole human genome cDNA microarray and MetaCore software and selected candidate genes whose expression was changed by more than ten-fold by BBP compared with controls to analyze the signaling pathways in human breast cancer initiating cells (R2d. A total of 473 genes were upregulated, and 468 were downregulated. Most of these genes are involved in proliferation, epithelial-mesenchymal transition, and angiogenesis signaling. BBP induced the viability, invasion and migration, and tube formation in vitro, and Matrigel plug angiogenesis in vivo of R2d and MCF-7. Furthermore, the viability and invasion and migration of these cell lines following BBP treatment was reduced by transfection with a small interfering RNA targeting the mRNA for lymphoid enhancer-binding factor 1; notably, the altered expression of this gene consistently differentiated tumors expressing genes involved in proliferation, epithelial-mesenchymal transition, and angiogenesis. These findings contribute to our understanding of the molecular impact of the environmental hormone BBP and suggest possible strategies for preventing and treating human breast cancer.

  6. Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1α.

    Science.gov (United States)

    Shalova, Irina N; Lim, Jyue Yuan; Chittezhath, Manesh; Zinkernagel, Annelies S; Beasley, Federico; Hernández-Jiménez, Enrique; Toledano, Victor; Cubillos-Zapata, Carolina; Rapisarda, Annamaria; Chen, Jinmiao; Duan, Kaibo; Yang, Henry; Poidinger, Michael; Melillo, Giovanni; Nizet, Victor; Arnalich, Francisco; López-Collazo, Eduardo; Biswas, Subhra K

    2015-03-17

    Sepsis is characterized by a dysregulated inflammatory response to infection. Despite studies in mice, the cellular and molecular basis of human sepsis remains unclear and effective therapies are lacking. Blood monocytes serve as the first line of host defense and are equipped to recognize and respond to infection by triggering an immune-inflammatory response. However, the response of these cells in human sepsis and their contribution to sepsis pathogenesis is poorly understood. To investigate this, we performed a transcriptomic, functional, and mechanistic analysis of blood monocytes from patients during sepsis and after recovery. Our results revealed the functional plasticity of monocytes during human sepsis, wherein they transited from a pro-inflammatory to an immunosuppressive phenotype, while enhancing protective functions like phagocytosis, anti-microbial activity, and tissue remodeling. Mechanistically, hypoxia inducible factor-1α (HIF1α) mediated this functional re-programming of monocytes, revealing a potential mechanism for their therapeutic targeting to regulate human sepsis. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. of Hypoxia-Inducible Factor-1α Activity by the Fusion of High-Resolution SPECT and Morphological Imaging Tests

    Directory of Open Access Journals (Sweden)

    Hirofumi Fujii

    2012-01-01

    Full Text Available Purpose. We aimed to clearly visualize heterogeneous distribution of hypoxia-inducible factor 1α (HIF activity in tumor tissues in vivo. Methods. We synthesized of 125I-IPOS, a 125I labeled chimeric protein probe, that would visualize HIF activity. The biodistribution of 125I-IPOS in FM3A tumor-bearing mice was evaluated. Then, the intratumoral localization of this probe was observed by autoradiography, and it was compared with histopathological findings. The distribution of 125I-IPOS in tumors was imaged by a small animal SPECT/CT scanner. The obtained in vivo SPECT-CT fusion images were compared with ex vivo images of excised tumors. Fusion imaging with MRI was also examined. Results. 125I-IPOS well accumulated in FM3A tumors. The intratumoral distribution of 125I-IPOS by autoradiography was quite heterogeneous, and it partially overlapped with that of pimonidazole. High-resolution SPECT-CT fusion images successfully demonstrated the heterogeneity of 125I-IPOS distribution inside tumors. SPECT-MRI fusion images could give more detailed information about the intratumoral distribution of 125I-IPOS. Conclusion. High-resolution SPECT images successfully demonstrated heterogeneous intratumoral distribution of 125I-IPOS. SPECT-CT fusion images, more favorably SPECT-MRI fusion images, would be useful to understand the features of heterogeneous intratumoral expression of HIF activity in vivo.

  8. Polymorphisms in the hypoxia-inducible factor 1 alpha gene in Mexican patients with preeclampsia: A case-control study

    Directory of Open Access Journals (Sweden)

    Nava-Salazar Sonia

    2011-03-01

    Full Text Available Abstract Background Although the etiology of preeclampsia is still unclear, recent work suggests that changes in circulating angiogenic factors play a key role in its pathogenesis. In the trophoblast of women with preeclampsia, hypoxia-inducible factor 1 alpha (HIF-1α is over-expressed, and induces the expression of non-angiogenic factors and inhibitors of trophoblast differentiation. This observation prompted the study of HIF-1α and its relation to preeclampsia. It has been described that the C1772T (P582S and G1790A (A588T polymorphisms of the HIF1A gene have significantly greater transcriptional activity, correlated with an increased expression of their proteins, than the wild-type sequence. In this work, we studied whether either or both HIF1A variants contribute to preeclampsia susceptibility. Results Genomic DNA was isolated from 150 preeclamptic and 105 healthy pregnant women. Exon 12 of the HIF1A gene was amplified by PCR, and the genotypes of HIF1A were determined by DNA sequencing. In preeclamptic women and controls, the frequencies of the T allele for C1772T were 4.3 vs. 4.8%, and the frequencies of the A allele for G1790A were 0.0 vs. 0.5%, respectively. No significant differences were found between groups. Conclusion The frequency of the C1772T and G1790A polymorphisms of the HIF1A gene is very low, and neither polymorphism is associated with the development of preeclampsia in the Mexican population.

  9. Molecular Stress-inducing Compounds Increase Osteoclast Formation in a Heat Shock Factor 1 Protein-dependent Manner*

    Science.gov (United States)

    Chai, Ryan C.; Kouspou, Michelle M.; Lang, Benjamin J.; Nguyen, Chau H.; van der Kraan, A. Gabrielle J.; Vieusseux, Jessica L.; Lim, Reece C.; Gillespie, Matthew T.; Benjamin, Ivor J.; Quinn, Julian M. W.; Price, John T.

    2014-01-01

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss. PMID:24692538

  10. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis

    Directory of Open Access Journals (Sweden)

    Yang T

    2016-12-01

    Full Text Available Tieshan Yang,1 Qian Yao,1 Fei Cao,1 Qianqian Liu,1 Binlei Liu,2 Xiu-Hong Wang1 1Laboratory for Biomedical Photonics, Institute of Laser Engineering, Beijing University of Technology, 2Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China Abstract: Hypoxia-inducible factor-1 (HIF-1 is a transcription factor that is activated upon exposure to hypoxic stress. It modulates a number of cellular responses including proliferation, apoptosis, angiogenesis, and metabolism by activating a panel of target genes in response to hypoxia. The HIF-1 level is often upregulated in the hypoxic microenvironment of solid tumors, which contributes to cancer treatment failure. Here we report that silver nanoparticles (AgNPs, which are widely used as an antimicrobial agent, are an effective inhibitor of HIF-1. AgNPs inhibited the activation of a HIF-dependent reporter construct after the cells were exposed to hypoxic conditions or treated with cobalt chloride, a hypoxia mimetic agent. The AgNPs also interfered with the accumulation of HIF-1α protein and the induction of the endogenous HIF target genes, VEGF-A and GLUT1. Since both HIF-1 and vascular endothelial growth factor-A play an important role in angiogenesis, AgNPs also inhibited angiogenesis in vitro. Our data reveal a new mechanism of how AgNPs act on cellular function, that is, they disrupt HIF signaling pathway. This finding provides a novel insight into how AgNPs can inhibit cancer cell growth and angiogenesis. Keywords: silver nanoparticles (AgNPs, hypoxia-inducible factor, transcriptional activity, vascular endothelial growth factor-A, angiogenesis

  11. Altered expression of hypoxia-inducible factor-1α (HIF-1α and its regulatory genes in gastric cancer tissues.

    Directory of Open Access Journals (Sweden)

    Jihan Wang

    Full Text Available Tissue hypoxia induces reprogramming of cell metabolism and may result in normal cell transformation and cancer progression. Hypoxia-inducible factor 1-alpha (HIF-1α, the key transcription factor, plays an important role in gastric cancer development and progression. This study aimed to investigate the underlying regulatory signaling pathway in gastric cancer using gastric cancer tissue specimens. The integration of gene expression profile and transcriptional regulatory element database (TRED was pursued to identify HIF-1α ↔ NFκB1 → BRCA1 → STAT3 ← STAT1 gene pathways and their regulated genes. The data showed that there were 82 differentially expressed genes that could be regulated by these five transcription factors in gastric cancer tissues and these genes formed 95 regulation modes, among which seven genes (MMP1, TIMP1, TLR2, FCGR3A, IRF1, FAS, and TFF3 were hub molecules that are regulated at least by two of these five transcription factors simultaneously and were associated with hypoxia, inflammation, and immune disorder. Real-Time PCR and western blot showed increasing of HIF-1α in mRNA and protein levels as well as TIMP1, TFF3 in mRNA levels in gastric cancer tissues. The data are the first study to demonstrate HIF-1α-regulated transcription factors and their corresponding network genes in gastric cancer. Further study with a larger sample size and more functional experiments is needed to confirm these data and then translate into clinical biomarker discovery and treatment strategy for gastric cancer.

  12. Hypoxia-Independent Downregulation of Hypoxia-Inducible Factor 1 Targets by Androgen Deprivation Therapy in Prostate Cancer

    International Nuclear Information System (INIS)

    Ragnum, Harald Bull; Røe, Kathrine; Holm, Ruth; Vlatkovic, Ljiljana; Nesland, Jahn Marthin; Aarnes, Eva-Katrine; Ree, Anne Hansen; Flatmark, Kjersti; Seierstad, Therese; Lilleby, Wolfgang; Lyng, Heidi

    2013-01-01

    Purpose: We explored changes in hypoxia-inducible factor 1 (HIF1) signaling during androgen deprivation therapy (ADT) of androgen-sensitive prostate cancer xenografts under conditions in which no significant change in immunostaining of the hypoxia marker pimonidazole had occurred. Methods and Materials: Gene expression profiles of volume-matched androgen-exposed and androgen-deprived CWR22 xenografts, with similar pimonidazole-positive fractions, were compared. Direct targets of androgen receptor (AR) and HIF1 transcription factors were identified among the differentially expressed genes by using published lists. Biological processes affected by ADT were determined by gene ontology analysis. HIF1α protein expression in xenografts and biopsy samples from 35 patients receiving neoadjuvant ADT was assessed by immunohistochemistry. Results: A total of 1344 genes showed more than 2-fold change in expression by ADT, including 35 downregulated and 5 upregulated HIF1 targets. Six genes were shared HIF1 and AR targets, and their downregulation was confirmed with quantitative RT-PCR. Significant suppression of the biological processes proliferation, metabolism, and stress response in androgen-deprived xenografts was found, consistent with tumor regression. Nineteen downregulated HIF1 targets were involved in those significant biological processes, most of them in metabolism. Four of these were shared AR and HIF1 targets, including genes encoding the regulatory glycolytic proteins HK2, PFKFB3, and SLC2A1. Most of the downregulated HIF1 targets were induced by hypoxia in androgen-responsive prostate cancer cell lines, confirming their role as hypoxia-responsive HIF1 targets in prostate cancer. Downregulation of HIF1 targets was consistent with the absence of HIF1α protein in xenografts and downregulation in patients by ADT (P<.001). Conclusions: AR repression by ADT may lead to downregulation of HIF1 signaling independently of hypoxic fraction, and this may contribute to

  13. Hypoxia-Independent Downregulation of Hypoxia-Inducible Factor 1 Targets by Androgen Deprivation Therapy in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ragnum, Harald Bull [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Røe, Kathrine [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Division of Medicine, Department of Oncology, Akershus University Hospital, Lørenskog (Norway); Holm, Ruth; Vlatkovic, Ljiljana [Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Nesland, Jahn Marthin [Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Medical Faculty, University of Oslo, Oslo (Norway); Aarnes, Eva-Katrine [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Ree, Anne Hansen [Division of Medicine, Department of Oncology, Akershus University Hospital, Lørenskog (Norway); Medical Faculty, University of Oslo, Oslo (Norway); Flatmark, Kjersti [Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Department of Gastrointestinal Surgery, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Seierstad, Therese [Department of Radiology and Nuclear Medicine, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Faculty of Health Sciences, Buskerud University College, Drammen (Norway); Lilleby, Wolfgang [Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Lyng, Heidi, E-mail: heidi.lyng@rr-research.no [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway)

    2013-11-15

    Purpose: We explored changes in hypoxia-inducible factor 1 (HIF1) signaling during androgen deprivation therapy (ADT) of androgen-sensitive prostate cancer xenografts under conditions in which no significant change in immunostaining of the hypoxia marker pimonidazole had occurred. Methods and Materials: Gene expression profiles of volume-matched androgen-exposed and androgen-deprived CWR22 xenografts, with similar pimonidazole-positive fractions, were compared. Direct targets of androgen receptor (AR) and HIF1 transcription factors were identified among the differentially expressed genes by using published lists. Biological processes affected by ADT were determined by gene ontology analysis. HIF1α protein expression in xenografts and biopsy samples from 35 patients receiving neoadjuvant ADT was assessed by immunohistochemistry. Results: A total of 1344 genes showed more than 2-fold change in expression by ADT, including 35 downregulated and 5 upregulated HIF1 targets. Six genes were shared HIF1 and AR targets, and their downregulation was confirmed with quantitative RT-PCR. Significant suppression of the biological processes proliferation, metabolism, and stress response in androgen-deprived xenografts was found, consistent with tumor regression. Nineteen downregulated HIF1 targets were involved in those significant biological processes, most of them in metabolism. Four of these were shared AR and HIF1 targets, including genes encoding the regulatory glycolytic proteins HK2, PFKFB3, and SLC2A1. Most of the downregulated HIF1 targets were induced by hypoxia in androgen-responsive prostate cancer cell lines, confirming their role as hypoxia-responsive HIF1 targets in prostate cancer. Downregulation of HIF1 targets was consistent with the absence of HIF1α protein in xenografts and downregulation in patients by ADT (P<.001). Conclusions: AR repression by ADT may lead to downregulation of HIF1 signaling independently of hypoxic fraction, and this may contribute to

  14. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner.

    Science.gov (United States)

    Chai, Ryan C; Kouspou, Michelle M; Lang, Benjamin J; Nguyen, Chau H; van der Kraan, A Gabrielle J; Vieusseux, Jessica L; Lim, Reece C; Gillespie, Matthew T; Benjamin, Ivor J; Quinn, Julian M W; Price, John T

    2014-05-09

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss.

  15. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Milatovic, Dejan [Department of Pediatrics/Pediatric Toxicology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Splittgerber, Ryan [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Fan, Guo-Huang [Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37221 (United States); Richmond, Ann, E-mail: ann.richmond@vanderbilt.edu [VA Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States)

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP

  16. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1α, suppress amyloid β-induced neurotoxicity

    International Nuclear Information System (INIS)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan; Splittgerber, Ryan; Fan, Guo-Huang; Richmond, Ann

    2011-01-01

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-β (Aβ). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1α (SDF-1α), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress Aβ-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1α significantly protected neurons from Aβ-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1α. Intra-cerebroventricular (ICV) injection of Aβ led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The Aβ-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F 2 -isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1α. Additionally, MIP-2 or SDF-1α was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against Aβ neurotoxicity in CXCR2−/− mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: ► Neuroprotective ability of the chemokines MIP2 and CXCL12 against Aβ toxicity. ► MIP-2 or CXCL12 prevented dendritic regression and apoptosis in vitro. ► Neuroprotection through activation of Akt, ERK

  17. [Genetic cloning and expression of hypoxia inducible factor 1 alpha in high altitude hypoxic adaptation species Tibetan antelope (Pantholops hodgsonii)].

    Science.gov (United States)

    Liu, Fang; Wuren, Tana; Ma, Lan; Yang, Ying-Zhong; Ge, Ri-Li

    2011-12-25

    In order to investigate the role of the hypoxia inducible factor 1 alpha (HIF-1α) in the adaptation mechanism to high altitude hypoxia, the cloning of the HIF-1α gene cDNA of Tibetan antelope (Pantholops hodgsonii), using RT-PCR and RACE, was applied, and the comparative analysis of the tissue-specific expressions of HIF-1α among Tibetan antelope, Tibetan sheep and plain sheep was performed using real-time PCR and Western blot. The sequence analysis indicated that the cDNA sequences acquired by cloning from the HIF-1α gene of Tibetan antelope comprised a 2 471-bp open reading frame (ORF) and a 1 911-bp 3'UTR. The similarity between its coding sequence, predicted amino acid sequence and HIF-1α of other mammals exceeded 87%, in which the similarity with cow was up to more than 98%, which showed that this sequence was the cDNA of HIF-1α of Tibetan antelope. The results of real-time PCR and Western blot showed that expressions of HIF-1α mRNA and protein appeared in Tibetan antelope's lung, cardiac muscle and skeletal muscle, with the highest expression in lung. HIF-1α mRNA and protein had obvious differential expression in these tissues. Further research showed that Tibetan antelope and Tibetan sheep possessed higher expressions of HIF-1α protein in the three tissues above-mentioned compared with plain sheep, and the expressions of HIF-1α mRNA and protein in Tibetan antelope's lung, cardiac muscle and skeletal muscle were higher than those of Tibetan sheep. It illustrates that the hypoxic HIF-1α-specific expression is one of the molecular bases of high altitude hypoxia adaptation in Tibetan antelope.

  18. Increased accumulation of hypoxia-inducible factor-1α with reduced transcriptional activity mediates the antitumor effect of triptolide

    Directory of Open Access Journals (Sweden)

    Li Zheng

    2010-10-01

    Full Text Available Abstract Background Hypoxia-inducible factor-1α (HIF-1α, a critical transcription factor to reduced O2 availability, has been demonstrated to be extensively involved in tumor survival, aggressive progression, drug resistance and angiogenesis. Thus it has been considered as a potential anticancer target. Triptolide is the main principle responsible for the biological activities of the Traditional Chinese Medicine tripterygium wilfordii Hook F. Triptolide possesses great chemotherapy potential for cancer with its broad-spectrum anticancer, antiangiogenesis, and drug-resistance circumvention activities. Numerous biological molecules inhibited by triptolide have been viewed as its possible targets. However, the anticancer action mechanisms of triptolide remains to be further investigated. Here we used human ovarian SKOV-3 cancer cells as a model to probe the effect of triptolide on HIF-1α. Results Triptolide was observed to inhibit the proliferation of SKOV-3 cells, and meanwhile, to enhance the accumulation of HIF-1α protein in SKOV-3, A549 and DU145 cells under different conditions. Triptolide did not change the kinetics or nuclear localization of HIF-1α protein or the 26 S proteasome activity in SKOV-3 cells. However, triptolide was found to increase the levels of HIF-1α mRNA. Unexpectedly, the HIF-1α protein induced by triptolide appeared to lose its transcriptional activity, as evidenced by the decreased mRNA levels of its target genes including VEGF, BNIP3 and CAIX. The results were further strengthened by the lowered secretion of VEGF protein, the reduced sprout outgrowth from the rat aorta rings and the inhibitory expression of the hypoxia responsive element-driven luciferase reporter gene. Moreover, the silencing of HIF-1α partially prevented the cytotoxicity and apoptosis triggered by triptolide. Conclusions The potent induction of HIF-1α protein involved in its cytotoxicity, together with the suppression of HIF-1 transcriptional

  19. Structural Stability of Human Fibroblast Growth Factor-1 Is Essential for Protective Effects Against Radiation-Induced Intestinal Damage

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Fumiaki, E-mail: f_naka@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Umeda, Sachiko [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Yasuda, Takeshi [Department of Radiation Emergency Medicine, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Chiba (Japan); Asada, Masahiro; Motomura, Kaori; Suzuki, Masashi [Signaling Molecules Research Laboratory, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan); Zakrzewska, Malgorzata [Faculty of Biotechnology, University of Wroclaw (Poland); Imamura, Toru [Signaling Molecules Research Laboratory, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan); Imai, Takashi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2013-02-01

    Purpose: Human fibroblast growth factor-1 (FGF1) has radioprotective effects on the intestine, although its structural instability limits its potential for practical use. Several stable FGF1 mutants were created increasing stability in the order, wild-type FGF1, single mutants (Q40P, S47I, and H93G), Q40P/S47I, and Q40P/S47I/H93G. This study evaluated the contribution of the structural stability of FGF1 to its radioprotective effect. Methods and Materials: Each FGF1 mutant was administered intraperitoneally to BALB/c mice in the absence of heparin 24 h before or after total body irradiation (TBI) with {gamma}-rays at 8-12 Gy. Several radioprotective effects were examined in the jejunum. Results: Q40P/S47I/H93G could activate all subtypes of FGF receptors in vitro much more strongly than the wild-type without endogenous or exogenous heparin. Preirradiation treatment with Q40P/S47I/H93G significantly increased crypt survival more than wild-type FGF1 after TBI at 10 or 12 Gy, and postirradiation treatment with Q40P/S47I/H93G was effective in promoting crypt survival after TBI at 10, 11, or 12 Gy. In addition, crypt cell proliferation, crypt depth, and epithelial differentiation were significantly promoted by postirradiation treatment with Q40P/S47I/H93G. The level of stability of FGF1 mutants correlated with their mitogenic activities in vitro in the absence of heparin; however, preirradiation treatment with the mutants increased the crypt number to almost the same level as Q40P/S47I/H93G. When given 24 h after TBI at 10 Gy, all FGF1 mutants increased crypt survival more than wild-type FGF1, and Q40P/S47I/H93G had the strongest mitogenic effects in intestinal epithelial cells after radiation damage. Moreover, Q40P/S47I/H93G prolonged mouse survival after TBI because of the repair of intestinal damage. Conclusion: These findings suggest that the structural stability of FGF1 can contribute to the enhancement of protective effects against radiation-induced intestinal

  20. Protein arginine methyltransferase 5 is an essential component of the hypoxia-inducible factor 1 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ji-Hong; Choi, Yong-Joon; Cho, Chung-Hyun [Department of Pharmacology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of); Park, Jong-Wan, E-mail: parkjw@snu.ac.kr [Department of Pharmacology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer HIF-1{alpha} is expressed PRMT5-dependently in hypoxic cancer cells. Black-Right-Pointing-Pointer The HIF-1 regulation of hypoxia-induced genes is attenuated in PRMT5-knocked-down cells. Black-Right-Pointing-Pointer The de novo synthesis of HIF-1{alpha} depends on PRMT5. Black-Right-Pointing-Pointer PRMT5 is involved in the HIF-1{alpha} translation initiated by 5 Prime UTR of HIF-1{alpha} mRNA. -- Abstract: Protein arginine methyltransferase 5 (PRMT5) is an enzyme that transfers one or two methyl groups to the arginine residues of histones or non-histone proteins, and that plays critical roles in cellular processes as diverse as receptor signaling and gene expression. Furthermore, PRMT5 is highly expressed in tumors, where it may be associated with tumor growth. Although much research has been conducted on PRMT5, little is known regarding its role in adaption to hypoxia. As hypoxia-inducible factor 1 (HIF-1) is a key player in hypoxic response, we examined the possible involvement of PRMT5 in the HIF-1 signaling pathway. Of the siRNAs targeting PRMT1-8, only PRMT5 siRNA attenuated the hypoxic induction of HIF-1{alpha} in A549 cells, and this result was reproducible in all three cancer cell lines examined. PRMT5 knock-down also repressed the promoter activities and the transcript levels of HIF-1-governed genes. Mechanistically, de novo synthesis of HIF-1{alpha} protein was reduced in PRMT5-knocked-down A549 cells, and this was rescued by PRMT5 restoration. In contrast, HIF-1{alpha} transcription, RNA processing, and protein stability were unaffected by PRMT5 knock-down. Furthermore, PRMT5 was found to be essential for the HIF-1{alpha} translation initiated by the 5 Prime UTR of HIF-1{alpha} mRNA. Given our results and previous reports, we believe that PRMT5 probably promotes tumor growth by stimulating cell proliferation and by participating in the construction of a tumor-favorable microenvironment via HIF-1 activation.

  1. Protein arginine methyltransferase 5 is an essential component of the hypoxia-inducible factor 1 signaling pathway

    International Nuclear Information System (INIS)

    Lim, Ji-Hong; Choi, Yong-Joon; Cho, Chung-Hyun; Park, Jong-Wan

    2012-01-01

    Highlights: ► HIF-1α is expressed PRMT5-dependently in hypoxic cancer cells. ► The HIF-1 regulation of hypoxia-induced genes is attenuated in PRMT5-knocked-down cells. ► The de novo synthesis of HIF-1α depends on PRMT5. ► PRMT5 is involved in the HIF-1α translation initiated by 5′ UTR of HIF-1α mRNA. -- Abstract: Protein arginine methyltransferase 5 (PRMT5) is an enzyme that transfers one or two methyl groups to the arginine residues of histones or non-histone proteins, and that plays critical roles in cellular processes as diverse as receptor signaling and gene expression. Furthermore, PRMT5 is highly expressed in tumors, where it may be associated with tumor growth. Although much research has been conducted on PRMT5, little is known regarding its role in adaption to hypoxia. As hypoxia-inducible factor 1 (HIF-1) is a key player in hypoxic response, we examined the possible involvement of PRMT5 in the HIF-1 signaling pathway. Of the siRNAs targeting PRMT1–8, only PRMT5 siRNA attenuated the hypoxic induction of HIF-1α in A549 cells, and this result was reproducible in all three cancer cell lines examined. PRMT5 knock-down also repressed the promoter activities and the transcript levels of HIF-1-governed genes. Mechanistically, de novo synthesis of HIF-1α protein was reduced in PRMT5-knocked-down A549 cells, and this was rescued by PRMT5 restoration. In contrast, HIF-1α transcription, RNA processing, and protein stability were unaffected by PRMT5 knock-down. Furthermore, PRMT5 was found to be essential for the HIF-1α translation initiated by the 5′ UTR of HIF-1α mRNA. Given our results and previous reports, we believe that PRMT5 probably promotes tumor growth by stimulating cell proliferation and by participating in the construction of a tumor-favorable microenvironment via HIF-1 activation.

  2. Sphingosine kinase/sphingosine 1-phosphate axis: a new player for insulin-like growth factor-1-induced myoblast differentiation

    Directory of Open Access Journals (Sweden)

    Bernacchioni Caterina

    2012-07-01

    Full Text Available Abstract Background Insulin-like growth factor-1 (IGF-1 is the most important physiological regulator of skeletal muscle progenitor cells, which are responsible for adult skeletal muscle regeneration. The ability of IGF-1 to affect multiple aspects of skeletal muscle cell biology such as proliferation, differentiation, survival and motility is well recognized, although the molecular mechanisms implicated in its complex biological action are not fully defined. Since sphingosine 1-phosphate (S1P has recently emerged as a key player in skeletal muscle regeneration, we investigated the possible involvement of the sphingosine kinase (SK/S1P receptor axis on the biological effects of IGF-1 in murine myoblasts. Methods RNA interference, chemical inhibition and immunofluorescence approaches were used to assess the role of the SK/S1P axis on the myogenic and mitogenic effects of IGF-1 in C2C12 myoblasts. Results We show that IGF-1 increases SK activity in mouse myoblasts. The effect of the growth factor does not involve transcriptional regulation of SK1 or SK2, since the protein content of both isoforms is not affected; rather, IGF-1 enhances the fraction of the active form of SK. Moreover, transactivation of the S1P2 receptor induced by IGF-1 via SK activation appears to be involved in the myogenic effect of the growth factor. Indeed, the pro-differentiating effect of IGF-1 in myoblasts is impaired when SK activity is pharmacologically inhibited, or SK1 or SK2 are specifically silenced, or the S1P2 receptor is downregulated. Furthermore, in this study we show that IGF-1 transactivates S1P1/S1P3 receptors via SK activation and that this molecular event negatively regulates the mitogenic effect elicited by the growth factor, since the specific silencing of S1P1 or S1P3 receptors increases cell proliferation induced by IGF-1. Conclusions We demonstrate a dual role of the SK/S1P axis in response to myoblast challenge with IGF-1, that likely is important to

  3. Hepatocyte Hypoxia Inducible Factor-1 Mediates the Development of Liver Fibrosis in a Mouse Model of Nonalcoholic Fatty Liver Disease.

    Directory of Open Access Journals (Sweden)

    Omar A Mesarwi

    Full Text Available Obstructive sleep apnea (OSA is associated with the progression of non-alcoholic fatty liver disease (NAFLD to steatohepatitis and fibrosis. This progression correlates with the severity of OSA-associated hypoxia. In mice with diet induced obesity, hepatic steatosis leads to liver tissue hypoxia, which worsens with exposure to intermittent hypoxia. Emerging data has implicated hepatocyte cell signaling as an important factor in hepatic fibrogenesis. We hypothesized that hepatocyte specific knockout of the oxygen sensing α subunit of hypoxia inducible factor-1 (HIF-1, a master regulator of the global response to hypoxia, may be protective against the development of liver fibrosis.Wild-type mice and mice with hepatocyte-specific HIF-1α knockout (Hif1a-/-hep were fed a high trans-fat diet for six months, as a model of NAFLD. Hepatic fibrosis was evaluated by Sirius red stain and hydroxyproline assay. Liver enzymes, fasting insulin, and hepatic triglyceride content were also assessed. Hepatocytes were isolated from Hif1a-/-hep mice and wild-type controls and were exposed to sustained hypoxia (1% O2 or normoxia (16% O2 for 24 hours. The culture media was used to reconstitute type I collagen and the resulting matrices were examined for collagen cross-linking.Wild-type mice on a high trans-fat diet had 80% more hepatic collagen than Hif1a-/-hep mice (2.21 μg collagen/mg liver tissue, versus 1.23 μg collagen/mg liver tissue, p = 0.03, which was confirmed by Sirius red staining. Body weight, liver weight, mean hepatic triglyceride content, and fasting insulin were similar between groups. Culture media from wild-type mouse hepatocytes exposed to hypoxia allowed for avid collagen cross-linking, but very little cross-linking was seen when hepatocytes were exposed to normoxia, or when hepatocytes from Hif1a-/-hep mice were used in hypoxia or normoxia.Hepatocyte HIF-1 mediates an increase in liver fibrosis in a mouse model of NAFLD, perhaps due to liver

  4. Suppression of the expression of hypoxia-inducible factor-1α by RNA interference alleviates hypoxia-induced pulmonary hypertension in adult rats.

    Science.gov (United States)

    Li, Ying; Shi, Bo; Huang, Liping; Wang, Xin; Yu, Xiaona; Guo, Baosheng; Ren, Weidong

    2016-12-01

    Hypoxia-inducible factor-1α (HIF-1α) has been implicated in the pathogenesis of hypoxic pulmonary hypertension (PH). However, the potential clinical value of HIF-1α as a therapeutic target in the treatment of PH has not yet been evaluated. In this study, an animal model of hypoxia-induced PH was established by exposing adult rats to 10% O2 for 3 weeks, and the effects of the lentivirus-mediated delivery of HIF-1α short hairpin RNA (shRNA) by intratracheal instillation prior to exposure to hypoxia on the manifestations of hypoxia-induced PH were assessed. The successful delivery of HIF-1α shRNA into the pulmonary arteries effectively suppressed the hypoxia-induced upregulation of HIF-1α, accompanied by the prominent attenuation the symptoms associated with hypoxia-induced PH, including the elevation of pulmonary arterial pressure, hypertrophy and hyperplasia of pulmonary artery smooth muscle cells (PASMCs), as well as the muscularization of pulmonary arterioles. In addition, the knockdown of HIF-1α in cultured rat primary PASMCs significantly inhibited the hypoxia-induced acceleration of the cell cycle and the proliferation of the PASMCs, suggesting that HIF-1α may be a direct mediator of PASMC hyperplasia in hypoxia-induced PH. In conclusion, this study demonstrates the potent suppressive effects of HIF-1α shRNA on hypoxia-induced PH and PASMC hyperplasia, providing evidence for the potential application of HIF-1α shRNA in the treatment of hypoxic PH.

  5. Hypoxia Induces Epithelial-Mesenchymal Transition in Follicular Thyroid Cancer: Involvement of Regulation of Twist by Hypoxia Inducible Factor-1α.

    Science.gov (United States)

    Yang, Yeon Ju; Na, Hwi Jung; Suh, Michelle J; Ban, Myung Jin; Byeon, Hyung Kwon; Kim, Won Shik; Kim, Jae Wook; Choi, Eun Chang; Kwon, Hyeong Ju; Chang, Jae Won; Koh, Yoon Woo

    2015-11-01

    Although follicular thyroid cancer (FTC) has a relatively fair prognosis, distant metastasis sometimes results in poor prognosis and survival. There is little understanding of the mechanisms contributing to the aggressiveness potential of thyroid cancer. We showed that hypoxia inducible factor-1α (HIF-1α) induced aggressiveness in FTC cells and identified the underlying mechanism of the HIF-1α-induced invasive characteristics. Cells were cultured under controlled hypoxic environments (1% O₂) or normoxic conditions. The effect of hypoxia on HIF-1α, and epithelial-to-mesenchymal transition (EMT) related markers were evaluated by quantitative real-time PCR, Western blot analysis and immunocytochemistry. Invasion and wound healing assay were conducted to identify functional character of EMT. The involvement of HIF-1α and Twist in EMT were studied using gene overexpression or silencing. After orthotopic nude mouse model was established using the cells transfected with lentiviral shHIF-1α, tissue analysis was done. Hypoxia induces HIF-1α expression and EMT, including typical morphologic changes, cadherin shift, and increased vimentin expression. We showed that overexpression of HIF-1α via transfection resulted in the aforementioned changes without hypoxia, and repression of HIF-1α with RNA interference suppressed hypoxia-induced HIF-1α and EMT. Furthermore, we also observed that Twist expression was regulated by HIF-1α. These were confirmed in the orthotopic FTC model. Hypoxia induced HIF-1α, which in turn induced EMT, resulting in the increased capacity for invasion and migration of cells via regulation of the Twist signal pathway in FTC cells. These findings provide insight into a possible therapeutic strategy to prevent invasive and metastatic FTC.

  6. Activation of the Hypoxia Inducible Factor 1α Subunit Pathway in Steatotic Liver Contributes to Formation of Cholesterol Gallstones.

    Science.gov (United States)

    Asai, Yoichiro; Yamada, Tetsuya; Tsukita, Sohei; Takahashi, Kei; Maekawa, Masamitsu; Honma, Midori; Ikeda, Masanori; Murakami, Keigo; Munakata, Yuichiro; Shirai, Yuta; Kodama, Shinjiro; Sugisawa, Takashi; Chiba, Yumiko; Kondo, Yasuteru; Kaneko, Keizo; Uno, Kenji; Sawada, Shojiro; Imai, Junta; Nakamura, Yasuhiro; Yamaguchi, Hiroaki; Tanaka, Kozo; Sasano, Hironobu; Mano, Nariyasu; Ueno, Yoshiyuki; Shimosegawa, Tooru; Katagiri, Hideki

    2017-05-01

    Hypoxia-inducible factor 1α subunit (HIF1A) is a transcription factor that controls the cellular response to hypoxia and is activated in hepatocytes of patients with nonalcoholic fatty liver disease (NAFLD). NAFLD increases the risk for cholesterol gallstone disease by unclear mechanisms. We studied the relationship between HIF1A and gallstone formation associated with liver steatosis. We performed studies with mice with inducible disruption of Hif1a in hepatocytes via a Cre adenoviral vector (inducible hepatocyte-selective HIF1A knockout [iH-HIFKO] mice), and mice without disruption of Hif1a (control mice). Mice were fed a diet rich in cholesterol and cholate for 1 or 2 weeks; gallbladders were collected and the number of gallstones was determined. Livers and biliary tissues were analyzed by histology, quantitative reverse-transcription polymerase chain reaction, immunohistochemistry, and immunoblots. We measured concentrations of bile acid, cholesterol, and phospholipid in bile and rates of bile flow. Primary hepatocytes and cholangiocytes were isolated and analyzed. HIF1A was knocked down in Hepa1-6 cells with small interfering RNAs. Liver biopsy samples from patients with NAFLD, with or without gallstones, were analyzed by quantitative reverse-transcription polymerase chain reaction. Control mice fed a diet rich in cholesterol and cholate developed liver steatosis with hypoxia; levels of HIF1A protein were increased in hepatocytes around central veins and 90% of mice developed cholesterol gallstones. Only 20% of the iH-HIFKO mice developed cholesterol gallstones. In iH-HIFKO mice, the biliary lipid concentration was reduced by 36%, compared with control mice, and bile flow was increased by 35%. We observed increased water secretion from hepatocytes into bile canaliculi to mediate these effects, resulting in suppression of cholelithogenesis. Hepatic expression of aquaporin 8 (AQP8) protein was 1.5-fold higher in iH-HIFKO mice than in control mice. Under hypoxic

  7. BmCyclin B and BmCyclin B3 are required for cell cycle progression in the silkworm, Bombyx mori.

    Science.gov (United States)

    Pan, Minhui; Hong, Kaili; Chen, Xiangyun; Pan, Chun; Chen, Xuemei; Kuang, Xiuxiu; Lu, Cheng

    2013-04-01

    Cyclin B is an important regulator of the cell cycle G2 to M phase transition. The silkworm genomic database shows that there are two Cyclin B genes in the silkworm (Bombyx mori), BmCyclin B and BmCyclin B3. Using silkworm EST data, the cyclin B3 (EU074796) gene was cloned. Its complete cDNA was 1665 bp with an ORF of 1536 bp derived from seven exons and six introns. The BmCyclin B3 gene encodes 511 amino acids, and the predicted molecular weight is 57.8 kD with an isoelectric point of 9.18. The protein contains one protein damage box and two cyclin boxes. RNA interference-mediated reduction of BmCyclin B and BmCyclin B3 expression induced cell cycle arrest in G2 or M phase in BmN-SWU1 cells, thus inhibiting cell proliferation. These results suggest that BmCyclin B and BmCyclin B3 are necessary for completing the cell cycle in silkworm cells.

  8. LW6, a hypoxia-inducible factor 1 inhibitor, selectively induces apoptosis in hypoxic cells through depolarization of mitochondria in A549 human lung cancer cells.

    Science.gov (United States)

    Sato, Mariko; Hirose, Katsumi; Kashiwakura, Ikuo; Aoki, Masahiko; Kawaguchi, Hideo; Hatayama, Yoshiomi; Akimoto, Hiroyoshi; Narita, Yuichiro; Takai, Yoshihiro

    2015-09-01

    Hypoxia‑inducible factor 1 (HIF‑1) activates the transcription of genes that act upon the adaptation of cancer cells to hypoxia. LW6, an HIF‑1 inhibitor, was hypothesized to improve resistance to cancer therapy in hypoxic tumors by inhibiting the accumulation of HIF‑1α. A clear anti‑tumor effect under low oxygen conditions would indicate that LW6 may be an improved treatment strategy for cancer in hypoxia. In the present study, the HIF‑1 inhibition potential of LW6 on the growth and apoptosis of A549 lung cancer cells in association with oxygen availability was evaluated. LW6 was observed to inhibit the expression of HIF‑1α induced by hypoxia in A549 cells at 20 mM, independently of the von Hippel‑Lindau protein. In addition, at this concentration, LW6 induced hypoxia‑selective apoptosis together with a reduction in the mitochondrial membrane potential. The intracellular reactive oxygen species levels increased in LW6‑treated hypoxic A549 cells and LW6 induced a hypoxia‑selective increase of mitochondrial O2•‑. In conclusion, LW6 inhibited the growth of hypoxic A549 cells by affecting the mitochondria. The inhibition of the mitochondrial respiratory chain is suggested as a potentially effective strategy to target apoptosis in cancer cells.

  9. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor -1α in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zhang, Lin; Feng, Xiaobin; Dong, Jiahong; Qian, Cheng; Huang, Gang; Li, Xiaowu; Zhang, Yujun; Jiang, Yan; Shen, Junjie; Liu, Jia; Wang, Qingliang; Zhu, Jin

    2013-01-01

    High invasion and metastasis are the primary factors causing poor prognosis of patients with hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying these biological behaviors have not been completely elucidated. In this study, we investigate the molecular mechanism by which hypoxia promotes HCC invasion and metastasis through inducing epithelial-mesenchymal transition (EMT). The expression of EMT markers was analyzed by immunohistochemistry. Effect of hypoxia on induction of EMT and ability of cell migration and invasion were performed. Luciferase reporter system was used for evaluation of Snail regulation by hypoxia-inducible factor -1α (HIF-1α). We found that overexpression of HIF-1α was observed in HCC liver tissues and was related to poor prognosis of HCC patients. HIF-1α expression profile was correlated with the expression levels of SNAI1, E-cadherin, N-cadherin and Vimentin. Hypoxia was able to induce EMT and enhance ability of invasion and migration in HCC cells. The same phenomena were also observed in CoCl2-treated cells. The shRNA-mediated HIF-1α suppression abrogated CoCl2-induced EMT and reduced ability of migration and invasion in HCC cells. Luciferase assay showed that HIF-1α transcriptional regulated the expression of SNAI1 based on two hypoxia response elements (HREs) in SNAI1 promoter. We demonstrated that hypoxia-stabilized HIF1α promoted EMT through increasing SNAI1 transcription in HCC cells. This data provided a potential therapeutic target for HCC treatment

  10. Correlation of hypoxia inducible factor-1α and vascular endothelium growth factor in rat myocardium during aerobic and anaerobic exercise

    Directory of Open Access Journals (Sweden)

    Rostika Flora

    2012-08-01

    Full Text Available Background: Exercise increases the need for oxygen to generate ATP through oxidative phosphorylation. If the high energy demand during exercise is not balanced by sufficient oxygen supply, hypoxia occurs in skeletal muscle tissue leading to upregulation of hypoxia inducible factor-1α (HIF-1α. The activity of HIF-1α increases the expression of various genes in order to reduce the metabolic dependence on oxygen and to increase oxygen supply to the tissue, e.g., VEGF which plays a role in angiogenesis. In myocardium, it is unclear whether exercise leads to hypoxia and whether HIF-1α and VEGF play a role in the mechanism of hypoxic adaptation. This study aimed to investigate the correlation of HIF-1α and VEGF in heart muscle tissue of rats during aerobic and anaerobic exercise.Methods: A rat treadmill was used with a specific exercise program for 1, 3, 7 and 10 days. The concentrations of HIF-1α and VEGF were measured the myocardium.Results: Both, HIF-1α protein and VEGF were increased (p < 0.05 in the groups with aerobic and anaerobic exercise. Concentrations of HIF-1α were highest on the first day of activity, being higher in the anaerobic than in the aerobic group (156.8 ± 33.1 vs. 116.03 ± 5.66. Likewise, the highest concentration of VEGF in the group with anaerobic exercise occurred on the first day (36.37 ± 2:35, while in the aerobic group, VEGF concentration was highest on day 3 (40.66 ± 1.73. The correlation between the myocardial tissue consentrations of HIF-1α and VEGF is moderate (r = 0.59 in the aerobic group and strong in the anaerobic group (r = 0.69.Conclusion: Aerobic and anaerobic exercise increase HIF-1α and VEGF concentrations in rat myocardium in specific patterns. The anaerobic condition triggers vascularization stronger and obviously earlier than aerobic exercise. (Med J Indones. 2012;21:133-40Keywords: Exercise, HIF-1α, myocardium, VEGF

  11. Sumoylation of hypoxia-inducible factor-1α ameliorates failure of brain stem cardiovascular regulation in experimental brain death.

    Directory of Open Access Journals (Sweden)

    Julie Y H Chan

    2011-03-01

    Full Text Available One aspect of brain death is cardiovascular deregulation because asystole invariably occurs shortly after its diagnosis. A suitable neural substrate for mechanistic delineation of this aspect of brain death resides in the rostral ventrolateral medulla (RVLM. RVLM is the origin of a life-and-death signal that our laboratory detected from blood pressure of comatose patients that disappears before brain death ensues. At the same time, transcriptional upregulation of heme oxygenase-1 in RVLM by hypoxia-inducible factor-1α (HIF-1α plays a pro-life role in experimental brain death, and HIF-1α is subject to sumoylation activated by transient cerebral ischemia. It follows that sumoylation of HIF-1α in RVLM in response to hypoxia may play a modulatory role on brain stem cardiovascular regulation during experimental brain death.A clinically relevant animal model that employed mevinphos as the experimental insult in Sprague-Dawley rat was used. Biochemical changes in RVLM during distinct phenotypes in systemic arterial pressure spectrum that reflect maintained or defunct brain stem cardiovascular regulation were studied. Western blot analysis, EMSA, ELISA, confocal microscopy and immunoprecipitation demonstrated that drastic tissue hypoxia, elevated levels of proteins conjugated by small ubiquitin-related modifier-1 (SUMO-1, Ubc9 (the only known conjugating enzyme for the sumoylation pathway or HIF-1α, augmented sumoylation of HIF-1α, nucleus-bound translocation and enhanced transcriptional activity of HIF-1α in RVLM neurons took place preferentially during the pro-life phase of experimental brain death. Furthermore, loss-of-function manipulations by immunoneutralization of SUMO-1, Ubc9 or HIF-1α in RVLM blunted the upregulated nitric oxide synthase I/protein kinase G signaling cascade, which sustains the brain stem cardiovascular regulatory machinery during the pro-life phase.We conclude that sumoylation of HIF-1α in RVLM ameliorates brain stem

  12. Expression and function of hypoxia inducible factor-1 alpha in human melanoma under non-hypoxic conditions

    Directory of Open Access Journals (Sweden)

    Joshi Sandeep S

    2009-11-01

    Full Text Available Abstract Background Hypoxia inducible factor-1 alpha (HIF-1α protein is rapidly degraded under normoxic conditions. When oxygen tensions fall HIF-1α protein stabilizes and transactivates genes involved in adaptation to hypoxic conditions. We have examined the normoxic expression of HIF-1α RNA and protein in normal human melanocytes and a series of human melanoma cell lines isolated from radial growth phase (RGP, vertical growth phase (VGP and metastatic (MET melanomas. Results HIF-1α mRNA and protein was increased in RGP vs melanocytes, VGP vs RGP and MET vs VGP melanoma cell lines. We also detected expression of a HIF-1α mRNA splice variant that lacks part of the oxygen-dependent regulation domain in WM1366 and WM9 melanoma cells. Over-expression of HIF-1α and its splice variant in the RGP cell line SbCl2 resulted in a small increase in soft agar colony formation and a large increase in matrigel invasion relative to control transfected cells. Knockdown of HIF-1α expression by siRNA in the MET WM9 melanoma cell line resulted in a large decrease in both soft agar colony formation and matrigel invasion relative to cells treated with non-specific siRNA. There is a high level of ERK1/2 phosphorylation in WM9 cells, indicating an activated Ras-Raf-MEK-ERK1/2 MAPK pathway. Treatment of WM9 cells with 30 μM U0126 MEK inhibitor, decreased ERK1/2 phosphorylation and resulted in a decrease in HIF-1α expression. However, a 24 h treatment with 10 μM U0126 totally eliminated Erk1/2 phosphorylation, but did not change HIF-1alpha levels. Furthermore, siRNA knockdown of MEK siRNA did not change HIF-1alpha levels. Conclusion We speculate that metabolic products of U0126 decrease HIF-1alpha expression through "off target" effects. Overall our data suggest that increased HIF-1α expression under normoxic conditions contributes to some of the malignant phenotypes exhibited by human melanoma cells. The expanded role of HIF-1α in melanoma biology increases

  13. Radiosensitive effect of hypoxia-inducible factor 1α inhibitor YC-1 on hypoxic glioma SHG44 cell line

    International Nuclear Information System (INIS)

    Guo Xinwei; Lu Xueguan; Tong Liumei; Zong Tianzhou; Chen Liesong

    2011-01-01

    Objective: To investigate the radiosensitive effect of hypoxia-inducible factor 1α (HIF-1α) inhibitor YC-1 on hypoxic glioma SHG44 cell line and its related mechanism. Methods: Glioma SHG44 cell line was cultured in normoxic (20% O 2 ), continuous hypoxia (1% O 2 ) for 12 h and 24 h, continuous hypoxia plus YC-1 was performed for 12 h and 24 h, respectively. The expression of HIF-1α was assessed by Western blot. The radiosensitivity was evaluated by the survival curve, and the sublethal damage repair (SLDR) ability was measured by dose-fraction experiment. Results: HIF-1α protein levels of glioma SHG44 cells were significantly increased after hypoxic cultures for 12 h and 24 h than those of the corresponding cells cultured in normoxic, while the radiosensitivity was lower. The OER (oxygen-enhancement ratio) of SHG44 cells in hypoxia for 12 h and 24 h were 1.22 and 1.37, respectively. By the further statistical analysis it was found that SLDR ability of glioma SHG44 was increased at hypoxia, and when irradiation was carried one at the interval of 8, 10, 12 h it was statistically significant (P<0.05). HIF-1α protein levels of glioma SHG44 cells cultured in hypoxia plus YC-1 for 12 h and 24 h were decreased significantly compared to the corresponding cells cultured in hypoxia only, while the radiosensitivity was significantly increased. the EF (enhancement factor) of YC-1 for glioma SHG44 cells at hypoxia for 12 h and 24 h was 1.27. By the further statistical analysis it was also found that SLDR ability was decreased significantly for hypoxic SHG44 cells which was co-cultured with YC-1, and at the interval of 8, 10, 12 h irradiation was statistically significant (P<0.05). Conclusion: YC-1 can increase the radiosensitivity of hypoxic glioma SHG44 cell line, and its mechanism is related to SLDR inhibited by YC-1. (authors)

  14. [Altered expressions of alkane monooxygenase and hypoxia inducible factor-1α expression in lung tissue of rat hypoxic pulmonary hypertension].

    Science.gov (United States)

    Deng, Hua-jun; Yuan, Ya-dong

    2013-10-29

    To explore the altered expressions of alkane monooxygenase (AlkB) and hypoxia-inducible factor-1α (HIF-1α) in a rat model of hypoxic pulmonary arterial hypertension. Twenty Wistar rats were divided randomly into normal control and hypoxia groups after 1-week adaptive feeding. Hypoxia group was raised in a homemade organic glass tank with a 24-h continuous supply of air and nitrogen atmospheric mixed gas. And the oxygen concentration of (10.0 ± 0.5)% was controlled by oxygen monitoring control system. The control group was maintained in room air. Both groups stayed in the same room with the same diet. After 8 weeks, the level of mean pulmonary pressure (mPAP) was measured by right-heart catheterization, right ventricular hypertrophy index (RVHI) calculated by the ratio of right ventricle to left ventricle plus septum and hypoxic pulmonary vascular remodeling (HPSR) observed under microscope. And the levels of AlkB and HIF-1α mRNA and protein in lungs were measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot. At 8 weeks post-hypoxia, compared with the control group [11.0 ± 0.7 mm Hg (1 mm Hg = 0.133 kPa), 0.210 ± 0.035], the levels of mPAP and RVHI in hypoxia group (33.3 ± 1.3 mm Hg, 0.448 ± 0.013) increased significantly (both P < 0.05), the expressions of AlkB mRNA and protein in pulmonary tissue decreased significantly (0.338 ± 0.085 vs 0.688 ± 0.020, P < 0.01) (0.483 ± 0.052 vs 0.204 ± 0.010, P < 0.01), and the expressions of HIF-1α mRNA and protein increased significantly (0.790 ± 0.161 vs 0.422 ± 0.096, P < 0.01) (0.893 ± 0.080 vs 0.346 ± 0.008, P < 0.01). The down-regulation of AlkB in lung tissue may increase the activity of HIF-1 to participate in the occurrence and development of pulmonary hypertension.

  15. Helicobacter pylori induces vascular endothelial growth factor production in gastric epithelial cells through hypoxia-inducible factor-1α-dependent pathway.

    Science.gov (United States)

    Kang, Min-Jung; Song, Eun-Jung; Kim, Bo-Yeon; Kim, Dong-Jae; Park, Jong-Hwan

    2014-12-01

    Although Helicobacter pylori have been known to induce vascular endothelial growth factor (VEGF) production in gastric epithelial cells, the precise mechanism for cellular signaling is incompletely understood. In this study, we investigated the role of bacterial virulence factor and host cellular signaling in VEGF production of H. pylori-infected gastric epithelial cells. We evaluated production of VEGF, activation of nuclear factor nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) and hypoxia-inducible factor-1α (HIF-1α) stabilization in gastric epithelial cells infected with H. pylori WT or isogenic mutants deficient in type IV secretion system (T4SS). H. pylori induced VEGF production in gastric epithelial cells via both T4SS-dependent and T4SS-independent pathways, although T4SS-independent pathway seems to be the dominant signaling. The inhibitor assay implicated that activation of NF-κB and MAPKs is dispensable for H. pylori-induced VEGF production in gastric epithelial cells. H. pylori led to HIF-1α stabilization in gastric epithelial cells independently of T4SS, NF-κB, and MAPKs, which was essential for VEGF production in these cells. N-acetyl-cysteine (NAC), a reactive oxygen species (ROS) inhibitor, treatment impaired H. pylori-induced HIF-1α stabilization and VEGF production in gastric epithelial cells. We defined the important role of ROS-HIF-1α axis in VEGF production of H. pylori-infected gastric epithelial cells, and bacterial T4SS has a minor role in H. pylori-induced VEGF production of gastric epithelial cells. © 2014 John Wiley & Sons Ltd.

  16. Altered expression of the cell cycle regulatory protein cyclin D1 in the rat dentate gyrus after adrenalectomy-induced granular cell lass

    NARCIS (Netherlands)

    Postigo, JA; Van der Werf, YD; Korf, J; Krugers, HJ

    1998-01-01

    The loss of dentate gyrus (DG) granular cells after removal of the rat adrenal glands (ADX) is mediated by a process that is apoptotic in nature. The present study was initiated to compare changes in the immunocytochemical distribution of the cell-cycle regulatory protein cyclin D1, which has been

  17. Hypoxia-inducible factor-1α expression requires PI 3-kinase activity and correlates with Akt1 phosphorylation in invasive breast carcinomas

    NARCIS (Netherlands)

    Gort, E.H.; Groot, A.J.; Derks van de Ven, T.L.P.; Groep, P. van der; Verlaan, I.; Laar, T. van; Diest, P.J. van; Wall, E. van der; Shvarts, A.

    2006-01-01

    Hypoxia-inducible factor-1 alpha (HIF-1a) is the regulatory subunit of the heterodimeric transcription factor HIF-1 and the key factor in cellular response to low oxygen tension. Expression of HIF-1a protein is associated with poor patient survival and therapy resistance in many types of solid

  18. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin, E-mail: yhcheng@mail.cmu.edu.tw [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Li, Lih-Ann; Lin, Pinpin; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Hung, Chein-Hui [Graduate Institute of Clinical Medicine Sciences, Chang Gung University, Puizi City, Chiayi 613, Taiwan, ROC (China); Chang, Nai Wen [Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan, ROC (China); Lin, Chingju [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China)

    2012-09-15

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  19. Heat-induced accumulation of protein synthesis elongation factor 1A indicates an important role in heat tolerance in potato

    Science.gov (United States)

    Heat stress substantially reduces crop productivity worldwide, and will become more severe due to global warming. Identification of proteins involved in heat stress response may help develop varieties for heat tolerance. Eukaryotic elongation factor 1A (eEF1A) is a cytosolic, multifunctional protei...

  20. Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus

    Science.gov (United States)

    The transcription factor steroidogenic factor 1 (SF-1) is exclusively expressed in the brain in the ventral medial hypothalamic nucleus (VMH) and is required for the development of this nucleus. However, the physiological importance of transcriptional programs regulated by SF-1 in the VMH is not wel...

  1. Zinc promotes the death of hypoxic astrocytes by upregulating hypoxia-induced hypoxia-inducible factor-1alpha expression via poly(ADP-ribose) polymerase-1.

    Science.gov (United States)

    Pan, Rong; Chen, Chen; Liu, Wen-Lan; Liu, Ke-Jian

    2013-07-01

    Pathological release of excess zinc ions has been implicated in ischemic brain cell death. However, the underlying mechanisms remain to be elucidated. In stroke, ischemia-induced zinc release and hypoxia-inducible factor-1 (HIF-1) accumulation concurrently occur in the ischemic tissue. The present study tests the hypothesis that the presence of high intracellular zinc concentration is a major cause of modifications to PARP-1 and HIF-1α during hypoxia, which significantly contributes to cell death during ischemia. Primary cortical astrocytes and C8-D1A cells were exposed to different concentrations of zinc chloride. Cell death rate and protein expression of HIF-1 and Poly(ADP-ribose) polymerase (PARP)-1 were examined after 3-h hypoxic treatment. Although 3-h hypoxia or 100 μM of zinc alone did not induce noticeable cytotoxicity, their combination led to a dramatic increase in astrocytic cell death in a zinc-concentration-dependent manner. Exposure of astrocytes to hypoxia for 3 h remarkably increased the levels of intracellular zinc and HIF-1α protein, which was further augmented by added exogenous zinc. Notably, HIF-1α knockdown blocked zinc-induced astrocyte death. Moreover, knockdown of PARP-1, another important protein in the response of hypoxia, attenuated the overexpression of HIF-1α and reduced the cell death rate. Our studies show that zinc promotes hypoxic cell death through overexpression of the hypoxia response factor HIF-1α via the cell fate determine factor PARP-1 modification, which provides a novel mechanism for zinc-mediated ischemic brain injury. © 2013 John Wiley & Sons Ltd.

  2. Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood-brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats.

    Science.gov (United States)

    Shi, Xudan; Doycheva, Desislava Met; Xu, Liang; Tang, Jiping; Yan, Min; Zhang, John H

    2016-11-01

    Hypoxic ischemic (HI) encephalopathy remains the leading cause of perinatal brain injury resulting in long term disabilities. Stabilization of blood brain barrier (BBB) after HI is an important target, therefore, in this study we aim to determine the role of sestrin2, a stress inducible protein which is elevated after various insults, on BBB stabilization after moderate and severe HI injuries. Rat pups underwent common carotid artery ligation followed by either 150min (severe model) or 100min (moderate model) of hypoxia. 1h post HI, rats were intranasally administered with recombinant human sestrin2 (rh-sestrin2) and sacrificed for infarct area, brain water content, righting reflex and geotaxis reflex. Sestrin2 was silenced using siRNA and an activator/inhibitor of hypoxia inducible factor1α (HIF1α) was used to examine their roles on BBB permeability. Rats subjected to severe HI exhibited larger infarct area and higher sestrin2 expression compared to rats in the moderate HI group. rh-sestrin2 attenuated brain infarct and edema, while silencing sestrin2 reversed these protective effects after severe HI. HIF1α induced sestrin2 activation in severe HI but not in moderate HI groups. A HIF1a agonist was shown to increase permeability of the BBB via vascular endothelial growth factor (VEGF) after moderate HI. However, after severe HI, HIF1α activated both VEGF and sestrin2. But HIF1α dependent sestrin2 activation was the predominant pathway after severe HI which inhibited VEGF and attenuated BBB permeability. rh-sestrin2 attenuated BBB permeability via upregulation of endogenous sestrin2 which was induced by HIF1α after severe HI. However, HIF1α's effects as a prodeath or prosurvival signal were influenced by the severity of HI injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Roles of p300 and cyclic adenosine monophosphate response element binding protein in high glucose-induced hypoxia-inducible factor 1α inactivation under hypoxic conditions.

    Science.gov (United States)

    Ding, Lingtao; Yang, Minlie; Zhao, Tianlan; Lv, Guozhong

    2017-05-01

    Given the high prevalence of diabetes and burn injuries worldwide, it is essential to dissect the underlying mechanism of delayed burn wound healing in diabetes patients, especially the high glucose-induced hypoxia-inducible factor 1 (HIF-1)-mediated transcription defects. Human umbilical vein endothelial cells were cultured with low or high concentrations of glucose. HIF-1α-induced vascular endothelial growth factor (VEGF) transcription was measured by luciferase assay. Immunofluorescence staining was carried out to visualize cyclic adenosine monophosphate response element binding protein (CREB) localization. Immunoprecipitation was carried out to characterize the association between HIF-1α/p300/CREB. To test whether p300, CREB or p300+CREB co-overexpression was sufficient to rescue the HIF-1-mediated transcription defect after high glucose exposure, p300, CREB or p300+CREB co-overexpression were engineered, and VEGF expression was quantified. Finally, in vitro angiogenesis assay was carried out to test whether the high glucose-induced angiogenesis defect is rescuable by p300 and CREB co-overexpression. Chronic high glucose treatment resulted in impaired HIF-1-induced VEGF transcription and CREB exclusion from the nucleus. P300 or CREB overexpression alone cannot rescue high glucose-induced HIF-1α transcription defects. In contrast, co-overexpression of p300 and CREB dramatically ameliorated high glucose-induced impairment of HIF-1-mediated VEGF transcription, as well as in vitro angiogenesis. Finally, we showed that co-overexpression of p300 and CREB rectifies the dissociation of HIF-1α-p300-CREB protein complex in chronic high glucose-treated cells. Both p300 and CREB are required for the function integrity of HIF-1α transcription machinery and subsequent angiogenesis, suggesting future studies to improve burn wound healing might be directed to optimization of the interaction between p300, CREB and HIF-1α. © 2016 The Authors. Journal of Diabetes

  4. Hypoxia-inducible factor-1α, vascular endothelial growth factor, inducible nitric oxide synthase, and endothelin-1 expression correlates with angiogenesis in congenital heart disease

    Directory of Open Access Journals (Sweden)

    Hsin-Ling Yin

    2016-07-01

    Full Text Available In Taiwan, the average prevalence of congenital heart disease (CHD is 13.08/1000 live births. Most children with CHD die before the age of 5 years; therefore, identifying treatment methods to extend the life of CHD patients is an important issue in clinical practice. The objective of this study is to evaluate the roles of hypoxia-inducible factor-1α (HIF-1α, vascular endothelial growth factor (VEGF, inducible nitric oxide synthase (iNOS, endothelin-1 (ET-1, and CD34 in CHD autopsy cases in comparison with autopsy cases without CHD. The study included 19 autopsy cases, which were divided into the following four groups: acyanotic CHD (n = 11, cyanotic CHD (n = 3, CHD associated with chromosomal abnormalities (n = 3, and complex CHD (n = 2. Heart specimens obtained from 10 autopsy cases without CHD were included as controls. Our results indicated that high percentages of HIF-1α (100%, VEGF (89.5%, iNOS (78.9%, and ET-1 (84.2% expressions were observed in CHD autopsy cases and this was found to be significant. HIF-1α induced by hypoxia could play a potential role in relating downstream gene expressions in CHD patients. Upregulation of VEGF by HIF-1α could play an important role in triggering angiogenesis to protect myocardial cell survival in a hypoxic microenvironment. Therefore, HIF-1α could be a significant prognosis marker in CHD and be a prospective candidate in the development of target therapy in cardiovascular diseases.

  5. Knockdown of hypoxia-inducible factor-1 alpha reduces proliferation, induces apoptosis and attenuates the aggressive phenotype of retinoblastoma WERI-Rb-1 cells under hypoxic conditions.

    Science.gov (United States)

    Xia, Tian; Cheng, Hao; Zhu, Yu

    2014-01-01

    Hypoxia-inducible factor-1 alpha (HIF-1α) plays a critical role in tumor cell adaption to hypoxia by inducing the transcription of numerous genes. The role of HIF-1α in malignant retinoblastoma remains unclear. We analyzed the role of HIF-1α in WERI-Rb-1 retinoblastoma cells under hypoxic conditions. CoCl2 (125 mmol/L) was added to the culture media to mimic hypoxia. HIF-1α was silenced using siRNA. Gene and protein expression were measured by semi-quantitative RT-PCR and Western blotting. Cell cycle and apoptosis were analyzed by flow cytometry. Cell proliferation, adhesion and invasion were assayed using MTT, Transwell invasion, and cell adhesion assays respectively. Hypoxia significantly upregulated HIF-1α protein expression and the HIF-1α target genes VEGF, GLUT1, and Survivin mRNA. HIF-1α mRNA expression was not affected by hypoxia. Transfection of the siRNA expression plasmid pRNAT-CMV3.2/Neo-HIF-1α silenced HIF-1α by approximately 80% in hypoxic WERI-Rb-1 cells. The knockdown of HIF-1α under hypoxic conditions downregulated VEGF, GLUT1, and Survivin mRNA. It also inhibited proliferation, promoted apoptosis, induced the G0/G1 phase cell cycle arrest, and reduced the adhesion and invasion of WERI-Rb-1 cells. HIF-1α plays a major role in the survival and aggressive phenotype of retinoblastoma cells under hypoxic conditions. Targeting HIF-1α may be a promising therapeutic strategy for human malignant retinoblastoma.

  6. Expression and cytoprotective activity of the small GTPase RhoB induced by the Escherichia coli cytotoxic necrotizing factor 1

    DEFF Research Database (Denmark)

    Huelsenbeck, Stefanie C; Roggenkamp, Dennis; May, Martin

    2013-01-01

    B expression, based on the inactivation of Rho/Ras proteins. In this study, we report on a long lasting expression of RhoB in cultured cells upon activation of Rho proteins by the cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. The observations of this study highlight a new pathway involving Rac1...... without any signs of cell death. In conclusion, the cytoprotective RhoB response is not only evoked by bacterial protein toxins inactivating Rho/Ras proteins but also by the Rac1-activating toxin CNF1....

  7. Sulforaphane, a Dietary Isothiocyanate, Induces G2/M Arrest in Cervical Cancer Cells through CyclinB1 Downregulation and GADD45β/CDC2 Association

    Directory of Open Access Journals (Sweden)

    Ya-Min Cheng

    2016-09-01

    Full Text Available Globally, cervical cancer is the most common malignancy affecting women. The main treatment methods for this type of cancer include conization or hysterectomy procedures. Sulforaphane (SFN is a natural, compound-based drug derived from dietary isothiocyanates which has previously been shown to possess potent anti-tumor and chemopreventive effects against several types of cancer. The present study investigated the effects of SFN on anti-proliferation and G2/M phase cell cycle arrest in cervical cancer cell lines (Cx, CxWJ, and HeLa. We found that cytotoxicity is associated with an accumulation of cells in the G2/M phases of the cell-cycle. Treatment with SFN led to cell cycle arrest as well as the down-regulation of Cyclin B1 expression, but not of CDC2 expression. In addition, the effects of GADD45β gene activation in cell cycle arrest increase proportionally with the dose of SFN; however, mitotic delay and the inhibition of proliferation both depend on the dosage of SFN used to treat cancer cells. These results indicate that SFN may delay the development of cancer by arresting cell growth in the G2/M phase via down-regulation of Cyclin B1 gene expression, dissociation of the cyclin B1/CDC2 complex, and up-regulation of GADD45β proteins.

  8. Hypoxia-inducible transcription factor-1α promotes hypoxia-induced A549 apoptosis via a mechanism that involves the glycolysis pathway

    International Nuclear Information System (INIS)

    Luo, FengMing; Liu, XiaoJing; Yan, NaiHong; Li, ShuangQing; Cao, GuiQun; Cheng, QingYing; Xia, QingJie; Wang, HongJing

    2006-01-01

    Hypoxia-inducible transcription factor-1α (HIF-1α), which plays an important role in controlling the hypoxia-induced glycolysis pathway, is a 'master' gene in the tissue hypoxia response during tumor development. However, its role in the apoptosis of non-small cell lung cancer remains unknown. Here, we have studied the effects of HIF-1α on apoptosis by modulating HIF-1α gene expression in A549 cells through both siRNA knock-down and over-expression. A549 cells were transfected with a HIF-1α siRNA plasmid or a HIF-1α expression vector. Transfected cells were exposed to a normoxic or hypoxic environment in the presence or absence of 25 mM HEPES and 2-deoxyglucose (2-DG) (5 mM). The expression of three key genes of the glycolysis pathway, glucose transporter type 1(GLUT1), phosphoglycerate kinase 1(PGK1), and hexokinase 1(HK1), were measured using real-time RT-PCR. Glycolysis was monitored by measuring changes of pH and lactate concentration in the culture medium. Apoptosis was detected by TUNEL assay and flow cytometry. Knocking down expression of HIF-1α inhibited the glycolysis pathway, increased the pH of the culture medium, and protected the cells from hypoxia-induced apoptosis. In contrast, over-expression of HIF-1α accelerated glycolysis in A549 cells, decreased the pH of the culture medium, and enhanced hypoxia-induced apoptosis. These effects of HIF-1α on glycolysis, pH of the medium, and apoptosis were reversed by treatment with the glycolytic inhibitor, 2-DG. Apoptosis induced by HIF-1α over-expression was partially inhibited by increasing the buffering capacity of the culture medium by adding HEPES. During hypoxia in A549 cells, HIF-1α promotes activity of the glycolysis pathway and decreases the pH of the culture medium, resulting in increased cellular apoptosis

  9. Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS-mediated activation of hypoxia-inducible factor 1 (HIF-1) and heat shock factor 1 (HSF-1) and the clustered expression of stress genes.

    Science.gov (United States)

    Klumpen, Eva; Hoffschröer, Nadine; Zeis, Bettina; Gigengack, Ulrike; Dohmen, Elias; Paul, Rüdiger J

    2017-01-01

    Heat stress in ectotherms involves direct (e.g. protein damage) and/or indirect effects (temperature-induced hypoxia and ROS formation), which cause activation of the transcription factors (TF) heat shock factor 1 (HSF-1) and/or hypoxia-inducible factor 1 (HIF-1). The present study focused on the links between stress (ROS) signals, nuclear (n) and cytoplasmic (c) HSF-1/HIF-1 levels, and stress gene expression on mRNA and protein levels (e.g. heat-shock protein 90, HSP90) upon acute heat and ROS (H 2 O 2 ) stress. Acute heat stress (30°C) evoked fluctuations in ROS level. Different feeding regimens, which affected the glutathione (GSH) level, allowed altering the frequency of ROS fluctuations. Other data showed fluctuation frequency to depend also on ROS production rate. The heat-induced slow or fast ROS fluctuations (at high or low GSH levels) evoked slow or fast fluctuations in the levels of nHIF-1α, nHSF-1 and gene products (mRNAs and protein), albeit after different time delays. Time delays to ROS fluctuations were, for example,shorter for nHIF-1α than for nHSF-1 fluctuations, and nHIF-1α fluctuations preceded and nHSF-1 fluctuations followed fluctuations in HSP90 mRNA level. Cytoplasmic TF levels either changed little (cHIF-1α) or showed a steady increase (cHSF-1). Applying acute H 2 O 2 stress (at 20°C) revealed effects on nHIF-1α and mRNA levels, but no significant effects on nHSF-1 level. Transcriptome data additionally showed coordinated fluctuations of mRNA levels upon acute heat stress, involving mRNAs for HSPs and other stress proteins, with all corresponding genes carrying DNA binding motifs for HIF-1 and HSF-1. This study provided evidence for promoting effects of ROS and HIF-1 on early haemoglobin, HIF-1α and HSP90 mRNA expressions upon heat or ROS stress. The increasing cHSF-1 level likely affected nHSF-1 level and later HSP90 mRNA expression. Heat stress evoked ROS fluctuations, with this stress signal forwarded via nHIF-1 and nHSF-1

  10. Hypoxia inducible factor 1-alpha (HIF-1 alpha is induced during reperfusion after renal ischemia and is critical for proximal tubule cell survival.

    Directory of Open Access Journals (Sweden)

    Elisa Conde

    Full Text Available Acute tubular necrosis (ATN caused by ischemia/reperfusion (I/R during renal transplantation delays allograft function. Identification of factors that mediate protection and/or epithelium recovery could help to improve graft outcome. We studied the expression, regulation and role of hypoxia inducible factor 1-alpha (HIF-1 α, using in vitro and in vivo experimental models of I/R as well as human post-transplant renal biopsies. We found that HIF-1 α is stabilized in proximal tubule cells during ischemia and unexpectedly in late reperfusion, when oxygen tension is normal. Both inductions lead to gene expression in vitro and in vivo. In vitro interference of HIF-1 α promoted cell death and in vivo interference exacerbated tissue damage and renal dysfunction. In pos-transplant human biopsies, HIF-1 α was expressed only in proximal tubules which exhibited normal renal structure with a significant negative correlation with ATN grade. In summary, using experimental models and human biopsies, we identified a novel HIF-1 α induction during reperfusion with a potential critical role in renal transplant.

  11. Zeaxanthin Inhibits Hypoxia-Induced VEGF Secretion by RPE Cells through Decreased Protein Levels of Hypoxia-Inducible Factors-1α

    Directory of Open Access Journals (Sweden)

    Richard Rosen

    2015-01-01

    Full Text Available Hypoxia is the most important stimulus leading to upregulation of VEGF in the retina and this is caused by accumulation of hypoxia-inducible factors-1α (HIF-1α protein. The effects of zeaxanthin, a natural phytochemical, on the VEGF and HIF-1α expression in the primary culture of human retinal pigment epithelial (RPE cells were studied. An in vitro RPE cell hypoxia model was established by placing cells under 1% oxygen pressure or by adding cobalt chloride (CoCl2 to the culture medium. RPE cells and conditioned media were collected from cultures treated with and without zeaxanthin under normoxic and hypoxic conditions. VEGF and HIF-1α protein and RNA levels were measured by ELISA kits and RT-PCR, respectively. Hypoxia caused a significant increase of VEGF expression and accumulation of HIF-1α in RPE cells. Zeaxanthin at 50–150 μM significantly inhibited the expression of VEGF and accumulation of HIF-1α protein caused by hypoxia but did not affect expression of VEGF and HIF-1α under normoxic conditions. This is the first report on the effect of zeaxanthin on VEGF and HIF-1α levels in cultured RPE cells and suggests that zeaxanthin may have potential value in the prevention and treatment of various retinal diseases associated with vascular leakage and neovascularization.

  12. Cancer cell-associated cytoplasmic B7–H4 is induced by hypoxia through hypoxia-inducible factor-1α and promotes cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, You-Kyoung [Department of Microbiology and Immunology, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Park, Sae-Gwang; Choi, Il-Whan [Department of Microbiology and Immunology, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Lee, Soo-Woong [Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Lee, Sang Min [Department of Internal Medicine, Division of Hematology/Oncology, Busan Paik Hospital, Inje University, Busan 614-735 (Korea, Republic of); Choi, Inhak, E-mail: miccih@inje.ac.kr [Department of Microbiology and Immunology, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735 (Korea, Republic of)

    2015-04-03

    Aberrant B7–H4 expression in cancer tissues serves as a novel prognostic biomarker for poor survival in patients with cancer. However, the factor(s) that induce cancer cell-associated B7–H4 remain to be fully elucidated. We herein demonstrate that hypoxia upregulates B7–H4 transcription in primary CD138{sup +} multiple myeloma cells and cancer cell lines. In support of this finding, analysis of the Multiple Myeloma Genomics Portal (MMGP) data set revealed a positive correlation between the mRNA expression levels of B7–H4 and the endogenous hypoxia marker carbonic anhydrogenase 9. Hypoxia-induced B7–H4 expression was detected in the cytoplasm, but not in cancer cell membranes. Chromatin immunoprecipitation analysis demonstrated binding of hypoxia-inducible factor-1α (HIF-1α) to proximal hypoxia-response element (HRE) sites within the B7–H4 promoter. Knockdown of HIF-1α and pharmacological inhibition of HIF-1α diminished B7–H4 expression. Furthermore, knockdown of cytoplasmic B7–H4 in MCF-7 decreased the S-phase cell population under hypoxia. Finally, MMGP analysis revealed a positive correlation between the transcript levels of B7–H4 and proliferation-related genes including MKI67, CCNA1, and Myc in several patients with multiple myeloma. Our results provide insight into the mechanisms underlying B7–H4 upregulation and its role in cancer cell proliferation in a hypoxic tumor microenvironment. - Highlights: • Hypoxia upregulates B7–H4 transcription and protein expression. • Hypoxia-induced B7–H4 is detected in the cytoplasm, but not on membrane. • ChIP assay reveals a binding of HIF-1α to B7–H4 promoter at HRE site. • Knockdown and pharmacological inhibition of HIF-1α reduce B7–H4 expression. • B7–H4 knockdown decrease the number of cells in S-phase of cell cycle.

  13. Magic-factor 1, a partial agonist of Met, induces muscle hypertrophy by protecting myogenic progenitors from apoptosis.

    Directory of Open Access Journals (Sweden)

    Marco Cassano

    2008-09-01

    Full Text Available Hepatocyte Growth Factor (HGF is a pleiotropic cytokine of mesenchymal origin that mediates a characteristic array of biological activities including cell proliferation, survival, motility and morphogenesis. Its high affinity receptor, the tyrosine kinase Met, is expressed by a wide range of tissues and can be activated by either paracrine or autocrine stimulation. Adult myogenic precursor cells, the so called satellite cells, express both HGF and Met. Following muscle injury, autocrine HGF-Met stimulation plays a key role in promoting activation and early division of satellite cells, but is shut off in a second phase to allow myogenic differentiation. In culture, HGF stimulation promotes proliferation of muscle precursors thereby inhibiting their differentiation.Magic-Factor 1 (Met-Activating Genetically Improved Chimeric Factor-1 or Magic-F1 is an HGF-derived, engineered protein that contains two Met-binding domains repeated in tandem. It has a reduced affinity for Met and, in contrast to HGF it elicits activation of the AKT but not the ERK signaling pathway. As a result, Magic-F1 is not mitogenic but conserves the ability to promote cell survival. Here we show that Magic-F1 protects myogenic precursors against apoptosis, thus increasing their fusion ability and enhancing muscular differentiation. Electrotransfer of Magic-F1 gene into adult mice promoted muscular hypertrophy and decreased myocyte apoptosis. Magic-F1 transgenic mice displayed constitutive muscular hypertrophy, improved running performance and accelerated muscle regeneration following injury. Crossing of Magic-F1 transgenic mice with alpha-sarcoglycan knock-out mice -a mouse model of muscular dystrophy- or adenovirus-mediated Magic-F1 gene delivery resulted in amelioration of the dystrophic phenotype as measured by both anatomical/histological analysis and functional tests.Because of these features Magic-F1 represents a novel molecular tool to counteract muscle wasting in major

  14. Expression of cyclin D{sub 1} during endotoxin-induced aleveolar type II cell hyperplasia in rat lung and the detection of apoptotic cells during the remodeling process

    Energy Technology Data Exchange (ETDEWEB)

    Tesfaigzi, J.; Wood, M.B.; Johnson, N.F.

    1995-12-01

    Our studies have shown that endotoxin intratracheally instilled into the rat lung induces proliferation of alveolar type II cells. In that study, the alveolar type II cells. In that study, the alveolar type II cell hyperplasia occurred 2 d after instillation of endotoxin and persisted for a further 2 d. After hyperplasia, the lung remodeled and returned to a normal state within 24-48 h. Understanding the mechanisms involved in the remodeling process of this transient hyperplasia may be useful to identify molecular changes that are altered in neoplasia. The purpose of the present study was to corroborate induction of epithelial cell hyperplasia by endotoxin and to delineate mechanisms involved in tissue remodeling after endotoxin-induced alveolar type II cell hyperplasia. In conclusion, immonostaining with cyclin D1 and cytokeratin shows that endotoxin induced epithelial cell proliferation and resulted in hyperplasia in the lung which persisted through 4 d post-instillation.

  15. Cyclin D1 and mammary carcinoma: new insights from transgenic mouse models

    International Nuclear Information System (INIS)

    Sutherland, Robert L; Musgrove, Elizabeth A

    2002-01-01

    Cyclin D1 is one of the most commonly overexpressed oncogenes in breast cancer, with 45–50% of primary ductal carcinomas overexpressing this oncoprotein. Targeted deletion of the gene encoding cyclin D1 demonstrates an essential role in normal mammary gland development while transgenic studies provide evidence that cyclin D1 is a weak oncogene in mammary epithelium. In a recent exciting development, Yu et al. demonstrate that cyclin D1-deficient mice are resistant to mammary carcinomas induced by c-neu and v-Ha-ras, but not those induced by c-myc or Wnt-1. These findings define a pivotal role for cyclin D1 in a subset of mammary cancers in mice and imply a functional role for cyclin D1 overexpression in human breast cancer

  16. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  17. Hypoxia inducible factor-1α-dependent epithelial to mesenchymal transition under hypoxic conditions in prostate cancer cells.

    Science.gov (United States)

    Li, Mingchuan; Wang, Yong Xing; Luo, Yong; Zhao, Jiahui; Li, Qing; Zhang, Jiao; Jiang, Yongguang

    2016-07-01

    Prostate cancer is the most commonly diagnosed cancer in men and the second leading cause of cancer death. Hypoxia is an environmental stimulus that plays an important role in the development and cancer progression especially for solid tumors. The key regulator under hypoxic conditions is stabilized hypoxia-inducible factor (HIF)-1α. In the present study, immune-fluorescent staining, siRNAs, qRT-PC, immunoblotting, cell migration and invasion assays were carried out to test typical epithelial to mesenchymal transition under hypoxia and the key regulators of this process in PC3, a human prostate cancer cell line. Our data demonstrated that hypoxia induces diverse molecular, phenotypic and functional changes in prostate cancer cells that are consistent with EMT. We also showed that a cell signal factor such as HIF-1α, which might be stabilized under hypoxic environment, is involved in EMT and cancer cell invasive potency. The induced hypoxia could be blocked by HIF-1α gene silencing and reoxygenation of EMT in prostate cancer cells, hypoxia partially reversed accompanied by a process of mesenchymal-epithelial reverting transition (MErT). EMT might be induced by activation of HIF-1α-dependent cell signaling in hypoxic prostate cancer cells.

  18. Molecular basis for the regulation of hypoxia-inducible factor-1α levels by 2-deoxy-D-ribose.

    Science.gov (United States)

    Ikeda, Ryuji; Tabata, Sho; Tajitsu, Yusuke; Nishizawa, Yukihiko; Minami, Kentaro; Furukawa, Tatsuhiko; Yamamoto, Masatatsu; Shinsato, Yoshinari; Akiyama, Shin-Ichi; Yamada, Katsushi; Takeda, Yasuo

    2013-09-01

    The angiogenic factor, platelet-derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP), stimulates the chemotaxis of endothelial cells and confers resistance to apoptosis induced by hypoxia. 2-Deoxy-D-ribose, a degradation product of thymidine generated by TP enzymatic activity, inhibits the upregulation of hypoxia-inducible factor (HIF) 1α, BNIP3 and caspase-3 induced by hypoxia. In the present study, we investigated the molecular basis for the suppressive effect of 2-deoxy-D-ribose on the upregulation of HIF-1α. 2-Deoxy-D-ribose enhanced the interaction of HIF-1α and the von Hippel-Lindau (VHL) protein under hypoxic conditions. It did not affect the expression of HIF-1α, prolyl hydroxylase (PHD)1/2/3 and VHL mRNA under normoxic or hypoxic conditions, but enhanced the interaction of HIF-1α and PHD2 under hypoxic conditions. 2-Deoxy-D-ribose also increased the amount of hydroxy-HIF-1α in the presence of the proteasome inhibitor MG-132. The expression levels of TP are elevated in many types of malignant solid tumors and, thus, 2-deoxy-D-ribose generated by TP in these tumors may play an important role in tumor progression by preventing hypoxia-induced apoptosis.

  19. Cellular stress induces cancer stem-like cells through expression of DNAJB8 by activation of heat shock factor 1.

    Science.gov (United States)

    Kusumoto, Hiroki; Hirohashi, Yoshihiko; Nishizawa, Satoshi; Yamashita, Masamichi; Yasuda, Kazuyo; Murai, Aiko; Takaya, Akari; Mori, Takashi; Kubo, Terufumi; Nakatsugawa, Munehide; Kanaseki, Takayuki; Tsukahara, Tomohide; Kondo, Toru; Sato, Noriyuki; Hara, Isao; Torigoe, Toshihiko

    2018-03-01

    In a previous study, we found that DNAJB8, a heat shock protein (HSP) 40 family member is expressed in kidney cancer stem-like cells (CSC)/cancer-initiating cells (CIC) and that it has a role in the maintenance of kidney CSC/CIC. Heat shock factor (HSF) 1 is a key transcription factor for responses to stress including heat shock, and it induces HSP family expression through activation by phosphorylation. In the present study, we therefore examined whether heat shock (HS) induces CSC/CIC. We treated the human kidney cancer cell line ACHN with HS, and found that HS increased side population (SP) cells. Western blot analysis and qRT-PCR showed that HS increased the expression of DNAJB8 and SOX2. Gene knockdown experiments using siRNAs showed that the increase in SOX2 expression and SP cell ratio depends on DNAJB8 and that the increase in DNAJB8 and SOX2 depend on HSF1. Furthermore, treatment with a mammalian target of rapamycin (mTOR) inhibitor, temsirolimus, decreased the expression of DNAJB8 and SOX2 and the ratio of SP cells. Taken together, the results indicate that heat shock induces DNAJB8 by activation of HSF1 and induces cancer stem-like cells. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  20. Expression of hypoxia-inducible factor-1 by trophectoderm cells in response to hypoxia and epidermal growth factor

    International Nuclear Information System (INIS)

    Jeong, Wooyoung; Bazer, Fuller W.; Song, Gwonhwa; Kim, Jinyoung

    2016-01-01

    The low oxygen environment in the uterine environment requires pre-implantation embryos to adapt to oxygen deficiency. Hypoxia-inducible factor (HIF)-1 is a master regulator whereby cells adapt to changes in oxygen concentrations. In addition to hypoxic conditions, non-hypoxic stimuli such as growth factors also activate expression of HIF-1. In this study, the mechanisms underlying low oxygen-dependent and epidermal growth factor (EGF)-dependent expression of HIF-1α were explored using porcine trophectoderm (pTr) cells. The results indicated that expression of HIF-1α and HIF-1β mRNAs was not affected by low concentrations of oxygen; however, hypoxic conditions markedly increased the abundance of HIF-1α protein, especially in nuclei of pTr cells. Even under normoxic conditions, the abundance of HIF-1α protein increased in response to EGF. This EGF-mediated increase in HIF-1α protein was blocked through inhibition of translation by cycloheximide. The inhibitors LY294002 (PI3K-AKT inhibitor), U0126 (inhibitor of ERK1/2) and rapamycin (mTOR inhibitor) also blocked the ability of EGF to increase HIF-1α protein and to phosphorylate AKT, ERK1/2 and mTOR proteins. Both hypoxia and EGF induced proliferation of pTr cells. This ability of EGF to stimulate proliferation of pTr cells was suppressed by EGFR siRNA, but not HIF-1α siRNA, but a significant decrease in EGF-induced HIF-1α protein occurred when pTr cells were transfected with HIF-1α siRNA. The results of the present study suggest that pTr cells adapt to oxygen deficiency and proliferate in response to an oxygen-dependent HIF-1 system, and that EGF at maternal–conceptus interface can increase the abundance of HIF-1α protein via translational regulation through AKT, ERK1/2 and mTOR signaling cascades. - Highlights: • HIF-1α expression is up-regulated in pTr cells under low oxygen concentrations. • EGF induces HIF-1α accumulation in pTr cells. • EGF-induced HIF-1α accumulation is blocked by de

  1. Expression of hypoxia-inducible factor-1 by trophectoderm cells in response to hypoxia and epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Wooyoung [Department of Animal Resources Science, Dankook University, Cheonan (Korea, Republic of); Bazer, Fuller W. [Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A& M University, College Station, TX (United States); Song, Gwonhwa, E-mail: ghsong@korea.ac.kr [Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul (Korea, Republic of); Kim, Jinyoung, E-mail: jinyoungkim@dankook.ac.kr [Department of Animal Resources Science, Dankook University, Cheonan (Korea, Republic of)

    2016-01-08

    The low oxygen environment in the uterine environment requires pre-implantation embryos to adapt to oxygen deficiency. Hypoxia-inducible factor (HIF)-1 is a master regulator whereby cells adapt to changes in oxygen concentrations. In addition to hypoxic conditions, non-hypoxic stimuli such as growth factors also activate expression of HIF-1. In this study, the mechanisms underlying low oxygen-dependent and epidermal growth factor (EGF)-dependent expression of HIF-1α were explored using porcine trophectoderm (pTr) cells. The results indicated that expression of HIF-1α and HIF-1β mRNAs was not affected by low concentrations of oxygen; however, hypoxic conditions markedly increased the abundance of HIF-1α protein, especially in nuclei of pTr cells. Even under normoxic conditions, the abundance of HIF-1α protein increased in response to EGF. This EGF-mediated increase in HIF-1α protein was blocked through inhibition of translation by cycloheximide. The inhibitors LY294002 (PI3K-AKT inhibitor), U0126 (inhibitor of ERK1/2) and rapamycin (mTOR inhibitor) also blocked the ability of EGF to increase HIF-1α protein and to phosphorylate AKT, ERK1/2 and mTOR proteins. Both hypoxia and EGF induced proliferation of pTr cells. This ability of EGF to stimulate proliferation of pTr cells was suppressed by EGFR siRNA, but not HIF-1α siRNA, but a significant decrease in EGF-induced HIF-1α protein occurred when pTr cells were transfected with HIF-1α siRNA. The results of the present study suggest that pTr cells adapt to oxygen deficiency and proliferate in response to an oxygen-dependent HIF-1 system, and that EGF at maternal–conceptus interface can increase the abundance of HIF-1α protein via translational regulation through AKT, ERK1/2 and mTOR signaling cascades. - Highlights: • HIF-1α expression is up-regulated in pTr cells under low oxygen concentrations. • EGF induces HIF-1α accumulation in pTr cells. • EGF-induced HIF-1α accumulation is blocked by de

  2. Role of insulin-like growth factor-1 (IGF-1) in regulating cell cycle progression

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qi-lin; Yang, Tian-lun [Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Yin, Ji-ye [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan (China); Peng, Zhen-yu [Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Yu, Min [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan (China); Liu, Zhao-qian, E-mail: liuzhaoqian63@126.com [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan (China); Chen, Fang-ping, E-mail: xychenfp@public.cs.hn.Cn [Department of Haematology, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China)

    2009-11-06

    Aims: Insulin-like growth factor-1 (IGF-1) is a polypeptide protein hormone, similar in molecular structure to insulin, which plays an important role in cell migration, cell cycle progression, cell survival and proliferation. In this study, we investigated the possible mechanisms of IGF-1 mediated cell cycle redistribution and apoptosis of vascular endothelial cells. Method: Human umbilical vein endothelial cells (HUVECs) were pretreated with 0.1, 0.5, or 2.5 {mu}g/mL of IGF-1 for 30 min before the addition of Ang II. Cell cycle redistribution and apoptosis were examined by flow cytometry. Expression of Ang II type 1 (AT{sub 1}) mRNA and cyclin E protein were determined by RT-PCR and Western blot, respectively. Results: Ang II (1 {mu}mol/L) induced HUVECs arrested at G{sub 0}/G{sub 1}, enhanced the expression level of AT{sub 1} mRNA in a time-dependent manner, reduced the enzymatic activity of nitric oxide synthase (NOS) and nitric oxide (NO) content as well as the expression level of cyclin E protein. However, IGF-1 enhanced NOS activity, NO content, and the expression level of cyclin E protein, and reduced the expression level of AT{sub 1} mRNA. L-NAME significantly counteracted these effects of IGF-1. Conclusions: Our data suggests that IGF-1 can reverse vascular endothelial cells arrested at G{sub 0}/G{sub 1} and apoptosis induced by Ang II, which might be mediated via a NOS-NO signaling pathway and is likely associated with the expression levels of AT1 mRNA and cyclin E proteins.

  3. Role of insulin-like growth factor-1 (IGF-1) in regulating cell cycle progression

    International Nuclear Information System (INIS)

    Ma, Qi-lin; Yang, Tian-lun; Yin, Ji-ye; Peng, Zhen-yu; Yu, Min; Liu, Zhao-qian; Chen, Fang-ping

    2009-01-01

    Aims: Insulin-like growth factor-1 (IGF-1) is a polypeptide protein hormone, similar in molecular structure to insulin, which plays an important role in cell migration, cell cycle progression, cell survival and proliferation. In this study, we investigated the possible mechanisms of IGF-1 mediated cell cycle redistribution and apoptosis of vascular endothelial cells. Method: Human umbilical vein endothelial cells (HUVECs) were pretreated with 0.1, 0.5, or 2.5 μg/mL of IGF-1 for 30 min before the addition of Ang II. Cell cycle redistribution and apoptosis were examined by flow cytometry. Expression of Ang II type 1 (AT 1 ) mRNA and cyclin E protein were determined by RT-PCR and Western blot, respectively. Results: Ang II (1 μmol/L) induced HUVECs arrested at G 0 /G 1 , enhanced the expression level of AT 1 mRNA in a time-dependent manner, reduced the enzymatic activity of nitric oxide synthase (NOS) and nitric oxide (NO) content as well as the expression level of cyclin E protein. However, IGF-1 enhanced NOS activity, NO content, and the expression level of cyclin E protein, and reduced the expression level of AT 1 mRNA. L-NAME significantly counteracted these effects of IGF-1. Conclusions: Our data suggests that IGF-1 can reverse vascular endothelial cells arrested at G 0 /G 1 and apoptosis induced by Ang II, which might be mediated via a NOS-NO signaling pathway and is likely associated with the expression levels of AT1 mRNA and cyclin E proteins.

  4. Retinal neuroprotection by hypoxic preconditioning is independent of hypoxia-inducible factor-1 alpha expression in photoreceptors.

    Science.gov (United States)

    Thiersch, Markus; Lange, Christina; Joly, Sandrine; Heynen, Severin; Le, Yun Zheng; Samardzija, Marijana; Grimm, Christian

    2009-06-01

    Hypoxic preconditioning stabilizes hypoxia-inducible factor (HIF) 1 alpha in the retina and protects photoreceptors against light-induced cell death. HIF-1 alpha is one of the major transcription factors responding to low oxygen tension and can differentially regulate a large number of target genes. To analyse whether photoreceptor-specific expression of HIF-1 alpha is essential to protect photoreceptors by hypoxic preconditioning, we knocked down expression of HIF-1 alpha specifically in photoreceptor cells, using the cyclization recombinase (Cre)-lox system. The Cre-mediated knockdown caused a 20-fold reduced expression of Hif-1 alpha in the photoreceptor cell layer. In the total retina, RNA expression was reduced by 65%, and hypoxic preconditioning led to only a small increase in HIF-1 alpha protein levels. Accordingly, HIF-1 target gene expression after hypoxia was significantly diminished. Retinas of Hif-1 alpha knockdown animals did not show any pathological alterations, and tolerated hypoxic exposure in a comparable way to wild-type retinas. Importantly, the strong neuroprotective effect of hypoxic preconditioning against light-induced photoreceptor degeneration persisted in knockdown mice, suggesting that hypoxia-mediated survival of light exposure does not depend on an autocrine action of HIF-1 alpha in photoreceptor cells. Hypoxia-mediated stabilization of HIF-2 alpha and phosphorylation of signal transducer and activator of transcription 3 (STAT 3) were not affected in the retinas of Hif-1 alpha knockdown mice. Thus, these factors are candidates for regulating the resistance of photoreceptors to light damage after hypoxic preconditioning, along with several potentially neuroprotective genes that were similarly induced in hypoxic knockdown and control mice.

  5. Epigenetic control of hypoxia inducible factor-1α-dependent expression of placental growth factor in hypoxic conditions.

    Science.gov (United States)

    Tudisco, Laura; Della Ragione, Floriana; Tarallo, Valeria; Apicella, Ivana; D'Esposito, Maurizio; Matarazzo, Maria Rosaria; De Falco, Sandro

    2014-04-01

    Hypoxia plays a crucial role in the angiogenic switch, modulating a large set of genes mainly through the activation of hypoxia-inducible factor (HIF) transcriptional complex. Endothelial cells play a central role in new vessels formation and express placental growth factor (PlGF), a member of vascular endothelial growth factor (VEGF) family, mainly involved in pathological angiogenesis. Despite several observations suggest a hypoxia-mediated positive modulation of PlGF, the molecular mechanism governing this regulation has not been fully elucidated. We decided to investigate if epigenetic modifications are involved in hypoxia-induced PlGF expression. We report that PlGF expression was induced in cultured human and mouse endothelial cells exposed to hypoxia (1% O 2), although DNA methylation at the Plgf CpG-island remains unchanged. Remarkably, robust hyperacetylation of histones H3 and H4 was observed in the second intron of Plgf, where hypoxia responsive elements (HREs), never described before, are located. HIF-1α, but not HIF-2α, binds to identified HREs. Noteworthy, only HIF-1α silencing fully inhibited PlGF upregulation. These results formally demonstrate a direct involvement of HIF-1α in the upregulation of PlGF expression in hypoxia through chromatin remodeling of HREs sites. Therefore, PlGF may be considered one of the putative targets of anti-HIF therapeutic applications.

  6. Relationship between cyclin D1 expression and poor radioresponse of murine carcinomas

    International Nuclear Information System (INIS)

    Milas, Luka; Akimoto, Tetsuo; Hunter, Nancy R.; Mason, Kathyrn A.; Buchmiller, Lara; Yamakawa, Michitaka; Muramatsu, Hiroyuki; Ang, K. Kian

    2002-01-01

    Purpose: We recently reported that overexpression of epidermal growth factor receptor (EGFR) positively correlated with radioresistance of murine carcinomas. Because cyclin D1 is a downstream sensor of EGFR activation, the present study investigated whether a relationship exists between the extent of cyclin D1 expression and in vivo radiocurability of murine tumors. We further investigated the influence of radiation on cyclin D1 expression and the expression of p27, an inhibitor of the cyclin D1 downstream pathway, as well as the relationship of these molecular determinants to cell proliferation and induced apoptosis in tumors exposed to radiation. Methods and Materials: Cyclin D1 expression was assayed in nine carcinomas syngeneic to C3Hf/Kam mice using Western blot analysis. These tumors greatly differed in their radioresponse as assessed by TCD 50 . The expression of cyclin D1 and p27 proteins was determined by Western blotting. Cell proliferative activity in tumors was determined by proliferating cell nuclear antigen (PCNA) immunochemistry. The effect of irradiation on the expression of cyclin D1 or p27 proteins and on PCNA positivity was determined in the radiosensitive OCa-I and in the radioresistant SCC-VII tumors. Results: Cyclin D1 expression varied among tumors by 40-fold, and its magnitude positively correlated with poorer tumor radioresponse (higher TCD 50 values). The level of cyclin D1 expression paralleled that of EGFR. A 15-Gy dose reduced constitutive expression of cyclin D1 in the radiosensitive OCa-I tumors, but had no influence on expression of cyclin D1 in the radioresistant SCC-VII tumors. In contrast, 15 Gy increased the expression of p27 in radiosensitive tumors and reduced it in radioresistant tumors. Radiation induced no significant apoptosis or change in the percentage of PCNA-positive (proliferating) cells in SCC-VII tumors with high cyclin D1 levels, but it induced significant apoptosis and a decrease in the percentage of proliferating

  7. Anthrax lethal toxin inhibits translation of hypoxia-inducible factor 1α and causes decreased tolerance to hypoxic stress.

    Science.gov (United States)

    Ouyang, Weiming; Torigoe, Chikako; Fang, Hui; Xie, Tao; Frucht, David M

    2014-02-14

    Hypoxia is considered to be a contributor to the pathology associated with administration of anthrax lethal toxin (LT). However, we report here that serum lactate levels in LT-treated mice are reduced, a finding inconsistent with the anaerobic metabolism expected to occur during hypoxia. Reduced lactate levels are also observed in the culture supernatants of LT-treated cells. LT inhibits the accumulation of hypoxia-inducible factor (HIF)-1α, a subunit of HIF-1, the master regulator directing cellular responses to hypoxia. The toxin has no effect on the transcription or protein turnover of HIF-1α, but instead it acts to inhibit HIF-1α translation. LT treatment diminishes phosphorylation of eIF4B, eIF4E, and rpS6, critical components of the intracellular machinery required for HIF-1α translation. Moreover, blockade of MKK1/2-ERK1/2, but not p38 or JNK signaling, lowers HIF-1α protein levels in both normoxic and hypoxic conditions, consistent with a role for MKK1 and MKK2 as the major targets of LT responsible for the inhibition of HIF-1α translation. The physiological importance of the LT-induced translation blockade is demonstrated by the finding that LT treatment decreases the survival of hepatocyte cell lines grown in hypoxic conditions, an effect that is overcome by preinduction of HIF-1α. Taken together, these data support a role for LT in dysregulating HIF-1α and thereby disrupting homeostatic responses to hypoxia, an environmental characteristic of certain tissues at baseline and/or during disseminated infection with Bacillus anthracis.

  8. Fibroblast-Specific Deletion of Hypoxia Inducible Factor-1 Critically Impairs Murine Cutaneous Neovascularization and Wound Healing.

    Science.gov (United States)

    Duscher, Dominik; Maan, Zeshaan N; Whittam, Alexander J; Sorkin, Michael; Hu, Michael S; Walmsley, Graham G; Baker, Hutton; Fischer, Lauren H; Januszyk, Michael; Wong, Victor W; Gurtner, Geoffrey C

    2015-11-01

    Diabetes and aging are known risk factors for impaired neovascularization in response to ischemic insult, resulting in chronic wounds, and poor outcomes following myocardial infarction and cerebrovascular injury. Hypoxia-inducible factor (HIF)-1α, has been identified as a critical regulator of the response to ischemic injury and is dysfunctional in diabetic and elderly patients. To better understand the role of this master hypoxia regulator within cutaneous tissue, the authors generated and evaluated a fibroblast-specific HIF-1α knockout mouse model. The authors generated floxed HIF-1 mice (HIF-1) by introducing loxP sites around exon 1 of the HIF-1 allele in C57BL/6J mice. Fibroblast-restricted HIF-1α knockout (FbKO) mice were generated by breeding our HIF-1 with tamoxifen-inducible Col1a2-Cre mice (Col1a2-CreER). HIF-1α knockout was evaluated on a DNA, RNA, and protein level. Knockout and wild-type mice were subjected to ischemic flap and wound healing models, and CD31 immunohistochemistry was performed to assess vascularity of healed wounds. Quantitative real-time polymerase chain reaction of FbKO skin demonstrated significantly reduced Hif1 and Vegfa expression compared with wild-type. This finding was confirmed at the protein level (p wound closure and vascularity (p wound healing, reduced wound vascularity, and significant impairment in the ischemic neovascular response. These findings provide new insight into the importance of cell-specific responses to hypoxia during cutaneous neovascularization.

  9. General applicability of chicken egg yolk antibodies: the performance of IgY immunoglobulins raised against the hypoxia-inducible factor 1alpha

    OpenAIRE

    Camenisch, G; Tini, M; Chilov, D; Kvietikova, I; Srinivas, V; Caro, J; Spielmann, P; Wenger, R H; Gassmann, M

    1999-01-01

    Avian embryos and neonates acquire passive immunity by transferring maternal immunoglobulins from serum to egg yolk. Despite being a convenient source of antibodies, egg yolk immunoglobulins (IgY) from immunized hens have so far received scant attention in research. Here we report the generation and rapid isolation of IgY from the egg yolk of hens immunized against the alpha subunit of the human hypoxia-inducible factor 1 (HIF-1alpha). Anti-HIF-1alpha IgY antibodies were affinity purified and...

  10. P276-00, a cyclin-dependent kinase inhibitor, modulates cell cycle and induces apoptosis in vitro and in vivo in mantle cell lymphoma cell lines

    Directory of Open Access Journals (Sweden)

    Shirsath Nitesh P

    2012-10-01

    Full Text Available Abstract Background Mantle cell lymphoma (MCL is a well-defined aggressive lymphoid neoplasm characterized by proliferation of mature B-lymphocytes that have a remarkable tendency to disseminate. This tumor is considered as one of the most aggressive lymphoid neoplasms with poor responses to conventional chemotherapy and relatively short survival. Since cyclin D1 and cell cycle control appears as a natural target, small-molecule inhibitors of cyclin-dependent kinases (Cdks and cyclins may play important role in the therapy of this disorder. We explored P276-00, a novel selective potent Cdk4-D1, Cdk1-B and Cdk9-T1 inhibitor discovered by us against MCL and elucidated its potential mechanism of action. Methods The cytotoxic effect of P276-00 in three human MCL cell lines was evaluated in vitro. The effect of P276-00 on the regulation of cell cycle, apoptosis and transcription was assessed, which are implied in the pathogenesis of MCL. Flow cytometry, western blot, immunoflourescence and siRNA studies were performed. The in vivo efficacy and effect on survival of P276-00 was evaluated in a Jeko-1 xenograft model developed in SCID mice. PK/PD analysis of tumors were performed using LC-MS and western blot analysis. Results P276-00 showed a potent cytotoxic effect against MCL cell lines. Mechanistic studies confirmed down regulation of cell cycle regulatory proteins with apoptosis. P276-00 causes time and dose dependent increase in the sub G1 population as early as from 24 h. Reverse transcription PCR studies provide evidence that P276-00 treatment down regulated transcription of antiapoptotic protein Mcl-1 which is a potential pathogenic protein for MCL. Most importantly, in vivo studies have revealed significant efficacy as a single agent with increased survival period compared to vehicle treated. Further, preliminary combination studies of P276-00 with doxorubicin and bortezomib showed in vitro synergism. Conclusion Our studies thus provide

  11. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells

    International Nuclear Information System (INIS)

    Sumrejkanchanakij, Piyamas; Eto, Kazuhiro; Ikeda, Masa-Aki

    2006-01-01

    The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16 INK4a , a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis

  12. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor - 1 alpha protein in hypoxic conditions

    International Nuclear Information System (INIS)

    Wang, Ronghai; Zhang, Ping; Li, Jinhang; Guan, Hongzai; Shi, Guangjun

    2016-01-01

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG–HIF–1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. - Highlights: • HIF-1α protein is constitutively degraded in hypoxic conditions. • Requirement of ubiquitination for HIF-1α degradation in hypoxia. • Hypoxic HIF-1α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization.

  13. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor--1 alpha protein in hypoxic conditions.

    Science.gov (United States)

    Wang, Ronghai; Zhang, Ping; Li, Jinhang; Guan, Hongzai; Shi, Guangjun

    2016-01-29

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG-HIF-1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor - 1 alpha protein in hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ronghai [Department of Urology, Linzi District People' s Hospital, Zibo, 255400 (China); Zhang, Ping, E-mail: zpskx001@163.com [Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011 (China); Li, Jinhang [Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011 (China); Guan, Hongzai [Laboratory Department, School of Medicine, Qingdao University, Qingdao, 266071 (China); Shi, Guangjun, E-mail: qdmhshigj@yahoo.com [Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, 266071 (China)

    2016-01-29

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG–HIF–1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. - Highlights: • HIF-1α protein is constitutively degraded in hypoxic conditions. • Requirement of ubiquitination for HIF-1α degradation in hypoxia. • Hypoxic HIF-1α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization.

  15. A Tandem Repeat in Decay Accelerating Factor 1 Is Associated with Severity of Murine Mercury-Induced Autoimmunity

    Directory of Open Access Journals (Sweden)

    David M. Cauvi

    2014-01-01

    Full Text Available Decay accelerating factor (DAF, a complement-regulatory protein, protects cells from bystander complement-mediated lysis and negatively regulates T cells. Reduced expression of DAF occurs in several systemic autoimmune diseases including systemic lupus erythematosus, and DAF deficiency exacerbates disease in several autoimmune models, including murine mercury-induced autoimmunity (mHgIA. Daf1, located within Hmr1, a chromosome 1 locus associated in DBA/2 mice with resistance to mHgIA, could be a candidate. Here we show that reduced Daf1 transcription in lupus-prone mice was not associated with a reduction in the Daf1 transcription factor SP1. Studies of NZB mice congenic for the mHgIA-resistant DBA/2 Hmr1 locus suggested that Daf1 expression was controlled by the host genome and not the Hmr1 locus. A unique pentanucleotide repeat variant in the second intron of Daf1 in DBA/2 mice was identified and shown in F2 intercrosses to be associated with less severe disease; however, analysis of Hmr1 congenics indicated that this most likely reflected the presence of autoimmunity-predisposing genetic variants within the Hmr1 locus or that Daf1 expression is mediated by the tandem repeat in epistasis with other genetic variants present in autoimmune-prone mice. These studies argue that the effect of DAF on autoimmunity is complex and may require multiple genetic elements.

  16. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  17. The β3-Integrin Binding Protein β3-Endonexin Is a Novel Negative Regulator of Hypoxia-Inducible Factor-1

    Science.gov (United States)

    Kračun, Damir; Rieß, Florian; Kanchev, Ivan; Gawaz, Meinrad

    2014-01-01

    Abstract Aims: Integrins are multifunctional heterodimeric adhesion receptors that mediate the attachment between a cell and the extracellular matrix or other surrounding cells. In endothelial cells, integrins can modulate cell migration and motility. In particular, β3-integrin is expressed in angiogenic vessels. Signal transduction by β3-integrins requires the recruitment of intracellular signaling molecules. β3-endonexin is a highly spliced molecule that has been identified as a β3-integrin binding protein. β3-endonexin isoforms are expressed in endothelial cells and have been suggested to act as shuttle proteins between the membrane and the nucleus. However, their functional role in angiogenesis is unclear. In this study, we investigated whether β3-endonexin isoforms are involved in endothelial angiogenic processes under hypoxia. Results: The overexpression of β3-endonexin isoforms decreased endothelial proliferation and tube formation under hypoxia, while the depletion of β3-endonexin by RNAi promoted angiogenic responses in vitro and in vivo. In hypoxia, β3-endonexin accumulated in the nucleus, and prevention of this response by depletion of β3-endonexin increased hypoxic activation and induction of the hypoxia-inducible factor (HIF)-1 and its target genes VEGF and PAI-1. β3-endonexin diminished nuclear factor kappa B (NFκB) activation and decreased NFκB binding to the HIF-1α promoter under hypoxia, subsequently diminishing NFκB-dependent transcription of HIF-1α under hypoxia. Innovation: Our results indicate for the first time that the overexpression of β3-endonexin can decrease hypoxic induction and activation of HIF-1α and can prevent hypoxic endothelial proliferation and angiogenic responses. Conclusion: β3-endonexin can act as a novel anti-angiogenic factor specifically in the response to hypoxia due to its negative impact on the activation of HIF-1. Antioxid. Redox Signal. 20, 1964–1976. PMID:24386901

  18. Neuroprotective effect of electroacupuncture and upregulation of hypoxia-inducible factor-1α during acute ischaemic stroke in rats.

    Science.gov (United States)

    Li, Ce; Zhang, Tingting; Yu, Kewei; Xie, Hongyu; Bai, Yulong; Zhang, Li; Wu, Yi; Wang, Nianhong

    2017-10-01

    Acupuncture is a traditional method that has been widely used in various fields of medicine with therapeutic effect. However, evidence of effectiveness to support the application of electroacupuncture (EA) during the process of ischaemia is scarce. To investigate dynamic changes in hypoxia-inducible factor (HIF)-1α expression as well as its association with neurological status in rats subjected to acute ischaemic stroke and EA intervention. Forty adult male rats were randomly divided into three groups that received sham surgery (Control group, n=10) or underwent middle cerebral artery occlusion and EA (MCAO+EA group, n=15) or minimal acupuncture as a control treatment (MCAO+MA group, n=15). The rats in the MCAO+EA and MCAO+MA groups received EA or acupuncture without any electrical current, respectively, during 90 min of ischaemia. Rats in the Control group received the same surgical procedure but without MCAO. EA involved electrical stimulation of needles inserted into the quadriceps at 50 Hz frequency and 3 mA current intensity. Neurological status was evaluated on postoperative day 1, and cerebral infarction volume (IV) and HIF-1α expression 24 hours later. Neurological scores were improved and cerebral IV was decreased in the MCAO+EA group compared to the MCAO+MA group (both p<0.05). Moreover, HIF-1α expression was higher in the MCAO+EA group versus the MCAO+MA group (p<0.05). EA enhanced recovery of neurological function, decreased cerebral IV and increased HIF-1α expression in ischaemic rats. Further research is needed to determine whether EA is effective for stroke treatment through the stimulation of muscle contraction. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Down-regulation of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor by HEXIM1 attenuates myocardial angiogenesis in hypoxic mice.

    Science.gov (United States)

    Yoshikawa, Noritada; Shimizu, Noriaki; Ojima, Hidenori; Kobayashi, Hiroshi; Hosono, Osamu; Tanaka, Hirotoshi

    2014-10-24

    Pulmonary hypertension (PH) sustains elevation of pulmonary vascular resistance and ultimately leads to right ventricular (RV) hypertrophy and failure and death. Recently, proangiogenic factors hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) have been known to promote left ventricular myocardial angiogenesis and lead to cardiac hypertrophy, and this would be involved in RV hypertrophy of PH patients. Previously, we revealed that overexpression of HEXIM1 prevents endothelin-1-induced cardiomyocyte hypertrophy and hypertrophic genes expression, and that cardiomyocyte-specific HEXIM1 transgenic mice ameliorates RV hypertrophy in hypoxia-induced PH model. Given these results, here we analyzed the effect of HEXIM1 on the expression of HIF-1α and VEGF and on myocardial angiogenesis of RV in PH. We revealed that overexpression of HEXIM1 prevented hypoxia-induced expression of HIF-1α protein and its target genes including VEGF in the cultured cardiac myocytes and fibroblasts, and that cardiomyocyte-specific HEXIM1 transgenic mice repressed RV myocardial angiogenesis in hypoxia-induced PH model. Thus, we conclude that HEXIM1 could prevent RV hypertrophy, at least in part, via suppression of myocardial angiogenesis through down-regulation of HIF-1α and VEGF in the myocardium under hypoxic condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Nicotine induces cell proliferation in association with cyclin D1 up-regulation and inhibits cell differentiation in association with p53 regulation in a murine pre-osteoblastic cell line

    International Nuclear Information System (INIS)

    Sato, Tsuyoshi; Abe, Takahiro; Nakamoto, Norimichi; Tomaru, Yasuhisa; Koshikiya, Noboru; Nojima, Junya; Kokabu, Shoichiro; Sakata, Yasuaki; Kobayashi, Akio; Yoda, Tetsuya

    2008-01-01

    Recent studies have suggested that nicotine critically affects bone metabolism. Many studies have examined the effects of nicotine on proliferation and differentiation, but the underlying molecular mechanisms remain unclear. We examined cell cycle regulators involved in the proliferation and differentiation of MC3T3-E1 cells. Nicotine induced cell proliferation in association with p53 down-regulation and cyclin D1 up-regulation. In differentiated cells, nicotine reduced alkaline phosphatase activity and mineralized nodule formation in dose-dependent manners. Furthermore, p53 expression was sustained in nicotine-treated cells during differentiation. These findings indicate that nicotine promotes the cell cycle and inhibits differentiation in association with p53 regulation in pre-osteoblastic cells

  1. The coffee diterpene kahweol suppresses the cell proliferation by inducing cyclin D1 proteasomal degradation via ERK1/2, JNK and GKS3β-dependent threonine-286 phosphorylation in human colorectal cancer cells.

    Science.gov (United States)

    Park, Gwang Hun; Song, Hun Min; Jeong, Jin Boo

    2016-09-01

    Kahweol as a coffee-specific diterpene has been reported to exert anti-cancer properties. However, the mechanism responsible for the anti-cancer effects of kahweol is not fully understood. The main aim of this investigation was to determine the effect of kahweol on cell proliferation and the possible mechanisms in human colorectal cancer cells. Kahweol inhibited markedly the proliferation of human colorectal cancer cell lines such as HCT116, SW480. Kahweol decreased cyclin D1 protein level in HCT116 and SW480 cells. Contrast to protein levels, cyclin D1 mRNA level and promoter activity did not be changed by kahweol treatment. MG132 treatment attenuated kahweol-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in kahweol-treated cells. Kahweol increased phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine attenuated cyclin D1 degradation by kahweol. Inhibition of ERK1/2 by PD98059, JNK by SP600125 or GSK3β by LiCl suppressed cyclin D1 phosphorylation and downregulation by kahweol. Furthermore, the inhibition of nuclear export by LMB attenuated cyclin D1 degradation by kahweol. In conclusion, kahweol-mediated cyclin D1 degradation may contribute to the inhibition of the proliferation in human colorectal cancer cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSKη -mediated phosphorylation in Nicotiana benthamiana

    Science.gov (United States)

    Mei, Yuzhen; Yang, Xiuling; Huang, Changjun

    2018-01-01

    The whitefly-transmitted geminiviruses induce severe developmental abnormalities in plants. Geminivirus-encoded C4 protein functions as one of viral symptom determinants that could induce abnormal cell division. However, the molecular mechanism by which C4 contributes to cell division induction remains unclear. Here we report that tomato leaf curl Yunnan virus (TLCYnV) C4 interacts with a glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinase, designed NbSKη, in Nicotiana benthamiana. Pro32, Asn34 and Thr35 of TLCYnV C4 are critical for its interaction with NbSKη and required for C4-induced typical symptoms. Interestingly, TLCYnV C4 directs NbSKη to the membrane and reduces the nuclear-accumulation of NbSKη. The relocalization of NbSKη impairs phosphorylation dependent degradation on its substrate-Cyclin D1.1 (NbCycD1;1), thereby increasing the accumulation level of NbCycD1;1 and inducing the cell division. Moreover, NbSKη-RNAi, 35S::NbCycD1;1 transgenic N. benthamiana plants have the similar phenotype as 35S::C4 transgenic N. benthamiana plants on callus-like tissue formation resulted from abnormal cell division induction. Thus, this study provides new insights into mechanism of how a viral protein hijacks NbSKη to induce abnormal cell division in plants. PMID:29293689

  3. Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Hsu Anna

    2011-10-01

    Full Text Available Abstract Sulforaphane (SFN, an isothiocyanate derived from cruciferous vegetables, induces potent anti-proliferative effects in prostate cancer cells. One mechanism that may contribute to the anti-proliferative effects of SFN is the modulation of epigenetic marks, such as inhibition of histone deacetylase (HDAC enzymes. However, the effects of SFN on other common epigenetic marks such as DNA methylation are understudied. Promoter hyper-methylation of cyclin D2, a major regulator of cell cycle, is correlated with prostate cancer progression, and restoration of cyclin D2 expression exerts anti-proliferative effects on LnCap prostate cancer cells. Our study aimed to investigate the effects of SFN on DNA methylation status of cyclin D2 promoter, and how alteration in promoter methylation impacts cyclin D2 gene expression in LnCap cells. We found that SFN significantly decreased the expression of DNA methyltransferases (DNMTs, especially DNMT1 and DNMT3b. Furthermore, SFN significantly decreased methylation in cyclin D2 promoter regions containing c-Myc and multiple Sp1 binding sites. Reduced methlyation of cyclin D2 promoter corresponded to an increase in cyclin D2 transcript levels, suggesting that SFN may de-repress methylation-silenced cyclin D2 by impacting epigenetic pathways. Our results demonstrated the ability of SFN to epigenetically modulate cyclin D2 expression, and provide novel insights into the mechanisms by which SFN may regulate gene expression as a prostate cancer chemopreventive agent.

  4. Hypoxia-inducible factor 1-alpha up-regulates the expression of phospholipase D2 in colon cancer cells under hypoxic conditions.

    Science.gov (United States)

    Liu, Maoxi; Du, Kunli; Fu, Zhongxue; Zhang, Shouru; Wu, Xingye

    2015-01-01

    Hypoxia is a common characteristic of solid tumors. Recent studies confirmed that phospholipase D2 (PLD2) plays significant roles in cancer progression. In this study, correlation between the expression of PLD2 and the change in the protein level of hypoxia-inducible factor 1-alpha (HIF1-α) was studied. Thirty human colon cancer tissues were examined for the expression of HIF1-α and PLD2 protein, and mRNA levels. SW480 and SW620 cells were exposed to normoxia (20 %) or hypoxia (Hypoxic stress induced PLD2 mRNA and protein expression in SW480 and SW620 cells. Cells transfected with HIF1-α siRNA showed attenuation of hypoxia stress-induced PLD2 expression. In vivo growth decreased in response to HIF1-α and PLD2 inhibition. These results suggest that PLD2 expression in colon cancer cells is up-regulated via HIF1-α in response to hypoxic stress and underscores the crucial role of HIF1-α-induced PLD2 in tumor growth.

  5. RhoA and RhoC are involved in stromal cell-derived factor-1-induced cell migration by regulating F-actin redistribution and assembly.

    Science.gov (United States)

    Luo, Jixian; Li, Dingyun; Wei, Dan; Wang, Xiaoguang; Wang, Lan; Zeng, Xianlu

    2017-12-01

    Stromal cell-derived factor-1 (SDF-1) signaling is important to the maintenance and progression of T-cell acute lymphoblastic leukemia by inducing chemotaxis migration. To identify the mechanism of SDF-1 signaling in the migration of T-ALL, Jurkat acute lymphoblastic leukemia cells were used. Results showed that SDF-1 induces Jurkat cell migration by F-actin redistribution and assembly, which is dependent on Rho activity. SDF-1 induced RhoA and RhoC activation, as well as reactive oxygen species (ROS) production, which was inhibited by Rho inhibitor. The Rho-dependent ROS production led to subsequent cytoskeleton redistribution and assembly in the process of migration. Additionally, RhoA and RhoC were involved in SDF-1-induced Jurkat cell migration. Taken together, we found a SDF-1/CXCR4-RhoA and RhoC-ROS-cytoskeleton pathway that regulates Jurkat cell migration in response to SDF-1. This work will contribute to a clearer insight into the migration mechanism of acute lymphoblastic leukemia.

  6. Possible Contribution of Zerumbone-Induced Proteo-Stress to Its Anti-Inflammatory Functions via the Activation of Heat Shock Factor 1.

    Directory of Open Access Journals (Sweden)

    Yoko Igarashi

    Full Text Available Zerumbone is a sesquiterpene present in Zinger zerumbet. Many studies have demonstrated its marked anti-inflammatory and anti-carcinogenesis activities. Recently, we showed that zerumbone binds to numerous proteins with scant selectivity and induces the expression of heat shock proteins (HSPs in hepatocytes. To dampen proteo-toxic stress, organisms have a stress-responsive molecular machinery, known as heat shock response. Heat shock factor 1 (HSF1 plays a key role in this protein quality control system by promoting activation of HSPs. In this study, we investigated whether zerumbone-induced HSF1 activation contributes to its anti-inflammatory functions in stimulated macrophages. Our findings showed that zerumbone increased cellular protein aggregates and promoted nuclear translocation of HSF1 for HSP expression. Interestingly, HSF1 down-regulation attenuated the suppressive effects of zerumbone on mRNA and protein expressions of pro-inflammatory genes, including inducible nitric oxide synthase and interlukin-1β. These results suggest that proteo-stress induced by zerumbone activates HSF1 for exhibiting its anti-inflammatory functions.

  7. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Wang

    Full Text Available Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC. The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.

  8. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Li, Wei [Department of Gerontology, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Zheng, Qichang [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Qin, Tao [Department of Hepatobiliary Pancreatic Surgery, People' s Hospital of Zhengzhou University, School of Medicine, Zhengzhou University, Zhengzhou 450003 (China); Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Liu, Sanguang, E-mail: sanguang1998@sina.com [Department of Hepatobiliary Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang 050000 (China); Song, Zifang, E-mail: zsong@hust.edu.cn [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China)

    2015-07-17

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.

  9. Hypoxia-inducible factor-1α/interleukin-1β signaling enhances hepatoma epithelial-mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment.

    Science.gov (United States)

    Zhang, Jingying; Zhang, Qi; Lou, Yu; Fu, Qihan; Chen, Qi; Wei, Tao; Yang, Jiaqi; Tang, Jinlong; Wang, Jianxin; Chen, Yiwen; Zhang, Xiaoyu; Zhang, Jian; Bai, Xueli; Liang, Tingbo

    2018-05-01

    The development and progression of hepatocellular carcinoma (HCC) are dependent on its local microenvironment. Hypoxia and inflammation are two critical factors that shape the HCC microenvironment; however, the interplay between the two factors and the involvement of cancer cells under such conditions remain poorly understood. We found that tumor-associated macrophages, the primary proinflammatory cells within tumors, secreted more interleukin 1β (IL-1β) under moderate hypoxic conditions due to increased stability of hypoxia inducible factor 1α (HIF-1α). Under persistent and severe hypoxia, we found that the necrotic debris of HCC cells induced potent IL-1β release by tumor-associated macrophages with an M2 phenotype. We further confirmed that the necrotic debris-induced IL-1β secretion was mediated through Toll-like receptor 4/TIR domain-containing adapter-inducing interferon-β/nuclear factor kappa-light-chain-enhancer of activated B cells signaling in a similar, but not identical, fashion to lipopolysaccharide-induced inflammation. Using mass spectrometry, we identified a group of proteins with O-linked glycosylation to be responsible for the necrotic debris-induced IL-1β secretion. Following the increase of IL-1β in the local microenvironment, the synthesis of HIF-1α was up-regulated by IL-1β in HCC cells through cyclooxygenase-2. The epithelial-mesenchymal transition of HCC cells was enhanced by overexpression of HIF-1α. We further showed that IL-1β promoted HCC metastasis in mouse models and was predictive of poor prognosis in HCC patients. Our findings revealed an HIF-1α/IL-1β signaling loop between cancer cells and tumor-associated macrophages in a hypoxic microenvironment, resulting in cancer cell epithelial-mesenchymal transition and metastasis; more importantly, our results suggest a potential role of an anti-inflammatory strategy in HCC treatment. (Hepatology 2018;67:1872-1889). © 2017 by the American Association for the Study of Liver

  10. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Yang, Bin; Li, Wei; Zheng, Qichang; Qin, Tao; Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen; Liu, Sanguang; Song, Zifang

    2015-01-01

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation

  11. Vitamin K2 and cotylenin A synergistically induce monocytic differentiation and growth arrest along with the suppression of c-MYC expression and induction of cyclin G2 expression in human leukemia HL-60 cells.

    Science.gov (United States)

    Maniwa, Yasuhisa; Kasukabe, Takashi; Kumakura, Shunichi

    2015-08-01

    Although all-trans retinoic acid (ATRA) is a standard and effective drug used for differentiation therapy in acute promyelocytic leukemia, ATRA-resistant leukemia cells ultimately emerge during this treatment. Therefore, the development of new drugs or effective combination therapy is urgently needed. We demonstrate that the combined treatment of vitamin K2 and cotylenin A synergistically induced monocytic differentiation in HL-60 cells. This combined treatment also synergistically induced NBT-reducing activity and non-specific esterase-positive cells as well as morphological changes to monocyte/macrophage-like cells. Vitamin K2 and cotylenin A cooperatively inhibited the proliferation of HL-60 cells in short-term and long-term cultures. This treatment also induced growth arrest at the G1 phase. Although 5 µg/ml cotylenin A or 5 µM vitamin K2 alone reduced c-MYC gene expression in HL-60 cells to approximately 45% or 80% that of control cells, respectively, the combined treatment almost completely suppressed c-MYC gene expression. We also demonstrated that the combined treatment of vitamin K2 and cotylenin A synergistically induced the expression of cyclin G2, which had a positive effect on the promotion and maintenance of cell cycle arrest. These results suggest that the combination of vitamin K2 and cotylenin A has therapeutic value in the treatment of acute myeloid leukemia.

  12. Transcriptional activation of cyclin-dependent kinase inhibitor, p21waf1 gene by treatment with a differentiation inducing agent, vesnarinone in a human salivary gland cancer cell line.

    Science.gov (United States)

    Omotehara, F; Nakashiro, K; Uchida, D; Hino, S; Fujimori, T; Kawamata, H

    2003-03-01

    Recently, a new concept for cancer therapy termed "tumor dormancy therapy" has been proposed. The concept of this therapy is to prolong the survival time of cancer patients while maintaining their quality of life. We have been developing a differentiation-inducing therapy, which is included in the tumor dormancy therapy, for salivary gland cancer. In this study, we examined the effect of a differentiation-inducing drug, Vesnarinone on the growth of several cancer cells, and examined the molecular mechanism by which Vesnarinone induces the cyclin dependent kinase inhibitor, p21waf1 in the cancer cells. Vesnarinone significantly suppressed the growth of TYS (salivary gland cancer cells), PC3 (prostate cancer cells), and A431 (squamous cell cancer cells). Furthermore, Vesnarinone dose-dependently enhanced the expression of p21waf1 mRNA in TYS cells. Using the luciferase reporter assay it was found that the enhancement of p21waf1 mRNA expression by Vesnarinone was through direct transcriptional activation of the p21waf1 promoter. Thus, analyzing the molecular mechanisms of differentiation inducing drugs may lead to the development of a new therapeutic strategy for several human malignancies, including salivary gland cancer.

  13. Low hypoxia inducible factor-1α (HIF-1α) expression in testicular germ cell tumors - a major reason for enhanced chemosensitivity?

    Science.gov (United States)

    Shenoy, Niraj; Dronca, Roxana; Quevedo, Fernando; Boorjian, Stephen A; Cheville, John; Costello, Brian; Kohli, Manish; Witzig, Thomas; Pagliaro, Lance

    2017-08-01

    The molecular basis for enhanced chemosensitivity of testicular germ cell tumors (GCT) has been an area of great interest, as it could potentially give us therapeutic leads in other resistant malignancies. Thus far, however, the increased sensitivity of GCT has been variously attributed to multiple factors - an inability to detoxify cisplatin, a lack of export pumps, an inability to repair the DNA damage, an intact apoptotic cascade and lack of p53 mutation; but a unifying underlying etiology leading to the aforementioned processes and having a translational implication has so far been elusive. Herein, we offer evidence to support a potential significant role for the previously demonstrated low hypoxia inducible factor-1α (HIF-1α) expression in mediating the general exquisite chemosensitivity of testicular GCT, through the aforementioned processes. This molecular mechanism based hypothesis could have a significant translational implication in platinum refractory GCT as well as other platinum resistant malignancies.

  14. Chronic deficiency of nitric oxide affects hypoxia inducible factor-1α (HIF-1α stability and migration in human endothelial cells.

    Directory of Open Access Journals (Sweden)

    Maria Grazia Cattaneo

    Full Text Available BACKGROUND: Endothelial dysfunction in widely diffuse disorders, such as atherosclerosis, hypertension, diabetes and senescence, is associated with nitric oxide (NO deficiency. Here, the behavioural and molecular consequences deriving from NO deficiency in human umbilical vein endothelial cells (HUVECs were investigated. RESULTS: Endothelial nitric oxide synthase (eNOS was chronically inhibited either by N(G-Nitro-L-arginine methyl ester (L-NAME treatment or its expression was down-regulated by RNA interference. After long-term L-NAME treatment, HUVECs displayed a higher migratory capability accompanied by an increased Vascular Endothelial Growth Factor (VEGF and VEGF receptor-2 (kinase insert domain receptor, KDR expression. Moreover, both pharmacological and genetic inhibition of eNOS induced a state of pseudohypoxia, revealed by the stabilization of hypoxia-inducible factor-1α (HIF-1α. Furthermore, NO loss induced a significant decrease in mitochondrial mass and energy production accompanied by a lower O(2 consumption. Notably, very low doses of chronically administered DETA/NO reverted the HIF-1α accumulation, the increased VEGF expression and the stimulated migratory behaviour detected in NO deficient cells. CONCLUSION: Based on our results, we propose that basal release of NO may act as a negative controller of HIF-1α levels with important consequences for endothelial cell physiology. Moreover, we suggest that our experimental model where eNOS activity was impaired by pharmacological and genetic inhibition may represent a good in vitro system to study endothelial dysfunction.

  15. Hypoxia-inducible factor 1 alpha is a poor prognostic factor and potential therapeutic target in malignant peripheral nerve sheath tumor.

    Directory of Open Access Journals (Sweden)

    Suguru Fukushima

    Full Text Available Malignant peripheral nerve sheath tumor (MPNST is a rare soft tissue sarcoma with poor prognosis. Hypoxia-inducible factor 1 (HIF-1 plays a crucial role in the cellular response to hypoxia and regulates the expression of multiple genes involved in tumor progression in various cancers. However, the importance of the expression of HIF-1α in MPNSTs is unclear.The expression of HIF-1α was examined immunohistochemically in 82 MPNST specimens. Cell culture assays of human MPNST cells under normoxic and hypoxic conditions were used to evaluate the impact of anti-HIF-1α-specific siRNA inhibition on cell survival. A screening kit was employed to identify small molecules that inhibited HIF-1α.The nuclear expression of HIF-1α was positive in 75.6% of MPNST samples (62/82 cases. Positivity for HIF-1α was a significant poor prognostic factor both in univariate (P = 0.048 and multivariate (P ≤ 0.0001 analyses. HIF-1α knockdown abrogated MPNST cell growth, inducing apoptosis. Finally, chetomin, an inhibitor of HIF-1α, effectively inhibited the growth of MPNST cells and induced their apoptosis.Inhibition of HIF-1α signaling is a potential treatment option for MPNSTs.

  16. Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1.

    Science.gov (United States)

    Chang, Woochul; Lee, Chang Youn; Park, Jun-Hee; Park, Moon-Seo; Maeng, Lee-So; Yoon, Chee Soon; Lee, Min Young; Hwang, Ki-Chul; Chung, Yong-An

    2013-01-01

    The use of mesenchymal stem cells (MSCs) has emerged as a potential new treatment for myocardial infarction. However, the poor viability of MSCs after transplantation critically limits the efficacy of this new strategy. The expression of microRNA-210 (miR-210) is induced by hypoxia and is important for cell survival under hypoxic conditions. Hypoxia increases the levels of hypoxia inducible factor-1 (HIF-1) protein and miR-210 in human MSCs (hMSCs). miR-210 positively regulates HIF-1α activity. Furthermore, miR-210 expression is also induced by hypoxia through the regulation of HIF-1α. To investigate the effect of miR-210 on hMSC survival under hypoxic conditions, survival rates along with signaling related to cell survival were evaluated in hMSCs over-expressing miR-210 or ones that lacked HIF-1α expression. Elevated miR-210 expression increased survival rates along with Akt and ERK activity in hMSCs with hypoxia. These data demonstrated that a positive feedback loop involving miR-210 and HIF-1α was important for MSC survival under hypoxic conditions.

  17. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    International Nuclear Information System (INIS)

    Lee, Hae-June; Yoon, Changhwan; Park, Do Joong; Kim, Yeo-Jung; Schmidt, Benjamin; Lee, Yoon-Jin; Tap, William D.; Eisinger-Mathason, T.S. Karin; Choy, Edwin; Kirsch, David G.; Simon, M. Celeste

    2015-01-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm 3 within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm 3 for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature

  18. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-June [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Yoon, Changhwan [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Park, Do Joong [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Surgery, Seoul National University Bundang Hospital, Sungnam (Korea, Republic of); Kim, Yeo-Jung [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Schmidt, Benjamin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Lee, Yoon-Jin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Tap, William D. [Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Eisinger-Mathason, T.S. Karin [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Choy, Edwin [Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Kirsch, David G. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Simon, M. Celeste [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Howard Hughes Medical Institute (United States); and others

    2015-03-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm{sup 3} within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm{sup 3} for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature.

  19. Effects of stem cell factor on hypoxia-inducible factor 1 alpha accumulation in human acute myeloid leukaemia and LAD2 mast cells.

    Directory of Open Access Journals (Sweden)

    Bernhard F Gibbs

    Full Text Available Stem cell factor (SCF is a hematopoietic growth factor that exerts its activity by signalling through the tyrosine kinase receptor known as Kit or CD117. SCF-Kit signalling is crucial for the survival, proliferation and differentiation of hematopoietic cells of myeloid lineage. Furthermore, since myeloid leukaemia cells express the Kit receptor, SCF may play an important role in myeloid leukaemia progression too. However, the mechanisms of this pathophysiological effect remain unclear. Recent evidence shows that SCF triggers accumulation of the inducible alpha subunit of hypoxia-inducible factor 1 (HIF-1 in hematopoietic cells--a transcription complex that plays a pivotal role in cellular adaptation to low oxygen availability. However, it is unknown how SCF impacts on HIF-1α accumulation in human myeloid leukaemia and mast cells. Here we show that SCF induces HIF-1α accumulation in THP-1 human myeloid leukaemia cells but not in LAD2 mast cells. We demonstrated that LAD2 cells have a more robust glutathione (GSH-dependent antioxidative system compared to THP-1 cells and are therefore protected against the actions of ROS generated in an SCF-dependent manner. BSO-induced GSH depletion led to a significant decrease in HIF-1α prolyl hydroxylase (PHD activity in THP-1 cells and to near attenuation of it in LAD2 cells. In THP-1 cells, SCF-induced HIF-1α accumulation is controlled via ERK, PI3 kinase/PKC-δ/mTOR-dependent and to a certain extent by redox-dependent mechanisms. These results demonstrate for the first time an important cross-talk of signalling pathways associated with HIF-1 activation--an important stage of the myeloid leukaemia cell life cycle.

  20. The cyclin-dependent kinase inhibitor 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole induces nongenotoxic, DNA replication-independent apoptosis of normal and leukemic cells, regardless of their p53 status

    International Nuclear Information System (INIS)

    Turinetto, Valentina; Porcedda, Paola; Orlando, Luca; De Marchi, Mario; Amoroso, Antonio; Giachino, Claudia

    2009-01-01

    Current chemotherapy of human cancers focuses on the DNA damage pathway to induce a p53-mediated cellular response leading to either G1 arrest or apoptosis. However, genotoxic treatments may induce mutations and translocations that result in secondary malignancies or recurrent disease. In addition, about 50% of human cancers are associated with mutations in the p53 gene. Nongenotoxic activation of apoptosis by targeting specific molecular pathways thus provides an attractive therapeutic approach. Normal and leukemic cells were evaluated for their sensitivity to 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) through cell viability and caspase activation tests. The apoptotic pathway induced by DRB was analysed by immunfluorescence and immunoblot analysis. H2AX phosphorylation and cell cycle analysis were performed to study the dependance of apoptosis on DNA damage and DNA replication, respectively. To investigate the role of p53 in DRB-induced apoptosis, specific p53 inhibitors were used. Statistical analysis on cell survival was performed with the test of independence. Here we report that DRB, an inhibitor of the transcriptional cyclin-dependent kinases (CDKs) 7 and 9, triggers DNA replication-independent apoptosis in normal and leukemic human cells regardless of their p53 status and without inducing DNA damage. Our data indicate that (i) in p53-competent cells, apoptosis induced by DRB relies on a cytosolic accumulation of p53 and subsequent Bax activation, (ii) in the absence of p53, it may rely on p73, and (iii) it is independent of ATM and NBS1 proteins. Notably, even apoptosis-resistant leukemic cells such as Raji were sensitive to DRB. Our results indicate that DRB represents a potentially useful cancer chemotherapeutic strategy that employs both the p53-dependent and -independent apoptotic pathways without inducing genotoxic stress, thereby decreasing the risk of secondary malignancies

  1. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zheng [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Dadao Bei, Guangzhou 510515 (China); Zhou, Yuning [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Evers, B. Mark [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Department of Surgery, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Wang, Qingding, E-mail: qingding.wang@uky.edu [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Department of Surgery, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Rictor associates with FBXW7 to form an E3 complex. Black-Right-Pointing-Pointer Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. Black-Right-Pointing-Pointer Knockdown of rictor increases protein levels of c-Myc and cylin E. Black-Right-Pointing-Pointer Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Black-Right-Pointing-Pointer Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor-FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  2. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    International Nuclear Information System (INIS)

    Guo, Zheng; Zhou, Yuning; Evers, B. Mark; Wang, Qingding

    2012-01-01

    Highlights: ► Rictor associates with FBXW7 to form an E3 complex. ► Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. ► Knockdown of rictor increases protein levels of c-Myc and cylin E. ► Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. ► Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor–FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  3. C7L family of poxvirus host range genes inhibits antiviral activities induced by type I interferons and interferon regulatory factor 1.

    Science.gov (United States)

    Meng, Xiangzhi; Schoggins, John; Rose, Lloyd; Cao, Jingxin; Ploss, Alexander; Rice, Charles M; Xiang, Yan

    2012-04-01

    Vaccinia virus (VACV) K1L and C7L function equivalently in many mammalian cells to support VACV replication and antagonize antiviral activities induced by type I interferons (IFNs). While K1L is limited to orthopoxviruses, genes that are homologous to C7L are found in diverse mammalian poxviruses. In this study, we showed that the C7L homologues from sheeppox virus and swinepox virus could rescue the replication defect of a VACV mutant deleted of both K1L and C7L (vK1L(-)C7L(-)). Interestingly, the sheeppox virus C7L homologue could rescue the replication of vK1L(-)C7L(-) in human HeLa cells but not in murine 3T3 and LA-4 cells, in contrast to all other C7L homologues. Replacing amino acids 134 and 135 of the sheeppox virus C7L homologue, however, made it functional in the two murine cell lines, suggesting that these two residues are critical for antagonizing a putative host restriction factor which has some subtle sequence variation in human and murine cells. Furthermore, the C7L family of host range genes from diverse mammalian poxviruses were all capable of antagonizing type I IFN-induced antiviral activities against VACV. Screening of a library of more than 350 IFN-stimulated genes (ISGs) identified interferon-regulated factor 1 (IRF1) as an inhibitor of vK1L(-)C7L(-) but not wild-type VACV. Expression of either K1L or C7L, however, rendered vK1L(-)C7L(-) resistant to IRF1-induced antiviral activities. Altogether, our data show that K1L and C7L antagonize IRF1-induced antiviral activities and that the host modulation function of C7L is evolutionally conserved in all poxviruses that can readily replicate in tissue-cultured mammalian cells.

  4. [Therapeutic effect of insulin-like growth factor-1 injection into the inner ears through scala tympani fenestration on gentamicin-induced hearing loss in guinea pigs].

    Science.gov (United States)

    Li, Yong-he; Chen, Hao; Guo, Meng-he

    2008-02-01

    To study the therapeutic effect of insulin-like growth factor-1 (IGF-1) injection into the inner ears through a scala tympani fenestration on sensorineural deafness in a guinea pig model of gentamicin-induced hearing loss. Twenty guinea pigs with gentamicin-induced hearing loss were randomized equally into IGF-1 group and control group. In both groups, scala tympani fenestration was performed for injection of IGF-1 (10 microl) or artificial perilymphatic fluid (10 microl). Auditory brainstem responses (ABR) test was performed before and 7 and 14 days after surgery, respectively, and the cochlea was removed by decollation of 3 guinea pigs from each group after ABR test for observing the changes in the hair cells using scanning electron microscope. Significant reduction in the ABR response threshold (RT) occurred in IGF-1 group 7 and 14 days after the surgery, and on day 14, ABR RT showed significant difference between IGF-1 group and the control group. Scanning electron microscopy revealed severer damages of the hair cells in the control group, and in the IGF-1 group, finger-like microvilli was detected on the surface of the damaged hair cells. IGF-1 injection in the inner ear through the scala tympani fenestration may ameliorate the damages of the auditory function and relieve sustained toxicity of gentamicin in guinea pigs possibly by protection and partial repair of the damaged cochlea hair cells as well as protection of the afferent nerves.

  5. Hypoxia-Inducible Factor-1α: A Potential Factor for the Enhancement of Osseointegration between Dental Implants and Tissue-Engineered Bone

    Directory of Open Access Journals (Sweden)

    Duohong Zou

    2011-07-01

    Full Text Available Introduction: Tissue-engineered bones are widely utilized to protect healthy tissue, reduce pain, and increase the success rate of dental implants. one of the most challenging obstacles lies in obtaining effective os-seointegration between dental implants and tissue-engineered structures. Deficiencies in vascularization, osteogenic factors, oxygen, and other nutrients inside the tissue-engineered bone during the early stages following implantation all inhibit effective osseointe-gration. Oxygen is required for aerobic metabolism in bone and blood vessel tissues, but oxygen levels inside tissue-engineered bone are not suf-ficient for cell proliferation. HIF-1α is a pivotal regulator of hypoxic and ischemic vascular responses, driving transcriptional activation of hundreds of genes involved in vascular reactivity, angiogenesis, arteriogenesis, and osteogenesis.The hypothesis: Hypoxia-Inducible Factor-1α seems a potential factor for the enhancement of osseointegration between dental implants and tissue-engineered bone.Evaluation of the hypothesis: Enhancement of HIF-1α protein expression is recognized as the most promising approach for angiogenesis, because it can induce multiple angiogenic targets in a coordinated manner. Therefore, it will be a novel potential therapeutic methods targeting HIF-1α expression to enhance osseointegration be-tween dental implants and tissue-engineered bone.

  6. Radiation protective effect of hypoxia-inducible factor-1α (HIF-1α) on human oral squamous cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Hosokawa, Y.; Okumura, K.; Terashima, S.; Sakakura, Y.

    2012-01-01

    We examined the effects of 5-Gy radiation on the expression of hypoxia-inducible factor-1α (HIF-1α) and the radiosensitivity of five human oral squamous cell carcinoma (OSCC) cell lines (SAS, Ca9-22, TT, BSC-OF and IS-FOM). In all of the cell lines, HIF-1α was expressed in mRNA, and radiation had no influence on gene transcription. The number of apoptotic cells increased 72 h after irradiation in cell lines SAS, Ca9-22 and TT cells, indicating low transcriptional levels of HIF-1α, and the levels of non-cleaved caspase-3, an executioner of apoptosis, and non-cleaved poly (adenosine diphosphate-ribose) polymerase (PARP), a marker of DNA damage early in apoptosis, decreased simultaneously. Conversely, radiation failed to induce apoptosis or to decrease expression of non-cleaved caspase-3 and PARP in cell-lines BSC-OF and IS-FOM cells that expressed high levels of HIF-1α. BSC-OF and IS-FOM cells exhibited high migratory capacity. When CoCl 2 was present in the medium, HIF-1α expression increased along with the survival of Ca9-22 cells after radiation exposure. These results suggest that OSCC cells expressing high levels of HIF-1α are resistant to radiation. HIF-1α can be used to control the short term radiosensitivity of cells. (authors)

  7. Insulin like growth factor-1 prevents 1-mentyl-4-phenylphyridinium-induced apoptosis in PC12 cells through activation of glycogen synthase kinase-3beta

    International Nuclear Information System (INIS)

    Sun, Xin; Huang, Luqi; Zhang, Min; Sun, Shenggang; Wu, Yan

    2010-01-01

    Dopaminergic neurons are lost mainly through apoptosis in Parkinson's disease. Insulin like growth factor-1 (IGF-1) inhibits apoptosis in a wide variety of tissues. Here we have shown that IGF-1 protects PC12 cells from toxic effects of 1-methyl-4-phenylpyridiniumion (MPP + ). Treatment of PC12 cells with recombinant human IGF-1 significantly decreased apoptosis caused by MPP + as measured by acridine orange/ethidium bromide staining. IGF-1 treatment induced sustained phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) as shown by western blot analysis. The anti-apoptotic effect of IGF-1 was abrogated by LY294002, which indirectly inhibits phosphorylation of GSK-3beta. Lithium chloride (LiCl), a known inhibitor of GSK-3beta, also blocked MPP + -induced apoptosis. Finally, although IGF-1 enhanced phosphorylation of extracellular signal-regulated kinases ERK1 and 2 (ERK1/2), PD98059, a specific inhibitor of ERK1/2, did not alter the survival effect of IGF-1. Thus, our findings indicate that IGF-1 protects PC12 cells exposed to MPP + from apoptosis via the GSK-3beta signaling pathway.

  8. The cyclin-dependent kinase inhibitor flavopiridol disrupts sodium butyrate-induced p21WAF1/CIP1 expression and maturation while reciprocally potentiating apoptosis in human leukemia cells.

    Science.gov (United States)

    Rosato, Roberto R; Almenara, Jorge A; Cartee, Leanne; Betts, Vicki; Chellappan, Srikumar P; Grant, Steven

    2002-02-01

    Interactions between the cyclin-dependent kinase inhibitor flavopiridol (FP) and the histone deacetylase inhibitor sodium butyrate (SB) have been examined in human leukemia cells (U937) in relation to differentiation and apoptosis. Whereas 1 mM of SB or 100 nM of FP minimally induced apoptosis (4% and 10%, respectively) at 24 h, simultaneous exposure of U937 cells to these agents dramatically increased cell death (e.g., approximately 60%), reflected by both morphological and Annexin/propidium iodide-staining features, procaspase 3 activation, and poly(ADP-ribose) polymerase cleavage. Similar interactions were observed in human promyelocytic (HL-60), B-lymphoblastic (Raji), and T-lymphoblastic (Jurkat) leukemia cells. Coadministration of FP opposed SB-mediated accumulation of cells in G0G1 and differentiation, reflected by reduced CD11b expression, but instead dramatically increased procaspase-3, procaspase-8, Bid, and poly(ADP-ribose) polymerase cleavage, as well as mitochondrial damage (e.g., loss of mitochondrial membrane potential and cytochrome c release). FP also blocked SB-related p21WAF1-CIP1 induction through a caspase-independent mechanism and triggered the caspase-mediated cleavage of p27KIP1 and retinoblastoma protein. The latter event was accompanied by a marked reduction in retinoblastoma protein/E2F1 complex formation. However, FP did not modify the extent of SB-associated acetylation of histones H3 and H4. Treatment of cells with FP/SB also resulted in the caspase-mediated cleavage of Bcl-2 and caspase-independent down-regulation of Mcl-1. Levels of cyclins A, D1, and E, and X-linked inhibitor of apoptosis also declined in SB/FP-treated cells. Finally, FP/SB coexposure potently induced apoptosis in two primary acute myelogenous leukemia samples. Together, these findings demonstrate that FP, when combined with SB, induces multiple perturbations in cell cycle and apoptosis regulatory proteins, which oppose leukemic cell differentiation but instead

  9. Low-molecular-weight cyclin E: the missing link between biology and clinical outcome

    International Nuclear Information System (INIS)

    Akli, Said; Keyomarsi, Khandan

    2004-01-01

    Cyclin E, a key mediator of transition during the G 1 /S cellular division phase, is deregulated in a wide variety of human cancers. Our group recently reported that overexpression and generation of low-molecular-weight (LMW) isoforms of cyclin E were associated with poor clinical outcome among breast cancer patients. However, the link between LMW cyclin E biology in mediating a tumorigenic phenotype and clinical outcome is unknown. To address this gap in knowledge, we assessed the role of LMW isoforms in breast cancer cells; we found that these forms of cyclin E induced genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. These findings suggest that high levels of LMW isoforms of cyclin E not only can predict failure to endocrine therapy but also are true prognostic indicators because of their influence on cell proliferation and genetic instability

  10. Progestins inhibit estradiol-induced vascular endothelial growth factor and stromal cell-derived factor 1 in human endometrial stromal cells.

    Science.gov (United States)

    Okada, Hidetaka; Okamoto, Rika; Tsuzuki, Tomoko; Tsuji, Shoko; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2011-09-01

    To investigate whether 17β-estradiol (E(2)) and progestins exert direct effects on vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1 (SDF-1/CXCL12) in human endometrial stromal cells (ESCs) and thereby to clarify the regulatory function of these local angiogenic factors in the endometrium. In vitro experiment. Research laboratory at Kansai Medical University. Fourteen patients undergoing hysterectomy for benign reasons. ESCs were cultured with E(2) and/or various clinically relevant progestins (medroxyprogesterone acetate [MPA], norethisterone [NET], levonorgestrel [LNG], dienogest [DNG], and progesterone [P]). The mRNA levels and production of VEGF and SDF-1 were assessed by real-time reverse-transcription polymerase chain reaction and ELISA, respectively. E(2) significantly induced the mRNA levels and protein production of VEGF and SDF-1 in ESCs. MPA could antagonize the E(2)-stimulated effects in a time- and dose-dependent manner, and this effect could be reversed by RU-486 (P receptor antagonist). All of the progestins (MPA, NET, LNG, and DNG; 10(-9) to 10(-7) mol/L) attenuated E(2)-induced VEGF and SDF-1 production, whereas P showed these inhibitory effects only when present in a high concentration (10(-7) mol/L). Progestins have inhibitory effects on E(2)-induced VEGF and SDF-1 in ESCs. These results may indicate a potential mechanism for action of the female sex steroids in the human endometrium that can be helpful for various clinical applications. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Hypoxic Culture Promotes Dopaminergic-Neuronal Differentiation of Nasal Olfactory Mucosa Mesenchymal Stem Cells via Upregulation of Hypoxia-Inducible Factor-1α.

    Science.gov (United States)

    Zhuo, Yi; Wang, Lei; Ge, Lite; Li, Xuan; Duan, Da; Teng, Xiaohua; Jiang, Miao; Liu, Kai; Yuan, Ting; Wu, Pei; Wang, Hao; Deng, Yujia; Xie, Huali; Chen, Ping; Xia, Ying; Lu, Ming

    2017-08-01

    Olfactory mucosa mesenchymal stem cells (OM-MSCs) display significant clonogenic activity and may be easily propagated for Parkinson's disease therapies. Methods of inducing OM-MSCs to differentiate into dopaminergic (DAergic) neurons using olfactory ensheathing cells (OECs) are thus an attractive topic of research. We designed a hypoxic induction protocol to generate DAergic neurons from OM-MSCs using a physiological oxygen (O 2 ) level of 3% and OEC-conditioned medium (OCM; HI group). The normal induction (NI) group was cultured in O 2 at ambient air level (21%). The role of hypoxia-inducible factor-1α (HIF-1α) in the differentiation of OM-MSCs under hypoxia was investigated by treating cells with an HIF-1α inhibitor before induction (HIR group). The proportions of β-tubulin- and tyrosine hydroxylase (TH)-positive cells were significantly increased in the HI group compared with the NI and HIR groups, as shown by immunocytochemistry and Western blotting. Furthermore, the level of dopamine was significantly increased in the HI group. A slow outward potassium current was recorded in differentiated cells after 21 d of induction using whole-cell voltage-clamp tests. A hypoxic environment thus promotes OM-MSCs to differentiate into DAergic neurons by increasing the expression of HIF-1α and by activating downstream target gene TH. This study indicated that OCM under hypoxic conditions could significantly upregulate key transcriptional factors involved in the development of DAergic neurons from OM-MSCs, mediated by HIF-1α. Hypoxia promotes DAergic neuronal differentiation of OM-MSCs, and HIF-1α may play an important role in hypoxia-inducible pathways during DAergic lineage specification and differentiation in vitro.

  12. The role of metformin and resveratrol in the prevention of hypoxia‐inducible factor 1α accumulation and fibrosis in hypoxic adipose tissue

    Science.gov (United States)

    Li, Xiaole; Li, Jia; Wang, Lulu; Li, Aiyun; Qiu, Zhixia; Qi, Lian‐wen; Kou, Junping; Liu, Kang; Liu, Baolin

    2016-01-01

    Background and Purpose Hypoxic activation of hypoxia‐inducible factor 1α (HIF‐1α) and fibrosis in adipose tissue contribute to adipose dysfunction. This study was designed to investigate the effects of metformin and resveratrol on the regulation of HIF‐1α and fibrosis in hypoxic adipose tissue. Experimental Approach Mice were fed a high‐fat diet to induce hypoxia and fibrosis in adipose tissue; adipose tissue incubated in vitro in 1% O2 showed a similar change. The effects of metformin and resveratrol on hypoxia, HIF‐1α accumulation, endoplasmic reticulum stress and gene expressions of extracellular matrix components and pro‐inflammatory cytokines were examined. Key Results Oral administration of metformin or resveratrol prevented hypoxia and reduced HIF‐1α accumulation with dephosphorylation of inositol‐requiring enzyme 1α and eukaryotic initiation factor 2α, indicative of suppression of hypoxic HIF‐1α activation and endoplasmic reticulum stress. Metformin and resveratrol down‐regulated gene expressions of Col3α, Col6α, elastin and lysyl oxidase and thereby reduced collagen deposition in adipose tissue. The increased gene expressions of TNF‐α, IL‐6, monocyte chemoattractant protein 1 and F4/80 were also down‐regulated by metformin and resveratrol. Metformin and resveratrol had similar effects in adipose tissue exposed to 1% O2. Metformin reduced ATP production and prevented the reduction in oxygen tension in 3T3‐L1 cells, suggesting that it prevented hypoxia by limiting oxygen consumption, whereas resveratrol reduced HIF‐1α accumulation by promoting its proteasomal degradation via the regulation of AMPK/SIRT1. Conclusion and Implications Hypoxia and fibrosis are early causes of adipose dysfunction in obesity. Both metformin and resveratrol effectively inhibited HIF‐1α activation‐induced fibrosis and inflammation in adipose tissue, although by different mechanisms. PMID:27059094

  13. MDM2 regulates hypoxic hypoxia-inducible factor 1α stability in an E3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner.

    Science.gov (United States)

    Joshi, Shweta; Singh, Alok R; Durden, Donald L

    2014-08-15

    Hypoxia-inducible factor 1 (HIF1) is a heterodimeric transcription factor containing an inducibly expressed HIF1α subunit and a constitutively expressed HIF1β subunit. Under hypoxic conditions, the HIF1α subunit accumulates because of a decrease in the rate of proteolytic degradation, and the resulting HIF1α-HIF1β heterodimers undergo post-translational modifications that promote transactivation. Previous reports suggest that amplified signaling through PI3K enhances HIF1-dependent gene expression; however, its role is controversial, and the mechanism is unclear. Using genetically engineered PTEN-deficient cell lines, we demonstrate that PTEN specifically inhibited the accumulation of HIF1α in response to hypoxia. Furthermore, we report that in glioblastoma cell lines, inhibition of PI3K pathway, using pan as well as isoform-specific PI3K inhibitors SF1126, PF4691502, BEZ-235, GDC0941, and TGX221 blocked the induction of HIF1α protein and its targets vascular endothelial growth factor, HK1, and GLUT1 mRNA in response to hypoxia. Herein, we describe the first evidence that HIF1α can be degraded under hypoxic conditions via the 26 S proteasome and that MDM2 is the E3 ligase that induces the hypoxic degradation of HIF1α. Moreover, the action of MDM2 on HIF1α under hypoxia occurs in the cytoplasm and is controlled by the PTEN-PI3K-AKT signaling axis. These data strongly suggest a new role for PTEN in the regulation of HIF1α and importantly that PI3K-AKT activation is required for the hypoxic stabilization of HIF1α and that hypoxia alone is not sufficient to render HIF1α resistant to proteasomal cleavage and degradation. Moreover, these findings suggest new therapeutic considerations for PI3K and/or AKT inhibitors for cancer therapeutics. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Effects of YC-1 on hypoxia-inducible factor 1 alpha in hypoxic human bladder transitional carcinoma cell line T24 cells.

    Science.gov (United States)

    Li, Yangle; Zhao, Xiaokun; Tang, Huiting; Zhong, Zhaohui; Zhang, Lei; Xu, Ran; Li, Songchao; Wang, Yi

    2012-01-01

    It was the aim of this study to explore the effects of 3-(5'-hydroxymethyl-2'-furyl)-l-benzyl indazole (YC-1) on transcription activity, cell proliferation and apoptosis of hypoxic human bladder transitional carcinoma cells (BTCC), mediated by hypoxia-inducible factor 1α (HIF-1α). BTCC cell line T24 cells were incubated under normoxic or hypoxic conditions, adding different doses of YC-1. The protein expression of HIF-1α and HIF-1α-mediated genes was detected by Western blotting. RT-PCR was used to detect HIF-1α mRNA expression. Cell proliferation, apoptosis and migration activity were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry and transwell migration assay. The cells were pretreated by two ERK/p38 MAPK pathway-specific inhibitors, PD98059 or SB203580, and then incubated with YC-1 treatment under hypoxic condition. HIF-1α protein expression was detected by Western blotting. Hypoxic T24 cells expressed a higher level of HIF-1α, vascular endothelial growth factor, matrix metalloproteinases-2, B-cell lymphoma/leukemia-2 protein and HIF-1α mRNA compared with normoxic controls, in which the above-mentioned expression was downregulated by YC-1 in a dose-dependent manner. Cell proliferation and migration activity were inhibited while apoptosis was induced by YC-1 under hypoxic condition. Moreover, YC-1-downregulated HIF-1α expression was reversed by PD98059 and SB203580, respectively. YC-1 inhibits HIF-1α and HIF-1α-mediated gene expression, cell proliferation and migration activity and induces apoptosis in hypoxic BTCC. The ERK/p38 MAPK pathway may be involved in YC-1-mediated inhibition of HIF-1α. Copyright © 2011 S. Karger AG, Basel.

  15. The role of metformin and resveratrol in the prevention of hypoxia-inducible factor 1α accumulation and fibrosis in hypoxic adipose tissue.

    Science.gov (United States)

    Li, Xiaole; Li, Jia; Wang, Lulu; Li, Aiyun; Qiu, Zhixia; Qi, Lian-Wen; Kou, Junping; Liu, Kang; Liu, Baolin; Huang, Fang

    2016-06-01

    Hypoxic activation of hypoxia-inducible factor 1α (HIF-1α) and fibrosis in adipose tissue contribute to adipose dysfunction. This study was designed to investigate the effects of metformin and resveratrol on the regulation of HIF-1α and fibrosis in hypoxic adipose tissue. Mice were fed a high-fat diet to induce hypoxia and fibrosis in adipose tissue; adipose tissue incubated in vitro in 1% O2 showed a similar change. The effects of metformin and resveratrol on hypoxia, HIF-1α accumulation, endoplasmic reticulum stress and gene expressions of extracellular matrix components and pro-inflammatory cytokines were examined. Oral administration of metformin or resveratrol prevented hypoxia and reduced HIF-1α accumulation with dephosphorylation of inositol-requiring enzyme 1α and eukaryotic initiation factor 2α, indicative of suppression of hypoxic HIF-1α activation and endoplasmic reticulum stress. Metformin and resveratrol down-regulated gene expressions of Col3α, Col6α, elastin and lysyl oxidase and thereby reduced collagen deposition in adipose tissue. The increased gene expressions of TNF-α, IL-6, monocyte chemoattractant protein 1 and F4/80 were also down-regulated by metformin and resveratrol. Metformin and resveratrol had similar effects in adipose tissue exposed to 1% O2 . Metformin reduced ATP production and prevented the reduction in oxygen tension in 3T3-L1 cells, suggesting that it prevented hypoxia by limiting oxygen consumption, whereas resveratrol reduced HIF-1α accumulation by promoting its proteasomal degradation via the regulation of AMPK/SIRT1. Hypoxia and fibrosis are early causes of adipose dysfunction in obesity. Both metformin and resveratrol effectively inhibited HIF-1α activation-induced fibrosis and inflammation in adipose tissue, although by different mechanisms. © 2016 The British Pharmacological Society.

  16. Effect of oxygen on cardiac differentiation in mouse iPS cells: role of hypoxia inducible factor-1 and Wnt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Tanya L Medley

    Full Text Available BACKGROUND: Disturbances in oxygen levels have been found to impair cardiac organogenesis. It is known that stem cells and differentiating cells may respond variably to hypoxic conditions, whereby hypoxia may enhance stem cell pluripotency, while differentiation of multiple cell types can be restricted or enhanced under hypoxia. Here we examined whether HIF-1alpha modulated Wnt signaling affected differentiation of iPS cells into beating cardiomyocytes. OBJECTIVE: We investigated whether transient and sustained hypoxia affects differentiation of cardiomyocytes derived from murine induced pluripotent stem (iPS cells, assessed the involvement of HIF-1alpha (hypoxia-inducible factor-1alpha and the canonical Wnt pathway in this process. METHODS: Embryoid bodies (EBs derived from iPS cells were differentiated into cardiomyocytes and were exposed either to 24 h normoxia or transient hypoxia followed by a further 13 days of normoxic culture. RESULTS: At 14 days of differentiation, 59 ± 2% of normoxic EBs were beating, whilst transient hypoxia abolished beating at 14 days and EBs appeared immature. Hypoxia induced a significant increase in Brachyury and islet-1 mRNA expression, together with reduced troponin C expression. Collectively, these data suggest that transient and sustained hypoxia inhibits maturation of differentiating cardiomyocytes. Compared to normoxia, hypoxia increased HIF-1alpha, Wnt target and ligand genes in EBs, as well as accumulation of HIF-1alpha and beta-catenin in nuclear protein extracts, suggesting involvement of the Wnt/beta-catenin pathway. CONCLUSION: Hypoxia impairs cardiomyocyte differentiation and activates Wnt signaling in undifferentiated iPS cells. Taken together the study suggests that oxygenation levels play a critical role in cardiomyocyte differentiation and suggest that hypoxia may play a role in early cardiogenesis.

  17. MDM2 Regulates Hypoxic Hypoxia-inducible Factor 1α Stability in an E3 Ligase, Proteasome, and PTEN-Phosphatidylinositol 3-Kinase-AKT-dependent Manner*

    Science.gov (United States)

    Joshi, Shweta; Singh, Alok R.; Durden, Donald L.

    2014-01-01

    Hypoxia-inducible factor 1 (HIF1) is a heterodimeric transcription factor containing an inducibly expressed HIF1α subunit and a constitutively expressed HIF1β subunit. Under hypoxic conditions, the HIF1α subunit accumulates because of a decrease in the rate of proteolytic degradation, and the resulting HIF1α–HIF1β heterodimers undergo post-translational modifications that promote transactivation. Previous reports suggest that amplified signaling through PI3K enhances HIF1-dependent gene expression; however, its role is controversial, and the mechanism is unclear. Using genetically engineered PTEN-deficient cell lines, we demonstrate that PTEN specifically inhibited the accumulation of HIF1α in response to hypoxia. Furthermore, we report that in glioblastoma cell lines, inhibition of PI3K pathway, using pan as well as isoform-specific PI3K inhibitors SF1126, PF4691502, BEZ-235, GDC0941, and TGX221 blocked the induction of HIF1α protein and its targets vascular endothelial growth factor, HK1, and GLUT1 mRNA in response to hypoxia. Herein, we describe the first evidence that HIF1α can be degraded under hypoxic conditions via the 26 S proteasome and that MDM2 is the E3 ligase that induces the hypoxic degradation of HIF1α. Moreover, the action of MDM2 on HIF1α under hypoxia occurs in the cytoplasm and is controlled by the PTEN-PI3K-AKT signaling axis. These data strongly suggest a new role for PTEN in the regulation of HIF1α and importantly that PI3K-AKT activation is required for the hypoxic stabilization of HIF1α and that hypoxia alone is not sufficient to render HIF1α resistant to proteasomal cleavage and degradation. Moreover, these findings suggest new therapeutic considerations for PI3K and/or AKT inhibitors for cancer therapeutics. PMID:24982421

  18. Reverse translation of phase I biomarker findings links the activity of angiotensin-(1–7) to repression of hypoxia inducible factor-1α in vascular sarcomas

    International Nuclear Information System (INIS)

    Petty, W Jeffrey; Aklilu, Mebea; Varela, Victor A; Lovato, James; Savage, Paul D; Miller, Antonius A

    2012-01-01

    In a phase I study of angiotensin-(1–7) [Ang-(1–7)], clinical benefit was associated with reduction in plasma placental growth factor (PlGF) concentrations. The current study examines Ang-(1–7) induced changes in biomarkers according to cancer type and investigates mechanisms of action engaged in vitro. Plasma biomarkers were measured prior to Ang-(1–7) administration as well as 1, 2, 3, 4, and 6 hours after treatment. Tests for interaction were performed to determine the impact of cancer type on angiogenic hormone levels. If a positive interaction was detected, treatment-induced biomarker changes for individual cancer types were assessed. To investigate mechanisms of action, in vitro growth assays were performed using a murine endothelioma cell line (EOMA). PCR arrays were performed to identify and statistically validate genes that were altered by Ang-(1–7) treatment in these cells. Tests for interaction controlled for dose cohort and clinical response indicated a significant impact of cancer type on post-treatment VEGF and PlGF levels. Following treatment, PlGF levels decreased over time in patients with sarcoma (P = .007). Treatment of EOMA cells with increasing doses of Ang-(1–7) led to significant growth suppression at doses as low as 100 nM. PCR arrays identified 18 genes that appeared to have altered expression after Ang-(1–7) treatment. Replicate analyses confirmed significant changes in 8 genes including reduction in PlGF (P = .04) and hypoxia inducible factor 1α (HIF-1α) expression (P < .001). Ang-(1–7) has clinical and pre-clinical activity for vascular sarcomas that is linked to reduced HIF-1α and PlGF expression

  19. Hypoxia inducible factor-1 (HIF-1)–flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Eom, Hyun-Jeong; Ahn, Jeong-Min; Kim, Younghun; Choi, Jinhee

    2013-01-01

    In the present study, nanotoxicity mechanism associated with silver nanoparticles (AgNPs) exposure was investigated on the nematode, Caenorhabditis elegans focusing on the hypoxia response pathway. In order to test whether AgNPs-induced hypoxia inducible factor-1 (HIF-1) activation was due to hypoxia or to oxidative stress, depletion of dissolved oxygen (DO) in the test media and a rescue effect using an antioxidant were investigated, respectively. The results suggested that oxidative stress was involved in activation of the HIF-1 pathway. We then investigated the toxicological implications of HIF-1 activation by examining the HIF-1 mediated transcriptional response. Of the genes tested, increased expression of the flavin containing monooxygenase-2 (FMO-2) gene was found to be the most significant as induced by AgNPs exposure. We found that AgNPs exposure induced FMO-2 activation in a HIF-1 and p38 MAPK PMK-1 dependent manner, and oxidative stress was involved in it. We conducted all experiments to include comparison of AgNPs and AgNO 3 in order to evaluate whether any observed toxicity was due to dissolution or particle specific. The AgNPs and AgNO 3 did not produce any qualitative differences in terms of exerting toxicity in the pathways observed in this study, however, considering equal amount of silver mass, in every endpoint tested the AgNPs were found to be more toxic than AgNO 3 . These results suggest that Ag nanotoxicity is dependent not only on dissolution of Ag ion but also on particle specific effects and HIF-1–FMO-2 pathway seems to be involved in it. - Highlights: • HIF-1 signaling was investigated in C. elegans exposed to AgNPs and AgNO 3 . • HIF-1 and PMK-1 were needed for AgNPs- and AgNO 3 -induced fmo-2 gene expression. • PMK-1–HIF-1–FMO-2 pathway was dependent on oxidative stress. • AgNPs and AgNO 3 did not produce any qualitative differences in HIF-1 signaling. • AgNPs were more toxic than an equal amount of silver mass contained

  20. Hypoxia inducible factor-1 (HIF-1)–flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyun-Jeong; Ahn, Jeong-Min [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of); Kim, Younghun [Department of Chemical Engineering, Kwangwoon University, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701 (Korea, Republic of); Choi, Jinhee, E-mail: jinhchoi@uos.ac.kr [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of)

    2013-07-15

    In the present study, nanotoxicity mechanism associated with silver nanoparticles (AgNPs) exposure was investigated on the nematode, Caenorhabditis elegans focusing on the hypoxia response pathway. In order to test whether AgNPs-induced hypoxia inducible factor-1 (HIF-1) activation was due to hypoxia or to oxidative stress, depletion of dissolved oxygen (DO) in the test media and a rescue effect using an antioxidant were investigated, respectively. The results suggested that oxidative stress was involved in activation of the HIF-1 pathway. We then investigated the toxicological implications of HIF-1 activation by examining the HIF-1 mediated transcriptional response. Of the genes tested, increased expression of the flavin containing monooxygenase-2 (FMO-2) gene was found to be the most significant as induced by AgNPs exposure. We found that AgNPs exposure induced FMO-2 activation in a HIF-1 and p38 MAPK PMK-1 dependent manner, and oxidative stress was involved in it. We conducted all experiments to include comparison of AgNPs and AgNO{sub 3} in order to evaluate whether any observed toxicity was due to dissolution or particle specific. The AgNPs and AgNO{sub 3} did not produce any qualitative differences in terms of exerting toxicity in the pathways observed in this study, however, considering equal amount of silver mass, in every endpoint tested the AgNPs were found to be more toxic than AgNO{sub 3}. These results suggest that Ag nanotoxicity is dependent not only on dissolution of Ag ion but also on particle specific effects and HIF-1–FMO-2 pathway seems to be involved in it. - Highlights: • HIF-1 signaling was investigated in C. elegans exposed to AgNPs and AgNO{sub 3}. • HIF-1 and PMK-1 were needed for AgNPs- and AgNO{sub 3}-induced fmo-2 gene expression. • PMK-1–HIF-1–FMO-2 pathway was dependent on oxidative stress. • AgNPs and AgNO{sub 3} did not produce any qualitative differences in HIF-1 signaling. • AgNPs were more toxic than an equal

  1. Selective induction of cyclin B protein abrogates the G2 delay after irradiation

    International Nuclear Information System (INIS)

    Kao, G.; Muschel, R.J.; Maity, A.; Kunig, A.; McKenna, W.G.

    1996-01-01

    Purpose/Objective: Irradiation of tumor cells commonly results in G2 delay, which has been postulated to allow DNA repair and cell survival. The G2 delay after irradiation is also often marked in some cell lines by delayed expression of cyclin B protein, suggesting a role for cyclin B regulation. Investigations of these hypotheses however has been hampered by the inability to selectively perturb the G2 delay in a physiologic manner. Materials and Methods: We have devised a system, with which we are able to selectively induce cyclin B protein expression in vivo at specific points in the cell cycle, by transfecting Hela cells with an expression vector under control of a dexamethasone-inducible promoter. Experiments were subsequently performed by synchronizing, releasing, irradiating, inducing, and harvesting these cells through the cell cycle. Results: Irradiation with 5 Gy led to a pronounced G2 delay, reflected by markedly slowed progression into mitosis, concomitant with reduced expression of cyclin B protein. Induction of cyclin B after radiation in these cells abrogated the G2 delay by approximately doubling the rate at which the cells re-enter mitosis. Treatment of irradiated untransfected control cells with dexamethasone, in which cyclin B is not induced, led to minimal changes. Studies of effects of cyclin B induction on cyclin B localization (using immunofluorescence), cdc2 phosphorylation and activation will also be presented. Conclusion: This system should allow further investigations into fundamental mechanisms of cell cycle regulation after irradiation and DNA damage. This also provides direct evidence for the first time that cyclin B protein regulation may play a role in the G2 delay following irradiation in Hela cells, perhaps complementing phosphorylation events

  2. Ursodeoxycholic acid protects cardiomyocytes against cobalt chloride induced hypoxia by regulating transcriptional mediator of cells stress hypoxia inducible factor 1α and p53 protein.

    Science.gov (United States)

    Mohamed, Anis Syamimi; Hanafi, Noorul Izzati; Sheikh Abdul Kadir, Siti Hamimah; Md Noor, Julina; Abdul Hamid Hasani, Narimah; Ab Rahim, Sharaniza; Siran, Rosfaiizah

    2017-10-01

    In hepatocytes, ursodeoxycholic acid (UDCA) activates cell signalling pathways such as p53, intracellular calcium ([Ca 2+ ] i ), and sphingosine-1-phosphate (S1P)-receptor via Gα i -coupled-receptor. Recently, UDCA has been shown to protect the heart against hypoxia-reoxygenation injury. However, it is not clear whether UDCA cardioprotection against hypoxia acts through a transcriptional mediator of cells stress, HIF-1α and p53. Therefore, in here, we aimed to investigate whether UDCA could protect cardiomyocytes (CMs) against hypoxia by regulating expression of HIF-1α, p53, [Ca 2+ ] i , and S1P-Gα i -coupled-receptor. Cardiomyocytes were isolated from newborn rats (0-2 days), and hypoxia was induced by using cobalt chloride (CoCl 2 ). Cardiomyocytes were treated with UDCA and cotreated with either FTY720 (S1P-receptor agonist) or pertussis toxin (PTX; Gα i inhibitor). Cells were subjected for proliferation assay, beating frequency, QuantiGene Plex assay, western blot, immunofluorescence, and calcium imaging. Our findings showed that UDCA counteracted the effects of CoCl 2 on cell viability, beating frequency, HIF-1α, and p53 protein expression. We found that these cardioprotection effects of UDCA were similar to FTY720, S1P agonist. Furthermore, we observed that UDCA protects CMs against CoCl 2 -induced [Ca 2+ ] i dynamic alteration. Pharmacological inhibition of the Gα i -sensitive receptor did not abolish the cardioprotection of UDCA against CoCl 2 detrimental effects, except for cell viability and [Ca 2+ ] i . Pertussis toxin is partially effective in inhibiting UDCA protection against CoCl 2 effects on CM cell viability. Interestingly, PTX fully inhibits UDCA cardioprotection on CoCl 2 -induced [Ca 2+ ] i dynamic changes. We conclude that UDCA cardioprotection against CoCl 2 -induced hypoxia is similar to FTY720, and its actions are not fully mediated by the Gα i -coupled protein sensitive pathways. Ursodeoxycholic acid is the most hydrophilic bile

  3. [Characteristics of sublingual vein and expressions of vascular endothelial growth factor and hypoxia-inducible factor 1alpha proteins in sublingual tissues of Beagle dogs with portal hypertension].

    Science.gov (United States)

    Li, Bai-yu; Wang, Li-na; Yue, Xiao-qiang; Li, Bai

    2009-05-01

    To observe sublingual vein characteristics and the expressions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1alpha (HIF-1alpha) proteins in sublingual tissues of Beagle dogs with cirrhotic portal hypertension. Twelve Beagle dogs were randomly divided into normal control group and cirrhotic portal hypertension group. There were 6 dogs in each group. A canine model of cirrhosis portal hypertension was established by injecting dimethylnitrosamine (DMN) into portal vein once a week for 7 weeks. The characteristics of sublingual vein were observed. Portal venous pressure was measured by using bioelectric recording techniques. The expressions of VEGF and HIF-1alpha proteins in sublingual vein were detected by immunohistochemical method. The shape and color of sublingual vein in beagle dogs in the cirrhotic portal hypertension group changed obviously as compared with the normal control group. Immunohistochemical results showed that there were almost no expressions of VEGF and HIF-1alpha proteins in sublingual tissues in the normal control group; however, the expressions of VEGF and HIF-1alpha proteins in sublingual tissues in the cirrhotic portal hypertension group significantly increased. Changes of portal pressure may lead to the formation of the abnormal sublingual vein by increasing the expressions of VEGF and HIF-1alpha proteins in sublingual tissues in Beagle dogs with portal hypertension.

  4. A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible factor-1 (HIF-1) and increases skin innate defenses against bacterial infection.

    Science.gov (United States)

    Okumura, Cheryl Y M; Hollands, Andrew; Tran, Dan N; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A; Johnson, Randall S; Nizet, Victor

    2012-09-01

    Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 increases HIF-1 levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinetobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections.

  5. Enzyme 15-lipoxygenase 1 promotes hypoxia-inducible factor 1α turnover and reduces vascular endothelial growth factor expression: implications for angiogenesis

    International Nuclear Information System (INIS)

    Zhong, Hua; Wang, Ruoxiang; Kelavkar, Uddhav; Wang, Christopher Y; Simons, Jonathan

    2014-01-01

    Hypoxia-inducible factor 1α (HIF-1α) is the regulatory subunit of the heterodimeric HIF-1 that plays a critical role in transcriptional regulation of genes in angiogenesis and hypoxic adaptation, while fatty acid metabolism mediated by lipoxygenases has been implicated in a variety of pathogeneses, including cancers. In this study, we report that 15-lipoxygenase 1 (15-LO1), a key member of the lipoxygenase family, promotes HIF-1α ubiquitination and degradation. Altering the level of 15-LO1 yields inverse changes in HIF-1α and HIF-1 transcriptional activity, under both normoxia and hypoxia, and even in CoCl 2 -treated cells where HIF-1α has been artificially elevated. The antagonistic effect of 15-LO1 is mediated by the Pro 564 /hydroxylation/26S proteasome system, while both the enzymatic activity and the intracellular membrane-binding function of 15-LO1 appear to contribute to HIF-1α suppression. Our findings provide a novel mechanism for HIF-1α regulation, in which oxygen-dependent HIF-1 activity is modulated by an oxygen-insensitive lipid metabolic enzyme

  6. The expression of vascular endothelial growth factor is affected by hypoxia inducible factor-1α in peritoneum of endometriosis mice treated with genistein

    Directory of Open Access Journals (Sweden)

    Sylvi Wafda Nur Amellia

    2016-09-01

    Full Text Available This study aimed to investigate whether the genistein is able to decrease the expressions of vascular endothelial growth factor-A (VEGF-A and hypoxia inducible factor-1α (HIF-1α in mouse model of endometriosis. Forty female mice (Mus musculus were divided into eight groups (n = 5 each, including the control (untreated group, endometriosis group, and endometriosis groups treated with various doses of genistein (50; 100; 200; 300; 400; and 500 mg/day. VEGF-A and HIF-1α analyses were performed by immunohistochemistry. We found significant increases in the VEGF-A and HIF-α expressions in endometriosis group compared to the control group. The increased expressions of VEGF-A and HIF-1α were significantly (p < 0.05 attenuated by the administration of all doses of genistein. In conclusion, in mouse model of endometriosis, genistein potentially inhibits the increase in angiogenesis in peritoneal tissue. Therefore, this result may provide a novel anti-angiogenic treatment strategy for the therapy of endometriosis.

  7. Silencing of osteopontin promotes the radiosensitivity of breast cancer cells by reducing the expression of hypoxia inducible factor 1 and vascular endothelial growth factor

    Institute of Scientific and Technical Information of China (English)

    YANG Li; ZHAO Wei; ZUO Wen-shu; WEI Ling; SONG Xian-rang; WANG Xing-wu; ZHENG Gang; ZHENG Mei-zhu

    2012-01-01

    Background Osteopontin (OPN) is a secreted phosphoglycoprotein (SSP) that is overexpressed in a variety of tumors and was regarded as a molecular marker of tumors.In this study,we intended to demonstrate the role of OPN in human breast cancer cell line MDA-MB-231.Methods Recombinant plasmid expressing small interfering RNA (siRNA) specific to OPN mRNA was transfected into MDA-MB-231 cells to generate the stable transfected cell line MDA-MB-343,and the empty plasmid tansfected cells (MDA-MB-neg) or wildtype MDA-MB-231 cells were used as control cells respectively.Expression of OPN,hypoxia inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) proteins was analyzed by Western blotting analysis.The radiosensitivity of cells was determined by detecting cell apoptosis,cell proliferation and cell senescence.Results HIF-1 and VEGF proteins in MDA-MB-343 cells were significantly downregulated upon the efficient knockdown of OPN expression under either hypoxia or normoxia environment.Moreover,expression of OPN protein was upregualted upon hypoxic culture.Stable OPN-silencing also decreased cell invasion,increased cell apoptosis and cell senescence,as well as reduced clonogenic survival,resulting in increase radiation tolerance.Conclusions Suppression of OPN gene expression can enhance radiosensitivity and affect cell apoptosis in breast cancer cells.OPN seems to be an attractive target for the improvement of radiotherapy.

  8. Peroxisome Proliferator Activated Receptor-α/Hypoxia Inducible Factor-1α Interplay Sustains Carbonic Anhydrase IX and Apoliprotein E Expression in Breast Cancer Stem Cells

    Science.gov (United States)

    Papi, Alessio; Storci, Gianluca; Guarnieri, Tiziana; De Carolis, Sabrina; Bertoni, Sara; Avenia, Nicola; Sanguinetti, Alessandro; Sidoni, Angelo; Santini, Donatella; Ceccarelli, Claudio; Taffurelli, Mario; Orlandi, Marina; Bonafé, Massimiliano

    2013-01-01

    Aims Cancer stem cell biology is tightly connected to the regulation of the pro-inflammatory cytokine network. The concept of cancer stem cells “inflammatory addiction” leads to envisage the potential role of anti-inflammatory molecules as new anti-cancer targets. Here we report on the relationship between nuclear receptors activity and the modulation of the pro-inflammatory phenotype in breast cancer stem cells. Methods Breast cancer stem cells were expanded as mammospheres from normal and tumor human breast tissues and from tumorigenic (MCF7) and non tumorigenic (MCF10) human breast cell lines. Mammospheres were exposed to the supernatant of breast tumor and normal mammary gland tissue fibroblasts. Results In mammospheres exposed to the breast tumor fibroblasts supernatant, autocrine tumor necrosis factor-α signalling engenders the functional interplay between peroxisome proliferator activated receptor-α and hypoxia inducible factor-1α (PPARα/HIF1α). The two proteins promote mammospheres formation and enhance each other expression via miRNA130b/miRNA17-5p-dependent mechanism which is antagonized by PPARγ. Further, the PPARα/HIF1α interplay regulates the expression of the pro-inflammatory cytokine interleukin-6, the hypoxia survival factor carbonic anhydrase IX and the plasma lipid carrier apolipoprotein E. Conclusion Our data demonstrate the importance of exploring the role of nuclear receptors (PPARα/PPARγ) in the regulation of pro-inflammatory pathways, with the aim to thwart breast cancer stem cells functioning. PMID:23372804

  9. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Tandle, Anita T. [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Calvani, Maura; Uranchimeg, Badarch [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Zahavi, David [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Melillo, Giovanni [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Libutti, Steven K., E-mail: slibutti@montefiore.org [Department of Surgery, Montefiore-Einstein Center for Cancer Care, Albert Einstein College of Medicine, Greene Medical Arts Pavilion, 4th Floor 3400, Bainbridge Avenue, Bronx, New York 10467 (United States)

    2009-07-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.

  10. The Role of Hypoxia-Inducible Factor-1α, Glucose Transporter-1, (GLUT-1 and Carbon Anhydrase IX in Endometrial Cancer Patients

    Directory of Open Access Journals (Sweden)

    Pawel Sadlecki

    2014-01-01

    Full Text Available Hypoxia-inducible factor-1α (HIF-1α, glucose transporter-1 (GLUT-1, and carbon anhydrase IX (CAIX are important molecules that allow adaptation to hypoxic environments. The aim of our study was to investigate the correlation between HIF-1α, GLUT-1, and CAIX protein level with the clinicopathological features of endometrial cancer patients. Materials and Methods. 92 endometrial cancer patients, aged 37–84, were enrolled to our study. In all patients clinical stage, histologic grade, myometrial invasion, lymph node, and distant metastases were determined. Moreover, the survival time was assessed. Immunohistochemical analyses were performed on archive formalin fixed paraffin embedded tissue sections. Results. High significant differences (P=0.0115 were reported between HIF-1α expression and the histologic subtype of cancer. Higher HIF-1α expression was associated with the higher risk of recurrence (P=0.0434. The results of GLUT-1 and CAIX expression did not reveal any significant differences between the proteins expression in the primary tumor and the clinicopathological features. Conclusion. The important role of HIF-1α in the group of patients with the high risk of recurrence and the negative histologic subtype of the tumor suggest that the expression of this factor might be useful in the panel of accessory pathomorphological tests and could be helpful in establishing more accurate prognosis in endometrial cancer patients.

  11. Regulation of glucose transporter protein-1 and vascular endothelial growth factor by hypoxia inducible factor 1α under hypoxic conditions in Hep-2 human cells.

    Science.gov (United States)

    Xu, Ou; Li, Xiaoming; Qu, Yongtao; Liu, Shuang; An, Jie; Wang, Maoxin; Sun, Qingjia; Zhang, Wen; Lu, Xiuying; Pi, Lihong; Zhang, Min; Shen, Yupeng

    2012-12-01

    The present study evaluated the regulation of glucose transporter protein-1 (Glut-1) and vascular endothelial growth factor (VEGF) by hypoxia inducible factor 1α (HIF-1α) under hypoxic conditions in Hep-2 human cells to explore the feasibility of these three genes as tumor markers. Hep-2 cells were cultured under hypoxic and normoxic conditions for 6, 12, 24, 36 and 48 h. The proliferation of Hep-2 cells was evaluated using an MTT assay. The protein and mRNA expression levels of HIF-1α, Glut-1 and VEGF were detected using the S-P immunocytochemical method, western blotting and reverse transcription polymerase chain reaction (RT-PCR). The results revealed that the expression levels of HIF-1α, Glut-1 and VEGF protein in Hep-2 cells were significantly elevated under hypoxic conditions compared with those under normoxic conditions over 36 h. Under hypoxic conditions, mRNA levels of HIF-1α were stable, while mRNA levels of Glut-1 and VEGF changed over time. In conclusion, Glut-1 and VEGF were upregulated by HIF-1α under hypoxic conditions in a time-dependent manner in Hep-2 cells and their co-expression serves as a tumor marker.

  12. Experimental study of the correlation between 99Tcm-EC-MNZ SPECT imaging and the expression of hypoxia inducible factor-1α in tumor tissuse

    International Nuclear Information System (INIS)

    Chen Jie; Lu Xueguan; Tang Jun; Fan Wo

    2005-01-01

    Objective: To evaluate the correlation between 99 Tc m -ethylene dicysteinc-metronidazaole ( 99 Tc M -EC-MNZ) SPECT imaging and the expression of hypoxia inducible factor-1α (HIF-1α) in tumor tissue. Methods: Twelve S180 sarcoma-bearing Kunming mice tumor models were established. Hypoxic imaging was obtained by SPECT with 99 Tc m -EC-MNZ and the corresponding tumor/muscle ratios (T/M) were measured. Then the animals were sacrificed and the tumor specimen was resected, the expression of HIF-1α and vascular endothelial growth factor (VEGF) was measured by immunohistochemistry. Results: Three hours after injection of 99 Tc m -EC-MNZ, the T/M ranged from 1.93 to 4.46 (median 3.13). The expression of HIF-1α ranged from 31.2% to 60.8% (median 50.4%) and was linearly correlated with the T/M (t=2.732, r=0.654, P=0.021). The expression of VEGF ranged from 33.8% to 57.5% (median 53.1%) and also linearly correlated with the expression of HIF-1α (t=3.011, r=0.690, P=0.0131). Conclusions: There is linear correlation between 99 Tc m -EC-MNZ hypoxic SPECT imaging and the expression of HIF-1α. Combining them can reliably reflect the hypoxic status of the tumor. (authors)

  13. Coumestrol suppresses hypoxia inducible factor 1α by inhibiting ROS mediated sphingosine kinase 1 in hypoxic PC-3 prostate cancer cells.

    Science.gov (United States)

    Cho, Sung-Yun; Cho, Sunmi; Park, Eunkyung; Kim, Bonglee; Sohn, Eun Jung; Oh, Bumsuk; Lee, Eun-Ok; Lee, Hyo-Jeong; Kim, Sung-Hoon

    2014-06-01

    Among many signals to regulate hypoxia inducible factor 1α (HIF-1α), sphingosine kinase 1 (SPHK1) is also involved in various biological activities such as cell growth, survival, invasion, angiogenesis, and carcinogenesis. Thus, in the present study, molecular mechanisms of coumestrol were investigated on the SPHK1 and HIF-1α signaling pathway in hypoxic PC-3 prostate cancer cells. Coumestrol significantly suppressed SPHK1 activity and accumulation of HIF-1α in a time- and concentration-dependent manner in hypoxic PC-3 cells. In addition, coumestrol inhibited the phosphorylation status of AKT and glycogen synthase kinase-3β (GSK 3β) signaling involved in cancer metabolism. Furthermore, SPHK1 siRNA transfection, sphigosine kinase inhibitor (SKI), reactive oxygen species (ROS) enhanced the inhibitory effect of coumestrol on the accumulation of HIF-1α and the expression of pAKT and pGSK 3β in hypoxic PC-3 cells by combination index. Overall, our findings suggest that coumestrol suppresses the accumulation of HIF-1α via suppression of SPHK1 pathway in hypoxic PC-3 cells. Copyright © 2014. Published by Elsevier Ltd.

  14. Changes in Hypoxia-Inducible Factor-1 (HIF-1) and Regulatory Prolyl Hydroxylase (PHD) Enzymes Following Hypoxic-Ischemic Injury in the Neonatal Rat.

    Science.gov (United States)

    Chu, Hannah X; Jones, Nicole M

    2016-03-01

    Hypoxia leads to activation of many cellular adaptive processes which are regulated by the transcription factor hypoxia-inducible factor-1 (HIF-1). HIF-1 consists of HIF-1α and HIF-1ß subunits and levels of HIF-1α protein are regulated by HIF prolyl-hydroxylase enzymes (PHD1, 2, 3). The aim of the current study was to investigate the expression of HIF-1α and PHDs at various time points after hypoxia-ischemia (HI), using a neonatal rat model of HI brain injury. Sprague-Dawley rat pups (postnatal day 7) were anaesthetized and underwent right carotid artery occlusion and were then exposed to 6 % oxygen for 2.5 h at 37 °C. HI injured animals demonstrated a significant reduction in the size of the ipsilateral hemisphere, compared to sham controls. Protein analysis using western blotting and enzyme-linked immunosorbent assay showed that 24 h after HI, there was a significant increase in PHD3 protein and an increase of HIF-1α compared to controls. At the 72 h time point, there was a reduction in PHD3 protein, which appeared to relate to cellular loss. There were no changes in PHD1 or PHD2 protein levels after HI when compared to age-matched controls. Further studies are necessary to establish roles for the HIF-1 regulatory enzyme PHD3 in brain injury processes.

  15. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    International Nuclear Information System (INIS)

    Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch; Zahavi, David; Melillo, Giovanni; Libutti, Steven K.

    2009-01-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface α5β1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1α) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1α mediated transcriptional activity as well as HIF-1α mediated angiogenic sprouting of ECs. HIF-1α plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1α activities.

  16. Development of an oxygen-sensitive degradable peptide probe for the imaging of hypoxia-inducible factor-1-active regions in tumors.

    Science.gov (United States)

    Ueda, Masashi; Ogawa, Kei; Miyano, Azusa; Ono, Masahiro; Kizaka-Kondoh, Shinae; Saji, Hideo

    2013-12-01

    We aimed to develop a radiolabeled peptide probe for the imaging of hypoxia-inducible factor-1 (HIF-1)-active tumors. We synthesized the peptide probes that contain or lack an essential sequence of the oxygen-dependent degradation of HIF-1α in proteasomes ((123/125)I-DKOP30 or (125)I-mDKOP, respectively). The degradation of probes was evaluated in vitro using cell lysates containing proteasomes. In vivo biodistribution study, planar imaging, autoradiography, and comparison between probe accumulation and HIF-1 transcriptional activity were also performed. The (125)I-DKOP30 underwent degradation in a proteasome-dependent manner, while (125)I-mDKOP was not degraded. Biodistribution analysis showed (125)I-DKOP30 accumulation in tumors. The tumors were clearly visualized by in vivo imaging, and intratumoral distribution of (125)I-DKOP30 coincided with the HIF-1α-positive hypoxic regions. Tumoral accumulation of (125)I-DKOP30 was significantly correlated with HIF-1-dependent luciferase bioluminescence, while that of (125)I-mDKOP was not. (123)I-DKOP30 is a useful peptide probe for the imaging of HIF-1-active tumors.

  17. Aspartyl-(asparaginyl β-Hydroxylase, Hypoxia-Inducible Factor-1α and Notch Cross-Talk in Regulating Neuronal Motility

    Directory of Open Access Journals (Sweden)

    Margot Lawton

    2010-01-01

    Full Text Available Aspartyl-(Asparaginyl-β-Hydroxylase (AAH promotes cell motility by hydroxylating Notch. Insulin and insulin-like growth factor, type 1 (IGF-I stimulate AAH through Erk MAP K and phosphoinositol-3-kinase-Akt (PI3K-Akt. However, hypoxia/oxidative stress may also regulate AAH . Hypoxia-inducible factor-1alpha (HIF-1α regulates cell migration, signals through Notch, and is regulated by hypoxia/oxidative stress, insulin/IGF signaling and factor inhibiting HIF-1α (FIH hydroxylation. To examine cross-talk between HIF-1α and AAH , we measured AAH , Notch-1, Jagged-1, FIH, HIF-1α, HIF-1β and the hairy and enhancer of split 1 (HE S-1 transcription factor expression and directional motility in primitive neuroectodermal tumor 2 (PNET2 human neuronal cells that were exposed to H2O2 or transfected with short interfering RNA duplexes (siRNA targeting AAH , Notch-1 or HIF-1α. We found that: (1 AAH , HIF-1α and neuronal migration were stimulated by H2O2; (2 si-HIF-1α reduced AAH expression and cell motility; (3 si-AAH inhibited Notch and cell migration, but not HIF-1α and (4 si-Notch-1 increased FIH and inhibited HIF-1α. These findings suggest that AAH and HIF-1α crosstalk within a hydroxylation-regulated signaling pathway that may be transiently driven by oxidative stress and chronically regulated by insulin/IGF signaling.

  18. Insulin-like growth factor-1 prevents dorsal root ganglion neuronal tyrosine kinase receptor expression alterations induced by dideoxycytidine in vitro.

    Science.gov (United States)

    Liu, Huaxiang; Lu, Jing; He, Yong; Yuan, Bin; Li, Yizhao; Li, Xingfu

    2014-03-01

    Dideoxycytidine (zalcitabine, ddC) produces neurotoxic effects. It is particularly important to understand the toxic effects of ddC on different subpopulations of dorsal root ganglion (DRG) neurons which express distinct tyrosine kinase receptor (Trk) and to find therapeutic factors for prevention and therapy for ddC-induced peripheral sensory neuropathy. Insulin-like growth factor-1 (IGF-1) has been shown to have neurotrophic effects on DRG sensory neurons. However, little is known about the effects of ddC on distinct Trk (TrkA, TrkB, and TrkC) expression in DRG neurons and the neuroprotective effects of IGF-1 on ddC-induced neurotoxicity. Here, we have tested the extent to which the expression of TrkA, TrkB, and TrkC receptors in primary cultured DRG neurons is affected by ddC in the presence or absence of IGF-1. In this experiment, we found that exposure of 5, 25, and 50 μmol/L ddC caused a dose-dependent decrease of the mRNA, protein, and the proportion of TrkA-, TrkB-, and TrkC-expressing neurons. IGF-1 (20 nmol/L) could partially reverse the decrease of TrkA and TrkB, but not TrkC, expression with ddC exposure. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (10 μmol/L) blocked the effects of IGF-1. These results suggested that the subpopulations of DRG neurons which express distinct TrkA, TrkB, and TrkC receptors were affected by ddC exposure. IGF-1 might relieve the ddC-induced toxicity of TrkA- and TrkB-, but not TrkC-expressing DRG neurons. These data offer new clues for a better understanding of the association of ddC with distinct Trk receptor expression and provide new evidence of the potential therapeutic role of IGF-1 on ddC-induced neurotoxicity.

  19. MiR-142 modulates human pancreatic cancer proliferation and invasion by targeting hypoxia-inducible factor 1 (HIF-1α in the tumor microenvironments

    Directory of Open Access Journals (Sweden)

    Yebin Lu

    2017-02-01

    Full Text Available MicroRNAs regulate most protein-coding genes, including genes important in cancer and other diseases. In this study, we demonstrated that the expression of miR-142 could be significantly suppressed in pancreatic cancer specimens and cell lines compared to their adjacent tissues and normal pancreatic cells. Growth and invasion of PANC-1 and SW1990 cells were attenuated by overexpression of miR-142 in vitro. With the help of bioinformatics analysis, hypoxia-inducible factor 1 (HIF-1α was identified to be a direct target of miR-142, and a luciferase reporter experiment confirmed this discovery. Overexpression of miR-142 decreases protein expression of HIF-1α. In the hypoxic microenvironment, HIF-1α was up-regulated while miR-142 was down-regulated. The invaded cells significantly increased in the hypoxic microenvironment compared to the normoxic microenvironment. The hypoxia treatment induced cells’ proliferation, and invasion could be inhibited by miR-142 overexpression or HIF-1α inhibition. Moreover, expression of epithelial-mesenchymal transition (EMT markers, Vimentin, VEGF-C and E-cad, was altered under hypoxia conditions and regulated by miR-142/HIF-1α. Above all, these findings provided insights on the functional mechanism of miR-142, suggesting that the miR-142/HIF-1α axis may interfere with the proliferative and invasive properties of pancreatic cancer cells, and indicated that miR-142 could be a potential therapeutic target for pancreatic cancer.

  20. Andrographolide down-regulates hypoxia-inducible factor-1{alpha} in human non-small cell lung cancer A549 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hui-Hsuan [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Tsai, Chia-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Chou, Fen-Pi [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Wang, Chau-Jong [Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Hsuan, Shu-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, No.89, Wen Hwa 1st St., Rende Shiang, Tainan County 717, Taiwan (China); Wang, Cheng-Kun [E-Chyun Dermatology Clinic, No.70, Sec. 3, Jhonghua E. Rd., East District, Tainan, Taiwan (China); Chen, Jing-Hsien [Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, No.89, Wen Hwa 1st St., Rende Shiang, Tainan County 717, Taiwan (China)

    2011-02-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in A549 cells. HIF-1{alpha} plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1{alpha} was correlated with a rapid ubiquitin-dependent degradation of HIF-1{alpha}, and was accompanied by increased expressions of hydroxyl-HIF-1{alpha} and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1{alpha} inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGF{beta}1/PHD2/HIF-1{alpha} pathway, as demonstrated by the transfection of TGF{beta}1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1{alpha} transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  1. Andrographolide down-regulates hypoxia-inducible factor-1α in human non-small cell lung cancer A549 cells

    International Nuclear Information System (INIS)

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-01-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1α (HIF-1α) in A549 cells. HIF-1α plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1α was correlated with a rapid ubiquitin-dependent degradation of HIF-1α, and was accompanied by increased expressions of hydroxyl-HIF-1α and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1α inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGFβ1/PHD2/HIF-1α pathway, as demonstrated by the transfection of TGFβ1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1α transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  2. Up-regulation of hypoxia inducible factor-1α by cobalt chloride correlates with proliferation and apoptosis in PC-2 cells

    Directory of Open Access Journals (Sweden)

    Dai Zhi-Jun

    2012-03-01

    Full Text Available Abstract Background The exact mechanism of the effects of hypoxia on the proliferation and apoptosis in carcinoma cells is still conflicting. This study investigated the variation of hypoxia-inducible factor-1α(HIF-1α expression and the apoptosis effect of hypoxia stimulated by cobalt chloride (CoCl2 in pancreatic cancer PC-2 cells. Methods PC-2 cells were cultured with different concentration (50-200 μmol/L of CoCl2 after 24-120 hours to simulate hypoxia in vitro. The proliferation of PC-2 cells was examined by MTT assay. The cellular morphology of PC-2 cells were observed by light inverted microscope and transmission electron microscope(EM. The expression of HIF-1α on mRNA and protein level was measured by semi-quantitive RT-PCR and Western blot analysis. Apoptosis of PC-2 cells were demonstrated by flow cytometry with Annexin V-FITC/PI double staining. Results MTT assay showed that the proliferation of PC-2 cells were stimulated in the first 72 h, while after treated over 72 h, a dose- dependent inhibition of cell growth could be observed. By using transmission electron microscope, swollen chondrosomes, accumulated chromatin under the nuclear membrane and apoptosis bodies were observed. Flow cytometer(FCM analysis showed the apoptosis rate was correlated with the dosage of CoCl2. RT-PCR and Western blot analysis indicated that hypoxia could up-regulate the expression of HIF-1α on both mRNA and protein levels. Conclusion Hypoxic microenvironment stimulated by CoCl2 could effectively induce apoptosis and influence cell proliferation in PC-2 cells, the mechanism could be related to up-expression of HIF-1α.

  3. Radiosensitization of normoxic and hypoxic h1339 lung tumor cells by heat shock protein 90 inhibition is independent of hypoxia inducible factor-1α.

    Science.gov (United States)

    Schilling, Daniela; Bayer, Christine; Li, Wei; Molls, Michael; Vaupel, Peter; Multhoff, Gabriele

    2012-01-01

    Ionizing irradiation is a commonly accepted treatment modality for lung cancer patients. However, the clinical outcome is hampered by normal tissue toxicity and tumor hypoxia. Since tumors often have higher levels of active heat shock protein 90 (Hsp90) than normal tissues, targeting of Hsp90 might provide a promising strategy to sensitize tumors towards irradiation. Hsp90 client proteins include oncogenic signaling proteins, cell cycle activators, growth factor receptors and hypoxia inducible factor-1α (HIF-1α). Overexpression of HIF-1α is assumed to promote malignant transformation and tumor progression and thus might reduce the accessibility to radiotherapy. Herein, we describe the effects of the novel Hsp90 inhibitor NVP-AUY922 and 17-allylamino-17-demethoxygeldanamycin (17-AAG), as a control, on HIF-1α levels and radiosensitivity of lung carcinoma cells under normoxic and hypoxic conditions. NVP-AUY922 exhibited a similar biological activity to that of 17-AAG, but at only 1/10 of the dose. As expected, both inhibitors reduced basal and hypoxia-induced HIF-1α levels in EPLC-272H lung carcinoma cells. However, despite a down-regulation of HIF-1α upon Hsp90 inhibition, sensitivity towards irradiation remained unaltered in EPLC-272H cells under normoxic and hypoxic conditions. In contrast, treatment of H1339 lung carcinoma cells with NVP-AUY922 and 17-AAG resulted in a significant up-regulation of their initially high HIF-1α levels and a concomitant increase in radiosensitivity. In summary, our data show a HIF-1α-independent radiosensitization of normoxic and hypoxic H1339 lung cancer cells by Hsp90 inhibition.

  4. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1α targeted gene expression.

    Science.gov (United States)

    Miyake, Kotaro; Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan; Uto, Yoshihiro; Nagasawa, Hideko; Hori, Hitoshi; Shimada, Mitsuo

    2012-08-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1α (HIF-1α), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P<0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P<0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Insights into the therapeutic potential of hypoxia-inducible factor-1α small interfering RNA in malignant melanoma delivered via folate-decorated cationic liposomes

    Directory of Open Access Journals (Sweden)

    Chen Z

    2016-03-01

    Full Text Available Zhongjian Chen,1,* Tianpeng Zhang,2,* Baojian Wu,2 Xingwang Zhang2 1Department of Pharmaceutics, Shanghai Dermatology Hospital, 2Division of Pharmaceutics, College of Pharmacy, Jinan University, Gangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Malignant melanoma (MM represents the most dangerous form of skin cancer, and its incidence is expected to rise in the coming time. However, therapy for MM is limited by low topical drug concentration and multidrug resistance. This article aimed to develop folate-decorated cationic liposomes (fc-LPs for hypoxia-inducible factor-1α (HIF-1α small interfering (siRNA delivery, and to evaluate the potential of such siRNA/liposome complexes in MM therapy. HIF-1α siRNA-loaded fc-LPs (siRNA-fc-LPs were prepared by a film hydration method followed by siRNA incubation. Folate decoration of liposomes was achieved by incorporation of folate/oleic acid-diacylated oligochitosans. The resulting siRNA-fc-LPs were 95.3 nm in size with a ζ potential of 2.41 mV. The liposomal vectors exhibited excellent loading capacity and protective effect toward siRNA. The in vitro cell transfection efficiency was almost parallel to the commercially available Lipofectamine™ 2000. Moreover, the anti-melanoma activity of HIF-1α siRNA was significantly enhanced through fc-LPs. Western blot analysis and apoptosis test demonstrated that siRNA-fc-LPs substantially reduced the production of HIF-1α-associated protein and induced the apoptosis of hypoxia-tolerant melanoma cells. Our designed liposomal vectors might be applicable as siRNA delivery vehicle to systemically or topically treat MM. Keywords: malignant melanoma, HIF-1α siRNA, chitosan, cationic liposomes, gene therapy

  6. A transduced living hyaline cartilage graft releasing transgenic stromal cell-derived factor-1 inducing endogenous stem cell homing in vivo.

    Science.gov (United States)

    Zhang, Feng; Leong, Wenyan; Su, Kai; Fang, Yu; Wang, Dong-An

    2013-05-01

    Stromal cell-derived factor-1 (SDF-1), also known as a homing factor, is a potent chemokine that activates and directs mobilization, migration, and retention of certain cell species via systemic circulation. The responding homing cells largely consist of activated stem cells, so that, in case of tissue lesions, such SDF-1-induced cell migration may execute recruitment of endogenous stem cells to perform autoreparation and compensatory regeneration in situ. In this study, a recombinant adenoviral vector carrying SDF-1 transgene was constructed and applied to transduce a novel scaffold-free living hyaline cartilage graft (SDF-t-LhCG). As an engineered transgenic living tissue, SDF-t-LhCG is capable of continuously producing and releasing SDF-1 in vitro and in vivo. The in vitro trials were examined with ELISA, while the in vivo trials were subsequently performed via a subcutaneous implantation of SDF-t-LhCG in a nude mouse model, followed by series of biochemical and biological analyses. The results indicate that transgenic SDF-1 enhanced the presence of this chemokine in mouse's circulation system; in consequence, SDF-1-induced activation and recruitment of endogenous stem cells were also augmented in both peripheral blood and SDF-t-LhCG implant per se. These results were obtained via flow cytometry analyses on mouse blood samples and implanted SDF-t-LhCG samples, indicating an upregulation of the CXCR4(+)(SDF-1 receptor) cell population, accompanied by upregulation of the CD34(+), CD44(+), and Sca-1(+) cell populations as well as a downregulation of the CD11b(+) cell population. With the supply of SDF-1-recruited endogenous stem cells, enhanced chondrogenesis was observed in SDF-t-LhCG implants in situ.

  7. The zebrafish miR-462/miR-731 cluster is induced under hypoxic stress via hypoxia-inducible factor 1α and functions in cellular adaptations.

    Science.gov (United States)

    Huang, Chun-Xiao; Chen, Nan; Wu, Xin-Jie; Huang, Cui-Hong; He, Yan; Tang, Rong; Wang, Wei-Min; Wang, Huan-Ling

    2015-12-01

    Hypoxia, a unique and essential environmental stress, evokes highly coordinated cellular responses, and hypoxia-inducible factor (HIF) 1 in the hypoxia signaling pathway, an evolutionarily conserved cellular signaling pathway, acts as a master regulator of the transcriptional response to hypoxic stress. MicroRNAs (miRNAs), a major class of posttranscriptional gene expression regulators, also play pivotal roles in orchestrating hypoxia-mediated cellular adaptations. Here, global miRNA expression profiling and quantitative real-time PCR indicated that the up-regulation of the miR-462/miR-731 cluster in zebrafish larvae is induced by hypoxia. It was further validated that miR-462 and miR-731 are up-regulated in a Hif-1α-mediated manner under hypoxia and specifically target ddx5 and ppm1da, respectively. Overexpression of miR-462 and miR-731 represses cell proliferation through blocking cell cycle progress of DNA replication, and induces apoptosis. In situ detection revealed that the miR-462/miR-731 cluster is highly expressed in a consistent and ubiquitous manner throughout the early developmental stages. Additionally, the transcripts become restricted to the notochord, pharyngeal arch, liver, and gut regions from postfertilization d 3 to 5. These data highlight a previously unidentified role of the miR-462/miR-731 cluster as a crucial signaling mediator for hypoxia-mediated cellular adaptations and provide some insights into the potential function of the cluster during embryonic development. © FASEB.

  8. The dual role of cyclin C connects stress regulated gene expression to mitochondrial dynamics

    Directory of Open Access Journals (Sweden)

    Randy Strich

    2014-09-01

    Full Text Available Following exposure to cytotoxic agents, cellular damage is first recognized by a variety of sensor mechanisms. Thenceforth, the damage signal is transduced to the nucleus to install the correct gene expression program including the induction of genes whose products either detoxify destructive compounds or repair the damage they cause. Next, the stress signal is disseminated throughout the cell to effect the appropriate changes at organelles including the mitochondria. The mitochondria represent an important signaling platform for the stress response. An initial stress response of the mitochondria is extensive fragmentation. If the damage is prodigious, the mitochondria fragment (fission and lose their outer membrane integrity leading to the release of pro-apoptotic factors necessary for programmed cell death (PCD execution. As this complex biological process contains many moving parts, it must be exquisitely coordinated as the ultimate decision is life or death. The conserved C-type cyclin plays an important role in executing this molecular Rubicon by coupling changes in gene expression to mitochondrial fission and PCD. Cyclin C, along with its cyclin dependent kinase partner Cdk8, associates with the RNA polymerase holoenzyme to regulate transcription. In particular, cyclin C-Cdk8 repress many stress responsive genes. To relieve this repression, cyclin C is destroyed in cells exposed to pro-oxidants and other stressors. However, prior to its destruction, cyclin C, but not Cdk8, is released from its nuclear anchor (Med13, translocates from the nucleus to the cytoplasm where it interacts with the fission machinery and is both necessary and sufficient to induce extensive mitochondria fragmentation. Furthermore, cytoplasmic cyclin C promotes PCD indicating that it mediates both mitochondrial fission and cell death pathways. This review will summarize the role cyclin C plays in regulating stress-responsive transcription. In addition, we will detail

  9. The Cyclin-Dependent Kinase Ortholog pUL97 of Human Cytomegalovirus Interacts with Cyclins

    Directory of Open Access Journals (Sweden)

    Laura Graf

    2013-12-01

    Full Text Available The human cytomegalovirus (HCMV-encoded protein kinase, pUL97, is considered a cyclin-dependent kinase (CDK ortholog, due to shared structural and functional characteristics. The primary mechanism of CDK activation is binding to corresponding cyclins, including cyclin T1, which is the usual regulatory cofactor of CDK9. This study provides evidence of direct interaction between pUL97 and cyclin T1 using yeast two-hybrid and co-immunoprecipitation analyses. Confocal immunofluorescence revealed partial colocalization of pUL97 with cyclin T1 in subnuclear compartments, most pronounced in viral replication centres. The distribution patterns of pUL97 and cyclin T1 were independent of HCMV strain and host cell type. The sequence domain of pUL97 responsible for the interaction with cyclin T1 was between amino acids 231–280. Additional co-immunoprecipitation analyses showed cyclin B1 and cyclin A as further pUL97 interaction partners. Investigation of the pUL97-cyclin T1 interaction in an ATP consumption assay strongly suggested phosphorylation of pUL97 by the CDK9/cyclin T1 complex in a substrate concentration-dependent manner. This is the first demonstration of interaction between a herpesviral CDK ortholog and cellular cyclins.

  10. The zebrafish miR-125c is induced under hypoxic stress via hypoxia-inducible factor 1α and functions in cellular adaptations and embryogenesis.

    Science.gov (United States)

    He, Yan; Huang, Chun-Xiao; Chen, Nan; Wu, Meng; Huang, Yan; Liu, Hong; Tang, Rong; Wang, Wei-Min; Wang, Huan-Ling

    2017-09-26

    Hypoxia is a unique environmental stress. Hypoxia inducible factor-lα (HIF-lα) is a major transcriptional regulator of cellular adaptations to hypoxic stress. MicroRNAs (miRNAs) as posttranscriptional gene expression regulators occupy a crucial role in cell survival under low-oxygen environment. Previous evidences suggested that miR-125c is involved in hypoxia adaptation, but its precise biological roles and the regulatory mechanism underlying hypoxic responses remain unknown. The present study showed that zebrafish miR-125c is upregulated by hypoxia in a Hif-lα-mediated manner in vitro and in vivo . Dual-luciferase assay revealed that cdc25a is a novel target of miR-125c. An inverse correlation between miR-125c and cdc25a was further confirmed in vivo , suggesting miR-125c as a crucial physiological inhibitor of cdc25a which responds to cellular hypoxia. Overexpression of miR-125c suppressed cell proliferation, led to cell cycle arrest at the G1 phase in ZF4 cells and induced apoptotic responses during embryo development. More importantly, miR-125c overexpression resulted in severe malformation and reduction of motility during zebrafish embryonic development. Taken together, we conclude that miR-125c plays a pivotal role in cellular adaptations to hypoxic stress at least in part through the Hif-1α/miR-125c/cdc25a signaling and has great impact on zebrafish early embryonic development.

  11. The 2-oxoglutarate analog 3-oxoglutarate decreases normoxic hypoxia-inducible factor-1α in cancer cells, induces cell death, and reduces tumor xenograft growth

    Directory of Open Access Journals (Sweden)

    Koivunen P

    2016-03-01

    Full Text Available Peppi Koivunen,1 Stuart M Fell,2,3 Wenyun Lu,4 Joshua D Rabinowitz,4 Andrew L Kung,5,6 Susanne Schlisio,2,7 1Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland; 2Ludwig Institute for Cancer Research Ltd, Stockholm, Sweden; 3Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; 4Department of Chemistry and Integrative Genomics, Princeton University, Princeton, NJ, 5Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 6Department of Pediatrics, Columbia University Medical Center, New York, NY, USA; 7Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden Abstract: The cellular response to hypoxia is primarily regulated by the hypoxia-inducible factors (HIFs. HIF-1α is also a major mediator of tumor physiology, and its abundance is correlated with therapeutic resistance in a broad range of cancers. Accumulation of HIF-1α under hypoxia is mainly controlled by the oxygen-sensing HIF prolyl 4-hydroxylases (EGLNs, also known as PHDs. Here, we identified a high level of normoxic HIF-1α protein in various cancer cell lines. EGLNs require oxygen and 2-oxoglutarate for enzymatic activity. We tested the ability of several cell-permeable 2-oxoglutarate analogs to regulate the abundance of HIF-1α protein. We identified 3-oxoglutarate as a potent regulator of HIF-1α in normoxic conditions. In contrast to 2-oxoglutarate, 3-oxoglutarate decreased the abundance of HIF-1α protein in several cancer cell lines in normoxia and diminished HIF-1α levels independent of EGLN enzymatic activity. Furthermore, we observed that 3-oxoglutarate was detrimental to cancer cell survival. We show that esterified 3-oxoglutarate, in combination with the cancer chemotherapeutic drug vincristine, induces apoptosis and inhibits tumor growth in vitro and in vivo. Our data

  12. Cyclin D1 expression in prostate carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, R.A.; Ravinal, R.C.; Costa, R.S.; Lima, M.S. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Patologia, Ribeirão Preto, SP, Brasil, Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Tucci, S. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Divisão de Urologia, Ribeirão Preto, SP, Brasil, Divisão de Urologia, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Muglia, V.F. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Medicina Interna (Centro de Ciência da Imagem), Ribeirão Preto, SP, Brasil, Departamento de Medicina Interna (Centro de Ciência da Imagem), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Reis, R.B. Dos [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Divisão de Urologia, Ribeirão Preto, SP, Brasil, Divisão de Urologia, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, G.E.B. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Patologia, Ribeirão Preto, SP, Brasil, Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-05-09

    The purpose of this study was to investigate the relationship between cyclin D1 expression and clinicopathological parameters in patients with prostate carcinoma. We assessed cyclin D1 expression by conventional immunohistochemistry in 85 patients who underwent radical prostatectomy for prostate carcinoma and 10 normal prostate tissue samples retrieved from autopsies. We measured nuclear immunostaining in the entire tumor area and based the results on the percentage of positive tumor cells. The preoperative prostate-specific antigen (PSA) level was 8.68±5.16 ng/mL (mean±SD). Cyclin D1 staining was positive (cyclin D1 expression in >5% of tumor cells) in 64 cases (75.4%) and negative (cyclin D1 expression in ≤5% of tumor cells) in 21 cases (including 15 cases with no immunostaining). Normal prostate tissues were negative for cyclin D1. Among patients with a high-grade Gleason score (≥7), 86% of patients demonstrated cyclin D1 immunostaining of >5% (P<0.05). In the crude analysis of cyclin D1 expression, the high-grade Gleason score group showed a mean expression of 39.6%, compared to 26.9% in the low-grade Gleason score group (P<0.05). Perineural invasion tended to be associated with cyclin D1 expression (P=0.07), whereas cyclin D1 expression was not associated with PSA levels or other parameters. Our results suggest that high cyclin D1 expression could be a potential marker for tumor aggressiveness.

  13. Cyclin D1 expression in prostate carcinoma

    International Nuclear Information System (INIS)

    Pereira, R.A.; Ravinal, R.C.; Costa, R.S.; Lima, M.S.; Tucci, S.; Muglia, V.F.; Reis, R.B. Dos; Silva, G.E.B.

    2014-01-01

    The purpose of this study was to investigate the relationship between cyclin D1 expression and clinicopathological parameters in patients with prostate carcinoma. We assessed cyclin D1 expression by conventional immunohistochemistry in 85 patients who underwent radical prostatectomy for prostate carcinoma and 10 normal prostate tissue samples retrieved from autopsies. We measured nuclear immunostaining in the entire tumor area and based the results on the percentage of positive tumor cells. The preoperative prostate-specific antigen (PSA) level was 8.68±5.16 ng/mL (mean±SD). Cyclin D1 staining was positive (cyclin D1 expression in >5% of tumor cells) in 64 cases (75.4%) and negative (cyclin D1 expression in ≤5% of tumor cells) in 21 cases (including 15 cases with no immunostaining). Normal prostate tissues were negative for cyclin D1. Among patients with a high-grade Gleason score (≥7), 86% of patients demonstrated cyclin D1 immunostaining of >5% (P<0.05). In the crude analysis of cyclin D1 expression, the high-grade Gleason score group showed a mean expression of 39.6%, compared to 26.9% in the low-grade Gleason score group (P<0.05). Perineural invasion tended to be associated with cyclin D1 expression (P=0.07), whereas cyclin D1 expression was not associated with PSA levels or other parameters. Our results suggest that high cyclin D1 expression could be a potential marker for tumor aggressiveness

  14. Furan- and Thiophene-2-Carbonyl Amino Acid Derivatives Activate Hypoxia-Inducible Factor via Inhibition of Factor Inhibiting Hypoxia-Inducible Factor-1

    Directory of Open Access Journals (Sweden)

    Shin-ichi Kawaguchi

    2018-04-01

    Full Text Available Induction of a series of anti-hypoxic proteins protects cells during exposure to hypoxic conditions. Hypoxia-inducible factor-α (HIF-α is a major transcription factor that orchestrates this protective effect. To activate HIF exogenously, without exposing cells to hypoxic conditions, many small-molecule inhibitors targeting prolyl hydroxylase domain-containing protein have been developed. In addition, suppression of factor inhibiting HIF-1 (FIH-1 has also been shown to have the potential to activate HIF-α. However, few small-molecule inhibitors of FIH-1 have been developed. In this study, we synthesized a series of furan- and thiophene-2-carbonyl amino acid derivatives having the potential to inhibit FIH-1. The inhibitory activities of these compounds were evaluated in SK-N-BE(2c cells by measuring HIF response element (HRE promoter activity. Several furan- and thiophene-2-carbonyl amino acid derivatives inhibited FIH-1 based on correlations among the docking score of the FIH-1 active site, the chemical structure of the compounds, and biological HIF-α/HRE transcriptional activity.

  15. Cyclin K and cyclin D1b are oncogenic in myeloma cells

    Directory of Open Access Journals (Sweden)

    Renoir Jack-Michel

    2010-05-01

    Full Text Available Abstract Background Aberrant expression of cyclin D1 is a common feature in multiple myeloma (MM and always associated with mantle cell lymphoma (MCL. CCND1 gene is alternatively spliced to produce two cyclin D1 mRNA isoforms which are translated in two proteins: cyclin D1a and cyclin D1b. Both isoforms are present in MM cell lines and primary cells but their relative role in the tumorigenic process is still elusive. Results To test the tumorigenic potential of cyclin D1b in vivo, we generated cell clones derived from the non-CCND1 expressing MM LP-1 cell line, synthesizing either cyclin D1b or cyclin K, a structural homolog and viral oncogenic form of cyclin D1a. Immunocompromised mice injected s.c. with LP-1K or LP-1D1b cells develop tumors at the site of injection. Genome-wide analysis of LP-1-derived cells indicated that several cellular processes were altered by cyclin D1b and/or cyclin K expression such as cell metabolism, signal transduction, regulation of transcription and translation. Importantly, cyclin K and cyclin D1b have no major action on cell cycle or apoptosis regulatory genes. Moreover, they impact differently cell functions. Cyclin K-expressing cells have lost their migration properties and display enhanced clonogenic capacities. Cyclin D1b promotes tumorigenesis through the stimulation of angiogenesis. Conclusions Our study indicates that cyclin D1b participates into MM pathogenesis via previously unrevealed actions.

  16. Factors regulated by interferon gamma and hypoxia-inducible factor 1A contribute to responses that protect mice from Coccidioides immitis infection

    Directory of Open Access Journals (Sweden)

    Woelk Christopher H

    2012-09-01

    Full Text Available Abstract Background Coccidioidomycosis results from airborne infections caused by either Coccidioides immitis or C. posadasii. Both are pathogenic fungi that live in desert soil in the New World and can infect normal hosts, but most infections are self-limited. Disseminated infections occur in approximately 5% of cases and may prove fatal. Mouse models of the disease have identified strains that are resistant (e.g. DBA/2 or susceptible (e.g. C57BL/6 to these pathogens. However, the genetic and immunological basis for this difference has not been fully characterized. Results Microarray technology was used to identify genes that were differentially expressed in lung tissue between resistant DBA/2 and sensitive C57BL/6 mice after infection with C. immitis. Differentially expressed genes were mapped onto biological pathways, gene ontologies, and protein interaction networks, which revealed that innate immune responses mediated by Type II interferon (i.e., IFNG and the signal transducer and activator of transcription 1 (STAT1 contribute to the resistant phenotype. In addition, upregulation of hypoxia inducible factor 1A (HIF1A, possibly as part of a larger inflammatory response mediated by tumor necrosis factor alpha (TNFA, may also contribute to resistance. Microarray gene expression was confirmed by real-time quantitative PCR for a subset of 12 genes, which revealed that IFNG HIF1A and TNFA, among others, were significantly differentially expressed between the two strains at day 14 post-infection. Conclusion These results confirm the finding that DBA/2 mice express more Type II interferon and interferon stimulated genes than genetically susceptible strains and suggest that differential expression of HIF1A may also play a role in protection.

  17. Correlation of Hypoxia-Inducible Factor 1α with Angiogenesis in Liver Tumors After Transcatheter Arterial Embolization in an Animal Model

    International Nuclear Information System (INIS)

    Liang Bin; Zheng Chuansheng; Feng, Gan-Sheng; Wu Hanping; Wang Yong; Zhao Hui; Qian Jun; Liang Huimin

    2010-01-01

    This study sought to determine the expression of hypoxia-inducible factor 1α (HIF-1α) and its relation to angiogenesis in liver tumors after transcatheter arterial embolization (TAE) in an animal model. A total of 20 New Zealand White rabbits were implanted with VX2 tumor in liver. TAE-treated group animals (n = 10) received TAE with polyvinyl alcohol particles. Control group animals (n = 10) received sham embolization with distilled water. Six hours or 3 days after TAE, animals were humanely killed, and tumor samples were collected. Immunohistochemical staining was performed to evaluate HIF-1α and vascular endothelial growth factor (VEGF) protein expression and microvessel density (MVD). Real-time polymerase chain reaction was performed to examine VEGF mRNA levels. The levels of HIF-1α protein were significantly higher in TAE-treated tumors than those in the control tumors (P = 0.001). HIF-1α protein was expressed in viable tumor cells that were located predominantly at the periphery of necrotic tumor regions. The levels of VEGF protein and mRNA, and mean MVD were significantly increased in TAE-treated tumors compared with the control tumors (P = 0.001, 0.000, and 0.001, respectively). HIF-1α protein level was significantly correlated with VEGF mRNA (r = 0.612, P = 0.004) and protein (r = 0.554, P = 0.011), and MVD (r = 0.683, P = 0.001). We conclude that HIF-1α is overexpressed in VX2 tumors treated with TAE as a result of intratumoral hypoxia generated by the procedure and involved in activation of the TAE-associated tumor angiogenesis. HIF-1α might represent a promising therapeutic target for antiangiogenesis in combination with TAE against liver tumors.

  18. Effects of 17β-estradiol and 2-methoxyestradiol on the oxidative stress-hypoxia inducible factor-1 pathway in hypoxic pulmonary hypertensive rats.

    Science.gov (United States)

    Wang, Li; Zheng, Quan; Yuan, Yadong; Li, Yanpeng; Gong, Xiaowei

    2017-05-01

    The present study aimed to investigate the effects of 17β-estradiol (E2) and 2-methoxyestradiol (2ME) on the oxidative stress-hypoxia inducible factor-1 (OS-HIF-1) pathway in hypoxic pulmonary hypertensive rats. Female Sprague-Dawley rats were divided randomly into 4 groups, as follows: i) Control (Group A); ii) ovariectomy (OVX) + hypoxia (Group B); iii) OVX + hypoxia + E2 injection (Group C); and iv) 2ME injection (Group D). The rats were maintained under hypoxic conditions for 8 weeks, and mean pulmonary artery pressure (mPAP) and pulmonary arteriole morphology were measured. The reactive oxygen species, superoxide dismutase (SOD), manganese superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (Cu/ZnSOD) levels in serum were also measured. MnSOD and HIF-1α expression levels in lung tissue were determined by western blotting and reverse transcription-quantitative polymerase chain reaction. The mPAP and arterial remodeling index were significantly elevated following chronic hypoxia exposure; however, experimental data revealed a reduced response in E2 and 2ME intervention rats. Compared with Group A, Group B had significantly elevated oxidative stress levels, as illustrated by increased serum ROS levels, decreased serum SOD and MnSOD levels and decreased MnSOD mRNA and protein expression levels in lung tissue. Furthermore, HIF-1α mRNA and protein expression in Group B was significantly elevated compared with Group A. E2 and 2ME intervention significantly attenuated the aforementioned parameter changes, suggesting that E2 and 2ME partially ameliorate hypoxic pulmonary hypertension. The underlying mechanism of this may be associated with the increase in MnSOD activity and expression and reduction in ROS level, which reduces the levels of transcription and translation of HIF-1α.

  19. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion.

    Science.gov (United States)

    Xue, Mei; Li, Xu; Li, Zhengkun; Chen, Wei

    2014-07-01

    Urothelial carcinoma associated 1 (UCA1) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in bladder cancer progression and acts as a diagnostic biomarker for bladder carcinoma. Here, we studied the expression and function of lncRNA-UCA1 in the hypoxic microenvironment of bladder cancer. The expression and transcriptional activity of lncRNA-UCA1 were measured by quantitative real-time polymerase chain reaction and luciferase assays. Cell proliferation and apoptosis were evaluated by MTT assays and flow cytometry. Cell migration and invasion were detected by wound healing, migration, and invasion assays. The binding of hypoxia-inducible factor-1α (HIF-1α) to hypoxia response elements (HREs) in the lncRNA-UCA1 promoter was confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. HRE mutations were generated by using a site-directed mutagenesis kit, and HIF-1α knockdown was mediated by small interfering RNA. The effect of HIF-1α inhibition by YC-1 on lncRNA-UCA1 expression was also examined. LncRNA-UCA1 was upregulated by hypoxia in bladder cancer cells. Under hypoxic conditions, lncRNA-UCA1 upregulation increased cell proliferation, migration, and invasion and inhibited apoptosis. The underlying mechanism of hypoxia-upregulated lncRNA-UCA1 expression was that HIF-1α specifically bound to HREs in the lncRNA-UCA1 promoter. Furthermore, HIF-1α knockdown or inhibition could prevent lncRNA-UCA1 upregulation under hypoxia. These findings revealed the mechanism of lncRNA-UCA1 upregulation in hypoxic bladder cancer cells and suggested that effective blocking of lncRNA-UCA1 expression in the hypoxic microenvironment of bladder cancer could be a novel therapeutic strategy.

  20. Peritoneal milky spots serve as a hypoxic niche and favor gastric cancer stem/progenitor cell peritoneal dissemination through hypoxia-inducible factor 1α.

    Science.gov (United States)

    Miao, Zhi-Feng; Wang, Zhen-Ning; Zhao, Ting-Ting; Xu, Ying-Ying; Gao, Jian; Miao, Feng; Xu, Hui-Mian

    2014-12-01

    Peritoneal dissemination is the most common cause of death in gastric cancer patients. The hypoxic microenvironment plays a major role in controlling the tumor stem cell phenotype and is associated with patients' prognosis through hypoxia-inducible factor-1α (HIF-1α), a key transcriptional factor that responds to hypoxic stimuli. During the peritoneal dissemination process, gastric cancer stem/progenitor cells (GCSPCs) are thought to enter into and maintained in peritoneal milky spots (PMSs), which have hypoxic microenvironments. However, the mechanism through which the hypoxic environment of PMSs regulated GCSPC maintenance is still poorly understood. Here, we investigated whether hypoxic PMSs were an ideal cancer stem cell niche suitable for GCSPC engraftment. We also evaluated the mechanisms through which the HIF-1α-mediated hypoxic microenvironment regulated GCSPC fate. We observed a positive correlation between HIF-1α expression and gastric cancer peritoneal dissemination (GCPD) in gastric cancer patients. Furthermore, the GCSPC population expanded in primary gastric cancer cells under hypoxic condition in vitro, and hypoxic GCSPCs showed enhanced self-renewal ability, but reduced differentiation capacity, mediated by HIF-1α. In an animal model, GCSPCs preferentially resided in the hypoxic zone of PMSs; moreover, when the hypoxic microenvironment in PMSs was destroyed, GCPD was significantly alleviated. In conclusion, our results demonstrated that PMSs served as a hypoxic niche and favored GCSPCs peritoneal dissemination through HIF-1α both in vitro and in vivo. These results provided new insights into the GCPD process and may lead to advancements in the clinical treatment of gastric cancer. © 2014 The Authors. STEM CELLS Published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  1. mtDNA as a Mediator for Expression of Hypoxia-Inducible Factor 1α and ROS in Hypoxic Neuroblastoma Cells.

    Science.gov (United States)

    Kuo, Chung-Wen; Tsai, Meng-Han; Lin, Tsu-Kung; Tiao, Mao-Meng; Wang, Pei-Wen; Chuang, Jiin-Haur; Chen, Shang-Der; Liou, Chia-Wei

    2017-06-07

    Mitochondria consume O₂ to produce ATP and are critical for adaption of hypoxia, but the role of mitochondria in HIF-1α pathway is as yet unclear. In this study, mitochondrial DNA (mtDNA) enriched (SK-N-AS) and depleted (ρ⁰) cells of neuroblastoma were cultured in a hypoxic chamber to simulate a hypoxic condition and then the major components involved in mitochondrial related pathways, hypoxia-inducible factor 1α (HIF-1α) and reactive oxygen species (ROS) were measured. The results showed that hypoxia-stimulated exposure elevated expression of HIF-1α, which was additionally influenced by level of generated ROS within the cytosol. Moreover, elevation of HIF-1α also resulted in increases of lactate dehydrogenase A (LDH-A) and pyruvate dehydrogenase kinase 1 (PDK1) in both hypoxic cells. The expression of mitochondrial biogenesis related proteins and metabolic components were noted to increase significantly in hypoxic SK-N-AS cells, indicating that mtDNA was involved in mitochondrial retrograde signaling and metabolic pathways. An analysis of dynamic proteins found elevated levels of HIF-1α causing an increased expression of dynamin-related protein 1 (DRP1) during hypoxia; further, the existence of mtDNA also resulted in higher expression of DRP1 during hypoxia. By using siRNA of HIF-1α or DRP1, expression of DRP1 decreased after suppression of HIF-1α; moreover, the expression of HIF-1α was also affected by the suppression of DRP1. In this study, we demonstrated that mtDNA is a mediator of HIF-1α in eliciting metabolic reprogramming, and mitochondrial biogenesis. Identification of a mutual relationship between HIF-1α and DRP1 may be a critical tool in the future development of clinical applications.

  2. Hypoxia-Inducible Factor-1α (HIF-1α) Expression on Endothelial Cells in Juvenile Nasopharyngeal Angiofibroma: A Review of 70 cases and Tissue Microarray Analysis.

    Science.gov (United States)

    Song, Xiaole; Yang, Chenhe; Zhang, Huankang; Wang, Jingjing; Sun, Xicai; Hu, Li; Liu, Zhuofu; Wang, Dehui

    2018-06-01

    To examine the expression of hypoxia-inducible factor-1α (HIF-1α) and its related molecules (cellular repressor of E1A-stimulated genes [CREG], osteopontin [OPN], proto-oncogene tyrosine-protein kinase Src [c-Src], and vascular endothelial growth factor [VEGF]) in juvenile nasopharyngeal angiofibroma (JNA) and explore the correlation between clinical prognosis and HIF-1α expression. The study performed a retrospective review of the clinical records of patients with JNA treated between 2003 and 2007. Specimens were analyzed by immunohistochemistry for HIF-1α, CREG, OPN, c-Src, and VEGF expression, and microvessel density (MVD) was assessed by tissue microarray. The correlation between expression levels and clinicopathological features including age, tumor stage, intraoperative blood loss, and recurrence was analyzed. HIF-1α, CREG, OPN, c-Src, and VEGF were upregulated in endothelial cells (ECs) of patients with JNA, and strong correlations in the expression of these molecules were observed. HIF-1α expression was higher in young patients ( P = .032) and in recurrent cases ( P = .01). Survival analysis showed that low HIF-1α levels in ECs predicted longer time to recurrence (log rank test P = .006). Receiver operating characteristic curve analysis showed that HIF-1α was a prognostic factor for recurrence (area under the curve = 0.690, P = .019). No correlation was found between the expression of molecules and Radkowski stage or intraoperative blood loss. In cases of JNA treated surgically, HIF-1α expression in ECs is a useful prognostic factor for tumor recurrence.

  3. Angiogenesis and expression of vascular endothelial growth factor, tumour necrosis factor-α and hypoxia inducible factor-1α in canine renal cell carcinoma.

    Science.gov (United States)

    Yhee, J Y; Yu, C H; Kim, J H; Im, K S; Kim, N H; Brodersen, B W; Doster, A R; Sur, J-H

    2012-01-01

    The aim of the present study was to determine the distribution and characteristics of microvessels in various histological types of canine renal cell carcinoma (RCC). The study compared microvessel density (MVD) and distribution of blood vessels according to histological type and evaluated the presence of angiogenesis-related proteins. Nine archival samples of canine RCC were studied. MVD was calculated as the mean number of blood vessels per mm(2). The diameter of blood vessels was calculated by determining either the length of the long axis of blood vessels (diameter(max)) or the mean distance from the centre of each blood vessel to the tunica adventia (diameter(mean)). A significant difference in MVD was evident between RCCs and normal kidneys (46.6 ± 28.0 versus 8.4 ± 2.2 microvessels/mm(2)). Diameter(max) in canine RCCs (34.1 ± 14.7 μm) was also significantly different from normal canine kidney (23.2 ± 3.4 μm). Vascular endothelial growth factor (VEGF) was expressed by tumour cells and vascular endothelial cells and tumour necrosis factor (TNF)-α expression was observed in vascular endothelial cells in both neoplastic and normal kidney. Although VEGF is involved in angiogenesis and correlates with tumour stage of development, no correlation was found between VEGF expression and MVD. Tumour-associated macrophages expressing TNF-α and hypoxia inducible factor 1α were identified in peritumoural tissue and may play an important role in angiogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. High Nuclear Hypoxia-Inducible Factor 1 Alpha Expression Is a Predictor of Distant Recurrence in Patients With Resected Pancreatic Adenocarcinoma

    International Nuclear Information System (INIS)

    Colbert, Lauren E.; Fisher, Sarah B.; Balci, Serdar; Saka, Burcu; Chen, Zhengjia; Kim, Sungjin; El-Rayes, Bassel F.; Adsay, N. Volkan; Maithel, Shishir K.; Landry, Jerome C.

    2015-01-01

    Purpose: To evaluate nuclear hypoxia-inducible factor 1α (HIF-1α) expression as a prognostic factor for distant recurrence (DR) and local recurrence (LR) after pancreatic adenocarcinoma resection. Methods and Materials: Tissue specimens were collected from 98 patients with pancreatic adenocarcinoma who underwent resection without neoadjuvant therapy between January 2000 and December 2011. Local recurrence was defined as radiographic or pathologic evidence of progressive disease in the pancreas, pancreatic bed, or associated nodal regions. Distant recurrence was defined as radiographically or pathologically confirmed recurrent disease in other sites. Immunohistochemical staining was performed and scored by an independent pathologist blinded to patient outcomes. High HIF-1α overall expression score was defined as high percentage and intensity staining and thus score >1.33. Univariate analysis was performed for HIF-1α score with LR alone and with DR. Multivariate logistic regression was used to determine predictors of LR and DR. Results: Median follow-up time for all patients was 16.3 months. Eight patients (8%) demonstrated isolated LR, 26 patients (26.5%) had isolated DR, and 13 patients had both LR and DR. Fifty-three patients (54%) had high HIF-1α expression, and 45 patients (46%) had low HIF-1α expression. High HIF-1α expression was significantly associated with DR (P=.03), and low HIF-1α expression was significantly associated with isolated LR (P=.03). On multivariate logistic regression analysis, high HIF-1α was the only significant predictor of DR (odds ratio 2.46 [95% confidence interval 1.06-5.72]; P=.03). In patients with a known recurrence, an HIF-1α score ≥2.5 demonstrated a specificity of 100% for DR. Conclusions: High HIF-1α expression is a significant predictor of distant failure versus isolated local failure in patients undergoing resection of pancreatic adenocarcinoma. Expression of HIF-1α may have utility in determining candidates for

  5. Insulin Like Growth Factor-1 (IGF-1 Causes Overproduction of IL-8, an Angiogenic Cytokine and Stimulates Neovascularization in Isoproterenol-Induced Myocardial Infarction in Rats

    Directory of Open Access Journals (Sweden)

    Nagaraja Haleagrahara

    2011-11-01

    Full Text Available Angiogenesis factors are produced in response to hypoxic or ischemic insult at the site of pathology, which will cause neovascularization. Insulin like growth factor-1 (IGF-1 exerts potent proliferative, angiogenic and anti-apoptotic effects in target tissues. The present study was aimed to evaluate the effects of IGF-1 on circulating level of angiogenic cytokine interleukin-8 (IL-8, in experimentally-induced myocardial ischemia in rats. Male Sprague-Dawley rats were divided into control, IGF-1 treated (2 µg/kg/day subcutaneously, for 5 and 10 days, isoproterenol (ISO treated (85 mg/kg, subcutaneously for two days and ISO with IGF-1 treated (for 5 and 10 days. Heart weight, serum IGF-1, IL-8 and cardiac marker enzymes (CK-MB and LDH were recorded after 5 and 10 days of treatment. Histopathological analyses of the myocardium were also done. There was a significant increase in serum cardiac markers with ISO treatment indicating myocardial infarction in rats. IGF-1 level increased significantly in ISO treated groups and the level of IGF-1 was significantly higher after 10 days of treatment. IL-8 level increased significantly after ISO treatment after 5 and 10 days and IGF-1 concurrent treatment to ISO rats had significantly increased IL-8 levels. Histopathologically, myocyte necrosis and nuclear pyknosis were reduced significantly in IGF-1 treated group and there were numerous areas of capillary sprouting suggestive of neovascularization in the myocardium. Thus, IGF-1 protects the ischemic myocardium with increased production of circulating angiogenic cytokine, IL-8 and increased angiogenesis.

  6. Inhibition of hypoxia inducible factor-1α downregulates the expression of epithelial to mesenchymal transition early marker proteins without undermining cell survival in hypoxic lens epithelial cells.

    Science.gov (United States)

    Cammarata, Patrick R; Neelam, Sudha; Brooks, Morgan M

    2015-01-01

    The purpose of this study was to identify potential therapeutic strategies to slow down or prevent the expression of early-onset epithelial to mesenchymal transition (EMT) marker proteins (fibronectin and alpha smooth muscle actin, α-SMA) without sacrificing the synthesis and accumulation of the prosurvival protein vascular endothelial growth factor (VEGF) in cultured virally transformed human lens epithelial (HLE) cells. HLE-B3 cells, maintained in a continuous hypoxic environment (1% oxygen), were treated with SB216763, a specific inhibitor of glycogen synthase kinase-3β (GSK-3β) catalytic activity. Western blot analysis was employed to detect the cytoplasmic and nuclear levels of β-catenin, as well as the total lysate content of fibronectin and α-SMA. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of VEGF in cell culture medium. A hypoxia-inducible factor-1α (HIF-1α) translation inhibitor and an HIF-2α translation inhibitor were independently employed to evaluate the effect of hypoxia inducible factor inhibition on EMT marker protein and VEGF expression. XAV932 was used to assess the suppression of nuclear β-catenin and its downstream effect on EMT marker proteins and VEGF expression. SB216763-treated HLE-B3 cells caused marked inhibition of GSK-3β activity prompting a significant increase in the translocation of cytoplasmic β-catenin to the nucleus. The enhancement of nuclear β-catenin looked as if it positively correlated with a significant increase in the basal expression of VEGF as well as increased expression of fibronectin and α-SMA. In conjunction with SB216763, coadministration of an HIF-1α translation inhibitor, but not an HIF-2α translation inhibitor, markedly suppressed the expression of fibronectin and α-SMA without affecting VEGF levels. Treatment with XAV932 significantly reduced the level of nuclear β-catenin, but the levels of neither the EMT marker proteins nor VEGF were changed. Recently, we reported

  7. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1{alpha} targeted gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Kotaro, E-mail: hif.panc@gmail.com [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Uto, Yoshihiro [Department of Biological Science and Technology, Institute of Socio Technosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Nagasawa, Hideko [Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Hori, Hitoshi [Department of Biological Science and Technology, Institute of Socio Technosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Shimada, Mitsuo [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan)

    2012-08-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1{alpha} (HIF-1{alpha}), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: Black-Right-Pointing-Pointer We designed and synthesized novel hypoxic cytoxin, TX-2098. Black-Right-Pointing-Pointer TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. Black-Right-Pointing-Pointer TX-2098 reduced VEGF protein level than TPZ. Black-Right-Pointing-Pointer TX-2098

  8. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1α targeted gene expression

    International Nuclear Information System (INIS)

    Miyake, Kotaro; Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan; Uto, Yoshihiro; Nagasawa, Hideko; Hori, Hitoshi; Shimada, Mitsuo

    2012-01-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1α (HIF-1α), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: ► We designed and synthesized novel hypoxic cytoxin, TX-2098. ► TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. ► TX-2098 reduced VEGF protein level than TPZ. ► TX-2098 inhibited mRNA expression of VEGF, GLUT1 and Aldolase A, not HIF-1α. ► TX-2098 improved the survival in

  9. Proteasome-mediated degradation of cell division cycle 25C and cyclin-dependent kinase 1 in phenethyl isothiocyanate-induced G2-M-phase cell cycle arrest in PC-3 human prostate cancer cells.

    Science.gov (United States)

    Xiao, Dong; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V

    2004-05-01

    Phenethyl isothiocyanate (PEITC), a constituent of many cruciferous vegetables, offers significant protection against cancer in animals induced by a variety of carcinogens. The present study demonstrates that PEITC suppresses proliferation of PC-3 cells in a dose-dependent manner by causing G(2)-M-phase cell cycle arrest and apoptosis. Interestingly, phenyl isothiocyanate (PITC), which is a structural analogue of PEITC but lacks the -CH(2) spacers that link the aromatic ring to the -N=C=S group, neither inhibited PC-3 cell viability nor caused cell cycle arrest or apoptosis. These results indicated that even a subtle change in isothiocyanate (ITC) structure could have a significant impact on its biological activity. The PEITC-induced cell cycle arrest was associated with a >80% reduction in the protein levels of cyclin-dependent kinase 1 (Cdk1) and cell division cycle 25C (Cdc25C; 24 h after treatment with 10 micro M PEITC), which led to an accumulation of Tyr(15) phosphorylated (inactive) Cdk1. On the other hand, PITC treatment neither reduced protein levels of Cdk1 or Cdc25C nor affected Cdk1 phosphorylation. The PEITC-induced decline in Cdk1 and Cdc25C protein levels and cell cycle arrest were significantly blocked on pretreatment of PC-3 cells with proteasome inhibitor lactacystin. A 24 h exposure of PC-3 cells to 10 micro M PEITC, but not PITC, resulted in about 56% and 44% decrease in the levels of antiapoptotic proteins Bcl-2 and Bcl-X(L), respectively. However, ectopic expression of Bcl-2 failed to alter sensitivity of PC-3 cells to growth inhibition or apoptosis induction by PEITC. Treatment of cells with PEITC, but not PITC, also resulted in cleavage of procaspase-3, procaspase-9, and procaspase-8. Moreover, the PEITC-induced apoptosis was significantly attenuated in the presence of general caspase inhibitor and specific inhibitors of caspase-8 and caspase-9. In conclusion, our data indicate that PEITC-induced cell cycle arrest in PC-3 cells is likely due

  10. Caenorhabditis elegans ATPase inhibitor factor 1 (IF1 MAI-2 preserves the mitochondrial membrane potential (Δψm and is important to induce germ cell apoptosis.

    Directory of Open Access Journals (Sweden)

    L P Fernández-Cárdenas

    Full Text Available When the electrochemical proton gradient is disrupted in the mitochondria, IF1 (Inhibitor Factor-1 inhibits the reverse hydrolytic activity of the F1Fo-ATP synthase, thereby allowing cells to conserve ATP at the expense of losing the mitochondrial membrane potential (Δψm. The function of IF1 has been studied mainly in different cell lines, but these studies have generated contrasting results, which have not been helpful to understand the real role of this protein in a whole organism. In this work, we studied IF1 function in Caenorhabditis elegans to understand IF1´s role in vivo. C. elegans has two inhibitor proteins of the F1Fo-ATPase, MAI-1 and MAI-2. To determine their protein localization in C. elegans, we generated translational reporters and found that MAI-2 is expressed ubiquitously in the mitochondria; conversely, MAI-1 was found in the cytoplasm and nuclei of certain tissues. By CRISPR/Cas9 genome editing, we generated mai-2 mutant alleles. Here, we showed that mai-2 mutant animals have normal progeny, embryonic development and lifespan. Contrasting with the results previously obtained in cell lines, we found no evident defects in the mitochondrial network, dimer/monomer ATP synthase ratio, ATP concentration or respiration. Our results suggest that some of the roles previously attributed to IF1 in cell lines could not reflect the function of this protein in a whole organism and could be attributed to specific cell lines or methods used to silence, knockout or overexpress this protein. However, we did observe that animals lacking IF1 had an enhanced Δψm and lower physiological germ cell apoptosis. Importantly, we found that mai-2 mutant animals must be under stress to observe the role of IF1. Accordingly, we observed that mai-2 mutant animals were more sensitive to heat shock, oxidative stress and electron transport chain blockade. Furthermore, we observed that IF1 is important to induce germ cell apoptosis under certain types of

  11. Putative role of ischemic postconditioning in a rat model of limb ischemia and reperfusion: involvement of hypoxia-inducible factor-1α expression

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T. [Department of Anesthesiology, Shuyang People' s Hospital, JiangSu (China); Zhou, Y.T. [Department of General Surgery, Shuyang People' s Hospital, JiangSu (China); Chen, X.N. [Institute of Pathophysiology, School of Basic Medical Sciences, LanZhou University, Lanzhou, Gansu (China); Zhu, A.X. [Department of Pharmacy, Shuyang People' s Hospital, JiangSu (China)

    2014-07-25

    Hypoxia-inducible factor-1α (HIF-1α) is one of the most potent angiogenic growth factors. It improves angiogenesis and tissue perfusion in ischemic skeletal muscle. In the present study, we tested the hypothesis that ischemic postconditioning is effective for salvaging ischemic skeletal muscle resulting from limb ischemia-reperfusion injury, and that the mechanism involves expression of HIF-1α. Wistar rats were randomly divided into three groups (n=36 each): sham-operated (group S), hindlimb ischemia-reperfusion (group IR), and ischemic postconditioning (group IPO). Each group was divided into subgroups (n=6) according to reperfusion time: immediate (0 h, T{sub 0}), 1 h (T{sub 1}), 3 h (T{sub 3}), 6 h (T{sub 6}), 12 h (T{sub 12}), and 24 h (T{sub 24}). In the IPO group, three cycles of 30-s reperfusion and 30-s femoral aortic reocclusion were carried out before reperfusion. At all reperfusion times (T{sub 0}-T{sub 24}), serum creatine kinase (CK) and lactate dehydrogenase (LDH) activities, as well as interleukin (IL)-6, IL-10, and tumor necrosis factor-α (TNF-α) concentrations, were measured in rats after they were killed. Histological and immunohistochemical methods were used to assess the skeletal muscle damage and HIF-1α expression in skeletal muscle ischemia. In groups IR and IPO, serum LDH and CK activities and TNF-α, IL-6, and IL-10 concentrations were all significantly increased compared to group S, and HIF-1α expression was up-regulated (P<0.05 or P<0.01). In group IPO, serum LDH and CK activities and TNF-α and IL-6 concentrations were significantly decreased, IL-10 concentration was increased, HlF-1α expression was down-regulated (P<0.05 or P<0.01), and the pathological changes were reduced compared to group IR. The present study suggests that ischemic postconditioning can reduce skeletal muscle damage caused by limb ischemia-reperfusion and that its mechanisms may be related to the involvement of HlF-1α in the limb ischemia-reperfusion injury

  12. [Effects of feixin decoction on the contents of hypoxia-inducible factor-1alpha and vascular endothelial growth factor in the rat model of hypoxic pulmonary hypertension].

    Science.gov (United States)

    He, Hong-Jun; Dai, Ai-Guo

    2012-05-01

    To explore the effects of Feixin Decoction (FXD) on the hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) in the rat model of hypoxic pulmonary hypertension (HPH), and to study its mechanisms for treating HPH. Forty healthy male SD rats were randomly divided into four groups, i. e., the normal control group, the HPH model group, the FXD group, and the Nifedipine group, 10 rats in each group. The HPH rat model was prepared using normal pressure intermittent hypoxia method. Except the normal control group, rats in the rest groups were fed in a self-made hypoxic plexiglass cabin, with the poor oxygen condition for 8 h daily for 14 successive days. Then the distilled water (at 30 mL/kg) was given by gastrogavage to rats in the normal control group and the HPH model group. FXD (at 28 g/kg) and Nifedipine (at 20 mg/kg) were given by gastrogavage to rats in the FXD group and the Nifedipine group respectively, once daily, for 14 successive days. Besides, hypoxia was continued for 14 days while medicating. The mean pulmonary artery pressure (mPAP) was detected on the second day after the last medication. The morphology of the pulmonary arteriole was detected. The ratio of pulmonary artery wall area and tube area (WA%) was determined. The protein and mRNA expressions of HIF-1alpha and VEGF were detected using immunohistochemistry and in situ hybridization technique. Compared with the normal control group, mPAP, WA%, and the protein and mRNA expressions of HIF-1alpha and VEGF significantly increased in the model group (P < 0.01, P < 0.05). Compared with the HPH model group, mPAP, WA%, and the protein and mRNA expressions of HIF-1alpha and VEGF significantly decreased in the FXD group (P < 0.01, P < 0.05). FXD down-regulated the expression of VEGF through decreasing the expression of HIF-1alpha. One of its mechanisms for treating HPH might be partially due to reversing the remodeling of pulmonary vascular smooth muscle.

  13. Hypoxia regulates the expression and localization of CCAAT/enhancer binding protein α by hypoxia inducible factor-1α in bladder transitional carcinoma cells.

    Science.gov (United States)

    Xue, Mei; Li, Xu; Chen, Wei

    2015-08-01

    Hypoxia inducible factor-1α (HIF-1α) is overexpressed in various types of solid tumor in humans, including bladder cancer. HIF-1α regulates the expression of a series of genes, which are involved in cell proliferation, differentiation, apoptosis, angiogenesis, migration and invasion and represents a potential therapeutic target for the treatment of human cancer. Despite extensive investigation of the effects of HIF-1α in the progression and metastasis of bladder cancer, the possible regulatory mechanisms underlying the effects of HIF-1α on bladder cancer cell proliferation and differentiation remain to be elucidated. It has been suggested that the transcription factor CCAAT/enhancer binding protein α (C/EBPα) acts as a tumor suppressor in several types of cancer cell, which are involved in regulating cell differentiation, proliferation and apoptosis. The present study confirmed that, in bladder cancer cells, the expression and localization of C/EBPα was regulated by hypoxia through an HIF-1α -dependent mechanism, which may be significant in bladder cancer cell proliferation and differentiation. The 5637 and T24 bladder cancer cell lines were incubated under normoxic and hypoxic conditions. The expression levels of HIF-1α and C/EBPα were detected by reverse transcription-quantitative polymerase chain reaction, western blotting and immunofluorescence analysis. The results revealed that, under hypoxic conditions, the protein expression levels of HIF-1α were markedly upregulated, but the mRNA levels were not altered. However, the mRNA and protein levels of C/EBPα were significantly reduced. The present study further analyzed the subcellular localization of C/EBPα, which was markedly decreased in the nuclei under hypoxic conditions. Following HIF-1α small interference RNA silencing of HIF-1α, downregulation of C/EBPα was prevented in the bladder cancer cells cultured under hypoxic conditions. In addition, groups of cells treated with 3-(5'-hydroxymethyl

  14. Myeloid cell leukemia-1 (Mc1-1 is a candidate target gene of hypoxia-inducible factor-1 (HIF-1 in the testis

    Directory of Open Access Journals (Sweden)

    Palladino Michael A

    2012-12-01

    Full Text Available Abstract Background Spermatic cord torsion can lead to testis ischemia (I and subsequent ischemia-reperfusion (I/R causing germ cell-specific apoptosis. Previously, we demonstrated that the hypoxia-inducible factor-1 (HIF-1 transcription factor, a key regulator of physiological responses to hypoxia, is abundant in Leydig cells in normoxic and ischemic testes. We hypothesize that testicular HIF-1 activates the expression of antiapoptotic target genes to protect Leydig cells from apoptosis. In silico analysis of testis genes containing a consensus hypoxia response element (HRE, 5’-RCGTG-3’ identified myeloid cell leukemia-1 (Mcl-1 as a potential HIF-1 target gene. The purpose of this study was to determine whether HIF-1 shows DNA-binding activity in normoxic and ischemic testes and whether Mcl-1 is a target gene of testicular HIF-1. Methods The testicular HIF-1 DNA-binding capacity was analyzed in vitro using a quantitative enzyme-linked immunosorbent assay (ELISA and electrophoretic mobility shift assays (EMSA. MCL-1 protein expression was evaluated by immunoblot analysis and immunohistochemistry. The binding of testicular HIF-1 to the Mcl-1 gene was examined via chromatin immunoprecipitation (ChIP analysis. Results The ELISA and EMSA assays demonstrated that testicular HIF-1 from normoxic and ischemic testes binds DNA equally strongly, suggesting physiological roles for HIF-1 in the normoxic testis, unlike most tissues in which HIF-1 is degraded under normoxic conditions and is only activated by hypoxia. MCL-1 protein was determined to be abundant in both normoxic and ischemic testes and expressed in Leydig cells. In a pattern identical to that of HIF-1 expression, the steady-state levels of MCL-1 were not significantly affected by I or I/R and MCL-1 co-localized with HIF-1α in Leydig cells. Chromatin immunoprecipitation (ChIP analysis using a HIF-1 antibody revealed sequences enriched for the Mcl-1 promoter. Conclusions The results

  15. The anti-proliferative effect of L-carnosine correlates with a decreased expression of hypoxia inducible factor 1 alpha in human colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Barbara Iovine

    Full Text Available In recent years considerable attention has been given to the use of natural substances as anticancer drugs. The natural antioxidant dipeptide L-carnosine belongs to this class of molecules because it has been proved to have a significant anticancer activity both in vitro and in vivo. Previous studies have shown that L-carnosine inhibits the proliferation of human colorectal carcinoma cells by affecting the ATP and Reactive Oxygen Species (ROS production. In the present study we identified the Hypoxia-Inducible Factor 1α (HIF-1α as a possible target of L-carnosine in HCT-116 cell line. HIF-1α protein is over-expressed in multiple types of human cancer and is the major cause of resistance to drugs and radiation in solid tumours. Of particular interest are experimental data supporting the concept that generation of ROS provides a redox signal for HIF-1α induction, and it is known that some antioxidants are able to suppress tumorigenesis by inhibiting HIF-1α. In the current study we found that L-carnosine reduces the HIF-1α protein level affecting its stability and decreases the HIF-1 transcriptional activity. In addition, we demonstrated that L-carnosine is involved in ubiquitin-proteasome system promoting HIF-1α degradation. Finally, we compared the antioxidant activity of L-carnosine with that of two synthetic anti-oxidant bis-diaminotriazoles (namely 1 and 2, respectively. Despite these three compounds have the same ability in reducing intracellular ROS, 1 and 2 are more potent scavengers and have no effect on HIF-1α expression and cancer cell proliferation. These findings suggest that an analysis of L-carnosine antioxidant pathway will clarify the mechanism underlying the anti-proliferative effects of this dipeptide on colon cancer cells. However, although the molecular mechanism by which L-carnosine down regulates or inhibits the HIF-1α activity has not been yet elucidated, this ability may be promising in treating hypoxia

  16. Association of hypoxia inducible factor-1 alpha gene polymorphism with both type 1 and type 2 diabetes in a Caucasian (Hungarian sample

    Directory of Open Access Journals (Sweden)

    Panczel Pal

    2009-08-01

    Full Text Available Abstract Background Hypoxia inducible factor-1 alpha (HIF-1α is a transcription factor that plays an important role in neo-vascularisation, embryonic pancreas beta-cell mass development, and beta cell protection. Recently a non synonymous single nucleotide polymorphism (g.C45035T SNP, rs11549465 of HIF-1α gene, resulting in the p.P582S amino acid change has been shown to be associated with type 2 diabetes (T2DM in a Japanese population. Our aim was to replicate these findings on a Caucasian (Hungarian population, as well as to study whether this genetic effect is restricted to T2DM or can be expanded to diabetes in general. Methods A large Caucasian sample (N = 890 was recruited including 370 T2DM, 166 T1DM and 354 healthy subjects. Genotyping was validated by two independent methods: a restriction fragment analysis (RFLP and a real time PCR using TaqMan probes. An overestimation of heterozygotes by RFLP was observed as a consequence of a nearby SNP (rs34005929. Therefore genotyping results of the justified TaqMan system were accepted. The measured genotype distribution corresponded to Hardy-Weinberg equilibrium (P = 0.740 Results As the TT genotype was extremely rare in the population (0.6% in clinical sample and 2.5% in controls, the genotypes were grouped as T absent (CC and T present (CT and TT. Genotype-wise analysis showed a significant increase of T present group in controls (24.0% as compared to patients (16.8%, P = 0.008. This genetic effect was demonstrated in the separated samples of type 1 (15.1%, P = 0.020, and also in type 2 (17.6%, P = 0.032 diabetes. Allele-wise analysis gave identical results showing a higher frequency of the T allele in the control sample (13.3% than in the clinical sample (8.7%, P = 0.002 with similar results in type 1 (7.8%, P = 0.010 and type 2 (9.1%, P = 0.011 diabetes. The odds ratio for diabetes (either type 1 or 2 was 1.56 in the presence of the C allele. Conclusion We confirmed the protective effect

  17. Cyclin G2 suppresses estrogen-mediated osteogenesis through inhibition of Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Jinlan Gao

    Full Text Available Estrogen plays an important role in the maintenance of bone formation, and deficiency in the production of estrogen is directly linked to postmenopausal osteoporosis. To date, the underlying mechanisms of estrogen-mediated osteogenic differentiation are not well understood. In this study, a pluripotent mesenchymal precursor cell line C2C12 was used to induce osteogenic differentiation and subjected to detection of gene expressions or to manipulation of cyclin G2 expressions. C57BL/6 mice were used to generate bilateral ovariectomized and sham-operated mice for analysis of bone mineral density and protein expression. We identified cyclin G2, an unconventional member of cyclin, is involved in osteoblast differentiation regulated by estrogen in vivo and in vitro. In addition, the data showed that ectopic expression of cyclin G2 suppressed expression of osteoblast transcription factor Runx2 and osteogenic differentiation marker genes, as well as ALP activity and in vitro extracellular matrix mineralization. Mechanistically, Wnt/β-catenin signaling pathway is essential for cyclin G2 to inhibit osteogenic differentiation. To the best of our knowledge, the current study presents the first evidence that cyclin G2 serves as a negative regulator of both osteogenesis and Wnt/β-catenin signaling. Most importantly, the basal and 17β-estradiol-induced osteogenic differentiation was restored by overexpression of cyclin G2. These results taken together suggest that cyclin G2 may function as an endogenous suppressor of estrogen-induced osteogenic differentiation through inhibition of Wnt/β-catenin signaling.

  18. Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes

    NARCIS (Netherlands)

    Zhang, Y.; Moerkens, M.; Ramaiahgari, S.; Bont, de H.J.G.M.; Price, L.; Meerman, J.H.N.; Water, van de B.

    2011-01-01

    INTRODUCTION: Insulin-like growth factor 1 (IGF-1) receptor (IGF-1R) is phosphorylated in all breast cancer subtypes. Past findings have shown that IGF-1R mediates antiestrogen resistance through cross-talk with estrogen receptor (ER) signaling and via its action upstream of the epidermal growth

  19. Cyclin E-Mediated Human Proopiomelanocortin Regulation as a Therapeutic Target for Cushing Disease.

    Science.gov (United States)

    Liu, Ning-Ai; Araki, Takako; Cuevas-Ramos, Daniel; Hong, Jiang; Ben-Shlomo, Anat; Tone, Yukiko; Tone, Masahide; Melmed, Shlomo

    2015-07-01

    Cushing disease, due to pituitary corticotroph tumor ACTH hypersecretion, drives excess adrenal cortisol production with adverse morbidity and mortality. Loss of glucocorticoid negative feedback on the hypothalamic-pituitary-adrenal axis leads to autonomous transcription of the corticotroph precursor hormone proopiomelanocortin (POMC), consequent ACTH overproduction, and adrenal hypercortisolism. We previously reported that R-roscovitine (CYC202, seliciclib), a 2,6,9-trisubstituted purine analog, suppresses cyclin-dependent-kinase 2/cyclin E and inhibits ACTH in mice and zebrafish. We hypothesized that intrapituitary cyclin E signaling regulates corticotroph tumor POMC transcription independently of cell cycle progression. The aim was to investigate whether R-roscovitine inhibits human ACTH in corticotroph tumors by targeting the cyclin-dependent kinase 2/cyclin E signaling pathway. Primary cell cultures of surgically resected human corticotroph tumors were treated with or without R-roscovitine, ACTH measured by RIA and quantitative PCR, and/or Western blot analysis performed to investigate ACTH and lineage-specific transcription factors. Cyclin E and E2F transcription factor 1 (E2F1) small interfering RNA (siRNA) transfection was performed in murine corticotroph tumor AtT20 cells to elucidate mechanisms for drug action. POMC gene promoter activity in response to R-roscovitine treatment was analyzed using luciferase reporter and chromatin immunoprecipitation assays. R-roscovitine inhibits human corticotroph tumor POMC and Tpit/Tbx19 transcription with decreased ACTH expression. Cyclin E and E2F1 exhibit reciprocal positive regulation in corticotroph tumors. R-roscovitine disrupts E2F1 binding to the POMC gene promoter and suppresses Tpit/Tbx19 and other lineage-specific POMC transcription cofactors via E2F1-dependent and -independent pathways. R-roscovitine inhibits human pituitary corticotroph tumor ACTH by targeting the cyclin E/E2F1 pathway. Pituitary cyclin E

  20. Involvement of cyclin K posttranscriptional regulation in the formation of Artemia diapause cysts.

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    Full Text Available BACKGROUND: Artemia eggs tend to develop ovoviviparously to yield nauplius larvae in good rearing conditions; while under adverse situations, they tend to develop oviparously and encysted diapause embryos are formed instead. However, the intrinsic mechanisms regulating this process are not well understood. PRINCIPAL FINDING: This study has characterized the function of cyclin K, a regulatory subunit of the positive transcription elongation factor b (P-TEFb in the two different developmental pathways of Artemia. In the diapause-destined embryo, Western blots showed that the cyclin K protein was down-regulated as the embryo entered dormancy and reverted to relatively high levels of expression once development resumed, consistent with the fluctuations in phosphorylation of position 2 serines (Ser2 in the C-terminal domain (CTD of the largest subunit (Rpb1 of RNA polymerase II (RNAP II. Interestingly, the cyclin K transcript levels remained constant during this process. In vitro translation data indicated that the template activity of cyclin K mRNA stored in the postdiapause cyst was repressed. In addition, in vivo knockdown of cyclin K in developing embryos by RNA interference eliminated phosphorylation of the CTD Ser2 of RNAP II and induced apoptosis by inhibiting the extracellular signal-regulated kinase (ERK survival signaling pathway. CONCLUSIONS/SIGNIFICANCE: Taken together, these findings reveal a role for cyclin K in regulating RNAP II activity during diapause embryo development, which involves the post-transcriptional regulation of cyclin K. In addition, a further role was identified for cyclin K in regulating the control of cell survival during embryogenesis through ERK signaling pathways.

  1. Gene structure, expression, and DNA methylation characteristics of sea cucumber cyclin B gene during aestivation.

    Science.gov (United States)

    Zhu, Aijun; Chen, Muyan; Zhang, Xiumei; Storey, Kenneth B

    2016-12-05

    The sea cucumber, Apostichopus japonicus, is a good model for studying environmentally-induced aestivation by a marine invertebrate. One of the central requirements of aestivation is the repression of energy-expensive cellular processes such as cell cycle progression. The present study identified the gene structure of the cell cycle regulator, cyclin B, and detected the expression levels of this gene over three stages of the annual aestivation-arousal cycle. Furthermore, the DNA methylation characteristics of cyclin B were analyzed in non-aestivation and deep-aestivation stages of sea cucumbers. We found that the cyclin B promoter contains a CpG island, three CCAAT-boxes and three cell cycle gene homology regions (CHRs). Application of qRT-PCR analysis showed significant downregulation of cyclin B transcript levels during deep-aestivation in comparison with non-aestivation in both intestine and longitudinal muscle, and these returned to basal levels after arousal from aestivation. Methylation analysis of the cyclin B core promoter revealed that its methylation level showed significant differences between non-aestivation and deep-aestivation stages (p<0.05) and interestingly, a positive correlation between Cyclin B transcripts expression and methylation levels of the core promoter was also observed. Our findings suggest that cell cycle progression may be reversibly arrested during aestivation as indicated by the changes in cyclin B expression levels and we propose that DNA methylation is one of the regulatory mechanisms involved in cyclin B transcriptional variation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. [Effects of hypoxia inducible factor-1α on P311 and its influence on the migration of murine epidermal stem cells].

    Science.gov (United States)

    Xu, Z D; Li, H S; Wang, S; He, W F; Wu, J; Luo, G X

    2017-05-20

    Objective: To explore the effects of hypoxia inducible factor-1α (HIF-1α) on P311 and its influence on the migration of murine epidermal stem cells (ESCs) under hypoxia in vitro. Methods: Two kinds of murine ESCs were isolated and obtained from 15 neonatal wild-type C57BL/6J mice and 5 congeneric source P311 gene knock-out mice, respectively. The first passage of cells were used in the following experiments after morphologic observation and detection of expression of cell surface markers CD71 and CD49f with flow cytometer. (1) After cell scratch assay, according to the random number table (the same dividing method below), ESCs of P311 gene knock-out mice were divided into normoxia group (cells were cultured with complete medium in normoxic carbon dioxide incubator, and the subsequent normoxic treatments were the same) and hypoxia group (cells were cultured in hypoxic carbon dioxide incubator containing 1% oxygen, and the subsequent hypoxic treatments were the same), with 12 inserts in each group. ESCs of wild-type mice were divided into normoxia group, pure hypoxia group, dimethyl sulfoxide (DMSO) control group (2 μL DMSO solvent was added for 1 h of normoxia treatment before hypoxia treatment), HIF-1α inhibitor group (cells were treated with 11 μmol/L HIF-1 inhibitor of 2 μL under normoxia condition for 1 h before hypoxia treatment), HIF-1α stabilizer group (the cells were treated with 2 μmol/L FG-4592 of 2 μL under normoxia condition for 1 h before hypoxia treatment), with 12 inserts in each group. Three inserts of each time point in each group were adopted respectively to measure the residual width of scratch under inverted phase contrast microscope at post scratch hour (PSH) 0 (immediately), 12, 24, and 48. (2) After hypoxia treatment, the protein level of HIF-1α in ESCs of wild-type mice was detected by Western blotting at post hypoxia hour (PHH) 0, 12, 24, and 48. (3) ESCs of wild-type mice were divided into pure hypoxia group, DMSO control group

  3. c-Myc Represses Tumor-Suppressive microRNAs, let-7a, miR-16 and miR-29b, and Induces Cyclin D2-Mediated Cell Proliferation in Ewing's Sarcoma Cell Line.

    Directory of Open Access Journals (Sweden)

    Masanori Kawano

    Full Text Available Myc oncogenic transcription factor is known to inhibit tumor suppressive microRNAs (miRNAs, resulting in greater expression of their target protein related to cell cycle, invasion or anti-apoptotic factors in human cancer cells. To explore possible oncogenic factors in Ewing's sarcoma (ES, we conducted microarray-based approach to profile the changes in the expression of miRNAs and its downstream mRNAs in five ES cell lines and human mesenchymal stem cells (hMSCs. Three miRNAs, let-7a, miR-16 and miR-29b were significantly down-regulated, whereas c-Myc and cyclin D2 (CCND2 were significantly up-regulated in all tested ES cells compared with hMSCs. To verify that let-7a, miR-16 and miR-29b were the targets of c-Myc in ES cell lines, we transfected siRNA against c-Myc and confirmed the coordinate up-regulation of let-7a, miR-16 and miR-29b through the repression of c-Myc. The ES cells transfected with c-Myc-siRNA and let-7a, miR-16 and miR-29b exhibited the inhibition of the cell cycle progression. The increased expression of let-7a, miR-16 and miR-29b resulted in the reduction of CCND2 protein expression. We also demonstrated that c-Myc-siRNA treatment of ES cells was associated with the decreased expression of CCND2 as a down-stream of three miRNAs. Furthermore, the introduction of let-7a, miR-16 and miR-29b in ES cells could inhibit the c-Myc-mediated up-regulation of CCND2 resulted in the prevention of cell cycle progression. In addition, the transfection of let-7a, miR-16 and miR-29b in ES cells suppressed tumor growth ex vivo treatment. These findings suggests that the up-regulation of c-Myc inhibited the expression of let-7a, miR-16 and miR-29b subsequently induced CCND2 expression in ES cells. The present study might identify a novel oncogenic axis that c-Myc regulates the expression of CCND2 via let-7a, miR-16 and miR-29b, leading to the development new therapeutic targets for ES.

  4. Inhibition of Allograft Inflammatory Factor-1 in Dendritic Cells Restrains CD4+ T Cell Effector Responses and Induces CD25+Foxp3+ T Regulatory Subsets

    Directory of Open Access Journals (Sweden)

    Diana M. Elizondo

    2017-11-01

    Full Text Available Allograft inflammatory factor-1 (AIF1 is a cytoplasmic scaffold protein shown to influence immune responses in macrophages and microglial cells. The protein contains Ca2+ binding EF-hand and PDZ interaction domains important for mediating intracellular signaling complexes. This study now reports that AIF1 is expressed in CD11c+ dendritic cells (DC and silencing of expression restrains induction of antigen-specific CD4+ T cell effector responses. AIF1 knockdown in murine DC resulted in impaired T cell proliferation and skewed polarization away from T helper type 1 and 17 fates. In turn, there was a parallel expansion of IL-10-producing and CD25+Foxp3+ T regulatory subsets. These studies are the first to demonstrate that AIF1 expression in DC serves as a potent governor of cognate T cell responses and presents a novel target for engineering tolerogenic DC-based immunotherapies.

  5. MicroRNA-16 Modulates HuR Regulation of Cyclin E1 in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xun Guo

    2015-03-01

    Full Text Available RNA binding protein (RBPs and microRNAs (miRNAs or miRs are post-transcriptional regulators of gene expression that are implicated in development of cancers. Although their individual roles have been studied, the crosstalk between RBPs and miRNAs is under intense investigation. Here, we show that in breast cancer cells, cyclin E1 upregulation by the RBP HuR is through specific binding to regions in the cyclin E1 mRNA 3' untranslated region (3'UTR containing U-rich elements. Similarly, miR-16 represses cyclin E1, dependent on its cognate binding sites in the cyclin E1 3'UTR. Evidence in the literature indicates that HuR can regulate miRNA expression and recruit or dissociate RNA-induced silencing complexes (RISC. Despite this, miR-16 and HuR do not affect the other’s expression level or binding to the cyclin E1 3'UTR. While HuR overexpression partially blocks miR-16 repression of a reporter mRNA containing the cyclin E1 3'UTR, it does not block miR-16 repression of endogenous cyclin E1 mRNA. In contrast, miR-16 blocks HuR-mediated upregulation of cyclin E1. Overall our results suggest that miR-16 can override HuR upregulation of cyclin E1 without affecting HuR expression or association with the cyclin E1 mRNA.

  6. Apurinic/apyrimidinic endonuclease1/redox factor-1 (Ape1/Ref-1) is essential for IL-21-induced signal transduction through ERK1/2 pathway

    International Nuclear Information System (INIS)

    Juliana, Farha M.; Nara, Hidetoshi; Onoda, Tadashi; Rahman, Mizanur; Araki, Akemi; Jin, Lianjin; Fujii, Hodaka; Tanaka, Nobuyuki; Hoshino, Tomoaki; Asao, Hironobu

    2012-01-01

    Highlights: ► IL-21 induces nuclear accumulation of Ape1/Ref-1 protein. ► Ape1/Ref-1 is indispensable in IL-21-induced cell proliferation and survival signal. ► Ape1/Ref-1 is required for IL-21-induced ERK1/2 activation. -- Abstract: IL-21 is a pleiotropic cytokine that regulates T-cell and B-cell differentiation, NK-cell activation, and dendritic cell functions. IL-21 activates the JAK-STAT, ERK, and PI3K pathways. We report here that Ape1/Ref-1 has an essential role in IL-21-induced cell growth signal transduction. Overexpression of Ape1/Ref-1 enhances IL-21-induced cell proliferation, but it is suppressed by overexpressing an N-terminal deletion mutant of Ape1/Ref-1 that lacks the redox domain. Furthermore, knockdown of the Ape1/Ref-1 mRNA dramatically compromises IL-21-induced ERK1/2 activation and cell proliferation with increasing cell death. These impaired activities are recovered by the re-expression of Ape1/Ref-1 in the knockdown cells. Our findings are the first demonstration that Ape1/Ref-1 is an indispensable molecule for the IL-21-mediated signal transduction through ERK1/2 activation.

  7. Cyclin G1 inhibits the proliferation of mouse endometrial stromal cell in decidualization

    Directory of Open Access Journals (Sweden)

    Xu Qian

    2017-01-01

    Full Text Available Uterine stromal cell decidualization is a dynamic physiological process in which cell proliferation, differentiation and apoptosis are orchestrated and occur in a temporal and cell-specific manner. This process is important for successful embryo implantation. Many cell-cycle regulators are involved in decidualization. The protein cyclin G1 is a unique regulator of the cell cycle with dual functions in cell proliferation. It was reported that cyclin G1 is expressed in mouse uterine stromal cells during the period of peri-implantation. To prove the function of cyclin G1 in mouse uterine stromal cells during this period, immunohistochemistry was used to stain mouse uterine tissues on days 4-8 of pregnancy. The results showed obvious spatial and temporal expression of cyclin G1 in uterine stromal cells, and that it is expressed in the cells of the primary decidual zone (PDZ on day 5 and secondary decidual zone (SDZ on days 6 and 7, when the stromal cells experienced active proliferation and differentiation was initiated. Applying the decidualization model of cultured primary stromal cells in vitro, we further revealed that the expression of cyclin G1 is associated with decidualization of stromal cells induced by medroxyprogesterone acetate (MPA and estradiol-17β (E2. RNA interference was used for the knockdown of cyclin G1 in the induced decidual cells. Flow cytometry analysis indicated that the proportion of cells in the S stage was increased, and decreased in the G2/M phase. Our study indicates that cyclin G1, as a negative regulator of the cell cycle, plays an important role in the process of decidualization in mouse uterine stromal cells by inhibiting cell-cycle progression.

  8. In Vivo Imaging Reveals Significant Tumor Vascular Dysfunction and Increased Tumor Hypoxia-Inducible Factor-1α Expression Induced by High Single-Dose Irradiation in a Pancreatic Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Azusa [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Chen, Yonghong; Bu, Jiachuan; Mujcic, Hilda [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Wouters, Bradly G. [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); DaCosta, Ralph S., E-mail: rdacosta@uhnres.utoronto.ca [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Techna Institute, University Health Network, Toronto, Ontario (Canada)

    2017-01-01

    Purpose: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. Methods and Materials: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularity for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. Results: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. Conclusions: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.

  9. Promising markers for the detection of premature senescence tumor cells induced by ionizing radiation: Cathepsin D and eukaryotic translation elongation factor 1

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hae-Ok; Han, Na-Kyung; Lee, Jae-Seon [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2008-05-15

    Recently, it has been proved that induction of senescence could be a promising way of tumor treatment. Senescence was originally described in normal human cells undergoing a finite number of divisions before permanent growth arrest. It has now become regarded more broadly as a general biological program of terminal growth arrest. A variety of stresses such as ionizing radiation (IR), oxidative stress, oncogenic transformation, DNA damaging agents triggers stress-induced premature senescence, i.e. rapid and permanent cell growth arrest. Therefore, premature senescence is bona fide barrier to tumorigenesis and hallmark of premalignant tumors. However, there is lack of obvious markers for senescent tumor cells. To identify useful premature senescence markers for tumor cells, we monitored the changes of protein expression profile in IR-induced premature senescence MCF7 human breast cancer cells. We identified biomarkers which evidently changed their expression levels in ionizing radiation-induced senescenct tumor cells.

  10. Promising markers for the detection of premature senescence tumor cells induced by ionizing radiation: Cathepsin D and eukaryotic translation elongation factor 1

    International Nuclear Information System (INIS)

    Byun, Hae-Ok; Han, Na-Kyung; Lee, Jae-Seon

    2008-01-01

    Recently, it has been proved that induction of senescence could be a promising way of tumor treatment. Senescence was originally described in normal human cells undergoing a finite number of divisions before permanent growth arrest. It has now become regarded more broadly as a general biological program of terminal growth arrest. A variety of stresses such as ionizing radiation (IR), oxidative stress, oncogenic transformation, DNA damaging agents triggers stress-induced premature senescence, i.e. rapid and permanent cell growth arrest. Therefore, premature senescence is bona fide barrier to tumorigenesis and hallmark of premalignant tumors. However, there is lack of obvious markers for senescent tumor cells. To identify useful premature senescence markers for tumor cells, we monitored the changes of protein expression profile in IR-induced premature senescence MCF7 human breast cancer cells. We identified biomarkers which evidently changed their expression levels in ionizing radiation-induced senescenct tumor cells

  11. Hypoxia promotes apoptosis of neuronal cells through hypoxia-inducible factor-1α-microRNA-204-B-cell lymphoma-2 pathway.

    Science.gov (United States)

    Wang, Xiuwen; Li, Ji; Wu, Dongjin; Bu, Xiangpeng; Qiao, Yong

    2016-01-01

    Neuronal cells are highly sensitive to hypoxia and may be subjected to apoptosis when exposed to hypoxia. Several apoptosis-related genes and miRNAs involve in hypoxia-induced apoptosis. This study aimed to examine the role of HIF1α-miR-204-BCL-2 pathway in hypoxia-induced apoptosis in neuronal cells. Annexin V/propidium iodide assay was performed to analyze cell apoptosis in AGE1.HN and PC12 cells under hypoxic or normoxic conditions. The expression of BCL-2 and miR-204 were determined by Western blot and qRT-PCR. The effects of miR-204 overexpression or knockdown on the expression of BCL-2 were evaluated by luciferase assay and Western blot under hypoxic or normoxic conditions. HIF-1α inhibitor YC-1 and siHIF-1α were employed to determine the effect of HIF-1α on the up-regulation of miR-204 and down-regulation of BCL-2 induced by hypoxia. Apoptosis assay showed the presence of apoptosis induced by hypoxia in neuronal cells. Moreover, we found that hypoxia significantly down-regulated the expression of BCL-2, and increased the mRNA level of miR-204 in neuronal cells than that in control. Bioinformatic analysis and luciferase reporter assay demonstrated that miR-204 directly targeted and regulated the expression of BCL-2. Specifically, the expression of BCL-2 was inhibited by miR-204 mimic and enhanced by miR-204 inhibitor. Furthermore, we detected that hypoxia induced cell apoptosis via HIF-1α/miR-204/BCL-2 in neuronal cells. This study demonstrated that HIF-1α-miR-204-BCL-2 pathway contributed to apoptosis of neuronal cells induced by hypoxia, which could potentially be exploited to prevent spinal cord ischemia-reperfusion injury. © 2015 by the Society for Experimental Biology and Medicine.

  12. Fatty acid‐binding protein 4 regulates fatty infiltration after rotator cuff tear by hypoxia‐inducible factor 1 in mice

    Science.gov (United States)

    Lee, Yong‐Soo; Kim, Ja‐Yeon; Oh, Kyung‐Soo

    2017-01-01

    Abstract Background Fatty infiltration in skeletal muscle is directly linked to loss of muscle strength and is associated with various adverse physical outcomes such as muscle atrophy, inflammation, insulin resistance, mobility impairments, and even mortality in the elderly. Aging, mechanical unloading, muscle injury, and hormonal imbalance are main causes of muscle fat accumulation, and the fat cells are derived from muscle stem cells via adipogenic differentiation. However, the pathogenesis and molecular mechanisms of fatty infiltration in muscles are still not fully defined. Fatty acid‐binding protein 4 (FABP4) is a carrier protein for fatty acids and is involved in fatty acid uptake, transport, and lipid metabolism. Rotator cuff tear (RCT) usually occurs in the elderly and is closely related with fatty infiltration in injured muscle. To investigate potential mechanisms for fatty infiltration other than adipogenic differentiation of muscle stem cells, we examined the role of FABP4 in muscle fatty infiltration in an RCT mouse model. Methods In the RCT model, we evaluated the expression of FABP4 by qRT‐PCR, western blotting, and immunohistochemical analyses. Histological changes such as inflammation and fat accumulation in the injured muscles were examined immunohistochemically. To evaluate whether hypoxia induces FABP4 expression, the levels of FABP4 mRNA and protein in C3H10T1/2 cells after hypoxia were examined. Using a transient transfection assay in 293T cells, we assessed the promoter activity of FABP4 by hypoxia‐inducible factors (HIFs). Additionally, we evaluated the reduction in FABP4 expression and fat accumulation using specific inhibitors for HIF1 and FABP4, respectively. Results FABP4 expression was significantly increased after RCT in mice, and its expression was localized in the intramuscular fatty region. Rotator cuff tear‐induced FABP4 expression was up‐regulated by hypoxia. HIF1α, which is activated by hypoxia, augmented the promoter

  13. Hypoxia Inducible Factor 1 (HIF1) Activation in U87 Glioma Cells Involves a Decrease in Reactive Oxygen Species Production and Protein Kinase C Activity

    Science.gov (United States)

    1998-06-29

    Curcumin DFX Desferrioxamine DNA Deoxyribonucleic Acid DPI Diphenyliodinium DPPD Diphenylphenylenediamine DTH Dithionite EMSA Electrophoretic mobility shift... neuroprotective effects (Fern et al., 1996, Morishita et al., 1 1997). The identification of a hypoxia inducible transcription factor known as HIF-1 (Semenza...derived EPO in the eNS neuroprotective response to hypoxia. Cloning of the human and murine EPO gene, the availability of a convenient EPa producing

  14. Protective role of hypoxia-inducible factor-1α-dependent CD39 and CD73 in fulminant acute liver failure

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Eunyoung [Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jung, Dong-Hwan; Kim, Seok-Hwan; Park, Gil-Chun [Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jun, Dae Young; Lee, Jooyoung [Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jung, Bo-hyun [Department of Surgery, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of); Kirchner, Varvara A. [Division of Transplantation, Department of Surgery and Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN (United States); Hwang, Shin [Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Song, Gi-Won, E-mail: drsong71@amc.seoul.kr [Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Sung-Gyu [Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2017-01-01

    Acute liver failure (ALF) is a severe life-threatening disease which usually arises in patients with-irreversible liver illnesses. Although human ectonucleotide triphosphate diphosphohydrolase-1, E-NTPDase1 (CD39) and ecto-5′-nucleotidase, Ecto5′NTase (CD73) are known to protect tissues from ALF, the expression and function of CD39 and CD73 during ALF are currently not fully investigated. We tested whether CD39 and CD73 are upregulated by hypoxia inducible factor (HIF)-1α, and improve ischemic tolerance to ALF. To test our hypothesis, liver biopsies were obtained and we found that CD39 and CD73 mRNA and proteins from human specimens were dramatically elevated in ALF. We investigated that induction of CD39 and CD73 in ALF-related with wild type mice. In contrast, deletion of cd39 and cd73 mice has severe ALF. In this study, we concluded that CD39 and CD73 are molecular targets for the development of drugs for ALF patients care. - Highlights: • HIF-1a is stabilized during acute liver failure • Upregulation of CD39 and CD73 following acute liver failure • CD39 and CD73 are transcriptionally induced by HIF-1a • Deletion of Cd39 and CD73 aggravates murine acute liver failure • DMOG treatment induces HIF-1a stabilization, CD39 and CD73 during acute liver failure in WT mice.

  15. Localization of two mammalian cyclin dependent kinases during mammalian meiosis

    NARCIS (Netherlands)

    Ashley, T.; Walpita, D.; de rooij, D. G.

    2001-01-01

    Mammalian meiotic progression, like mitotic cell cycle progression, is regulated by cyclins and cyclin dependent kinases (CDKs). However, the unique requirements of meiosis (homologous synapsis, reciprocal recombination and the dual divisions that segregate first homologues, then sister chromatids)

  16. Negative effect of cyclin D1 overexpression on recurrence-free survival in stage II-IIIA lung adenocarcinoma and its expression modulation by vorinostat in vitro.

    Science.gov (United States)

    Lee, Eunju; Jin, DongHao; Lee, Bo Bin; Kim, Yujin; Han, Joungho; Shim, Young Mog; Kim, Duk-Hwan

    2015-12-17

    This study was aimed at identifying prognostic biomarkers for stage II-IIIA non-small cell lung cancer (NSCLC) according to histology and at investigating the effect of vorinostat on the expression of these biomarkers. Expression levels of cyclin D1, cyclin A2, cyclin E, and p16 proteins that are involved in the G1-to-S phase progression of cell cycle were analyzed using immunohistochemistry in formalin-fixed paraffin-embedded tissues from 372 samples of stage II-IIIA NSCLC. The effect of vorinostat on the expression of these proteins, impacts on cell cycle, and histone modification was explored in lung cancer cells. Abnormal expression of cyclin A2, cyclin D1, cyclin E, and p16 was found in 66, 47, 34, and 51 % of 372 cases, respectively. Amongst the four proteins, only cyclin D1 overexpression was significantly associated with poor recurrence-free survival (adjusted hazard ratio = 1.87; 95 % confidence interval = 1.12 - 2.69, P = 0.02) in adenocarcinoma but not in squamous cell carcinoma (P = 0.44). Vorinostat inhibited cell cycle progression to the S-phase and induced down-regulation of cyclin D1 in vitro. The down-regulation of cyclin D1 by vorinostat was comparable to a siRNA-mediated knockdown of cyclin D1 in A549 cells, but vorinostat in the presence of benzo[a]pyrene showed a differential effect in different lung cancer cell lines. Cyclin D1 down-regulation by vorinostat was associated with the accumulation of dimethyl-H3K9 at the promoter of the gene. The present study suggests that cyclin D1 may be an independent prognostic factor for recurrence-free survival in stage II-IIIA adenocarcinoma of lung and its expression may be modulated by vorinostat.

  17. Toll-like Receptor 3 Regulates Angiogenesis and Apoptosis in Prostate Cancer Cell Lines through Hypoxia-Inducible Factor 1α

    Directory of Open Access Journals (Sweden)

    Alessio Paone

    2010-07-01

    Full Text Available Toll-like receptors (TLRs recognize microbial/viral-derived components that trigger innate immune response and conflicting data implicate TLR agonists in cancer, either as protumor or antitumor agents. We previously demonstrated that TLR3 activation mediated by its agonist poly(I:C induces antitumor signaling, leading to apoptosis of prostate cancer cells LNCaP and PC3 with much more efficiency in the former than in the second more aggressive line. The transcription factor hypoxia-induciblefactor 1 (HIF-1regulates several cellular processes, includingapoptosis, in response to hypoxia and to other stimuli also in normoxic conditions. Here we describe a novel protumor machinery triggered by TLR3 activation in PC3 cells consisting of increased expression of the specific 1.3 isoform of HIF-1α and nuclear accumulation of HIF-1 complex in normoxia, resulting in reduced apoptosis and in secretion of functional vascular endothelial growth factor (VEGF. Moreover, we report that, in the less aggressive LNCaP cells, TLR3 activation fails to induce nuclear accumulation of HIF-1α. However, the transfection of 1.3 isoform of hif-1α in LNCaP cells allows poly(I:CI-induced HIF-1 activation, resulting in apoptosis protection and VEGF secretion. Altogether, our findings demonstrate that differences in the basal level of HIF-1α expression in different prostate cancer cell lines underlie their differential response to TLR3 activation, suggesting a correlation between different stages of malignancy, hypoxic gene expression, and beneficial responsiveness to TLR agonists.

  18. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts.

    Science.gov (United States)

    Rapisarda, Annamaria; Zalek, Jessica; Hollingshead, Melinda; Braunschweig, Till; Uranchimeg, Badarch; Bonomi, Carrie A; Borgel, Suzanne D; Carter, John P; Hewitt, Stephen M; Shoemaker, Robert H; Melillo, Giovanni

    2004-10-01

    We have previously shown that topotecan, a topoisomerase I poison, inhibits hypoxia-inducible factor (HIF)-1alpha protein accumulation by a DNA damage-independent mechanism. Here, we report that daily administration of topotecan inhibits HIF-1alpha protein expression in U251-HRE glioblastoma xenografts. Concomitant with HIF-1alpha inhibition, topotecan caused a significant tumor growth inhibition associated with a marked decrease of angiogenesis and expression of HIF-1 target genes in tumor tissue. These results provide a compelling rationale for testing topotecan in clinical trials to target HIF-1 in cancer patients.

  19. Deficiency of insulin-like growth factor 1 reduces vulnerability to chronic alcohol intake-induced cardiomyocyte mechanical dysfunction: role of AMPK.

    Science.gov (United States)

    Ge, Wei; Li, Qun; Turdi, Subat; Wang, Xiao-Ming; Ren, Jun

    2011-08-01

    Circulating insulin-like growth factor I (IGF-1) levels are closely associated with cardiac performance although the role of IGF-1 in alcoholic cardiac dysfunction is unknown. This study was designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on chronic alcohol-induced cardiomyocyte contractile and intracellular Ca(2+) dysfunction. Adult male C57 and LID mice were placed on a 4% alcohol diet for 15 weeks. Cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-relengthening (TR(90) ), change in fura-fluorescence intensity (ΔFFI) and intracellular Ca(2+) decay. Levels of apoptotic regulators caspase-3, Bcl-2 and c-Jun NH2-terminal kinase (JNK), the ethanol metabolizing enzyme mitochondrial aldehyde dehydrogenase (ALDH2), as well as the cellular fuel gauge AMP-activated protein kinase (AMPK) were evaluated. Chronic alcohol intake enlarged myocyte cross-sectional area, reduced PS, ± dL/dt and ΔFFI as well as prolonged TR(90) and intracellular Ca(2+) decay, the effect of which was greatly attenuated by IGF-1 deficiency. The beneficial effect of LID against alcoholic cardiac mechanical defect was ablated by IGF-1 replenishment. Alcohol intake increased caspase-3 activity/expression although it down-regulated Bcl-2, ALDH2 and pAMPK without affecting JNK and AMPK. IGF-1 deficiency attenuated alcoholism-induced responses in all these proteins with the exception of Bcl-2. In addition, the AMPK agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside abrogated short-term ethanol incubation-elicited cardiac mechanical dysfunction. Taken together, these data suggested that IGF-1 deficiency may reduce the sensitivity to ethanol-induced myocardial mechanical dysfunction. Our data further depicted a likely role of Caspase-3, ALDH2 and AMPK activation in IGF-1 deficiency induced 'desensitization' of alcoholic cardiomyopathy. © 2011 The

  20. Phosphorylation of Rad9 at serine 328 by cyclin A-Cdk2 triggers apoptosis via interfering Bcl-xL.

    Directory of Open Access Journals (Sweden)

    Zhuo Zhan

    Full Text Available Cyclin A-Cdk2, a cell cycle regulated Ser/Thr kinase, plays important roles in a variety of apoptoticprocesses. However, the mechanism of cyclin A-Cdk2 regulated apoptosis remains unclear. Here, we demonstrated that Rad9, a member of the BH3-only subfamily of Bcl-2 proteins, could be phosphorylated by cyclin A-Cdk2 in vitro and in vivo. Cyclin A-Cdk2 catalyzed the phosphorylation of Rad9 at serine 328 in HeLa cells during apoptosis induced by etoposide, an inhibitor of topoisomeraseII. The phosphorylation of Rad9 resulted in its translocation from the nucleus to the mitochondria and its interaction with Bcl-xL. The forced activation of cyclin A-Cdk2 in these cells by the overexpression of cyclin A,triggered Rad9 phosphorylation at serine 328 and thereby promoted the interaction of Rad9 with Bcl-xL and the subsequent initiation of the apoptotic program. The pro-apoptotic effects regulated by the cyclin A-Cdk2 complex were significantly lower in cells transfected with Rad9S328A, an expression vector that encodes a Rad9 mutant that is resistant to cyclin A-Cdk2 phosphorylation. These findings suggest that cyclin A-Cdk2 regulates apoptosis through a mechanism that involves Rad9phosphorylation.

  1. Ginsenoside Rg3 enhances radiosensitization of hypoxic oesophageal cancer cell lines through vascular endothelial growth factor and hypoxia inducible factor 1α.

    Science.gov (United States)

    Ge, Xiaolin; Zhen, Fuxi; Yang, Baixia; Yang, Xi; Cai, Jing; Zhang, Chi; Zhang, Sheng; Cao, Yuandong; Ma, Jianxin; Cheng, Hongyan; Sun, Xinchen

    2014-06-01

    To determine if the pretreatment of hypoxic human oesophageal carcinoma cell lines (EC109, TE1 and KYSE170) with ginsenoside Rg3 (Rg3) increases their radiosensitivity to X-rays. The growth inhibitory effect of different Rg3 concentrations was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay. Radiation sensitivity was measured using a clone formation assay and flow cytometry was used to measure the effects of Rg3 on radiation-induced apoptosis. Western blot analysis was used to measure the effects of Rg3 on the levels of hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). Rg3 inhibited EC109, TE1 and KYSE170 cell growth in a dose- and time-dependent manner. Pretreatment with 10 µmol/ml Rg3 increased EC109, TE1 and KYSE170 radiosensitivity. Rg3 plus radiation significantly increased the apoptosis rate compared with radiation alone. Rg3 also decreased VEGF and HIF-1α protein levels in EC109 cells in a dose-dependent manner. The combination of Rg3 and radiation increased the fragmentation of double-stranded DNA. Rg3 enhanced the radiosensitivity of human oesophageal carcinoma cell lines cultured under hypoxic conditions possibly by downregulating VEGF and HIF-1α protein levels. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Hypoxic inactivation of glycogen synthase kinase-3β promotes gastric tumor growth and angiogenesis by facilitating hypoxia-inducible factor-1 signaling.

    Science.gov (United States)

    Ko, Young San; Cho, Sung Jin; Park, Jinju; Choi, Yiseul; Lee, Jae-Seon; Youn, Hong-Duk; Kim, Woo Ho; Kim, Min A; Park, Jong-Wan; Lee, Byung Lan

    2016-09-01

    Since the molecular mechanism of hypoxic adaptation in cancer cells is cell-type specific, we investigated whether glycogen synthase kinase-3β (GSK-3β) activation is involved in hypoxia-induced gastric tumor promotion. Stable gastric cancer cell lines (SNU-638, SNU-484, MKN1, and MKN45) were cultured under hypoxic conditions. Cells overexpressing wild-type GSK-3β (WT-GSK-3β) or kinase-dead mutant of GSK-3β (KD-GSK-3β) were generated and used for cell culture and animal studies. In cell culture experiments, hypoxia decreased GSK-3β activation in gastric cancer cells. Cell viability and the expressions of HIF-1α protein and VEGF mRNA in gastric cancer cells were higher in KD-GSK-3β transfectants than in WT-GSK-3β transfectants under hypoxic conditions, but not under normoxic conditions. Gastric cancer xenografts showed that tumor growth, microvessel area, HIF-1α activation, and VEGF expression were higher in KD-GSK-3β tumors than in WT-GSK-3β tumors in vivo. In addition, the expression of hypoxia-induced HIF-1α protein was regulated by GSK-3β at the translational level. Our data suggest that GSK-3β is involved in hypoxic adaptation of gastric cancer cells as an inhibitory upstream regulator of the HIF-1α/VEGF signaling pathway. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  3. Role of heat shock transcription factor 1(HSF1)-upregulated macrophage in ameliorating pressure overload-induced heart failure in mice.

    Science.gov (United States)

    Du, Peizhao; Chang, Yaowei; Dai, Fangjie; Wei, Chunyan; Zhang, Qi; Li, Jiming

    2018-08-15

    In order to explore the role of macrophages in HSF1-mediated alleviation of heart failure, mice model of pressure overload-induced heart failure was established using transverse aortic constriction (TAC). Changes in cardiac function and morphology were studied in TAC and SHAM groups using ultrasonic device, tissue staining, electron microscopy, real-time quantitative polymerase chain reaction (RT-QPCR), and Western blotting. We found that mice in the TAC group showed evidence of impaired cardiac function and aggravation of fibrosis on ultrasonic and histopathological examination when compared to those in the SHAM group. The expressions of HSF1, LC3II/LC3I, Becline-1 and HIF-1, as well as autophagosome formation in TAC group were greater than that in SHAM group. On sub-group analyses in the TAC group, improved cardiac function and alleviation of fibrosis was observed in the HSF1 TG subgroup as compared to that in the wild type subgroup. Expressions of LC3II/LC3I, Becline-1 and HIF-1, too showed an obvious increase; and increased autophagosome formation was observed on electron microscopy. Opposite results were observed in the HSF1 KO subgroup. These results collectively suggest that in the pressure overload heart failure model, HSF1 promoted formation of macrophages by inducing upregulation of HIF-1 expression, through which heart failure was ameliorated. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Suppression of hypoxia inducible factor-1α (HIF-1α) by YC-1 is dependent on murine double minute 2 (Mdm2)

    International Nuclear Information System (INIS)

    Lau, C.K.; Yang, Z.F.; Lam, C.T.; Tam, K.H.; Poon, R.T.P.; Fan, S.T.

    2006-01-01

    Inhibition of HIF-1α activity provides an important strategy for the treatment of cancer. Recently, 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) has been identified as an anti-HIF-1α drug in cancer therapy with unclear molecular mechanism. In the present study, we aimed to investigate the effect and mechanism of YC-1 on HIF-1α in a hepatocellular carcinoma cell line under hypoxic condition, which was generated by incubating cells with 0.1% O 2 . The phenotypic and molecular changes of cells were determined by cell proliferation assay, apoptosis assay, luciferase promoter assay, and Western blot analysis. YC-1 arrested tumor cell growth in a dose-dependent manner, whereas it did not induce cell apoptosis. Hypoxia-induced upregulation of HIF-1α was suppressed by YC-1 administration. YC-1 inhibited HIF-1α protein synthesis under normoxia and affected protein stability under hypoxia. YC-1 suppressed the expression of total and phosphorylated forms of murine double minute 2 (Mdm2), whereas this inhibitory effect was blocked by overexpression of Mdm2. In conclusion, YC-1 suppressed both protein synthesis and stability of HIF-1α in HCC cells, and its inhibitory effects on HIF-1α were dependent on Mdm2

  5. Effects of 12 metal ions on iron regulatory protein 1 (IRP-1) and hypoxia-inducible factor-1 alpha (HIF-1α) and HIF-regulated genes

    International Nuclear Information System (INIS)

    Li Qin; Chen Haobin; Huang Xi; Costa, Max

    2006-01-01

    Several metal ions that are carcinogenic affect cellular iron homeostasis by competing with iron transporters or iron-regulated enzymes. Some metal ions can mimic a hypoxia response in cells under normal oxygen tension, and induce expression of HIF-1α-regulated genes. This study investigated whether 12 metal ions altered iron homeostasis in human lung carcinoma A549 cells as measured by an activation of IRP-1 and ferritin level. We also studied hypoxia signaling by measuring HIF-1α protein levels, hypoxia response element (HRE)-driven luciferase reporter activity, and Cap43 protein level (an HIF-1α responsive gene). Our results show the following: (i) Ni(II), Co(II), V(V), Mn(II), and to a lesser extent As(III) and Cu(II) activated the binding of IRP-1 to IRE after 24 h, while the other metal ions had no effect; (ii) 10 of 12 metal ions induced HIF-1α protein but to strikingly different degrees. Two of these metal ions, Al(III) and Cd(II), did not induce HIF-1α protein; however, as indicated below, only Ni(II), Co (II), and to lesser extent Mn(II) and V(V) activated HIF-1α-dependent transcription. The combined effects of both [Ni(II) + As(III)] and [Ni(II) + Cr(VI)] on HIF-1α protein were synergistic; (iii) Addition of Fe(II) with Ni(II), Co(II), and Cr(VI) attenuated the induction of HIF-1α after 4 h treatment; (iv) Ni(II), Co(II), and Mn(II) significantly decrease ferritin level after 24 h exposure; (v) Ni(II), Co(II), V(V), and Mn(II) activated HRE reporter gene after 20 h treatment; (vi) Ni(II), Co(II), V(V), and Mn(II) increased the HIF-1-dependent Cap43 protein level after 24 h treatment. In conclusion, only Ni (II), Co (II), and to a lesser extent Mn(II) and V(V) significantly stabilized HIF-1α protein, activated IRP, decreased the levels of ferritin, induced the transcription of HIF-dependent reporter, and increased the expression of Cap43 protein levels (HIF-dependent gene). The mechanism for the significant stabilization and elevation of HIF-1

  6. Cyclin d1 expression in odontogenic cysts.

    Science.gov (United States)

    Taghavi, Nasim; Modabbernia, Shirin; Akbarzadeh, Alireza; Sajjadi, Samad

    2013-01-01

    In the present study expression of cyclin D1 in the epithelial lining of odontogenic keratocyst, radicular cyst, dentigerous cyst and glandular odontogenic cyst was investigated to compare proliferative activity in these lesions. Immunohistochemical staining of cyclin D1 on formalin-fixed, paraffin-embedded tissue sections of odontogenic keratocysts (n=23), dentigerous cysts (n=20), radicular cysts (n=20) and glandular odontogenic cysts (n=5) was performed by standard EnVision method. Then, slides were studied to evaluate the following parameters in epithelial lining of cysts: expression, expression pattern, staining intensity and localization of expression. The data analysis showed statistically significant difference in cyclin D1 expression in studied groups (p keratocysts, but difference was not statistically significant among groups respectively (p=0.204, 0.469). Considering expression localization, cyclin D1 positive cells in odontogenic keratocysts and dentigerous cysts were frequently confined in parabasal layer, different from radicular cysts and glandular odontogenic cysts. The difference was statistically significant (p keratocyst and the entire cystic epithelium of glandular odontogenic cysts comparing to dentigerous cysts and radicular cysts, implying the possible role of G1-S cell cycle phase disturbances in the aggressiveness of odontogenic keratocyst and glandular odontogenic cyst.

  7. PARK2 orchestrates cyclins to avoid cancer

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk

    2014-01-01

    Roč. 46, č. 6 (2014), s. 527-528 ISSN 1061-4036 Institutional support: RVO:68378050 Keywords : PARK2 * G1/S-phase cyclin * cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 29.352, year: 2014

  8. Identification of Cyclin A Binders with a Fluorescent Peptide Sensor.

    Science.gov (United States)

    Pazos, Elena; Mascareñas, José L; Vázquez, M Eugenio

    2016-01-01

    A peptide sensor that integrates the 4-dimethylaminophthalimide (4-DMAP) fluorophore in a short cyclin A binding sequence displays a large fluorescence emission increase upon interacting with the cyclin A Binding Groove (CBG). Competitive displacement assays of this probe allow the straightforward identification of peptides that interact with the CBG, which could potentially block the recognition of CDK/cyclin A kinase substrates.

  9. Regulation of hypoxia-inducible factor-1α (HIF-1α expression by interleukin-1β (IL-1 β, insulin-like growth factors I (IGF-I and II (IGF-II in human osteoarthritic chondrocytes

    Directory of Open Access Journals (Sweden)

    Angelica Rossi Sartori-Cintra

    2012-01-01

    Full Text Available OBJECTIVE: Hypoxia-inducible factor 1 alpha regulates genes related to cellular survival under hypoxia. This factor is present in osteroarthritic chondrocytes, and cytokines, such as interleukin-1 beta, participate in the pathogenesis of osteoarthritis, thereby increasing the activities of proteolytic enzymes, such as matrix metalloproteinases, and accelerating cartilage destruction. We hypothesize that Hypoxia Inducible Factor-1 alpha (HIF-1α can regulate cytokines (catabolic action and/or growth factors (anabolic action in osteoarthritis. The purpose of this study was to investigate the modulation of HIF-1α in human osteoarthritic chondrocytes by interleukin-1 beta (IL-1β and insulin-like growth factors I (IGF-I and II (IGF-II and to determine the involvement of the phosphatidylinositol-3kinase (PI-3K pathway in this process. METHODS: Human osteroarthritic chondrocytes were stimulated with IL-1β, IGF-I and IGF-II and LY294002, a specific inhibitor of PI-3K. Nuclear protein levels and gene expression were analyzed by western blot and quantitative reverse transcription-polymerase chain reaction analyses, respectively. RESULTS: HIF-1α expression was upregulated by IL-1β at the protein level but not at the gene level. IGF-I treatment resulted in increases in both the protein and mRNA levels of HIF-1α , whereas IGF-II had no effect on its expression. However, all of these stimuli exploited the PI-3K pathway. CONCLUSION: IL-1β upregulated the levels of HIF-1α protein post-transcriptionally, whereas IGF-I increased HIF-1α at the transcript level. In contrast, IGF-II did not affect the protein or gene expression levels of HIF-1α . Furthermore, all of the tested stimuli exploited the PI-3K pathway to some degree. Based on these findings, we are able to suggest that Hypoxia inducible Factor-1 exhibits protective activity in chondrocytes during osteoarthritis.

  10. Requirements of cyclin a for mitosis are independent of its subcellular localization.

    Science.gov (United States)

    Dienemann, Axel; Sprenger, Frank

    2004-06-22

    Cyclin A (CycA), the only essential mitotic cyclin in Drosophila, is cytoplasmic during interphase and accumulates in the nucleus during prophase. We show that interphase localization is mediated by Leptomycin B (LMB)-sensitive nuclear export. This is a feature shared with human CyclinB1, and it is assumed that nuclear accumulation is necessary for mitotic entry. Here, we tested if the unique mitotic function of CycA requires nuclear accumulation. We fused subcellular localization signals to CycA and tested their mitotic capability. Surprisingly, nuclear accumulation was not required, and even a membrane-tethered form of CycA was able to induce mitosis. We noted that Cyclin B (CycB) protein disappears prematurely in CycA mutants, reminiscent of rca1 mutants. Rca1 is an inhibitor of Fizzy-related-APC/C activity, and in rca1 mutants, mitotic cyclins are degraded in G2 of the 16(th) embryonic cell cycle. Overexpression of Rca1 can restore mitosis in CycA mutants, indicating that the mitotic failure of CycA mutants is caused by premature activation of the APC/C. The essential mitotic function of CycA is therefore not the activation of numerous mitotic substrates by Cdk1-dependent phosphorylation. Rather, CycA-dependent kinase activity is required to inhibit one inhibitor of mitosis, the Fzr protein.

  11. Genome-wide identification of hypoxia-inducible factor-1 and -2 binding sites in hypoxic human macrophages alternatively activated by IL-10.

    Science.gov (United States)

    Tausendschön, Michaela; Rehli, Michael; Dehne, Nathalie; Schmidl, Christian; Döring, Claudia; Hansmann, Martin-Leo; Brüne, Bernhard

    2015-01-01

    Macrophages (MΦ) often accumulate in hypoxic areas, where they significantly influence disease progression. Anti-inflammatory cytokines, such as IL-10, generate alternatively activated macrophages that support tumor growth. To understand how alternative activation affects the transcriptional profile of hypoxic macrophages, we globally mapped binding sites of hypoxia-inducible factor (HIF)-1α and HIF-2α in primary human monocyte-derived macrophages prestimulated with IL-10. 713 HIF-1 and 795 HIF-2 binding sites were identified under hypoxia. Pretreatment with IL-10 altered the binding pattern, with 120 new HIF-1 and 188 new HIF-2 binding sites emerging. HIF-1 binding was most prominent in promoters, while HIF-2 binding was more abundant in enhancer regions. Comparison of ChIP-seq data obtained in other cells revealed a highly cell type specific binding of HIF. In MΦ HIF binding occurred preferentially in already active enhancers or promoters. To assess the roles of HIF on gene expression, primary human macrophages were treated with siRNA against HIF-1α or HIF-2α, followed by genome-wide gene expression analysis. Comparing mRNA expression to the HIF binding profile revealed a significant enrichment of hypoxia-inducible genes previously identified by ChIP-seq. Analysis of gene expression under hypoxia alone and hypoxia/IL-10 showed the enhanced induction of a set of genes including PLOD2 and SLC2A3, while another group including KDM3A and ADM remained unaffected or was reduced by IL-10. Taken together IL-10 influences the DNA binding pattern of HIF and the level of gene induction. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells

    Science.gov (United States)

    Bhattacharya, Sujoy; Ray, Ramesh M.; Johnson, Leonard R.

    2014-01-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF- /CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner. PMID:24242917

  13. Cyclin D1 in ASM Cells from Asthmatics Is Insensitive to Corticosteroid Inhibition.

    Science.gov (United States)

    Allen, Jodi C; Seidel, Petra; Schlosser, Tobias; Ramsay, Emma E; Ge, Qi; Ammit, Alaina J

    2012-01-01

    Hyperplasia of airway smooth muscle (ASM) is a feature of the remodelled airway in asthmatics. We examined the antiproliferative effectiveness of the corticosteroid dexamethasone on expression of the key regulator of G(1) cell cycle progression-cyclin D1-in ASM cells from nonasthmatics and asthmatics stimulated with the mitogen platelet-derived growth factor BB. While cyclin D1 mRNA and protein expression were repressed in cells from nonasthmatics in contrast, cyclin D1 expression in asthmatics was resistant to inhibition by dexamethasone. This was independent of a repressive effect on glucocorticoid receptor translocation. Our results corroborate evidence demonstrating that corticosteroids inhibit mitogen-induced proliferation only in ASM cells from subjects without asthma and suggest that there are corticosteroid-insensitive proliferative pathways in asthmatics.

  14. Hypoxia and hypoxia mimetics decrease aquaporin 5 (AQP5 expression through both hypoxia inducible factor-1α and proteasome-mediated pathways.

    Directory of Open Access Journals (Sweden)

    Jitesh D Kawedia

    Full Text Available The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5, we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70% decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels.

  15. Expression and Function of Hypoxia Inducible Factor-1α and Vascular Endothelial Growth Factor in Pulp Tissue of Teeth under Orthodontic Movement

    Directory of Open Access Journals (Sweden)

    Fulan Wei

    2015-01-01

    Full Text Available Orthodontic force may lead to cell damage, circulatory disturbances, and vascular changes of the dental pulp, which make a hypoxic environment in pulp. In order to maintain the homeostasis of dental pulp, hypoxia will inevitably induce the defensive reaction. However, this is a complex process and is regulated by numerous factors. In this study, we established an experimental animal model of orthodontic tooth movement to investigate the effects of mechanical force on the expression of VEGF and HIF-1α in dental pulp. Histological analysis of dental pulp and expressions of HIF-1α and VEGF proteins in dental pulp were examined. The results showed that inflammation and vascular changes happened in dental pulp tissue in different periods. Additionally, there were significant changes in the expression of HIF-1α and VEGF proteins under orthodontic force. After application of mechanical load, expression of HIF-1α and VEGF was markedly positive in 1, 3, 7 d, and 2 w groups, and then it weakened in 4 w group. These findings suggested that the expression of HIF-1α and VEGF was enhanced by mechanical force. HIF-1α and VEGF may play an important role in retaining the homeostasis of dental pulp during orthodontic tooth movement.

  16. Hypoxia and Hypoxia Mimetics Decrease Aquaporin 5 (AQP5) Expression through Both Hypoxia Inducible Factor-1α and Proteasome-Mediated Pathways

    Science.gov (United States)

    Kawedia, Jitesh D.; Yang, Fan; Sartor, Maureen A.; Gozal, David; Czyzyk-Krzeska, Maria; Menon, Anil G.

    2013-01-01

    The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5), we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70%) decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α) and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels. PMID:23469202

  17. In vitro ischemia suppresses hypoxic induction of hypoxia-inducible factor-1α by inhibition of synthesis and not enhanced degradation.

    Science.gov (United States)

    Karuppagounder, Saravanan S; Basso, Manuela; Sleiman, Sama F; Ma, Thong C; Speer, Rachel E; Smirnova, Natalya A; Gazaryan, Irina G; Ratan, Rajiv R

    2013-08-01

    Hypoxia-inducible factor (HIF) mediates a broad, conserved adaptive response to hypoxia, and the HIF pathway is a potential therapeutic target in cerebral ischemia. This study investigated the mechanism by which in vitro ischemia (oxygen-glucose deprivation; OGD) affects canonical hypoxic HIF-1α stabilization. We validated the use of a reporter containing the oxygen-dependent degradation domain of HIF-1α fused to firefly luciferase (ODD-luc) to monitor quantitatively distinct biochemical events leading to hypoxic HIF-1α expression or stabilization in a human neuroblastoma cell line (SH-SY5Y). When OGD was imposed following a 2-hr hypoxic stabilization of ODD-luc, the levels of the reporter were reduced, consistent with prior models proposing that OGD enhances HIF prolylhydroxylase (PHD) activity. Surprisingly, PHD inhibitors and proteasome inhibitors do not stabilize ODD-luc in OGD. Furthermore, OGD does not affect the half-life of ODD-luc protein following hypoxia, suggesting that OGD abrogates hypoxic HIF-1α induction by reducing HIF-1α synthesis rather than by enhancing its degradation. We observed ATP depletion under OGD vs. hypoxia and propose that ATP depletion enhances translational suppression, overcoming the selective synthesis of HIF concurrent with global decreases in protein synthesis in hypoxia. Taken together, these findings biochemically characterize a practical reporter for monitoring HIF-1α levels and support a novel model for HIF regulation in an in vitro model of human ischemia. Copyright © 2013 Wiley Periodicals, Inc.

  18. Thymidine phosphorylase and hypoxia-inducible factor 1-α expression in clinical stage II/III rectal cancer: association with response to neoadjuvant chemoradiation therapy and prognosis.

    Science.gov (United States)

    Lin, Shuhan; Lai, Hao; Qin, Yuzhou; Chen, Jiansi; Lin, Yuan

    2015-01-01

    The aim of this study was to determine whether pretreatment status of thymidine phosphorylase (TP), and hypoxia-inducible factor alpha (HIF-1α) could predict pathologic response to neoadjuvant chemoradiation therapy with oxaliplatin and capecitabine (XELOXART) and outcomes for clinical stage II/III rectal cancer patients. A total of 180 patients diagnosed with clinical stage II/III rectal cancer received XELOXART. The status of TP, and HIF-1α were determined in pretreatment biopsies by immunohistochemistry (IHC). Tumor response was assessed in resected regimens using the tumor regression grade system and TNM staging system. 5-year disease free survival (DFS) and 5-year overall survival (OS) were evaluated with the Kaplan-Meier method and were compared by the log-rank test. Over expression of TP and low expression of HIF-1α were associated with pathologic response to XELOXART and better outcomes (DFS and OS) in clinical stage II/III rectal cancer patients (P rectal cancer received XELOXART. Additional well-designed, large sample, multicenter, prospective studies are needed to confirm the result of this study.

  19. Hypoxia-inducible factor-1α regulates chemotactic migration of pancreatic ductal adenocarcinoma cells through directly transactivating the CX3CR1 gene.

    Directory of Open Access Journals (Sweden)

    Tiansuo Zhao

    Full Text Available CX3CR1 is an important chemokine receptor and regulates the chemotactic migration of pancreatic ductal adenocarcinoma (PDAC cells. Up to now, its regulatory mechanism remains largely undefined. Here, we report that hypoxia upregulates the expression of CX3CR1 in pancreatic cancer cells. When hypoxia-inducible factor (HIF-1α expression was knocked down in vitro and in vivo, the expression of CX3CR1 was significantly decreased. Chromatin immunoprecipitation assay demonstrated that HIF-1α bound to the hypoxia-response element (HRE; 5'-A/GCGTG-3' of CX3CR1 promoter under normoxia, and this binding was significantly enhanced under hypoxia. Overexpression of HIF-1α significantly upregulated the expression of luciferase reporter gene under the control of the CX3CR1 promoter in pancreatic cancer cells. Importantly, we demonstrated that HIF-1α may regulate cancer cell migration through CX3CR1. The HIF-1α/CX3CR1 pathway might represent a valuable therapeutic target to prevent invasion and distant metastasis in PDAC.

  20. Dexamethasone (DEX induces Osmotic stress transcription factor 1 (Ostf1 through the Akt-GSK3β pathway in freshwater Japanese eel gill cell cultures

    Directory of Open Access Journals (Sweden)

    S. C. Chow

    2013-03-01

    Osmosensing and osmoregulatory processes undertaken in gills of euryhaline fish are coordinated by integrative actions of various signaling molecules/transcriptional factors. Considerable numbers of studies report the hyper- and hypo-osmoregulatory functions of fish gills, by illustrating the process of gill cell remodeling and the modulation of the expression of ion channels/transporters. Comparatively mechanistic information relayed from signal integration to transcriptional regulation in mediating gill cell functions has not yet been elucidated. In this study we demonstrate the functional links from cortisol stimulation, to Akt activation, to the expression of the transcriptional factor, Ostf1. Using the synthetic glucocorticoid receptor agonist, dexamethasone (DEX, Ostf1 expression is found to be activated via glucocorticoid receptor (GR and mediated by the Akt-GSK3β signaling pathway. Pharmacological experiments using kinase inhibitors reveal that the expression of Ostf1 is negatively regulated by Akt activation. The inhibition of PI3K or Akt activities, by the specific kinase inhibitors (wortmannin, LY294002 or SH6, stimulates Ostf1 expression, while a reduction of GSK3β activity by LiCl reduces Ostf1 expression. Collectively, our report for the first time indicates that DEX can induce Ostf1 via GR, with the involvement of the Akt-GSK3β signaling pathway in primary eel gill cell cultures. The data also suggest that Ostf1 may play different roles in gill cell survival during seawater acclimation.

  1. [Effects of interleukin-18 and hypoxia-inducible factor-1α in serum and gingival tissues of rat model with periodontitis exposed to chronic intermittent hypoxia].

    Science.gov (United States)

    Wang, Bin; Wang, Xiaoqin

    2015-08-01

    This study evaluates the expression of interleukin-18 (IL-18) and hypoxia-inducible factor (HIF)-lα in rat periodontitis model exposed to normoxia and chronic intermittent hypoxia (CIH) environments. The possible correlation between periodontitis and obstructive sleep apnea-hypopnea syndrome (OSAHS) was also investigated. Methods: Thirty-two Sprague-Dawley (SD) rats were randomly assigned into four groups: normoxia control, normoxia periodontitis, hypoxia control, and hypoxia periodontitis groups. The periodontitis models were established by ligating the bilateral maxillary second molars and employing high-carbohydrate diets. Rats in hypoxia control and hypoxia periodontitis groups were exposed to CIH treatment mimicking a moderately severe OSAHS condition. All animals were sacrificed after eight weeks, and the clinical periodontal indexes were detected. The levels of IL-18 and HIF-1α in serum and gingival tissues were determined using enzyme-linked immunosorbent assay (ELISA). The correlation between attachment loss (AL) and the levels of IL-18 and HIF-lα in hypoxia periodontitis group was evaluated. The levels of IL-18 and HIF-lα in hypoxia periodontitis group were significantly higher than that in normoxia periodontitis and hypoxia control groups (Pperiodontal tissues, which is correlated with IL-18 and HIF-lα levels.

  2. [Association between pulmonary vascular remodeling and expression of hypoxia-inducible factor-1α, endothelin-1 and inducible nitric oxide synthase in pulmonary vessels in neonatal rats with hypoxic pulmonary hypertension].

    Science.gov (United States)

    Wang, Jian-Rong; Zhou, Ying; Sang, Kui; Li, Ming-Xia

    2013-02-01

    To investigate the association between pulmonary vascular remodeling and expression of hypoxia-inducible factor-1α (HIF-1α), endothelin-1 (ET-1) and inducible nitric oxide synthase (iNOS) in pulmonary vessels in neonatal rats with hypoxic pulmonary hypertension (HPH). A neonatal rat model of HPH was established as an HPH group, and normal neonatal rats were enrolled as a control group. The mean pulmonary arterial pressure (mPAP) was measured. The percentage of medial thickness to outer diameter of the small pulmonary arteries (MT%) and the percentage of medial cross-section area to total cross-section area of the pulmonary small arteries (MA%) were measured as the indicators for pulmonary vascular remodeling. The immunohistochemical reaction intensities for HIF-1α, ET-1 and iNOS and their mRNA expression in lung tissues of neonatal rats were measured. Correlation analysis was performed to determine the relationship between pulmonary vascular remodeling and mRNA expression of HIF-1α, ET-1 and iNOS. The mPAP of the HPH group kept increasing on days 3, 5, 7, 10, 14, and 21 of hypoxia, with a significant difference compared with the control group (P<0.05). The HPH group had significantly higher MT% and MA% than the control group from day 7 of hypoxia (P<0.05). HIF-1α protein expression increased significantly on days 3, 5, 7 and 10 days of hypoxia, and HIF-1α mRNA expression increased significantly on days 3, 5 and 7 days of hypoxia in the HPH group compared with the control group (P<0.05). ET-1 protein expression increased significantly on days 3, 5 and 7 days of hypoxia and ET-1 mRNA expression increased significantly on day 3 of hypoxia in the HPH group compared with the control group (P<0.05). Both iNOS protein and mRNA expression were significantly higher on days 3, 5 and 7 days of hypoxia than the control group (P<0.05). Both MT% and MA% were positively correlated with HIF-1α mRNA expression (r=0.835 and 0.850 respectively; P<0.05). Pulmonary vascular

  3. Hypoxia-inducible factor-1α and Wnt/β-catenin signaling pathways promote the invasion of hypoxic gastric cancer cells.

    Science.gov (United States)

    Liu, Hong-Lan; Liu, Dang; Ding, Guang-Rong; Liao, Peng-Fei; Zhang, Jun-Wen

    2015-09-01

    The present study aimed to examine the association between hypoxia-inducible factor (HIF)-1α and the Wnt/β-catenin signaling pathway in a hypoxic environment. The study also aimed to explore the possible mechanisms underlying the invasion of hypoxic gastric cancer cells in vitro and in vivo. The pcDNA™ 6.2‑GW/EmGFP‑miR‑β‑catenin plasmid was transfected into SGC‑7901 gastric cancer cells, resulting in cells with stable suppression of β‑catenin expression. The biological characteristics of the control, liposome, negative control, β‑catenin knockdown, hypoxia and hypoxia β‑catenin knockdown groups were tested using an invasion assay. The differences in the invasive capacity of the control, negative control and liposome groups were not statistically significant. However, the hypoxia group demonstrated a significantly enhanced invasive capacity, as compared with that in the control group (Phypoxic and control cells was high alongside increased HIF‑1α, β‑catenin, uPA and MMP‑7 levels according to western blot and immunohistochemical analyses, while growth and protein levels of tumors from hypoxic β‑catenin knockdown cells were significantly lower and those of β‑catenin knockdown cells were lowest. In conclusion, these results suggested that HIF‑1α activation was able to regulate the Wnt/β‑catenin pathway, and that HIF‑1α may be controlled by the Wnt/β‑catenin pathway. A potential mechanism underlying SGC‑7901 tumorigenicity is the activation of the Wnt/β‑catenin signaling pathway, which activates uPA and MMP‑7 expression and contributes to the enhanced invasion of hypoxic cancer cells.

  4. The tyrosine phosphatase SHP-1 regulates hypoxia inducible factor-1α (HIF-1α protein levels in endothelial cells under hypoxia.

    Directory of Open Access Journals (Sweden)

    Stefan K Alig

    Full Text Available The tyrosine phosphatase SHP-1 negatively influences endothelial function, such as VEGF signaling and reactive oxygen species (ROS formation, and has been shown to influence angiogenesis during tissue ischemia. In ischemic tissues, hypoxia induced angiogenesis is crucial for restoring oxygen supply. However, the exact mechanism how SHP-1 affects endothelial function during ischemia or hypoxia remains unclear. We performed in vitro endothelial cell culture experiments to characterize the role of SHP-1 during hypoxia.SHP-1 knock-down by specific antisense oligodesoxynucleotides (AS-Odn increased cell growth as well as VEGF synthesis and secretion during 24 hours of hypoxia compared to control AS-Odn. This was prevented by HIF-1α inhibition (echinomycin and apigenin. SHP-1 knock-down as well as overexpression of a catalytically inactive SHP-1 (SHP-1 CS further enhanced HIF-1α protein levels, whereas overexpression of a constitutively active SHP-1 (SHP-1 E74A resulted in decreased HIF-1α levels during hypoxia, compared to wildtype SHP-1. Proteasome inhibition (MG132 returned HIF-1α levels to control or wildtype levels respectively in these cells. SHP-1 silencing did not alter HIF-1α mRNA levels. Finally, under hypoxic conditions SHP-1 knock-down enhanced intracellular endothelial reactive oxygen species (ROS formation, as measured by oxidation of H2-DCF and DHE fluorescence.SHP-1 decreases half-life of HIF-1α under hypoxic conditions resulting in decreased cell growth due to diminished VEGF synthesis and secretion. The regulatory effect of SHP-1 on HIF-1α stability may be mediated by inhibition of endothelial ROS formation stabilizing HIF-1α protein. These findings highlight the importance of SHP-1 in hypoxic signaling and its potential as therapeutic target in ischemic diseases.

  5. Increased tumour ascorbate is associated with extended disease-free survival and decreased hypoxia-inducible factor-1 activation in human colorectal cancer

    Directory of Open Access Journals (Sweden)

    Caroline eKuiper

    2014-02-01

    Full Text Available Ascorbate is a co-factor for the hydroxylases that regulate the transcription factor hypoxia-inducible factor (HIF-1, which provides cancer cells with a metabolic and survival advantage in the hypoxic environment of solid tumors. However, whether ascorbate affects tumor development is a highly debated issue. We aimed to determine whether tumor ascorbate was associated with HIF-1 activation and patient disease-free survival. In this study we undertook a retrospective observational analysis of tissue-banked tumor and paired normal tissue from 49 colorectal cancer patients, measuring ascorbate levels, HIF-1α and its downstream gene products BNIP3 and VEGF. Patient survival was monitored for the first six years after surgery. We found that ascorbate levels were lower in tumor tissue compared to normal tissue (p< 0.001 but overall levels varied considerably. HIF-1α, VEGF and BNIP3 were elevated in tumor samples (p< 0.01. There was an inverse relationship between tumor ascorbate content and HIF-1 pathway activation (p=0.002 and tumor size (p=0.018. Higher tumor ascorbate content was associated with significantly improved disease-free survival in the first 6 years after surgery (p=0.006, with 141 - 1,094 additional disease free days. This was independent of tumor grade and stage. Survival advantage was associated with the amount of ascorbate in the tumor, but not with the amount in adjacent normal tissue. Our results demonstrate that higher tumor ascorbate content is associated decreased HIF-1 activation, most likely due to the co-factor activity of ascorbate for the regulatory HIF hydroxylases. Our findings support the need for future studies to determine whether raising tumor ascorbate is possible with clinical intervention and whether this results in modification of hydroxylase-dependent pathways in the tumor.

  6. Prolonged fasting activates hypoxia inducible factors-1α, -2α and -3α in a tissue-specific manner in northern elephant seal pups.

    Science.gov (United States)

    Soñanez-Organis, José G; Vázquez-Medina, José P; Crocker, Daniel E; Ortiz, Rudy M

    2013-09-10

    Hypoxia inducible factors (HIFs) are important regulators of energy homeostasis and cellular adaptation to low oxygen conditions. Northern elephant seals are naturally adapted to prolonged periods (1-2 months) of food deprivation (fasting) which result in metabolic changes that may activate HIF-1. However, the effects of prolonged fasting on HIFs are not well defined. We obtained the full-length cDNAs of HIF-1α and HIF-2α, and partial cDNA of HIF-3α in northern elephant seal pups. We also measured mRNA and nuclear protein content of HIF-1α, -2α, -3α in muscle and adipose during prolonged fasting (1, 3, 5 & 7 weeks), along with mRNA expression of HIF-mediated genes, LDH and VEGF. HIF-1α, -2α and -3α are 2595, 2852 and 1842 bp and encode proteins of 823, 864 and 586 amino acid residues with conserved domains needed for their function (bHLH and PAS) and regulation (ODD and TAD). HIF-1α and -2α mRNA expression increased 3- to 5-fold after 7 weeks of fasting in adipose and muscle, whereas HIF-3α increased 5-fold after 7 weeks of fasting in adipose. HIF-2α protein expression was detected in nuclear fractions from adipose and muscle, increasing approximately 2-fold, respectively with fasting. Expression of VEGF increased 3-fold after 7 weeks in adipose and muscle, whereas LDH mRNA expression increased 12-fold after 7 weeks in adipose. While the 3 HIFα genes are expressed in muscle and adipose, only HIF-2α protein was detectable in the nucleus suggesting that HIF-2α may contribute more significantly in the up-regulation of genes involved in the metabolic adaptation during fasting in the elephant seal. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Intermittent Hypoxia Is Associated With High Hypoxia Inducible Factor-1α but Not High Vascular Endothelial Growth Factor Cell Expression in Tumors of Cutaneous Melanoma Patients

    Directory of Open Access Journals (Sweden)

    Isaac Almendros

    2018-04-01

    Full Text Available Epidemiological associations linking between obstructive sleep apnea and poorer solid malignant tumor outcomes have recently emerged. Putative pathways proposed to explain that these associations have included enhanced hypoxia inducible factor (HIF-1α and vascular endothelial growth factor (VEGF cell expression in the tumor and altered immune functions via intermittent hypoxia (IH. Here, we examined relationships between HIF-1α and VEGF expression and nocturnal IH in cutaneous melanoma (CM tumor samples. Prospectively recruited patients with CM tumor samples were included and underwent overnight polygraphy. General clinical features, apnea–hypopnea index (AHI, desaturation index (DI4%, and CM characteristics were recorded. Histochemical assessments of VEGF and HIF-1α were performed, and the percentage of positive cells (0, <25, 25–50, 51–75, >75% was blindly tabulated for VEGF expression, and as 0, 0–5.9, 6.0–10.0, >10.0% for HIF-1α expression, respectively. Cases with HIF-1α expression >6% (high expression were compared with those <6%, and VEGF expression >75% of cells was compared with those with <75%. 376 patients were included. High expression of VEGF and HIF-1α were seen in 88.8 and 4.2% of samples, respectively. High expression of VEGF was only associated with increasing age. However, high expression of HIF-1α was significantly associated with age, Breslow index, AHI, and DI4%. Logistic regression showed that DI4% [OR 1.03 (95% CI: 1.01–1.06] and Breslow index [OR 1.28 (95% CI: 1.18–1.46], but not AHI, remained independently associated with the presence of high HIF-1α expression. Thus, IH emerges as an independent risk factor for higher HIF-1α expression in CM tumors and is inferentially linked to worse clinical CM prognostic indicators.

  8. Inhibitor of CDK interacting with cyclin A1 (INCA1) regulates proliferation and is repressed by oncogenic signaling

    DEFF Research Database (Denmark)

    Baumer, Nicole; Tickenbrock, Lara; Tschanter, Petra

    2011-01-01

    The cell cycle is driven by the kinase activity of cyclin/CDK complexes which is negatively regulated by CDK inhibitor proteins. Recently, we identified INCA1 as interaction partner and substrate of cyclin A1 in complex with CDK2. On a functional level, we identified a novel cyclin binding site...... in the INCA1 protein. INCA1 inhibited CDK2 activity and cell proliferation. The inihibitory effects depended on the cyclin-interacting domain. Mitogenic and oncogenic signals suppressed INCA1 expression, while it was induced by cell cycle arrest. We established a deletional mouse model that showed increased...... CDK2 activity in spleen with altered spleen architecture in Inca1-/- mice. Inca1-/- embryonic fibroblasts showed an increase in the fraction of S-phase cells. Furthermore, blasts from ALL and AML patients expressed significantly reduced INCA1 levels highlighting its relevance for growth control...

  9. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Boo [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States); Lee, Seong-Ho, E-mail: slee2000@umd.edu [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. Black-Right-Pointing-Pointer PCA enhanced transcriptional downregulation of cyclin D1 gene. Black-Right-Pointing-Pointer PCA suppressed HDAC2 expression and activity. Black-Right-Pointing-Pointer These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  10. F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation

    Science.gov (United States)

    Chen, Bill B.; Glasser, Jennifer R.; Coon, Tiffany A.; Zou, Chunbin; Miller, Hannah L.; Fenton, Moon; McDyer, John F.; Boyiadzis, Michael

    2012-01-01

    Hematologic maligancies exhibit a growth advantage by up-regulation of components within the molecular apparatus involved in cell-cycle progression. The SCF (Skip-Cullin1-F-box protein) E3 ligase family provides homeostatic feedback control of cell division by mediating ubiquitination and degradation of cell-cycle proteins. By screening several previously undescribed E3 ligase components, we describe the behavior of a relatively new SCF subunit, termed FBXL2, that ubiquitinates and destabilizes cyclin D2 protein leading to G0 phase arrest and apoptosis in leukemic and B-lymphoblastoid cell lines. FBXL2 expression was strongly suppressed, and yet cyclin D2 protein levels were robustly expressed in acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) patient samples. Depletion of endogenous FBXL2 stabilized cyclin D2 levels, whereas ectopically expressed FBXL2 decreased cyclin D2 lifespan. FBXL2 did not bind a phosphodegron within its substrate, which is typical of other F-box proteins, but uniquely targeted a calmodulin-binding signature within cyclin D2 to facilitate its polyubiquitination. Calmodulin competes with the F-box protein for access to this motif where it bound and protected cyclin D2 from FBXL2. Calmodulin reversed FBXL2-induced G0 phase arrest and attenuated FBXL2-induced apoptosis of lymphoblastoid cells. These results suggest an antiproliferative effect of SCFFBXL2 in lymphoproliferative malignancies. PMID:22323446

  11. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    International Nuclear Information System (INIS)

    Jeong, Jin Boo; Lee, Seong-Ho

    2013-01-01

    Highlights: ► Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. ► PCA enhanced transcriptional downregulation of cyclin D1 gene. ► PCA suppressed HDAC2 expression and activity. ► These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  12. Molecular evolution of cyclin proteins in animals and fungi

    Directory of Open Access Journals (Sweden)

    Afonnikov Dmitry A

    2011-07-01

    Full Text Available Abstract Background The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi. Results We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution. Conclusions The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events.

  13. Misexpression of cyclin B3 leads to aberrant spermatogenesis.

    Science.gov (United States)

    Refik-Rogers, Jale; Manova, Katia; Koff, Andrew

    2006-09-01

    Mus musculus cyclin B3 is an early meiotic cyclin that is expressed in leptotene and zygotene phases during gametogenesis. In order to determine whether downregulation of cyclin B3 at zygotene-pachytene transition was important for normal spermatogenesis, we investigated the consequences of expressing H. sapiens cyclin B3 after zygotene in mouse testes. Prolonging expression of cyclin B3 until the end of meiosis led to a reduction in sperm counts and disruption of spermatogenesis in four independent lines of transgenic mice. There were three distinct morphological defects associated with the ectopic expression of cyclin B3. Seminiferous tubules were either depleted of germ cells, had an abnormal cell mass in the lumen, or were characterized by the presence of abnormal round spermatids. These defects were associated with increased apoptosis in the testes. These results suggest that downregulation of cyclin B3 at the zygotene-pachytene transition is required to ensure normal spermatogenesis.

  14. p21/Cyclin E pathway modulates anticlastogenic function of Bmi-1 in cancer cells

    Science.gov (United States)

    Deng, Wen; Zhou, Yuan; Tiwari, Agnes FY; Su, Hang; Yang, Jie; Zhu, Dandan; Lau, Victoria Ming Yi; Hau, Pok Man; Yip, Yim Ling; Cheung, Annie LM; Guan, Xin-Yuan; Tsao, Sai Wah

    2015-01-01

    Apart from regulating stem cell self-renewal, embryonic development and proliferation, Bmi-1 has been recently reported to be critical in the maintenance of genome integrity. In searching for novel mechanisms underlying the anticlastogenic function of Bmi-1, we observed, for the first time, that Bmi-1 positively regulates p21 expression. We extended the finding that Bmi-1 deficiency induced chromosome breaks in multiple cancer cell models. Interestingly, we further demonstrated that knockdown of cyclin E or ectopic overexpression of p21 rescued Bmi-1 deficiency-induced chromosome breaks. We therefore conclude that p21/cyclin E pathway is crucial in modulating the anticlastogenic function of Bmi-1. As it is well established that the overexpression of cyclin E potently induces genome instability and p21 suppresses the function of cyclin E, the novel and important implication from our findings is that Bmi-1 plays an important role in limiting genomic instability in cylin E-overexpressing cancer cells by positive regulation of p21. PMID:25131797

  15. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    International Nuclear Information System (INIS)

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai; Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong; Sun, Ren-Hua; Mo, Shi-Jing

    2016-01-01

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  16. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-Dong [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Xu, Liang [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Tang, Kan-Kai [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Sun, Ren-Hua, E-mail: jqin168@hotmail.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Mo, Shi-Jing, E-mail: msj860307@163.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China)

    2016-09-10

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  17. Cannabinoids Regulate Bcl-2 and Cyclin D2 Expression in Pancreatic β Cells.

    Directory of Open Access Journals (Sweden)

    Jihye Kim

    Full Text Available Recent reports have shown that cannabinoid 1 receptors (CB1Rs are expressed in pancreatic β cells, where they induce cell death and cell cycle arrest by directly inhibiting insulin receptor activation. Here, we report that CB1Rs regulate the expression of the anti-apoptotic protein Bcl-2 and cell cycle regulator cyclin D2 in pancreatic β cells. Treatment of MIN6 and βTC6 cells with a synthetic CB1R agonist, WIN55,212-2, led to a decrease in the expression of Bcl-2 and cyclin D2, in turn inducing cell cycle arrest in G0/G1 phase and caspase-3-dependent apoptosis. Additionally, genetic deletion and pharmacological blockade of CB1Rs after injury in mice led to increased levels of Bcl-2 and cyclin D2 in pancreatic β cells. These findings provide evidence for the involvement of Bcl-2 and cyclin D2 mediated by CB1Rs in the regulation of β-cell survival and growth, and will serve as a basis for developing new therapeutic interventions to enhance β-cell function and growth in diabetes.

  18. Fentanyl activates hypoxia-inducible factor 1 in neuronal SH-SY5Y cells and mice under non-hypoxic conditions in a μ-opioid receptor-dependent manner.

    Science.gov (United States)

    Daijo, Hiroki; Kai, Shinichi; Tanaka, Tomoharu; Wakamatsu, Takuhiko; Kishimoto, Shun; Suzuki, Kengo; Harada, Hiroshi; Takabuchi, Satoshi; Adachi, Takehiko; Fukuda, Kazuhiko; Hirota, Kiichi

    2011-09-30

    Hypoxia-inducible factor 1 (HIF-1) is the main transcription factor responsible for hypoxia-induced gene expression. Perioperative drugs including anesthetics have been reported to affect HIF-1 activity. However, the effect of fentanyl on HIF-1 activity is not well documented. In this study, we investigated the effect of fentanyl and other opioids on HIF-1 activity in human SH-SY5Y neuroblastoma cells, hepatoma Hep3B cells, lung adenocarcinoma A549 cells and mice. Cells were exposed to fentanyl, and HIF-1 protein expression was examined by Western blot analysis using anti-HIF-1α and β antibodies. HIF-1-dependent gene expression was investigated by semi-quantitative real-time reverse transcriptase (RT)-PCR (qRT-PCR) and luciferase assay. Furthermore, fentanyl was administered intraperitoneally and HIF-1-dependent gene expression was investigated by qRT-PCR in the brains and kidneys of mice. A 10-μM concentration of fentanyl and other opioids, including 1 μM morphine and 4 μM remifentanil, induced HIF-1α protein expression and HIF-1 target gene expression in an opioid receptor-dependent manner in SH-SY5Y cells with activity peaking at 24h. Fentanyl did not augment HIF-1α expression during hypoxia-induced induction. HIF-1α stabilization assays and experiments with cycloheximide revealed that fentanyl increased translation from HIF-1α mRNA but did not stabilize the HIF-1α protein. Furthermore, fentanyl induced HIF-1 target gene expression in the brains of mice but not in their kidneys in a naloxone-sensitive manner. In this report, we describe for the first time that fentanyl, both in vitro and in vivo, induces HIF-1 activation under non-hypoxic conditions, leading to increases in expression of genes associated with adaptation to hypoxia. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp [Department of Basic Medical Science, National Institute for Minamata Disease, Kumamoto (Japan); Usuki, Fusako [Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto (Japan)

    2015-10-01

    Methylmercury (MeHg) is an environmental neurotoxicant. The developing nervous system is susceptible to low concentrations of MeHg; however, the effect of MeHg on neural progenitor cell (NPC) proliferation, a key stage of neurogenesis during development, remains to be clarified. In this study, we investigated the effect of low concentrations of MeHg on NPCs by using a primary culture system developed using the embryonic rat cerebral cortex. NPC proliferation was suppressed 48 h after exposure to 10 nM MeHg, but cell death was not observed. Western blot analyses for cyclins A, B, D1, and E demonstrated that MeHg down-regulated cyclin E, a promoter of the G1/S cell cycle transition. Cyclin E has been shown to be degraded following the phosphorylation by glycogen synthase kinase 3β (GSK-3β). The time course study showed that GSK-3β was up-regulated 3 h after exposure to 10 nM MeHg, and cyclin E degradation 48 h after MeHg exposure. We further demonstrated that GSK-3β inhibitors, lithium and SB-415286, suppressed MeHg-induced inhibition of NPC proliferation by preventing cyclin E degradation. These results suggest that the inhibition of NPC proliferation induced by low concentration of MeHg was associated with up-regulation of GSK-3β at the early stage and subsequent degeneration of cyclin E. - Highlights: • NPC proliferation was suppressed by 10 nM MeHg, but cell death was not observed. • MeHg induced down-regulation of cyclin E, a promoter of cell cycle progression. • GSK-3β was up-regulated by 10 nM MeHg, leading to cyclin E degradation. • GSK-3β inhibitors suppressed MeHg-induced degradation of cyclin E.

  20. MicroRNA-99a inhibits insulin-induced proliferation, migration, dedifferentiation, and rapamycin resistance of vascular smooth muscle cells by inhibiting insulin-like growth factor-1 receptor and mammalian target of rapamycin

    International Nuclear Information System (INIS)

    Zhang, Zi-wei; Guo, Rui-wei; Lv, Jin-lin; Wang, Xian-mei; Ye, Jin-shan; Lu, Ni-hong; Liang, Xing; Yang, Li-xia

    2017-01-01

    Patients with type 2 diabetes mellitus (T2DM) are characterized by insulin resistance and are subsequently at high risk for atherosclerosis. Hyperinsulinemia has been associated with proliferation, migration, and dedifferentiation of vascular smooth muscle cells (VSMCs) during the pathogenesis of atherosclerosis. Moreover, insulin-like growth factor-1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) have been demonstrated to be the underlying signaling pathways. Recently, microRNA-99a (miR-99a) has been suggested to regulate the phenotypic changes of VSMCs in cancer cells. However, whether it is involved in insulin-induced changes of VSCMs has not been determined. In this study, we found that insulin induced proliferation, migration, and dedifferentiation of mouse VSMCs in a dose-dependent manner. Furthermore, the stimulating effects of high-dose insulin on proliferation, migration, and dedifferentiation of mouse VSMCs were found to be associated with the attenuation of the inhibitory effects of miR-99a on IGF-1R and mTOR signaling activities. Finally, we found that the inducing effect of high-dose insulin on proliferation, migration, and dedifferentiation of VSMCs was partially inhibited by an active mimic of miR-99a. Taken together, these results suggest that miR-99a plays a key regulatory role in the pathogenesis of insulin-induced proliferation, migration, and phenotype conversion of VSMCs at least partly via inhibition of IGF-1R and mTOR signaling. Our results provide evidence that miR-99a may be a novel target for the treatment of hyperinsulinemia-induced atherosclerosis. - Highlights: • Suggesting a new mechanism of insulin-triggered VSMC functions. • Providing a new therapeutic strategies that target atherosclerosis in T2DM patients. • Providing a new strategies that target in-stent restenosis in T2DM patients.

  1. Direct trans-activation of the human cyclin D2 gene by the oncogene product Tax of human T-cell leukemia virus type I.

    Science.gov (United States)

    Huang, Y; Ohtani, K; Iwanaga, R; Matsumura, Y; Nakamura, M

    2001-03-01

    Cyclins are one of the pivotal determinants regulating cell cycle progression. We previously reported that the trans-activator Tax of human T-cell leukemia virus type I (HTLV-I) induces endogenous cyclin D2 expression along with cell cycle progression in a resting human T-cell line, Kit 225, suggesting a role of cyclin D2 in Tax-mediated cell cycle progression. The cyclin D2 gene has a typical E2F binding element, raising the possibility that induction of cyclin D2 expression is a consequence of cell cycle progression. In this study, we examined the role and molecular mechanism of induction of the endogenous human cyclin D2 gene by Tax. Introduction of p19(INK4d), a cyclin dependent kinase (CDK) inhibitor of the INK4 family specific for D-type CDK, inhibited Tax-mediated activation of E2F, indicating requirement of D-type CDK in Tax-mediated activation of E2F. Previously indicated E2F binding element and two NF-kappaB-like binding elements in the 1.6 kbp cyclin D2 promoter fragment had little, if any, effect on responsiveness to Tax. We found that trans-activation of the cyclin D2 promoter by Tax was mainly mediated by a newly identified NF-kappaB-like element with auxiliary contribution of a CRE-like element residing in sequences downstream of -444 which were by themselves sufficient for trans-activation by Tax. These results indicate that Tax directly trans-activates the cyclin D2 gene, resulting in growth promotion and perhaps leukemogenesis through activation of D-type CDK.

  2. The Rts1 regulatory subunit of protein phosphatase 2A is required for control of G1 cyclin transcription and nutrient modulation of cell size.

    Directory of Open Access Journals (Sweden)

    Karen Artiles

    2009-11-01

    Full Text Available The key molecular event that marks entry into the cell cycle is transcription of G1 cyclins, which bind and activate cyclin-dependent kinases. In yeast cells, initiation of G1 cyclin transcription is linked to achievement of a critical cell size, which contributes to cell-size homeostasis. The critical cell size is modulated by nutrients, such that cells growing in poor nutrients are smaller than cells growing in rich nutrients. Nutrient modulation of cell size does not work through known critical regulators of G1 cyclin transcription and is therefore thought to work through a distinct pathway. Here, we report that Rts1, a highly conserved regulatory subunit of protein phosphatase 2A (PP2A, is required for normal control of G1 cyclin transcription. Loss of Rts1 caused delayed initiation of bud growth and delayed and reduced accumulation of G1 cyclins. Expression of the G1 cyclin CLN2 from an inducible promoter rescued the delayed bud growth in rts1Delta cells, indicating that Rts1 acts at the level of transcription. Moreover, loss of Rts1 caused altered regulation of Swi6, a key component of the SBF transcription factor that controls G1 cyclin transcription. Epistasis analysis revealed that Rts1 does not work solely through several known critical upstream regulators of G1 cyclin transcription. Cells lacking Rts1 failed to undergo nutrient modulation of cell size. Together, these observations demonstrate that Rts1 is a key player in pathways that link nutrient availability, cell size, and G1 cyclin transcription. Since Rts1 is highly conserved, it may function in similar pathways in vertebrates.

  3. Stimulation of pancreatic beta-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways

    DEFF Research Database (Denmark)

    Friedrichsen, Birgitte N; Neubauer, Nicole; Lee, Ying C

    2006-01-01

    pathways leading to mitosis by incretins and cytokines, respectively. The response to both GLP-1 and GIP was completely blocked by the protein kinase A (PKA) inhibitor, H89. In addition, the phosphoinositol 3-kinase (PI3K) inhibitor wortmannin and the mitogen-activated protein kinase kinase (MEK) inhibitor...... and we have previously demonstrated hGH-induced cyclin D2 expression in the insulinoma cell line, INS-1. GLP-1 time-dependently induced the cyclin D1 mRNA and protein levels in INS-1E, whereas the cyclin D2 levels were unaffected. However, minor effect of GLP-1 stimulation was observed on the cyclin D3 m......RNA levels. Transient transfection of a cyclin D1 promoter-luciferase reporter construct into islet monolayer cells or INS-1 cells revealed approximately a 2-3 fold increase of transcriptional activity in response to GLP-1 and GIP, and a 4-7 fold increase in response to forskolin. However, treatment...

  4. Inhibition of hypoxia inducible factor-1alpha by dihydroxyphenylethanol, a product from olive oil, blocks microsomal prostaglandin-E synthase-1/vascular endothelial growth factor expression and reduces tumor angiogenesis.

    Science.gov (United States)

    Terzuoli, Erika; Donnini, Sandra; Giachetti, Antonio; Iñiguez, Miguel A; Fresno, Manuel; Melillo, Giovanni; Ziche, Marina

    2010-08-15

    2-(3,4-dihydroxyphenil)-ethanol (DPE), a polyphenol present in olive oil, has been found to attenuate the growth of colon cancer cells, an effect presumably related to its anti-inflammatory activity. To further explore the effects of DPE on angiogenesis and tumor growth we investigated the in vivo efficacy of DPE in a HT-29 xenograft model and in vitro activities in colon cancer cells exposed to interleukin-1beta (IL-1beta) and prostaglandin E-2 (PGE-2). DPE (10 mg/kg/day for 14 days) inhibited tumor growth, reducing vessel lumina and blood perfusion to tumor, and diminished expression of hypoxia inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), and microsomal prostaglandin-E synthase-1 (mPGEs-1). In vitro, DPE (100 mumol/L) neither affected cell proliferation nor induced apoptosis in HT-29 and WiDr cells. DPE prevented the IL-1beta-mediated increase of mPGEs-1 expression and PGE-2 generation, as it did the silencing of HIF-1alpha. Moreover, DPE blocked mPGEs-1-dependent expression of VEGF and inhibited endothelial sprouting induced by tumor cells in a coculture system. PGE-2 triggers a feed-forward loop involving HIF-1alpha, which impinges on mPGEs-1 and VEGF expression, events prevented by DPE via extracellular signal-related kinase 1/2. The reduction of PGE-2 and VEGF levels, caused by DPE, was invariably associated with a marked decrease in HIF-1alpha expression and activity, independent of proteasome activity, indicating that the DPE effects on tumor growth and angiogenesis are dependent on the inhibition of HIF-1alpha translation. We show that the in vivo DPE antitumor effect is associated with anti-inflammatory and antiangiogenic activities resulting from the downregulation of the HIF-1alpha/mPGEs-1/VEGF axis.

  5. Origin of cells cultured in vitro from human breast carcinomas traced by cyclin D1 and HER2/neu FISH signal numbers

    Czech Academy of Sciences Publication Activity Database

    Matoušková, Eva; Kudláčková, Iva; Chaloupková, Alena; Brožová, Markéta; Netíková, I.; Veselý, Pavel

    2005-01-01

    Roč. 25, 2A (2005), s. 1051-1058 ISSN 0250-7005 R&D Projects: GA MZd(CZ) NR8145 Institutional research plan: CEZ:AV0Z50520514 Keywords : breast carcinomas * primary cultures of carcinoma cells * cyclin D1 and HER2/neu by FISH Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.604, year: 2005

  6. Therapeutically targeting cyclin D1 in primary tumors arising from loss of Ini1

    Science.gov (United States)

    Smith, Melissa E.; Cimica, Velasco; Chinni, Srinivasa; Jana, Suman; Koba, Wade; Yang, Zhixia; Fine, Eugene; Zagzag, David; Montagna, Cristina; Kalpana, Ganjam V.

    2011-01-01

    Rhabdoid tumors (RTs) are rare, highly aggressive pediatric malignancies with poor prognosis and with no standard or effective treatment strategies. RTs are characterized by biallelic inactivation of the INI1 tumor suppressor gene. INI1 directly represses CCND1 and activates cyclin-dependent kinase (cdk) inhibitors p16Ink4a and p21CIP. RTs are exquisitely dependent on cyclin D1 for genesis and survival. To facilitate translation of unique therapeutic strategies, we have used genetically engineered, Ini1+/− mice for therapeutic testing. We found that PET can be used to noninvasively and accurately detect primary tumors in Ini1+/− mice. In a PET-guided longitudinal study, we found that treating Ini1+/− mice bearing primary tumors with the pan-cdk inhibitor flavopiridol resulted in complete and stable regression of some tumors. Other tumors showed resistance to flavopiridol, and one of the resistant tumors overexpressed cyclin D1, more than flavopiridol-sensitive cells. The concentration of flavopiridol used was not sufficient to down-modulate the high level of cyclin D1 and failed to induce cell death in the resistant cells. Furthermore, FISH and PCR analyses indicated that there is aneuploidy and increased CCND1 copy number in resistant cells. These studies indicate that resistance to flavopiridol may be correlated to elevated cyclin D1 levels. Our studies also indicate that Ini1+/− mice are valuable tools for testing unique therapeutic strategies and for understanding mechanisms of drug resistance in tumors that arise owing to loss of Ini1, which is essential for developing effective treatment strategies against these aggressive tumors. PMID:21173237

  7. Reduced hepatic tumor incidence in cyclin G1-deficient mice

    DEFF Research Database (Denmark)

    Jensen, Michael Rugaard; Factor, Valentina M; Fantozzi, Anna

    2003-01-01

    found that the p53 levels in the cyclin G1-deficient mice are 2-fold higher that in wild-type mice. Moreover, we showed that treatment of mice with the alkylating agent 1,4-bis[N,N'-di(ethylene)-phosphamide]piperazine (Dipin), followed by partial hepatectomy, decreased G1-S transition in cyclin G1-null...

  8. C/EBP{delta} targets cyclin D1 for proteasome-mediated degradation via induction of CDC27/APC3 expression.

    Science.gov (United States)

    Pawar, Snehalata A; Sarkar, Tapasree Roy; Balamurugan, Kuppusamy; Sharan, Shikha; Wang, Jun; Zhang, Youhong; Dowdy, Steven F; Huang, A-Mei; Sterneck, Esta

    2010-05-18

    The transcription factor CCAAT/enhancer binding protein delta (C/EBPdelta, CEBPD, NFIL-6beta) has tumor suppressor function; however, the molecular mechanism(s) by which C/EBPdelta exerts its effect are largely unknown. Here, we report that C/EBPdelta induces expression of the Cdc27 (APC3) subunit of the anaphase promoting complex/cyclosome (APC/C), which results in the polyubiquitination and degradation of the prooncogenic cell cycle regulator cyclin D1, and also down-regulates cyclin B1, Skp2, and Plk-1. In C/EBPdelta knockout mouse embryo fibroblasts (MEF) Cdc27 levels were reduced, whereas cyclin D1 levels were increased even in the presence of activated GSK-3beta. Silencing of C/EBPdelta, Cdc27, or the APC/C coactivator Cdh1 (FZR1) in MCF-10A breast epithelial cells increased cyclin D1 protein expression. Like C/EBPdelta, and in contrast to cyclin D1, Cdc27 was down-regulated in several breast cancer cell lines, suggesting that Cdc27 itself may be a tumor suppressor. Cyclin D1 is a known substrate of polyubiquitination complex SKP1/CUL1/F-box (SCF), and our studies show that Cdc27 directs cyclin D1 to alternative degradation by APC/C. These findings shed light on the role and regulation of APC/C, which is critical for most cellular processes.

  9. Andrographolide inhibits hypoxia-induced hypoxia-inducible factor 1α and endothelin 1 expression through the heme oxygenase 1/CO/cGMP/MKP-5 pathways in EA.hy926 cells.

    Science.gov (United States)

    Lin, Hung-Chih; Su, Shih-Li; Lin, Wan-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Lii, Chong-Kuei; Chen, Haw-Wen

    2018-03-01

    Andrographolide is a potent anti-inflammatory agent found in Andrographis paniculata. Endothelin 1 (ET-1) is an endothelium-derived vasoconstrictor with pro-inflammatory properties secreted in response to hypoxia. Mitogen-activated protein kinase phosphatase 5 (MKP-5) is a dual-specificity phosphatase that dephosphorylates threonine and tyrosine residues of MAPKs. We showed previously that hypoxia-induced HIF-1α expression and ET-1 secretion are dependent on p38 MAPK in EA.hy926 cells. Here, we investigate what role MKP-5 plays in andrographolide's inhibition of hypoxia-induced expression of HIF-1α and ET-1. Hypoxic conditions were created using the hypoxia-mimetic agent CoCl 2 . Andrographolide enhanced HO-1 and MKP-5 expression and cellular cGMP content in addition to inhibiting hypoxia-induced ROS generation. Concomitantly, the HO-1 byproduct CO and the cGMP analogue 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP) increased MKP-5 expression, and pretreatment with CO and 8-Br-cGMP inhibited hypoxia-induced HIF-1α and ET-1 expression. Transfection of HO-1 siRNA or pretreatment with the HO-1 inhibitor ZnPP-9 or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a specific inhibitor of soluble guanylate cyclase, reduced andrographolide-induced MKP-5 expression. Moreover, silencing MKP-5 or treatment with the phosphatase inhibitor vanadate abrogated andrographolide's suppressing hypoxia-induced p38 MAPK activation and HIF-1α expression. The inhibition of hypoxia-induced HIF-1α and ET-1 expression by andrographolide is likely associated with HO-1/CO/cGMP/MKP-5 pathways, which is involved in inhibiting hypoxia-induced p38 MAPK activation. © 2017 Wiley Periodicals, Inc.

  10. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis.

    Science.gov (United States)

    Welsh, Sarah J; Bellamy, William T; Briehl, Margaret M; Powis, Garth

    2002-09-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimer of HIF-1alpha and HIF-1beta subunits, is a transcriptional activator central to the cellular response to low oxygen that includes metabolic adaptation, angiogenesis, metastasis, and inhibited apoptosis. Thioredoxin-1 (Trx-1) is a small redox protein overexpressed in a number of human primary tumors. We have examined the effects of Trx-1 on HIF activity and the activation of downstream genes. Stable transfection of human breast carcinoma MCF-7 cells with human Trx-1 caused a significant increase in HIF-1alpha protein levels under both normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. Trx-1 increased hypoxia-induced HIF-1 transactivation activity measured using a luciferase reporter under the control of the hypoxia response element. Changes in HIF-1alpha mRNA levels did not account for the changes observed at the protein level, and HIF-1beta protein levels did not change. Trx-1 transfection also caused a significant increase in the protein products of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF) and nitric oxide synthase 2 in a number of different cell lines (MCF-7 human breast and HT29 human colon carcinomas and WEHI7.2 mouse lymphoma cells) under both normoxic and hypoxic conditions. The pattern of expression of the different isoforms of VEGF was not changed by Trx-1. Transfection of a redox-inactive Trx-1 (C32S/C35S) markedly decreased levels of HIF-1alpha protein, HIF-1 transactivating activity, and VEGF protein in MCF-7 cells compared with empty vector controls. In vivo studies using WEHI7.2 cells transfected with Trx-1 showed significantly increased tumor VEGF and angiogenesis. The results suggest that Trx-1 increases HIF-1alpha protein levels in cancer cells and increases VEGF production and tumor angiogenesis.

  11. Correlation of cytoplasmic beta-catenin and cyclin D1 overexpression during thyroid carcinogenesis around Semipalatinsk nuclear test site.

    Science.gov (United States)

    Meirmanov, Serik; Nakashima, Masahiro; Kondo, Hisayoshi; Matsufuji, Reiko; Takamura, Noboru; Ishigaki, Katsu; Ito, Masahiro; Prouglo, Yuri; Yamashita, Shunichi; Sekine, Ichiro

    2003-06-01

    The Semipalatinsk nuclear test site (SNTS), the Republic of Kazakhstan, has been contaminated by radioactive fallout. The alteration of oncogenic molecules in thyroid cancer around the SNTS was considered worthy of analysis because it presented the potential to elucidate the relationship between radiation exposure and thyroid cancer. This study aimed to analyze both beta-catenin and cyclin D1 expressions in thyroid carcinomas around the SNTS. We examined nine cases of chronic thyroiditis, eight cases of follicular adenomas, and 23 cases of papillary carcinomas. Immunohistochemically, all carcinomas displayed a strong cytosolic beta-catenin expression, while both chronic thyroiditis and follicular adenomas showed a significantly lower cytoplasmic beta-catenin (22.2% and 37.5%, respectively). No cyclin D1 immunoreactivity was evident in chronic thyroiditis. In contrast, 62.5% of follicular adenomas and 87.0% of papillary carcinoma showed cyclin D1 overexpression. Additionally, a strong correlation between cytoplasmic beta-catenin and cyclin D1 expression was suggested in thyroid tumors. This study revealed a higher prevalence of both aberrant beta-catenin expression and cyclin D1 overexpression in papillary thyroid cancers around the SNTS than sporadic cases. The analysis of the alteration of the Wnt signaling-related molecules in thyroid cancer around the SNTS may be important to gain an insight into radiation-induced thyroid tumorigenesis.

  12. The G1/S Specific Cyclin D2 Is a Regulator of HIV-1 Restriction in Non-proliferating Cells

    Science.gov (United States)

    Badia, Roger; Pujantell, Maria; Riveira-Muñoz, Eva; Puig, Teresa; Torres-Torronteras, Javier; Martí, Ramón; Clotet, Bonaventura; Ampudia, Rosa M.; Ballana, Ester

    2016-01-01

    Macrophages are a heterogeneous cell population strongly influenced by differentiation stimuli that become susceptible to HIV-1 infection after inactivation of the restriction factor SAMHD1 by cyclin-dependent kinases (CDK). Here, we have used primary human monocyte-derived macrophages differentiated through different stimuli to evaluate macrophage heterogeneity on cell activation and proliferation and susceptibility to HIV-1 infection. Stimulation of monocytes with GM-CSF induces a non-proliferating macrophage population highly restrictive to HIV-1 infection, characterized by the upregulation of the G1/S-specific cyclin D2, known to control early steps of cell cycle progression. Knockdown of cyclin D2, enhances HIV-1 replication in GM-CSF macrophages through inactivation of SAMHD1 restriction factor by phosphorylation. Co-immunoprecipitation experiments show that cyclin D2 forms a complex with CDK4 and p21, a factor known to restrict HIV-1 replication by affecting the function of the downstream cascade that leads to SAMHD1 deactivation. Thus, we demonstrate that cyclin D2 acts as regulator of cell cycle proteins affecting SAMHD1-mediated HIV-1 restriction in non-proliferating macrophages. PMID:27541004

  13. Deciphering the binding behavior of flavonoids to the cyclin dependent kinase 6/cyclin D complex.

    Directory of Open Access Journals (Sweden)

    Jingxiao Zhang

    Full Text Available Flavonoids, a class of natural compounds with variable phenolic structures, have been found to possess anti-cancer activities by modulating different enzymes and receptors like CDK6. To understand the binding behavior of flavonoids that inhibit the active CDK6, molecular dynamics (MD simulations were performed on six inhibitors, chrysin (M01, fisetin (M03, galangin (M04, genistein (M05, quercetin (M06 and kaempferol (M07, complexed with CDK6/cyclin D. For all six flavonoids, the 3'-OH and 4'-OH of B-ring were found to be favorable for hydrogen bond formation, but the 3-OH on the C-ring and 5-OH on the A-ring were unfavorable, which were confirmed by the MD simulation results of the test molecule, 3', 4', 7-trihydroxyflavone (M15. The binding efficiencies of flavonoids against the CDK6/cyclin D complex were mainly through the electrostatic (especially the H-bond force and vdW interactions with residues ILE19, VAL27, ALA41, GLU61, PHE98, GLN103, ASP163 and LEU152. The order of binding affinities of these flavonoids toward the CDK6/cyclin D was M03 > M01 > M07 > M15 > M06 > M05 > M04. It is anticipated that the binding features of flavonoid inhibitors studied in the present work may provide valuable insights for the development of CDK6 inhibitors.

  14. The Role of Cyclins and Cyclins Inhibitors in the Multistep Process of HPV-Associated Cervical Carcinoma

    International Nuclear Information System (INIS)

    Bahnassy, A.A.; Mokhtar, N.M.; Zekri, A.; Alam El-Din, H.M.; Aboubaker, A.A.; Kamel, K.; El-Sabah, M.T.

    2006-01-01

    Background: Human papillomavirus (HPV) types 16 and 18 are associated with cervical carcinogenesis. This is possibly achieved through an interaction between HPV oncogenic proteins and some cell cycle regulatory genes. However, the exact pathogenetic mechanisms are not well defined yet. Methods: We investigated 110 subjects (43 invasive squamous cell carcinoma [ISCC], 38 CIN Ill, II CIN II, 18 CIN I) confirmed to be positive for HPV 16 and/or 18 as well as 20 normal cervical tissue (NCT) samples for abnormal expression of cyclin DJ, cyclin E, CDK4, cyclin inhibitors (p2Jwa/; p27, pI6/NK4A) and Ki-67 using immunohistochemistry and differential PCR techniques. Results: There was a significant increase in the expression of Ki-67, cyclin E, CDK4, pJ6/NK4A (p=0003, 0.001,0.001) and a significant decrease in p27K1P/ from NCT to ISCC (p=0.003). There was a significant correlation between altered expression of p27K1P I and p 161NK4A (p KIpl (ρ=0.011) in all studied groups In ISCC, there was significant relationship between standard clinico-pathological prognostic factors and high Ki-67 index, increased cyclin D J and cyclin E, reduced p2 7Kip / and p21 waf Conclusion: I) Aberrations involving p27K/P 1, cyclin E, CDK4 and pJ6/NK4A are considered early events in HPV 16 and IS-associated cervical carcinogenesis (CINI and lI), whereas cyclin DI aberrations are late events (CINIII and ISCC). 2) immunohistochemical tests for pJ61NK4A and cyclin E could help in early diagnosis of cervical carcinoma. 3) Only FIGO stage, cyclin DI, p27K1P1 and Ki-67 are independent prognostic factors that might help in predicting outcome of cervical cancer palients

  15. Targeting the AKT/GSK3β/Cyclin D1/Cdk4 Survival Signaling Pathway for Eradication of Tumor Radioresistance Acquired by Fractionated Radiotherapy

    International Nuclear Information System (INIS)

    Shimura, Tsutomu; Kakuda, Satoshi; Ochiai, Yasushi; Kuwahara, Yoshikazu; Takai, Yoshihiro; Fukumoto, Manabu

    2011-01-01

    Purpose: Radioresistance is a major cause of treatment failure of radiotherapy (RT) in human cancer. We have recently revealed that acquired radioresistance of tumor cells induced by fractionated radiation is attributable to cyclin D1 overexpression as a consequence of the downregulation of GSK3β-dependent cyclin D1 proteolysis mediated by a constitutively activated serine-threonine kinase, AKT. This prompted us to hypothesize that targeting the AKT/GSK3β/cyclin D1 pathway may improve fractionated RT by suppressing acquired radioresistance of tumor cells. Methods and Materials: Two human tumor cell lines with acquired radioresistance were exposed to X-rays after incubation with either an AKT inhibitor, AKT/PKB signaling inhibitor-2 (API-2), or a Cdk4 inhibitor (Cdk4-I). Cells were then subjected to immunoblotting, clonogenic survival assay, cell growth analysis, and cell death analysis with TUNEL and annexin V staining. In vivo radiosensitivity was assessed by growth of human tumors xenografted into nude mice. Results: Treatment with API-2 resulted in downregulation of cyclin D1 expression in cells with acquired radioresistance. Cellular radioresistance disappeared completely both in vitro and in vivo with accompanying apoptosis when treated with API-2. Furthermore, inhibition of cyclin D1/Cdk4 by Cdk4-I was sufficient for abolishing radioresistance. Treatment with either API-2 or Cdk4-I was also effective in suppressing resistance to cis-platinum (II)-diamine-dichloride in the cells with acquired radioresistance. Interestingly, the radiosensitizing effect of API-2 was canceled by overexpression of cyclin D1 whereas Cdk4-I was still able to sensitize cells with cyclin D1 overexpression. Conclusion: Cyclin D1/Cdk4 is a critical target of the AKT survival signaling pathway responsible for tumor radioresistance. Targeting the AKT/GSK3β/cyclin D1/Cdk4 pathway would provide a novel approach to improve fractionated RT and would have an impact on tumor eradication in

  16. Antitumor activity of novel chimeric peptides derived from cyclinD/CDK4 and the protein transduction domain 4.

    Science.gov (United States)

    Wang, Haili; Chen, Xi; Chen, Yanping; Sun, Lei; Li, Guodong; Zhai, Mingxia; Zhai, Wenjie; Kang, Qiaozhen; Gao, Yanfeng; Qi, Yuanming

    2013-02-01

    CyclinD1/CDK4 and cyclinD3/CDK4 complexes are key regulators of the cell progression and therefore constitute promising targets for the design of anticancer agents. In the present study, the key peptide motifs were selected from these two complexes. Chimeric peptides with these peptides conjugated to the protein transduction domain 4 (PTD4) were designed and synthesized. The chimeric peptides, PTD4-D1, PTD4-D3, PTD4-K4 exhibited significant anti-proliferation effects on cancer cell lines. These peptides could compete with the cyclinD/CDK4 complex and induce the G1/S phase arrest and apoptosis of cancer cells. In the tumor challenge experiment, these peptides showed potent antitumor effects with no significant side effects. Our results suggested that these peptides could be served as novel leading compounds with potent antitumor activity.

  17. Rising cyclin-CDK levels order cell cycle events.

    Directory of Open Access Journals (Sweden)

    Catherine Oikonomou

    Full Text Available Diverse mitotic events can be triggered in the correct order and time by a single cyclin-CDK. A single regulator could confer order and timing on multiple events if later events require higher cyclin-CDK than earlier events, so that gradually rising cyclin-CDK levels can sequentially trigger responsive events: the "quantitative model" of ordering.This 'quantitative model' makes predictions for the effect of locking cyclin at fixed levels for a protracted period: at low cyclin levels, early events should occur rapidly, while late events should be slow, defective, or highly variable (depending on threshold mechanism. We titrated the budding yeast mitotic cyclin Clb2 within its endogenous expression range to a stable, fixed level and measured time to occurrence of three mitotic events: growth depolarization, spindle formation, and spindle elongation, as a function of fixed Clb2 level. These events require increasingly more Clb2 according to their normal order of occurrence. Events occur efficiently and with low variability at fixed Clb2 levels similar to those observed when the events normally occur. A second prediction of the model is that increasing the rate of cyclin accumulation should globally advance timing of all events. Moderate (<2-fold overexpression of Clb2 accelerates all events of mitosis, resulting in consistently rapid sequential cell cycles. However, this moderate overexpression also causes a significant frequency of premature mitoses leading to inviability, suggesting that Clb2 expression level is optimized to balance the fitness costs of variability and catastrophe.We conclude that mitotic events are regulated by discrete cyclin-CDK thresholds. These thresholds are sequentially triggered as cyclin increases, yielding reliable order and timing. In many biological processes a graded input must be translated into discrete outputs. In such systems, expression of the central regulator is likely to be tuned to an optimum level, as we

  18. p52-Bcl3 complex promotes cyclin D1 expression in BEAS-2B cells in response to low concentration arsenite

    International Nuclear Information System (INIS)

    Wang, Feng; Shi, Yongli; Yadav, Santosh; Wang, He

    2010-01-01

    Arsenic is a well-recognized human carcinogen that causes a number of malignant diseases, including lung cancer. Previous studies have indicated that cyclin D1 is frequently over-expressed in many cancer types. It is also known that arsenite exposure enhances cyclin D1 expression, which involves NF-κB activation. However, the mechanism between cyclin D1 and the NF-κB pathway has not been well studied. This study was designed to characterize the underlying mechanism of induced cell growth and cyclin D1 expression in response to low concentration sodium arsenic (NaAsO 2 ) exposure through the NF-κB pathway. Cultured human bronchial epithelial cells, BEAS-2B, were exposed to low concentration sodium arsenite for the indicated durations, and cytotoxicity, gene expression, and protein activity were assessed. To profile the canonical and non-canonical NF-κB pathways involved in cell growth and cyclin D1 expression induced by low concentration arsenite, the NF-κB-specific inhibitor-phenethyl caffeate (CAPE) and NF-κB2 mRNA target sequences were used, and cyclin D1 expression in BEAS-2B cells was assessed. Our results demonstrated that exposure to low concentration arsenite enhanced BEAS-2B cells growth and cyclin D1 mRNA and protein expression. Activation and nuclear localization of p52 and Bcl3 in response to low concentration arsenite indicated that the non-canonical NF-κB pathway was involved in arsenite-induced cyclin D1 expression. Moreover, we further demonstrated that p52/Bcl3 complex formation enhanced cyclin D1 expression through the cyclin D1 gene promoter via its κB site. The up-regulation of cyclin D1 mediated by the p52-Bcl3 complex in response to low concentration arsenite might be important in assessing the health risk of low concentration arsenite and understanding the mechanisms of the harmful effects of arsenite.

  19. Hypoxia-inducible factor-1α plays roles in Epstein-Barr virus's natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter.

    Directory of Open Access Journals (Sweden)

    Richard J Kraus

    2017-06-01

    Full Text Available When confronted with poor oxygenation, cells adapt by activating survival signaling pathways, including the oxygen-sensitive transcriptional regulators called hypoxia-inducible factor alphas (HIF-αs. We report here that HIF-1α also regulates the life cycle of Epstein-Barr virus (EBV. Incubation of EBV-positive gastric carcinoma AGS-Akata and SNU-719 and Burkitt lymphoma Sal and KemIII cell lines with a prolyl hydroxylase inhibitor, L-mimosine or deferoxamine, or the NEDDylation inhibitor MLN4924 promoted rapid and sustained accumulation of both HIF-1α and lytic EBV antigens. ShRNA knockdown of HIF-1α significantly reduced deferoxamine-mediated lytic reactivation. HIF-1α directly bound the promoter of the EBV primary latent-lytic switch BZLF1 gene, Zp, activating transcription via a consensus hypoxia-response element (HRE located at nt -83 through -76 relative to the transcription initiation site. HIF-1α did not activate transcription from the other EBV immediate-early gene, BRLF1. Importantly, expression of HIF-1α induced EBV lytic-gene expression in cells harboring wild-type EBV, but not in cells infected with variants containing base-pair substitution mutations within this HRE. Human oral keratinocyte (NOK and gingival epithelial (hGET cells induced to differentiate by incubation with either methyl cellulose or growth in organotypic culture accumulated both HIF-1α and Blimp-1α, another cellular factor implicated in lytic reactivation. HIF-1α activity also accumulated along with Blimp-1α during B-cell differentiation into plasma cells. Furthermore, most BZLF1-expressing cells observed in lymphomas induced by EBV in NSG mice with a humanized immune system were located distal to blood vessels in hypoxic regions of the tumors. Thus, we conclude that HIF-1α plays central roles in both EBV's natural life cycle and EBV-associated tumorigenesis. We propose that drugs that induce HIF-1α protein accumulation are good candidates for

  20. Immunohistochemical detection of osteopontin in advanced head-and-neck cancer: Prognostic role and correlation with oxygen electrode measurements, hypoxia-inducible-factor-1α-related markers, and hemoglobin levels

    International Nuclear Information System (INIS)

    Bache, Matthias; Reddemann, Rolf; Said, Harun M.; Holzhausen, Hans-Juergen; Taubert, Helge; Becker, Axel; Kuhnt, Thomas; Haensgen, Gabriele; Dunst, Juergen; Vordermark, Dirk

    2006-01-01

    Purpose: The tumor-associated glycoprotein osteopontin (OPN) is discussed as a plasma marker of tumor hypoxia. However, the association of immunohistochemical OPN expression in tumor sections with tumor oxygenation parameters (HF5, median pO 2 ), the hypoxia-related markers hypoxia-inducible factor-1α (HIF-1α) and carbonic anhydrase IX (CAIX), or hemoglobin and systemic vascular endothelial growth factor (VEGF) levels has not been investigated. Methods and Materials: Tumor tissue sections of 34 patients with advanced head-and-neck cancer treated with radiotherapy were assessed by immunochemistry for the expression of OPN, HIF-1α, and CA IX. Relationship of OPN expression with tumor oxygenation parameters (HF5, median pO 2 ), HIF-1α and CA IX expression, hemoglobin and serum VEGF level, and clinical parameters was studied. Results: Bivariate analysis showed a significant correlation of positive OPN staining with low hemoglobin level (p = 0.02), high HIF-1α expression (p = 0.02), and high serum vascular endothelial growth factor level (p = 0.02) for advanced head-and-neck cancer. Furthermore, considering the 31 Stage IV patients, the median pO 2 correlated significantly with the OPN expression (p = 0.02). OPN expression alone had only a small impact on prognosis. However, in a univariate Cox proportional hazard regression model, the expression of either OPN or HIF-1α or CA IX was associated with a 4.1-fold increased risk of death (p = 0.02) compared with negativity of all three markers. Conclusion: Osteopontin expression detected immunohistochemically is associated with oxygenation parameters in advanced head-and-neck cancer. When the results of OPN, HIF-1α, and CA IX immunohistochemistry are combined into a hypoxic profile, a strong and statistically significant impact on overall survival is found

  1. Unilateral Partial Nephrectomy with Warm Ischemia Results in Acute Hypoxia Inducible Factor 1-Alpha (HIF-1α and Toll-Like Receptor 4 (TLR4 Overexpression in a Porcine Model.

    Directory of Open Access Journals (Sweden)

    Zhiyong Zhang

    Full Text Available Ischemia/reperfusion (I/R during partial nephrectomy (PN contributes to acute kidney injury (AKI, which is inaccurately assessed using existent clinical markers of renal function. We evaluated I/R-related changes in expression in hypoxia inducible factor 1α (HIF-1α and toll-like receptor 4 (TLR4, within kidney tissue and peripheral blood leukocytes (PBL in a porcine model of PN.Three adult pigs each underwent unilateral renal hilar cross clamping for 180 min followed by a 15 min reperfusion. The contralateral kidney served as control. Biopsies of clamped kidneys were obtained at baseline (time 0, every 60 min during the hypoxic phase, and post-reperfusion. Control kidneys were biopsied once at 180 min. Peripheral blood was sampled at time 0, every 30 min during the hypoxic phase, and post-reperfusion. HIF-1α and TLR4 expression in kidney tissue and PBL were analyzed by Western blotting. I/R-related histological changes were assessed.Expression of HIF-1α in clamped kidneys and PBL was below detection level at baseline, rising to detectable levels after 60 min of hypoxia, and continuing to rise throughout the hypoxic and reperfusion phases. Expression of TLR-4 in clamped kidneys followed a similar trend with initial detection after 30-60 min of hypoxia. Control kidneys exhibited no change in HIF-1α or TLR-4 expression. I/R-related histologic changes were minimal, primarily mild tubular dilatation.In a porcine model of PN, HIF-1α and TLR4 exhibited robust, I/R-related increases in expression in kidney tissue and PBL. Further studies investigating these molecules as potential markers of AKI are warranted.

  2. Long noncoding RNA HOTAIR, a hypoxia-inducible factor-1α activated driver of malignancy, enhances hypoxic cancer cell proliferation, migration, and invasion in non-small cell lung cancer.

    Science.gov (United States)

    Zhou, Chunxia; Ye, Lincai; Jiang, Chuan; Bai, Jie; Chi, Yongbin; Zhang, Haibo

    2015-12-01

    Despite the fact that great advances have been made in the management of non-small cell lung cancer (NSCLC), the prognosis of advanced NSCLC remains very poor. HOX transcript antisense intergenic RNA (HOTAIR) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in the progression of a variety of carcinomas and acts as a negative prognostic biomarker. Yet, little is known about the effect of HOTAIR in the hypoxic microenvironment of NSCLC. The expression and promoter activity of HOTAIR were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and luciferase reporter assay. The function of the hypoxia-inducible factor-1α (HIF-1α) binding site to hypoxia-responsive elements (HREs) in the HOTAIR promoter region was tested by luciferase reporter assay with nucleotide substitutions. The binding of HIF-1α to the HOTAIR promoter in vivo was confirmed by chromatin immunoprecipitation assay (CHIP) and electrophoretic mobility shift assay (EMSA). The effect of HIF-1α suppression by small interference RNA or YC-1 on HOTAIR expression was also determined. In the present study, we demonstrated that HOTAIR was upregulated by hypoxia in NSCLC cells. HOTAIR is a direct target of HIF-1α through interaction with putative HREs in the upstream region of HOTAIR in NSCLC cells. Furthermore, HIF-1α knockdown or inhibition could prevent HOTAIR upregulation under hypoxic conditions. Under hypoxic conditions, HOTAIR enhanced cancer cell proliferation, migration, and invasion. These data suggested that suppression of HOTAIR upon hypoxia of NSCLC could be a novel therapeutic strategy.

  3. Hypoxia-inducible factor-1α mediates the toll-like receptor 4 signaling pathway leading to anti-tumor effects in human hepatocellular carcinoma cells under hypoxic conditions.

    Science.gov (United States)

    Zhang, Xiaoyu; Li, Shuchen; Li, Mingrong; Huang, Haiying; Li, Jingyuan; Zhou, Changwei

    2016-08-01

    Hypoxia-inducible factor-1α (HIF-1α) and toll-like receptor 4 (TLR4) are involved in numerous mechanisms of cancer biology, including cell proliferation and survival; however the interaction of the two factors under hypoxic conditions remains unclear. The present study investigated the in vitro mechanism that results in the suppression of tumor cell growth and cellular functions when HIF-1α is silenced. In the present study, the human hepatocellular carcinoma HepG2 cell line was transfected with short hairpin RNA (shRNA) against HIF-1α and cultured under hypoxic conditions (1% O 2 for 24 h). The expression of HIF-1α and various growth factors, including epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2), were examined using quantitative polymerase chain reaction and immunoblotting. Tumor growth was measured using a Cell Counting Kit-8 assay and tumor activity was measured using tumor cell invasion and migration assays. Lipopolysaccharide and TAK-242 were used to activate and inhibit TLR4, respectively, to observe the role of TLR4 in the HIF-1α silenced tumor cells. The expression of TLR4 signaling pathway associates, including myeloid differentiation primary response gene 88 (MyD88), apoptosis signal-regulating kinase 1 (ASK1), p38 mitogen-activated protein kinases and HIF-1α, were analyzed by western blot assay. Under hypoxic conditions, silencing of HIF-1α expression suppressed tumor cell growth and regulated the expression of tumor growth-associated genes, including EGF, HGF, VEGF and FG2. Suppression of tumor cell invasion and migration was also observed in the HIF-1α silenced HepG2 cell line. In addition, TLR4 was identified to be involved in HIF-1α and MyD88 accumulation, and activation of ASK1 and p38 were demonstrated to be critical for TLR4-mediated HIF-1α pathway. In conclusion, silencing of HIF-1α expression may induce anti-tumor effects under hypoxic

  4. The p-ERK–p-c-Jun–cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianjia [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Song, Ting [Nursing Department of Orthopedics 3rd Ward, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Ni, Leng; Yang, Genhuan; Song, Xitao; Wu, Lifei [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Liu, Bao, E-mail: liubao72@yahoo.com.cn [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Liu, Changwei, E-mail: liucw@vip.sina.com [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China)

    2014-10-24

    Highlights: • Smooth muscle cells proliferated after exposure to cigarette smoke extract. • The p-ERK, p-c-Jun, and cyclinD1 expressions increased in the process. • The p-ERK inhibitor, U0126, can reverse these effects. • The p-ERK → p-c-Jun → cyclinD1 pathway is involved in the process. - Abstract: An epidemiological survey has shown that smoking is closely related to atherosclerosis, in which excessive proliferation of vascular smooth muscle cells (SMCs) plays a key role. To investigate the mechanism underlying this unusual smoking-induced proliferation, cigarette smoke extract (CSE), prepared as smoke-bubbled phosphate-buffered saline (PBS), was used to induce effects mimicking those exerted by smoking on SMCs. As assessed by Cell Counting Kit-8 detection (an improved MTT assay), SMC viability increased significantly after exposure to CSE. Western blot analysis demonstrated that p-ERK, p-c-Jun, and cyclinD1 expression increased. When p-ERK was inhibited using U0126 (inhibitor of p-ERK), cell viability decreased and the expression of p-c-Jun and cyclinD1 was reduced accordingly, suggesting that p-ERK functions upstream of p-c-Jun and cyclinD1. When a c-Jun over-expression plasmid was transfected into SMCs, the level of cyclinD1 in these cells increased. Moreover, when c-Jun was knocked down by siRNA, cyclinD1 levels decreased. In conclusion, our findings indicate that the p-ERK–p-c-Jun–cyclinD1 pathway is involved in the excessive proliferation of SMCs exposed to CSE.

  5. The p-ERK–p-c-Jun–cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract

    International Nuclear Information System (INIS)

    Li, Tianjia; Song, Ting; Ni, Leng; Yang, Genhuan; Song, Xitao; Wu, Lifei; Liu, Bao; Liu, Changwei

    2014-01-01

    Highlights: • Smooth muscle cells proliferated after exposure to cigarette smoke extract. • The p-ERK, p-c-Jun, and cyclinD1 expressions increased in the process. • The p-ERK inhibitor, U0126, can reverse these effects. • The p-ERK → p-c-Jun → cyclinD1 pathway is involved in the process. - Abstract: An epidemiological survey has shown that smoking is closely related to atherosclerosis, in which excessive proliferation of vascular smooth muscle cells (SMCs) plays a key role. To investigate the mechanism underlying this unusual smoking-induced proliferation, cigarette smoke extract (CSE), prepared as smoke-bubbled phosphate-buffered saline (PBS), was used to induce effects mimicking those exerted by smoking on SMCs. As assessed by Cell Counting Kit-8 detection (an improved MTT assay), SMC viability increased significantly after exposure to CSE. Western blot analysis demonstrated that p-ERK, p-c-Jun, and cyclinD1 expression increased. When p-ERK was inhibited using U0126 (inhibitor of p-ERK), cell viability decreased and the expression of p-c-Jun and cyclinD1 was reduced accordingly, suggesting that p-ERK functions upstream of p-c-Jun and cyclinD1. When a c-Jun over-expression plasmid was transfected into SMCs, the level of cyclinD1 in these cells increased. Moreover, when c-Jun was knocked down by siRNA, cyclinD1 levels decreased. In conclusion, our findings indicate that the p-ERK–p-c-Jun–cyclinD1 pathway is involved in the excessive proliferation of SMCs exposed to CSE

  6. Menadione induces G2/M arrest in gastric cancer cells by down-regulation of CDC25C and proteasome mediated degradation of CDK1 and cyclin B1

    OpenAIRE

    Lee, Min Ho; Cho, Yoonjung; Kim, Do Hyun; Woo, Hyun Jun; Yang, Ji Yeong; Kwon, Hye Jin; Yeon, Min Ji; Park, Min; Kim, Sa-Hyun; Moon, Cheol; Tharmalingam, Nagendran; Kim, Tae Ue; Kim, Jong-Bae

    2016-01-01

    Menadione (vitamin K3) has been reported to induce apoptotic cell death and growth inhibition in various types of cancer cells. However, involvement of menadione in cell cycle control has not been considered in gastric cancer cells yet. In the current study, we have investigated whether menadione is involved in the cell cycle regulation and suppression of growth in gastric cancer cells. In the cell cycle analysis, we found that menadione induced G2/M cell cycle arrest in AGS cells. To elucida...

  7. Mutation analysis of the negative regulator cyclin G2 in gastric cancer

    African Journals Online (AJOL)

    Cyclin G2 is an unconventional cyclin which might have a potential negative role in carcinogenesis. In this study, the effect of cyclin G2 overexpression on gastric cell proliferation and expression levels of cyclin G2 in normal gastric cells and gastric cancer cells were investigated. Moreover, mutation analysis was performed ...

  8. Rational design of a cyclin A fluorescent peptide sensor.

    Science.gov (United States)

    Pazos, Elena; Pérez, Miguel; Gutiérrez-de-Terán, Hugo; Orzáez, Mar; Guevara, Tatiana; Mascareñas, José L; Vázquez, M Eugenio

    2011-10-26

    We report the design and development of a fluorescent sensor specifically designed to target cyclin A, a protein that plays a key role in the regulation of the cell cycle. Computational studies provide a molecular picture that explains the observed emission increase, suggesting that the 4-DMAP fluorophore in the peptide is protected from the bulk solvent when inserted into the hydrophobic binding groove of cyclin A.

  9. Role of cyclins in controlling progression of mammalian spermatogenesis

    OpenAIRE

    WOLGEMUTH, DEBRA J.; MANTEROLA, MARCIA; VASILEVA, ANA

    2013-01-01

    Cyclins are key regulators of the mammalian cell cycle, functioning primarily in concert with their catalytic partners, the cyclin-dependent kinases (Cdks). While their function during mitosis in somatic cells has been extensively documented, their function during both mitosis and meiosis in the germ line is poorly understood. From the perspective of cell cycle regulation there are several aspects of mammalian spermatogenesis that suggest unique modes of regulation and hence, possible unique ...

  10. The transcription factor ATF3 is upregulated during chondrocyte differentiation and represses cyclin D1 and A gene transcription

    Directory of Open Access Journals (Sweden)

    James Claudine G

    2006-09-01

    Full Text Available Abstract Background Coordinated chondrocyte proliferation and differentiation are required for normal endochondral bone growth. Transcription factors binding to the cyclicAMP response element (CRE are known to regulate these processes. One member of this family, Activating Tanscription Factor 3 (ATF3, is expressed during skeletogenesis and acts as a transcriptional repressor, but the function of this protein in chondrogenesis is unknown. Results Here we demonstrate that Atf3 mRNA levels increase during mouse chondrocyte differentiation in vitro and in vivo. In addition, Atf3 mRNA levels are increased in response to cytochalasin D treatment, an inducer of chondrocyte maturation. This is accompanied by increased Atf3 promoter activity in cytochalasin D-treated chondrocytes. We had shown earlier that transcription of the cell cycle genes cyclin D1 and cyclin A in chondrocytes is dependent on CREs. Here we demonstrate that overexpression of ATF3 in primary mouse chondrocytes results in reduced transcription of both genes, as well as decreased activity of a CRE reporter plasmid. Repression of cyclin A transcription by ATF3 required the CRE in the cyclin A promoter. In parallel, ATF3 overexpression reduces the activity of a SOX9-dependent promoter and increases the activity of a RUNX2-dependent promoter. Conclusion Our data suggest that transcriptional induction of the Atf3 gene in maturing chondrocytes results in down-regulation of cyclin D1 and cyclin A expression as well as activation of RUNX2-dependent transcription. Therefore, ATF3 induction appears to facilitate cell cycle exit and terminal differentiation of chondrocytes.

  11. Lesion Size Is Exacerbated in Hypoxic Rats Whereas Hypoxia-Inducible Factor-1 Alpha and Vascular Endothelial Growth Factor Increase in Injured Normoxic Rats: A Prospective Cohort Study of Secondary Hypoxia in Focal Traumatic Brain Injury.

    Science.gov (United States)

    Thelin, Eric Peter; Frostell, Arvid; Mulder, Jan; Mitsios, Nicholas; Damberg, Peter; Aski, Sahar Nikkhou; Risling, Mårten; Svensson, Mikael; Morganti-Kossmann, Maria Cristina; Bellander, Bo-Michael

    2016-01-01

    Hypoxia following traumatic brain injury (TBI) is a severe insult shown to exacerbate the pathophysiology, resulting in worse outcome. The aim of this study was to investigate the effects of a hypoxic insult in a focal TBI model by monitoring brain edema, lesion volume, serum biomarker levels, immune cell infiltration, as well as the expression of hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF). Female Sprague-Dawley rats (n = 73, including sham and naive) were used. The rats were intubated and mechanically ventilated. A controlled cortical impact device created a 3-mm deep lesion in the right parietal hemisphere. Post-injury, rats inhaled either normoxic (22% O2) or hypoxic (11% O2) mixtures for 30 min. The r