WorldWideScience

Sample records for factor-1 hif-1-mediated repression

  1. Differential roles of Sirt1 in HIF-1α and HIF-2α mediated hypoxic responses

    International Nuclear Information System (INIS)

    Yoon, Haejin; Shin, Seung-Hyun; Shin, Dong Hoon; Chun, Yang-Sook; Park, Jong-Wan

    2014-01-01

    Highlights: • Roles of SIRT1 in HIF-1α and HIF-2α regulations are reevaluated using specific antibodies and Gal4 reporters. • SIRT1 represses the HIF-1α-driven transcription constantly in ten cancer cell-lines. • SIRT1 regulates the HIF-2α-driven transcription cell context-dependently. • SIRT1 determines cell growth under hypoxia by regulating HIF-1α and HIF-2α activities. - Abstract: Hypoxia-inducible factors 1α and 2α (HIF-1α and HIF-2α) determine cancer cell fate under hypoxia. Despite the similarities of their structures, HIF-1α and HIF-2α have distinct roles in cancer growth under hypoxia, that is, HIF-1α induces growth arrest whereas HIF-2α promotes cell growth. Recently, sirtuin 1 (Sirt1) was reported to fine-tune cellular responses to hypoxia by deacetylating HIF-1α and HIF-2α. Yet, the roles of Sirt1 in HIF-1α and HIF-2α functions have been controversial. We here investigated the precise roles of Sirt1 in HIF-1α and HIF-2α regulations. Immunological analyses revealed that HIF-1α K674 and HIF-2α K741 are acetylated by PCAF and CBP, respectively, but are deacetylated commonly by Sirt1. In the Gal4 reporter systems, Sirt1 was found to repress HIF-1α activity constantly in ten cancer cell-lines but to regulate HIF-2α activity cell type-dependently. Moreover, Sirt1 determined cell growth under hypoxia depending on HIF-1α and HIF-2α. Under hypoxia, Sirt1 promoted cell proliferation of HepG2, in which Sirt1 differentially regulates HIF-1α and HIF-2α. In contrast, such an effect of Sirt1 was not shown in HCT116, in which Sirt1 inactivates both HIF-1α and HIF-2α because conflicting actions of HIF-1α and HIF-2α on cell growth may be offset. Our results provide a better understanding of the roles of Sirt1 in HIF-mediated hypoxic responses and also a basic concept for developing anticancer strategy targeting Sirt1

  2. The role of factor inhibiting HIF (FIH-1 in inhibiting HIF-1 transcriptional activity in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Enfeng Wang

    Full Text Available Glioblastoma multiforme (GBM accounts for about 38% of primary brain tumors in the United States. GBM is characterized by extensive angiogenesis induced by vascular growth factors and cytokines. The transcription of these growth factors and cytokines is regulated by the Hypoxia-Inducible-Factor-1(HIF-1, which is a key regulator mediating the cellular response to hypoxia. It is known that Factor Inhibiting HIF-1, or FIH-1, is also involved in the cellular response to hypoxia and has the capability to physically interact with HIF-1 and block its transcriptional activity under normoxic conditions. Delineation of the regulatory role of FIH-1 will help us to better understand the molecular mechanism responsible for tumor growth and progression and may lead to the design of new therapies targeting cellular pathways in response to hypoxia. Previous studies have shown that the chromosomal region of 10q24 containing the FIH-1 gene is often deleted in GBM, suggesting a role for the FIH-1 in GBM tumorigenesis and progression. In the current study, we found that FIH-1 is able to inhibit HIF-mediated transcription of GLUT1 and VEGF-A, even under hypoxic conditions in human glioblastoma cells. FIH-1 has been found to be more potent in inhibiting HIF function than PTEN. This observation points to the possibility that deletion of 10q23-24 and loss or decreased expression of FIH-1 gene may lead to a constitutive activation of HIF-1 activity, an alteration of HIF-1 targets such as GLUT-1 and VEGF-A, and may contribute to the survival of cancer cells in hypoxia and the development of hypervascularization observed in GBM. Therefore FIH-1 can be potential therapeutic target for the treatment of GBM patients with poor prognosis.

  3. Myeloid HIF-1 is protective in Helicobacter pylori-mediated gastritis.

    Science.gov (United States)

    Matak, Pavle; Heinis, Mylène; Mathieu, Jacques R R; Corriden, Ross; Cuvellier, Sylvain; Delga, Stéphanie; Mounier, Rémi; Rouquette, Alexandre; Raymond, Josette; Lamarque, Dominique; Emile, Jean-François; Nizet, Victor; Touati, Eliette; Peyssonnaux, Carole

    2015-04-01

    Helicobacter pylori infection triggers chronic inflammation of the gastric mucosa that may progress to gastric cancer. The hypoxia-inducible factors (HIFs) are the central mediators of cellular adaptation to low oxygen levels (hypoxia), but they have emerged recently as major transcriptional regulators of immunity and inflammation. No studies have investigated whether H. pylori affects HIF signaling in immune cells and a potential role for HIF in H. pylori-mediated gastritis. HIF-1 and HIF-2 expression was examined in human H. pylori-positive gastritis biopsies. Subsequent experiments were performed in naive and polarized bone marrow-derived macrophages from wild-type (WT) and myeloid HIF-1α-null mice (HIF-1(Δmyel)). WT and HIF-1(Δmyel) mice were inoculated with H. pylori by oral gavage and sacrificed 6 mo postinfection. HIF-1 was specifically expressed in macrophages of human H. pylori-positive gastritis biopsies. Macrophage HIF-1 strongly contributed to the induction of proinflammatory genes (IL-6, IL-1β) and inducible NO synthase in response to H. pylori. HIF-2 expression and markers of M2 macrophage differentiation were decreased in response to H. pylori. HIF-1(Δmyel) mice inoculated with H. pylori for 6 mo presented with a similar bacterial colonization than WT mice but, surprisingly, a global increase of inflammation, leading to a worsening of the gastritis, measured by an increased epithelial cell proliferation. In conclusion, myeloid HIF-1 is protective in H. pylori-mediated gastritis, pointing to the complex counterbalancing roles of innate immune and inflammatory phenotypes in driving this pathology. Copyright © 2015 by The American Association of Immunologists, Inc.

  4. Hypoxia-inducible factor 1-mediated human GATA1 induction promotes erythroid differentiation under hypoxic conditions.

    Science.gov (United States)

    Zhang, Feng-Lin; Shen, Guo-Min; Liu, Xiao-Ling; Wang, Fang; Zhao, Ying-Ze; Zhang, Jun-Wu

    2012-08-01

    Hypoxia-inducible factor promotes erythropoiesis through coordinated cell type-specific hypoxia responses. GATA1 is essential to normal erythropoiesis and plays a crucial role in erythroid differentiation. In this study, we show that hypoxia-induced GATA1 expression is mediated by HIF1 in erythroid cells. Under hypoxic conditions, significantly increased GATA1 mRNA and protein levels were detected in K562 cells and erythroid induction cultures of CD34(+) haematopoietic stem/progenitor cells. Enforced HIF1α expression increased GATA1 expression, while HIF1α knockdown by RNA interference decreased GATA1 expression. In silico analysis revealed one potential hypoxia response element (HRE). The results from reporter gene and mutation analysis suggested that this element is necessary for hypoxic response. Chromatin immunoprecipitation (ChIP)-PCR showed that the putative HRE was recognized and bound by HIF1 in vivo. These results demonstrate that the up-regulation of GATA1 during hypoxia is directly mediated by HIF1.The mRNA expression of some erythroid differentiation markers was increased under hypoxic conditions, but decreased with RNA interference of HIF1α or GATA1. Flow cytometry analysis also indicated that hypoxia, desferrioxamine or CoCl(2) induced expression of erythroid surface markers CD71 and CD235a, while expression repression of HIF1α or GATA1 by RNA interference led to a decreased expression of CD235a. These results suggested that HIF1-mediated GATA1 up-regulation promotes erythropoiesis in order to satisfy the needs of an organism under hypoxic conditions. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  5. Hypoxia-inducible factor-1β (HIF-1β) is upregulated in a HIF-1α-dependent manner in 518A2 human melanoma cells under hypoxic conditions.

    Science.gov (United States)

    Mandl, Markus; Kapeller, Barbara; Lieber, Roman; Macfelda, Karin

    2013-04-26

    Solid tumors include hypoxic areas due to excessive cell proliferation. Adaptation to low oxygen levels is mediated by the hypoxia-inducible factor (HIF) pathway promoting invasion, metastasis, metabolic alterations, chemo-resistance and angiogenesis. The transcription factor HIF-1, the major player within this pathway consists of HIF-1α and HIF-1β. The alpha subunit is continuously degraded under normoxia and becomes stabilized under reduced oxygen supply. In contrast, HIF-1β is generally regarded as constitutively expressed and being present in excess within the cell. However, there is evidence that the expression of this subunit is more complex. The aim of this study was to investigate the role of HIF-1β in human melanoma cells. Among a panel of five different cell lines, in 518A2 cells exposed to the hypoxia-mimetic cobalt chloride HIF-1β was rapidly elevated on protein level. Knockdown experiments performed under cobalt chloride-exposure and hypoxia revealed that this effect was mediated by HIF-1α. The non-canonical relationship between these subunits was further confirmed by pharmacologic inhibition of HIF-1α and by expression of a dominant-negative HIF mutant. Overexpression of HIF-1α showed a time delay in HIF-1β induction, thus arguing for HIF-1β de novo synthesis rather than protein stabilization by heterodimerization. A Hen's egg test-chorioallantoic membrane model of angiogenesis and invasion indicated a local expression of HIF-1β and implies a biological relevance of these findings. In summary, this study demonstrates the HIF-1α-dependent regulation of HIF-1β under hypoxic conditions for the first time. The results indicate a novel cell specific mechanism which might prevent HIF-1β to become a limiting factor. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Hypoxia-inducible factor-1β (HIF-1β) is upregulated in a HIF-1α-dependent manner in 518A2 human melanoma cells under hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mandl, Markus, E-mail: mmandl@mail.austria.com; Kapeller, Barbara; Lieber, Roman; Macfelda, Karin

    2013-04-26

    Highlights: •HIF-1β is a hypoxia-responsive protein in 518A2 human melanoma cells. •HIF-1β is upregulated in a HIF-1α-dependent manner under hypoxic conditions. •HIF-1β is not elevated due to heterodimerization with HIF-1α per se. •HIF-1β inducibility has a biological relevance as judged in Het-CAM model. -- Abstract: Solid tumors include hypoxic areas due to excessive cell proliferation. Adaptation to low oxygen levels is mediated by the hypoxia-inducible factor (HIF) pathway promoting invasion, metastasis, metabolic alterations, chemo-resistance and angiogenesis. The transcription factor HIF-1, the major player within this pathway consists of HIF-1α and HIF-1β. The alpha subunit is continuously degraded under normoxia and becomes stabilized under reduced oxygen supply. In contrast, HIF-1β is generally regarded as constitutively expressed and being present in excess within the cell. However, there is evidence that the expression of this subunit is more complex. The aim of this study was to investigate the role of HIF-1β in human melanoma cells. Among a panel of five different cell lines, in 518A2 cells exposed to the hypoxia-mimetic cobalt chloride HIF-1β was rapidly elevated on protein level. Knockdown experiments performed under cobalt chloride-exposure and hypoxia revealed that this effect was mediated by HIF-1α. The non-canonical relationship between these subunits was further confirmed by pharmacologic inhibition of HIF-1α and by expression of a dominant-negative HIF mutant. Overexpression of HIF-1α showed a time delay in HIF-1β induction, thus arguing for HIF-1β de novo synthesis rather than protein stabilization by heterodimerization. A Hen’s egg test-chorioallantoic membrane model of angiogenesis and invasion indicated a local expression of HIF-1β and implies a biological relevance of these findings. In summary, this study demonstrates the HIF-1α-dependent regulation of HIF-1β under hypoxic conditions for the first time. The

  7. Hypoxia-inducible factor-1β (HIF-1β) is upregulated in a HIF-1α-dependent manner in 518A2 human melanoma cells under hypoxic conditions

    International Nuclear Information System (INIS)

    Mandl, Markus; Kapeller, Barbara; Lieber, Roman; Macfelda, Karin

    2013-01-01

    Highlights: •HIF-1β is a hypoxia-responsive protein in 518A2 human melanoma cells. •HIF-1β is upregulated in a HIF-1α-dependent manner under hypoxic conditions. •HIF-1β is not elevated due to heterodimerization with HIF-1α per se. •HIF-1β inducibility has a biological relevance as judged in Het-CAM model. -- Abstract: Solid tumors include hypoxic areas due to excessive cell proliferation. Adaptation to low oxygen levels is mediated by the hypoxia-inducible factor (HIF) pathway promoting invasion, metastasis, metabolic alterations, chemo-resistance and angiogenesis. The transcription factor HIF-1, the major player within this pathway consists of HIF-1α and HIF-1β. The alpha subunit is continuously degraded under normoxia and becomes stabilized under reduced oxygen supply. In contrast, HIF-1β is generally regarded as constitutively expressed and being present in excess within the cell. However, there is evidence that the expression of this subunit is more complex. The aim of this study was to investigate the role of HIF-1β in human melanoma cells. Among a panel of five different cell lines, in 518A2 cells exposed to the hypoxia-mimetic cobalt chloride HIF-1β was rapidly elevated on protein level. Knockdown experiments performed under cobalt chloride-exposure and hypoxia revealed that this effect was mediated by HIF-1α. The non-canonical relationship between these subunits was further confirmed by pharmacologic inhibition of HIF-1α and by expression of a dominant-negative HIF mutant. Overexpression of HIF-1α showed a time delay in HIF-1β induction, thus arguing for HIF-1β de novo synthesis rather than protein stabilization by heterodimerization. A Hen’s egg test-chorioallantoic membrane model of angiogenesis and invasion indicated a local expression of HIF-1β and implies a biological relevance of these findings. In summary, this study demonstrates the HIF-1α-dependent regulation of HIF-1β under hypoxic conditions for the first time. The

  8. Unraveling the role of hypoxia-inducible factor (HIF)-1α and HIF-2α in the adaption process of human microvascular endothelial cells (HMEC-1) to hypoxia: Redundant HIF-dependent regulation of macrophage migration inhibitory factor.

    Science.gov (United States)

    Hahne, Martin; Schumann, Peggy; Mursell, Mathias; Strehl, Cindy; Hoff, Paula; Buttgereit, Frank; Gaber, Timo

    2018-03-01

    Hypoxia driven angiogenesis is a prominent feature of tissue regeneration, inflammation and tumor growth and is regulated by hypoxia-inducible factor (HIF)-1 and -2. The distinct functions of HIFs in the hypoxia-induced angiogenesis and metabolic switch of endothelial cells are still unknown and therefore aim of this study. We investigated the role of HIF-1 and -2 in the adaptation of immortalized human microvascular endothelial cells (HMEC-1) to hypoxic conditions (1% O 2 ) in terms of angiogenesis, cytokine secretion, gene expression and ATP/ADP-ratio using shRNA-mediated reduction of the oxygen sensitive α-subunits of either HIF-1 or HIF-2 or the combination of both. Reduction of HIF-1α diminished cellular energy, hypoxia-induced glycolytic gene expression, and angiogenesis not altering pro-angiogenic factors. Reduction of HIF-2α diminished hypoxia-induced pro-angiogenic factors, enhanced anti-angiogenic factors and attenuated angiogenesis not altering glycolytic gene expression. Reduction of both HIFs reduced cell survival, gene expression of glycolytic enzymes and pro-angiogenic factors as compared to the corresponding control. Finally, we identified the macrophage migration inhibitory factor (MIF) to be redundantly regulated by HIF-1 and HIF-2 and to be essential in the process of hypoxia-driven angiogenesis. Our results demonstrate a major impact of HIF-1 and HIF-2 on hypoxia-induced angiogenesis indicating distinct but also overlapping functions of HIF-1 and HIF-2. These findings open new possibilities for therapeutic approaches by specifically targeting the HIF-1 and HIF-2 or their target MIF. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Flavonoids-induced accumulation of hypoxia-inducible factor (HIF)-1alpha/2alpha is mediated through chelation of iron.

    Science.gov (United States)

    Park, Sung-Soo; Bae, Insoo; Lee, Yong J

    2008-04-15

    Hypoxia-inducible factor-1 alpha (HIF-1alpha) is the regulatory subunit of the heterodimeric transcription factor HIF-1 that is the key regulator of cellular response to low oxygen tension. Under normoxic conditions, HIF-1alpha is continuously degraded by the ubiquitin-proteasome pathway through pVHL (von Hippel-Lindau tumor suppressor protein). Under hypoxic conditions, HIF-1alpha is stabilized and induces the transcription of HIF-1 target genes. Quercetin, a flavonoid with anti-oxidant, anti-inflammatory, and kinase modulating properties, has been found to induce HIF-1alpha accumulation and VEGF secretion in normoxia. In this study, the molecular mechanisms of quercetin-mediated HIF-1alpha accumulation were investigated. Previous studies have shown that, in addition to being induced by hypoxia, HIF-1alpha can be induced through the phosphatidylinositol 3-kinase (PI3K)/Akt and p53 signaling pathways. But our study revealed, through p53 mutant-type as well as p53 null cell lines, that neither the PI3K/Akt nor the p53 signaling pathway is required for quercetin-induced HIF-1alpha accumulation. And we observed that HIF-1alpha accumulated by quercetin is not ubiquitinated and the interaction of HIF-1alpha with pVHL is reduced, compared with HIF-1alpha accumulated by the proteasome inhibitor MG132. The use of quercetin's analogues showed that only quercetin and galangin induce HIF-1/2alpha accumulation and this effect is completely reversed by additional iron ions. This is because quercetin and galangin are able to chelate cellular iron ions that are cofactors of HIF-1/2alpha proline hydroxylase (PHD). These data suggest that quercetin inhibits the ubiquitination of HIF-1/2alpha in normoxia by hindering PHD through chelating iron ions.

  10. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization

    Science.gov (United States)

    Finley, Lydia W.S.; Carracedo, Arkaitz; Lee, Jaewon; Souza, Amanda; Egia, Ainara; Zhang, Jiangwen; Teruya-Feldstein, Julie; Moreira, Paula I.; Cardoso, Sandra M.; Clish, Clary B.; Pandolfi, Pier Paolo; Haigis, Marcia C.

    2011-01-01

    Summary Tumor cells exhibit aberrant metabolism characterized by high glycolysis even in the presence of oxygen. This metabolic reprogramming, known as the Warburg effect, provides tumor cells with the substrates required for biomass generation. Here, we show that the mitochondrial NAD-dependent deacetylase SIRT3 is a crucial regulator of the Warburg effect. Mechanistically, SIRT3 mediates metabolic reprogramming by destabilizing hypoxia-inducible factor-1α (HIF1α), a transcription factor that controls glycolytic gene expression. SIRT3 loss increases reactive oxygen species production, leading to HIF1α stabilization. SIRT3 expression is reduced in human breast cancers, and its loss correlates with the upregulation of HIF1α target genes. Finally, we find that SIRT3 overexpression represses glycolysis and proliferation in breast cancer cells, providing a metabolic mechanism for tumor suppression. PMID:21397863

  11. β2-Adrenergic Receptor-Mediated HIF-1α Upregulation Mediates Blood Brain Barrier Damage in Acute Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Yanyun Sun

    2017-08-01

    Full Text Available Disruption of the blood brain barrier (BBB within the thrombolytic time window is an antecedent event to intracerebral hemorrhage in ischemic stroke. Our recent studies showed that 2-h cerebral ischemia induced BBB damage in non-infarcted area and secreted matrix metalloproteinase-2 (MMP-2 accounted for this disruption. However, the factors that affect MMP-2 secretion and regulate BBB damage remains unknown. Since hypoxia-inducible factor-1 alpha (HIF-1α was discovered as a mater regulator in hypoxia, we sought to investigate the roles of HIF-1α in BBB damage as well as the factors regulating HIF-1α expression in the ischemic brain. in vivo rat middle cerebral artery occlusion (MCAO and in vitro oxygen glucose deprivation (OGD models were used to mimic ischemia. Pretreatment with HIF-1α inhibitor YC-1 significantly inhibited 2-h MCAO-induced BBB damage, which was accompanied by suppressed occludin degradation and vascular endothelial growth factor (VEGF mRNA upregulation. Interestingly, β2-adrenergic receptor (β2-AR antagonist ICI 118551 attenuated ischemia-induced BBB damage by regulating HIF-1α expression. Double immunostaining showed that HIF-1α was upregulated in ischemic neurons but not in astrocytes andendothelial cells. Of note, HIF-1α inhibition with inhibitor YC-1 or siRNA significantly prevented OGD-induced VEGF upregulation as well as the secretion of VEGF and MMP-2 in neurons. More importantly, blocking β2-AR with ICI 118551 suppressedHIF-1α upregulation in ischemic neurons and attenuated occludin degradation induced by the conditioned media of OGD-treatedneurons. Taken together, blockade of β2-AR-mediated HIF-1α upregulation mediates BBB damage during acute cerebral ischemia. These findings provide new mechanistic understanding of early BBB damage in ischemic stroke and may help reduce thrombolysis-related hemorrhagic complications.

  12. The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition

    Science.gov (United States)

    Barriga, Elias H.; Maxwell, Patrick H.

    2013-01-01

    One of the most important mechanisms that promotes metastasis is the stabilization of Hif-1 (hypoxia-inducible transcription factor 1). We decided to test whether Hif-1α also was required for early embryonic development. We focused our attention on the development of the neural crest, a highly migratory embryonic cell population whose behavior has been likened to cancer metastasis. Inhibition of Hif-1α by antisense morpholinos in Xenopus laevis or zebrafish embryos led to complete inhibition of neural crest migration. We show that Hif-1α controls the expression of Twist, which in turn represses E-cadherin during epithelial to mesenchymal transition (EMT) of neural crest cells. Thus, Hif-1α allows cells to initiate migration by promoting the release of cell–cell adhesions. Additionally, Hif-1α controls chemotaxis toward the chemokine SDF-1 by regulating expression of its receptor Cxcr4. Our results point to Hif-1α as a novel and key regulator that integrates EMT and chemotaxis during migration of neural crest cells. PMID:23712262

  13. Menadione and ethacrynic acid inhibit the hypoxia-inducible factor (HIF) pathway by disrupting HIF-1α interaction with p300.

    Science.gov (United States)

    Na, Yu-Ran; Han, Ki-Cheol; Park, Hyunsung; Yang, Eun Gyeong

    2013-05-17

    Hypoxia is a general characteristic of most solid malignancies and intimately related to neoplastic diseases and cancer progression. Homeostatic response to hypoxia is primarily mediated by hypoxia inducible factor (HIF)-1α that elicits transcriptional activity through recruitment of the CREB binding protein (CBP)/p300 coactivator. Targeted blockade of HIF-1α binding to CBP/p300 would thus constitute a novel approach for cancer treatment by suppressing tumor angiogenesis and metastasis. Here, we identified inhibitors against the interaction between HIF-1α and p300 by a fluorescence polarization-based assay employing a fluorescently-labeled peptide containing the C-terminal activation domain of HIF-1α. Two small molecule inhibitors, menadione (MD) and ethacrynic acid (EA), were found to decrease expression of luciferase under the control of hypoxia-responsive elements in hypoxic cells as well as to efficiently block the interaction between the full-length HIF-1α and p300. While these compounds did not alter the expression level of HIF-1α, they down-regulated expression of a HIF-1α target vascular endothelial growth factor (VEGF) gene. Considering hypoxia-induced VEGF expression leading to highly aggressive tumor growth, MD and EA may provide new scaffolds for development of tumor therapeutic reagents as well as tools for a better understanding of HIF-1α-mediated hypoxic regulation. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Xie, Jing [Medical College, Qingdao University, Qingdao, Shandong 266071 (China); Peng, Jianjun, E-mail: jianjunpeng@126.com [College of Life Sciences, Chongqing Normal University, Chongqing 401331 (China); Han, Yantao, E-mail: hanyt19@126.com [Medical College, Qingdao University, Qingdao, Shandong 266071 (China); Jiang, Qixiao; Han, Mei; Wang, Chunbo [Medical College, Qingdao University, Qingdao, Shandong 266071 (China)

    2015-03-15

    Gallbladder cancer (GBC) is an aggressive malignancy of the bile duct, which is associated with a low (5-year) survival and poor prognosis. The transcription factor HIF-1α is implicated in the angiogenesis, cell survival, epithelial mesenchymal transition (EMT) and invasiveness of GBC. In this study, we have investigated the role of HIF-1α in the pathobilogy of GBC and effect of hispidulin on the molecular events controlled by this transcription factor. We observed that hispidulin caused induction of apoptosis, blockade of growth and cell cycle progression in GBC cells. Our results have demonstrated for the first time that hispidulin-exerted anti-tumor effect involved the suppression of HIF-1α signaling. Hispidulin was found to repress the expression of HIF-1α protein dose-dependently without affecting the HIF-1α mRNA expression. In addition, the inhibition of HIF-1α protein synthesis was revealed to be mediated through the activation of AMPK signaling. Hispidulin also sensitized the tumor cells to Gemcitabine and 5-Fluoroucil by down-regulating HIF-1α/P-gp signaling. Given the low cost and exceedingly safe profile, hispidulin appears to be a promising and novel chemosensitizer for GBC treatment. - Highlights: • Hispidulin inhibits proliferation of gallbladder cancer cells by targeting HIF-1α. • Hispidulin regulates HIF-1α via activating AMPK signaling. • Hispidulin sensitized the GBC cells to chemotherapeutics by down-regulating P-gp.

  15. Loss of Hif-2α Rescues the Hif-1α Deletion Phenotype of Neonatal Respiratory Distress In Mice.

    Directory of Open Access Journals (Sweden)

    Yogesh Saini

    Full Text Available Hypoxia is a state of decreased oxygen reaching the tissues of the body. During prenatal development, the fetus experiences localized occurrences of hypoxia that are essential for proper organogenesis and survival. The response to decreased oxygen availability is primarily regulated by hypoxia-inducible factors (HIFs, a family of transcription factors that modulate the expression of key genes involved in glycolysis, angiogenesis, and erythropoiesis. HIF-1α and HIF-2α, two key isoforms, are important in embryonic development, and likely are involved in lung morphogenesis. We have recently shown that the inducible loss of Hif-1α in lung epithelium starting at E4.5 leads to death within an hour of parturition, with symptoms similar to neonatal respiratory distress syndrome (RDS. In addition to Hif-1α, Hif-2α is also expressed in the developing lung, although the overlapping roles of Hif-1α and Hif-2α in this context are not fully understood. To further investigate the independent role of Hif-2α in lung epithelium and its ability to alter Hif-1α-mediated lung maturation, we generated two additional lung-specific inducible Hif-α knockout models (Hif-2α and Hif-1α+Hif-2α. The intrauterine loss of Hif-2α in the lungs does not lead to decreased viability or observable phenotypic changes in the lung. More interestingly, survivability observed after the loss of both Hif-1α and Hif-2α suggests that the loss of Hif-2α is capable of rescuing the neonatal RDS phenotype seen in Hif-1α-deficient pups. Microarray analyses of lung tissue from these three genotypes identified several factors, such as Scd1, Retlnγ, and Il-1r2, which are differentially regulated by the two HIF-α isoforms. Moreover, network analysis suggests that modulation of hormone-mediated, NF-κB, C/EBPα, and c-MYC signaling are central to HIF-mediated changes in lung development.

  16. HIF2α/EFEMP1 cascade mediates hypoxic effects on breast cancer stem cell hierarchy.

    Science.gov (United States)

    Kwak, Ji-Hye; Lee, Na-Hee; Lee, Hwa-Yong; Hong, In-Sun; Nam, Jeong-Seok

    2016-07-12

    Breast cancer stem cells (BCSCs) have been shown to contribute to tumor growth, metastasis, and recurrence. They are also markedly resistant to conventional cancer treatments, such as chemotherapy and radiation. Recent studies have suggested that hypoxia is one of the prominent micro-environmental factors that increase the self-renewal ability of BCSCs, partially by enhancing CSC phenotypes. Thus, the identification and development of new therapeutic approaches based on targeting the hypoxia-dependent responses in BCSCs is urgent. Through various in vitro studies, we found that hypoxia specifically up-regulates BCSC sphere formation and a subset of CD44+/CD24-/low CSCs. Hypoxia inducible factors 2α (HIF2α) depletion suppressed CSC-like phenotypes and CSC-mediated drug resistance in breast cancer. Furthermore, the stimulatory effects of hypoxia-induced HIF2α on BCSC sphere formation were successfully attenuated by epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) knockdown. Taken together, these data suggest that HIFmediates hypoxia-induced cancer growth/metastasis and that EFEMP1 is a downstream effector of hypoxia-induced HIF2α during breast tumorigenesis.

  17. Characterization and functional analysis of hypoxia-inducible factor HIF1α and its inhibitor HIF1αn in tilapia.

    Science.gov (United States)

    Li, Hong Lian; Gu, Xiao Hui; Li, Bi Jun; Chen, Xiao; Lin, Hao Ran; Xia, Jun Hong

    2017-01-01

    Hypoxia is a major cause of fish morbidity and mortality in the aquatic environment. Hypoxia-inducible factors are very important modulators in the transcriptional response to hypoxic stress. In this study, we characterized and conducted functional analysis of hypoxia-inducible factor HIF1α and its inhibitor HIF1αn in Nile tilapia (Oreochromis niloticus). By cloning and Sanger sequencing, we obtained the full length cDNA sequences for HIF1α (2686bp) and HIF1αn (1308bp), respectively. The CDS of HIF1α includes 15 exons encoding 768 amino acid residues and the CDS of HIF1αn contains 8 exons encoding 354 amino acid residues. The complete CDS sequences of HIF1α and HIF1αn cloned from tilapia shared very high homology with known genes from other fishes. HIF1α show differentiated expression in different tissues (brain, heart, gill, spleen, liver) and at different hypoxia exposure times (6h, 12h, 24h). HIF1αn expression level under hypoxia is generally increased (6h, 12h, 24h) and shows extremely highly upregulation in brain tissue under hypoxia. A functional determination site analysis in the protein sequences between fish and land animals identified 21 amino acid sites in HIF1α and 2 sites in HIF1αn as significantly associated sites (α = 0.05). Phylogenetic tree-based positive selection analysis suggested 22 sites in HIF1α as positively selected sites with a p-value of at least 95% for fish lineages compared to the land animals. Our study could be important for clarifying the mechanism of fish adaptation to aquatic hypoxia environment.

  18. Forchlorfenuron disrupts SEPT9_i1 filaments and inhibits HIF-1.

    Directory of Open Access Journals (Sweden)

    Dikla Vardi-Oknin

    Full Text Available Forchlorfenuron (FCF is a synthetic plant cytokinin that has been shown to alter yeast and mammalian septin organization. Septins are a highly conserved family of GTP-binding cytoskeletal proteins. Mammalian septins are involved in diverse cellular processes including tumorigenesis. We have been studying the interaction between septin 9 isoform 1 (SEPT9_i1 and hypoxia inducible factor-1α (HIF-1α, the oxygen regulated subunit of HIF-1. HIF-1 is a key transcription factor in the hypoxic responses pathway, and its activation has been observed in carcinogenesis and numerous cancers. SEPT9_i1/HIF-1α interaction plays an important role in upregulation of HIF-1 transcriptional activity by preventing HIF-1α's ubiquitination and degradation leading to increased tumor growth and angiogenesis. We tested the hypothesis whether FCF affects SEPT9_i1 filamentous structures and consequently HIF-1 pathway in cancer cells. We showed that FCF suppresses tumorigenic properties, including proliferation, migration and transformation, in prostate cancer cells. FCF did not alter SEPT9_i1 steady state protein expression levels but it affected its filamentous structures and subcellular localization. FCF induced degradation of HIF-1α protein in a dose- and time-dependent manner. This inhibition was also shown in other common cancer types tested. Rapid degradation of HIF-1α protein levels was accompanied by respective inhibition in HIF-1α transcriptional activity. Moreover, HIF-1α protein half-life was markedly decreased in the presence of FCF compared with that in the absence of FCF. The FCF-induced degradation of HIF-1α was mediated in a significant part via the proteasome. To the best of our knowledge, this is the first demonstration of specific manipulation of septin filaments by pharmacological means having downstream inhibitory effects on the HIF-1 pathway.

  19. HIF-1alpha and HIF-2alpha are differentially activated in distinct cell populations in retinal ischaemia.

    Directory of Open Access Journals (Sweden)

    Freya M Mowat

    2010-06-01

    Full Text Available Hypoxia plays a key role in ischaemic and neovascular disorders of the retina. Cellular responses to oxygen are mediated by hypoxia-inducible transcription factors (HIFs that are stabilised in hypoxia and induce the expression of a diverse range of genes. The purpose of this study was to define the cellular specificities of HIF-1alpha and HIF-2alpha in retinal ischaemia, and to determine their correlation with the pattern of retinal hypoxia and the expression profiles of induced molecular mediators.We investigated the tissue distribution of retinal hypoxia during oxygen-induced retinopathy (OIR in mice using the bio-reductive drug pimonidazole. We measured the levels of HIF-1alpha and HIF-2alpha proteins by Western blotting and determined their cellular distribution by immunohistochemistry during the development of OIR. We measured the temporal expression profiles of two downstream mediators, vascular endothelial growth factor (VEGF and erythropoietin (Epo by ELISA. Pimonidazole labelling was evident specifically in the inner retina. Labelling peaked at 2 hours after the onset of hypoxia and gradually declined thereafter. Marked binding to Müller glia was evident during the early hypoxic stages of OIR. Both HIF-1alpha and HIF-2alpha protein levels were significantly increased during retinal hypoxia but were evident in distinct cellular distributions; HIF-1alpha stabilisation was evident in neuronal cells throughout the inner retinal layers whereas HIF-2alpha was restricted to Müller glia and astrocytes. Hypoxia and HIF-alpha stabilisation in the retina were closely followed by upregulated expression of the downstream mediators VEGF and EPO.Both HIF-1alpha and HIF-2alpha are activated in close correlation with retinal hypoxia but have contrasting cell specificities, consistent with differential roles in retinal ischaemia. Our findings suggest that HIF-2alpha activation plays a key role in regulating the response of Müller glia to hypoxia.

  20. The metal-responsive transcription factor-1 contributes to HIF-1 activation during hypoxic stress

    International Nuclear Information System (INIS)

    Murphy, Brian J.; Sato, Barbara G.; Dalton, Timothy P.; Laderoute, Keith R.

    2005-01-01

    Hypoxia-inducible factor-1 (HIF-1), the major transcriptional regulator of the mammalian cellular response to low oxygen (hypoxia), is embedded within a complex network of signaling pathways. We have been investigating the importance of another stress-responsive transcription factor, MTF-1, for the adaptation of cells to hypoxia. This article reports that MTF-1 plays a central role in hypoxic cells by contributing to HIF-1 activity. Loss of MTF-1 in transformed Mtf1 null mouse embryonic fibroblasts (MEFs) results in an attenuation of nuclear HIF-1α protein accumulation, HIF-1 transcriptional activity, and expression of an established HIF-1 target gene, glucose transporter-1 (Glut1). Mtf1 null (Mtf1 KO) MEFs also have constitutively higher levels of both glutathione (GSH) and the rate-limiting enzyme involved in GSH synthesis-glutamate cysteine ligase catalytic subunit-than wild type cells. The altered cellular redox state arising from increased GSH may perturb oxygen-sensing mechanisms in hypoxic Mtf1 KO cells and decrease the accumulation of HIF-1α protein. Together, these novel findings define a role for MTF-1 in the regulation of HIF-1 activity

  1. Novel mechanism of cardiac protection by valsartan: synergetic roles of TGF-β1 and HIF-1α in Ang II-mediated fibrosis after myocardial infarction.

    Science.gov (United States)

    Sui, Xizhong; Wei, Hongchao; Wang, Dacheng

    2015-08-01

    Transforming growth factor (TGF)-β1 is a known factor in angiotensin II (Ang II)-mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor-1 (Hif-1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif-1α contributed to the Ang II-mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif-1α and TGF-β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague-Dawley rats with MI daily for 1 week; saline and hydralazine (another anti-hypertensive agent like valsartan) was used as control. The fibrosis-related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up-regulation of Ang II, TGF-β/Smad and Hif-1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up-regulation of TGF-β/Smad and Hif-1α was through the Ang II-mediated pathway. By administering TGF-β or dimethyloxalylglycine, we determined that both TGF-β/Smad and Hif-1α contributed to Ang II-mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF-β/Smad, Hif-1α and fibrosis-related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II-induced cardiac fibrosis as well as into the cardiac protection of valsartan. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and

  2. The Related Transcriptional Enhancer Factor-1 Isoform, TEAD4216, Can Repress Vascular Endothelial Growth Factor Expression in Mammalian Cells

    Science.gov (United States)

    Appukuttan, Binoy; McFarland, Trevor J.; Stempel, Andrew; Kassem, Jean B.; Hartzell, Matthew; Zhang, Yi; Bond, Derek; West, Kelsey; Wilson, Reid; Stout, Andrew; Pan, Yuzhen; Ilias, Hoda; Robertson, Kathryn; Klein, Michael L.; Wilson, David; Smith, Justine R.; Stout, J. Timothy

    2012-01-01

    Increased cellular production of vascular endothelial growth factor (VEGF) is responsible for the development and progression of multiple cancers and other neovascular conditions, and therapies targeting post-translational VEGF products are used in the treatment of these diseases. Development of methods to control and modify the transcription of the VEGF gene is an alternative approach that may have therapeutic potential. We have previously shown that isoforms of the transcriptional enhancer factor 1-related (TEAD4) protein can enhance the production of VEGF. In this study we describe a new TEAD4 isoform, TEAD4216, which represses VEGF promoter activity. The TEAD4216 isoform inhibits human VEGF promoter activity and does not require the presence of the hypoxia responsive element (HRE), which is the sequence critical to hypoxia inducible factor (HIF)-mediated effects. The TEAD4216 protein is localized to the cytoplasm, whereas the enhancer isoforms are found within the nucleus. The TEAD4216 isoform can competitively repress the stimulatory activity of the TEAD4434 and TEAD4148 enhancers. Synthesis of the native VEGF165 protein and cellular proliferation is suppressed by the TEAD4216 isoform. Mutational analysis indicates that nuclear or cytoplasmic localization of any isoform determines whether it acts as an enhancer or repressor, respectively. The TEAD4216 isoform appears to inhibit VEGF production independently of the HRE required activity by HIF, suggesting that this alternatively spliced isoform of TEAD4 may provide a novel approach to treat VEGF-dependent diseases. PMID:22761647

  3. Engineered myocardium model to study the roles of HIF-1α and HIF1A-AS1 in paracrine-only signaling under pathological level oxidative stress.

    Science.gov (United States)

    Acun, Aylin; Zorlutuna, Pinar

    2017-08-01

    Studying heart tissue is critical for understanding and developing treatments for cardiovascular diseases. In this work, we fabricated precisely controlled and biomimetic engineered model tissues to study how cell-cell and cell-matrix interactions influence myocardial cell survival upon exposure to pathological level oxidative stress. Specifically, the interactions of endothelial cells (ECs) and cardiomyocytes (CMs), and the role of hypoxia inducible factor-1α (HIF-1α), with its novel alternative regulator, HIF-1α antisense RNA1 (HIF1A-AS1), in these interactions were investigated. We encapsulated CMs in photo-crosslinkable, biomimetic hydrogels with or without ECs, then exposed to oxidative stress followed by normoxia. With precisely controlled microenvironment provided by the model tissues, cell-cell interactions were restricted to be solely through the secreted factors. CM survival after oxidative stress was significantly improved, in the presence of ECs, when cells were in the model tissues that were functionalized with cell attachment motifs. Importantly, the cardioprotective effect of ECs was reduced when HIF-1α expression was knocked down suggesting that HIF-1α is involved in cardioprotection from oxidative damage, provided through secreted factors conferred by the ECs. Using model tissues, we showed that cell survival increased with increased cell-cell communication and enhanced cell-matrix interactions. In addition, whole genome transcriptome analysis showed, for the first time to our knowledge, a possible role for HIF1A-AS1 in oxidative regulation of HIF-1α. We showed that although HIF1A-AS1 knockdown helps CM survival, its effect is overridden by CM-EC bidirectional interactions as we showed that the conditioned media taken from the CM-EC co-cultures improved CM survival, regardless of HIF1A-AS1 expression. Cardiovascular diseases, most of which are associated with oxidative stress, is the most common cause of death worldwide. Thus, understanding

  4. ERRα augments HIF-1 signalling by directly interacting with HIF-1α in normoxic and hypoxic prostate cancer cells.

    Science.gov (United States)

    Zou, Chang; Yu, Shan; Xu, Zhenyu; Wu, Dinglan; Ng, Chi-Fai; Yao, Xiaoqiang; Yew, David T; Vanacker, Jean-Marc; Chan, Franky L

    2014-05-01

    Adaptation of cancer cells to a hypoxic microenvironment is important for their facilitated malignant growth and advanced development. One major mechanism mediating the hypoxic response involves up-regulation of hypoxia-inducible factor 1 (HIF-1) expression, which controls reprogramming of energy metabolism and angiogenesis. Oestrogen-related receptor-α (ERRα) is a pivotal regulator of cellular energy metabolism and many biosynthetic pathways, and has also been proposed to be an important factor promoting the Warburg effect in advanced cancer. We and others have previously shown that ERRα expression is increased in prostate cancer and is also a prognostic marker. Here we show that ERRα is oncogenic in prostate cancer and also a key hypoxic growth regulator. ERRα-over-expressing prostate cancer cells were more resistant to hypoxia and showed enhanced HIF-1α protein expression and HIF-1 signalling. These effects could also be observed in ERRα-over-expressing cells grown under normoxia, suggesting that ERRα could function to pre-adapt cancer cells to meet hypoxia stress. Immunoprecipitation and FRET assays indicated that ERRα could physically interact with HIF-1α via its AF-2 domain. A ubiquitination assay showed that this ERRα-HIF-1α interaction could inhibit ubiquitination of HIF-1α and thus reduce its degradation. Such ERRα-HIF-1α interaction could be attenuated by XCT790, an ERRα-specific inverse agonist, resulting in reduced HIF-1α levels. In summary, we show that ERRα can promote the hypoxic growth adaptation of prostate cancer cells via a protective interaction with HIF-1α, suggesting ERRα as a potential therapeutic target for cancer treatment. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. Myeloid cell leukemia-1 (Mc1-1 is a candidate target gene of hypoxia-inducible factor-1 (HIF-1 in the testis

    Directory of Open Access Journals (Sweden)

    Palladino Michael A

    2012-12-01

    Full Text Available Abstract Background Spermatic cord torsion can lead to testis ischemia (I and subsequent ischemia-reperfusion (I/R causing germ cell-specific apoptosis. Previously, we demonstrated that the hypoxia-inducible factor-1 (HIF-1 transcription factor, a key regulator of physiological responses to hypoxia, is abundant in Leydig cells in normoxic and ischemic testes. We hypothesize that testicular HIF-1 activates the expression of antiapoptotic target genes to protect Leydig cells from apoptosis. In silico analysis of testis genes containing a consensus hypoxia response element (HRE, 5’-RCGTG-3’ identified myeloid cell leukemia-1 (Mcl-1 as a potential HIF-1 target gene. The purpose of this study was to determine whether HIF-1 shows DNA-binding activity in normoxic and ischemic testes and whether Mcl-1 is a target gene of testicular HIF-1. Methods The testicular HIF-1 DNA-binding capacity was analyzed in vitro using a quantitative enzyme-linked immunosorbent assay (ELISA and electrophoretic mobility shift assays (EMSA. MCL-1 protein expression was evaluated by immunoblot analysis and immunohistochemistry. The binding of testicular HIF-1 to the Mcl-1 gene was examined via chromatin immunoprecipitation (ChIP analysis. Results The ELISA and EMSA assays demonstrated that testicular HIF-1 from normoxic and ischemic testes binds DNA equally strongly, suggesting physiological roles for HIF-1 in the normoxic testis, unlike most tissues in which HIF-1 is degraded under normoxic conditions and is only activated by hypoxia. MCL-1 protein was determined to be abundant in both normoxic and ischemic testes and expressed in Leydig cells. In a pattern identical to that of HIF-1 expression, the steady-state levels of MCL-1 were not significantly affected by I or I/R and MCL-1 co-localized with HIF-1α in Leydig cells. Chromatin immunoprecipitation (ChIP analysis using a HIF-1 antibody revealed sequences enriched for the Mcl-1 promoter. Conclusions The results

  6. Egr-1 and serum response factor are involved in growth factors- and serum-mediated induction of E2-EPF UCP expression that regulates the VHL-HIF pathway.

    Science.gov (United States)

    Lim, Jung Hwa; Jung, Cho-Rok; Lee, Chan-Hee; Im, Dong-Soo

    2008-11-01

    E2-EPF ubiquitin carrier protein (UCP) has been shown to be highly expressed in common human cancers and target von Hippel-Lindau (VHL) for proteosomal degradation in cells, thereby stabilizing hypoxia-inducible factor (HIF)-1alpha. Here, we investigated cellular factors that regulate the expression of UCP gene. Promoter deletion assay identified binding sites for early growth response-1 (Egr-1) and serum response factor (SRF) in the UCP promoter. Hepatocyte or epidermal growth factor (EGF), or phorbol 12-myristate 13-acetate induced UCP expression following early induction of Egr-1 expression in HeLa cells. Serum increased mRNA and protein levels of SRF and UCP in the cell. By electrophoretic mobility shift and chromatin immunoprecipitation assays, sequence-specific DNA-binding of Egr-1 and SRF to the UCP promoter was detected in nuclear extracts from HeLa cells treated with EGF and serum, respectively. Overexpression of Egr-1 or SRF increased UCP expression. RNA interference-mediated depletion of endogenous Egr-1 or SRF impaired EGF- or serum-mediated induction of UCP expression, which was required for cancer cell proliferation. Systemic delivery of EGF into mice also increased UCP expression following early induction of Egr-1 expression in mouse liver. The induced UCP expression by the growth factors or serum increased HIF-1alpha protein level under non-hypoxic conditions, suggesting that the Egr-1/SRF-UCP-VHL pathway is in part responsible for the increased HIF-1alpha protein level in vitro and in vivo. Thus, growth factors and serum induce expression of Egr-1 and SRF, respectively, which in turn induces UCP expression that positively regulates cancer cell growth.

  7. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression.

    Science.gov (United States)

    Keith, Brian; Johnson, Randall S; Simon, M Celeste

    2011-12-15

    Hypoxia-inducible factors (HIFs) are broadly expressed in human cancers, and HIF1α and HIF2α were previously suspected to promote tumour progression through largely overlapping functions. However, this relatively simple model has now been challenged in light of recent data from various approaches that reveal unique and sometimes opposing activities of these HIFα isoforms in both normal physiology and disease. These effects are mediated in part through the regulation of unique target genes, as well as through direct and indirect interactions with important oncoproteins and tumour suppressors, including MYC and p53. As HIF inhibitors are currently undergoing clinical evaluation as cancer therapeutics, a more thorough understanding of the unique roles performed by HIF1α and HIF2α in human neoplasia is warranted.

  8. The related transcriptional enhancer factor-1 isoform, TEAD4(216, can repress vascular endothelial growth factor expression in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Binoy Appukuttan

    Full Text Available Increased cellular production of vascular endothelial growth factor (VEGF is responsible for the development and progression of multiple cancers and other neovascular conditions, and therapies targeting post-translational VEGF products are used in the treatment of these diseases. Development of methods to control and modify the transcription of the VEGF gene is an alternative approach that may have therapeutic potential. We have previously shown that isoforms of the transcriptional enhancer factor 1-related (TEAD4 protein can enhance the production of VEGF. In this study we describe a new TEAD4 isoform, TEAD4(216, which represses VEGF promoter activity. The TEAD4(216 isoform inhibits human VEGF promoter activity and does not require the presence of the hypoxia responsive element (HRE, which is the sequence critical to hypoxia inducible factor (HIF-mediated effects. The TEAD4(216 protein is localized to the cytoplasm, whereas the enhancer isoforms are found within the nucleus. The TEAD4(216 isoform can competitively repress the stimulatory activity of the TEAD4(434 and TEAD4(148 enhancers. Synthesis of the native VEGF(165 protein and cellular proliferation is suppressed by the TEAD4(216 isoform. Mutational analysis indicates that nuclear or cytoplasmic localization of any isoform determines whether it acts as an enhancer or repressor, respectively. The TEAD4(216 isoform appears to inhibit VEGF production independently of the HRE required activity by HIF, suggesting that this alternatively spliced isoform of TEAD4 may provide a novel approach to treat VEGF-dependent diseases.

  9. The histone deacetylase inhibitor, Vorinostat, represses hypoxia inducible factor 1 alpha expression through translational inhibition.

    Directory of Open Access Journals (Sweden)

    Darren M Hutt

    Full Text Available Hypoxia inducible factor 1α (HIF-1α is a master regulator of tumor angiogenesis being one of the major targets for cancer therapy. Previous studies have shown that Histone Deacetylase Inhibitors (HDACi block tumor angiogenesis through the inhibition of HIF-1α expression. As such, Vorinostat (Suberoylanilide Hydroxamic Acid/SAHA and Romidepsin, two HDACis, were recently approved by the Food and Drug Administration (FDA for the treatment of cutaneous T cell lymphoma. Although HDACis have been shown to affect HIF-1α expression by modulating its interactions with the Hsp70/Hsp90 chaperone axis or its acetylation status, the molecular mechanisms by which HDACis inhibit HIF-1α expression need to be further characterized. Here, we report that the FDA-approved HDACi Vorinostat/SAHA inhibits HIF-1α expression in liver cancer-derived cell lines, by a new mechanism independent of p53, prolyl-hydroxylases, autophagy and proteasome degradation. We found that SAHA or silencing of HDAC9 mechanism of action is due to inhibition of HIF-1α translation, which in turn, is mediated by the eukaryotic translation initiation factor--eIF3G. We also highlighted that HIF-1α translation is dramatically inhibited when SAHA is combined with eIF3H silencing. Taken together, we show that HDAC activity regulates HIF-1α translation, with HDACis such as SAHA representing a potential novel approach for the treatment of hepatocellular carcinoma.

  10. A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible factor-1 (HIF-1) and increases skin innate defenses against bacterial infection.

    Science.gov (United States)

    Okumura, Cheryl Y M; Hollands, Andrew; Tran, Dan N; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A; Johnson, Randall S; Nizet, Victor

    2012-09-01

    Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 increases HIF-1 levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinetobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections.

  11. Hypoxia inducible factor 1-alpha (HIF-1 alpha is induced during reperfusion after renal ischemia and is critical for proximal tubule cell survival.

    Directory of Open Access Journals (Sweden)

    Elisa Conde

    Full Text Available Acute tubular necrosis (ATN caused by ischemia/reperfusion (I/R during renal transplantation delays allograft function. Identification of factors that mediate protection and/or epithelium recovery could help to improve graft outcome. We studied the expression, regulation and role of hypoxia inducible factor 1-alpha (HIF-1 α, using in vitro and in vivo experimental models of I/R as well as human post-transplant renal biopsies. We found that HIF-1 α is stabilized in proximal tubule cells during ischemia and unexpectedly in late reperfusion, when oxygen tension is normal. Both inductions lead to gene expression in vitro and in vivo. In vitro interference of HIF-1 α promoted cell death and in vivo interference exacerbated tissue damage and renal dysfunction. In pos-transplant human biopsies, HIF-1 α was expressed only in proximal tubules which exhibited normal renal structure with a significant negative correlation with ATN grade. In summary, using experimental models and human biopsies, we identified a novel HIF-1 α induction during reperfusion with a potential critical role in renal transplant.

  12. Mipu1, a novel direct target gene, is involved in hypoxia inducible factor 1-mediated cytoprotection.

    Directory of Open Access Journals (Sweden)

    Kangkai Wang

    Full Text Available Mipu1 (myocardial ischemic preconditioning up-regulated protein 1, recently identified in our lab, is a novel zinc-finger transcription factor which is up-regulated during ischemic preconditioning. However, it is not clear what transcription factor contributes to its inducible expression. In the present study, we reported that HIF-1 regulates the inducible expression of Mipu1 which is involved in the cytoprotection of HIF-1α against oxidative stress by inhibiting Bax expression. Our results showed that the inducible expression of Mipu1 was associated with the expression and activation of transcription factor HIF-1 as indicated by cobalt chloride (CoCl2 treatment, HIF-1α overexpression and knockdown assays. EMSA and luciferase reporter gene assays showed that HIF-1α bound to the hypoxia response element (HRE within Mipu1 promoter region and promoted its transcription. Moreover, our results revealed that Mipu1 inhibited the expression of Bax, an important pro-apoptosis protein associated with the intrinsic pathway of apoptosis, elevating the cytoprotection of HIF-1 against hydrogen peroxide (H2O2-mediated injury in H9C2 cells. Our findings implied that Bax may be a potential target gene of transcription factor Mipu1, and provided a novel insight for understanding the cytoprotection of HIF-1 and new clues for further elucidating the mechanisms by which Mipu1 protects cell against pathological stress.

  13. Effects of HIF-1 and HIF2 on Growth and Metabolism of Clear-Cell Renal Cell Carcinoma 786-0 Xenografts

    Directory of Open Access Journals (Sweden)

    Swethajit Biswas

    2010-01-01

    Full Text Available In cultured clear-cell renal carcinoma (CCRCC 786-0 cells transfected with HIF1 (HIF-1+, HIF-2 (HIF-2+, or empty vector (EV, no significant differences were observed in the growth rates in vitro, but when grown in vivo as xenografts HIF-2 significantly increased, and HIF-1 significantly decreased growth rates, compared to EV tumors. Factors associated with proliferation were increased and factors associated with cell death were decreased in HIF-2+ tumors. Metabolite profiles showed higher glucose and lower lactate and alanine levels in the HIF-2+ tumors whilst immunostaining demonstrated higher pyruvate dehydrogenase and lower pyruvate dehydrogenase kinase 1, compared to control tumors. Taken together, these results suggest that overexpression of HIF-2 in CCRCC 786-0 tumors regulated growth both by maintaining a low level of glycolysis and by allowing more mitochondrial metabolism and tolerance to ROS induced DNA damage. The growth profiles observed may be mediated by adaptive changes to a more oxidative phenotype.

  14. The interplay between HIF-1 and calcium signalling in cancer.

    Science.gov (United States)

    Azimi, Iman

    2018-04-01

    The interplay between hypoxia-inducible factor-1 (HIF-1) and calcium in cancer has begun to be unravelled with recent findings demonstrating the relationships between the two in different cancer types. This is an area of significance considering the crucial roles of both HIF-1 and calcium signalling in cancer progression and metastasis. This review summarises the experimental evidence of the crosstalk between HIF-1 and specific calcium channels, pumps and regulators in the context of cancer. HIF-1 as a master regulator of hypoxic transcriptional responses, mediates transcription of several calcium modulators. On the other hand, specific calcium channels and pumps regulate HIF-1 activity through controlling its transcription, translation, stabilisation, or nuclear translocation. Identifying the interplay between HIF-1 and components of the calcium signal will give new insights into mechanisms underlying cellular responses to physiological and pathophysiological cues, and may provide novel and more efficient therapeutic strategies for the control of cancer progression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS-mediated activation of hypoxia-inducible factor 1 (HIF-1) and heat shock factor 1 (HSF-1) and the clustered expression of stress genes.

    Science.gov (United States)

    Klumpen, Eva; Hoffschröer, Nadine; Zeis, Bettina; Gigengack, Ulrike; Dohmen, Elias; Paul, Rüdiger J

    2017-01-01

    Heat stress in ectotherms involves direct (e.g. protein damage) and/or indirect effects (temperature-induced hypoxia and ROS formation), which cause activation of the transcription factors (TF) heat shock factor 1 (HSF-1) and/or hypoxia-inducible factor 1 (HIF-1). The present study focused on the links between stress (ROS) signals, nuclear (n) and cytoplasmic (c) HSF-1/HIF-1 levels, and stress gene expression on mRNA and protein levels (e.g. heat-shock protein 90, HSP90) upon acute heat and ROS (H 2 O 2 ) stress. Acute heat stress (30°C) evoked fluctuations in ROS level. Different feeding regimens, which affected the glutathione (GSH) level, allowed altering the frequency of ROS fluctuations. Other data showed fluctuation frequency to depend also on ROS production rate. The heat-induced slow or fast ROS fluctuations (at high or low GSH levels) evoked slow or fast fluctuations in the levels of nHIF-1α, nHSF-1 and gene products (mRNAs and protein), albeit after different time delays. Time delays to ROS fluctuations were, for example,shorter for nHIF-1α than for nHSF-1 fluctuations, and nHIF-1α fluctuations preceded and nHSF-1 fluctuations followed fluctuations in HSP90 mRNA level. Cytoplasmic TF levels either changed little (cHIF-1α) or showed a steady increase (cHSF-1). Applying acute H 2 O 2 stress (at 20°C) revealed effects on nHIF-1α and mRNA levels, but no significant effects on nHSF-1 level. Transcriptome data additionally showed coordinated fluctuations of mRNA levels upon acute heat stress, involving mRNAs for HSPs and other stress proteins, with all corresponding genes carrying DNA binding motifs for HIF-1 and HSF-1. This study provided evidence for promoting effects of ROS and HIF-1 on early haemoglobin, HIF-1α and HSP90 mRNA expressions upon heat or ROS stress. The increasing cHSF-1 level likely affected nHSF-1 level and later HSP90 mRNA expression. Heat stress evoked ROS fluctuations, with this stress signal forwarded via nHIF-1 and nHSF-1

  16. Adult hematopoietic stem cells lacking Hif-1α self-renew normally

    Science.gov (United States)

    Vukovic, Milica; Sepulveda, Catarina; Subramani, Chithra; Guitart, Amélie V.; Mohr, Jasmine; Allen, Lewis; Panagopoulou, Theano I.; Paris, Jasmin; Lawson, Hannah; Villacreces, Arnaud; Armesilla-Diaz, Alejandro; Gezer, Deniz; Holyoake, Tessa L.; Ratcliffe, Peter J.

    2016-01-01

    The hematopoietic stem cell (HSC) pool is maintained under hypoxic conditions within the bone marrow microenvironment. Cellular responses to hypoxia are largely mediated by the hypoxia-inducible factors, Hif-1 and Hif-2. The oxygen-regulated α subunits of Hif-1 and Hif-2 (namely, Hif-1α and Hif-2α) form dimers with their stably expressed β subunits and control the transcription of downstream hypoxia-responsive genes to facilitate adaptation to low oxygen tension. An initial study concluded that Hif-1α is essential for HSC maintenance, whereby Hif-1α–deficient HSCs lost their ability to self-renew in serial transplantation assays. In another study, we demonstrated that Hif-2α is dispensable for cell-autonomous HSC maintenance, both under steady-state conditions and following transplantation. Given these unexpected findings, we set out to revisit the role of Hif-1α in cell-autonomous HSC functions. Here we demonstrate that inducible acute deletion of Hif-1α has no impact on HSC survival. Notably, unstressed HSCs lacking Hif-1α efficiently self-renew and sustain long-term multilineage hematopoiesis upon serial transplantation. Finally, Hif-1α–deficient HSCs recover normally after hematopoietic injury induced by serial administration of 5-fluorouracil. We therefore conclude that despite the hypoxic nature of the bone marrow microenvironment, Hif-1α is dispensable for cell-autonomous HSC maintenance. PMID:27060169

  17. Hif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance.

    Science.gov (United States)

    Vukovic, Milica; Guitart, Amelie V; Sepulveda, Catarina; Villacreces, Arnaud; O'Duibhir, Eoghan; Panagopoulou, Theano I; Ivens, Alasdair; Menendez-Gonzalez, Juan; Iglesias, Juan Manuel; Allen, Lewis; Glykofrydis, Fokion; Subramani, Chithra; Armesilla-Diaz, Alejandro; Post, Annemarie E M; Schaak, Katrin; Gezer, Deniz; So, Chi Wai Eric; Holyoake, Tessa L; Wood, Andrew; O'Carroll, Dónal; Ratcliffe, Peter J; Kranc, Kamil R

    2015-12-14

    Leukemogenesis occurs under hypoxic conditions within the bone marrow (BM). Knockdown of key mediators of cellular responses to hypoxia with shRNA, namely hypoxia-inducible factor-1α (HIF-1α) or HIF-2α, in human acute myeloid leukemia (AML) samples results in their apoptosis and inability to engraft, implicating HIF-1α or HIF-2α as therapeutic targets. However, genetic deletion of Hif-1α has no effect on mouse AML maintenance and may accelerate disease development. Here, we report the impact of conditional genetic deletion of Hif-2α or both Hif-1α and Hif-2α at different stages of leukemogenesis in mice. Deletion of Hif-2α accelerates development of leukemic stem cells (LSCs) and shortens AML latency initiated by Mll-AF9 and its downstream effectors Meis1 and Hoxa9. Notably, the accelerated initiation of AML caused by Hif-2α deletion is further potentiated by Hif-1α codeletion. However, established LSCs lacking Hif-2α or both Hif-1α and Hif-2α propagate AML with the same latency as wild-type LSCs. Furthermore, pharmacological inhibition of the HIF pathway or HIF-2α knockout using the lentiviral CRISPR-Cas9 system in human established leukemic cells with MLL-AF9 translocation have no impact on their functions. We therefore conclude that although Hif-1α and Hif-2α synergize to suppress the development of AML, they are not required for LSC maintenance. © 2015 Vukovic et al.

  18. Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response.

    Science.gov (United States)

    Pawlus, Matthew R; Hu, Cheng-Jun

    2013-09-01

    Hypoxia is a prevalent attribute of the solid tumor microenvironment that promotes the expression of genes through posttranslational modifications and stabilization of alpha subunits (HIF1α and HIF2α) of hypoxia-inducible factors (HIFs). Despite significant similarities, HIF1 (HIF1α/ARNT) and HIF2 (HIF2α/ARNT) activate common as well as unique target genes and exhibit different functions in cancer biology. More surprisingly, accumulating data indicates that the HIF1- and/or HIF2-mediated hypoxia responses can be oncogenic as well as tumor suppressive. While the role of HIF in the hypoxia response is well established, recent data support the concept that HIF is necessary, but not sufficient for the hypoxic response. Other transcription factors that are activated by hypoxia are also required for the HIF-mediated hypoxia response. HIFs, other transcription factors, co-factors and RNA poll II recruited by HIF and other transcription factors form multifactorial enhanceosome complexes on the promoters of HIF target genes to activate hypoxia inducible genes. Importantly, HIF1 or HIF2 requires distinct partners in activating HIF1 or HIF2 target genes. Because HIF enhanceosome formation is required for the gene activation and distinct functions of HIF1 and HIF2 in tumor biology, disruption of the HIF1 or HIF2 specific enhanceosome complex may prove to be a beneficial strategy in tumor treatment in which tumor growth is specifically dependent upon HIF1 or HIF2 activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. The tyrosine phosphatase SHP-1 regulates hypoxia inducible factor-1α (HIF-1α protein levels in endothelial cells under hypoxia.

    Directory of Open Access Journals (Sweden)

    Stefan K Alig

    Full Text Available The tyrosine phosphatase SHP-1 negatively influences endothelial function, such as VEGF signaling and reactive oxygen species (ROS formation, and has been shown to influence angiogenesis during tissue ischemia. In ischemic tissues, hypoxia induced angiogenesis is crucial for restoring oxygen supply. However, the exact mechanism how SHP-1 affects endothelial function during ischemia or hypoxia remains unclear. We performed in vitro endothelial cell culture experiments to characterize the role of SHP-1 during hypoxia.SHP-1 knock-down by specific antisense oligodesoxynucleotides (AS-Odn increased cell growth as well as VEGF synthesis and secretion during 24 hours of hypoxia compared to control AS-Odn. This was prevented by HIF-1α inhibition (echinomycin and apigenin. SHP-1 knock-down as well as overexpression of a catalytically inactive SHP-1 (SHP-1 CS further enhanced HIF-1α protein levels, whereas overexpression of a constitutively active SHP-1 (SHP-1 E74A resulted in decreased HIF-1α levels during hypoxia, compared to wildtype SHP-1. Proteasome inhibition (MG132 returned HIF-1α levels to control or wildtype levels respectively in these cells. SHP-1 silencing did not alter HIF-1α mRNA levels. Finally, under hypoxic conditions SHP-1 knock-down enhanced intracellular endothelial reactive oxygen species (ROS formation, as measured by oxidation of H2-DCF and DHE fluorescence.SHP-1 decreases half-life of HIF-1α under hypoxic conditions resulting in decreased cell growth due to diminished VEGF synthesis and secretion. The regulatory effect of SHP-1 on HIF-1α stability may be mediated by inhibition of endothelial ROS formation stabilizing HIF-1α protein. These findings highlight the importance of SHP-1 in hypoxic signaling and its potential as therapeutic target in ischemic diseases.

  20. Effects of 12 metal ions on iron regulatory protein 1 (IRP-1) and hypoxia-inducible factor-1 alpha (HIF-1α) and HIF-regulated genes

    International Nuclear Information System (INIS)

    Li Qin; Chen Haobin; Huang Xi; Costa, Max

    2006-01-01

    Several metal ions that are carcinogenic affect cellular iron homeostasis by competing with iron transporters or iron-regulated enzymes. Some metal ions can mimic a hypoxia response in cells under normal oxygen tension, and induce expression of HIF-1α-regulated genes. This study investigated whether 12 metal ions altered iron homeostasis in human lung carcinoma A549 cells as measured by an activation of IRP-1 and ferritin level. We also studied hypoxia signaling by measuring HIF-1α protein levels, hypoxia response element (HRE)-driven luciferase reporter activity, and Cap43 protein level (an HIF-1α responsive gene). Our results show the following: (i) Ni(II), Co(II), V(V), Mn(II), and to a lesser extent As(III) and Cu(II) activated the binding of IRP-1 to IRE after 24 h, while the other metal ions had no effect; (ii) 10 of 12 metal ions induced HIF-1α protein but to strikingly different degrees. Two of these metal ions, Al(III) and Cd(II), did not induce HIF-1α protein; however, as indicated below, only Ni(II), Co (II), and to lesser extent Mn(II) and V(V) activated HIF-1α-dependent transcription. The combined effects of both [Ni(II) + As(III)] and [Ni(II) + Cr(VI)] on HIF-1α protein were synergistic; (iii) Addition of Fe(II) with Ni(II), Co(II), and Cr(VI) attenuated the induction of HIF-1α after 4 h treatment; (iv) Ni(II), Co(II), and Mn(II) significantly decrease ferritin level after 24 h exposure; (v) Ni(II), Co(II), V(V), and Mn(II) activated HRE reporter gene after 20 h treatment; (vi) Ni(II), Co(II), V(V), and Mn(II) increased the HIF-1-dependent Cap43 protein level after 24 h treatment. In conclusion, only Ni (II), Co (II), and to a lesser extent Mn(II) and V(V) significantly stabilized HIF-1α protein, activated IRP, decreased the levels of ferritin, induced the transcription of HIF-dependent reporter, and increased the expression of Cap43 protein levels (HIF-dependent gene). The mechanism for the significant stabilization and elevation of HIF-1

  1. Functional cooperation between HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR.

    Science.gov (United States)

    Meng, Shuyan; Wang, Guorui; Lu, Yang; Fan, Zhen

    2018-07-01

    Hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) are important transcription factors regulating expression of genes involved in cell survival. HIF-1α and c-Jun are key components of HIF-1 and AP-1, respectively, and are regulated by epidermal growth factor receptor (EGFR)-mediated cell signaling and tumor microenvironmental cues. The roles of HIF-1α and c-Jun in development of resistance to EGFR tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC) with activating mutation of EGFR have not been explored. In this study, we investigated the roles of HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR. Changes in HIF-1α protein and in total and phosphorylated c-Jun levels in relation to changes in total and phosphorylated EGFR levels before and after gefitinib treatment were measured using Western blot analysis in NSCLC cells sensitive or resistant to gefitinib. The impact of overexpression of a constitutively expressed HIF-1α (HIF-1α/ΔODD) or a constitutively active c-Jun upstream regulator (SEK1 S220E/T224D mutant) on cell response to gefitinib was also examined. The effect of pharmacological inhibition of SEK1-JNK-c-Jun pathway on cell response to gefitinib was evaluated. Downregulation of HIF-1α and total and phosphorylated c-Jun levels correlated with cell inhibitory response to gefitinib better than decrease in phosphorylated EGFR did in NSCLC cells with intrinsic or acquired resistance to gefitinib. Overexpression of HIF-1α/ΔODD or SEK1 S220E/T224D mutant conferred resistance to gefitinib. There exists a positive feed-forward regulation loop between HIF-1 and c-Jun. The JNK inhibitor SP600125 sensitized gefitinib-resistant NSCLC cells to gefitinib. HIF-1α and c-Jun functionally cooperate in development of resistance to gefitinib in NSCLC cells. The translational value of inhibiting HIF-1α/c-Jun cooperation in overcoming resistance to EGFR TKI

  2. Hypoxia-inducible factor-2α (HIF-2α), but not HIF-1α, is essential for hypoxic induction of class III β-tubulin expression in human glioblastoma cells.

    Science.gov (United States)

    Bordji, Karim; Grandval, Alexandra; Cuhna-Alves, Leilane; Lechapt-Zalcman, Emmanuèle; Bernaudin, Myriam

    2014-12-01

    Glioblastoma multiforme (GBM) is the deadliest form of primary brain cancer. Several reports have indicated aberrant levels of βIII-tubulin (βIII-t) in human GBM. βIII-t overexpression was linked to increasing malignancy in glial tumors and described to determine the onset of resistance to chemotherapy. Furthermore, a linkage was suggested between the induction of βIII-t expression and hypoxia, a hallmark of GBM. We investigated the role of hypoxia-inducible factor (HIF)-1α and HIF-2α in the regulation of the βIII-t gene (TUBB3) in GBM cells cultured in either normoxia or hypoxia. We report for the first time that HIF-2α, but not HIF-1α, is involved in hypoxia-induced βIII-t expression in GBM cells. By gene-reporter experiments and site-directed mutagenesis, we found that two overlapping hypoxia response elements located in the 3' UTR of the gene were involved in the activation of TUBB3. This occurred through an enhanced binding of HIF-2α to the 3' region, as revealed by an electrophoretic mobility shift assay. Conversely, the promoter of TUBB3 was shown to be inactive. In addition, we observed that HIF-1α exhibits a repressive effect on βIII-t expression in cells cultured in normoxia. These results show that both HIF-α isoforms have opposing effects on βIII-t expression in GBM cells. Finally, we observed that hypoxia-induced βIII-t expression is well correlated with the kinetics of HIF-2α protein stabilization. The evidence for a direct linkage between HIF-2α and increased expression of βIII-t by hypoxia suggests that an anti-HIF-2α strategy (i.e. by downregulating βIII-t) could be of potential interest for improving the treatment of GBM. © 2014 FEBS.

  3. Proline-hydroxylated hypoxia-inducible factor 1α (HIF-1α upregulation in human tumours.

    Directory of Open Access Journals (Sweden)

    Cameron E Snell

    Full Text Available The stabilisation of HIF-α is central to the transcriptional response of animals to hypoxia, regulating the expression of hundreds of genes including those involved in angiogenesis, metabolism and metastasis. HIF-α is degraded under normoxic conditions by proline hydroxylation, which allows for recognition and ubiquitination by the von-Hippel-Lindau (VHL E3 ligase complex. The aim of our study was to investigate the posttranslational modification of HIF-1α in tumours, to assess whether there are additional mechanisms besides reduced hydroxylation leading to stability. To this end we optimised antibodies against the proline-hydroxylated forms of HIF-1α for use in formalin fixed paraffin embedded (FFPE immunohistochemistry to assess effects in tumour cells in vivo. We found that HIF-1α proline-hydroxylated at both VHL binding sites (Pro402 and Pro564, was present in hypoxic regions of a wide range of tumours, tumour xenografts and in moderately hypoxic cells in vitro. Staining for hydroxylated HIF-1α can identify a subset of breast cancer patients with poorer prognosis and may be a better marker than total HIF-1α levels. The expression of unhydroxylated HIF-1α positively correlates with VHL in breast cancer suggesting that VHL may be rate-limiting for HIF degradation. Our conclusions are that the degradation of proline-hydroxylated HIF-1α may be rate-limited in tumours and therefore provides new insights into mechanisms of HIF upregulation. Persistence of proline-hydroxylated HIF-1α in perinecrotic areas suggests there is adequate oxygen to support prolyl hydroxylase domain (PHD activity and proline-hydroxylated HIF-1α may be the predominant form associated with the poorer prognosis that higher levels of HIF-1α confer.

  4. Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) through inhibiting protein synthesis.

    Science.gov (United States)

    Lee, Dae-Hee; Lee, Yong J

    2008-10-01

    Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells and induce the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) in normoxia. In this study, under hypoxic conditions (1% O(2)), we examined the effect of quercetin on the intracellular level of HIF-1alpha and extracellular level of vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Surprisingly, we observed that quercetin suppressed the HIF-1alpha accumulation during hypoxia in human prostate cancer LNCaP, colon cancer CX-1, and breast cancer SkBr3 cells. Quercetin treatment also significantly reduced hypoxia-induced secretion of VEGF. Suppression of HIF-1alpha accumulation during treatment with quercetin in hypoxia was not prevented by treatment with 26S proteasome inhibitor MG132 or PI3K inhibitor LY294002. Interestingly, hypoxia (1% O(2)) in the presence of 100 microM quercetin inhibited protein synthesis by 94% during incubation for 8 h. Significant quercetin concentration-dependent inhibition of protein synthesis and suppression of HIF-1alpha accumulation were observed under hypoxic conditions. Treatment with 100 microM cycloheximide, a protein synthesis inhibitor, replicated the effect of quercetin by inhibiting HIF-1alpha accumulation during hypoxia. These results suggest that suppression of HIF-1alpha accumulation during treatment with quercetin under hypoxic conditions is due to inhibition of protein synthesis. (c) 2008 Wiley-Liss, Inc.

  5. Inhibition of tumor cell growth by Sigma1 ligand mediated translational repression

    International Nuclear Information System (INIS)

    Kim, Felix J.; Schrock, Joel M.; Spino, Christina M.; Marino, Jacqueline C.; Pasternak, Gavril W.

    2012-01-01

    Highlights: ► Sigma1 ligand treatment mediates decrease in tumor cell mass. ► Identification of a Sigma1 ligand with reversible translational repressor actions. ► Demonstration of a role for Sigma1 in cellular protein synthesis. -- Abstract: Treatment with sigma1 receptor (Sigma1) ligands can inhibit cell proliferation in vitro and tumor growth in vivo. However, the cellular pathways engaged in response to Sigma1 ligand treatment that contribute to these outcomes remain largely undefined. Here, we show that treatment with putative antagonists of Sigma1 decreases cell mass. This effect corresponds with repressed cap-dependent translation initiation in multiple breast and prostate cancer cell lines. Sigma1 antagonist treatment suppresses phosphorylation of translational regulator proteins p70S6K, S6, and 4E-BP1. RNAi-mediated knockdown of Sigma1 also results in translational repression, consistent with the effects of antagonist treatment. Sigma1 antagonist mediated translational repression and decreased cell size are both reversible. Together, these data reveal a role for Sigma1 in tumor cell protein synthesis, and demonstrate that small molecule Sigma1 ligands can be used as modulators of protein translation.

  6. BRD7 inhibits the Warburg effect and tumor progression through inactivation of HIF1α/LDHA axis in breast cancer.

    Science.gov (United States)

    Niu, Weihong; Luo, Yanwei; Wang, Xinye; Zhou, Yao; Li, Hui; Wang, Heran; Fu, Yaojie; Liu, Shanshan; Yin, Shanghelin; Li, Jianglei; Zhao, Ran; Liu, Yukun; Fan, Songqing; Li, Zheng; Xiong, Wei; Li, Xiaoling; Li, Guiyuan; Ren, Caiping; Tan, Ming; Zhou, Ming

    2018-05-03

    The bromodomain-containing protein 7 (BRD7) was first identified as a tumor suppressor in nasopharyngeal carcinoma and has critical roles in cancer development and progression. However, the regulatory roles and mechanisms of BRD7 in cancer metabolism are still unknown. In this study, we demonstrated that BRD7 was lowly expressed in breast cancer tissues and was identified as a poor prognostic factor in breast cancer. Meanwhile, BRD7 could suppress cell proliferation, initiate cell apoptosis and reduce aerobic glycolysis, suggesting that BRD7 plays a tumor suppressive roles in breast cancer. Mechanistically, BRD7 could negatively regulate a critical glycolytic enzyme LDHA through directly interaction with its upstream transcription factor, HIF1α, facilitating degradation of HIF1α mediated by ubiquitin-proteasome pathway. Moreover, restoring the expression of LDHA in breast cancer cells could reverse the effect of BRD7 on aerobic glycolysis, cell proliferation, and tumor formation, as well as the expression of cell cycle and apopotosis related molecules such as cyclin D1, CDK4, P21, and c-PARP both in vitro and in vivo. Taken together, these results indicate that BRD7 acts as a tumor suppressor in breast cancer and represses the glycolysis and tumor progression through inactivation of HIF1α/LDHA transcription axis.

  7. aHIF but not HIF-1α transcript is a poor prognostic marker in human breast cancer

    International Nuclear Information System (INIS)

    Cayre, Anne; Rossignol, Fabrice; Clottes, Eric; Penault-Llorca, Frédérique

    2003-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is part of a transcriptional factor that regulates genes involved in metabolic and vascular adaptation of tumours to oxygen restriction. A splicing variant lacking exon 14 (sHIF-1α) encodes a truncated protein that competes with the normal HIF-1α protein, decreasing its activity. A natural antisense transcript (aHIF) complementary to the 3'-untranslated region of HIF-1α mRNA was described recently. With a semiquantitative multiplex reverse transcriptase–PCR (RT–PCR) assay, we assessed transcript concentrations of HIF-1α, sHIF-1α and aHIF in 110 patients with invasive breast carcinoma. We found a strong positive association between HIF-1α and sHIF-1α, sHIF-1α and aHIF, and an inverse correlation between HIF-1α /sHIF-1α and aHIF. aHIF transcript expression was associated with poor disease-free survival in univariate (P = 0.0038) and multivariate (P = 0.0016) analyses in this series of high-risk primary breast carcinomas. In our series of breast cancer patients, aHIF, and not HIF-1α transcript, is a marker of poor prognosis

  8. Inositol Polyphosphate Multikinase Inhibits Angiogenesis via Inositol Pentakisphosphate-Induced HIF-1α Degradation.

    Science.gov (United States)

    Fu, Chenglai; Tyagi, Richa; Chin, Alfred C; Rojas, Tomas; Li, Ruo-Jing; Guha, Prasun; Bernstein, Isaac A; Rao, Feng; Xu, Risheng; Cha, Jiyoung Y; Xu, Jing; Snowman, Adele M; Semenza, Gregg L; Snyder, Solomon H

    2018-02-02

    Inositol polyphosphate multikinase (IPMK) and its major product inositol pentakisphosphate (IP5) regulate a variety of cellular functions, but their role in vascular biology remains unexplored. We have investigated the role of IPMK in regulating angiogenesis. Deletion of IPMK in fibroblasts induces angiogenesis in both in vitro and in vivo models. IPMK deletion elicits a substantial increase of VEGF (vascular endothelial growth factor), which mediates the regulation of angiogenesis by IPMK. The regulation of VEGF by IPMK requires its catalytic activity. IPMK is predominantly nuclear and regulates gene transcription. However, IPMK does not apparently serve as a transcription factor for VEGF. HIF (hypoxia-inducible factor)-1α is a major determinant of angiogenesis and induces VEGF transcription. IPMK deletion elicits a major enrichment of HIF-1α protein and thus VEGF. HIF-1α is constitutively ubiquitinated by pVHL (von Hippel-Lindau protein) followed by proteasomal degradation under normal conditions. However, HIF-1α is not recognized and ubiquitinated by pVHL in IPMK KO (knockout) cells. IP5 reinstates the interaction of HIF-1α and pVHL. HIF-1α prolyl hydroxylation, which is prerequisite for pVHL recognition, is interrupted in IPMK-deleted cells. IP5 promotes HIF-1α prolyl hydroxylation and thus pVHL-dependent degradation of HIF-1α. Deletion of IPMK in mouse brain increases HIF-1α/VEGF levels and vascularization. The increased VEGF in IPMK KO disrupts blood-brain barrier and enhances brain blood vessel permeability. IPMK, via its product IP5, negatively regulates angiogenesis by inhibiting VEGF expression. IP5 acts by enhancing HIF-1α hydroxylation and thus pVHL-dependent degradation of HIF-1α. © 2017 American Heart Association, Inc.

  9. Induction of the nuclear factor HIF-1α in acetaminophen toxicity: Evidence for oxidative stress

    International Nuclear Information System (INIS)

    James, Laura P.; Donahower, Brian; Burke, Angela S.; McCullough, Sandra; Hinson, Jack A.

    2006-01-01

    Hypoxia inducible factor (HIF) controls the transcription of genes involved in angiogenesis, erythropoiesis, glycolysis, and cell survival. HIF-1α levels are a critical determinant of HIF activity. The induction of HIF-1α was examined in the livers of mice treated with a toxic dose of APAP (300 mg/kg IP) and sacrificed at 1, 2, 4, 8, and 12 h. HIF-1α was induced at 1-12 h and induction occurred prior to the onset of toxicity. Pre-treatment of mice with N-acetylcysteine (1200 mg/kg IP) prevented toxicity and HIF-1α induction. In further studies, hepatocyte suspensions were incubated with APAP (1 mM) in the presence of an oxygen atmosphere. HIF-1α was induced at 1 h, prior to the onset of toxicity. Inclusion of cyclosporine A (10 μM), an inhibitor of mitochondrial permeability transition, oxidative stress, and toxicity, prevented the induction of HIF-1α. Thus, HIF-1α is induced before APAP toxicity and can occur under non-hypoxic conditions. The data suggest a role for oxidative stress in the induction of HIF-1α in APAP toxicity

  10. Pin1, a new player in the fate of HIF-1α degradation: an hypothetical mechanism inside vascular damage as Alzheimer’s disease risk factor.

    Directory of Open Access Journals (Sweden)

    Elena eLonati

    2014-01-01

    Full Text Available Aetiology of neurodegenerative mechanisms underlying Alzheimer's disease (AD are still under elucidation. The contribution of cerebrovascular deficiencies (such as cerebral ischemia/stroke has been strongly endorsed in recent years. Reduction of blood supply leading to hypoxic condition is known to activate cellular responses mainly controlled by hypoxia-inducible transcription factor-1 (HIF-1. Thus alterations of oxygen responsive HIF-1α subunit in the central nervous system may contribute to the cognitive decline, especially influencing mechanisms associated to APP (amyloid precursor protein amyloidogenic metabolism. Although HIF-1α protein level is known to be regulated by von Hippel-Lindau (VHL ubiquitin-proteasome system, it has been recently suggested that Gsk-3β (glycogen synthase kinase-3β promotes a VHL-independent HIF-1α degradation. Here we provide evidences that in rat primary hippocampal cell cultures, HIF-1α degradation might be mediated by a synergic action of Gsk-3β and Pin1 (peptidyl-prolyl cis/trans isomerase. In post-ischemic conditions, such as those mimicked with oxygen glucose deprivation (OGD, HIF-1α protein level increases remaining unexpectedly high for long time after normal condition restoration jointly with the increase of LDH (lactate dehydrogenase and BACE1 (β-secretase 1 protein expression (70% and 140% respectively. Interestingly the Pin1 activity decreases about 40%-60% and Pin1S16 inhibitory phosphorylation significantly increases, indicating that Pin1 binding to its substrate and enzymatic activity are reduced by treatment. Co-immunoprecipitation experiments demonstrate that HIF-1α/Pin1 in normoxia are associated, and that in presence of specific Pin1 and Gsk-3β inhibitors their interaction is reduced in parallel to an increase of HIF-1α protein level. Thus we suggest that in post-OGD neurons the high level of HIF-1α might be due to Pin1 binding ability and activity reduction which affects HIF-1

  11. Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors.

    Science.gov (United States)

    Aprelikova, Olga; Chandramouli, Gadisetti V R; Wood, Matthew; Vasselli, James R; Riss, Joseph; Maranchie, Jodi K; Linehan, W Marston; Barrett, J Carl

    2004-06-01

    Hypoxia and induction of hypoxia-inducible factors (HIF-1alpha and HIF-2alpha) is a hallmark of many tumors. Under normal oxygen tension HIF-alpha subunits are rapidly degraded through prolyl hydroxylase dependent interaction with the von Hippel-Lindau (VHL) tumor suppressor protein, a component of E3 ubuiquitin ligase complex. Using microarray analysis of VHL mutated and re-introduced cells, we found that one of the prolyl hydroxylases (PHD3) is coordinately expressed with known HIF target genes, while the other two family members (PHD1 and 2) did not respond to VHL. We further tested the regulation of these genes by HIF-1 and HIF-2 and found that siRNA targeted degradation of HIF-1alpha and HIF-2alpha results in decreased hypoxia-induced PHD3 expression. Ectopic overexpression of HIF-2alpha in two different cell lines provided a much better induction of PHD3 gene than HIF-1alpha. In contrast, we demonstrate that PHD2 is not affected by overexpression or downregulation of HIF-2alpha. However, induction of PHD2 by hypoxia has HIF-1-independent and -dependent components. Short-term hypoxia (4 h) results in induction of PHD2 independent of HIF-1, while PHD2 accumulation by prolonged hypoxia (16 h) was decreased by siRNA-mediated degradation of HIF-1alpha subunit. These data further advance our understanding of the differential role of HIF factors and putative feedback loop in HIF regulation. Copyright 2004 Wiley-Liss, Inc.

  12. Minoxidil Induction of VEGF Is Mediated by Inhibition of HIF-Prolyl Hydroxylase

    Science.gov (United States)

    Yum, Soohwan; Jeong, Seongkeun; Kim, Dohoon; Lee, Sunyoung; Kim, Wooseong; Yoo, Jin-Wook; Kwon, Oh Sang; Kim, Dae-Duk; Min, Do Sik; Jung, Yunjin

    2017-01-01

    The topical application of minoxidil may achieve millimolar concentrations in the skin. We investigated whether millimolar minoxidil could induce vascular endothelial growth factor (VEGF), a possible effector for minoxidil-mediated hair growth, and how it occurred at the molecular level. Cell-based experiments were performed to investigate a molecular mechanism underlying the millimolar minoxidil induction of VEGF. The inhibitory effect of minoxidil on hypoxia-inducible factor (HIF) prolyl hydroxylase-2 (PHD-2) was tested by an in vitro von Hippel–Lindau protein (VHL) binding assay. To examine the angiogenic potential of millimolar minoxidil, a chorioallantoic membrane (CAM) assay was used. In human keratinocytes and dermal papilla cells, millimolar minoxidil increased the secretion of VEGF, which was not attenuated by a specific adenosine receptor antagonist that inhibits the micromolar minoxidil induction of VEGF. Millimolar minoxidil induced hypoxia-inducible factor-1α (HIF-1α), and the induction of VEGF was dependent on HIF-1. Moreover, minoxidil applied to the dorsal area of mice increased HIF-1α and VEGF in the skin. In an in vitro VHL binding assay, minoxidil directly inhibited PHD-2, thus preventing the hydroxylation of cellular HIF-1α and VHL-dependent proteasome degradation and resulting in the stabilization of HIF-1α protein. Minoxidil inhibition of PHD-2 was reversed by ascorbate, a cofactor of PHD-2, and the minoxidil induction of cellular HIF-1α was abrogated by the cofactor. Millimolar minoxidil promoted angiogenesis in the CAM assay, an in vivo angiogenic test, and this was nullified by the specific inhibition of VEGF. Our data demonstrate that PHD may be the molecular target for millimolar minoxidil-mediated VEGF induction via HIF-1. PMID:29295567

  13. NF-κB suppresses HIF-1α response by competing for P300 binding

    International Nuclear Information System (INIS)

    Mendonca, Daniela B.S.; Mendonca, Gustavo; Aragao, Francisco J.L.; Cooper, Lyndon F.

    2011-01-01

    Research highlights: → p65 completely blocked HIF-1α activity at the HRE on different cell lines. → p65 caused minor changes in HIF-1α and HIF-1α target genes mRNA expression. → p65 reduced transcription of VEGF promoter. → p65 competes with HIF-1α for p300. -- Abstract: Hypoxia has emerged as a key determinant of osteogenesis. HIF-1α is the transcription factor mediating hypoxia responses that include induction of VEGF and related bone induction. Inflammatory signals antagonize bone repair via the NF-κB pathway. The present investigation explored the functional relationship of hypoxia (HIF-1α function) and inflammatory signaling (NF-κB) in stem like and osteoprogenitor cell lines. The potential interaction between HIF-1α and NF-κB signaling was explored by co-transfection studies in hFOB with p65, HIF-1α and 9x-HRE-luc or HIF-1α target genes reporter plasmids. Nuclear cross-talk was directly tested using the mammalian Gal4/VP16 two-hybrid, and confirmed by co-immunoprecipitation/western blotting assays. The results show that inflammatory stimulation (TNF-α treatment) causes a marked inhibition of HIF-1α function at the HRE in all cell lines studied. Also, co-transfection with p65 expression vector leads to reduced hVEGFp transcription after DFO-induced hypoxia. However, TNF-α treatment had little effect on HIF-1α mRNA levels. The functional interaction of Gal4-HIF-1α and VP16-p300 fusion proteins is effectively blocked by expression of p65 in a dose dependent manner. It was concluded that NF-κB-mediated inflammatory signaling is able to block HIF-1α transactivation at HRE-encoding genes by direct competition for p300 binding at the promoter. Inflammation may influence the stem cell niche and tissue regeneration by influencing cellular responses to hypoxia.

  14. Regulation of hypoxia-inducible factor-1α (HIF-1α expression by interleukin-1β (IL-1 β, insulin-like growth factors I (IGF-I and II (IGF-II in human osteoarthritic chondrocytes

    Directory of Open Access Journals (Sweden)

    Angelica Rossi Sartori-Cintra

    2012-01-01

    Full Text Available OBJECTIVE: Hypoxia-inducible factor 1 alpha regulates genes related to cellular survival under hypoxia. This factor is present in osteroarthritic chondrocytes, and cytokines, such as interleukin-1 beta, participate in the pathogenesis of osteoarthritis, thereby increasing the activities of proteolytic enzymes, such as matrix metalloproteinases, and accelerating cartilage destruction. We hypothesize that Hypoxia Inducible Factor-1 alpha (HIF-1α can regulate cytokines (catabolic action and/or growth factors (anabolic action in osteoarthritis. The purpose of this study was to investigate the modulation of HIF-1α in human osteoarthritic chondrocytes by interleukin-1 beta (IL-1β and insulin-like growth factors I (IGF-I and II (IGF-II and to determine the involvement of the phosphatidylinositol-3kinase (PI-3K pathway in this process. METHODS: Human osteroarthritic chondrocytes were stimulated with IL-1β, IGF-I and IGF-II and LY294002, a specific inhibitor of PI-3K. Nuclear protein levels and gene expression were analyzed by western blot and quantitative reverse transcription-polymerase chain reaction analyses, respectively. RESULTS: HIF-1α expression was upregulated by IL-1β at the protein level but not at the gene level. IGF-I treatment resulted in increases in both the protein and mRNA levels of HIF-1α , whereas IGF-II had no effect on its expression. However, all of these stimuli exploited the PI-3K pathway. CONCLUSION: IL-1β upregulated the levels of HIF-1α protein post-transcriptionally, whereas IGF-I increased HIF-1α at the transcript level. In contrast, IGF-II did not affect the protein or gene expression levels of HIF-1α . Furthermore, all of the tested stimuli exploited the PI-3K pathway to some degree. Based on these findings, we are able to suggest that Hypoxia inducible Factor-1 exhibits protective activity in chondrocytes during osteoarthritis.

  15. Inhibition of HIF-2.alpha. heterodimerization with HIF1.beta. (ARNT)

    Science.gov (United States)

    Bruick, Richard K.; Caldwell, Charles G.; Frantz, Doug E.; Gardner, Kevin H.; MacMillan, John B.; Scheuermann, Thomas H.; Tambar, Uttam K.

    2017-09-12

    Provided is a method of inhibiting heterodimerization of HIF-2.alpha. to HIF1.beta. (ARNT) comprising binding certain small molecules to the HIF-2.alpha. PAS-B domain cavity but not to HIF1.alpha. and inhibiting HIF-2.alpha. heterodimerization to HIF1.beta. (ARNT) but not inhibiting HIF1.alpha. heterodimerization to HIF1.beta. (ARNT). Those certain small molecules are also referenced synonymously as HIF2-HDI and HIF2.alpha. heterodimerization inhibitors and also simply as certain small molecules.

  16. High frequency of HIF-1 alpha overexpression in BRCA1 related breast cancer

    NARCIS (Netherlands)

    van der Groep, Petra; Bouter, Alwin; Menko, Fred H.; van der Wall, Elsken; van Diest, Paul J.

    2008-01-01

    Hypoxia is a hallmark of cancer. Hypoxia inducible factor-1 alpha (HIF-1 alpha) is the key regulator of the hypoxia response. HIF-1 alpha is overexpressed during sporadic breast carcinogenesis and correlated with poor prognosis. Little is known on the role of HIF-1 alpha in hereditary breast

  17. KAI1 suppresses HIF-1α and VEGF expression by blocking CDCP1-enhanced Src activation in prostate cancer

    Directory of Open Access Journals (Sweden)

    Park Jung-Jin

    2012-03-01

    Full Text Available Abstract Background KAI1 was initially identified as a metastasis-suppressor gene in prostate cancer. It is a member of the tetraspan transmembrane superfamily (TM4SF of membrane glycoproteins. As part of a tetraspanin-enriched microdomain (TEM, KAI1 inhibits tumor metastasis by negative regulation of Src. However, the underlying regulatory mechanism has not yet been fully elucidated. CUB-domain-containing protein 1 (CDCP1, which was previously known as tetraspanin-interacting protein in TEM, promoted metastasis via enhancement of Src activity. To better understand how KAI1 is involved in the negative regulation of Src, we here examined the function of KAI1 in CDCP1-mediated Src kinase activation and the consequences of this process, focusing on HIF-1 α and VEGF expression. Methods We used the human prostate cancer cell line PC3 which was devoid of KAI1 expression. Vector-transfected cells (PC3-GFP clone #8 and KAI1-expressing PC3 clones (PC3-KAI1 clone #5 and #6 were picked after stable transfection with KAI1 cDNA and selection in 800 μg/ml G418. Protein levels were assessed by immunoblotting and VEGF reporter gene activity was measured by assaying luciferase activitiy. We followed tumor growth in vivo and immunohistochemistry was performed for detection of HIF-1, CDCP1, and VHL protein level. Results We demonstrated that Hypoxia-inducible factor 1α (HIF-1α and VEGF expression were significantly inhibited by restoration of KAI1 in PC3 cells. In response to KAI1 expression, CDCP1-enhanced Src activation was down-regulated and the level of von Hippel-Lindau (VHL protein was significantly increased. In an in vivo xenograft model, KAI1 inhibited the expression of CDCP1 and HIF-1α. Conclusions These novel observations may indicate that KAI1 exerts profound metastasis-suppressor activity in the tumor malignancy process via inhibition of CDCP1-mediated Src activation, followed by VHL-induced HIF-1α degradation and, ultimately, decreased VEGF

  18. Hypoxia-inducible factor (HIF)-1α and CCN2 form a regulatory circuit in hypoxic nucleus pulposus cells: CCN2 suppresses HIF-1α level and transcriptional activity.

    Science.gov (United States)

    Tran, Cassie M; Fujita, Nobuyuki; Huang, Bau-Lin; Ong, Jessica R; Lyons, Karen M; Shapiro, Irving M; Risbud, Makarand V

    2013-05-03

    The objective of the study was to investigate if hypoxia-inducible factor (HIF)-1α and connective tissue growth factor (CCN2) form a regulatory network in hypoxic nucleus pulposus (NP) cells. A decrease in CCN2 expression and proximal promoter activity was observed in NP cells after hypoxic culture. Analysis of both human and mouse CCN2 promoters using the JASPAR core database revealed the presence of putative hypoxia response elements. Transfection experiments showed that both promoter activities and CCN2 expression decreases in hypoxia in a HIF-1α-dependent fashion. Interestingly, deletion analysis and mutation of the hypoxia responsive elements individually or in combination resulted in no change in promoter activity in response to hypoxia or in response to HIF-1α, suggesting an indirect mode of regulation. Notably, silencing of endogenous CCN2 increased HIF-1α levels and its target gene expression, suggesting a role for CCN2 in controlling basal HIF-1α levels. On the other hand, treatment of cells with rCCN2 resulted in a decrease in the ability of HIF-1α transactivating domain to recruit co-activators and diminished target gene expression. Last, knockdown of CCN2 in NP cells results in a significant decrease in GAG synthesis and expression of AGGRECAN and COLLAGEN II. Immunohistochemical staining of intervertebral discs of Ccn2 null embryos shows a decrease in aggrecan. These findings reveal a negative feedback loop between CCN2 and HIF-1α in NP cells and demonstrate a role for CCN2 in maintaining matrix homeostasis in this tissue.

  19. Minoxidil Induction of VEGF Is Mediated by Inhibition of HIF-Prolyl Hydroxylase

    Directory of Open Access Journals (Sweden)

    Soohwan Yum

    2017-12-01

    Full Text Available The topical application of minoxidil may achieve millimolar concentrations in the skin. We investigated whether millimolar minoxidil could induce vascular endothelial growth factor (VEGF, a possible effector for minoxidil-mediated hair growth, and how it occurred at the molecular level. Cell-based experiments were performed to investigate a molecular mechanism underlying the millimolar minoxidil induction of VEGF. The inhibitory effect of minoxidil on hypoxia-inducible factor (HIF prolyl hydroxylase-2 (PHD-2 was tested by an in vitro von Hippel–Lindau protein (VHL binding assay. To examine the angiogenic potential of millimolar minoxidil, a chorioallantoic membrane (CAM assay was used. In human keratinocytes and dermal papilla cells, millimolar minoxidil increased the secretion of VEGF, which was not attenuated by a specific adenosine receptor antagonist that inhibits the micromolar minoxidil induction of VEGF. Millimolar minoxidil induced hypoxia-inducible factor-1α (HIF-1α, and the induction of VEGF was dependent on HIF-1. Moreover, minoxidil applied to the dorsal area of mice increased HIF-1α and VEGF in the skin. In an in vitro VHL binding assay, minoxidil directly inhibited PHD-2, thus preventing the hydroxylation of cellular HIF-1α and VHL-dependent proteasome degradation and resulting in the stabilization of HIF-1α protein. Minoxidil inhibition of PHD-2 was reversed by ascorbate, a cofactor of PHD-2, and the minoxidil induction of cellular HIF-1α was abrogated by the cofactor. Millimolar minoxidil promoted angiogenesis in the CAM assay, an in vivo angiogenic test, and this was nullified by the specific inhibition of VEGF. Our data demonstrate that PHD may be the molecular target for millimolar minoxidil-mediated VEGF induction via HIF-1.

  20. Changes in Hypoxia-Inducible Factor-1 (HIF-1) and Regulatory Prolyl Hydroxylase (PHD) Enzymes Following Hypoxic-Ischemic Injury in the Neonatal Rat.

    Science.gov (United States)

    Chu, Hannah X; Jones, Nicole M

    2016-03-01

    Hypoxia leads to activation of many cellular adaptive processes which are regulated by the transcription factor hypoxia-inducible factor-1 (HIF-1). HIF-1 consists of HIF-1α and HIF-1ß subunits and levels of HIF-1α protein are regulated by HIF prolyl-hydroxylase enzymes (PHD1, 2, 3). The aim of the current study was to investigate the expression of HIF-1α and PHDs at various time points after hypoxia-ischemia (HI), using a neonatal rat model of HI brain injury. Sprague-Dawley rat pups (postnatal day 7) were anaesthetized and underwent right carotid artery occlusion and were then exposed to 6 % oxygen for 2.5 h at 37 °C. HI injured animals demonstrated a significant reduction in the size of the ipsilateral hemisphere, compared to sham controls. Protein analysis using western blotting and enzyme-linked immunosorbent assay showed that 24 h after HI, there was a significant increase in PHD3 protein and an increase of HIF-1α compared to controls. At the 72 h time point, there was a reduction in PHD3 protein, which appeared to relate to cellular loss. There were no changes in PHD1 or PHD2 protein levels after HI when compared to age-matched controls. Further studies are necessary to establish roles for the HIF-1 regulatory enzyme PHD3 in brain injury processes.

  1. Altered expression of hypoxia-inducible factor-1α (HIF-1α and its regulatory genes in gastric cancer tissues.

    Directory of Open Access Journals (Sweden)

    Jihan Wang

    Full Text Available Tissue hypoxia induces reprogramming of cell metabolism and may result in normal cell transformation and cancer progression. Hypoxia-inducible factor 1-alpha (HIF-1α, the key transcription factor, plays an important role in gastric cancer development and progression. This study aimed to investigate the underlying regulatory signaling pathway in gastric cancer using gastric cancer tissue specimens. The integration of gene expression profile and transcriptional regulatory element database (TRED was pursued to identify HIF-1α ↔ NFκB1 → BRCA1 → STAT3 ← STAT1 gene pathways and their regulated genes. The data showed that there were 82 differentially expressed genes that could be regulated by these five transcription factors in gastric cancer tissues and these genes formed 95 regulation modes, among which seven genes (MMP1, TIMP1, TLR2, FCGR3A, IRF1, FAS, and TFF3 were hub molecules that are regulated at least by two of these five transcription factors simultaneously and were associated with hypoxia, inflammation, and immune disorder. Real-Time PCR and western blot showed increasing of HIF-1α in mRNA and protein levels as well as TIMP1, TFF3 in mRNA levels in gastric cancer tissues. The data are the first study to demonstrate HIF-1α-regulated transcription factors and their corresponding network genes in gastric cancer. Further study with a larger sample size and more functional experiments is needed to confirm these data and then translate into clinical biomarker discovery and treatment strategy for gastric cancer.

  2. Eukaryotic translation initiation factor 5A (eIF5A) is essential for HIF-1α activation in hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Tariq, Mohammad [Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Graduate School of Science and Engineering, Saitama University, 645 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Ito, Akihiro, E-mail: akihiro-i@riken.jp [Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Japan Agency for Medical Research and Development, AMED-CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004 (Japan); Ishfaq, Muhammad; Bradshaw, Elliot [Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Graduate School of Science and Engineering, Saitama University, 645 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Yoshida, Minoru [Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Graduate School of Science and Engineering, Saitama University, 645 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Japan Agency for Medical Research and Development, AMED-CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004 (Japan)

    2016-02-05

    The eukaryotic initiation factor 5A (eIF5A) is an essential protein involved in translation elongation and cell proliferation. eIF5A undergoes several post-translational modifications including hypusination and acetylation. Hypusination is indispensable for the function of eIF5A. On the other hand, the precise function of acetylation remains unknown, but it may render the protein inactive since hypusination blocks acetylation. Here, we report that acetylation of eIF5A increases under hypoxia. During extended hypoxic periods an increase in the level of eIF5A acetylation correlated with a decrease in HIF-1α, suggesting involvement of eIF5A activity in HIF-1α expression under hypoxia. Indeed, suppression of eIF5A by siRNA oligo-mediated knockdown or treatment with GC7, a deoxyhypusine synthase inhibitor, led to significant reduction of HIF-1α activity. Furthermore, knockdown of eIF5A or GC7 treatment reduced tumor spheroid formation with a concomitant decrease in HIF-1α expression. Our results suggest that functional, hypusinated eIF5A is necessary for HIF-1α expression during hypoxia and that eIF5A is an attractive target for cancer therapy. - Highlights: • Hypoxia induces acetylation of eIF5A. • Active eIF5A is necessary for HIF-1α activation in hypoxia. • Active eIF5A is important for tumor spheroid growth.

  3. Eukaryotic translation initiation factor 5A (eIF5A) is essential for HIF-1α activation in hypoxia

    International Nuclear Information System (INIS)

    Tariq, Mohammad; Ito, Akihiro; Ishfaq, Muhammad; Bradshaw, Elliot; Yoshida, Minoru

    2016-01-01

    The eukaryotic initiation factor 5A (eIF5A) is an essential protein involved in translation elongation and cell proliferation. eIF5A undergoes several post-translational modifications including hypusination and acetylation. Hypusination is indispensable for the function of eIF5A. On the other hand, the precise function of acetylation remains unknown, but it may render the protein inactive since hypusination blocks acetylation. Here, we report that acetylation of eIF5A increases under hypoxia. During extended hypoxic periods an increase in the level of eIF5A acetylation correlated with a decrease in HIF-1α, suggesting involvement of eIF5A activity in HIF-1α expression under hypoxia. Indeed, suppression of eIF5A by siRNA oligo-mediated knockdown or treatment with GC7, a deoxyhypusine synthase inhibitor, led to significant reduction of HIF-1α activity. Furthermore, knockdown of eIF5A or GC7 treatment reduced tumor spheroid formation with a concomitant decrease in HIF-1α expression. Our results suggest that functional, hypusinated eIF5A is necessary for HIF-1α expression during hypoxia and that eIF5A is an attractive target for cancer therapy. - Highlights: • Hypoxia induces acetylation of eIF5A. • Active eIF5A is necessary for HIF-1α activation in hypoxia. • Active eIF5A is important for tumor spheroid growth.

  4. Enzyme 15-lipoxygenase 1 promotes hypoxia-inducible factor 1α turnover and reduces vascular endothelial growth factor expression: implications for angiogenesis

    International Nuclear Information System (INIS)

    Zhong, Hua; Wang, Ruoxiang; Kelavkar, Uddhav; Wang, Christopher Y; Simons, Jonathan

    2014-01-01

    Hypoxia-inducible factor 1α (HIF-1α) is the regulatory subunit of the heterodimeric HIF-1 that plays a critical role in transcriptional regulation of genes in angiogenesis and hypoxic adaptation, while fatty acid metabolism mediated by lipoxygenases has been implicated in a variety of pathogeneses, including cancers. In this study, we report that 15-lipoxygenase 1 (15-LO1), a key member of the lipoxygenase family, promotes HIF-1α ubiquitination and degradation. Altering the level of 15-LO1 yields inverse changes in HIF-1α and HIF-1 transcriptional activity, under both normoxia and hypoxia, and even in CoCl 2 -treated cells where HIF-1α has been artificially elevated. The antagonistic effect of 15-LO1 is mediated by the Pro 564 /hydroxylation/26S proteasome system, while both the enzymatic activity and the intracellular membrane-binding function of 15-LO1 appear to contribute to HIF-1α suppression. Our findings provide a novel mechanism for HIF-1α regulation, in which oxygen-dependent HIF-1 activity is modulated by an oxygen-insensitive lipid metabolic enzyme

  5. Trichostatin A resistance is facilitated by HIF-1α acetylation in HeLa human cervical cancer cells under normoxic conditions

    Science.gov (United States)

    Lee, Jae-Wook; Yang, Dong Hee; Park, Sojin; Han, Hae-Kyoung; Park, Jong-Wan; Kim, Bo Yeon; Um, Sung Hee; Moon, Eun-Yi

    2018-01-01

    Trichostatin A (TSA) is an anticancer drug that inhibits histone deacetylases (HDACs). Hypoxia-inducible factor 1 (HIF-1) participates in tumor angiogenesis by upregulating target genes, such as vascular endothelial growth factor (VEGF). In the present study, we investigated whether TSA treatment increases HIF-1α stabilization via acetylation under normoxic conditions, which would lead to VEGF upregulation and resistance to anticancer drugs. TSA enhanced total HIF-1α and VEGF-HRE reporter activity under normoxic conditions. When cells were transfected with GFP-HIF-1α, treatment with TSA increased the number of green fluorescence protein (GFP)-positive cells. TSA also enhanced the nuclear translocation of HIF-1α protein, as assessed by immunoblotting and as evidenced by increased nuclear localization of GFP-HIF-1α. An increase in the interaction between HIF-1α and the VEGF promoter, which was assessed by a chromatin immunoprecipitation (ChIP) assay, led to activation of the VEGF promoter. TSA acetylated HIF-1α at lysine (K) 674, which led to an increase in TSA-induced VEGF-HRE reporter activity. In addition, TSA-mediated cell death was reduced by the overexpression of HIF-1α but it was rescued by transfection with a HIF-1α mutant (K674R). These data demonstrate that HIF-1α may be stabilized and translocated into the nucleus for the activation of VEGF promoter by TSA-mediated acetylation at K674 under normoxic conditions. These findings suggest that HIF-1α acetylation may lead to resistance to anticancer therapeutics, such as HDAC inhibitors, including TSA. PMID:29416751

  6. Hypoxia-inducible factor 1mediated characteristic features of cancer cells for tumor radioresistance

    International Nuclear Information System (INIS)

    Harada, Hiroshi

    2016-01-01

    Tumor hypoxia has been attracting increasing attention in the fields of radiation biology and oncology since Thomlinson and Gray detected hypoxic cells in malignant solid tumors and showed that they exert a negative impact on the outcome of radiation therapy. This unfavorable influence has, at least partly, been attributed to cancer cells acquiring a radioresistant phenotype through the activation of the transcription factor, hypoxia-inducible factor 1 (HIF-1). On the other hand, accumulating evidence has recently revealed that, even though HIF-1 is recognized as an important regulator of cellular adaptive responses to hypoxia, it may not become active and induce tumor radioresistance under hypoxic conditions only. The mechanisms by which HIF-1 is activated in cancer cells not only under hypoxic conditions, but also under normoxic conditions, through cancer-specific genetic alterations and the resultant imbalance in intermediate metabolites have been summarized herein. The relevance of the HIF-1mediated characteristic features of cancer cells, such as the production of antioxidants through reprogramming of the glucose metabolic pathway and cell cycle regulation, for tumor radioresistance has also been reviewed

  7. Hypoxia Inducible Factor-1α (HIF-1 α and its Role in Tumour Progression to Malignancy

    Directory of Open Access Journals (Sweden)

    Gaurav Mrinal Sharma

    2008-07-01

    Full Text Available Hypoxia is a condition in which an area of the body or a tissue is deprived of sufficient supply of oxygen. The lack of nutrients in a hypoxic tissue generally causes apoptosis but some cells are able to adapt to this hypoxic environment and resist apoptosis. This adaptation occurs as a result of gene activation. Hypoxia is a characteristic feature of many cancers and is the stimulus for overexpression of HIF-1α - a basic loop-helix PAS protein family subunit of HIF, which allows the cell to adapt and survive in hostile environment. The presence of hypoxia and HIF-1α is correlated with an increased risk of metastasis and techniques that can inhibit hypoxia inducible factor may be instrumental in finding a cure for cancer.

  8. Radiation protective effect of hypoxia-inducible factor-1α (HIF-1α) on human oral squamous cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Hosokawa, Y.; Okumura, K.; Terashima, S.; Sakakura, Y.

    2012-01-01

    We examined the effects of 5-Gy radiation on the expression of hypoxia-inducible factor-1α (HIF-1α) and the radiosensitivity of five human oral squamous cell carcinoma (OSCC) cell lines (SAS, Ca9-22, TT, BSC-OF and IS-FOM). In all of the cell lines, HIF-1α was expressed in mRNA, and radiation had no influence on gene transcription. The number of apoptotic cells increased 72 h after irradiation in cell lines SAS, Ca9-22 and TT cells, indicating low transcriptional levels of HIF-1α, and the levels of non-cleaved caspase-3, an executioner of apoptosis, and non-cleaved poly (adenosine diphosphate-ribose) polymerase (PARP), a marker of DNA damage early in apoptosis, decreased simultaneously. Conversely, radiation failed to induce apoptosis or to decrease expression of non-cleaved caspase-3 and PARP in cell-lines BSC-OF and IS-FOM cells that expressed high levels of HIF-1α. BSC-OF and IS-FOM cells exhibited high migratory capacity. When CoCl 2 was present in the medium, HIF-1α expression increased along with the survival of Ca9-22 cells after radiation exposure. These results suggest that OSCC cells expressing high levels of HIF-1α are resistant to radiation. HIF-1α can be used to control the short term radiosensitivity of cells. (authors)

  9. Hif1a inactivation rescues photoreceptor degeneration induced by a chronic hypoxia-like stress.

    Science.gov (United States)

    Barben, Maya; Ail, Divya; Storti, Federica; Klee, Katrin; Schori, Christian; Samardzija, Marijana; Michalakis, Stylianos; Biel, Martin; Meneau, Isabelle; Blaser, Frank; Barthelmes, Daniel; Grimm, Christian

    2018-04-17

    Reduced choroidal blood flow and tissue changes in the ageing human eye impair oxygen delivery to photoreceptors and the retinal pigment epithelium. As a consequence, mild but chronic hypoxia may develop and disturb cell metabolism, function and ultimately survival, potentially contributing to retinal pathologies such as age-related macular degeneration (AMD). Here, we show that several hypoxia-inducible genes were expressed at higher levels in the aged human retina suggesting increased activity of hypoxia-inducible transcription factors (HIFs) during the physiological ageing process. To model chronically elevated HIF activity and investigate ensuing consequences for photoreceptors, we generated mice lacking von Hippel Lindau (VHL) protein in rods. This activated HIF transcription factors and led to a slowly progressing retinal degeneration in the ageing mouse retina. Importantly, this process depended mainly on HIF1 with only a minor contribution of HIF2. A gene therapy approach using AAV-mediated RNA interference through an anti-Hif1a shRNA significantly mitigated the degeneration suggesting a potential intervention strategy that may be applicable to human patients.

  10. Vanillin Suppresses Cell Motility by Inhibiting STAT3-Mediated HIF-1α mRNA Expression in Malignant Melanoma Cells.

    Science.gov (United States)

    Park, Eun-Ji; Lee, Yoon-Mi; Oh, Taek-In; Kim, Byeong Mo; Lim, Beong-Ou; Lim, Ji-Hong

    2017-03-01

    Recent studies have shown that vanillin has anti-cancer, anti-mutagenic, and anti-metastatic activity; however, the precise molecular mechanism whereby vanillin inhibits metastasis and cancer progression is not fully elucidated. In this study, we examined whether vanillin has anti-cancer and anti-metastatic activities via inhibition of hypoxia-inducible factor-1α (HIF-1α) in A2058 and A375 human malignant melanoma cells. Immunoblotting and quantitative real time (RT)-PCR analysis revealed that vanillin down-regulates HIF-1α protein accumulation and the transcripts of HIF-1α target genes related to cancer metastasis including fibronectin 1 ( FN1 ), lysyl oxidase-like 2 ( LOXL2 ), and urokinase plasminogen activator receptor ( uPAR ). It was also found that vanillin significantly suppresses HIF-1α mRNA expression and de novo HIF-1α protein synthesis. To understand the suppressive mechanism of vanillin on HIF-1α expression, chromatin immunoprecipitation was performed. Consequently, it was found that vanillin causes inhibition of promoter occupancy by signal transducer and activator of transcription 3 (STAT3), but not nuclear factor-κB (NF-κB), on HIF1A . Furthermore, an in vitro migration assay revealed that the motility of melanoma cells stimulated by hypoxia was attenuated by vanillin treatment. In conclusion, we demonstrate that vanillin might be a potential anti-metastatic agent that suppresses metastatic gene expression and migration activity under hypoxia via the STAT3-HIF-1α signaling pathway.

  11. ECM-dependent HIF induction directs trophoblast stem cell fate via LIMK1-mediated cytoskeletal rearrangement.

    Directory of Open Access Journals (Sweden)

    Hwa J Choi

    Full Text Available The Hypoxia-inducible Factor (HIF family of transcriptional regulators coordinates the expression of dozens of genes in response to oxygen deprivation. Mammalian development occurs in a hypoxic environment and HIF-null mice therefore die in utero due to multiple embryonic and placental defects. Mouse embryonic stem cells do not differentiate into placental cells; therefore, trophoblast stem cells (TSCs are used to study mouse placental development. Consistent with a requirement for HIF activity during placental development in utero, TSCs derived from HIF-null mice exhibit severe differentiation defects and fail to form trophoblast giant cells (TGCs in vitro. Interestingly, differentiating TSCs induce HIF activity independent of oxygen tension via unclear mechanisms. Here, we show that altering the extracellular matrix (ECM composition upon which TSCs are cultured changes their differentiation potential from TGCs to multinucleated syncytiotropholasts (SynTs and blocks oxygen-independent HIF induction. We further find that modulation of Mitogen Activated Protein Kinase Kinase-1/2 (MAP2K1/2, MEK-1/2 signaling by ECM composition is responsible for this effect. In the absence of ECM-dependent cues, hypoxia-signaling pathways activate this MAPK cascade to drive HIF induction and redirect TSC fate along the TGC lineage. In addition, we show that integrity of the microtubule and actin cytoskeleton is critical for TGC fate determination. HIF-2α ensures TSC cytoskeletal integrity and promotes invasive TGC formation by interacting with c-MYC to induce non-canonical expression of Lim domain kinase 1-an enzyme that regulates microtubule and actin stability, as well as cell invasion. Thus, we find that HIF can integrate positional and metabolic cues from within the TSC niche to regulate placental development by modulating the cellular cytoskeleton via non-canonical gene expression.

  12. Hypoxia inducible factor-1 (HIF-1)–flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Eom, Hyun-Jeong; Ahn, Jeong-Min; Kim, Younghun; Choi, Jinhee

    2013-01-01

    In the present study, nanotoxicity mechanism associated with silver nanoparticles (AgNPs) exposure was investigated on the nematode, Caenorhabditis elegans focusing on the hypoxia response pathway. In order to test whether AgNPs-induced hypoxia inducible factor-1 (HIF-1) activation was due to hypoxia or to oxidative stress, depletion of dissolved oxygen (DO) in the test media and a rescue effect using an antioxidant were investigated, respectively. The results suggested that oxidative stress was involved in activation of the HIF-1 pathway. We then investigated the toxicological implications of HIF-1 activation by examining the HIF-1 mediated transcriptional response. Of the genes tested, increased expression of the flavin containing monooxygenase-2 (FMO-2) gene was found to be the most significant as induced by AgNPs exposure. We found that AgNPs exposure induced FMO-2 activation in a HIF-1 and p38 MAPK PMK-1 dependent manner, and oxidative stress was involved in it. We conducted all experiments to include comparison of AgNPs and AgNO 3 in order to evaluate whether any observed toxicity was due to dissolution or particle specific. The AgNPs and AgNO 3 did not produce any qualitative differences in terms of exerting toxicity in the pathways observed in this study, however, considering equal amount of silver mass, in every endpoint tested the AgNPs were found to be more toxic than AgNO 3 . These results suggest that Ag nanotoxicity is dependent not only on dissolution of Ag ion but also on particle specific effects and HIF-1–FMO-2 pathway seems to be involved in it. - Highlights: • HIF-1 signaling was investigated in C. elegans exposed to AgNPs and AgNO 3 . • HIF-1 and PMK-1 were needed for AgNPs- and AgNO 3 -induced fmo-2 gene expression. • PMK-1HIF-1–FMO-2 pathway was dependent on oxidative stress. • AgNPs and AgNO 3 did not produce any qualitative differences in HIF-1 signaling. • AgNPs were more toxic than an equal amount of silver mass contained

  13. Hypoxia inducible factor-1 (HIF-1)–flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyun-Jeong; Ahn, Jeong-Min [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of); Kim, Younghun [Department of Chemical Engineering, Kwangwoon University, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701 (Korea, Republic of); Choi, Jinhee, E-mail: jinhchoi@uos.ac.kr [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of)

    2013-07-15

    In the present study, nanotoxicity mechanism associated with silver nanoparticles (AgNPs) exposure was investigated on the nematode, Caenorhabditis elegans focusing on the hypoxia response pathway. In order to test whether AgNPs-induced hypoxia inducible factor-1 (HIF-1) activation was due to hypoxia or to oxidative stress, depletion of dissolved oxygen (DO) in the test media and a rescue effect using an antioxidant were investigated, respectively. The results suggested that oxidative stress was involved in activation of the HIF-1 pathway. We then investigated the toxicological implications of HIF-1 activation by examining the HIF-1 mediated transcriptional response. Of the genes tested, increased expression of the flavin containing monooxygenase-2 (FMO-2) gene was found to be the most significant as induced by AgNPs exposure. We found that AgNPs exposure induced FMO-2 activation in a HIF-1 and p38 MAPK PMK-1 dependent manner, and oxidative stress was involved in it. We conducted all experiments to include comparison of AgNPs and AgNO{sub 3} in order to evaluate whether any observed toxicity was due to dissolution or particle specific. The AgNPs and AgNO{sub 3} did not produce any qualitative differences in terms of exerting toxicity in the pathways observed in this study, however, considering equal amount of silver mass, in every endpoint tested the AgNPs were found to be more toxic than AgNO{sub 3}. These results suggest that Ag nanotoxicity is dependent not only on dissolution of Ag ion but also on particle specific effects and HIF-1–FMO-2 pathway seems to be involved in it. - Highlights: • HIF-1 signaling was investigated in C. elegans exposed to AgNPs and AgNO{sub 3}. • HIF-1 and PMK-1 were needed for AgNPs- and AgNO{sub 3}-induced fmo-2 gene expression. • PMK-1HIF-1–FMO-2 pathway was dependent on oxidative stress. • AgNPs and AgNO{sub 3} did not produce any qualitative differences in HIF-1 signaling. • AgNPs were more toxic than an equal

  14. Hypoxia-Inducible Factor-1α (HIF-1α) Expression on Endothelial Cells in Juvenile Nasopharyngeal Angiofibroma: A Review of 70 cases and Tissue Microarray Analysis.

    Science.gov (United States)

    Song, Xiaole; Yang, Chenhe; Zhang, Huankang; Wang, Jingjing; Sun, Xicai; Hu, Li; Liu, Zhuofu; Wang, Dehui

    2018-06-01

    To examine the expression of hypoxia-inducible factor-1α (HIF-1α) and its related molecules (cellular repressor of E1A-stimulated genes [CREG], osteopontin [OPN], proto-oncogene tyrosine-protein kinase Src [c-Src], and vascular endothelial growth factor [VEGF]) in juvenile nasopharyngeal angiofibroma (JNA) and explore the correlation between clinical prognosis and HIF-1α expression. The study performed a retrospective review of the clinical records of patients with JNA treated between 2003 and 2007. Specimens were analyzed by immunohistochemistry for HIF-1α, CREG, OPN, c-Src, and VEGF expression, and microvessel density (MVD) was assessed by tissue microarray. The correlation between expression levels and clinicopathological features including age, tumor stage, intraoperative blood loss, and recurrence was analyzed. HIF-1α, CREG, OPN, c-Src, and VEGF were upregulated in endothelial cells (ECs) of patients with JNA, and strong correlations in the expression of these molecules were observed. HIF-1α expression was higher in young patients ( P = .032) and in recurrent cases ( P = .01). Survival analysis showed that low HIF-1α levels in ECs predicted longer time to recurrence (log rank test P = .006). Receiver operating characteristic curve analysis showed that HIF-1α was a prognostic factor for recurrence (area under the curve = 0.690, P = .019). No correlation was found between the expression of molecules and Radkowski stage or intraoperative blood loss. In cases of JNA treated surgically, HIF-1α expression in ECs is a useful prognostic factor for tumor recurrence.

  15. HIF-1 Alpha and Placental Growth Factor in Pregnancies Complicated With Preeclampsia: A Qualitative and Quantitative Analysis.

    Science.gov (United States)

    Rath, Gayatri; Aggarwal, Ruby; Jawanjal, Poonam; Tripathi, Richa; Batra, Aruna

    2016-01-01

    The pathophysiology of preeclampsia is not clearly understood worldwide. Hypoxia inducible factor 1α (HIF-1α) is thought to be the preliminary factor for the hypoxic conditions prevailing in preeclampsia, which causes imbalance in the expression of angiogenic proteins. A proangiogenic protein, placental growth factor (PIGF), is reported to be dysregulated in preeclampsia. Therefore, this study focuses on the investigation of HIF-1α and PIGF in preeclamptic conditions and a possible molecular association between them. Placental tissue (n = 45 + 45) and serum samples (n = 80 + 80) of preeclamptic patients and healthy control were collected and processed for the analysis of HIF-1α and PIGF by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). In preeclamptic group, the significant nuclear and cytoplasmic expression of HIF-1α was noticed in syncytiotrophoblast (P = 0.0001) but in control placenta, it was localized to cytoplasm (P = 0.0001). The intensity of PIGF expression was lower in syncytiotrophoblast cytoplasm (P = 0.0001) in preeclamptic cases as compared with control. Also, the significant upregulated concentration of HIF-1α and downregulated PIGF was observed in serum samples of preeclamptic woman (P = 0.0001). Thus, there was a significant direct negative correlation between HIF-1α and PIGF both at tissue and serum level (P preeclampsia. © 2014 Wiley Periodicals, Inc.

  16. Down-regulation of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor by HEXIM1 attenuates myocardial angiogenesis in hypoxic mice.

    Science.gov (United States)

    Yoshikawa, Noritada; Shimizu, Noriaki; Ojima, Hidenori; Kobayashi, Hiroshi; Hosono, Osamu; Tanaka, Hirotoshi

    2014-10-24

    Pulmonary hypertension (PH) sustains elevation of pulmonary vascular resistance and ultimately leads to right ventricular (RV) hypertrophy and failure and death. Recently, proangiogenic factors hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) have been known to promote left ventricular myocardial angiogenesis and lead to cardiac hypertrophy, and this would be involved in RV hypertrophy of PH patients. Previously, we revealed that overexpression of HEXIM1 prevents endothelin-1-induced cardiomyocyte hypertrophy and hypertrophic genes expression, and that cardiomyocyte-specific HEXIM1 transgenic mice ameliorates RV hypertrophy in hypoxia-induced PH model. Given these results, here we analyzed the effect of HEXIM1 on the expression of HIF-1α and VEGF and on myocardial angiogenesis of RV in PH. We revealed that overexpression of HEXIM1 prevented hypoxia-induced expression of HIF-1α protein and its target genes including VEGF in the cultured cardiac myocytes and fibroblasts, and that cardiomyocyte-specific HEXIM1 transgenic mice repressed RV myocardial angiogenesis in hypoxia-induced PH model. Thus, we conclude that HEXIM1 could prevent RV hypertrophy, at least in part, via suppression of myocardial angiogenesis through down-regulation of HIF-1α and VEGF in the myocardium under hypoxic condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. HIF-1 and NDRG2 contribute to hypoxia-induced radioresistance of cervical cancer Hela cells

    International Nuclear Information System (INIS)

    Liu, Junye; Zhang, Jing; Wang, Xiaowu; Li, Yan; Chen, Yongbin; Li, Kangchu; Zhang, Jian; Yao, Libo; Guo, Guozhen

    2010-01-01

    Hypoxia inducible factor 1 (HIF-1), the key mediator of hypoxia signaling pathways, has been shown involved in hypoxia-induced radioresistance. However, the underlying mechanisms are unclear. The present study demonstrated that both hypoxia and hypoxia mimetic cobalt chloride could increase the radioresistance of human cervical cancer Hela cells. Meanwhile, ectopic expression of HIF-1 could enhance the resistance of Hela cells to radiation, whereas knocking-down of HIF-1 could increase the sensitivity of Hela cells to radiation in the presence of hypoxia. N-Myc downstream-regulated gene 2 (NDRG2), a new HIF-1 target gene identified in our lab, was found to be upregulated by hypoxia and radiation in a HIF-1-dependent manner. Overexpression of NDRG2 resulted in decreased sensitivity of Hela cells to radiation while silencing NDRG2 led to radiosensitization. Moreover, NDRG2 was proved to protect Hela cells from radiation-induced apoptosis and abolish radiation-induced upregulation of Bax. Taken together, these data suggest that both HIF-1 and NDRG2 contribute to hypoxia-induced tumor radioresistance and that NDRG2 acts downstream of HIF-1 to promote radioresistance through suppressing radiation-induced Bax expression. It would be meaningful to further explore the clinical application potential of HIF-1 and NDRG2 blockade as radiosensitizer for tumor therapy.

  18. Non-electron transfer chain mitochondrial defects differently regulate HIF-1α degradation and transcription

    Directory of Open Access Journals (Sweden)

    Antonina N. Shvetsova

    2017-08-01

    Full Text Available Mitochondria are the main consumers of molecular O2 in a cell as well as an abundant source of reactive oxygen species (ROS. Both, molecular oxygen and ROS are powerful regulators of the hypoxia-inducible factor-1α-subunit (HIF-α. While a number of mechanisms in the oxygen-dependent HIF-α regulation are quite well known, the view with respect to mitochondria is less clear. Several approaches using pharmacological or genetic tools targeting the mitochondrial electron transport chain (ETC indicated that ROS, mainly formed at the Rieske cluster of complex III of the ETC, are drivers of HIF-1α activation. However, studies investigating non-ETC located mitochondrial defects and their effects on HIF-1α regulation are scarce, if at all existing. Thus, in the present study we examined three cell lines with non-ETC mitochondrial defects and focused on HIF-1α degradation and transcription, target gene expression, as well as ROS levels. We found that cells lacking the key enzyme 2-enoyl thioester reductase/mitochondrial enoyl-CoA reductase (MECR, and cells lacking manganese superoxide dismutase (MnSOD showed a reduced induction of HIF-1α under long-term (20 h hypoxia. By contrast, cells lacking the mitochondrial DNA depletion syndrome channel protein Mpv17 displayed enhanced levels of HIF-1α already under normoxic conditions. Further, we show that ROS do not exert a uniform pattern when mediating their effects on HIF-1α, although all mitochondrial defects in the used cell types increased ROS formation. Moreover, all defects caused a different HIF-1α regulation via promoting HIF-1α degradation as well as via changes in HIF-1α transcription. Thereby, MECR- and MnSOD-deficient cells showed a reduction in HIF-1α mRNA levels whereas the Mpv17 lacking cells displayed enhanced HIF-1α mRNA levels under normoxia and hypoxia. Altogether, our study shows for the first time that mitochondrial defects which are not related to the ETC and Krebs cycle

  19. Combination of HIF-1α gene transfection and HIF-1-activated bone marrow-derived angiogenic cell infusion improves burn wound healing in aged mice.

    Science.gov (United States)

    Du, J; Liu, L; Lay, F; Wang, Q; Dou, C; Zhang, X; Hosseini, S M; Simon, A; Rees, D J; Ahmed, A K; Sebastian, R; Sarkar, K; Milner, S; Marti, G P; Semenza, G L; Harmon, J W

    2013-11-01

    Impaired burn wound healing in the elderly represents a major clinical problem. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator that orchestrates the cellular response to hypoxia. Its actions in dermal wounds promote angiogenesis and improve healing. In a murine burn wound model, aged mice had impaired wound healing associated with reduced levels of HIF-1. When gene therapy with HIF-1 alone did not correct these deficits, we explored the potential benefit of HIF-1 gene therapy combined with the intravenous infusion of bone marrow-derived angiogenic cells (BMDACs) cultured with dimethyloxalylglycine (DMOG). DMOG is known to reduce oxidative degradation of HIF-1. The mice treated with a plasmid DNA construct expressing a stabilized mutant form of HIF-1α (CA5-HIF-1α)+BMDACs had more rapid wound closure. By day 17, there were more mice with completely closed wounds in the treated group (χ(2), P=0.05). The dermal blood flow measured by laser Doppler showed significantly increased wound perfusion on day 11. Homing of BMDACs to the burn wound was dramatically enhanced by CA5-HIF-1α gene therapy. HIF-1α mRNA expression in the burn wound was increased after transfection with CA5-HIF-1α plasmid. Our findings offer insight into the pathophysiology of burns in the elderly and point to potential targets for developing new therapeutic strategies.

  20. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    International Nuclear Information System (INIS)

    Hong, Wei; Li, Jinru; Wang, Bo; Chen, Linfeng; Niu, Wenyan; Yao, Zhi; Baniahmad, Aria

    2011-01-01

    Highlights: ► Corepressor Alien interacts with histone methyltransferase ESET in vivo. ► Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TRβ1. ► ESET-mediated H3K9 methylation is required for liganded TRβ1-repressed transcription. ► ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by which Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TRβ1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TRβ1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TRβ1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TRβ1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.

  1. Sphingosine-1-Phosphate as a Regulator of Hypoxia-Induced Factor-1α in Thyroid Follicular Carcinoma Cells

    Science.gov (United States)

    Asghar, Muhammad Yasir; Bergelin, Nina; Jaakkola, Panu; Törnquist, Kid

    2013-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid, which regulates several cancer-related processes including migration and angiogenesis. We have previously shown S1P to induce migration of follicular ML-1 thyroid cancer cells. Hypoxia-induced factor-1 (HIF-1) is an oxygen-sensitive transcription factor, which adapts cells to hypoxic conditions through increased survival, motility and angiogenesis. Due to these properties and its increased expression in response to intratumoral hypoxia, HIF-1 is considered a significant regulator of tumor biology. We found S1P to increase expression of the regulatory HIF-1α subunit in normoxic ML-1 cells. S1P also increased HIF-1 activity and expression of HIF-1 target genes. Importantly, inhibition or knockdown of HIF-1α attenuated the S1P-induced migration of ML-1 cells. S1P-induced HIF-1α expression was mediated by S1P receptor 3 (S1P3), Gi proteins and their downstream effectors MEK, PI3K, mTOR and PKCβI. Half-life measurements with cycloheximide indicated that S1P treatment stabilized the HIF-1α protein. On the other hand, S1P activated translational regulators eIF-4E and p70S6K, which are known to control HIF-1α synthesis. In conclusion, we have identified S1P as a non-hypoxic regulator of HIF-1 activity in thyroid cancer cells, studied the signaling involved in S1P-induced HIF-1α expression and shown S1P-induced migration to be mediated by HIF-1. PMID:23824493

  2. Sphingosine-1-Phosphate as a Regulator of Hypoxia-Induced Factor-1α in Thyroid Follicular Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Veronica Kalhori

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive lipid, which regulates several cancer-related processes including migration and angiogenesis. We have previously shown S1P to induce migration of follicular ML-1 thyroid cancer cells. Hypoxia-induced factor-1 (HIF-1 is an oxygen-sensitive transcription factor, which adapts cells to hypoxic conditions through increased survival, motility and angiogenesis. Due to these properties and its increased expression in response to intratumoral hypoxia, HIF-1 is considered a significant regulator of tumor biology. We found S1P to increase expression of the regulatory HIF-1α subunit in normoxic ML-1 cells. S1P also increased HIF-1 activity and expression of HIF-1 target genes. Importantly, inhibition or knockdown of HIF-1α attenuated the S1P-induced migration of ML-1 cells. S1P-induced HIF-1α expression was mediated by S1P receptor 3 (S1P3, Gi proteins and their downstream effectors MEK, PI3K, mTOR and PKCβI. Half-life measurements with cycloheximide indicated that S1P treatment stabilized the HIF-1α protein. On the other hand, S1P activated translational regulators eIF-4E and p70S6K, which are known to control HIF-1α synthesis. In conclusion, we have identified S1P as a non-hypoxic regulator of HIF-1 activity in thyroid cancer cells, studied the signaling involved in S1P-induced HIF-1α expression and shown S1P-induced migration to be mediated by HIF-1.

  3. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Han, Eun Hee [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Im, Ji Hye; Lee, Eun Ji; Jin, Sun Woo [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2015-09-25

    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Taken together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.

  4. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells.

    Science.gov (United States)

    Choi, Sung Hoon; Park, Jun Yong; Kang, Wonseok; Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Ro, Simon Wonsang; Han, Kwang-Hyub

    2016-01-01

    A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.

  5. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    International Nuclear Information System (INIS)

    Park, Choa; Lee, YoungJoo

    2014-01-01

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression

  6. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choa; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.

  7. The Critical Impact of HIF-1α on Gastric Cancer Biology

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Yoshihiko, E-mail: kitajiy@esaga.hosp.go.jp [Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501 (Japan); Department of Surgery, NHO Higashisaga Hospital, Saga 849-0101 (Japan); Miyazaki, Kohji [Saga University Faculty of Medicine, Saga 849-8501 (Japan)

    2013-01-10

    Hypoxia inducible factor-1 (HIF-1) monitors the cellular response to the oxygen levels in solid tumors. Under hypoxia conditions, HIF-1α protein is stabilized and forms a heterodimer with the HIF-1β subunit. The HIF-1 complex activates the transcription of numerous target genes in order to adapt the hypoxic environment in human cancer cells. In gastric cancer patients, HIF-1α activation following extended hypoxia strongly correlates with an aggressive tumor phenotype and a poor prognosis. HIF-1α activation has been also reported to occur via hypoxia-independent mechanisms such as PI3K/AKT/mTOR signaling and ROS production. This article argues for the critical roles of HIF-1α in glucose metabolism, carcinogenesis, angiogenesis, invasion, metastasis, cell survival and chemoresistance, focusing on gastric cancer.

  8. Effects of YC-1 on hypoxia-inducible factor 1 alpha in hypoxic human bladder transitional carcinoma cell line T24 cells.

    Science.gov (United States)

    Li, Yangle; Zhao, Xiaokun; Tang, Huiting; Zhong, Zhaohui; Zhang, Lei; Xu, Ran; Li, Songchao; Wang, Yi

    2012-01-01

    It was the aim of this study to explore the effects of 3-(5'-hydroxymethyl-2'-furyl)-l-benzyl indazole (YC-1) on transcription activity, cell proliferation and apoptosis of hypoxic human bladder transitional carcinoma cells (BTCC), mediated by hypoxia-inducible factor 1α (HIF-1α). BTCC cell line T24 cells were incubated under normoxic or hypoxic conditions, adding different doses of YC-1. The protein expression of HIF-1α and HIF-1α-mediated genes was detected by Western blotting. RT-PCR was used to detect HIF-1α mRNA expression. Cell proliferation, apoptosis and migration activity were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry and transwell migration assay. The cells were pretreated by two ERK/p38 MAPK pathway-specific inhibitors, PD98059 or SB203580, and then incubated with YC-1 treatment under hypoxic condition. HIF-1α protein expression was detected by Western blotting. Hypoxic T24 cells expressed a higher level of HIF-1α, vascular endothelial growth factor, matrix metalloproteinases-2, B-cell lymphoma/leukemia-2 protein and HIF-1α mRNA compared with normoxic controls, in which the above-mentioned expression was downregulated by YC-1 in a dose-dependent manner. Cell proliferation and migration activity were inhibited while apoptosis was induced by YC-1 under hypoxic condition. Moreover, YC-1-downregulated HIF-1α expression was reversed by PD98059 and SB203580, respectively. YC-1 inhibits HIF-1α and HIF-1α-mediated gene expression, cell proliferation and migration activity and induces apoptosis in hypoxic BTCC. The ERK/p38 MAPK pathway may be involved in YC-1-mediated inhibition of HIF-1α. Copyright © 2011 S. Karger AG, Basel.

  9. Suppression of hypoxia inducible factor-1α (HIF-1α) by YC-1 is dependent on murine double minute 2 (Mdm2)

    International Nuclear Information System (INIS)

    Lau, C.K.; Yang, Z.F.; Lam, C.T.; Tam, K.H.; Poon, R.T.P.; Fan, S.T.

    2006-01-01

    Inhibition of HIF-1α activity provides an important strategy for the treatment of cancer. Recently, 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) has been identified as an anti-HIF-1α drug in cancer therapy with unclear molecular mechanism. In the present study, we aimed to investigate the effect and mechanism of YC-1 on HIF-1α in a hepatocellular carcinoma cell line under hypoxic condition, which was generated by incubating cells with 0.1% O 2 . The phenotypic and molecular changes of cells were determined by cell proliferation assay, apoptosis assay, luciferase promoter assay, and Western blot analysis. YC-1 arrested tumor cell growth in a dose-dependent manner, whereas it did not induce cell apoptosis. Hypoxia-induced upregulation of HIF-1α was suppressed by YC-1 administration. YC-1 inhibited HIF-1α protein synthesis under normoxia and affected protein stability under hypoxia. YC-1 suppressed the expression of total and phosphorylated forms of murine double minute 2 (Mdm2), whereas this inhibitory effect was blocked by overexpression of Mdm2. In conclusion, YC-1 suppressed both protein synthesis and stability of HIF-1α in HCC cells, and its inhibitory effects on HIF-1α were dependent on Mdm2

  10. Hypoxia-inducible factor-dependent production of profibrotic mediators by hypoxic hepatocytes.

    Science.gov (United States)

    Copple, Bryan L; Bustamante, Juan J; Welch, Timothy P; Kim, Nam Deuk; Moon, Jeon-Ok

    2009-08-01

    During the development of liver fibrosis, mediators are produced that stimulate cells in the liver to differentiate into myofibroblasts and to produce collagen. Recent studies demonstrated that the transcription factor, hypoxia-inducible factor-1alpha (HIF-1alpha), is critical for upregulation of profibrotic mediators, such as platelet-derived growth factor-A (PDGF-A), PDGF-B and plasminogen activator inhibitor-1 (PAI-1) in the liver, during the development of fibrosis. What remains unknown is the cell type-specific regulation of these genes by HIF-1alpha in liver cell types. Accordingly, the hypothesis was tested that HIF-1alpha is activated in hypoxic hepatocytes and regulates the production of profibrotic mediators by these cells. In this study, hepatocytes were isolated from the livers of control and HIF-1alpha- or HIF-1beta-deficient mice and exposed to hypoxia. Exposure of primary mouse hepatocytes to 1% oxygen stimulated nuclear accumulation of HIF-1alpha and upregulated PAI-1, vascular endothelial cell growth factor and the vasoactive peptides adrenomedullin-1 (ADM-1) and ADM-2. In contrast, the levels of PDGF-A and PDGF-B mRNAs were unaffected in these cells by hypoxia. Exposure of HIF-1alpha-deficient hepatocytes to 1% oxygen only partially prevented upregulation of these genes, suggesting that other hypoxia-regulated transcription factors, such as HIF-2alpha, may also regulate these genes. In support of this, HIF-2alpha was activated in hypoxic hepatocytes, and exposure of HIF-1beta-deficient hepatocytes to 1% oxygen completely prevented upregulation of PAI-1, vascular endothelial cell growth factor and ADM-1, suggesting that HIF-2alpha may also contribute to upregulation of these genes in hypoxic hepatocytes. Collectively, our results suggest that HIFs may be important regulators of profibrotic and vasoactive mediators by hypoxic hepatocytes.

  11. Erythropoietin inhibits HIF-1α expression via upregulation of PHD-2 transcription and translation in an in-vitro model of hypoxia ischemia

    Science.gov (United States)

    Souvenir, Rhonda; Flores, Jerry J.; Ostrowski, Robert P.; Manaenko, Anatol; Duris, Kamil; Tang, Jiping

    2014-01-01

    Hypoxia inducible factor (HIF)-1α is the central transcriptional factor for the regulation of oxygen-associated genes in response to hypoxia. Erythropoietin (EPO), a hematopoietic growth factor, increases oxygen availability during hypoxia/ischemia and is associated with neuroprotection following hypoxia ischemia in laboratory models of stroke. However, EPO has failed to translate in a clinical setting. Thus it is critical to elucidate the key players in EPO-induced neuroprotection. Our preliminary studies have shown that EPO, as a downstream gene of hypoxia inducible factor (HIF), inhibits HIF-1α in a dose-dependent manner in an in-vitro model of hypoxia ischemia. This study is designed to elucidate the primary mediator of EPO-induced HIF-1α inhibition and subsequent cell survival/neuroprotection. Oxygen and glucose deprivation (OGD) of nerve growth factor (NGF) differentiated rat pheochromocytoma (PC-12) cells were used to model hypoxia ischemia in an in vitro environment. The profile of HIF-1α, HIF-2α and PHD-2 expression, HIF-1α and prolyl hydroxylase (PHD-2) mRNA levels, MMP-9 and cell death was evaluated in the presence and absence of either EPO or PHD-2 inhibitor during OGD. Our findings showed that EPO treatment resulted in an increase in PHD-2 transcription and translation, inhibition of HIF-1α expression, reactive oxygen species (ROS) formation and matrix metalloproteinase (MMP)-9 activity, resulting in increased cell survival after OGD. We also observed that EPO-induced cell survival/neuroprotection was reversed by siRNA silencing of PHD-2. This led to the conclusion that PHD-2 is a key mediator of EPO-induced HIF-1α inhibition and subsequent neuroprotection in an in vitro model of hypoxia ischemia. PMID:24323731

  12. HIF-1α Promotes Epithelial-Mesenchymal Transition and Metastasis through Direct Regulation of ZEB1 in Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Wenjing Zhang

    Full Text Available It is well recognized that hypoxia-inducible factor 1 alpha (HIF-1α is involved in cancer metastasis, chemotherapy and poor prognosis. We previously found that deferoxamine, a hypoxia-mimetic agent, induces epithelial-mesenchymal transition (EMT in colorectal cancer. Therefore, here we explored a new molecular mechanism for HIF-1α contributing to EMT and cancer metastasis through binding to ZEB1. In this study, we showed that overexpression of HIF-1α with adenovirus infection promoted EMT, cell invasion and migration in vitro and in vivo. On a molecular level, HIF-1α directly binding to the proximal promoter of ZEB1 via hypoxia response element (HRE sites thus increasing the transactivity and expression of ZEB1. In addition, inhibition of ZEB1 was able to abrogate the HIF-1α-induced EMT and cell invasion. HIF-1α expression was highly correlated with the expression of ZEB1 in normal colorectal epithelium, primary and metastatic CRC tissues. Interestingly, both HIF-1α and ZEB1 were positively associated with Vimentin, an important mesenchymal marker of EMT, whereas negatively associated with E-cadherin expression. These findings suggest that HIF-1α enhances EMT and cancer metastasis by binding to ZEB1 promoter in CRC. HIF-1α and ZEB1 are both widely considered as tumor-initiating factors, but our results demonstrate that ZEB1 is a direct downstream of HIF-1α, suggesting a novel molecular mechanism for HIF-1α-inducing EMT and cancer metastasis.

  13. Role of hypoxia-inducible factor-α in hepatitis-B-virus X protein-mediated MDR1 activation

    International Nuclear Information System (INIS)

    Han, Hyo-Kyung; Han, Chang Yeob; Cheon, Eun-Pa; Lee, Jaewon; Kang, Keon Wook

    2007-01-01

    The transition from chemotherapy-responsive cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multi-drug resistance 1 (MDR1). We found that hepatitis-B-virus X protein (HBx) increases the transcriptional activity and protein level of MDR1 in a hepatoma cell line, H4IIE. In addition, HBx overexpression made H4IIE cells more resistant to verapamil-uptake. HBx stabilized hypoxia-inducible factor-1α (HIF-1α) and induced the nuclear translocation of C/EBPβ. Reporter gene analyses showed that HBx increased the reporter activity in the cells transfected with the reporter containing MDR1 gene promoter. Moreover, the luciferase reporter gene activity was significantly inhibited by HIF-1α siRNA but not by overexpression of C/EBP dominant negative mutant. These results imply that HBx increases the MDR1 transporter activity through the transcriptional activation of the MDR1 gene with HIF-1α activation, and suggest HIF-1α for the therapeutic target of HBV-mediated chemoresistance

  14. Involvement of HIF-1α activation in the doxorubicin resistance of human osteosarcoma cells.

    Science.gov (United States)

    Roncuzzi, Laura; Pancotti, Fabia; Baldini, Nicola

    2014-07-01

    Osteosarcoma is the most common primary bone cancer in children and adolescents. Despite aggressive treatment regimens, survival outcomes remain unsatisfactory, particularly in patients with metastatic and/or recurrent disease. Unfortunately, treatment failure is commonly due to the development of chemoresistance, for which the underlying molecular mechanisms remain unclear. The aim of the present study was to investigate the role of hypoxia-inducible factor 1α (HIF‑1α) and its signalling pathways as mediators of drug-resistance in human osteosarcoma. Toward this aim, we established two osteosarcoma cell lines selected for resistance to doxorubicin, a drug of choice in the treatment of this tumour. Our results showed that the multidrug resistance (MDR) phenotype was also mediated by HIF-1α, the most important regulator of cell adaptation to hypoxia. Our data showed that this transcription factor promoted the outward transport of intracellular doxorubicin by activating the P-glycoprotein (P-gp) expression in osteosarcoma cells maintained in normoxic conditions. In addition, it hindered doxorubicin-induced apoptosis by regulating the expression of c-Myc and p21. Finally, we observed that the doxorubicin-resistant cells maintained for 2 months of continuous culture in a drug-free medium, lost their drug-resistance and this effect was associated with the absence of HIF-1α expression. The emerging role of HIF-1α in osteosarcoma biology indicates its use as a valuable therapeutic target.

  15. Zinc-fingers and homeoboxes 1 (ZHX1) binds DNA methyltransferase (DNMT) 3B to enhance DNMT3B-mediated transcriptional repression

    International Nuclear Information System (INIS)

    Kim, Sung-Hak; Park, Jinah; Choi, Moon-Chang; Kim, Hwang-Phill; Park, Jung-Hyun; Jung, Yeonjoo; Lee, Ju-Hee; Oh, Do-Youn; Im, Seock-Ah; Bang, Yung-Jue; Kim, Tae-You

    2007-01-01

    DNA methyltransferases (DNMT) 3B is a de novo DNMT that represses transcription independent of DNMT activity. In order to gain a better insight into DNMT3B-mediated transcriptional repression, we performed a yeast two-hybrid analysis using DNMT3B as a bait. Of the various binding candidates, ZHX1, a member of zinc-finger and homeobox protein, was found to interact with DNMT3B in vivo and in vitro. N-terminal PWWP domain of DNMT3B was required for its interaction with homeobox motifs of ZHX1. ZHX1 contains nuclear localization signal at C-terminal homeobox motif, and both ZHX1 and DNMT3B were co-localized in nucleus. Furthermore, we found that ZHX1 enhanced the transcriptional repression mediated by DNMT3B when DNMT3B is directly targeted to DNA. These results showed for First the direct linkage between DNMT and zinc-fingers homeoboxes protein, leading to enhanced gene silencing by DNMT3B

  16. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn [Department of Immunology, Tianjin Medical University, 300070 Tianjin (China); College of Basic Medicine, Tianjin Medical University, 300070 Tianjin (China); Li, Jinru; Wang, Bo [College of Basic Medicine, Tianjin Medical University, 300070 Tianjin (China); Chen, Linfeng [Department of Medical Oncology, Harvard Medical School, Dana Farber Cancer Institute, Boston, 02115 MA (United States); Niu, Wenyan; Yao, Zhi [Department of Immunology, Tianjin Medical University, 300070 Tianjin (China); Baniahmad, Aria, E-mail: aban@mti.uni-jena.de [Institute for Human Genetics, Jena University Hospital, 07740 Jena (Germany)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by which Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.

  17. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene.

    Science.gov (United States)

    Hadjighassem, Mahmoud R; Galaraga, Kimberly; Albert, Paul R

    2011-01-01

    The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A-DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A-DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2-DRE complexes were distinguished from Freud-1-DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter-reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A-DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  18. Erythropoietin inhibits HIF-1α expression via upregulation of PHD-2 transcription and translation in an in vitro model of hypoxia-ischemia.

    Science.gov (United States)

    Souvenir, Rhonda; Flores, Jerry J; Ostrowski, Robert P; Manaenko, Anatol; Duris, Kamil; Tang, Jiping

    2014-02-01

    Hypoxia inducible factor (HIF)-1α is the central transcriptional factor for the regulation of oxygen-associated genes in response to hypoxia. Erythropoietin (EPO), a hematopoietic growth factor, increases oxygen availability during hypoxia/ischemia and is associated with neuroprotection following hypoxia-ischemia in laboratory models of stroke. However, EPO has failed to translate in a clinical setting. Thus, it is critical to elucidate the key players in EPO-induced neuroprotection. Our preliminary studies have shown that EPO, as a downstream gene of HIF, inhibits HIF-1α in a dose-dependent manner in an in vitro model of hypoxia-ischemia. This study is designed to elucidate the primary mediator of EPO-induced HIF-1α inhibition and subsequent cell survival/neuroprotection. Oxygen and glucose deprivation (OGD) of nerve growth factor-differentiated rat pheochromocytoma (PC-12) cells were used to model hypoxia-ischemia in an in vitro environment. The profile of HIF-1α, HIF-2α and prolyl hydroxylase domain 2 (PHD-2) expression; HIF-1α and prolyl hydroxylase (PHD-2) mRNA levels; matrix metalloproteinase (MMP)-9; and cell death was evaluated in the presence and absence of either EPO or PHD-2 inhibitor during OGD. Our findings showed that EPO treatment resulted in an increase in PHD-2 transcription and translation, inhibition of HIF-1α expression, reactive oxygen species formation, and MMP-9 activity, resulting in increased cell survival after OGD. We also observed that EPO-induced cell survival/neuroprotection was reversed by siRNA silencing of PHD-2. This led to the conclusion that PHD-2 is a key mediator of EPO-induced HIF-1α inhibition and subsequent neuroprotection in an in vitro model of hypoxia-ischemia.

  19. TCDD Induces the Hypoxia-Inducible Factor (HIF-1α Regulatory Pathway in Human Trophoblastic JAR Cells

    Directory of Open Access Journals (Sweden)

    Tien-Ling Liao

    2014-09-01

    Full Text Available The exposure to dioxin can compromise pregnancy outcomes and increase the risk of preterm births. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD has been demonstrated to induce placental hypoxia at the end of pregnancy in a rat model, and hypoxia has been suggested to be the cause of abnormal trophoblast differentiation and placental insufficiency syndromes. In this study, we demonstrate that the non-hypoxic stimulation of human trophoblastic cells by TCDD strongly increased hypoxia inducible factor-1 alpha (HIF-1α stabilization. TCDD exposure induced the generation of reactive oxygen species (ROS and nitric oxide. TCDD-induced HIF-1α stabilization and Akt phosphorylation was inhibited by pretreatment with wortmannin (a phosphatidylinositol 3-kinase (PI3K inhibitor or N-acetylcysteine (a ROS scavenger. The augmented HIF-1α stabilization by TCDD occurred via the ROS-dependent activation of the PI3K/Akt pathway. Additionally, a significant increase in invasion and metallomatrix protease-9 activity was found in TCDD-treated cells. The gene expression of vascular endothelial growth factor and placental growth factor was induced upon TCDD stimulation, whereas the protein levels of peroxisome proliferator-activated receptor γ (PPARγ, PPARγ coactivator-1α, mitochondrial transcription factor, and uncoupling protein 2 were decreased. Our results indicate that an activated HIF-1α pathway, elicited oxidative stress, and induced metabolic stress contribute to TCDD-induced trophoblastic toxicity. These findings may provide molecular insight into the TCDD-induced impairment of trophoblast function and placental development.

  20. Desferrioxamine, an iron chelator, enhances HIF-1α accumulation via cyclooxygenase-2 signaling pathway

    International Nuclear Information System (INIS)

    Woo, Kyung Jin; Lee, Tae-Jin; Park, Jong-Wook; Kwon, Taeg Kyu

    2006-01-01

    Cyclooxygenase-2 (COX-2) is an important inducible enzyme in inflammation and is overexpressed in a variety of cancers. Evidence is rapidly accumulating that chronic inflammation may contribute to carcinogenesis through increase of cell proliferation, angiogenesis, and metastasis in a number of neoplasms, including colorectal carcinoma. In the present study, we investigated some mechanistic aspects of DFX-induced hypoxia-driven COX-2 expression. Desferrioxamine (DFX), an iron chelator, is known to upregulate inflammatory mediators. DFX induced the expression of COX-2 and accumulation of HIF-1α protein in dose-dependent manners, but hypoxia mimetic agent cobalt chloride (CoCl 2 ) induced accumulation of HIF-1α protein but not increase of COX-2 expression. DFX-induced increase of COX-2 expression and HIF-1α protein level was attenuated by addition of ferric citrate. This result suggested that the iron chelating function of DFX was important to induce the increase of COX-2 and HIF-1α protein. PD98059 significantly inhibited the induction of COX-2 protein and accumulation of HIF-1α, suggesting that DFX-induced increase of HIF-1α and COX-2 protein was mediated, at least in part, through the ERK signaling pathway. In addition, pretreatment with NS-398 to inhibit COX-2 activity also effectively suppressed DFX-induced HIF-1α accumulation in human colon cancer cells, providing the evidence that COX-2 plays as a regulator of HIF-1α accumulation in DFX-treated colon cancer cells. Together, our findings suggest that iron metabolism may regulate stabilization of HIF-1α protein by modulating cyclooxygenase-2 signaling pathway

  1. Vasculogenic Mimicry of HT1080 Tumour Cells In Vivo: Critical Role of HIF-1α-Neuropilin-1 Axis

    Science.gov (United States)

    Misra, Roli M.; Bajaj, Manmohan S.; Kale, Vaijayanti P.

    2012-01-01

    HT1080 - a human fibrosarcoma-derived cell line – forms aggressive angiogenic tumours in immuno-compromised mice. In spite of its extensive use as a model of tumour angiogenesis, the molecular event(s) initiating the angiogenic program in these cells are not known. Since hypoxia stimulates tumour angiogenesis, we examined the hypoxia-induced events evoked in these cells. In contrast to cells grown under normoxic conditions, hypoxia-primed (1% O2) HT1080 cells formed robust tubules on growth factor-reduced matrigel and formed significantly larger tumours in xenograft models in a chetomin-sensitive manner, indicating the role of HIF-1α-mediated transcription in these processes. Immuno-histochemical analyses of tumours formed by GFP-expressing HT1080 cells clearly showed that the tumour cells themselves expressed various angiogenic markers including Neuropilin-1 (NRP-1) and formed functional vessels containing red blood cells, thereby unambiguously demonstrating the vasculogenic mimicry of HT1080 cells in vivo. Experiments performed with the HT1080 cells stably transfected with plasmid constructs expressing shNRP-1 or full-length NRP-1 clearly established that the HIF1α-mediated up-regulation of NRP-1 played a deterministic role in the process. Hypoxia-exposure resulted in an up-regulation of c-Myc and OCT3/4 and a down-regulation of KLF4 mRNAs, suggesting their involvement in the tumour formation and angiogenesis. However, silencing of NRP-1 alone, though not affecting proliferation in culture, was sufficient to abrogate the tumour formation completely; clearly establishing that the hypoxia-mediated HIF-1α-dependent up-regulation of NRP-1 is a critical molecular event involved in the vasculogenic mimicry and tumor formation by HT1080 cells in vivo. PMID:23185562

  2. Deletion of Iron Regulatory Protein 1 Causes Polycythemia and Pulmonary Hypertension in Mice through Translational De-repression of HIF

    Science.gov (United States)

    Ghosh, Manik C.; Zhang, De-Liang; Jeong, Suh Young; Kovtunovych, Gennadiy; Ollivierre-Wilson, Hayden; Noguchi, Audrey; Tu, Tiffany; Senecal, Thomas; Robinson, Gabrielle; Crooks, Daniel R.; Tong, Wing-Hang; Ramaswamy, Kavitha; Singh, Anamika; Graham, Brian B.; Tuder, Rubin M.; Yu, Zu-Xi; Eckhaus, Michael; Lee, Jaekwon; Springer, Danielle A.; Rouault, Tracey A.

    2013-01-01

    SUMMARY Iron regulatory proteins 1 and 2 (Irps) post-transcriptionally control the expression of transcripts that contain iron responsive element (IRE) sequences, including ferritin, ferroportin, transferrin receptor and hypoxia inducible factor 2α (HIF2α). We report here that mice with targeted deletion of Irp1 developed pulmonary hypertension and polycythemia that was exacerbated by a low iron diet. Hematocrits increased to 65% in iron-starved mice, and many polycythemic mice died of abdominal hemorrhages. Irp1 deletion enhanced HIF2α protein expression in kidneys of Irp1−/− mice, which led to increased erythropoietin (EPO) expression, polycythemia and concomitant tissue iron deficiency. Increased HIF2α expression in pulmonary endothelial cells induced high expression of endothelin-1, likely contributing to the pulmonary hypertension of Irp1−/− mice. Our results reveal why anemia is an early physiological consequence of iron deficiency, highlight the physiological significance of Irp1 in regulating erythropoiesis and iron distribution, and provide important insights into the molecular pathogenesis of pulmonary hypertension. PMID:23395173

  3. SCF, regulated by HIF-1α, promotes pancreatic ductal adenocarcinoma cell progression.

    Directory of Open Access Journals (Sweden)

    Chuntao Gao

    Full Text Available Stem cell factor (SCF and hypoxia-inducible factor-1α (HIF-1α both have important functions in pancreatic ductal adenocarcinoma (PDAC. This study aims to analyze the expression and clinicopathological significance of SCF and HIF-1α in PDAC specimens and explore the molecular mechanism at PDAC cells in vitro and in vivo. We showed that the expression of SCF was significantly correlated with HIF-1α expression via Western blot, PCR, chromatin immunoprecipitation (ChIP assay, and luciferase assay analysis. The SCF level was also correlated with lymph node metastasis and the pathological tumor node metastasis (pTNM stage in PDAC samples. The SCF higher-expression group had significantly lower survival rates than the SCF lower-expression group (p<0.05. Hypoxia up-regulated the expression of SCF through the hypoxia-inducible factor (HIF-1α in PDAC cells at the protein and RNA levels. When HIF-1α was knocked down by RNA interference, the SCF level decreased significantly. Additionally, ChIP and luciferase results demonstrated that HIF-1α can directly bind to the hypoxia response element (HRE region of the SCF promoter and activate the SCF transcription under hypoxia. The results of colony formation, cell scratch, and transwell migration assay showed that SCF promoted the proliferation and invasion of PANC-1 cells under hypoxia. Furthermore, the down-regulated ability of cell proliferation and invasion following HIF-1α knockdown was rescued by adding exogenous SCF under hypoxia in vitro. Finally, when the HIF-1α expression was inhibited by digoxin, the tumor volume and the SCF level decreased, thereby proving the relationship between HIF-1α and SCF in vivo. In conclusion, SCF is an important factor for the growth of PDAC. In our experiments, we proved that SCF, a downstream gene of HIF-1α, can promote the development of PDAC under hypoxia. Thus, SCF might be a potential therapeutic target for PDAC.

  4. Hypoxia-inducible factor-1α mediates the toll-like receptor 4 signaling pathway leading to anti-tumor effects in human hepatocellular carcinoma cells under hypoxic conditions.

    Science.gov (United States)

    Zhang, Xiaoyu; Li, Shuchen; Li, Mingrong; Huang, Haiying; Li, Jingyuan; Zhou, Changwei

    2016-08-01

    Hypoxia-inducible factor-1α (HIF-1α) and toll-like receptor 4 (TLR4) are involved in numerous mechanisms of cancer biology, including cell proliferation and survival; however the interaction of the two factors under hypoxic conditions remains unclear. The present study investigated the in vitro mechanism that results in the suppression of tumor cell growth and cellular functions when HIF-1α is silenced. In the present study, the human hepatocellular carcinoma HepG2 cell line was transfected with short hairpin RNA (shRNA) against HIF-1α and cultured under hypoxic conditions (1% O 2 for 24 h). The expression of HIF-1α and various growth factors, including epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2), were examined using quantitative polymerase chain reaction and immunoblotting. Tumor growth was measured using a Cell Counting Kit-8 assay and tumor activity was measured using tumor cell invasion and migration assays. Lipopolysaccharide and TAK-242 were used to activate and inhibit TLR4, respectively, to observe the role of TLR4 in the HIF-1α silenced tumor cells. The expression of TLR4 signaling pathway associates, including myeloid differentiation primary response gene 88 (MyD88), apoptosis signal-regulating kinase 1 (ASK1), p38 mitogen-activated protein kinases and HIF-1α, were analyzed by western blot assay. Under hypoxic conditions, silencing of HIF-1α expression suppressed tumor cell growth and regulated the expression of tumor growth-associated genes, including EGF, HGF, VEGF and FG2. Suppression of tumor cell invasion and migration was also observed in the HIF-1α silenced HepG2 cell line. In addition, TLR4 was identified to be involved in HIF-1α and MyD88 accumulation, and activation of ASK1 and p38 were demonstrated to be critical for TLR4-mediated HIF-1α pathway. In conclusion, silencing of HIF-1α expression may induce anti-tumor effects under hypoxic

  5. Acetaminophen hepatotoxicity and HIF-1α induction in acetaminophen toxicity in mice occurs without hypoxia

    International Nuclear Information System (INIS)

    Chaudhuri, Shubhra; McCullough, Sandra S.; Hennings, Leah; Letzig, Lynda; Simpson, Pippa M.; Hinson, Jack A.; James, Laura P.

    2011-01-01

    HIF-1α is a nuclear factor important in the transcription of genes controlling angiogenesis including vascular endothelial growth factor (VEGF). Both hypoxia and oxidative stress are known mechanisms for the induction of HIF-1α. Oxidative stress and mitochondrial permeability transition (MPT) are mechanistically important in acetaminophen (APAP) toxicity in the mouse. MPT may occur as a result of oxidative stress and leads to a large increase in oxidative stress. We previously reported the induction of HIF-1α in mice with APAP toxicity and have shown that VEGF is important in hepatocyte regeneration following APAP toxicity. The following study was performed to examine the relative contribution of hypoxia versus oxidative stress to the induction of HIF-1α in APAP toxicity in the mouse. Time course studies using the hypoxia marker pimonidazole showed no staining for pimonidazole at 1 or 2 h in B6C3F1 mice treated with APAP. Staining for pimonidazole was present in the midzonal to periportal regions at 4, 8, 24 and 48 h and no staining was observed in centrilobular hepatocytes, the sites of the toxicity. Subsequent studies with the MPT inhibitor cyclosporine A showed that cyclosporine A (CYC; 10 mg/kg) reduced HIF-1α induction in APAP treated mice at 1 and 4 h and did not inhibit the metabolism of APAP (depletion of hepatic non-protein sulfhydryls and hepatic protein adduct levels). The data suggest that HIF-1α induction in the early stages of APAP toxicity is secondary to oxidative stress via a mechanism involving MPT. In addition, APAP toxicity is not mediated by a hypoxia mechanism.

  6. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein

    International Nuclear Information System (INIS)

    Song, Xiuming; Yao, Jing; Wang, Fei; Zhou, Mi; Zhou, Yuxin; Wang, Hu; Wei, Libin; Zhao, Li; Li, Zhiyu; Lu, Na; Guo, Qinglong

    2013-01-01

    Wogonin, a plant-derived flavone, has been shown recently to have antitumor effects. However, the mechanisms that wogonin inhibits tumor angiogenesis are not well known. In this study, we investigated the effects of wogonin on expression of hypoxia-inducible factor-1α (HIF-1α) and secretion of vascular endothelial growth factor (VEGF) in tumor cells. We found that wogonin decreased the expression of HIF-1α by affecting its stability and reduced the secretion of VEGF, which suppressed angiogenesis in cancer. Wogonin promoted the degradation of HIF-1α by increasing its prolyl hydroxylation, which depended on prolyl hydroxylase (PHD) and the von Hippel–Lindau tumor suppressor (VHL). Intriguingly, wogonin impeded the binding between heat-shock protein 90 (Hsp90) and HIF-1α. In addition, wogonin down-regulated the Hsp90 client proteins EGFR, Cdk4 and survivin, but did not affect the level of Hsp90. Wogonin also increased ubiquitination of HIF-1α and promoted its degradation in proteasome. We also found that wogonin could inhibit nuclear translocation of HIF-1α. Electrophoresis mobility shift assay (EMSA) showed that wogonin decreased the binding activity of exogenous consensus DNA oligonucleotide with HIF-1α in nuclear extracts from MCF-7 cells. Chromatin immunoprecipitation (ChIP) assay also revealed that HIF-1α directly binded to endogenous hypoxia-responsive element (HRE) and this binding was significantly decreased in MCF-7 cells treated with wogonin. Preliminary results indicated in vivo activity of wogonin against xenograft-induced angiogenesis in nude mice. Taken together, the results suggested that wogonin was a potent inhibitor of HIF-1α and provided a new insight into the mechanisms of wogonin against cancers. - Highlights: • Wogonin is an all around inhibitor of VEGF signaling. • We firstly demonstrate that wogonin inhibits secretion of VEGF by decreasing HIF-1α. • Wogonin enhances PDH and VHL expression and inhibits Hsp90 function.

  7. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiuming; Yao, Jing; Wang, Fei; Zhou, Mi; Zhou, Yuxin; Wang, Hu; Wei, Libin; Zhao, Li; Li, Zhiyu; Lu, Na, E-mail: luna555@163.com; Guo, Qinglong, E-mail: anticancer_drug@yahoo.com.cn

    2013-09-01

    Wogonin, a plant-derived flavone, has been shown recently to have antitumor effects. However, the mechanisms that wogonin inhibits tumor angiogenesis are not well known. In this study, we investigated the effects of wogonin on expression of hypoxia-inducible factor-1α (HIF-1α) and secretion of vascular endothelial growth factor (VEGF) in tumor cells. We found that wogonin decreased the expression of HIF-1α by affecting its stability and reduced the secretion of VEGF, which suppressed angiogenesis in cancer. Wogonin promoted the degradation of HIF-1α by increasing its prolyl hydroxylation, which depended on prolyl hydroxylase (PHD) and the von Hippel–Lindau tumor suppressor (VHL). Intriguingly, wogonin impeded the binding between heat-shock protein 90 (Hsp90) and HIF-1α. In addition, wogonin down-regulated the Hsp90 client proteins EGFR, Cdk4 and survivin, but did not affect the level of Hsp90. Wogonin also increased ubiquitination of HIF-1α and promoted its degradation in proteasome. We also found that wogonin could inhibit nuclear translocation of HIF-1α. Electrophoresis mobility shift assay (EMSA) showed that wogonin decreased the binding activity of exogenous consensus DNA oligonucleotide with HIF-1α in nuclear extracts from MCF-7 cells. Chromatin immunoprecipitation (ChIP) assay also revealed that HIF-1α directly binded to endogenous hypoxia-responsive element (HRE) and this binding was significantly decreased in MCF-7 cells treated with wogonin. Preliminary results indicated in vivo activity of wogonin against xenograft-induced angiogenesis in nude mice. Taken together, the results suggested that wogonin was a potent inhibitor of HIF-1α and provided a new insight into the mechanisms of wogonin against cancers. - Highlights: • Wogonin is an all around inhibitor of VEGF signaling. • We firstly demonstrate that wogonin inhibits secretion of VEGF by decreasing HIF-1α. • Wogonin enhances PDH and VHL expression and inhibits Hsp90 function.

  8. Identification of small molecule compounds that inhibit the HIF-1 signaling pathway

    Directory of Open Access Journals (Sweden)

    Sun Yi

    2009-12-01

    Full Text Available Abstract Background Hypoxia-inducible factor-1 (HIF-1 is the major hypoxia-regulated transcription factor that regulates cellular responses to low oxygen environments. HIF-1 is composed of two subunits: hypoxia-inducible HIF-1α and constitutively-expressed HIF-1β. During hypoxic conditions, HIF-1α heterodimerizes with HIF-1β and translocates to the nucleus where the HIF-1 complex binds to the hypoxia-response element (HRE and activates expression of target genes implicated in cell growth and survival. HIF-1α protein expression is elevated in many solid tumors, including those of the cervix and brain, where cells that are the greatest distance from blood vessels, and therefore the most hypoxic, express the highest levels of HIF-1α. Therapeutic blockade of the HIF-1 signaling pathway in cancer cells therefore provides an attractive strategy for development of anticancer drugs. To identify small molecule inhibitors of the HIF-1 pathway, we have developed a cell-based reporter gene assay and screened a large compound library by using a quantitative high-throughput screening (qHTS approach. Results The assay is based upon a β-lactamase reporter under the control of a HRE. We have screened approximate 73,000 compounds by qHTS, with each compound tested over a range of seven to fifteen concentrations. After qHTS we have rapidly identified three novel structural series of HIF-1 pathway Inhibitors. Selected compounds in these series were also confirmed as inhibitors in a HRE β-lactamase reporter gene assay induced by low oxygen and in a VEGF secretion assay. Three of the four selected compounds tested showed significant inhibition of hypoxia-induced HIF-1α accumulation by western blot analysis. Conclusion The use of β-lactamase reporter gene assays, in combination with qHTS, enabled the rapid identification and prioritization of inhibitors specific to the hypoxia induced signaling pathway.

  9. Necrosis related HIF-1α expression predicts prognosis in patients with endometrioid endometrial carcinoma

    International Nuclear Information System (INIS)

    Seeber, Laura MS; Horrée, Nicole; Groep, Petra van der; Wall, Elsken van der; Verheijen, René HM; Diest, Paul J van

    2010-01-01

    Hypoxia inducible factor 1α (HIF-1α) plays an essential role in the adaptive response of cells to hypoxia and is associated with aggressive tumour behaviour. We have shown p27 kip1 , which is generally reduced in endometrial cancer, to be re-expressed in hypoxic regions. This possibly contributes to survival of cancer cells. The aim of this study was to evaluate the prognostic value of HIF-1α and p27 kip expression in patients with endometrioid endometrial cancer. Expression levels of HIF-1α, CAIX, Glut-1, and p27 kip1 were analyzed by immunohistochemistry. Percentage of positive cells, staining pattern (perinecrotic, diffuse, or mixed) and presence of necrosis were noted. Necrosis was correlated with shortened disease free survival (DFS) (p = 0.008) and overall survival (OS) (p = 0.045). For DFS, perinecrotic HIF-1α expression was also prognostic (p = 0.044). Moreover, high p27 kip1 expression was an additional prognostic factor for these patients with perinecrotic HIF-1α expression. In multivariate Cox regression, perinecrotic HIF-expression emerged as an independent prognostic factor. Perinecrotic HIF-1α expression was significantly associated with CAIX and Glut-1 expression, pointing towards functional HIF-1. In patients with endometrioid endometrial cancer, necrosis and necrosis-related expression of HIF-1α are important prognostic factors. More aggressive adjuvant treatment might be necessary to improve the outcome of patients with these characteristics

  10. Up-regulation of hypoxia-inducible factor (HIF)-1α and HIF-target genes in cortical neurons by the novel multifunctional iron chelator anti-Alzheimer drug, M30.

    Science.gov (United States)

    Avramovich-Tirosh, Y; Bar-Am, O; Amit, T; Youdim, M B H; Weinreb, O

    2010-06-01

    Based on a multimodal drug design paradigm, we have synthesized a multifunctional non-toxic, brain permeable iron chelator, M30, possessing the neuroprotective propargylamine moiety of the anti-Parkinsonian drug, rasagiline (Azilect) and antioxidant-iron chelator moiety of an 8-hydroxyquinoline derivative of our iron chelator, VK28. M30 was recently found to confer potential neuroprotective effects in vitro and in various preclinical neurodegenerative models and regulate the levels and processing of the Alzheimer's amyloid precursor protein and its toxic amyloidogenic derivative, Abeta. Here, we show that M30 activates the hypoxia-inducible factor (HIF)-1alpha signaling pathway, thus promoting HIF-1alpha mRNA and protein expression levels, as well as increasing transcription of HIF-1alpha-dependent genes, including vascular endothelial growth factor, erythropoietin, enolase-1, p21 and tyrosine hydroxylase in rat primary cortical cells. In addition, M30 also increased the expression levels of the transcripts of brain derived neurotrophic factor (BDNF) and growth-associated protein-43 (GAP-43). Regarding aspects of relevance to Alzheimer's disease (AD), western blotting analysis of glycogen synthase kinase- 3beta (GSK-3beta) signaling pathway revealed that M30 enhanced the levels of phospho-AKT (Ser473) and phospho- GSK-3beta (Ser9) and attenuated Tau phosphorylation. M30 was also shown to protect cultured cortical neurons against Abeta(25-35) toxicity. All these multimodal pharmacological activities of M30 might be beneficial for its potent efficacy in the prevention and treatment of neurodegenerative conditions, such as Parkinson's disease and AD in which oxidative stress and iron-mediated toxicity are involved.

  11. HIF-1α effects on angiogenic potential in human small cell lung carcinoma

    Directory of Open Access Journals (Sweden)

    Xia Wanli

    2011-08-01

    Full Text Available Abstract Background Hypoxia-inducible factor-1 alpha (HIF-1α maybe an important regulatory factor for angiogenesis of small cell lung cancer (SCLC. Our study aimed to investigate the effect of HIF-1α on angiogenic potential of SCLC including two points: One is the effect of HIF-1α on the angiogenesis of SCLC in vivo. The other is the regulation of angiogenic genes by HIF-1α in vitro and in vivo. Methods In vivo we used an alternative method to study the effect of HIF-1a on angiogenic potential of SCLC by buliding NCI-H446 cell transplantation tumor on the chick embryo chorioallantoic membrane (CAM surface. In vitro we used microarray to screen out the angiogenic genes regulated by HIF-1a and tested their expression level in CAM transplantation tumor by RT-PCR and Western-blot analysis. Results In vivo angiogenic response surrounding the SCLC transplantation tumors in chick embryo chorioallantoic membrane (CAM was promoted after exogenous HIF-1α transduction (p In vitro the changes of angiogenic genes expression induced by HIF-1α in NCI-H446 cells were analyzed by cDNA microarray experiments. HIF-1α upregulated the expression of angiogenic genes VEGF-A, TNFAIP6, PDGFC, FN1, MMP28, MMP14 to 6.76-, 6.69-, 2.26-, 2.31-, 4.39-, 2.97- fold respectively and glycolytic genes GLUT1, GLUT2 to2.98-, 3.74- fold respectively. In addition, the expression of these angiogenic factors were also upregulated by HIF-1α in the transplantion tumors in CAM as RT-PCR and Western-blot analysis indicated. Conclusions These results indicated that HIF-1α may enhance the angiogenic potential of SCLC by regulating some angiogenic genes such as VEGF-A, MMP28 etc. Therefore, HIF-1α may be a potential target for the gene targeted therapy of SCLC.

  12. HIF-1 α as a Key Factor in Bile Duct Ligation-Induced Liver Fibrosis in Rats.

    Science.gov (United States)

    Moczydlowska, Joanna; Miltyk, Wojciech; Hermanowicz, Adam; Lebensztejn, Dariusz M; Palka, Jerzy A; Debek, Wojciech

    2017-02-01

    Although several studies suggested hypoxia as an important microenvironmental factor contributing to inflammation and fibrosis in chronic liver diseases, the mechanism of this process is not fully understood. We considered hypoxia inducible factor (HIF-1α) as a key transcription factor in liver fibrosis. The aim of the study was to evaluate the mechanisms of signaling pathway during bile duct ligation (BDL)-induced liver fibrosis in rats. BDL animal model of liver fibrosis was used in the study. Male Wistar rats were divided randomly into two experimental groups: sham group (n = 15), BDL group (n = 30). Hydroxyproline (Hyp) content as a marker of collagen accumulation in liver of rats subjected to BDL was evaluated according to the method described by Gerling B et al. Expression of signaling proteins [integrin β 1 receptor, HIF-1α, nuclear factor kappa B (NF-κB), and transforming growth factor (TGF-β)] was evaluated applying Western-immunoblot analysis. In all experiments, the mean values for six assays ± standard deviations (SD) were calculated. The results were submitted to the statistical analysis using the Student's "t" test, accepting p bile ducts was found to increase Hyp content in rat liver, accompanied by increase of HIF-1α expression during 10 weeks after BDL. The Hyp level was time dependent. There was not such a difference in control group (p livers were increased 1 week after surgery and remained increased until the end of the experiment. The mechanism of development of liver fibrosis involves activation of Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9), upregulation of HIF-1α transcriptional activity and its related factors, NF-κB and TGF-β. It suggests that they may represent targets for the treatment of the disease.

  13. Silencing HIF-1α reduces the adhesion and secretion functions of acute leukemia hBMSCs

    International Nuclear Information System (INIS)

    Zeng, Dong-Feng; Liu, Ting; Chang, Cheng; Zhang, Xi; Liang, Xue; Chen, Xing-Hua; Kong, Pei-Yan

    2012-01-01

    Hypoxia inducible factor-1α (HIF-1α) is an important transcription factor, which plays a critical role in the formation of solid tumor and its microenvironment. The objective of the present study was to evaluate the expression and function of HIF-1α in human leukemia bone marrow stromal cells (BMSCs) and to identify the downstream targets of HIF-1α. HIF-1α expression was detected at both the RNA and protein levels using real-time PCR and immunohistochemistry, respectively. Vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1α (SDF-1α) were detected in stromal cells by enzyme-linked immunosorbent assay. HIF-1α was blocked by constructing the lentiviral RNAi vector system and infecting the BMSCs. The Jurkat cell/BMSC co-cultured system was constructed by putting the two cells into the same suitable cultured media and conditions. Cell adhesion and secretion functions of stromal cells were evaluated after transfection with the lentiviral RNAi vector of HIF-1α. Increased HIF-1α mRNA and protein was detected in the nucleus of the acute myeloblastic and acute lymphoblastic leukemia compared with normal BMSCs. The lentiviral RANi vector for HIF-1α was successfully constructed and was applied to block the expression of HIF-1α. When HIF-1α of BMSCs was blocked, the expression of VEGF and SDF-1α secreted by stromal cells was decreased. When HIF-1α was blocked, the co-cultured Jurkat cell's adhesion and migration functions were also decreased. Taken together, these results suggest that HIF-1α acts as an important transcription factor and can significantly affect the secretion and adhesion functions of leukemia BMSCs

  14. Silencing HIF-1α reduces the adhesion and secretion functions of acute leukemia hBMSCs

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Dong-Feng [Department of Hematology, XinQiao Hospital, Third Military Medical University, ChongQing (China); Liu, Ting [Department of Ophthalmology, DaPing Hospital, Third Military Medical University, ChongQing (China); Chang, Cheng; Zhang, Xi; Liang, Xue; Chen, Xing-Hua; Kong, Pei-Yan [Department of Hematology, XinQiao Hospital, Third Military Medical University, ChongQing (China)

    2012-06-29

    Hypoxia inducible factor-1α (HIF-1α) is an important transcription factor, which plays a critical role in the formation of solid tumor and its microenvironment. The objective of the present study was to evaluate the expression and function of HIF-1α in human leukemia bone marrow stromal cells (BMSCs) and to identify the downstream targets of HIF-1α. HIF-1α expression was detected at both the RNA and protein levels using real-time PCR and immunohistochemistry, respectively. Vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1α (SDF-1α) were detected in stromal cells by enzyme-linked immunosorbent assay. HIF-1α was blocked by constructing the lentiviral RNAi vector system and infecting the BMSCs. The Jurkat cell/BMSC co-cultured system was constructed by putting the two cells into the same suitable cultured media and conditions. Cell adhesion and secretion functions of stromal cells were evaluated after transfection with the lentiviral RNAi vector of HIF-1α. Increased HIF-1α mRNA and protein was detected in the nucleus of the acute myeloblastic and acute lymphoblastic leukemia compared with normal BMSCs. The lentiviral RANi vector for HIF-1α was successfully constructed and was applied to block the expression of HIF-1α. When HIF-1α of BMSCs was blocked, the expression of VEGF and SDF-1α secreted by stromal cells was decreased. When HIF-1α was blocked, the co-cultured Jurkat cell's adhesion and migration functions were also decreased. Taken together, these results suggest that HIF-1α acts as an important transcription factor and can significantly affect the secretion and adhesion functions of leukemia BMSCs.

  15. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer

    Directory of Open Access Journals (Sweden)

    Lv Y

    2015-07-01

    Full Text Available Yingqian Lv, Shan Zhao, Jinzhu Han, Likang Zheng, Zixin Yang, Li Zhao Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China Abstract: Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1 were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at -378 to -373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. Keywords: hypoxia, hypoxia-inducible factor-1α, multidrug resistance associated protein, transcriptional regulation, chemotherapy tolerance

  16. Edaravone Improves Septic Cardiac Function by Inducing an HIF-1α/HO-1 Pathway

    Directory of Open Access Journals (Sweden)

    Chao He

    2018-01-01

    Full Text Available Septic myocardial dysfunction remains prevalent and raises mortality rate in patients with sepsis. During sepsis, tissues undergo tremendous oxidative stress which contributes critically to organ dysfunction. Edaravone, a potent radical scavenger, has been proved beneficial in ischemic injuries involving hypoxia-inducible factor- (HIF- 1, a key regulator of a prominent antioxidative protein heme oxygenase- (HO- 1. However, its effect in septic myocardial dysfunction remains unclarified. We hypothesized that edaravone may prevent septic myocardial dysfunction by inducing the HIF-1/HO-1 pathway. Rats were subjected to cecal ligation and puncture (CLP with or without edaravone infusion at three doses (50, 100, or 200 mg/kg, resp. before CLP and intraperitoneal injection of the HIF-1α antagonist, ME (15 mg/kg, after CLP. After CLP, rats had cardiac dysfunction, which was associated with deformed myocardium, augmented lipid peroxidation, and increased myocardial apoptosis and inflammation, along with decreased activities of catalase, HIF-1α, and HO-1 in the myocardium. Edaravone pretreatment dose-dependently reversed the changes, of which high dose most effectively improved cardiac function and survival rate of septic rats. However, inhibition of HIF-1α by ME demolished the beneficial effects of edaravone at high dose, reducing the survival rate of the septic rats without treatments. Taken together, edaravone, by inducing the HIF-1α/HO-1 pathway, suppressed oxidative stress and protected the heart against septic myocardial injury and dysfunction.

  17. Analysis list: Hif1a [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Hif1a Blood,Embryo + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Hif1a.1.tsv http://dbarchi...ve.biosciencedbc.jp/kyushu-u/mm9/target/Hif1a.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Hi...f1a.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Hif1a.Blood.tsv,http://dbarchi...ve.biosciencedbc.jp/kyushu-u/mm9/colo/Hif1a.Embryo.tsv http://dbarchive.bi...osciencedbc.jp/kyushu-u/mm9/colo/Blood.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Embryo.gml ...

  18. Histone acetyltransferase (HAT) activity of p300 modulates human T lymphotropic virus type 1 p30II-mediated repression of LTR transcriptional activity

    International Nuclear Information System (INIS)

    Michael, Bindhu; Nair, Amrithraj M.; Datta, Antara; Hiraragi, Hajime; Ratner, Lee; Lairmore, Michael D.

    2006-01-01

    Human T-lymphotropic virus type-1 (HTLV-1) is a deltaretrovirus that causes adult T cell leukemia/lymphoma, and is implicated in a variety of lymphocyte-mediated inflammatory disorders. HTLV-1 provirus has regulatory and accessory genes in four pX open reading frames. HTLV-1 pX ORF-II encodes two proteins, p13 II and p30 II , which are incompletely defined in virus replication or pathogenesis. We have demonstrated that pX ORF-II mutations block virus replication in vivo and that ORF-II encoded p30 II , a nuclear-localizing protein that binds with CREB-binding protein (CBP)/p300, represses CREB and Tax responsive element (TRE)-mediated transcription. Herein, we have identified p30 II motifs important for p300 binding and in regulating TRE-mediated transcription in the absence and presence of HTLV-1 provirus. Within amino acids 100-179 of p30 II , a region important for repression of LTR-mediated transcription, we identified a single lysine residue at amino acid 106 (K3) that significantly modulates the ability of p30 II to repress TRE-mediated transcription. Exogenous p300, in a dose-responsive manner, reverses p30 II -dependent repression of TRE-mediated transcription, in the absence or presence of the provirus, In contrast to wild type p300, p300 HAT mutants (defective in histone acetyltransferase activity) only partially rescued p30 II -mediated LTR repression. Deacetylation by histone deacetylase-1 (HDAC-1) enhanced p30 II -mediated LTR repression, while inhibition of deacetylation by trichostatin A decreases p30 II -mediated LTR repression. Collectively, our data indicate that HTLV-1 p30 II modulates viral gene expression in a cooperative manner with p300-mediated acetylation

  19. MiR-142 modulates human pancreatic cancer proliferation and invasion by targeting hypoxia-inducible factor 1 (HIF-1α in the tumor microenvironments

    Directory of Open Access Journals (Sweden)

    Yebin Lu

    2017-02-01

    Full Text Available MicroRNAs regulate most protein-coding genes, including genes important in cancer and other diseases. In this study, we demonstrated that the expression of miR-142 could be significantly suppressed in pancreatic cancer specimens and cell lines compared to their adjacent tissues and normal pancreatic cells. Growth and invasion of PANC-1 and SW1990 cells were attenuated by overexpression of miR-142 in vitro. With the help of bioinformatics analysis, hypoxia-inducible factor 1 (HIF-1α was identified to be a direct target of miR-142, and a luciferase reporter experiment confirmed this discovery. Overexpression of miR-142 decreases protein expression of HIF-1α. In the hypoxic microenvironment, HIF-1α was up-regulated while miR-142 was down-regulated. The invaded cells significantly increased in the hypoxic microenvironment compared to the normoxic microenvironment. The hypoxia treatment induced cells’ proliferation, and invasion could be inhibited by miR-142 overexpression or HIF-1α inhibition. Moreover, expression of epithelial-mesenchymal transition (EMT markers, Vimentin, VEGF-C and E-cad, was altered under hypoxia conditions and regulated by miR-142/HIF-1α. Above all, these findings provided insights on the functional mechanism of miR-142, suggesting that the miR-142/HIF-1α axis may interfere with the proliferative and invasive properties of pancreatic cancer cells, and indicated that miR-142 could be a potential therapeutic target for pancreatic cancer.

  20. HIF1α deficiency reduces inflammation in a mouse model of proximal colon cancer

    Directory of Open Access Journals (Sweden)

    Dessislava N. Mladenova

    2015-09-01

    Full Text Available Hypoxia-inducible factor 1α (HIF1α is a transcription factor that regulates the adaptation of cells to hypoxic microenvironments, for example inside solid tumours. Stabilisation of HIF1α can also occur in normoxic conditions in inflamed tissue or as a result of inactivating mutations in negative regulators of HIF1α. Aberrant overexpression of HIF1α in many different cancers has led to intensive efforts to develop HIF1α-targeted therapies. However, the role of HIF1α is still poorly understood in chronic inflammation that predisposes the colon to carcinogenesis. We have previously reported that the transcription of HIF1α is upregulated and that the protein is stabilised in inflammatory lesions that are caused by the non-steroidal anti-inflammatory drug (NSAID sulindac in the mouse proximal colon. Here, we exploited this side effect of long-term sulindac administration to analyse the role of HIF1α in colon inflammation using mice with a Villin-Cre-induced deletion of Hif1α exon 2 in the intestinal epithelium (Hif1αΔIEC. We also analysed the effect of sulindac sulfide on the aryl hydrocarbon receptor (AHR pathway in vitro in colon cancer cells. Most sulindac-treated mice developed visible lesions, resembling the appearance of flat adenomas in the human colon, surrounded by macroscopically normal mucosa. Hif1αΔIEC mice still developed lesions but they were smaller than in the Hif1α-floxed siblings (Hif1αF/F. Microscopically, Hif1αΔIEC mice had significantly less severe colon inflammation than Hif1αF/F mice. Molecular analysis showed reduced MIF expression and increased E-cadherin mRNA expression in the colon of sulindac-treated Hif1αΔIEC mice. However, immunohistochemistry analysis revealed a defect of E-cadherin protein expression in sulindac-treated Hif1αΔIEC mice. Sulindac sulfide treatment in vitro upregulated Hif1α, c-JUN and IL8 expression through the AHR pathway. Taken together, HIF1α expression augments inflammation

  1. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Li, Ruisheng [Institute of Infectious Diseases, 302 Military Hospital, Beijing 100039 (China); Jia, Ying; Zhao, Yun; Xiao, Dongjie [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Dang, Ningning [Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Wang, Yunshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China)

    2014-07-15

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  2. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan; Li, Ruisheng; Jia, Ying; Zhao, Yun; Xiao, Dongjie; Dang, Ningning; Wang, Yunshan

    2014-01-01

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  3. pPKCα mediated-HIF-1α activation related to the morphological modifications occurring in neonatal myocardial tissue in response to severe and mild hyperoxia

    Directory of Open Access Journals (Sweden)

    S. Zara

    2012-01-01

    Full Text Available In premature babies birth an high oxygen level exposure can occur and newborn hyperoxia exposure can be associated with free radical oxygen release with impairment of myocardial function, while in adult animal models short exposure to hyperoxia seems to protect heart against ischemic injury. Thus, the mechanisms and consequences which take place after hyperoxia exposure are different and related to animals age. The aim of our work has been to analyze the role played by HIF-1α in the occurrence of the morphological modifications upon hyperoxia exposure in neonatal rat heart. Hyperoxia exposure induces connective compartment increase which seems to allow enhanced blood vessels growth. An increased hypoxia inducible factor-1α (HIF-1α translocation and vascular endothelial growth factor (VEGF expression has been found upon 95% oxygen exposure to induce morphological modifications. Upstream pPKC-α expression increase in newborn rats exposed to 95% oxygen can suggest PKC involvement in HIF-1α activation. Since nitric oxide synthase (NOS are involved in heart vascular regulation, endothelial NOS (e-NOS and inducible NOS (i-NOS expression has been investigated: a lower eNOS and an higher iNOS expression has been found in newborn rats exposed to 95% oxygen related to the evidence that hyperoxia provokes a systemic vasoconstriction and to the iNOS pro-apoptotic action, respectively. The occurrence of apoptotic events, evaluated by TUNEL and Bax expression analyses, seems more evident in sample exposed to severe hyperoxia. All in all such results suggest that in newborn rats hyperoxia can trigger oxygen free radical mediated membrane injury through a pPKCα mediated HIF-1α signalling system, even though specificity of such response could be obtained by in vivo administration to the rats of specific inhibitors of PKCα. This intracellular signalling can switch molecular events leading to blood vessels development in parallel to pro-apoptotic events

  4. Role of HIF-1α signaling pathway in osteoarthritis: a systematic review

    Directory of Open Access Journals (Sweden)

    Javier Fernández-Torres

    Full Text Available Abstract Osteoarthritis (OA is the most common form of arthritis and is frequently diagnosed and managed in primary care; it is characterized by loss of articular hyaline cartilage, which is a unique connective tissue that physiologically lacks blood vessels. Articular cartilage survives in a microenvironment devoid of oxygen, which is regulated by hypoxia inducible factor (HIF-1α. HIF-1α is considered the main transcriptional regulator of cellular and developmental response to hypoxia. To date, the relevance of HIF-1α in the assessment of cartilage has increased since its participation is essential in the homeostasis of this tissue. Taking into account the new emerging insights of HIF-1α in the scientific literature in the last years, we focused the present review on the potential role of HIF-1α signaling pathway in OA development, especially in how some genetic factors may influence the maintenance or breakdown of articular cartilage.

  5. Inhibition of HIF-1{alpha} activity by BP-1 ameliorates adjuvant induced arthritis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, J. [Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago (United States); Thippegowda, P.B., E-mail: btprabha@uic.edu [Department of Pharmacology, (M/C 868), College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612 (United States); Kanum, S.A. [Department of Chemistry, Yuvaraj' s College, University of Mysore, Mysore (India)

    2009-09-18

    Rheumatoid arthritis (RA) is a chronic inflammatory, angiogenic disease. Inflamed synovitis is a hallmark of RA which is hypoxic in nature. Vascular endothelial growth factor (VEGF), one of the key regulators of angiogenesis, is overexpressed in the pathogenesis of RA. VEGF expression is regulated by hypoxia-inducible factor-1{alpha} (HIF-1{alpha}), a master regulator of homeostasis which plays a pivotal role in hypoxia-induced angiogenesis. In this study we show that synthetic benzophenone analogue, 2-benzoyl-phenoxy acetamide (BP-1) can act as a novel anti-arthritic agent in an experimental adjuvant induced arthritis (AIA) rat model by targeting VEGF and HIF-1{alpha}. BP-1 administered hypoxic endothelial cells and arthritic animals clearly showed down regulation of VEGF expression. Further, BP-1 inhibits nuclear translocation of HIF-1{alpha}, which in turn suppresses transcription of the VEGF gene. These results suggest a further possible clinical application of the BP-1 derivative as an anti-arthritic agent in association with conventional chemotherapeutic agents.

  6. Loss of PINK1 attenuates HIF-1α induction by preventing 4E-BP1-dependent switch in protein translation under hypoxia.

    Science.gov (United States)

    Lin, William; Wadlington, Natasha L; Chen, Linan; Zhuang, Xiaoxi; Brorson, James R; Kang, Un Jung

    2014-02-19

    Parkinson's disease (PD) has multiple proposed etiologies with implication of abnormalities in cellular homeostasis ranging from proteostasis to mitochondrial dynamics to energy metabolism. PINK1 mutations are associated with familial PD and here we discover a novel PINK1 mechanism in cellular stress response. Using hypoxia as a physiological trigger of oxidative stress and disruption in energy metabolism, we demonstrate that PINK1(-/-) mouse cells exhibited significantly reduced induction of HIF-1α protein, HIF-1α transcriptional activity, and hypoxia-responsive gene upregulation. Loss of PINK1 impairs both hypoxia-induced 4E-BP1 dephosphorylation and increase in the ratio of internal ribosomal entry site (IRES)-dependent to cap-dependent translation. These data suggest that PINK1 mediates adaptive responses by activating IRES-dependent translation, and the impairments in translation and the HIF-1α pathway may contribute to PINK1-associated PD pathogenesis that manifests under cellular stress.

  7. Upregulation of the Chemokine Receptor CCR7 expression by HIF-1αand HIF-2α in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Yang LI

    2008-10-01

    Full Text Available Background and objective CCR7 is closely related with the lymph node metastasis of non-small cell lung cancer. The objective of this work is to investigate the expressions of chemokine receptor CCR7, hypoxiainducible factor 1α (HIF-1α and hypoxia inducible factor 2α (HIF-2α protein in non small cell lung cancer and the relationships of their expression, and to study the mechanism of CCR7 upregulation in NSCLC. Methods T he levels of expressions of CCR7, HIF-1α and HIF-2α protein were detected in 94 specimens of human primary non small cell lung cancer by immunohistochemical S-P method. Human lung adenocarcinoma cell line A549 cells were transfected by lipofection with HIF-1α siRNA、HIF-2α siRNA, the change of CCR7 was observed by RT-PCR and immunofluorescence staining. Correlations between the expression of CCR7 and HIF-1α, HIF-2α were respectively analyzed. Results Immunohistochemistry showed that CCR7 was distributed in cytoplasm and/or membrane of tumor cells, HIF-1α, HIF-2α was distributed in nucleus and/or cytoplasm of tumor cells. The levels of expressions of CCR7, HIF-1α and HIF-2α protein were found to be 75.53% (71/94, 54.25% (51/ 94 and 70.21% (66/94 in non small celllung cancer, respectively. the levels of expression of CCR7 protein were closely related to the clinical stages (P 0.05. Furthermore, A significant correlation were found among CCR7, Hif-1α and HIF-2α (r =0.272, P <0.01 (r=0.225, P <0.05. In addition, the expression of CCR7 mRNA and protein levels were decreased in the transfected specificHIF-1α, HIF-2αsiRNA group (P <0.05. Conclusion CCR7 expression is significantly associated with non small cell lung cancer invasion and metastasis. The upregulation of CCR7 is regulated by HIF-1α and HIF-2α in non small cell lung cancer.

  8. Expression of hypoxia-inducible factor-1 by trophectoderm cells in response to hypoxia and epidermal growth factor

    International Nuclear Information System (INIS)

    Jeong, Wooyoung; Bazer, Fuller W.; Song, Gwonhwa; Kim, Jinyoung

    2016-01-01

    The low oxygen environment in the uterine environment requires pre-implantation embryos to adapt to oxygen deficiency. Hypoxia-inducible factor (HIF)-1 is a master regulator whereby cells adapt to changes in oxygen concentrations. In addition to hypoxic conditions, non-hypoxic stimuli such as growth factors also activate expression of HIF-1. In this study, the mechanisms underlying low oxygen-dependent and epidermal growth factor (EGF)-dependent expression of HIF-1α were explored using porcine trophectoderm (pTr) cells. The results indicated that expression of HIF-1α and HIF-1β mRNAs was not affected by low concentrations of oxygen; however, hypoxic conditions markedly increased the abundance of HIF-1α protein, especially in nuclei of pTr cells. Even under normoxic conditions, the abundance of HIF-1α protein increased in response to EGF. This EGF-mediated increase in HIF-1α protein was blocked through inhibition of translation by cycloheximide. The inhibitors LY294002 (PI3K-AKT inhibitor), U0126 (inhibitor of ERK1/2) and rapamycin (mTOR inhibitor) also blocked the ability of EGF to increase HIF-1α protein and to phosphorylate AKT, ERK1/2 and mTOR proteins. Both hypoxia and EGF induced proliferation of pTr cells. This ability of EGF to stimulate proliferation of pTr cells was suppressed by EGFR siRNA, but not HIF-1α siRNA, but a significant decrease in EGF-induced HIF-1α protein occurred when pTr cells were transfected with HIF-1α siRNA. The results of the present study suggest that pTr cells adapt to oxygen deficiency and proliferate in response to an oxygen-dependent HIF-1 system, and that EGF at maternal–conceptus interface can increase the abundance of HIF-1α protein via translational regulation through AKT, ERK1/2 and mTOR signaling cascades. - Highlights: • HIF-1α expression is up-regulated in pTr cells under low oxygen concentrations. • EGF induces HIF-1α accumulation in pTr cells. • EGF-induced HIF-1α accumulation is blocked by de

  9. Expression of hypoxia-inducible factor-1 by trophectoderm cells in response to hypoxia and epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Wooyoung [Department of Animal Resources Science, Dankook University, Cheonan (Korea, Republic of); Bazer, Fuller W. [Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A& M University, College Station, TX (United States); Song, Gwonhwa, E-mail: ghsong@korea.ac.kr [Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul (Korea, Republic of); Kim, Jinyoung, E-mail: jinyoungkim@dankook.ac.kr [Department of Animal Resources Science, Dankook University, Cheonan (Korea, Republic of)

    2016-01-08

    The low oxygen environment in the uterine environment requires pre-implantation embryos to adapt to oxygen deficiency. Hypoxia-inducible factor (HIF)-1 is a master regulator whereby cells adapt to changes in oxygen concentrations. In addition to hypoxic conditions, non-hypoxic stimuli such as growth factors also activate expression of HIF-1. In this study, the mechanisms underlying low oxygen-dependent and epidermal growth factor (EGF)-dependent expression of HIF-1α were explored using porcine trophectoderm (pTr) cells. The results indicated that expression of HIF-1α and HIF-1β mRNAs was not affected by low concentrations of oxygen; however, hypoxic conditions markedly increased the abundance of HIF-1α protein, especially in nuclei of pTr cells. Even under normoxic conditions, the abundance of HIF-1α protein increased in response to EGF. This EGF-mediated increase in HIF-1α protein was blocked through inhibition of translation by cycloheximide. The inhibitors LY294002 (PI3K-AKT inhibitor), U0126 (inhibitor of ERK1/2) and rapamycin (mTOR inhibitor) also blocked the ability of EGF to increase HIF-1α protein and to phosphorylate AKT, ERK1/2 and mTOR proteins. Both hypoxia and EGF induced proliferation of pTr cells. This ability of EGF to stimulate proliferation of pTr cells was suppressed by EGFR siRNA, but not HIF-1α siRNA, but a significant decrease in EGF-induced HIF-1α protein occurred when pTr cells were transfected with HIF-1α siRNA. The results of the present study suggest that pTr cells adapt to oxygen deficiency and proliferate in response to an oxygen-dependent HIF-1 system, and that EGF at maternal–conceptus interface can increase the abundance of HIF-1α protein via translational regulation through AKT, ERK1/2 and mTOR signaling cascades. - Highlights: • HIF-1α expression is up-regulated in pTr cells under low oxygen concentrations. • EGF induces HIF-1α accumulation in pTr cells. • EGF-induced HIF-1α accumulation is blocked by de

  10. HIF1 Contributes to Hypoxia-Induced Pancreatic Cancer Cells Invasion via Promoting QSOX1 Expression

    Directory of Open Access Journals (Sweden)

    Chen-Ye Shi

    2013-08-01

    Full Text Available Background: Quiescin sulfhydryl oxidase 1 (QSOX1, which oxidizes sulfhydryl groups to form disulfide bonds in proteins, is found to be over-expressed in various pancreatic cancer cell lines and patients. QSOX1 promotes invasion of pancreatic cancer cells by activating MMP-2 and MMP-9. However, its regulatory mechanism remains largely undefined. Methods: Real-time PCR and Western blot were employed to detect the expression of QSOX1 in human pancreatic cancer cell lines under hypoxic condition. Luciferase reporter and ChIP assays were used to assess the regulation of QSOX1 by hypoxia-inducible factor 1 (HIF-1. Small interfering RNA (siRNA was applied to knock down endogenous expression of QSOX1. Matrigel-coated invasion chamber essays were conducted to detect the invasion capacity of QSOX1-depleted cells. Results: Both hypoxia and hypoxia mimicking reagent up-regulated the expression of QSOX1 in human pancreatic cancer cell lines. Knockdown of HIF-1α eliminated hypoxia induced QSOX1 expression. HIF-1α was found directly bound to two hypoxia-response elements (HRE of QSOX1 gene, both of which were required for HIF-1 induced QSOX1 expression. Moreover, QSOX1 silencing blocked hypoxia-induced pancreatic cancer cells invasion. Conclusion: QSOX1 is a direct target of HIF-1 and may contribute to hypoxia-induced pancreatic cancer cells invasion.

  11. mtDNA as a Mediator for Expression of Hypoxia-Inducible Factor 1α and ROS in Hypoxic Neuroblastoma Cells.

    Science.gov (United States)

    Kuo, Chung-Wen; Tsai, Meng-Han; Lin, Tsu-Kung; Tiao, Mao-Meng; Wang, Pei-Wen; Chuang, Jiin-Haur; Chen, Shang-Der; Liou, Chia-Wei

    2017-06-07

    Mitochondria consume O₂ to produce ATP and are critical for adaption of hypoxia, but the role of mitochondria in HIF-1α pathway is as yet unclear. In this study, mitochondrial DNA (mtDNA) enriched (SK-N-AS) and depleted (ρ⁰) cells of neuroblastoma were cultured in a hypoxic chamber to simulate a hypoxic condition and then the major components involved in mitochondrial related pathways, hypoxia-inducible factor 1α (HIF-1α) and reactive oxygen species (ROS) were measured. The results showed that hypoxia-stimulated exposure elevated expression of HIF-1α, which was additionally influenced by level of generated ROS within the cytosol. Moreover, elevation of HIF-1α also resulted in increases of lactate dehydrogenase A (LDH-A) and pyruvate dehydrogenase kinase 1 (PDK1) in both hypoxic cells. The expression of mitochondrial biogenesis related proteins and metabolic components were noted to increase significantly in hypoxic SK-N-AS cells, indicating that mtDNA was involved in mitochondrial retrograde signaling and metabolic pathways. An analysis of dynamic proteins found elevated levels of HIF-1α causing an increased expression of dynamin-related protein 1 (DRP1) during hypoxia; further, the existence of mtDNA also resulted in higher expression of DRP1 during hypoxia. By using siRNA of HIF-1α or DRP1, expression of DRP1 decreased after suppression of HIF-1α; moreover, the expression of HIF-1α was also affected by the suppression of DRP1. In this study, we demonstrated that mtDNA is a mediator of HIF-1α in eliciting metabolic reprogramming, and mitochondrial biogenesis. Identification of a mutual relationship between HIF-1α and DRP1 may be a critical tool in the future development of clinical applications.

  12. Aminoflavone, a ligand of the Aryl Hydrocarbon Receptor (AhR), inhibits HIF-1α expression in an AhR-independent fashion

    Science.gov (United States)

    Terzuoli, Erika; Puppo, Maura; Rapisarda, Annamaria; Uranchimeg, Badarch; Cao, Liang; Burger, Angelika M.; Ziche, Marina; Melillo, Giovanni

    2010-01-01

    Aminoflavone (AF), the active component of a novel anticancer agent (AFP464) in phase I clinical trials, is a ligand of the aryl hydrocarbon receptor (AhR). AhR dimerizes with HIF-1β/ARNT, which is shared with HIF-1α, a transcription factor critical for the response of cells to oxygen deprivation. To address whether pharmacological activation of the AhR pathway might be a potential mechanism for inhibition of HIF-1, we tested the effects of AF on HIF-1 expression. AF inhibited HIF-1α transcriptional activity and protein accumulation in MCF-7 cells. However, inhibition of HIF-1α by AF was independent from a functional AhR pathway. Indeed, AF inhibited HIF-1α expression in AhR100 cells, in which the AhR pathway is functionally impaired, yet did not induce cytotoxicity, providing evidence that these effects are mediated by distinct signaling pathways. Moreover, AF was inactive in MDA-MB-231 cells, yet inhibited HIF-1α in MDA-MB-231 cells transfected with the SULT1A1 gene. AF inhibited HIF-1α mRNA expression by approximately 50%. Notably, actinomycin-D completely abrogated the ability of AF to down-regulate HIF-1α mRNA, indicating that active transcription was required for the inhibition of HIF-1α expression. Finally, AF inhibited HIF-1α protein accumulation and the expression of HIF-1-target genes in MCF-7 xenografts. These results demonstrate that AF inhibits HIF-1α in an AhR-independent fashion and they unveil additional activities of AF that may be relevant for its further clinical development. PMID:20736373

  13. Retinal neuroprotection by hypoxic preconditioning is independent of hypoxia-inducible factor-1 alpha expression in photoreceptors.

    Science.gov (United States)

    Thiersch, Markus; Lange, Christina; Joly, Sandrine; Heynen, Severin; Le, Yun Zheng; Samardzija, Marijana; Grimm, Christian

    2009-06-01

    Hypoxic preconditioning stabilizes hypoxia-inducible factor (HIF) 1 alpha in the retina and protects photoreceptors against light-induced cell death. HIF-1 alpha is one of the major transcription factors responding to low oxygen tension and can differentially regulate a large number of target genes. To analyse whether photoreceptor-specific expression of HIF-1 alpha is essential to protect photoreceptors by hypoxic preconditioning, we knocked down expression of HIF-1 alpha specifically in photoreceptor cells, using the cyclization recombinase (Cre)-lox system. The Cre-mediated knockdown caused a 20-fold reduced expression of Hif-1 alpha in the photoreceptor cell layer. In the total retina, RNA expression was reduced by 65%, and hypoxic preconditioning led to only a small increase in HIF-1 alpha protein levels. Accordingly, HIF-1 target gene expression after hypoxia was significantly diminished. Retinas of Hif-1 alpha knockdown animals did not show any pathological alterations, and tolerated hypoxic exposure in a comparable way to wild-type retinas. Importantly, the strong neuroprotective effect of hypoxic preconditioning against light-induced photoreceptor degeneration persisted in knockdown mice, suggesting that hypoxia-mediated survival of light exposure does not depend on an autocrine action of HIF-1 alpha in photoreceptor cells. Hypoxia-mediated stabilization of HIF-2 alpha and phosphorylation of signal transducer and activator of transcription 3 (STAT 3) were not affected in the retinas of Hif-1 alpha knockdown mice. Thus, these factors are candidates for regulating the resistance of photoreceptors to light damage after hypoxic preconditioning, along with several potentially neuroprotective genes that were similarly induced in hypoxic knockdown and control mice.

  14. LncRNA MEG3 downregulation mediated by DNMT3b contributes to nickel malignant transformation of human bronchial epithelial cells via modulating PHLPP1 transcription and HIF-1α translation.

    Science.gov (United States)

    Zhou, C; Huang, C; Wang, J; Huang, H; Li, J; Xie, Q; Liu, Y; Zhu, J; Li, Y; Zhang, D; Zhu, Q; Huang, C

    2017-07-06

    Long noncoding RNAs (lncRNAs) are emerging as key factors in various fundamental cellular biological processes, and many of them are likely to have functional roles in tumorigenesis. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 that encodes a lncRNA, and the decreased MEG3 expression has been reported in multiple cancer tissues. However, nothing is known about the alteration and role of MEG3 in environmental carcinogen-induced lung tumorigenesis. Our present study, for the first time to the best of our knowledge, discovered that environmental carcinogen nickel exposure led to MEG3 downregulation, consequently initiating c-Jun-mediated PHLPP1 transcriptional inhibition and hypoxia-inducible factor-1α (HIF-1α) protein translation upregulation, in turn resulting in malignant transformation of human bronchial epithelial cells. Mechanistically, MEG3 downregulation was attributed to nickel-induced promoter hypermethylation via elevating DNMT3b expression, whereas PHLPP1 transcriptional inhibition was due to the decreasing interaction of MEG3 with its inhibitory transcription factor c-Jun. Moreover, HIF-1α protein translation was upregulated via activating the Akt/p70S6K/S6 axis resultant from PHLPP1 inhibition in nickel responses. Collectively, we uncover that nickel exposure results in DNMT3b induction and MEG3 promoter hypermethylation and expression inhibition, further reduces its binding to c-Jun and in turn increasing c-Jun inhibition of PHLPP1 transcription, leading to the Akt/p70S6K/S6 axis activation, and HIF-1α protein translation, as well as malignant transformation of human bronchial epithelial cells. Our studies provide a significant insight into understanding the alteration and role of MEG3 in nickel-induced lung tumorigenesis.

  15. Expression and clinical significance of the HIF-1a/ET-2 signaling pathway during the development and treatment of polycystic ovary syndrome.

    Science.gov (United States)

    Wang, Fan; Zhang, Zhenghong; Wang, Zhaokai; Xiao, Kaizhuan; Wang, Qing; Su, Jingqian; Wang, Zhengchao

    2015-04-01

    Polycystic ovary syndrome (PCOS) is a major health problem in reproductive-aged women worldwide, but the precise pathogenesis of PCOS remains unclear. Our previous study revealed that hypoxia-inducible factor (HIF)-1a mediated endothelin (ET)-2 signaling plays an important role in ovulation in rats. Therefore, the present study used a PCOS rat model to test the hypotheses that HIF-1a signaling is expressed and inhibited in ovaries during PCOS formation and that the HIF-1a/ET-2 signaling pathway is a target of dimethyldiguanide (DMBG) in the clinical treatment of PCOS. First, the development of a PCOS model and the effect of DMBG treatment were examined through ovarian histology and serum hormone levels, which were consistent with previous reports. Second, HIF-1a and ET-2 expression were detected by immunohistochemistry and western blot. The results showed decreased HIF-1a/ET-2 expression in the ovaries of PCOS rats, whereas DMBG treatment reversed the protein decreases and improved the PCOS symptoms. Third, to understand the molecular mechanism, HIF-1a/ET-2 mRNA expression was also examined. Interestingly, HIF-1a mRNA increased in the ovaries of PCOS rats, while ET-2 mRNA decreased, indicating that HIF-1a protein degradation may be involved in POCS development and treatment. Finally, HIF prolyl hydroxylase (PHD) activity was examined to further clarify the contribution of HIF-1a signaling to the development and treatment of PCOS. The results suggested that the inhibition of HIF-1a/ET-2 signaling may be caused by increased PHD activity in PCOS. DMBG-treated PCOS may further activate HIF-1a signaling at least partly through inhibiting PHD activity. Taken together, these results indicate that HIF-1a signaling is inhibited in a PCOS rat model through increasing PHD activity. DMBG treatment improved PCOS by rescuing this pathway, suggesting that HIF-1a signaling plays an important role in the development and treatment of PCOS. This HIF-1a-mediated ET-2 signaling pathway

  16. HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Jianfang Chen

    Full Text Available Multidrug resistance (MDR is one of the major reasons chemotherapy-based treatments fail. Hypoxia is generally associated with tumor chemoresistance. However, the correlation between the heterodimeric hypoxia-inducible factor-1 (HIF-1 and the multidrug resistance (MDR1 gene/transporter P-glycoprotein (P-gp remains unclear. This study aims to explore the molecular mechanisms of reversing colon cancer MDR by focusing on the target gene HIF-1α.A chemotherapeutic sensitivity assay was used to observe the efficiency of MDR reversal in LoVo multicellular spheroids (MCS. The apoptotic level induced by different drugs was examined by flow cytometry (FCM. Binding of HIF-1α to the MDR1 gene promoter was evaluated by Chromatin immunoprecipitation (ChIP. The relationship between HIF-1α/P-gp expression and sensitivity to chemotherapy was analyzed.The sensitivity of LoVo MCS to all four chemotherapy drugs was decreased to varying degrees under hypoxic conditions. After silencing the HIF-1α gene, the sensitivities of LoVo MCS to all four chemotherapy drugs were restored. The apoptotic levels that all the drugs induced were all decreased to various extents in the hypoxic group. After silencing HIF-1α, the apoptosis level induced by all four chemotherapy drugs increased. The expression of HIF-1α and P-gp was significantly enhanced in LoVo MCS after treatment with hypoxia. Inhibiting HIF-1α significantly decreased the expression of MDR1/P-gp mRNA or protein in both the LoVo monolayers and LoVo MCS. The ChIP assay showed that HIF-1α was bound to the MDR1 gene promoter. Advanced colon carcinoma patients with expression of both HIF-1α and P-gp were more resistant to chemotherapy than that with non expression.HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-gp. The expression of HIF-1α and MDR1/P-gp can be used as a predictive marker for chemotherapy resistance in colon cancer.

  17. Low hypoxia inducible factor-1α (HIF-1α) expression in testicular germ cell tumors - a major reason for enhanced chemosensitivity?

    Science.gov (United States)

    Shenoy, Niraj; Dronca, Roxana; Quevedo, Fernando; Boorjian, Stephen A; Cheville, John; Costello, Brian; Kohli, Manish; Witzig, Thomas; Pagliaro, Lance

    2017-08-01

    The molecular basis for enhanced chemosensitivity of testicular germ cell tumors (GCT) has been an area of great interest, as it could potentially give us therapeutic leads in other resistant malignancies. Thus far, however, the increased sensitivity of GCT has been variously attributed to multiple factors - an inability to detoxify cisplatin, a lack of export pumps, an inability to repair the DNA damage, an intact apoptotic cascade and lack of p53 mutation; but a unifying underlying etiology leading to the aforementioned processes and having a translational implication has so far been elusive. Herein, we offer evidence to support a potential significant role for the previously demonstrated low hypoxia inducible factor-1α (HIF-1α) expression in mediating the general exquisite chemosensitivity of testicular GCT, through the aforementioned processes. This molecular mechanism based hypothesis could have a significant translational implication in platinum refractory GCT as well as other platinum resistant malignancies.

  18. Repression of HNF1α-mediated transcription by amino-terminal enhancer of split (AES)

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Hee [Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, MN 55912 (United States); Gorman, Amanda A. [Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536 (United States); Singh, Puja [Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, MN 55912 (United States); Chi, Young-In, E-mail: ychi@hi.umn.edu [Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, MN 55912 (United States)

    2015-12-04

    HNF1α (Hepatocyte Nuclear Factor 1α) is one of the master regulators in pancreatic beta-cell development and function, and the mutations in Hnf1α are the most common monogenic causes of diabetes mellitus. As a member of the POU transcription factor family, HNF1α exerts its gene regulatory function through various molecular interactions; however, there is a paucity of knowledge in their functional complex formation. In this study, we identified the Groucho protein AES (Amino-terminal Enhancer of Split) as a HNF1α-specific physical binding partner and functional repressor of HNF1α-mediated transcription, which has a direct link to glucose-stimulated insulin secretion in beta-cells that is impaired in the HNF1α mutation-driven diabetes. - Highlights: • We identified AES as a transcriptional repressor for HNF1α in pancreatic beta-cell. • AES's repressive activity was HNF1α-specific and was not observed with HNF1β. • AES interacts with the transactivation domain of HNF1α. • Small molecules can be designed or discovered to disrupt this interaction and improve insulin secretion and glucose homeostasis.

  19. Repression of HNF1α-mediated transcription by amino-terminal enhancer of split (AES)

    International Nuclear Information System (INIS)

    Han, Eun Hee; Gorman, Amanda A.; Singh, Puja; Chi, Young-In

    2015-01-01

    HNF1α (Hepatocyte Nuclear Factor 1α) is one of the master regulators in pancreatic beta-cell development and function, and the mutations in Hnf1α are the most common monogenic causes of diabetes mellitus. As a member of the POU transcription factor family, HNF1α exerts its gene regulatory function through various molecular interactions; however, there is a paucity of knowledge in their functional complex formation. In this study, we identified the Groucho protein AES (Amino-terminal Enhancer of Split) as a HNF1α-specific physical binding partner and functional repressor of HNF1α-mediated transcription, which has a direct link to glucose-stimulated insulin secretion in beta-cells that is impaired in the HNF1α mutation-driven diabetes. - Highlights: • We identified AES as a transcriptional repressor for HNF1α in pancreatic beta-cell. • AES's repressive activity was HNF1α-specific and was not observed with HNF1β. • AES interacts with the transactivation domain of HNF1α. • Small molecules can be designed or discovered to disrupt this interaction and improve insulin secretion and glucose homeostasis.

  20. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies

    Science.gov (United States)

    Zimna, Agnieszka; Kurpisz, Maciej

    2015-01-01

    The cardiovascular system ensures the delivery of oxygen and nutrients to all cells, tissues, and organs. Under extended exposure to reduced oxygen levels, cells are able to survive through the transcriptional activation of a series of genes that participate in angiogenesis, glucose metabolism, and cell proliferation. The oxygen-sensitive transcriptional activator HIF-1 (hypoxia-inducible factor-1) is a key transcriptional mediator of the response to hypoxic conditions. The HIF-1 pathway was found to be a master regulator of angiogenesis. Whether the process is physiological or pathological, HIF-1 seems to participate in vasculature formation by synergistic correlations with other proangiogenic factors such as VEGF (vascular endothelial growth factor), PlGF (placental growth factor), or angiopoietins. Considering the important contributions of HIF-1 in angiogenesis and vasculogenesis, it should be considered a promising target for treating ischaemic diseases or cancer. In this review, we discuss the roles of HIF-1 in both physiological/pathophysiological angiogenesis and potential strategies for clinical therapy. PMID:26146622

  1. HIF-1α pathway: role, regulation and intervention for cancer therapy

    Directory of Open Access Journals (Sweden)

    Georgina N. Masoud

    2015-09-01

    Full Text Available Hypoxia-inducible factor-1 (HIF-1 has been recognized as an important cancer drug target. Many recent studies have provided convincing evidences of strong correlation between elevated levels of HIF-1 and tumor metastasis, angiogenesis, poor patient prognosis as well as tumor resistance therapy. It was found that hypoxia (low O2 levels is a common character in many types of solid tumors. As an adaptive response to hypoxic stress, hypoxic tumor cells activate several survival pathways to carry out their essential biological processes in different ways compared with normal cells. Recent advances in cancer biology at the cellular and molecular levels highlighted the HIF-1α pathway as a crucial survival pathway for which novel strategies of cancer therapy could be developed. However, targeting the HIF-1α pathway has been a challenging but promising progresses have been made in the past twenty years. This review summarizes the role and regulation of the HIF-1α in cancer, and recent therapeutic approaches targeting this important pathway.

  2. The epigenetic regulation of HIF-1α by SIRT1 in MPP{sup +} treated SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Su-Yan; Guo, Yan-Jie; Feng, Ya; Cui, Xin-Xin [Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080 (China); Kuo, Sheng-Han [Department of Neurology, College of Physicians and Surgeons, Columbia University, New York (United States); Liu, Te, E-mail: liute1979@126.com [Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031 (China); Wu, Yun-Cheng, E-mail: yunchw@medmail.com.cn [Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080 (China)

    2016-02-05

    Both silent information regulator 1 (SIRT1) and hypoxia inducible factor 1 (HIF-1) have been found to play important roles in the pathophysiology of Parkinson's disease (PD). However, their mechanisms and their relationship still require further study. In the present study, we focused on the change and relationship of SIRT1 and HIF-1α in PD. PD cell models were established by using methyl-4-phenylpyridinium (MPP{sup +}), which induced inhibition of cell proliferation, cell cycle arrest and apoptosis. We found that the expression of HIF-1α and its target genes VEGFA and LDHA increased and that SIRT1 expression was inhibited in MPP{sup +} treated cells. With further analysis, we found that the acetylation of H3K14 combined with the HIF-1α promoter was dramatically increased in cells treated with MPP{sup +}, which resulted in the transcriptional activation of HIF-1α. Moreover, the acetylation of H3K14 and the expression of HIF-1α increased when SIRT1 was knocked down, suggesting that SIRT1 was involved in the epigenetic regulation of HIF-1α. At last, phenformin, another mitochondrial complex1 inhibitor, was used to testify that the increased HIF-1a was not due to off target effects of MPP{sup +}. Therefore, our results support a link between PD and SIRT1/HIF-1α signaling, which may serve as a clue for understanding PD.

  3. Regular endurance training reduces the exercise induced HIF-1alpha and HIF-2alpha mRNA expression in human skeletal muscle in normoxic conditions

    DEFF Research Database (Denmark)

    Lundby, Carsten; Gassmann, Max; Pilegaard, Henriette

    2005-01-01

    and 2 (HIFs) are clearly related heterodimeric transcription factors that consist of an oxygen-depended alpha-subunit and a constitutive beta-subunit. With hypoxic exposure, HIF-1alpha and HIF-2alpha protein are stabilized. Upon heterodimerization, HIFs induce the transcription of a variety of genes......Regular exercise induces a variety of adaptive responses that enhance the oxidative and metabolic capacity of human skeletal muscle. Although the physiological adjustments of regular exercise have been known for decades, the underlying mechanisms are still unclear. The hypoxia inducible factors 1...... including erythropoietin (EPO), transferrin and its receptor, as well as vascular endothelial growth factor (VEGF) and its receptor. Considering that several of these genes are also induced with exercise, we tested the hypothesis that the mRNA level of HIF-1alpha and HIF-2alpha subunits increases...

  4. Mechanisms of transcriptional repression by EWS-FLl1 in Ewing Sarcoma

    International Nuclear Information System (INIS)

    Niedan, S.

    2012-01-01

    The EWS-FLI1 chimeric oncoprotein characterizing Ewing Sarcoma (ES) is a prototypic aberrant ETS transcription factor with activating and repressive gene regulatory functions. Mechanisms of transcriptional regulation, especially transcriptional repression by EWS-FLI1, are poorly understood. We report that EWS-FLI1 repressed promoters are enriched in forkhead box recognition motifs, and identify FOXO1 as a EWS-FLI1 suppressed master regulator responsible for a significant subset of EWS-FLI1 repressed genes. In addition to transcriptional FOXO1 regulation by direct promoter binding of EWS-FLI1, its subcellular localization and activity is regulated by CDK2 and AKT mediated phosphorylation downstream of EWS-FLI1. Functional restoration of nuclear FOXO1 expression in ES cells impaired proliferation and significantly reduced clonogenicity. Gene-expression profiling revealed a significant overlap between EWS-FLI1 repressed and FOXO1-activated genes. Treatment of ES cell lines with Methylseleninic acid (MSA) evoked reactivation of endogenous FOXO1 in the presence of EWS-FLI1 in a dose- and time-dependent manner and induced massive cell death which was found to be partially FOXO1-dependent. In an orthotopic xenograft mouse model, MSA increased FOXO1 expression in the tumor paralleled by a significant decrease in ES tumor growth. Together, these data suggest that a repressive sub-signature of EWS-FLI1 repressed genes precipitates suppression of FOXO1. FOXO1 re-activation by small molecules may therefore constitute a novel therapeutic strategy in the treatment of ES. (author) [de

  5. RNAi Knockdown of Hypoxia-Inducible Factor-1α Decreased the Proliferation, Migration, and Invasion of Hypoxic Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Chen, ChengShi; Liu, Rong; Wang, JianHua; Yan, ZhiPing; Qian, Sheng; Zhang, Wei

    2015-04-01

    The obstruction of hepatic arterial blood flow results in tumor tissue hypoxia and elevated expression of hypoxia-inducible factor-1alpha (HIF-1α). Our study evaluated whether lentivirus-mediated short interference RNA against HIF-1α inhibits proliferation, invasion, and migration of hepatocellular carcinoma (HCC) cells under hypoxia. RNA interference knockdown of HIF-1α was achieved by HIF-1α-directed lentiviral shRNA, in a rat HCC cell line cultured under hypoxia condition for varying length of times. The expression levels of HIF-1α and vascular endothelial growth factor were examined using reverse transcription polymerase chain reaction and western blot analyses. Cell proliferation, migration, and invasion were measured by cell viability, transwell migration, and invasion assays, respectively. Inhibition of HIF-1α expression by shRNA suppressed vascular endothelial growth factor mRNA and protein levels under both normoxia and hypoxia. It also suppressed cell migration and invasion, which were enhanced under hypoxic conditions. RNAi knockdown of HIF-1α further suppressed hypoxia-mediated inhibition of the cell proliferation. These data suggest that shRNA of HIF-1α could antagonize the hypoxia-mediated increase in hepatic cancer cell migration and invasion, and synergize with hypoxia to inhibit the cell proliferation in HCC cells.

  6. Expression and significance of HIF-1α and VEGF in rats with diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Hong-Tao Yan; Guan-Fang Su

    2014-01-01

    Objective:To investigate the expression of hypoxia inducible factor-1α(HIF-1α) and vascular endothelial growth factor(VEGF) in diabetic retinopathy(DR) rats and its effect on theDR occurrence and development.Methods:A total of120SD rats were randomly divided into trial group and control group with60 in each.STZi.p. was used in the trial group to establish theDM model, citrate buffer salt of same amount was usedi.p. to the control group.1,3 and6 months after injection, respective20 rats were sacrificed in each group to observe expression ofHIF-1α andVEGF in the rat retina tissue at different time points.Results:Expression ofHIF-1α andVEGF were negative in the control group; expression ofHIF-1α andVEGF protein in retinal tissue were weak after1 month ofDR mold formation.It showed progressive enhancement along with the progression in different organizations, differences between groups were significant (P<0.05).Conclusions:Expressions ofHIF-1α andVEGF were correlated with disease progression in early diabetic retinopathy.Retinal oxygen can induce over-expression ofHIF-1α andVEGF.It shows thatHIF-1α andVEGF play an important role in the pathogenesis ofDR.

  7. CypA, a gene downstream of HIF-1α, promotes the development of PDAC.

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    Full Text Available Hypoxia-inducible factor-1α (HIF-1α is a highly important transcription factor involved in cell metabolism. HIF-1α promotes glycolysis and inhibits of mitochondrial respiration in pancreatic ductal adenocarcinoma (PDAC. In response to tumor hypoxia, cyclophilin A (CypA is over-expressed in various cancer types, and is associated with cell apoptosis, tumor invasion, metastasis, and chemoresistance in PDAC. In this study, we showed that both HIF-1α and CypA expression were significantly associated with lymph node metastasis and tumor stage. The expression of CypA was correlated with HIF-1α. Moreover, the mRNA and protein expression of CypA markedly decreased or increased following the suppression or over-expression of HIF-1α in vitro. Chromatin immunoprecipitation analysis showed that HIF-1α could directly bind to the hypoxia response element (HRE in the CypA promoter regions and regulated CypA expression. Consistent with other studies, HIF-1α and CypA promoted PDAC cell proliferation and invasion, and suppressed apoptosis in vitro. Furthermore, we proved the combination effect of 2-methoxyestradiol and cyclosporin A both in vitro and in vivo. These results suggested that,CypA, a gene downstream of HIF-1α, could promote the development of PDAC. Thus, CypA might serve as a potential therapeutic target for PDAC.

  8. 4-Hydroxyphenylacetic Acid Attenuated Inflammation and Edema via Suppressing HIF-1α in Seawater Aspiration-Induced Lung Injury in Rats

    Science.gov (United States)

    Liu, Zhongyang; Xi, Ronggang; Zhang, Zhiran; Li, Wangping; Liu, Yan; Jin, Faguang; Wang, Xiaobo

    2014-01-01

    4-Hydroxyphenylacetic acid (4-HPA) is an active component of Chinese herb Aster tataricus which had been widely used in China for the treatment of pulmonary diseases. The aim of this study is to investigate the effect of 4-HPA on seawater aspiration-induced lung injury. Pulmonary inflammation and edema were assessed by enzyme-linked immunosorbent assay (ELISA), bronchoalveolar lavage fluid (BALF) white cell count, Evans blue dye analysis, wet to dry weight ratios, and histology study. Hypoxia-inducible factor-1α (HIF-1α) siRNA and permeability assay were used to study the effect of 4-HPA on the production of inflammatory cytokines and monolayer permeability in vitro. The results showed that 4-HPA reduced seawater instillation-induced mortality in rats. In lung tissues, 4-HPA attenuated hypoxia, inflammation, vascular leak, and edema, and decreased HIF-1α protein level. In primary rat alveolar epithelial cells (AEC), 4-HPA decreased hypertonicity- and hypoxia-induced HIF-1α protein levels through inhibiting the activations of protein translational regulators and via promoting HIF-1α protein degradation. In addition, 4-HPA lowered inflammatory cytokines levels through suppressing hypertonicity- and hypoxia-induced HIF-1α in NR8383 macrophages. Moreover, 4-HPA decreased monolayer permeability through suppressing hypertonicity and hypoxia-induced HIF-1α, which was mediated by inhibiting vascular endothelial growth factor (VEGF) in rat lung microvascular endothelial cell line (RLMVEC). In conclusion, 4-HPA attenuated inflammation and edema through suppressing hypertonic and hypoxic induction of HIF-1α in seawater aspiration-induced lung injury in rats. PMID:25050781

  9. Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome

    International Nuclear Information System (INIS)

    Hamidian, Arash; Stedingk, Kristoffer von; Munksgaard Thorén, Matilda; Mohlin, Sofie; Påhlman, Sven

    2015-01-01

    Hypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leads to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma. - Highlights: • Transcriptional control of HIF-2α is restricted to neural cell-derived tumors. • Enhanced transcription of HIF2A is not due to increased mRNA stability. • Chemical stabilization of the HIF-α subunits leads to increased HIF2A transcription. • ERRα regulates HIF2A mRNA expression in neuroblastoma. • High expression of ESRRA correlates to poor outcome in neuroblastoma

  10. Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome

    Energy Technology Data Exchange (ETDEWEB)

    Hamidian, Arash; Stedingk, Kristoffer von; Munksgaard Thorén, Matilda; Mohlin, Sofie; Påhlman, Sven, E-mail: sven.pahlman@med.lu.se

    2015-06-05

    Hypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leads to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma. - Highlights: • Transcriptional control of HIF-2α is restricted to neural cell-derived tumors. • Enhanced transcription of HIF2A is not due to increased mRNA stability. • Chemical stabilization of the HIF-α subunits leads to increased HIF2A transcription. • ERRα regulates HIF2A mRNA expression in neuroblastoma. • High expression of ESRRA correlates to poor outcome in neuroblastoma.

  11. Hypoxia-inducible factor 1α mediates neuroprotection of hypoxic postconditioning against global cerebral ischemia.

    Science.gov (United States)

    Zhu, Tingna; Zhan, Lixuan; Liang, Donghai; Hu, Jiaoyue; Lu, Zhiwei; Zhu, Xinyong; Sun, Weiwen; Liu, Liu; Xu, En

    2014-10-01

    Hypoxia administered after transient global cerebral ischemia (tGCI) has been shown to induce neuroprotection in adult rats, but the underlying mechanisms for this protection are unclear. Here, we tested the hypothesis that hypoxic postconditioning (HPC) induces neuroprotection through upregulation of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF), and that this involves phosphatidylinositol-3-kinase (PI3K), p38 mitogen-activated protein kinase (p38 MAPK), and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) pathways. The expression of HIF-1α, VEGF, and cleaved caspase-9 were determined by immunohistochemistry and Western blot. As pharmacologic interventions, the HIF-1α inhibitor 2-methoxyestradiol (2ME2), PI3K inhibitor LY294002, p38 MAPK inhibitor SB203580, and MEK inhibitor U0126 were administered before HPC or after tGCI. We found that HPC maintained the higher expression of HIF-1α and VEGF and decreased cleaved caspase-9 levels in CA1 after tGCI. These effects were reversed by 2ME2 administered before HPC, and the neuroprotection of HPC was abolished. LY294002 and SB203580 decreased the expression of HIF-1α and VEGF after HPC, whereas U0126 increased HIF-1α and VEGF after tGCI. These findings suggested that HIF-1α exerts neuroprotection induced by HPC against tGCI through VEGF upregulation and cleaved caspase-9 downregulation, and that the PI3K, p38 MAPK, and MEK pathways are involved in the regulation of HIF-1α and VEGF.

  12. HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Geis, Theresa, E-mail: geis@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Döring, Claudia, E-mail: C.Doering@em.uni-frankfurt.de [Dr. Senckenberg Institute of Pathology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Popp, Rüdiger, E-mail: popp@vrc.uni-frankfurt.de [Institute for Vascular Signalling, Centre for Molecular Medicine, Faculty of Medicine Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main (Germany); Grossmann, Nina, E-mail: grossmann@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Fleming, Ingrid, E-mail: fleming@vrc.uni-frankfurt.de [Institute for Vascular Signalling, Centre for Molecular Medicine, Faculty of Medicine Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main (Germany); Hansmann, Martin-Leo, E-mail: m.l.hansmann@em.uni-frankfurt.de [Dr. Senckenberg Institute of Pathology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Dehne, Nathalie, E-mail: dehne@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Brüne, Bernhard, E-mail: b.bruene@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2015-02-01

    Hypoxia promotes progression of hepatocellular carcinoma (HCC), not only affecting tumor cell proliferation and invasion, but also angiogenesis and thus, increasing the risk of metastasis. Hypoxia inducible factors (HIF)-1α and -2α cause adaptation of tumors to hypoxia, still with uncertainties towards the angiogenic switch. We created a stable knockdown of HIF-1α and HIF-2α in HepG2 cells and generated cocultures of HepG2 spheroids with embryonic bodies as an in vitro tumor model mimicking the cancer microenvironment. The naturally occuring oxygen and nutrient gradients within the cocultures allow us to question the role of distinct HIF isoforms in regulating HCC angiogenesis. In cocultures with a HIF-2α knockdown, angiogenesis was attenuated, while the knockdown of HIF-1α was without effect. Microarray analysis identified plasminogen activator inhibitor 1 (PAI-1) as a HIF-2α target gene in HepG2 cells. The knockdown of PAI-1 in HepG2 cells also lowered angiogenesis. Blocking plasmin, the downstream target of PAI-1, with aprotinin in HIF-2α knockdown (k/d) cells proved a cause–effect relation and restored angiogenesis, with no effect on control cocultures. Suggestively, HIF-2α increases PAI-1 to lower concentrations of active plasmin, thereby supporting angiogenesis. We conclude that the HIF-2α target gene PAI-1 favors the angiogenic switch in HCC. - Highlights: • HepG2 were cocultured with stem cells to mimic a cancer microenvironment in vitro. • A knockdown of HIF-2α reduces angiogenesis. • PAI-1 was identified as a HIF-2α target gene in HCC by microarray analysis. • HIF-2α induces the angiogenic switch via inhibition of plasmin.

  13. HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Geis, Theresa; Döring, Claudia; Popp, Rüdiger; Grossmann, Nina; Fleming, Ingrid; Hansmann, Martin-Leo; Dehne, Nathalie; Brüne, Bernhard

    2015-01-01

    Hypoxia promotes progression of hepatocellular carcinoma (HCC), not only affecting tumor cell proliferation and invasion, but also angiogenesis and thus, increasing the risk of metastasis. Hypoxia inducible factors (HIF)-1α and -2α cause adaptation of tumors to hypoxia, still with uncertainties towards the angiogenic switch. We created a stable knockdown of HIF-1α and HIF-2α in HepG2 cells and generated cocultures of HepG2 spheroids with embryonic bodies as an in vitro tumor model mimicking the cancer microenvironment. The naturally occuring oxygen and nutrient gradients within the cocultures allow us to question the role of distinct HIF isoforms in regulating HCC angiogenesis. In cocultures with a HIF-2α knockdown, angiogenesis was attenuated, while the knockdown of HIF-1α was without effect. Microarray analysis identified plasminogen activator inhibitor 1 (PAI-1) as a HIF-2α target gene in HepG2 cells. The knockdown of PAI-1 in HepG2 cells also lowered angiogenesis. Blocking plasmin, the downstream target of PAI-1, with aprotinin in HIF-2α knockdown (k/d) cells proved a cause–effect relation and restored angiogenesis, with no effect on control cocultures. Suggestively, HIF-2α increases PAI-1 to lower concentrations of active plasmin, thereby supporting angiogenesis. We conclude that the HIF-2α target gene PAI-1 favors the angiogenic switch in HCC. - Highlights: • HepG2 were cocultured with stem cells to mimic a cancer microenvironment in vitro. • A knockdown of HIF-2α reduces angiogenesis. • PAI-1 was identified as a HIF-2α target gene in HCC by microarray analysis. • HIF-2α induces the angiogenic switch via inhibition of plasmin

  14. De-repression of RaRF-mediated RAR repression by adenovirus E1A in the nucleolus.

    Science.gov (United States)

    Um, Soo-Jong; Youn, Hye Sook; Kim, Eun-Joo

    2014-02-21

    Transcriptional activity of the retinoic acid receptor (RAR) is regulated by diverse binding partners, including classical corepressors and coactivators, in response to its ligand retinoic acid (RA). Recently, we identified a novel corepressor of RAR called the retinoic acid resistance factor (RaRF) (manuscript submitted). Here, we report how adenovirus E1A stimulates RAR activity by associating with RaRF. Based on immunoprecipitation (IP) assays, E1A interacts with RaRF through the conserved region 2 (CR2), which is also responsible for pRb binding. The first coiled-coil domain of RaRF was sufficient for this interaction. An in vitro glutathione-S-transferase (GST) pull-down assay was used to confirm the direct interaction between E1A and RaRF. Further fluorescence microscopy indicated that E1A and RaRF were located in the nucleoplasm and nucleolus, respectively. However, RaRF overexpression promoted nucleolar translocation of E1A from the nucleoplasm. Both the RA-dependent interaction of RAR with RaRF and RAR translocation to the nucleolus were disrupted by E1A. RaRF-mediated RAR repression was impaired by wild-type E1A, but not by the RaRF binding-defective E1A mutant. Taken together, our data suggest that E1A is sequestered to the nucleolus by RaRF through a specific interaction, thereby leaving RAR in the nucleoplasm for transcriptional activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. NADPH oxidase 4 mediates insulin-stimulated HIF-1α and VEGF expression, and angiogenesis in vitro.

    Directory of Open Access Journals (Sweden)

    Dan Meng

    Full Text Available Acute intensive insulin therapy causes a transient worsening of diabetic retinopathy in type 1 diabetes patients and is related to VEGF expression. Reactive oxygen species (ROS have been shown to be involved in HIF-1α and VEGF expression induced by insulin, but the role of specific ROS sources has not been fully elucidated. In this study we examined the role of NADPH oxidase subunit 4 (Nox4 in insulin-stimulated HIF-1α and VEGF expression, and angiogenic responses in human microvascular endothelial cells (HMVECs. Here we demonstrate that knockdown of Nox4 by siRNA reduced insulin-stimulated ROS generation, the tyrosine phosphorylation of IR-β and IRS-1, but did not change the serine phosphorylation of IRS-1. Nox4 gene silencing had a much greater inhibitory effect on insulin-induced AKT activation than ERK1/2 activation, whereas it had little effect on the expression of the phosphatases such as MKP-1 and SHIP. Inhibition of Nox4 expression inhibited the transcriptional activity of VEGF through HIF-1. Overexpression of wild-type Nox4 was sufficient to increase VEGF transcriptional activity, and further enhanced insulin-stimulated the activation of VEGF. Downregulation of Nox4 expression decreased insulin-stimulated mRNA and protein expression of HIF-1α, but did not change the rate of HIF-1α degradation. Inhibition of Nox4 impaired insulin-stimulated VEGF expression, cell migration, cell proliferation, and tube formation in HMVECs. Our data indicate that Nox4-derived ROS are essential for HIF-1α-dependent VEGF expression, and angiogenesis in vitro induced by insulin. Nox4 may be an attractive therapeutic target for diabetic retinopathy caused by intensive insulin treatment.

  16. Lung macrophages contribute to house dust mite driven airway remodeling via HIF-1α.

    Directory of Open Access Journals (Sweden)

    Adam J Byrne

    Full Text Available HIF-1α is a transcription factor that is activated during hypoxia and inflammation and is a key regulator of angiogenesis in vivo. During the development of asthma, peribronchial angiogenesis is induced in response to aeroallergens and is thought to be an important feature of sustained chronic allergic inflammation. Recently, elevated HIF-1α levels have been demonstrated in both the lung tissue and bronchoalveolar lavage of allergic patients, respectively. Therefore, we investigated the role of HIF-1α on the development of angiogenesis and inflammation following acute and chronic allergen exposure. Our data shows that intranasal exposure to house dust mite (HDM increases the expression of HIF-1α in the lung, whilst reducing the expression of the HIF-1α negative regulators, PHD1 and PHD3. Blockade of HIF-1α in vivo, significantly decreased allergic inflammation and eosinophilia induced by allergen, due to a reduction in the levels of IL-5 and Eotaxin-2. Importantly, HIF-1α blockade significantly decreased levels of VEGF-A and CXCL1 in the lungs, which in turn led to a profound decrease in the recruitment of endothelial progenitor cells and a reduction of peribronchial angiogenesis. Furthermore, HDM or IL-4 treatment of primary lung macrophages resulted in significant production of both VEGF-A and CXCL1; inhibition of HIF-1α activity abrogated the production of these factors via an up-regulation of PHD1 and PHD3. These findings suggest that novel strategies to reduce the expression and activation of HIF-1α in lung macrophages may be used to attenuate allergen-induced airway inflammation and angiogenesis through the modulation of VEGF-A and CXCL1 expression.This study provides new insights into the role of HIF-1α in the development of peribronchial angiogenesis and inflammation in a murine model of allergic airway disease. These findings indicate that strategies to reduce activation of macrophage derived HIF-1α may be used as a target to

  17. The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans.

    Science.gov (United States)

    Grants, Jennifer M; Ying, Lisa T L; Yoda, Akinori; You, Charlotte C; Okano, Hideyuki; Sawa, Hitoshi; Taubert, Stefan

    2016-02-01

    Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals. Copyright © 2016 by the Genetics Society of America.

  18. Downregulation of a tumor suppressor RECK by hypoxia through recruitment of HDAC1 and HIF-1alpha to reverse HRE site in the promoter.

    Science.gov (United States)

    Lee, Kyung Ju; Lee, Kwang Youl; Lee, You Mie

    2010-05-01

    Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a tumor suppressor and the suppression of RECK is induced by Ras or Her-2/neu oncogenes. However, regulation of RECK under hypoxic microenvironment is largely unknown. Here, we identified that hypoxia significantly downregulates RECK mRNA and protein expression using semiquantitative RT-PCR, real-time RT-PCR and western blot analysis. This repression was reversed by the HDAC inhibitor, trichostatin A (TSA) and HIF-1 inhibitor, YC-1. Hypoxia-induced downregulation of RECK was abolished by knockdown of HDAC1 and HIF-1alpha with respective small interfering RNAs (siRNAs), whereas overexpression of HDAC1 and HIF-1alpha suppressed RECK expression similar to the level under hypoxic conditions. Transfection of a deletion mutant of the second reverse HRE (rHRE2, -2345 to -2333) site of RECK promoter completely removed RECK suppression under hypoxia, indicating that the rHRE2 site is responsible for the inhibition of RECK. Chromatin immunoprecipitation and DNA affinity precipitation assays demonstrated that HDAC1 and HIF-1alpha were recruited to the rHRE2 region of RECK promoter under hypoxic conditions, but the treatment of TSA or YC-1 inhibited their binding to the rHRE2 site. Moreover, TSA and YC-1 inhibited hypoxia-induced cancer cell migration, invasion and MMPs secretion. Taken together, we can conclude that hypoxia induces RECK downregulation through the recruitment of HDAC1 and HIF-1alpha to the rHRE2 site in the promoter and the inhibition of hypoxic RECK silencing would be a therapeutic and preventive target for early tumorigenesis. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Pretreatment HIF-1α and GLUT-1 expressions do not correlate with outcome after preoperative chemoradiotherapy in rectal cancer

    DEFF Research Database (Denmark)

    Havelund, Birgitte Mayland; Sørensen, Flemming Brandt; Lindebjerg, Jan

    2011-01-01

    The aim of the present study was to investigate hypoxia-inducible factor 1α (HIF-1α) and glucose transporter-1 (GLUT-1) expressions as predictors of response and survival after chemoradiotherapy in pretreatment biopsy specimens from patients with rectal cancer.......The aim of the present study was to investigate hypoxia-inducible factor 1α (HIF-1α) and glucose transporter-1 (GLUT-1) expressions as predictors of response and survival after chemoradiotherapy in pretreatment biopsy specimens from patients with rectal cancer....

  20. IL-1β upregulates Muc5ac expression via NF-κB-induced HIF-1α in asthma.

    Science.gov (United States)

    Wu, Shouzhen; Li, Hailong; Yu, Lijuan; Wang, Ning; Li, Xu; Chen, Wei

    2017-12-01

    The manifest and important feature in respiratory diseases, including asthma and COPD (chronic obstructive pulmonary disease), is the increased numbers and hypersecretion of goblet cells and overexpression of mucins, especially Muc5ac. Many proinflammatory cytokines play important roles in goblet cell metaplasia and overproduction of Muc5ac. However, the effect of IL-1β on Muc5ac expression in asthma remains unknown. Here, we detected the correlation between IL-1β and Muc5ac in asthma patients and further explored the mechanism of IL-1β-induced Muc5ac overexpression. Our results showed that Muc5ac and IL-1β were up-regulated in 41 patients with asthma and that Muc5ac overexpression was related with IL-1β in asthma (R 2 =0.668, p≪0.001). Furthermore, the correlation between IL-1β and Muc5ac is higher in severe group than that in moderate group. In vitro experiments with normal human bronchial epithelial cells (NHBECs) showed that IL-1β up-regulated Muc5ac expression in NHBEC in a time- and dosage-dependent manner. Hypoxia-induced HIF-1α was responsible for Muc5ac expression mediated by IL-1β. Knocking down HIF-1α by siRNA decreased Muc5ac expression under hypoxia even in IL-1β-treated NHBEC cells. Luciferase reporter assay showed that HIF-1α enhanced Muc5ac promoter activity in HEK293T cells. HIF-1α could specifically bind to the promoter of Muc5ac by EMSA. The correlation among IL-1β, HIF-1α and Muc5ac was observed in patients with asthma. Mechanically, NF-κB activation was essential to IL-1β-induced HIF-1α upregulation via the canonical pathway of NF-κB. The level of nuclear p65, a subunit of NF-κB, was obviously increased in NHBEC cells under IL-1β treatment. IL-1β did not change either HIF-1α or Muc5ac expression when inhibiting NF-κB signaling with Bay11-7082, an inhibitor of NF-κB. Collectively, we concluded that IL-1β up-regulated Muc5ac expression via NF-κB-induced HIF-1α in asthma and provided a potential therapeutic target for

  1. Computational modeling on the recognition of the HRE motif by HIF-1: molecular docking and molecular dynamics studies.

    Science.gov (United States)

    Sokkar, Pandian; Sathis, Vani; Ramachandran, Murugesan

    2012-05-01

    Hypoxia inducible factor-1 (HIF-1) is a bHLH-family transcription factor that controls genes involved in glycolysis, angiogenesis, migration, as well as invasion factors that are important for tumor progression and metastasis. HIF-1, a heterodimer of HIF-1α and HIF-1β, binds to the hypoxia responsive element (HRE) present in the promoter regions of hypoxia responsive genes, such as vascular endothelial growth factor (VEGF). Neither the structure of free HIF-1 nor that of its complex with HRE is available. Computational modeling of the transcription factor-DNA complex has always been challenging due to their inherent flexibility and large conformational space. The present study aims to model the interaction between the DNA-binding domain of HIF-1 and HRE. Experiments showed that rigid macromolecular docking programs (HEX and GRAMM-X) failed to predict the optimal dimerization of individually modeled HIF-1 subunits. Hence, the HIF-1 heterodimer was modeled based on the phosphate system positive regulatory protein (PHO4) homodimer. The duplex VEGF-DNA segment containing HRE with flanking nucleotides was modeled in the B form and equilibrated via molecular dynamics (MD) simulation. A rigid docking approach was used to predict the crude binding mode of HIF-1 dimer with HRE, in which the putative contacts were found to be present. An MD simulation (5 ns) of the HIF-1-HRE complex in explicit water was performed to account for its flexibility and to optimize its interactions. All of the conserved amino acid residues were found to play roles in the recognition of HRE. The present work, which sheds light on the recognition of HRE by HIF-1, could be beneficial in the design of peptide or small molecule therapeutics that can mimic HIF-1 and bind with the HRE sequence.

  2. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Wang

    Full Text Available Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC. The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.

  3. Chronic deficiency of nitric oxide affects hypoxia inducible factor-1α (HIF-1α stability and migration in human endothelial cells.

    Directory of Open Access Journals (Sweden)

    Maria Grazia Cattaneo

    Full Text Available BACKGROUND: Endothelial dysfunction in widely diffuse disorders, such as atherosclerosis, hypertension, diabetes and senescence, is associated with nitric oxide (NO deficiency. Here, the behavioural and molecular consequences deriving from NO deficiency in human umbilical vein endothelial cells (HUVECs were investigated. RESULTS: Endothelial nitric oxide synthase (eNOS was chronically inhibited either by N(G-Nitro-L-arginine methyl ester (L-NAME treatment or its expression was down-regulated by RNA interference. After long-term L-NAME treatment, HUVECs displayed a higher migratory capability accompanied by an increased Vascular Endothelial Growth Factor (VEGF and VEGF receptor-2 (kinase insert domain receptor, KDR expression. Moreover, both pharmacological and genetic inhibition of eNOS induced a state of pseudohypoxia, revealed by the stabilization of hypoxia-inducible factor-1α (HIF-1α. Furthermore, NO loss induced a significant decrease in mitochondrial mass and energy production accompanied by a lower O(2 consumption. Notably, very low doses of chronically administered DETA/NO reverted the HIF-1α accumulation, the increased VEGF expression and the stimulated migratory behaviour detected in NO deficient cells. CONCLUSION: Based on our results, we propose that basal release of NO may act as a negative controller of HIF-1α levels with important consequences for endothelial cell physiology. Moreover, we suggest that our experimental model where eNOS activity was impaired by pharmacological and genetic inhibition may represent a good in vitro system to study endothelial dysfunction.

  4. Prognostic impact of HIF-1{alpha} expression in patients with definitive radiotherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dellas, K.; Bache, M.; Kappler, M.; Haensgen, G. [Halle-Wittenberg Univ., Halle (Germany). Dept. of Radiotherapy; Pigorsch, S.U. [Technische Univ. Muenchen (Germany). Dept. of Radiotherapy and Radiation Oncology; Taubert, H.; Holzhausen, H.J. [Halle-Wittenberg Univ., Halle (Germany). Inst. of Pathology; Holzapfel, D.; Zorn, E. [Halle-Wittenberg Univ., Halle (Germany). Dept. of Radiotherapy; Halle-Wittenberg Univ., Halle (Germany). Inst. of Pathology

    2008-03-15

    Purpose: To investigate the relationship between the hypoxia-inducible factor-(HIF-)1{alpha} expression in tumor tissue, tumor oxygenation and hemoglobin levels in patients with advanced cervical cancers prior to radiotherapy and the effect on clinical outcome. Patients and Methods: The investigation included 44 patients who underwent definitive radiotherapy for advanced cervical cancers between May 1995 and March 1999. Tumor biopsies were taken prior to treatment, and HIF-1{alpha} expression was determined by immunohistochemistry. In the same tumor area, tumor tissue oxygenation (pO{sub 2}) was measured using the Eppendorf device. Results: The 5-year cancer-specific survival of all patients was 60%. Twelve of 44 tumor specimens were HIF-1{alpha}-negative with a significantly better 5-year survival (92 {+-} 8%) versus 32 patients who were HIF-1{alpha}-positive (45 {+-} 10%; p < 0.02). There was no correlation between HIF-1{alpha} expression and tumor oxygenation (p = 0.57 both for pO{sub 2} median and hypoxic fraction < 5 mmHg vs. HIF-1{alpha} expression). However, patients with hemoglobin levels < 11 g/dl showed elevated HIF-1{alpha} expression compared to patients with hemoglobin levels > 12.5 g/dl (p = 0.04). Furthermore, HIF-1{alpha} correlated with vascular endothelial growth factor expression (p = 0.002). In a multivariate Cox regression model, HIF-1{alpha} expression (relative risk [RR] = 7.5; p = 0.05) revealed an increased risk of tumor-related death. Conclusion: The study indicates, that endogenous tumor markers such as HIF-1{alpha} may serve as prognostic markers of clinical outcome concerning cervical cancer after primary radiotherapy. (orig.)

  5. Hypoxia-Independent Downregulation of Hypoxia-Inducible Factor 1 Targets by Androgen Deprivation Therapy in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ragnum, Harald Bull [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Røe, Kathrine [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Division of Medicine, Department of Oncology, Akershus University Hospital, Lørenskog (Norway); Holm, Ruth; Vlatkovic, Ljiljana [Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Nesland, Jahn Marthin [Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Medical Faculty, University of Oslo, Oslo (Norway); Aarnes, Eva-Katrine [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Ree, Anne Hansen [Division of Medicine, Department of Oncology, Akershus University Hospital, Lørenskog (Norway); Medical Faculty, University of Oslo, Oslo (Norway); Flatmark, Kjersti [Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Department of Gastrointestinal Surgery, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Seierstad, Therese [Department of Radiology and Nuclear Medicine, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Faculty of Health Sciences, Buskerud University College, Drammen (Norway); Lilleby, Wolfgang [Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Lyng, Heidi, E-mail: heidi.lyng@rr-research.no [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway)

    2013-11-15

    Purpose: We explored changes in hypoxia-inducible factor 1 (HIF1) signaling during androgen deprivation therapy (ADT) of androgen-sensitive prostate cancer xenografts under conditions in which no significant change in immunostaining of the hypoxia marker pimonidazole had occurred. Methods and Materials: Gene expression profiles of volume-matched androgen-exposed and androgen-deprived CWR22 xenografts, with similar pimonidazole-positive fractions, were compared. Direct targets of androgen receptor (AR) and HIF1 transcription factors were identified among the differentially expressed genes by using published lists. Biological processes affected by ADT were determined by gene ontology analysis. HIF1α protein expression in xenografts and biopsy samples from 35 patients receiving neoadjuvant ADT was assessed by immunohistochemistry. Results: A total of 1344 genes showed more than 2-fold change in expression by ADT, including 35 downregulated and 5 upregulated HIF1 targets. Six genes were shared HIF1 and AR targets, and their downregulation was confirmed with quantitative RT-PCR. Significant suppression of the biological processes proliferation, metabolism, and stress response in androgen-deprived xenografts was found, consistent with tumor regression. Nineteen downregulated HIF1 targets were involved in those significant biological processes, most of them in metabolism. Four of these were shared AR and HIF1 targets, including genes encoding the regulatory glycolytic proteins HK2, PFKFB3, and SLC2A1. Most of the downregulated HIF1 targets were induced by hypoxia in androgen-responsive prostate cancer cell lines, confirming their role as hypoxia-responsive HIF1 targets in prostate cancer. Downregulation of HIF1 targets was consistent with the absence of HIF1α protein in xenografts and downregulation in patients by ADT (P<.001). Conclusions: AR repression by ADT may lead to downregulation of HIF1 signaling independently of hypoxic fraction, and this may contribute to

  6. Hypoxia-Independent Downregulation of Hypoxia-Inducible Factor 1 Targets by Androgen Deprivation Therapy in Prostate Cancer

    International Nuclear Information System (INIS)

    Ragnum, Harald Bull; Røe, Kathrine; Holm, Ruth; Vlatkovic, Ljiljana; Nesland, Jahn Marthin; Aarnes, Eva-Katrine; Ree, Anne Hansen; Flatmark, Kjersti; Seierstad, Therese; Lilleby, Wolfgang; Lyng, Heidi

    2013-01-01

    Purpose: We explored changes in hypoxia-inducible factor 1 (HIF1) signaling during androgen deprivation therapy (ADT) of androgen-sensitive prostate cancer xenografts under conditions in which no significant change in immunostaining of the hypoxia marker pimonidazole had occurred. Methods and Materials: Gene expression profiles of volume-matched androgen-exposed and androgen-deprived CWR22 xenografts, with similar pimonidazole-positive fractions, were compared. Direct targets of androgen receptor (AR) and HIF1 transcription factors were identified among the differentially expressed genes by using published lists. Biological processes affected by ADT were determined by gene ontology analysis. HIF1α protein expression in xenografts and biopsy samples from 35 patients receiving neoadjuvant ADT was assessed by immunohistochemistry. Results: A total of 1344 genes showed more than 2-fold change in expression by ADT, including 35 downregulated and 5 upregulated HIF1 targets. Six genes were shared HIF1 and AR targets, and their downregulation was confirmed with quantitative RT-PCR. Significant suppression of the biological processes proliferation, metabolism, and stress response in androgen-deprived xenografts was found, consistent with tumor regression. Nineteen downregulated HIF1 targets were involved in those significant biological processes, most of them in metabolism. Four of these were shared AR and HIF1 targets, including genes encoding the regulatory glycolytic proteins HK2, PFKFB3, and SLC2A1. Most of the downregulated HIF1 targets were induced by hypoxia in androgen-responsive prostate cancer cell lines, confirming their role as hypoxia-responsive HIF1 targets in prostate cancer. Downregulation of HIF1 targets was consistent with the absence of HIF1α protein in xenografts and downregulation in patients by ADT (P<.001). Conclusions: AR repression by ADT may lead to downregulation of HIF1 signaling independently of hypoxic fraction, and this may contribute to

  7. ON THE PRO-METASTATIC STRESS RESPONSE TO CANCER THERAPIES: EVIDENCE FOR A POSITIVE CO-OPERATION BETWEEN TIMP-1, HIF-1α, AND miR-210

    Directory of Open Access Journals (Sweden)

    Haissi eCui

    2012-07-01

    Full Text Available In contrast to expectations in the past that tumor starvation or unselective inhibition of proteolytic activity would cure cancer, there is accumulating evidence that microenvironmental stress, such as hypoxia or broad spectrum inhibition of metalloproteinases can promote metastasis. In fact, malignant tumor cells, due to their genetic and epigenetic instability, are predisposed to react to stress by adaptation and, if the stress persists, by escape and formation of metastasis. Recent recognition of the concepts of dynamic evolution as well as population and systems biology is extremely helpful to understand the disappointments of clinical trials with new drugs and may lead to paradigm-shifts in therapy strategies. This must be complemented by an increased understanding of molecular mechanism involved in stress response. Here, we review new roles of Hypoxia-inducible factor-1 (HIF-1, one transcription factor regulating stress response-related gene expression: HIF-1 is crucial for invasion and metastasis, independent from its pro-survival function. In addition, HIF-1 mediates pro-metastatic microenvironmental changes of the proteolytic balance as triggered by high systemic levels of tissue inhibitor of metalloproteinases-1 (TIMP-1, typical for many aggressive cancers, and regulates the metabolic switch to glycolysis, notably via activation of the microRNA miR-210. There is preliminary evidence that TIMP-1 also induces miR-210. Such positive-regulatory co-operation of HIF-1α, miR-210, and TIMP-1, all described to correlate with bad prognosis of cancer patients, opens new perspectives of gaining insight into molecular mechanisms of metastasis-inducing evasion of tumor cells from stress.

  8. Intermittent induction of HIF-1α produces lasting effects on malignant progression independent of its continued expression.

    Directory of Open Access Journals (Sweden)

    Hyunsung Choi

    Full Text Available Dysregulation of hypoxia-inducible transcription factors HIF-1α and HIF-2α correlates with poor prognosis in human cancers; yet, divergent and sometimes opposing activities of these factors in cancer biology have been observed. Adding to this complexity is that HIF-1α apparently possesses tumor-suppressing activities, as indicated by the loss-of-function mutations or even homozygous deletion of HIF1A in certain human cancers. As a step towards understanding this complexity, we employed 8-week intermittent induction of a stable HIF-1α variant, HIF1α(PP, in various cancer cell lines and examined the effects on malignant progression in xenografts of immunocompromised mice in comparison to those of HIF2α(PP. Although 8-week treatment led to eventual loss of HIF1α(PP expression, treated osteosarcoma U-2 OS cells acquired tumorigenicity in the subcutaneous tissue. Furthermore, the prior treatment resulted in widespread invasion of malignant glioma U-87 MG cells in the mouse brain and sustained growth of U-118 MG glioma cells. The lasting effects of HIF-1α on malignant progression are specific because neither HIF2α(PP nor β-galactosidase yielded similar effects. By contrast, transient expression of HIF1α(PP in U-87 MG cells or constitutive expression of HIF1α(PP but not HIF2α(PP in a patient-derived glioma sphere culture inhibited tumor growth and spread. Our results indicate that intermittent induction of HIF-1α produces lasting effects on malignant progression even at its own expense.

  9. HIF-1α-induced HSP70 regulates anabolic responses in articular chondrocytes under hypoxic conditions.

    Science.gov (United States)

    Tsuchida, Shinji; Arai, Yuji; Takahashi, Kenji A; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Inoue, Hiroaki; Ikoma, Kazuya; Ueshima, Keiichiro; Matsuki, Tomohiro; Mazda, Osam; Kubo, Toshikazu

    2014-08-01

    We assessed whether heat shock protein 70 (HSP70) is involved in hypoxia inducible factor 1 alpha (HIF-1α)-dependent anabolic pathways in articular chondrocytes under hypoxic conditions. Primary rabbit chondrocytes were cultured under normoxia (20% oxygen condition) or hypoxia (1% oxygen condition). Alternatively, cells cultured under normoxia were treated with CoCl2 , which induces HIF-1α, to simulate hypoxia, or transfected with siRNAs targeting HIF-1α (si-HIF-1α) and HSP70 (si-HSP70) under hypoxia. HSP70 expression was enhanced by the increased expression of HIF-1α under hypoxia or simulated hypoxia, but not in the presence of si-HIF-1α. Hypoxia-induced overexpression of ECM genes was significantly suppressed by si-HIF-1α or si-HSP70. Cell viability positively correlated with hypoxia, but transfection with si-HIF-1α or si-HSP70 abrogated the chondroprotective effects of hypoxia. Although LDH release from sodium nitroprusside-treated cells and the proportion of TUNEL positive cells were decreased under hypoxia, transfection with si-HIF-1α or si-HSP70 almost completely blocked these effects. These findings indicated that HIF-1α-induced HSP70 overexpression increased the expression levels of ECM genes and cell viability, and protected chondrocytes from apoptosis. HIF-1α may regulate the anabolic effects of chondrocytes under hypoxic conditions by regulating HSP70 expression. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Hypoxia-inducible factor 1 regulates heat and cold pain sensitivity and persistence.

    Science.gov (United States)

    Kanngiesser, Maike; Mair, Norbert; Lim, Hee-Young; Zschiebsch, Katja; Blees, Johanna; Häussler, Annett; Brüne, Bernhard; Ferreiròs, Nerea; Kress, Michaela; Tegeder, Irmgard

    2014-06-01

    The present study assessed the functions of the transcription factor hypoxia-inducible factor (HIF) in sensory neurons in models of acute, inflammatory, ischemic, and neuropathic pain. The alpha subunit, HIF1α, was specifically deleted in neurons of the dorsal root ganglia by mating HIF1α(fl/fl) mice with SNScre mice. SNS-HIF1α(-/-) mice were more sensitive to noxious heat and cold pain stimulation than were HIF1α(fl/fl) control mice. They also showed heightened first-phase nociceptive responses in the formalin and capsaicin tests with increased numbers of cFos-positive neurons in the dorsal horn, and intensified hyperalgesia in early phases after paw inflammation and hind limb ischemia/reperfusion. The behavioral cold and heat pain hypersensitivity was explained by increased calcium fluxes after transient receptor potential channel activation in primary sensory neurons of SNS-HIF1α(-/-) mice and lowered electrical activation thresholds of sensory fibers. SNS-HIF1α(-/-) mice however, developed less neuropathic pain after sciatic nerve injury, which was associated with an abrogation of HIF1-mediated gene up-regulation. The results suggest that HIF1α is protective in terms of acute heat and cold pain but in case of ongoing activation in injured neurons, it may promote the development of neuropathic pain. The duality of HIF1 in pain regulation may have an impact on the side effects of drugs targeting HIF1, which are being developed, for example, as anticancer agents. Specifically, in patients with cancer neuropathy, however, temporary HIF1 inhibition might provide a welcome combination of growth and pain reduction.

  11. SDF-1 alpha expression during wound healing in the aged is HIF dependent.

    Science.gov (United States)

    Loh, Shang A; Chang, Edward I; Galvez, Michael G; Thangarajah, Hariharan; El-ftesi, Samyra; Vial, Ivan N; Lin, Darius A; Gurtner, Geoffrey C

    2009-02-01

    Age-related impairments in wound healing are associated with decreased neovascularization, a process that is regulated by hypoxia-responsive cytokines, including stromal cell-derived factor (SDF)-1 alpha. Interleukin-1 beta is an important inflammatory cytokine involved in wound healing and is believed to regulate SDF-1 alpha expression independent of hypoxia signaling. Thus, the authors examined the relative importance of interleukin (IL)-1 beta and hypoxia-inducible factor (HIF)-1 alpha on SDF-1 alpha expression in aged wound healing. Young and aged mice (n = 4 per group) were examined for wound healing using a murine excisional wound model. Wounds were harvested at days 0, 1, 3, 5, and 7 for histologic analysis, immunohistochemistry, enzyme-linked immunosorbent assay, and Western blot. An engineered wild-type and mutated SDF luciferase reporter construct were used to determine HIF transactivation. Aged mice demonstrated significantly impaired wound healing, reduced granulation tissue, and increased epithelial gap compared with young controls. Real-time polymerase chain reaction demonstrated reduced SDF-1 alpha levels in aged wounds that correlated with reduced CD31+ neovessels. Western blots revealed decreased HIF-1 alpha protein in aged wounds. However, both IL-1 beta and macrophage infiltrate were unchanged between young and aged animals. Using the wild-type and mutated SDF luciferase reporter construct in which the hypoxia response element was deleted, only young fibroblasts were able to respond to IL-1 beta stimulation, and this response was abrogated by mutating the HIF-binding sites. This suggests that HIF binding is essential for SDF-1 transactivation in response to both inflammatory and hypoxic stimuli. SDF-1 alpha deficiency observed during aged wound healing is attributable predominantly to decreased HIF-1 alpha levels rather than impaired IL-1 beta expression.

  12. Basal HIF-1a expression levels are not predictive for radiosensitivity of human cancer cell lines

    International Nuclear Information System (INIS)

    Schilling, D.; Multhoff, G.; Helmholtz Center Munich, CCG - Innate Immunity in Tumor Biology, Munich; Bayer, C.; Emmerich, K.; Molls, M.; Vaupel, P.; Huber, R.M.

    2012-01-01

    High levels of hypoxia inducible factor (HIF)-1a in tumors are reported to be associated with tumor progression and resistance to therapy. To examine the impact of HIF-1a on radioresistance under normoxia, the sensitivity towards irradiation was measured in human tumor cell lines that differ significantly in their basal HIF-1a levels. HIF-1a levels were quantified in lysates of H1339, EPLC-272H, A549, SAS, XF354, FaDu, BHY, and CX- tumor cell lines by ELISA. Protein levels of HIF-1a, HIF-2a, carbonic anhydrase IX (CA IX), and GAPDH were assessed by Western blot analysis. Knock-down experiments were performed using HIF-1a siRNA. Clonogenic survival after irradiation was determined by the colony forming assay. According to their basal HIF-1a status, the tumor cell lines were divided into low (SAS, XF354, FaDu, A549, CX-), intermediate (EPLC-272H, BHY), and high (H1339) HIF-1a expressors. The functionality of the high basal HIF-1a expression in H1339 cells was proven by reduced CA IX expression after knocking-down HIF-1a. Linear regression analysis revealed no correlation between basal HIF-1a levels and the survival fraction at either 2 or 4 Gy in all tumor cell lines investigated. Our data suggest that basal HIF-1a levels in human tumor cell lines do not predict their radiosensitivity under normoxia. (orig.)

  13. HIF-mediated innate immune responses: cell signaling and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Harris AJ

    2014-05-01

    Full Text Available Alison J Harris, AA Roger Thompson, Moira KB Whyte, Sarah R Walmsley Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield, UK Abstract: Leukocytes recruited to infected, damaged, or inflamed tissues during an immune response must adapt to oxygen levels much lower than those in the circulation. Hypoxia inducible factors (HIFs are key mediators of cellular responses to hypoxia and, as in other cell types, HIFs are critical for the upregulation of glycolysis, which enables innate immune cells to produce adenosine triphosphate anaerobically. An increasing body of evidence demonstrates that hypoxia also regulates many other innate immunological functions, including cell migration, apoptosis, phagocytosis of pathogens, antigen presentation and production of cytokines, chemokines, and angiogenic and antimicrobial factors. Many of these functions are mediated by HIFs, which are not only stabilized posttranslationally by hypoxia, but also transcriptionally upregulated by inflammatory signals. Here, we review the role of HIFs in the responses of innate immune cells to hypoxia, both in vitro and in vivo, with a particular focus on myeloid cells, on which the majority of studies have so far been carried out. Keywords: hypoxia, neutrophils, monocytes, macrophages

  14. Development of 1-aryl-3-furanyl/thienyl-imidazopyridine templates for inhibitors against hypoxia inducible factor (HIF)-1 transcriptional activity.

    Science.gov (United States)

    Fuse, Shinichiro; Ohuchi, Toshiaki; Asawa, Yasunobu; Sato, Shinichi; Nakamura, Hiroyuki

    2016-12-15

    1,3-Disubstituted-imidazopyridines were designed for developing inhibitors against HIF-1 transcriptional activity. Designed compounds were rapidly synthesized from a key aromatic scaffold via microwave-assisted Suzuki-Miyaura coupling/CH direct arylation sequence. Evaluation of ability to inhibit the hypoxia induced transcriptional activity of HIF-1 revealed that the compound 2i and 3a retained the same level of the inhibitory activity comparing with that of known inhibitor, YC-1 (1). Identified, readily accessible 1-aryl-3-furanyl/thienyl-imidazopyridine templates should be useful for future drug development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Potent inhibition of tumoral hypoxia-inducible factor 1α by albendazole

    International Nuclear Information System (INIS)

    Pourgholami, Mohammad H; Cai, Zhao Y; Badar, Samina; Wangoo, Kiran; Poruchynsky, Marianne S; Morris, David L

    2010-01-01

    Emerging reports suggest resistance, increased tumor invasiveness and metastasis arising from treatment with drugs targeting vascular endothelial growth factor (VEGF). It is believed that increased tumoral hypoxia plays a prominent role in the development of these phenomena. Inhibition of tumoral hypoxia inducible factor (HIF-1α) is thus becoming an increasingly attractive therapeutic target in the treatment of cancer. We hypothesized that the anti-VEGF effect of albendazole (ABZ) could be mediated through inhibition of tumoral HIF-1α. In vitro, the effects of ABZ on HIF-1α levels in human ovarian cancer cells (OVCAR-3) were investigated using hypoxic chamber or desferrioxamine (DFO) induced-hypoxia. In vivo, the effects of ABZ (150 mg/kg, i.p., single dose) on the tumor levels of HIF-1α and VEGF protein and mRNA were investigated by western blotting, RT-PCR and real time-PCR. In vitro, ABZ inhibited cellular HIF-1α protein accumulation resulting from placement of cells under hypoxic chamber or exposure to DFO. In vivo, tumors excised from vehicle treated mice showed high levels of both HIF-1α and VEGF. Whereas, tumoral HIF-1α and VEGF protein levels were highly suppressed in ABZ treated mice. Tumoral VEGFmRNA (but not HIF-1αmRNA) was also found to be highly suppressed by ABZ. These results demonstrate for the first time the effects of an acute dose of ABZ in profoundly suppressing both HIF-1α and VEGF within the tumor. This dual inhibition may provide additional value in inhibiting angiogenesis and be at least partially effective in inhibiting tumoral HIF-1α surge, tumor invasiveness and metastasis

  16. Loss of Mel-18 induces tumor angiogenesis through enhancing the activity and expression of HIF-1α mediated by the PTEN/PI3K/Akt pathway.

    Science.gov (United States)

    Park, J H; Lee, J Y; Shin, D H; Jang, K S; Kim, H J; Kong, Gu

    2011-11-10

    Mel-18 has been implicated in several processes in tumor progression, in which the Akt pathway is involved as an important key molecular event. However, the function of Mel-18 in human cancers has not been fully established yet. Here, we examined the effect of Mel-18 on tumor angiogenesis in human breast cancer, and found that Mel-18 was a novel regulator of HIF-1α. Mel-18 negatively regulated the HIF-1α expression and its target gene VEGF transcription during both normoxia and hypoxia. We demonstrated that Mel-18 regulated the HIF-1α expression and activity via the PI3K/Akt pathway. Loss of Mel-18 downregulated Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression, consequently activating the PI3K/Akt/MDM2 pathway, and leading to an increase of HIF-1α protein level. Mel-18 modulated the HIF-1α transcriptional activity via regulating the cytoplasmic retention of FOXO3a, a downstream effector of Akt, and recruitment of HIF-1α/CBP complex to the VEGF promoter. Furthermore, our data shows that Mel-18 blocked tumor angiogenesis both in vitro and in vivo. Mel-18 overexpression inhibited in vitro tube formation in human umbilical endothelial cells (HUVECs). Xenografts in NOD/SCID mice derived from stably Mel-18 knocked down MCF7 human breast cancer cells showed increased tumor volume, microvessel density, and phospho-Akt and HIF-1α expression levels. In conclusion, our findings provide that Mel-18 is a novel regulator of tumor angiogenesis through regulating HIF-1α and its target VEGF expressions mediated by the PTEN/PI3K/Akt pathway, suggesting a new tumor-suppressive role of Mel-18 in human breast cancer.

  17. Correlation between expressions of hypoxia -inducible factor (HIF-1α, blood vessels density, cell proliferation, and apoptosis intensity in canine fibromas and fibrosarcomas

    Directory of Open Access Journals (Sweden)

    Madej Janusz A.

    2014-03-01

    Full Text Available The study aimed to demonstrate the expression of hypoxia-inducible factor (HIF-1α in soft tissue mesenchymal tumours (fibroma and fibrosarcoma in dogs. An attempt was made to correlate the obtained results with density of blood vessels (expression of von Willebrand Factor, vWF, expression of Ki-67 proliferation antigen, and with intensity of apoptosis in studied tumours. The study was performed on paraffin sections of 15 fibromas and 40 fibrosarcomas sampled from 55 female dogs aged 6 to 16 years. Immunohistochemical staining against HIF-1α, vWF, and Ki-67 was performed. Apoptosis was detected with the use of TUNEL reaction. A significantly higher HIF-1α expression was noted in fibrosarcomas in comparison to fibromas (P < 0.0001. HIF-1α expression in fibromas manifested strong positive correlation with tumour vascularity (r = 0.67, P = 0.007. Moreover, HIF-1α expression in fibrosarcomas manifested a moderate positive correlation with tumour malignancy grade (r = 0.44, P = 0.004, tumour vascularity (r = 0.52, P < 0.001, Ki-67 antigen expression (r = 0.42; P = 0.007, and TUNELpositive cells (r = 0.37, P = 0.017. Expression of HIF-1α was detected in 86.7% of fibroma type tumours and in 100% of fibrosarcomas. In all studied tumours expression of HIF-1α manifested positive correlation with the density of blood vessels, and in fibrosarcomas it correlated also with malignancy grade, intensity of Ki-67 expression, and with intensity of apoptosis in tumour cells.

  18. D-Glucosamine down-regulates HIF-1{alpha} through inhibition of protein translation in DU145 prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee-Young; Park, Jong-Wook; Suh, Seong-Il [Chronic Disease Research Center, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712 (Korea, Republic of); Baek, Won-Ki, E-mail: wonki@dsmc.or.kr [Chronic Disease Research Center, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712 (Korea, Republic of)

    2009-04-24

    D-Glucosamine has been reported to inhibit proliferation of cancer cells in culture and in vivo. In this study we report a novel response to D-glucosamine involving the translation regulation of hypoxia inducible factor (HIF)-1{alpha} expression. D-Glucosamine caused a decreased expression of HIF-1{alpha} under normoxic and hypoxic conditions without affecting HIF-1{alpha} mRNA expression in DU145 prostate cancer cells. D-Glucosamine inhibited HIF-1{alpha} accumulation induced by proteasome inhibitor MG132 and prolyl hydroxylase inhibitor DMOG suggesting D-glucosamine reduces HIF-1{alpha} protein expression through proteasome-independent pathway. Metabolic labeling assays indicated that D-glucosamine inhibits translation of HIF-1{alpha} protein. In addition, D-glucosamine inhibited HIF-1{alpha} expression induced by serum stimulation in parallel with inhibition of p70S6K suggesting D-glucosamine inhibits growth factor-induced HIF-1{alpha} expression, at least in part, through p70S6K inhibition. Taken together, these results suggest that D-glucosamine inhibits HIF-1{alpha} expression through inhibiting protein translation and provide new insight into a potential mechanism of the anticancer properties of D-glucosamine.

  19. The accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in biphasic effects induced by different levels of arsenite in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Xu, Yuan; Li, Yuan; Li, Huiqiao; Pang, Ying; Zhao, Yue; Jiang, Rongrong; Shen, Lu; Zhou, Jianwei; Wang, Xinru; Liu, Qizhan

    2013-01-01

    The biphasic effects of arsenite, in which low levels of arsenite induce cell proliferation and high levels of arsenite induce DNA damage and apoptosis, apparently contribute to arsenite-induced carcinogenesis. However, the mechanisms underlying this phenomenon are not well understood. In this study, we investigated the effects of different levels of arsenite on cell proliferation, DNA damage and apoptosis as well as on signal transduction pathways in human bronchial epithelial (HBE) cells. Our results show that a low level of arsenite activates extracellular signal-regulated kinases (ERK), which probably mediate arsenite-inhibited degradation of ubiquitinated hypoxia-inducible factor-2α (HIF-2α) in HBE cells. ERK inhibition blocks cell proliferation induced by a low level of arsenite, in part via HIF-2α. In contrast, a high level of arsenite activates c-Jun N-terminal kinases (JNK), which provoke a response to suppress ubiquitinated HIF-1α degradation. Down-regulation of HIF-1α by inhibiting JNK, however, increases the DNA damage but decreases the apoptosis induced by a high level of arsenite. Thus, data in the present study suggest that the accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in different levels of arsenite-induced biphasic effects, with low levels of arsenite inducing cell proliferation and high levels of arsenite inducing DNA damage and apoptosis in HBE cells. -- Highlights: ► Biphasic effects induced by different concentrations of arsenite. ► Different regulation of ERK or JNK signal pathway by arsenite. ► Different regulation of HIF1α or HIF 2α by arsenite.

  20. Cobalt-alloy implant debris induce HIF-1α hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available The historical success of orthopedic implants has been recently tempered by unexpected pathologies and early failures of some types of Cobalt-Chromium-Molybdenum alloy containing artificial hip implants. Hypoxia-associated responses to Cobalt-alloy metal debris were suspected as mediating this untoward reactivity at least in part. Hypoxia Inducible Factor-1α is a major transcription factor involved in hypoxia, and is a potent coping mechanism for cells to rapidly respond to changing metabolic demands. We measured signature hypoxia associated responses (i.e. HIF-1α, VEGF and TNF-α to Cobalt-alloy implant debris both in vitro (using a human THP-1 macrophage cell line and primary human monocytes/macrophages and in vivo. HIF-1α in peri-implant tissues of failed metal-on-metal implants were compared to similar tissues from people with metal-on-polymer hip arthroplasties, immunohistochemically. Increasing concentrations of cobalt ions significantly up-regulated HIF-1α with a maximal response at 0.3 mM. Cobalt-alloy particles (1 um-diameter, 10 particles/cell induced significantly elevated HIF-1α, VEGF, TNF-α and ROS expression in human primary macrophages whereas Titanium-alloy particles did not. Elevated expression of HIF-1α was found in peri-implant tissues and synovial fluid of people with failing Metal-on-Metal hips (n = 5 compared to failed Metal-on-Polymer articulating hip arthroplasties (n = 10. This evidence suggests that Cobalt-alloy, more than other metal implant debris (e.g. Titanium alloy, can elicit hypoxia-like responses that if unchecked can lead to unusual peri-implant pathologies, such as lymphocyte infiltration, necrosis and excessive fibrous tissue growths.

  1. Hepatocyte Hypoxia Inducible Factor-1 Mediates the Development of Liver Fibrosis in a Mouse Model of Nonalcoholic Fatty Liver Disease.

    Directory of Open Access Journals (Sweden)

    Omar A Mesarwi

    Full Text Available Obstructive sleep apnea (OSA is associated with the progression of non-alcoholic fatty liver disease (NAFLD to steatohepatitis and fibrosis. This progression correlates with the severity of OSA-associated hypoxia. In mice with diet induced obesity, hepatic steatosis leads to liver tissue hypoxia, which worsens with exposure to intermittent hypoxia. Emerging data has implicated hepatocyte cell signaling as an important factor in hepatic fibrogenesis. We hypothesized that hepatocyte specific knockout of the oxygen sensing α subunit of hypoxia inducible factor-1 (HIF-1, a master regulator of the global response to hypoxia, may be protective against the development of liver fibrosis.Wild-type mice and mice with hepatocyte-specific HIF-1α knockout (Hif1a-/-hep were fed a high trans-fat diet for six months, as a model of NAFLD. Hepatic fibrosis was evaluated by Sirius red stain and hydroxyproline assay. Liver enzymes, fasting insulin, and hepatic triglyceride content were also assessed. Hepatocytes were isolated from Hif1a-/-hep mice and wild-type controls and were exposed to sustained hypoxia (1% O2 or normoxia (16% O2 for 24 hours. The culture media was used to reconstitute type I collagen and the resulting matrices were examined for collagen cross-linking.Wild-type mice on a high trans-fat diet had 80% more hepatic collagen than Hif1a-/-hep mice (2.21 μg collagen/mg liver tissue, versus 1.23 μg collagen/mg liver tissue, p = 0.03, which was confirmed by Sirius red staining. Body weight, liver weight, mean hepatic triglyceride content, and fasting insulin were similar between groups. Culture media from wild-type mouse hepatocytes exposed to hypoxia allowed for avid collagen cross-linking, but very little cross-linking was seen when hepatocytes were exposed to normoxia, or when hepatocytes from Hif1a-/-hep mice were used in hypoxia or normoxia.Hepatocyte HIF-1 mediates an increase in liver fibrosis in a mouse model of NAFLD, perhaps due to liver

  2. Requirement of Hsp105 in CoCl{sub 2}-induced HIF-1α accumulation and transcriptional activation

    Energy Technology Data Exchange (ETDEWEB)

    Mikami, Hiroki; Saito, Youhei, E-mail: ysaito@mb.kyoto-phu.ac.jp; Okamoto, Namiko; Kakihana, Ayana; Kuga, Takahisa; Nakayama, Yuji, E-mail: nakayama@mb.kyoto-phu.ac.jp

    2017-03-15

    The mammalian stress protein Hsp105α protects cells from stress conditions. Several studies have indicated that Hsp105α is overexpressed in many types of solid tumors, which contain hypoxic microenvironments. However, the role of Hsp105α in hypoxic tumors remains largely unknown. We herein demonstrated the involvement of Hsp105α in HIF-1 functions induced by the hypoxia-mimetic agent CoCl{sub 2}. While Hsp105α is mainly localized in the cytoplasm under normal conditions, a treatment with CoCl{sub 2} induces the nuclear localization of Hsp105α, which correlated with HIF-1α expression levels. The overexpression of degradation-resistant HIF-1α enhances the nuclear localization of Hsp105α without the CoCl{sub 2} treatment. The CoCl{sub 2}-dependent transcriptional activation of HIF-1, which is measured using a reporter gene containing a HIF-responsive element, is reduced by the knockdown of Hsp105α. Furthermore, the CoCl{sub 2}-induced accumulation of HIF-1α is enhanced by heat shock, which results in the nuclear localization of Hsp105, and is suppressed by the knockdown of Hsp105. Hsp105 associates with HIF-1α in CoCl{sub 2}-treated cells. These results suggest that Hsp105α plays an important role in the functions of HIF-1 under hypoxic conditions, in which Hsp105α enhances the accumulation and transcriptional activity of HIF-1 through the HIF-1α-mediated nuclear localization of Hsp105α. - Highlights: • Hsp105α is required for the CoCl{sub 2}-induced transcriptional activation and accumulation of HIF-1. • Hsp105α localizes to the nucleus and interacts with HIF-1α in CoCl{sub 2}-treated cells. • Hsp105 enhances the CoCl{sub 2}-induced accumulation of HIF-1α under heat shock conditions.

  3. Snail recruits Ring1B to mediate transcriptional repression and cell migration in pancreatic cancer cells.

    Science.gov (United States)

    Chen, Jiangzhi; Xu, Hong; Zou, Xiuqun; Wang, Jiamin; Zhu, Yi; Chen, Hao; Shen, Baiyong; Deng, Xiaxing; Zhou, Aiwu; Chin, Y Eugene; Rauscher, Frank J; Peng, Chenghong; Hou, Zhaoyuan

    2014-08-15

    Transcriptional repressor Snail is a master regulator of epithelial-mesenchymal transition (EMT), yet the epigenetic mechanism governing Snail to induce EMT is not well understood. Here, we report that in pancreatic ductal adenocarcinoma (PDAC), elevated levels of the ubiquitin E3 ligase Ring1B and Snail, along with elevated monoubiquitination of H2A at K119 (H2AK119Ub1), are highly correlated with poor survival. Mechanistic investigations identified Ring1B as a Snail-interacting protein and showed that the carboxyl zinc fingers of Snail recruit Ring1B and its paralog Ring1A to repress its target promoters. Simultaneous depletion of Ring1A and Ring1B in pancreatic cancer cells decreased Snail binding to the target chromatin, abolished H2AK119Ub1 modification, and thereby compromised Snail-mediated transcriptional repression and cell migration. We found that Ring1B and the SNAG-associated chromatin modifier EZH2 formed distinct protein complexes with Snail and that EZH2 was required for Snail-Ring1A/B recruitment to the target promoter. Collectively, our results unravel an epigenetic mechanism underlying transcriptional repression by Snail, suggest Ring1A/B as a candidate therapeutic target, and identify H2AK119Ub1 as a potential biomarker for PDAC diagnosis and prognosis. ©2014 American Association for Cancer Research.

  4. SUMO modification of Stra13 is required for repression of cyclin D1 expression and cellular growth arrest.

    Directory of Open Access Journals (Sweden)

    Yaju Wang

    Full Text Available Stra13, a basic helix-loop-helix (bHLH transcription factor is involved in myriad biological functions including cellular growth arrest, differentiation and senescence. However, the mechanisms by which its transcriptional activity and function are regulated remain unclear. In this study, we provide evidence that post-translational modification of Stra13 by Small Ubiquitin-like Modifier (SUMO dramatically potentiates its ability to transcriptionally repress cyclin D1 and mediate G(1 cell cycle arrest in fibroblast cells. Mutation of SUMO acceptor lysines 159 and 279 located in the C-terminal repression domain has no impact on nuclear localization; however, it abrogates association with the co-repressor histone deacetylase 1 (HDAC1, attenuates repression of cyclin D1, and prevents Stra13-mediated growth suppression. HDAC1, which promotes cellular proliferation and cell cycle progression, antagonizes Stra13 sumoylation-dependent growth arrest. Our results uncover an unidentified regulatory axis between Stra13 and HDAC1 in progression through the G(1/S phase of the cell cycle, and provide new mechanistic insights into regulation of Stra13-mediated transcriptional repression by sumoylation.

  5. The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma.

    Science.gov (United States)

    Maranchie, Jodi K; Vasselli, James R; Riss, Joseph; Bonifacino, Juan S; Linehan, W Marston; Klausner, Richard D

    2002-04-01

    Clear-cell renal carcinoma is associated with inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene. VHL is the substrate recognition subunit of an E3 ligase, known to target the alpha subunits of the HIF heterodimeric transcription factor for ubiquitin-mediated degradation under normoxic conditions. We demonstrate that competitive inhibition of the VHL substrate recognition site with a peptide derived from the oxygen degradation domain of HIF1alpha recapitulates the tumorigenic phenotype of VHL-deficient tumor cells. These studies prove that VHL substrate recognition is essential to the tumor suppressor function of VHL. We further demonstrate that normoxic stabilization of HIF1alpha alone, while capable of mimicking some aspects of VHL loss, is not sufficient to reproduce tumorigenesis, indicating that it is not the critical oncogenic substrate of VHL.

  6. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses.

    Science.gov (United States)

    Webb, Tonya J; Carey, Gregory B; East, James E; Sun, Wenji; Bollino, Dominique R; Kimball, Amy S; Brutkiewicz, Randy R

    2016-08-01

    Natural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5(')-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Nutrient-Deprived Retinal Progenitors Proliferate in Response to Hypoxia: Interaction of the HIF-1 and mTOR Pathway

    Directory of Open Access Journals (Sweden)

    Helena Khaliullina

    2016-05-01

    Full Text Available At a cellular level, nutrients are sensed by the mechanistic Target of Rapamycin (mTOR. The response of cells to hypoxia is regulated via action of the oxygen sensor Hypoxia-Inducible Factor 1 (HIF-1. During development, injury and disease, tissues might face conditions of both low nutrient supply and low oxygen, yet it is not clear how cells adapt to both nutrient restriction and hypoxia, or how mTOR and HIF-1 interact in such conditions. Here we explore this question in vivo with respect to cell proliferation using the ciliary marginal zone (CMZ of Xenopus. We found that both nutrient-deprivation and hypoxia cause retinal progenitors to decrease their proliferation, yet when nutrient-deprived progenitors are exposed to hypoxia there is an unexpected rise in cell proliferation. This increase, mediated by HIF-1 signalling, is dependent on glutaminolysis and reactivation of the mTOR pathway. We discuss how these findings in non-transformed tissue may also shed light on the ability of cancer cells in poorly vascularised solid tumours to proliferate.

  8. miR-200b mediates post-transcriptional repression of ZFHX1B

    DEFF Research Database (Denmark)

    Christoffersen, Nanna Rønbjerg; Silahtaroglu, Asli; Ørom, Ulf Lupo Andersson

    2007-01-01

    of E-cadherin. We show that Zfhx1b and miR-200b are regionally coexpressed in the adult mouse brain and that miR-200b represses the expression of Zfhx1b via multiple sequence elements present in the 3'-untranslated region. Overexpression of miR-200b leads to repression of endogenous ZFHX1B...

  9. CAR-mediated repression of Foxo1 transcriptional activity regulates the cell cycle inhibitor p21 in mouse livers

    International Nuclear Information System (INIS)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Pustylnyak, Vladimir O.

    2014-01-01

    Highlights: • CAR activation decreased the level of Foxo1 in mouse livers. • CAR activation decreased the level of p21 in mouse livers. • CAR activation inhibited Foxo1 transcriptional activity in mouse livers. - Abstract: 1,4-Bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), an agonist of constitutive androstane receptor (CAR), is a well-known strong primary chemical mitogen for the mouse liver. Despite extensive investigation of the role of CAR in the regulation of cell proliferation, our knowledge of the intricate mediating mechanism is incomplete. In this study, we demonstrated that long-term CAR activation by TCPOBOP increased liver-to-body weight ratio and decreased tumour suppressor Foxo1 expression and transcriptional activity, which were correlated with reduced expression of genes regulated by Foxo1, including the cell-cycle inhibitor Cdkn1a(p21), and upregulation of the cell-cycle regulator Cyclin D1. Moreover, we demonstrated the negative regulatory effect of TCPOBOP-activated CAR on the association of Foxo1 with the target Foxo1 itself and Cdkn1a(p21) promoters. Thus, we identified CAR-mediated repression of cell cycle inhibitor p21, as mediated by repression of FOXO1 expression and transcriptional activity. CAR-FOXO1 cross-talk may provide new opportunities for understanding liver diseases and developing more effective therapeutic approaches to better drug treatments

  10. PARIS reprograms glucose metabolism by HIF-1α induction in dopaminergic neurodegeneration.

    Science.gov (United States)

    Kang, Hojin; Jo, Areum; Kim, Hyein; Khang, Rin; Lee, Ji-Yeong; Kim, Hanna; Park, Chi-Hu; Choi, Jeong-Yun; Lee, Yunjong; Shin, Joo-Ho

    2018-01-22

    Our previous study found that PARIS (ZNF746) transcriptionally suppressed transketolase (TKT), a key enzyme in pentose phosphate pathway (PPP) in the substantia nigra (SN) of AAV-PARIS injected mice. In this study, we revealed that PARIS overexpression reprogrammed glucose metabolic pathway, leading to the increment of glycolytic proteins along with TKT reduction in the SN of AAV-PARIS injected mice. Knock-down of TKT in differentiated SH-SY5Y cells led to an increase of glycolytic enzymes and decrease of PPP-related enzymes whereas overexpression of TKT restored PARIS-mediated glucose metabolic shift, suggesting that glucose metabolic alteration by PARIS is TKT-dependent. Inhibition of PPP by either PARIS overexpression or TKT knock-down elevated the level of H 2 O 2 , and diminished NADPH and GSH levels, ultimately triggering the induction of HIF-1α, a master activator of glycolysis. In addition, TKT inhibition by stereotaxic injection of oxythiamine demonstrated slight decrement of dopaminergic neurons (DNs) in SN but not cortical neurons in the cortex, suggesting that TKT might be a survival factor of DNs. In differentiated SH-SY5Y, cell toxicity by GFP-PARIS was partially restored by introduction of Flag-TKT and siRNA-HIF-1α. We also observed the increase of HIF-1α and glycolytic hexokinase 2 in the SN of Parkinson's disease patients. Taken together, these results suggest that PARIS accumulation might distort the balance of glucose metabolism, providing clues for understanding mechanism underlying selective DNs death by PARIS. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Coumestrol suppresses hypoxia inducible factor 1α by inhibiting ROS mediated sphingosine kinase 1 in hypoxic PC-3 prostate cancer cells.

    Science.gov (United States)

    Cho, Sung-Yun; Cho, Sunmi; Park, Eunkyung; Kim, Bonglee; Sohn, Eun Jung; Oh, Bumsuk; Lee, Eun-Ok; Lee, Hyo-Jeong; Kim, Sung-Hoon

    2014-06-01

    Among many signals to regulate hypoxia inducible factor 1α (HIF-1α), sphingosine kinase 1 (SPHK1) is also involved in various biological activities such as cell growth, survival, invasion, angiogenesis, and carcinogenesis. Thus, in the present study, molecular mechanisms of coumestrol were investigated on the SPHK1 and HIF-1α signaling pathway in hypoxic PC-3 prostate cancer cells. Coumestrol significantly suppressed SPHK1 activity and accumulation of HIF-1α in a time- and concentration-dependent manner in hypoxic PC-3 cells. In addition, coumestrol inhibited the phosphorylation status of AKT and glycogen synthase kinase-3β (GSK 3β) signaling involved in cancer metabolism. Furthermore, SPHK1 siRNA transfection, sphigosine kinase inhibitor (SKI), reactive oxygen species (ROS) enhanced the inhibitory effect of coumestrol on the accumulation of HIF-1α and the expression of pAKT and pGSK 3β in hypoxic PC-3 cells by combination index. Overall, our findings suggest that coumestrol suppresses the accumulation of HIF-1α via suppression of SPHK1 pathway in hypoxic PC-3 cells. Copyright © 2014. Published by Elsevier Ltd.

  12. Increased size of solid organs in patients with Chuvash polycythemia and in mice with altered expression of HIF-1α and HIF-2α

    Science.gov (United States)

    Yoon, Donghoon; Okhotin, David V.; Kim, Bumjun; Okhotina, Yulia; Okhotin, Daniel J.; Miasnikova, Galina Y.; Sergueeva, Adelina I.; Polyakova, Lydia A.; Maslow, Alexei; Lee, Yonggu; Semenza, Gregg L.; Prchal, Josef T.

    2010-01-01

    Chuvash polycythemia, the first hereditary disease associated with dysregulated oxygen-sensing to be recognized, is characterized by a homozygous germ-line loss-of-function mutation of the VHL gene (VHLR200W) resulting in elevated hypoxia inducible factor (HIF)-1α and HIF-2α levels, increased red cell mass and propensity to thrombosis. Organ volume is determined by the size and number of cells, and the underlying molecular control mechanisms are not fully elucidated. Work from several groups has demonstrated that the proliferation of cells is regulated in opposite directions by HIF-1α and HIF-2α. HIF-1α inhibits cell proliferation by displacing MYC from the promoter of the gene encoding the cyclin-dependent kinase inhibitor, p21Cip1, thereby inducing its expression. In contrast, HIF-2α promotes MYC activity and cell proliferation. Here we report that the volumes of liver, spleen, and kidneys relative to body mass were larger in 30 individuals with Chuvash polycythemia than in 30 matched Chuvash controls. In Hif1a+/− mice, which are heterozygous for a null (knockout) allele at the locus encoding HIF-1α, hepatic HIF-2α mRNA was increased (2-fold) and the mass of the liver was increased, compared with wild-type littermates, without significant difference in cell volume. Hepatic p21Cip1 mRNA levels were 9.5-fold lower in Hif1a+/− mice compared with wild-type littermates. These data suggest that, in addition to increased red cell mass, the sizes of liver, spleen, and kidneys are increased in Chuvash polycythemia. At least in the liver, this phenotype may result from increased HIF-2α and decreased p21Cip1 levels leading to increased hepatocyte proliferation. PMID:20140661

  13. Protein arginine methyltransferase 5 is an essential component of the hypoxia-inducible factor 1 signaling pathway

    International Nuclear Information System (INIS)

    Lim, Ji-Hong; Choi, Yong-Joon; Cho, Chung-Hyun; Park, Jong-Wan

    2012-01-01

    Highlights: ► HIF-1α is expressed PRMT5-dependently in hypoxic cancer cells. ► The HIF-1 regulation of hypoxia-induced genes is attenuated in PRMT5-knocked-down cells. ► The de novo synthesis of HIF-1α depends on PRMT5. ► PRMT5 is involved in the HIF-1α translation initiated by 5′ UTR of HIF-1α mRNA. -- Abstract: Protein arginine methyltransferase 5 (PRMT5) is an enzyme that transfers one or two methyl groups to the arginine residues of histones or non-histone proteins, and that plays critical roles in cellular processes as diverse as receptor signaling and gene expression. Furthermore, PRMT5 is highly expressed in tumors, where it may be associated with tumor growth. Although much research has been conducted on PRMT5, little is known regarding its role in adaption to hypoxia. As hypoxia-inducible factor 1 (HIF-1) is a key player in hypoxic response, we examined the possible involvement of PRMT5 in the HIF-1 signaling pathway. Of the siRNAs targeting PRMT1–8, only PRMT5 siRNA attenuated the hypoxic induction of HIF-1α in A549 cells, and this result was reproducible in all three cancer cell lines examined. PRMT5 knock-down also repressed the promoter activities and the transcript levels of HIF-1-governed genes. Mechanistically, de novo synthesis of HIF-1α protein was reduced in PRMT5-knocked-down A549 cells, and this was rescued by PRMT5 restoration. In contrast, HIF-1α transcription, RNA processing, and protein stability were unaffected by PRMT5 knock-down. Furthermore, PRMT5 was found to be essential for the HIF-1α translation initiated by the 5′ UTR of HIF-1α mRNA. Given our results and previous reports, we believe that PRMT5 probably promotes tumor growth by stimulating cell proliferation and by participating in the construction of a tumor-favorable microenvironment via HIF-1 activation.

  14. HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor

    Directory of Open Access Journals (Sweden)

    Joos Ulrich

    2005-07-01

    Full Text Available Abstract Background Hypoxia-inducible factor 1 (HIF-1 is a transcription factor, which plays a central role in biologic processes under hypoxic conditions, especially concerning tumour angiogenesis. HIF-1α is the relevant, oxygen-dependent subunit and its overexpression has been associated with a poor prognosis in a variety of malignant tumours. Therefore, HIF-1α expression in early stage oral carcinomas was evaluated in relation to established clinico-pathological features in order to determine its value as a prognostic marker. Methods 85 patients with histologically proven surgically treated T1/2 squamous cell carcinoma (SCC of the oral floor were eligible for the study. Tumor specimens were investigated by means of tissue micro arrays (TMAs and immunohistochemistry for the expression of HIF-1. Correlations between clinical features and the expression of HIF-1 were evaluated by Kaplan-Meier curves, log-rank tests and multivariate Cox regression analysis. Results HIF-1α was frequently overexpressed in a probably non-hypoxia related fashion. The expression of HIF-1α was related with a significantly improved 5-year survival rate (p Conclusion HIF-1α overexpression is an indicator of favourable prognosis in T1 and T2 SCC of the oral floor. Node negative patients lacking HIF-1α expression may therefore be considered for adjuvant radiotherapy.

  15. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor -1α in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zhang, Lin; Feng, Xiaobin; Dong, Jiahong; Qian, Cheng; Huang, Gang; Li, Xiaowu; Zhang, Yujun; Jiang, Yan; Shen, Junjie; Liu, Jia; Wang, Qingliang; Zhu, Jin

    2013-01-01

    High invasion and metastasis are the primary factors causing poor prognosis of patients with hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying these biological behaviors have not been completely elucidated. In this study, we investigate the molecular mechanism by which hypoxia promotes HCC invasion and metastasis through inducing epithelial-mesenchymal transition (EMT). The expression of EMT markers was analyzed by immunohistochemistry. Effect of hypoxia on induction of EMT and ability of cell migration and invasion were performed. Luciferase reporter system was used for evaluation of Snail regulation by hypoxia-inducible factor -1α (HIF-1α). We found that overexpression of HIF-1α was observed in HCC liver tissues and was related to poor prognosis of HCC patients. HIF-1α expression profile was correlated with the expression levels of SNAI1, E-cadherin, N-cadherin and Vimentin. Hypoxia was able to induce EMT and enhance ability of invasion and migration in HCC cells. The same phenomena were also observed in CoCl2-treated cells. The shRNA-mediated HIF-1α suppression abrogated CoCl2-induced EMT and reduced ability of migration and invasion in HCC cells. Luciferase assay showed that HIF-1α transcriptional regulated the expression of SNAI1 based on two hypoxia response elements (HREs) in SNAI1 promoter. We demonstrated that hypoxia-stabilized HIF1α promoted EMT through increasing SNAI1 transcription in HCC cells. This data provided a potential therapeutic target for HCC treatment

  16. Notch-1 mediates hypoxia-induced angiogenesis in rheumatoid arthritis.

    Science.gov (United States)

    Gao, Wei; Sweeney, Catherine; Connolly, Mary; Kennedy, Aisling; Ng, Chin Teck; McCormick, Jennifer; Veale, Douglas J; Fearon, Ursula

    2012-07-01

    To examine the effect of hypoxia on Notch-1 signaling pathway components and angiogenesis in inflammatory arthritis. The expression and regulation of Notch-1, its ligand delta-like protein 4 (DLL-4) and downstream signaling components (hairy-related transcription factor 1 [HRT-1], HRT-2), and hypoxia-inducible factor 1α (HIF-1α) under normoxic and hypoxic conditions (1-3%) were assessed in synovial tissue specimens from patients with inflammatory arthritis and controls and in human dermal microvascular endothelial cells (HDMECs) by immunohistology, dual immunofluorescence staining (Notch-1/factor VIII), Western blotting, and real-time polymerase chain reaction. In vivo synovial tissue oxygen levels (tissue PO2) were measured under direct visualization at arthroscopy. HDMEC activation under hypoxic conditions in the presence of Notch-1 small interfering RNA (siRNA), the γ-secretase inhibitor DAPT, or dimethyloxalylglycine (DMOG) was assessed by Matrigel tube formation assay, migration assay, invasion assay, and matrix metalloproteinase 2 (MMP-2)/MMP-9 zymography. Expression of Notch-1, its ligand DLL-4, and HRT-1 was demonstrated in synovial tissue, with the strongest expression localized to perivascular/vascular regions. Localization of Notch-1 to synovial endothelium was confirmed by dual immunofluorescence staining. Notch-1 intracellular domain (NICD) expression was significantly higher in synovial tissue from patients with tissue PO2 of PO2 of >20 mm Hg (>3% O2). Exposure of HDMECs to 3% hypoxia induced HIF-1α and NICD protein expression and DLL-4, HRT-1, and HRT-2 messenger RNA expression. DMOG directly induced NICD expression, while Notch-1 siRNA inhibited hypoxia-induced HIF-1α expression, suggesting that Notch-1/HIF-1α signaling is bidirectional. Finally, 3% hypoxia-induced angiogenesis, endothelial cell migration, endothelial cell invasion, and proMMP-2 and proMMP-9 activities were inhibited by Notch-1 siRNA and/or the γ-secretase inhibitor DAPT. Our

  17. IBMX protects human proximal tubular epithelial cells from hypoxic stress through suppressing hypoxia-inducible factor-1α expression.

    Science.gov (United States)

    Hasan, Arif Ul; Kittikulsuth, Wararat; Yamaguchi, Fuminori; Musarrat Ansary, Tuba; Rahman, Asadur; Shibayama, Yuki; Nakano, Daisuke; Hitomi, Hirofumi; Tokuda, Masaaki; Nishiyama, Akira

    2017-09-15

    Hypoxia predisposes renal fibrosis. This study was conducted to identify novel approaches to ameliorate the pathogenic effect of hypoxia. Using human proximal tubular epithelial cells we showed that a pan-phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylxanthine (IBMX) dose and time dependently downregulated hypoxia-inducible factor 1α (HIF-1α) mRNA expression, which was further augmented by addition of a transcriptional inhibitor, actinomycin D. IBMX also increased the cellular cyclic adenosine monophosphate (cAMP) level. Luciferase assay showed that blocking of protein kinase A (PKA) using H89 reduced, while 8-Br-cAMP agonized the repression of HIF-1α promoter activity in hypoxic condition. Deletion of cAMP response element binding sites from the HIF-1α promoter abrogated the effect of IBMX. Western blot and immunofluorescent study confirmed that the CoCl 2 induced increased HIF-1α protein in whole cell lysate and in nucleus was reduced by the IBMX. Through this process, IBMX attenuated both CoCl 2 and hypoxia induced mRNA expressions of two pro-fibrogenic factors, platelet-derived growth factor B and lysyl oxidase. Moreover, IBMX reduced production of a mesenchymal transformation factor, β-catenin; as well as protected against hypoxia induced cell-death. Taken together, our study showed novel evidence that the PDE inhibitor IBMX can downregulate the transcription of HIF-1α, and thus may attenuate hypoxia induced renal fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Diacetoxyscirpenol as a new anticancer agent to target hypoxia-inducible factor 1

    Science.gov (United States)

    Choi, Yong-Joon; Shin, Hyun-Woo; Chun, Yang-Sook; Leutou, Alain Simplice; Son, Byeng Wha; Park, Jong-Wan

    2016-01-01

    Hypoxia activates hypoxia-inducible factor 1, which promotes the progression of malignancy by stimulating angiogenesis and by augmenting the ability of tumors to survive. Thus, HIF-1 is one of the most compelling targets for treating cancers. The aim of this study was to find a small molecule that inhibits HIF-1 under hypoxia in cancer cells. 7,280 compounds in a chemical library were tested in a cancer cell line expressing luciferase HIF-dependently. Through three rounds of screening, we finally picked up a compound that originates from a marine bacterium parasitizing red alga. The antibiotic potently inhibited HIF-1 expression and its transcriptional activity in cancer cells exposed to hypoxia. Through two-step fractionation, diacetoxyscirpenol was purified and identified as a HIF-inhibiting ingredient. Mechanistically, diacetoxyscirpenol inhibits the synthesis of HIF-1α protein and also interferes with the dimerization of HIF-1α and ARNT. It attenuates HIF-mediated gene expression in cancer cells exposed to hypoxia, and by doing so reduces tumorigenic and angiogenic potentials of cancer cells. More importantly, diacetoxyscirpenol retarded tumor growth in mice, and reduced HIF-1α expression and vascular formation in the tumors. Overall, diacetoxyscirpenol is considered a potential drug deregulating the HIF-1 signaling pathway, and it could be beneficially employed for treating malignant tumors with hypoxic microenvironment. PMID:27613833

  19. Andrographolide inhibits hypoxia-induced HIF-1α-driven endothelin 1 secretion by activating Nrf2/HO-1 and promoting the expression of prolyl hydroxylases 2/3 in human endothelial cells.

    Science.gov (United States)

    Lin, Hung-Chih; Su, Shih-Li; Lu, Chia-Yang; Lin, Ai-Hsuan; Lin, Wan-Chun; Liu, Chin-San; Yang, Ya-Chen; Wang, Hsiu-Miao; Lii, Chong-Kuei; Chen, Haw-Wen

    2017-03-01

    Andrographolide, the main bioactive component of the medicinal plant Andrographis paniculata, has been shown to possess potent anti-inflammatory activity. Endothelin 1 (ET-1), a potent vasoconstrictor peptide produced by vascular endothelial cells, displays proinflammatory property. Hypoxia-inducible factor 1α (HIF-1α), the regulatory member of the transcription factor heterodimer HIF-1α/β, is one of the most important molecules that responds to hypoxia. Changes in cellular HIF-1α protein level are the result of altered gene transcription and protein stability, with the latter being dependent on prolyl hydroxylases (PHDs). In this study, inhibition of pro-inflammatory ET-1 expression and changes of HIF-1α gene transcription and protein stability under hypoxia by andrographolide in EA.hy926 endothelial-like cells were investigated. Hypoxic conditions were created using the hypoxia-mimetic agent CoCl 2. We found that hypoxia stimulated the production of reactive oxygen species (ROS), the expression of HIF-1α mRNA and protein, and the expression and secretion of ET-1. These effects, however, were attenuated by co-exposure to andrographolide, bilirubin, and RuCO. Silencing Nrf2 and heme oxygenase 1 (HO-1) reversed the inhibitory effects of andrographolide on hypxoia-induced HIF-1α mRNA and protein expression. Moreover, andrographolide increased the expression of prolyl hydroxylases (PHD) 2/3, which hydroxylate HIF-1α and promotes HIF-1α proteasome degradation, with an increase in HIF-1α hydroxylation was noted under hypoxia. Inhibition of p38 MAPK abrogated the hypoxia-induced increases in HIF-1α mRNA and protein expression as well as ET-1 mRNA expression and secretion. Taken together, these results suggest that andrographolide suppresses hypoxia-induced pro-inflammatory ET-1 expression by activating Nrf2/HO-1, inhibiting p38 MAPK signaling, and promoting PHD2/3 expression. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 918-930, 2017. © 2016 Wiley

  20. HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor

    International Nuclear Information System (INIS)

    Fillies, Thomas; Werkmeister, Richard; Diest, Paul J van; Brandt, Burkhard; Joos, Ulrich; Buerger, Horst

    2005-01-01

    Hypoxia-inducible factor 1 (HIF-1) is a transcription factor, which plays a central role in biologic processes under hypoxic conditions, especially concerning tumour angiogenesis. HIF-1α is the relevant, oxygen-dependent subunit and its overexpression has been associated with a poor prognosis in a variety of malignant tumours. Therefore, HIF-1α expression in early stage oral carcinomas was evaluated in relation to established clinico-pathological features in order to determine its value as a prognostic marker. 85 patients with histologically proven surgically treated T1/2 squamous cell carcinoma (SCC) of the oral floor were eligible for the study. Tumor specimens were investigated by means of tissue micro arrays (TMAs) and immunohistochemistry for the expression of HIF-1. Correlations between clinical features and the expression of HIF-1 were evaluated by Kaplan-Meier curves, log-rank tests and multivariate Cox regression analysis. HIF-1α was frequently overexpressed in a probably non-hypoxia related fashion. The expression of HIF-1α was related with a significantly improved 5-year survival rate (p < 0.01) and a significantly increased disease free period (p = 0.01) independent from nodal status and tumour size. In primary node negative T1/T2 SCC of the oral floor, absence of HIF-1α expression specified a subgroup of high-risk patients (p < 0.05). HIF-1α overexpression is an indicator of favourable prognosis in T1 and T2 SCC of the oral floor. Node negative patients lacking HIF-1α expression may therefore be considered for adjuvant radiotherapy

  1. Expression of MUC17 is regulated by HIF1α-mediated hypoxic responses and requires a methylation-free hypoxia responsible element in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Sho Kitamoto

    Full Text Available MUC17 is a type 1 membrane-bound glycoprotein that is mainly expressed in the digestive tract. Recent studies have demonstrated that the aberrant overexpression of MUC17 is correlated with the malignant potential of pancreatic ductal adenocarcinomas (PDACs; however, the exact regulatory mechanism of MUC17 expression has yet to be identified. Here, we provide the first report of the MUC17 regulatory mechanism under hypoxia, an essential feature of the tumor microenvironment and a driving force of cancer progression. Our data revealed that MUC17 was significantly induced by hypoxic stimulation through a hypoxia-inducible factor 1α (HIF1α-dependent pathway in some pancreatic cancer cells (e.g., AsPC1, whereas other pancreatic cancer cells (e.g., BxPC3 exhibited little response to hypoxia. Interestingly, these low-responsive cells have highly methylated CpG motifs within the hypoxia responsive element (HRE, 5'-RCGTG-3', a binding site for HIF1α. Thus, we investigated the demethylation effects of CpG at HRE on the hypoxic induction of MUC17. Treatment of low-responsive cells with 5-aza-2'-deoxycytidine followed by additional hypoxic incubation resulted in the restoration of hypoxic MUC17 induction. Furthermore, DNA methylation of HRE in pancreatic tissues from patients with PDACs showed higher hypomethylation status as compared to those from non-cancerous tissues, and hypomethylation was also correlated with MUC17 mRNA expression. Taken together, these findings suggested that the HIF1α-mediated hypoxic signal pathway contributes to MUC17 expression, and DNA methylation of HRE could be a determinant of the hypoxic inducibility of MUC17 in pancreatic cancer cells.

  2. 6-Mercaptopurine, an activator of Nur77, enhances transcriptional activity of HIF-1alpha resulting in new vessel formation.

    Science.gov (United States)

    Yoo, Y-G; Na, T-Y; Yang, W-K; Kim, H-J; Lee, I-K; Kong, G; Chung, J-H; Lee, M-O

    2007-05-31

    Hypoxia-inducible factor-1alpha (HIF-1alpha) plays a central role in oxygen homeostasis. Previously, we reported that the orphan nuclear receptor Nur77 functions in stabilizing HIF-1alpha. Here, we demonstrate that 6-mercaptopurine (6-MP), an activator of the NR4A family members, enhances transcriptional activity of HIF-1. 6-MP enhanced the protein-level of HIF-1alpha as well as vascular endothelial growth factor (VEGF) in a dose- and time-dependent manner. The induction of HIF-1alpha was abolished by the transfection of either a dominant-negative Nur77 mutant or si-Nur77, indicating a critical role of Nur77 in the 6-MP action. The HIF-1alpha protein level remained up to 60 min in the presence of 6-MP when de novo protein synthesis was blocked by cycloheximide, suggesting that 6-MP induces stabilization of the HIF-1alpha protein. The fact that 6-MP decreased the association of HIF-1alpha with von Hippel-Lindau protein and the acetylation of HIF-1alpha, may explain how 6-MP induced stability of HIF-1alpha. Further, 6-MP induced the transactivation function of HIF-1alpha by recruiting co-activator cyclic-AMP-response-element-binding protein. Finally, 6-MP enhanced the expression of HIF-1alpha and VEGF, and the formation of capillary tubes in human umbilical vascular endothelial cells. Together, our results provide a new insight for 6-MP action in the stabilization of HIF-1alpha and imply a potential application of 6-MP in hypoxia-associated human vascular diseases.

  3. Dexamethasone impairs hypoxia-inducible factor-1 function

    International Nuclear Information System (INIS)

    Wagner, A.E.; Huck, G.; Stiehl, D.P.; Jelkmann, W.; Hellwig-Buergel, T.

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription-factor composed of α- and β-subunits. HIF-1 is not only necessary for the cellular adaptation to hypoxia, but it is also involved in inflammatory processes and wound healing. Glucocorticoids (GC) are therapeutically used to suppress inflammatory responses. Herein, we investigated whether GC modulate HIF-1 function using GC receptor (GR) possessing (HepG2) and GR deficient (Hep3B) human hepatoma cell cultures as model systems. Dexamethasone (DEX) treatment increased HIF-1α levels in the cytosol of HepG2 cells, while nuclear HIF-1α levels and HIF-1 DNA-binding was reduced. In addition, DEX dose-dependently lowered the hypoxia-induced luciferase activity in a reporter gene system. DEX suppressed the hypoxic stimulation of the expression of the HIF-1 target gene VEGF (vascular endothelial growth factor) in HepG2 cultures. DEX did not reduce hypoxically induced luciferase activity in HRB5 cells, a Hep3B derivative lacking GR. Transient expression of the GR in HRB5 cells restored the susceptibility to DEX. Our study discloses the inhibitory action of GC on HIF-1 dependent gene expression, which may be important with respect to the impaired wound healing in DEX-treated patients

  4. Celecoxib Down-Regulates the Hypoxia-Induced Expression of HIF-1α and VEGF Through the PI3K/AKT Pathway in Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yi-zhou Sun

    2017-12-01

    Full Text Available Background/Aims: The goal of this study was to detect the expression of hypoxia-inducible factor 1α (HIF-1α and vascular endothelial growth factor (VEGF in human retinal pigmented epithelial (RPE cells treated with celecoxib, a selective cyclooxygenase-2 (COX-2 inhibitor, under hypoxic and normoxic conditions and to explore the signaling mechanism involved in regulating the hypoxia-induced expression of HIF-1α and VEGF in RPE cells. Methods: D407 cells were cultured in normoxic or hypoxic conditions, with or without celecoxib or a PI3K inhibitor (LY294002. The anti-proliferative effect of celecoxib was assessed using the MTT assay. RT-PCR, Western blotting and ELISA were performed to detect the levels of PI3K, phosphorylated AKT (p-AKT, HIF-1α, VEGF and COX-2. Results: Celecoxib inhibited the proliferation of RPE cells in a dose-dependent manner. Celecoxib suppressed the expression of VEGF at both the mRNA and protein levels and decreased HIF-1α protein expression. HIF-1α activation was regulated by the PI3K/AKT pathway. The celecoxib-induced down-regulation of HIF-1α and VEGF required the suppression of the hypoxia-induced PI3K/AKT pathway. However, the down-regulation of COX-2 did not occur in cells treated with celecoxib. Conclusions: The antiangiogenic effects of celecoxib in RPE cells under hypoxic conditions resulted from the inhibition of HIF-1α and VEGF expression, which may be partly mediated by a COX-2-independent, PI3K/AKT-dependent pathway.

  5. Microtubular stability affects pVHL-mediated regulation of HIF-1alpha via the p38/MAPK pathway in hypoxic cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Miao Teng

    Full Text Available BACKGROUND: Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protein (pVHL, as a ubiquitin ligase, is best understood as a negative regulator of HIF-1α. METHODOLOGY/PRINCIPAL FINDINGS: In primary rat cardiomyocytes and H9c2 cardiac cells, microtubule-stabilization was achieved by pretreating with paclitaxel or transfection of microtubule-associated protein 4 (MAP4 overexpression plasmids and microtubule-depolymerization was achieved by pretreating with colchicine or transfection of MAP4 siRNA before hypoxia treatment. Recombinant adenovirus vectors for overexpressing pVHL or silencing of pVHL expression were constructed and transfected in primary rat cardiomyocytes and H9c2 cells. With different microtubule-stabilizing and -depolymerizing treaments, we demonstrated that the protein levels of HIF-1α were down-regulated through overexpression of pVHL and were up-regulated through knockdown of pVHL in hypoxic cardiomyocytes. Importantly, microtubular structure breakdown activated p38/MAPK pathway, accompanied with the upregulation of pVHL. In coincidence, we found that SB203580, a p38/MAPK inhibitor decreased pVHL while MKK6 (Glu overexpression increased pVHL in the microtubule network altered-hypoxic cardiomyocytes and H9c2 cells. CONCLUSIONS/SIGNIFICANCE: This study suggests that pVHL plays an important role in the regulation of HIF-1α caused by the changes of microtubular structure and the p38/MAPK pathway participates in the process of pVHL change following microtubule network alteration in hypoxic cardiomyocytes.

  6. Bile acids destabilise HIF-1α and promote anti-tumour phenotypes in cancer cell models

    International Nuclear Information System (INIS)

    Phelan, J. P.; Reen, F. J.; Dunphy, N.; O'Connor, R.; O'Gara, F.

    2016-01-01

    The role of the microbiome has become synonymous with human health and disease. Bile acids, as essential components of the microbiome, have gained sustained credibility as potential modulators of cancer progression in several disease models. At physiological concentrations, bile acids appear to influence cancer phenotypes, although conflicting data surrounds their precise physiological mechanism of action. Previously, we demonstrated bile acids destabilised the HIF-1α subunit of the Hypoxic-Inducible Factor-1 (HIF-1) transcription factor. HIF-1 overexpression is an early biomarker of tumour metastasis and is associated with tumour resistance to conventional therapies, and poor prognosis in a range of different cancers. Here we investigated the effects of bile acids on the cancer growth and migratory potential of cell lines where HIF-1α is known to be active under hypoxic conditions. HIF-1α status was investigated in A-549 lung, DU-145 prostate and MCF-7 breast cancer cell lines exposed to bile acids (CDCA and DCA). Cell adhesion, invasion, migration was assessed in DU-145 cells while clonogenic growth was assessed in all cell lines. Intracellular HIF-1α was destabilised in the presence of bile acids in all cell lines tested. Bile acids were not cytotoxic but exhibited greatly reduced clonogenic potential in two out of three cell lines. In the migratory prostate cancer cell line DU-145, bile acids impaired cell adhesion, migration and invasion. CDCA and DCA destabilised HIF-1α in all cells and significantly suppressed key cancer progression associated phenotypes; clonogenic growth, invasion and migration in DU-145 cells. These findings suggest previously unobserved roles for bile acids as physiologically relevant molecules targeting hypoxic tumour progression

  7. Zinc promotes the death of hypoxic astrocytes by upregulating hypoxia-induced hypoxia-inducible factor-1alpha expression via poly(ADP-ribose) polymerase-1.

    Science.gov (United States)

    Pan, Rong; Chen, Chen; Liu, Wen-Lan; Liu, Ke-Jian

    2013-07-01

    Pathological release of excess zinc ions has been implicated in ischemic brain cell death. However, the underlying mechanisms remain to be elucidated. In stroke, ischemia-induced zinc release and hypoxia-inducible factor-1 (HIF-1) accumulation concurrently occur in the ischemic tissue. The present study tests the hypothesis that the presence of high intracellular zinc concentration is a major cause of modifications to PARP-1 and HIF-1α during hypoxia, which significantly contributes to cell death during ischemia. Primary cortical astrocytes and C8-D1A cells were exposed to different concentrations of zinc chloride. Cell death rate and protein expression of HIF-1 and Poly(ADP-ribose) polymerase (PARP)-1 were examined after 3-h hypoxic treatment. Although 3-h hypoxia or 100 μM of zinc alone did not induce noticeable cytotoxicity, their combination led to a dramatic increase in astrocytic cell death in a zinc-concentration-dependent manner. Exposure of astrocytes to hypoxia for 3 h remarkably increased the levels of intracellular zinc and HIF-1α protein, which was further augmented by added exogenous zinc. Notably, HIF-1α knockdown blocked zinc-induced astrocyte death. Moreover, knockdown of PARP-1, another important protein in the response of hypoxia, attenuated the overexpression of HIF-1α and reduced the cell death rate. Our studies show that zinc promotes hypoxic cell death through overexpression of the hypoxia response factor HIF-1α via the cell fate determine factor PARP-1 modification, which provides a novel mechanism for zinc-mediated ischemic brain injury. © 2013 John Wiley & Sons Ltd.

  8. The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF

    DEFF Research Database (Denmark)

    Beyer, Sophie; Kristensen, Malene Maag; Jensen, Kim Steen

    2008-01-01

    of these modifications is exerted by histone methyltransferases and the recently discovered histone demethylases. Here we show that the hypoxia-inducible factor HIF-1a binds to specific recognition sites in the genes encoding the jumonji family histone demethylases JMJD1A and JMJD2B and induces their expression....... Accordingly, hypoxic cells express elevated levels of JMJD1A and JMJD2B mRNA and protein. Furthermore, we find increased expression of JMJD1A and JMJD2B in renal cancer cells that have lost the von Hippel Lindau tumor suppressor protein VHL and therefore display a deregulated expression of HIF. Studies...... on ectopically expressed JMJD1A and JMJD2B indicate that both proteins retain their histone lysine demethylase activity in hypoxia and thereby might impact the hypoxic gene expression program....

  9. IL-1β-specific recruitment of GCN5 histone acetyltransferase induces the release of PAF1 from chromatin for the de-repression of inflammatory response genes.

    Science.gov (United States)

    Kim, Nari; Sun, Hwa-Young; Youn, Min-Young; Yoo, Joo-Yeon

    2013-04-01

    To determine the functional specificity of inflammation, it is critical to orchestrate the timely activation and repression of inflammatory responses. Here, we explored the PAF1 (RNA polymerase II associated factor)-mediated signal- and locus-specific repression of genes induced through the pro-inflammatory cytokine interleukin (IL)-1β. Using microarray analysis, we identified the PAF1 target genes whose expression was further enhanced by PAF1 knockdown in IL-1β-stimulated HepG2 hepatocarcinomas. PAF1 bound near the transcription start sites of target genes and dissociated on stimulation. In PAF1-deficient cells, more elongating RNA polymerase II and acetylated histones were observed, although IL-1β-mediated activation and recruitment of nuclear factor κB (NF-κB) were not altered. Under basal conditions, PAF1 blocked histone acetyltransferase general control non-depressible 5 (GCN5)-mediated acetylation on H3K9 and H4K5 residues. On IL-1β stimulation, activated GCN5 discharged PAF1 from chromatin, allowing productive transcription to occur. PAF1 bound to histones but not to acetylated histones, and the chromatin-binding domain of PAF1 was essential for target gene repression. Moreover, IL-1β-induced cell migration was similarly controlled through counteraction between PAF1 and GCN5. These results suggest that the IL-1β signal-specific exchange of PAF1 and GCN5 on the target locus limits inappropriate gene induction and facilitates the timely activation of inflammatory responses.

  10. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis.

    Science.gov (United States)

    Welsh, Sarah J; Bellamy, William T; Briehl, Margaret M; Powis, Garth

    2002-09-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimer of HIF-1alpha and HIF-1beta subunits, is a transcriptional activator central to the cellular response to low oxygen that includes metabolic adaptation, angiogenesis, metastasis, and inhibited apoptosis. Thioredoxin-1 (Trx-1) is a small redox protein overexpressed in a number of human primary tumors. We have examined the effects of Trx-1 on HIF activity and the activation of downstream genes. Stable transfection of human breast carcinoma MCF-7 cells with human Trx-1 caused a significant increase in HIF-1alpha protein levels under both normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. Trx-1 increased hypoxia-induced HIF-1 transactivation activity measured using a luciferase reporter under the control of the hypoxia response element. Changes in HIF-1alpha mRNA levels did not account for the changes observed at the protein level, and HIF-1beta protein levels did not change. Trx-1 transfection also caused a significant increase in the protein products of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF) and nitric oxide synthase 2 in a number of different cell lines (MCF-7 human breast and HT29 human colon carcinomas and WEHI7.2 mouse lymphoma cells) under both normoxic and hypoxic conditions. The pattern of expression of the different isoforms of VEGF was not changed by Trx-1. Transfection of a redox-inactive Trx-1 (C32S/C35S) markedly decreased levels of HIF-1alpha protein, HIF-1 transactivating activity, and VEGF protein in MCF-7 cells compared with empty vector controls. In vivo studies using WEHI7.2 cells transfected with Trx-1 showed significantly increased tumor VEGF and angiogenesis. The results suggest that Trx-1 increases HIF-1alpha protein levels in cancer cells and increases VEGF production and tumor angiogenesis.

  11. Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression

    International Nuclear Information System (INIS)

    Simiantonaki, Nektaria; Taxeidis, Marios; Jayasinghe, Caren; Kurzik-Dumke, Ursula; Kirkpatrick, Charles James

    2008-01-01

    Hypoxia-inducible factor 1 alpha (HIF-1α) is involved in processes promoting carcinogenesis of many tumors. However, its role in the development of colorectal cancer is unknown. To investigate the significance of HIF-1α during colorectal carcinogenesis and progression we examined its expression in precursor lesions constituting the conventional and serrated pathways, as well as in non-metastatic and metastatic adenocarcinomas. Immunohistochemistry and Western blot is used to analyse HIF-1α expression in normal colonic mucosa, hyperplastic polyps (HPP), sessile serrated adenomas (SSA), low-grade (TA-LGD) and high-grade (TA-HGD) traditional adenomas as well as in non-metastatic and metastatic colorectal adenocarcinomas. Eight colorectal carcinoma cell lines are tested for their HIF-1α inducibility after lipopolysaccharide (LPS) stimulation using western blot and immunocytochemistry. In normal mucosa, HPP and TA-LGD HIF-1α was not expressed. In contast, perinuclear protein accumulation and nuclear expression of HIF-1α were shown in half of the examined SSA and TA-HGD. In all investigated colorectal carcinomas a significant nuclear HIF-1α overexpression compared to the premalignant lesions was observed but a significant correlation with the metastatic status was not found. Nuclear HIF-1α expression was strongly accumulated in perinecrotic regions. In these cases HIF-1α activation was seen in viable cohesive tumor epithelia surrounding necrosis and in dissociated tumor cells, which subsequently die. Enhanced distribution of HIF-1α was also seen in periiflammatory regions. In additional in vitro studies, treatment of diverse colorectal carcinoma cell lines with the potent pro-inflammatory factor lipopolysaccharide (LPS) led to HIF-1α expression and nuclear translocation. We conclude that HIF-1α expression occurs in early stages of colorectal carcinogenesis and achieves a maximum in the invasive stage independent of the metastatic status. Perinecrotic

  12. Chronic cerebral hypoperfusion-induced impairment of Aβ clearance requires HB-EGF-dependent sequential activation of HIF1α and MMP9.

    Science.gov (United States)

    Ashok, Anushruti; Rai, Nagendra Kumar; Raza, Waseem; Pandey, Rukmani; Bandyopadhyay, Sanghamitra

    2016-11-01

    Chronic cerebral hypoperfusion (CCH) manifests Alzheimer's Disease (AD) neuropathology, marked by increased amyloid beta (Aβ). Besides, hypoxia stimulates Heparin-binding EGF-like growth factor (HB-EGF) mRNA expression in the hippocampus. However, involvement of HB-EGF in CCH-induced Aβ pathology remains unidentified. Here, using Bilateral Common Carotid Artery Occlusion mouse model, we explored the mechanism of HB-EGF regulated Aβ induction in CCH. We found that HB-EGF inhibition suppressed, while exogenous-HB-EGF triggered hippocampal Aβ, proving HB-EGF-dependent Aβ increase. We also detected that HB-EGF affected the expression of primary Aβ transporters, receptor for advanced glycation end-products (RAGE) and lipoprotein receptor-related protein-1 (LRP-1), indicating impaired Aβ clearance across the blood-brain barrier (BBB). An HB-EGF-dependent loss in BBB integrity supported impaired Aβ clearance. The effect of HB-EGF on Amyloid Precursor Protein pathway was relatively insignificant, suggesting a lesser effect on Aβ generation. Delving into BBB disruption mechanism demonstrated HB-EGF-mediated stimulation of Matrix metalloprotease-9 (MMP9), which affected BBB via HB-EGF-ectodomain shedding and epidermal growth factor receptor activation. Examining the intersection of HB-EGF-regulated pathway and hypoxia revealed HB-EGF-dependent increase in transcription factor, Hypoxia-inducible factor-1alpha (HIF1α). Further, via binding to hypoxia-responsive elements in MMP9 gene, HIF1α stimulated MMP9 expression, and therefore appeared as a prominent intermediary in HB-EGF-induced BBB damage. Overall, our study reveals the essential role of HB-EGF in triggering CCH-mediated Aβ accumulation. The proposed mechanism involves an HB-EGF-dependent HIF1α increase, generating MMP9 that stimulates soluble-HB-EGF/EGFR-induced BBB disintegration. Consequently, CCH-mediated hippocampal RAGE and LRP-1 deregulation together with BBB damage impair Aβ transport and clearance

  13. Epigenetic control of hypoxia inducible factor-1α-dependent expression of placental growth factor in hypoxic conditions.

    Science.gov (United States)

    Tudisco, Laura; Della Ragione, Floriana; Tarallo, Valeria; Apicella, Ivana; D'Esposito, Maurizio; Matarazzo, Maria Rosaria; De Falco, Sandro

    2014-04-01

    Hypoxia plays a crucial role in the angiogenic switch, modulating a large set of genes mainly through the activation of hypoxia-inducible factor (HIF) transcriptional complex. Endothelial cells play a central role in new vessels formation and express placental growth factor (PlGF), a member of vascular endothelial growth factor (VEGF) family, mainly involved in pathological angiogenesis. Despite several observations suggest a hypoxia-mediated positive modulation of PlGF, the molecular mechanism governing this regulation has not been fully elucidated. We decided to investigate if epigenetic modifications are involved in hypoxia-induced PlGF expression. We report that PlGF expression was induced in cultured human and mouse endothelial cells exposed to hypoxia (1% O 2), although DNA methylation at the Plgf CpG-island remains unchanged. Remarkably, robust hyperacetylation of histones H3 and H4 was observed in the second intron of Plgf, where hypoxia responsive elements (HREs), never described before, are located. HIF-1α, but not HIF-2α, binds to identified HREs. Noteworthy, only HIF-1α silencing fully inhibited PlGF upregulation. These results formally demonstrate a direct involvement of HIF-1α in the upregulation of PlGF expression in hypoxia through chromatin remodeling of HREs sites. Therefore, PlGF may be considered one of the putative targets of anti-HIF therapeutic applications.

  14. Protein arginine methyltransferase 5 is an essential component of the hypoxia-inducible factor 1 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ji-Hong; Choi, Yong-Joon; Cho, Chung-Hyun [Department of Pharmacology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of); Park, Jong-Wan, E-mail: parkjw@snu.ac.kr [Department of Pharmacology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer HIF-1{alpha} is expressed PRMT5-dependently in hypoxic cancer cells. Black-Right-Pointing-Pointer The HIF-1 regulation of hypoxia-induced genes is attenuated in PRMT5-knocked-down cells. Black-Right-Pointing-Pointer The de novo synthesis of HIF-1{alpha} depends on PRMT5. Black-Right-Pointing-Pointer PRMT5 is involved in the HIF-1{alpha} translation initiated by 5 Prime UTR of HIF-1{alpha} mRNA. -- Abstract: Protein arginine methyltransferase 5 (PRMT5) is an enzyme that transfers one or two methyl groups to the arginine residues of histones or non-histone proteins, and that plays critical roles in cellular processes as diverse as receptor signaling and gene expression. Furthermore, PRMT5 is highly expressed in tumors, where it may be associated with tumor growth. Although much research has been conducted on PRMT5, little is known regarding its role in adaption to hypoxia. As hypoxia-inducible factor 1 (HIF-1) is a key player in hypoxic response, we examined the possible involvement of PRMT5 in the HIF-1 signaling pathway. Of the siRNAs targeting PRMT1-8, only PRMT5 siRNA attenuated the hypoxic induction of HIF-1{alpha} in A549 cells, and this result was reproducible in all three cancer cell lines examined. PRMT5 knock-down also repressed the promoter activities and the transcript levels of HIF-1-governed genes. Mechanistically, de novo synthesis of HIF-1{alpha} protein was reduced in PRMT5-knocked-down A549 cells, and this was rescued by PRMT5 restoration. In contrast, HIF-1{alpha} transcription, RNA processing, and protein stability were unaffected by PRMT5 knock-down. Furthermore, PRMT5 was found to be essential for the HIF-1{alpha} translation initiated by the 5 Prime UTR of HIF-1{alpha} mRNA. Given our results and previous reports, we believe that PRMT5 probably promotes tumor growth by stimulating cell proliferation and by participating in the construction of a tumor-favorable microenvironment via HIF-1 activation.

  15. Expression of N-WASP is regulated by HiF1α through the hypoxia response element in the N-WASP promoter

    Directory of Open Access Journals (Sweden)

    Amrita Salvi

    2017-03-01

    Full Text Available Cancer cell migration and invasion involves temporal and spatial regulation of actin cytoskeleton reorganization, which is regulated by the WASP family of proteins such as N-WASP (Neural- Wiskott Aldrich Syndrome Protein. We have previously shown that expression of N-WASP was increased under hypoxic conditions. In order to characterize the regulation of N-WASP expression, we constructed an N-WASP promoter driven GFP reporter construct, N-WASPpro-GFP. Transfection of N-WASPpro-GFP construct and plasmid expressing HiF1α (Hypoxia Inducible factor 1α enhanced the expression of GFP suggesting that increased expression of N-WASP under hypoxic conditions is mediated by HiF1α. Sequence analysis of the N-WASP promoter revealed the presence of two hypoxia response elements (HREs characterized by the consensus sequence 5′-GCGTG-3′ at -132 bp(HRE1 and at -662 bp(HRE2 relative to transcription start site (TSS. Site-directed mutagenesis of HRE1(-132 but not HRE2(-662 abolished the HiF1α induced activation of N-WASP promoter. Similarly ChIP assay demonstrated that HiF1α bound to HRE1(-132 but not HRE2(-662 under hypoxic condition. MDA-MB-231 cells but not MDA-MB-231KD cells treated with hypoxia mimicking agent, DMOG showed enhanced gelatin degradation. Similarly MDA-MB-231KD(N-WASPpro-N-WASPR cells expressing N-WASPR under the transcriptional regulation of WT N-WASPpro but not MDA-MB-231KD(N-WASPproHRE1-N-WASPR cells expressing N-WASPR under the transcriptional regulation of N-WASPproHRE1 showed enhanced gelatin degradation when treated with DMOG. Thus indicating the importance of N-WASP in hypoxia induced invadopodia formation. Thus, our data demonstrates that hypoxia-induced activation of N-WASP expression is mediated by interaction of HiF1α with the HRE1(-132 and explains the role of N-WASP in hypoxia induced invadopodia formation.

  16. Hypoxia-inducible factor 1α regulates branching morphogenesis during kidney development.

    Science.gov (United States)

    Tsuji, Kenji; Kitamura, Shinji; Makino, Hirofumi

    2014-04-25

    The kidneys are exposed to hypoxic conditions during development. Hypoxia-inducible factor (HIF), an important mediator of the response to hypoxia, is believed to have an important role in development. However, the relationship between HIF and branching morphogenesis has not been elucidated clearly. In this study, we examined whether HIF regulates kidney development. We harvested kidneys from day 13 rat embryos (E13Ks) and cultured the organs under normoxic (20% O2/5% CO2) or hypoxic (5% O2/5% CO2) conditions. We evaluated the kidneys based on morphology and gene expression. E13Ks cultured under hypoxic conditions had significantly more ureteric bud (UB) branching than the E13Ks cultured under normoxic conditions. In addition, the mRNA levels of GDNF and GDNF receptor (GFR-α1), increased under hypoxic conditions in E13Ks. When we cultured E13Ks with the HIF-1α inhibitor digoxin or with siRNA targeting HIF-1α under hypoxic conditions, we did not observe increased UB branching. In addition, the expression of GDNF and GFR-α1 was inhibited under hypoxic conditions when the kidneys were treated with siRNA targeting HIF-1α. We also elucidated that hypoxia inhibited UB cell apoptosis and promoted the expression of FGF7 mRNA levels in metanephric mesenchymal (MM) cells in vitro. These findings suggest that hypoxic condition has important roles in inducing branching morphogenesis during kidney development. Hypoxia might mediate branching morphogenesis via not only GDNF/Ret but also FGF signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1α/HIF-1β

    Directory of Open Access Journals (Sweden)

    Xu Jianfeng

    2010-05-01

    Full Text Available Abstract Background In prostate cancer (PCa, the common treatment involving androgen ablation alleviates the disease temporarily, but results in the recurrence of highly aggressive and androgen-independent metastatic cancer. Therefore, more effective therapeutic approaches are needed. It is known that aberrant epigenetics contributes to prostate malignancy. Unlike genetic changes, these epigenetic alterations are reversible, which makes them attractive targets in PCa therapy to impede cancer progression. As a histone methyltransferease, Ezh2 plays an essential role in epigenetic regulation. Since Ezh2 is overexpressed and acts as an oncogene in PCa, it has been proposed as a bona fide target of PCa therapy. MicroRNAs (miRNAs regulate gene expression through modulating protein translation. Recently, the contribution of miRNAs in cancer development is increasingly appreciated. In this report, we present our study showing that microRNA-101 (miR-101 inhibits Ezh2 expression and differentially regulates prostate cancer cells. In addition, the expression of miR-101 alters upon androgen treatment and HIF-1α/HIF-1β induction. Result In our reporter assays, both miR-101 and miR-26a inhibit the expression of a reporter construct containing the 3'-UTR of Ezh2. When ectopically expressed in PC-3, DU145 and LNCaP cells, miR-101 inhibits endogenous Ezh2 expression in all three cell lines, while miR-26a only decreases Ezh2 in DU145. Ectopic miR-101 reduces the invasion ability of PC-3 cells, while restored Ezh2 expression rescues the invasiveness of PC-3 cells. Similarly, miR-101 also inhibits cell invasion and migration of DU145 and LNCaP cells, respectively. Interestingly, ectopic miR-101 exhibits differential effects on the proliferation of PC-3, DU-145 and LNCaP cells and also causes morphological changes of LNCaP cells. In addition, the expression of miR-101 is regulated by androgen receptor and HIF-1α/HIF-1β. While HIF-1α/HIF-1β induced by

  18. A New Pharmacological Agent (AKB-4924) Stabilizes Hypoxia Inducible Factor (HIF) and Increases Skin Innate Defenses Against Bacterial Infection

    Science.gov (United States)

    Okumura, Cheryl Y.M.; Hollands, Andrew; Tran, Dan N.; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A.; Johnson, Randall S.; Nizet, Victor

    2013-01-01

    Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 (Akebia Therapeutics) increases HIF-1α levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and -resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinitobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections. PMID:22371073

  19. Increased Levels of VEGF-A and HIF-1α in Turkish Children with Crimean-Congo Hemorrhagic Fever

    Directory of Open Access Journals (Sweden)

    Murat Sefikogullari

    2017-04-01

    Full Text Available Background: Crimean-Congo Hemorrhagic Fever (CCHF is a disease characterized by serious course, including acute viral fever, ecchymosis, thrombocytopenia, liver dysfunction and high rate of mortality. Hypoxia Inducible Factor-1α (HIF-1α and Vascular Endothelial Growth Factor-A (VEGF-A play an important role both in the inflamma­tory process and plasma leakage. The aim of this study was to define HIF-1α and VEGF-A serum levels obtained from CCHF patients and control group and to investigate whether these factors were correlated with the pathogenesis of this disease.Methods: Thirty cases younger than 17 yr confirmed by RT-PCR and/or ELISA for CCHF were included in this study. Thirty age and sex matched healthy peoples were enrolled as controls. Blood samples collected from the pa­tient and control groups. Serum levels of HIF-1α and VEGF-A were measured with ELISA.Results: Levels of HIF-1α and VEGF-A were statistically significantly increased in CCHF patients compared to the control group (P< 0.05.  A significant positive correlation was found between the levels of HIF-1α and VEGF-A in the patient group (P< 0.01. The levels of ALT, AST, CK, aPTT, WBC and Thrombocyte count were significantly higher in the patients than in the control group (P< 0.001. A positive correlation was found among the levels of AST and CK from biochemical parame­ters and VEGF and HIF-1α in the patient group (P< 0.05Conclusion: HIF-1α and VEGF-A might play an important role in CCHF pathogenesis.

  20. Hypoxia Induces Epithelial-Mesenchymal Transition in Follicular Thyroid Cancer: Involvement of Regulation of Twist by Hypoxia Inducible Factor-1α.

    Science.gov (United States)

    Yang, Yeon Ju; Na, Hwi Jung; Suh, Michelle J; Ban, Myung Jin; Byeon, Hyung Kwon; Kim, Won Shik; Kim, Jae Wook; Choi, Eun Chang; Kwon, Hyeong Ju; Chang, Jae Won; Koh, Yoon Woo

    2015-11-01

    Although follicular thyroid cancer (FTC) has a relatively fair prognosis, distant metastasis sometimes results in poor prognosis and survival. There is little understanding of the mechanisms contributing to the aggressiveness potential of thyroid cancer. We showed that hypoxia inducible factor-1α (HIF-1α) induced aggressiveness in FTC cells and identified the underlying mechanism of the HIF-1α-induced invasive characteristics. Cells were cultured under controlled hypoxic environments (1% O₂) or normoxic conditions. The effect of hypoxia on HIF-1α, and epithelial-to-mesenchymal transition (EMT) related markers were evaluated by quantitative real-time PCR, Western blot analysis and immunocytochemistry. Invasion and wound healing assay were conducted to identify functional character of EMT. The involvement of HIF-1α and Twist in EMT were studied using gene overexpression or silencing. After orthotopic nude mouse model was established using the cells transfected with lentiviral shHIF-1α, tissue analysis was done. Hypoxia induces HIF-1α expression and EMT, including typical morphologic changes, cadherin shift, and increased vimentin expression. We showed that overexpression of HIF-1α via transfection resulted in the aforementioned changes without hypoxia, and repression of HIF-1α with RNA interference suppressed hypoxia-induced HIF-1α and EMT. Furthermore, we also observed that Twist expression was regulated by HIF-1α. These were confirmed in the orthotopic FTC model. Hypoxia induced HIF-1α, which in turn induced EMT, resulting in the increased capacity for invasion and migration of cells via regulation of the Twist signal pathway in FTC cells. These findings provide insight into a possible therapeutic strategy to prevent invasive and metastatic FTC.

  1. Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia

    Directory of Open Access Journals (Sweden)

    Meng-Chuan Chen

    2015-07-01

    Full Text Available Activation of hypoxia-induced hypoxia-inducible factors-1 (HIF-1 plays a critical role in promoting tumor angiogenesis, growth and metastasis. Low molecular weight fucoidan (LMWF is prepared from brown algae, and exhibits anticancer activity. However, whether LMWF attenuates hypoxia-induced angiogenesis in bladder cancer cells and the molecular mechanisms involved remain unclear. This is the first study to demonstrate that LMWF can inhibit hypoxia-stimulated H2O2 formation, HIF-1 accumulation and transcriptional activity vascular endothelial growth factor (VEGF secretion, and the migration and invasion in hypoxic human bladder cancer cells (T24 cells. LMWF also downregulated hypoxia-activated phosphorylation of PI3K/AKT/mTOR/p70S6K/4EBP-1 signaling in T24 cells. Blocking PI3K/AKT or mTOR activity strongly diminished hypoxia-induced HIF-1α expression and VEGF secretion in T24 cells, supporting the involvement of PI3K/AKT/mTOR in the induction of HIF-1α and VEGF. Additionally, LMWF significantly attenuated angiogenesis in vitro and in vivo evidenced by reduction of tube formation of hypoxic human umbilical vascular endothelial cells and blood capillary generation in the tumor. Similarly, administration of LMWF also inhibited the HIF-1α and VEGF expression in vivo, accompanied by a reduction of tumor growth. In summary, under hypoxia conditions, the antiangiogenic activity of LMWF in bladder cancer may be associated with suppressing HIF-1/VEGF-regulated signaling pathway.

  2. Differential expression of OPN, VEGF-A, and HIF-1α and its clinical significance in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    ZHENG Yan

    2013-01-01

    Full Text Available ObjectiveTo investigate the expression patterns of osteopontin (OPN, vascular endothelial growth factor-A (VEGF-A, and hypoxia-inducible factor-1α(HIF-1α in primary hepatocellular carcinoma (HCC and determine the clinical significance of this differential expression profile. MethodsImmunohistochemical staining of OPN, VEGF-A, and HIF-1α was carried out on primary HCC tissues from 90 patients, HCC-adjacent cirrhosis tissues from 20 of those patients, and normal liver tissues from 15 healthy controls. Correlations between expression levels and HCC clinicopathological characteristics were assessed by Spearman's correlation coefficient. ResultsThe majority of HCC tissues showed positive immunostaining for OPN (69/90, 76.67%, VEGF-A (64/90, 71.11%, and HIF-1α (66/90, 73.33%. OPN- and VEGF-A-positivity were significantly higher than the results from the cirrhosis tissues and normal tissues. HIF-1α-positivity was similar between the HCC and cirrhosis tissues, but both were significantly different from the normal tissues. The differential expressions of OPN, VEGF-A, and HIF-1α were significantly correlated with tumor thrombus, capsular integrity, tumor differentiation and stage, and metastasis (P<0.05. ConclusionHCC tissues overexpress OPN, VEGF-A, and HIF-1α and this differential profile may be related to HCC progression. Future investigations of this triad of factors may provide novel insights into the biological characteristics of HCC and reveal important targets of molecular therapy.

  3. HIF-1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Borsi, Enrica, E-mail: enrica.borsi2@unibo.it [Department of Experimental Diagnostic and Specialty Medicine (DIMES), “L. and A. Seràgnoli”, Bologna University School of Medicine, S. Orsola' s University Hospital (Italy); Perrone, Giulia [Fondazione IRCCS Istituto Nazionale dei Tumori, Hematology Department, Via Venezian 1, 20133 Milano (Italy); Terragna, Carolina; Martello, Marina; Zamagni, Elena; Tacchetti, Paola; Pantani, Lucia; Brioli, Annamaria; Dico, Angela Flores; Zannetti, Beatrice Anna; Rocchi, Serena; Cavo, Michele [Department of Experimental Diagnostic and Specialty Medicine (DIMES), “L. and A. Seràgnoli”, Bologna University School of Medicine, S. Orsola' s University Hospital (Italy)

    2014-11-01

    Multiple myeloma (MM) is a malignant disorder of post-germinal center B cells, characterized by the clonal proliferation of malignant plasma cells (PCs) within the bone marrow (BM). The reciprocal and complex interactions that take place between the different compartments of BM and the MM cells result in tumor growth, angiogenesis, bone disease, and drug resistance. Given the importance of the BM microenvironment in MM pathogenesis, we investigated the possible involvement of Hypoxia-Inducible transcription Factor-1 alpha (HIF-1α) in the PCs-bone marrow stromal cells interplay. To test this hypothesis, we used EZN-2968, a 3rd generation antisense oligonucleotide against HIF-1α, to inhibit HIF-1α functions. Herein, we provide evidence that the interaction between MM cells and BM stromal cells is drastically reduced upon HIF-1α down-modulation. Notably, we showed that upon exposure to HIF-1α inhibitor, neither the incubation with IL-6 nor the co-culture with BM stromal cells were able to revert the anti-proliferative effect induced by EZN-2968. Moreover, we observed a down-modulation of cytokine-induced signaling cascades and a reduction of MM cells adhesion capability to the extracellular matrix proteins in EZN-2968-treated samples. Taken together, these results strongly support the concept that HIF-1α plays a critical role in the interactions between bone BM cells and PCs in Multiple Myeloma. - Highlights: • HIF-1α inhibition induces a mild apoptotic cell death. • Down-modulation of cytokine-induced signaling cascades upon HIF-1α inhibition. • Reduced interaction between MM cells and BMSCs upon HIF-1α down-modulation. • Reduced PCs adhesion to the extracellular matrix protein induced by EZN-2968. • HIF-1α inhibition may be an attractive therapeutic strategy for Multiple Myeloma.

  4. Inhibition of protein kinase C delta attenuates allergic airway inflammation through suppression of PI3K/Akt/mTOR/HIF-1 alpha/VEGF pathway.

    Directory of Open Access Journals (Sweden)

    Yun Ho Choi

    Full Text Available Vascular endothelial growth factor (VEGF is supposed to contribute to the pathogenesis of allergic airway disease. VEGF expression is regulated by a variety of stimuli such as nitric oxide, growth factors, and hypoxia-inducible factor-1 alpha (HIF-1α. Recently, inhibition of the mammalian target of rapamycin (mTOR has been shown to alleviate cardinal asthmatic features, including airway hyperresponsiveness, eosinophilic inflammation, and increased vascular permeability in asthma models. Based on these observations, we have investigated whether mTOR is associated with HIF-1α-mediated VEGF expression in allergic asthma. In studies with the mTOR inhibitor rapamycin, we have elucidated the stimulatory role of a mTOR-HIF-1α-VEGF axis in allergic response. Next, the mechanisms by which mTOR is activated to modulate this response have been evaluated. mTOR is known to be regulated by phosphoinositide 3-kinase (PI3K/Akt or protein kinase C-delta (PKC δ in various cell types. Consistent with these, our results have revealed that suppression of PKC δ by rottlerin leads to the inhibition of PI3K/Akt activity and the subsequent blockade of a mTOR-HIF-1α-VEGF module, thereby attenuating typical asthmatic attack in a murine model. Thus, the present data indicate that PKC δ is necessary for the modulation of the PI3K/Akt/mTOR signaling cascade, resulting in a tight regulation of HIF-1α activity and VEGF expression. In conclusion, PKC δ may represent a valuable target for innovative therapeutic treatment of allergic airway disease.

  5. Limitation of HIF-1α with pentoxifillyne on renal tubular ischemia result of hiperoxaluria and ESWL.

    Science.gov (United States)

    Erturhan, Sakip; Bayrak, Omer; Seckiner, Ilker; Celik, Mehmet; Karakok, Metin

    2014-03-01

    To evaluate hypoxia-inducible factor 1 subunit α (HIF-1α) expression during the performance of extracorporeal shock wave lithotripsy (ESWL) and to investigate the effects of pentoxyphylline on HIF-1α expression. One hundred New Zealand Albino rabbit were used in the study divided in 5 groups. There were 20 rabbits in each group. The groups were divided in two parts: early (7 days) and late period (14 days) according to follow up duration. Immunohistochemical analyses were performed using nuclear staining to show HIF-1α expression in rabbit renal tissue sample. HIF-1α expression was higher in rabbits undergoing ESWL (group 4). In the hyperoxaluria group taking pentoxyphylline before ESWL (group 5), HIF-1α expression was lower in both early and late period subgroups (p ESWL may cause renal cell injury. Our results suggest that pentoxyphylline, as a circulatory regulator agent, may prevent renal cell injury induced by ESWL.

  6. Hypoxia-induced cytotoxic drug resistance in osteosarcoma is independent of HIF-1Alpha.

    Directory of Open Access Journals (Sweden)

    Jennifer Adamski

    Full Text Available Survival rates from childhood cancer have improved dramatically in the last 40 years, such that over 80% of children are now cured. However in certain subgroups, including metastatic osteosarcoma, survival has remained stubbornly poor, despite dose intensive multi-agent chemotherapy regimens, and new therapeutic approaches are needed. Hypoxia is common in adult solid tumours and is associated with treatment resistance and poorer outcome. Hypoxia induces chemotherapy resistance in paediatric tumours including neuroblastoma, rhabdomyosarcoma and Ewing's sarcoma, in vitro, and this drug resistance is dependent on the oxygen-regulated transcription factor hypoxia inducible factor-1 (HIF-1. In this study the effects of hypoxia on the response of the osteosarcoma cell lines 791T, HOS and U2OS to the clinically relevant cytotoxics cisplatin, doxorubicin and etoposide were evaluated. Significant hypoxia-induced resistance to all three agents was seen in all three cell lines and hypoxia significantly reduced drug-induced apoptosis. Hypoxia also attenuated drug-induced activation of p53 in the p53 wild-type U2OS osteosarcoma cells. Drug resistance was not induced by HIF-1α stabilisation in normoxia by cobalt chloride nor reversed by the suppression of HIF-1α in hypoxia by shRNAi, siRNA, dominant negative HIF or inhibition with the small molecule NSC-134754, strongly suggesting that hypoxia-induced drug resistance in osteosarcoma cells is independent of HIF-1α. Inhibition of the phosphoinositide 3-kinase (PI3K pathway using the inhibitor PI-103 did not reverse hypoxia-induced drug resistance, suggesting the hypoxic activation of Akt in osteosarcoma cells does not play a significant role in hypoxia-induced drug resistance. Targeting hypoxia is an exciting prospect to improve current anti-cancer therapy and combat drug resistance. Significant hypoxia-induced drug resistance in osteosarcoma cells highlights the potential importance of hypoxia as a target

  7. Increased accumulation of hypoxia-inducible factor-1α with reduced transcriptional activity mediates the antitumor effect of triptolide

    Directory of Open Access Journals (Sweden)

    Li Zheng

    2010-10-01

    Full Text Available Abstract Background Hypoxia-inducible factor-1α (HIF-1α, a critical transcription factor to reduced O2 availability, has been demonstrated to be extensively involved in tumor survival, aggressive progression, drug resistance and angiogenesis. Thus it has been considered as a potential anticancer target. Triptolide is the main principle responsible for the biological activities of the Traditional Chinese Medicine tripterygium wilfordii Hook F. Triptolide possesses great chemotherapy potential for cancer with its broad-spectrum anticancer, antiangiogenesis, and drug-resistance circumvention activities. Numerous biological molecules inhibited by triptolide have been viewed as its possible targets. However, the anticancer action mechanisms of triptolide remains to be further investigated. Here we used human ovarian SKOV-3 cancer cells as a model to probe the effect of triptolide on HIF-1α. Results Triptolide was observed to inhibit the proliferation of SKOV-3 cells, and meanwhile, to enhance the accumulation of HIF-1α protein in SKOV-3, A549 and DU145 cells under different conditions. Triptolide did not change the kinetics or nuclear localization of HIF-1α protein or the 26 S proteasome activity in SKOV-3 cells. However, triptolide was found to increase the levels of HIF-1α mRNA. Unexpectedly, the HIF-1α protein induced by triptolide appeared to lose its transcriptional activity, as evidenced by the decreased mRNA levels of its target genes including VEGF, BNIP3 and CAIX. The results were further strengthened by the lowered secretion of VEGF protein, the reduced sprout outgrowth from the rat aorta rings and the inhibitory expression of the hypoxia responsive element-driven luciferase reporter gene. Moreover, the silencing of HIF-1α partially prevented the cytotoxicity and apoptosis triggered by triptolide. Conclusions The potent induction of HIF-1α protein involved in its cytotoxicity, together with the suppression of HIF-1 transcriptional

  8. Transcription factor HIF1A: downstream targets, associated pathways, polymorphic hypoxia response element (HRE) sites, and initiative for standardization of reporting in scientific literature.

    Science.gov (United States)

    Slemc, Lucija; Kunej, Tanja

    2016-11-01

    Hypoxia-inducible factor-1α (HIF-1α) has crucial role in adapting cells to hypoxia through expression regulation of many genes. Identification of HIF-1α target genes (HIF-1α-TGs) is important for understanding the adapting mechanism. The aim of the present study was to collect known HIF-1α-TGs and identify their associated pathways. Targets and associated genomics data were retrieved using PubMed, WoS ( http://apps.webofknowledge.com/ ), HGNC ( http://www.genenames.org/ ), NCBI ( http://www.ncbi.nlm.nih.gov/ ), Ensemblv.84 ( http://www.ensembl.org/index.html ), DAVID Bioinformatics Resources ( https://david.ncifcrf.gov /), and Disease Ontology database ( http://disease-ontology.org/ ). From 51 papers, we collected 98 HIF-1α TGs found to be associated with 20 pathways, including metabolism of carbohydrates and pathways in cancer. Reanalysis of genomic coordinates of published HREs (hypoxia response elements) revealed six polymorphisms within HRE sites (HRE-SNPs): ABCG2, ACE, CA9, and CP. Due to large heterogeneity of results presentation in scientific literature, we also propose a first step towards reporting standardization of HIF-1α-target interactions consisting of ten relevant data types. Suggested minimal checklist for reporting will enable faster development of a complete catalog of HIF-1α-TGs, data sharing, bioinformatics analyses, and setting novel more targeted hypotheses. The proposed format for data standardization is not yet complete but presents a baseline for further optimization of the protocol with additional details, for example, regarding the experimental validation.

  9. HIF-1α is essential for effective PMN bacterial killing, antimicrobial peptide production and apoptosis in Pseudomonas aeruginosa keratitis.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Berger

    Full Text Available Hypoxia-inducible factor (HIF-1α, is a transcription factor that controls energy metabolism and angiogenesis under hypoxic conditions, and a potent regulator of innate immunity. The studies described herein examined the role of HIF-1α in disease resolution in BALB/c (resistant, cornea heals mice after ocular infection with Pseudomonas (P. aeruginosa. Furthermore, the current studies focused on the neutrophil (PMN, the predominant cell infiltrate in keratitis. Using both siRNA and an antagonist (17-DMAG, the role of HIF-1α was assessed in P. aeruginosa-infected BALB/c mice. Clinical score and slit lamp photography indicated HIF-1α inhibition exacerbated disease and corneal destruction. Real time RT-PCR, immunohistochemistry, ELISA, Greiss and MPO assays, bacterial load, intracellular killing, phagocytosis and apoptosis assays further tested the regulatory role of HIF-1α. Despite increased pro-inflammatory cytokine expression and increased MPO levels after knocking down HIF-1α expression, in vivo studies revealed a decrease in NO production and higher bacterial load. In vitro studies using PMN provided evidence that although inhibition of HIF-1α did not affect phagocytosis, both bacterial killing and apoptosis were significantly affected, as was production of antimicrobial peptides. Overall, data provide evidence that inhibition of HIF-1α converts a normally resistant disease response to susceptible (corneal thinning and perforation after induction of bacterial keratitis. Although this inhibition does not appear to affect PMN transmigration or phagocytosis, both in vivo and in vitro approaches indicate that the transcriptional factor is essential for effective bacterial killing, apoptosis and antimicrobial peptide production.

  10. Hypoxia-inducible factor-1 alpha has a key role in hypoxic preconditioning.

    Science.gov (United States)

    Taie, Satoshi; Ono, Junichiro; Iwanaga, Yasuyuki; Tomita, Shuhei; Asaga, Takehiko; Chujo, Kosuke; Ueki, Masaaki

    2009-08-01

    Sublethal hypoxia induces tolerance to subsequent hypoxic insults in a process known as hypoxic preconditioning (HP). Hypoxia-inducible factor-1 alpha (HIF-1 alpha) is a key transcription protein involved in the mechanism of HP. In this study, we investigated the effects of HP on tissue oxygenation and expression of HIF-1 alpha gene targets in the brain using neural cell-specific HIF-1 alpha-deficient mice. The animals were exposed to 8% oxygen for 3 hours. Twenty-four hours later, the oxygen partial pressure (pO(2)) of brain tissue and gene expression were measured during hypoxia. HP improved the pO(2) of brain tissue during subsequent hypoxia with upregulated inducible nitric oxide synthase in wild-type mice, whereas HP had no detectable effect in the mutant mice. Our results indicate that the protective effects of HP may be partially mediated by improving tissue oxygenation via HIF-1 alpha and inducible nitric oxide synthase.

  11. Nuclear factor-κB-dependent epithelial to mesenchymal transition induced by HIF-1α activation in pancreatic cancer cells under hypoxic conditions.

    Directory of Open Access Journals (Sweden)

    Zhuo-Xin Cheng

    Full Text Available Epithelial to mesenchymal transition (EMT induced by hypoxia is one of the critical causes of treatment failure in different types of human cancers. NF-κB is closely involved in the progression of EMT. Compared with HIF-1α, the correlation between NF-κB and EMT during hypoxia has been less studied, and although the phenomenon was observed in the past, the molecular mechanisms involved remained unclear.Here, we report that hypoxia or overexpression of hypoxia-inducible factor-1α (HIF-1α promotes EMT in pancreatic cancer cells. On molecular or pharmacologic inhibition of NF-κB, hypoxic cells regained expression of E-cadherin, lost expression of N-cadherin, and attenuated their highly invasive and drug-resistant phenotype. Introducing a pcDNA3.0/HIF-1α into pancreatic cancer cells under normoxic conditions heightened NF-κB activity, phenocopying EMT effects produced by hypoxia. Conversely, inhibiting the heightened NF-κB activity in this setting attenuated the EMT phenotype.These results suggest that hypoxia or overexpression of HIF-1α induces the EMT that is largely dependent on NF-κB in pancreatic cancer cells.

  12. Role for HIF-1α and Downstream Pathways in Regulating Neuronal Injury after Intracerebral Hemorrhage in Diabetes

    Directory of Open Access Journals (Sweden)

    Zhen Yu

    2015-08-01

    Full Text Available Background/Aims: HIF-1α is accumulated in the cellular nucleus and cytoplasm under conditions of oxygen deprivation and engaged in pathophysiologic changes of homeostasis by modulating the expression of several target genes. As an endogenous signaling protein, HIF-1α contributes to in neuroprotection, erythropoiesis, and apoptosis modulation. The purpose of this study was to examine the role played by HIF-1α in regulating neurological injury evoked by intracerebral hemorrhage (ICH through its downstream product, namely vascular endothelial growth factor (VEGF. In particular, we examined the effects of diabetic hyperglycemia on HIF-1α response in the processing of ICH. Methods: ELISA was used to measure HIF-1α and VEGF; and Western Blot analysis to examine the protein expression of VEGFR-2 and Caspase-3. Neurological Severity Score and brain water content were used to indicate neurological function and brain edema. Results: HIF-1α and VEGF were significantly increased in the brain after induction of ICH in non-diabetic control rats and diabetic rats; however, the amplified levels of HIF-1α and VEGF were attenuated in diabetic rats (Pvs. non-diabetic rats as compared with non-diabetic rats. Also, the protein expression of VEGF receptor subtype 2 was significantly less in the brain of diabetic rats (Pvs. non-diabetic rats. Further, cerebral infusion of HIF-1 activator stabilized VEGF levels, attenuated Caspase-3 and improved neurological deficits induced by ICH and the effects are smaller in diabetic animals. Conclusion: HIF-1α activated by ICH likely plays a beneficial role via VEGF mechanisms and response of HIF-1α is largely impaired in diabetes. This has pharmacological implications to target specific HIF-1α and VEGF pathway for neuronal dysfunction and vulnerability related to ICH.

  13. Small interfering RNA targeting HIF-1{alpha} reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Staab, Adrian [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Paul Scherrer Institute (PSI), Villigen (Switzerland); Fleischer, Markus [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Wuerzburg Univ. (Germany). Medical Clinic II; Loeffler, Juergen; Einsele, Herrmann [Wuerzburg Univ. (Germany). Medical Clinic II; Said, Harun M.; Katzer, Astrid; Flentje, Michael [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Plathow, Christian [Freiburg Univ. (Germany). Dept. of Nuclear Medicine; Vordermark, Dirk [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Halle-Wittenberg Univ. (Germany). Dept. of Radiation Oncology

    2011-04-15

    Background: Hypoxia inducible factor-1 has been identified as a potential target to overcome hypoxia-induced radioresistance The aim of the present study was to investigate whether selective HIF-1 inhibition via small interfering RNA (siRNA) targeting hypoxia-inducible factor 1{alpha} (HIF-1{alpha}) affects hypoxia-induced radioresistance in HT 1080 human fibrosarcoma cells. Material and Methods: HIF-1{alpha} expression in HT 1080 human fibrosarcoma cells in vitro was silenced using HIF-1{alpha} siRNA sequence primers. Quantitative real-time polymerase chain reaction assay was performed to quantify the mRNA expression of HIF-1{alpha}. HIF-1{alpha} protein levels were studied by Western blotting at 20% (air) or after 12 hours at 0.1% O{sub 2} (hypoxia). Cells were assayed for clonogenic survival after irradiation with 2, 5, or 10 Gy, under normoxic or hypoxic conditions in the presence of HIF-1{alpha}-targeted or control siRNA sequences. A modified oxygen enhancement ratio (OER') was calculated as the ratio of the doses to achieve the same survival at 0.1% O{sub 2} as at ambient oxygen tensions. OER' was obtained at cell survival levels of 50%, 37%, and 10%. Results: HIF-1{alpha}-targeted siRNA enhanced radiation treatment efficacy under severely hypoxic conditions compared to tumor cells treated with scrambled control siRNA. OER was reduced on all survival levels after treatment with HIF-1{alpha}-targeted siRNA, suggesting that inhibition of HIF-1 activation by using HIF-1{alpha}-targeted siRNA increases radiosensitivity of hypoxic tumor cells in vitro. Conclusion: Inhibition of HIF-1 activation by using HIF-1{alpha}-targeted siRNA clearly acts synergistically with radiotherapy and increase radiosensitivity of hypoxic cells in vitro. (orig.)

  14. Small interfering RNA targeting HIF-1α reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

    International Nuclear Information System (INIS)

    Staab, Adrian; Fleischer, Markus; Wuerzburg Univ.; Loeffler, Juergen; Einsele, Herrmann; Said, Harun M.; Katzer, Astrid; Flentje, Michael; Plathow, Christian; Vordermark, Dirk; Halle-Wittenberg Univ.

    2011-01-01

    Background: Hypoxia inducible factor-1 has been identified as a potential target to overcome hypoxia-induced radioresistance The aim of the present study was to investigate whether selective HIF-1 inhibition via small interfering RNA (siRNA) targeting hypoxia-inducible factor 1α (HIF-1α) affects hypoxia-induced radioresistance in HT 1080 human fibrosarcoma cells. Material and Methods: HIF-1α expression in HT 1080 human fibrosarcoma cells in vitro was silenced using HIF-1α siRNA sequence primers. Quantitative real-time polymerase chain reaction assay was performed to quantify the mRNA expression of HIF-1α. HIF-1α protein levels were studied by Western blotting at 20% (air) or after 12 hours at 0.1% O 2 (hypoxia). Cells were assayed for clonogenic survival after irradiation with 2, 5, or 10 Gy, under normoxic or hypoxic conditions in the presence of HIF-1α-targeted or control siRNA sequences. A modified oxygen enhancement ratio (OER') was calculated as the ratio of the doses to achieve the same survival at 0.1% O 2 as at ambient oxygen tensions. OER' was obtained at cell survival levels of 50%, 37%, and 10%. Results: HIF-1α-targeted siRNA enhanced radiation treatment efficacy under severely hypoxic conditions compared to tumor cells treated with scrambled control siRNA. OER was reduced on all survival levels after treatment with HIF-1α-targeted siRNA, suggesting that inhibition of HIF-1 activation by using HIF-1α-targeted siRNA increases radiosensitivity of hypoxic tumor cells in vitro. Conclusion: Inhibition of HIF-1 activation by using HIF-1α-targeted siRNA clearly acts synergistically with radiotherapy and increase radiosensitivity of hypoxic cells in vitro. (orig.)

  15. Helicase-like transcription factor (Hltf regulates G2/M transition, Wt1/Gata4/Hif-1a cardiac transcription networks, and collagen biogenesis.

    Directory of Open Access Journals (Sweden)

    Rebecca A Helmer

    Full Text Available HLTF/Hltf regulates transcription, remodels chromatin, and coordinates DNA damage repair. Hltf is expressed in mouse brain and heart during embryonic and postnatal development. Silencing Hltf is semilethal. Seventy-four percent of congenic C57BL/6J Hltf knockout mice died, 75% within 12-24 hours of birth. Previous studies in neonatal (6-8 hour postpartum brain revealed silencing Hltf disrupted cell cycle progression, and attenuated DNA damage repair. An RNA-Seq snapshot of neonatal heart transcriptome showed 1,536 of 20,000 total transcripts were altered (p < 0.05 - 10 up- and 1,526 downregulated. Pathway enrichment analysis with MetaCore™ showed Hltf's regulation of the G2/M transition (p=9.726E(-15 of the cell cycle in heart is nearly identical to its role in brain. In addition, Brca1 and 12 members of the Brca1 associated genome surveillance complex are also downregulated. Activation of caspase 3 coincides with transcriptional repression of Bcl-2. Hltf loss caused downregulation of Wt1/Gata4/Hif-1a signaling cascades as well as Myh7b/miR499 transcription. Hltf-specific binding to promoters and/or regulatory regions of these genes was authenticated by ChIP-PCR. Hif-1a targets for prolyl (P4ha1, P4ha2 and lysyl (Plod2 collagen hydroxylation, PPIase enzymes (Ppid, Ppif, Ppil3 for collagen trimerization, and lysyl oxidase (Loxl2 for collagen-elastin crosslinking were downregulated. However, transcription of genes for collagens, fibronectin, Mmps and their inhibitors (Timps was unaffected. The collective downregulation of genes whose protein products control collagen biogenesis caused disorganization of the interstitial and perivascular myocardial collagen fibrillar network as viewed with picrosirius red-staining, and authenticated with spectral imaging. Wavy collagen bundles in control hearts contrasted with collagen fibers that were thin, short and disorganized in Hltf null hearts. Collagen bundles in Hltf null hearts were tangled and

  16. Radiation enhancement effect of RNA interference for HIF-1α on the transplant tumor

    International Nuclear Information System (INIS)

    Ren Ruimei; Sun Xindong; Zhao Hanxi; Yan Qingxia; Huang Guangwu

    2008-01-01

    Objective: To determine and explore the radiation enhancement of RNA interference for HIF-1α on the transplant tumor using polycationic polyethylenimine (PEI), as a new kind of gene vector. Methods: SPCA-1 nude mouse model was used. 160 nude mice bearing SPCA-1 were randomly divided into 4 treated groups and 1 control groups, each group had 32 mice. The expression of HIF-1α was studied by immunohistochemical method after RNA interference for HIF-1α. The differences of the volume, weight, survival time of the transplant tumor were studied among the simple radiation group, the simple RNA interference for HIF- 1α group and the combination of radiation and RNA interference for HIF-1α. Results: The expression of HIF-1α was decreased after RNA interference for HIF-1α. RNA interference for HIF-1α combined with radiation decreased the volume, weight of the transplant tumor, and prolonged its survival time period significantly than other methods. Conclusions: RNA interference targeting HIF-1α might enhance the radiosensitivity of the transplant tumor using PEI as a new kind of gene vector in vitro. (authors)

  17. Isoflurane Preconditioning Increases Survival of Rat Skin Random-Pattern Flaps by Induction of HIF-1α Expression

    Directory of Open Access Journals (Sweden)

    Yu Sun

    2013-04-01

    Full Text Available Background: Survival of random-pattern skin flaps is important for the success of plastic and reconstructive surgeries. This study investigates isoflurane-induced protection against ischemia of skin flap and the underlying molecular mechanism in this process. Methods: Human umbilical vein endothelial cells (HUVECs and human skin fibroblast cells were exposed to isoflurane for 4 h. Expression of hypoxia inducible factor-1α (HIF-1α, heme oxygenase-1 (HO-1 and vascular endothelial growth factor (VEGF were analyzed up to 24 h post isoflurane exposure using qRT-PCR and western blot, or ELISA analyses. PI3K inhibitors - LY 294002 and wortmannin, mTOR inhibitor - rapamycin, and GSK3β inhibitor - SB 216763 were used respectively to assess the effects of isoflurane treatment and HIF-1α expression. Furthermore, 40 rats were randomly divided into 5 groups (control, isoflurane, scrambled siRNA plus isoflurane, HIF-1α siRNA plus isoflurane, and DMOG and subjected to random-pattern skin flaps operation. Rats were prepared for evaluation of flap survival and full-feld laser perfusion imager (FLPI (at 7 day and microvessel density evaluation (at 10 day. Results: Isoflurane exposure induced expression of HIF-1α protein, HO-1 and VEGF mRNA and proteins in a time-dependent manner. Both LY 294002 and wortmannin inhibited phospho-Akt, phospho-mTOR, phospho-GSK 3β and HIF-1α expression after isoflurane exposure. Both wortmannin and rapamycin inhibited isoflurane-induced phospho-4E-BP1 (Ser 65 and phospho-P70s6k (Thr 389 and HIF-1α expression. SB 216763 pre-treatment could further enhance isoflurane-induced expression of phospho-GSK 3β (Ser 9 and HIF-1α protein compared to the isoflurane-alone cells. In animal experiments, isoflurane alone, scrambled siRNA plus isoflurane, or DMOG groups had significantly upregulated vascularity and increased survival of the skin flaps compared to the controls. However, HIF-1α knockdown abrogated the protective effect of

  18. PDGF upregulates Mcl-1 through activation of β-catenin and HIF-1α-dependent signaling in human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Shareen Iqbal

    Full Text Available BACKGROUND: Aberrant platelet derived growth factor (PDGF signaling has been associated with prostate cancer (PCa progression. However, its role in the regulation of PCa cell growth and survival has not been well characterized. METHODOLOGY/PRINCIPAL FINDINGS: Using experimental models that closely mimic clinical pathophysiology of PCa progression, we demonstrated that PDGF is a survival factor in PCa cells through upregulation of myeloid cell leukemia-1 (Mcl-1. PDGF treatment induced rapid nuclear translocation of β-catenin, presumably mediated by c-Abl and p68 signaling. Intriguingly, PDGF promoted formation of a nuclear transcriptional complex consisting of β-catenin and hypoxia-inducible factor (HIF-1α, and its binding to Mcl-1 promoter. Deletion of a putative hypoxia response element (HRE within the Mcl-1 promoter attenuated PDGF effects on Mcl-1 expression. Blockade of PDGF receptor (PDGFR signaling with a pharmacological inhibitor AG-17 abrogated PDGF induction of Mcl-1, and induced apoptosis in metastatic PCa cells. CONCLUSIONS/SIGNIFICANCE: Our study elucidated a crucial survival mechanism in PCa cells, indicating that interruption of the PDGF-Mcl-1 survival signal may provide a novel strategy for treating PCa metastasis.

  19. L1 retrotransposition is activated by Ten-eleven-translocation protein 1 and repressed by methyl-CpG binding proteins.

    Science.gov (United States)

    Zhang, Peng; Ludwig, Anne K; Hastert, Florian D; Rausch, Cathia; Lehmkuhl, Anne; Hellmann, Ines; Smets, Martha; Leonhardt, Heinrich; Cardoso, M Cristina

    2017-09-03

    One of the major functions of DNA methylation is the repression of transposable elements, such as the long-interspersed nuclear element 1 (L1). The underlying mechanism(s), however, are unclear. Here, we addressed how retrotransposon activation and mobilization are regulated by methyl-cytosine modifying ten-eleven-translocation (Tet) proteins and how this is modulated by methyl-CpG binding domain (MBD) proteins. We show that Tet1 activates both, endogenous and engineered L1 retrotransposons. Furthermore, we found that Mecp2 and Mbd2 repress Tet1-mediated activation of L1 by preventing 5hmC formation at the L1 promoter. Finally, we demonstrate that the methyl-CpG binding domain, as well as the adjacent non-sequence specific DNA binding domain of Mecp2 are each sufficient to mediate repression of Tet1-induced L1 mobilization. Our study reveals a mechanism how L1 elements get activated in the absence of Mecp2 and suggests that Tet1 may contribute to Mecp2/Mbd2-deficiency phenotypes, such as the Rett syndrome. We propose that the balance between methylation "reader" and "eraser/writer" controls L1 retrotransposition.

  20. Reactive oxygen species-driven HIF1α triggers accelerated glycolysis in endothelial cells exposed to low oxygen tension

    International Nuclear Information System (INIS)

    Paik, Jin-Young; Jung, Kyung-Ho; Lee, Jin-Hee; Park, Jin-Won; Lee, Kyung-Han

    2017-01-01

    Endothelial cells and their metabolic state regulate glucose transport into underlying tissues. Here, we show that low oxygen tension stimulates human umbilical vein endothelial cell 18 F–fluorodeoxyglucose ( 18 F–FDG) uptake and lactate production. This was accompanied by augmented hexokinase activity and membrane Glut-1, and increased accumulation of hypoxia-inducible factor-1α (HIF1α). Restoration of oxygen reversed the metabolic effect, but this was blocked by HIF1α stabilization. Hypoxia-stimulated 18 F–FDG uptake was completely abrogated by silencing of HIF1α expression or by a specific inhibitor. There was a rapid and marked increase of reactive oxygen species (ROS) by hypoxia, and ROS scavenging or NADPH oxidase inhibition completely abolished hypoxia-stimulated HIF1α and 18 F–FDG accumulation, placing ROS production upstream of HIF1α signaling. Hypoxia-stimulated HIF1α and 18 F–FDG accumulation was blocked by the protein kinase C (PKC) inhibitor, staurosporine. The phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, blocked hypoxia-stimulated 18 F–FDG uptake and attenuated hypoxia-responsive element binding of HIF1α without influencing its accumulation. Thus, ROS-driven HIF1α accumulation, along with PKC and PI3K signaling, play a key role in triggering accelerated glycolysis in endothelial cells under hypoxia, thereby contributing to 18 F–FDG transport.

  1. HIF-1α and GLUT-1 Expression in Atypical Endometrial Hyperplasia, Type I and II Endometrial Carcinoma: A Potential Role in Pathogenesis

    Science.gov (United States)

    Abdou, Asmaa Gaber; Wahed, Moshira Mohammed Abdel; Kassem, Hend Abdou

    2016-01-01

    Introduction Hypoxia-Inducible Factor 1α (HIF-1α) is one of the major adaptive responses to hypoxia, regulating the activity of glucose transporter -1 (GLUT-1), responsible for glucose uptake. Aim To evaluate the immunohistochemical expression of both HIF-1α and GLUT-1 in type I and II endometrial carcinoma and their correlation with the available clinicopathologic variables in each type. Materials and Methods A retrospective study was conducted on archival blocks diagnosed from pathology department between April 2010 and August 2014 included 9 cases of atypical hyperplasia and 67 cases of endometrial carcinoma. Evaluation of both HIF-1α and GLUT-1 expression using standard immunohistochemical techniques performed on cut sections from selected paraffin embedded blocks. Statistical Analysis Descriptive analysis of the variables and statistical significances were calculated by non-parametric chi-square test using the Statistical Package for the Social Sciences version 12.0 (SPSS). Results HIF-1α was expressed in epithelial (88.9%, 52.2%, 61.2% and 50%) and stromal (33.3%, 74.6%. 71.4% and 83.3%) components of hyperplasia, total cases of EC, type I and II EC, respectively. GLUT-1 was expressed in the epithelial component of 88.9%, 98.5%, 98% and 100% of hyperplasia, total EC cases, type I and II EC, respectively. The necrosis related pattern of epithelial HIF-1α expression was in favour of type II (p=0.018) and grade III (p=0.038). HIF-1α H-score was associated with high apoptosis in both type I and total cases of EC (p=0.04). GLUT-1 H-score was negatively correlated with apoptotic count (p=0.04) and associated with high grade (p=0.003) and advanced stage in total EC (p=0.004). GLUT-1 H-score was correlated with the pattern of HIF-1α staining in all cases of EC (p= 0.04). Conclusion The role of HIF-1α in epithelial cells may differ from that of stromal cells in EC; however they augment the expression of each other supporting the crosstalk between them. The

  2. Hypoxia Downregulates MAPK/ERK but Not STAT3 Signaling in ROS-Dependent and HIF-1-Independent Manners in Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Jan Kučera

    2017-01-01

    Full Text Available Hypoxia is involved in the regulation of stem cell fate, and hypoxia-inducible factor 1 (HIF-1 is the master regulator of hypoxic response. Here, we focus on the effect of hypoxia on intracellular signaling pathways responsible for mouse embryonic stem (ES cell maintenance. We employed wild-type and HIF-1α-deficient ES cells to investigate hypoxic response in the ERK, Akt, and STAT3 pathways. Cultivation in 1% O2 for 24 h resulted in the strong dephosphorylation of ERK and its upstream kinases and to a lesser extent of Akt in an HIF-1-independent manner, while STAT3 phosphorylation remained unaffected. Downregulation of ERK could not be mimicked either by pharmacologically induced hypoxia or by the overexpression. Dual-specificity phosphatases (DUSP 1, 5, and 6 are hypoxia-sensitive MAPK-specific phosphatases involved in ERK downregulation, and protein phosphatase 2A (PP2A regulates both ERK and Akt. However, combining multiple approaches, we revealed the limited significance of DUSPs and PP2A in the hypoxia-mediated attenuation of ERK signaling. Interestingly, we observed a decreased reactive oxygen species (ROS level in hypoxia and a similar phosphorylation pattern for ERK when the cells were supplemented with glutathione. Therefore, we suggest a potential role for the ROS-dependent attenuation of ERK signaling in hypoxia, without the involvement of HIF-1.

  3. Stanniocalcin-2 is a HIF-1 target gene that promotes cell proliferation in hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Law, Alice Y.S. [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wong, Chris K.C., E-mail: ckcwong@hkbu.edu.hk [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-02-01

    Stanniocalcin-2 (STC2), the paralog of STC1, has been suggested as a novel target of oxidative stress response to protect cells from apoptosis. The expression of STC2 has been reported to be highly correlated with human cancer development. In this study, we reported that STC2 is a HIF-1 target gene and is involved in the regulation of cell proliferation. STC2 was shown to be up-regulated in different breast and ovarian cancer cells, following exposure to hypoxia. Using ovarian cancer cells (SKOV3), the underlying mechanism of HIF-1 mediated STC2 gene transactivation was characterized. Hypoxia-induced STC2 expression was found to be HIF-1{alpha} dependent and required the recruitment of p300 and HDAC7. Using STC2 promoter deletion constructs and site-directed mutagenesis, two authentic consensus HIF-1 binding sites were identified. Under hypoxic condition, the silencing of STC2 reduced while the overexpression of STC2 increased the levels of phosphorylated retinoblastoma and cyclin D in both SKOV3 and MCF7 cells. The change in cell cycle proteins correlated with the data of the serial cell counts. The results indicated that cell proliferation was reduced in STC2-silenced cells but was increased in STC2-overexpressing hypoxic cells. Solid tumor progression is usually associated with hypoxia. The identification and functional analysis of STC2 up-regulation by hypoxia, a feature of the tumor microenvironment, sheds light on a possible role for STC2 in tumors.

  4. Strategies To Assess Hypoxic/HIF-1-Active Cancer Cells for the Development of Innovative Radiation Therapy

    International Nuclear Information System (INIS)

    Yeom, Chan Joo; Zeng, Lihua; Zhu, Yuxi; Hiraoka, Masahiro; Harada, Hiroshi

    2011-01-01

    Local tumor recurrence and distant tumor metastasis frequently occur after radiation therapy and result in the death of cancer patients. These problems are caused, at least in part, by a tumor-specific oxygen-poor microenvironment, hypoxia. Oxygen-deprivation is known to inhibit the chemical ionization of both intracellular macro-molecules and water, etc., and thus reduce the cytotoxic effects of radiation. Moreover, DNA damage produced by free radicals is known to be more repairable under hypoxia than normoxia. Hypoxia is also known to induce biological tumor radioresistance through the activation of a transcription factor, hypoxia-inducible factor 1 (HIF-1). Several potential strategies have been devised in radiation therapy to overcome these problems; however, they have not yet achieved a complete remission. It is essential to reveal the intratumoral localization and dynamics of hypoxic/HIF-1-active tumor cells during tumor growth and after radiation therapy, then exploit the information to develop innovative therapeutic strategies, and finally damage radioresistant cells. In this review, we overview problems caused by hypoxia/HIF-1-active cells in radiation therapy for cancer and introduce strategies to assess intratumoral hypoxia/HIF-1 activity

  5. Strategies To Assess Hypoxic/HIF-1-Active Cancer Cells for the Development of Innovative Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Chan Joo [Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Zeng, Lihua; Zhu, Yuxi [Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Hiraoka, Masahiro [Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Harada, Hiroshi, E-mail: hharada@kuhp.kyoto-u.ac.jp [Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501 (Japan)

    2011-09-15

    Local tumor recurrence and distant tumor metastasis frequently occur after radiation therapy and result in the death of cancer patients. These problems are caused, at least in part, by a tumor-specific oxygen-poor microenvironment, hypoxia. Oxygen-deprivation is known to inhibit the chemical ionization of both intracellular macro-molecules and water, etc., and thus reduce the cytotoxic effects of radiation. Moreover, DNA damage produced by free radicals is known to be more repairable under hypoxia than normoxia. Hypoxia is also known to induce biological tumor radioresistance through the activation of a transcription factor, hypoxia-inducible factor 1 (HIF-1). Several potential strategies have been devised in radiation therapy to overcome these problems; however, they have not yet achieved a complete remission. It is essential to reveal the intratumoral localization and dynamics of hypoxic/HIF-1-active tumor cells during tumor growth and after radiation therapy, then exploit the information to develop innovative therapeutic strategies, and finally damage radioresistant cells. In this review, we overview problems caused by hypoxia/HIF-1-active cells in radiation therapy for cancer and introduce strategies to assess intratumoral hypoxia/HIF-1 activity.

  6. Inhibition of HIF-1α decreases expression of pro-inflammatory IL-6 and TNF-α in diabetic retinopathy.

    Science.gov (United States)

    Gao, Xiuhua; Li, Yonghua; Wang, Hongxia; Li, Chuanbao; Ding, Jianguang

    2017-12-01

    Recent studies demonstrate that pro-inflammatory cytokines (PICs, i.e. IL-1β, IL-6 and TNF-α) in retinal tissues are likely involved in the development of diabetic retinopathy (DR). In this report, we particularly examined contributions of hypoxia inducible factor subtype 1α (HIF-1α) to the expression of PICs and their receptors in diabetic retina. Streptozotocin (STZ) was systemically injected to induce hyperglycaemia in rats. ELISA and Western blot analysis were employed to determine the levels of HIF-1α and PICs as well as PIC receptors in retinal tissues of control rats and STZ rats. The levels of retinal HIF-1α were significantly increased in STZ rats 4-10 weeks after induction of hyperglycaemia as compared with control animals. With increasing HIF-1α retinal PICs including IL-1β, IL-6 and TNF-α, their respective receptors, namely IL-1R, IL-6R and TNFR1, were also elevated in STZ rats. Moreover, inhibition of HIF-1α by injection of 2-methoxyestradiol (2-MET) significantly decreased the amplified expression IL-6, TNF-α, IL-6R and TNFR1 in diabetic retina, but did not modify IL-1β pathway. In addition, we examined protein expression of Caspase-3 indicating cell apoptosis in the retina of STZ rats after infusing 2-MET, demonstrating that 2-MET attenuated an increase in Caspase-3 evoked by STZ. Hypoxia inducible factor subtype 1α (HIF-1α) activated in diabetic retina is likely to play a role in regulating pathophysiological process via IL-6 and TNF-α mechanism. This has pharmacological implications to target specific HIF-1α, IL-6 and TNF-α signalling pathway for dysfunction and vulnerability related to DR. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  7. Inhibition of hypoxia inducible factor-1alpha by dihydroxyphenylethanol, a product from olive oil, blocks microsomal prostaglandin-E synthase-1/vascular endothelial growth factor expression and reduces tumor angiogenesis.

    Science.gov (United States)

    Terzuoli, Erika; Donnini, Sandra; Giachetti, Antonio; Iñiguez, Miguel A; Fresno, Manuel; Melillo, Giovanni; Ziche, Marina

    2010-08-15

    2-(3,4-dihydroxyphenil)-ethanol (DPE), a polyphenol present in olive oil, has been found to attenuate the growth of colon cancer cells, an effect presumably related to its anti-inflammatory activity. To further explore the effects of DPE on angiogenesis and tumor growth we investigated the in vivo efficacy of DPE in a HT-29 xenograft model and in vitro activities in colon cancer cells exposed to interleukin-1beta (IL-1beta) and prostaglandin E-2 (PGE-2). DPE (10 mg/kg/day for 14 days) inhibited tumor growth, reducing vessel lumina and blood perfusion to tumor, and diminished expression of hypoxia inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), and microsomal prostaglandin-E synthase-1 (mPGEs-1). In vitro, DPE (100 mumol/L) neither affected cell proliferation nor induced apoptosis in HT-29 and WiDr cells. DPE prevented the IL-1beta-mediated increase of mPGEs-1 expression and PGE-2 generation, as it did the silencing of HIF-1alpha. Moreover, DPE blocked mPGEs-1-dependent expression of VEGF and inhibited endothelial sprouting induced by tumor cells in a coculture system. PGE-2 triggers a feed-forward loop involving HIF-1alpha, which impinges on mPGEs-1 and VEGF expression, events prevented by DPE via extracellular signal-related kinase 1/2. The reduction of PGE-2 and VEGF levels, caused by DPE, was invariably associated with a marked decrease in HIF-1alpha expression and activity, independent of proteasome activity, indicating that the DPE effects on tumor growth and angiogenesis are dependent on the inhibition of HIF-1alpha translation. We show that the in vivo DPE antitumor effect is associated with anti-inflammatory and antiangiogenic activities resulting from the downregulation of the HIF-1alpha/mPGEs-1/VEGF axis.

  8. Albendazole inhibits HIF-1α-dependent glycolysis and VEGF expression in non-small cell lung cancer cells.

    Science.gov (United States)

    Zhou, Fang; Du, Jin; Wang, Jianjun

    2017-04-01

    Albendazole (ABZ) has an anti-tumor ability and inhibits HIF-1α activity. HIF-1α is associated with glycolysis and vascular endothelial cell growth factor (VEGF) expression, which plays an important role in cancer progression. These clues indicate that ABZ exerts an anti-cancer effect by regulating glycolysis and VEGF expression. The aim of this study is to clarify the effects of ABZ on non-small cell lung cancer (NSCLC) cells and explore the underlying molecular mechanisms. The expression levels of HIF-1α and VEGF were detected using western blot analysis, and the effect of ABZ on glycolysis was evaluated by measuring the relative activities of hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) and detecting the production of lactate in A549 and H1299 cells. The results showed that ABZ decreased the expression levels of HIF-1α and VEGF and suppressed glycolysis in under hypoxia, but not normoxic condition. Inhibiting HIF-1α also suppressed glycolysis and VEGF expression. Additionally, ABZ inhibited the volume and weight, decreased the relative activities of HK, PK, and LDH, and reduced the levels of HIF-1α and VEGF of A549 xenografts in mouse models. In conclusion, ABZ inhibited growth of NSCLC cells by suppressing HIF-1α-dependent glycolysis and VEGF expression.

  9. Unilateral Partial Nephrectomy with Warm Ischemia Results in Acute Hypoxia Inducible Factor 1-Alpha (HIF-1α and Toll-Like Receptor 4 (TLR4 Overexpression in a Porcine Model.

    Directory of Open Access Journals (Sweden)

    Zhiyong Zhang

    Full Text Available Ischemia/reperfusion (I/R during partial nephrectomy (PN contributes to acute kidney injury (AKI, which is inaccurately assessed using existent clinical markers of renal function. We evaluated I/R-related changes in expression in hypoxia inducible factor 1α (HIF-1α and toll-like receptor 4 (TLR4, within kidney tissue and peripheral blood leukocytes (PBL in a porcine model of PN.Three adult pigs each underwent unilateral renal hilar cross clamping for 180 min followed by a 15 min reperfusion. The contralateral kidney served as control. Biopsies of clamped kidneys were obtained at baseline (time 0, every 60 min during the hypoxic phase, and post-reperfusion. Control kidneys were biopsied once at 180 min. Peripheral blood was sampled at time 0, every 30 min during the hypoxic phase, and post-reperfusion. HIF-1α and TLR4 expression in kidney tissue and PBL were analyzed by Western blotting. I/R-related histological changes were assessed.Expression of HIF-1α in clamped kidneys and PBL was below detection level at baseline, rising to detectable levels after 60 min of hypoxia, and continuing to rise throughout the hypoxic and reperfusion phases. Expression of TLR-4 in clamped kidneys followed a similar trend with initial detection after 30-60 min of hypoxia. Control kidneys exhibited no change in HIF-1α or TLR-4 expression. I/R-related histologic changes were minimal, primarily mild tubular dilatation.In a porcine model of PN, HIF-1α and TLR4 exhibited robust, I/R-related increases in expression in kidney tissue and PBL. Further studies investigating these molecules as potential markers of AKI are warranted.

  10. Hypoxia Inducible Factor 1 (HIF1) Activation in U87 Glioma Cells Involves a Decrease in Reactive Oxygen Species Production and Protein Kinase C Activity

    Science.gov (United States)

    1998-06-29

    Curcumin DFX Desferrioxamine DNA Deoxyribonucleic Acid DPI Diphenyliodinium DPPD Diphenylphenylenediamine DTH Dithionite EMSA Electrophoretic mobility shift... neuroprotective effects (Fern et al., 1996, Morishita et al., 1 1997). The identification of a hypoxia inducible transcription factor known as HIF-1 (Semenza...derived EPO in the eNS neuroprotective response to hypoxia. Cloning of the human and murine EPO gene, the availability of a convenient EPa producing

  11. Endothelial HIF-1α Enables Hypothalamic Glucose Uptake to Drive POMC Neurons.

    Science.gov (United States)

    Varela, Luis; Suyama, Shigetomo; Huang, Yan; Shanabrough, Marya; Tschöp, Matthias H; Gao, Xiao-Bing; Giordano, Frank J; Horvath, Tamas L

    2017-06-01

    Glucose is the primary driver of hypothalamic proopiomelanocortin (POMC) neurons. We show that endothelial hypoxia-inducible factor 1α (HIF-1α) controls glucose uptake in the hypothalamus and that it is upregulated in conditions of undernourishment, during which POMC neuronal activity is decreased. Endothelium-specific knockdown of HIF-1α impairs the ability of POMC neurons to adapt to the changing metabolic environment in vivo, resulting in overeating after food deprivation in mice. The impaired functioning of POMC neurons was reversed ex vivo or by parenchymal glucose administration. These observations indicate an active role for endothelial cells in the central control of metabolism and suggest that central vascular impairments may cause metabolic disorders. © 2017 by the American Diabetes Association.

  12. Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α.

    Directory of Open Access Journals (Sweden)

    Hyeong-Jun Han

    Full Text Available Peptidyl prolyl isomerase (PIN1 regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF-1α in human colon cancer (HCT116 cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target.

  13. Regulation of FOXO1-mediated transcription and cell proliferation by PARP-1

    Energy Technology Data Exchange (ETDEWEB)

    Sakamaki, Jun-ichi; Daitoku, Hiroaki; Yoshimochi, Kenji [Center for Tsukuba Advanced Research Alliance, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Miwa, Masanao [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829 (Japan); Fukamizu, Akiyoshi, E-mail: akif@tara.tsukuba.ac.jp [Center for Tsukuba Advanced Research Alliance, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)

    2009-05-08

    Forkhead box O (FOXO) transcription factors play an important role in a wide range of biological processes, including cell cycle control, apoptosis, detoxification of reactive oxygen species, and gluconeogenesis through regulation of gene expression. In this study, we demonstrated that PARP-1 functions as a negative regulator of FOXO1. We showed that PARP-1 directly binds to and poly(ADP-ribosyl)ates FOXO1 protein. PARP-1 represses FOXO1-mediated expression of cell cycle inhibitor p27{sup Kip1} gene. Notably, poly(ADP-ribosyl)ation activity was not required for the repressive effect of PARP-1 on FOXO1 function. Furthermore, knockdown of PARP-1 led to a decrease in cell proliferation in a manner dependent on FOXO1 function. Chromatin immunoprecipitation experiments confirmed that PARP-1 is recruited to the p27{sup Kip1} gene promoter through a binding to FOXO1. These results suggest that PARP-1 acts as a corepressor for FOXO1, which could play an important role in proper cell proliferation by regulating p27{sup Kip1} gene expression.

  14. The zebrafish miR-462/miR-731 cluster is induced under hypoxic stress via hypoxia-inducible factor 1α and functions in cellular adaptations.

    Science.gov (United States)

    Huang, Chun-Xiao; Chen, Nan; Wu, Xin-Jie; Huang, Cui-Hong; He, Yan; Tang, Rong; Wang, Wei-Min; Wang, Huan-Ling

    2015-12-01

    Hypoxia, a unique and essential environmental stress, evokes highly coordinated cellular responses, and hypoxia-inducible factor (HIF) 1 in the hypoxia signaling pathway, an evolutionarily conserved cellular signaling pathway, acts as a master regulator of the transcriptional response to hypoxic stress. MicroRNAs (miRNAs), a major class of posttranscriptional gene expression regulators, also play pivotal roles in orchestrating hypoxia-mediated cellular adaptations. Here, global miRNA expression profiling and quantitative real-time PCR indicated that the up-regulation of the miR-462/miR-731 cluster in zebrafish larvae is induced by hypoxia. It was further validated that miR-462 and miR-731 are up-regulated in a Hif-1α-mediated manner under hypoxia and specifically target ddx5 and ppm1da, respectively. Overexpression of miR-462 and miR-731 represses cell proliferation through blocking cell cycle progress of DNA replication, and induces apoptosis. In situ detection revealed that the miR-462/miR-731 cluster is highly expressed in a consistent and ubiquitous manner throughout the early developmental stages. Additionally, the transcripts become restricted to the notochord, pharyngeal arch, liver, and gut regions from postfertilization d 3 to 5. These data highlight a previously unidentified role of the miR-462/miR-731 cluster as a crucial signaling mediator for hypoxia-mediated cellular adaptations and provide some insights into the potential function of the cluster during embryonic development. © FASEB.

  15. Hypoxia-inducible factor-1 plays a role in phosphate-induced vascular smooth muscle cell calcification.

    Science.gov (United States)

    Mokas, Sophie; Larivière, Richard; Lamalice, Laurent; Gobeil, Stéphane; Cornfield, David N; Agharazii, Mohsen; Richard, Darren E

    2016-09-01

    Medial vascular calcification is a common complication of chronic kidney disease (CKD). Although elevated inorganic phosphate stimulates vascular smooth muscle cell (VSMC) osteogenic transdifferentiation and calcification, the mechanisms involved in their calcification during CKD are not fully defined. Because hypoxic gene activation is linked to CKD and stimulates bone cell osteogenic differentiation, we used in vivo and in vitro rodent models to define the role of hypoxic signaling during elevated inorganic phosphate-induced VSMC calcification. Cell mineralization studies showed that elevated inorganic phosphate rapidly induced VSMC calcification. Hypoxia strongly enhanced elevated inorganic phosphate-induced VSMC calcification and osteogenic transdifferentiation, as seen by osteogenic marker expression. Hypoxia-inducible factor-1 (HIF-1), the key hypoxic transcription factor, was essential for enhanced VSMC calcification. Targeting HIF-1 expression in murine VSMC blocked calcification in hypoxia with elevated inorganic phosphate while HIF-1 activators, including clinically used FG-4592/Roxadustat, recreated a procalcifying environment. Elevated inorganic phosphate rapidly activated HIF-1, even in normal oxygenation; an effect mediated by HIF-1α subunit stabilization. Thus, hypoxia synergizes with elevated inorganic phosphate to enhance VSMC osteogenic transdifferentiation. Our work identifies HIF-1 as an early CKD-related pathological event, prospective marker, and potential target against vascular calcification in CKD-relevant conditions. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. KNK437, abrogates hypoxia-induced radioresistance by dual targeting of the AKT and HIF-1α survival pathways

    International Nuclear Information System (INIS)

    Oommen, Deepu; Prise, Kevin M.

    2012-01-01

    Highlights: ► KNK437, a benzylidene lactam compound, is a novel radiosensitizer. ► KNK437 inhibits AKT signaling and abrogates the accumulation of HIF-1α under hypoxia. ► KNK437 abrogates hypoxia induced resistance to radiation. -- Abstract: KNK437 is a benzylidene lactam compound known to inhibit stress-induced synthesis of heat shock proteins (HSPs). HSPs promote radioresistance and play a major role in stabilizing hypoxia inducible factor-1α (HIF-1α). HIF-1α is widely responsible for tumor resistance to radiation under hypoxic conditions. We hypothesized that KNK437 sensitizes cancer cells to radiation and overrides hypoxia-induced radioresistance via destabilizing HIF-1α. Treatment of human cancer cells MDA-MB-231 and T98G with KNK437 sensitized them to ionizing radiation (IR). Surprisingly, IR did not induce HSPs in these cell lines. As hypothesized, KNK437 abrogated the accumulation of HIF-1α in hypoxic cells. However, there was no induction of HSPs under hypoxic conditions. Moreover, the proteosome inhibitor MG132 did not restore HIF-1α levels in KNK437-treated cells. This suggested that the absence of HIF-1α in hypoxic cells was not due to the enhanced protein degradation. HIF-1α is mainly regulated at the level of post-transcription and AKT is known to modulate the translation of HIF-1α mRNA. Interestingly, pre-treatment of cells with KNK437 inhibited AKT signaling. Furthermore, down regulation of AKT by siRNA abrogated HIF-1α levels under hypoxia. Interestingly, KNK437 reduced cell survival in hypoxic conditions and inhibited hypoxia-induced resistance to radiation. Taken together, these data suggest that KNK437 is an effective radiosensitizer that targets multiple pro-survival stress response pathways.

  17. Interaction of the phospholipid scramblase 1 with HIV-1 Tat results in the repression of Tat-dependent transcription

    International Nuclear Information System (INIS)

    Kusano, Shuichi; Eizuru, Yoshito

    2013-01-01

    Highlights: •PLSCR1 specifically interacted with HIV-1 Tat in vitro and in vivo. •PLSCR1 repressed Tat-dependent transactivation of the HIV-1 LTR. •Suppression of PLSCR1 expression enhanced the levels of HIV-1 transcripts. •PLSCR1 reduced the nuclear localization of Tat. -- Abstract: Human phospholipid scramblase 1 (PLSCR1) is an interferon (IFN)-stimulated gene and possesses an IFN-mediated antiviral function. We show here that PLSCR1 directly interacts with human immunodeficiency virus type-1 (HIV-1) Tat. This interaction occurs both in vitro and in vivo through amino acids 160–250 of PLSCR1. Overexpression of PLSCR1 efficiently represses the Tat-dependent transactivation of the HIV-1 long terminal repeat (LTR) and reduces the nuclear translocation of Tat. In addition, shRNA-mediated suppression of endogenous PLSCR1 expression enhances the levels of gag mRNA in an HIV-1-infected T-cell line. These findings indicate that PLSCR1 negatively regulates the Tat-dependent transactivation of the HIV-1 LTR during HIV-1 infection

  18. HIF-1{alpha} is necessary to support gluconeogenesis during liver regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Toshihide [Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Goda, Nobuhito, E-mail: goda@waseda.jp [Department of Life Science and Medical Bio-Science, School of Advanced Science and Engineering, Waseda University, TWIns 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480 (Japan); Fujiki, Natsuko; Hishiki, Takako; Nishiyama, Yasumasa [Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Senoo-Matsuda, Nanami [Department of Life Science and Medical Bio-Science, School of Advanced Science and Engineering, Waseda University, TWIns 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480 (Japan); Shimazu, Motohide [Department of Surgery, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo 193-0998 (Japan); Soga, Tomoyoshi [The Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata 997-0052 (Japan); Yoshimura, Yasunori [Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Johnson, Randall S. [Molecular Biology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093 (United States); Suematsu, Makoto [Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2009-10-02

    Coordinated recovery of hepatic glucose metabolism is prerequisite for normal liver regeneration. To examine roles of hypoxia inducible factor-1{alpha} (HIF-1{alpha}) for hepatic glucose homeostasis during the reparative process, we inactivated the gene in hepatocytes in vivo. Following partial hepatectomy (PH), recovery of residual liver weight was initially retarded in the mutant mice by down-regulation of hepatocyte proliferation, but occurred comparably between the mutant and control mice at 72 h after PH. At this time point, the mutant mice showed lowered blood glucose levels with enhanced accumulation of glycogen in the liver. The mutant mice exhibited impairment of hepatic gluconeogenesis as assessed by alanine tolerance test. This appeared to result from reduced expression of PGK-1 and PEPCK since 3-PG, PEP and malate were accumulated to greater extents in the regenerated liver. In conclusion, these findings provide evidence for roles of HIF-1{alpha} in the regulation of gluconeogenesis under liver regeneration.

  19. HIF-1α is necessary to support gluconeogenesis during liver regeneration

    International Nuclear Information System (INIS)

    Tajima, Toshihide; Goda, Nobuhito; Fujiki, Natsuko; Hishiki, Takako; Nishiyama, Yasumasa; Senoo-Matsuda, Nanami; Shimazu, Motohide; Soga, Tomoyoshi; Yoshimura, Yasunori; Johnson, Randall S.; Suematsu, Makoto

    2009-01-01

    Coordinated recovery of hepatic glucose metabolism is prerequisite for normal liver regeneration. To examine roles of hypoxia inducible factor-1α (HIF-1α) for hepatic glucose homeostasis during the reparative process, we inactivated the gene in hepatocytes in vivo. Following partial hepatectomy (PH), recovery of residual liver weight was initially retarded in the mutant mice by down-regulation of hepatocyte proliferation, but occurred comparably between the mutant and control mice at 72 h after PH. At this time point, the mutant mice showed lowered blood glucose levels with enhanced accumulation of glycogen in the liver. The mutant mice exhibited impairment of hepatic gluconeogenesis as assessed by alanine tolerance test. This appeared to result from reduced expression of PGK-1 and PEPCK since 3-PG, PEP and malate were accumulated to greater extents in the regenerated liver. In conclusion, these findings provide evidence for roles of HIF-1α in the regulation of gluconeogenesis under liver regeneration.

  20. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions

    International Nuclear Information System (INIS)

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas; Simos, George

    2010-01-01

    Research highlights: → Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; → Kaempferol causes cytoplasmic mislocalization of HIF-1α by impairing the MAPK pathway. → Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1α subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1α as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC 50 = 5.16 μM). The mechanism of this inhibition did not involve suppression of HIF-1α protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC 50 = 4.75 μM). Exposure of Huh7 cells to 10 μΜ kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 μM) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.

  1. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas [Laboratory of Biochemistry, School of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa (Greece); Institute of Biomedical Research and Technology (BIOMED), 51 Papanastasiou str., 41222 Larissa (Greece); Simos, George, E-mail: simos@med.uth.gr [Laboratory of Biochemistry, School of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa (Greece); Institute of Biomedical Research and Technology (BIOMED), 51 Papanastasiou str., 41222 Larissa (Greece)

    2010-07-16

    Research highlights: {yields} Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; {yields} Kaempferol causes cytoplasmic mislocalization of HIF-1{alpha} by impairing the MAPK pathway. {yields} Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1{alpha} subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1{alpha} as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC{sub 50} = 5.16 {mu}M). The mechanism of this inhibition did not involve suppression of HIF-1{alpha} protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC{sub 50} = 4.75 {mu}M). Exposure of Huh7 cells to 10 {mu}{Mu} kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 {mu}M) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.

  2. Hes1 Directly Controls Cell Proliferation through the Transcriptional Repression of p27Kip1

    Science.gov (United States)

    Murata, Kaoru; Hattori, Masakazu; Hirai, Norihito; Shinozuka, Yoriko; Hirata, Hiromi; Kageyama, Ryoichiro; Sakai, Toshiyuki; Minato, Nagahiro

    2005-01-01

    A transcriptional regulator, Hes1, plays crucial roles in the control of differentiation and proliferation of neuronal, endocrine, and T-lymphocyte progenitors during development. Mechanisms for the regulation of cell proliferation by Hes1, however, remain to be verified. In embryonic carcinoma cells, endogenous Hes1 expression was repressed by retinoic acid in concord with enhanced p27Kip1 expression and cell cycle arrest. Conversely, conditional expression of a moderate but not maximal level of Hes1 in HeLa cells by a tetracycline-inducible system resulted in reduced p27Kip1 expression, which was attributed to decreased basal transcript rather than enhanced proteasomal degradation, with concomitant increases in the growth rate and saturation density. Hes1 induction repressed the promoter activity of a 5′ flanking basal enhancer region of p27Kip1 gene in a manner dependent on Hes1 expression levels, and this was mediated by its binding to class C sites in the promoter region. Finally, hypoplastic fetal thymi, as well as livers and brains of Hes1-deficient mice, showed significantly increased p27Kip1 transcripts compared with those of control littermates. These results have suggested that Hes1 directly contributes to the promotion of progenitor cell proliferation through transcriptional repression of a cyclin-dependent kinase inhibitor, p27Kip1. PMID:15870295

  3. MicroRNA 107 partly inhibits endothelial progenitor cells differentiation via HIF-1β.

    Directory of Open Access Journals (Sweden)

    Shu Meng

    Full Text Available Endothelial progenitor cells (EPCs play an important role in tissue repair after ischemic heart disease. In particular, the recovery of endothelial function is reliant on the ability and rate of EPCs differentiate into mature endothelial cells. The present study evaluated the effect of microRNA 107 (miR-107 on the mechanism of EPCs differentiation. EPCs were isolated from rats' bone marrow and miR-107 expression of EPCs in hypoxic and normoxic conditions were measured by real-time qualitative PCR. CD31 was analyzed by flow cytometry and eNOS was examined by real-time qualitative PCR and western blotting and these were used as markers of EPC differentiation. In order to reveal the mechanism, we used miR107 inhibitor and lentiviral vector expressing a short hairpin RNA (shRNA that targets miR-107 and hypoxia-inducible factor-1 β (HIF-1β to alter miR107 and HIF-1β expression. MiR-107 expression were increased in EPCs under hypoxic conditions. Up-regulation of miR-107 partly suppressed the EPCs differentiation induced in hypoxia, while down-regulation of miR-107 promoted EPC differentiation. HIF-1β was the target. This study indicated that miR-107 was up-regulated in hypoxia to prevent EPCs differentiation via its target HIF-1β. The physiological mechanisms of miR-107 must be evaluated if it is to be used as a potential anti-ischemia therapeutic regime.

  4. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression

    International Nuclear Information System (INIS)

    Kamitani, Shinya; Ohbayashi, Norihiko; Ikeda, Osamu; Togi, Sumihito; Muromoto, Ryuta; Sekine, Yuichi; Ohta, Kazuhide; Ishiyama, Hironobu; Matsuda, Tadashi

    2008-01-01

    Signal transducers and activators of transcription (STATs) mediate cell proliferation, differentiation, and survival in immune responses, hematopoiesis, neurogenesis, and other biological processes. Recently, we showed that KAP1 is a novel STAT-binding partner that regulates STAT3-mediated transactivation. KAP1 is a universal co-repressor protein for the KRAB zinc finger protein superfamily of transcriptional repressors. In this study, we found KAP1-dependent repression of interferon (IFN)/STAT1-mediated signaling. We also demonstrated that endogenous KAP1 associates with endogenous STAT1 in vivo. Importantly, a small-interfering RNA-mediated reduction in KAP1 expression enhanced IFN-induced STAT1-dependent IRF-1 gene expression. These results indicate that KAP1 may act as an endogenous regulator of the IFN/STAT1 signaling pathway

  5. Hypoxia-inducible factor-1α expression requires PI 3-kinase activity and correlates with Akt1 phosphorylation in invasive breast carcinomas

    NARCIS (Netherlands)

    Gort, E.H.; Groot, A.J.; Derks van de Ven, T.L.P.; Groep, P. van der; Verlaan, I.; Laar, T. van; Diest, P.J. van; Wall, E. van der; Shvarts, A.

    2006-01-01

    Hypoxia-inducible factor-1 alpha (HIF-1a) is the regulatory subunit of the heterodimeric transcription factor HIF-1 and the key factor in cellular response to low oxygen tension. Expression of HIF-1a protein is associated with poor patient survival and therapy resistance in many types of solid

  6. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats.

    Science.gov (United States)

    Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin

    2017-01-01

    Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  7. Suppression of the expression of hypoxia-inducible factor-1α by RNA interference alleviates hypoxia-induced pulmonary hypertension in adult rats.

    Science.gov (United States)

    Li, Ying; Shi, Bo; Huang, Liping; Wang, Xin; Yu, Xiaona; Guo, Baosheng; Ren, Weidong

    2016-12-01

    Hypoxia-inducible factor-1α (HIF-1α) has been implicated in the pathogenesis of hypoxic pulmonary hypertension (PH). However, the potential clinical value of HIF-1α as a therapeutic target in the treatment of PH has not yet been evaluated. In this study, an animal model of hypoxia-induced PH was established by exposing adult rats to 10% O2 for 3 weeks, and the effects of the lentivirus-mediated delivery of HIF-1α short hairpin RNA (shRNA) by intratracheal instillation prior to exposure to hypoxia on the manifestations of hypoxia-induced PH were assessed. The successful delivery of HIF-1α shRNA into the pulmonary arteries effectively suppressed the hypoxia-induced upregulation of HIF-1α, accompanied by the prominent attenuation the symptoms associated with hypoxia-induced PH, including the elevation of pulmonary arterial pressure, hypertrophy and hyperplasia of pulmonary artery smooth muscle cells (PASMCs), as well as the muscularization of pulmonary arterioles. In addition, the knockdown of HIF-1α in cultured rat primary PASMCs significantly inhibited the hypoxia-induced acceleration of the cell cycle and the proliferation of the PASMCs, suggesting that HIF-1α may be a direct mediator of PASMC hyperplasia in hypoxia-induced PH. In conclusion, this study demonstrates the potent suppressive effects of HIF-1α shRNA on hypoxia-induced PH and PASMC hyperplasia, providing evidence for the potential application of HIF-1α shRNA in the treatment of hypoxic PH.

  8. Roles of p300 and cyclic adenosine monophosphate response element binding protein in high glucose-induced hypoxia-inducible factor 1α inactivation under hypoxic conditions.

    Science.gov (United States)

    Ding, Lingtao; Yang, Minlie; Zhao, Tianlan; Lv, Guozhong

    2017-05-01

    Given the high prevalence of diabetes and burn injuries worldwide, it is essential to dissect the underlying mechanism of delayed burn wound healing in diabetes patients, especially the high glucose-induced hypoxia-inducible factor 1 (HIF-1)-mediated transcription defects. Human umbilical vein endothelial cells were cultured with low or high concentrations of glucose. HIF-1α-induced vascular endothelial growth factor (VEGF) transcription was measured by luciferase assay. Immunofluorescence staining was carried out to visualize cyclic adenosine monophosphate response element binding protein (CREB) localization. Immunoprecipitation was carried out to characterize the association between HIF-1α/p300/CREB. To test whether p300, CREB or p300+CREB co-overexpression was sufficient to rescue the HIF-1-mediated transcription defect after high glucose exposure, p300, CREB or p300+CREB co-overexpression were engineered, and VEGF expression was quantified. Finally, in vitro angiogenesis assay was carried out to test whether the high glucose-induced angiogenesis defect is rescuable by p300 and CREB co-overexpression. Chronic high glucose treatment resulted in impaired HIF-1-induced VEGF transcription and CREB exclusion from the nucleus. P300 or CREB overexpression alone cannot rescue high glucose-induced HIF-1α transcription defects. In contrast, co-overexpression of p300 and CREB dramatically ameliorated high glucose-induced impairment of HIF-1-mediated VEGF transcription, as well as in vitro angiogenesis. Finally, we showed that co-overexpression of p300 and CREB rectifies the dissociation of HIF-1α-p300-CREB protein complex in chronic high glucose-treated cells. Both p300 and CREB are required for the function integrity of HIF-1α transcription machinery and subsequent angiogenesis, suggesting future studies to improve burn wound healing might be directed to optimization of the interaction between p300, CREB and HIF-1α. © 2016 The Authors. Journal of Diabetes

  9. Manganese (II) induces chemical hypoxia by inhibiting HIF-prolyl hydroxylase: Implication in manganese-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Han, Jeongoh; Lee, Jong-Suk; Choi, Daekyu; Lee, Youna; Hong, Sungchae; Choi, Jungyun; Han, Songyi; Ko, Yujin; Kim, Jung-Ae; Mi Kim, Young; Jung, Yunjin

    2009-01-01

    Manganese (II), a transition metal, causes pulmonary inflammation upon environmental or occupational inhalation in excess. We investigated a potential molecular mechanism underlying manganese-induced pulmonary inflammation. Manganese (II) delayed HIF-1α protein disappearance, which occurred by inhibiting HIF-prolyl hydroxylase (HPH), the key enzyme for HIF-1α hydroxylation and subsequent von Hippel-Lindau(VHL)-dependent HIF-1α degradation. HPH inhibition by manganese (II) was neutralized significantly by elevated dose of iron. Consistent with this, the induction of cellular HIF-1α protein by manganese (II) was abolished by pretreatment with iron. Manganese (II) induced the HIF-1 target gene involved in pulmonary inflammation, vascular endothelial growth factor (VEGF), in lung carcinoma cell lines. The induction of VEGF was dependent on HIF-1. Manganese-induced VEGF promoted tube formation of HUVEC. Taken together, these data suggest that HIF-1 may be a potential mediator of manganese-induced pulmonary inflammation

  10. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Smialowska, Agata; Djupedal, Ingela; Wang, Jingwen; Kylsten, Per; Swoboda, Peter; Ekwall, Karl

    2014-01-01

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe

  11. Downregulation of HIF-1a sensitizes U251 glioma cells to the temozolomide (TMZ) treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun-Hai [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Ma, Zhi-Xiong [National Institute of Biological Sciences, Beijing 102206 (China); Huang, Guo-Hao; Xu, Qing-Fu; Xiang, Yan [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Li, Ningning; Sidlauskas, Kastytis [Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG (United Kingdom); Zhang, Eric Erquan [National Institute of Biological Sciences, Beijing 102206 (China); Lv, Sheng-Qing, E-mail: lvsq0518@hotmail.com [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China)

    2016-05-01

    Purpose: The aim of this study was to investigate the effect of downregulation of HIF-1α gene on human U251 glioma cells and examine the consequent changes of TMZ induced effects and explore the molecular mechanisms. Methods: U251 cell line stably expressing HIF-1α shRNA was acquired via lentiviral vector transfection. The mRNA and protein expression alterations of genes involved in our study were determined respectively by qRT-PCR and Western blot. Cell proliferation was measured by MTT assay and colony formation assay, cell invasion/migration capacity was determined by transwell invasion assay/wound healing assay, and cell apoptosis was detected by flow cytometry. Results: We successfully established a U251 cell line with highly efficient HIF-1α knockdown. HIF-1a downregulation sensitized U251 cells to TMZ treatment and enhanced the proliferation-inhibiting, invasion/migration-suppressing, apoptosis-inducing and differentiation-promoting effects exerted by TMZ. The related molecular mechanisms demonstrated that expression of O{sup 6}-methylguanine DNA methyltransferase gene (MGMT) and genes of Notch1 pathway were significantly upregulated by TMZ treatment. However, this upregulation was abrogated by HIF-1α knockdown. We further confirmed important regulatory roles of HIF-1α in the expression of MGMT and activation of Notch1 pathways. Conclusion: HIF-1α downregulation sensitizes U251 glioma cells to the temozolomide treatment via inhibiting MGMT expression and Notch1 pathway activation. - Highlights: • TMZ caused more significant proliferation inhibition and apoptosis in U251 cells after downregulating HIF-1α. • Under TMZ treatment, HIF-1 downregulated U251 cells exhibited weaker mobility and more differentiated state. • TMZ caused MGMT over-expression and Notch1 pathway activation, which could be abrogated by HIF-1α downregulation.

  12. HIF-1α Activation Attenuates IL-6 and TNF-α Pathways in Hippocampus of Rats Following Transient Global Ischemia

    Directory of Open Access Journals (Sweden)

    Jihong Xing

    2016-07-01

    Full Text Available Background/Aims: This study was to examine the role played by hypoxia inducible factor-1 (HIF-1α in regulating pro-inflammatory cytokines (PICs pathway in the rat hippocampus after cardiac arrest (CA induced-transient global ischemia followed by cardiopulmonary resuscitation (CPR. Those PICs include interleukin-1β (IL-1β, interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α. Methods: A rat model of CA induced by asphyxia was used in the current study. Following CPR, the hippocampus CA1 region was obtained for ELISA to determine the levels of HIF-1α and PICs; and Western Blot analysis to determine the protein levels of PIC receptors. Results: Our data show that IL-1β, IL-6 and TNF-α were significant elevated in the hippocampus after CPR as compared with control group. This was companied with increasing of HIF-1α and the time courses for HIF-1α and PICs were similar. In addition, PIC receptors, namely IL-1R, IL-6R and TNFR1 were upregulated in CA rats. Also, stimulation of HIF-1α by systemic administration of ML228, HIF-1α activator, significantly attenuated the amplified IL-6/IL-6R and TNF-α /TNFR1 pathway in the hippocampus of CA rats, but did not modify IL-1β and its receptor. Moreover, ML228 attenuated upregulated expression of Caspase-3 indicating cell apoptosis evoked by CA. Conclusion: Transient global ischemia induced by CA increases the levels of IL-1β, IL-6 and TNF-α and thereby leads to enhancement in their respective receptor in the rat hippocampus. Stabilization of HIF-1α plays a role in attenuating amplified expression IL-6R, TNFR1 and Caspase-3 in the processing of transient global ischemia. Results of our study suggest that PICs contribute to cerebral injuries evoked by transient global ischemia and in this pathophysiological process activation of HIF-1α improves tissues against ischemic injuries. Our data revealed specific signaling pathways in alleviating CA-evoked global cerebral ischemia by elucidating that

  13. Reciprocal Regulation of Hypoxia-Inducible Factor 2α and GLI1 Expression Associated With the Radioresistance of Renal Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jiancheng [Department of Urology, First Affiliated Hospital of Medical School, Xi' an Jiaotong University, Xi' an (China); Department of Urology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Wu, Kaijie [Department of Urology, First Affiliated Hospital of Medical School, Xi' an Jiaotong University, Xi' an (China); Gao, Dexuan [Department of Urology, Shandong Provincial Hospital affiliated with Shandong University, Ji' nan (China); Zhu, Guodong; Wu, Dapeng; Wang, Xinyang; Chen, Yule; Du, Yuefeng; Song, Wenbin; Ma, Zhenkun [Department of Urology, First Affiliated Hospital of Medical School, Xi' an Jiaotong University, Xi' an (China); Authement, Craig; Saha, Debabrata [Department of Urology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Hsieh, Jer-Tsong, E-mail: jt.hsieh@utsouthwestern.edu [Department of Urology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); He, Dalin, E-mail: dalinhe@yahoo.com [Department of Urology, First Affiliated Hospital of Medical School, Xi' an Jiaotong University, Xi' an (China)

    2014-11-15

    Purpose: Renal cell carcinoma (RCC) is often considered a radioresistant tumor, but the molecular mechanism underlying its radioresistance is poorly understood. This study explored the roles of hypoxia-inducible factor 2α (HIF2α) and sonic hedgehog (SHH)-GLI1 signaling in mediating the radioresistance of RCC cells and to unveil the interaction between these 2 signaling pathways. Methods and Materials: The activities of SHH-GLI1 signaling pathway under normoxia and hypoxia in RCC cells were examined by real-time polymerase chain reaction, Western blot, and luciferase reporter assay. The expression of HIF2α and GLI1 in RCC patients was examined by immunohistochemistry, and their correlation was analyzed. Furthermore, RCC cells were treated with HIF2α-specific shRNA (sh-HIF2α), GLI1 inhibitor GANT61, or a combination to determine the effect of ionizing radiation (IR) on RCC cells based on clonogenic assay and double-strand break repair assay. Results: RCC cells exhibited elevated SHH-GLI1 activities under hypoxia, which was mediated by HIF2α. Hypoxia induced GLI1 activation through SMO-independent pathways that could be ablated by PI3K inhibitor or MEK inhibitor. Remarkably, the SHH-GLI1 pathway also upregulated HIF2α expression in normoxia. Apparently, there was a positive correlation between HIF2α and GLI1 expression in RCC patients. The combination of sh-HIF2α and GLI1 inhibitor significantly sensitized RCC cells to IR. Conclusions: Cross-talk between the HIF2α and SHH-GLI1 pathways was demonstrated in RCC. Cotargeting these 2 pathways, significantly sensitizing RCC cells to IR, provides a novel strategy for RCC treatment.

  14. A3 Adenosine Receptors Modulate Hypoxia-inducible Factor-1a Expression in Human A375 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Stefania Merighi

    2005-10-01

    Full Text Available Hypoxia-inducible factor-1 (HIF-1 is a key regulator of genes crucial to many aspects of cancer biology. The purine nucleoside, adenosine, accumulates within many tissues under hypoxic conditions, including that of tumors. Because the levels of both HIF-1 and adenosine are elevated within the hypoxic environment of solid tumors, we investigated whether adenosine may regulate HIF-1. Here we show that, under hypoxic conditions (< 2% 02, adenosine upregulates HIF-1α protein expression in a dose-dependent and timedependent manner, exclusively through the A3 receptor subtype. The response to adenosine was generated at the cell surface because the inhibition of A3 receptor expression, by using small interfering RNA, abolished nucleoside effects. A3 receptor stimulation in hypoxia also increases angiopoietin-2 (Ang-2 protein accumulation through the induction of HIF-1α. In particular, we found that A3 receptor stimulation activates p44/p42 and p38 mitogen-activated protein kinases, which are required for A3-induced increase of HIF-1a and Ang-2. Collectively, these results suggest a cooperation between hypoxic and adenosine signals that ultimately may lead to the increase in HIF-1-mediated effects in cancer cells.

  15. Hypoxia in Combination With Muscle Contraction Improves Insulin Action and Glucose Metabolism in Human Skeletal Muscle via the HIF-1α Pathway.

    Science.gov (United States)

    Görgens, Sven W; Benninghoff, Tim; Eckardt, Kristin; Springer, Christian; Chadt, Alexandra; Melior, Anita; Wefers, Jakob; Cramer, Andrea; Jensen, Jørgen; Birkeland, Kåre I; Drevon, Christian A; Al-Hasani, Hadi; Eckel, Jürgen

    2017-11-01

    Skeletal muscle insulin resistance is the hallmark of type 2 diabetes and develops long before the onset of the disease. It is well accepted that physical activity improves glycemic control, but the knowledge on underlying mechanisms mediating the beneficial effects remains incomplete. Exercise is accompanied by a decrease in intramuscular oxygen levels, resulting in induction of HIF-1α. HIF-1α is a master regulator of gene expression and might play an important role in skeletal muscle function and metabolism. Here we show that HIF-1α is important for glucose metabolism and insulin action in skeletal muscle. By using a genome-wide gene expression profiling approach, we identified RAB20 and TXNIP as two novel exercise/HIF-1α-regulated genes in skeletal muscle. Loss of Rab20 impairs insulin-stimulated glucose uptake in human and mouse skeletal muscle by blocking the translocation of GLUT4 to the cell surface. In addition, exercise/HIF-1α downregulates the expression of TXNIP , a well-known negative regulator of insulin action. In conclusion, we are the first to demonstrate that HIF-1α is a key regulator of glucose metabolism in skeletal muscle by directly controlling the transcription of RAB20 and TXNIP These results hint toward a novel function of HIF-1α as a potential pharmacological target to improve skeletal muscle insulin sensitivity. © 2017 by the American Diabetes Association.

  16. A Herpesviral induction of RAE-1 NKG2D ligand expression occurs through release of HDAC mediated repression.

    Science.gov (United States)

    Greene, Trever T; Tokuyama, Maria; Knudsen, Giselle M; Kunz, Michele; Lin, James; Greninger, Alexander L; DeFilippis, Victor R; DeRisi, Joseph L; Raulet, David H; Coscoy, Laurent

    2016-11-22

    Natural Killer (NK) cells are essential for control of viral infection and cancer. NK cells express NKG2D, an activating receptor that directly recognizes NKG2D ligands. These are expressed at low level on healthy cells, but are induced by stresses like infection and transformation. The physiological events that drive NKG2D ligand expression during infection are still poorly understood. We observed that the mouse cytomegalovirus encoded protein m18 is necessary and sufficient to drive expression of the RAE-1 family of NKG2D ligands. We demonstrate that RAE-1 is transcriptionally repressed by histone deacetylase inhibitor 3 (HDAC3) in healthy cells, and m18 relieves this repression by directly interacting with Casein Kinase II and preventing it from activating HDAC3. Accordingly, we found that HDAC inhibiting proteins from human herpesviruses induce human NKG2D ligand ULBP-1. Thus our findings indicate that virally mediated HDAC inhibition can act as a signal for the host to activate NK-cell recognition.

  17. Opposite prognostic roles of HIF1β and HIF2β expressions in bone metastatic clear cell renal cell cancer

    DEFF Research Database (Denmark)

    Szendroi, Attila; Szász, A. Marcell; Kardos, Magdolna

    2016-01-01

    BACKGROUND: Prognostic markers of bone metastatic clear cell renal cell cancer (ccRCC) are poorly established. We tested prognostic value of HIF1β/HIF2β and their selected target genes in primary tumors and corresponding bone metastases. RESULTS: Expression of HIF2β was lower in mRCC both at m...

  18. Hypoxia Inducible Factor 1α Promotes Endogenous Adaptive Response in Rat Model of Chronic Cerebral Hypoperfusion

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2017-01-01

    Full Text Available Hypoxia inducible factor 1α (HIF-1α, a pivotal regulator of gene expression in response to hypoxia and ischemia, is now considered to regulate both pro-survival and pro-death responses depending on the duration and severity of the stress. We previously showed that chronic global cerebral hypoperfusion (CCH triggered long-lasting accumulation of HIF-1α protein in the hippocampus of rats. However, the role of the stabilized HIF-1α in CCH is obscure. Here, we knock down endogenous HIF-1α to determine whether and how HIF-1α affects the disease processes and phenotypes of CCH. Lentivirus expressing HIF-1α small hairpin RNA was injected into the bilateral hippocampus and bilateral ventricles to knock down HIF-1α gene expression in the hippocampus and other brain areas. Permanent bilateral common carotid artery occlusions, known as 2-vessel occlusions (2VOs, were used to induce CCH in rats. Angiogenesis, oxidative stress, histopathological changes of the brain, and cognitive function were tested. Knockdown of HIF-1α prior to 2VO significantly exacerbates the impairment of learning and memory after four weeks of CCH. Mechanically, reduced cerebral angiogenesis, increased oxidative damage, and increased density of astrocytes and microglia in the cortex and some subregions of hippocampus are also shown after four weeks of CCH. Furthermore, HIF-1α knockdown also disrupts upregulation of regulated downstream genes. Our findings suggest that HIF-1α-protects the brain from oxidative stress and inflammation response in the disease process of CCH. Accumulated HIF-1α during CCH mediates endogenous adaptive processes to defend against more severe hypoperfusion injury of the brain, which may provide a therapeutic benefit.

  19. Radiolabeled Probes Targeting Hypoxia-Inducible Factor-1-Active Tumor Microenvironments

    Directory of Open Access Journals (Sweden)

    Masashi Ueda

    2014-01-01

    Full Text Available Because tumor cells grow rapidly and randomly, hypoxic regions arise from the lack of oxygen supply in solid tumors. Hypoxic regions in tumors are known to be resistant to chemotherapy and radiotherapy. Hypoxia-inducible factor-1 (HIF-1 expressed in hypoxic regions regulates the expression of genes related to tumor growth, angiogenesis, metastasis, and therapy resistance. Thus, imaging of HIF-1-active regions in tumors is of great interest. HIF-1 activity is regulated by the expression and degradation of its α subunit (HIF-1α, which is degraded in the proteasome under normoxic conditions, but escapes degradation under hypoxic conditions, allowing it to activate transcription of HIF-1-target genes. Therefore, to image HIF-1-active regions, HIF-1-dependent reporter systems and injectable probes that are degraded in a manner similar to HIF-1α have been recently developed and used in preclinical studies. However, no probe currently used in clinical practice directly assesses HIF-1 activity. Whether the accumulation of 18F-FDG or 18F-FMISO can be utilized as an index of HIF-1 activity has been investigated in clinical studies. In this review, the current status of HIF-1 imaging in preclinical and clinical studies is discussed.

  20. HIF-1? Is Essential for Effective PMN Bacterial Killing, Antimicrobial Peptide Production and Apoptosis in Pseudomonas aeruginosa Keratitis

    OpenAIRE

    Berger, Elizabeth A.; McClellan, Sharon A.; Vistisen, Kerry S.; Hazlett, Linda D.

    2013-01-01

    Hypoxia-inducible factor (HIF)-1α, is a transcription factor that controls energy metabolism and angiogenesis under hypoxic conditions, and a potent regulator of innate immunity. The studies described herein examined the role of HIF-1α in disease resolution in BALB/c (resistant, cornea heals) mice after ocular infection with Pseudomonas (P.) aeruginosa. Furthermore, the current studies focused on the neutrophil (PMN), the predominant cell infiltrate in keratitis. Using both siRNA and an antag...

  1. Sevoflurane postconditioning improves myocardial mitochondrial respiratory function and reduces myocardial ischemia-reperfusion injury by up-regulating HIF-1.

    Science.gov (United States)

    Yang, Long; Xie, Peng; Wu, Jianjiang; Yu, Jin; Yu, Tian; Wang, Haiying; Wang, Jiang; Xia, Zhengyuan; Zheng, Hong

    2016-01-01

    Sevoflurane postconditioning (SPostC) can exert myocardial protective effects similar to ischemic preconditioning. However, the exact myocardial protection mechanism by SPostC is unclear. Studies indicate that hypoxia-inducible factor-1 (HIF-1) maintains cellular respiration homeostasis by regulating mitochondrial respiratory chain enzyme activity under hypoxic conditions. This study investigated whether SPostC could regulate the expression of myocardial HIF-1α and to improve mitochondrial respiratory function, thereby relieving myocardial ischemia-reperfusion injury in rats. The myocardial ischemia-reperfusion rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, postconditioning was performed using sevoflurane alone or in combination with the HIF-1α inhibitor 2-methoxyestradiol (2ME2). The changes in hemodynamic parameters, HIF-1α protein expression levels, mitochondrial respiratory function and enzyme activity, mitochondrial reactive oxygen species (ROS) production rates, and mitochondrial ultrastructure were measured or observed. Compared to the ischemia-reperfusion (I/R) group, HIF-1α expression in the SPostC group was significantly up-regulated. Additionally, cardiac function indicators, mitochondrial state 3 respiratory rate, respiratory control ratio (RCR), cytochrome C oxidase (C c O), NADH oxidase (NADHO), and succinate oxidase (SUCO) activities, mitochondrial ROS production rate, and mitochondrial ultrastructure were significantly better than those in the I/R group. However, these advantages were completely reversed by the HIF-1α specific inhibitor 2ME2 ( P <0.05). The myocardial protective function of SPostC might be associated with the improvement of mitochondrial respiratory function after up-regulation of HIF-1α expression.

  2. SUN2 Modulates HIV-1 Infection and Latency through Association with Lamin A/C To Maintain the Repressive Chromatin.

    Science.gov (United States)

    Sun, Wei-Wei; Jiao, Shi; Sun, Li; Zhou, Zhaocai; Jin, Xia; Wang, Jian-Hua

    2018-05-01

    The postintegrational latency of HIV-1 is characterized by reversible silencing of long terminal repeat (LTR)-driven transcription of the HIV genome. It is known that the formation of repressive chromatin at the 5'-LTR of HIV-1 proviral DNA impedes viral transcription by blocking the recruitment of positive transcription factors. How the repressive chromatin is formed and modulated during HIV-1 infection remains elusive. Elucidation of which chromatin reassembly factor mediates the reorganization of chromatin is likely to facilitate the understanding of the host's modulation of HIV-1 transcription and latency. Here we revealed that "Sad1 and UNC84 domain containing 2" (SUN2), an inner nuclear membrane protein, maintained the repressive chromatin and inhibited HIV LTR-driven transcription of proviral DNA through an association with lamin A/C. Specifically, lamin A/C tethered SUN2 to the nucleosomes 1 and 2 of the HIV-1 5'-LTR to block the initiation and elongation of HIV-1 transcription. SUN2 knockdown converted chromatin to an active form and thus enhanced the phosphorylation of RNA polymerase II and its recruitment to the 5'-LTR HIV-1 proviral DNA, leading to reactivation of HIV-1 from latency. Conversely, the exogenous factors such as tumor necrosis factor alpha (TNF-α) induced reactivation, and the replication of HIV-1 led to the disassociation between SUN2 and lamin A/C, suggesting that disruption of the association between SUN2 and lamin A/C to convert the repressive chromatin to the active form might be a prerequisite for the initiation of HIV-1 transcription and replication. Together, our findings indicate that SUN2 is a novel chromatin reassembly factor that helps to maintain chromatin in a repressive state and consequently inhibits HIV-1 transcription. IMPORTANCE Despite the successful use of scores of antiretroviral drugs, HIV latency poses a major impediment to virus eradication. Elucidation of the mechanism of latency facilitates the discovery of new

  3. Hypoxia-Inducible Factor 1 Is an Inductor of Transcription Factor Activating Protein 2 Epsilon Expression during Chondrogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Stephan Niebler

    2015-01-01

    Full Text Available The transcription factor AP-2ε (activating enhancer-binding protein epsilon is expressed in cartilage of humans and mice. However, knowledge about regulatory mechanisms influencing AP-2ε expression is limited. Using quantitative real time PCR, we detected a significant increase in AP-2ε mRNA expression comparing initial and late stages of chondrogenic differentiation processes in vitro and in vivo. Interestingly, in these samples the expression pattern of the prominent hypoxia marker gene angiopoietin-like 4 (Angptl4 strongly correlated with that of AP-2ε suggesting that hypoxia might represent an external regulator of AP-2ε expression in mammals. In order to show this, experiments directly targeting the activity of hypoxia-inducible factor-1 (HIF1, the complex mediating responses to oxygen deprivation, were performed. While the HIF1-activating compounds 2,2′-dipyridyl and desferrioxamine resulted in significantly enhanced mRNA concentration of AP-2ε, siRNA against HIF1α led to a significantly reduced expression rate of AP-2ε. Additionally, we detected a significant upregulation of the AP-2ε mRNA level after oxygen deprivation. In sum, these different experimental approaches revealed a novel role for the HIF1 complex in the regulation of the AP-2ε gene in cartilaginous cells and underlined the important role of hypoxia as an important external regulatory stimulus during chondrogenic differentiation modulating the expression of downstream transcription factors.

  4. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions.

    Science.gov (United States)

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas; Simos, George

    2010-07-16

    Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1alpha subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1alpha as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC(50)=5.16microM). The mechanism of this inhibition did not involve suppression of HIF-1alpha protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC(50)=4.75microM). Exposure of Huh7 cells to 10microM kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10microM) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Hypoxia-Inducible Factor-1α in carcinogenesis and progression of breast cancer

    NARCIS (Netherlands)

    Bos, R.

    2004-01-01

    This thesis is primarily focused on the previously hardly explored role of HIF-1 in breast cancer. HIF-1 is a transcription factor induced by hypoxia, but also by some oncogenes, tumor suppressor genes and growth factors. Activated HIF-1 can induce angiogenesis, glycolysis, erythropoiesis, and other

  6. Two sequence motifs from HIF-1α bind to the DNA-binding site of p53

    OpenAIRE

    Hansson, Lars O.; Friedler, Assaf; Freund, Stefan; Rüdiger, Stefan; Fersht, Alan R.

    2002-01-01

    There is evidence that hypoxia-inducible factor-1α (HIF-1α) interacts with the tumor suppressor p53. To characterize the putative interaction, we mapped the binding of the core domain of p53 (p53c) to an array of immobilized HIF-1α-derived peptides and found two peptide-sequence motifs that bound to p53c with micromolar affinity in solution. One sequence was adjacent to and the other coincided with the two proline residues of the oxygen-dependent degradation domain (P402 and P564) that act as...

  7. Hypoxia-inducible factor-1α upregulation in microglia following hypoxia protects against ischemia-induced cerebral infarction.

    Science.gov (United States)

    Huang, Tao; Huang, Weiyi; Zhang, Zhiqiang; Yu, Lei; Xie, Caijun; Zhu, Dongan; Peng, Zizhuang; Chen, Jiehan

    2014-10-01

    Activated microglia were considered to be the toxic inflammatory mediators that induce neuron degeneration after brain ischemia. Hypoxia can enhance the expression of hypoxia-inducible factor-1α (HIF-1α) in microglia and cause microglial activation. However, intermittent hypoxia has been reported recently to be capable of protecting the body from myocardial ischemia. We established a high-altitude environment as the hypoxic condition in this study. The hypoxic condition displayed a neuroprotective effect after brain ischemia, and mice exposed to this condition presented better neurological performance and smaller infarct size. At the same time, a high level of HIF-1α, low level of isoform of nitric oxide synthase, and a reduction in microglial activation were also seen in ischemic focus of hypoxic mice. However, this neuroprotective effect could be blocked by 2-methoxyestradiol, the HIF-1α inhibitor. Our finding suggested that HIF-1α expression was involved in microglial activation in vitro and was regulated by oxygen supply. The microglia were inactivated by re-exposure to hypoxia, which might be due to overexpression of HIF-1α. These results indicated that hypoxic conditions can be exploited to achieve maximum neuroprotection after brain ischemia. This mechanism possibly lies in microglial inactivation through regulation of the expression of HIF-1α.

  8. Infiltrating T Cells Promote Bladder Cancer Progression via Increasing IL1→Androgen Receptor→HIF1α→VEGFa Signals.

    Science.gov (United States)

    Tao, Le; Qiu, Jianxin; Jiang, Ming; Song, Wenbin; Yeh, Shuyuan; Yu, Hong; Zang, Lijuan; Xia, Shujie; Chang, Chawnshang

    2016-08-01

    The tumor microenvironment impacts tumor progression and individual cells, including CD4(+) T cells, which have been detected in bladder cancer tissues. The detailed mechanism of how these T cells were recruited to the bladder cancer tumor and their impact on bladder cancer progression, however, remains unclear. Using a human clinical bladder cancer sample survey and in vitro coculture system, we found that bladder cancer has a greater capacity to recruit T cells than surrounding normal bladder tissues. The consequences of higher levels of recruited T cells in bladder cancer included increased bladder cancer metastasis. Mechanism dissection revealed that infiltrating T cells might function through secreting the cytokine IL1, which increases the recruitment of T cells to bladder cancer and enhances the bladder cancer androgen receptor (AR) signaling that results in increased bladder cancer cell invasion via upregulation of hypoxia-inducible factor-1α (HIF1α)/VEGFa expression. Interruption of the IL1→AR→HIF1α→VEGFa signals with inhibitors of HIF1α or VEGFa partially reversed the enhanced bladder cancer cell invasion. Finally, in vivo mouse models of xenografted bladder cancer T24 cells with CD4(+) T cells confirmed in vitro coculture studies and concluded that infiltrating CD4(+) T cells can promote bladder cancer metastasis via modulation of the IL1→AR→HIF1α→VEGFa signaling. Future clinical trials using small molecules to target this newly identified signaling pathway may facilitate the development of new therapeutic approaches to better suppress bladder cancer metastasis. Mol Cancer Ther; 15(8); 1943-51. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. The Arabidopsis GAGA-Binding Factor BASIC PENTACYSTEINE6 Recruits the POLYCOMB-REPRESSIVE COMPLEX1 Component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA Motifs.

    Science.gov (United States)

    Hecker, Andreas; Brand, Luise H; Peter, Sébastien; Simoncello, Nathalie; Kilian, Joachim; Harter, Klaus; Gaudin, Valérie; Wanke, Dierk

    2015-07-01

    Polycomb-repressive complexes (PRCs) play key roles in development by repressing a large number of genes involved in various functions. Much, however, remains to be discovered about PRC-silencing mechanisms as well as their targeting to specific genomic regions. Besides other mechanisms, GAGA-binding factors in animals can guide PRC members in a sequence-specific manner to Polycomb-responsive DNA elements. Here, we show that the Arabidopsis (Arabidopsis thaliana) GAGA-motif binding factor protein basic pentacysteine6 (BPC6) interacts with like heterochromatin protein1 (LHP1), a PRC1 component, and associates with vernalization2 (VRN2), a PRC2 component, in vivo. By using a modified DNA-protein interaction enzyme-linked immunosorbant assay, we could show that BPC6 was required and sufficient to recruit LHP1 to GAGA motif-containing DNA probes in vitro. We also found that LHP1 interacts with VRN2 and, therefore, can function as a possible scaffold between BPC6 and VRN2. The lhp1-4 bpc4 bpc6 triple mutant displayed a pleiotropic phenotype, extreme dwarfism and early flowering, which disclosed synergistic functions of LHP1 and group II plant BPC members. Transcriptome analyses supported this synergy and suggested a possible function in the concerted repression of homeotic genes, probably through histone H3 lysine-27 trimethylation. Hence, our findings suggest striking similarities between animal and plant GAGA-binding factors in the recruitment of PRC1 and PRC2 components to Polycomb-responsive DNA element-like GAGA motifs, which must have evolved through convergent evolution. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. Hypoxia-inducible factor-1α plays roles in Epstein-Barr virus's natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter.

    Directory of Open Access Journals (Sweden)

    Richard J Kraus

    2017-06-01

    Full Text Available When confronted with poor oxygenation, cells adapt by activating survival signaling pathways, including the oxygen-sensitive transcriptional regulators called hypoxia-inducible factor alphas (HIF-αs. We report here that HIF-1α also regulates the life cycle of Epstein-Barr virus (EBV. Incubation of EBV-positive gastric carcinoma AGS-Akata and SNU-719 and Burkitt lymphoma Sal and KemIII cell lines with a prolyl hydroxylase inhibitor, L-mimosine or deferoxamine, or the NEDDylation inhibitor MLN4924 promoted rapid and sustained accumulation of both HIF-1α and lytic EBV antigens. ShRNA knockdown of HIF-1α significantly reduced deferoxamine-mediated lytic reactivation. HIF-1α directly bound the promoter of the EBV primary latent-lytic switch BZLF1 gene, Zp, activating transcription via a consensus hypoxia-response element (HRE located at nt -83 through -76 relative to the transcription initiation site. HIF-1α did not activate transcription from the other EBV immediate-early gene, BRLF1. Importantly, expression of HIF-1α induced EBV lytic-gene expression in cells harboring wild-type EBV, but not in cells infected with variants containing base-pair substitution mutations within this HRE. Human oral keratinocyte (NOK and gingival epithelial (hGET cells induced to differentiate by incubation with either methyl cellulose or growth in organotypic culture accumulated both HIF-1α and Blimp-1α, another cellular factor implicated in lytic reactivation. HIF-1α activity also accumulated along with Blimp-1α during B-cell differentiation into plasma cells. Furthermore, most BZLF1-expressing cells observed in lymphomas induced by EBV in NSG mice with a humanized immune system were located distal to blood vessels in hypoxic regions of the tumors. Thus, we conclude that HIF-1α plays central roles in both EBV's natural life cycle and EBV-associated tumorigenesis. We propose that drugs that induce HIF-1α protein accumulation are good candidates for

  11. Andrographolide down-regulates hypoxia-inducible factor-1{alpha} in human non-small cell lung cancer A549 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hui-Hsuan [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Tsai, Chia-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Chou, Fen-Pi [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Wang, Chau-Jong [Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Hsuan, Shu-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, No.89, Wen Hwa 1st St., Rende Shiang, Tainan County 717, Taiwan (China); Wang, Cheng-Kun [E-Chyun Dermatology Clinic, No.70, Sec. 3, Jhonghua E. Rd., East District, Tainan, Taiwan (China); Chen, Jing-Hsien [Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, No.89, Wen Hwa 1st St., Rende Shiang, Tainan County 717, Taiwan (China)

    2011-02-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in A549 cells. HIF-1{alpha} plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1{alpha} was correlated with a rapid ubiquitin-dependent degradation of HIF-1{alpha}, and was accompanied by increased expressions of hydroxyl-HIF-1{alpha} and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1{alpha} inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGF{beta}1/PHD2/HIF-1{alpha} pathway, as demonstrated by the transfection of TGF{beta}1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1{alpha} transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  12. Andrographolide down-regulates hypoxia-inducible factor-1α in human non-small cell lung cancer A549 cells

    International Nuclear Information System (INIS)

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-01-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1α (HIF-1α) in A549 cells. HIF-1α plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1α was correlated with a rapid ubiquitin-dependent degradation of HIF-1α, and was accompanied by increased expressions of hydroxyl-HIF-1α and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1α inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGFβ1/PHD2/HIF-1α pathway, as demonstrated by the transfection of TGFβ1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1α transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  13. Melittin suppresses HIF-1α/VEGF expression through inhibition of ERK and mTOR/p70S6K pathway in human cervical carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jae-Moon Shin

    Full Text Available OBJECTIVE: Melittin (MEL, a major component of bee venom, has been associated with various diseases including arthritis, rheumatism and various cancers. In this study, the anti-angiogenic effects of MEL in CaSki cells that were responsive to the epidermal growth factor (EGF were examined. METHODOLOGY/PRINCIPAL FINDINGS: MEL decreased the EGF-induced hypoxia-inducible factor-1α (HIF-1α protein and significantly regulated angiogenesis and tumor progression. We found that inhibition of the HIF-1α protein level is due to the shortened half-life by MEL. Mechanistically, MEL specifically inhibited the EGF-induced HIF-1α expression by suppressing the phosphorylation of ERK, mTOR and p70S6K. It also blocked the EGF-induced DNA binding activity of HIF-1α and the secretion of the vascular endothelial growth factor (VEGF. Furthermore, the chromatin immunoprecipitation (ChIP assay revealed that MEL reduced the binding of HIF-1α to the VEGF promoter HRE region. The anti-angiogenesis effects of MEL were confirmed through a matrigel plus assay. CONCLUSIONS: MEL specifically suppressed EGF-induced VEGF secretion and new blood vessel formation by inhibiting HIF-1α. These results suggest that MEL may inhibit human cervical cancer progression and angiogenesis by inhibiting HIF-1α and VEGF expression.

  14. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages.

    Science.gov (United States)

    Rangel-Salazar, Rubén; Wickström-Lindholm, Marie; Aguilar-Salinas, Carlos A; Alvarado-Caudillo, Yolanda; Døssing, Kristina B V; Esteller, Manel; Labourier, Emmanuel; Lund, Gertrud; Nielsen, Finn C; Rodríguez-Ríos, Dalia; Solís-Martínez, Martha O; Wrobel, Katarzyna; Wrobel, Kazimierz; Zaina, Silvio

    2011-11-25

    We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway. Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.

  15. Aberrant Transforming Growth Factor β1 Signaling and SMAD4 Nuclear Translocation Confer Epigenetic Repression of ADAM19 in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Michael W.Y. Chan

    2008-09-01

    Full Text Available Transforming growth factor-beta (TGF-β/SMAD signaling is a key growth regulatory pathway often dysregulated in ovarian cancer and other malignancies. Although loss of TGF-β–mediated growth inhibition has been shown to contribute to aberrant cell behavior, the epigenetic consequence(s of impaired TGF-β/SMAD signaling on target genes is not well established. In this study, we show that TGF-β1 causes growth inhibition of normal ovarian surface epithelial cells, induction of nuclear translocation SMAD4, and up-regulation of ADAM19 (a disintegrin and metalloprotease domain 19, a newly identified TGF-β1 target gene. Conversely, induction and nuclear translocation of SMAD4 were negligible in ovarian cancer cells refractory to TGF-β1 stimulation, and ADAM19 expression was greatly reduced. Furthermore, in the TGF-β1 refractory cells, an inactive chromatin environment, marked by repressive histone modifications (trimethyl-H3K27 and dimethyl-H3K9 and histone deacetylase, was associated with the ADAM19 promoter region. However, the CpG island found within the promoter and first exon of ADAM19 remained generally unmethylated. Although disrupted growth factor signaling has been linked to epigenetic gene silencing in cancer, this is the first evidence demonstrating that impaired TGF-β1 signaling can result in the formation of a repressive chromatin state and epigenetic suppression of ADAM19. Given the emerging role of ADAMs family proteins in growth factor regulation in normal cells, we suggest that epigenetic dysregulation of ADAM19 may contribute to the neoplastic process in ovarian cancer.

  16. CD133 Modulate HIF-1α Expression under Hypoxia in EMT Phenotype Pancreatic Cancer Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Koki Maeda

    2016-06-01

    Full Text Available Although CD133 is a known representative cancer stem cell marker, its function in tumor aggressiveness under hypoxia is not fully known. The aim of this study is to demonstrate that CD133 regulates hypoxia inducible factor (HIF-1α expression with tumor migration. The CD133+ pancreatic cancer cell line, Capan1M9, was compared with the CD133− cell line, shCD133M9, under hypoxia. HIF-1α expression levels were compared by Western blot, HIF-1α nucleus translocation assay and real-time (RT-PCR. The hypoxia responsive element (HRE was observed by luciferase assay. The migration ability was analyzed by migration and wound healing assays. Epithelial mesenchymal transition (EMT related genes were analyzed by real-time RT-PCR. HIF-1α was highly expressed in Capan1M9 compared to shCD133M9 under hypoxia because of the high activation of HRE. Furthermore, the migration ability of Capan1M9 was higher than that of shCD133M9 under hypoxia, suggesting higher expression of EMT related genes in Capan1M9 compared to shCD133M9. Conclusion: HIF-1α expression under hypoxia in CD133+ pancreatic cancer cells correlated with tumor cell migration through EMT gene expression. Understanding the function of CD133 in cancer aggressiveness provides a novel therapeutic approach to eradicate pancreatic cancer stem cells.

  17. Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome.

    Science.gov (United States)

    Zheng, Qing-Qing; Zhao, You-Shan; Guo, Juan; Zhao, Si-da; Song, Lu-Xi; Fei, Cheng-Ming; Zhang, Zheng; Li, Xiao; Chang, Chun-Kang

    2017-07-01

    Erythroid apoptosis increases significantly in myelodysplastic syndrome (MDS) patients with iron overload, but the underlying mechanism is not fully clear. In this study, we aim to explore the effect of HIF-1a/ROS on erythroid apoptosis in MDS patients with iron overload. We found that iron overload injured cellular functions through up-regulating ROS levels in MDS/AML cells, including inhibited cell viability, increased cell apoptosis and blocked cell cycle at G0/G1 phase. Interestingly, overexpression of hypoxia inducible factor-1a (HIF-1a), which was under-expressed in iron overload models, reduced ROS levels and attenuated cell damage caused by iron overload in MDS/AML cells. And gene knockdown of HIF-1a got the similar results as iron overload in MDS/AML cells. Furthermore, iron overload caused high erythroid apoptosis was closely related with ROS in MDS patients. Importantly, the HIF-1a protein levels of erythrocytes elevated obviously after incubation with desferrioxamine (DFO) from MDS patients with iron overload, accompanied by ROS levels inhibited and erythroid apoptosis reduced. Taken together, our findings determine that the HIF-1a/ROS signaling pathway plays a key role in promoting erythroid apoptosis in MDS patients with iron overload. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Role of HIF-1α and CASPASE-3 in cystogenesis of odontogenic cysts and tumors.

    Science.gov (United States)

    da Costa, Natacha M M; de Siqueira, Adriane S; Ribeiro, André L R; da Silva Kataoka, Maria S; Jaeger, Ruy G; de Alves-Júnior, Sérgio M; Smith, Andrew M; de Jesus Viana Pinheiro, João

    2018-01-01

    Odontogenic cysts and tumors are the most relevant lesions that affect the gnathic bones. These lesions have in common the formation of cystic areas and this common feature may suggest involvement of similar mechanisms. The hypoxia inducible factor 1 alpha (HIF-1α), a responsive protein to hypoxia and caspase-3, an irreversible apoptosis marker, may contribute to cyst formation. Thus, this study aimed to investigate the immunoexpression of these proteins in odontogenic cysts and tumors. Twenty cases of ameloblastoma, keratocystic odontogenic tumor (KOT) (n = 20), radicular cyst (RC) (n = 18), dentigerous cyst (DC) (n = 11), calcifying cystic odontogenic tumor (n = 8), and dental follicle (DF) (n = 10) were used to investigate HIF-1α and caspase-3 expression in sequential serial cuts by immunohistochemistry. HIF-1α was overexpressed in RC, DC, and ameloblastoma when compared with DF. The basal and sometimes the lower suprabasal layer showed no or very low expression in DC, KOT, and ameloblastoma, the last also showing strong expression in solid epithelial areas and initial cystic formation regions. Caspase-3 was found to be overexpressed in all lesions, with the highest expression in odontogenic cysts compared to tumors. HIF-1α and caspase-3 were localized in similar areas of the same lesions, especially in the epithelium surrounding cystic formations. This study showed distinct immunoexpression of HIF-1α and caspase-3 in odontogenic cyst and tumors, with higher expression observed in odontogenic cysts. These findings suggest a possible correlation between hypoxia, apoptosis, and cystogenesis, leading to understand the mechanisms responsible to cystic formation in odontogenic lesions.

  19. A hypoxia-inducible factor (HIF)-3α splicing variant, HIF-3α4 impairs angiogenesis in hypervascular malignant meningiomas with epigenetically silenced HIF-3α4

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Hitoshi [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Department of Neurosurgery, Fukushima Medical University School of Medicine, Fukushima (Japan); Natsume, Atsushi, E-mail: anatsume@med.nagoya-u.ac.jp [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Iwami, Kenichiro; Ohka, Fumiharu [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Kuchimaru, Takahiro; Kizaka-Kondoh, Shinae [Department of Biomolecular Engineering, Tokyo Institute of Technology Graduate School of Bioscience and Biotechnology, Yokohama (Japan); Ito, Kengo [National Center for Geriatrics and Gerontology, Aichi (Japan); Saito, Kiyoshi [Department of Neurosurgery, Fukushima Medical University School of Medicine, Fukushima (Japan); Sugita, Sachi; Hoshino, Tsuneyoshi [MICRON Inc.Medical Facilities Support Department, Aichi (Japan); Wakabayashi, Toshihiko [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan)

    2013-03-29

    Highlights: ► HIF-3α4 is silenced by DNA methylation in meningiomas. ► Induction of HIF-3α4 impaired angiogenesis in meningiomas. ► Induction of HIF-3α4 impaired proliferation and oxygen-dependent metabolism. -- Abstract: Hypoxia inducible factor is a dominant regulator of adaptive cellular responses to hypoxia and controls the expression of a large number of genes regulating angiogenesis as well as metabolism, cell survival, apoptosis, and other cellular functions in an oxygen level-dependent manner. When a neoplasm is able to induce angiogenesis, tumor progression occurs more rapidly because of the nutrients provided by the neovasculature. Meningioma is one of the most hypervascular brain tumors, making anti-angiogenic therapy an attractive novel therapy for these tumors. HIF-3α has been conventionally regarded as a dominant-negative regulator of HIF-1α, and although alternative HIF-3α splicing variants are extensively reported, their specific functions have not yet been determined. In this study, we found that the transcription of HIF-3α4 was silenced by the promoter DNA methylation in meningiomas, and inducible HIF-3α4 impaired angiogenesis, proliferation, and metabolism/oxidation in hypervascular meningiomas. Thus, HIF-3α4 could be a potential molecular target in meningiomas.

  20. A hypoxia-inducible factor (HIF)-3α splicing variant, HIF-3α4 impairs angiogenesis in hypervascular malignant meningiomas with epigenetically silenced HIF-3α4

    International Nuclear Information System (INIS)

    Ando, Hitoshi; Natsume, Atsushi; Iwami, Kenichiro; Ohka, Fumiharu; Kuchimaru, Takahiro; Kizaka-Kondoh, Shinae; Ito, Kengo; Saito, Kiyoshi; Sugita, Sachi; Hoshino, Tsuneyoshi; Wakabayashi, Toshihiko

    2013-01-01

    Highlights: ► HIF-3α4 is silenced by DNA methylation in meningiomas. ► Induction of HIF-3α4 impaired angiogenesis in meningiomas. ► Induction of HIF-3α4 impaired proliferation and oxygen-dependent metabolism. -- Abstract: Hypoxia inducible factor is a dominant regulator of adaptive cellular responses to hypoxia and controls the expression of a large number of genes regulating angiogenesis as well as metabolism, cell survival, apoptosis, and other cellular functions in an oxygen level-dependent manner. When a neoplasm is able to induce angiogenesis, tumor progression occurs more rapidly because of the nutrients provided by the neovasculature. Meningioma is one of the most hypervascular brain tumors, making anti-angiogenic therapy an attractive novel therapy for these tumors. HIF-3α has been conventionally regarded as a dominant-negative regulator of HIF-1α, and although alternative HIF-3α splicing variants are extensively reported, their specific functions have not yet been determined. In this study, we found that the transcription of HIF-3α4 was silenced by the promoter DNA methylation in meningiomas, and inducible HIF-3α4 impaired angiogenesis, proliferation, and metabolism/oxidation in hypervascular meningiomas. Thus, HIF-3α4 could be a potential molecular target in meningiomas

  1. Forkhead box A1 (FOXA1) is a key mediator of insulin-like growth factor I (IGF-I) activity.

    Science.gov (United States)

    Potter, Adam S; Casa, Angelo J; Lee, Adrian V

    2012-01-01

    The insulin-like growth factor receptor (IGF-IR) has been implicated in a number of human tumors, including breast cancer. Data from human breast tumors has demonstrated that IGF-IR is over-expressed and hyper-phosphorylated. Additionally, microarray analysis has shown that IGF-I treatment of MCF7 cells leads to a gene signature comprised of induced and repressed genes, which correlated with luminal B tumors. FOXA1, a forkhead family transcription factor, has been shown to be crucial for mammary ductal morphogenesis, similar to IGF-IR, and expressed at high levels in luminal subtype B breast tumors. Here, we investigated the relationship between FOXA1 and IGF-I action in breast cancer cells. We show that genes regulated by IGF-I are enriched for FOXA1 binding sites, and knock down of FOXA1 blocked the ability of IGF-I to regulate gene expression. IGF-I treatment of MCF7 cells increased the half-life of FOXA1 protein and this increase in half-life appeared to be dependent on canonical IGF-I signal transduction through both MAPK and AKT pathways. Finally, knock down of FOXA1 led to a decreased ability of IGF-I to induce proliferation and protect against apoptosis. Together, these results demonstrate that IGF-I can increase the stability of FOXA1 protein expression and place it as a critical mediator of IGF-I regulation of gene expression and IGF-I-mediated biological responses. Copyright © 2011 Wiley Periodicals, Inc.

  2. The prognostic value of expression of HIF1α, EGFR and VEGF-A, in localized prostate cancer for intermediate- and high-risk patients treated with radiation therapy with or without androgen deprivation therapy

    Directory of Open Access Journals (Sweden)

    Weber Damien C

    2012-04-01

    Full Text Available Abstract Purpose Androgens stimulate the production of hypoxia-inducible factor (HIF1α and ultimately vascular endothelial growth factor (VEGF-A. Additionally, epithelial growth factor (EGF mediates HIF1α production. Carbonic anhydrase IX (CAIX expression is associated with tumor cell hypoxia in a variety of malignancies. This study assesses the prognostic relation between HIF1α, VEGF-A, EGF Receptor and CAIX expression by immunochemistry in diagnostic samples of patients with intermediate- and high-risk localized prostate cancer treated with radiation therapy, with or without androgen deprivation therapy (ADT. Materials and methods Between 1994 and 2004, 103 prostate cancer patients (mean age, 68.7 ± 6.2, with prostate cancer (mean PSA, 13.3 ± 3.7, were treated with radiation therapy (RT, median dose, 74 Gy. Fifty seven (55.3% patients received ADT (median duration, 6 months; range, 0 – 24. Median follow-up was 97.6 months (range, 5.9 – 206.8. Results Higher EGFR expression was significantly (p = 0.04 correlated with higher Gleason scores. On univariate analysis, HIF1α nuclear expression was a significant (p = 0.02 prognostic factor for biological progression-free survival (bPFS. A trend towards significance (p = 0.05 was observed with EGFR expression and bPFS. On multivariate analysis, low HIF1α nuclear (p = 0.01 and high EGFR (p = 0.04 expression remained significant adverse prognostic factors. Conclusions Our study suggests that high nuclear expression of HIF1α and low EGFR expression in diagnostic biopsies of prostate cancer patients treated with RT ± ADT is associated with a good prognosis.

  3. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    Science.gov (United States)

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Digoxin Downregulates NDRG1 and VEGF through the Inhibition of HIF-1α under Hypoxic Conditions in Human Lung Adenocarcinoma A549 Cells

    Directory of Open Access Journals (Sweden)

    Dong Wei

    2013-04-01

    Full Text Available Digoxin, an inhibitor of Na+/K+ ATPase, has been used in the treatment of heart-related diseases (such as congestive heart failure and atrial arrhythmia for decades. Recently, it was reported that digoxin is also an effective HIF-1α inhibitor. We investigated whether digoxin could suppress tumor cell growth through HIF-1α in non-small cell lung cancer cells (A549 cells under hypoxic conditions. An MTT assay was used to measure cell viability. RT-PCR and western blotting were performed to analyze the mRNA and protein expression of VEGF, NDRG1, and HIF-1α. HIF-1α nuclear translocation was then determined by EMSA. Digoxin was found to inhibit the proliferation of A549 cells under hypoxic conditions. Our results showed that hypoxia led to the upregulation of VEGF, NDRG1, and HIF-1α both at the mRNA and protein levels. We also found that the hypoxia-induced overexpression of VEGF, NDRG1, and HIF-1α was suppressed by digoxin in a concentration-dependent manner. As expected, our EMSA results demonstrated that under hypoxic conditions HIF-1α nuclear translocation was also markedly reduced by digoxin in a concentration-dependent manner. Our results suggest that digoxin downregulated hypoxia-induced overexpression of VEGF and NDRG1 at the transcriptional level probably through the inhibition of HIF-1α synthesis in A549 cells.

  5. Genetic interactions of MAF1 identify a role for Med20 in transcriptional repression of ribosomal protein genes.

    Directory of Open Access Journals (Sweden)

    Ian M Willis

    2008-07-01

    Full Text Available Transcriptional repression of ribosomal components and tRNAs is coordinately regulated in response to a wide variety of environmental stresses. Part of this response involves the convergence of different nutritional and stress signaling pathways on Maf1, a protein that is essential for repressing transcription by RNA polymerase (pol III in Saccharomyces cerevisiae. Here we identify the functions buffering yeast cells that are unable to down-regulate transcription by RNA pol III. MAF1 genetic interactions identified in screens of non-essential gene-deletions and conditionally expressed essential genes reveal a highly interconnected network of 64 genes involved in ribosome biogenesis, RNA pol II transcription, tRNA modification, ubiquitin-dependent proteolysis and other processes. A survey of non-essential MAF1 synthetic sick/lethal (SSL genes identified six gene-deletions that are defective in transcriptional repression of ribosomal protein (RP genes following rapamycin treatment. This subset of MAF1 SSL genes included MED20 which encodes a head module subunit of the RNA pol II Mediator complex. Genetic interactions between MAF1 and subunits in each structural module of Mediator were investigated to examine the functional relationship between these transcriptional regulators. Gene expression profiling identified a prominent and highly selective role for Med20 in the repression of RP gene transcription under multiple conditions. In addition, attenuated repression of RP genes by rapamycin was observed in a strain deleted for the Mediator tail module subunit Med16. The data suggest that Mediator and Maf1 function in parallel pathways to negatively regulate RP mRNA and tRNA synthesis.

  6. Hypoxic stress simultaneously stimulates vascular endothelial growth factor via hypoxia-inducible factor-1α and inhibits stromal cell-derived factor-1 in human endometrial stromal cells.

    Science.gov (United States)

    Tsuzuki, Tomoko; Okada, Hidetaka; Cho, Hisayuu; Tsuji, Shoko; Nishigaki, Akemi; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2012-02-01

    Hypoxia of the human endometrium is a physiologic event occurring during the perimenstrual period and the local stimulus for angiogenesis. The aim of this study was to investigate the effects of hypoxic stress on the regulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1/CXCL12), and the potential role of hypoxia-inducible factor-1α (HIF-1α) in the endometrium. Human endometrial stromal cells (ESCs, n= 22 samples) were studied in vitro. ESCs were cultured under hypoxic and normoxic conditions and treated with cobalt chloride (CoCl₂; a hypoxia-mimicking agent) and/or echinomycin, a small-molecule inhibitor of HIF-1α activity. The mRNA levels and production of VEGF and SDF-1 were assessed by real-time PCR and ELISA, respectively. The HIF-1α protein levels were measured using western blot analysis. Hypoxia simultaneously induced the expression of mRNA and production of VEGF and attenuated the expression and production of SDF-1 from ESCs in a time-dependent manner. Similar changes were observed in the ESCs after stimulation with CoCl₂ in a dose-dependent manner. CoCl₂ significantly induced the expression of HIF-1α protein, and its highest expression was observed at 6 h. Echinomycin inhibited hypoxia-induced VEGF production without affecting the HIF-1α protein level and cell toxicity and had no effect on SDF-1 secretion (P hypoxic conditions that could influence angiogenesis in the human endometrium.

  7. Decursin reduce radio-resistance of hypoxic regions under the proton beam therapy by induced HIF-1α degradation

    International Nuclear Information System (INIS)

    Jung, Myung Hwan; Kim, Kye Ryung

    2013-01-01

    Protons induce cancer-cell apoptosis in vitro and block blood vessel formation in vivo through the generation of reactive oxygen species (ROS). The fact that proton severely inhibits blood vessel development in zebrafish embryos suggests a higher sensitivity of vascular endothelial cells to proton beam. Decursin, a coumarin compound, was originally isolated from Angelica gigas Nakai (Dang Gui). A. gigas root has been traditionally used in Korean folk medicine for the treatment of anemia and other common diseases. In previous reports, decursin was reported to exhibit anti-tumor activity against various cancer cells and to inhibit the activities of the androgen and androgen-receptor (AR) signaling pathway in prostate cancer, induction of cell cycle arrest and apoptosis in various cancer cells, such as prostate, breast, bladder, and colon cancer cells. Decursin also inhibits VEGF-induced angiogenesis through the suppression of the VEGFR-2-signaling pathway. However, the mechanism of decursin mediates change of HIF-1α activities is not clear. In this research, we identified regulations of the HIF-1α and the anti-angiogenesis effects of decursin in proton-beam-irradiated human lung cancer, prostate cancer and Hepatic cancer cells. We investigated the underlying mechanisms of positive effects of protonbeam-induced anti-angiogenesis. Our data indicate that the groups co-treated with decursin and a proton-beam had significant reduced HIF-1α activity compared with the groups treated with only a proton beam under the hypoxic condition caused by DFX(desferrioxamine). Decursin was found to induced HIF-1α degradation. Therefore, we suggest that decursin may be a potential candidate for use as a sensitizer for proton-beaminduced cell apoptosis. Here we have shown that decursin successfully reduced HIF-1α stability under hypoxic condition by induced desferrioxamine. We showed novel candidates for anti-angiogenic compound, decursin, leading to complete inhibition of radio

  8. Decursin reduce radio-resistance of hypoxic regions under the proton beam therapy by induced HIF-1α degradation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Hwan; Kim, Kye Ryung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Protons induce cancer-cell apoptosis in vitro and block blood vessel formation in vivo through the generation of reactive oxygen species (ROS). The fact that proton severely inhibits blood vessel development in zebrafish embryos suggests a higher sensitivity of vascular endothelial cells to proton beam. Decursin, a coumarin compound, was originally isolated from Angelica gigas Nakai (Dang Gui). A. gigas root has been traditionally used in Korean folk medicine for the treatment of anemia and other common diseases. In previous reports, decursin was reported to exhibit anti-tumor activity against various cancer cells and to inhibit the activities of the androgen and androgen-receptor (AR) signaling pathway in prostate cancer, induction of cell cycle arrest and apoptosis in various cancer cells, such as prostate, breast, bladder, and colon cancer cells. Decursin also inhibits VEGF-induced angiogenesis through the suppression of the VEGFR-2-signaling pathway. However, the mechanism of decursin mediates change of HIF-1α activities is not clear. In this research, we identified regulations of the HIF-1α and the anti-angiogenesis effects of decursin in proton-beam-irradiated human lung cancer, prostate cancer and Hepatic cancer cells. We investigated the underlying mechanisms of positive effects of protonbeam-induced anti-angiogenesis. Our data indicate that the groups co-treated with decursin and a proton-beam had significant reduced HIF-1α activity compared with the groups treated with only a proton beam under the hypoxic condition caused by DFX(desferrioxamine). Decursin was found to induced HIF-1α degradation. Therefore, we suggest that decursin may be a potential candidate for use as a sensitizer for proton-beaminduced cell apoptosis. Here we have shown that decursin successfully reduced HIF-1α stability under hypoxic condition by induced desferrioxamine. We showed novel candidates for anti-angiogenic compound, decursin, leading to complete inhibition of radio

  9. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor.

    Science.gov (United States)

    Kim, Mi Jung; Jang, In-Cheol; Chua, Nam-Hai

    2016-07-01

    The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15 However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. Investigating the Regulation and Potential Role of Nonhypoxic Hypoxia-Inducible Factor 1 (HIF-1) in Aromatase Inhibitor Resistant Breast Cancer

    Science.gov (United States)

    2013-10-01

    hypoxia responsive element ( HRE ) to which HIF-1 binds in order to regulate vimentin gene expresson has not been identified. We have currently, analyzed...the vimentin promoter and have identified 2 potential HRE sites, based on sequence (Figure 5). Primers have been designed and ordered, and

  11. Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval-adult metamorphosis.

    Science.gov (United States)

    Kayukawa, Takumi; Jouraku, Akiya; Ito, Yuka; Shinoda, Tetsuro

    2017-01-31

    Juvenile hormone (JH) represses precocious metamorphosis of larval to pupal and adult transitions in holometabolous insects. The early JH-inducible gene Krüppel homolog 1 (Kr-h1) plays a key role in the repression of metamorphosis as a mediator of JH action. Previous studies demonstrated that Kr-h1 inhibits precocious larval-pupal transition in immature larva via direct transcriptional repression of the pupal specifier Broad-Complex (BR-C). JH was recently reported to repress the adult specifier gene Ecdysone-induced protein 93F (E93); however, its mechanism of action remains unclear. Here, we found that JH suppressed ecdysone-inducible E93 expression in the epidermis of the silkworm Bombyx mori and in a B. mori cell line. Reporter assays in the cell line revealed that the JH-dependent suppression was mediated by Kr-h1. Genome-wide ChIP-seq analysis identified a consensus Kr-h1 binding site (KBS, 14 bp) located in the E93 promoter region, and EMSA confirmed that Kr-h1 directly binds to the KBS. Moreover, we identified a C-terminal conserved domain in Kr-h1 essential for the transcriptional repression of E93 Based on these results, we propose a mechanism in which JH-inducible Kr-h1 directly binds to the KBS site upstream of the E93 locus to repress its transcription in a cell-autonomous manner, thereby preventing larva from bypassing the pupal stage and progressing to precocious adult development. These findings help to elucidate the molecular mechanisms regulating the metamorphic genetic network, including the functional significance of Kr-h1, BR-C, and E93 in holometabolous insect metamorphosis.

  12. Trypanosoma brucei metabolite indolepyruvate decreases HIF-1α and glycolysis in macrophages as a mechanism of innate immune evasion.

    Science.gov (United States)

    McGettrick, Anne F; Corcoran, Sarah E; Barry, Paul J G; McFarland, Jennifer; Crès, Cécile; Curtis, Anne M; Franklin, Edward; Corr, Sinéad C; Mok, K Hun; Cummins, Eoin P; Taylor, Cormac T; O'Neill, Luke A J; Nolan, Derek P

    2016-11-29

    The parasite Trypanasoma brucei causes African trypanosomiasis, known as sleeping sickness in humans and nagana in domestic animals. These diseases are a major burden in the 36 sub-Saharan African countries where the tsetse fly vector is endemic. Untreated trypanosomiasis is fatal and the current treatments are stage-dependent and can be problematic during the meningoencephalitic stage, where no new therapies have been developed in recent years and the current drugs have a low therapeutic index. There is a need for more effective treatments and a better understanding of how these parasites evade the host immune response will help in this regard. The bloodstream form of T. brucei excretes significant amounts of aromatic ketoacids, including indolepyruvate, a transamination product of tryptophan. This study demonstrates that this process is essential in bloodstream forms, is mediated by a specialized isoform of cytoplasmic aminotransferase and, importantly, reveals an immunomodulatory role for indolepyruvate. Indolepyruvate prevents the LPS-induced glycolytic shift in macrophages. This effect is the result of an increase in the hydroxylation and degradation of the transcription factor hypoxia-inducible factor-1α (HIF-1α). The reduction in HIF-1α levels by indolepyruvate, following LPS or trypanosome activation, results in a decrease in production of the proinflammatory cytokine IL-1β. These data demonstrate an important role for indolepyruvate in immune evasion by T. brucei.

  13. Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells

    International Nuclear Information System (INIS)

    Staab, Adrian; Einsele, Hermann; Flentje, Michael; Vordermark, Dirk; Loeffler, Jürgen; Said, Harun M; Diehlmann, Désirée; Katzer, Astrid; Beyer, Melanie; Fleischer, Markus; Schwab, Franz; Baier, Kurt

    2007-01-01

    Hypoxia-inducible factor-1 (HIF-1) overexpression has been linked to tumor progression and poor prognosis. We investigated whether targeting of HIF-1 using chetomin, a disrupter of the interaction of HIF-1 with the transcriptional coactivator p300, influences the radiosensitivity of hypoxic HT 1080 human fibrosarcoma cells. Optimal dose of chetomin was determined by EGFP-HRE gene reporter assay in stably transfected HT 1080 cells. Cells were assayed for expression of the hypoxia-inducible genes carbonic anhydrase 9 (CA9) and vascular endothelial growth factor (VEGF) by RT-PCR and for clonogenic survival after irradiation with 2, 5 or 10 Gy, under normoxic or hypoxic (0.1% O 2 , 12 h) conditions in the presence or absence of chetomin (150 nM, 12 h, pre-treatment of 4 h). Chetomin treatment significantly reduced CA9 and VEGF mRNA expression in hypoxic cells to 44.4 ± 7.2% and 39.6 ± 16.0%, respectively, of untreated hypoxic controls. Chetomin clearly reduced the modified oxygen enhancement ratio (OER') compared to untreated cells, from 2.02 to 1.27, from 1.86 to 1.22 and from 1.49 to 1.06 at the 50%, 37% and 10% clonogenic survival levels, respectively. HIF-1 inhibition by chetomin effectively reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

  14. Hypoxia-inducible factor-1α/interleukin-1β signaling enhances hepatoma epithelial-mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment.

    Science.gov (United States)

    Zhang, Jingying; Zhang, Qi; Lou, Yu; Fu, Qihan; Chen, Qi; Wei, Tao; Yang, Jiaqi; Tang, Jinlong; Wang, Jianxin; Chen, Yiwen; Zhang, Xiaoyu; Zhang, Jian; Bai, Xueli; Liang, Tingbo

    2018-05-01

    The development and progression of hepatocellular carcinoma (HCC) are dependent on its local microenvironment. Hypoxia and inflammation are two critical factors that shape the HCC microenvironment; however, the interplay between the two factors and the involvement of cancer cells under such conditions remain poorly understood. We found that tumor-associated macrophages, the primary proinflammatory cells within tumors, secreted more interleukin 1β (IL-1β) under moderate hypoxic conditions due to increased stability of hypoxia inducible factor 1α (HIF-1α). Under persistent and severe hypoxia, we found that the necrotic debris of HCC cells induced potent IL-1β release by tumor-associated macrophages with an M2 phenotype. We further confirmed that the necrotic debris-induced IL-1β secretion was mediated through Toll-like receptor 4/TIR domain-containing adapter-inducing interferon-β/nuclear factor kappa-light-chain-enhancer of activated B cells signaling in a similar, but not identical, fashion to lipopolysaccharide-induced inflammation. Using mass spectrometry, we identified a group of proteins with O-linked glycosylation to be responsible for the necrotic debris-induced IL-1β secretion. Following the increase of IL-1β in the local microenvironment, the synthesis of HIF-1α was up-regulated by IL-1β in HCC cells through cyclooxygenase-2. The epithelial-mesenchymal transition of HCC cells was enhanced by overexpression of HIF-1α. We further showed that IL-1β promoted HCC metastasis in mouse models and was predictive of poor prognosis in HCC patients. Our findings revealed an HIF-1α/IL-1β signaling loop between cancer cells and tumor-associated macrophages in a hypoxic microenvironment, resulting in cancer cell epithelial-mesenchymal transition and metastasis; more importantly, our results suggest a potential role of an anti-inflammatory strategy in HCC treatment. (Hepatology 2018;67:1872-1889). © 2017 by the American Association for the Study of Liver

  15. Saururus cernuus lignans-Potent small molecule inhibitors of hypoxia-inducible factor-1

    International Nuclear Information System (INIS)

    Hossain, Chowdhury Faiz; Kim, Yong-Pil; Baerson, Scott R.; Zhang Lei; Bruick, Richard K.; Mohammed, Kaleem A.; Agarwal, Ameeta K.; Nagle, Dale G.; Zhou Yudong

    2005-01-01

    Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a cell-based reporter assay. Bioassay-guided fractionation and isolation, followed by structure elucidation, yielded three potent natural product-derived HIF-1 inhibitors and two structurally related inactive compounds. In a T47D cell-based reporter assay, manassantin B 1 , manassantin A, and 4-O-methylsaucerneol inhibited hypoxia-induced HIF-1 activation with IC 50 values of 3, 3, and 20 nM, respectively. All three compounds are relatively hypoxia-specific inhibitors of HIF-1 activation, in comparison to other stimuli. The hypoxic induction of HIF-1 target genes CDKN1A, VEGF, and GLUT-1 were also inhibited. These compounds inhibit HIF-1 by blocking hypoxia-induced nuclear HIF-1α protein accumulation without affecting HIF-1α mRNA levels. In addition, preliminary structure-activity studies suggest specific structural requirements for this class of HIF-1 inhibitors

  16. Toll-like Receptor 3 Regulates Angiogenesis and Apoptosis in Prostate Cancer Cell Lines through Hypoxia-Inducible Factor 1α

    Directory of Open Access Journals (Sweden)

    Alessio Paone

    2010-07-01

    Full Text Available Toll-like receptors (TLRs recognize microbial/viral-derived components that trigger innate immune response and conflicting data implicate TLR agonists in cancer, either as protumor or antitumor agents. We previously demonstrated that TLR3 activation mediated by its agonist poly(I:C induces antitumor signaling, leading to apoptosis of prostate cancer cells LNCaP and PC3 with much more efficiency in the former than in the second more aggressive line. The transcription factor hypoxia-induciblefactor 1 (HIF-1regulates several cellular processes, includingapoptosis, in response to hypoxia and to other stimuli also in normoxic conditions. Here we describe a novel protumor machinery triggered by TLR3 activation in PC3 cells consisting of increased expression of the specific 1.3 isoform of HIF-1α and nuclear accumulation of HIF-1 complex in normoxia, resulting in reduced apoptosis and in secretion of functional vascular endothelial growth factor (VEGF. Moreover, we report that, in the less aggressive LNCaP cells, TLR3 activation fails to induce nuclear accumulation of HIF-1α. However, the transfection of 1.3 isoform of hif-1α in LNCaP cells allows poly(I:CI-induced HIF-1 activation, resulting in apoptosis protection and VEGF secretion. Altogether, our findings demonstrate that differences in the basal level of HIF-1α expression in different prostate cancer cell lines underlie their differential response to TLR3 activation, suggesting a correlation between different stages of malignancy, hypoxic gene expression, and beneficial responsiveness to TLR agonists.

  17. Msx1 Homeodomain Protein Represses the αGSU and GnRH Receptor Genes During Gonadotrope Development

    Science.gov (United States)

    Xie, Huimin; Cherrington, Brian D.; Meadows, Jason D.; Witham, Emily A.

    2013-01-01

    Multiple homeodomain transcription factors are crucial for pituitary organogenesis and cellular differentiation. A homeodomain repressor, Msx1, is expressed from the ventral aspect of the developing anterior pituitary and implicated in gonadotrope differentiation. Here, we find that Msx1 represses transcription of lineage-specific pituitary genes such as the common α-glycoprotein subunit (αGSU) and GnRH receptor (GnRHR) promoters in the mouse gonadotrope-derived cell lines, αT3-1 and LβT2. Repression of the mouse GnRHR promoter by Msx1 is mediated through a consensus-binding motif in the downstream activin regulatory element (DARE). Truncation and mutation analyses of the human αGSU promoter map Msx1 repression to a site at −114, located at the junctional regulatory element (JRE). Dlx activators are closely related to the Msx repressors, acting through the same elements, and Dlx3 and Dlx2 act as transcriptional activators for GnRHR and αGSU, respectively. Small interfering RNA knockdown of Msx1 in αT3-1 cells increases endogenous αGSU and GnRHR mRNA expression. Msx1 gene expression reaches its maximal expression at the rostral edge at e13.5. The subsequent decline in Msx1 expression specifically coincides with the onset of expression of both αGSU and GnRHR. The expression levels of both αGSU and GnRHR in Msx1-null mice at e18.5 are higher compared with wild type, further confirming a role for Msx1 in the repression of αGSU and GnRHR. In summary, Msx1 functions as a negative regulator early in pituitary development by repressing the gonadotrope-specific αGSU and GnRHR genes, but a temporal decline in Msx1 expression alleviates this repression allowing induction of GnRHR and αGSU, thus serving to time the onset of gonadotrope-specific gene program. PMID:23371388

  18. Msx1 homeodomain protein represses the αGSU and GnRH receptor genes during gonadotrope development.

    Science.gov (United States)

    Xie, Huimin; Cherrington, Brian D; Meadows, Jason D; Witham, Emily A; Mellon, Pamela L

    2013-03-01

    Multiple homeodomain transcription factors are crucial for pituitary organogenesis and cellular differentiation. A homeodomain repressor, Msx1, is expressed from the ventral aspect of the developing anterior pituitary and implicated in gonadotrope differentiation. Here, we find that Msx1 represses transcription of lineage-specific pituitary genes such as the common α-glycoprotein subunit (αGSU) and GnRH receptor (GnRHR) promoters in the mouse gonadotrope-derived cell lines, αT3-1 and LβT2. Repression of the mouse GnRHR promoter by Msx1 is mediated through a consensus-binding motif in the downstream activin regulatory element (DARE). Truncation and mutation analyses of the human αGSU promoter map Msx1 repression to a site at -114, located at the junctional regulatory element (JRE). Dlx activators are closely related to the Msx repressors, acting through the same elements, and Dlx3 and Dlx2 act as transcriptional activators for GnRHR and αGSU, respectively. Small interfering RNA knockdown of Msx1 in αT3-1 cells increases endogenous αGSU and GnRHR mRNA expression. Msx1 gene expression reaches its maximal expression at the rostral edge at e13.5. The subsequent decline in Msx1 expression specifically coincides with the onset of expression of both αGSU and GnRHR. The expression levels of both αGSU and GnRHR in Msx1-null mice at e18.5 are higher compared with wild type, further confirming a role for Msx1 in the repression of αGSU and GnRHR. In summary, Msx1 functions as a negative regulator early in pituitary development by repressing the gonadotrope-specific αGSU and GnRHR genes, but a temporal decline in Msx1 expression alleviates this repression allowing induction of GnRHR and αGSU, thus serving to time the onset of gonadotrope-specific gene program.

  19. Baltic salmon (Salmo salar) yolk-sac fry mortality is associated with disturbances in the function of hypoxia-inducible transcription factor (HIF-1α) and consecutive gene expression

    International Nuclear Information System (INIS)

    Vuori, Kristiina A.M.; Soitamo, Arto; Vuorinen, Pekka J.; Nikinmaa, Mikko

    2004-01-01

    Baltic salmon (Salmo salar) suffer from abnormally high yolk-sac fry mortality designated as M74-syndrome. In 1990s, 25-80% of salmon females, which ascended rivers to spawn, produced yolk-sac fry suffering from the syndrome. Symptoms of M74-affected fry include neurological disturbances, impaired vascular development and abnormal haemorrhages. The latter symptoms are observed in mammalian embryos if the function of hypoxia inducible transcription factor (HIF-1α), its dimerization partner aryl hydrocarbon nuclear translocator (ARNT) or target gene vascular endothelial growth factor (VEGF) is disturbed. To study the possible involvement of HIF-1α and its target gene VEGF in the development of the syndrome, we collected healthy and M74-affected wild Baltic salmon yolk-sac fry and analyzed HIF-1α mRNA and protein expression, HIF-1α DNA-binding, target gene VEGF protein expression, and blood vessel density in both groups at different stages of yolk-sac fry development. In addition, since Baltic salmon females contain organochlorine contaminants, which have been suggested to be the cause of M74 syndrome via the aryl hydrocarbon receptor (AhR)-dependent gene expression pathway, we studied AhR protein expression, AhR DNA-binding and target gene CYP1A protein expression. Since the parents of both healthy and M74-affected wild fry will have experienced the organochlorine load from the Baltic Sea, hatchery-reared fry were included in the studies as an additional control. The results show that the vascular defects observed in fry suffering from M74 are associated with reduced DNA-binding activity of HIF-1α and subsequent downregulation of its target gene vascular endothelial growth factor (VEGF). In addition, also AhR function is decreased in diseased fry making it unlikely that symptoms of M74-affected fry would be caused by an upregulation of xenobiotically induced AhR-dependent gene expression pathway

  20. The Role of Hypoxia-Inducible Factor-1α, Glucose Transporter-1, (GLUT-1 and Carbon Anhydrase IX in Endometrial Cancer Patients

    Directory of Open Access Journals (Sweden)

    Pawel Sadlecki

    2014-01-01

    Full Text Available Hypoxia-inducible factor-1α (HIF-1α, glucose transporter-1 (GLUT-1, and carbon anhydrase IX (CAIX are important molecules that allow adaptation to hypoxic environments. The aim of our study was to investigate the correlation between HIF-1α, GLUT-1, and CAIX protein level with the clinicopathological features of endometrial cancer patients. Materials and Methods. 92 endometrial cancer patients, aged 37–84, were enrolled to our study. In all patients clinical stage, histologic grade, myometrial invasion, lymph node, and distant metastases were determined. Moreover, the survival time was assessed. Immunohistochemical analyses were performed on archive formalin fixed paraffin embedded tissue sections. Results. High significant differences (P=0.0115 were reported between HIF-1α expression and the histologic subtype of cancer. Higher HIF-1α expression was associated with the higher risk of recurrence (P=0.0434. The results of GLUT-1 and CAIX expression did not reveal any significant differences between the proteins expression in the primary tumor and the clinicopathological features. Conclusion. The important role of HIF-1α in the group of patients with the high risk of recurrence and the negative histologic subtype of the tumor suggest that the expression of this factor might be useful in the panel of accessory pathomorphological tests and could be helpful in establishing more accurate prognosis in endometrial cancer patients.

  1. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages

    Directory of Open Access Journals (Sweden)

    Rangel-Salazar Rubén

    2011-11-01

    Full Text Available Abstract Background We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20 hypermethylation in THP-1 macrophages. Here, we: 1 ask what gene expression changes accompany these epigenetic responses; 2 test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. Results Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1 surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2 independent of the Dicer/micro-RNA pathway. Conclusions Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.

  2. Eukaryotic translation initiator protein 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokemon/ZBTB7A).

    Science.gov (United States)

    Choi, Won-Il; Kim, Youngsoo; Kim, Yuri; Yu, Mi-young; Park, Jungeun; Lee, Choong-Eun; Jeon, Bu-Nam; Koh, Dong-In; Hur, Man-Wook

    2009-01-01

    FBI-1, a member of the POK (POZ and Kruppel) family of transcription factors, plays a role in differentiation, oncogenesis, and adipogenesis. eEF1A is a eukaryotic translation elongation factor involved in several cellular processes including embryogenesis, oncogenic transformation, cell proliferation, and cytoskeletal organization. CCS-3, a potential cervical cancer suppressor, is an isoform of eEF1A. We found that eEF1A forms a complex with FBI-1 by co-immunoprecipitation, SDS-PAGE, and MALDI-TOF Mass analysis of the immunoprecipitate. GST fusion protein pull-downs showed that FBI-1 directly interacts with eEF1A and CCS-3 via the zinc finger and POZ-domain of FBI-1. FBI-1 co-localizes with either eEF1A or CCS-3 at the nuclear periplasm. CCS-3 enhances transcriptional repression of the p21CIP1 gene (hereafter referred to as p21) by FBI-1. The POZ-domain of FBI-1 interacts with the co-repressors, SMRT and BCoR. We found that CCS-3 also interacts with the co-repressors independently. The molecular interaction between the co-repressors and CCS-3 at the POZ-domain of FBI-1 appears to enhance FBI-1 mediated transcriptional repression. Our data suggest that CCS-3 may be important in cell differentiation, tumorigenesis, and oncogenesis by interacting with the proto-oncogene FBI-1 and transcriptional co-repressors. Copyright 2009 S. Karger AG, Basel.

  3. Triiodothyronine (T3) induces HIF1A and TGFA expression in MCF7 cells by activating PI3K.

    Science.gov (United States)

    Moretto, Fernanda Cristina Fontes; De Sibio, Maria Teresa; Luvizon, Aline Carbonera; Olimpio, Regiane Marques Castro; de Oliveira, Miriane; Alves, Carlos Augusto Barnabe; Conde, Sandro José; Nogueira, Célia Regina

    2016-06-01

    High expression levels of hypoxia inducing factor 1 alpha are related to mammary carcinogenesis. In previous studies, we demonstrated that expression of transforming growth factor alpha increases upon treatment with triiodothyronine, but this expression does not occur in cellular models that do not express the estrogen receptor, or when cells are co-treated with the anti-estrogen, tamoxifen. The aim of this study was to determine the effect of the hormone triiodothyronine on the expression of the genes HIF1A and TGFA in the breast cancer cell line MCF7. The cell line was subjected to treatment with triiodothyronine at the supraphysiological dose of 10(-8)M for 10min, 30min, 1h, and 4h in the presence or absence of actinomycin D, the gene expression inhibitor, cycloheximide, the protein synthesis inhibitor, and LY294002, the phosphoinositide 3 kinase inhibitor. HIF1A and TGFA mRNA expression was analyzed by reverse transcription polymerase chain reaction. For data analysis, we used analysis of variance complemented by Tukey test and an adopted minimum of 5% significance. We found that HIF1A and TGFA expression increased in the presence of triiodothyronine at all times studied. HIF1A expression decreased in triiodothyronine-treated cells when gene transcription was also inhibited; however, TGFA expression decreased after 10 and 30min of treatment even when transcription was not inhibited. We found that activation of PI3K was necessary for triiodothyronine to modulate HIF1A and TGFA expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. HIF-1-dependent regulation of lifespan in Caenorhabditis elegans by the acyl-CoA-binding protein MAA-1

    DEFF Research Database (Denmark)

    Shamalnasab, Mehrnaz; Dhaoui, Manel; Thondamal, Manjunatha

    2017-01-01

    In yeast, the broadly conserved acyl-CoA-binding protein (ACBP) is a negative regulator of stress resistance and longevity. Here, we have turned to the nematode C. elegans as a model organism in which to determine whether ACBPs play similar roles in multicellular organisms. We systematically...... inactivated each of the seven C. elegans ACBP paralogs and found that one of them, maa-1 (which encodes membrane-associated ACBP 1), is indeed involved in the regulation of longevity. In fact, loss of maa-1 promotes lifespan extension and resistance to different types of stress. Through genetic and gene...... of the proteome. Our work extends to C. elegans the role of ACBP in aging, implicates HIF-1 in the increase of lifespan of maa-1-deficient worms, and sheds light on the anti-aging function of HIF-1. Given that both ACBP and HIF-1 are highly conserved, our results suggest the possible involvement of these proteins...

  5. Obacunone Represses Salmonella Pathogenicity Islands 1 and 2 in an envZ-Dependent Fashion

    Science.gov (United States)

    Vikram, Amit; Jayaprakasha, Guddadarangavvanahally K.; Jesudhasan, Palmy R.

    2012-01-01

    Obacunone belongs to a class of unique triterpenoids called limonoids, present in Citrus species. Previous studies from our laboratory suggested that obacunone possesses antivirulence activity and demonstrates inhibition of cell-cell signaling in Vibrio harveyi and Escherichia coli O157:H7. The present work sought to determine the effect of obacunone on the food-borne pathogen Salmonella enterica serovar Typhimurium LT2 by using a cDNA microarray. Transcriptomic studies indicated that obacunone represses Salmonella pathogenicity island 1 (SPI1), the maltose transporter, and the hydrogenase operon. Furthermore, phenotypic data for the Caco-2 infection assay and maltose utilization were in agreement with microarray data suggesting repression of SPI1 and maltose transport. Further studies demonstrated that repression of SPI1 was plausibly mediated through hilA. Additionally, obacunone seems to repress SPI2 under SPI2-inducing conditions as well as in Caco-2 infection models. Furthermore, obacunone seems to repress hilA in an EnvZ-dependent fashion. Altogether, the results of the study seems to suggest that obacunone exerts an antivirulence effect on S. Typhimurium and may serve as a lead compound for development of antivirulence strategies for S. Typhimurium. PMID:22843534

  6. Inhibitory effects of epigallocatechin-3-gallate on cell proliferation and the expression of HIF-1α and P-gp in the human pancreatic carcinoma cell line PANC-1.

    Science.gov (United States)

    Zhu, Zhenni; Wang, Yu; Liu, Zhiqing; Wang, Fan; Zhao, Qiu

    2012-05-01

    The aim of this study was to verify the inhibitory effects of epigallocatechin-3-gallate (EGCG) on cell proliferation and the expression of hypoxia-inducible factor 1 (HIF-1α) and multidrug resistance protein 1 (MDR1/P-gp) in the human pancreatic carcinoma cell line PANC-1, thereby, reversing drug resistance of pancreatic carcinoma and improving its sensitivity to cancer chemotherapy. The human pancreatic carcinoma cell line PANC-1 was incubated under hypoxic conditions with different concentrations of epigallocatechin-3-gallate (EGCG) for indicated hours. The effects of EGCG on the mRNA or protein expression of HIF-1α and MDR1 were determined by RT-PCR or western blotting. Cellular proliferation and viability assays were measured using Cell Counting Kit-8. Western blotting revealed that EGCG inhibits the expression of the HIF-1α protein in a dose-dependent manner, while RT-PCR showed that it does not have any effects on HIF-1α mRNA. In addition, EGCG attenuated the mRNA and protein levels of P-gp in a dose-dependent manner, reaching a peak at the highest concentration. Furthermore, EGCG inhibited the proliferation of PANC-1 cells in a concentration- and time-dependent manner. The attenuation of HIF-1α and the consequently reduced P-gp could contribute to the inhibitory effects of EGCG on the proliferation of PANC-1 cells.

  7. Fatty Acid Uptake and Lipid Storage Induced by HIF-1α Contribute to Cell Growth and Survival after Hypoxia-Reoxygenation

    Directory of Open Access Journals (Sweden)

    Karim Bensaad

    2014-10-01

    Full Text Available Summary: An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3 and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1α (HIF-1α-dependent manner. There was a significant lipid droplet (LD accumulation in hypoxia that was time and O2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via β-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo. : Bensaad et al. now show that FABP3 and FABP7 are induced by HIF-1α and lead to a significant lipid droplet (LD accumulation in hypoxia. In hypoxia-reoxygenation, ATP production occurs via fatty acid β-oxidation or glycogen degradation in a cell-type-dependent manner, while inhibition of LD formation increases ROS toxicity and decreases cell survival in vitro and strongly impairs tumorigenesis in vivo.

  8. Ptpmt1 induced by HIF-2α regulates the proliferation and glucose metabolism in erythroleukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qin-Qin [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining, 810001 (China); Qinghai Provincial People' s Hospital, Xining (China); Xiao, Feng-Jun; Sun, Hui-Yan [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850 (China); Shi, Xue-Feng [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining, 810001 (China); Qinghai Provincial People' s Hospital, Xining (China); Wang, Hua; Yang, Yue-Feng; Li, Yu-Xiang [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850 (China); Wang, Li-Sheng, E-mail: wangls@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850 (China); Ge, Ri-Li, E-mail: geriligao@hotmail.com [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining, 810001 (China)

    2016-03-18

    Hypoxia provokes metabolism misbalance, mitochondrial dysfunction and oxidative stress in both human and animal cells. However, the mechanisms which hypoxia causes mitochondrial dysfunction and energy metabolism misbalance still remain unclear. In this study, we presented evidence that mitochondrial phosphatase Ptpmt1 is a hypoxia response molecule that regulates cell proliferation, survival and glucose metabolism in human erythroleukemia TF-1 cells. Exposure to hypoxia or DFO treatment results in upregulation of HIF1-α, HIF-2α and Ptpmt1. Only inhibition of HIF-2α by shRNA transduction reduces Ptpmt1 expression in TF-1 cells under hypoxia. Ptpmt1 inhibitor suppresses the growth and induces apoptosis of TF-1 cells. Furthermore, we demonstrated that Ptpmt1 inhibition reduces the Glut1 and Glut3 expression and decreases the glucose consumption in TF-1 cells. In additional, Ptpmt1 knockdown also results in the mitochondrial dysfunction determined by JC1 staining. These results delineate a key role for HIF-2α-induced Ptpmt1 upregulation in proliferation, survival and glucose metabolism of erythroleukemia cells. It is indicated that Ptpmt1 plays important roles in hypoxia-induced cell metabolism and mitochondrial dysfunction. - Highlights: • Hypoxia induces upregulation of HIF-1α, HIF-2α and Ptpmt1; HIF-2a induces Ptpmt1 upregulation in TF-1 cells. • PTPMT-1 inhibition reduces growth and induces apoptosis of TF-1 cells. • PTPMT1 inhibition downregulates Glut-1, Glut-3 expression and reduces glucose consumption.

  9. In vitro ischemia suppresses hypoxic induction of hypoxia-inducible factor-1α by inhibition of synthesis and not enhanced degradation.

    Science.gov (United States)

    Karuppagounder, Saravanan S; Basso, Manuela; Sleiman, Sama F; Ma, Thong C; Speer, Rachel E; Smirnova, Natalya A; Gazaryan, Irina G; Ratan, Rajiv R

    2013-08-01

    Hypoxia-inducible factor (HIF) mediates a broad, conserved adaptive response to hypoxia, and the HIF pathway is a potential therapeutic target in cerebral ischemia. This study investigated the mechanism by which in vitro ischemia (oxygen-glucose deprivation; OGD) affects canonical hypoxic HIF-1α stabilization. We validated the use of a reporter containing the oxygen-dependent degradation domain of HIF-1α fused to firefly luciferase (ODD-luc) to monitor quantitatively distinct biochemical events leading to hypoxic HIF-1α expression or stabilization in a human neuroblastoma cell line (SH-SY5Y). When OGD was imposed following a 2-hr hypoxic stabilization of ODD-luc, the levels of the reporter were reduced, consistent with prior models proposing that OGD enhances HIF prolylhydroxylase (PHD) activity. Surprisingly, PHD inhibitors and proteasome inhibitors do not stabilize ODD-luc in OGD. Furthermore, OGD does not affect the half-life of ODD-luc protein following hypoxia, suggesting that OGD abrogates hypoxic HIF-1α induction by reducing HIF-1α synthesis rather than by enhancing its degradation. We observed ATP depletion under OGD vs. hypoxia and propose that ATP depletion enhances translational suppression, overcoming the selective synthesis of HIF concurrent with global decreases in protein synthesis in hypoxia. Taken together, these findings biochemically characterize a practical reporter for monitoring HIF-1α levels and support a novel model for HIF regulation in an in vitro model of human ischemia. Copyright © 2013 Wiley Periodicals, Inc.

  10. PDGF Promotes the Warburg Effect in Pulmonary Arterial Smooth Muscle Cells via Activation of the PI3K/AKT/mTOR/HIF-1α Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yunbin Xiao

    2017-07-01

    Full Text Available Background/Aims: The enhanced proliferation of pulmonary arterial smooth muscle cells (PASMCs is a central pathological component in pulmonary arterial hypertension (PAH. Both the Warburg effect and platelet-derived growth factor (PDGF are involved in the proliferation of PASMCs. However, the mechanism underlying the crosstalk between the Warburg effect and PDGF during PASMC proliferation is still unknown. We hypothesized that PDGF promotes the Warburg effect via activating the phosphatidylinositol 3-kinase (PI3K signaling pathway and hypoxia-inducible factor 1-α (HIF-1α in proliferative PASMCs. Methods: PASMCs were derived from pulmonary arteries of SD rats; cell viability, the presence of metabolites, and metabolic enzyme activities assay were determined by MTT assays, kit assays and western blot analysis, respectively. Results: PDGF promoted PASMC proliferation in a dose- and time-dependent manner, accompanied by an enhanced Warburg effect. Treatment with PDGFR antagonists, Warburg effect inhibitor and PDK1 inhibitor significantly inhibited PI3K signaling activation, HIF-1α expression and PASMC proliferation induced by PDGF, respectively. Furthermore, treatment with PI3K signaling pathway inhibitors remarkably suppressed PDGF-induced PASMC proliferation and the Warburg effect. Conclusion: microplate reader (Biotek, Winooski The Warburg effect plays a critical role in PDGF-induced PASMC proliferation and is mediated by activation of the PI3K signaling pathway and HIF-1α.

  11. Transient ureteral obstruction prevents against kidney ischemia/reperfusion injury via hypoxia-inducible factor (HIF-2α activation.

    Directory of Open Access Journals (Sweden)

    Shun Zhang

    Full Text Available Although the protective effect of transient ureteral obstruction (UO prior to ischemia on subsequent renal ischemia/reperfusion (I/R injury has been documented, the underlying molecular mechanism remains to be understood. We showed in the current study that 24 h of UO led to renal tubular hypoxia in the ipsilateral kidney in mice, with the accumulation of hypoxia-inducible factor (HIF-2α, which lasted for a week after the release of UO. To address the functions of HIF-2α in UO-mediated protection of renal IRI, we utilized the Mx-Cre/loxP recombination system to knock out target genes. Inactivation of HIF-2α, but not HIF-1α blunted the renal protective effects of UO, as demonstrated by much higher serum creatinine level and severer histological damage. UO failed to prevent postischemic neutrophil infiltration and apoptosis induction in HIF-2α knockout mice, which also diminished the postobstructive up-regulation of the protective molecule, heat shock protein (HSP-27. The renal protective effects of UO were associated with the improvement of the postischemic recovery of intra-renal microvascular blood flow, which was also dependent on the activation of HIF-2α. Our results demonstrated that UO protected the kidney via activation of HIF-2α, which reduced tubular damages via preservation of adequate renal microvascular perfusion after ischemia. Thus, preconditional HIF-2α activation might serve as a novel therapeutic strategy for the treatment of ischemic acute renal failure.

  12. Furan- and Thiophene-2-Carbonyl Amino Acid Derivatives Activate Hypoxia-Inducible Factor via Inhibition of Factor Inhibiting Hypoxia-Inducible Factor-1

    Directory of Open Access Journals (Sweden)

    Shin-ichi Kawaguchi

    2018-04-01

    Full Text Available Induction of a series of anti-hypoxic proteins protects cells during exposure to hypoxic conditions. Hypoxia-inducible factor-α (HIF-α is a major transcription factor that orchestrates this protective effect. To activate HIF exogenously, without exposing cells to hypoxic conditions, many small-molecule inhibitors targeting prolyl hydroxylase domain-containing protein have been developed. In addition, suppression of factor inhibiting HIF-1 (FIH-1 has also been shown to have the potential to activate HIF-α. However, few small-molecule inhibitors of FIH-1 have been developed. In this study, we synthesized a series of furan- and thiophene-2-carbonyl amino acid derivatives having the potential to inhibit FIH-1. The inhibitory activities of these compounds were evaluated in SK-N-BE(2c cells by measuring HIF response element (HRE promoter activity. Several furan- and thiophene-2-carbonyl amino acid derivatives inhibited FIH-1 based on correlations among the docking score of the FIH-1 active site, the chemical structure of the compounds, and biological HIF-α/HRE transcriptional activity.

  13. Intracellular high mobility group B1 protein (HMGB1) represses HIV-1 LTR-directed transcription in a promoter- and cell-specific manner

    International Nuclear Information System (INIS)

    Naghavi, Mojgan H.; Nowak, Piotr; Andersson, Jan; Soennerborg, Anders; Yang Huan; Tracey, Kevin J.; Vahlne, Anders

    2003-01-01

    We investigated whether the high mobility group B 1 (HMGB1), an abundant nuclear protein in all mammalian cells, affects HIV-1 transcription. Intracellular expression of human HMGB1 repressed HIV-1 gene expression in epithelial cells. This inhibitory effect of HMGB1 was caused by repression of long terminal repeat (LTR)-mediated transcription. Other viral promoters/enhancers, including simian virus 40 or cytomegalovirus, were not inhibited by HMGB1. In addition, HMGB1 inhibition of HIV-1 subtype C expression was dependent on the number of NFκB sites in the LTR region. The inhibitory effect of HMGB1 on viral gene expression observed in HeLa cells was confirmed by an upregulation of viral replication in the presence of antisense HMGB1 in monocytic cells. In contrast to what was found in HeLa cells and monocytic cells, endogenous HMGB1 expression did not affect HIV-1 replication in unstimulated Jurkat cells. Thus, intracellular HMGB1 affects HIV-1 LTR-directed transcription in a promoter- and cell-specific manner

  14. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yun-Jeong; Cho, Hyun-Ji [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of); Magae, Junji [Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba 300-1263 (Japan); Lee, In-Kyu [Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721 (Korea, Republic of); Park, Keun-Gyu, E-mail: kpark@knu.ac.kr [Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721 (Korea, Republic of); Chang, Young-Chae, E-mail: ycchang@cu.ac.kr [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of)

    2013-12-15

    Hypoxia-inducible factor (HIF)-1 plays an important role in tumor progression, angiogenesis and metastasis. In this study, we investigated the potential molecular mechanisms underlying the anti-angiogenic effect of ascofuranone, an isoprenoid antibiotic from Ascochyta viciae, in epidermal growth factor (EGF)-1 responsive human breast cancer cells. Ascofuranone significantly and selectively suppressed EGF-induced HIF-1α protein accumulation, whereas it did not affect the expression of HIF-1β. Furthermore, ascofuranone inhibited the transcriptional activation of vascular endothelial growth factor (VEGF) by reducing protein HIF-1α. Mechanistically, we found that the inhibitory effects of ascofuranone on HIF-1α protein expression are associated with the inhibition of synthesis HIF-1α through an EGF-dependent mechanism. In addition, ascofuranone suppressed EGF-induced phosphorylation of Akt/mTOR/p70S6 kinase, but the phosphorylation of ERK/JNK/p38 kinase was not affected by ascofuranone. These results suggest that ascofuranone suppresses EGF-induced HIF-1α protein translation through the inhibition of Akt/mTOR/p70S6 kinase signaling pathways and plays a novel role in the anti-angiogenic action. - Highlights: • Inhibitory effect of ascofuranone on HIF-1α expression is EGF-specific regulation. • Ascofuranone decreases HIF-1α protein synthesis through Akt/mTOR pathways. • Ascofuranone suppresses EGF-induced VEGF production and tumor angiogenesis.

  15. Interaction between hypoxia, AKT and HIF-1 signaling in HNSCC and NSCLC: implications for future treatment strategies

    NARCIS (Netherlands)

    Stegeman, H.; Span, P.N.; Peeters, W.J.M.; Verheijen, M.M.; Grenman, R.; Meijer, T.W.H.; Kaanders, J.H.A.M.; Bussink, J.

    2016-01-01

    BACKGROUND: Hypoxia is a negative prognostic factor and this study investigated the relationship between hypoxia, hypoxia inducible factor 1 (HIF-1) and AKT signaling in head and neck squamous cell carcinoma (HNSCC) and non-small-cell lung cancer (NSCLC). RESULTS/METHODOLOGY: pAKT was induced by

  16. Salvianolic acid A preconditioning confers protection against concanavalin A-induced liver injury through SIRT1-mediated repression of p66shc in mice

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaomei; Hu, Yan; Zhai, Xiaohan; Lin, Musen [Department of Pharmacology, Dalian Medical University, Dalian 116044 (China); Chen, Zhao; Tian, Xiaofeng; Zhang, Feng [Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Gao, Dongyan; Ma, Xiaochi [Department of Pharmacology, Dalian Medical University, Dalian 116044 (China); Lv, Li, E-mail: lv_li@126.com [Department of Pharmacology, Dalian Medical University, Dalian 116044 (China); Yao, Jihong, E-mail: Yaojihong65@hotmail.com [Department of Pharmacology, Dalian Medical University, Dalian 116044 (China)

    2013-11-15

    Salvianolic acid A (SalA) is a phenolic carboxylic acid derivative extracted from Salvia miltiorrhiza. It has many biological and pharmaceutical activities. The purpose of this study was to investigate the effect of SalA on concanavalin A (ConA)-induced acute hepatic injury in Kunming mice and to explore the role of SIRT1 in such an effect. The results showed that in vivo pretreatment with SalA significantly reduced ConA-induced elevation in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and decreased levels of the hepatotoxic cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Moreover, the SalA pretreatment ameliorated the increases in NF-κB and in cleaved caspase-3 caused by ConA exposure. Whereas, the pretreatment completely reversed expression of the B-cell lymphoma-extra large (Bcl-xL). More importantly, the SalA pretreatment significantly increased the expression of SIRT1, a NAD{sup +}-dependent deacetylase, which was known to attenuate acute hypoxia damage and metabolic liver diseases. In our study, the increase in SIRT1 was closely associated with down-regulation of the p66 isoform (p66shc) of growth factor adapter Shc at both protein and mRNA levels. In HepG2 cell culture, SalA pretreatment increased SIRT1 expression in a time and dose-dependent manner and such an increase was abrogated by siRNA knockdown of SIRT1. Additionally, inhibition of SIRT1 significantly reversed the decreased expression of p66shc, and attenuated SalA-induced p66shc down-regulation. Collectively, the present study indicated that SalA may be a potent activator of SIRT and that SalA can alleviate ConA-induced hepatitis through SIRT1-mediated repression of the p66shc pathway. - Highlights: • We report for the first time that SalA protects against ConA-induced hepatitis. • We find that SalA is a potential activator of SIRT1. • SalA's protection against hepatitis involves SIRT1-mediated repression of p

  17. HIF-2α dictates the susceptibility of pancreatic cancer cells to TRAIL by regulating survivin expression

    Science.gov (United States)

    Harashima, Nanae; Takenaga, Keizo; Akimoto, Miho; Harada, Mamoru

    2017-01-01

    Cancer cells develop resistance to therapy by adapting to hypoxic microenvironments, and hypoxia-inducible factors (HIFs) play crucial roles in this process. We investigated the roles of HIF-1α and HIF-2α in cancer cell death induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) using human pancreatic cancer cell lines. siRNA-mediated knockdown of HIF-2α, but not HIF-1α, increased susceptibility of two pancreatic cancer cell lines, Panc-1 and AsPC-1, to TRAIL in vitro under normoxic and hypoxic conditions. The enhanced sensitivity to TRAIL was also observed in vivo. This in vitro increased TRAIL sensitivity was observed in other three pancreatic cancer cell lines. An array assay of apoptosis-related proteins showed that knockdown of HIF-2α decreased survivin expression. Additionally, survivin promoter activity was decreased in HIF-2α knockdown Panc-1 cells and HIF-2α bound to the hypoxia-responsive element in the survivin promoter region. Conversely, forced expression of the survivin gene in HIF-2α shRNA-expressing Panc-1 cells increased resistance to TRAIL. In a xenograft mouse model, the survivin suppressant YM155 sensitized Panc-1 cells to TRAIL. Collectively, our results indicate that HIF-2α dictates the susceptibility of human pancreatic cancer cell lines, Panc-1 and AsPC-1, to TRAIL by regulating survivin expression transcriptionally, and that survivin could be a promising target to augment the therapeutic efficacy of death receptor-targeting anti-cancer therapy. PMID:28476028

  18. Increased expression of HIF-1α, VEGF-A and its receptors, MMP-2, TIMP-1, and ADAMTS-1 at the venous stenosis of arteriovenous fistula in a mouse model with renal insufficiency

    Science.gov (United States)

    Misra, Sanjay; Shergill, Uday; Yang, Binxia; Janardhanan, Rajiv; Misra, Khamal D.

    2010-01-01

    Purpose A mouse model of renal insufficiency with arteriovenous fistula (AVF) and venous stenosis was created. We tested the hypothesis that there is increased gene expression of hypoxia inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor- A (VEGF-A) and its receptors (VEGFR-1, -2), matrix metalloproteinase-2 (MMP-2), -9 (MMP-9), tissue inhibitor of metalloproteinase-1, -2 (TIMP-1, -2), and a disintegrin and metalloproteinase thrombospondin-1 (ADAMTS-1) at the venous stenosis. Materials and methods Nineteen male C57BL/6 mice underwent a left nephrectomy and a surgical occlusion of the right upper pole to induce renal insufficiency and characterized in eight mice. Twenty eight days later, an AVF (n=11) was created from the right carotid artery to ipsilateral jugular vein and the mice were sacrificed at day 7 (n=4) and day 14 (n=4). The outflow and control veins were removed for gene expression. Three mice were sacrificed at day 28 for histologic analysis. Results The mean serum blood urea nitrogen remained significantly elevated for 8 weeks when compared to baseline (P<0.05). By day 7, there was a significant increase in the expression of HIF-1α, VEGF-A, VEGFR-1, VEGFR-2, MMP-2, TIMP-1, and ADAMTS-1 at the outflow vein with HIF-1α and TIMP-1 being significantly elevated at day 14 (P<0.05). By day 28, the venous stenosis was characterized by a thickened vein wall and neointima. Conclusions A mouse model of renal insufficiency with AVF was developed which had increased expression of HIF-1α, VEGF-A, VEGFR-1, VEGFR-2, MMP-2, TIMP-1, and ADAMTS-1 at the outflow vein with venous stenosis by day 28. PMID:20598569

  19. Increased expression of HIF-1alpha, VEGF-A and its receptors, MMP-2, TIMP-1, and ADAMTS-1 at the venous stenosis of arteriovenous fistula in a mouse model with renal insufficiency.

    Science.gov (United States)

    Misra, Sanjay; Shergill, Uday; Yang, Binxia; Janardhanan, Rajiv; Misra, Khamal D

    2010-08-01

    A mouse model of renal insufficiency with arteriovenous fistula (AVF) and venous stenosis was created. The authors tested the hypothesis that there is increased gene expression of hypoxia-inducible factor-1 alpha (HIF-1alpha); vascular endothelial growth factor-A (VEGF-A) and its receptors (VEGFR-1, -2); matrix metalloproteinase-2 (MMP-2), -9 (MMP-9); tissue inhibitor of metalloproteinase-1, -2 (TIMP-1, -2); and a disintegrin and metalloproteinase thrombospondin-1 (ADAMTS-1) at the venous stenosis. Nineteen male C57BL/6 mice underwent a left nephrectomy and a surgical occlusion of the right upper pole to induce renal function characterized in eight animals. Twenty eight days later, an AVF (n = 11) was created from the right carotid artery to ipsilateral jugular vein, and the mice were killed at day 7 (n = 4) and day 14 (n = 4). The outflow and control veins were removed for gene expression. Three mice were killed at day 28 for histologic analysis. The mean serum blood urea nitrogen level remained significantly elevated for 8 weeks when compared with baseline (P < .05). By day seven, there was a significant increase in the expression of HIF-1alpha, VEGF-A, VEGFR-1, VEGFR-2, MMP-2, TIMP-1, and ADAMTS-1 at the outflow vein, with HIF-1alpha and TIMP-1 levels significantly elevated at day 14 (P < .05). By day 28, the venous stenosis was characterized by a thickened vein wall and neointima. A mouse model of renal insufficiency with AVF was developed that had increased expression of HIF-1alpha, VEGF-A, VEGFR-1, VEGFR-2, MMP-2, TIMP-1, and ADAMTS-1 at the outflow vein with venous stenosis by day 28. Copyright (c) 2010 SIR. Published by Elsevier Inc. All rights reserved.

  20. Repression of Middle Sporulation Genes in Saccharomyces cerevisiae by the Sum1-Rfm1-Hst1 Complex Is Maintained by Set1 and H3K4 Methylation

    Science.gov (United States)

    Jaiswal, Deepika; Jezek, Meagan; Quijote, Jeremiah; Lum, Joanna; Choi, Grace; Kulkarni, Rushmie; Park, DoHwan; Green, Erin M.

    2017-01-01

    The conserved yeast histone methyltransferase Set1 targets H3 lysine 4 (H3K4) for mono, di, and trimethylation and is linked to active transcription due to the euchromatic distribution of these methyl marks and the recruitment of Set1 during transcription. However, loss of Set1 results in increased expression of multiple classes of genes, including genes adjacent to telomeres and middle sporulation genes, which are repressed under normal growth conditions because they function in meiotic progression and spore formation. The mechanisms underlying Set1-mediated gene repression are varied, and still unclear in some cases, although repression has been linked to both direct and indirect action of Set1, associated with noncoding transcription, and is often dependent on the H3K4me2 mark. We show that Set1, and particularly the H3K4me2 mark, are implicated in repression of a subset of middle sporulation genes during vegetative growth. In the absence of Set1, there is loss of the DNA-binding transcriptional regulator Sum1 and the associated histone deacetylase Hst1 from chromatin in a locus-specific manner. This is linked to increased H4K5ac at these loci and aberrant middle gene expression. These data indicate that, in addition to DNA sequence, histone modification status also contributes to proper localization of Sum1. Our results also show that the role for Set1 in middle gene expression control diverges as cells receive signals to undergo meiosis. Overall, this work dissects an unexplored role for Set1 in gene-specific repression, and provides important insights into a new mechanism associated with the control of gene expression linked to meiotic differentiation. PMID:29066473

  1. Thiamine deficiency activates hypoxia inducible factor-1α to facilitate pro-apoptotic responses in mouse primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Kristy Zera

    Full Text Available Thiamine is an essential enzyme cofactor required for proper metabolic function and maintenance of metabolism and energy production in the brain. In developed countries, thiamine deficiency (TD is most often manifested following chronic alcohol consumption leading to impaired mitochondrial function, oxidative stress, inflammation and excitotoxicity. These biochemical lesions result in apoptotic cell death in both neurons and astrocytes. Comparable histological injuries in patients with hypoxia/ischemia and TD have been described in the thalamus and mammillary bodies, suggesting a congruency between the cellular responses to these stresses. Consistent with hypoxia/ischemia, TD stabilizes and activates Hypoxia Inducible Factor-1α (HIF-1α under physiological oxygen levels. However, the role of TD-induced HIF-1α in neurological injury is currently unknown. Using Western blot analysis and RT-PCR, we have demonstrated that TD induces HIF-1α expression and activity in primary mouse astrocytes. We observed a time-dependent increase in mRNA and protein expression of the pro-apoptotic and pro-inflammatory HIF-1α target genes MCP1, BNIP3, Nix and Noxa during TD. We also observed apoptotic cell death in TD as demonstrated by PI/Annexin V staining, TUNEL assay, and Cell Death ELISA. Pharmacological inhibition of HIF-1α activity using YC1 and thiamine repletion both reduced expression of pro-apoptotic HIF-1α target genes and apoptotic cell death in TD. These results demonstrate that induction of HIF-1α mediated transcriptional up-regulation of pro-apoptotic/inflammatory signaling contributes to astrocyte cell death during thiamine deficiency.

  2. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K.

    Science.gov (United States)

    Courtnay, Rupert; Ngo, Darleen C; Malik, Neha; Ververis, Katherine; Tortorella, Stephanie M; Karagiannis, Tom C

    2015-04-01

    Cancer cells have been shown to have altered metabolism when compared to normal non-malignant cells. The Warburg effect describes a phenomenon in which cancer cells preferentially metabolize glucose by glycolysis, producing lactate as an end product, despite being the presence of oxygen. The phenomenon was first described by Otto Warburg in the 1920s, and has resurfaced as a controversial theory, with both supportive and opposing arguments. The biochemical aspects of the Warburg effect outline a strong explanation for the cause of cancer cell proliferation, by providing the biological requirements for a cell to grow. Studies have shown that pathways such as phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) as well as hypoxia inducible factor-1 (HIF-1) are central regulators of glycolysis, cancer metabolism and cancer cell proliferation. Studies have shown that PI3K signaling pathways have a role in many cellular processes such as metabolism, inflammation, cell survival, motility and cancer progression. Herein, the cellular aspects of the PI3K pathway are described, as well as the influence HIF has on cancer cell metabolism. HIF-1 activation has been related to angiogenesis, erythropoiesis and modulation of key enzymes involved in aerobic glycolysis, thereby modulating key processes required for the Warburg effect. In this review we discuss the molecular aspects of the Warburg effect with a particular emphasis on the role of the HIF-1 and the PI3K pathway.

  3. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    DEFF Research Database (Denmark)

    Greenberger, Lee M; Horak, Ivan D; Filpula, David

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that plays a critical role in angiogenesis, survival, metastasis, drug resistance, and glucose metabolism. Elevated expression of the alpha-subunit of HIF-1 (HIF-1alpha), which occurs in response to hypoxia or activation of growth facto...

  4. Structural Insights into the Association of Hif1 with Histones H2A-H2B Dimer and H3-H4 Tetramer.

    Science.gov (United States)

    Zhang, Mengying; Liu, Hejun; Gao, Yongxiang; Zhu, Zhongliang; Chen, Zijun; Zheng, Peiyi; Xue, Lu; Li, Jixi; Teng, Maikun; Niu, Liwen

    2016-10-04

    Histone chaperones are critical for guiding specific post-transcriptional modifications of histones, safeguarding the histone deposition (or disassociation) of nucleosome (dis)assembly, and regulating chromatin structures to change gene activities. HAT1-interacting factor 1 (Hif1) has been reported to be an H3-H4 chaperone and to be involved in telomeric silencing and nucleosome (dis)assembly. However, the structural basis for the interaction of Hif1 with histones remains unknown. Here, we report the complex structure of Hif1 binding to H2A-H2B for uncovering the chaperone specificities of Hif1 on binding to both the H2A-H2B dimer and the H3-H4 tetramer. Our findings reveal that Hif1 interacts with the H2A-H2B dimer and the H3-H4 tetramer via distinct mechanisms, suggesting that Hif1 is a pivotal scaffold on alternate binding of H2A-H2B and H3-H4. These specificities are conserved features of the Sim3-Hif1-NASP interrupted tetratricopeptide repeat proteins, which provide clues for investigating their potential roles in nucleosome (dis)assembly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1α.

    Science.gov (United States)

    Shalova, Irina N; Lim, Jyue Yuan; Chittezhath, Manesh; Zinkernagel, Annelies S; Beasley, Federico; Hernández-Jiménez, Enrique; Toledano, Victor; Cubillos-Zapata, Carolina; Rapisarda, Annamaria; Chen, Jinmiao; Duan, Kaibo; Yang, Henry; Poidinger, Michael; Melillo, Giovanni; Nizet, Victor; Arnalich, Francisco; López-Collazo, Eduardo; Biswas, Subhra K

    2015-03-17

    Sepsis is characterized by a dysregulated inflammatory response to infection. Despite studies in mice, the cellular and molecular basis of human sepsis remains unclear and effective therapies are lacking. Blood monocytes serve as the first line of host defense and are equipped to recognize and respond to infection by triggering an immune-inflammatory response. However, the response of these cells in human sepsis and their contribution to sepsis pathogenesis is poorly understood. To investigate this, we performed a transcriptomic, functional, and mechanistic analysis of blood monocytes from patients during sepsis and after recovery. Our results revealed the functional plasticity of monocytes during human sepsis, wherein they transited from a pro-inflammatory to an immunosuppressive phenotype, while enhancing protective functions like phagocytosis, anti-microbial activity, and tissue remodeling. Mechanistically, hypoxia inducible factor-1α (HIF1α) mediated this functional re-programming of monocytes, revealing a potential mechanism for their therapeutic targeting to regulate human sepsis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Hypoxia-inducible factor 1 alpha is a poor prognostic factor and potential therapeutic target in malignant peripheral nerve sheath tumor.

    Directory of Open Access Journals (Sweden)

    Suguru Fukushima

    Full Text Available Malignant peripheral nerve sheath tumor (MPNST is a rare soft tissue sarcoma with poor prognosis. Hypoxia-inducible factor 1 (HIF-1 plays a crucial role in the cellular response to hypoxia and regulates the expression of multiple genes involved in tumor progression in various cancers. However, the importance of the expression of HIF-1α in MPNSTs is unclear.The expression of HIF-1α was examined immunohistochemically in 82 MPNST specimens. Cell culture assays of human MPNST cells under normoxic and hypoxic conditions were used to evaluate the impact of anti-HIF-1α-specific siRNA inhibition on cell survival. A screening kit was employed to identify small molecules that inhibited HIF-1α.The nuclear expression of HIF-1α was positive in 75.6% of MPNST samples (62/82 cases. Positivity for HIF-1α was a significant poor prognostic factor both in univariate (P = 0.048 and multivariate (P ≤ 0.0001 analyses. HIF-1α knockdown abrogated MPNST cell growth, inducing apoptosis. Finally, chetomin, an inhibitor of HIF-1α, effectively inhibited the growth of MPNST cells and induced their apoptosis.Inhibition of HIF-1α signaling is a potential treatment option for MPNSTs.

  7. Aspartyl-(asparaginyl β-Hydroxylase, Hypoxia-Inducible Factor-1α and Notch Cross-Talk in Regulating Neuronal Motility

    Directory of Open Access Journals (Sweden)

    Margot Lawton

    2010-01-01

    Full Text Available Aspartyl-(Asparaginyl-β-Hydroxylase (AAH promotes cell motility by hydroxylating Notch. Insulin and insulin-like growth factor, type 1 (IGF-I stimulate AAH through Erk MAP K and phosphoinositol-3-kinase-Akt (PI3K-Akt. However, hypoxia/oxidative stress may also regulate AAH . Hypoxia-inducible factor-1alpha (HIF-1α regulates cell migration, signals through Notch, and is regulated by hypoxia/oxidative stress, insulin/IGF signaling and factor inhibiting HIF-1α (FIH hydroxylation. To examine cross-talk between HIF-1α and AAH , we measured AAH , Notch-1, Jagged-1, FIH, HIF-1α, HIF-1β and the hairy and enhancer of split 1 (HE S-1 transcription factor expression and directional motility in primitive neuroectodermal tumor 2 (PNET2 human neuronal cells that were exposed to H2O2 or transfected with short interfering RNA duplexes (siRNA targeting AAH , Notch-1 or HIF-1α. We found that: (1 AAH , HIF-1α and neuronal migration were stimulated by H2O2; (2 si-HIF-1α reduced AAH expression and cell motility; (3 si-AAH inhibited Notch and cell migration, but not HIF-1α and (4 si-Notch-1 increased FIH and inhibited HIF-1α. These findings suggest that AAH and HIF-1α crosstalk within a hydroxylation-regulated signaling pathway that may be transiently driven by oxidative stress and chronically regulated by insulin/IGF signaling.

  8. Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1.

    NARCIS (Netherlands)

    Williams, K.J.; Telfer, B.A.; Xenaki, D.; Sheridan, M.R.; Desbaillets, I.; Peters, H.J.; Honess, D.; Harris, A.L.; Dachs, G.U.; Kogel, A.J. van der; Stratford, I.J.

    2005-01-01

    BACKGROUND AND PURPOSE: To test the hypothesis that deficiency in expression of the transcription factor, HIF-1, renders tumours more radioresponsive than HIF-1 proficient tumours. PATIENTS AND METHODS: Tumours comprising mouse hepatoma cells lacking HIF-1beta (and thereby HIF-1 function) were grown

  9. ID2 mediates the transforming growth factor1-induced Warburg-like effect seen in the peritoneum of women with endometriosis.

    Science.gov (United States)

    Young, Vicky J; Ahmad, Syed F; Brown, Jeremy K; Duncan, W Colin; Horne, Andrew W

    2016-09-01

    Is inhibitor of DNA-binding protein 2 (ID2) a mediator of the transforming growth factor (TGF)-β1-induced Warburg-like effect seen in the peritoneum of women with endometriosis? The TGF-β1-induced changes in the metabolic phenotype of peritoneal mesothelial cells from women with endometriosis are mediated through the ID2 pathway. TGF-β1 induces the metabolic conversion of glucose to lactate via aerobic glycolysis (the 'Warburg effect') in the peritoneum of women with endometriosis, through increased expression of the transcription factor hypoxia inducible factor α (HIF-1α). ID proteins are transcriptional targets of TGF-β1. Expression of ID2 was investigated in luteal phase peritoneal biopsies from women with regular menstrual cycles, with and without endometriosis (n = 8-10 each group) by quantitative RT-PCR (qRT-PCR) and immunohistochemistry. ID2 mRNA expression in primary human peritoneal mesothelial cells (HPMC) and immortalized mesothelial cells (MeT-5A) was assessed by qRT-PCR (n = 6). The effects of TGF-β1 and ID2 siRNA on HIF-1α mRNA expression and lactate secretion was assessed using qRT-PCR and a colorimetric lactate assay. ID2 is localized to peritoneal mesothelial and stromal cells of women with and without endometriosis. ID2 mRNA expression is lower in peritoneum adjacent to the endometriosis lesions compared to distal sites (P endometriosis. None. This work was funded by a Wellbeing of Women research grant (R42533) awarded to A.W.H., J.K.B. and W.C.D.; and an MRC Centre Grant G1002033. V.J.Y. received grant support from Federation of Women Graduates (134225) and a PhD studentship from the College of Medicine and Veterinary Medicine at the University of Edinburgh. There are no competing interests to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Regulation of glucose transporter protein-1 and vascular endothelial growth factor by hypoxia inducible factor 1α under hypoxic conditions in Hep-2 human cells.

    Science.gov (United States)

    Xu, Ou; Li, Xiaoming; Qu, Yongtao; Liu, Shuang; An, Jie; Wang, Maoxin; Sun, Qingjia; Zhang, Wen; Lu, Xiuying; Pi, Lihong; Zhang, Min; Shen, Yupeng

    2012-12-01

    The present study evaluated the regulation of glucose transporter protein-1 (Glut-1) and vascular endothelial growth factor (VEGF) by hypoxia inducible factor 1α (HIF-1α) under hypoxic conditions in Hep-2 human cells to explore the feasibility of these three genes as tumor markers. Hep-2 cells were cultured under hypoxic and normoxic conditions for 6, 12, 24, 36 and 48 h. The proliferation of Hep-2 cells was evaluated using an MTT assay. The protein and mRNA expression levels of HIF-1α, Glut-1 and VEGF were detected using the S-P immunocytochemical method, western blotting and reverse transcription polymerase chain reaction (RT-PCR). The results revealed that the expression levels of HIF-1α, Glut-1 and VEGF protein in Hep-2 cells were significantly elevated under hypoxic conditions compared with those under normoxic conditions over 36 h. Under hypoxic conditions, mRNA levels of HIF-1α were stable, while mRNA levels of Glut-1 and VEGF changed over time. In conclusion, Glut-1 and VEGF were upregulated by HIF-1α under hypoxic conditions in a time-dependent manner in Hep-2 cells and their co-expression serves as a tumor marker.

  11. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    International Nuclear Information System (INIS)

    Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch; Zahavi, David; Melillo, Giovanni; Libutti, Steven K.

    2009-01-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface α5β1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1α) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1α mediated transcriptional activity as well as HIF-1α mediated angiogenic sprouting of ECs. HIF-1α plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1α activities.

  12. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Tandle, Anita T. [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Calvani, Maura; Uranchimeg, Badarch [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Zahavi, David [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Melillo, Giovanni [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Libutti, Steven K., E-mail: slibutti@montefiore.org [Department of Surgery, Montefiore-Einstein Center for Cancer Care, Albert Einstein College of Medicine, Greene Medical Arts Pavilion, 4th Floor 3400, Bainbridge Avenue, Bronx, New York 10467 (United States)

    2009-07-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.

  13. Expression of HIF-1{alpha} in irradiated tissue is altered by topical negative-pressure therapy

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, A.; Stange, S.; Labanaris, A.; Horch, R.E. [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Plastic and Hand Surgery; Dimmler, A. [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Pathology; Sauer, R.; Grabenbauer, G. [Erlangen-Nuernberg Univ. (Germany). Dept. of Radiation Oncology

    2007-03-15

    Background and Purpose: Despite the enormous therapeutic potential of modern radiotherapy, common side effects such as radiation-induced wound healing disorders remain a well-known clinical phenomenon. Topical negative pressure therapy (TNP) is a novel tool to alleviate intraoperative, percutaneous irradiation or brachytherapy. Since TNP has been shown to positively influence the perfusion of chronic, poorly vascularized wounds, the authors applied this therapeutic method to irradiated wounds and investigated the effect on tissue oxygenation in irradiated tissue in five patients. Material and Methods: With informed patients' consent, samples prior to and 4 and 8 days after continuous TNP with -125 mmHg were obtained during routine wound debridements. Granulation tissue was stained with hematoxylin-eosin, and additionally with CD31, HIF-1{alpha} (hypoxia-inducible factor-1{alpha}), and D2-40 to detect blood vessels, measure indirect signs of hypoxia, and lymph vessel distribution within the pre- and post-TNP samples. Results: In this first series of experiments, a positive influence of TNP onto tissue oxygenation in radiation-induced wounds could be demonstrated. TNP led to a significant decrease of 53% HIF-1{alpha}-positive cell nuclei. At the same time, a slight reduction of CD31-stained capillaries was seen in comparison to samples before TNP. Immunostaining with D2-40 revealed an increased number of lymphatic vessels with distended lumina and an alteration of the parallel orientation within the post-TNP samples. Conclusion: This study is, to the authors' knowledge, the first report on a novel previously not described histological marker to demonstrate the effects of TNP on HIF-1{alpha} expression as an indirect marker of tissue oxygenation in irradiated wounds, as demonstrated by a reduction of HIF-1{alpha} concentration after TNP. Since this observation may be of significant value to develop possible new strategies to treat radiation-induced tissue

  14. Expression of HIF-1α in irradiated tissue is altered by topical negative-pressure therapy

    International Nuclear Information System (INIS)

    Grimm, A.; Stange, S.; Labanaris, A.; Horch, R.E.; Dimmler, A.; Sauer, R.; Grabenbauer, G.

    2007-01-01

    Background and Purpose: Despite the enormous therapeutic potential of modern radiotherapy, common side effects such as radiation-induced wound healing disorders remain a well-known clinical phenomenon. Topical negative pressure therapy (TNP) is a novel tool to alleviate intraoperative, percutaneous irradiation or brachytherapy. Since TNP has been shown to positively influence the perfusion of chronic, poorly vascularized wounds, the authors applied this therapeutic method to irradiated wounds and investigated the effect on tissue oxygenation in irradiated tissue in five patients. Material and Methods: With informed patients' consent, samples prior to and 4 and 8 days after continuous TNP with -125 mmHg were obtained during routine wound debridements. Granulation tissue was stained with hematoxylin-eosin, and additionally with CD31, HIF-1α (hypoxia-inducible factor-1α), and D2-40 to detect blood vessels, measure indirect signs of hypoxia, and lymph vessel distribution within the pre- and post-TNP samples. Results: In this first series of experiments, a positive influence of TNP onto tissue oxygenation in radiation-induced wounds could be demonstrated. TNP led to a significant decrease of 53% HIF-1α-positive cell nuclei. At the same time, a slight reduction of CD31-stained capillaries was seen in comparison to samples before TNP. Immunostaining with D2-40 revealed an increased number of lymphatic vessels with distended lumina and an alteration of the parallel orientation within the post-TNP samples. Conclusion: This study is, to the authors' knowledge, the first report on a novel previously not described histological marker to demonstrate the effects of TNP on HIF-1α expression as an indirect marker of tissue oxygenation in irradiated wounds, as demonstrated by a reduction of HIF-1α concentration after TNP. Since this observation may be of significant value to develop possible new strategies to treat radiation-induced tissue injury, further investigations of HIF

  15. Knockdown of a HIF-2α promoter upstream long noncoding RNA impairs colorectal cancer stem cell properties in vitro through HIF-2α downregulation

    Directory of Open Access Journals (Sweden)

    Yao J

    2015-11-01

    Full Text Available Jie Yao,1,* Jianxiong Li,2,* Peiliang Geng,2,* Yi Li,3,* Hong Chen,3 Yunfeng Zhu2 1Department of Oncology, People’s Liberation Army No 161 Hospital, Wuhan, 2Cancer Center, Division of Internal Medicine, Chinese PLA General Hospital, Beijing, 3Department of Oncology, Kunming General Hospital of Chendu Military Command, Kunming, People’s Republic of China *These authors contributed equally to this work Abstract: Currently, various long noncoding RNAs (lncRNAs have been identified as key regulators of multiple cancers. However, cancer stem cell (CSC-related lncRNAs have rarely been reported. In this study, we found an lncRNA that is a promoter upstream transcript of hypoxia-inducible factor-2α (HIF-2α, and we named it “lncRNA-HIF2PUT”. The function of HIF-2α is closely connected with “stem cell-like” properties, and the function of PROMPTs is often associated with the adjacent protein-coding transcripts. Herein, we showed that the expression of lncRNA-HIF2PUT was significantly correlated with HIF-2α in colorectal cancer (CRC tissues. Knockdown of lncRNA-HIF2PUT blocked the HIF-2α expression and inhibited the CSC properties in CRC cell lines DLD-1 and HT29. LncRNA-HIF2PUTsmall interfering RNA transfection resulted in decreased stemness genes expression, impaired colony formation, and spheroid formation ability, retarded migration, and invasion of the cells. These data suggest that lncRNA-HIF2PUT may be a regulator of HIF-2α and a mediator of CSCs in CRC. Keywords: HIF-2α, long noncoding RNA, colorectal cancer, stem cell properties

  16. Anti-Proliferation and Anti-Invasion Effects of Diosgenin on Gastric Cancer BGC-823 Cells with HIF-1α shRNAs

    Directory of Open Access Journals (Sweden)

    Yuan-Neng Chou

    2012-05-01

    Full Text Available Drug resistance is a major factor for the limited efficacy of chemotherapy in gastric cancer treatment. Hypoxia-inducible factor-1α (HIF-1α, a central transcriptional factor in hypoxia, is suggested to participate in the resistance. Here, we identified a hypoxia-mimic (cobalt chloride sensitive gastric cell line BGC-823 to explore whether diosgenin, an aglycone of steroidal saponins, can inhibit cancer cell invasion and survival of solid tumor in a hypoxic mimic microenvironment. We have shown that diosgenin is a potent candidate for decreasing the ability of invasion and survival in cobalt chloride treated BGC-823 cells. In addition, when combined with HIF-1α specific short hairpin RNA (shRNA, diosgenin can inhibit BGC-823 cells more effectively. The anti-invasion role of diosgenin may be related to E-cadherin, integrinα5 and integrinβ6. These results suggest that diosgenin may be a useful compound in controlling gastric cancer cells in hypoxia condition, especially when combined with down-regulated HIF-1α.

  17. EMMPRIN promotes melanoma cells malignant properties through a HIF-2alpha mediated up-regulation of VEGF-receptor-2.

    Directory of Open Access Journals (Sweden)

    Faten Bougatef

    Full Text Available EMMPRIN's expression in melanoma tissue was reported to be predictive of poor prognosis. Here we demonstrate that EMMPRIN up-regulated VEGF receptor-2 (VEGFR-2 in two different primary melanoma cell lines and consequently increased migration and proliferation of these cells while inhibiting their apoptosis. SiRNA inhibition of VEGFR-2 expression abrogated these EMMPRIN effects. EMMPRIN regulation of VEGFR-2 was mediated through the over-expression of HIF-2alpha and its translocation to the nucleus where it forms heterodimers with HIF-1beta. These results were supported by an in vivo correlation between the expression of EMMPRIN with that of VEGFR-2 in human melanoma tissues as well as with the extent of HIF-2alpha localization in the nucleus. They demonstrate a novel mechanism by which EMMPRIN promotes tumor progression through HIF-2alpha/VEGFR-2 mediated mechanism, with an autocrine role in melanoma cell malignancy. The inhibition of EMMPRIN in cancer may thus simultaneously target both the VEGFR-2/VEGF system and the matrix degrading proteases to block tumor cell growth and invasion.

  18. Single nucleotide polymorphisms in the HIF-1α gene and chemoradiotherapy of locally advanced rectal cancer

    DEFF Research Database (Denmark)

    Havelund, Birgitte Mayland; Spindler, Karen-Lise Garm; Ploen, John

    2012-01-01

    The aim of this study was to investigate the predictive impact of polymorphisms in the HIF-1α gene on the response to chemoradiotherapy (CRT) in rectal cancer. This study included two cohorts of patients with locally advanced rectal cancer receiving long-course CRT. The HIF-1α C1772T (rs11549465...... tumour response (P=0.03) in the validation cohort. In conclusion, these results suggest that HIF-1α polymorphisms have no value as predictors of response to neoadjuvant CRT in rectal cancer. The results of the HIF-1α c(*)191T>C in two cohorts differ and emphasise the importance of biomarker validation....

  19. SN-38 Acts as a Radiosensitizer for Colorectal Cancer by Inhibiting the Radiation-induced Up-regulation of HIF-1α.

    Science.gov (United States)

    Okuno, Takayuki; Kawai, Kazushige; Hata, Keisuke; Murono, Koji; Emoto, Shigenobu; Kaneko, Manabu; Sasaki, Kazuhito; Nishikawa, Takeshi; Tanaka, Toshiaki; Nozawa, Hiroaki

    2018-06-01

    Hypoxia offers resistance to therapy in human solid tumors. The aim of the study was to investigate whether SN-38, the active metabolite of irinotecan, acts as a radiosensitizer through inhibition of hypoxia-inducible factor (HIF)-1α in the human colorectal cancer (CRC) cells. HT29 and SW480 cells were cultured with SN-38 (0-4 μM) immediately after irradiation (0-8 Gy). HIF-1α expression was assessed using flow-cytometry and western blot analysis. Cell proliferation was evaluated by the calcein assay. Apoptosis and cell cycle were determined by flow-cytometry. Radiation up-regulated HIF-1α, and SN-38 inhibited the radiation-induced HIF-1α. The combination of radiation and SN-38 inhibited cell proliferation more than radiation alone; treatment with SN-38 after radiation exposure did not increase the number of apoptotic cells, whereas, it enhanced the S and G 2 /M cell-cycle arrest and decreased the population of cells in G 1 Conclusion: SN-38 inhibits the radiation-induced up-regulation of HIF-1α and acts as a radiosensitizer by inducing cell-cycle arrest in CRC cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Serum 8-OHdG and HIF-1α levels: do they affect the development of malignancy in patients with hypoactive thyroid nodules?

    Science.gov (United States)

    Ece, Harman; Mehmet, Erdogan; Cigir, Biray Avci; Yavuz, Dodurga; Muammer, Karadeniz; Cumhur, Gunduz; Mustafa, Harman; Sevki, Cetinkalp; Fusun, Saygılı; Gokhan, Ozgen Ahmet

    2013-01-01

    This study aimed to evaluate 8-OHdG and hypoxia-inducible factor 1 (HIF-1α) levels in patients with hypoactive thyroid nodules (toxic multi-nodular goiter, Graves' disease, and Hashimoto's thyroiditis), as these parameters may be related to oxidative stress and the pathogenesis of cancer. The study included patients diagnosed with Graves' disease (n = 20), toxic multinodular goiter (n = 20), and Hashimoto thyroiditis (n = 20), and 20 healthy controls. HIF-1α levels were measured in blood samples and 8-OHdG levels were measured in urine - both via ELISA. HIF-1α and 8-OHdG levels were significantly higher in the patient groups than in the control group (p 0.05). There was no significant difference in 8-OHdG or HIF-1α levels between the patients with biopsy results that were benign, malignant, and non-diagnostic (p > 0.05). Serum HIF-1α and urine 8-OHdG levels were significantly higher in the patients with thyroid diseases; however, a relationship with cancer was not observed.

  1. The transcription factor DREAM represses A20 and mediates inflammation

    OpenAIRE

    Tiruppathi, Chinnaswamy; Soni, Dheeraj; Wang, Dong-Mei; Xue, Jiaping; Singh, Vandana; Thippegowda, Prabhakar B.; Cheppudira, Bopaiah P.; Mishra, Rakesh K.; DebRoy, Auditi; Qian, Zhijian; Bachmaier, Kurt; Zhao, Youyang; Christman, John W.; Vogel, Stephen M.; Ma, Averil

    2014-01-01

    Here we show that the transcription-repressor DREAM binds to the A20 promoter to repress the expression of A20, the deubiquitinase suppressing inflammatory NF-κB signaling. DREAM-deficient (Dream−/− ) mice displayed persistent and unchecked A20 expression in response to endotoxin. DREAM functioned by transcriptionally repressing A20 through binding to downstream regulatory elements (DREs). In contrast, USF1 binding to the DRE-associated E-box domain activated A20 expression in response to inf...

  2. Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark.

    Science.gov (United States)

    Gu, Dachuan; Chen, Chia-Yang; Zhao, Minglei; Zhao, Linmao; Duan, Xuewu; Duan, Jun; Wu, Keqiang; Liu, Xuncheng

    2017-07-07

    Light is a major external factor in regulating seed germination. Photoreceptor phytochrome B (PHYB) plays a predominant role in promoting seed germination in the initial phase after imbibition, partially by repressing phytochrome-interacting factor1 (PIF1). However, the mechanism underlying the PHYB-PIF1-mediated transcription regulation remains largely unclear. Here, we identified that histone deacetylase15 (HDA15) is a negative component of PHYB-dependent seed germination. Overexpression of HDA15 in Arabidopsis inhibits PHYB-dependent seed germination, whereas loss of function of HDA15 increases PHYB-dependent seed germination. Genetic evidence indicated that HDA15 acts downstream of PHYB and represses seed germination dependent on PIF1. Furthermore, HDA15 interacts with PIF1 both in vitro and in vivo. Genome-wide transcriptome analysis revealed that HDA15 and PIF1 co-regulate the transcription of the light-responsive genes involved in multiple hormonal signaling pathways and cellular processes in germinating seeds in the dark. In addition, PIF1 recruits HDA15 to the promoter regions of target genes and represses their expression by decreasing the histone H3 acetylation levels in the dark. Taken together, our analysis uncovered the role of histone deacetylation in the light-regulated seed germination process and identified that HDA15-PIF1 acts as a key repression module directing the transcription network of seed germination. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Increased hypoxia-inducible factor-1α in striated muscle of tumor-bearing mice.

    Science.gov (United States)

    Devine, Raymond D; Bicer, Sabahattin; Reiser, Peter J; Wold, Loren E

    2017-06-01

    Cancer cachexia is a progressive wasting disease resulting in significant effects on the quality of life and high mortality. Most studies on cancer cachexia have focused on skeletal muscle; however, the heart is now recognized as a major site of cachexia-related effects. To elucidate possible mechanisms, a proteomic study was performed on the left ventricles of colon-26 (C26) adenocarcinoma tumor-bearing mice. The results revealed several changes in proteins involved in metabolism. An integrated pathway analysis of the results revealed a common mediator in hypoxia-inducible factor-1α (HIF-1α). Work by other laboratories has shown that extensive metabolic restructuring in the C26 mouse model causes changes in gene expression that may be affected directly by HIF-1α, such as glucose metabolic genes. M-mode echocardiography showed progressive decline in heart function by day 19 , exhibited by significantly decreased ejection fraction and fractional shortening, along with posterior wall thickness. Using Western blot analysis, we confirmed that HIF-1α is significantly upregulated in the heart, whereas there were no changes in its regulatory proteins, prolyl hydroxylase domain-containing protein 2 (PHD2) and von Hippel-Lindau protein (VHL). PHD2 requires both oxygen and iron as cofactors for the hydroxylation of HIF-1α, marking it for ubiquination via VHL and subsequent destruction by the proteasome complex. We examined venous blood gas values in the tumor-bearing mice and found significantly lower oxygen concentration compared with control animals in the third week after tumor inoculation. We also examined select skeletal muscles to determine whether they are similarly affected. In the diaphragm, extensor digitorum longus, and soleus, we found significantly increased HIF-1α in tumor-bearing mice, indicating a hypoxic response, not only in the heart, but also in skeletal muscle. These results indicate that HIF-1α may contribute, in part, to the metabolic changes

  4. Targeting HIF-2α as therapy for advanced cancers.

    Science.gov (United States)

    Murugesan, Thanabal; Rajajeyabalachandran, Gurukumari; Kumar, Swetha; Nagaraju, Shruthi; Kumar, Sooriya

    2018-05-14

    Hypoxia-inducible factors (HIF-1α, -2α -3α, and -β) are key factors that control hypoxia-induced carcinogenic pathways. HIF-1α is predominantly involved in the early stages of cancer, whereas HIF-2α is actively involved in the later stages; in addition, chronic (prolonged) rather than acute (short) hypoxia is a feature of metastasis and chemoresistance that occur during the later stages of cancer. Oncometabolites, onco-miRNAs, glucose deprivation, pseudohypoxia, cytokine/chemokine secretion, and some unique upstream proteins are involved in the signaling switch from HIF-1α to HIF-2α; thus, understanding this signaling switch is critical for the treatment of advanced cancer. In this review, we highlight data relating to HIF-2α rather than HIF-1α signaling in cancer pathways and discuss prospective drugs that target this important factor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. HIGD1A Regulates Oxygen Consumption, ROS Production, and AMPK Activity during Glucose Deprivation to Modulate Cell Survival and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Kurosh Ameri

    2015-02-01

    Full Text Available Hypoxia-inducible gene domain family member 1A (HIGD1A is a survival factor induced by hypoxia-inducible factor 1 (HIF-1. HIF-1 regulates many responses to oxygen deprivation, but viable cells within hypoxic perinecrotic solid tumor regions frequently lack HIF-1α. HIGD1A is induced in these HIF-deficient extreme environments and interacts with the mitochondrial electron transport chain to repress oxygen consumption, enhance AMPK activity, and lower cellular ROS levels. Importantly, HIGD1A decreases tumor growth but promotes tumor cell survival in vivo. The human Higd1a gene is located on chromosome 3p22.1, where many tumor suppressor genes reside. Consistent with this, the Higd1a gene promoter is differentially methylated in human cancers, preventing its hypoxic induction. However, when hypoxic tumor cells are confronted with glucose deprivation, DNA methyltransferase activity is inhibited, enabling HIGD1A expression, metabolic adaptation, and possible dormancy induction. Our findings therefore reveal important new roles for this family of mitochondrial proteins in cancer biology.

  6. Hypoxia in Tumor Angiogenesis and Metastasis: Evaluation of VEGF and MMP Over-expression and Down-Regulation of HIF-1alpha with RNAi in Hypoxic Tumor Cells

    Science.gov (United States)

    Shah, Shruti

    Background: As tumor mass grows beyond a few millimeters in diameter, the angiogenic "switch" is turned on leading to recruitment of blood vessels from surrounding artery and veins. However, the tumor mass is poorly perfused and there are pockets of hypoxia or lower oxygen concentrations relative to normal tissue. Hypoxia-inducing factor-1a (HIF-1a), a transcription factor, is activated when the oxygen concentration is low. Upon activation of HIF-1a, a number of other genes also turn on that allows the tumor to become more aggressive and resistant to therapy. Purpose: The main objectives of this study were to evaluate the effect of hypoxia-induced HIF-1a followed by over-expression of angiogenic and metastatic markers in tumor cells and down-regulation of HIF-1a using nanoparticle-delivered RNA interference therapy. Methods: Human ovarian (SKOV3) and breast (MDA-MB-231) adenocarcinoma cells were incubated under normoxic and hypoxic conditions. Following hypoxia treatment of the cells, HIF-1α, vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP-2), and MMP-9 expression was analyzed qualitatively and quantitatively. For intracellular delivery of HIF-1a gene silencing small interfering RNA (siRNA), type B gelatin nanoparticles were fabricated using the solvent displacement method and the surface was modified with poly(ethylene glycol) (PEG, Mol. wt. 2kDa). Cellular uptake and distribution of the nanoparticles was observed with Cy3-siRNA loaded, FITC-conjugated gelatin nanoparticles. Cytotoxicity of the nanoparticle formulations was evaluated in both the cell lines. siRNA was transfected in the gelatin nanoparticles under hypoxic conditions. Total cellular protein and RNA were extracted for analysis of HIF1a, VEGF, MMP-2 and MMP-9 expression. Results: MDA-MB-231 and SKOV3 cells show increased expression of HIF1a under hypoxic conditions compared to baseline levels at normoxic conditions. ELISA and western blots of VEGF, MMP-2 and MMP-9 appear to

  7. Retinoids repress Ah receptor CYP1A1 induction pathway through the SMRT corepressor

    International Nuclear Information System (INIS)

    Fallone, Frederique; Villard, Pierre-Henri; Seree, Eric; Rimet, Odile; Nguyen, Quock Binh; Bourgarel-Rey, Veronique; Fouchier, Francis; Barra, Yves; Durand, Alain; Lacarelle, Bruno

    2004-01-01

    CYP1A1 isoform is mainly regulated by the transcription factor AhR and to a lesser extent by the nuclear receptor RAR. The effect of a coexposure with 3MC, a AhR ligand, and RA, a RAR ligand, which are, respectively, strong and weak CYP1A1 inducers, is poorly known. We showed in Caco-2 cells that addition of RA significantly decreased 3MC-induced CYP1A1 expression by -55% for mRNA level and -30% for promoter and enzymatic activities. We further showed that RA decreased AhR protein level. Moreover, a physical interaction between AhR and the RAR-corepressor SMRT has been described in vitro. Using the corepressor inhibitor TSA, transfected-cells with SMRT cDNA, and coimmunoprecipitation experiments, we demonstrated that RA addition repressed AhR function through a marked AhR/SMRT physical interaction. This interaction explains the decrease of 3MC-induced CYP1A1 expression. This new mechanism involving the repression of AhR-induced CYP1A1 expression by retinoids allows better knowledge of the CYP1A1 regulation

  8. ZEB1 limits adenoviral infectability by transcriptionally repressing the Coxsackie virus and Adenovirus Receptor

    Directory of Open Access Journals (Sweden)

    Lacher Markus D

    2011-07-01

    Full Text Available Abstract Background We have previously reported that RAS-MEK (Cancer Res. 2003 May 1;63(9:2088-95 and TGF-β (Cancer Res. 2006 Feb 1;66(3:1648-57 signaling negatively regulate coxsackie virus and adenovirus receptor (CAR cell-surface expression and adenovirus uptake. In the case of TGF-β, down-regulation of CAR occurred in context of epithelial-to-mesenchymal transition (EMT, a process associated with transcriptional repression of E-cadherin by, for instance, the E2 box-binding factors Snail, Slug, SIP1 or ZEB1. While EMT is crucial in embryonic development, it has been proposed to contribute to the formation of invasive and metastatic carcinomas by reducing cell-cell contacts and increasing cell migration. Results Here, we show that ZEB1 represses CAR expression in both PANC-1 (pancreatic and MDA-MB-231 (breast human cancer cells. We demonstrate that ZEB1 physically associates with at least one of two closely spaced and conserved E2 boxes within the minimal CAR promoter here defined as genomic region -291 to -1 relative to the translational start ATG. In agreement with ZEB1's established role as a negative regulator of the epithelial phenotype, silencing its expression in MDA-MB-231 cells induced a partial Mesenchymal-to-Epithelial Transition (MET characterized by increased levels of E-cadherin and CAR, and decreased expression of fibronectin. Conversely, knockdown of ZEB1 in PANC-1 cells antagonized both the TGF-β-induced down-regulation of E-cadherin and CAR and the reduction of adenovirus uptake. Interestingly, even though ZEB1 clearly contributes to the TGF-β-induced mesenchymal phenotype of PANC-1 cells, TGF-β did not seem to affect ZEB1's protein levels or subcellular localization. These findings suggest that TGF-β may inhibit CAR expression by regulating factor(s that cooperate with ZEB1 to repress the CAR promoter, rather than by regulating ZEB1 expression levels. In addition to the negative E2 box-mediated regulation the minimal

  9. Essential role for SphK1/S1P signaling to regulate hypoxia-inducible factor 2α expression and activity in cancer.

    Science.gov (United States)

    Bouquerel, P; Gstalder, C; Müller, D; Laurent, J; Brizuela, L; Sabbadini, R A; Malavaud, B; Pyronnet, S; Martineau, Y; Ader, I; Cuvillier, O

    2016-03-14

    The sphingosine kinase-1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway has been reported to modulate the expression of the canonical transcription factor hypoxia-inducible HIF-1α in multiple cell lineages. HIF-2α is also frequently overexpressed in solid tumors but its role has been mostly studied in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, where HIF-2α has been established as a driver of a more aggressive disease. In this study, the role of SphK1/S1P signaling with regard to HIF-2α was investigated in various cancer cell models including ccRCC cells. Under hypoxic conditions or in ccRCC lacking a functional von Hippel-Lindau (VHL) gene and expressing high levels of HIF-2α, SphK1 activity controls HIF-2α expression and transcriptional activity through a phospholipase D (PLD)-driven mechanism. SphK1 silencing promotes a VHL-independent HIF-2α loss of expression and activity and reduces cell proliferation in ccRCC. Importantly, downregulation of SphK1 is associated with impaired Akt and mTOR signaling in ccRCC. Taking advantage of a monoclonal antibody neutralizing extracellular S1P, we show that inhibition of S1P extracellular signaling blocks HIF-2α accumulation in ccRCC cell lines, an effect mimicked when the S1P transporter Spns2 or the S1P receptor 1 (S1P1) is silenced. Here, we report the first evidence that the SphK1/S1P signaling pathway regulates the transcription factor hypoxia-inducible HIF-2α in diverse cancer cell lineages notably ccRCC, where HIF-2α has been established as a driver of a more aggressive disease. These findings demonstrate that SphK1/S1P signaling may act as a canonical regulator of HIF-2α expression in ccRCC, giving support to its inhibition as a therapeutic strategy that could contribute to reduce HIF-2 activity in ccRCC.

  10. Transcription factors AS1 and AS2 interact with LHP1 to repress KNOX genes in Arabidopsis.

    Science.gov (United States)

    Li, Zhongfei; Li, Bin; Liu, Jian; Guo, Zhihao; Liu, Yuhao; Li, Yan; Shen, Wen-Hui; Huang, Ying; Huang, Hai; Zhang, Yijing; Dong, Aiwu

    2016-12-01

    Polycomb group proteins are important repressors of numerous genes in higher eukaryotes. However, the mechanism by which Polycomb group proteins are recruited to specific genes is poorly understood. In Arabidopsis, LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), also known as TERMINAL FLOWER 2, was originally proposed as a subunit of polycomb repressive complex 1 (PRC1) that could bind the tri-methylated lysine 27 of histone H3 (H3K27me3) established by the PRC2. In this work, we show that LHP1 mainly functions with PRC2 to establish H3K27me3, but not with PRC1 to catalyze monoubiquitination at lysine 119 of histone H2A. Our results show that complexes of the transcription factors ASYMMETRIC LEAVES 1 (AS1) and AS2 could help to establish the H3K27me3 modification at the chromatin regions of Class-I KNOTTED1-like homeobox (KNOX) genes BREVIPEDICELLUS and KNAT2 via direct interactions with LHP1. Additionally, our transcriptome analysis indicated that there are probably more common target genes of AS1 and LHP1 besides Class-I KNOX genes during leaf development in Arabidopsis. © 2016 Institute of Botany, Chinese Academy of Sciences.

  11. The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia.

    Science.gov (United States)

    Sim, Jingwei; Cowburn, Andrew S; Palazon, Asis; Madhu, Basetti; Tyrakis, Petros A; Macías, David; Bargiela, David M; Pietsch, Sandra; Gralla, Michael; Evans, Colin E; Kittipassorn, Thaksaon; Chey, Yu C J; Branco, Cristina M; Rundqvist, Helene; Peet, Daniel J; Johnson, Randall S

    2018-04-03

    Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Reverse translation of phase I biomarker findings links the activity of angiotensin-(1–7) to repression of hypoxia inducible factor-1α in vascular sarcomas

    International Nuclear Information System (INIS)

    Petty, W Jeffrey; Aklilu, Mebea; Varela, Victor A; Lovato, James; Savage, Paul D; Miller, Antonius A

    2012-01-01

    In a phase I study of angiotensin-(1–7) [Ang-(1–7)], clinical benefit was associated with reduction in plasma placental growth factor (PlGF) concentrations. The current study examines Ang-(1–7) induced changes in biomarkers according to cancer type and investigates mechanisms of action engaged in vitro. Plasma biomarkers were measured prior to Ang-(1–7) administration as well as 1, 2, 3, 4, and 6 hours after treatment. Tests for interaction were performed to determine the impact of cancer type on angiogenic hormone levels. If a positive interaction was detected, treatment-induced biomarker changes for individual cancer types were assessed. To investigate mechanisms of action, in vitro growth assays were performed using a murine endothelioma cell line (EOMA). PCR arrays were performed to identify and statistically validate genes that were altered by Ang-(1–7) treatment in these cells. Tests for interaction controlled for dose cohort and clinical response indicated a significant impact of cancer type on post-treatment VEGF and PlGF levels. Following treatment, PlGF levels decreased over time in patients with sarcoma (P = .007). Treatment of EOMA cells with increasing doses of Ang-(1–7) led to significant growth suppression at doses as low as 100 nM. PCR arrays identified 18 genes that appeared to have altered expression after Ang-(1–7) treatment. Replicate analyses confirmed significant changes in 8 genes including reduction in PlGF (P = .04) and hypoxia inducible factor 1α (HIF-1α) expression (P < .001). Ang-(1–7) has clinical and pre-clinical activity for vascular sarcomas that is linked to reduced HIF-1α and PlGF expression

  13. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion.

    Science.gov (United States)

    Xue, Mei; Li, Xu; Li, Zhengkun; Chen, Wei

    2014-07-01

    Urothelial carcinoma associated 1 (UCA1) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in bladder cancer progression and acts as a diagnostic biomarker for bladder carcinoma. Here, we studied the expression and function of lncRNA-UCA1 in the hypoxic microenvironment of bladder cancer. The expression and transcriptional activity of lncRNA-UCA1 were measured by quantitative real-time polymerase chain reaction and luciferase assays. Cell proliferation and apoptosis were evaluated by MTT assays and flow cytometry. Cell migration and invasion were detected by wound healing, migration, and invasion assays. The binding of hypoxia-inducible factor-1α (HIF-1α) to hypoxia response elements (HREs) in the lncRNA-UCA1 promoter was confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. HRE mutations were generated by using a site-directed mutagenesis kit, and HIF-1α knockdown was mediated by small interfering RNA. The effect of HIF-1α inhibition by YC-1 on lncRNA-UCA1 expression was also examined. LncRNA-UCA1 was upregulated by hypoxia in bladder cancer cells. Under hypoxic conditions, lncRNA-UCA1 upregulation increased cell proliferation, migration, and invasion and inhibited apoptosis. The underlying mechanism of hypoxia-upregulated lncRNA-UCA1 expression was that HIF-1α specifically bound to HREs in the lncRNA-UCA1 promoter. Furthermore, HIF-1α knockdown or inhibition could prevent lncRNA-UCA1 upregulation under hypoxia. These findings revealed the mechanism of lncRNA-UCA1 upregulation in hypoxic bladder cancer cells and suggested that effective blocking of lncRNA-UCA1 expression in the hypoxic microenvironment of bladder cancer could be a novel therapeutic strategy.

  14. Effect of trifluoperazine on toxicity, HIF-1α induction and hepatocyte regeneration in acetaminophen toxicity in mice

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Shubhra, E-mail: SCHAUDHURI@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); McCullough, Sandra S., E-mail: mcculloughsandras@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Hennings, Leah, E-mail: lhennings@uams.edu [Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Brown, Aliza T., E-mail: brownalizat@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Li, Shun-Hwa [Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI (United States); Simpson, Pippa M., E-mail: psimpson@mcw.edu [Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI (United States); Hinson, Jack A., E-mail: hinsonjacka@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); James, Laura P., E-mail: jameslaurap@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States)

    2012-10-15

    Oxidative stress and mitochondrial permeability transition (MPT) are important mechanisms in acetaminophen (APAP) toxicity. The MPT inhibitor trifluoperazine (TFP) reduced MPT, oxidative stress, and toxicity in freshly isolated hepatocytes treated with APAP. Since hypoxia inducible factor-one alpha (HIF-1α) is induced very early in APAP toxicity, a role for oxidative stress in the induction has been postulated. In the present study, the effect of TFP on toxicity and HIF-1α induction in B6C3F1 male mice treated with APAP was examined. Mice received TFP (10 mg/kg, oral gavage) prior to APAP (200 mg/kg IP) and at 7 and 36 h after APAP. Measures of metabolism (hepatic glutathione and APAP protein adducts) were comparable in the two groups of mice. Toxicity was decreased in the APAP/TFP mice at 2, 4, and 8 h, compared to the APAP mice. At 24 and 48 h, there were no significant differences in toxicity between the two groups. TFP lowered HIF-1α induction but also reduced the expression of proliferating cell nuclear antigen, a marker of hepatocyte regeneration. TFP can also inhibit phospholipase A{sub 2}, and cytosolic and secretory PLA{sub 2} activity levels were reduced in the APAP/TFP mice compared to the APAP mice. TFP also lowered prostaglandin E{sub 2} expression, a known mechanism of cytoprotection. In summary, the MPT inhibitor TFP delayed the onset of toxicity and lowered HIF-1α induction in APAP treated mice. TFP also reduced PGE{sub 2} expression and hepatocyte regeneration, likely through a mechanism involving PLA{sub 2}. -- Highlights: ► Trifluoperazine reduced acetaminophen toxicity and lowered HIF-1α induction. ► Trifluoperazine had no effect on the metabolism of acetaminophen. ► Trifluoperazine reduced hepatocyte regeneration. ► Trifluoperazine reduced phospholipase A{sub 2} activity and prostaglandin E{sub 2} levels.

  15. HIF-1α as a Regulator of BMP2-Induced Chondrogenic Differentiation, Osteogenic Differentiation, and Endochondral Ossification in Stem Cells

    Directory of Open Access Journals (Sweden)

    Nian Zhou

    2015-04-01

    Full Text Available Background/Aims: Joint cartilage defects are difficult to treat due to the limited self-repair capacities of cartilage. Cartilage tissue engineering based on stem cells and gene enhancement is a potential alternative for cartilage repair. Bone morphogenetic protein 2 (BMP2 has been shown to induce chondrogenic differentiation in mesenchymal stem cells (MSCs; however, maintaining the phenotypes of MSCs during cartilage repair since differentiation occurs along the endochondral ossification pathway. In this study, hypoxia inducible factor, or (HIF-1α, was determined to be a regulator of BMP2-induced chondrogenic differentiation, osteogenic differentiation, and endochondral bone formation. Methods: BMP2 was used to induce chondrogenic and osteogenic differentiation in stem cells and fetal limb development. After HIF-1α was added to the inducing system, any changes in the differentiation markers were assessed. Results: HIF-1α was found to potentiate BMP2-induced Sox9 and the expression of chondrogenesis by downstream markers, and inhibit Runx2 and the expression of osteogenesis by downstream markers in vitro. In subcutaneous stem cell implantation studies, HIF-1α was shown to potentiate BMP2-induced cartilage formation and inhibit endochondral ossification during ectopic bone/cartilage formation. In the fetal limb culture, HIF-1α and BMP2 synergistically promoted the expansion of the proliferating chondrocyte zone and inhibited chondrocyte hypertrophy and endochondral ossification. Conclusion: The results of this study indicated that, when combined with BMP2, HIF-1α induced MSC differentiation could become a new method of maintaining cartilage phenotypes during cartilage tissue engineering.

  16. BAG3 and HIF-1 α coexpression detected by immunohistochemistry correlated with prognosis in hepatocellular carcinoma after liver transplantation.

    Science.gov (United States)

    Xiao, Heng; Tong, Rongliang; Cheng, Shaobing; Lv, Zhen; Ding, Chaofeng; Du, Chengli; Xie, Haiyang; Zhou, Lin; Wu, Jian; Zheng, Shusen

    2014-01-01

    The objective is to determine the effects of BAG3 and HIF-1 α expression on the prognosis of HCC patients after liver transplantation. Samples from 31 patients with HCC receiving liver transplantation were collected for this study. The immunohistochemistry was used to detect the expression of BAG3 and HIF-1 α of HCC samples. According to the immunohistochemistry results, BAG3 and HIF-1 α staining were significantly associated with tumor TNM stage (P = 0.004, P = 0.012). A significant association between high BAG3/HIF-1 α levels and a shorter overall survival was detected, so as the combined BAG3 and HIF-1 α analysis. The results suggested that the expression level of BAG3 and HIF-1 α is efficient prognostic parameters in patients with HCC after liver transplantation.

  17. Fascaplysin Exerts Anti-Cancer Effects through the Downregulation of Survivin and HIF-1α and Inhibition of VEGFR2 and TRKA

    Directory of Open Access Journals (Sweden)

    Taek-In Oh

    2017-09-01

    Full Text Available Fascaplysin has been reported to exert anti-cancer effects by inhibiting cyclin-dependent kinase 4 (CDK4; however, the precise mode of action by which fascaplysin suppresses tumor growth is not clear. Here, we found that fascaplysin has stronger anti-cancer effects than other CDK4 inhibitors, including PD0332991 and LY2835219, on lung cancer cells that are wild-type or null for retinoblastoma (RB, indicating that unknown target molecules might be involved in the inhibition of tumor growth by fascaplysin. Fascaplysin treatment significantly decreased tumor angiogenesis and increased cleaved-caspase-3 in xenografted tumor tissues. In addition, survivin and HIF-1α were downregulated in vitro and in vivo by suppressing 4EBP1-p70S6K1 axis-mediated de novo protein synthesis. Kinase screening assays and drug-protein docking simulation studies demonstrated that fascaplysin strongly inhibited vascular endothelial growth factor receptor 2 (VEGFR2 and tropomyosin-related kinase A (TRKA via DFG-out non-competitive inhibition. Overall, these results suggest that fascaplysin inhibits TRKA and VEGFR2 and downregulates survivin and HIF-1α, resulting in suppression of tumor growth. Fascaplysin, therefore, represents a potential therapeutic approach for the treatment of multiple types of solid cancer.

  18. Specific inhibition of hypoxia-inducible factor (HIF)-1 alpha activation and of vascular endothelial growth factor (VEGF) production by flavonoids.

    Science.gov (United States)

    Hasebe, Yuki; Egawa, Kiyoshi; Yamazaki, Yoko; Kunimoto, Setsuko; Hirai, Yasuaki; Ida, Yoshiteru; Nose, Kiyoshi

    2003-10-01

    Screening using a reporter under the control of the hypoxia-response element (HRE) identified several flavonoids and homoisoflavonoids that inhibit the activation of HRE under hypoxic conditions. Among various compounds, isorhamnetin, luteolin, quercetin, and methyl ophiopogonanone B (MOB) were effective at 3 to 9 microg/ml in inhibiting the reporter activity. The expression of vascular endothelial growth factor (VEGF) mRNA during hypoxia was also inhibited by MOB in HepG2 cells, but the effective doses were 10 to 20 microg/ml. MOB caused destabilization of hypoxia-inducible factor (HIF)-1alpha, as revealed by Western blotting, that was dependent on proteasome activity and the tumor suppressor, p53. The tubular formation and migration of human umbilical vein endothelial cells was also inhibited by MOB. MOB is expected to act as an inhibitor of angiogenesis.

  19. Rapid detection of hypoxia-inducible factor-1-active tumours: pretargeted imaging with a protein degrading in a mechanism similar to hypoxia-inducible factor-1{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Masashi [Kyoto University, Radioisotopes Research Laboratory, Kyoto University Hospital, Faculty of Medicine, Kyoto (Japan); Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Kudo, Takashi; Konishi, Hiroaki; Miyano, Azusa; Ono, Masahiro; Saji, Hideo [Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Kuge, Yuji [Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Hokkaido University, Central Institute of Isotope Science, Sapporo (Japan); Mukai, Takahiro [Kyushu University, Department of Biomolecular Recognition Chemistry, Graduate School of Pharmaceutical Sciences, Fukuoka (Japan); Tanaka, Shotaro; Kizaka-Kondoh, Shinae; Hiraoka, Masahiro [Kyoto University, Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto (Japan)

    2010-08-15

    Hypoxia-inducible factor-1 (HIF-1) plays an important role in malignant tumour progression. For the imaging of HIF-1-active tumours, we previously developed a protein, POS, which is effectively delivered to and selectively stabilized in HIF-1-active cells, and a radioiodinated biotin derivative, (3-{sup 123}I-iodobenzoyl)norbiotinamide ({sup 123}I-IBB), which can bind to the streptavidin moiety of POS. In this study, we aimed to investigate the feasibility of the pretargeting method using POS and {sup 123}I-IBB for rapid imaging of HIF-1-active tumours. Tumour-implanted mice were pretargeted with POS. After 24 h, {sup 125}I-IBB was administered and subsequently, the biodistribution of radioactivity was investigated at several time points. In vivo planar imaging, comparison between {sup 125}I-IBB accumulation and HIF-1 transcriptional activity, and autoradiography were performed at 6 h after the administration of {sup 125}I-IBB. The same sections that were used in autoradiographic analysis were subjected to HIF-1{alpha} immunohistochemistry. {sup 125}I-IBB accumulation was observed in tumours of mice pretargeted with POS (1.6%ID/g at 6 h). This result is comparable to the data derived from {sup 125}I-IBB-conjugated POS-treated mice (1.4%ID/g at 24 h). In vivo planar imaging provided clear tumour images. The tumoral accumulation of {sup 125}I-IBB significantly correlated with HIF-1-dependent luciferase bioluminescence (R=0.84, p<0.01). The intratumoral distribution of {sup 125}I-IBB was heterogeneous and was significantly correlated with HIF-1{alpha}-positive regions (R=0.58, p<0.0001). POS pretargeting with {sup 123}I-IBB is a useful technique in the rapid imaging and detection of HIF-1-active regions in tumours. (orig.)

  20. Hypoxia-Inducible Factor-1 as a Therapeutic Target in Endometrial Cancer Management

    Directory of Open Access Journals (Sweden)

    Laura M. S. Seeber

    2010-01-01

    Full Text Available In the Western world, endometrial cancer (EC is the most common malignant tumor of the female genital tract. Solid tumors like EC outgrow their vasculature resulting in hypoxia. Tumor hypoxia is important because it renders an aggressive phenotype and leads to radio- and chemo-therapy resistance. Hypoxia-inducible factor-1 (HIF-1 plays an essential role in the adaptive cellular response to hypoxia and is associated with poor clinical outcome in EC. Therefore, HIF-1 could be an attractive therapeutic target. Selective HIF-1 inhibitors have not been identified. A number of nonselective inhibitors which target signaling pathways upstream or downstream HIF-1 are known to decrease HIF-1 protein levels. In clinical trials for the treatment of advanced and/or recurrent EC are the topoisomerase I inhibitor Topotecan, mTOR-inhibitor Rapamycin, and angiogenesis inhibitor Bevacizumab. Preliminary data shows encouraging results for these agents. Further work is needed to identify selective HIF-1 inhibitors and to translate these into clinical trials.

  1. Tat-dependent repression of human immunodeficiency virus type 1 long terminal repeat promoter activity by fusion of cellular transcription factors

    International Nuclear Information System (INIS)

    Zhao Cunyou; Chen Yali; Park, Jiyoung; Kim, Jae Bum; Tang Hong

    2004-01-01

    Transcription initiation from HIV-1 long terminal repeat (LTR) promoter requires the virally encoded transactivator, Tat, and several cellular co-factors to accomplish the Tat-dependent processive transcription elongation. Individual cellular transcription activators, LBP-1b and Oct-1, on the other hand, have been shown to inhibit LTR promoter activities probably via competitive binding against TFIID to the TATA-box in LTR promoter. To explore the genetic interference strategies against the viral replication, we took advantage of the existence of the bipartite DNA binding domains and the repression domains of LBP-1b and Oct-1 factors to generate a chimeric transcription repressor. Our results indicated that the fusion protein of LBP-1b and Oct-1 exhibited higher DNA binding affinity to the viral promoter than the individual factors, and little interference with the host cell gene expression due to its anticipated rare cognate DNA sites in the host cell genome. Moreover, the chimera exerted increased Tat-dependent repression of transcription initiation at the LTR promoter both in vitro and in vivo compared to LBP-1b, Oct-1 or combination of LBP-1b and Oct-1. These results might provide the lead in generating a therapeutic reagent useful to suppress HIV-1 replication

  2. BAG3 and HIF-1α Coexpression Detected by Immunohistochemistry Correlated with Prognosis in Hepatocellular Carcinoma after Liver Transplantation

    Directory of Open Access Journals (Sweden)

    Heng Xiao

    2014-01-01

    Full Text Available Objective. The objective is to determine the effects of BAG3 and HIF-1α expression on the prognosis of HCC patients after liver transplantation. Methods. Samples from 31 patients with HCC receiving liver transplantation were collected for this study. The immunohistochemistry was used to detect the expression of BAG3 and HIF-1α of HCC samples. Results. According to the immunohistochemistry results, BAG3 and HIF-1α staining were significantly associated with tumor TNM stage (P=0.004, P=0.012. A significant association between high BAG3/HIF-1α levels and a shorter overall survival was detected, so as the combined BAG3 and HIF-1α analysis. Conclusion. The results suggested that the expression level of BAG3 and HIF-1α is efficient prognostic parameters in patients with HCC after liver transplantation.

  3. Expression of HIF-1α and Markers of Angiogenesis Are Not Significantly Different in Triple Negative Breast Cancer Compared to Other Breast Cancer Molecular Subtypes: Implications for Future Therapy.

    Science.gov (United States)

    Yehia, Lamis; Boulos, Fouad; Jabbour, Mark; Mahfoud, Ziyad; Fakhruddin, Najla; El-Sabban, Marwan

    2015-01-01

    Triple negative breast cancer lacks estrogen, progesterone and epidermal growth factor receptors rendering it refractory to available targetedtherapies. TNBC is associated with central fibrosis and necrosis, both indicators of tumor hypoxia. Hypoxia inducible factor 1α is up-regulated under hypoxia and its expression is associated with induction of angiogenesis resulting in proliferation, aggressive tumor phenotype and metastasis. In this study we evaluate the potential use of HIF-1α as aTNBC-specific marker. 62 TNBC, 64 HER2+, and 64 hormone-receptors positive breast cancer cases were evaluated for central fibrosis and necrosis, HIF-1α, HIF-1β, VEGFR3, CD31 expression and microvessel density. RNA extraction from paraffin-embedded samples, followed by quantitative real-time polymerase chain reaction (qRT-PCR) evaluation of HIF-1α and VEGF transcripts was performed on 54 cases (18 from each subtype). HIF-1α protein was expressed in 35.5% TNBC, 45.3% HER2+and 25.0% ER+/PR+ (p = 0.055; χ2 test). PCRanalysis of subgroup of breast cancers, 84.2% expressed HIF-1α protein and its transcripts, while only 66.7% expressed VEGF transcripts simultaneously with the HIF-1α protein and its transcripts. Central fibrosis and necrosis was highest in TNBC (p = 0.015; χ2 test), while MVD was comparable among all groups (p = 0.928; χ2 test). VEGFR3 was highest in TNBC expressing HIF-1α. HIF-1β protein was expressed in 32.0% of HIF-1α(+), and in (44.3%) of HIF-1α(-) breast cancer cases (p = 0.033; χ2 test). Moreover, HIF-1α expression in cases with central fibrosis and necrosis was highest in the HER2+ followed by the TNBC (p = 0.156; χ2 test). A proportion of TNBC express HIF-1α but not in a significantly different manner from other breast cancer subtypes. The potential of anti-HIF-1α targeted therapy is therefore not a candidate for exclusive use in TNBC, but should be considered in all breast cancers, especially in the setting of clinically aggressive or

  4. Cyclin D1 represses p300 transactivation through a cyclin-dependent kinase-independent mechanism.

    Science.gov (United States)

    Fu, Maofu; Wang, Chenguang; Rao, Mahadev; Wu, Xiaofang; Bouras, Toula; Zhang, Xueping; Li, Zhiping; Jiao, Xuanmao; Yang, Jianguo; Li, Anping; Perkins, Neil D; Thimmapaya, Bayar; Kung, Andrew L; Munoz, Alberto; Giordano, Antonio; Lisanti, Michael P; Pestell, Richard G

    2005-08-19

    Cyclin D1 encodes a regulatory subunit, which with its cyclin-dependent kinase (Cdk)-binding partner forms a holoenzyme that phosphorylates and inactivates the retinoblastoma protein. In addition to its Cdk binding-dependent functions, cyclin D1 regulates cellular differentiation in part by modifying several transcription factors and nuclear receptors. The molecular mechanism through which cyclin D1 regulates the function of transcription factors involved in cellular differentiation remains to be clarified. The histone acetyltransferase protein p300 is a co-integrator required for regulation of multiple transcription factors. Here we show that cyclin D1 physically interacts with p300 and represses p300 transactivation. We demonstrated further that the interaction of the two proteins occurs at the peroxisome proliferator-activated receptor gamma-responsive element of the lipoprotein lipase promoter in the context of the local chromatin structure. We have mapped the domains in p300 and cyclin D1 involved in this interaction. The bromo domain and cysteine- and histidine-rich domains of p300 were required for repression by cyclin D1. Cyclin D1 repression of p300 was independent of the Cdk- and retinoblastoma protein-binding domains of cyclin D1. Cyclin D1 inhibits histone acetyltransferase activity of p300 in vitro. Microarray analysis identified a signature of genes repressed by cyclin D1 and induced by p300 that promotes cellular differentiation and induces cell cycle arrest. Together, our results suggest that cyclin D1 plays an important role in cellular proliferation and differentiation through regulation of p300.

  5. Cooperation of HIF- and NCAM-mediated mechanisms in cell viability of hippocampal cultures after oxygen-glucose deprivation.

    Science.gov (United States)

    Lushnikova, Iryna; Nikandrova, Yelyzaveta; Skibo, Galyna

    2017-10-01

    Neurodegenerative diseases of different genesis are the result of cellular damages including those caused by oxygen and glucose deficit. Neuronal survival or death in brain pathologies depends on a variety of interrelated molecular mechanisms. A key role in modulation of neuron viability belongs to HIF (hypoxia-inducible factor) and NCAM (neural cell adhesion molecules) signaling pathways. In this work, we used organotypic and dissociated hippocampal cultures to analyze cell viability and HIF-1α immunopositive (HIF-1α + ) signal after 30 min oxygen-glucose deprivation (OGD) followed by 24 h of reoxygenation in the presence of FGL (synthetic NCAM-derived mimetic peptide). According to LDH- and MTS-assay of cell viability, FGL showed a neuroprotective effect, which was attributed to the association with FGFR. We showed that these effects correlated with changes of the HIF-1α + level suggesting the communications of HIF and NCAM signaling pathways. These data extend our knowledge of neurodegeneration mechanisms and open additional potential for the development of neuroprotection strategies. © 2017 International Federation for Cell Biology.

  6. Knock down of HIF-1α in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres

    Directory of Open Access Journals (Sweden)

    Esencay Mine

    2010-06-01

    Full Text Available Abstract Background Glioblastoma (GBM is the most common and malignant primary intracranial human neoplasm. GBMs are characterized by the presence of extensive areas of necrosis and hypoxia. Hypoxia and its master regulator, hypoxia inducible factor 1 (HIF-1 play a key role in glioma invasion. Results To further elucidate the functional role of HIF-1α in glioma cell migration in vitro and in invasion in vivo, we used a shRNA approach to knock down HIF-1α expression complemented with genome-wide expression profiling, performed in both normoxic and hypoxic conditions. Our data show that knock down of HIF-1α in glioma cells significantly impairs their migration in vitro as well as their ability to invade into the brain parenchyma in vivo. Next, we assessed the role that HIF-1α plays in maintaining the characteristics of cancer stem cells (CSCs. By using the tumor sphere forming assay, we demonstrate that HIF-1α plays a role in the survival and self-renewal potential of CSCs. Finally, expression profiling experiments in glioma cells provided detailed insight into a broad range of specific biological pathways and processes downstream of HIF-1α. We discuss the role of these processes in the migratory and invasive properties, as well as the stem cell biology of glioblastomas Conclusions Our data show that knock down of HIF-1α in human and murine glioma cells impairs their migration in vitro and their invasion in vivo. In addition, our data suggest that HIF-1α plays a role in the survival and self-renewal potential of CSCs and identify genes that might further elucidate the role of HIF-1α in tumor migration, invasion and stem cell biology.

  7. Inhibiting HIF-1α Decreases Expression of TNF-α and Caspase-3 in Specific Brain Regions Exposed Kainic Acid-Induced Status Epilepticus

    Directory of Open Access Journals (Sweden)

    Jixue Yang

    2016-01-01

    Full Text Available Background/Aims: A recent study demonstrates that pro-inflammatory cytokines (PICs, i.e., IL-1β, IL-6 and TNF-α in specific brain regions of rats play a role in regulating kainic acid (KA-induced status epilepticus (SE via a GABAergic mechanism. The purposes of this report were to examine contributions of hypoxia inducible factor subtype 1α (HIF-1α to expression of PICs in these specific brain regions in epileptic rats. Particularly, we investigated the parietal cortex, hippocampus and amygdala. In addition, we further examined expression of Caspase-3 indicating cell apoptosis in those brain regions of epileptic rats after infusing 2-methoxyestradiol (2-MET, inhibitor of HIF-1α and etanercept (TNF-α receptor antagonist. Methods: ELISA was used to determine the levels of HIF-1α and PICs and western blot analysis was used to examine Caspase-3 expression. Results: Our data show that HIF-1α was significantly increased in the parietal cortex, hippocampus and amygdala 1, 3 and 7 days after induction of SE (Pvs. control rats. Our results also show that inhibiting HIF-1α by central infusion of 2-MET significantly decreased the amplified TNF-α expression in these brain regions evoked by SE (Pvs. vehicle control, but did not modify IL-1β and IL-6. Our results demonstrate that 2-MET and etanercept attenuated an increase in Caspase-3 evoked by SE. Conclusion: Overall, we suggest that HIF-1α activated by SE is likely to contribute to epileptic activity via a TNF-α pathway, which has pharmacological implications to target specific HIF-1α and TNF-α pathways for neuronal dysfunction and vulnerability related to epilepsy.

  8. Lactate induces osteoblast differentiation by stabilization of HIF1α.

    Science.gov (United States)

    Wu, Yu; Wang, Miaomiao; Feng, Haihua; Peng, Ying; Sun, Jieyun; Qu, Xiuxia; Li, Chunping

    2017-09-05

    Aerobic glycolysis is involved in osteoblast differentiation induced by Wnt signaling or PTH treatment. However, it is still unclear whether lactate, the end product of aerobic glycolysis, plays any role in osteoblast differentiation. Herein we report that in cultures of osteoblast-lineage cells, lactate promoted alkaline phosphatase-positive cell formation, increased the activity of alkaline phosphatase, and induced the expression of osteocalcin. This osteoblast differentiation-inducing effect of lactate can be inhibited by blocking its entry into cells with MCT1 siRNA or inhibitors, and by interfering with its metabolism by using specific siRNAs for LDHB and PDH. Moreover, lactate stabilized HIF1α expression and inhibited HIF1α activity, with BAY87-2243 lowering the osteoblast differentiation-inducing effect of lactate. Thus, these findings reveal an unrecognized role for aerobic glycolysis in osteoblast differentiation via its end product, lactate. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. SIRT1 deacetylates RFX5 and antagonizes repression of collagen type I (COL1A2) transcription in smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jun [Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University (China); Department of Respiratory Medicine, Jiangsu Provincial Hospital of Chinese Traditional Medicine (China); Wu, Xiaoyan; Yang, Yuyu; Zhao, Yuhao [Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University (China); Fang, Mingming [Jiangsu Jiankang Vocational Institute (China); Xie, Weiping, E-mail: wpxienjmu@gmail.com [Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University (China); Wang, Hong, E-mail: hwangnjmu@gmail.com [Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University (China); Xu, Yong [Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer SIRT1 interacts with and deacetylates RFX5. Black-Right-Pointing-Pointer SIRT1 activation attenuates whereas SIRT1 inhibition enhances collagen repression by RFX5 in vascular smooth muscle cells. Black-Right-Pointing-Pointer SIRT1 promotes cytoplasmic localization and proteasomal degradation of RFX5 and cripples promoter recruitment of RFX5. Black-Right-Pointing-Pointer IFN-{gamma} represses SIRT1 expression in vascular smooth muscle cells. Black-Right-Pointing-Pointer SIRT1 agonist alleviates collagen repression by IFN-{gamma} in vascular smooth muscle cells. -- Abstract: Decreased expression of collagen by vascular smooth muscle cells (SMCs) within the atherosclerotic plaque contributes to the thinning of the fibrous cap and poses a great threat to plaque rupture. Elucidation of the mechanism underlying repressed collagen type I (COL1A2) gene would potentially provide novel solutions that can prevent rupture-induced complications. We have previously shown that regulatory factor for X-box (RFX5) binds to the COL1A2 transcription start site and represses its transcription. Here we report that SIRT1, an NAD-dependent, class III deacetylase, forms a complex with RFX5. Over-expression of SIRT1 or NAMPT, which synthesizes NAD+ to activate SIRT1, or treatment with the SIRT1 agonist resveratrol decreases RFX5 acetylation and disrupts repression of the COL1A2 promoter activity by RFX5. On the contrary, knockdown of SIRT1 or treatment with SIRT1 inhibitors induces RFX5 acetylation and enhances the repression of collagen transcription. SIRT1 antagonizes RFX5 activity by promoting its nuclear expulsion and proteasomal degradation hence dampening its binding to the COL1A2 promoter. The pro-inflammatory cytokine IFN-{gamma} represses COL1A2 transcription by down-regulating SIRT1 expression in SMCs. Therefore, our data have identified as novel pathway whereby SIRT1 maintains collagen synthesis in SMCs by modulating RFX5 activity.

  10. Role of Hypoxia-inducible factor-1 and its target genes in human lung adenocarcinoma cells after photon- versus carbon ion irradiation; Expression HIF-1-abhaengiger Gene in humanen Lungenadenokarzinom (A549)-Zellen und deren Regulation nach Photonen- und Schwerionenbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Bill, Verena Maria

    2013-11-26

    Exposed to hypoxia tumor cells are notably resistant to photon irradiation. The hypoxiainducible transcription factor 1α (HIF-1α) seems to play a fundamental role in this resistance, while its role after heavy-ion beam remains unknown. The intention of this study was to determine how A549-cells (non-small-cell lung carcinoma) react in different oxygenation states after irradiation with photons or heavy ions, particularly in regards to their expression of HIF-1 target genes. Resistance of hypoxic A549 cells after photon irradiation was documented by cellular and clonogenic survival. In contrast, cellular survival after heavy-ion irradiation in hypoxic cells was not elevated to normoxic cells. Among the oxygen dependent regulation of HIF-1 target genes, gene expression analyses showed an increased expression of GLUT-1, LDH-A, PDK-1 and VEGF after photon irradiation but not after heavy-ion irradiation after 48 hours in normoxic cells. As expected, CDKN1A as inhibitor of cell cycle progression showed higher expression after both radiation forms; interestingly CDKN1A was also in an oxygen dependent manner lightly upregulated. In western blot analyses we demonstrated a significant increase of HIF-1 and GLUT-1 caused by hypoxia, but only a tendency of increased protein level in hypoxia after photon irradiation and no changes after heavy-ion irradiation. Significantly higher protein level of secreted VEGF-A could be measured 72 hours after photon irradiation in normoxic cells by ELISA analyses. Controversially discussed, I could not detect an association between HIF-1 and SCF or Trx-1 in A549-cells in this study. Whereas Trx-1-expression was neither influenced by changed oxygen partial pressure nor irradiation, I could show increased SCF mRNA by quantitative Real Time-PCR and secreted protein level by ELISA after photon irradiation independent of oxygen state. In summary, this study showed that HIF-1 and its target genes (GLUT-1, LDHA; PDK, VEGF) and also SCF was

  11. Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex.

    Science.gov (United States)

    Hiraga, Shin-Ichiro; Alvino, Gina M; Chang, Fujung; Lian, Hui-Yong; Sridhar, Akila; Kubota, Takashi; Brewer, Bonita J; Weinreich, Michael; Raghuraman, M K; Donaldson, Anne D

    2014-02-15

    Initiation of eukaryotic DNA replication requires phosphorylation of the MCM complex by Dbf4-dependent kinase (DDK), composed of Cdc7 kinase and its activator, Dbf4. We report here that budding yeast Rif1 (Rap1-interacting factor 1) controls DNA replication genome-wide and describe how Rif1 opposes DDK function by directing Protein Phosphatase 1 (PP1)-mediated dephosphorylation of the MCM complex. Deleting RIF1 partially compensates for the limited DDK activity in a cdc7-1 mutant strain by allowing increased, premature phosphorylation of Mcm4. PP1 interaction motifs within the Rif1 N-terminal domain are critical for its repressive effect on replication. We confirm that Rif1 interacts with PP1 and that PP1 prevents premature Mcm4 phosphorylation. Remarkably, our results suggest that replication repression by Rif1 is itself also DDK-regulated through phosphorylation near the PP1-interacting motifs. Based on our findings, we propose that Rif1 is a novel PP1 substrate targeting subunit that counteracts DDK-mediated phosphorylation during replication. Fission yeast and mammalian Rif1 proteins have also been implicated in regulating DNA replication. Since PP1 interaction sites are evolutionarily conserved within the Rif1 sequence, it is likely that replication control by Rif1 through PP1 is a conserved mechanism.

  12. Prolonged fasting activates hypoxia inducible factors-1α, -2α and -3α in a tissue-specific manner in northern elephant seal pups.

    Science.gov (United States)

    Soñanez-Organis, José G; Vázquez-Medina, José P; Crocker, Daniel E; Ortiz, Rudy M

    2013-09-10

    Hypoxia inducible factors (HIFs) are important regulators of energy homeostasis and cellular adaptation to low oxygen conditions. Northern elephant seals are naturally adapted to prolonged periods (1-2 months) of food deprivation (fasting) which result in metabolic changes that may activate HIF-1. However, the effects of prolonged fasting on HIFs are not well defined. We obtained the full-length cDNAs of HIF-1α and HIF-2α, and partial cDNA of HIF-3α in northern elephant seal pups. We also measured mRNA and nuclear protein content of HIF-1α, -2α, -3α in muscle and adipose during prolonged fasting (1, 3, 5 & 7 weeks), along with mRNA expression of HIF-mediated genes, LDH and VEGF. HIF-1α, -2α and -3α are 2595, 2852 and 1842 bp and encode proteins of 823, 864 and 586 amino acid residues with conserved domains needed for their function (bHLH and PAS) and regulation (ODD and TAD). HIF-1α and -2α mRNA expression increased 3- to 5-fold after 7 weeks of fasting in adipose and muscle, whereas HIF-3α increased 5-fold after 7 weeks of fasting in adipose. HIF-2α protein expression was detected in nuclear fractions from adipose and muscle, increasing approximately 2-fold, respectively with fasting. Expression of VEGF increased 3-fold after 7 weeks in adipose and muscle, whereas LDH mRNA expression increased 12-fold after 7 weeks in adipose. While the 3 HIFα genes are expressed in muscle and adipose, only HIF-2α protein was detectable in the nucleus suggesting that HIF-2α may contribute more significantly in the up-regulation of genes involved in the metabolic adaptation during fasting in the elephant seal. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Expression of hypoxia-inducible factor-1α and cell cycle proteins in invasive breast cancer are estrogen receptor related

    International Nuclear Information System (INIS)

    Bos, Reinhard; Diest, Paul J van; Groep, Petra van der; Shvarts, Avi; Greijer, Astrid E; Wall, Elsken van der

    2004-01-01

    The transcription factor hypoxia-inducible factor-1 (HIF-1) is a key regulator of the cellular response to hypoxia. Previous studies showed that concentrations of its subunit HIF-1α, as a surrogate for HIF-1 activity, are increased during breast carcinogenesis and can independently predict prognosis in breast cancer. During carcinogenesis, the cell cycle is progressively deregulated, and proliferation rate is a strong prognostic factor in breast cancer. In this study we undertook a detailed evaluation of the relationships between HIF-1α and cell cycle-associated proteins. In a representative estrogen receptor (ER) group of 150 breast cancers, the expression of HIF-1α, vascular endothelial growth factor, the ER, HER-2/neu, Ki-67, cyclin A, cyclin D 1 , p21, p53, and Bcl-2 was investigated by immunohistochemistry. High concentrations (5% or more) of HIF-1α were associated with increased proliferation as shown by positive correlations with Ki-67 (P < 0.001) and the late S–G2-phase protein cyclin A (P < 0.001), but not with the G1-phase protein cyclin D 1 . High HIF-1α concentrations were also strongly associated with p53 positivity (P < 0.001) and loss of Bcl-2 expression (P = 0.013). No association was found between p21 and HIF-1α (P = 0.105) in the whole group of patients. However, the subgroup of ER-positive cancers was characterized by a strong positive association between HIF-1α and p21 (P = 0.023), and HIF-1α lacked any relation with proliferation. HIF-1α overexpression is associated with increased proliferation, which might explain the adverse prognostic impact of increased concentrations of HIF-1α in invasive breast cancer. In ER-positive tumors, HIF-1α is associated with p21 but not against proliferation. This shows the importance of further functional analysis to unravel the role of HIF-1 in late cell cycle progression, and the link between HIF-1, p21, and ER

  14. Glucose-mediated repression of autolysis and conidiogenesis in Emericella nidulans.

    Science.gov (United States)

    Emri, Tamás; Molnár, Zsolt; Veres, Tünde; Pusztahelyi, Tünde; Dudás, Gábor; Pócsi, István

    2006-10-01

    Glucose-mediated repression of autolysis and sporulation was studied in submerged Emericellanidulans (anam. Aspergillus nidulans) cultures. Null mutation of the creA gene, which encodes the major carbon catabolite repressor CreA in E. nidulans, resulted in a hyperautolytic phenotype characterized by increased extracellular hydrolase production and dry cell mass declination. Interestingly, glucose, as well as the glucose antimetabolite 2-deoxy-d-glucose, repressed autolysis and sporulation in both the control and the creA null mutant strains suggesting that these processes were also subjected to CreA-independent carbon regulation. For example, the glucose-mediated, but CreA-independent, repression of the sporulation transcription factor BrlA was likely to contribute to the negative regulation of conidiogenesis by glucose. Although CreA played a prominent role in the regulation of autolysis via the repression of genes encoding important autolytic hydrolases like ChiB chitinase and PrtA protease the age-related production of the chitinase activity was also negatively affected by the down-regulation of brlA expression. However, neither CreA-dependent nor CreA-independent elements of carbon regulation affected the initiation and regulation of cell death in E. nidulans under carbon starvation.

  15. Peritoneal milky spots serve as a hypoxic niche and favor gastric cancer stem/progenitor cell peritoneal dissemination through hypoxia-inducible factor 1α.

    Science.gov (United States)

    Miao, Zhi-Feng; Wang, Zhen-Ning; Zhao, Ting-Ting; Xu, Ying-Ying; Gao, Jian; Miao, Feng; Xu, Hui-Mian

    2014-12-01

    Peritoneal dissemination is the most common cause of death in gastric cancer patients. The hypoxic microenvironment plays a major role in controlling the tumor stem cell phenotype and is associated with patients' prognosis through hypoxia-inducible factor-1α (HIF-1α), a key transcriptional factor that responds to hypoxic stimuli. During the peritoneal dissemination process, gastric cancer stem/progenitor cells (GCSPCs) are thought to enter into and maintained in peritoneal milky spots (PMSs), which have hypoxic microenvironments. However, the mechanism through which the hypoxic environment of PMSs regulated GCSPC maintenance is still poorly understood. Here, we investigated whether hypoxic PMSs were an ideal cancer stem cell niche suitable for GCSPC engraftment. We also evaluated the mechanisms through which the HIF-1α-mediated hypoxic microenvironment regulated GCSPC fate. We observed a positive correlation between HIF-1α expression and gastric cancer peritoneal dissemination (GCPD) in gastric cancer patients. Furthermore, the GCSPC population expanded in primary gastric cancer cells under hypoxic condition in vitro, and hypoxic GCSPCs showed enhanced self-renewal ability, but reduced differentiation capacity, mediated by HIF-1α. In an animal model, GCSPCs preferentially resided in the hypoxic zone of PMSs; moreover, when the hypoxic microenvironment in PMSs was destroyed, GCPD was significantly alleviated. In conclusion, our results demonstrated that PMSs served as a hypoxic niche and favored GCSPCs peritoneal dissemination through HIF-1α both in vitro and in vivo. These results provided new insights into the GCPD process and may lead to advancements in the clinical treatment of gastric cancer. © 2014 The Authors. STEM CELLS Published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  16. Hypoxia and hypoxia mimetics decrease aquaporin 5 (AQP5 expression through both hypoxia inducible factor-1α and proteasome-mediated pathways.

    Directory of Open Access Journals (Sweden)

    Jitesh D Kawedia

    Full Text Available The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5, we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70% decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels.

  17. Hypoxia and Hypoxia Mimetics Decrease Aquaporin 5 (AQP5) Expression through Both Hypoxia Inducible Factor-1α and Proteasome-Mediated Pathways

    Science.gov (United States)

    Kawedia, Jitesh D.; Yang, Fan; Sartor, Maureen A.; Gozal, David; Czyzyk-Krzeska, Maria; Menon, Anil G.

    2013-01-01

    The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5), we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70%) decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α) and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels. PMID:23469202

  18. Investigating the Regulation and Potential Role of Nonhypoxic Hypoxia Inducible Factor 1 (HIF 1) in Aromatase Inhibitor Resistant Breast Cancer

    Science.gov (United States)

    2015-12-01

    hypoxia response element ( HRE , 5’-GCGTG- 3’) occurs under basal conditions in LTLTCa cells and is significantly decreased by treatment with HER2...inhibitor lapatinib. Experiments to accomplish this task for vimentin were completed and reported in the 2014 annual summary. A potential HRE was located... HRE to which HIF-1 binds, were used for real-time PCR. ChIP real-time PCR results are expressed as the fold increase, compared with vehicle-treated

  19. Hypoxia-inducible factor-1α, vascular endothelial growth factor, inducible nitric oxide synthase, and endothelin-1 expression correlates with angiogenesis in congenital heart disease

    Directory of Open Access Journals (Sweden)

    Hsin-Ling Yin

    2016-07-01

    Full Text Available In Taiwan, the average prevalence of congenital heart disease (CHD is 13.08/1000 live births. Most children with CHD die before the age of 5 years; therefore, identifying treatment methods to extend the life of CHD patients is an important issue in clinical practice. The objective of this study is to evaluate the roles of hypoxia-inducible factor-1α (HIF-1α, vascular endothelial growth factor (VEGF, inducible nitric oxide synthase (iNOS, endothelin-1 (ET-1, and CD34 in CHD autopsy cases in comparison with autopsy cases without CHD. The study included 19 autopsy cases, which were divided into the following four groups: acyanotic CHD (n = 11, cyanotic CHD (n = 3, CHD associated with chromosomal abnormalities (n = 3, and complex CHD (n = 2. Heart specimens obtained from 10 autopsy cases without CHD were included as controls. Our results indicated that high percentages of HIF-1α (100%, VEGF (89.5%, iNOS (78.9%, and ET-1 (84.2% expressions were observed in CHD autopsy cases and this was found to be significant. HIF-1α induced by hypoxia could play a potential role in relating downstream gene expressions in CHD patients. Upregulation of VEGF by HIF-1α could play an important role in triggering angiogenesis to protect myocardial cell survival in a hypoxic microenvironment. Therefore, HIF-1α could be a significant prognosis marker in CHD and be a prospective candidate in the development of target therapy in cardiovascular diseases.

  20. EVEN-SKIPPED HOMEOBOX 1 controls human ES cell differentiation by directly repressing GOOSECOID expression

    DEFF Research Database (Denmark)

    Kalisz, Mark; Winzi, Maria Karin; Bisgaard, Hanne Cathrine

    2012-01-01

    (EVX1) and GOOSECOID (GSC) regulate cell fate decisions in streak-like progenitors derived from human ES cells exposed to BMP4 and/or activin. We found that EVX1 repressed GSC expression and promoted formation of posterior streak-like progeny in response to BMP4, and conversely that GSC repressed EVX1...... expression and was required for development of anterior streak-like progeny in response to activin. Chromatin immunoprecipitation assays showed that EVX1 bound to the GSC 5'-flanking region in BMP4 treated human ES cells, and band shift assays identified two EVX1 binding sites in the GSC 5'-region......TGFß signaling patterns the primitive streak, yet little is known about transcriptional effectors that mediate the cell fate choices during streak-like development in mammalian embryos and in embryonic stem (ES) cells. Here we demonstrate that cross-antagonistic actions of EVEN-SKIPPED HOMEOBOX 1...

  1. Atorvastatin Inhibits the HIF1α-PPAR Axis, Which Is Essential for Maintaining the Function of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Nakashima, Yoshiki; Miyagi-Shiohira, Chika; Noguchi, Hirofumi; Omasa, Takeshi

    2018-06-19

    We herein report a novel mechanism of action of statin preparations using a new drug discovery method. Milk fat globule-EGF factor 8 protein (MFG-E8) was identified from the secretory component of mouse embryonic fibroblast (MEF) as a cell adhesion-promoting factor effective for screening active cellular agents of human induced pluripotent stem cells (hiPSCs) in vitro using electrochemical impedance. Our analyses showed that atorvastatin did not cause death in myocardial cells differentiated from hiPSCs but reduced the pluripotent cell survival in vitro when using serum- and albumin-free media, and inhibited the ability to form teratomas in mice. This result could have been already the cytopathic effect of atorvastatin, and complete elimination of hiPSCs was confirmed in the xenotransplantation assay. The administration of atorvastatin to hiPSCs caused the expression of hypoxia inducible factor (HIF)1α mRNA to be unchanged at 6 hr and downregulated at 24 hr. In addition, the inhibition of the survival of hiPSCs was confirmed by HIF1α-peroxisome proliferator-activated receptor (PPAR) axis inhibition. These results suggest that the addition of atorvastatin to hiPSC cultures reduces the survival of pluripotent cells by suppressing the HIF1α-PPAR axis. In summary, the HIF1α-PPAR axis has an important role in maintaining the survival of pluripotent hiPSCs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Silibinin inhibits hypoxia-induced HIF-1α-mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: In vitro evidence and in vivo functional imaging and metabolomics.

    Science.gov (United States)

    Deep, Gagan; Kumar, Rahul; Nambiar, Dhanya K; Jain, Anil K; Ramteke, Anand M; Serkova, Natalie J; Agarwal, Chapla; Agarwal, Rajesh

    2017-03-01

    Hypoxia is associated with aggressive phenotype and poor prognosis in prostate cancer (PCa) patients suggesting that PCa growth and progression could be controlled via targeting hypoxia-induced signaling and biological effects. Here, we analyzed silibinin (a natural flavonoid) efficacy to target cell growth, angiogenesis, and metabolic changes in human PCa, LNCaP, and 22Rv1 cells under hypoxic condition. Silibinin treatment inhibited the proliferation, clonogenicity, and endothelial cells tube formation by hypoxic (1% O 2 ) PCa cells. Interestingly, hypoxia promoted a lipogenic phenotype in PCa cells via activating acetyl-Co A carboxylase (ACC) and fatty acid synthase (FASN) that was inhibited by silibinin treatment. Importantly, silibinin treatment strongly decreased hypoxia-induced HIF-1α expression in PCa cells together with a strong reduction in hypoxia-induced NADPH oxidase (NOX) activity. HIF-1α overexpression in LNCaP cells significantly increased the lipid accumulation and NOX activity; however, silibinin treatment reduced HIF-1α expression, lipid levels, clonogenicity, and NOX activity even in HIF-1α overexpressing LNCaP cells. In vivo, silibinin feeding (200 mg/kg body weight) to male nude mice with 22Rv1 tumors, specifically inhibited tumor vascularity (measured by dynamic contrast-enhanced MRI) resulting in tumor growth inhibition without directly inducing necrosis (as revealed by diffusion-weighted MRI). Silibinin feeding did not significantly affect tumor glucose uptake measured by FDG-PET; however, reduced the lipid synthesis measured by quantitative 1 H-NMR metabolomics. IHC analyses of tumor tissues confirmed that silibinin feeding decreased proliferation and angiogenesis as well as reduced HIF-1α, FASN, and ACC levels. Together, these findings further support silibinin usefulness against PCa through inhibiting hypoxia-induced signaling. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Immunohistological expression of HIF-1α, GLUT-1, Bcl-2 and Ki-67 in consecutive biopsies during chemoradiotherapy in patients with rectal cancer

    DEFF Research Database (Denmark)

    Havelund, Birgitte Mayland; Sørensen, Flemming Brandt; Pløen, John

    2013-01-01

    receiving preoperative CRT (>50.4 Gy and Uracil/Tegafur). Immunohistological expressions of HIF-1α, GLUT-1, Bcl-2 and Ki-67 were investigated in biopsies taken before treatment, after 2, 4 and 6 weeks of CRT and in specimens from the operation. Decreasing expressions of HIF-1α, Bcl-2 and Ki-67 were observed...

  4. Knockdown of hypoxia-inducible factor-1 alpha reduces proliferation, induces apoptosis and attenuates the aggressive phenotype of retinoblastoma WERI-Rb-1 cells under hypoxic conditions.

    Science.gov (United States)

    Xia, Tian; Cheng, Hao; Zhu, Yu

    2014-01-01

    Hypoxia-inducible factor-1 alpha (HIF-1α) plays a critical role in tumor cell adaption to hypoxia by inducing the transcription of numerous genes. The role of HIF-1α in malignant retinoblastoma remains unclear. We analyzed the role of HIF-1α in WERI-Rb-1 retinoblastoma cells under hypoxic conditions. CoCl2 (125 mmol/L) was added to the culture media to mimic hypoxia. HIF-1α was silenced using siRNA. Gene and protein expression were measured by semi-quantitative RT-PCR and Western blotting. Cell cycle and apoptosis were analyzed by flow cytometry. Cell proliferation, adhesion and invasion were assayed using MTT, Transwell invasion, and cell adhesion assays respectively. Hypoxia significantly upregulated HIF-1α protein expression and the HIF-1α target genes VEGF, GLUT1, and Survivin mRNA. HIF-1α mRNA expression was not affected by hypoxia. Transfection of the siRNA expression plasmid pRNAT-CMV3.2/Neo-HIF-1α silenced HIF-1α by approximately 80% in hypoxic WERI-Rb-1 cells. The knockdown of HIF-1α under hypoxic conditions downregulated VEGF, GLUT1, and Survivin mRNA. It also inhibited proliferation, promoted apoptosis, induced the G0/G1 phase cell cycle arrest, and reduced the adhesion and invasion of WERI-Rb-1 cells. HIF-1α plays a major role in the survival and aggressive phenotype of retinoblastoma cells under hypoxic conditions. Targeting HIF-1α may be a promising therapeutic strategy for human malignant retinoblastoma.

  5. CFLAP1 and CFLAP2 Are Two bHLH Transcription Factors Participating in Synergistic Regulation of AtCFL1-Mediated Cuticle Development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shibai Li

    2016-01-01

    Full Text Available The cuticle is a hydrophobic lipid layer covering the epidermal cells of terrestrial plants. Although many genes involved in Arabidopsis cuticle development have been identified, the transcriptional regulation of these genes is largely unknown. Previously, we demonstrated that AtCFL1 negatively regulates cuticle development by interacting with the HD-ZIP IV transcription factor HDG1. Here, we report that two bHLH transcription factors, AtCFL1 associated protein 1 (CFLAP1 and CFLAP2, are also involved in AtCFL1-mediated regulation of cuticle development. CFLAP1 and CFLAP2 interact with AtCFL1 both in vitro and in vivo. Overexpression of either CFLAP1 or CFLAP2 led to expressional changes of genes involved in fatty acids, cutin and wax biosynthesis pathways and caused multiple cuticle defective phenotypes such as organ fusion, breakage of the cuticle layer and decreased epicuticular wax crystal loading. Functional inactivation of CFLAP1 and CFLAP2 by chimeric repression technology caused opposite phenotypes to the CFLAP1 overexpressor plants. Interestingly, we find that, similar to the transcription factor HDG1, the function of CFLAP1 in cuticle development is dependent on the presence of AtCFL1. Furthermore, both HDG1 and CFLAP1/2 interact with the same C-terminal C4 zinc finger domain of AtCFL1, a domain that is essential for AtCFL1 function. These results suggest that AtCFL1 may serve as a master regulator in the transcriptional regulation of cuticle development, and that CFLAP1 and CFLAP2 are involved in the AtCFL1-mediated regulation pathway, probably through competing with HDG1 to bind to AtCFL1.

  6. Oroxylin A regulates glucose metabolism in response to hypoxic stress with the involvement of Hypoxia-inducible factor-1 in human hepatoma HepG2 cells.

    Science.gov (United States)

    Dai, Qinsheng; Yin, Qian; Wei, Libin; Zhou, Yuxin; Qiao, Chen; Guo, Yongjian; Wang, Xiaotang; Ma, Shiping; Lu, Na

    2016-08-01

    Metabolic alteration in cancer cells is one of the most conspicuous characteristics that distinguish cancer cells from normal cells. In this study, we investigated the influence and signaling ways of oroxylin A affecting cancer cell energy metabolism under hypoxia. The data showed that oroxylin A remarkably reduced the generation of lactate and glucose uptake under hypoxia in HepG2 cells. Moreover, oroxylin A inhibited HIF-1α expression and its stability. The downstream targets (PDK1, LDHA, and HK II), as well as their mRNA levels were also suppressed by oroxylin A under hypoxia. The silencing or the overexpression of HIF-1α assays suggested that HIF-1α is required for metabolic effect of oroxylin A in HepG2 cells during hypoxia. Furthermore, oroxylin A could reduce the expression of complex III in mitochondrial respiratory chain, and then decrease the accumulation of ROS at moderate concentrations (0-50 µM) under hypoxia, which was benefit for its inhibition on glycolytic activity by decreasing ROS-mediated HIF-1 expression. Besides, oroxylin A didn't cause the loss of MMP under hypoxia and had no obvious effects on the expression of OXPHOS complexes, suggesting that oroxylin A did not affect mitochondrial mass at the moderate stress of oroxylin A. The suppressive effect of oroxylin A on glycolysis led to a significantly repress of ATP generation, for ATP generation mostly depends on glycolysis in HepG2 cells. This study revealed a new aspect of glucose metabolism regulation of oroxylin A under hypoxia, which may contribute to its new anticancer mechanism. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Vasohibin 2 promotes epithelial-mesenchymal transition in human breast cancer via activation of transforming growth factor β 1 and hypoxia dependent repression of GATA-binding factor 3.

    Science.gov (United States)

    Tu, Min; Li, Zhanjun; Liu, Xian; Lv, Nan; Xi, Chunhua; Lu, Zipeng; Wei, Jishu; Song, Guoxin; Chen, Jianmin; Guo, Feng; Jiang, Kuirong; Wang, Shui; Gao, Wentao; Miao, Yi

    2017-03-01

    Vasohibin 2 (VASH2) is identified as an angiogenic factor, and has been implicated in tumor angiogenesis, proliferation and epithelial-mesenchymal transition (EMT). To investigate the EMT role of VASH2 in breast cancer, we overexpressed or knocked down expression of VASH2 in human breast cancer cell lines. We observed that VASH2 induced EMT in vitro and in vivo. The transforming growth factor β1 (TGFβ1) pathway was activated by VASH2, and expression of a dominant negative TGFβ type II receptor could block VASH2-mediated EMT. In clinical breast cancer tissues VASH2 positively correlated with TGFβ1 expression, but negatively correlated with E-cadherin (a marker of EMT) expression. Under hypoxic conditions in vitro or in vivo, we found that down-regulation of estrogen receptor 1 (ESR1) in VASH2 overexpressing ESR1 positive cells suppressed E-cadherin. Correlation coefficient analysis indicated that VASH2 and ESR1 expression were negatively correlated in clinical human breast cancer tissues. Further study revealed that a transcription factor of ESR1, GATA-binding factor 3 (GATA3), was down-regulated by VASH2 under hypoxia or in vivo. These findings suggest that VASH2 drives breast cancer cells to undergo EMT by activation of the TGFβ1 pathway and hypoxia dependent repression GATA3-ESR1 pathway, leading to cancer metastasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Development of a novel fluorescent imaging probe for tumor hypoxia by use of a fusion protein with oxygen-dependent degradation domain of HIF-1α

    Science.gov (United States)

    Tanaka, Shotaro; Kizaka-Kondoh, Shinae; Harada, Hiroshi; Hiraoka, Masahiro

    2007-02-01

    More malignant tumors contain more hypoxic regions. In hypoxic tumor cells, expression of a series of hypoxiaresponsive genes related to malignant phenotype such as angiogenesis and metastasis are induced. Hypoxia-inducible factor-1 (HIF-1) is a master transcriptional activator of such genes, and thus imaging of hypoxic tumor cells where HIF-1 is active, is important in cancer therapy. We have been developing PTD-ODD fusion proteins, which contain protein transduction domain (PTD) and the VHL-mediated protein destruction motif in oxygen-dependent degradation (ODD) domain of HIF-1 alpha subunit (HIF-1α). Thus PTD-ODD fusion proteins can be delivered to any tissue in vivo through PTD function and specifically stabilized in hypoxic cells through ODD function. To investigate if PTD-ODD fusion protein can be applied to construct hypoxia-specific imaging probes, we first constructed a fluorescent probe because optical imaging enable us to evaluate a probe easily, quickly and economically in a small animal. We first construct a model fusion porein PTD-ODD-EGFP-Cy5.5 named POEC, which is PTD-ODD protein fused with EGFP for in vitro imaging and stabilization of fusion protein, and conjugated with a near-infrared dye Cy5.5. This probe is designed to be degraded in normoxic cells through the function of ODD domain and followed by quick clearance of free fluorescent dye. On the other hand, this prove is stabilized in hypoxic tumor cells and thus the dye is stayed in the cells. Between normoxic and hypoxic conditions, the difference in the clearance rate of the dye will reveals suited contrast for tumor-hypoxia imaging. The optical imaging probe has not been optimized yet but the results presented here exhibit a potential of PTD-ODD fusion protein as a hypoxia-specific imaging probe.

  9. Factors regulated by interferon gamma and hypoxia-inducible factor 1A contribute to responses that protect mice from Coccidioides immitis infection

    Directory of Open Access Journals (Sweden)

    Woelk Christopher H

    2012-09-01

    Full Text Available Abstract Background Coccidioidomycosis results from airborne infections caused by either Coccidioides immitis or C. posadasii. Both are pathogenic fungi that live in desert soil in the New World and can infect normal hosts, but most infections are self-limited. Disseminated infections occur in approximately 5% of cases and may prove fatal. Mouse models of the disease have identified strains that are resistant (e.g. DBA/2 or susceptible (e.g. C57BL/6 to these pathogens. However, the genetic and immunological basis for this difference has not been fully characterized. Results Microarray technology was used to identify genes that were differentially expressed in lung tissue between resistant DBA/2 and sensitive C57BL/6 mice after infection with C. immitis. Differentially expressed genes were mapped onto biological pathways, gene ontologies, and protein interaction networks, which revealed that innate immune responses mediated by Type II interferon (i.e., IFNG and the signal transducer and activator of transcription 1 (STAT1 contribute to the resistant phenotype. In addition, upregulation of hypoxia inducible factor 1A (HIF1A, possibly as part of a larger inflammatory response mediated by tumor necrosis factor alpha (TNFA, may also contribute to resistance. Microarray gene expression was confirmed by real-time quantitative PCR for a subset of 12 genes, which revealed that IFNG HIF1A and TNFA, among others, were significantly differentially expressed between the two strains at day 14 post-infection. Conclusion These results confirm the finding that DBA/2 mice express more Type II interferon and interferon stimulated genes than genetically susceptible strains and suggest that differential expression of HIF1A may also play a role in protection.

  10. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells.

    Science.gov (United States)

    Zhang, Chuanzhao; Zhi, Wanqing Iris; Lu, Haiquan; Samanta, Debangshu; Chen, Ivan; Gabrielson, Edward; Semenza, Gregg L

    2016-10-04

    Exposure of breast cancer cells to hypoxia increases the percentage of breast cancer stem cells (BCSCs), which are required for tumor initiation and metastasis, and this response is dependent on the activity of hypoxia-inducible factors (HIFs). We previously reported that exposure of breast cancer cells to hypoxia induces the ALKBH5-mediated demethylation of N6-methyladenosine (m6A) in NANOG mRNA leading to increased expression of NANOG, which is a pluripotency factor that promotes BCSC specification. Here we report that exposure of breast cancer cells to hypoxia also induces ZNF217-dependent inhibition of m6A methylation of mRNAs encoding NANOG and KLF4, which is another pluripotency factor that mediates BCSC specification. Although hypoxia induced the BCSC phenotype in all breast-cancer cell lines analyzed, it did so through variable induction of pluripotency factors and ALKBH5 or ZNF217. However, in every breast cancer line, the hypoxic induction of pluripotency factor and ALKBH5 or ZNF217 expression was HIF-dependent. Immunohistochemistry revealed that expression of HIF-1α and ALKBH5 was concordant in all human breast cancer biopsies analyzed. ALKBH5 knockdown in MDA-MB-231 breast cancer cells significantly decreased metastasis from breast to lungs in immunodeficient mice. Thus, HIFs stimulate pluripotency factor expression and BCSC specification by negative regulation of RNA methylation.

  11. The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches

    Directory of Open Access Journals (Sweden)

    Marco Mineo

    2016-06-01

    Full Text Available Long non-coding RNAs (lncRNAs have an undefined role in the pathobiology of glioblastoma multiforme (GBM. These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia-inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2 as a subtype-specific hypoxia-inducible lncRNA, upregulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal, and hypoxia-dependent molecular reprogramming. Among the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Downregulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs’ speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome and targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context.

  12. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes1[W

    Science.gov (United States)

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1(C65Y)(for ethylene response1-1), ers1-1(I62P) (for ethylene response sensor1-1), and ers1C65Y are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1(C65Y), but not ers1-1(I62P), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1(I62P); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1(I62P) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1C65Y, which implied that ETR1 and EIN4 have synergistic effects on ers1C65Y functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors. PMID:22227969

  13. Andrographolide inhibits the migration, invasion and matrix metalloproteinase expression of rheumatoid arthritis fibroblast-like synoviocytes via inhibition of HIF-1α signaling.

    Science.gov (United States)

    Li, Guo-feng; Qin, Yu-hua; Du, Peng-qiang

    2015-09-01

    Hypoxia is implicated in the pathogenesis of rheumatoid arthritis (RA), contributing to the tumor-like phenotypes of RA fibroblast-like synoviocytes (RA-FLSs). Andrographolide is the main bioactive component of Andrographis paniculata, an herbal medicine that shows therapeutic benefits in RA patients. Here, we explored the effects of andrographolide on hypoxia-induced migration and invasion of RA-FLSs. RA-FLSs were exposed to hypoxia in the presence or absence of andrographolide and cell migration and invasion were tested by Transwell assays. The expression of hypoxia-inducible factor-1 alpha (HIF-1α), matrix metalloproteinase (MMP)-1, MMP-3 and MMP-9 was measured by semi-quantitative reverse transcription polymerase chain reaction and Western blot analysis. HIF-1α DNA binding activity was assessed by electrophoretic mobility shift assay. The effects of overexpression of exogenous HIF-1α on the action of andrographolide in RA-FLSs were investigated. Andrographolide inhibited FLS migration and invasion under hypoxic conditions in a dose-dependent manner. The upregulation of MMP-1, MMP-3 and MMP-9 in response to hypoxia was significantly (Pandrographolide. Moreover, the expression and DNA binding activity of HIF-1α were dose-dependently decreased in andrographolide-treated cells under hypoxic conditions. Overexpression of HIF-1α almost completely reversed the suppressive effects of andrographolide on the migration, invasion and MMP expression of hypoxic RA-FLSs. These results indicate the ability of andrographolide to attenuate hypoxia-induced invasiveness of RA-FLSs via inhibition of HIF-1α signaling, and warrant further exploration of andrographolide for the treatment of RA. Copyright © 2015. Published by Elsevier Inc.

  14. Induction of gastrin expression in gastrointestinal cells by hypoxia or cobalt is independent of hypoxia-inducible factor (HIF).

    Science.gov (United States)

    Xiao, Lin; Kovac, Suzana; Chang, Mike; Shulkes, Arthur; Baldwin, Graham S; Patel, Oneel

    2012-07-01

    Gastrin and its precursors have been shown to promote mitogenesis and angiogenesis in gastrointestinal tumors. Hypoxia stimulates tumor growth, but its effect on gastrin gene regulation has not been examined in detail. Here we have investigated the effect of hypoxia on the transcription of the gastrin gene in human gastric cancer (AGS) cells. Gastrin mRNA was measured by real-time PCR, gastrin peptides were measured by RIA, and gastrin promoter activity was measured by dual-luciferase reporter assay. Exposure to a low oxygen concentration (1%) increased gastrin mRNA concentrations in wild-type AGS cells (AGS) and in AGS cells overexpressing the gastrin receptor (AGS-cholecystokinin receptor 2) by 2.1 ± 0.4- and 4.1 ± 0.3-fold (P factor hypoxia-inducible factor 1 (HIF-1) or knockdown of either the HIF-1α or HIF-1β subunit did not affect gastrin promoter inducibility under hypoxia indicated that the hypoxic activation of the gastrin gene is likely HIF independent. Mutational analysis of previously identified Sp1 regulatory elements in the gastrin promoter also failed to abrogate the induction of promoter activity by hypoxia. The observations that hypoxia up-regulates the gastrin gene in AGS cells by HIF-independent mechanisms, and that this effect is enhanced by the presence of gastrin receptors, provide potential targets for gastrointestinal cancer therapy.

  15. Suppression of mitochondrial respiration with auraptene inhibits the progression of renal cell carcinoma: involvement of HIF-1α degradation.

    Science.gov (United States)

    Jang, Yunseon; Han, Jeongsu; Kim, Soo Jeong; Kim, Jungim; Lee, Min Joung; Jeong, Soyeon; Ryu, Min Jeong; Seo, Kang-Sik; Choi, Song-Yi; Shong, Minho; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-11-10

    Renal cell carcinoma (RCC) progression resulting from the uncontrolled migration and enhanced angiogenesis is an obstacle to effective therapeutic intervention. Tumor metabolism has distinctive feature called Warburg effect, which enhances the aerobic glycolysis rapidly supplying the energy for migration of tumor. To manipulate this metabolic change characteristic of aggressive tumors, we utilized the citrus extract, auraptene, known as a mitochondrial inhibitor, testing its anticancer effects against the RCC4 cell line. We found that auraptene impaired RCC4 cell motility through reduction of mitochondrial respiration and glycolytic pathway-related genes. It also strongly disrupted VEGF-induced angiogenesis in vitro and in vivo. Hypoxia-inducible factor 1a (HIF-1a), a key regulator of cancer metabolism, migration and angiogenesis that is stably expressed in RCCs by virtue of a genetic mutation in the von Hippel-Lindau (VHL) tumor-suppressor protein, was impeded by auraptene, which blocked HIF-1a translation initiation without causing cytotoxicity. We suggest that blockade HIF-1a and reforming energy metabolism with auraptene is an effective approach for suspension RCC progression.

  16. Expression of Hypoxia-Associated Protein HIF-1α in Follicular Thyroid Cancer is Associated with Distant Metastasis.

    Science.gov (United States)

    Klaus, Aumayr; Fathi, Osmen; Tatjana, Traub-Weidinger; Bruno, Niederle; Oskar, Koperek

    2018-04-01

    Follicular thyroid carcinomas (FTCs) are the second most common malignant neoplasia of the thyroid and in general its prognosis is quite favorable. However, the occurrence of metastases or non-responsiveness to radioiodine therapy worsens the prognosis considerably. We evaluated immunohistochemically the expression of hypoxia-associated proteins by hypoxia-induced factor 1α (HIF-1α), the stroma-remodeling marker Tenascin C, as well as markers for the epithelial-mesenchymal transition (EMT), namely E-cadherin and slug in a series of 59 sporadic FTCs. In addition, various clinicopathologic parameters were assessed like TNM-staging, age, tumor size as well as tumor characteristics like desmoplasia, necrosis, and calcification. Overexpression of HIF-1α was seen in 29 of 59 tumors (49.2%) including 21 (35.6%) FTC with strong expression of tumor cell groups. HIF-1α correlated significantly with metastasis (p test), degree of desmoplasia (p = 0.042, Kruskal-Wallis test), tenascin C expression (p = 0.042, Kruskal-Wallis test), calcification (p Kruskal-Wallis test), necrosis (p = 0.002), age (p = 0.011, Kruskal-Wallis test) and tumor stage UICC (p = 0.022, Kruskal-Wallis test). Furthermore, metastasis was associated with the degree of desmoplasia (p = 0.014; Fisher's exact test), calcification (p = 0.008, Fisher's exact test), necrosis (p = 0.042, Fisher's exact test), tumor size (p = 0.015, Mann-Whitney U test), and age (p = 0.001, Mann-Whitney U test). In a Cox proportional hazards model, only metastasis remained as an independent risk factor for overall survival (hazard rate: 10.2 [95% CI, 02.19 to 47.26]; p = 0.003). Our data suggest that HIF-1α plays a critical role in the remodeling of the extracellular matrix as well as metastasizing process of follicular thyroid carcinoma and targeting hypoxia-associated and -regulated proteins may be considered as potential targets for personalized medicine.

  17. Overexpression of Hypoxia-Inducible Factor-1α Exacerbates Endothelial Barrier Dysfunction Induced by Hypoxia

    Directory of Open Access Journals (Sweden)

    Pei Wang

    2013-09-01

    Full Text Available Background/Aims: The mechanisms involved in endothelial barrier dysfunction induced by hypoxia are incompletely understood. There is debate about the role of hypoxia-inducible factor-1α (HIF-1α in endothelial barrier disruption. The aim of this study was to investigate the effect of genetic overexpression of HIF-1α on barrier function and the underlying mechanisms in hypoxic endothelial cells. Methods: The plasmid pcDNA3.1/V5-His-HIF-1α was stably transfected into human endothelial cells. The cells were exposed to normoxia or hypoxia. The mRNA and protein expressions of HIF-1α were detected by RT-PCR and Western blot respectively. The barrier function was assessed by measuring the transendothelial electrical resistance (TER. The Western blot analysis was used to determine the protein expression of glucose transporter-1 (GLUT-1, zonular occludens-1 (ZO-1, occludin, and myosin light chain kinase (MLCK in endothelial cells. The mRNA expression of proinflammatory cytokines was detected by qRT-PCR. Results: Genetic overexpression of HIF-1α significantly increased the mRNA and protein expression of HIF-1α in endothelial cells. The overexpression of HIF-1α enhanced the hypoxia-induced increase of HIF-1α and GLUT-1 protein expression. HIF-1α overexpression not only exacerbated hypoxia-induced endothelial barrier dysfunction but also augmented hypoxia-induced up-regulation of MLCK protein expression. HIF-1α overexpression also enhanced IL-1β, IL-6 and TNF-α mRNA expression. Conclusion: We provide evidence that genetic overexpression of HIF-1α aggravates the hypoxia-induced endothelial barrier dysfunction via enhancing the up-regulation of MLCK protein expression caused by hypoxia, suggesting a potential role for HIF-1α in the pathogenesis of endothelial barrier dysfunction in hypoxia.

  18. Fibroblast-Specific Deletion of Hypoxia Inducible Factor-1 Critically Impairs Murine Cutaneous Neovascularization and Wound Healing.

    Science.gov (United States)

    Duscher, Dominik; Maan, Zeshaan N; Whittam, Alexander J; Sorkin, Michael; Hu, Michael S; Walmsley, Graham G; Baker, Hutton; Fischer, Lauren H; Januszyk, Michael; Wong, Victor W; Gurtner, Geoffrey C

    2015-11-01

    Diabetes and aging are known risk factors for impaired neovascularization in response to ischemic insult, resulting in chronic wounds, and poor outcomes following myocardial infarction and cerebrovascular injury. Hypoxia-inducible factor (HIF)-1α, has been identified as a critical regulator of the response to ischemic injury and is dysfunctional in diabetic and elderly patients. To better understand the role of this master hypoxia regulator within cutaneous tissue, the authors generated and evaluated a fibroblast-specific HIF-1α knockout mouse model. The authors generated floxed HIF-1 mice (HIF-1) by introducing loxP sites around exon 1 of the HIF-1 allele in C57BL/6J mice. Fibroblast-restricted HIF-1α knockout (FbKO) mice were generated by breeding our HIF-1 with tamoxifen-inducible Col1a2-Cre mice (Col1a2-CreER). HIF-1α knockout was evaluated on a DNA, RNA, and protein level. Knockout and wild-type mice were subjected to ischemic flap and wound healing models, and CD31 immunohistochemistry was performed to assess vascularity of healed wounds. Quantitative real-time polymerase chain reaction of FbKO skin demonstrated significantly reduced Hif1 and Vegfa expression compared with wild-type. This finding was confirmed at the protein level (p wound closure and vascularity (p wound healing, reduced wound vascularity, and significant impairment in the ischemic neovascular response. These findings provide new insight into the importance of cell-specific responses to hypoxia during cutaneous neovascularization.

  19. HIF transport issues for P>10-3 Torr and Z>1

    International Nuclear Information System (INIS)

    Olson, C.L.

    1986-01-01

    Final transport schemes for HIF are examined, with emphasis on transport for p>10 -3 Torr and Z>1 since this should simplify the reactor design and reduce the length of the accelerator. Specifically the question of charge neutralization is addressed. We find (1) the fractional neutralization f needed scales as f/sub i/ = (1-Z -2 ) which means f/sub i/>0.89 is needed for Z>3; (2) axially-trapped electrons limit the net beam potential to ephi/sub min/ = α(1/2 m/sub e/v/sub i/ 2 ) with 1≤αapprox. <4; (3) radially-expelled plasma ions increase f/sub i/ especially near the pellet; (4) radially-oscillating plasma electrons have and adiabatic limit of f/sub i/≅0.5; and (5) as f/sub i/ approaches unity, plasma particle trajectories may involve drift motions along and radially away from the ion beam. Also, criteria are given for the maximum Z/A allowed for transporting very large currents. For the HIF parameters used, it appears that neutralization will probably be adequte for Zapprox. <3

  20. Loss of HIF-1α in the notochord results in cell death and complete disappearance of the nucleus pulposus.

    Science.gov (United States)

    Merceron, Christophe; Mangiavini, Laura; Robling, Alexander; Wilson, Tremika LeShan; Giaccia, Amato J; Shapiro, Irving M; Schipani, Ernestina; Risbud, Makarand V

    2014-01-01

    The intervertebral disc (IVD) is one of the largest avascular organs in vertebrates. The nucleus pulposus (NP), a highly hydrated and proteoglycan-enriched tissue, forms the inner portion of the IVD. The NP is surrounded by a multi-lamellar fibrocartilaginous structure, the annulus fibrosus (AF). This structure is covered superior and inferior side by cartilaginous endplates (CEP). The NP is a unique tissue within the IVD as it results from the differentiation of notochordal cells, whereas, AF and CEP derive from the sclerotome. The hypoxia inducible factor-1α (HIF-1α) is expressed in NP cells but its function in NP development and homeostasis is largely unknown. We thus conditionally deleted HIF-1α in notochordal cells and investigated how loss of this transcription factor impacts NP formation and homeostasis at E15.5, birth, 1 and 4 months of age, respectively. Histological analysis, cell lineage studies, and TUNEL assay were performed. Morphologic changes of the mutant NP cells were identified as early as E15.5, followed, postnatally, by the progressive disappearance and replacement of the NP with a novel tissue that resembles fibrocartilage. Notably, lineage studies and TUNEL assay unequivocally proved that NP cells did not transdifferentiate into chondrocyte-like cells but they rather underwent massive cell death, and were completely replaced by a cell population belonging to a lineage distinct from the notochordal one. Finally, to evaluate the functional consequences of HIF-1α deletion in the NP, biomechanical testing of mutant IVD was performed. Loss of the NP in mutant mice significantly reduced the IVD biomechanical properties by decreasing its ability to absorb mechanical stress. These findings are similar to the changes usually observed during human IVD degeneration. Our study thus demonstrates that HIF-1α is essential for NP development and homeostasis, and it raises the intriguing possibility that this transcription factor could be involved in IVD

  1. The β3-Integrin Binding Protein β3-Endonexin Is a Novel Negative Regulator of Hypoxia-Inducible Factor-1

    Science.gov (United States)

    Kračun, Damir; Rieß, Florian; Kanchev, Ivan; Gawaz, Meinrad

    2014-01-01

    Abstract Aims: Integrins are multifunctional heterodimeric adhesion receptors that mediate the attachment between a cell and the extracellular matrix or other surrounding cells. In endothelial cells, integrins can modulate cell migration and motility. In particular, β3-integrin is expressed in angiogenic vessels. Signal transduction by β3-integrins requires the recruitment of intracellular signaling molecules. β3-endonexin is a highly spliced molecule that has been identified as a β3-integrin binding protein. β3-endonexin isoforms are expressed in endothelial cells and have been suggested to act as shuttle proteins between the membrane and the nucleus. However, their functional role in angiogenesis is unclear. In this study, we investigated whether β3-endonexin isoforms are involved in endothelial angiogenic processes under hypoxia. Results: The overexpression of β3-endonexin isoforms decreased endothelial proliferation and tube formation under hypoxia, while the depletion of β3-endonexin by RNAi promoted angiogenic responses in vitro and in vivo. In hypoxia, β3-endonexin accumulated in the nucleus, and prevention of this response by depletion of β3-endonexin increased hypoxic activation and induction of the hypoxia-inducible factor (HIF)-1 and its target genes VEGF and PAI-1. β3-endonexin diminished nuclear factor kappa B (NFκB) activation and decreased NFκB binding to the HIF-1α promoter under hypoxia, subsequently diminishing NFκB-dependent transcription of HIF-1α under hypoxia. Innovation: Our results indicate for the first time that the overexpression of β3-endonexin can decrease hypoxic induction and activation of HIF-1α and can prevent hypoxic endothelial proliferation and angiogenic responses. Conclusion: β3-endonexin can act as a novel anti-angiogenic factor specifically in the response to hypoxia due to its negative impact on the activation of HIF-1. Antioxid. Redox Signal. 20, 1964–1976. PMID:24386901

  2. Hypoxia-inducible factor-1 signalling promotes goblet cell hyperplasia in airway epithelium

    Science.gov (United States)

    Polosukhin, Vasiliy V; Cates, Justin M; Lawson, William E; Milstone, Aaron P; Matafonov, Anton G; Massion, Pierre P; Lee, Jae Woo; Randell, Scott H; Blackwell, Timothy S

    2018-01-01

    Goblet cell hyperplasia is a common feature of chronic obstructive pulmonary disease (COPD) airways, but the mechanisms that underlie this epithelial remodelling in COPD are not understood. Based on our previous finding of hypoxia-inducible factor-1α (HIF-1α) nuclear localization in large airways from patients with COPD, we investigated whether hypoxia-inducible signalling could influence the development of goblet cell hyperplasia. We evaluated large airway samples obtained from 18 lifelong non-smokers and 13 former smokers without COPD, and 45 former smokers with COPD. In these specimens, HIF-1α nuclear staining occurred almost exclusively in COPD patients in areas of airway remodelling. In COPD patients, 93.2 ± 3.9% (range 65 – 100%) of goblet cells were HIF-1α positive in areas of goblet cell hyperplasia, whereas nuclear HIF-1α was not detected in individuals without COPD or in normal-appearing pseudostratified epithelium from COPD patients. To determine the direct effects of hypoxia-inducible signalling on epithelial cell differentiation in vitro, human bronchial epithelial cells (HBECs) were grown in air-liquid interface cultures under hypoxia (1% O2) or following treatment with a selective HIF-1α stabilizer, (2R)-[(4-biphenylylsulphonyl)amino]-N-hydroxy-3-phenyl-propionamide (BiPS). HBECs grown in hypoxia or with BiPS treatment were characterized by HIF-1α activation, carbonic anhydrase IX expression, mucus-producing cell hyperplasia and increased expression of MUC5AC. Analysis of signal transduction pathways in cells with HIF-1α activation showed increased ERK1/2 phosphorylation without activation of epidermal growth factor receptor, Ras, PI3K-Akt or STAT6. These data indicate an important effect of hypoxia-inducible signalling on airway epithelial cell differentiation and identify a new potential target to limit mucus production in COPD. PMID:21557221

  3. Role of the hinge region of glucocorticoid receptor for HEXIM1-mediated transcriptional repression

    International Nuclear Information System (INIS)

    Yoshikawa, Noritada; Shimizu, Noriaki; Sano, Motoaki; Ohnuma, Kei; Iwata, Satoshi; Hosono, Osamu; Fukuda, Keiichi; Morimoto, Chikao

    2008-01-01

    We previously reported that HEXIM1 (hexamethylene bisacetamide-inducible protein 1), which suppresses transcription elongation via sequestration of positive transcription elongation factor b (P-TEFb) using 7SK RNA as a scaffold, directly associates with glucocorticoid receptor (GR) to suppress glucocorticoid-inducible gene activation. Here, we revealed that the hinge region of GR is essential for its interaction with HEXIM1, and that oxosteroid receptors including GR show sequence homology in their hinge region and interact with HEXIM1, whereas the other members of nuclear receptors do not. We also showed that HEXIM1 suppresses GR-mediated transcription in two ways: sequestration of P-TEFb by HEXIM1 and direct interaction between GR and HEXIM1. In contrast, peroxisome proliferator-activated receptor γ-dependent gene expression is negatively modulated by HEXIM1 solely via sequestration of P-TEFb. We, therefore, conclude that HEXIM1 may act as a gene-selective transcriptional regulator via direct interaction with certain transcriptional regulators including GR and contribute to fine-tuning of, for example, glucocorticoid-mediated biological responses

  4. The potential role of Brachyury in inducing epithelial-to-mesenchymal transition (EMT) and HIF-1α expression in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Chao [Department of Mammary Surgery, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403 (China); Zhang, Jingjing, E-mail: jingjingzhangzs@163.com [Department of Cancer Radiotherapy, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403 (China); Fu, Jianhua [Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403 (China); Ling, Feihai, E-mail: feihailingfhl@163.com [Department of Mammary Surgery, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403 (China)

    2015-11-27

    One of transcription factors of the T-box family, Brachyury has been implicated in tumorigenesis of many types of cancers, regulating cancer cell proliferation, metastasis, invasion and epithelial-to-mesenchymal transition (EMT). However, the role of Brachyury in breast cancer cells has been scarcely reported. The present study aimed to investigate the expression and role of Brachyury in breast cancer. Brachyury expression was analyzed by qRT-PCR and Western blot. The correlations between Brachyury expression and clinicopathological factors of breast cancer were determined. Involvement of EMT stimulation and hypoxia-inducible factor-1α (HIF-1α) expression induction by Brachyury was also evaluated. Moreover, the effect of Brachyury on tumor growth and metastasis in vivo was examined in a breast tumor xenograft model. Brachyury expression was enhanced in primary breast cancer tissues and Brachyury expression was correlated with tumor stage and lymph node metastasis. Hypoxia enhanced Brachyury expression, the silencing of which blocked the modulation effect of hypoxia on E-cadherin and vimentin expression. Brachyury significantly augmented HIF-1alpha expression via PTEN/Akt signaling as well as accelerated cell proliferation and migration in vitro. Additionally, Brachyury accelerated breast tumor xenograft growth and increased lung metastasis in nude mice. In summary, our data confirmed that Brachyury might contribute to hypoxia-induced EMT of breast cancer and trigger HIF-1alpha expression via PTEN/Akt signaling. - Highlights: • Brachyury expression was correlated with tumor stage and lymph node metastasis. • Hypoxia enhanced Brachyury expression, which contributes to hypoxia-induced EMT. • Brachyury significantly augmented HIF-1alpha expression via PTEN/Akt signaling. • Brachyury accelerated tumor xenograft growth and increased lung metastasis.

  5. The MSX1 homeoprotein recruits G9a methyltransferase to repressed target genes in myoblast cells.

    Directory of Open Access Journals (Sweden)

    Jingqiang Wang

    Full Text Available Although the significance of lysine modifications of core histones for regulating gene expression is widely appreciated, the mechanisms by which these modifications are incorporated at specific regulatory elements during cellular differentiation remains largely unknown. In our previous studies, we have shown that in developing myoblasts the Msx1 homeoprotein represses gene expression by influencing the modification status of chromatin at its target genes. We now show that genomic binding by Msx1 promotes enrichment of the H3K9me2 mark on repressed target genes via recruitment of G9a histone methyltransferase, the enzyme responsible for catalyzing this histone mark. Interaction of Msx1 with G9a is mediated via the homeodomain and is required for transcriptional repression and regulation of cellular differentiation, as well as enrichment of the H3K9me2 mark in proximity to Msx1 binding sites on repressed target genes in myoblast cells as well as the developing limb. We propose that regulation of chromatin status by Msx1 recruitment of G9a and other histone modifying enzymes to regulatory regions of target genes represents an important means of regulating the gene expression during development.

  6. TET1-Mediated Hydroxymethylation Facilitates Hypoxic Gene Induction in Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Christopher J. Mariani

    2014-06-01

    Full Text Available The ten-eleven-translocation 5-methylcytosine dioxygenase (TET family of enzymes catalyzes the conversion of 5-methylcytosine (5-mC to 5-hydroxymethylcytosine (5-hmC, a modified cytosine base that facilitates gene expression. Cells respond to hypoxia by inducing a transcriptional program regulated in part by oxygen-dependent dioxygenases that require Fe(II and α-ketoglutarate. Given that the TET enzymes also require these cofactors, we hypothesized that the TETs regulate the hypoxia-induced transcriptional program. Here, we demonstrate that hypoxia increases global 5-hmC levels, with accumulation of 5-hmC density at canonical hypoxia response genes. A subset of 5-hmC gains colocalize with hypoxia response elements facilitating DNA demethylation and HIF binding. Hypoxia results in transcriptional activation of TET1, and full induction of hypoxia-responsive genes and global 5-hmC increases require TET1. Finally, we show that 5-hmC increases and TET1 upregulation in hypoxia are HIF-1 dependent. These findings establish TET1-mediated 5-hmC changes as an important epigenetic component of the hypoxic response.

  7. MUC1-C Represses the Crumbs Complex Polarity Factor CRB3 and Downregulates the Hippo Pathway

    Science.gov (United States)

    Alam, Maroof; Bouillez, Audrey; Tagde, Ashujit; Ahmad, Rehan; Rajabi, Hasan; Maeda, Takahiro; Hiraki, Masayuki; Suzuki, Yozo; Kufe, Donald

    2016-01-01

    Apical-basal polarity and epithelial integrity are maintained in part by the Crumbs (CRB) complex. The C-terminal subunit of MUC1 (MUC1-C) is a transmembrane protein that is expressed at the apical border of normal epithelial cells and aberrantly at high levels over the entire surface of their transformed counterparts. However, it is not known if MUC1-C contributes to this loss of polarity that is characteristic of carcinoma cells. Here it is demonstrated that MUC1-C downregulates expression of the Crumbs complex CRB3 protein in triple-negative breast cancer (TNBC) cells. MUC1-C associates with ZEB1 on the CRB3 promoter and represses CRB3 transcription. Notably, CRB3 activates the core kinase cassette of the Hippo pathway, which includes LATS1 and LATS2. In this context, targeting MUC1-C was associated with increased phosphorylation of LATS1, consistent with activation of the Hippo pathway, which is critical for regulating cell contact, tissue repair, proliferation and apoptosis. Also shown is that MUC1-C-mediated suppression of CRB3 and the Hippo pathway is associated with dephosphorylation and activation of the oncogenic YAP protein. In turn, MUC1-C interacts with YAP, promotes formation of YAP/β-catenin complexes and induces the WNT target gene MYC. These data support a previously unrecognized model in which targeting MUC1-C in TNBC cells (i) induces CRB3 expression, (ii) activates the CRB3-driven Hippo pathway, (iii) inactivates YAP, and thereby (iv) suppresses YAP/β-catenin-mediated induction of MYC expression. Implications These findings demonstrate a previously unrecognized role for the MUC1-C oncoprotein in the regulation of polarity and the Hippo pathway in breast cancer. PMID:27658423

  8. Hypoxia-inducible factor-1α regulates chemotactic migration of pancreatic ductal adenocarcinoma cells through directly transactivating the CX3CR1 gene.

    Directory of Open Access Journals (Sweden)

    Tiansuo Zhao

    Full Text Available CX3CR1 is an important chemokine receptor and regulates the chemotactic migration of pancreatic ductal adenocarcinoma (PDAC cells. Up to now, its regulatory mechanism remains largely undefined. Here, we report that hypoxia upregulates the expression of CX3CR1 in pancreatic cancer cells. When hypoxia-inducible factor (HIF-1α expression was knocked down in vitro and in vivo, the expression of CX3CR1 was significantly decreased. Chromatin immunoprecipitation assay demonstrated that HIF-1α bound to the hypoxia-response element (HRE; 5'-A/GCGTG-3' of CX3CR1 promoter under normoxia, and this binding was significantly enhanced under hypoxia. Overexpression of HIF-1α significantly upregulated the expression of luciferase reporter gene under the control of the CX3CR1 promoter in pancreatic cancer cells. Importantly, we demonstrated that HIF-1α may regulate cancer cell migration through CX3CR1. The HIF-1α/CX3CR1 pathway might represent a valuable therapeutic target to prevent invasion and distant metastasis in PDAC.

  9. Activation of the Hypoxia Inducible Factor 1α Subunit Pathway in Steatotic Liver Contributes to Formation of Cholesterol Gallstones.

    Science.gov (United States)

    Asai, Yoichiro; Yamada, Tetsuya; Tsukita, Sohei; Takahashi, Kei; Maekawa, Masamitsu; Honma, Midori; Ikeda, Masanori; Murakami, Keigo; Munakata, Yuichiro; Shirai, Yuta; Kodama, Shinjiro; Sugisawa, Takashi; Chiba, Yumiko; Kondo, Yasuteru; Kaneko, Keizo; Uno, Kenji; Sawada, Shojiro; Imai, Junta; Nakamura, Yasuhiro; Yamaguchi, Hiroaki; Tanaka, Kozo; Sasano, Hironobu; Mano, Nariyasu; Ueno, Yoshiyuki; Shimosegawa, Tooru; Katagiri, Hideki

    2017-05-01

    Hypoxia-inducible factor 1α subunit (HIF1A) is a transcription factor that controls the cellular response to hypoxia and is activated in hepatocytes of patients with nonalcoholic fatty liver disease (NAFLD). NAFLD increases the risk for cholesterol gallstone disease by unclear mechanisms. We studied the relationship between HIF1A and gallstone formation associated with liver steatosis. We performed studies with mice with inducible disruption of Hif1a in hepatocytes via a Cre adenoviral vector (inducible hepatocyte-selective HIF1A knockout [iH-HIFKO] mice), and mice without disruption of Hif1a (control mice). Mice were fed a diet rich in cholesterol and cholate for 1 or 2 weeks; gallbladders were collected and the number of gallstones was determined. Livers and biliary tissues were analyzed by histology, quantitative reverse-transcription polymerase chain reaction, immunohistochemistry, and immunoblots. We measured concentrations of bile acid, cholesterol, and phospholipid in bile and rates of bile flow. Primary hepatocytes and cholangiocytes were isolated and analyzed. HIF1A was knocked down in Hepa1-6 cells with small interfering RNAs. Liver biopsy samples from patients with NAFLD, with or without gallstones, were analyzed by quantitative reverse-transcription polymerase chain reaction. Control mice fed a diet rich in cholesterol and cholate developed liver steatosis with hypoxia; levels of HIF1A protein were increased in hepatocytes around central veins and 90% of mice developed cholesterol gallstones. Only 20% of the iH-HIFKO mice developed cholesterol gallstones. In iH-HIFKO mice, the biliary lipid concentration was reduced by 36%, compared with control mice, and bile flow was increased by 35%. We observed increased water secretion from hepatocytes into bile canaliculi to mediate these effects, resulting in suppression of cholelithogenesis. Hepatic expression of aquaporin 8 (AQP8) protein was 1.5-fold higher in iH-HIFKO mice than in control mice. Under hypoxic

  10. Serdemetan antagonizes the Mdm2-HIF1α axis leading to decreased levels of glycolytic enzymes.

    Directory of Open Access Journals (Sweden)

    Jason A Lehman

    Full Text Available Serdemetan (JNJ-26854165, an antagonist to Mdm2, was anticipated to promote the activation of p53. While regulation of p53 by Mdm2 is important, Mdm2 also regulates numerous proteins involved in diverse cellular functions. We investigated if Serdemetan would alter the Mdm2-HIF1α axis and affect cell survival in human glioblastoma cells independently of p53. Treatment of cells with Serdemetan under hypoxia resulted in a decrease in HIF1α levels. HIF1α downstream targets, VEGF and the glycolytic enzymes (enolase, phosphoglycerate kinase1/2, and glucose transporter 1, were all decreased in response to Serdemetan. The involvement of Mdm2 in regulating gene expression of glycolytic enzymes raises the possibility of side effects associated with therapeutically targeting Mdm2.

  11. Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1

    International Nuclear Information System (INIS)

    Williams, Kaye J.; Telfer, Brian A.; Xenaki, Dia; Sheridan, Mary R.; Desbaillets, Isabelle; Peters, Hans J.W.; Honess, Davina; Harris, Adrian L.; Dachs, Gabi U.; Kogel, Albert van der; Stratford, Ian J.

    2005-01-01

    Background and purpose: To test the hypothesis that deficiency in expression of the transcription factor, HIF-1, renders tumours more radioresponsive than HIF-1 proficient tumours. Patients and methods: Tumours comprising mouse hepatoma cells lacking HIF-1β (and thereby HIF-1 function) were grown in nude mice and radiation-induced growth delay compared with that seen for wild-type tumours and tumours derived from HIF-1β negative cells where HIF-1 function had been restored. Results: The xenografts that lack HIF-1 activity take longer to establish their growth and are more radioresponsive than both parental xenografts and those with restored HIF-1 function. Pre-treatment of the HIF-1 deficient xenografts with the hypoxic radiosensitizer misonidazole, had little effect on radioresponse. In contrast this treatment radiosensitized the parental xenografts. In spite of this, no difference in oxygenation status was found between the tumour types as measured by Eppendorf O 2 -electrodes and by binding of the hypoxic cell marker NITP. Admixing wild type and HIF-1 deficient cells in the same tumour at ratios of 1 in 10 and 1 in 100 restores the growth of the mixed tumours to that of a 100% HIF-1 proficient cell population. However, when comparing the effects of radiation on the mixed tumours, radioresponsiveness is maintained in those tumours containing the high proportion of HIF-1 deficient cells. Conclusions: The differences in radioresponse do not correlate with tumour oxygenation, suggesting that the hypoxic cells within the HIF-1 deficient tumours do not contribute to the outcome of radiotherapy. Thus, hypoxia impacts on tumour radioresponsiveness not simply because of the physio-chemical mechanism of oxygen with radiation-induced radicals causing damage 'fixation', but also because hypoxia/HIF-1 promotes expression of genes that allow tumour cells to survive under these adverse conditions. Further, the results from the cell mixing experiments uncouple the growth

  12. HIF1α is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo

    Directory of Open Access Journals (Sweden)

    Parisa Imanirad

    2014-01-01

    Full Text Available Hypoxia affects many physiologic processes during early stages of mammalian ontogeny, particularly placental and vascular development. In the adult, the hypoxic bone marrow microenvironment plays a role in regulating hematopoietic stem cell (HSC function. HSCs are generated from the major vasculature of the embryo, but whether the hypoxic response affects the generation of these HSCs is as yet unknown. Here we examined whether Hypoxia Inducible Factor1-alpha (HIF1α, a key modulator of the response to hypoxia, is essential for HSC development. We found hypoxic cells in embryonic tissues that generate and expand hematopoietic cells (aorta, placenta and fetal liver, and specifically aortic endothelial and hematopoietic cluster cells. A Cre/loxP conditional knockout (cKO approach was taken to delete HIF1α in Vascular Endothelial-Cadherin expressing endothelial cells, the precursors to definitive hematopoietic cells. Functional assays show that HSC and hematopoietic progenitor cells (HPCs are significantly reduced in cKO aorta and placenta. Moreover, decreases in phenotypic aortic hematopoietic cluster cells in cKO embryos indicate that HIF1α is necessary for generation and/or expansion of HPCs and HSCs. cKO adult BM HSCs are also affected under transplantation conditions. Thus, HIF1α is a regulator of HSC generation and function beginning at the earliest embryonic stages.

  13. Low-dose radiation pretreatment improves survival of human ceiling culture-derived proliferative adipocytes (ccdPAs) under hypoxia via HIF-1 alpha and MMP-2 induction

    International Nuclear Information System (INIS)

    Adachi, Naoki; Kubota, Yoshitaka; Kosaka, Kentarou; Akita, Shinsuke; Sasahara, Yoshitarou; Kira, Tomoe; Kuroda, Masayuki; Mitsukawa, Nobuyuki; Bujo, Hideaki; Satoh, Kaneshige

    2015-01-01

    Poor survival is a major problem of adipocyte transplantation. We previously reported that VEGF and MMPs secreted from transplanted adipocytes are essential for angiogenesis and adipogenesis. Pretreatment with low-dose (5 Gy) radiation (LDR) increased VEGF, MMP-2, and HIF-1 alpha mRNA expression in human ceiling culture-derived proliferative adipocytes (hccdPAs). Gene expression after LDR differed between adipose-derived stem cells (hASCs) and hccdPAs. Pretreatment with LDR improved the survival of hccdPAs under hypoxia, which is inevitable in the early stages after transplantation. Upregulation of VEGF and MMP-2 after LDR in hccdPAs is mediated by HIF-1 alpha expression. Our results suggest that pretreatment with LDR may improve adipocyte graft survival in a clinical setting through upregulation of VEGF and MMP-2 via HIF-1 alpha. - Highlights: • Ceiling culture-derived proliferative adipocytes (ccdPAs) react to radiation. • Low-dose radiation (LDR) pretreatment improves survival of ccdPAs under hypoxia. • Gene expression after LDR differs between ccdPAs and adipose-derived stem cells. • LDR-induced increase in MMP-2 and VEGF is dependent on HIF-1 alpha induction. • LDR pretreatment may improve the adipocyte graft survival rate in clinical settings

  14. Low-dose radiation pretreatment improves survival of human ceiling culture-derived proliferative adipocytes (ccdPAs) under hypoxia via HIF-1 alpha and MMP-2 induction

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Naoki [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Kubota, Yoshitaka, E-mail: kubota-cbu@umin.ac.jp [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Kosaka, Kentarou; Akita, Shinsuke; Sasahara, Yoshitarou; Kira, Tomoe [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Kuroda, Masayuki [Center for Advanced Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Mitsukawa, Nobuyuki [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan); Bujo, Hideaki [Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, 564-1 Shimoshizu, Sakura-shi, Chiba, #285-8741 (Japan); Satoh, Kaneshige [Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677 (Japan)

    2015-08-07

    Poor survival is a major problem of adipocyte transplantation. We previously reported that VEGF and MMPs secreted from transplanted adipocytes are essential for angiogenesis and adipogenesis. Pretreatment with low-dose (5 Gy) radiation (LDR) increased VEGF, MMP-2, and HIF-1 alpha mRNA expression in human ceiling culture-derived proliferative adipocytes (hccdPAs). Gene expression after LDR differed between adipose-derived stem cells (hASCs) and hccdPAs. Pretreatment with LDR improved the survival of hccdPAs under hypoxia, which is inevitable in the early stages after transplantation. Upregulation of VEGF and MMP-2 after LDR in hccdPAs is mediated by HIF-1 alpha expression. Our results suggest that pretreatment with LDR may improve adipocyte graft survival in a clinical setting through upregulation of VEGF and MMP-2 via HIF-1 alpha. - Highlights: • Ceiling culture-derived proliferative adipocytes (ccdPAs) react to radiation. • Low-dose radiation (LDR) pretreatment improves survival of ccdPAs under hypoxia. • Gene expression after LDR differs between ccdPAs and adipose-derived stem cells. • LDR-induced increase in MMP-2 and VEGF is dependent on HIF-1 alpha induction. • LDR pretreatment may improve the adipocyte graft survival rate in clinical settings.

  15. MicroRNA response to hypoxic stress in soft tissue sarcoma cells: microRNA mediated regulation of HIF

    International Nuclear Information System (INIS)

    Gits, Caroline MM; Wiemer, Erik AC; Kuijk, Patricia F van; Rijck, Jonneke CWM de; Muskens, Nikky; Jonkers, Moniek BE; IJcken, Wilfred F van; Mathijssen, Ron HJ; Verweij, Jaap; Sleijfer, Stefan

    2014-01-01

    Hypoxia is often encountered in solid tumors and known to contribute to aggressive tumor behavior, radiation- and chemotherapy resistance resulting in a poor prognosis for the cancer patient. MicroRNAs (miRNAs) play a role in the regulation of the tumor cell response to hypoxia, however, not much is known about the involvement of miRNAs in hypoxic signalling pathways in soft tissue sarcomas (STS). A panel of twelve STS cell lines was exposed to atmospheric oxygen concentrations (normoxia) or 1% oxygen (hypoxia) for up to 48 h. Hypoxic conditions were verified and miRNA expression profiles were assessed by LNA™ oligonucleotide microarrays and RT-PCR after 24 h. The expression of target genes regulated by hypoxia responsive miRNAs is examined by end-point PCR and validated by luciferase reporter constructs. Exposure of STS cell lines to hypoxic conditions gave rise to upregulation of Hypoxia Inducible Factor (HIF) 1α protein levels and increased mRNA expression of HIF1 target genes CA9 and VEGFA. Deregulation of miRNA expression after 24 h of hypoxia was observed. The most differentially expressed miRNAs (p < 0.001) in response to hypoxia were miR-185-3p, miR-485-5p, miR-216a-5p (upregulated) and miR-625-5p (downregulated). The well-known hypoxia responsive miR-210-3p could not be reliably detected by the microarray platform most likely for technical reasons, however, its upregulation upon hypoxic stress was apparent by qPCR. Target prediction algorithms identified 11 potential binding sites for miR-485-5p and a single putative miR-210-3p binding site in the 3’UTR of HIF3α, the least studied member of the HIF family. We showed that HIF3α transcripts, expressing a 3’UTR containing the miR-485-5p and miR-210-3p target sites, are expressed in all sarcoma cell lines and upregulated upon hypoxia. Additionally, luciferase reporter constructs containing the 3’UTR of HIF3α were used to demonstrate regulation of HIF3α by miR-210-3p and miR-485-5p. Here we provide

  16. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration.

    Science.gov (United States)

    Xie, Liwei; Yin, Amelia; Nichenko, Anna S; Beedle, Aaron M; Call, Jarrod A; Yin, Hang

    2018-03-13

    The remarkable regeneration capability of skeletal muscle depends on coordinated proliferation and differentiation of satellite cells. The self-renewal of satellite cells is critical for long-term maintenance of muscle regeneration potential. Hypoxia profoundly affects the proliferation, differentiation, and self-renewal of cultured myoblasts. However, the physiological relevance of hypoxia and hypoxia signaling in satellite cells in vivo remains largely unknown. Here, we report that satellite cells are in an intrinsic hypoxic state in vivo and express hypoxia-inducible factor 2A (HIF2A). HIF2A promotes the stemness and long-term homeostatic maintenance of satellite cells by maintaining the quiescence, increasing the self-renewal and blocking the myogenic differentiation of satellite cells. HIF2A stabilization in satellite cells cultured under normoxia augmented their engraftment potential in regenerative muscle. Reversely, HIF2A ablation led to the depletion of satellite cells and the consequent regenerative failure in the long-term. In contrast, transient pharmacological inhibition of HIF2A accelerated muscle regeneration by increasing satellite cell proliferation and differentiation. Mechanistically, HIF2A induces the quiescence/self-renewal of satellite cells by binding the promoter of Spry1 gene and activating Spry1 expression. These findings suggest that HIF2A is a pivotal mediator of hypoxia signaling in satellite cells and may be therapeutically targeted to improve muscle regeneration.

  17. Hypoxia-independent upregulation of placental hypoxia inducible factor-1α gene expression contributes to the pathogenesis of preeclampsia.

    Science.gov (United States)

    Iriyama, Takayuki; Wang, Wei; Parchim, Nicholas F; Song, Anren; Blackwell, Sean C; Sibai, Baha M; Kellems, Rodney E; Xia, Yang

    2015-06-01

    Accumulation of hypoxia inducible factor-1α (HIF-1α) is commonly an acute and beneficial response to hypoxia, whereas chronically elevated HIF-1α is associated with multiple disease conditions, including preeclampsia, a serious hypertensive disease of pregnancy. However, the molecular basis underlying the persistent elevation of placental HIF-1α in preeclampsia and its role in the pathogenesis of preeclampsia are poorly understood. Here we report that Hif-1α mRNA and HIF-1α protein were elevated in the placentas of pregnant mice infused with angiotensin II type I receptor agonistic autoantibody, a pathogenic factor in preeclampsia. Knockdown of placental Hif-1α mRNA by specific siRNA significantly attenuated hallmark features of preeclampsia induced by angiotensin II type I receptor agonistic autoantibody in pregnant mice, including hypertension, proteinuria, kidney damage, impaired placental vasculature, and elevated maternal circulating soluble fms-like tyrosine kinase-1 levels. Next, we discovered that Hif-1α mRNA levels and HIF-1α protein levels were induced in an independent preeclampsia model with infusion of the inflammatory cytokine tumor necrosis factor superfamily member 14 (LIGHT). SiRNA knockdown experiments also demonstrated that elevated HIF-1α contributed to LIGHT-induced preeclampsia features. Translational studies with human placentas showed that angiotensin II type I receptor agonistic autoantibody or LIGHT is capable of inducing HIF-1α in a hypoxia-independent manner. Moreover, increased HIF-1α was found to be responsible for angiotensin II type I receptor agonistic autoantibody or LIGHT-induced elevation of Flt-1 gene expression and production of soluble fms-like tyrosine kinase-1 in human villous explants. Overall, we demonstrated that hypoxia-independent stimulation of HIF-1α gene expression in the placenta is a common pathogenic mechanism promoting disease progression. Our findings reveal new insight to preeclampsia and highlight

  18. The Reg1-interacting proteins, Bmh1, Bmh2, Ssb1, and Ssb2, have roles in maintaining glucose repression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Dombek, Kenneth M; Kacherovsky, Nataly; Young, Elton T

    2004-09-10

    In Saccharomyces cerevisiae, a type 1 protein phosphatase complex composed of the Glc7 catalytic subunit and the Reg1 regulatory subunit represses expression of many glucose-regulated genes. Here we show that the Reg1-interacting proteins Bmh1, Bmh2, Ssb1, and Ssb2 have roles in glucose repression. Deleting both BMH genes causes partially constitutive ADH2 expression without significantly increasing the level of Adr1 protein, the major activator of ADH2 expression. Adr1 and Bcy1, the regulatory subunit of cAMP-dependent protein kinase, are both required for this effect indicating that constitutive expression in Deltabmh1Deltabmh2 cells uses the same activation pathway that operates in Deltareg1 cells. Deletion of both BMH genes and REG1 causes a synergistic relief from repression, suggesting that Bmh proteins also act independently of Reg1 during glucose repression. A two-hybrid interaction with the Bmh proteins was mapped to amino acids 187-232, a region of Reg1 that is conserved in different classes of fungi. Deleting this region partially releases SUC2 from glucose repression. This indicates a role for the Reg1-Bmh interaction in glucose repression and also suggests a broad role for Bmh proteins in this process. An in vivo Reg1-Bmh interaction was confirmed by copurification of Bmh proteins with HA(3)-TAP-tagged Reg1. The nonconventional heat shock proteins Ssb1 and Ssb2 are also copurified with HA(3)-TAP-tagged Reg1. Deletion of both SSB genes modestly decreases repression of ADH2 expression in the presence of glucose, suggesting that Ssb proteins, perhaps through their interaction with Reg1, play a minor role in glucose repression.

  19. Hypoxic regulation of β-1,3-glucuronyltransferase 1 expression in nucleus pulposus cells of the rat intervertebral disc: role of hypoxia-inducible factor proteins.

    Science.gov (United States)

    Gogate, Shilpa S; Nasser, Rena; Shapiro, Irving M; Risbud, Makarand V

    2011-07-01

    To determine whether hypoxia and hypoxia-inducible factor (HIF) proteins regulate expression of β-1,3-glucuronyltransferase 1 (GlcAT-1), a key enzyme in glycosaminoglycan synthesis in nucleus pulposus cells. Real-time reverse transcriptase-polymerase chain reaction and Western blotting were used to measure GlcAT-1 expression. Transfections were performed to determine the effect of HIF-1α and HIF-2α on GlcAT-1 promoter activity. Under hypoxic conditions there was an increase in GlcAT-1 expression; a significant increase in promoter activity was seen both in nucleus pulposus cells and in N1511 chondrocytes. We investigated whether HIF controlled GlcAT-1 expression. Suppression of HIF-1α and HIF-2α induced GlcAT-1 promoter activity and expression only in nucleus pulposus cells. Transfection with CA-HIF-1α as well as with CA-HIF-2α suppressed GlcAT-1 promoter activity only in nucleus pulposus cells, suggesting a cell type-specific regulation. Site-directed mutagenesis and deletion constructs were used to further confirm the suppressive effect of HIFs on GlcAT-1 promoter function in nucleus pulposus cells. Although it was evident that interaction of HIF with hypoxia-responsive elements resulted in suppression of basal promoter activity, it was not necessary for transcriptional suppression. This result suggested both a direct and an indirect mode of regulation, possibly through recruitment of a HIF-dependent repressor. Finally, we showed that hypoxic expression of GlcAT-1 was also partially dependent on MAPK signaling. These studies demonstrate that hypoxia regulates GlcAT-1 expression through a signaling network comprising both activator and suppressor molecules, and that this regulation is unique to nucleus pulposus cells. Copyright © 2011 by the American College of Rheumatology.

  20. Enhancement of the HIF-1α/15-LO/15-HETE axis promotes hypoxia-induced endothelial proliferation in preeclamptic pregnancy.

    Directory of Open Access Journals (Sweden)

    Dandan Yuan

    Full Text Available Preeclampsia (PE is an extremely serious condition in pregnant women and the leading cause of maternal and fetal morbidity and mortality. Despite active research, the etiological factors of this disorder remain elusive. The increased release of 15-hydroxyeicosatetraenoic acid (15-HETE in the placenta of preeclamptic patients has been studied, but its exact role in PE pathogenesis remains unknown. Mounting evidence shows that PE is associated with placental hypoxia, impaired placental angiogenesis, and endothelial dysfunction. In this study, we confirmed the upregulated expression of hypoxia-inducible factor 1α (HIF-1α and 15-lipoxygenase-1/2 (15-LO-1/2 in patients with PE. Production of the arachidonic acid metabolite, 15-HETE, also increased in the preeclamptic placenta, which suggests enhanced activation of the HIF-1α-15-LO-15-HETE axis. Furthermore, this study is the first to show that the umbilical cord of preeclamptic women contains significantly higher serum concentrations of 15-HETE than that of healthy pregnant women. The results also show that expression of 15-LO-1/2 is upregulated in both human umbilical vein endothelial cells (HUVECs collected from preeclamptic women and in those cultured under hypoxic conditions. Exogenous 15-HETE promotes the migration of HUVECs and in vitro tube formation and promotes cell cycle progression from the G0/G1 phase to the G2/M + S phase, whereas the 15-LO inhibitor, NDGA, suppresses these effects. The HIF-1α/15-LO/15-HETE pathway is therefore significantly associated within the pathology of PE.

  1. Expression and regulation of HIF-1 alpha in macrophages under inflammatory conditions; significant reduction of VEGF by CaMKII inhibitor

    NARCIS (Netherlands)

    Westra, Johanna; Brouwer, Elisabeth; van Roosmalen, Ingrid A. M.; Doornbos-van der Meer, Berber; van Leeuwen, Miek A.; Posthumus, Marcel D.; Kallenberg, Cees G. M.

    2010-01-01

    Background: Macrophages expressing the pro-angiogenic transcription factor hypoxia-inducible factor (HIF)-1alpha have been demonstrated in rheumatoid arthritis (RA) in the synovial tissue. Aim of the present study was to investigate intracellular signal transduction regulation of pro-inflammatory

  2. Peculiarities of reaction of HIF-1α protein of the hippocampus neurons in rats with experimental diabetes mellitus in the dynamics of ischemic-reperfusion damage of the brain

    Directory of Open Access Journals (Sweden)

    T. M. Boychuk

    2016-12-01

    Higher State Educational Establishment of Ukraine “Bukovinian State medical University”, Chernivtsi, Ukraine   Abstract Introduction. The role of the transcriptional factor Hif-1α in pathogenesis of hypoxic damages and diabetes mellitus (DM is proved, although molecular mechanisms underlying the basis of this factor dysfunction in association with DM with ischemic-reperfusion damage of the brain remain unknown. Objective. The objective of this investigation was to study the content of Hif-1α protein in the hippocampus neurons of rats with experimental DM in the dynamics of ischemic-reperfusion damage of the brain. Results. In rats without DM 20 minute ischemia with one hour reperfusion increases the content of Hif-1α protein in all the fields of the hippocampus. On the 12th day of ischemic-reperfusion period in the hippocampus CA2-CA4 fields the values of certain examined indices of the activity of Hif-1α transcriptional factor continue to increase, and in СА1field they normalize or approach to the values of animals in the control group.  In rats with DM during early post-ischemic period there are no changes of Hif-1α protein content in CA1 field, in CA2 field there are signs of its reduced activity, in CA3 field they are limited by the reaction of one index, in CA4 field they are of a similar character with those of the control rats under experimental conditions.  On the 12th day of ischemic-reperfusion period in CA1 field all the indices of activity of Hif-1α transcriptional factor increase exceeding corresponding indices by absolute values in animals of the control group under the same experimental conditions, in СА2 and СА3 fields changes of the examined parameters are limited as compared to the same ones in animals from the control group, in CA4 field values that were increased in the control group decrease. Conclusions. Diabetes mellitus restricts reaction of Hif-1α protein on ischemia-reperfusion inn the neurons of СА1-СА3 fields in

  3. MicroRNA-195 induced apoptosis in hypoxic chondrocytes by targeting hypoxia-inducible factor 1 alpha.

    Science.gov (United States)

    Bai, R; Zhao, A-Q; Zhao, Z-Q; Liu, W-L; Jian, D-M

    2015-02-01

    The chondrocytes, the resident cells of cartilage, are maintained and take effects in the whole life upon chronic hypoxic exposure, which hypoxia-inducible factor 1 alpha (HIF-1α) play pivotal roles in response to. Dysregulation of some microRNA (miRNAs) have also been identified to be involved in hypoxia-related physiologic and pathophysiologic responses in some tissues or cell lines. However, the mechanism of miRNAs reponse to hypoxia remain largely unknown in chondrocytes, including the microRNA-195 (miR-195). AIM To investigate the effects of microRNAs (miRNAs) and hypoxia-inducible factor 1 alpha (HIF-1α) on chondrocytes in physiologic environment. We compared the expression of miR-195 and HIF-1α mRNA on hypoxia with that on normoxia in ATDC 5 cells by qRT-PCR. Further experiments was performed to confirmed the relationships of miR-195 and HIF-1α by bioinformatics analysis and dual reporter gene assay. we also assessed the effect of miR-195 on apoptosis in hypoxic ATDC 5 cells by transfect with miR-195 mimics. It was found the downregulated miR-195 and upregulated HIF-1α were present in hypoxic ATDC 5 cells. miR-195 negatively regulated HIF-1α by targeting its 3'-untranslated region. Moreover, the founding indicated miR-195 greatly increased apoptosis and downregulated HIF-1α mRNA occurred simultaneously in hypoxic chondrocytes. We concluded that miR-195 induced apoptosis in hypoxic chondrocytes by directly targeting HIF-1α.

  4. SU-C-303-02: Correlating Metabolic Response to Radiation Therapy with HIF-1alpha Expression

    International Nuclear Information System (INIS)

    Campos, D; Peeters, W; Nickel, K; Eliceiri, K; Kimple, R; Van Der Kogel, A; Kissick, M

    2015-01-01

    Purpose: To understand radiation induced alterations in cellular metabolism which could be used to assess treatment or normal tissue response to aid in patient-specific adaptive radiotherapy. This work aims to compare the metabolic response of two head and neck cell lines, one malignant (UM-SCC-22B) and one benign (Normal Oral Keratinocyte), to ionizing radiation. Responses are compared to alterations in HIF-1alpha expression. These dynamics can potentially serve as biomarkers in assessing treatment response allowing for patient-specific adaptive radiotherapy. Methods: Measurements of metabolism and HIF-1alpha expression were taken before and X minutes after a 10 Gy dose of radiation delivered via an orthovoltage x-ray source. In vitro changes in metabolic activity were measured via fluorescence lifetime imaging (FLIM) to assess the mean lifetime of NADH autofluorescence following a dose of 10 Gy. HIF-1alpha expression was measured via immunohistochemical staining of in vitro treated cells and expression was quantified using the FIJI software package. Results: FLIM demonstrated a decrease in the mean fluorescence lifetime of NADH by 100 ps following 10 Gy indicating a shift towards glycolytic pathways for malignant cells; whereas this benign cell line showed little change in metabolic signature. Immunohistochemical analysis showed significant changes in HIF-1alpha expression in response to 10 Gy of radiation that correlate to metabolic profiles. Conclusion: Radiation induces significant changes in metabolic activity and HIF-1alpha expression. These alterations occur on time scales approximating the duration of common radiation treatments (approximately tens of minutes). Further understanding these dynamics has important implications with regard to improvement of therapy and biomarkers of treatment response

  5. SU-C-303-02: Correlating Metabolic Response to Radiation Therapy with HIF-1alpha Expression

    Energy Technology Data Exchange (ETDEWEB)

    Campos, D [University of Wisconsin Madison, Madison, WI (United States); Peeters, W [Radboud University Medical Center, Nijmegen, GA (United States); Nickel, K [University of Wisconsin, Madison, WI (United States); Eliceiri, K; Kimple, R; Van Der Kogel, A; Kissick, M [University of Wisconsin, Madison, Wisconsin (United States)

    2015-06-15

    Purpose: To understand radiation induced alterations in cellular metabolism which could be used to assess treatment or normal tissue response to aid in patient-specific adaptive radiotherapy. This work aims to compare the metabolic response of two head and neck cell lines, one malignant (UM-SCC-22B) and one benign (Normal Oral Keratinocyte), to ionizing radiation. Responses are compared to alterations in HIF-1alpha expression. These dynamics can potentially serve as biomarkers in assessing treatment response allowing for patient-specific adaptive radiotherapy. Methods: Measurements of metabolism and HIF-1alpha expression were taken before and X minutes after a 10 Gy dose of radiation delivered via an orthovoltage x-ray source. In vitro changes in metabolic activity were measured via fluorescence lifetime imaging (FLIM) to assess the mean lifetime of NADH autofluorescence following a dose of 10 Gy. HIF-1alpha expression was measured via immunohistochemical staining of in vitro treated cells and expression was quantified using the FIJI software package. Results: FLIM demonstrated a decrease in the mean fluorescence lifetime of NADH by 100 ps following 10 Gy indicating a shift towards glycolytic pathways for malignant cells; whereas this benign cell line showed little change in metabolic signature. Immunohistochemical analysis showed significant changes in HIF-1alpha expression in response to 10 Gy of radiation that correlate to metabolic profiles. Conclusion: Radiation induces significant changes in metabolic activity and HIF-1alpha expression. These alterations occur on time scales approximating the duration of common radiation treatments (approximately tens of minutes). Further understanding these dynamics has important implications with regard to improvement of therapy and biomarkers of treatment response.

  6. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris*

    Science.gov (United States)

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-01-01

    The alcohol oxidase 1 (AOX1) promoter (PAOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of PAOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated PAOX1 in response to methanol, were bound to PAOX1 at different sites and did not interact with each other. However, these factors cooperatively activated PAOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (PMIT1), thus increasingly expressing Mit1 and subsequently activating PAOX1. PMID:26828066

  7. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors.

    Science.gov (United States)

    Bortvedt, Sarah F; Lund, P Kay

    2012-03-01

    To summarize the recent evidence that insulin-like growth factor 1 (IGF1) mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogs in short bowel syndrome and Crohn's disease. This review highlights the evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn's disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that suppressor of cytokine signaling protein induction by GH or GLP2 in normal or inflamed intestine may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis, is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed.

  8. HIF1α protein and mRNA expression as a new marker for post mortem interval estimation in human gingival tissue.

    Science.gov (United States)

    Fais, Paolo; Mazzotti, Maria Carla; Teti, Gabriella; Boscolo-Berto, Rafael; Pelotti, Susi; Falconi, Mirella

    2018-06-01

    Estimating the post mortem interval (PMI) is still a crucial step in Forensic Pathology. Although several methods are available for assessing the PMI, a precise estimation is still quite unreliable and can be inaccurate. The present study aimed to investigate the immunohistochemical distribution and mRNA expression of hypoxia inducible factor (HIF-1α) in post mortem gingival tissues to establish a correlation between the presence of HIF-1α and the time since death, with the final goal of achieving a more accurate PMI estimation. Samples of gingival tissues were obtained from 10 cadavers at different PMIs (1-3 days, 4-5 days and 8-9 days), and were processed for immunohistochemistry and quantitative reverse transcription-polymerase chain reaction. The results showed a time-dependent correlation of HIF-1α protein and its mRNA with different times since death, which suggests that HIF-1α is a potential marker for PMI estimation. The results showed a high HIF-1α protein signal that was mainly localized in the stratum basale of the oral mucosa in samples collected at a short PMI (1-3 days). It gradually decreased in samples collected at a medium PMI (4-5 days), but it was not detected in samples collected at a long PMI (8-9 days). These results are in agreement with the mRNA data. These data indicate an interesting potential utility of Forensic Anatomy-based techniques, such as immunohistochemistry, as important complementary tools to be used in forensic investigations. © 2018 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  9. Hypoxic Preconditioning Promotes the Bioactivities of Mesenchymal Stem Cells via the HIF-1α-GRP78-Akt Axis.

    Science.gov (United States)

    Lee, Jun Hee; Yoon, Yeo Min; Lee, Sang Hun

    2017-06-21

    Mesenchymal stem cells (MSC) are ideal materials for stem cell-based therapy. As MSCs reside in hypoxic microenvironments (low oxygen tension of 1% to 7%), several studies have focused on the beneficial effects of hypoxic preconditioning on MSC survival; however, the mechanisms underlying such effects remain unclear. This study aimed to uncover the potential mechanism involving 78-kDa glucose-regulated protein (GRP78) to explain the enhanced MSC bioactivity and survival in hindlimb ischemia. Under hypoxia (2% O₂), the expression of GRP78 was significantly increased via hypoxia-inducible factor (HIF)-1α. Hypoxia-induced GRP78 promoted the proliferation and migration potential of MSCs through the HIF-1α-GRP78-Akt signal axis. In a murine hind-limb ischemia model, hypoxic preconditioning enhanced the survival and proliferation of transplanted MSCs through suppression of the cell death signal pathway and augmentation of angiogenic cytokine secretion. These effects were regulated by GRP78. Our findings indicate that hypoxic preconditioning promotes survival, proliferation, and angiogenic cytokine secretion of MSCs via the HIF-1α-GRP78-Akt signal pathway, suggesting that hypoxia-preconditioned MSCs might provide a therapeutic strategy for MSC-based therapies and that GRP78 represents a potential target for the development of functional MSCs.

  10. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor - 1 alpha protein in hypoxic conditions

    International Nuclear Information System (INIS)

    Wang, Ronghai; Zhang, Ping; Li, Jinhang; Guan, Hongzai; Shi, Guangjun

    2016-01-01

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG–HIF–1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. - Highlights: • HIF-1α protein is constitutively degraded in hypoxic conditions. • Requirement of ubiquitination for HIF-1α degradation in hypoxia. • Hypoxic HIF-1α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization.

  11. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor - 1 alpha protein in hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ronghai [Department of Urology, Linzi District People' s Hospital, Zibo, 255400 (China); Zhang, Ping, E-mail: zpskx001@163.com [Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011 (China); Li, Jinhang [Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011 (China); Guan, Hongzai [Laboratory Department, School of Medicine, Qingdao University, Qingdao, 266071 (China); Shi, Guangjun, E-mail: qdmhshigj@yahoo.com [Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, 266071 (China)

    2016-01-29

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG–HIF–1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. - Highlights: • HIF-1α protein is constitutively degraded in hypoxic conditions. • Requirement of ubiquitination for HIF-1α degradation in hypoxia. • Hypoxic HIF-1α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization.

  12. Regulation of glycolysis in brown adipocytes by HIF-1α

    DEFF Research Database (Denmark)

    Basse, Astrid L; Isidor, Marie S; Winther, Sally

    2017-01-01

    Brown adipose tissue takes up large amounts of glucose during cold exposure in mice and humans. Here we report an induction of glucose transporter 1 expression and increased expression of several glycolytic enzymes in brown adipose tissue from cold-exposed mice. Accordingly, these genes were also...... with glucose as the only exogenously added fuel. These data suggest that HIF-1α-dependent regulation of glycolysis is necessary for maximum glucose metabolism in brown adipocytes....

  13. Effect of hypoxia on tissue factor pathway inhibitor expression in breast cancer.

    Science.gov (United States)

    Cui, X Y; Tinholt, M; Stavik, B; Dahm, A E A; Kanse, S; Jin, Y; Seidl, S; Sahlberg, K K; Iversen, N; Skretting, G; Sandset, P M

    2016-02-01

    ESSENTIALS: A hypoxic microenvironment is a common feature of tumors that may influence activation of coagulation. MCF-7 and SK-BR-3 breast cancer cells and breast cancer tissue samples were used. The results showed transcriptional repression of tissue factor pathway inhibitor expression in hypoxia. Hypoxia-inducible factor 1α may be a target for the therapy of cancer-related coagulation and thrombosis. Activation of coagulation is a common finding in patients with cancer, and is associated with an increased risk of venous thrombosis. As a hypoxic microenvironment is a common feature of solid tumors, we investigated the role of hypoxia in the regulation of tissue factor (TF) pathway inhibitor (TFPI) expression in breast cancer. To explore the transcriptional regulation of TFPI by hypoxia-inducible factor (HIF)-1α in breast cancer cells and their correlation in breast cancer tissues. MCF-7 and SK-BR-3 breast cancer cells were cultured in 1% oxygen or treated with cobalt chloride (CoCl2 ) to mimic hypoxia. Time-dependent and dose-dependent downregulation of TFPI mRNA (quantitative RT-PCR) and of free TFPI protein (ELISA) were observed in hypoxia. Western blotting showed parallel increases in the levels of HIF-1α protein and TF. HIF-1α inhibitor abolished or attenuated the hypoxia-induced downregulation of TFPI. Luciferase reporter assay showed that both hypoxia and HIF-1α overexpression caused strong repression of TFPI promoter activity. Subsequent chromatin immunoprecipitation and mutagenesis analysis demonstrated a functional hypoxia response element within the TFPI promoter, located at -1065 to -1060 relative to the transcriptional start point. In breast cancer tissue samples, gene expression analyses showed a positive correlation between the mRNA expression of TFPI and that of HIF-1α. This study demonstrates that HIF-1α is involved in the transcriptional regulation of the TFPI gene, and suggests that a hypoxic microenvironment inside a breast tumor may

  14. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis

    Directory of Open Access Journals (Sweden)

    Yang T

    2016-12-01

    Full Text Available Tieshan Yang,1 Qian Yao,1 Fei Cao,1 Qianqian Liu,1 Binlei Liu,2 Xiu-Hong Wang1 1Laboratory for Biomedical Photonics, Institute of Laser Engineering, Beijing University of Technology, 2Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China Abstract: Hypoxia-inducible factor-1 (HIF-1 is a transcription factor that is activated upon exposure to hypoxic stress. It modulates a number of cellular responses including proliferation, apoptosis, angiogenesis, and metabolism by activating a panel of target genes in response to hypoxia. The HIF-1 level is often upregulated in the hypoxic microenvironment of solid tumors, which contributes to cancer treatment failure. Here we report that silver nanoparticles (AgNPs, which are widely used as an antimicrobial agent, are an effective inhibitor of HIF-1. AgNPs inhibited the activation of a HIF-dependent reporter construct after the cells were exposed to hypoxic conditions or treated with cobalt chloride, a hypoxia mimetic agent. The AgNPs also interfered with the accumulation of HIF-1α protein and the induction of the endogenous HIF target genes, VEGF-A and GLUT1. Since both HIF-1 and vascular endothelial growth factor-A play an important role in angiogenesis, AgNPs also inhibited angiogenesis in vitro. Our data reveal a new mechanism of how AgNPs act on cellular function, that is, they disrupt HIF signaling pathway. This finding provides a novel insight into how AgNPs can inhibit cancer cell growth and angiogenesis. Keywords: silver nanoparticles (AgNPs, hypoxia-inducible factor, transcriptional activity, vascular endothelial growth factor-A, angiogenesis

  15. Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mushfiquddin Khan

    2017-01-01

    Full Text Available Mild traumatic brain injury (TBI, also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide (NO, the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha (HIF-1α, a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione (GSNO and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.

  16. Histone deacetylase 3 represses p15INK4b and p21WAF1/cip1 transcription by interacting with Sp1

    International Nuclear Information System (INIS)

    Huang Weifeng; Tan Dapeng; Wang Xiuli; Han Songyan; Tan Jiang; Zhao Yanmei; Lu Jun; Huang Baiqu

    2006-01-01

    Histone deacetylase 3 (HDAC3) has been implicated to play roles in governing cell proliferation. Here we demonstrated that the overexpression of HDAC3 repressed transcription of p15 INK4b and p21 WAF1/cip1 genes in 293T cells, and that the recruitment of HDAC3 to the promoter regions of these genes was critical to this repression. We also showed that HDAC3 repressed GAL4-Sp1 transcriptional activity, and that Sp1 was co-immunoprecipitated with FLAG-tagged HDAC3. We conclude that HDAC3 can repress p15 INK4b and p21 WAF1/cip1 transcription by interacting with Sp1. Furthermore, knockdown of HDAC3 by RNAi up-regulated the transcriptional expression of p15 INK4b , but not that of p21 WAF1/cip1 , implicating the different roles of HDAC3 in repression of p15 INK4b and p21 WAF1/cip1 transcription. Data from this study indicate that the inhibition of p15 INK4b and p21 WAF1/cip1 may be one of the mechanisms by which HDAC3 participates in cell cycle regulation and oncogenesis

  17. Ubiquitination is absolutely required for the degradation of hypoxia-inducible factor--1 alpha protein in hypoxic conditions.

    Science.gov (United States)

    Wang, Ronghai; Zhang, Ping; Li, Jinhang; Guan, Hongzai; Shi, Guangjun

    2016-01-29

    The hypoxia-inducible factor (HIF) is recognized as the master regulator of hypoxia response. HIF-α subunits expression are tightly regulated. In this study, our data show that ts20 cells still expressed detectable E1 protein even at 39.5° C for 12 h, and complete depletion of E1 protein expression at 39.5° C by siRNA enhanced HIF-1α and P53 protein expression. Further inhibition of E1 at 39.5 °C by siRNA, or E1 inhibitor Ube1-41 completely blocked HIF-1α degradation. Moreover, immunoprecipitations of co-transfection of HA-ubiquitin and FLAG-HIF-1α plasmids directly confirmed the involvement of ubiquitin in the hypoxic degradation of HIF-1α. Additionally, hypoxic HIF-1 α degradation is independent of HAF, RACK1, sumoylation or nuclear/cytoplasmic localization. Taken together, our data suggest that constitutive HIF-1α protein degradation in hypoxia is absolutely ubiquitination-dependent, and unidentified E3 ligase may exist for this degradation pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis.

    Science.gov (United States)

    Yang, Tieshan; Yao, Qian; Cao, Fei; Liu, Qianqian; Liu, Binlei; Wang, Xiu-Hong

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that is activated upon exposure to hypoxic stress. It modulates a number of cellular responses including proliferation, apoptosis, angiogenesis, and metabolism by activating a panel of target genes in response to hypoxia. The HIF-1 level is often upregulated in the hypoxic microenvironment of solid tumors, which contributes to cancer treatment failure. Here we report that silver nanoparticles (AgNPs), which are widely used as an antimicrobial agent, are an effective inhibitor of HIF-1. AgNPs inhibited the activation of a HIF-dependent reporter construct after the cells were exposed to hypoxic conditions or treated with cobalt chloride, a hypoxia mimetic agent. The AgNPs also interfered with the accumulation of HIF-1α protein and the induction of the endogenous HIF target genes, VEGF-A and GLUT1. Since both HIF-1 and vascular endothelial growth factor-A play an important role in angiogenesis, AgNPs also inhibited angiogenesis in vitro. Our data reveal a new mechanism of how AgNPs act on cellular function, that is, they disrupt HIF signaling pathway. This finding provides a novel insight into how AgNPs can inhibit cancer cell growth and angiogenesis.

  19. Hypoxia and hypoxia inducible factor-1α are required for normal endometrial repair during menstruation.

    Science.gov (United States)

    Maybin, Jacqueline A; Murray, Alison A; Saunders, Philippa T K; Hirani, Nikhil; Carmeliet, Peter; Critchley, Hilary O D

    2018-01-23

    Heavy menstrual bleeding (HMB) is common and debilitating, and often requires surgery due to hormonal side effects from medical therapies. Here we show that transient, physiological hypoxia occurs in the menstrual endometrium to stabilise hypoxia inducible factor 1 (HIF-1) and drive repair of the denuded surface. We report that women with HMB have decreased endometrial HIF-1α during menstruation and prolonged menstrual bleeding. In a mouse model of simulated menses, physiological endometrial hypoxia occurs during bleeding. Maintenance of mice under hyperoxia during menses decreases HIF-1α induction and delays endometrial repair. The same effects are observed upon genetic or pharmacological reduction of endometrial HIF-1α. Conversely, artificial induction of hypoxia by pharmacological stabilisation of HIF-1α rescues the delayed endometrial repair in hypoxia-deficient mice. These data reveal a role for HIF-1 in the endometrium and suggest its pharmacological stabilisation during menses offers an effective, non-hormonal treatment for women with HMB.

  20. CD54+ rabbit adipose-derived stem cells overexpressing HIF-1α facilitate vascularized fat flap regeneration

    Science.gov (United States)

    Liang, Zhi-Jie; Huang, Min-Hong; Peng, Qi-Liu; Zou, Dong-Hua; Gu, Rong-He; Xu, Fang-Tian; Gao, Hui; Chen, Zhen-Dong; Chi, Guang-Yi; Wei, Zhong-Heng; Chen, Li; Li, Hong-Mian

    2017-01-01

    Fat flap transplantation is frequently performed in patients suffering from soft tissue defects resulting from disease or trauma. This study explored the feasibility of constructing vascularized fat flaps using rabbit adipose-derived stem cells (rASCs) and collagen scaffolds in a rabbit model. We evaluated rASCs proliferation, paracrine function, adipogenesis, vascularization, and CD54 expression, with or without HIF-1α transfection in vitro and in vivo. We observed that adipogenic differentiation potential was greater in rASCs with high CD54 expression (CD54+rASCs) than in those with low expression (CD54–rASCs), both in vitro and in vivo. HIF-1α overexpression not only augmented this effect, but also enhanced cell proliferation and paracrine function in vitro. We also demonstrated that HIF-1α-transfected CD54+rASCs showed enhanced paracrine function and adipogenic capacity, and that paracrine function increases expression of angiogenesis-related markers. Thus, CD54+rASCs overexpressing HIF-1α enhanced large volume vascularized fat flap regeneration in rabbits, suggesting CD54 may be an ideal candidate marker for ASCs adipogenic differentiation. PMID:28423354

  1. Evolutionary-conserved telomere-linked helicase genes of fission yeast are repressed by silencing factors, RNAi components and the telomere-binding protein Taz1

    DEFF Research Database (Denmark)

    Hansen, K. R.; Ibarra, P. T.; Thon, G.

    2006-01-01

    . Mutations and conditions perturbing histone acetylation had similar effects further demonstrating that the tlh genes are normally repressed by heterochromatin. In contrast, mutations in the RNAi factors Dcr1, Ago1 or Rdp1 led only to a modest derepression of the tlh genes indicating an alternate pathway...

  2. Development of a Combination Therapy for Prostate Cancer by Targeting Stat3 and HIF-1alpha

    Science.gov (United States)

    2013-07-01

    inflammation-induced cancer, making it an attractive target (25-27). A3. Innovation 1. TEL03 is a novel anti-cancer agent from Chinese herbal medicine ...agents from Chinese herbal medicine (CHM) that targets HIF-1α /2α for prostate cancer therapy. Hypoxia orchestrated by HIF-1αis crucial for tumor...Stat3 for treatment of prostate and other cancers. TEL03, which is a novel anti-cancer agent derived from Chinese herbal medicine (CHM: Hypocrella

  3. Partial Oxygen Pressure Affects the Expression of Prognostic Biomarkers HIF-1 Alpha, Ki67, and CK20 in the Microenvironment of Colorectal Cancer Tissue.

    Science.gov (United States)

    Zhang, Lirong; Hu, Yu; Xi, Ning; Song, Jie; Huang, Wenjing; Song, Shanshan; Liu, Yiting; Liu, Xianying; Xie, Yingjun

    2016-01-01

    Hypoxia is prognostically important in colorectal cancer (CRC) therapy. Partial oxygen pressure (pO 2 ) is an important parameter of hypoxia. The correlation between pO 2 levels and expression levels of prognostic biomarkers was measured in CRC tissues. Human CRC tissues were collected and pO 2 levels were measured by OxyLite. Three methods for tissue fixation were compared, including formalin, Finefix, and Finefix-plus-microwave. Immunohistochemistry (IHC) staining was conducted by using the avidin-biotin complex technique for detecting the antibodies to hypoxia inducible factor-1 (HIF-1) alpha, cytokeratin 20 (CK20), and cell proliferation factor Ki67. The levels of pO 2 were negatively associated with the size of CRC tissues. Finefix-plus-microwave fixation has the potential to replace formalin. Additionally, microwave treatment improved Finefix performance in tissue fixation and protein preservation. The percentage of positive cells and gray values of HIF-1 alpha, CK20, and Ki67 were associated with CRC development ( P < 0.05). The levels of pO 2 were positively related with the gray values of Ki67 and negatively related with the values of HIF-1 alpha and CK20 ( P < 0.05). Thus, the levels of microenvironmental pO 2 affect the expression of predictive biomarkers HIF-1 alpha, CK20, and Ki67 in the development of CRC tissues.

  4. Partial Oxygen Pressure Affects the Expression of Prognostic Biomarkers HIF-1 Alpha, Ki67, and CK20 in the Microenvironment of Colorectal Cancer Tissue

    Directory of Open Access Journals (Sweden)

    Lirong Zhang

    2016-01-01

    Full Text Available Hypoxia is prognostically important in colorectal cancer (CRC therapy. Partial oxygen pressure (pO2 is an important parameter of hypoxia. The correlation between pO2 levels and expression levels of prognostic biomarkers was measured in CRC tissues. Human CRC tissues were collected and pO2 levels were measured by OxyLite. Three methods for tissue fixation were compared, including formalin, Finefix, and Finefix-plus-microwave. Immunohistochemistry (IHC staining was conducted by using the avidin-biotin complex technique for detecting the antibodies to hypoxia inducible factor-1 (HIF-1 alpha, cytokeratin 20 (CK20, and cell proliferation factor Ki67. The levels of pO2 were negatively associated with the size of CRC tissues. Finefix-plus-microwave fixation has the potential to replace formalin. Additionally, microwave treatment improved Finefix performance in tissue fixation and protein preservation. The percentage of positive cells and gray values of HIF-1 alpha, CK20, and Ki67 were associated with CRC development (P<0.05. The levels of pO2 were positively related with the gray values of Ki67 and negatively related with the values of HIF-1 alpha and CK20 (P<0.05. Thus, the levels of microenvironmental pO2 affect the expression of predictive biomarkers HIF-1 alpha, CK20, and Ki67 in the development of CRC tissues.

  5. Expression of angiopoietin-1 in hypoxic pericytes: Regulation by hypoxia-inducible factor-2α and participation in endothelial cell migration and tube formation.

    Science.gov (United States)

    Park, Yoon Shin; Kim, Gyungah; Jin, Yoon Mi; Lee, Jee Young; Shin, Jong Wook; Jo, Inho

    2016-01-08

    We previously reported that hypoxia increases angiopoietin-1 (Ang1), but not Ang2, mRNA expression in bovine retinal pericytes (BRP). However, the mechanism underlying Ang1 expression is unknown. Here, we report that Ang1 protein expression increased in hypoxic BRP in a dose- and time-dependent manner. This increase was accompanied by an increase in hypoxia-inducible factor-2α (HIF2α) expression. Transfection with an antisense oligonucleotide for HIF2α partially inhibited the hypoxia-induced increase in Ang1 expression. HIF2α overexpression further potentiated hypoxia-stimulated Ang1 expression, suggesting that HIF2α plays an important role in Ang1 regulation in BRP. When fused the Ang1 promoter (-3040 to +199) with the luciferase reporter gene, we found that hypoxia significantly increased promoter activity by 4.02 ± 1.68 fold. However, progressive 5'-deletions from -3040 to -1799, which deleted two putative hypoxia response elements (HRE), abolished the hypoxia-induced increase in promoter activity. An electrophoretic mobility shift assay revealed that HIF2α was predominantly bound to a HRE site, located specifically at nucleotides -2715 to -2712. Finally, treatment with conditioned medium obtained from hypoxic pericytes stimulated endothelial cell migration and tube formation, which was completely blocked by co-treatment with anti-Ang1 antibody. This study is the first to demonstrate that hypoxia upregulates Ang1 expression via HIF2α-mediated transcriptional activation in pericytes, which plays a key role in angiogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Nfatc1 Is a Functional Transcriptional Factor Mediating Nell-1-Induced Runx3 Upregulation in Chondrocytes

    Directory of Open Access Journals (Sweden)

    Chenshuang Li

    2018-01-01

    Full Text Available Neural EGFL like 1 (Nell-1 is essential for chondrogenic differentiation, maturation, and regeneration. Our previous studies have demonstrated that Nell-1’s pro-chondrogenic activities are predominantly reliant upon runt-related transcription factor 3 (Runx3-mediated Indian hedgehog (Ihh signaling. Here, we identify the nuclear factor of activated T-cells 1 (Nfatc1 as the key transcriptional factor mediating the Nell-1 → Runx3 signal transduction in chondrocytes. Using chromatin immunoprecipitation assay, we were able to determine that Nfatc1 binds to the −833–−810 region of the Runx3-promoter in response to Nell-1 treatment. By revealing the Nell-1 → Nfatc1 → Runx3 → Ihh cascade, we demonstrate the involvement of Nfatc1, a nuclear factor of activated T-cells, in chondrogenesis, while providing innovative insights into developing a novel therapeutic strategy for cartilage regeneration and other chondrogenesis-related conditions.

  7. [Research progress of mechanism of hypoxia-inducible factor-1α signaling pathway in condylar cartilage growth and remodeling].

    Science.gov (United States)

    Gaoli, Xu; Lili, Wu; Zhiwu, Wu; Zhiyuan, Gu

    2016-12-01

    The condylar cartilage was adapted to hypoxic conditions in vivo. However, condylar cartilage cells exposed in normoxia in vitro affect the chondrocyte phenotype and cartilage matrix formation. This condition also resulted in great difficulty in chondrocyte research. Culturing chondrocyte should be simulated in in vivo hypoxia environment as much as possible. The hypoxia-inducible factor-1α (HIF-1α) demonstrates an important transcription factor of adaptive response to hypoxic conditions. HIF-1α also plays an active role in maintaining homeostasis and function of chondrocytes. This review summarized current knowledge of the HIF-1α structure, signaling pathway, and mechanism of HIF-1α in the condylar cartilage repair.

  8. Sphingosine 1-phosphate induces neutrophil chemoattractant IL-8: repression by steroids.

    Directory of Open Access Journals (Sweden)

    Md Mostafizur Rahman

    Full Text Available The bioactive sphingolipid sphingosine 1-phosphate (S1P is found in increased amounts in the airways of asthmatics. S1P can regulate airway smooth muscle functions associated with asthmatic inflammation and remodeling, including cytokine secretion. To date however, whether S1P induces secretion of an important chemokine responsible for neutrophilia in airway inflammation--IL-8--was unexplored. The aim of this study was to investigate whether S1P induces IL-8 gene expression and secretion to enhance neutrophil chemotaxis in vitro, as well as examine the molecular mechanisms responsible for repression by the corticosteroid dexamethasone. We show that S1P upregulates IL-8 secretion from ASM cells and enhance neutrophil chemotaxis in vitro. The corticosteroid dexamethasone significantly represses IL-8 mRNA expression and protein secretion in a concentration- and time-dependent manner. Additionally, we reveal that S1P-induced IL-8 secretion is p38 MAPK and ERK-dependent and that these key phosphoproteins act on the downstream effector mitogen- and stress-activated kinase 1 (MSK1 to control secretion of the neutrophil chemoattractant cytokine IL-8. The functional relevance of this in vitro data was demonstrated by neutrophil chemotaxis assays where S1P-induced effects can be significantly attenuated by pretreatment with dexamethasone, pharmacological inhibition of p38 MAPK- or ERK-mediated pathways, or by knocking down MSK-1 with siRNA. Taken together, our study reveals the molecular pathways responsible for IL-8 secretion from ASM cells in response to S1P and indicates ways in which the impact on IL-8-driven neutrophilia may be lessened.

  9. Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth

    Directory of Open Access Journals (Sweden)

    Li J

    2015-02-01

    Full Text Available Jie Li,1 Chao Zhang,1 Hongchuan Jiang,1 Jiao Cheng21Department of General Surgery, 2Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital, Beijing, People’s Republic of ChinaAbstract: Hypoxia-inducible factor-1 (HIF-1 is a master regulator of the transcriptional response to hypoxia. HIF-1α is one of the most compelling anticancer targets. Andrographolide (Andro was newly identified to inhibit HIF-1 in T47D cells (a half maximal effective concentration [EC50] of 1.03×10-7 mol/L, by a dual-luciferase reporter assay. It suppressed HIF-1α protein and gene accumulation, which was dependent on the inhibition of upstream phosphatidylinositol 3-kinase (PI3K/AKT pathway. It also abrogated the expression of HIF-1 target vascular endothelial growth factor (VEGF gene and protein. Further, Andro inhibited T47D and MDA-MB-231 cell proliferation and colony formation. In addition, it exhibited significant in vivo efficacy and antitumor potential against the MDA-MB-231 xenograft in nude mice. In conclusion, these results highlighted the potential effects of Andro, which inhibits HIF-1, and hence may be developed as an antitumor agent for breast cancer therapy in future.Keywords: Andrographolide (Andro, HIF-1α, inhibit, breast cancer, hypoxia, PI3k/AKT/mTOR pathway

  10. Molecular basis for the regulation of hypoxia-inducible factor-1α levels by 2-deoxy-D-ribose.

    Science.gov (United States)

    Ikeda, Ryuji; Tabata, Sho; Tajitsu, Yusuke; Nishizawa, Yukihiko; Minami, Kentaro; Furukawa, Tatsuhiko; Yamamoto, Masatatsu; Shinsato, Yoshinari; Akiyama, Shin-Ichi; Yamada, Katsushi; Takeda, Yasuo

    2013-09-01

    The angiogenic factor, platelet-derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP), stimulates the chemotaxis of endothelial cells and confers resistance to apoptosis induced by hypoxia. 2-Deoxy-D-ribose, a degradation product of thymidine generated by TP enzymatic activity, inhibits the upregulation of hypoxia-inducible factor (HIF) 1α, BNIP3 and caspase-3 induced by hypoxia. In the present study, we investigated the molecular basis for the suppressive effect of 2-deoxy-D-ribose on the upregulation of HIF-1α. 2-Deoxy-D-ribose enhanced the interaction of HIF-1α and the von Hippel-Lindau (VHL) protein under hypoxic conditions. It did not affect the expression of HIF-1α, prolyl hydroxylase (PHD)1/2/3 and VHL mRNA under normoxic or hypoxic conditions, but enhanced the interaction of HIF-1α and PHD2 under hypoxic conditions. 2-Deoxy-D-ribose also increased the amount of hydroxy-HIF-1α in the presence of the proteasome inhibitor MG-132. The expression levels of TP are elevated in many types of malignant solid tumors and, thus, 2-deoxy-D-ribose generated by TP in these tumors may play an important role in tumor progression by preventing hypoxia-induced apoptosis.

  11. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris.

    Science.gov (United States)

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-03-18

    The alcohol oxidase 1 (AOX1) promoter (P AOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of P AOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated P AOX1 in response to methanol, were bound to P AOX1 at different sites and did not interact with each other. However, these factors cooperatively activated P AOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (P MIT1), thus increasingly expressing Mit1 and subsequently activating P AOX1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Anti-vascular agent Combretastatin A-4-P modulates Hypoxia Inducible Factor-1 and gene expression

    Directory of Open Access Journals (Sweden)

    Currie Margaret J

    2006-12-01

    Full Text Available Abstract Background A functional vascular network is essential for the survival, growth and spread of solid tumours, making blood vessels a key target for therapeutic strategies. Combretastatin A-4 phosphate (CA-4-P is a tubulin-depolymerising agent in Phase II clinical trials as a vascular disrupting agent. Not much is known of the molecular effect of CA-4-P under tumour conditions. The tumour microenvironment differs markedly from that in normal tissue, specifically with respect to oxygenation (hypoxia. Gene regulation under tumour conditions is governed by hypoxia inducible factor 1 (HIF-1, controlling angiogenic and metastatic pathways. Methods We investigated the effect of CA-4-P on factors of the upstream and downstream signalling pathway of HIF-1 in vitro. Results CA-4-P treatment under hypoxia tended to reduce HIF-1 accumulation in a concentration-dependent manner, an effect which was more prominent in endothelial cells than in cancer cell lines. Conversely, CA-4-P increased HIF-1 accumulation under aerobic conditions in vitro. At these concentrations of CA-4-P under aerobic conditions, nuclear factor κB was activated via the small GTPase RhoA, and expression of the HIF-1 downstream angiogenic effector gene, vascular endothelial growth factor (VEGF-A, was increased. Conclusion Our findings advance the understanding of signal transduction pathways involved in the actions of the anti-vascular agent CA-4-P.

  13. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function

    DEFF Research Database (Denmark)

    Jensen, Kim Steen; Binderup, Tina; Jensen, Klaus Thorleif

    2011-01-01

    Exposure of metazoan organisms to hypoxia engages a metabolic switch orchestrated by the hypoxia-inducible factor 1 (HIF-1). HIF-1 mediates induction of glycolysis and active repression of mitochondrial respiration that reduces oxygen consumption and inhibits the production of potentially harmful...... tumour tissue in vivo and that FoxO3A short-hairpin RNA (shRNA)-expressing xenograft tumours are decreased in size and metabolically changed. Our findings define a novel mechanism by which FoxO3A promotes metabolic adaptation and stress resistance in hypoxia....... reactive oxygen species (ROS). Here, we show that FoxO3A is activated in hypoxia downstream of HIF-1 and mediates the hypoxic repression of a set of nuclear-encoded mitochondrial genes. FoxO3A is required for hypoxic suppression of mitochondrial mass, oxygen consumption, and ROS production and promotes...... cell survival in hypoxia. FoxO3A is recruited to the promoters of nuclear-encoded mitochondrial genes where it directly antagonizes c-Myc function via a mechanism that does not require binding to the consensus FoxO recognition element. Furthermore, we show that FoxO3A is activated in human hypoxic...

  14. Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer.

    Science.gov (United States)

    Yeung, S J; Pan, J; Lee, M-H

    2008-12-01

    Despite diversity in genetic events in oncogenesis, cancer cells exhibit a common set of functional characteristics. Otto Warburg discovered that cancer cells have consistently higher rates of glycolysis than normal cells. The underlying mechanisms leading to the Warburg phenomenon include mitochondrial changes, upregulation of rate-limiting enzymes/proteins in glycolysis and intracellular pH regulation, hypoxia-induced switch to anaerobic metabolism, and metabolic reprogramming after loss of p53 function. The regulation of energy metabolism can be traced to a "triad" of transcription factors: c-MYC, HIF-1 and p53. Oncogenetic changes involve a nonrandom set of gene deletions, amplifications and mutations, and many oncogenes and tumor suppressor genes cluster along the signaling pathways that regulate c-MYC, HIF-1 and p53. Glycolysis in cancer cells has clinical implications in cancer diagnosis, treatment and interaction with diabetes mellitus. Many drugs targeting energy metabolism are in development. Future advances in technology may bring about transcriptome and metabolome-guided chemotherapy.

  15. Chorionic gonadotropin regulates the transcript level of VHL, p53, and HIF-2alpha in human granulosa lutein cells.

    Science.gov (United States)

    Herr, D; Keck, C; Tempfer, C; Pietrowski, Detlef

    2004-12-01

    The ovarian corpus luteum plays a critical role in reproduction being the primary source of circulating progesterone. After ovulation the corpus luteum is build by avascular granulosa lutein cells through rapid vascularization regulated by gonadotropic hormones. The present study was performed to investigate whether this process might be influenced by the human chorionic gonadotropin (hCG)-dependent expression of different tumor suppressor genes and hypoxia dependent transcription factors. RNA was isolated from cultured granulosa lutein cells, transcribed into cDNA, and the transcript level of following genes were determined: RB-1, VHL, NF-1, NF-2, Wt-1, p53, APC, and hypoxia inducible factor-1 (HIF-1), -2, and -3alpha. Additionally, the influence of hCG on the expression of VHL, p53, and HIf2alpha were investigated. We demonstrate that in human granulosa lutein cells the tumor suppressor genes RB-1, VHL, NF-1, NF-2, Wt-1, p53, and APC and the hypoxia dependent transcription factors HIF-1alpha, -2alpha, and -3alpha are expressed. In addition, we showed that hCG regulates the expression of p53, VHL, and HIF-2alpha. Our results indicate that hCG may determine the growth and development of the corpus luteum by mediating hypoxic and apoptotic pathways in human granulosa lutein cells. Copyright 2004 Wiley-Liss, Inc.

  16. Hypoxic Culture Promotes Dopaminergic-Neuronal Differentiation of Nasal Olfactory Mucosa Mesenchymal Stem Cells via Upregulation of Hypoxia-Inducible Factor-1α.

    Science.gov (United States)

    Zhuo, Yi; Wang, Lei; Ge, Lite; Li, Xuan; Duan, Da; Teng, Xiaohua; Jiang, Miao; Liu, Kai; Yuan, Ting; Wu, Pei; Wang, Hao; Deng, Yujia; Xie, Huali; Chen, Ping; Xia, Ying; Lu, Ming

    2017-08-01

    Olfactory mucosa mesenchymal stem cells (OM-MSCs) display significant clonogenic activity and may be easily propagated for Parkinson's disease therapies. Methods of inducing OM-MSCs to differentiate into dopaminergic (DAergic) neurons using olfactory ensheathing cells (OECs) are thus an attractive topic of research. We designed a hypoxic induction protocol to generate DAergic neurons from OM-MSCs using a physiological oxygen (O 2 ) level of 3% and OEC-conditioned medium (OCM; HI group). The normal induction (NI) group was cultured in O 2 at ambient air level (21%). The role of hypoxia-inducible factor-1α (HIF-1α) in the differentiation of OM-MSCs under hypoxia was investigated by treating cells with an HIF-1α inhibitor before induction (HIR group). The proportions of β-tubulin- and tyrosine hydroxylase (TH)-positive cells were significantly increased in the HI group compared with the NI and HIR groups, as shown by immunocytochemistry and Western blotting. Furthermore, the level of dopamine was significantly increased in the HI group. A slow outward potassium current was recorded in differentiated cells after 21 d of induction using whole-cell voltage-clamp tests. A hypoxic environment thus promotes OM-MSCs to differentiate into DAergic neurons by increasing the expression of HIF-1α and by activating downstream target gene TH. This study indicated that OCM under hypoxic conditions could significantly upregulate key transcriptional factors involved in the development of DAergic neurons from OM-MSCs, mediated by HIF-1α. Hypoxia promotes DAergic neuronal differentiation of OM-MSCs, and HIF-1α may play an important role in hypoxia-inducible pathways during DAergic lineage specification and differentiation in vitro.

  17. Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory.

    Science.gov (United States)

    D'Urso, Agustina; Takahashi, Yoh-Hei; Xiong, Bin; Marone, Jessica; Coukos, Robert; Randise-Hinchliff, Carlo; Wang, Ji-Ping; Shilatifard, Ali; Brickner, Jason H

    2016-06-23

    In yeast and humans, previous experiences can lead to epigenetic transcriptional memory: repressed genes that exhibit mitotically heritable changes in chromatin structure and promoter recruitment of poised RNA polymerase II preinitiation complex (RNAPII PIC), which enhances future reactivation. Here, we show that INO1 memory in yeast is initiated by binding of the Sfl1 transcription factor to the cis-acting Memory Recruitment Sequence, targeting INO1 to the nuclear periphery. Memory requires a remodeled form of the Set1/COMPASS methyltransferase lacking Spp1, which dimethylates histone H3 lysine 4 (H3K4me2). H3K4me2 recruits the SET3C complex, which plays an essential role in maintaining this mark. Finally, while active INO1 is associated with Cdk8(-) Mediator, during memory, Cdk8(+) Mediator recruits poised RNAPII PIC lacking the Kin28 CTD kinase. Aspects of this mechanism are generalizable to yeast and conserved in human cells. Thus, COMPASS and Mediator are repurposed to promote epigenetic transcriptional poising by a highly conserved mechanism.

  18. Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains▿ †

    OpenAIRE

    Bellot, Grégory; Garcia-Medina, Raquel; Gounon, Pierre; Chiche, Johanna; Roux, Danièle; Pouysségur, Jacques; Mazure, Nathalie M.

    2009-01-01

    While hypoxia-inducible factor (HIF) is a major actor in the cell survival response to hypoxia, HIF also is associated with cell death. Several studies implicate the HIF-induced putative BH3-only proapoptotic genes bnip3 and bnip3l in hypoxia-mediated cell death. We, like others, do not support this assertion. Here, we clearly demonstrate that the hypoxic microenvironment contributes to survival rather than cell death by inducing autophagy. The ablation of Beclin1, a major actor of autophagy,...

  19. HIF-1α inhibition by siRNA or chetomin in human malignant glioma cells: effects on hypoxic radioresistance and monitoring via CA9 expression

    Directory of Open Access Journals (Sweden)

    Bache Matthias

    2010-11-01

    Full Text Available Abstract Background Hypoxia induces activation of the HIF-1 pathway and is an essential characteristic of malignant gliomas. Hypoxia has been linked to tumor progression, therapy resistance and poor prognosis. However, little is known about the impact of HIF-1α inhibition on radioresistance of malignant glioma. Methods In this study, we investigated the effects of the inhibition of HIF-1α on cell survival and radiosensitivity in U251MG and U343MG glioma cells, using two different strategies. HIF-1α inhibition was achieved by siRNA targeting of HIF-1α or via chetomin, a disruptor of interactions between HIF-1α and p300. The inhibition of the HIF-1 pathway was monitored by quantitative real-time PCR and Western blot analyses of the expression levels of HIF-1α and CA9. CA9 expression was investigated as a potential indicator of the efficacy of HIF-1 inhibition and the resulting radiosensitivity of malignant glioma cell lines was determined by clonogenic assay after irradiation under normoxic (2-10 Gy or hypoxic (2-15 Gy conditions. Results Although siRNA and chetomin show distinct modes of action, both attenuated the hypoxia-induced radioresistance of malignant glioma cell lines U251MG (DMF10: 1.35 and 1.18 and U343MG (DMF10: 1.78 and 1.48. However, siRNA and chetomin showed diverse effects on radiosensitivity under normoxic conditions in U251MG (DMF10: 0.86 and 1.35 and U343MG (DMF10: 1.33 and 1.02 cells. Conclusions Results from this in vitro study suggest that inhibition of HIF-1α is a promising strategy to sensitize human malignant gliomas to radiotherapy and that CA9 could serve as an indicator of effective HIF-1-related radiosensitization.

  20. Correlation between {sup 18}F-fluoromisonidazole PET and expression of HIF-1α and VEGF in newly diagnosed and recurrent malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Nobuyuki; Ogawa, Daisuke; Miyake, Keisuke; Tamiya, Takashi [Kagawa University, Department of Neurological Surgery, Faculty of Medicine, Kagawa (Japan); Lin, Wei [Kagawa University, Department of Neurological Surgery, Faculty of Medicine, Kagawa (Japan); Fourth Military Medical University, Department of Neurosurgery, Xijing Hospital, Xi' an (China); Cao, Wei-Dong [Fourth Military Medical University, Department of Neurosurgery, Xijing Hospital, Xi' an (China); Haba, Reiji [Kagawa University, Department of Diagnostic Pathology, Faculty of Medicine, Kagawa (Japan); Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro [Kagawa University, Department of Radiology, Faculty of Medicine, Kagawa (Japan)

    2014-10-15

    Hypoxia and its consequences at the molecular level promote tumour progression and affect patient prognosis. One of the main early cellular events evoked by hypoxia is induction of hypoxia-inducible factor 1 (HIF-1) and subsequent upregulation of vascular endothelial growth factor (VEGF). In this study we sought to determine whether hypoxia detected by {sup 18}F-fluoromisonidazole (FMISO) PET accurately reflects the expression of HIF-1α and VEGF in the tumour and can be used as a biomarker of antiangiogenic treatment and as a prognostic factor in newly diagnosed and recurrent malignant gliomas. Enrolled in this study were 32 patients with newly diagnosed glioma and 16 with recurrent glioma of grade III or grade IV. All the patients had undergone FMISO PET preoperatively. The maximum tumour-to-blood FMISO activity ratio (T/B{sub max}) was used to evaluate the degree of tumour hypoxia and the hypoxic volume (HV) was calculated using a tumour-to-blood FMISO uptake ratio of ≥1.2. Immunohistochemical expressions of HIF-1α and VEGF were evaluated semiquantitatively using the immunoreactivity score (IRS, scores 0 to 12) and the correlation was examined between IRS of HIF-1α or VEGF and FMISO uptake of the tumour (SUV{sub tumour}) using navigation-based sampling. Survival was estimated using the Kaplan-Meier method in relation to the T/B{sub max} and the HV. The T/B{sub max} and the HV in grade IV gliomas were significantly higher than in grade III gliomas (P < 0.01 and P < 0.01, respectively). Moderate to strong HIF-1α and VEGF expression was observed in the majority of malignant gliomas. The IRS of HIF-1α and VEGF in the tumour were not significantly different between grade III and grade IV gliomas. The IRS of HIF-1α in the tumour did not correlate with the SUV{sub tumour} of FMISO in either newly diagnosed or recurrent glioma. There was a significant but weak correlation between the IRS of VEGF and the SUV{sub tumour} of FMISO in newly diagnosed glioma, but not

  1. The vitamin D analogue ED71 but Not 1,25(OH2D3 targets HIF1α protein in osteoclasts.

    Directory of Open Access Journals (Sweden)

    Yuiko Sato

    Full Text Available Although both an active form of the vitamin D metabolite, 1,25(OH2D3, and the vitamin D analogue, ED71 have been used to treat osteoporosis, anti-bone resorbing activity is reportedly seen only in ED71- but not in 1,25(OH2D3 -treated patients. In addition, how ED71 inhibits osteoclast activity in patients has not been fully characterized. Recently, HIF1α expression in osteoclasts was demonstrated to be required for development of post-menopausal osteoporosis. Here we show that ED71 but not 1,25(OH2D3, suppress HIF1α protein expression in osteoclasts in vitro. We found that 1,25(OH2D3 or ED71 function in osteoclasts requires the vitamin D receptor (VDR. ED71 was significantly less effective in inhibiting M-CSF and RANKL-stimulated osteoclastogenesis than was 1,25(OH2D3 in vitro. Downregulation of c-Fos protein and induction of Ifnβ mRNA in osteoclasts, both of which reportedly block osteoclastogenesis induced by 1,25(OH2D3 in vitro, were both significantly higher following treatment with 1,25(OH2D3 than with ED71. Thus, suppression of HIF1α protein activity in osteoclasts in vitro, which is more efficiently achieved by ED71 rather than by 1,25(OH2D3, could be a reliable read-out in either developing or screening reagents targeting osteoporosis.

  2. Intermittent Hypoxia Is Associated With High Hypoxia Inducible Factor-1α but Not High Vascular Endothelial Growth Factor Cell Expression in Tumors of Cutaneous Melanoma Patients

    Directory of Open Access Journals (Sweden)

    Isaac Almendros

    2018-04-01

    Full Text Available Epidemiological associations linking between obstructive sleep apnea and poorer solid malignant tumor outcomes have recently emerged. Putative pathways proposed to explain that these associations have included enhanced hypoxia inducible factor (HIF-1α and vascular endothelial growth factor (VEGF cell expression in the tumor and altered immune functions via intermittent hypoxia (IH. Here, we examined relationships between HIF-1α and VEGF expression and nocturnal IH in cutaneous melanoma (CM tumor samples. Prospectively recruited patients with CM tumor samples were included and underwent overnight polygraphy. General clinical features, apnea–hypopnea index (AHI, desaturation index (DI4%, and CM characteristics were recorded. Histochemical assessments of VEGF and HIF-1α were performed, and the percentage of positive cells (0, <25, 25–50, 51–75, >75% was blindly tabulated for VEGF expression, and as 0, 0–5.9, 6.0–10.0, >10.0% for HIF-1α expression, respectively. Cases with HIF-1α expression >6% (high expression were compared with those <6%, and VEGF expression >75% of cells was compared with those with <75%. 376 patients were included. High expression of VEGF and HIF-1α were seen in 88.8 and 4.2% of samples, respectively. High expression of VEGF was only associated with increasing age. However, high expression of HIF-1α was significantly associated with age, Breslow index, AHI, and DI4%. Logistic regression showed that DI4% [OR 1.03 (95% CI: 1.01–1.06] and Breslow index [OR 1.28 (95% CI: 1.18–1.46], but not AHI, remained independently associated with the presence of high HIF-1α expression. Thus, IH emerges as an independent risk factor for higher HIF-1α expression in CM tumors and is inferentially linked to worse clinical CM prognostic indicators.

  3. Imaging and Targeting of Hypoxic Tumor Cells with Use of HIF-1-2

    International Nuclear Information System (INIS)

    Kizaka-Kondoh, Shinae; Harada, Hiroshi; Tanaka, Shotaro; Hiraoka, Masahiro

    2006-01-01

    This paper describes imaging (visualization) of transplanted tumor cells under hypoxia in vivo and molecular targeting to kill those cells by inducing their apoptosis. HIF (hypoxia inducible factor) concerned with angiogenesis is induced specifically in hypoxic tumor cells and its activity can be visualized by transfection of reporter vector construct of fluorescent protein GFP or luciferase. Authors established the transfected tumor cells with the plasmid p5HRE-luciferase and when transplanted in the nude mouse, those cells emitted light dependently to their hypoxic conditions, which could be visualized by in vivo imaging system (IVIS) with CCD camera. Authors prepared the oxygen-dependent degradation-procaspase 3-fusion protein (TOP3) to target the hypoxic tumor cells for enhancing their apoptotic signaling, whose apoptosis was actually observed by the IVIS. Reportedly, radiation transiently activates HIF-1 and combination treatment of radiation and TOP3 resulted in the enhanced death of tumor cells. Interestingly, the suppression of tumor growth lasted longer than expected, probably due to inhibition of angiogenesis. Authors called this anti-tumor strategy as the micro-environmental targeting. (T.I.)

  4. Inhibition of Hypoxia Inducible Factor Alpha and Astrocyte-Elevated Gene-1 Mediates Cryptotanshinone Exerted Antitumor Activity in Hypoxic PC-3 Cells

    Directory of Open Access Journals (Sweden)

    Hyo-Jeong Lee

    2012-01-01

    Full Text Available Although cryptotanshinone (CT was known to exert antitumor activity in several cancers, its molecular mechanism under hypoxia still remains unclear. Here, the roles of AEG-1 and HIF-1α in CT-induced antitumor activity were investigated in hypoxic PC-3 cells. CT exerted cytotoxicity against prostate cancer cells and suppressed HIF-1α accumulation and AEG-1 expression in hypoxic PC-3 cells. Also, AEG-1 was overexpressed in prostate cancer cells. Interestingly, HIF-1α siRNA transfection enhanced the cleavages of caspase-9,3, and PAPR and decreased expression of Bcl-2 and AEG1 induced by CT in hypoxic PC-3 cells. Of note, DMOG enhanced the stability of AEG-1 and HIF-1α during hypoxia. Additionally, CT significantly reduced cellular level of VEGF in PC-3 cells and disturbed tube formation of HUVECs. Consistently, ChIP assay revealed that CT inhibited the binding of HIF-1α to VEGF promoter. Furthermore, CT at 10 mg/kg suppressed the growth of PC-3 cells in BALB/c athymic nude mice by 46.4% compared to untreated control. Consistently, immunohistochemistry revealed decreased expression of Ki-67, CD34, VEGF, carbonic anhydrase IX, and AEG-1 indices in CT-treated group compared to untreated control. Overall, our findings suggest that CT exerts antitumor activity via inhibition of HIF-1α, AEG1, and VEGF as a potent chemotherapeutic agent.

  5. Molecular characterization and mRNA expression of two key enzymes of hypoxia-sensing pathways in eastern oysters Crassostrea virginica (Gmelin): Hypoxia-inducible factor α (HIF-α) and HIF-prolyl hydroxylase (PHD)

    Science.gov (United States)

    Piontkivska, Helen; Chung, J. Sook; Ivanina, Anna V.; Sokolov, Eugene P.; Techa, Sirinart; Sokolova, Inna M.

    2010-01-01

    Oxygen homeostasis is crucial for development, survival and normal function of all metazoans. A family of transcription factors called hypoxia-inducible factors (HIF) is critical in mediating the adaptive responses to reduced oxygen availability. The HIF transcription factor consists of a constitutively expressed β subunit and an oxygen-dependent α subunit; the abundance of the latter determines the activity of HIF and is regulated by a family of O2- and Fe2+-dependent enzymes prolyl hydroxylases (PHDs). Currently very little is known about the function of this important pathway and the molecular structure of its key players in hypoxia-tolerant intertidal mollusks including oysters, which are among the animal champions of anoxic and hypoxic tolerance and thus can serve as excellent models to study the role of HIF cascade in adaptations to oxygen deficiency. We have isolated transcripts of two key components of the oxygen sensing pathway - the oxygen-regulated HIF-α subunit and PHD - from an intertidal mollusk, the eastern oyster Crassostrea virginica, and determined the transcriptional responses of these two genes to anoxia, hypoxia and cadmium (Cd) stress. HIF-α and PHD homologs from eastern oysters C. virginica show significant sequence similarity and share key functional domains with the earlier described isoforms from vertebrates and invertebrates. Phylogenetic analysis shows that genetic diversification of HIF and PHD isoforms occurred within the vertebrate lineage indicating functional diversification and specialization of the oxygen-sensing pathways in this group, which parallels situation observed for many other important genes. HIF-α and PHD homologs are broadly expressed at the mRNA level in different oyster tissues and show transcriptional responses to prolonged hypoxia in the gills consistent with their putative role in oxygen sensing and the adaptive response to hypoxia. Similarity in amino acid sequence, domain structure and transcriptional

  6. Nrdp1 Increases Ischemia Induced Primary Rat Cerebral Cortical Neurons and Pheochromocytoma Cells Apoptosis Via Downregulation of HIF-1α Protein

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2017-09-01

    Full Text Available Neuregulin receptor degradation protein-1 (Nrdp1 is an E3 ubiquitin ligase that targets proteins for degradation and regulates cell growth, apoptosis and oxidative stress in various cell types. We have previously shown that Nrdp1 is implicated in ischemic cardiomyocyte death. In this study, we investigated the change of Nrdp1 expression in ischemic neurons and its role in ischemic neuronal injury. Primary rat cerebral cortical neurons and pheochromocytoma (PC12 cells were infected with adenoviral constructs expressing Nrdp1 gene or its siRNA before exposing to oxygen-glucose deprivation (OGD treatment. Our data showed that Nrdp1 was upregulated in ischemic brain tissue 3 h after middle cerebral artery occlusion (MCAO and in OGD-treated neurons. Of note, Nrdp1 overexpression by Ad-Nrdp1 enhanced OGD-induced neuron apoptosis, while knockdown of Nrdp1 with siRNA attenuated this effect, implicating a role of Nrdp1 in ischemic neuron injury. Moreover, Nrdp1 upregulation is accompanied by increased protein ubiquitylation and decreased protein levels of ubiquitin-specific protease 8 (USP8 in OGD-treated neurons, which led to a suppressed interaction between USP8 and HIF-1α and subsequently a reduction in HIF-1α protein accumulation in neurons under OGD conditions. In conclusion, our data support an important role of Nrdp1 upregulation in ischemic neuronal death, and suppressing the interaction between USP8 and HIF-1α and consequently the hypoxic adaptive response of neurons may account for this detrimental effect.

  7. Prognostic role of hypoxia-inducible factor-1 alpha expression in osteosarcoma: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Ren HY

    2016-03-01

    Full Text Available Hai-Yong Ren,1 Yin-Hua Zhang,1,2 Heng-Yuan Li,1 Tao Xie,1 Ling-Ling Sun,1 Ting Zhu,1 Sheng-Dong Wang,1 Zhao-Ming Ye1 1Department of Orthopaedics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 2The First Department of Orthopaedics, Hospital of Zhejiang General Corps of Armed Police Forces, Jiaxing, People’s Republic of China Background: Hypoxia-inducible factor-1α (HIF-1α plays an important role in tumor progression and metastasis. A number of studies have investigated the association of HIF-1α with prognosis and clinicopathological characteristics of osteosarcoma but yielded inconsistent results.  Method: Systematic computerized searches were performed in PubMed, Embase, and Web of Science databases for relevant original articles. The pooled hazard ratios (HRs and odds ratios (ORs with corresponding confidence intervals (CIs were calculated to assess the prognostic value of HIF-1α expression. The standard mean difference was used to analyze the continuous variable.  Results: Finally, nine studies comprising 486 patients were subjected to final analysis. Protein expression level of HIF-1α was found to be significantly related to overall survival (HR =3.0; 95% CI: 1.46–6.15, disease-free survival (HR =2.23; 95% CI: 1.26–3.92, pathologic grade (OR =21.33; 95% CI: 4.60–98.88, tumor stage (OR =10.29; 95% CI: 3.55–29.82, chemotherapy response (OR =9.68; 95% CI: 1.87–50.18, metastasis (OR =5.06; 95% CI: 2.87–8.92, and microvessel density (standard mean difference =2.83; 95% CI: 2.28–3.39.  Conclusion: This meta-analysis revealed that overexpression of HIF-1α is a predictive factor of poor outcomes for osteosarcoma. HIF-1α appeared to play an important role in prognostic evaluation and may be a potential target in antitumoral therapy. Keywords: HIF-1α, osteosarcoma, prognosis, meta-analysis

  8. AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: Role of nuclear respiratory factor-1

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Tasneem; Opie, Lionel H. [Hatter Cardiovascular Research Institute, Faculty of Health Sciences, University of Cape Town, Observatory 7925 (South Africa); Essop, M. Faadiel, E-mail: mfessop@sun.ac.za [Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600 (South Africa)

    2010-07-30

    Research highlights: {yields} AMPK inhibits acetyl-CoA carboxylase beta gene promoter activity. {yields} Nuclear respiratory factor-1 inhibits acetyl-CoA carboxylase beta promoter activity. {yields} AMPK regulates acetyl-CoA carboxylase beta at transcriptional level. -- Abstract: The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC{beta}) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACC{beta} activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid {beta}-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACC{beta} promoter activity via AMPK activation. A human ACC{beta} promoter-luciferase construct was transiently transfected into neonatal cardiomyocytes {+-} a NRF-1 expression construct. NRF-1 overexpression decreased ACC{beta} gene promoter activity by 71 {+-} 4.6% (p < 0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACC{beta} was abolished with a pPII{beta}-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACC{beta} promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACC{beta} gene promoter. Here NRF-1 blunted USF1-dependent induction of ACC{beta} promoter activity by 58 {+-} 7.5% (p < 0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55 {+-} 6.2% (p < 0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACC{beta} gene promoter in the mammalian heart. Our data extends AMPK regulation of ACC{beta} to the transcriptional level.

  9. Tumor protein 53-induced nuclear protein 1 (TP53INP1 enhances p53 function and represses tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jeyran eShahbazi

    2013-05-01

    Full Text Available Tumor protein 53-induced nuclear protein 1 (TP53INP1 is a stress-induced p53 target gene whose expression is modulated by transcription factors such as p53, p73 and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. When associated with homeodomain-interacting protein kinase-2 (HIPK2, TP53INP1 phosphorylates p53 protein at Serine 46, enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53 target genes such as p21, PIG-3 and MDM2, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis; while TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment.

  10. Expression of hypoxia-inducible factor-1α and erythropoietin at corneal neovascularization in rats

    Directory of Open Access Journals (Sweden)

    Ji-Min Wang

    2014-12-01

    Full Text Available AIM: To describe the expression of hypoxia-inducible factor-1α(HIF-1αand erythropoietin(EPOin rats' corneal and evaluate its potential effect on corneal neovascularization(CNVgrowth. METHODS: The young SD rats(3mowas chosen and randomly divided into 2 groups, which were experimental group and normal control group. CNV model was established by alkali burn, and the length and area of CNV was observed everyday after operation by slit lamp. After that, the expression of HIF-1α and EPO was measured by SABC and RT-PCR methods at 1, 3, 5, 7, and 14d after alkali burn. The data was analyzed by SPSS 20.0. RESULTS: The area of CNV was increasing at 1, 3, 5, 7, and 14d after alkali burn, and the peak point appear at 7d. The growth speed was decreased after 14d. SABC method told us that no HIF-1α and very tiny amount EPO was detected at normal rats' corneal. The expression of the two factors increased at 1d after alkali burn in corneal epithelium and endoderm. The results of RT-PCR showed that a few amounts of HIF-1α and EPO mRNA were detected at normal group. The expression of the two factors was increased at 3d after alkali burn, and the peak value was found at 7d, however, it was decreased at 14d. Statistical difference was found at different time(PCONCLUSION: HIF-1α and EPO is closely related to CNV.

  11. Targeting the ROS-HIF-1-endothelin axis as a therapeutic approach for the treatment of obstructive sleep apnea-related cardiovascular complications.

    Science.gov (United States)

    Belaidi, Elise; Morand, Jessica; Gras, Emmanuelle; Pépin, Jean-Louis; Godin-Ribuot, Diane

    2016-12-01

    Obstructive sleep apnea (OSA) is now recognized as an independent and important risk factor for cardiovascular diseases such as hypertension, coronary heart disease, heart failure and stroke. Clinical and experimental data have confirmed that intermittent hypoxia is a major contributor to these deleterious consequences. The repetitive occurrence of hypoxia-reoxygenation sequences generates significant amounts of free radicals, particularly in moderate to severe OSA patients. Moreover, in addition to hypoxia, reactive oxygen species (ROS) are potential inducers of the hypoxia inducible transcription factor-1 (HIF-1) that promotes the transcription of numerous adaptive genes some of which being deleterious for the cardiovascular system, such as the endothelin-1 gene. This review will focus on the involvement of the ROS-HIF-1-endothelin signaling pathway in OSA and intermittent hypoxia and discuss current and potential therapeutic approaches targeting this pathway to treat or prevent cardiovascular disease in moderate to severe OSA patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Targeting the ROS-HIF-1-endothelin axis as a therapeutic approach for the treatment of obstructive sleep apnea-related cardiovascular complications

    Science.gov (United States)

    Belaidi, Elise; Morand, Jessica; Gras, Emmanuelle; Pépin, Jean-Louis; Godin-Ribuot, Diane

    2016-01-01

    Obstructive sleep apnea (OSA) is now recognized as an independent and important risk factor for cardiovascular diseases such as hypertension, coronary heart disease, heart failure and stroke. Clinical and experimental data have confirmed that intermittent hypoxia is a major contributor to these deleterious consequences. The repetitive occurrence of hypoxia-reoxygenation sequences generates significant amounts of free radicals, particularly in moderate to severe OSA patients. Moreover, in addition to hypoxia, reactive oxygen species (ROS) are potential inducers of the hypoxia inducible transcription factor-1 (HIF-1) that promotes the transcription of numerous adaptive genes some of which being deleterious for the cardiovascular system, such as the endothelin-1 gene. This review will focus on the involvement of the ROS-HIF-1-endotelin signaling pathway in OSA and intermittent hypoxia and discuss current and potential therapeutic approaches targeting this pathway to treat or prevent cardiovascular disease in moderate to severe OSA patients. PMID:27492897

  13. Development of unidentified dna-specific hif 1α gene of lizard (hemidactylus platyurus) which plays a role in tissue regeneration process

    Science.gov (United States)

    Novianti, T.; Sadikin, M.; Widia, S.; Juniantito, V.; Arida, E. A.

    2018-03-01

    Development of unidentified specific gene is essential to analyze the availability these genes in biological process. Identification unidentified specific DNA of HIF 1α genes is important to analyze their contribution in tissue regeneration process in lizard tail (Hemidactylus platyurus). Bioinformatics and PCR techniques are relatively an easier method to identify an unidentified gene. The most widely used method is BLAST (Basic Local Alignment Sequence Tools) method for alignment the sequences from the other organism. BLAST technique is online software from website https://blast.ncbi.nlm.nih.gov/Blast.cgi that capable to generate the similar sequences from closest kinship to distant kindship. Gecko japonicus is a species that it has closest kinship with H. platyurus. Comparing HIF 1 α gene sequence of G. japonicus with the other species used multiple alignment methods from Mega7 software. Conserved base areas were identified using Clustal IX method. Primary DNA of HIF 1 α gene was design by Primer3 software. HIF 1α gene of lizard (H. platyurus) was successfully amplified using a real-time PCR machine by primary DNA that we had designed from Gecko japonicus. Identification unidentified gene of HIF 1a lizard has been done successfully with multiple alignment method. The study was conducted by analyzing during the growth of tail on day 1, 3, 5, 7, 10, 13 and 17 of lizard tail after autotomy. Process amplification of HIF 1α gene was described by CT value in real time PCR machine. HIF 1α expression of gene is quantified by Livak formula. Chi-square statistic test is 0.000 which means that there is a different expression of HIF 1 α gene in every growth day treatment.

  14. Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway.

    Science.gov (United States)

    Koshikawa, Nobuko; Hayashi, Jun-Ichi; Nakagawara, Akira; Takenaga, Keizo

    2009-11-27

    Lewis lung carcinoma-derived high metastatic A11 cells constitutively overexpress hypoxia-inducible factor (HIF)-1alpha mRNA compared with low metastatic P29 cells. Because A11 cells exclusively possess a G13997A mutation in the mitochondrial NADH dehydrogenase subunit 6 (ND6) gene, we addressed here a causal relationship between the ND6 mutation and the activation of HIF-1alpha transcription, and we investigated the potential mechanism. Using trans-mitochondrial cybrids between A11 and P29 cells, we found that the ND6 mutation was directly involved in HIF-1alpha mRNA overexpression. Stimulation of HIF-1alpha transcription by the ND6 mutation was mediated by overproduction of reactive oxygen species (ROS) and subsequent activation of phosphatidylinositol 3-kinase (PI3K)-Akt and protein kinase C (PKC) signaling pathways. The up-regulation of HIF-1alpha transcription was abolished by mithramycin A, an Sp1 inhibitor, but luciferase reporter and chromatin immunoprecipitation assays indicated that Sp1 was necessary but not sufficient for HIF-1alpha mRNA overexpression in A11 cells. On the other hand, trichostatin A, a histone deacetylase (HDAC) inhibitor, markedly suppressed HIF-1alpha transcription in A11 cells. In accordance with this, HDAC activity was high in A11 cells but low in P29 cells and in A11 cells treated with the ROS scavenger ebselene, the PI3K inhibitor LY294002, and the PKC inhibitor Ro31-8220. These results suggest that the ROS-generating ND6 mutation increases HIF-1alpha transcription via the PI3K-Akt/PKC/HDAC pathway, leading to HIF-1alpha protein accumulation in hypoxic tumor cells.

  15. [The effect of hypoxia preconditioning no binding activity of HIF-1 on the HRE with EPO in the hippocampus of mice].

    Science.gov (United States)

    Shao, Guo; Zhou, Wei-Hua; Gao, Cui-Ying; Zhang, Ran; Lu, Guo-Wei

    2007-02-01

    To observe change of binding activity of HIF-1 with erythropoietin (EPO) hypoxia response element (HRE) in the hippocampus of mice preconditioned to hypoxia and explore relationship between the changes and the preconditioning. The hippocampus was removed from mice exposed to hypoxia for 0 run (control group), 1 run (H1 group) and 4 runs(H4 group). Electrophoretic mobility shift assays (EMSA), chromatin immunoprecipitation (ChIP)and real time PCR were used to detect the change of activity of HIF-1 on HRE of EPO. Both in vitro and in vivo binding tests showed that the HIF-1 DNA-binding activities were increased in group H1 and markedly increased in group H4. The increase of HIF-1 and HRE of EPO binding activities is thought be involved in hypoxic preconditioning.

  16. Hypoxia induces cancer-associated cAMP/PKA signalling through HIF-mediated transcriptional control of adenylyl cyclases VI and VII.

    Science.gov (United States)

    Simko, Veronika; Iuliano, Filippo; Sevcikova, Andrea; Labudova, Martina; Barathova, Monika; Radvak, Peter; Pastorekova, Silvia; Pastorek, Jaromir; Csaderova, Lucia

    2017-08-31

    Hypoxia is a phenomenon often arising in solid tumours, linked to aggressive malignancy, bad prognosis and resistance to therapy. Hypoxia-inducible factor-1 has been identified as a key mediator of cell and tissue adaptation to hypoxic conditions through transcriptional activation of many genes involved in glucose metabolism and other cancer-related processes, such as angiogenesis, cell survival and cell invasion. Cyclic adenosine 3'5'-monophosphate is one of the most ancient and evolutionarily conserved signalling molecules and the cAMP/PKA signalling pathway plays an important role in cellular adaptation to hypoxia. We have investigated possible new mechanisms behind hypoxic activation of the cAMP/PKA pathway. For the first time, we have shown that hypoxia induces transcriptional up-regulation of the system of adenylyl cyclases, enzymes responsible for cAMP production, in a panel of carcinoma cell lines of various origin. Our data prove functional relevance of the hypoxic increase of adenylyl cyclases VI and VII at least partially mediated by HIF-1 transcription factor. We have identified adenylyl cyclase VI and VII isoforms as mediators of cellular response to hypoxia, which led to the elevation of cAMP levels and enhanced PKA activity, with an impact on cell migration and pH regulation.

  17. Correlation of hypoxia inducible factor-1α and vascular endothelium growth factor in rat myocardium during aerobic and anaerobic exercise

    Directory of Open Access Journals (Sweden)

    Rostika Flora

    2012-08-01

    Full Text Available Background: Exercise increases the need for oxygen to generate ATP through oxidative phosphorylation. If the high energy demand during exercise is not balanced by sufficient oxygen supply, hypoxia occurs in skeletal muscle tissue leading to upregulation of hypoxia inducible factor-1α (HIF-1α. The activity of HIF-1α increases the expression of various genes in order to reduce the metabolic dependence on oxygen and to increase oxygen supply to the tissue, e.g., VEGF which plays a role in angiogenesis. In myocardium, it is unclear whether exercise leads to hypoxia and whether HIF-1α and VEGF play a role in the mechanism of hypoxic adaptation. This study aimed to investigate the correlation of HIF-1α and VEGF in heart muscle tissue of rats during aerobic and anaerobic exercise.Methods: A rat treadmill was used with a specific exercise program for 1, 3, 7 and 10 days. The concentrations of HIF-1α and VEGF were measured the myocardium.Results: Both, HIF-1α protein and VEGF were increased (p < 0.05 in the groups with aerobic and anaerobic exercise. Concentrations of HIF-1α were highest on the first day of activity, being higher in the anaerobic than in the aerobic group (156.8 ± 33.1 vs. 116.03 ± 5.66. Likewise, the highest concentration of VEGF in the group with anaerobic exercise occurred on the first day (36.37 ± 2:35, while in the aerobic group, VEGF concentration was highest on day 3 (40.66 ± 1.73. The correlation between the myocardial tissue consentrations of HIF-1α and VEGF is moderate (r = 0.59 in the aerobic group and strong in the anaerobic group (r = 0.69.Conclusion: Aerobic and anaerobic exercise increase HIF-1α and VEGF concentrations in rat myocardium in specific patterns. The anaerobic condition triggers vascularization stronger and obviously earlier than aerobic exercise. (Med J Indones. 2012;21:133-40Keywords: Exercise, HIF-1α, myocardium, VEGF

  18. Targeting MUC1-C suppresses polycomb repressive complex 1 in multiple myeloma.

    Science.gov (United States)

    Tagde, Ashujit; Markert, Tahireh; Rajabi, Hasan; Hiraki, Masayuki; Alam, Maroof; Bouillez, Audrey; Avigan, David; Anderson, Kenneth; Kufe, Donald

    2017-09-19

    The polycomb repressive complex 1 (PRC1) includes the BMI1, RING1 and RING2 proteins. BMI1 is required for survival of multiple myeloma (MM) cells. The MUC1-C oncoprotein is aberrantly expressed by MM cells, activates MYC and is also necessary for MM cell survival. The present studies show that targeting MUC1-C with (i) stable and inducible silencing and CRISPR/Cas9 editing and (ii) the pharmacologic inhibitor GO-203, which blocks MUC1-C function, downregulates BMI1, RING1 and RING2 expression. The results demonstrate that MUC1-C drives BMI1 transcription by a MYC-dependent mechanism. MUC1-C thus promotes MYC occupancy on the BMI1 promoter and thereby activates BMI1 expression. We also show that the MUC1-C→MYC pathway induces RING2 expression. Moreover, in contrast to BMI1 and RING2, we found that MUC1-C drives RING1 by an NF-κB p65-dependent mechanism. Targeting MUC1-C and thereby the suppression of these key PRC1 proteins was associated with downregulation of the PRC1 E3 ligase activity as evidenced by decreases in ubiquitylation of histone H2A. Targeting MUC1-C also resulted in activation of the PRC1-repressed tumor suppressor genes, PTEN, CDNK2A and BIM . These findings identify a heretofore unrecognized role for MUC1-C in the epigenetic regulation of MM cells.

  19. Corticosteroid-Induced MKP-1 Represses Pro-Inflammatory Cytokine Secretion by Enhancing Activity of Tristetraprolin (TTP) in ASM Cells.

    Science.gov (United States)

    Prabhala, Pavan; Bunge, Kristin; Ge, Qi; Ammit, Alaina J

    2016-10-01

    Exaggerated cytokine secretion drives pathogenesis of a number of chronic inflammatory diseases, including asthma. Anti-inflammatory pharmacotherapies, including corticosteroids, are front-line therapies and although they have proven clinical utility, the molecular mechanisms responsible for their actions are not fully understood. The corticosteroid-inducible gene, mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1, DUSP1) has emerged as a key molecule responsible for the repressive effects of steroids. MKP-1 is known to deactivate p38 MAPK phosphorylation and can control the expression and activity of the mRNA destabilizing protein-tristetraprolin (TTP). But whether corticosteroid-induced MKP-1 acts via p38 MAPK-mediated modulation of TTP function in a pivotal airway cell type, airway smooth muscle (ASM), was unknown. While pretreatment of ASM cells with the corticosteroid dexamethasone (preventative protocol) is known to reduce ASM synthetic function in vitro, the impact of adding dexamethasone after stimulation (therapeutic protocol) had not been explored. Whether dexamethasone modulates TTP in a p38 MAPK-dependent manner in this cell type was also unknown. We address this herein and utilize an in vitro model of asthmatic inflammation where ASM cells were stimulated with the pro-asthmatic cytokine tumor necrosis factor (TNF) and the impact of adding dexamethasone 1 h after stimulation assessed. IL-6 mRNA expression and protein secretion was significantly repressed by dexamethasone acting in a temporally distinct manner to increase MKP-1, deactivate p38 MAPK, and modulate TTP phosphorylation status. In this way, dexamethasone-induced MKP-1 acts via p38 MAPK to switch on the mRNA destabilizing function of TTP to repress pro-inflammatory cytokine secretion from ASM cells. J. Cell. Physiol. 231: 2153-2158, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy.

    Science.gov (United States)

    Weijer, Ruud; Broekgaarden, Mans; Krekorian, Massis; Alles, Lindy K; van Wijk, Albert C; Mackaaij, Claire; Verheij, Joanne; van der Wal, Allard C; van Gulik, Thomas M; Storm, Gert; Heger, Michal

    2016-01-19

    Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression levels of HIF-1-associated proteins in human perihilar cholangiocarcinomas, (2) investigate the role of HIF-1 in PDT-treated human perihilar cholangiocarcinoma cells, and (3) determine whether HIF-1 inhibition reduces survival signaling and enhances PDT efficacy. Increased expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was confirmed in human perihilar cholangiocarcinomas. PDT with liposome-delivered zinc phthalocyanine caused HIF-1α stabilization in SK-ChA-1 cells and increased transcription of HIF-1α downstream genes. Acriflavine was taken up by SK-ChA-1 cells and translocated to the nucleus under hypoxic conditions. Importantly, pretreatment of SK-ChA-1 cells with acriflavine enhanced PDT efficacy via inhibition of HIF-1 and topoisomerases I and II. The expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was determined by immunohistochemistry in human perihilar cholangiocarcinomas. In addition, the response of human perihilar cholangiocarcinoma (SK-ChA-1) cells to PDT with liposome-delivered zinc phthalocyanine was investigated under both normoxic and hypoxic conditions. Acriflavine, a HIF-1α/HIF-1β dimerization inhibitor and a potential dual topoisomerase I/II inhibitor, was evaluated for its adjuvant effect on PDT efficacy. HIF-1, which is activated in human hilar cholangiocarcinomas, contributes to tumor cell survival following PDT in vitro. Combining PDT with acriflavine pretreatment improves PDT efficacy in cultured cells and therefore warrants further preclinical validation for therapy-recalcitrant perihilar cholangiocarcinomas.