WorldWideScience

Sample records for factor xa inhibition

  1. Andexanet Alfa for Acute Major Bleeding Associated with Factor Xa Inhibitors

    NARCIS (Netherlands)

    Connolly, Stuart J.; Milling, Truman J.; Eikelboom, John W.; Gibson, C. Michael; Curnutte, John T.; Gold, Alex; Bronson, Michele D.; Lu, Genmin; Conley, Pamela B.; Verhamme, Peter; Schmidt, Jeannot; Middeldorp, Saskia; Cohen, Alexander T.; Beyer-Westendorf, Jan; Albaladejo, Pierre; Lopez-Sendon, Jose; Goodman, Shelly; Leeds, Janet; Wiens, Brian L.; Siegal, Deborah M.; Zotova, Elena; Meeks, Brandi; Nakamya, Juliet; Lim, W. Ting; Crowther, Mark; Connolly, S. C.; Crowther, M.; Eikelboom, J.; Gibson, M.; Milling, T. J.; Albaladejo, P.; Cohen, A.; Lopez-Sendon, J.; Schmidt, J.; Verhamme, P.; Beyer-Westendorf, J.; Wyse, D. G.; Garcia, D.; Prins, M. [=Martin H.; Nakamya, J.; Büller, H. R.; Mahaffey, K.; Alexander, J.; Demchuk, A.; Raskob, G.; Schulman, S.; Meeks, B.; Zotova, E.; Holadyk-Gris, I.; Coppens, M.

    2016-01-01

    Background Andexanet alfa (andexanet) is a recombinant modified human factor Xa decoy protein that has been shown to reverse the inhibition of factor Xa in healthy volunteers. Methods In this multicenter, prospective, open-label, single-group study, we evaluated 67 patients who had acute major

  2. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR1 activation

    International Nuclear Information System (INIS)

    Blanc-Brude, Olivier P.; Archer, Fabienne; Leoni, Patricia; Derian, Claudia; Bolsover, Steven; Laurent, Geoffrey J.; Chambers, Rachel C.

    2005-01-01

    Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR 1 ). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR 1 -deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR 1 -specific agonists and inhibitors were used to demonstrate that PAR 1 mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR 1 and not PAR 2 . These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis

  3. Activation of human factor V by factor Xa and thrombin

    International Nuclear Information System (INIS)

    Monkovic, D.D.; Tracy, P.B.

    1990-01-01

    The activation of human factor V by factor Xa and thrombin was studied by functional assessment of cofactor activity and sodium dodecyl sulfate-polycarylamide gel electrophoresis followed by either autoradiography of 125 I-labeled factor V activation products or Western blot analyses of unlabeled factor V activation products. Cofactor activity was measured by the ability of the factor V/Va peptides to support the activation of prothrombin. The factor Xa catalyzed cleavage of factor V was observed to be time, phospholipid, and calcium ion dependent, yielding a cofactor with activity equal to that of thrombin-activated factor V (factor Va). The cleavage pattern differed markedly from the one observed in the bovine system. The factor Xa activated factor V subunits expressing cofactor activity were isolated and found to consist of peptides of M r 220,000 and 105,000. Although thrombin cleaved the M r 220,000 peptide to yield peptides previously shown to be products of thrombin activation, cofactor activity did not increase. N-Terminal sequence analysis confirmed that both factor Xa and thrombin cleave factor V at the same bond to generate the M r 220,000 peptide. The factor Xa dependent functional assessment of 125 I-labeled factor V coupled with densitometric analyses of the cleavage products indicated that the cofactor activity of factor Xa activated factor V closely paralleled the appearance of the M r 220,000 peptide. The data indicate that factor Xa is as efficient an enzyme toward factor V as thrombin

  4. Daboxin P, a Major Phospholipase A2 Enzyme from the Indian Daboia russelii russelii Venom Targets Factor X and Factor Xa for Its Anticoagulant Activity.

    Directory of Open Access Journals (Sweden)

    Maitreyee Sharma

    Full Text Available In the present study a major protein has been purified from the venom of Indian Daboia russelii russelii using gel filtration, ion exchange and Rp-HPLC techniques. The purified protein, named daboxin P accounts for ~24% of the total protein of the crude venom and has a molecular mass of 13.597 kDa. It exhibits strong anticoagulant and phospholipase A2 activity but is devoid of any cytotoxic effect on the tested normal or cancerous cell lines. Its primary structure was deduced by N-terminal sequencing and chemical cleavage using Edman degradation and tandem mass spectrometry. It is composed of 121 amino acids with 14 cysteine residues and catalytically active His48 -Asp49 pair. The secondary structure of daboxin P constitutes 42.73% of α-helix and 12.36% of β-sheet. It is found to be stable at acidic (pH 3.0 and neutral pH (pH 7.0 and has a Tm value of 71.59 ± 0.46°C. Daboxin P exhibits anticoagulant effect under in-vitro and in-vivo conditions. It does not inhibit the catalytic activity of the serine proteases but inhibits the activation of factor X to factor Xa by the tenase complexes both in the presence and absence of phospholipids. It also inhibits the tenase complexes when active site residue (His48 was alkylated suggesting its non-enzymatic mode of anticoagulant activity. Moreover, it also inhibits prothrombinase complex when pre-incubated with factor Xa prior to factor Va addition. Fluorescence emission spectroscopy and affinity chromatography suggest the probable interaction of daboxin P with factor X and factor Xa. Molecular docking analysis reveals the interaction of the Ca+2 binding loop; helix C; anticoagulant region and C-terminal region of daboxin P with the heavy chain of factor Xa. This is the first report of a phospholipase A2 enzyme from Indian viper venom which targets both factor X and factor Xa for its anticoagulant activity.

  5. Identification of anthranilamide derivatives as potential factor Xa inhibitors: drug design, synthesis and biological evaluation.

    Science.gov (United States)

    Xing, Junhao; Yang, Lingyun; Li, Hui; Li, Qing; Zhao, Leilei; Wang, Xinning; Zhang, Yuan; Zhou, Muxing; Zhou, Jinpei; Zhang, Huibin

    2015-05-05

    The coagulation enzyme factor Xa (fXa) plays a crucial role in the blood coagulation cascade. In this study, three-dimensional fragment based drug design (FBDD) combined with structure-based pharmacophore (SBP) model and structural consensus docking were employed to identify novel fXa inhibitors. After a multi-stage virtual screening (VS) workflow, two hit compounds 3780 and 319 having persistent high performance were identified. Then, these two hit compounds and several analogs were synthesized and screened for in-vitro inhibition of fXa. The experimental data showed that most of the designed compounds displayed significant in vitro potency against fXa. Among them, compound 9b displayed the greatest in vitro potency against fXa with the IC50 value of 23 nM and excellent selectivity versus thrombin (IC50 = 40 μM). Moreover, the prolongation of the prothrombin time (PT) was measured for compound 9b to evaluate its in vitro anticoagulant activity. As a result, compound 9b exhibited pronounced anticoagulant activity with the 2 × PT value of 8.7 μM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Rivaroxaban-once daily, oral, direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and Embolism Trial in Atrial Fibrillation: rationale and design of the ROCKET AF study

    DEFF Research Database (Denmark)

    NN, NN

    2010-01-01

    BACKGROUND: Atrial fibrillation (AF), the most common significant cardiac arrhythmia, increases the risk of stroke, particularly in the elderly. Warfarin is effective in reducing stroke risk but is burdensome to patients and is difficult to control. Rivaroxaban is an oral direct factor Xa inhibit...

  7. First steps in the direction of synthetic, allosteric, direct inhibitors of thrombin and factor Xa.

    Science.gov (United States)

    Verghese, Jenson; Liang, Aiye; Sidhu, Preet Pal Singh; Hindle, Michael; Zhou, Qibing; Desai, Umesh R

    2009-08-01

    Designing non-saccharide functional mimics of heparin is a major challenge. In this work, a library of small, aromatic molecules based on the sulfated DHP scaffold was synthesized and screened against thrombin and factor Xa. The results reveal that (i) selected monomeric benzofuran derivatives inhibit the two enzymes, albeit weakly; (ii) the two enzymes recognize different structural features in the benzofurans studied suggesting significant selectivity of recognition; and (iii) the mechanism of inhibition is allosteric. The molecules represent the first allosteric small molecule inhibitors of the two enzymes.

  8. First Steps in the Direction of Synthetic, Allosteric, Direct Inhibitors of Thrombin and Factor Xa

    Science.gov (United States)

    Verghese, Jenson; Liang, Aiye; Sidhu, Preet Pal Singh; Hindle, Michael; Zhou, Qibing; Desai, Umesh R.

    2009-01-01

    Designing non-saccharide functional mimics of heparin is a major challenge. In this work, a library of small, aromatic molecules based on the sulfated DHP scaffold was synthesized and screened against thrombin and factor Xa. The results reveal that i) selected monomeric benzofuran derivatives inhibit the two enzymes, albeit weakly; ii) the two enzymes recognize different structural features in the benzofurans studied suggesting significant selectivity of recognition; and iii) the mechanism of inhibition is allosteric. The molecules represent the first allosteric small molecule inhibitors of the two enzymes. PMID:19540113

  9. First Steps in the Direction of Synthetic, Allosteric, Direct Inhibitors of Thrombin and Factor Xa

    OpenAIRE

    Verghese, Jenson; Liang, Aiye; Sidhu, Preet Pal Singh; Hindle, Michael; Zhou, Qibing; Desai, Umesh R.

    2009-01-01

    Designing non-saccharide functional mimics of heparin is a major challenge. In this work, a library of small, aromatic molecules based on the sulfated DHP scaffold was synthesized and screened against thrombin and factor Xa. The results reveal that i) selected monomeric benzofuran derivatives inhibit the two enzymes, albeit weakly; ii) the two enzymes recognize different structural features in the benzofurans studied suggesting significant selectivity of recognition; and iii) the mechanism of...

  10. Role of Factor Xa Inhibitors in Cancer-Associated Thrombosis: Any New Data?

    Directory of Open Access Journals (Sweden)

    Ali Zalpour

    2011-01-01

    Full Text Available The association between cancer and venous thromboembolism (VTE has been well documented in the literature. Prevention and treatment of VTE in cancer patients is imperative. Typically, the mainstay regimen for VTE prevention and treatment has been anticoagulation therapy, unless contraindicated. This therapy consists of unfractionated heparin (UFH, low-molecular-weight heparin (LMWH, factor Xa inhibitor, or vitamin K antagonist (VKA. Current guidelines recommend LMWH over VKA for the treatment of VTE in cancer patients. Factor-specific anticoagulants have been proven safe and effective, and recently factor Xa inhibitors have emerged as a treatment alternative to heparins and VKA. Currently, three factor Xa inhibitors have been identified: fondaparinux (the only one approved so far by the US Food and Drug Administration, idraparinux (in clinical trials, and idrabiotaparinux (in clinical trials. This paper will examine the role of these agents, focusing on fondaparinux, for the prevention and treatment of VTE in cancer patients.

  11. Factor Xa generation by computational modeling: an additional discriminator to thrombin generation evaluation.

    Directory of Open Access Journals (Sweden)

    Kathleen E Brummel-Ziedins

    Full Text Available Factor (fXa is a critical enzyme in blood coagulation that is responsible for the initiation and propagation of thrombin generation. Previously we have shown that analysis of computationally generated thrombin profiles is a tool to investigate hemostasis in various populations. In this study, we evaluate the potential of computationally derived time courses of fXa generation as another approach for investigating thrombotic risk. Utilizing the case (n = 473 and control (n = 426 population from the Leiden Thrombophilia Study and each individual's plasma protein factor composition for fII, fV, fVII, fVIII, fIX, fX, antithrombin and tissue factor pathway inhibitor, tissue factor-initiated total active fXa generation was assessed using a mathematical model. FXa generation was evaluated by the area under the curve (AUC, the maximum rate (MaxR and level (MaxL and the time to reach these, TMaxR and TMaxL, respectively. FXa generation was analyzed in the entire populations and in defined subgroups (by sex, age, body mass index, oral contraceptive use. The maximum rates and levels of fXa generation occur over a 10- to 12- fold range in both cases and controls. This variation is larger than that observed with thrombin (3-6 fold in the same population. The greatest risk association was obtained using either MaxR or MaxL of fXa generation; with an ∼2.2 fold increased risk for individuals exceeding the 90(th percentile. This risk was similar to that of thrombin generation(MaxR OR 2.6. Grouping defined by oral contraceptive (OC use in the control population showed the biggest differences in fXa generation; a >60% increase in the MaxR upon OC use. FXa generation can distinguish between a subset of individuals characterized by overlapping thrombin generation profiles. Analysis of fXa generation is a phenotypic characteristic which may prove to be a more sensitive discriminator than thrombin generation among all individuals.

  12. How useful is determination of anti-factor Xa activity to guide bridging therapy with enoxaparin? A pilot study.

    Science.gov (United States)

    Hammerstingl, Christoph; Omran, Heyder; Tripp, Christian; Poetzsch, Bernd

    2009-02-01

    Low-molecular-weight heparins (LMWH) are commonly used as peri-procedural bridging anticoagulants. The usefulness of measurement of anti-factor Xa activity (anti-Xa) to guide bridging therapy with LMWH is unknown. It was the objective of this study to determine levels of anti-Xa during standard bridging therapy with enoxaparin, and to examine predictors for residual anti-Xa. Consecutive patients receiving enoxaparin at a dosage of 1 mg/kg body weight/12 hours for temporary interruption of phenprocoumon were prospectively enrolled to the study. Blood-samples were obtained 14 hours after LMWH-application immediately pre- procedurally. Procedural details, clinical and demographic data were collected and subsequently analyzed. Seventy patients were included (age 75.2 +/- 10.8 years, Cr Cl 55.7 +/- 21.7ml/min, body mass index [BMI] 27.1 +/- 4.9). LMWH- therapy was for a mean of 4.2 +/- 1.6 days; overall anti-Xa was 0.58 +/- 0.32 U/ml. In 37 (52.8%) of patients anti-Xa was > or U/ml, including 10 (14.3%) patients with anti-Xa > 1U/ml. Linear regression analysis of single variables and logistic multivariable regression analysis failed to prove a correlation between anti-Xa and single or combined factors. No major bleeding, no thromboembolism and four (5.7%) minor haemorrhages were observed. When bridging OAC with therapeutic doses of enoxaparin a high percentage of patients undergo interventions with high residual anti-Xa. The levels of anti-Xa vary largely and are independent of single or combined clinical variables. Since the anti-Xa-related outcome of patients receiving bridging therapy with LMWH is not investigated, no firm recommendation on the usefulness of monitoring of anti-Xa can be given at this stage.

  13. Expressional and Biochemical Characterization of Rice Disease Resistance Gene Xa3/Xa26 Family

    Institute of Scientific and Technical Information of China (English)

    Songjie Xu; Yinglong Cao; Xianghua Li; Shiping Wang

    2007-01-01

    The rice (Oryza sativa L.) Xa3/Xa26 gene, conferring race-specific resistance to bacterial blight disease and encoding a leucine-rich repeat (LRR) receptor kinase-like protein, belongs to a multigene family consisting of tandem clustered homologous genes, colocalizing with several uncharacterized genes for resistance to bacterial blight or fungal blast. To provide more information on the expressional and biochemical characteristics of the Xa3/Xa26 family, we analyzed the family members. Four Xa3/Xa26 family members in the indica rice variety Teqing, which carries a bacterial blight resistance gene with a chromosomal location tightly linked to Xa3/Xa26, and five Xa3/Xa26 family members in the japonica rice variety Nipponbare, which carries at least one uncharacterized blast resistance gene, were constitutively expressed in leaf tissue. The result suggests that some of the family members may be candidates of these uncharacterized resistance genes. At least five putative N-glycosylation sites in the LRR domain of XA3/XA26 protein are not glycosylated. The XA3/XA26 and its family members MRKa and MRKc all possess the consensus sequences of paired cysteines, which putatively function in dimerization of the receptor proteins for signal transduction, immediately before the first LRR and immediately after the last LRR. However, no homo-dimer between the XA3/XA26 molecules or hetero-dimer between XA3/XA26 and MRKa or MRKc were formed, indicating that XA3/XA26 protein might function either as a monomer or a hetero-dimer formed with other protein outside of the XA3/XA26 family. These results provide valuable information for further extensive investigation into this multiple protein family.

  14. Ortholog Alleles at Xa3/Xa26 Locus Confer Conserved Race-Specific Resistance against Xanthomonas oryzae in Rice

    Institute of Scientific and Technical Information of China (English)

    Hong-Jing Li; Xiang-Hua Li; Jing-Hua Xiao; Rod A. Wing; Shi-Ping Wang

    2012-01-01

    The rice disease resistance (R) gene Xa3/Xa26 (having also been named Xa3 and Xa26) against Xanthomonas oryzae pv.oryzae (Xoo),which causes bacterial blight disease,belongs to a multiple gene family clustered in chromosome 11 and is from an AA genome rice cultivar (Oryza sativa L.).This family encodes leucine-rich repeat (LRR) receptor kinasetype proteins.Here,we show that the orthologs (alleles) of Xa3/Xa26,Xa3/Xa26-2,and Xa3/Xa26-3,from wild Oryza species O.officinalis (CC genome) and O.minuta (BBCC genome),respectively,were also R genes against Xoo.Xa3/Xa26-2 and Xa3/Xa26-3 conferred resistance to 16 of the 18 Xoo strains examined.Comparative sequence analysis of the Xa3/Xa26 families in the two wild Oryza species showed that Xa3/Xa26-3 appeared to have originated from the CC genome of O.minuta.The predicted proteins encoded by Xa3/Xa26,Xa3/Xa26-2,and Xa3/Xa26-3 share 91-99% sequence identity and 94-99% sequence similarity.Transgenic plants carrying a single copy of Xa3/Xa26,Xa3/Xa26-2,or Xa3/Xa26-3,in the same genetic background,showed a similar resistance spectrum to a set of Xoo strains,although plants carrying Xa3/Xa26-2 or Xa3/Xa26-3 showed lower resistance levels than the plants carrying Xa3/Xa26.These results suggest that the Xa3/Xa26 locus predates the speciation of A and C genome,which is approximately 7.5 million years ago.Thus,the resistance specificity of this locus has been conserved for a long time.

  15. Clinical Scenarios for Discordant Anti-Xa

    Directory of Open Access Journals (Sweden)

    Jesus Vera-Aguilera

    2016-01-01

    Full Text Available Anti-Xa test measures the activity of heparin against the activity of activated coagulation factor X; significant variability of anti-Xa levels in common clinical scenarios has been observed. Objective. To review the most common clinical settings in which anti-Xa results can be bias. Evidence Review. Guidelines and current literature search: we used PubMed, Medline, Embase, and MEDION, from 2000 to October 2013. Results. Anti-Xa test is widely used; however the assay underestimates heparin concentration in the presence of significant AT deficiency, pregnancy, end stage renal disease, and postthrombolysis and in patients with hyperbilirubinemia; limited published data evaluating the safety and effectiveness of anti-Xa assays for managing UH therapy is available. Conclusions and Relevance. To our knowledge this is the first paper that summarizes the most common causes in which this assay can be affected, several “day to day” clinical scenarios can modify the outcomes, and we concur that these rarely recognized scenarios can be affected by negative outcomes in the daily practice.

  16. Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity.

    Science.gov (United States)

    Lee, Wonhwa; Kim, Mi-Ae; Park, InWha; Hwang, Jae Sam; Na, MinKyun; Bae, Jong-Sup

    2017-11-01

    Tenebrio molitor is an edible insect that has antimicrobial, anticancer, and antihypertensive effects. The aim of this study was to identify the unreported bioactive compounds from T. molitor larvae with inhibitory activities against factor Xa (FXa) and platelet aggregation. Isolated compounds were evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity, and thrombus formation. A diketopiperazine (1, cyclo( L -Pro- L -Tyr)) and a phenylethanoid (2, N-acetyltyramine) were isolated and inhibited the catalytic activity of FXa in a mixed inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619. They inhibited ADP- and U46619-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and the expression of P-selectin and PAC-1 in platelets. They also improved the production of nitric oxide and inhibited the oversecretion of endothelin-1 compared to that of the ADP- or U46619-treated group. In an animal model of arterial and pulmonary thrombosis, the isolated compounds showed enhanced antithrombotic effects. They also elicited anticoagulant effects in mice. Compounds 1-2 inhibited ADP-, collagen-, or U46619-induced platelet aggregation and showed similar anti-thrombotic efficacy to rivaroxaban, a positive control. Therefore, 1-2 could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity

    International Nuclear Information System (INIS)

    Du, Lanying; Kao, Richard Y.; Zhou, Yusen; He, Yuxian; Zhao, Guangyu; Wong, Charlotte; Jiang, Shibo; Yuen, Kwok-Yung; Jin, Dong-Yan; Zheng, Bo-Jian

    2007-01-01

    The spike (S) protein of SARS coronavirus (SARS-CoV) has been known to recognize and bind to host receptors, whose conformational changes then facilitate fusion between the viral envelope and host cell membrane, leading to viral entry into target cells. However, other functions of SARS-CoV S protein such as proteolytic cleavage and its implications to viral infection are incompletely understood. In this study, we demonstrated that the infection of SARS-CoV and a pseudovirus bearing the S protein of SARS-CoV was inhibited by a protease inhibitor Ben-HCl. Also, the protease Factor Xa, a target of Ben-HCl abundantly expressed in infected cells, was able to cleave the recombinant and pseudoviral S protein into S1 and S2 subunits, and the cleavage was inhibited by Ben-HCl. Furthermore, this cleavage correlated with the infectivity of the pseudovirus. Taken together, our study suggests a plausible mechanism by which SARS-CoV cleaves its S protein to facilitate viral infection

  18. Exploiting VM/XA

    International Nuclear Information System (INIS)

    Boeheim, C.

    1990-03-01

    The Stanford Linear Accelerator Center has recently completed a conversion to IBM's VM/XA SP Release 2 operating system. The primary physics application had been constrained by the previous 16 megabyte memory limit. Work is underway to enable this application to exploit the new features of VM/XA. This paper presents a brief tutorial on how to convert an application to exploit VM/XA and discusses some of the SLAC experiences in doing so. 13 figs

  19. Thrombin and factor Xa link the coagulation system with liver fibrosis.

    Science.gov (United States)

    Dhar, Ameet; Sadiq, Fouzia; Anstee, Quentin M; Levene, Adam P; Goldin, Robert D; Thursz, Mark R

    2018-05-08

    Thrombin activates hepatic stellate cells via protease-activated receptor-1. The role of Factor Xa (FXa) in hepatic fibrosis has not been elucidated. We aimed to evaluate the impact of FXa and thrombin in vitro on stellate cells and their respective inhibition in vivo using a rodent model of hepatic fibrosis. HSC-LX2 cells were incubated with FXa and/or thrombin in cell culture, stained for αSMA and relative gene expression and gel contraction calculated. C57BL/6 J mice were administered thioacetamide (TAA) for 8 weeks with Rivaroxaban (n = 15) or Dabigatran (n = 15). Control animals received TAA alone (n = 15). Fibrosis was scored and quantified using digital image analysis and hepatic tissue hydroxyproline estimated. Stellate cells treated with FXa and thrombin demonstrated upregulation of procollagen, TGF-beta, αSMA and significant cell contraction (43.48%+/- 4.12) compared to culturing with FXa or thrombin alone (26.90%+/- 8.90, p = 0.02; 13.1%+/- 9.84, p < 0.001). Mean fibrosis score, percentage area of fibrosis and hepatic hydroxyproline content (2.46 vs 4.08, p = 0.008; 2.02% vs 3.76%, p = 0.012; 276.0 vs 651.3, p = 0.0001) were significantly reduced in mice treated with the FXa inhibitor compared to control mice. FXa inhibition was significantly more effective than thrombin inhibition in reducing percentage area of fibrosis and hepatic hydroxyproline content (2.02% vs 3.70%,p = 0.031; 276.0 vs 413.1,p = 0.001). FXa promotes stellate cell contractility and activation. Early inhibition of coagulation using a FXa inhibitor significantly reduces TAA induced murine liver fibrosis and may be a viable treatment for liver fibrosis in patients.

  20. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from LPS-stimulated myeloid cells.

    LENUS (Irish Health Repository)

    Gleeson, Eimear M

    2013-07-19

    Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumour necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumour necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, this study supports a novel function for factor Xa as an endogenous, receptor

  1. Silencing of the Rice Gene LRR1 Compromises Rice Xa21 Transcript Accumulation and XA21-Mediated Immunity.

    Science.gov (United States)

    Caddell, Daniel F; Park, Chang-Jin; Thomas, Nicholas C; Canlas, Patrick E; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. We previously demonstrated that an auxilin-like protein, XA21 BINDING PROTEIN 21 (XB21), positively regulates resistance to Xoo. To further investigate the function of XB21, we performed a yeast two-hybrid screen. We identified 22 unique XB21 interacting proteins, including LEUCINE-RICH REPEAT PROTEIN 1 (LRR1), which we selected for further analysis. Silencing of LRR1 in the XA21 genetic background (XA21-LRR1Ri) compromises resistance to Xoo compared with control XA21 plants. XA21-LRR1Ri plants have reduced Xa21 transcript levels and reduced expression of genes that serve as markers of XA21-mediated activation. Overexpression of LRR1 is insufficient to alter resistance to Xoo in rice lines lacking XA21. Taken together, our results indicate that LRR1 is required for wild-type Xa21 transcript expression and XA21-mediated immunity.

  2. Oral direct thrombin inhibitors or oral factor Xa inhibitors for the treatment of deep vein thrombosis.

    Science.gov (United States)

    Robertson, Lindsay; Kesteven, Patrick; McCaslin, James E

    2015-06-30

    Deep vein thrombosis (DVT) is a condition in which a clot forms in the deep veins, most commonly of the leg. It occurs in approximately 1 in 1,000 people. If left untreated, the clot can travel up to the lungs and cause a potentially life-threatening pulmonary embolism (PE). Previously, a DVT was treated with the anticoagulants heparin and vitamin K antagonists. However, two forms of novel oral anticoagulants (NOACs) have been developed: oral direct thrombin inhibitors (DTI) and oral factor Xa inhibitors. The new drugs have characteristics that may be favourable over conventional treatment, including oral administration, a predictable effect, lack of frequent monitoring or re-dosing and few known drug interactions. To date, no Cochrane review has measured the effectiveness and safety of these drugs in the treatment of DVT. To assess the effectiveness of oral DTIs and oral factor Xa inhibitors for the treatment of DVT. The Cochrane Peripheral Vascular Diseases Group Trials Search Co-ordinator searched the Specialised Register (last searched January 2015) and the Cochrane Register of Studies (last searched January 2015). We searched clinical trials databases for details of ongoing or unpublished studies and the reference lists of relevant articles retrieved by electronic searches for additional citations. We included randomised controlled trials in which people with a DVT confirmed by standard imaging techniques, were allocated to receive an oral DTI or an oral factor Xa inhibitor for the treatment of DVT. Two review authors (LR, JM) independently extracted the data and assessed the risk of bias in the trials. Any disagreements were resolved by discussion with the third review author (PK). We performed meta-analyses when we considered heterogeneity low. The two primary outcomes were recurrent VTE and PE. Other outcomes included all-cause mortality and major bleeding. We calculated all outcomes using an odds ratio (OR) with a 95% confidence interval (CI). We included

  3. Marker-aided Incorporation of Xa38, a Novel Bacterial Blight Resistance Gene, in PB1121 and Comparison of its Resistance Spectrum with xa13 + Xa21.

    Science.gov (United States)

    Ellur, Ranjith K; Khanna, Apurva; S, Gopala Krishnan; Bhowmick, Prolay K; Vinod, K K; Nagarajan, M; Mondal, Kalyan K; Singh, Nagendra K; Singh, Kuldeep; Prabhu, Kumble Vinod; Singh, Ashok K

    2016-07-11

    Basmati rice is preferred internationally because of its appealing taste, mouth feel and aroma. Pusa Basmati 1121 (PB1121) is a widely grown variety known for its excellent grain and cooking quality in the international and domestic market. It contributes approximately USD 3 billion to India's forex earning annually by being the most traded variety. However, PB1121 is highly susceptible to bacterial blight (BB) disease. A novel BB resistance gene Xa38 was incorporated in PB1121 from donor parent PR114-Xa38 using a modified marker-assisted backcross breeding (MABB) scheme. Phenotypic selection prior to background selection was instrumental in identifying the novel recombinants with maximum recovery of recurrent parent phenome. The strategy was effective in delimiting the linkage drag to <0.5 mb upstream and <1.9 mb downstream of Xa38 with recurrent parent genome recovery upto 96.9% in the developed NILs. The NILs of PB1121 carrying Xa38 were compared with PB1121 NILs carrying xa13 + Xa21 (developed earlier in our lab) for their resistance to BB. Both NILs showed resistance against the Xoo races 1, 2, 3 and 6. Additionally, Xa38 also resisted Xoo race 5 to which xa13 + Xa21 was susceptible. The PB1121 NILs carrying Xa38 gene will provide effective control of BB in the Basmati growing region.

  4. Marker-aided Incorporation of Xa38, a Novel Bacterial Blight Resistance Gene, in PB1121 and Comparison of its Resistance Spectrum with xa13 + Xa21

    Science.gov (United States)

    Ellur, Ranjith K.; Khanna, Apurva; S, Gopala Krishnan.; Bhowmick, Prolay K.; Vinod, K. K.; Nagarajan, M.; Mondal, Kalyan K.; Singh, Nagendra K.; Singh, Kuldeep; Prabhu, Kumble Vinod; Singh, Ashok K.

    2016-01-01

    Basmati rice is preferred internationally because of its appealing taste, mouth feel and aroma. Pusa Basmati 1121 (PB1121) is a widely grown variety known for its excellent grain and cooking quality in the international and domestic market. It contributes approximately USD 3 billion to India’s forex earning annually by being the most traded variety. However, PB1121 is highly susceptible to bacterial blight (BB) disease. A novel BB resistance gene Xa38 was incorporated in PB1121 from donor parent PR114-Xa38 using a modified marker-assisted backcross breeding (MABB) scheme. Phenotypic selection prior to background selection was instrumental in identifying the novel recombinants with maximum recovery of recurrent parent phenome. The strategy was effective in delimiting the linkage drag to <0.5 mb upstream and <1.9 mb downstream of Xa38 with recurrent parent genome recovery upto 96.9% in the developed NILs. The NILs of PB1121 carrying Xa38 were compared with PB1121 NILs carrying xa13 + Xa21 (developed earlier in our lab) for their resistance to BB. Both NILs showed resistance against the Xoo races 1, 2, 3 and 6. Additionally, Xa38 also resisted Xoo race 5 to which xa13 + Xa21 was susceptible. The PB1121 NILs carrying Xa38 gene will provide effective control of BB in the Basmati growing region. PMID:27403778

  5. A new peptide (Ruviprase) purified from the venom of Daboia russelii russelii shows potent anticoagulant activity via non-enzymatic inhibition of thrombin and factor Xa.

    Science.gov (United States)

    Thakur, Rupamoni; Kumar, Ashok; Bose, Biplab; Panda, Dulal; Saikia, Debashree; Chattopadhyay, Pronobesh; Mukherjee, Ashis K

    2014-10-01

    Compounds showing dual inhibition of thrombin and factor Xa (FXa) are the subject of great interest owing to their broader specificity for effective anticoagulation therapy against cardiovascular disorders. This is the first report on the functional characterization and assessment of therapeutic potential of a 4423.6 Da inhibitory peptide (Ruviprase) purified from Daboia russelii russelii venom. The secondary structure of Ruviprase is composed of α-helices (61.9%) and random coils (38.1%). The partial N-terminal sequence (E(1)-V(2)-X(3)-W(4)-W(5)-W(6)-A(7)-Q(8)-L(9)-S(10)) of Ruviprase demonstrated significant similarity (80.0%) with an internal sequence of apoptosis-stimulating protein reported from the venom of Ophiophagus hannah and Python bivittatus; albeit Ruviprase did not show sequence similarity with existing thrombin/FXa inhibitors, suggesting its uniqueness. Ruviprase demonstrated a potent in vitro anticoagulant property and inhibited both thrombin and FXa following slow binding kinetics. Ruviprase inhibited thrombin by binding to its active site via an uncompetitive mechanism with a Ki value and dissociation constant (KD) of 0.42 μM and 0.46 μM, respectively. Conversely, Ruviprase demonstrated mixed inhibition (Ki = 0.16 μM) of FXa towards its physiological substrate prothrombin. Furthermore, the biological properties of Ruviprase could not be neutralized by commercial polyvalent or monovalent antivenom. Ruviprase at a dose of 2.0 mg/kg was non-toxic and showed potent in vivo anticoagulant activity after 6 h of intraperitoneal treatment in mice. Because of the potent anticoagulant property as well as non-toxic nature of Ruviprase, the possible application of the peptide as an antithrombotic agent for combating thrombosis-associated ailments appears promising. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Oral direct thrombin inhibitors or oral factor Xa inhibitors for the treatment of pulmonary embolism.

    Science.gov (United States)

    Robertson, Lindsay; Kesteven, Patrick; McCaslin, James E

    2015-12-04

    Pulmonary embolism is a potentially life-threatening condition in which a clot can travel from the deep veins, most commonly in the leg, up to the lungs. Previously, a pulmonary embolism was treated with the anticoagulants heparin and vitamin K antagonists. Recently, however, two forms of direct oral anticoagulants (DOACs) have been developed: oral direct thrombin inhibitors (DTI) and oral factor Xa inhibitors. The new drugs have characteristics that may be favourable over conventional treatment, including oral administration, a predictable effect, lack of frequent monitoring or re-dosing and few known drug interactions. To date, no Cochrane review has measured the effectiveness and safety of these drugs in the long-term treatment (minimum duration of three months) of pulmonary embolism. To assess the effectiveness of oral DTIs and oral factor Xa inhibitors for the long-term treatment of pulmonary embolism. The Cochrane Vascular Trials Search Co-ordinator searched the Specialised Register (last searched January 2015) and the Cochrane Register of Studies (last searched January 2015). Clinical trials databases were also searched for details of ongoing or unpublished studies. We searched the reference lists of relevant articles retrieved by electronic searches for additional citations. We included randomised controlled trials in which patients with a pulmonary embolism confirmed by standard imaging techniques were allocated to receive an oral DTI or an oral factor Xa inhibitor for the long-term (minimum duration three months) treatment of pulmonary embolism. Two review authors (LR, JM) independently extracted the data and assessed the risk of bias in the trials. Any disagreements were resolved by discussion with the third author (PK). We used meta-analyses when we considered heterogeneity low. The two primary outcomes were recurrent venous thromboembolism and pulmonary embolism. Other outcomes included all-cause mortality and major bleeding. We calculated all outcomes

  7. Assessment of anti-factor Xa activity of heparin in binary parenteral nutrition admixtures for premature neonates.

    Science.gov (United States)

    Foinard, A; Perez, M; Barthélémy, C; Lannoy, D; Flamein, F; Storme, L; Tournoys, A; Décaudin, B; Odou, P

    2015-07-01

    An in vitro study was carried out to determine the anti-Xa activity of heparin in binary parenteral nutrition (BPN) admixtures for premature neonates in our neonatal intensive care unit (NICU) after a 24-hour infusion, as well as to assess drug interaction with a 50% glucose solution. Two types of bags were prepared: (1) BPN admixtures (composition defined in the NICU) including sodium heparin at 77 UI/mL and (2) bags containing only G50% with sodium heparin at 193 UI/mL. The anti-Xa activity of heparin was measured in bags at T0, after the 24-hour infusion and in eluates at the outlet of the infusion line after 24hours, using a validated chromogenic anti-Xa method. Comparisons of the mean concentration observed with the theoretical value for anti-Xa activity were performed with the Student t-test. Mean values of anti-Xa activity do not differ significantly from the values expected for all conditions. We found a slight variation in anti-Xa activity when infused over 24hours for both types of bags, with and without in-line filtration, showing that heparin remains stable during this infusion period in both BPN admixtures and G50%. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Tranexamic Acid Failed to Reverse the Anticoagulant Effect and Bleeding by an Oral Direct Factor Xa Inhibitor Edoxaban.

    Science.gov (United States)

    Honda, Yuko; Furugohri, Taketoshi; Morishima, Yoshiyuki

    2018-01-01

    Agents to reverse the anticoagulant effect of edoxaban, an oral direct factor Xa inhibitor, would be desirable in emergency situations. The aim of this study is to determine the effect of tranexamic acid, an antifibrinolytic agent, on the anticoagulant activity and bleeding by edoxaban in rats. A supratherapeutic dose of edoxaban (3 mg/kg) was intravenously administered to rats. Three minutes after dosing, tranexamic acid (100 mg/kg) was given intravenously. Bleeding was induced by making an incision with a blade on the planta 8 min after edoxaban injection and bleeding time was measured. Prothrombin time (PT) and clot lysis were examined. A supratherapeutic dose of edoxaban significantly prolonged PT and bleeding time. Tranexamic acid did not affect PT or bleeding time prolonged by edoxaban, although tranexamic acid significantly inhibited clot lysis in rat plasma. An antifibrinolytic agent tranexamic acid failed to reverse the anticoagulant effect and bleeding by edoxaban in rats. © 2017 S. Karger AG, Basel.

  9. Identification of potent orally active factor Xa inhibitors based on conjugation strategy and application of predictable fragment recommender system.

    Science.gov (United States)

    Ishihara, Tsukasa; Koga, Yuji; Iwatsuki, Yoshiyuki; Hirayama, Fukushi

    2015-01-15

    Anticoagulant agents have emerged as a promising class of therapeutic drugs for the treatment and prevention of arterial and venous thrombosis. We investigated a series of novel orally active factor Xa inhibitors designed using our previously reported conjugation strategy to boost oral anticoagulant effect. Structural optimization of anthranilamide derivative 3 as a lead compound with installation of phenolic hydroxyl group and extensive exploration of the P1 binding element led to the identification of 5-chloro-N-(5-chloro-2-pyridyl)-3-hydroxy-2-{[4-(4-methyl-1,4-diazepan-1-yl)benzoyl]amino}benzamide (33, AS1468240) as a potent factor Xa inhibitor with significant oral anticoagulant activity. We also reported a newly developed Free-Wilson-like fragment recommender system based on the integration of R-group decomposition with collaborative filtering for the structural optimization process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Anticoagulant activity in salivary glands of the insect vector Culicoides variipennis sonorensis by an inhibitor of factor Xa.

    Science.gov (United States)

    Pérez de León, A A; Valenzuela, J G; Tabachnick, W J

    1998-02-01

    Blood feeding by the insect vector Culicoides variipennis sonorensis involves laceration of superficial host tissues, an injury that would be expected to trigger the coagulation cascade. Accordingly, the salivary glands of C.v. sonorensis were examined for the presence of an antihemostatic that prevents blood coagulation. Assays using salivary gland extracts showed a delay in the recalcification time of plasma devoid of platelets, indicating the presence of anticoagulant activity. Retardation in the formation of a fibrin clot was also observed after the addition of tissue factor to plasma that was preincubated with salivary gland extracts. Similarly, an inhibitory effect by salivary gland extracts was detected in assays that included factors of the intrinsic pathway. Inhibition of the catalytic activity of purified factor Xa toward its chromogenic substrate suggested that it was the target of the salivary anticoagulant of C.v. sonorensis. This was corroborated by the coincidence of anticoagulant and anti-FXa activities obtained by reverse-phase HPLC. The depletion of anti-FXa activity from salivary glands during blood feeding suggests that the FXa inhibitor functions as anticoagulant. Molecular sieving HPLC yielded an apparent molecular mass of 28 kDa for the salivary FXa inhibitor of C.v. sonorensis. Preventing the formation of thrombin through the inhibition of FXa likely facilitates blood feeding by maintaining the pool of blood fluid at the feeding site. The salivary FXa inhibitor of C.v. sonorensis could impair the network of host-defense mechanisms in the skin microenvironment by avoiding blood coagulation at the site of feeding.

  11. Alboserpin, a Factor Xa Inhibitor from the Mosquito Vector of Yellow Fever, Binds Heparin and Membrane Phospholipids and Exhibits Antithrombotic Activity

    Czech Academy of Sciences Publication Activity Database

    Calvo, E.; Mizurini, D.M.; Sa-Nunes, A.; Ribeiro, J.M.C.; Andersen, J. F.; Mans, B.J.; Monteiro, R.Q.; Kotsyfakis, Michalis; Francischetti, I.M.B.

    2011-01-01

    Roč. 286, č. 32 (2011), 27998-28010 ISSN 0021-9258 Institutional research plan: CEZ:AV0Z60220518 Keywords : serpin * mosquito * Aedes albopictus * phospholipids * Factor Xa * heparin * binding affinity * coagulation * thrombus * bleeding Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 4.773, year: 2011

  12. Allosteric Inhibition of Factor XIIIa. Non-Saccharide Glycosaminoglycan Mimetics, but Not Glycosaminoglycans, Exhibit Promising Inhibition Profile.

    Directory of Open Access Journals (Sweden)

    Rami A Al-Horani

    Full Text Available Factor XIIIa (FXIIIa is a transglutaminase that catalyzes the last step in the coagulation process. Orthostery is the only approach that has been exploited to design FXIIIa inhibitors. Yet, allosteric inhibition of FXIIIa is a paradigm that may offer a key advantage of controlled inhibition over orthosteric inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We reasoned that targeting a collection of basic amino acid residues distant from FXIIIa's active site by using sulfated glycosaminoglycans (GAGs or non-saccharide GAG mimetics (NSGMs would lead to the discovery of the first allosteric FXIIIa inhibitors. We tested a library of 22 variably sulfated GAGs and NSGMs against human FXIIIa to discover promising hits. Interestingly, although some GAGs bound to FXIIIa better than NSGMs, no GAG displayed any inhibition. An undecasulfated quercetin analog was found to inhibit FXIIIa with reasonable potency (efficacy of 98%. Michaelis-Menten kinetic studies revealed an allosteric mechanism of inhibition. Fluorescence studies confirmed close correspondence between binding affinity and inhibition potency, as expected for an allosteric process. The inhibitor was reversible and at least 9-fold- and 26-fold selective over two GAG-binding proteins factor Xa (efficacy of 71% and thrombin, respectively, and at least 27-fold selective over a cysteine protease papain. The inhibitor also inhibited the FXIIIa-mediated polymerization of fibrin in vitro. Overall, our work presents the proof-of-principle that FXIIIa can be allosterically modulated by sulfated non-saccharide agents much smaller than GAGs, which should enable the design of selective and safe anticoagulants.

  13. The rice XA21 ectodomain fused to the Arabidopsis EFR cytoplasmic domain confers resistance to Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Thomas, Nicholas C; Oksenberg, Nir; Liu, Furong; Caddell, Daniel; Nalyvayko, Alina; Nguyen, Yen; Schwessinger, Benjamin; Ronald, Pamela C

    2018-01-01

    Rice ( Oryza sativa ) plants expressing the XA21 cell-surface receptor kinase are resistant to Xanthomonas oryzae pv. oryzae (Xoo) infection. We previously demonstrated that expressing a chimeric protein containing the ELONGATION FACTOR Tu RECEPTOR (EFR) ectodomain and the XA21 endodomain (EFR:XA21) in rice does not confer robust resistance to Xoo . To test if the XA21 ectodomain is required for Xoo resistance, we produced transgenic rice lines expressing a chimeric protein consisting of the XA21 ectodomain and EFR endodomain (XA21:EFR) and inoculated these lines with Xoo . We also tested if the XA21:EFR rice plants respond to a synthetic sulfated 21 amino acid derivative (RaxX21-sY) of the activator of XA21-mediated immunity, RaxX. We found that five independently transformed XA21:EFR rice lines displayed resistance to Xoo as measured by lesion length analysis, and showed that five lines share characteristic markers of the XA21 defense response (generation of reactive oxygen species and defense response gene expression) after treatment with RaxX21-sY. Our results indicate that expression of the XA21:EFR chimeric receptor in rice confers resistance to Xoo . These results suggest that the endodomain of the EFR and XA21 immune receptors are interchangeable and the XA21 ectodomain is the key determinant conferring robust resistance to Xoo .

  14. Tissue factor-dependent activation of tritium-labeled factor IX and factor X in human plasma

    International Nuclear Information System (INIS)

    Morrison, S.A.; Jesty, J.

    1984-01-01

    A comparism was made of the tissue factor-dependent activation of tritium-labeled factor IX and factor X in a human plasma system and a study was made of the role of proteases known to stimulate factor VII activity. Plasma was defibrinated by heating and depleted of its factors IX and X by passing it through antibody columns. Addition of human brain thromboplastin, Ca2+, and purified 3H-labeled factor X to the plasma resulted, after a short lag, in burst-like activation of the factor X, measured as the release of radiolabeled activation peptide. The progress of activation was slowed by both heparin and a specific inhibitor of factor Xa but factor X activation could not be completely abolished by such inhibitors. In the case of 3H-factor IX activation, the rate also increased for approximately 3 min after addition of thromboplastin, but was not subsequently curtailed. A survey of proteases implicated as activators of factor VII in other settings showed that both factor Xa and factor IXa could accelerate the activation of factor IX. However, factor Xa was unique in obliterating activation when present at concentrations greater than approximately 1 nM. Heparin inhibited the tissue factor-dependent activation of factor IX almost completely, apparently through the effect of antithrombin on the feedback reactions of factors Xa and IXa on factor VII. These results suggest that a very tight, biphasic control of factor VII activity exists in human plasma, which is modulated mainly by factor Xa. At saturation of factor VIIa/tissue factor, factor IX activation was significantly more rapid than was previously found in bovine plasma under similar conditions. The activation of factor X at saturation was slightly more rapid than in bovine plasma, despite the presence of heparin

  15. Molecular screening of rice ( Oryza sativa L.) germplasm for Xa4 ...

    African Journals Online (AJOL)

    DNA fingerprinting results indicated the presence of Xa4 gene in 41 entries, while 14 lines were positive for xa5 gene. Only one local line was carrying Xa21 gene along with Xa4. Thus, the present study will not only be helpful for rice breeders to develop new rice varieties carrying disease resistant genes, but will also ...

  16. Protein C inhibitor acts as a procoagulant by inhibiting the thrombomodulin-induced activation of protein C in human plasma

    NARCIS (Netherlands)

    Elisen, M. G.; von dem Borne, P. A.; Bouma, B. N.; Meijers, J. C.

    1998-01-01

    Protein C inhibitor (PCI), which was originally identified as an inhibitor of activated protein C, also efficiently inhibits coagulation factors such as factor Xa and thrombin. Recently it was found, using purified proteins, that the anticoagulant thrombin-thrombomodulin complex was also inhibited

  17. Maximize x(a - x)

    Science.gov (United States)

    Lange, L. H.

    1974-01-01

    Five different methods for determining the maximizing condition for x(a - x) are presented. Included is the ancient Greek version and a method attributed to Fermat. None of the proofs use calculus. (LS)

  18. Induction of Xa10-like Genes in Rice Cultivar Nipponbare Confers Disease Resistance to Rice Bacterial Blight.

    Science.gov (United States)

    Wang, Jun; Tian, Dongsheng; Gu, Keyu; Yang, Xiaobei; Wang, Lanlan; Zeng, Xuan; Yin, Zhongchao

    2017-06-01

    Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive bacterial diseases throughout the major rice-growing regions in the world. The rice disease resistance (R) gene Xa10 confers race-specific disease resistance to X. oryzae pv. oryzae strains that deliver the corresponding transcription activator-like (TAL) effector AvrXa10. Upon bacterial infection, AvrXa10 binds specifically to the effector binding element in the promoter of the R gene and activates its expression. Xa10 encodes an executor R protein that triggers hypersensitive response and activates disease resistance. 'Nipponbare' rice carries two Xa10-like genes in its genome, of which one is the susceptible allele of the Xa23 gene, a Xa10-like TAL effector-dependent executor R gene isolated recently from 'CBB23' rice. However, the function of the two Xa10-like genes in disease resistance to X. oryzae pv. oryzae strains has not been investigated. Here, we designated the two Xa10-like genes as Xa10-Ni and Xa23-Ni and characterized their function for disease resistance to rice bacterial blight. Both Xa10-Ni and Xa23-Ni provided disease resistance to X. oryzae pv. oryzae strains that deliver the matching artificially designed TAL effectors (dTALE). Transgenic rice plants containing Xa10-Ni and Xa23-Ni under the Xa10 promoter provided specific disease resistance to X. oryzae pv. oryzae strains that deliver AvrXa10. Xa10-Ni and Xa23-Ni knock-out mutants abolished dTALE-dependent disease resistance to X. oryzae pv. oryzae. Heterologous expression of Xa10-Ni and Xa23-Ni in Nicotiana benthamiana triggered cell death. The 19-amino-acid residues at the N-terminal regions of XA10 or XA10-Ni are dispensable for their function in inducing cell death in N. benthamiana and the C-terminal regions of XA10, XA10-Ni, and XA23-Ni are interchangeable among each other without affecting their function. Like XA10, both XA10-Ni and XA23-Ni locate to the endoplasmic reticulum (ER) membrane

  19. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice.

    Science.gov (United States)

    Wang, Chunlian; Zhang, Xiaoping; Fan, Yinglun; Gao, Ying; Zhu, Qinlong; Zheng, Chongke; Qin, Tengfei; Li, Yanqiang; Che, Jinying; Zhang, Mingwei; Yang, Bing; Liu, Yaoguang; Zhao, Kaijun

    2014-11-09

    The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE) associated executor type R genes show no considerable sequence homology to any known R genes. We adopted a map-based cloning approach and TALE-based technology to isolate and characterize Xa23, a new executor R gene derived from the wild rice (Oryza rufipogon) that confers an extremely broad spectrum of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23 encodes a 113-amino acid protein that shares 50% identity to the known executor R protein XA10. The predicted transmembrane helices in XA23 also overlap with those of XA10. Unlike Xa10, however, Xa23 transcription is specifically activated by AvrXa23, a TALE present in all examined Xoo field isolates. Moreover, the susceptible xa23 allele has an identical open reading frame of Xa23, but differs in promoter region by lacking the TALE binding-element (EBE) for AvrXa23. XA23 can trigger strong hypersensitive response in rice, tobacco and tomato. Our results provide the first evidence that plant genomes have an executor R gene family in which members execute their function and spectrum of disease resistance by recognizing the cognate TALEs in pathogen. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  20. RUBY-1: a randomized, double-blind, placebo-controlled trial of the safety and tolerability of the novel oral factor Xa inhibitor darexaban (YM150) following acute coronary syndrome

    DEFF Research Database (Denmark)

    Steg, Ph Gabriel; Mehta, Shamir R; Jukema, J Wouter

    2011-01-01

    To establish the safety, tolerability and most promising regimen of darexaban (YM150), a novel, oral, direct factor Xa inhibitor, for prevention of ischaemic events in acute coronary syndrome (ACS)....

  1. Comparative evaluation of direct thrombin and factor Xa inhibitors with antiplatelet agents under flow and static conditions: an in vitro flow chamber model.

    Directory of Open Access Journals (Sweden)

    Kazuya Hosokawa

    Full Text Available Dabigatran and rivaroxaban are novel oral anticoagulants that specifically inhibit thrombin and factor Xa, respectively. The aim of this study is to elucidate antithrombotic properties of these anticoagulant agents under arterial and venous shear conditions. Whole blood samples treated with dabigatran or rivaroxaban at 250, 500, and 1000 nM, with/without aspirin and AR-C66096, a P2Y12 antagonist, were perfused over a microchip coated with collagen and tissue thromboplastin at shear rates of 240 and 600 s(-1. Fibrin-rich platelet thrombus formation was quantified by monitoring flow pressure changes. Dabigatran at higher concentrations (500 and 1000 nM potently inhibited thrombus formation at both shear rates, whereas 1000 nM of rivaroxaban delayed, but did not completely inhibit, thrombus formation. Dual antiplatelet agents weakly suppressed thrombus formation at both shear rates, but intensified the anticoagulant effects of dabigatran and rivaroxaban. The anticoagulant effects of dabigatran and rivaroxaban were also evaluated under static conditions using thrombin generation (TG assay. In platelet-poor plasma, dabigatran at 250 and 500 nM efficiently prolonged the lag time (LT and moderately reduce peak height (PH of TG, whereas rivaroxaban at 250 nM efficiently prolonged LT and reduced PH of TG. In platelet-rich plasma, however, both anticoagulants efficiently delayed LT and reduced PH of TG. Our results suggest that dabigatran and rivaroxaban may exert distinct antithrombotic effects under flow conditions, particularly in combination with dual antiplatelet therapy.

  2. Theoretical calculation of shakeup intensities using Xa--SW wave functions

    International Nuclear Information System (INIS)

    Tse, J.S.; Loubriel, G.

    1981-01-01

    The ground and 1s core hole state molecular wave functions of CH 4 , NH 3 , H 2 O, and HF obtained from Xa--SW calculations using the touching spheres (TS) and overlapping spheres (OS) approximations are used to calculate the intensity of shakeup satellites observed in their ls core level photoelectron spectra. The sudden approximation was assumed in the calculation. In case of TS Xa--SW wave functions, the one electron overlap integral inside the intersphere was calculated via Green's theorem. For OS Xa--SW wave functions, the integration over the awkwardly shaped intersphere region was circumvented by distributing the intersphere charge into the atomic spheres according to the charge partition scheme suggested by Case and Karplus. Our results show that there are no significant differences between the shakeup energies calculated from the TS and OS approximations. However, shakeup intensities calculated from TS Xa--SW wave functions are more reliable and in better numerical agreement with experiment

  3. Treatment of proximal deep vein thrombosis with a novel synthetic compound (SR90107A/ORG31540) with pure anti-factor Xa activity - A phase II evaluation

    NARCIS (Netherlands)

    Buller, HR; Cariou, R; Gallus, A; Gent, M; Ginsberg, J; Prins, MH; Lensing, A; Levi, M; Nurmohammed, N; Hirsh, J; Roberts, R; ten Cate, JW; Decousus, H; Mismetti, P; Buchmuller, A; Charlet, [No Value; Viallon, A; van der Meer, J; Meinardi, [No Value; Meijer, K; Piovella, F; Barone, M; Beltrametti, C; Serafini, S; Kraaijenhagen, RA; Koopman, MMW; Jagt, HHT; Muller, MBR; Kooy, MV; Nauta, S; Gallus, AS; Coghlan, D; Rich, C; Prandoni, P; Scudeller, A; Scarano, L; Girolami, A; Baker, R; Tan, E; Cooney, J; Eikelboom, J; Ninet, J; Dolmazon, C; Madoux, MHG; Coppere, B; Nenci, GG; Agnelli, G; Falcinelli, F; Morini, M; d'Angelo, A

    2000-01-01

    Background-Patients with venous thromboembolism require initial treatment with an immediate-acting anticoagulant, low-molecular-weight heparin. We evaluated a novel synthetic factor Xa inhibitor (SR90107a/ORG31540) as an alternative treatment. Methods and Results-A randomized-parallel-group, phase

  4. Characterization of a human coagulation factor Xa-binding site on Viperidae snake venom phospholipases A2 by affinity binding studies and molecular bioinformatics

    Directory of Open Access Journals (Sweden)

    Gowda Veerabasappa T

    2007-12-01

    Full Text Available Abstract Background The snake venom group IIA secreted phospholipases A2 (SVPLA2, present in the Viperidae snake family exhibit a wide range of toxic and pharmacological effects. They exert their different functions by catalyzing the hydrolysis of phospholipids (PL at the membrane/water interface and by highly specific direct binding to: (i presynaptic membrane-bound or intracellular receptors; (ii natural PLA2-inhibitors from snake serum; and (iii coagulation factors present in human blood. Results Using surface plasmon resonance (SPR protein-protein interaction measurements and an in vitro biological test of inhibition of prothrombinase activity, we identify a number of Viperidae venom SVPLA2s that inhibit blood coagulation through direct binding to human blood coagulation factor Xa (FXa via a non-catalytic, PL-independent mechanism. We classify the SVPLA2s in four groups, depending on the strength of their binding. Molecular electrostatic potentials calculated at the surface of 3D homology-modeling models show a correlation with inhibition of prothrombinase activity. In addition, molecular docking simulations between SVPLA2 and FXa guided by the experimental data identify the potential FXa binding site on the SVPLA2s. This site is composed of the following regions: helices A and B, the Ca2+ loop, the helix C-β-wing loop, and the C-terminal fragment. Some of the SVPLA2 binding site residues belong also to the interfacial binding site (IBS. The interface in FXa involves both, the light and heavy chains. Conclusion We have experimentally identified several strong FXa-binding SVPLA2s that disrupt the function of the coagulation cascade by interacting with FXa by the non-catalytic PL-independent mechanism. By theoretical methods we mapped the interaction sites on both, the SVPLA2s and FXa. Our findings may lead to the design of novel, non-competitive FXa inhibitors.

  5. XA readout chip characteristics and CdZnTe spectral measurements

    International Nuclear Information System (INIS)

    Barbier, L.M.; Birsa, F.; Odom, J.

    1999-01-01

    The authors report on the performance of a CdZnTe (CZT) array readout by an XA (X-ray imaging chip produced at the AMS foundry) application specific readout chip (ASIC). The array was designed and fabricated at NASA/Goddard Space Flight Center (GSFC) as a prototype for the Burst Arc-Second Imaging and Spectroscopy gamma-ray instrument. The XA ASIC was obtained from Integrated Detector and Electronics (IDE), in Norway. Performance characteristics and spectral data for 241 Am are presented both at room temperature and at -20 C. The measured noise (σ) was 2.5 keV at 60 keV at room temperature. This paper represents a progress report on work with the XA ASIC and CZT detectors. Work is continuing and in particular, larger arrays are planned for future NASA missions

  6. Contemporary developments in the discovery of selective factor Xa inhibitors: A review.

    Science.gov (United States)

    Patel, Nirav R; Patel, Dushyant V; Murumkar, Prashant R; Yadav, Mange Ram

    2016-10-04

    Thrombosis is a leading cause of death in cardiovascular diseases such as myocardial infarction (MI), unstable angina and acute coronary syndrome (ACS) in the industrialized world. Venous thromboembolism is observed in about 1 million people every year in United States causing significant morbidity and mortality. Conventional antithrombotic therapy has been reported to have several disadvantages and limitations like inconvenience in oral administration, bleeding risks (heparin analogs), narrow therapeutic window and undesirable interactions with food and drugs (vitamin K antagonist-warfarin). The unmet medical demand for orally active safe anticoagulants has generated widespread interest among the medicinal chemists engaged in this field. To modulate blood coagulation, various enzymes involved in the coagulation process have received great attention as potential targets by various research groups for the development of oral anticoagulants. Among these enzymes, factor Xa (FXa) has remained the centre of attention in the last decade. Intensive research efforts have been made by various research groups for the development of small, safe and orally bioavailable FXa inhibitors. This review is an attempt to compile the research work of various researchers in the direction of development of FXa inhibitors reported since 2010 onward. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Fine mapping of the rice bacterial blight resistance gene Xa-4 and its co-segregation marker

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An F2 population developed from the Xa-4 near isogenic lines,IR24 and IRBB4,was used for fine mapping of the rice bacterial blight resistance gene,Xa-4.Some restriction fragment length polymorphism (RFLP) markers on the high-density map constructed by Harushima et al.and the amplified DNA fragments homologous to the conserved domains of plant disease resistance (R) genes were used to construct the genetic linkage map around the gene Xa-4 by scoring susceptible individuals in the population.Xa-4 was mapped between the RFLP marker G181 and the polymerase chain reaction (PCR) marker M55.The R gene homologous fragment marker RS13 was found co-segregating with Xa-4 by analyzing all the plants in the population.This result opened an approach to map-based cloning of this gene,and marker RS13 can be applied to molecular marker-assisted selection of Xa-4 in rice breeding programs.

  8. Protamine sulfate down-regulates thrombin generation by inhibiting factor V activation.

    LENUS (Irish Health Repository)

    Ni Ainle, Fionnuala

    2009-08-20

    Protamine sulfate is a positively charged polypeptide widely used to reverse heparin-induced anticoagulation. Paradoxically, prospective randomized trials have shown that protamine administration for heparin neutralization is associated with increased bleeding, particularly after cardiothoracic surgery with cardiopulmonary bypass. The molecular mechanism(s) through which protamine mediates this anticoagulant effect has not been defined. In vivo administration of pharmacologic doses of protamine to BALB\\/c mice significantly reduced plasma thrombin generation and prolonged tail-bleeding time (from 120 to 199 seconds). Similarly, in pooled normal human plasma, protamine caused significant dose-dependent prolongations of both prothrombin time and activated partial thromboplastin time. Protamine also markedly attenuated tissue factor-initiated thrombin generation in human plasma, causing a significant decrease in endogenous thrombin potential (41% +\\/- 7%). As expected, low-dose protamine effectively reversed the anticoagulant activity of unfractionated heparin in plasma. However, elevated protamine concentrations were associated with progressive dose-dependent reduction in thrombin generation. To assess the mechanism by which protamine mediates down-regulation of thrombin generation, the effect of protamine on factor V activation was assessed. Protamine was found to significantly reduce the rate of factor V activation by both thrombin and factor Xa. Protamine mediates its anticoagulant activity in plasma by down-regulation of thrombin generation via a novel mechanism, specifically inhibition of factor V activation.

  9. Apixaban versus enoxaparin for thromboprophylaxis after hip replacement

    DEFF Research Database (Denmark)

    Lassen, Michael Rud; Gallus, Alexander; Raskob, Gary E

    2010-01-01

    There are various regimens for thromboprophylaxis after hip replacement. Low-molecular-weight heparins such as enoxaparin predominantly inhibit factor Xa but also inhibit thrombin to some degree. Orally active, specific factor Xa inhibitors such as apixaban may provide effective thromboprophylaxis...

  10. A ΩXaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence.

    Science.gov (United States)

    Cyr, Normand; de la Fuente, Cynthia; Lecoq, Lauriane; Guendel, Irene; Chabot, Philippe R; Kehn-Hall, Kylene; Omichinski, James G

    2015-05-12

    Rift Valley fever virus (RVFV) is a single-stranded RNA virus capable of inducing fatal hemorrhagic fever in humans. A key component of RVFV virulence is its ability to form nuclear filaments through interactions between the viral nonstructural protein NSs and the host general transcription factor TFIIH. Here, we identify an interaction between a ΩXaV motif in NSs and the p62 subunit of TFIIH. This motif in NSs is similar to ΩXaV motifs found in nucleotide excision repair (NER) factors and transcription factors known to interact with p62. Structural and biophysical studies demonstrate that NSs binds to p62 in a similar manner as these other factors. Functional studies in RVFV-infected cells show that the ΩXaV motif is required for both nuclear filament formation and degradation of p62. Consistent with the fact that the RVFV can be distinguished from other Bunyaviridae-family viruses due to its ability to form nuclear filaments in infected cells, the motif is absent in the NSs proteins of other Bunyaviridae-family viruses. Taken together, our studies demonstrate that p62 binding to NSs through the ΩXaV motif is essential for degrading p62, forming nuclear filaments and enhancing RVFV virulence. In addition, these results show how the RVFV incorporates a simple motif into the NSs protein that enables it to functionally mimic host cell proteins that bind the p62 subunit of TFIIH.

  11. Comparative Transcriptome Profiling of Rice Near-Isogenic Line Carrying Xa23 under Infection of Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Tariq, Rezwan; Wang, Chunlian; Qin, Tengfei; Xu, Feifei; Tang, Yongchao; Gao, Ying; Ji, Zhiyuan; Zhao, Kaijun

    2018-03-02

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae ( Xoo ), is an overwhelming disease in rice-growing regions worldwide. Our previous studies revealed that the executor R gene Xa23 confers broad-spectrum disease resistance to all naturally occurring biotypes of Xoo . In this study, comparative transcriptomic profiling of two near-isogenic lines (NILs), CBB23 (harboring Xa23 ) and JG30 (without Xa23 ), before and after infection of the Xoo strain, PXO99 A , was done by RNA sequencing, to identify genes associated with the resistance. After high throughput sequencing, 1645 differentially expressed genes (DEGs) were identified between CBB23 and JG30 at different time points. Gene Ontlogy (GO) analysis categorized the DEGs into biological process, molecular function, and cellular component. KEGG analysis categorized the DEGs into different pathways, and phenylpropanoid biosynthesis was the most prominent pathway, followed by biosynthesis of plant hormones, flavonoid biosynthesis, and glycolysis/gluconeogenesis. Further analysis led to the identification of differentially expressed transcription factors (TFs) and different kinase responsive genes in CBB23, than that in JG30. Besides TFs and kinase responsive genes, DEGs related to ethylene, jasmonic acid, and secondary metabolites were also identified in both genotypes after PXO99 A infection. The data of DEGs are a precious resource for further clarifying the network of Xa23 -mediated resistance.

  12. Effect of MCM09, an active site-directed inhibitor of factor Xa, on B16-BL6 melanoma lung colonies in mice.

    Science.gov (United States)

    Rossi, C; Hess, S; Eckl, R W; di Lena, A; Bruno, A; Thomas, O; Poggi, A

    2006-03-01

    Treatment with anticoagulant drugs has shown potential inhibitory effect on tumor invasion, although the relationship with clotting inhibition was not clear. The aim of our study was to evaluate the potential antitumor activity of MCM09, a newly developed, active site-directed, small molecule inhibitor of factor Xa (FXa) [WO0216312], and to relate the findings to anticlotting potency. MCM09 (0.1-10 mg kg(-1)) or heparin (H; 10 mg kg(-1)) was injected intravenously (i.v.), with 5 x 10(4) B16-BL6 melanoma cells, in C57BL/6 mice. Mice were killed after 18 days, to count lung colonies. Ex vivo anticoagulant activity was measured by activated partial thromboplastin time (APTT) on mouse plasma. MCM09, a selective inhibitor of FXa (IC-50 = 2.4 nm against human FXa), inhibited in a dose-dependent manner B16-BL6 melanoma lung colonies in mice. Mean lung metastasis number was 20.9 +/- 4.8 in controls (n = 10), 1.2 +/- 0.4 in mice treated with H, 10 mg kg(-1) i.v. (P < 0.01), 0.9 +/- 0.3, 9.2 +/- 2.2 and 15.5 +/- 2.6 in mice treated with MCM09, at 10 (P < 0.01), 1 (P < 0.05) and 0.1 mg kg(-1) i.v. (ns), respectively. MCM09 (10 mg kg(-1) i.v.) significantly prolonged APTT (57.1 +/- 10.2 s) 30 min after i.v. injection when compared with controls (25.3 +/- 1.6 s; P < 0.05). Lung colonies were 74.2-72.6% reduced by MCM09 (10 mg kg(-1)) given 60 or 120 min before cells, but not by MCM09 given 60 min thereafter, suggesting a direct cell interaction as a mechanism underlying antitumor activity.

  13. Inhibition of PAI-1 release from human endothelial cells by Angelica keiskei Koidzumi (Ashitaba chalcones is structure-dependent

    Directory of Open Access Journals (Sweden)

    Naoki Ohkura

    2015-12-01

    Full Text Available Angelica keiskei Koidzumi (Ashitaba is a traditional herbal medicine and it is also regarded in Japan as a health food that might have antithrombotic properties. Ashitaba exudate suppresses lipopolysaccharide (LPS-induced plasma plasminogen activator inhibitor 1 (PAI-1, a risk factor for thrombotic diseases in mice. Xanthoangelol (XA and 4-hydroxyderricin (4-HD comprise > 95% of total chalcones from Ashitaba exudates that also contain trace amounts of other chalcone subtypes. The present study aimed to determine the effects of Ashitaba chalcones including xanthoangelols B (XB, D (XD, E (XE, F (XF and XA as well as 4-HD on PAI-1 levels in the medium of stimulated human EA.hy926 endothelial cells. Xanthoangelol (10 and #61549;M inhibited PAI-1 production at a rate of 77.1%, whereas the inhibition rates of XB, XD, XE and 4-HD were not significant. Xanthoangelol F was highly cytotoxic and thus its ability to inhibit PAI-1 production could not be evaluated. The side hydrocarbon chain of XA played an important role in the excretion of inhibitory activity. Small modifications of the hydrocarbon chain or small functional groups on the A ring measurably influenced the inhibitory activity of xanthoangelols. These findings warrant future research towards an understanding of the mechanism of antithrombotic action of Ashitaba as herbal medicine or antithrombotic health food. [J Intercult Ethnopharmacol 2015; 4(4.000: 355-357

  14. Introduction of a rice blight resistance gene, Xa21, into five Chinese rice varieties through an Agrobacterium-mediated system

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A cloned gene, Xa21 was transferred into five widely-used Chinese rice varieties through an Agrobacterium-mediated system, and over 110 independent transgenic lines were obtained. PCR and Southern analysis of transgenic plants revealed the integration of the whole Xa21 gene into the host genomes. The integrated Xa21 gene was stably inherited, and segregated in a 3∶1 ratio in the selfed T1 generation when one copy of the gene was integrated in the transformants. Inoculation tests displayed that transgenic T0 plants and Xa21 PCR-positive T1 plants were highly resistant to bacterial blight disease. The selected Xa21 homozygous resistant transgenic lines with desirable qualities may be propagated as new varieties or utilized in hybrid rice breeding.

  15. Introduction of a rice blight resistance gene, Xa21, into five Chinese rice varieties through an Agrobacterium -mediated system

    Institute of Scientific and Technical Information of China (English)

    翟文学; 李晓兵; 田文忠; 周永力; 潘学彪; 曹守云; 赵显峰; 赵彬; 章琦; 朱立煌

    2000-01-01

    A cloned gene, Xa21 was transferred into five widely-used Chinese rice varieties through an Agrobacterium-mediated system, and over 110 independent transgenic lines were obtained. PCR and Southern analysis of transgenic plants revealed the integration of the whole Xa21 gene into the host genomes. The integrated Xa21 gene was stably inherited, and segregated in a 3 : 1 ratio in the selfed T1 generation when one copy of the gene was integrated in the transfor-mants. Inoculation tests displayed that transgenic T0 plants and Xa21 PCR-positive T1 plants were highly resistant to bacterial blight disease. The selected Xa21 homozygous resistant transgenic lines with desirable qualities may be propagated as new varieties or utilized in hybrid rice breeding.

  16. Assessment of anti-factor Xa activity of enoxaparin for venous thromboembolism prophylaxis in morbidly obese surgical patients

    Directory of Open Access Journals (Sweden)

    Nouf Al Otaib

    2017-01-01

    Conclusions: Weight-based enoxaparin dose led to the anticipated peak anti-Xa levels (0.2–0.6 IU/mL in most of the morbidly obese study patients undergoing surgery without any evidence of major side effects. The weight-based dosing of enoxaparin was also effective in preventing VTE in all patients. Although these results are promising, further comparative trials are needed in the setting of morbidly obese surgical patients.

  17. Bioassay-directed fractionation of a blood coagulation factor Xa inhibitor, betulinic acid from Lycopus lucidus

    Directory of Open Access Journals (Sweden)

    Tan Yin-Feng

    2018-03-01

    Full Text Available Thrombosis is a major cause of morbidity and mortality worldwide and plays a pivotal role in the pathogenesis of several cardiovascular disorders, including acute coronary syndrome, unstable angina, myocardial infarction, sudden cardiac death, peripheral arterial occlusion, ischemic stroke, deep-vein thrombosis, and pulmonary embolism. Anticoagulants, antiplatelet agents, and fibrinolytics can reduce the risks of these clinical events. Especially, the blood coagulation factor Xa (FXa inhibitor is a proven anticoagulant. Promoting blood circulation, using traditional Chinese medicine (TCM, for the treatment of these diseases has been safely used for thousands of years in clinical practice. Therefore, highly safe and effective anticoagulant ingredients, including FXa inhibitors, could be found in TCM for activating the blood circulation. One FXa inhibitor, a pentacyclic triterpene (compound 1, betulinic acid characterized by IR, MS and NMR analyses, was isolated from the ethyl acetate fraction of Lycopus lucidus by bioassay-directed fractionation. Compound 1 exhibited an inhibitory effect on FXa with IC50 25.05 μmol/L and reduced the thrombus weight in an animal model at 25-100 mg/kg. These results indicate that betulinic acid could be the potential for anticoagulant therapy.

  18. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Dibildox, Gerardo, E-mail: g.dibildox@erasmusmc.nl; Baka, Nora; Walsum, Theo van [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Punt, Mark; Aben, Jean-Paul [Pie Medical Imaging, 6227 AJ Maastricht (Netherlands); Schultz, Carl [Department of Cardiology, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Niessen, Wiro [Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands and Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands)

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  19. Rivaroxaban in patients with a recent acute coronary syndrome

    DEFF Research Database (Denmark)

    Mega, Jessica L; Braunwald, Eugene; Wiviott, Stephen D

    2012-01-01

    Acute coronary syndromes arise from coronary atherosclerosis with superimposed thrombosis. Since factor Xa plays a central role in thrombosis, the inhibition of factor Xa with low-dose rivaroxaban might improve cardiovascular outcomes in patients with a recent acute coronary syndrome....

  20. Developing an Anti-Xa-Based Anticoagulation Protocol for Patients with Percutaneous Ventricular Assist Devices.

    Science.gov (United States)

    Sieg, Adam; Mardis, B Andrew; Mardis, Caitlin R; Huber, Michelle R; New, James P; Meadows, Holly B; Cook, Jennifer L; Toole, J Matthew; Uber, Walter E

    2015-01-01

    Because of the complexities associated with anticoagulation in temporary percutaneous ventricular assist device (pVAD) recipients, a lack of standardization exists in their management. This retrospective analysis evaluates current anticoagulation practices at a single center with the aim of identifying an optimal anticoagulation strategy and protocol. Patients were divided into two cohorts based on pVAD implanted (CentriMag (Thoratec; Pleasanton, CA) / TandemHeart (CardiacAssist; Pittsburgh, PA) or Impella (Abiomed, Danvers, MA)), with each group individually analyzed for bleeding and thrombotic complications. Patients in the CentriMag/TandemHeart cohort were subdivided based on the anticoagulation monitoring strategy (activated partial thromboplastin time (aPTT) or antifactor Xa unfractionated heparin (anti-Xa) values). In the CentriMag/TandemHeart cohort, there were five patients with anticoagulation titrated based on anti-Xa values; one patient developed a device thrombosis and a major bleed, whereas another patient experienced major bleeding. Eight patients received an Impella pVAD. Seven total major bleeds in three patients and no thrombotic events were detected. Based on distinct differences between the devices, anti-Xa values, and outcomes, two protocols were created to guide anticoagulation adjustments. However, anticoagulation in patients who require pVAD support is complex with constantly evolving anticoagulation goals. The ideal level of anticoagulation should be individually determined using several coagulation laboratory parameters in concert with hemodynamic changes in the patient's clinical status, the device, and the device cannulation.

  1. RNA-Seq analysis reveals insight into enhanced rice Xa7-mediated bacterial blight resistance at high temperature.

    Directory of Open Access Journals (Sweden)

    Stephen P Cohen

    Full Text Available Plant disease is a major challenge to agriculture worldwide, and it is exacerbated by abiotic environmental factors. During some plant-pathogen interactions, heat stress allows pathogens to overcome host resistance, a phenomenon which could severely impact crop productivity considering the global warming trends associated with climate change. Despite the importance of this phenomenon, little is known about the underlying molecular mechanisms. To better understand host plant responses during simultaneous heat and pathogen stress, we conducted a transcriptomics experiment for rice plants (cultivar IRBB61 containing Xa7, a bacterial blight disease resistance (R gene, that were infected with Xanthomonas oryzae, the bacterial blight pathogen of rice, during high temperature stress. Xa7-mediated resistance is unusual relative to resistance mediated by other R genes in that it functions better at high temperatures. Using RNA-Seq technology, we identified 8,499 differentially expressed genes as temperature responsive in rice cultivar IRBB61 experiencing susceptible and resistant interactions across three time points. Notably, genes in the plant hormone abscisic acid biosynthesis and response pathways were up-regulated by high temperature in both mock-treated plants and plants experiencing a susceptible interaction and were suppressed by high temperature in plants exhibiting Xa7-mediated resistance. Genes responsive to salicylic acid, an important plant hormone for disease resistance, were down-regulated by high temperature during both the susceptible and resistant interactions, suggesting that enhanced Xa7-mediated resistance at high temperature is not dependent on salicylic acid signaling. A DNA sequence motif similar to known abscisic acid-responsive cis-regulatory elements was identified in the promoter region upstream of genes up-regulated in susceptible but down-regulated in resistant interactions. The results of our study suggest that the plant

  2. Identification of bacterial blight resistance genes Xa4 in Pakistani ...

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... Bacterial blight (BB) caused by Xanthomonas oryzae pv oryzae (Xoo) is a major biotic constraint in the irrigated rice belts. Genetic resistance is the most effective and economical control for bacterial blight. Molecular survey was conducted to identify the rice germplasm/lines for the presence of Xa4, a.

  3. Determination of rivaroxaban in patient’s plasma samples by anti-Xa chromogenic test associated to High Performance Liquid Chromatography tandem Mass Spectrometry (HPLC-MS/MS)

    Science.gov (United States)

    Derogis, Priscilla Bento Matos; Sanches, Livia Rentas; de Aranda, Valdir Fernandes; Colombini, Marjorie Paris; Mangueira, Cristóvão Luis Pitangueira; Katz, Marcelo; Faulhaber, Adriana Caschera Leme; Mendes, Claudio Ernesto Albers; Ferreira, Carlos Eduardo dos Santos; França, Carolina Nunes; Guerra, João Carlos de Campos

    2017-01-01

    Rivaroxaban is an oral direct factor Xa inhibitor, therapeutically indicated in the treatment of thromboembolic diseases. As other new oral anticoagulants, routine monitoring of rivaroxaban is not necessary, but important in some clinical circumstances. In our study a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was validated to measure rivaroxaban plasmatic concentration. Our method used a simple sample preparation, protein precipitation, and a fast chromatographic run. It was developed a precise and accurate method, with a linear range from 2 to 500 ng/mL, and a lower limit of quantification of 4 pg on column. The new method was compared to a reference method (anti-factor Xa activity) and both presented a good correlation (r = 0.98, p highly correlated and should be used as clinical tools for drug monitoring. The method was applied successfully in a group of 49 real-life patients, which allowed an accurate determination of rivaroxaban in peak and trough levels. PMID:28170419

  4. Determination of rivaroxaban in patient's plasma samples by anti-Xa chromogenic test associated to High Performance Liquid Chromatography tandem Mass Spectrometry (HPLC-MS/MS).

    Science.gov (United States)

    Derogis, Priscilla Bento Matos; Sanches, Livia Rentas; de Aranda, Valdir Fernandes; Colombini, Marjorie Paris; Mangueira, Cristóvão Luis Pitangueira; Katz, Marcelo; Faulhaber, Adriana Caschera Leme; Mendes, Claudio Ernesto Albers; Ferreira, Carlos Eduardo Dos Santos; França, Carolina Nunes; Guerra, João Carlos de Campos

    2017-01-01

    Rivaroxaban is an oral direct factor Xa inhibitor, therapeutically indicated in the treatment of thromboembolic diseases. As other new oral anticoagulants, routine monitoring of rivaroxaban is not necessary, but important in some clinical circumstances. In our study a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was validated to measure rivaroxaban plasmatic concentration. Our method used a simple sample preparation, protein precipitation, and a fast chromatographic run. It was developed a precise and accurate method, with a linear range from 2 to 500 ng/mL, and a lower limit of quantification of 4 pg on column. The new method was compared to a reference method (anti-factor Xa activity) and both presented a good correlation (r = 0.98, p plasma samples for rivaroxaban measurement by HPLC-MS/MS without interferences. The chromogenic and HPLC-MS/MS methods were highly correlated and should be used as clinical tools for drug monitoring. The method was applied successfully in a group of 49 real-life patients, which allowed an accurate determination of rivaroxaban in peak and trough levels.

  5. Computational investigation of potential dosing schedules for a switch of medication from warfarin to rivaroxaban-an oral, direct Factor Xa inhibitor.

    Science.gov (United States)

    Burghaus, Rolf; Coboeken, Katrin; Gaub, Thomas; Niederalt, Christoph; Sensse, Anke; Siegmund, Hans-Ulrich; Weiss, Wolfgang; Mueck, Wolfgang; Tanigawa, Takahiko; Lippert, Jörg

    2014-01-01

    The long-lasting anticoagulant effect of vitamin K antagonists can be problematic in cases of adverse drug reactions or when patients are switched to another anticoagulant therapy. The objective of this study was to examine in silico the anticoagulant effect of rivaroxaban, an oral, direct Factor Xa inhibitor, combined with the residual effect of discontinued warfarin. Our simulations were based on the recommended anticoagulant dosing regimen for stroke prevention in patients with atrial fibrillation. The effects of the combination of discontinued warfarin plus rivaroxaban were simulated using an extended version of a previously validated blood coagulation computer model. A strong synergistic effect of the two distinct mechanisms of action was observed in the first 2-3 days after warfarin discontinuation; thereafter, the effect was close to additive. Nomograms for the introduction of rivaroxaban therapy after warfarin discontinuation were derived for Caucasian and Japanese patients using safety and efficacy criteria described previously, together with the coagulation model. The findings of our study provide a mechanistic pharmacologic rationale for dosing schedules during the therapy switch from warfarin to rivaroxaban and support the switching strategies as outlined in the Summary of Product Characteristics and Prescribing Information for rivaroxaban.

  6. Computational investigation of potential dosing schedules for a switch of medication from warfarin to rivaroxaban—an oral, direct Factor Xa inhibitor

    Science.gov (United States)

    Burghaus, Rolf; Coboeken, Katrin; Gaub, Thomas; Niederalt, Christoph; Sensse, Anke; Siegmund, Hans-Ulrich; Weiss, Wolfgang; Mueck, Wolfgang; Tanigawa, Takahiko; Lippert, Jörg

    2014-01-01

    The long-lasting anticoagulant effect of vitamin K antagonists can be problematic in cases of adverse drug reactions or when patients are switched to another anticoagulant therapy. The objective of this study was to examine in silico the anticoagulant effect of rivaroxaban, an oral, direct Factor Xa inhibitor, combined with the residual effect of discontinued warfarin. Our simulations were based on the recommended anticoagulant dosing regimen for stroke prevention in patients with atrial fibrillation. The effects of the combination of discontinued warfarin plus rivaroxaban were simulated using an extended version of a previously validated blood coagulation computer model. A strong synergistic effect of the two distinct mechanisms of action was observed in the first 2–3 days after warfarin discontinuation; thereafter, the effect was close to additive. Nomograms for the introduction of rivaroxaban therapy after warfarin discontinuation were derived for Caucasian and Japanese patients using safety and efficacy criteria described previously, together with the coagulation model. The findings of our study provide a mechanistic pharmacologic rationale for dosing schedules during the therapy switch from warfarin to rivaroxaban and support the switching strategies as outlined in the Summary of Product Characteristics and Prescribing Information for rivaroxaban. PMID:25426077

  7. L2₁ and XA Ordering Competition in Hafnium-Based Full-Heusler Alloys Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb).

    Science.gov (United States)

    Wang, Xiaotian; Cheng, Zhenxiang; Wang, Wenhong

    2017-10-20

    For theoretical designing of full-Heusler based spintroinc materials, people have long believed in the so-called Site Preference Rule (SPR). Very recently, according to the SPR, there are several studies on XA-type Hafnium-based Heusler alloys X₂YZ, i.e., Hf₂VAl, Hf₂CoZ (Z = Ga, In) and Hf₂CrZ (Z = Al, Ga, In). In this work, a series of Hf₂-based Heusler alloys, Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb), were selected as targets to study the site preferences of their atoms by first-principle calculations. It has been found that all of them are likely to exhibit the L2₁-type structure instead of the XA one. Furthermore, we reveal that the high values of spin-polarization of XA-type Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb) alloys have dropped dramatically when they form the L2₁-type structure. Also, we prove that the electronic, magnetic, and physics nature of these alloys are quite different, depending on the L2₁-type or XA-type structures.

  8. Marker-Assisted Selection of Xa21 Conferring Resistance to Bacterial Leaf Blight in indica Rice Cultivar LT2

    Institute of Scientific and Technical Information of China (English)

    Hue Thi NGUYEN; Trung Nguyen DINH; Nakano TOSHITSUGU; Liet Van VU; Quang Hong VU; Tan Van MAI; Thu Thi NGUYEN; Lam Duc VU; Tung Thanh NGUYEN; Long Viet NGUYEN; Hien Thu Thi VU; Hue Thi NONG

    2018-01-01

    Bacterial leaf blight of rice (BLB), caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive diseases in Asian rice fields. A high-quality rice variety, LT2, was used as the recipient parent. IRBB21, which carries the Xa21 gene, was used as the donor parent. The resistance gene Xa21 was introduced into LT2 by marker-assisted backcrossing. Three Xoo races were used to inoculate the improved lines following the clipping method. Eleven BC3F3lines carrying Xa21 were obtained based on molecular markers and agronomic performance. The 11 lines were then inoculated with the three Xoo races. All the 11 improved lines showed better resistance to BLB than the recipient parent LT2. Based on the level of resistance to BLB and their agronomic performance, five lines (BC3F35.1.5.1, BC3F35.1.5.12, BC3F38.5.6.44, BC3F3 9.5.4.1 and BC3F39.5.4.23) were selected as the most promising for commercial release. These improved lines could contribute to rice production in terms of food security.

  9. Subcutaneous Administration of Low-Molecular-Weight Heparin to Horses Inhibits Ex Vivo Equine Herpesvirus Type 1-Induced Platelet Activation

    Directory of Open Access Journals (Sweden)

    Tracy Stokol

    2018-05-01

    Full Text Available Equine herpesvirus type 1 (EHV-1 is a major cause of infectious respiratory disease, abortion and neurologic disease. Thrombosis in placental and spinal vessels and subsequent ischemic injury in EHV-1-infected horses manifests clinically as abortion and myeloencephalopathy. We have previously shown that addition of heparin anticoagulants to equine platelet-rich plasma (PRP can abolish ex vivo EHV-1-induced platelet activation. The goal of this study was to test whether platelets isolated from horses treated with unfractionated heparin (UFH or low-molecular-weight heparin (LMWH were resistant to ex vivo EHV-1-induced activation. In a masked, block-randomized placebo-controlled cross-over trial, 9 healthy adult horses received 4 subcutaneous injections at q. 12 h intervals of one of the following treatments: UFH (100 U/kg loading dose, 3 maintenance doses of 80 U/kg, 2 doses of LMWH (enoxaparin 80 U/kg 24 h apart with saline at the intervening 12 h intervals, or 4 doses of saline. Blood samples were collected before treatment and after 36 h, 40 h (4 h after the last injection and 60 h (24 h after the last injection. Two strains of EHV-1, Ab4 and RacL11, were added to PRP ex vivo and platelet membrane expression of P selectin was measured as a marker of platelet activation. Drug concentrations were monitored in a Factor Xa inhibition (anti-Xa bioassay. We found that LMWH, but not UFH, inhibited platelet activation induced by low concentrations (1 × 106 plaque forming units/mL of both EHV-1 strains at 40 h. At this time point, all horses had anti-Xa activities above 0.1 U/ml (range 0.15–0.48 U/ml with LMWH, but not UFH. By 60 h, a platelet inhibitory effect was no longer detected and anti-Xa activity had decreased (range 0.03 to 0.07 U/ml in LMWH-treated horses. Neither heparin inhibited platelet activation induced by high concentrations (5 × 106 plaque forming units/mL of the RacL11 strain. We found substantial between horse

  10. Vasorelaxing Action of the Kynurenine Metabolite, Xanthurenic Acid: The Missing Link in Endotoxin-Induced Hypotension?

    Directory of Open Access Journals (Sweden)

    Carmine Vecchione

    2017-05-01

    Full Text Available The kynurenine pathway of tryptophan metabolism is activated by pro-inflammatory cytokines. L-kynurenine, an upstream metabolite of the pathway, acts as a putative endothelium-derived relaxing factor, and has been hypothesized to play a causative role in the pathophysiology of inflammation-induced hypotension. Here, we show that xanthurenic acid (XA, the transamination product of 3-hydroxykynurenine, is more efficacious than L-kynurenine in causing relaxation of a resistance artery, but fails to relax pre-contracted aortic rings. In the mesenteric artery, XA enhanced activating phosphorylation of endothelial nitric oxide synthase (NOS, and the relaxing action of XA was abrogated by pharmacological inhibition of NOS and endothelial-derived hyperpolarizing factor. Systemic injection of XA reduced blood pressure in mice, and serum levels of XA increased by several fold in response to a pulse with the endotoxin, lipopolysaccharide (LPS. LPS-induced hypotension in mice was prevented by pre-treatment with the kynurenine monooxygenase (KMO inhibitor, Ro-618048, which lowered serum levels of XA but enhanced serum levels of L-kynurenine. UPF 648, another KMO inhibitor, could also abrogate LPS-induced hypotension. Our data identify XA as a novel vasoactive compound and suggest that formation of XA is a key event in the pathophysiology of inflammation-induced hypotension.

  11. Amblyomma americanum tick calreticulin binds C1q but does not inhibit activation of the classical complement cascade.

    Science.gov (United States)

    Kim, Tae Kwon; Ibelli, Adriana Mércia Guaratini; Mulenga, Albert

    2015-02-01

    In this study we characterized Amblyomma americanum (Aam) tick calreticulin (CRT) homolog in tick feeding physiology. In nature, different tick species can be found feeding on the same animal host. This suggests that different tick species found feeding on the same host can modulate the same host anti-tick defense pathways to successfully feed. From this perspective it's plausible that different tick species can utilize universally conserved proteins such as CRT to regulate and facilitate feeding. CRT is a multi-functional protein found in most taxa that is injected into the vertebrate host during tick feeding. Apart from it's current use as a biomarker for human tick bites, role(s) of this protein in tick feeding physiology have not been elucidated. Here we show that annotated functional CRT amino acid motifs are well conserved in tick CRT. However our data show that despite high amino acid identity levels to functionally characterized CRT homologs in other organisms, AamCRT is apparently functionally different. Pichia pastoris expressed recombinant (r) AamCRT bound C1q, the first component of the classical complement system, but it did not inhibit activation of this pathway. This contrast with reports of other parasite CRT that inhibited activation of the classical complement pathway through sequestration of C1q. Furthermore rAamCRT did not bind factor Xa in contrast to reports of parasite CRT binding factor Xa, an important protease in the blood clotting system. Consistent with this observation, rAamCRT did not affect plasma clotting or platelet aggregation. We discuss our findings in the context of tick feeding physiology.

  12. Marker-Assisted Selection of Xa21 Conferring Resistance to Bacterial Leaf Blight in indica Rice Cultivar LT2

    Directory of Open Access Journals (Sweden)

    Hue Thi Nguyen

    2018-01-01

    Full Text Available Bacterial leaf blight of rice (BLB, caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive diseases in Asian rice fields. A high-quality rice variety, LT2, was used as the recipient parent. IRBB21, which carries the Xa21 gene, was used as the donor parent. The resistance gene Xa21 was introduced into LT2 by marker-assisted backcrossing. Three Xoo races were used to inoculate the improved lines following the clipping method. Eleven BC3F3 lines carrying Xa21 were obtained based on molecular markers and agronomic performance. The 11 lines were then inoculated with the three Xoo races. All the 11 improved lines showed better resistance to BLB than the recipient parent LT2. Based on the level of resistance to BLB and their agronomic performance, five lines (BC3F3 5.1.5.1, BC3F3 5.1.5.12, BC3F3 8.5.6.44, BC3F3 9.5.4.1 and BC3F3 9.5.4.23 were selected as the most promising for commercial release. These improved lines could contribute to rice production in terms of food security.

  13. Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum.

    Science.gov (United States)

    Tripathi, Jaindra N; Lorenzen, Jim; Bahar, Ofir; Ronald, Pamela; Tripathi, Leena

    2014-08-01

    Banana Xanthomonas wilt (BXW), caused by the bacterium Xanthomonas campestris pv. musacearum (Xcm), is the most devastating disease of banana in east and central Africa. The spread of BXW threatens the livelihood of millions of African farmers who depend on banana for food security and income. There are no commercial chemicals, biocontrol agents or resistant cultivars available to control BXW. Here, we take advantage of the robust resistance conferred by the rice pattern-recognition receptor (PRR), XA21, to the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). We identified a set of genes required for activation of Xa21-mediated immunity (rax) that were conserved in both Xoo and Xcm. Based on the conservation, we hypothesized that intergeneric transfer of Xa21 would confer resistance to Xcm. We evaluated 25 transgenic lines of the banana cultivar 'Gonja manjaya' (AAB) using a rapid bioassay and 12 transgenic lines in the glasshouse for resistance against Xcm. About 50% of the transgenic lines showed complete resistance to Xcm in both assays. In contrast, all of the nontransgenic control plants showed severe symptoms that progressed to complete wilting. These results indicate that the constitutive expression of the rice Xa21 gene in banana results in enhanced resistance against Xcm. Furthermore, this work demonstrates the feasibility of PRR gene transfer between monocotyledonous species and provides a valuable new tool for controlling the BXW pandemic of banana, a staple food for 100 million people in east Africa. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Apixaban or enoxaparin for thromboprophylaxis after knee replacement

    DEFF Research Database (Denmark)

    Lassen, Michael Rud; Raskob, Gary E; Gallus, Alexander

    2009-01-01

    BACKGROUND: The optimal strategy for thromboprophylaxis after major joint replacement has not been established. Low-molecular-weight heparins such as enoxaparin predominantly target factor Xa but to some extent also inhibit thrombin. Apixaban, a specific factor Xa inhibitor, may provide effective...... (P=0.03). CONCLUSIONS: As compared with enoxaparin for efficacy of thromboprophylaxis after knee replacement, apixaban did not meet the prespecified statistical criteria for noninferiority, but its use was associated with lower rates of clinically relevant bleeding and it had a similar adverse...

  15. 78 FR 24677 - Safety Zone; XA The Experimental Agency Fireworks, Pier 34, East River, NY

    Science.gov (United States)

    2013-04-26

    ... Final Rule This rule establishes a temporary safety zone on the navigable waters of the East River, in... Fireworks, Pier 34, East River, NY. (a) Regulated Area. The following area is a temporary safety zone: all... 1625-AA00 Safety Zone; XA The Experimental Agency Fireworks, Pier 34, East River, NY AGENCY: Coast...

  16. Epitope mapping of functional domains of human factor V with human and mouse monoclonal antibodies

    International Nuclear Information System (INIS)

    Annamalai, A.E.; Rao, A.K.; Chiu, H.C.; Wang, D.; Dutta-Roy, A.K.; Colman, R.W.

    1986-01-01

    The authors previously described two human monoclonal antibodies (MAbs) which inactivated factor V. The authors have now purified the predominant antibody (H2) on protein A Sepharose using a pH gradient and typed it as IgG 1 ,. Immunoprecipitation of 125 I-human factor Va with H2 demonstrated specificity for the heavy chain (D), Mr = 105,000. The authors compared using ELISA the competitive binding to factor Va, of H2, H1 and two mouse MAbs, B38 (directed to E) and B10 (to activation peptide, Cl). All four antibodies recognized distinct epitopes in factor V with steric overlap in some cases. Factor Xa showed a concentration dependent competition for binding of H1, H2 and B38 but not B10 to factor V/Va in ELISA. All MAbs bound to factor V/Va in the absence of Ca ++ . However, Ca ++ at 8 mM increased the binding of H1 and H2 to 165% and 360% and did not have any effect on the binding of either mouse MAbs. Prothrombin at a concentration of up to 400 μg/ml did not inhibit binding of any of these antibodies. Thus, both the light (E) and heavy (D) chains of factor Va but not the activation peptide (Cl) interact with factor Xa as defined by the MAbs. In addition, sites on both chains for Ca ++ are recognized by particular MAbs (H1 and H2). These studies increase their knowledge of the interactions of factor V domains in the formation of prothrombinase complex

  17. Furan- and Thiophene-2-Carbonyl Amino Acid Derivatives Activate Hypoxia-Inducible Factor via Inhibition of Factor Inhibiting Hypoxia-Inducible Factor-1

    Directory of Open Access Journals (Sweden)

    Shin-ichi Kawaguchi

    2018-04-01

    Full Text Available Induction of a series of anti-hypoxic proteins protects cells during exposure to hypoxic conditions. Hypoxia-inducible factor-α (HIF-α is a major transcription factor that orchestrates this protective effect. To activate HIF exogenously, without exposing cells to hypoxic conditions, many small-molecule inhibitors targeting prolyl hydroxylase domain-containing protein have been developed. In addition, suppression of factor inhibiting HIF-1 (FIH-1 has also been shown to have the potential to activate HIF-α. However, few small-molecule inhibitors of FIH-1 have been developed. In this study, we synthesized a series of furan- and thiophene-2-carbonyl amino acid derivatives having the potential to inhibit FIH-1. The inhibitory activities of these compounds were evaluated in SK-N-BE(2c cells by measuring HIF response element (HRE promoter activity. Several furan- and thiophene-2-carbonyl amino acid derivatives inhibited FIH-1 based on correlations among the docking score of the FIH-1 active site, the chemical structure of the compounds, and biological HIF-α/HRE transcriptional activity.

  18. The Factor of Structure and Mechanical Properties in the Production of Critical Fixing Hardware 38XA

    Directory of Open Access Journals (Sweden)

    G.V. Pachurin

    2016-09-01

    Full Text Available Fixing hardware made of carbon, high-carbon, and alloyed wires is one of the widespread critical parts in mechanical engineering. The characteristics of fixtures and fasteners and their performance figures are assessed at all stages of steel-making operation, from the choice of burden stock for metal smelting to the method of preparing calibrated rolled metal parts and upsetting end products. Material used for producing long high-duty bolts must be both sufficiently strong and ductile, have homogeneous mechanical properties and chemistry, and no inner or surface defects. When manufacturing fasteners, hot-rolled metal is often plastically deformed by drafting before cold upsetting, and all unacceptable defects are removed by the expensive procedure of lathe-turning. Moreover, this technology of metal processing entails losses of up to 5.5 % in chips. This paper suggests a resource-efficient and environmentally friendlier fabrication method for calibrated rolled metal items made of steel 38XA, 9.65 mm diameter, for cold die-forging of high-duty bolts used in automotive engines, which helps spare expensive lathe-machining processes. Moreover, rolled steel produced using this technology is characterized by high resistance to plastic deformation when cold, which leads to increase n wear-resistance of tools in cold die-forging of bolts.

  19. Oral heparin results in the appearance of heparin fragments in the plasma of rats

    International Nuclear Information System (INIS)

    Larsen, A.K.; Lund, D.P.; Langer, R.; Folkman, J.

    1986-01-01

    We have previously shown that angiogenesis inhibition and tumor regression can be accomplished by combinations of heparin or heparin fragments with cortisone. Oral heparin was also effective in combination with cortisone. We now show that a single oral dose of [ 35 S]heparin or [ 3 H]heparin (15,000 units/kg) results in continuous release of radioactive material into the bloodstream for at least 12 hr. This is associated with the presence of anti-factor Xa activity at a level of approximately equal to 0.1 unit/ml. The radioactive material is identified as oligo-, di-, and monosaccharides by its behavior in chromatographic systems, its possession of anti-factor Xa activity, and the effect of treatment with bacterial heparinase. The heparin fragments are extensively metabolized to fragments without anti-factor Xa activity that are readily subject to urinary excretion

  20. Interaction of blood coagulation factor Va with phospholipid vesicles examined by using lipophilic photoreagents

    International Nuclear Information System (INIS)

    Krieg, U.C.; Isaacs, B.S.; Yemul, S.S.; Esmon, C.T.; Bayley, H.; Johnson, A.E.

    1987-01-01

    Two different lipophilic photoreagents, [ 3 H]adamantane diazirine and 3-(trifluoromethyl)-3-(m-[ 125 I]iodophenyl)diazirine (TID), have been utilized to examine the interactions of blood coagulation factor Va with calcium, prothrombin, factor Xa, and, in particular, phospholipid vesicles. With each of these structurally dissimilar reagents, the extent of photolabeling of factor Va was greater when the protein was bound to a membrane surface than when it was free in solution. Specifically, the covalent photoreaction with Vl, the smaller subunit of factor Va, was 2-fold higher in the presence of phosphatidylcholine/phosphatidylserine (PC/PS, 3:1) vesicles, to which factor Va binds, than in the presence of 100% PC vesicles, to which the protein does not bind. However, the magnitude of the PC/PS-dependent photolabeling was much less than has been observed previously with integral membrane proteins. It therefore appears that the binding of factor Va to the membrane surface exposes Vl to the lipid core of the bilayer, but that only a small portion of the Vl polypeptide is exposed to, or embedded in, the bilayer core. Addition of either prothrombin or active-site-blocked factor Xa to PC/PS-bound factor Va had little effect on the photolabeling of Vl with TID, but reduced substantially the covalent labeling of Vh, the larger subunit of factor Va. This indicates that prothrombin and factor Xa each cover nonpolar surfaces on Vh when the macromolecules associate on the PC/PS surface. It therefore seems likely that the formation of the prothrombinase complex involves a direct interaction between Vh and factor Xa and between Vh and prothrombin.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Malaria infectivity of xanthurenic acid-deficient anopheline mosquitoes produced by TALEN-mediated targeted mutagenesis.

    Science.gov (United States)

    Yamamoto, Daisuke S; Sumitani, Megumi; Hatakeyama, Masatsugu; Matsuoka, Hiroyuki

    2018-02-01

    Anopheline mosquitoes are major vectors of malaria parasites. When the gametocytes of the malaria parasite are transferred from a vertebrate to mosquitoes, they differentiate into gametes, and are fertilized in the midguts of mosquitoes. Xanthurenic acid (XA), a waste product of the ommochrome synthesis pathway, has been shown to induce exflagellation during microgametogenesis in vitro; however, it currently remains unclear whether endogenous XA affects the infectivity of anopheline mosquitoes to malaria parasites in vivo due to the lack of appropriate experimental systems such as a XA-deficient line. In the present study, we produced a XA-deficient line in Anopheles stephensi using transcription activator-like effector nuclease (TALEN)-mediated gene targeting (knockout) of the kynurenine 3-monooxygenase (kmo) gene, which encodes an enzyme that participates in the ommochrome synthesis pathway. The knockout of kmo resulted in the absence of XA, and oocyst formation was inhibited in the midguts of these XA-deficient mosquitoes, which, in turn, reduced sporozoite numbers in their salivary glands. These results suggest that endogenous XA stimulates exflagellation, and enhances the infectivity of anopheline mosquitoes to malaria parasites in vivo. The XA-deficient line of the anopheline mosquito provides a useful system for analyzing and understanding the associated factors of malaria gametogenesis in the mosquito midgut.

  2. XaNSoNS: GPU-accelerated simulator of diffraction patterns of nanoparticles

    Directory of Open Access Journals (Sweden)

    V.S. Neverov

    2017-01-01

    Full Text Available XaNSoNS is an open source software with GPU support, which simulates X-ray and neutron 1D (or 2D diffraction patterns and pair-distribution functions (PDF for amorphous or crystalline nanoparticles (up to ∼107 atoms of heterogeneous structural content. Among the multiple parameters of the structure the user may specify atomic displacements, site occupancies, molecular displacements and molecular rotations. The software uses general equations nonspecific to crystalline structures to calculate the scattering intensity. It supports four major standards of parallel computing: MPI, OpenMP, Nvidia CUDA and OpenCL, enabling it to run on various architectures, from CPU-based HPCs to consumer-level GPUs.

  3. XaNSoNS: GPU-accelerated simulator of diffraction patterns of nanoparticles

    Science.gov (United States)

    Neverov, V. S.

    XaNSoNS is an open source software with GPU support, which simulates X-ray and neutron 1D (or 2D) diffraction patterns and pair-distribution functions (PDF) for amorphous or crystalline nanoparticles (up to ∼107 atoms) of heterogeneous structural content. Among the multiple parameters of the structure the user may specify atomic displacements, site occupancies, molecular displacements and molecular rotations. The software uses general equations nonspecific to crystalline structures to calculate the scattering intensity. It supports four major standards of parallel computing: MPI, OpenMP, Nvidia CUDA and OpenCL, enabling it to run on various architectures, from CPU-based HPCs to consumer-level GPUs.

  4. Analysis of nucleotide diversity among alleles of the major bacterial blight resistance gene Xa27 in cultivars of rice (Oryza sativa) and its wild relatives.

    Science.gov (United States)

    Bimolata, Waikhom; Kumar, Anirudh; Sundaram, Raman Meenakshi; Laha, Gouri Shankar; Qureshi, Insaf Ahmed; Reddy, Gajjala Ashok; Ghazi, Irfan Ahmad

    2013-08-01

    Xa27 is one of the important R-genes, effective against bacterial blight disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). Using natural population of Oryza, we analyzed the sequence variation in the functionally important domains of Xa27 across the Oryza species. DNA sequences of Xa27 alleles from 27 rice accessions revealed higher nucleotide diversity among the reported R-genes of rice. Sequence polymorphism analysis revealed synonymous and non-synonymous mutations in addition to a number of InDels in non-coding regions of the gene. High sequence variation was observed in the promoter region including the 5'UTR with 'π' value 0.00916 and 'θ w ' = 0.01785. Comparative analysis of the identified Xa27 alleles with that of IRBB27 and IR24 indicated the operation of both positive selection (Ka/Ks > 1) and neutral selection (Ka/Ks ≈ 0). The genetic distances of alleles of the gene from Oryza nivara were nearer to IRBB27 as compared to IR24. We also found the presence of conserved and null UPT (upregulated by transcriptional activator) box in the isolated alleles. Considerable amino acid polymorphism was localized in the trans-membrane domain for which the functional significance is yet to be elucidated. However, the absence of functional UPT box in all the alleles except IRBB27 suggests the maintenance of single resistant allele throughout the natural population.

  5. Phosphatidylserine and Phosphatidylethanolamine Bind to Protein Z Cooperatively and with Equal Affinity.

    Directory of Open Access Journals (Sweden)

    Tanusree Sengupta

    Full Text Available Protein Z (PZ is an anticoagulant that binds with high affinity to Protein Z-dependent protease inhibitor (ZPI and accelerates the rate of ZPI-mediated inhibition of factor Xa (fXa by more than 1000-fold in the presence of Ca2+ and phospholipids. PZ promotion of the ZPI-fXa interaction results from the anchoring of the Gla domain of PZ onto phospholipid surfaces and positioning the bound ZPI in close proximity to the Gla-anchored fXa, forming a ternary complex of PZ/ZPI/fXa. Although interaction of PZ with phospholipid membrane appears to be absolutely crucial for its cofactor activity, little is known about the binding of different phospholipids to PZ. The present study was conceived to understand the interaction of different phospholipids with PZ. Experiments with both soluble lipids and model membranes revealed that PZ binds to phosphatidylserine (PS and phosphatidylethanolamine (PE with equal affinity (Kd~48 μM; further, PS and PE bound to PZ synergistically. Equilibrium dialysis experiments revealed two lipid-binding sites for both PS and PE. PZ binds with weaker affinity to other phospholipids, e.g., phosphatidic acid, phosphatidylglycerol, phosphatidylcholine and binding of these lipids is not synergistic with respect to PS. Both PS and PE -containing membranes supported the formation of a fXa-PZ complex. PZ protection of fXa from antithrombin inhibition were also shown to be comparable in presence of both PS: PC and PE: PC membranes. These findings are particularly important and intriguing since they suggest a special affinity of PZ, in vivo, towards activated platelets, the primary membrane involved in blood coagulation process.

  6. Polysaccharide rich fractions from barks of Ximenia americana inhibit peripheral inflammatory nociception in mice Antinociceptive effect of Ximenia americana polysaccharide rich fractions

    Directory of Open Access Journals (Sweden)

    Kaira E.S. da Silva-Leite

    Full Text Available Abstract Ximenia americana L., Olacaceae, barks are utilized in folk medicine as analgesic and anti-inflammatory. The objective was to evaluate the toxicity and antinociceptive effect of polysaccharides rich fractions from X. americana barks. The fractions were obtained by extraction with NaOH, followed by precipitation with ethanol and fractionation by ion exchange chromatography. They were administered i.v. or p.o. before nociception tests (writhing, formalin, carragenan-induced hypernociception, hot plate, or during 14 days for toxicity assay. The total polysaccharides fraction (TPL-Xa: 8.1% yield presented 43% carbohydrate (21% uronic acid and resulted in two main fractions after chromatography (FI: 12%, FII: 22% yield. FII showed better homogeneity/purity, content of 44% carbohydrate, including 39% uronic acid, arabinose and galactose as major monosaccharides, and infrared spectra with peaks in carbohydrate range for COO- groups of uronic acid. TPL-Xa (10 mg/kg and FII (0.1 and 1 mg/kg presented inhibitory effect in behavior tests that evaluate nociception induced by chemical and mechanical, but not thermal stimuli. TPL-Xa did not alter parameters of systemic toxicity. In conclusion, polysaccharides rich fractions of X. americana barks inhibit peripheral inflammatory nociception, being well tolerated by animals.

  7. Anticoagulant effects of inhaled unfractionated heparin in the dog as determined by partial thromboplastin time and factor Xa activity.

    Science.gov (United States)

    Manion, Jill S; Thomason, John M; Langston, Vernon C; Claude, Andrew K; Brooks, Marjory B; Mackin, Andrew J; Lunsford, Kari V

    2016-01-01

    To evaluate the anticoagulant effects of inhaled heparin in dogs. This study was conducted in 3 phases. In phase 1, bronchoalveolar lavage fluid (BALf) was collected to generate an in vitro calibration curve to relate heparin concentration to the activated partial thromboplastin time (aPTT). In phase 2, heparin was administered via nebulization to determine the threshold dose needed to prolong systemic aPTT. In phase 3, the local anticoagulant activity of inhaled heparin was determined by measurement of BALf anti-Xa activity and aPTT. University teaching hospital. Six healthy intact female Walker Hounds were used in this study. Two dogs were used for each phase. Inhaled unfractionated sodium heparin was administered in doses ranging from 50,000 to 200,000 IU. In vitro addition of heparin to BALf caused a prolongation in aPTT. Inhaled heparin at doses as high as 200,000 IU failed to prolong systemic aPTT, and a threshold dose could not be determined. No significant local anticoagulant effects were detected. Even at doses higher than those known to be effective in people, inhaled heparin appears to have no detectable local or systemic anticoagulant effects in dogs with the current delivery method. © Veterinary Emergency and Critical Care Society 2015.

  8. Inhibition of factor-dependent transcription termination in ...

    Indian Academy of Sciences (India)

    Inhibition of factor-dependent transcription termination in Escherichia coli might relieve xenogene silencing by abrogating. H-NS-DNA interactions in vivo. DEEPTI CHANDRAPRAKASH and ASWIN SAI NARAIN SESHASAYEE. Chromatin immunoprecipitation. MG1655 hns::3xFLAG cells were grown in liquid LB me-.

  9. Simukunin from the Salivary Glands of the Black Fly Simulium vittatum Inhibits Enzymes That Regulate Clotting and Inflammatory Responses

    Czech Academy of Sciences Publication Activity Database

    Tsujimoto, H.; Kotsyfakis, Michalis; Francischetti, I.M.B.; Eum, J. H.; Strand, M. R.; Champagne, D. E.

    2012-01-01

    Roč. 7, č. 2 (2012), e29964 E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z60220518 Keywords : Simulium vittatum * Kunitz-family protein * elastase * cathepsin G * Factor Xa * coagulation * inflammation * serine proteases * BPTI-like inhibitor * Simukunin Subject RIV: EC - Immunology Impact factor: 3.730, year: 2012

  10. Cysteine-dependent immune regulation by TRX and MIF/GIF family proteins.

    Science.gov (United States)

    Kondo, Norihiko; Ishii, Yasuyuki; Son, Aoi; Sakakura-Nishiyama, Junko; Kwon, Yong-Won; Tanito, Masaki; Nishinaka, Yumiko; Matsuo, Yoshiyuki; Nakayama, Toshinori; Taniguchi, Masaru; Yodoi, Junji

    2004-03-29

    Thioredoxin (TRX) superfamily proteins that contain a conserved redox-active site -Cys-Xa.a.-Xa.a.-Cys- includes proinflammatory cytokine, macrophage migration inhibiting factor (MIF) and the immune regulatory cytokine, glycosylation inhibiting factor (GIF) in which Cys-60 is cysteinylated. In this report, we have analyzed the functional interaction between TRX and MIF/GIF. The stable Jurkat T cell line transfected with human TRX gene (TRX-transfectant) was highly resistant to hydrogen peroxide-induced apoptosis, but not the cell line transfected with vector (mock-transfectant). The expression level of MIF/GIF protein of TRX-transfectant was lower than that of mock-transfectant. Conversely, the expression level of intracellular TRX protein in CD4(+)-T cells derived from MIF -/- mice were significantly higher than that from background BALB/c mice. These findings collectively suggest that oxidative stress-induced apoptosis on T lymphocytes might be protected by the reciprocal regulation of TRX and MIF/GIF expression.

  11. Assessment of Novel Anti-thrombotic Fusion Proteins for Inhibition of Stenosis in a Porcine Model of Arteriovenous Graft.

    Directory of Open Access Journals (Sweden)

    Christi M Terry

    Full Text Available Hemodialysis arteriovenous synthetic grafts (AVG provide high volumetric blood flow rates shortly after surgical placement. However, stenosis often develops at the vein-graft anastomosis contributing to thrombosis and early graft failure. Two novel fusion proteins, ANV-6L15 and TAP-ANV, inhibit the tissue factor/factor VIIa coagulation complex and the factor Xa/factor Va complex, respectively. Each inhibitor domain is fused to an annexin V domain that targets the inhibitor activity to sites of vascular injury to locally inhibit thrombosis. This study's objective was to determine if these antithrombotic proteins are safe and effective in inhibiting AVG stenosis.A bolus of either TAP-ANV or ANV-6L15 fusion protein was administered intravenously immediately prior to surgical placement of a synthetic graft between the external jugular vein and common carotid artery in a porcine model. At surgery, the vein and artery were irrigated with the anti-thrombotic fusion protein. Control animals received intravenous heparin. At 4 weeks, MRI was performed to evaluate graft patency, the pigs were then euthanized and grafts and attached vessels were explanted for histomorphometric assessment of neointimal hyperplasia at the vein-graft anastomosis. Blood was collected at surgery, immediately after surgery and at euthanasia for serum metabolic panels and coagulation chemistries.No acute thrombosis occurred in the control group or in either experimental group. No abnormal serum chemistries, activated clotting times or PT, PTT values were observed after treatment in experimental or control animals. However, at the vein-graft anastomosis, there was no difference between the control and experimental groups in cross-sectional lumen areas, as measured on MRI, and no difference in hyperplasia areas as determined by histomorphometry. These results suggest that local irrigation of TAP-ANV or ANV-6L15 intra-operatively was as effective in inhibiting acute graft thrombosis

  12. Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.

    Science.gov (United States)

    Selheim, F; Holmsen, H; Vassbotn, F S

    1999-08-15

    We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.

  13. Chlorpromazine inhibits tumour necrosis factor synthesis and cytotoxicity in vitro.

    Science.gov (United States)

    Zinetti, M; Galli, G; Demitri, M T; Fantuzzi, G; Minto, M; Ghezzi, P; Alzani, R; Cozzi, E; Fratelli, M

    1995-11-01

    Chlorpromazine (CPZ) has been previously shown to protect against endotoxin [lipopolysaccharide (LPS)] lethality and inhibit the release of tumour necrosis factor in vivo. We investigated at the cellular level whether this was due to direct inhibition of tumour necrosis factor-alpha (TNF-alpha) synthesis, using LPS-stimulated THP-1 human monocytic leukemia cells. We also studied the effect of CPZ on human TNF-alpha action by assessing TNF-alpha cytotoxicity on mouse fibrosarcoma L929 cells. CPZ (1-100 microM) inhibited TNF-alpha production in THP-1 cells in a dose dependent manner by a maximum of 80%. This effect was comparable to that of two well-known inhibitory drugs, dexamethasone and cyclicAMP. Inhibition was also evident at the mRNA level. On the other hand CPZ (10-25 microM) also inhibited TNF-alpha activity: in fact it reduced the cytotoxicity of TNF-alpha on L929 cells (EC50 was increased four times) and could provide protection even as a post-treatment. CPZ inhibited TNF-induced apoptosis in L929 cells, as detected by analysis of nuclear morphology. However, since we showed that apoptosis was very limited, and was not the main mode of cell death in our conditions, this could not explain the overall protection. Since CPZ did not interfere with either the oligomerization state of TNF-alpha or its receptor binding, our data suggest that it reduced cytotoxicity by inhibiting some steps in the TNF-alpha signalling pathways.

  14. Inhibition of placenta growth factor with TB-403

    DEFF Research Database (Denmark)

    Nielsen, Dorte Lisbet; Sengeløv, Lisa

    2012-01-01

    INTRODUCTION: There is clinical evidence that therapies targeting the vascular endothelial growth factor pathway are effective in delaying cancer progression. However, tumors may be either intrinsically resistant or evolve resistance to such therapies. Hence, there is a need for new therapies...... targeting angiogenesis. AREAS COVERED: The data are obtained by searching in the PubMed database. The search terms used included antiangiogenic therapy, TB-403 (RO5323441), placenta growth factor (PlGF) and VEGFR-1 (Flt-1). We review preclinical data concerning the function and inhibition of Pl......GF and summarize data on expression of PlGF in cancer patients. Data from early-phase clinical trials of TB-403 (RO5323441), a monoclonal antibody inhibiting PlGF, are discussed. Future development strategies, therapeutic potentials and limitations of TB-403 are further evaluated. EXPERT OPINION: There are some...

  15. Factor XI and XII as antithrombotic targets.

    Science.gov (United States)

    Müller, Felicitas; Gailani, David; Renné, Thomas

    2011-09-01

    Arterial and venous thrombosis are major causes of morbidity and mortality, and the incidence of thromboembolic diseases increases as a population ages. Thrombi are formed by activated platelets and fibrin. The latter is a product of the plasma coagulation system. Currently available anticoagulants such as heparins, vitamin K antagonists and inhibitors of thrombin or factor Xa target enzymes of the coagulation cascade that are critical for fibrin formation. However, fibrin is also necessary for terminating blood loss at sites of vascular injury. As a result, anticoagulants currently in clinical use increase the risk of bleeding, partially offsetting the benefits of reduced thrombosis. This review focuses on new targets for anticoagulation that are associated with minimal or no therapy-associated increased bleeding. Data from experimental models using mice and clinical studies of patients with hereditary deficiencies of coagulation factors XI or XII have shown that both of these clotting factors are important for thrombosis, while having minor or no apparent roles in processes that terminate blood loss (hemostasis). Hereditary deficiency of factor XII (Hageman factor) or factor XI, plasma proteases that initiate the intrinsic pathway of coagulation, impairs thrombus formation and provides protection from vascular occlusive events, while having a minimal impact on hemostasis. As the factor XII-factor XI pathway contributes to thrombus formation to a greater extent than to normal hemostasis, pharmacological inhibition of these coagulation factors may offer the exciting possibility of anticoagulation therapies with minimal or no bleeding risk.

  16. Inhibitory Effect of Triterpenoids from Panax ginseng on Coagulation Factor X

    Directory of Open Access Journals (Sweden)

    Lingxin Xiong

    2017-04-01

    Full Text Available Enzymes involved in the coagulation process have received great attention as potential targets for the development of oral anti-coagulants. Among these enzymes, coagulation factor Xa (FXa has remained the center of attention in the last decade. In this study, 16 ginsenosides and two sapogenins were isolated, identified and quantified. To determine the inhibitory potential on FXa, the chromogenic substrates method was used. The assay suggested that compounds 5, 13 and 18 were mainly responsible for the anti-coagulant effect. Furthermore, these three compounds also possessed high thrombin selectivity in the thrombin inhibition assay. Furthermore, Glide XP from Schrödinger was employed for molecular docking to clarify the interaction between the bioactive compounds and FXa. Therefore, the chemical and biological results indicate that compounds 5 (ginsenoside Rg2, 13 (ginsenoside Rg3 and 18 (protopanaxtriol, PPT are potential natural inhibitors against FXa.

  17. Monitoring low molecular weight heparins at therapeutic levels: dose-responses of, and correlations and differences between aPTT, anti-factor Xa and thrombin generation assays.

    Directory of Open Access Journals (Sweden)

    Owain Thomas

    Full Text Available Low molecular weight heparins (LMWH's are used to prevent and treat thrombosis. Tests for monitoring LMWH's include anti-factor Xa (anti-FXa, activated partial thromboplastin time (aPTT and thrombin generation. Anti-FXa is the current gold standard despite LMWH's varying affinities for FXa and thrombin.To examine the effects of two different LMWH's on the results of 4 different aPTT-tests, anti-FXa activity and thrombin generation and to assess the tests' concordance.Enoxaparin and tinzaparin were added ex-vivo in concentrations of 0.0, 0.5, 1.0 and 1.5 anti-FXa international units (IU/mL, to blood from 10 volunteers. aPTT was measured using two whole blood methods (Free oscillation rheometry (FOR and Hemochron Jr (HCJ and an optical plasma method using two different reagents (ActinFSL and PTT-Automat. Anti-FXa activity was quantified using a chromogenic assay. Thrombin generation (Endogenous Thrombin Potential, ETP was measured on a Ceveron Alpha instrument using the TGA RB and more tissue-factor rich TGA RC reagents.Methods' mean aPTT at 1.0 IU/mL LMWH varied between 54s (SD 11 and 69s (SD 14 for enoxaparin and between 101s (SD 21 and 140s (SD 28 for tinzaparin. ActinFSL gave significantly shorter aPTT results. aPTT and anti-FXa generally correlated well. ETP as measured with the TGA RC reagent but not the TGA RB reagent showed an inverse exponential relationship to the concentration of LMWH. The HCJ-aPTT results had the weakest correlation to anti-FXa and thrombin generation (Rs0.62-0.87, whereas the other aPTT methods had similar correlation coefficients (Rs0.80-0.92.aPTT displays a linear dose-response to LMWH. There is variation between aPTT assays. Tinzaparin increases aPTT and decreases thrombin generation more than enoxaparin at any given level of anti-FXa activity, casting doubt on anti-FXa's present gold standard status. Thrombin generation with tissue factor-rich activator is a promising method for monitoring LMWH's.

  18. Evaluation of factors inhibiting effective performance of primary ...

    African Journals Online (AJOL)

    Therefore, the following are the factors that are inhibiting the productivity of the primary school teachers in Oyo state, Nigeria, viz: lack of motivation on the ... Headmasters or the local government education area officers in cash or kind and illegal deduction from primary school teacher's salary on the account of bank charges.

  19. MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis

    International Nuclear Information System (INIS)

    Guo, Li-Juan; Liao, Lan; Yang, Li; Li, Yu; Jiang, Tie-Jian

    2014-01-01

    MicroRNAs (miRNAs) play important roles in osteoclastogenesis and bone resorption. In the present study, we found that miR-125a was dramatically down-regulated during macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclastogenesis of circulating CD14+ peripheral blood mononuclear cells (PBMCs). Overexpression of miR-125a in CD14+ PBMCs inhibited osteoclastogenesis, while inhibition of miR-125a promoted osteoclastogenesis. TNF receptor-associated factor 6 (TRAF6), a transduction factor for RANKL/RANK/NFATc1 signal, was confirmed to be a target of miR-125a. EMSA and ChIP assays confirmed that NFATc1 bound to the promoter of the miR-125a. Overexpression of NFATc1 inhibited miR-125a transcription, and block of NFATc1 expression attenuated RANKL-regulated miR-125a transcription. Here, we reported that miR-125a played a biological function in osteoclastogenesis through a novel TRAF6/ NFATc1/miR-125a regulatory feedback loop. It suggests that regulation of miR-125a expression may be a potential strategy for ameliorating metabolic disease. - Highlights: • MiR-125a was significantly down-regulated in osteoclastogenesis of CD14+ PBMCs. • MiR-125a inhibited osteoclast differentiation by targeting TRAF6. • NFATc1 inhibited miR-125a transciption by binding to the promoter of miR-125a. • TRAF6/NFATc1 and miR-125a form a regulatory feedback loop in osteoclastogenesis

  20. Facilitating and inhibiting factors related to treatment adherence in women with polycystic ovary syndrome: A qualitative study

    Directory of Open Access Journals (Sweden)

    Fatemeh Bazarganipour

    2017-09-01

    Full Text Available Background: Adherence issues in polycystic ovary syndrome (PCOS patients have not been examined thoroughly. Patients report prolonged periods of treatment and side effects of the drug as the most common reason for withdrawal from treatment. To improve the effective management of PCOS patients, it is fundamental to understand facilitating and inhibiting factors to treatment adherence. Objective: To explore facilitating/inhibiting factors related to treatment adherence among PCOS patients. Materials and Methods: This was a qualitative study with a purposive sample of women with confirmed diagnosis of PCOS. The data were collected via 20 in-depth semi-structured interviews with women aged between 21-34 yr. A qualitative content analysis was used to analyze the data. Results: Five themes were identified which described different types of facilitating/ inhibiting factors to treatment adherence. Inhibiting factors included financial issues, patient-related, disease-related, and health care provider-related factors; while social factors were found to be both facilitating and inhibiting. Conclusion: The findings suggest that successful adherence to PCOS treatment is highly dependent on patients recognizing and adapting to financial, social, and health care related inhibiting factors. It is also crucial for clinicians and policy makers to recognize these key inhibiting factors in order to improve treatment outcomes.

  1. Análise e identificação das antocianinas de couve rôxa (Brassica spp.)

    OpenAIRE

    Lopes, Dulce; Jesus, Benvinda; Cabrita, Luís

    2004-01-01

    A couve rôxa é uma espécie comestível com uma composição em antocianinas rica e complexa. Sabe-se que contem antocianinas poliglicosiladas, aciladas com um ou mesmo dois grupos acilo aromáticos, nomeadamente com ácidos coumárico e caféico. Este padrão de acilação é particularmente interessante, porque confere estabilidade às antocianinas e aumenta o seu potencial de utilização em aplicações famacêuticas, alimentares e cosméticas. Este estudo tem por objectivo determinar a...

  2. Home treatment of patients with low-risk pulmonary embolism with the oral factor Xa inhibitor rivaroxaban. Rationale and design of the HoT-PE Trial.

    Science.gov (United States)

    Barco, Stefano; Lankeit, Mareike; Binder, Harald; Schellong, Sebastian; Christ, Michael; Beyer-Westendorf, Jan; Duerschmied, Daniel; Bauersachs, Rupert; Empen, Klaus; Held, Matthias; Schwaiblmair, Martin; Fonseca, Cândida; Jiménez, David; Becattini, Cecilia; Quitzau, Kurt; Konstantinides, Stavros

    2016-07-04

    Pulmonary embolism (PE) is a potentially life-threatening acute cardiovascular syndrome. However, more than 95 % of patients are haemodynamically stable at presentation, and among them are patients at truly low risk who may qualify for immediate or early discharge. The Home Treatment of Pulmonary Embolism (HoT-PE) study is a prospective international multicentre single-arm phase 4 management (cohort) trial aiming to determine whether home treatment of acute low-risk PE with the oral factor Xa inhibitor rivaroxaban is feasible, effective, and safe. Patients with confirmed PE, who have no right ventricular dysfunction or free floating thrombi in the right atrium or ventricle, are eligible if they meet none of the exclusion criteria indicating haemodynamic instability, serious comorbidity or any condition mandating hospitalisation, or a familial/social environment unable to support home treatment. The first dose of rivaroxaban is given in hospital, and patients are discharged within 48 hours of presentation. Rivaroxaban is taken for at least three months. The primary outcome is symptomatic recurrent venous thromboembolism or PE-related death within three months of enrolment. Secondary outcomes include quality of life and patient satisfaction, and health care resource utilisation compared to existing data on standard-duration hospital treatment. HoT-PE is planned to analyse 1,050 enrolled patients, providing 80 % power to reject the null hypothesis that the recurrence rate of venous thromboembolism is >3 % with α≤0.05. If the hypothesis of HoT-PE is confirmed, early discharge and out-of-hospital treatment may become an attractive, potentially cost-saving option for a significant proportion of patients with acute PE.

  3. Catabolic factors and osteoarthritis-conditioned medium inhibit chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Heldens, Genoveva T H; Blaney Davidson, Esmeralda N; Vitters, Elly L; Schreurs, B Willem; Piek, Ester; van den Berg, Wim B; van der Kraan, Peter M

    2012-01-01

    Articular cartilage has a very limited intrinsic repair capacity leading to progressive joint damage. Therapies involving tissue engineering depend on chondrogenic differentiation of progenitor cells. This chondrogenic differentiation will have to survive in a diseased joint. We postulate that catabolic factors in this environment inhibit chondrogenesis of progenitor cells. We investigated the effect of a catabolic environment on chondrogenesis in pellet cultures of human mesenchymal stem cells (hMSCs). We exposed chondrogenically differentiated hMSC pellets, to interleukin (IL)-1α, tumor necrosis factor (TNF)-α or conditioned medium derived from osteoarthritic synovium (CM-OAS). IL-1α and TNF-α in CM-OAS were blocked with IL-1Ra or Enbrel, respectively. Chondrogenesis was determined by chondrogenic markers collagen type II, aggrecan, and the hypertrophy marker collagen type X on mRNA. Proteoglycan deposition was analyzed by safranin o staining on histology. IL-1α and TNF-α dose-dependently inhibited chondrogenesis when added at onset or during progression of differentiation, IL-1α being more potent than TNF-α. CM-OAS inhibited chondrogenesis on mRNA and protein level but varied in extent between patients. Inhibition of IL-1α partially overcame the inhibitory effect of the CM-OAS on chondrogenesis whereas the TNF-α contribution was negligible. We show that hMSC chondrogenesis is blocked by either IL-1α or TNF-α alone, but that there are additional factors present in CM-OAS that contribute to inhibition of chondrogenesis, demonstrating that catabolic factors present in OA joints inhibit chondrogenesis, thereby impairing successful tissue engineering.

  4. Sexual Inhibition is a Vulnerability Factor for Orgasm Problems in Women.

    Science.gov (United States)

    Tavares, Inês M; Laan, Ellen T M; Nobre, Pedro J

    2018-03-01

    The differential role of psychological traits in the etiology and maintenance of female orgasm difficulties is yet to be consistently established. To investigate the contribution of different psychological trait features (personality, sexual inhibition and excitation, and sexual beliefs) to predict female orgasm and to assess the degree to which these dispositional factors moderate the association between sexual activity and orgasm occurrence in a large community sample of Portuguese women. 1,002 women (18-72 years, mean age = 26.27, SD = 8.74) completed questionnaires assessing personality traits (NEO-Five Factor Inventory), sexual inhibition and sexual excitation (Sexual Inhibition/Sexual Excitation Scales-Short Form [SIS/SES]), sexual beliefs (Sexual Dysfunctional Beliefs Questionnaire), sexual behavior (frequency of sexual activities and frequency of orgasm occurrence), and social desirability (Socially Desirable Response Set). Hierarchical multiple regression and moderation analyses were conducted while controlling for the effect of covariates such as social desirability, sociodemographic and medical characteristics, and relationship factors. The main outcome measurement was orgasm frequency as predicted and moderated by personality, SIS/SES dimensions, and sexual beliefs. Results of the hierarchical multiple regression analysis indicated a significant predictive role for sexual inhibition (associated with fear of performance failure [SIS1] and related to the threat of performance consequences) and body image beliefs in female orgasm occurrence. The significant predictive effect of extraversion and of sexual excitation on orgasm frequency ceased to be significant with the insertion of all trait predictors in the final model. Furthermore, SIS1 significantly moderated the relation between sexual activity and orgasm occurrence. Attention should be given to individual factors impairing orgasmic response in women, particularly sexual inhibition processes. The

  5. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    Science.gov (United States)

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  6. Determination of enoxaparin with rotational thrombelastometry using the prothrombinase-induced clotting time reagent.

    Science.gov (United States)

    Schaden, Eva; Schober, Andreas; Hacker, Stefan; Spiss, Christian; Chiari, Astrid; Kozek-Langenecker, Sibylle

    2010-04-01

    Drug monitoring of low molecular weight heparin is generally not recommended, but could be reasonable in critically ill patients, whose risk for bleeding or thrombosis shows a high interpatient variability. Anti-Xa assays are not available around the clock even in central hospitals, whereas rotational thrombelastometry (ROTEM) becomes increasingly used at the bedside. Prothrombinase-induced clotting time (PiCT) reagent allows determination of factor Xa-inhibition in plasma. The aim of our study was to evaluate enoxaparin determination in whole blood with the ROTEM using specific test modifications, including PiCT. After ethics committee's approval, citrated whole blood obtained from overall 16 healthy volunteers was incubated with enoxaparin at 16 different anti-Xa concentrations. Main endpoint was the clotting time (CT) in ROTEM representing initial activation of clot formation. CT was determined in the new PiCT-ROTEM test, in a low-tissue factor-activated modification (LowTF-ROTEM) as well as in the commercially available heparin-sensitive ROTEM assays (HEPTEM and INTEM). In the absence of enoxaparin, CT values were 168.6 +/- 6.1 s (PiCT-ROTEM), 247.3 +/- 18.6 s (LowTF-ROTEM), and -6.2 +/- 7.9 s (INTEM-HEPTEM). A linear dependency (P anti-Xa concentration and CT was found for PiCT-ROTEM, LowTF-ROTEM, and for INTEM-HEPTEM with correlation coefficients of 0.93 for PiCT-ROTEM, 0.94 for LowTF-ROTEM, and 0.81 for INTEM-HEPTEM. This in-vitro experiment demonstrates a strong correlation between enoxaparin anti-Xa concentrations and specific ROTEM tests. These promising assays should be further evaluated for monitoring anticoagulation in high-risk patients in clinical studies.

  7. Development of Coagulation Factor Probes for the Identification of Procoagulant Circulating Tumor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Tormoen, Garth W.; Cianchetti, Flor A. [Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR (United States); Bock, Paul E. [Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN (United States); McCarty, Owen J. T., E-mail: tormoeng@ohsu.edu [Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR (United States); Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR (United States); Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health and Science University, Portland, OR (United States)

    2012-09-06

    Metastatic cancer is associated with a hypercoagulable state, and pathological venous thromboembolic disease is a significant source of morbidity and the second leading cause of death in patients with cancer. Here we aimed to develop a novel labeling strategy to detect and quantify procoagulant circulating tumor cells (CTCs) from patients with metastatic cancer. We hypothesize that the enumeration of procoagulant CTCs may be prognostic for the development of venous thrombosis in patients with cancer. Our approach is based on the observation that cancer cells are capable of initiating and facilitating cell-mediated coagulation in vitro, whereby activated coagulation factor complexes assemble upon cancer cell membrane surfaces. Binding of fluorescently labeled, active site-inhibited coagulation factors VIIa, Xa, and IIa to the metastatic breast cancer cell line, MDA-MB-231, non-metastatic colorectal cell line, SW480, or metastatic colorectal cell line, SW620, was characterized in a purified system, in anticoagulated blood and plasma, and in plasma under conditions of coagulation. We conclude that a CTC labeling strategy that utilizes coagulation factor-based fluorescent probes may provide a functional assessment of the procoagulant potential of CTCs, and that this strategy is amenable to current CTC detection platforms.

  8. O-GlcNAc inhibits interaction between Sp1 and Elf-1 transcription factors

    International Nuclear Information System (INIS)

    Lim, Kihong; Chang, Hyo-Ihl

    2009-01-01

    The novel protein modification, O-linked N-acetylglucosamine (O-GlcNAc), plays an important role in various aspects of cell regulation. Although most of nuclear transcription regulatory factors are modified by O-GlcNAc, O-GlcNAc effects on transcription remain largely undefined yet. In this study, we show that O-GlcNAc inhibits a physical interaction between Sp1 and Elf-1 transcription factors, and negatively regulates transcription of placenta and embryonic expression oncofetal protein gene (Pem). These findings suggest that O-GlcNAc inhibits Sp1-mediated gene transcription possibly by interrupting Sp1 interaction with its cooperative factor.

  9. Potent inhibition of tumoral hypoxia-inducible factor 1α by albendazole

    International Nuclear Information System (INIS)

    Pourgholami, Mohammad H; Cai, Zhao Y; Badar, Samina; Wangoo, Kiran; Poruchynsky, Marianne S; Morris, David L

    2010-01-01

    Emerging reports suggest resistance, increased tumor invasiveness and metastasis arising from treatment with drugs targeting vascular endothelial growth factor (VEGF). It is believed that increased tumoral hypoxia plays a prominent role in the development of these phenomena. Inhibition of tumoral hypoxia inducible factor (HIF-1α) is thus becoming an increasingly attractive therapeutic target in the treatment of cancer. We hypothesized that the anti-VEGF effect of albendazole (ABZ) could be mediated through inhibition of tumoral HIF-1α. In vitro, the effects of ABZ on HIF-1α levels in human ovarian cancer cells (OVCAR-3) were investigated using hypoxic chamber or desferrioxamine (DFO) induced-hypoxia. In vivo, the effects of ABZ (150 mg/kg, i.p., single dose) on the tumor levels of HIF-1α and VEGF protein and mRNA were investigated by western blotting, RT-PCR and real time-PCR. In vitro, ABZ inhibited cellular HIF-1α protein accumulation resulting from placement of cells under hypoxic chamber or exposure to DFO. In vivo, tumors excised from vehicle treated mice showed high levels of both HIF-1α and VEGF. Whereas, tumoral HIF-1α and VEGF protein levels were highly suppressed in ABZ treated mice. Tumoral VEGFmRNA (but not HIF-1αmRNA) was also found to be highly suppressed by ABZ. These results demonstrate for the first time the effects of an acute dose of ABZ in profoundly suppressing both HIF-1α and VEGF within the tumor. This dual inhibition may provide additional value in inhibiting angiogenesis and be at least partially effective in inhibiting tumoral HIF-1α surge, tumor invasiveness and metastasis

  10. Specific inhibition of hypoxia-inducible factor (HIF)-1 alpha activation and of vascular endothelial growth factor (VEGF) production by flavonoids.

    Science.gov (United States)

    Hasebe, Yuki; Egawa, Kiyoshi; Yamazaki, Yoko; Kunimoto, Setsuko; Hirai, Yasuaki; Ida, Yoshiteru; Nose, Kiyoshi

    2003-10-01

    Screening using a reporter under the control of the hypoxia-response element (HRE) identified several flavonoids and homoisoflavonoids that inhibit the activation of HRE under hypoxic conditions. Among various compounds, isorhamnetin, luteolin, quercetin, and methyl ophiopogonanone B (MOB) were effective at 3 to 9 microg/ml in inhibiting the reporter activity. The expression of vascular endothelial growth factor (VEGF) mRNA during hypoxia was also inhibited by MOB in HepG2 cells, but the effective doses were 10 to 20 microg/ml. MOB caused destabilization of hypoxia-inducible factor (HIF)-1alpha, as revealed by Western blotting, that was dependent on proteasome activity and the tumor suppressor, p53. The tubular formation and migration of human umbilical vein endothelial cells was also inhibited by MOB. MOB is expected to act as an inhibitor of angiogenesis.

  11. Tumor necrosis factor-alpha inhibits differentiation of myogenic cells in human urethral rhabdosphincter.

    Science.gov (United States)

    Shinohara, Mayuka; Sumino, Yasuhiro; Sato, Fuminori; Kiyono, Tohru; Hashimoto, Naohiro; Mimata, Hiromitsu

    2017-06-01

    To examine the inhibitory effects of tumor necrosis factor-α on myogenic differentiation of human urethral rhabdosphincter cells. A rhabdosphincter sample was obtained from a patient who underwent total cystectomy. To expand the lifespan of the primary cultured cells, rhabdosphincter myogenic cells were immortalized with mutated cyclin-dependent kinase 4, cyclin D1 and telomerase. The differential potential of the cells was investigated. The transfected human rhabdosphincter cells were induced for myogenic differentiation with recombinant human tumor necrosis factor-α and/or the tumor necrosis factor-α antagonist etanercept at different concentrations, and activation of signaling pathways was monitored. Human rhabdosphincter cells were selectively cultured for at least 40 passages. Molecular analysis confirmed the expression of myosin heavy chain, which is a specific marker of differentiated muscle cells, significantly increased after differentiation induction. Although tumor necrosis factor-α treatment reduced the myosin heavy chain expression in a concentration-dependent manner, etanercept inhibited this suppression. Tumor necrosis factor-α suppressed phosphorylation of protein kinase B and p38, whereas etanercept pretreatment promoted phosphorylation and myosin heavy chain expression in a concentration-dependent manner. Tumor necrosis factorinhibits differentiation of urethral rhabdosphincter cells in part through the p38 mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. Inhibition of tumor necrosis factor-α might be a useful strategy to treat stress urinary incontinence. © 2017 The Japanese Urological Association.

  12. Evidence for a saturable mechanism of disappearance of standard heparin in rabbits

    International Nuclear Information System (INIS)

    Boneu, B.; Caranobe, C.; Gabaig, A.M.; Dupouy, D.; Sie, P.; Buchanan, M.R.; Hirsh, J.

    1987-01-01

    This work demonstrates that after bolus intravenous injection standard heparin (SH) disappearance results from the combination of a saturable and a non saturable mechanism. Pharmacokinetics and pharmacodynamics of SH were studied by measuring the disappearance of increasing doses (5 - 500 anti-factor Xa U/kg) of 125 I-heparin and of its biological effects. CPM curves allowed the determination of the half lives of heparin according to the dose injected. The half lives were clearly dose dependent and reached a plateau over 100 anti-factor Xa U/kg. The complex curve which describes the amount of heparin cleared per time unit after any given dose has been resolved into its two components reflecting a saturable and a non saturable mechanism of disappearance. For the doses less than 100 anti-factor Xa U/kg the saturable mechanism was preeminent and the anti-factor Xa activity disappearance followed an exponential pattern; for the doses less than 100 anti-factor Xa U/kg the contribution of the non saturable mechanism becomes more important and the anti-factor Xa activity disappearance followed a concave-convex pattern. Further experiments showed that the heparin half life shortened as the circulating anti-factor Xa activity decreased; this phenomenon may explain the concave-convex pattern of the curve of the anticoagulant effect observed after injection of large doses of SH

  13. The role of factor inhibiting HIF (FIH-1 in inhibiting HIF-1 transcriptional activity in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Enfeng Wang

    Full Text Available Glioblastoma multiforme (GBM accounts for about 38% of primary brain tumors in the United States. GBM is characterized by extensive angiogenesis induced by vascular growth factors and cytokines. The transcription of these growth factors and cytokines is regulated by the Hypoxia-Inducible-Factor-1(HIF-1, which is a key regulator mediating the cellular response to hypoxia. It is known that Factor Inhibiting HIF-1, or FIH-1, is also involved in the cellular response to hypoxia and has the capability to physically interact with HIF-1 and block its transcriptional activity under normoxic conditions. Delineation of the regulatory role of FIH-1 will help us to better understand the molecular mechanism responsible for tumor growth and progression and may lead to the design of new therapies targeting cellular pathways in response to hypoxia. Previous studies have shown that the chromosomal region of 10q24 containing the FIH-1 gene is often deleted in GBM, suggesting a role for the FIH-1 in GBM tumorigenesis and progression. In the current study, we found that FIH-1 is able to inhibit HIF-mediated transcription of GLUT1 and VEGF-A, even under hypoxic conditions in human glioblastoma cells. FIH-1 has been found to be more potent in inhibiting HIF function than PTEN. This observation points to the possibility that deletion of 10q23-24 and loss or decreased expression of FIH-1 gene may lead to a constitutive activation of HIF-1 activity, an alteration of HIF-1 targets such as GLUT-1 and VEGF-A, and may contribute to the survival of cancer cells in hypoxia and the development of hypervascularization observed in GBM. Therefore FIH-1 can be potential therapeutic target for the treatment of GBM patients with poor prognosis.

  14. Process factors facilitating and inhibiting medical ethics teaching in small groups.

    Science.gov (United States)

    Bentwich, Miriam Ethel; Bokek-Cohen, Ya'arit

    2017-11-01

    To examine process factors that either facilitate or inhibit learning medical ethics during case-based learning. A qualitative research approach using microanalysis of transcribed videotaped discussions of three consecutive small-group learning (SGL) sessions on medical ethics teaching (MET) for three groups, each with 10 students. This research effort revealed 12 themes of learning strategies, divided into 6 coping and 6 evasive strategies. Cognitive-based strategies were found to relate to Kamin's model of critical thinking in medical education, thereby supporting our distinction between the themes of coping and evasive strategies. The findings also showed that cognitive efforts as well as emotional strategies are involved in discussions of ethical dilemmas. Based on Kamin's model and the constructivist learning theory, an examination of the different themes within the two learning strategies-coping and evasive-revealed that these strategies may be understood as corresponding to process factors either facilitating or inhibiting MET in SGL, respectively. Our classification offers a more nuanced observation, specifically geared to pinpointing the desired and less desired process factors in the learning involved in MET in the SGL environment. Two key advantages of this observation are: (1) it brings to the forefront process factors that may inhibit and not merely facilitate MET in SGL and (2) it acknowledges the existence of emotional and not just cognitive process factors. Further enhancement of MET in SGL may thus be achieved based on these observations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. The M358R variant of α_1-proteinase inhibitor inhibits coagulation factor VIIa

    International Nuclear Information System (INIS)

    Sheffield, William P.; Bhakta, Varsha

    2016-01-01

    The naturally occurring M358R mutation of the plasma serpin α_1-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg–Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg–Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10"2 M"−"1sec"−"1. We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin. - Highlights: • The inhibitory specificity of the serpin alpha-1-proteinase inhibitor (API) is sharply altered in the M358R variant. • API M358R forms denaturation-resistant complexes with coagulation factor VIIa at a rate accelerated by tissue factor but unaffected by heparin. • Complex formation was shown by gel-based assays and quantified kinetically by inhibition of FVIIa-dependent amidolysis.

  16. Thrombin induces epithelial-mesenchymal transition and collagen production by retinal pigment epithelial cells via autocrine PDGF-receptor signaling.

    Science.gov (United States)

    Bastiaans, Jeroen; van Meurs, Jan C; van Holten-Neelen, Conny; Nagtzaam, Nicole M A; van Hagen, P Martin; Chambers, Rachel C; Hooijkaas, Herbert; Dik, Willem A

    2013-12-19

    De-differentiation of RPE cells into mesenchymal cells (epithelial-mesenchymal transition; EMT) and associated collagen production contributes to development of proliferative vitreoretinopathy (PVR). In patients with PVR, intraocular coagulation cascade activation occurs and may play an important initiating role. Therefore, we examined the effect of the coagulation proteins factor Xa and thrombin on EMT and collagen production by RPE cells. Retinal pigment epithelial cells were stimulated with factor Xa or thrombin and the effect on zonula occludens (ZO)-1, α-smooth muscle actin (α-SMA), collagen, and platelet-derived growth factor (PDGF)-B were determined by real-time quantitative-polymerase chain reaction (RQ-PCR), immunofluorescence microscopy, and HPLC and ELISA for collagen and PDGF-BB in culture supernatants, respectively. PDGF-receptor activation was determined by phosphorylation analysis and inhibition studies using the PDGF-receptor tyrosine kinase inhibitor AG1296. Thrombin reduced ZO-1 gene expression (P production of α-SMA and collagen increased. In contrast to thrombin, factor Xa hardly stimulated EMT by RPE. Thrombin clearly induced PDGF-BB production and PDGF-Rβ chain phosphorylation in RPE. Moreover, AG1296 significantly blocked the effect of thrombin on EMT and collagen production. Our findings demonstrate that thrombin is a potent inducer of EMT by RPE via autocrine activation of PDGF-receptor signaling. Coagulation cascade-induced EMT of RPE may thus contribute to the formation of fibrotic retinal membranes in PVR and should be considered as treatment target in PVR.

  17. Synthesis and characterization of 18F-labeled active site inhibited factor VII (ASIS)

    DEFF Research Database (Denmark)

    Erlandsson, Maria; Nielsen, Carsten Haagen; Jeppesen, Troels Elmer

    2015-01-01

    Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example......, thrombosis, metastasis, tumor growth, and tumor angiogenesis. The aim of this study was to develop an 18F-labeled ASIS derivative to assess TF expression in tumors. Active site inhibited factor VII was labeled using N-succinimidyl-4-[18F]fluorobenzoate, and the [18F]ASIS was purified on a PD-10 desalting...... column. The radiochemical yield was 25 ± 6%, the radiochemical purity was >97%, and the pseudospecific radioactivity was 35 ± 9 GBq/µmol. The binding efficacy was evaluated in pull-down experiments, which monitored the binding of unlabeled ASIS and [18F]ASIS to TF and to a specific anti-factor VII...

  18. Allosuppressor T lymphocytes abolish migration inhibition factor production in autoimmune thyroid disease: evidence from radiosensitivity experiments

    International Nuclear Information System (INIS)

    Topliss, D.J.; Okita, N.; Lewis, M.; Row, V.V.; Volpe, R.

    1981-01-01

    The ability of normal T lymphocytes to abolish the production of migration inhibition factor by antigen-sensitized T lymphocytes of Graves' disease (GD) and Hashimoto's thyroiditis (HT) in response to thyroid antigen has been studied by a modified migration inhibition factor test using isolated T lymphocytes alone. The production of migration inhibition factor was consistently abolished when normal T lymphocytes were mixed with GD or HT T lymphocytes in various ratios (1:9, 2:8, 5:5) as reported previously (Okita et al., 1980b). However, prior in-vitro irradiation (1000 rad) of the normal T lymphocytes resulted in loss of their ability to abolish migration inhibition factor production by the antigen-sensitized T lymphocytes of GD and HT. The effect is consistent with the radiosensitivity of suppressor T lymphocytes and indicates that the effect of normal T lymphocytes on GD and HT T lymphocytes is one of allosuppression. The results support the view that there is a defect in suppressor T cell function in GD and HT. (author)

  19. Mechanisms of inhibition of zinc-finger transcription factors by selenium compounds ebselen and selenite.

    Science.gov (United States)

    Larabee, Jason L; Hocker, James R; Hanas, Jay S

    2009-03-01

    The anti-inflammatory selenium compounds, ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one) and selenite, were found to alter the DNA binding mechanisms and structures of cysteine-rich zinc-finger transcription factors. As assayed by DNase I protection, DNA binding by TFIIIA (transcription factor IIIA, prototypical Cys(2)His(2) zinc finger protein), was inhibited by micromolar amounts of ebselen. In a gel shift assay, ebselen inhibited the Cys(2)His(2) zinc finger-containing DNA binding domain (DBD) of the NF-kappaB mediated transcription factor Sp1. Ebselen also inhibited DNA binding by the p50 subunit of the pro-inflammatory Cys-containing NF-kappaB transcription factor. Electrospray ionization mass spectrometry (ESI-MS) was utilized to elucidate mechanisms of chemical interaction between ebselen and a zinc-bound Cys(2)His(2) zinc finger polypeptide modeled after the third finger of Sp1 (Sp1-3). Exposing Sp1-3 to micromolar amounts of ebselen resulted in Zn(2+) release from this peptide and the formation of a disulfide bond by oxidation of zinc finger SH groups, the likely mechanism for DNA binding inhibition. Selenite was shown by ESI-MS to also eject zinc from Sp1-3 as well as induce disulfide bond formation through SH oxidation. The selenite-dependent inhibition/oxidation mechanism differed from that of ebselen by inducing the formation of a stable selenotrisulfide bond. Selenite-induced selenotrisulfide formation was dependent upon the structure of the Cys(2)His(2) zinc finger as alteration in the finger structure enhanced this reaction as well as selenite-dependent zinc release. Ebselen and selenite-dependent inhibition/oxidation of Cys-rich zinc finger proteins, with concomitant release of zinc and finger structural changes, points to mechanisms at the atomic and protein level for selenium-induced alterations in Cys-rich proteins, and possible amelioration of certain inflammatory, neurodegenerative, and oncogenic responses.

  20. Histones Differentially Modulate the Anticoagulant and Profibrinolytic Activities of Heparin, Heparin Derivatives, and Dabigatran.

    Science.gov (United States)

    Ammollo, Concetta Tiziana; Semeraro, Nicola; Carratù, Maria Rosaria; Colucci, Mario; Semeraro, Fabrizio

    2016-02-01

    The antithrombin activity of unfractionated heparin (UFH) is offset by extracellular histones, which, along with DNA, represent a novel mediator of thrombosis and a structural component of thrombi. Here, we systematically evaluated the effect of histones, DNA, and histone-DNA complexes on the anticoagulant and profibrinolytic activities of UFH, its derivatives enoxaparin and fondaparinux, and the direct thrombin inhibitor dabigatran. Thrombin generation was assessed by calibrated automated thrombinography, inhibition of factor Xa and thrombin by synthetic substrates, tissue plasminogen activator-mediated clot lysis by turbidimetry, and thrombin-activatable fibrinolysis inhibitor (TAFI) activation by a functional assay. Histones alone delayed coagulation and slightly stimulated fibrinolysis. The anticoagulant activity of UFH and enoxaparin was markedly inhibited by histones, whereas that of fondaparinux was enhanced. Histones neutralized both the anti-Xa and anti-IIa activities of UFH and preferentially blocked the anti-IIa activity of enoxaparin. The anti-Xa activity of fondaparinux was not influenced by histones when analyzed by chromogenic substrates, but was potentiated in a plasma prothrombinase assay. Histones inhibited the profibrinolytic activity of UFH and enoxaparin and enhanced that of fondaparinux by acting on the modulation of TAFI activation by anticoagulants. Histone H1 was mainly responsible for these effects. Histone-DNA complexes, as well as intact neutrophil extracellular traps, impaired the activities of UFH, enoxaparin, and fondaparinux. Dabigatran was not noticeably affected by histones and/or DNA, whatever the assay performed. In conclusion, histones and DNA present in the forming clot may variably influence the antithrombotic activities of anticoagulants, suggesting a potential therapeutic advantage of dabigatran and fondaparinux over heparins. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  1. The M358R variant of α{sub 1}-proteinase inhibitor inhibits coagulation factor VIIa

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, William P., E-mail: sheffiel@mcmaster.ca [Canadian Blood Services, Centre for Innovation, Hamilton, Ontario (Canada); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario (Canada); Bhakta, Varsha [Canadian Blood Services, Centre for Innovation, Hamilton, Ontario (Canada)

    2016-02-12

    The naturally occurring M358R mutation of the plasma serpin α{sub 1}-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg–Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg–Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10{sup 2} M{sup −1}sec{sup −1}. We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin. - Highlights: • The inhibitory specificity of the serpin alpha-1-proteinase inhibitor (API) is sharply altered in the M358R variant. • API M358R forms denaturation-resistant complexes with coagulation factor VIIa at a rate accelerated by tissue factor but unaffected by heparin. • Complex formation was shown by gel-based assays and quantified kinetically by inhibition of FVIIa-dependent amidolysis.

  2. Two acidic, anticoagulant PLA2 isoenzymes purified from the venom of monocled cobra Naja kaouthia exhibit different potency to inhibit thrombin and factor Xa via phospholipids independent, non-enzymatic mechanism.

    Directory of Open Access Journals (Sweden)

    Ashis K Mukherjee

    Full Text Available The monocled cobra (Naja kaouthia is responsible for snakebite fatality in Indian subcontinent and in south-western China. Phospholipase A2 (PLA2; EC 3.1.1.4 is one of the toxic components of snake venom. The present study explores the mechanism and rationale(s for the differences in anticoagulant potency of two acidic PLA2 isoenzymes, Nk-PLA2α (13463.91 Da and Nk-PLA2β (13282.38 Da purified from the venom of N. kaouthia.By LC-MS/MS analysis, these PLA2s showed highest similarity (23.5% sequence coverage with PLA2 III isolated from monocled cobra venom. The catalytic activity of Nk-PLA2β exceeds that of Nk-PLA2α. Heparin differentially regulated the catalytic and anticoagulant activities of these Nk-PLA2 isoenzymes. The anticoagulant potency of Nk-PLA2α was comparable to commercial anticoagulants warfarin, and heparin/antithrombin-III albeit Nk-PLA2β demonstrated highest anticoagulant activity. The anticoagulant action of these PLA2s was partially contributed by a small but specific hydrolysis of plasma phospholipids. The strong anticoagulant effect of Nk-PLA2α and Nk-PLA2β was achieved via preferential, non-enzymatic inhibition of FXa (Ki = 43 nM and thrombin (Ki = 8.3 nM, respectively. Kinetics study suggests that the Nk-PLA2 isoenzymes inhibit their "pharmacological target(s" by uncompetitive mechanism without the requirement of phospholipids/Ca(2+. The anticoagulant potency of Nk-PLA2β which is higher than that of Nk-PLA2α is corroborated by its superior catalytic activity, its higher capacity for binding to phosphatidylcholine, and its greater strength of thrombin inhibition. These PLA2 isoenzymes thus have evolved to affect haemostasis by different mechanisms. The Nk-PLA2β partially inhibited the thrombin-induced aggregation of mammalian platelets suggesting its therapeutic application in the prevention of unwanted clot formation.In order to develop peptide-based superior anticoagulant therapeutics, future application of Nk-PLA2

  3. Trivial topological phase of CaAgP and the topological nodal-line transition in CaAg (P1 -xA sx)

    Science.gov (United States)

    Xu, N.; Qian, Y. T.; Wu, Q. S.; Autès, G.; Matt, C. E.; Lv, B. Q.; Yao, M. Y.; Strocov, V. N.; Pomjakushina, E.; Conder, K.; Plumb, N. C.; Radovic, M.; Yazyev, O. V.; Qian, T.; Ding, H.; Mesot, J.; Shi, M.

    2018-04-01

    By performing angle-resolved photoemission spectroscopy and first-principles calculations, we address the topological phase of CaAgP and investigate the topological phase transition in CaAg (P1 -xA sx) . We reveal that in CaAgP, the bulk band gap and surface states with a large bandwidth are topologically trivial, in agreement with hybrid density functional theory calculations. The calculations also indicate that application of "negative" hydrostatic pressure can transform trivial semiconducting CaAgP into an ideal topological nodal-line semimetal phase. The topological transition can be realized by partial isovalent P/As substitution at x =0.38 .

  4. Analysis of factors that inhibiting implementation of Information Security Management System (ISMS) based on ISO 27001

    Science.gov (United States)

    Tatiara, R.; Fajar, A. N.; Siregar, B.; Gunawan, W.

    2018-03-01

    The purpose of this research is to determine multi factors that inhibiting the implementation of the ISMS based on ISO 2700. It is also to propose a follow-up recommendation on the factors that inhibit the implementation of the ISMS. Data collection is derived from questionnaires to 182 respondents from users in data center operation (DCO) at bca, Indonesian telecommunication international (telin), and data centre division at Indonesian Ministry of Health. We analysing data collection with multiple linear regression analysis and paired t-test. The results are multiple factors which inhibiting the implementation of the ISMS from the three organizations which has implement and operate the ISMS, ISMS documentation management, and continual improvement. From this research, we concluded that the processes of implementation in ISMS is the necessity of the role of all parties in succeeding the implementation of the ISMS continuously.

  5. Allosteric Inhibition of Macrophage Migration Inhibitory Factor Revealed by Ibudilast

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.; Crichlow, G; Vermeire, J; Leng, L; Du, X; Hodsdon, M; Bucala, R; Cappello, M; Gross, M; et al.

    2010-01-01

    AV411 (ibudilast; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine) is an antiinflammatory drug that was initially developed for the treatment of bronchial asthma but which also has been used for cerebrovascular and ocular indications. It is a nonselective inhibitor of various phosphodiesterases (PDEs) and has varied antiinflammatory activity. More recently, AV411 has been studied as a possible therapeutic for the treatment of neuropathic pain and opioid withdrawal through its actions on glial cells. As described herein, the PDE inhibitor AV411 and its PDE-inhibition-compromised analog AV1013 inhibit the catalytic and chemotactic functions of the proinflammatory protein, macrophage migration inhibitory factor (MIF). Enzymatic analysis indicates that these compounds are noncompetitive inhibitors of the p-hydroxyphenylpyruvate (HPP) tautomerase activity of MIF and an allosteric binding site of AV411 and AV1013 is detected by NMR. The allosteric inhibition mechanism is further elucidated by X-ray crystallography based on the MIF/AV1013 binary and MIF/AV1013/HPP ternary complexes. In addition, our antibody experiments directed against MIF receptors indicate that CXCR2 is the major receptor for MIF-mediated chemotaxis of peripheral blood mononuclear cells.

  6. Factors facilitating and inhibiting value stream mapping processes at hospital units in three Nordic countries - a Nordic multicenter study

    DEFF Research Database (Denmark)

    Winkel, Jørgen; Birgisdóttir, Birna Dröfn; Dudas, Kerstin

    2014-01-01

    The aim of this paper is to present observations that may indicate facilitating and inhibiting factors for the VSM process.......The aim of this paper is to present observations that may indicate facilitating and inhibiting factors for the VSM process....

  7. A direct thrombin inhibitor suppresses protein C activation and factor Va degradation in human plasma: Possible mechanisms of paradoxical enhancement of thrombin generation.

    Science.gov (United States)

    Kamisato, Chikako; Furugohri, Taketoshi; Morishima, Yoshiyuki

    2016-05-01

    We have demonstrated that antithrombin (AT)-independent thrombin inhibitors paradoxically increase thrombin generation (TG) in human plasma in a thrombomodulin (TM)- and protein C (PC)-dependent manner. We determined the effects of AT-independent thrombin inhibitors on the negative-feedback system, activation of PC and production and degradation of factor Va (FVa), as possible mechanisms underlying the paradoxical enhancement of TG. TG in human plasma containing 10nM TM was assayed by means of the calibrated automated thrombography. As an index of PC activation, plasma concentration of activated PC-PC inhibitor complex (aPC-PCI) was measured. The amounts of FVa heavy chain and its degradation product (FVa(307-506)) were examined by western blotting. AT-independent thrombin inhibitors, melagatran and dabigatran (both at 25-600nM) and 3-30μg/ml active site-blocked thrombin (IIai), increased peak levels of TG. Melagatran, dabigatran and IIai significantly decreased plasma concentration of aPC-PCI complex at 25nM or more, 75nM or more, and 10 and 30μg/ml, respectively. Melagatran (300nM) significantly increased FVa and decreased FVa(307-506). In contrast, a direct factor Xa inhibitor edoxaban preferentially inhibited thrombin generation (≥25nM), and higher concentrations were required to inhibit PC activation (≥150nM) and FVa degradation (300nM). The present study suggests that the inhibitions of protein C activation and subsequent degradation of FVa and increase in FVa by antithrombin-independent thrombin inhibitors may contribute to the paradoxical TG enhancement, and edoxaban may inhibit PC activation and FVa degradation as a result of TG suppression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    International Nuclear Information System (INIS)

    Ahren, B.

    1987-01-01

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with 125 I and thyroxine; the subsequent release of 125 I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse

  9. Behavioral Inhibition as a Risk Factor for the Development of Childhood Anxiety Disorders: A Longitudinal Study

    NARCIS (Netherlands)

    P.E.H.M. Muris (Peter); A.M.L. van Brakel (Anna); A. Arntz (Arnoud); E. Schouten (Erik)

    2011-01-01

    textabstractThis longitudinal study examined the additive and interactive effects of behavioral inhibition and a wide range of other vulnerability factors in the development of anxiety problems in youths. A sample of 261 children, aged 5 to 8 years, 124 behaviorally inhibited and 137 control

  10. Edoxaban versus Warfarin for the Treatment of Symptomatic Venous Thromboembolism

    DEFF Research Database (Denmark)

    Büller, Harry R; Décousus, Hervé; Grosso, Michael A

    2013-01-01

    Whether the oral factor Xa inhibitor edoxaban can be an alternative to warfarin in patients with venous thromboembolism is unclear.......Whether the oral factor Xa inhibitor edoxaban can be an alternative to warfarin in patients with venous thromboembolism is unclear....

  11. Inhibition by Siomycin and Thiostrepton of Both Aminoacyl-tRNA and Factor G Binding to Ribosomes

    Science.gov (United States)

    Ll, Juan Modole; Cabrer, Bartolomé; Parmeggiani, Andrea; Azquez, David V

    1971-01-01

    Siomycin, a peptide antibiotic that interacts with the 50S ribosomal subunit and inhibits binding of factor G, is shown also to inhibit binding of aminoacyl-tRNA; however, it does not impair binding of fMet-tRNA and completion of the initiation complex. Moreover, unlike other inhibitors of aminoacyl-tRNA binding (tetracycline, sparsomycin, and streptogramin A), siomycin completely abolishes the GTPase activity associated with the binding of aminoacyl-tRNA catalyzed by factor Tu. A single-site interaction of siomycin appears to be responsible for its effect on both the binding of the aminoacyl-tRNA-Tu-GTP complex and that of factor G. PMID:4331558

  12. Inhibition of enterovirus 71 entry by transcription factor XBP1

    International Nuclear Information System (INIS)

    Jheng, Jia-Rong; Lin, Chiou-Yan; Horng, Jim-Tong; Lau, Kean Seng

    2012-01-01

    Highlights: ► IRE1 was activated but no XBP1 splicing was detected during enterovirus 71 infection. ► XBP1 was subject to translational shutoff by enterovirus 71-induced eIF4G cleavage. ► The uptake of UV-irradiated virus was decreased in XBP1-overexpressing cells. -- Abstract: Inositol-requiring enzyme 1 (IRE1) plays an important role in the endoplasmic reticulum (ER), or unfolded protein, stress response by activating its downstream transcription factor X-box-binding protein 1 (XBP1). We demonstrated previously that enterovirus 71 (EV71) upregulated XBP1 mRNA levels but did not activate spliced XBP1 (XBP1s) mRNA or its downstream target genes, EDEM and chaperones. In this study, we investigated further this regulatory mechanism and found that IRE1 was phosphorylated and activated after EV71 infection, whereas its downstream XBP1s protein level decreased. We also found that XBP1s was not cleaved directly by 2A pro , but that cleavage of eukaryotic translation initiation factor 4G by the EV71 2A pro protein may contribute to the decrease in XBP1s expression. Knockdown of XBP1 increased viral protein expression, and the synthesis of EV71 viral protein and the production of EV71 viral particles were inhibited in XBP1-overexpressing RD cells. When incubated with replication-deficient and UV-irradiated EV71, XBP1-overexpressing RD cells exhibited reduced viral RNA levels, suggesting that the inhibition of XBP1s by viral infection may underlie viral entry, which is required for viral replication. Our findings are the first indication of the ability of XBP1 to inhibit viral entry, possibly via its transcriptional activity in regulating molecules in the endocytic machinery.

  13. Inhibition of enterovirus 71 entry by transcription factor XBP1

    Energy Technology Data Exchange (ETDEWEB)

    Jheng, Jia-Rong; Lin, Chiou-Yan [Department of Biochemistry and Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa First Road, Kweishan, Taoyuan 333, Taiwan (China); Horng, Jim-Tong, E-mail: jimtong@mail.cgu.edu.tw [Department of Biochemistry and Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa First Road, Kweishan, Taoyuan 333, Taiwan (China); Lau, Kean Seng [Department of Biochemistry and Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa First Road, Kweishan, Taoyuan 333, Taiwan (China)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer IRE1 was activated but no XBP1 splicing was detected during enterovirus 71 infection. Black-Right-Pointing-Pointer XBP1 was subject to translational shutoff by enterovirus 71-induced eIF4G cleavage. Black-Right-Pointing-Pointer The uptake of UV-irradiated virus was decreased in XBP1-overexpressing cells. -- Abstract: Inositol-requiring enzyme 1 (IRE1) plays an important role in the endoplasmic reticulum (ER), or unfolded protein, stress response by activating its downstream transcription factor X-box-binding protein 1 (XBP1). We demonstrated previously that enterovirus 71 (EV71) upregulated XBP1 mRNA levels but did not activate spliced XBP1 (XBP1s) mRNA or its downstream target genes, EDEM and chaperones. In this study, we investigated further this regulatory mechanism and found that IRE1 was phosphorylated and activated after EV71 infection, whereas its downstream XBP1s protein level decreased. We also found that XBP1s was not cleaved directly by 2A{sup pro}, but that cleavage of eukaryotic translation initiation factor 4G by the EV71 2A{sup pro} protein may contribute to the decrease in XBP1s expression. Knockdown of XBP1 increased viral protein expression, and the synthesis of EV71 viral protein and the production of EV71 viral particles were inhibited in XBP1-overexpressing RD cells. When incubated with replication-deficient and UV-irradiated EV71, XBP1-overexpressing RD cells exhibited reduced viral RNA levels, suggesting that the inhibition of XBP1s by viral infection may underlie viral entry, which is required for viral replication. Our findings are the first indication of the ability of XBP1 to inhibit viral entry, possibly via its transcriptional activity in regulating molecules in the endocytic machinery.

  14. Activation of MAPK/ERK signaling by Burkholderia pseudomallei cycle inhibiting factor (Cif.

    Directory of Open Access Journals (Sweden)

    Mei Ying Ng

    Full Text Available Cycle inhibiting factors (Cifs are virulence proteins secreted by the type III secretion system of some Gram-negative pathogenic bacteria including Burkholderia pseudomallei. Cif is known to function to deamidate Nedd8, leading to inhibition of Cullin E3 ubiquitin ligases (CRL and consequently induction of cell cycle arrest. Here we show that Cif can function as a potent activator of MAPK/ERK signaling without significant activation of other signaling pathways downstream of receptor tyrosine kinases. Importantly, we found that the ability of Cif to activate ERK is dependent on its deamidase activity, but independent of Cullin E3 ligase inhibition. This suggests that apart from Nedd8, other cellular targets of Cif-dependent deamidation exist. We provide evidence that the mechanism involved in Cif-mediated ERK activation is dependent on recruitment of the Grb2-SOS1 complex to the plasma membrane. Further investigation revealed that Cif appears to modify the phosphorylation status of SOS1 in a region containing the CDC25-H and proline-rich domains. It is known that prolonged Cullin E3 ligase inhibition leads to cellular apoptosis. Therefore, we hypothesize that ERK activation is an important mechanism to counter the pro-apoptotic effects of Cif. Indeed, we show that Cif dependent ERK activation promotes phosphorylation of the proapoptotic protein Bim, thereby potentially conferring a pro-survival signal. In summary, we identified a novel deamidation-dependent mechanism of action of the B. pseudomallei virulence factor Cif/CHBP to activate MAPK/ERK signaling. Our study demonstrates that bacterial proteins such as Cif can serve as useful molecular tools to uncover novel aspects of mammalian signaling pathways.

  15. Activation of factor VII bound to tissue factor: A key early step in the tissue factor pathway of blood coagulation

    International Nuclear Information System (INIS)

    Rao, L.V.M.; Rapaport, S.I.

    1988-01-01

    Whether the factor VII/tissue factor complex that forms in tissue factor-dependent blood coagulation must be activated to factor VIIa/tissue factor before it can activate its substrates, factor X and IX, has been a difficult question to answer because the substrates, once activated, back-activate factor VII. The earlier studies suggested that human factor VII/tissue factor cannot activate factor IX. Studies have now been extended to the activation of factor X. Reaction mixtures were made with purified factor VII, X, and tissue factor; in some experiments antithrombin III and heparin were added to prevent back-activation of factor VII. Factor X was activated at similar rates in reaction mixtures containing either VII or factor VIIa after an initial 30-sec lag with factor VII. In reaction mixtures with factor VII a linear activation of factor X was established several minutes before cleavage of 125 I-labeled factor VII to the two-chain activated molecule was demonstrable on gel profiles. These data suggest that factor VII/tissue factor cannot activate measurable amounts of factor X over several minutes. Overall, the results support the hypothesis that a rapid preferential activation of factor VII bound to tissue factor by trace amounts of factor Xa is a key early step in tissue factor-dependent blood coagulation

  16. Diclofenac inhibits tumor necrosis factor-α-induced nuclear factor-κB activation causing synergistic hepatocyte apoptosis.

    Science.gov (United States)

    Fredriksson, Lisa; Herpers, Bram; Benedetti, Giulia; Matadin, Quraisha; Puigvert, Jordi C; de Bont, Hans; Dragovic, Sanja; Vermeulen, Nico P E; Commandeur, Jan N M; Danen, Erik; de Graauw, Marjo; van de Water, Bob

    2011-06-01

    Drug-induced liver injury (DILI) is an important clinical problem. It involves crosstalk between drug toxicity and the immune system, but the exact mechanism at the cellular hepatocyte level is not well understood. Here we studied the mechanism of crosstalk in hepatocyte apoptosis caused by diclofenac and the proinflammatory cytokine tumor necrosis factor α (TNF-α). HepG2 cells were treated with diclofenac followed by TNF-α challenge and subsequent evaluation of necrosis and apoptosis. Diclofenac caused a mild apoptosis of HepG2 cells, which was strongly potentiated by TNF-α. A focused apoptosis machinery short interference RNA (siRNA) library screen identified that this TNF-α-mediated enhancement involved activation of caspase-3 through a caspase-8/Bid/APAF1 pathway. Diclofenac itself induced sustained activation of c-Jun N-terminal kinase (JNK) and inhibition of JNK decreased both diclofenac and diclofenac/TNF-α-induced apoptosis. Live cell imaging of GFPp65/RelA showed that diclofenac dampened the TNF-α-mediated nuclear factor kappaB (NF-κB) translocation oscillation in association with reduced NF-κB transcriptional activity. This was associated with inhibition by diclofenac of the TNF-α-induced phosphorylation of the inhibitor of NF-κB alpha (IκBα). Finally, inhibition of IκB kinase β (IKKβ) with BMS-345541 as well as stable lentiviral short hairpin RNA (shRNA)-based knockdown of p65/RelA sensitized hepatocytes towards diclofenac/TNF-α-induced cytotoxicity. Together, our data suggest a model whereby diclofenac-mediated stress signaling suppresses TNF-α-induced survival signaling routes and sensitizes cells to apoptosis. Copyright © 2011 American Association for the Study of Liver Diseases.

  17. Cerebral Venous Sinus Thrombosis in a Patient with Undiagnosed Factor VII Deficiency.

    Science.gov (United States)

    Qadir, Hira; Rashid, Anila; Adil, Salman Naseem

    2017-09-01

    Factor VII (FVII) deficiency is one of the rare inherited bleeding disorders. Thrombosis has been occasionally described in inherited FVII deficiency. Here, we report a young female with undiagnosed FVII deficiency who presented with cerebral venous sinus thrombosis (CVST). Oral contraceptive pill was found to be prothrombotic risk factor. The CVSToccurred in spite of the congenital FVII deficiency indicating that no definitive antithrombotic protection is assured by this defect. Low molecular weight heparin and anti-Xa assay were found to be safe choice of anticoagulation and monitoring, respectively, in this patient.

  18. Student Research Projects Inhibiting Factors from the Students Perspective

    Directory of Open Access Journals (Sweden)

    Laila Nikrooz

    2012-09-01

    Full Text Available Background & Objective: Identifying the research barriers and assess the ability of students to use the university services and facilities is crucial to promote research activities. Present study was carried out to determine the inhibiting factors influencing the student's research projects from the view point of Yasuj University of Medical Sciences students in 2008. Materials & Methods: In this cross sectional study 96 students of Yasuj Medical University were selected by stratified random sampling. The data were collected by validate & reliable questionnaire, containing demographic information, inhibiting factors related to students (personal and organization. The data were analyzed by SPSS software. Results: The mean scores against the personal barriers and the organizational barriers questions were 43.23±12.96 and 62.58±12.08 respectively. There was a significant difference between personal and organizational barriers (P<0.001 and personal barriers were more important. According to the results, the student's inadequate skills & knowledge of research methodology and lack of awareness of research topics were the most prevalent personal barriers. The most prevalent organizational barriers were unavailability of research consulters, inadequate research skills of consulter, insufficient facilities & equipment and lack of motivating staff & faculties. Other variables such as gender, subject of study and research experience are mentioned in the full text. Conclusion: This study showed that the personal barriers were more important than organizational barriers which interfere with the student's research projects. This can be corrected and controlled by teachers, faculty members, university officials and students, themselves.

  19. Motivating and Inhibiting Factors to Oral-Dental Health Behavior in Adolescents: a Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Zahra Hosseini

    2016-11-01

    Full Text Available Background Oral-dental diseases, especially tooth decay, are among the most common diseases in the world which usually begin in adolescence. Oral health during this period of life has a huge impact on the reduction of dental problems. This study aimed to determine motivating and inhibiting factors to oral-dental health behavior in adolescents. Materials and Methods This cross-sectional which had a descriptive and analytical design was conducted on 10-12th grade students in Kashan city, Iran. Using multi-stage sampling method and based on sampling size formula, a total of 290 of the students were randomly selected from the schools and were enrolled into the study. Then they received a research-made questionnaire containing questions about the knowledge and motivating and inhibiting factors to oral-dental health behavior. The collected data were analyzed using SPSS V.20 by independent t-test, ANOVA, and Pearson correlation coefficient. Results Of all, 62.8% of students brushed their teeth at least once a day. Moreover, 11.7% used dental floss once a day and 6.6% visited a dentist every six months. Oral-dental health behavior had a significant relationship with gender (P0.05. Conclusion When designing educational plans and interventions for improving oral-dental health behavior in students, it is necessary to adopt measures to enhance motivating factors and eliminate inhibiting factors.

  20. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    International Nuclear Information System (INIS)

    Park, Choa; Lee, YoungJoo

    2014-01-01

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression

  1. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choa; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.

  2. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions

    DEFF Research Database (Denmark)

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna

    2007-01-01

    growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency...... of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from...... homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta...

  3. Low-Concentration Tributyltin Decreases GluR2 Expression via Nuclear Respiratory Factor-1 Inhibition.

    Science.gov (United States)

    Ishida, Keishi; Aoki, Kaori; Takishita, Tomoko; Miyara, Masatsugu; Sakamoto, Shuichiro; Sanoh, Seigo; Kimura, Tomoki; Kanda, Yasunari; Ohta, Shigeru; Kotake, Yaichiro

    2017-08-11

    Tributyltin (TBT), which has been widely used as an antifouling agent in paints, is a common environmental pollutant. Although the toxicity of high-dose TBT has been extensively reported, the effects of low concentrations of TBT are relatively less well studied. We have previously reported that low-concentration TBT decreases α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor subunit 2 ( GluR2 ) expression in cortical neurons and enhances neuronal vulnerability to glutamate. However, the mechanism of this TBT-induced GluR2 decrease remains unknown. Therefore, we examined the effects of TBT on the activity of transcription factors that control GluR2 expression. Exposure of primary cortical neurons to 20 nM TBT for 3 h to 9 days resulted in a decrease in GluR2 mRNA expression. Moreover, TBT inhibited the DNA binding activity of nuclear respiratory factor-1 (NRF-1), a transcription factor that positively regulates the GluR2 . This result indicates that TBT inhibits the activity of NRF-1 and subsequently decreases GluR2 expression. In addition, 20 nM TBT decreased the expression of genes such as cytochrome c, cytochrome c oxidase (COX) 4, and COX 6c, which are downstream of NRF-1. Our results suggest that NRF-1 inhibition is an important molecular action of the neurotoxicity induced by low-concentration TBT.

  4. Low-Concentration Tributyltin Decreases GluR2 Expression via Nuclear Respiratory Factor-1 Inhibition

    Science.gov (United States)

    Ishida, Keishi; Aoki, Kaori; Takishita, Tomoko; Miyara, Masatsugu; Sakamoto, Shuichiro; Sanoh, Seigo; Kimura, Tomoki; Kanda, Yasunari; Ohta, Shigeru; Kotake, Yaichiro

    2017-01-01

    Tributyltin (TBT), which has been widely used as an antifouling agent in paints, is a common environmental pollutant. Although the toxicity of high-dose TBT has been extensively reported, the effects of low concentrations of TBT are relatively less well studied. We have previously reported that low-concentration TBT decreases α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor subunit 2 (GluR2) expression in cortical neurons and enhances neuronal vulnerability to glutamate. However, the mechanism of this TBT-induced GluR2 decrease remains unknown. Therefore, we examined the effects of TBT on the activity of transcription factors that control GluR2 expression. Exposure of primary cortical neurons to 20 nM TBT for 3 h to 9 days resulted in a decrease in GluR2 mRNA expression. Moreover, TBT inhibited the DNA binding activity of nuclear respiratory factor-1 (NRF-1), a transcription factor that positively regulates the GluR2. This result indicates that TBT inhibits the activity of NRF-1 and subsequently decreases GluR2 expression. In addition, 20 nM TBT decreased the expression of genes such as cytochrome c, cytochrome c oxidase (COX) 4, and COX 6c, which are downstream of NRF-1. Our results suggest that NRF-1 inhibition is an important molecular action of the neurotoxicity induced by low-concentration TBT. PMID:28800112

  5. Tumor necrosis factor-alpha inhibits insulin's stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans

    DEFF Research Database (Denmark)

    Rask-Madsen, Christian; Domínguez, Helena; Ihlemann, Nikolaj

    2003-01-01

    BACKGROUND: Inflammatory mechanisms could be involved in the pathogenesis of both insulin resistance and atherosclerosis. Therefore, we aimed at examining whether the proinflammatory cytokine tumor necrosis factor (TNF)-alpha inhibits insulin-stimulated glucose uptake and insulin....../or TNF-alpha were coinfused. During infusion of insulin alone for 20 minutes, forearm glucose uptake increased by 220+/-44%. This increase was completely inhibited during coinfusion of TNF-alpha (started 10 min before insulin) with a more pronounced inhibition of glucose extraction than of blood flow....... Furthermore, TNF-alpha inhibited the ACh forearm blood flow response (Palpha...

  6. Synthesis, purification, and characterization of an Arg152 → Glu site-directed mutant of recombinant human blood clotting factor VII

    International Nuclear Information System (INIS)

    Wildgoose, P.; Kisiel, W.; Berkner, K.L.

    1990-01-01

    Coagulation factor VII circulates in blood as a single-chain zymogen of a serine protease and is converted to its activated two-chain form, factor VIIa, by cleavage of an internal peptide bond located at Arg 152 -Ile 153 . Previous studies using serine protease active-site inhibitors suggest that zymogen factor VII may possess sufficient proteolytic activity to initiate the extrinsic pathway of blood coagulation. In order to assess the putative intrinsic proteolytic activity of single-chain factor VII, the authors have constructed a site-specific mutant of recombinant human factor VII in which arginine-152 has been replaced with a glutamic acid residue. Mutant factor VII was purified in a single step from culture supernatants of baby hamster kidney cells transfected with a plasmid containing the sequence for Arg 152 → Glu factor VII using a calcium-dependent, murine anti-factor VII monoclonal antibody column. The clotting activity of mutant factor VII was completely inhibited following incubation with dansyl-Glu-Gly-Arg chloromethyl ketone, suggesting that the apparent clotting activity of mutant factor VII was due to a contaminating serine protease. Immunoblots of mutant factor VII with human factor IXa revealed no cleavage, whereas incubation of mutant factor VII with human factor Xa resulted in cleavage of mutant factor VII and the formation of a lower molecular weight degradation product migrating at M r ∼40 000. The results are consistent with the proposal that zymogen factor VII possesses no intrinsic proteolytic activity toward factor X or factor IX

  7. Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Li, Ping; Veldwijk, Marlon R; Zhang, Qing; Li, Zhao-bin; Xu, Wen-cai; Fu, Shen

    2013-01-01

    Over-expression of epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor (IGF-1R) have been shown to closely correlate with radioresistance of breast cancer cells. This study aimed to investigate the impact of co-inhibition of EGFR and IGF-1R on the radiosensitivity of two breast cancer cells with different profiles of EGFR and IGF-1R expression. The MCF-7 (EGFR +/−, IGF-1R +++) and MDA-MB-468 (EGFR +++, IGF-1R +++) breast cancer cell lines were used. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle distribution were measured by flow cytometry. Phospho-Akt and phospho-Erk1/2 were quantified by western blot. In vivo studies were conducted using MDA-MB-468 cells xenografted in nu/nu mice. In MDA-MB-468 cells, the inhibition of IGF-1R upregulated the p-EGFR expression. Either EGFR (AG1478) or IGF-1R inhibitor (AG1024) radiosensitized MDA-MB-468 cells. In MCF-7 cells, radiosensitivity was enhanced by AG1024, but not by AG1478. Synergistical radiosensitizing effect was observed by co-inhibition of EGFR and IGF-1R only in MDA-MB-468 cells with a DMF 10% of 1.90. The co-inhibition plus irradiation significantly induced more apoptosis and arrested the cells at G0/G1 phase in MDA-MB-468 cells. Only co-inhibition of EGFR and IGF-1R synergistically diminished the expression of p-Akt and p-Erk1/2 in MDA-MB-468 cells. In vivo studies further verified the radiosensitizing effects by co-inhibition of both pathways in a MDA-MB-468 xenograft model. Our data suggested that co-inhibition of EGFR and IGF-1R synergistically radiosensitized breast cancer cells with both EGFR and IGF-1R high expression. The approach may have an important therapeutic implication in the treatment of breast cancer patients with high expression of EGFR and IGF-1R

  8. A novel protease activity assay using a protease-responsive chaperone protein

    International Nuclear Information System (INIS)

    Sao, Kentaro; Murata, Masaharu; Fujisaki, Yuri; Umezaki, Kaori; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki; Hashizume, Makoto

    2009-01-01

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  9. A novel protease activity assay using a protease-responsive chaperone protein

    Energy Technology Data Exchange (ETDEWEB)

    Sao, Kentaro [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Murata, Masaharu, E-mail: m-murata@dem.med.kyushu-u.ac.jp [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan); Fujisaki, Yuri; Umezaki, Kaori [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan); Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Nishi-ku Fukuoka 819-0395 (Japan); Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Hashizume, Makoto [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan)

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  10. Inhibition of the mitogenic response to platelet-derived growth factor by terbinafine

    International Nuclear Information System (INIS)

    St Denny, I.H.; Glinka, K.G.; Nemecek, G.M.; Stuetz, A.

    1987-01-01

    Terbinafine (T;(E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic which inhibits fungal squalene epoxidase activity, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated mitogenesis. The inclusion of 1.5-5μM T in fibroblast incubation media was associated with increased [ 3 H]thymidine incorporation into DNA in the presence and absence of PDGF. However, T at concentrations above 6μM reduced DNA synthesis in control and PDGF-exposed cultures to nearly undetectable levels. Under a phase-contrast microscope, fibroblasts appeared morphologically normal at T concentrations as high as 25 μM. Neither the uptake of [ 3 H]thymidine nor the specific binding of 125 I-PDGF to fibroblast receptors was significantly affected by 10 μM T. Furthermore, concentrations of T which antagonized the mitogenic response to PDGF also interfered with fibroblast growth factor-induced mitogenesis. Together, these data suggest that T has the ability to inhibit the in vitro action of PDGF via a post-receptor mechanism

  11. Inhibition of the mitogenic response to platelet-derived growth factor by terbinafine

    Energy Technology Data Exchange (ETDEWEB)

    St. Denny, I.H.; Glinka, K.G.; Nemecek, G.M. (Sandoz Research Institute, East Hanover, NJ (USA)); Stuetz, A. (Sandoz Forschungsinstitut, Vienna (Austria))

    1987-05-01

    Terbinafine (T;(E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic which inhibits fungal squalene epoxidase activity, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated mitogenesis. The inclusion of 1.5-5{mu}M T in fibroblast incubation media was associated with increased ({sup 3}H)thymidine incorporation into DNA in the presence and absence of PDGF. However, T at concentrations above 6{mu}M reduced DNA synthesis in control and PDGF-exposed cultures to nearly undetectable levels. Under a phase-contrast microscope, fibroblasts appeared morphologically normal at T concentrations as high as 25 {mu}M. Neither the uptake of ({sup 3}H)thymidine nor the specific binding of {sup 125}I-PDGF to fibroblast receptors was significantly affected by 10 {mu}M T. Furthermore, concentrations of T which antagonized the mitogenic response to PDGF also interfered with fibroblast growth factor-induced mitogenesis. Together, these data suggest that T has the ability to inhibit the in vitro action of PDGF via a post-receptor mechanism.

  12. Technetium-99 conjugated with methylene diphosphonate inhibits receptor activator of nuclear factor-κB ligand-induced osteoclastogenesis.

    Science.gov (United States)

    Gong, Wei; Dou, Huan; Liu, Xianqin; Sun, Lingyun; Hou, Yayi

    2012-10-01

    1. In the present study, we investigated the effects of technetium-99 conjugated with methylene diphosphonate ((99)Tc-MDP), an agent used in radionuclide therapy, on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and explored the underlying mechanisms. 2. The murine macrophage cell line RAW264.7 and bone marrow-derived-macrophages from C57BL/6 mice (BMM) were used as models for osteoclastogenesis in vitro. The expression of some key factors in RANKL (50 ng/mL)-induced osteoclastogenesis in RAW264.7 cells was investigated by flow cytometry and real-time reverse transcription-polymerase chain reaction (RT-PCR). To detect multinucleated osteoclast formation, RAW264.7 cells were induced with RANKL for 4 days, whereas BMM were induced by 50 ng/mL RANKL and 20 ng/mL macrophage colony-stimulating factor for 7 days, before being stained with tartrate-resistant acid phosphatase. 3. Osteoclastogenesis was evaluated using the osteoclast markers CD51, matrix metalloproteinase (MMP)-9 and cathepsin K. At 0.01 μg/mL, (99)Tc-MDP significantly inhibited RANKL-induced osteoclastogenesis without any cytotoxicity. In addition, (99)Tc-MDP abolished the appearance of multinucleated osteoclasts. 4. Real-time RT-PCR analysis of transcription factor expression revealed that (99)Tc-MDP inhibited the expression of c-Fos and nuclear factor of activated T cells. In addition, (99)Tc-MDP inhibited the expression of the inflammatory factors interleukin (IL)-6, tumour necrosis factor-α and IL-1β. Finally, (99)Tc-MDP inhibited the activation of mitogen-activated protein kinases in RAW264.7 cells following RANKL stimulation. 5. In conclusion, (99)Tc-MDP possesses anti-osteoclastogenic activity against RANKL-induced osteoclast formation. © 2012 The Authors Clinical and Experimental Pharmacology and Physiology © 2012 Wiley Publishing Asia Pty Ltd.

  13. Hemistepsin A ameliorates acute inflammation in macrophages via inhibition of nuclear factor-κB and activation of nuclear factor erythroid 2-related factor 2.

    Science.gov (United States)

    Kim, Jae Kwang; Lee, Ji Eun; Jung, Eun Hye; Jung, Ji Yun; Jung, Dae Hwa; Ku, Sae Kwang; Cho, Il Je; Kim, Sang Chan

    2018-01-01

    Hemistepsin A (HsA) is a sesquiterpene lactone isolated from Hemistepta lyrata (Bunge) Bunge. We investigated the anti-inflammatory effects of HsA and sought to determine its mechanisms of action in macrophages. HsA pretreatment inhibited nitric oxide production, and reduced the expression of iNOS and COX-2 in Toll-like receptor ligand-stimulated RAW 264.7 cells. Additionally, HsA decreased the secretion of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated Kupffer cells as well as in RAW 264.7 cells. HsA inhibited phosphorylation of IKKα/β and degradation of IκBα, resulting in decreased nuclear translocation of nuclear factor-κB (NF-κB) and its transcriptional activity. Moreover, HsA phosphorylated nuclear factor erythroid 2-related factor 2 (Nrf2), increased expression levels of antioxidant genes, and attenuated LPS-stimulated H 2 O 2 production. Phosphorylation of p38 and c-Jun N-terminal kinase was required for HsA-mediated Nrf2 phosphorylation. In a D-galactosamine/LPS-induced liver injury model, HsA ameliorated D-galactosamine/LPS-induced hepatocyte degeneration and inflammatory cells infiltration. Moreover, immunohistochemical analyses using nitrotyrosine, 4-hydroxynonenal, and cleaved poly (ADP-ribose) polymerase antibodies revealed that HsA protected the liver from oxidative stress. Furthermore, HsA reduced the numbers of proinflammatory cytokine-positive cells in hepatic tissues. Thus, these results suggest HsA may be a promising natural product to manage inflammation-mediated tissue injuries through inhibition of NF-κB and activation of Nrf2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The histone deacetylase inhibitor, Vorinostat, represses hypoxia inducible factor 1 alpha expression through translational inhibition.

    Directory of Open Access Journals (Sweden)

    Darren M Hutt

    Full Text Available Hypoxia inducible factor 1α (HIF-1α is a master regulator of tumor angiogenesis being one of the major targets for cancer therapy. Previous studies have shown that Histone Deacetylase Inhibitors (HDACi block tumor angiogenesis through the inhibition of HIF-1α expression. As such, Vorinostat (Suberoylanilide Hydroxamic Acid/SAHA and Romidepsin, two HDACis, were recently approved by the Food and Drug Administration (FDA for the treatment of cutaneous T cell lymphoma. Although HDACis have been shown to affect HIF-1α expression by modulating its interactions with the Hsp70/Hsp90 chaperone axis or its acetylation status, the molecular mechanisms by which HDACis inhibit HIF-1α expression need to be further characterized. Here, we report that the FDA-approved HDACi Vorinostat/SAHA inhibits HIF-1α expression in liver cancer-derived cell lines, by a new mechanism independent of p53, prolyl-hydroxylases, autophagy and proteasome degradation. We found that SAHA or silencing of HDAC9 mechanism of action is due to inhibition of HIF-1α translation, which in turn, is mediated by the eukaryotic translation initiation factor--eIF3G. We also highlighted that HIF-1α translation is dramatically inhibited when SAHA is combined with eIF3H silencing. Taken together, we show that HDAC activity regulates HIF-1α translation, with HDACis such as SAHA representing a potential novel approach for the treatment of hepatocellular carcinoma.

  15. New oral anticoagulants: their advantages and disadvantages compared with vitamin K antagonists in the prevention and treatment of patients with thromboembolic events.

    Science.gov (United States)

    Mekaj, Ymer H; Mekaj, Agon Y; Duci, Shkelzen B; Miftari, Ermira I

    2015-01-01

    Despite the discovery and application of many parenteral (unfractionated and low-molecular-weight heparins) and oral anticoagulant vitamin K antagonist (VKA) drugs, the prevention and treatment of venous and arterial thrombotic phenomena remain major medical challenges. Furthermore, VKAs are the only oral anticoagulants used during the past 60 years. The main objective of this study is to present recent data on non-vitamin K antagonist oral anticoagulants (NOACs) and to analyze their advantages and disadvantages compared with those of VKAs based on a large number of recent studies. NOACs are novel direct-acting medications that are selective for one specific coagulation factor, either thrombin (IIa) or activated factor X (Xa). Several NOACs, such as dabigatran (a direct inhibitor of FIIa) and rivaroxaban, apixaban and edoxaban (direct inhibitors of factor Xa), have been used for at least 5 years but possibly 10 years. Unlike traditional VKAs, which prevent the coagulation process by suppressing the synthesis of vitamin K-dependent factors, NOACs directly inhibit key proteases (factors IIa and Xa). The important indications of these drugs are the prevention and treatment of deep vein thrombosis and pulmonary embolisms, and the prevention of atherothrombotic events in the heart and brain of patients with acute coronary syndrome and atrial fibrillation. They are not fixed, and dose-various strengths are available. Most studies have reported that more advantages than disadvantages for NOACs when compared with VKAs, with the most important advantages of NOACs including safety issues (ie, a lower incidence of major bleeding), convenience of use, minor drug and food interactions, a wide therapeutic window, and no need for laboratory monitoring. Nonetheless, there are some conditions for which VKAs remain the drug of choice. Based on the available data, we can conclude that NOACs have greater advantages and fewer disadvantages compared with VKAs. New studies are required

  16. Quantitative PET Imaging of Tissue Factor Expression Using 18F-labled Active Site Inhibited Factor VII

    DEFF Research Database (Denmark)

    Nielsen, Carsten H; Erlandsson, Maria; Jeppesen, Troels E

    2016-01-01

    Tissue factor (TF) is up regulated in many solid tumors and its expression is linked to tumor angiogenesis, invasion, metastasis and prognosis. A non-invasive assessment of tumor TF expression status is therefore of obvious clinical relevance. Factor VII (FVII) is the natural ligand to TF. Here we...... report the development of a new PET tracer for specific imaging of TF using an (18)F-labeled derivative of FVII. METHODS: Active site inhibited factor VIIa (FVIIai) was obtained by inactivation with phenylalanine-phenylalanine-arginine-chloromethyl ketone. FVIIai was radiolabeled with N-succinimidyl 4......-[(18)F]-fluorobenzoate ([(18)F]SFB) and purified. The corresponding product, [(18)F]FVIIai, was injected into nude mice with subcutaneous human pancreatic xenograft tumors (BxPC-3) and investigated using small animal PET/CT imaging 1, 2 and 4 hours after injection. Ex vivo biodistribution was performed...

  17. Influential factors in individual differences in reading comprehension: cognitive inhibition and working memory

    Directory of Open Access Journals (Sweden)

    Carlos Wilfrido Guevara Toledo

    2017-03-01

    Full Text Available To read involves understanding of what it is read; automation of the processes involved in reading, lead us to believe that it is a simple process. Thepeople, to read uses encoding and decoding processes: recognizing and decoding words graphemes allowing lexical access; and comprehension processes: syntactic and semantic analysis, to give meaning to the text they read. Any disturbance in these processes compromise text comprehension and learning, including expert readers. Reading is the gateway to knowledge, science and good living.The analysis of reading comprehension should be analyzed from neuroscience. A review of the neurophysiological factors: cognitive inhibition and working memory, that influenced individual differences in reading comprehension in expert readers, was performed. Starting from a bibliographical review, the theoretical proposals of Megan Boudewyn and Debra Long, researchers from the Universities of California – Davis and Wisconsin – Madison, were considered. It was concluded that cognitive inhibition and working memory are influential factors for individual differences in reading comprehension in expert readers. The PROLEC - SE (reader process evaluation, the reading amplitude (PAL test, the Stroop effect and experimental tests of sentences with prime words, associated and non - associated can help to investigate these factors.

  18. Synthesis, purification, and characterization of an Arg sub 152 yields Glu site-directed mutant of recombinant human blood clotting factor VII

    Energy Technology Data Exchange (ETDEWEB)

    Wildgoose, P.; Kisiel, W. (Univ. of New Mexico, Albuquerque (USA)); Berkner, K.L. (ZymoGenetics, Inc., Seattle, WA (USA))

    1990-04-03

    Coagulation factor VII circulates in blood as a single-chain zymogen of a serine protease and is converted to its activated two-chain form, factor VIIa, by cleavage of an internal peptide bond located at Arg{sub 152}-Ile{sub 153}. Previous studies using serine protease active-site inhibitors suggest that zymogen factor VII may possess sufficient proteolytic activity to initiate the extrinsic pathway of blood coagulation. In order to assess the putative intrinsic proteolytic activity of single-chain factor VII, the authors have constructed a site-specific mutant of recombinant human factor VII in which arginine-152 has been replaced with a glutamic acid residue. Mutant factor VII was purified in a single step from culture supernatants of baby hamster kidney cells transfected with a plasmid containing the sequence for Arg{sub 152} {yields} Glu factor VII using a calcium-dependent, murine anti-factor VII monoclonal antibody column. The clotting activity of mutant factor VII was completely inhibited following incubation with dansyl-Glu-Gly-Arg chloromethyl ketone, suggesting that the apparent clotting activity of mutant factor VII was due to a contaminating serine protease. Immunoblots of mutant factor VII with human factor IXa revealed no cleavage, whereas incubation of mutant factor VII with human factor Xa resulted in cleavage of mutant factor VII and the formation of a lower molecular weight degradation product migrating at M{sup r}{approx}40 000. The results are consistent with the proposal that zymogen factor VII possesses no intrinsic proteolytic activity toward factor X or factor IX.

  19. p27{sup Kip1} inhibits tissue factor expression

    Energy Technology Data Exchange (ETDEWEB)

    Breitenstein, Alexander, E-mail: alexander.breitenstein@usz.ch [Cardiology, University Heart Center, University Hospital Zurich (Switzerland); Cardiovascular Research, Physiology Institute, University of Zurich (Switzerland); Center for Integrative Human Physiology (ZHIP), University of Zurich (Switzerland); Akhmedov, Alexander; Camici, Giovanni G.; Lüscher, Thomas F.; Tanner, Felix C. [Cardiology, University Heart Center, University Hospital Zurich (Switzerland); Cardiovascular Research, Physiology Institute, University of Zurich (Switzerland); Center for Integrative Human Physiology (ZHIP), University of Zurich (Switzerland)

    2013-10-04

    Highlights: •p27{sup Kip1}regulates the expression of tissue factor at the transcriptional level. •This inhibitory effect of p27{sup Kip1} is independently of its cell regulatory action. •The current study provides new insights into a pleiotrophic function of p27{sup Kip1}. -- Abstract: Background: The cyclin-dependent kinase inhibitor (CDKI) p27{sup Kip1} regulates cell proliferation and thus inhibits atherosclerosis and vascular remodeling. Expression of tissue factor (TF), the key initator of the coagulation cascade, is associated with atherosclerosis. Yet, it has not been studied whether p27{sup Kip1} influences the expression of TF. Methods and results: p27{sup Kip1} overexpression in human aortic endothelial cells was achieved by adenoviral transfection. Cells were rendered quiescent for 24 h in 0.5% fetal-calf serum. After stimulation with TNF-α (5 ng/ml), TF protein expression and activity was significantly reduced (n = 4; P < 0.001) in cells transfected with p27{sup Kip1}. In line with this, p27{sup Kip1} overexpression reduced cytokine-induced TF mRNA expression (n = 4; P < 0.01) and TF promotor activity (n = 4; P < 0.05). In contrast, activation of the MAP kinases p38, ERK and JNK was not affected by p27{sup Kip1} overexpression. Conclusion: This in vitro study suggests that p27{sup Kip1} inhibits TF expression at the transcriptional level. These data indicate an interaction between p27{sup Kip1} and TF in important pathological alterations such as atherosclerosis and vascular remodeling.

  20. Synthesis and characterization of (18)F-labeled active site inhibited factor VII (ASIS).

    Science.gov (United States)

    Erlandsson, Maria; Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Jesper B; Petersen, Lars C; Madsen, Jacob; Kjaer, Andreas

    2015-05-15

    Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example, thrombosis, metastasis, tumor growth, and tumor angiogenesis. The aim of this study was to develop an (18)F-labeled ASIS derivative to assess TF expression in tumors. Active site inhibited factor VII was labeled using N-succinimidyl-4-[(18)F]fluorobenzoate, and the [(18)F]ASIS was purified on a PD-10 desalting column. The radiochemical yield was 25 ± 6%, the radiochemical purity was >97%, and the pseudospecific radioactivity was 35 ± 9 GBq/µmol. The binding efficacy was evaluated in pull-down experiments, which monitored the binding of unlabeled ASIS and [(18)F]ASIS to TF and to a specific anti-factor VII antibody (F1A2-mAb). No significant difference in binding efficacy between [(18)F]ASIS and ASIS could be detected. Furthermore, [(18)F]ASIS was relatively stable in vitro and in vivo in mice. In conclusion, [(18)F]ASIS has for the first time been successfully synthesized as a possible positron emission tomography tracer to image TF expression levels. In vivo positron emission tomography studies to evaluate the full potential of [(18)F]ASIS are in progress. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Inhibition of liver fibrosis by solubilized coenzyme Q10: Role of Nrf2 activation in inhibiting transforming growth factor-β1 expression

    International Nuclear Information System (INIS)

    Choi, Hoo-Kyun; Pokharel, Yuba Raj; Lim, Sung Chul; Han, Hyo-Kyung; Ryu, Chang Seon; Kim, Sang Kyum; Kwak, Mi Kyong; Kang, Keon Wook

    2009-01-01

    Coenzyme Q10 (CoQ10), an endogenous antioxidant, is important in oxidative phosphorylation in mitochondria. It has anti-diabetic and anti-cardiovascular disease effects, but its ability to protect against liver fibrosis has not been studied. Here, we assessed the ability of solubilized CoQ10 to improve dimethylnitrosamine (DMN)-induced liver fibrogenesis in mice. DMN treatments for 3 weeks produced a marked liver fibrosis as assessed by histopathological examination and tissue 4-hydroxyproline content. Solubilized CoQ10 (10 and 30 mg/kg) significantly inhibited both the increases in fibrosis score and 4-hydroxyproline content induced by DMN. Reverse transcription-polymerase chain reaction and Western blot analyses revealed that solubilized CoQ10 inhibited increases in the transforming growth factor-β1 (TGF-β1) mRNA and α-smooth muscle actin (α-SMA) protein by DMN. Interestingly, hepatic glutamate-cysteine ligase (GCL) and glutathione S-transferase A2 (GSTA2) were up-regulated in mice treated with CoQ10. Solubilized CoQ10 also up-regulated antioxidant enzymes such as catalytic subunits of GCL and GSTA2 via activating NF-E2 related factor2 (Nrf2)/antioxidant response element (ARE) in H4IIE hepatoma cells. Moreover, CoQ10's inhibition of α-SMA and TGF-β1 expressions disappeared in Nrf2-null MEF cells. In contrast, Nrf2 overexpression significantly decreased the basal expression levels of α-SMA and TGF-β1 in Nrf2-null MEF cells. These results demonstrated that solubilized CoQ10 inhibited DMN-induced liver fibrosis through suppression of TGF-β1 expression via Nrf2/ARE activation.

  2. Hemophilia as a defect of the tissue factor pathway of blood coagulation: Effect of factors VIII and IX on factor X activation in a continuous-flow reactor

    International Nuclear Information System (INIS)

    Repke, D.; Gemmell, C.H.; Guha, A.; Turitto, V.T.; Nemerson, Y.; Broze, G.J. Jr.

    1990-01-01

    The effect of factors VIII and IX on the ability of the tissue factor-factor VIIa complex to activate factor X was studied in a continuous-flow tubular enzyme reactor. Tissue factor immobilized in a phospholipid bilayer on the inner surface of the tube was exposed to a perfusate containing factors VIIa, VIII, IX, and X flowing at a wall shear rate of 57, 300, or 1130 sec -1 . The addition of factors VIII and IX at their respective plasma concentrations resulted in a further 2 endash-to 3 endash fold increase. The direct activation of factor X by tissue factor-factor VIIa could be virtually eliminated by the lipoprotein-associated coagulation inhibitor. These results suggest that the tissue factor pathway, mediated through factors VIII and IX, produces significant levels of factor Xa even in the presence of an inhibitor of the tissue factor-factor VIIa complex; moreover, the activation is dependent on local shear conditions. These findings are consistent both with a model of blood coagulation in which initiation of the system results from tissue factor and with the bleeding observed in hemophilia

  3. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages.

    Directory of Open Access Journals (Sweden)

    Xiyuan Bai

    Full Text Available Nuclear factor-kappa B (NFκB is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB. However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy.

  4. The role of autolysis loop in determining the specificity of coagulation proteases.

    Science.gov (United States)

    Yang, L; Manithody, C; Rezaie, A R

    2007-08-01

    We recently demonstrated that the substitution of the autolysis loop (residues 143 to 154 in the chymotrypsin numbering system) of activated protein C (APC) with the corresponding loop of factor Xa (fXa) renders the APC mutant (APC/fX143-154) susceptible to inhibition by antithrombin (AT) in the presence of pentasaccharide. Our recent results further indicated, that in addition to an improvement in the reactivity of APC/fX143-154 with AT, both the amidolytic and anti-factor Va activities of the mutant APC have also been significantly increased. Since the autolysis loop of APC is five residues longer than the autolysis loop of fXa, it could not be ascertained whether this loop in the mutant APC specifically interacts with the activated conformation of AT or if a shorter autolysis loop is responsible for a global improvement in the catalytic activity of the mutant protease. To answer this question, we prepared another APC mutant in which the autolysis loop of the protease was replaced with the corresponding loop of trypsin (APC/Tryp143-154). Unlike an approximately 500-fold improvement in the reactivity of APC/fX143-154 with AT in the presence of pentasaccharide, the reactivity of APC/Tryp143-154 with the serpin was improved approximately 10-fold. These results suggest that both the length and structure of residues of the autolysis loop are critical for the specificity of the coagulation protease interaction with AT. Further factor Va inactivation studies with the APC mutants revealed a similar role for the autolysis loop of APC in the interaction with its natural substrate.

  5. The role of autolysis loop in determining the specificity of coagulation proteases

    Directory of Open Access Journals (Sweden)

    L. Yang

    2007-08-01

    Full Text Available We recently demonstrated that the substitution of the autolysis loop (residues 143 to 154 in the chymotrypsin numbering system of activated protein C (APC with the corresponding loop of factor Xa (fXa renders the APC mutant (APC/fX143-154 susceptible to inhibition by antithrombin (AT in the presence of pentasaccharide. Our recent results further indicated, that in addition to an improvement in the reactivity of APC/fX143-154 with AT, both the amidolytic and anti-factor Va activities of the mutant APC have also been significantly increased. Since the autolysis loop of APC is five residues longer than the autolysis loop of fXa, it could not be ascertained whether this loop in the mutant APC specifically interacts with the activated conformation of AT or if a shorter autolysis loop is responsible for a global improvement in the catalytic activity of the mutant protease. To answer this question, we prepared another APC mutant in which the autolysis loop of the protease was replaced with the corresponding loop of trypsin (APC/Tryp143-154. Unlike an ~500-fold improvement in the reactivity of APC/fX143-154 with AT in the presence of pentasaccharide, the reactivity of APC/Tryp143-154 with the serpin was improved ~10-fold. These results suggest that both the length and structure of residues of the autolysis loop are critical for the specificity of the coagulation protease interaction with AT. Further factor Va inactivation studies with the APC mutants revealed a similar role for the autolysis loop of APC in the interaction with its natural substrate.

  6. In vitro evidence of a tissue factor-independent mode of action of recombinant factor VIIa in hemophilia.

    Science.gov (United States)

    Augustsson, Cecilia; Persson, Egon

    2014-11-13

    Successful competition of activated factor VII (FVIIa) with zymogen factor VII (FVII) for tissue factor (TF) and loading of the platelet surface with FVIIa are plausible driving forces behind the pharmacological effect of recombinant FVIIa (rFVIIa) in hemophilia patients. Thrombin generation measurements in platelet-rich hemophilia A plasma revealed competition for TF, which potentially could reduce the effective (r)FVIIa:TF complex concentration and thereby attenuate factor Xa production. However, (auto)activation of FVII apparently counteracted the negative effect of zymogen binding; a small impact was observed at endogenous concentrations of FVII and FVIIa but was virtually absent at pharmacological amounts of rFVIIa. Moreover, corrections of the propagation phase in hemophilia A required rFVIIa concentrations above the range where a physiological level of FVII was capable to downregulate thrombin generation. These data strongly suggest that rFVIIa acts independently of TF in hemophilia therapy and that FVII displacement by rFVIIa is a negligible mechanistic component. © 2014 by The American Society of Hematology.

  7. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    Science.gov (United States)

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy.

  8. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    International Nuclear Information System (INIS)

    Lee, Hae-June; Yoon, Changhwan; Park, Do Joong; Kim, Yeo-Jung; Schmidt, Benjamin; Lee, Yoon-Jin; Tap, William D.; Eisinger-Mathason, T.S. Karin; Choy, Edwin; Kirsch, David G.; Simon, M. Celeste

    2015-01-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm 3 within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm 3 for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature

  9. Analgesic effects of an ethanol extract of the fruits of Xylopia aethiopica (Dunal A. Rich (Annonaceae and the major constituent, xylopic acid in murine models

    Directory of Open Access Journals (Sweden)

    Eric Woode

    2012-01-01

    Full Text Available Background: Fruit extracts of Xylopia aethiopica are used traditionally in the management of pain disorders including rheumatism, headache, colic pain, and neuralgia. Little pharmacological data exists in scientific literature of the effect of the fruit extract and its major diterpene, xylopic acid, on pain. The present study evaluated the analgesic properties of the ethanol extract of X. aethiopica (XAE and xylopic acid (XA, in murine models. Materials and Methods: XAE and XA were assessed in chemical (acetic acid-induced abdominal writhing and formalin tests, thermal (Tail-flick and Hargreaves thermal hyperalgesia tests, and mechanical (Randall-Selitto paw pressure test pain models. Results: XAE and XA exhibited significant analgesic activity in all the pain models used. XAE (30-300 mg kg -1 , p.o. and XA (10-100 mg kg -1 , p.o. inhibited acetic acid-induced visceral nociception, formalin- induced paw pain (both neurogenic and inflammatory, thermal pain as well as carrageenan-induced mechanical and thermal hyperalgesia in animals. Morphine (1-10 mg kg -1 , i.p. and diclofenac (1-10 mg kg -1 , i.p., used as controls, exhibited similar anti-nociceptive activities. XAE and XA did not induce tolerance to their respective anti-nociceptive effects in the formalin test after chronic administration. Morphine tolerance did not also cross-generalize to the analgesic effects of XAE or XA. Conclusions: These findings establish the analgesic properties of the ethanol fruit extract of X. aethiopica and its major diterpene, xylopic acid.

  10. Detroit regional transit study : a study of factors that enable and inhibit effective regional transit.

    Science.gov (United States)

    2014-03-01

    An interdisciplinary team of six faculty members and six students at the University of Detroit Mercy (UDM) conducted a : comprehensive study of the factors enabling or inhibiting development of effective regional transit. Focusing on Metro Detroit an...

  11. SERINC as a Restriction Factor to Inhibit Viral Infectivity and the Interaction with HIV

    Directory of Open Access Journals (Sweden)

    Gracia Viviana Gonzalez-Enriquez

    2017-01-01

    Full Text Available The serine incorporator 5 (SERINC5 is a recently discovered restriction factor that inhibits viral infectivity by preventing fusion. Retroviruses have developed strategies to counteract the action of SERINC5, such as the expression of proteins like negative regulatory factor (Nef, S2, and glycosylated Gag (glycoGag. These accessory proteins downregulate SERINC5 from the plasma membrane for subsequent degradation in the lysosomes. The observed variability in the action of SERINC5 suggests the participation of other elements like the envelope glycoprotein (Env that modulates susceptibility of the virus towards SERINC5. The exact mechanism by which SERINC5 inhibits viral fusion has not yet been determined, although it has been proposed that it increases the sensitivity of the Env by exposing regions which are recognized by neutralizing antibodies. More studies are needed to understand the role of SERINC5 and to assess its utility as a therapeutic strategy.

  12. Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth

    Directory of Open Access Journals (Sweden)

    Li J

    2015-02-01

    Full Text Available Jie Li,1 Chao Zhang,1 Hongchuan Jiang,1 Jiao Cheng21Department of General Surgery, 2Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital, Beijing, People’s Republic of ChinaAbstract: Hypoxia-inducible factor-1 (HIF-1 is a master regulator of the transcriptional response to hypoxia. HIF-1α is one of the most compelling anticancer targets. Andrographolide (Andro was newly identified to inhibit HIF-1 in T47D cells (a half maximal effective concentration [EC50] of 1.03×10-7 mol/L, by a dual-luciferase reporter assay. It suppressed HIF-1α protein and gene accumulation, which was dependent on the inhibition of upstream phosphatidylinositol 3-kinase (PI3K/AKT pathway. It also abrogated the expression of HIF-1 target vascular endothelial growth factor (VEGF gene and protein. Further, Andro inhibited T47D and MDA-MB-231 cell proliferation and colony formation. In addition, it exhibited significant in vivo efficacy and antitumor potential against the MDA-MB-231 xenograft in nude mice. In conclusion, these results highlighted the potential effects of Andro, which inhibits HIF-1, and hence may be developed as an antitumor agent for breast cancer therapy in future.Keywords: Andrographolide (Andro, HIF-1α, inhibit, breast cancer, hypoxia, PI3k/AKT/mTOR pathway

  13. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Kelly, G.; Thomassen, D.G.

    1988-01-01

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  14. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeon-Jae; Lee, Jin-Hwee [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Jung, Yi-Sook, E-mail: yisjung@ajou.ac.kr [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-05-02

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.

  15. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    International Nuclear Information System (INIS)

    Lamy, Sylvie; Ouanouki, Amira; Béliveau, Richard; Desrosiers, Richard R.

    2014-01-01

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for

  16. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, Sylvie, E-mail: lamy.sylvie@uqam.ca; Ouanouki, Amira; Béliveau, Richard; Desrosiers, Richard R.

    2014-03-10

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for

  17. Ghrelin Attenuated Lipotoxicity via Autophagy Induction and Nuclear Factor-κB Inhibition

    Directory of Open Access Journals (Sweden)

    Yuqing Mao

    2015-09-01

    Full Text Available Background/Aims: Nonalcoholic fatty liver disease (NAFLD is the most common chronic liver disease worldwide. Autophagy is associated with NAFLD. Ghrelin is a gut hormone with various functions including energy metabolism and inflammation inhibition. We investigated the therapeutic effect of ghrelin on NAFLD and its association with autophagy. Methods: C57bl/6 mice were fed a high-fat diet for 8 weeks to induce a model of chronic NAFLD, with ghrelin (10 µg/kg administrated subcutaneously twice weekly from weeks 6 to 8. LO2 cells were pretreated with ghrelin (10-8 M before stimulation with free fatty acid (palmitic and oleic acids; 1 mM. Lipid droplets were identified by hematoxylin and eosin and Red O staining and quantified by triglyceride test kits. LC3I/II, an important biomarker protein of autophagy was detected by western blotting, real-time polymerase chain reaction, immunohistochemistry and immunofluorescence. Tumor necrosis factor (TNF-a and interleukin (IL-6 were detected by ELISA and immunohistochemistry. Nuclear factor (NF-κB p65 was detected by western blotting and immunofluorescence. AMP-activated protein kinase (AMPK and mammalian target of rapamycin (mTOR were detected by western blotting. Results: Ghrelin reduced the triglyceride content in high fat diet (HFD group in vivo and free fatty acid (FFA group in vitro. TNF-a and IL-6 were significantly reduced in the ghrelin-treated mice compared with the control group. Autophagy induction was accompanied with intracellular lipid reduction in ghrelin-treated mice. Ghrelin upregulated autophagy via AMPK/mTOR restoration and inhibited translocation of NF-κB into the nucleus. Conclusions: The results indicate that ghrelin attenuates lipotoxicity by autophagy stimulation and NF-κB inhibition.

  18. Memory extinction entails the inhibition of the transcription factor NF-kappaB.

    Directory of Open Access Journals (Sweden)

    Emiliano Merlo

    Full Text Available In contextual memories, an association between a positive or negative reinforcement and the contextual cues where the reinforcement occurs is formed. The re-exposure to the context without reinforcement can lead to memory extinction or reconsolidation, depending on the number of events or duration of a single event of context re-exposure. Extinction involves the temporary waning of the previously acquired conditioned response. The molecular processes underlying extinction and the mechanisms which determine if memory will reconsolidate or extinguish after retrieval are not well characterized, particularly the role of transcription factors and gene expression. Here we studied the participation of a transcription factor, NF-kappaB, in memory extinction. In the crab context-signal memory, the activation of NF-kappaB plays a critical role in consolidation and reconsolidation, memory processes that are well characterized in this model. The administration of a NF-kappaB inhibitor, sulfasalazine prior to extinction session impeded spontaneous recovery. Moreover, reinstatement experiments showed that the original memory was not affected and that NF-kappaB inhibition by sulfasalazine impaired spontaneous recovery strengthening the ongoing memory extinction process. Interestingly, in animals with fully consolidated memory, a brief re-exposure to the training context induced neuronal NF-kappaB activation and reconsolidation, while prolonged re-exposure induced NF-kappaB inhibition and memory extinction. These data constitutes a novel insight into the molecular mechanisms involved in the switch between memory reconsolidation and extinction. Moreover, we propose the inhibition of NF-kappaB as the engaged mechanism underlying extinction, supporting a novel approach for the pharmacological enhancement of this memory process. The accurate description of the molecular mechanisms that support memory extinction is potentially useful for developing new strategies

  19. Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration.

    Science.gov (United States)

    Lee, Christopher Sd; Burnsed, Olivia A; Raghuram, Vineeth; Kalisvaart, Jonathan; Boyan, Barbara D; Schwartz, Zvi

    2012-08-24

    Adipose stem cells (ASCs) secrete many trophic factors that can stimulate tissue repair, including angiogenic factors, but little is known about how ASCs and their secreted factors influence cartilage regeneration. Therefore, the aim of this study was to determine the effects ASC-secreted factors have in repairing chondral defects. ASCs isolated from male Sprague Dawley rats were cultured in monolayer or alginate microbeads supplemented with growth (GM) or chondrogenic medium (CM). Subsequent co-culture, conditioned media, and in vivo cartilage defect studies were performed. ASC monolayers and microbeads cultured in CM had decreased FGF-2 gene expression and VEGF-A secretion compared to ASCs cultured in GM. Chondrocytes co-cultured with GM-cultured ASCs for 7 days had decreased mRNAs for col2, comp, and runx2. Chondrocytes treated for 12 or 24 hours with conditioned medium from GM-cultured ASCs had reduced sox9, acan, and col2 mRNAs; reduced proliferation and proteoglycan synthesis; and increased apoptosis. ASC-conditioned medium also increased endothelial cell tube lengthening whereas conditioned medium from CM-cultured ASCs had no effect. Treating ASCs with CM reduced or abolished these deleterious effects while adding a neutralizing antibody for VEGF-A eliminated ASC-conditioned medium induced chondrocyte apoptosis and restored proteoglycan synthesis. FGF-2 also mitigated the deleterious effects VEGF-A had on chondrocyte apoptosis and phenotype. When GM-grown ASC pellets were implanted in 1 mm non-critical hyaline cartilage defects in vivo, cartilage regeneration was inhibited as evaluated by radiographic and equilibrium partitioning of an ionic contrast agent via microCT imaging. Histology revealed that defects with GM-cultured ASCs had no tissue ingrowth from the edges of the defect whereas empty defects and defects with CM-grown ASCs had similar amounts of neocartilage formation. ASCs must be treated to reduce the secretion of VEGF-A and other factors that

  20. (Biodegradable Ionomeric Polyurethanes Based on Xanthan: Synthesis, Properties, and Structure

    Directory of Open Access Journals (Sweden)

    T. V. Travinskaya

    2017-01-01

    Full Text Available New (biodegradable environmentally friendly film-forming ionomeric polyurethanes (IPU based on renewable biotechnological polysaccharide xanthan (Xa have been obtained. The influence of the component composition on the colloidal-chemical and physic-mechanical properties of IPU/Xa and based films, as well as the change of their properties under the influence of environmental factors, have been studied. The results of IR-, PMS-, DMA-, and X-ray scattering study indicate that incorporation of Xa into the polyurethane chain initiates the formation of a new polymer structure different from the structure of the pure IPU (matrix: an amorphous polymer-polymer microdomain has occurred as a result of the chemical interaction of Xa and IPU. It predetermines the degradation of the IPU/Xa films as a whole, unlike the mixed polymer systems, and plays a key role in the improvement of material performance. The results of acid, alkaline hydrolysis, and incubation into the soil indicate the increase of the intensity of degradation processes occurring in the IPU/Xa in comparison with the pure IPU. It has been shown that the introduction of Xa not only imparts the biodegradability property to polyurethane, but also improves the mechanical properties.

  1. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice

    Directory of Open Access Journals (Sweden)

    Takamitsu Sasaki

    2007-12-01

    Full Text Available The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor (VEGFR signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α and vascular endothelial growth factor (VEGF but were negative for EGFR, human epidermal growth factor receptor 2 (HER2, VEGFR. Double immunofluorescence staining revealed that tumorassociated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR, phosphorylated VEGFR (pVEGFR. Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01; this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001. AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, increased the level of apoptosis in both tumorassociated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer.

  2. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-June [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Yoon, Changhwan [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Park, Do Joong [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Surgery, Seoul National University Bundang Hospital, Sungnam (Korea, Republic of); Kim, Yeo-Jung [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Schmidt, Benjamin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Lee, Yoon-Jin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Tap, William D. [Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Eisinger-Mathason, T.S. Karin [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Choy, Edwin [Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Kirsch, David G. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Simon, M. Celeste [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Howard Hughes Medical Institute (United States); and others

    2015-03-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm{sup 3} within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm{sup 3} for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature.

  3. The distressed (Type D) personality factor of social inhibition, but not negative affectivity, enhances eyeblink conditioning.

    Science.gov (United States)

    Allen, M T; Handy, J D; Blankenship, M R; Servatius, R J

    2018-06-01

    Recent work has focused on a learning diathesis model in which specific personality factors such as behavioral inhibition (BI) may influence associative learning and in turn increase risk for the development of anxiety disorders. We have found in a series of studies that individuals self-reporting high levels of BI exhibit enhanced acquisition of conditioned eyeblinks. In the study reported here, hypotheses were extended to include distressed (Type D) personality which has been found to be related to BI. Type D personality is measured with the DS-14 scale which includes two subscales measuring negative affectivity (NA) and social inhibition (SI). We hypothesized that SI, which is similar to BI, would result in enhanced acquisition while the effect of NA is unclear. Eighty nine participants completed personality inventories including the Adult Measure of Behavioral Inhibition (AMBI) and DS-14. All participants received 60 acquisition trials with a 500 ms, 1000 Hz, tone CS and a co-terminating 50 ms, 5 psi corneal airpuff US. Participants received either 100% CS-US paired trials or a schedule of partial reinforcement where 50% US alone trials were intermixed into CS-US training. Acquisition of CRs did not differ between the two training protocols. Whereas BI was significantly related to Type D, SI, and NA, only BI and SI individuals exhibited enhanced acquisition of conditioned eyeblinks as compared to non-inhibited individuals. Personality factors now including social inhibition can be used to identify individuals who express enhanced associative learning which lends further support to a learning diathesis model of anxiety disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Xanthomonas oryzae pv. oryzae TALE proteins recruit OsTFIIAγ1 to compensate for the absence of OsTFIIAγ5 in bacterial blight in rice.

    Science.gov (United States)

    Ma, Wenxiu; Zou, Lifang; Ji, Zhiyuan; Xu, Xiameng; Xu, Zhengyin; Yang, Yangyang; Alfano, James R; Chen, Gongyou

    2018-04-28

    Xanthomonas oryzae pv. oryzae (Xoo), causal agent of bacterial blight (BB) of rice, uses transcription activator-like effectors (TALEs) to interact with the basal transcription factor gama subunit OsTFIIAγ5 (Xa5) and activates transcription of host genes. However, how OsTFIIAγ1, the other OsTFIIAγ protein, functions in the presence of TALEs remains unclear. In this study, we show that OsTFIIAγ1 plays a compensatory role in the absence of Xa5. The expression of OsTFIIAγ1, which is activated by TALE PthXo7, increased the expression of host genes targeted by avirulent and virulent TALEs. Defective OsTFIIAγ1 rice lines showed reduced expression of the TALE-targeted susceptibility (S) genes, OsSWEET11 and OsSWEET14, which resulted in increased BB resistance. Selected TALEs (PthXo1, AvrXa7, and AvrXa27) were evaluated for interactions with OsTFIIAγ1, Xa5 and xa5 (naturally-occurring mutant form of Xa5) using biomolecular fluorescence complementation (BiFC) and microscale thermophoresis (MST). BiFC and MST demonstrated that the three TALEs bind Xa5 and OsTFIIAγ1 with a stronger affinity than xa5. These results provide insight into the complex roles of OsTFIIAγ1 and OsTFIIAγ5 in TALE-mediated host gene transcription. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  5. MiR-34a inhibits colon cancer proliferation and metastasis by inhibiting platelet-derived growth factor receptor α.

    Science.gov (United States)

    Li, Chunyan; Wang, Yulin; Lu, Shuming; Zhang, Zhuqing; Meng, Hua; Liang, Lina; Zhang, Yan; Song, Bo

    2015-11-01

    The microRNA (miRNA), miR‑34a is significant in colon cancer progression. In the present study, the role of miR‑34a in colon cancer cell proliferation and metastasis was investigated. It was found that the expression of miR‑34a in colon cancer tissues and cell lines was lower when compared with that of normal tissues and cells. Further research demonstrated that miR‑34a inhibited cell proliferation, induced G1 phase arrest, and suppressed metastasis and epithelial mesenchymal transition in colon cancer cells. Bioinformatic prediction indicated that platelet‑derived growth factor receptor α (PDGFRA) was a potential target gene of miR‑34a and a luciferase assay identified that PDGFRA was a novel direct target gene of miR‑34a. In addition, assays of western blot analyses and quantitative reverse‑transcription polymerase chain reaction confirmed that miR‑34a decreased PDGFRA mRNA expression and protein levels in colon cancer cells. Assessment of cellular function indicated that miR‑34a inhibited colon cancer progression via PDGFRA. These findings demonstrate that miR‑34a may act as a negative regulator in colon cancer by targeting PDGFRA.

  6. Rewiring of an Epithelial Differentiation Factor, miR-203, to Inhibit Human Squamous Cell Carcinoma Metastasis

    Directory of Open Access Journals (Sweden)

    Nathan Benaich

    2014-10-01

    Full Text Available Summary: Metastatic colonization of distant organs underpins the majority of human-cancer-related deaths, including deaths from head and neck squamous cell carcinoma (HNSCC. We report that miR-203, a miRNA that triggers differentiation in multilayered epithelia, inhibits multiple postextravasation events during HNSCC lung metastasis. Inducible reactivation of miR-203 in already established lung metastases reduces the overall metastatic burden. Using an integrated approach, we reveal that miR-203 inhibits metastasis independently of its effects on differentiation. In vivo genetic reconstitution experiments show that miR-203 inhibits lung metastasis by suppressing the prometastatic activities of three factors involved in cytoskeletal dynamics (LASP1, extracellular matrix remodeling (SPARC, and cell metabolism (NUAK1. Expression of miR-203 and its downstream effectors correlates with HNSCC overall survival outcomes, indicating the therapeutic potential of targeting this signaling axis. : Benaich et al. have identified miR-203, a microRNA that triggers differentiation in multilayered epithelia, as an inhibitor of lung metastasis in head and neck squamous cell carcinoma (HNSCC cells. They show that miR-203 inhibits metastasis independently of its effects on differentiation. Rather, miR-203 suppresses the prometastatic activities of three factors involved in cytoskeletal dynamics (LASP1, extracellular matrix remodeling (SPARC, and cell metabolism (NUAK1. Expression of miR-203 and its downstream effectors correlates with survival in HNSCC patients.

  7. Procoagulant, tissue factor-bearing microparticles in bronchoalveolar lavage of interstitial lung disease patients: an observational study.

    Directory of Open Access Journals (Sweden)

    Federica Novelli

    Full Text Available Coagulation factor Xa appears involved in the pathogenesis of pulmonary fibrosis. Through its interaction with protease activated receptor-1, this protease signals myofibroblast differentiation in lung fibroblasts. Although fibrogenic stimuli induce factor X synthesis by alveolar cells, the mechanisms of local posttranslational factor X activation are not fully understood. Cell-derived microparticles are submicron vesicles involved in different physiological processes, including blood coagulation; they potentially activate factor X due to the exposure on their outer membrane of both phosphatidylserine and tissue factor. We postulated a role for procoagulant microparticles in the pathogenesis of interstitial lung diseases. Nineteen patients with interstitial lung diseases and 11 controls were studied. All subjects underwent bronchoalveolar lavage; interstitial lung disease patients also underwent pulmonary function tests and high resolution CT scan. Microparticles were enumerated in the bronchoalveolar lavage fluid with a solid-phase assay based on thrombin generation. Microparticles were also tested for tissue factor activity. In vitro shedding of microparticles upon incubation with H₂O₂ was assessed in the human alveolar cell line, A549 and in normal bronchial epithelial cells. Tissue factor synthesis was quantitated by real-time PCR. Total microparticle number and microparticle-associated tissue factor activity were increased in interstitial lung disease patients compared to controls (84±8 vs. 39±3 nM phosphatidylserine; 293±37 vs. 105±21 arbitrary units of tissue factor activity; mean±SEM; p<.05 for both comparisons. Microparticle-bound tissue factor activity was inversely correlated with lung function as assessed by both diffusion capacity and forced vital capacity (r² = .27 and .31, respectively; p<.05 for both correlations. Exposure of lung epithelial cells to H₂O₂ caused an increase in microparticle-bound tissue factor

  8. Role of pigment epithelium-derived factor in the involution of hemangioma: Autocrine growth inhibition of hemangioma-derived endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Jin [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Yun, Jang-Hyuk; Heo, Jong-Ik [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Lee, Eun Hui [Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Min, Hye Sook [Department of Pathology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Choi, Tae Hyun, E-mail: psthchoi@snu.ac.kr [Department of Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Department of Pediatric Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Cho, Chung-Hyun, E-mail: iamhyun@snu.ac.kr [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Cancer Research Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2014-11-14

    Highlights: • PEDF was expressed and induced during the involuting phase of IH. • PEDF inhibited the cell growth of the involuting HemECs in an autocrine manner. • PEDF suppression restored the impaired cell growth of the involuting HemECs. - Abstract: Hemangioma is a benign tumor derived from abnormal blood vessel growth. Unlike other vascular tumor counterparts, a hemangioma is known to proliferate during its early stage but it is followed by a stage of involution where regression of the tumor occurs. The critical onset leading to the involution of hemangioma is currently not well understood. This study focused on the molecular identities of the involution of hemangioma. We demonstrated that a soluble factor released from the involuting phase of hemangioma-derived endothelial cells (HemECs) and identified pigment epithelium-derived factor (PEDF) as an anti-angiogenic factor that was associated with the growth inhibition of the involuting HemECs. The growth inhibition of the involuting HemECs was reversed by suppression of PEDF in the involuting HemECs. Furthermore, we found that PEDF was more up-regulated in the involuting phase of hemangioma tissues than in the proliferating or the involuted. Taken together, we propose that PEDF accelerates the involution of hemangioma by growth inhibition of HemECs in an autocrine manner. The regulatory mechanism of PEDF expression could be a potential therapeutic target to treat hemangiomas.

  9. Platelet-released growth factors inhibit proliferation of primary keratinocytes in vitro.

    Science.gov (United States)

    Bayer, Andreas; Tohidnezhad, Mersedeh; Berndt, Rouven; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Simanski, Maren; Gläser, Regine; Harder, Jürgen

    2018-01-01

    Autologous thrombocyte concentrate lysates as platelet-released growth factors (PRGF) or Vivostat Platelet Rich Fibrin (PRF ® ) represent important tools in modern wound therapy, especially in the treatment of chronic, hard-to-heal or infected wounds. Nevertheless, underlying cellular and molecular mechanisms of the beneficial clinical effects of a local wound therapy with autologous thrombocyte concentrate lysates are poorly understood. Recently, we have demonstrated that PRGF induces antimicrobial peptides in primary keratinocytes and accelerates keratinocytes' differentiation. In the present study we analyzed the influence of PRGF on primary human keratinocytes' proliferation. Using the molecular proliferation marker Ki-67 we observed a concentration- and time dependent inhibition of Ki-67 gene expression in PRGF treated primary keratinocytes. These effects were independent from the EGFR- and the IL-6-R pathway. Inhibition of primary keratinocytes' proliferation by PRGF treatment was confirmed in colorimetric cell proliferation assays. Together, these data indicate that the clinically observed positive effects of autologous thrombocytes concentrates in the treatment of chronic, hard-to-heal wounds are not based on an increased keratinocytes proliferation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization

    Science.gov (United States)

    Stafford, Jason H.; Hirai, Takahisa; Deng, Lei; Chernikova, Sophia B.; Urata, Kimiko; West, Brian L.; Brown, J. Martin

    2016-01-01

    Background Glioblastoma (GBM) may initially respond to treatment with ionizing radiation (IR), but the prognosis remains extremely poor because the tumors invariably recur. Using animal models, we previously showed that inhibiting stromal cell–derived factor 1 signaling can prevent or delay GBM recurrence by blocking IR-induced recruitment of myeloid cells, specifically monocytes that give rise to tumor-associated macrophages. The present study was aimed at determining if inhibiting colony stimulating factor 1 (CSF-1) signaling could be used as an alternative strategy to target pro-tumorigenic myeloid cells recruited to irradiated GBM. Methods To inhibit CSF-1 signaling in myeloid cells, we used PLX3397, a small molecule that potently inhibits the tyrosine kinase activity of the CSF-1 receptor (CSF-1R). Combined IR and PLX3397 therapy was compared with IR alone using 2 different human GBM intracranial xenograft models. Results GBM xenografts treated with IR upregulated CSF-1R ligand expression and increased the number of CD11b+ myeloid-derived cells in the tumors. Treatment with PLX3397 both depleted CD11b+ cells and potentiated the response of the intracranial tumors to IR. Median survival was significantly longer for mice receiving combined therapy versus IR alone. Analysis of myeloid cell differentiation markers indicated that CSF-1R inhibition prevented IR-recruited monocyte cells from differentiating into immunosuppressive, pro-angiogenic tumor-associated macrophages. Conclusion CSF-1R inhibition may be a promising strategy to improve GBM response to radiotherapy. PMID:26538619

  11. Organizational-level interventions in small and medium-sized enterprises: Enabling and inhibiting factors in the PoWRS program

    DEFF Research Database (Denmark)

    Ipsen, Christine; Gish, Liv; Poulsen, Signe

    2015-01-01

    Work-related stress in small and medium-sized enterprises (SMEs) is an increasing problem. However, knowledge regarding organizational-level interventions in SMEs is limited, and SMEs often lack professional facilitator resources to assist in change processes. An intervention program developed...... for large corporations, the PoWRS (Prevention of Work-Related Stress) program, has been modified to fit the conditions in SMEs, i.e., appointing employees as in-house facilitators. The aim of this paper is to examine the enablers and inhibiting factors of the PoWRS program when applied in four Danish SMEs....... Three out of four of the case companies succeeded in implementing the program. The enablers and inhibiting factors related to three themes: persons and roles, program components, and organizational context. Findings show that the primary enabling factors were the in-house employee facilitators...

  12. Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) through inhibiting protein synthesis.

    Science.gov (United States)

    Lee, Dae-Hee; Lee, Yong J

    2008-10-01

    Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells and induce the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) in normoxia. In this study, under hypoxic conditions (1% O(2)), we examined the effect of quercetin on the intracellular level of HIF-1alpha and extracellular level of vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Surprisingly, we observed that quercetin suppressed the HIF-1alpha accumulation during hypoxia in human prostate cancer LNCaP, colon cancer CX-1, and breast cancer SkBr3 cells. Quercetin treatment also significantly reduced hypoxia-induced secretion of VEGF. Suppression of HIF-1alpha accumulation during treatment with quercetin in hypoxia was not prevented by treatment with 26S proteasome inhibitor MG132 or PI3K inhibitor LY294002. Interestingly, hypoxia (1% O(2)) in the presence of 100 microM quercetin inhibited protein synthesis by 94% during incubation for 8 h. Significant quercetin concentration-dependent inhibition of protein synthesis and suppression of HIF-1alpha accumulation were observed under hypoxic conditions. Treatment with 100 microM cycloheximide, a protein synthesis inhibitor, replicated the effect of quercetin by inhibiting HIF-1alpha accumulation during hypoxia. These results suggest that suppression of HIF-1alpha accumulation during treatment with quercetin under hypoxic conditions is due to inhibition of protein synthesis. (c) 2008 Wiley-Liss, Inc.

  13. Poly(ADP-ribose) polymerase inhibition reduces tumor necrosis factor-induced inflammatory response in rheumatoid synovial fibroblasts

    NARCIS (Netherlands)

    García, S.; Bodaño, A.; Pablos, J. L.; Gómez-Reino, J. J.; Conde, C.

    2008-01-01

    To investigate the effect of poly(ADP-ribose) polymerase (PARP) inhibition on the production of inflammatory mediators and proliferation in tumour necrosis factor (TNF)-stimulated fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA). Cultured FLS from patients with RA were

  14. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Directory of Open Access Journals (Sweden)

    Abel Martin-Garrido

    Full Text Available In adult tissue, vascular smooth muscle cells (VSMCs exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ and the pro-proliferative cytokine platelet derived growth factor (PDGF. In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  15. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Science.gov (United States)

    Martin-Garrido, Abel; Williams, Holly C; Lee, Minyoung; Seidel-Rogol, Bonnie; Ci, Xinpei; Dong, Jin-Tang; Lassègue, Bernard; Martín, Alejandra San; Griendling, Kathy K

    2013-01-01

    In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  16. INHIBITION IN SPEAKING PERFORMANCE

    OpenAIRE

    Humaera, Isna

    2015-01-01

    The most common problem encountered by the learner in the languageacquisition process is learner inhibition. Inhibition refers to a temperamentaltendency to display wariness, fearfulness, or restrain in response tounfamiliar people, objects, and situations. There are some factors that causeinhibition, such as lack of motivation, shyness, self-confidence, self-esteem,and language ego. There are also levels of inhibition, it refers to kinds ofinhibition and caused of inhibition itself. Teacher ...

  17. Inhibition of Angiogenic Factor Production from Murine Mast Cells by an Antiallergic Agent (Epinastine Hydrochloride In Vitro

    Directory of Open Access Journals (Sweden)

    K. Asano

    2008-01-01

    Full Text Available Angiogenesis is an important event both in the development of allergic inflammatory responses and in the pathophysiology of tissue remodeling in allergic diseases. In the present study, therefore, we examined the influence of antihistamines on angiogenesis through the choice of epinastine hydrochloride (EP and murine mast cells in vitro. Mast cells (5×105 cells/mL presensitized with murine IgE specific for ovalbumin (OVA were stimulated with 10 ng/mL OVA in the presence of various concentrations of EP for 4 hours. The levels of angiogenesis factors, keratinocyte-derived chemokine (KC, tumor necrosis factor-α (TNF, and vascular endothelial growth factor (VEGF in culture supernatants, were examined by ELISA. We also examined mRNA expression for the angiogenesis factors by RT-PCR. EP significantly inhibited the production of KC, TNF, and VEGF induced by IgE-dependent mechanism at more than 25 ng/mL. Semiquantitative analysis using RT-PCR showed that EP also significantly reduced mRNA expressions for KC, TNF, and VEGF. These results strongly suggest that EP suppresses angiogenesis factor production through the inhibition of mRNA expression in mast cells and results in favorable modification of clinical conditions of allergic diseases.

  18. Icotinib inhibits the invasion of Tca8113 cells via downregulation of nuclear factor κB-mediated matrix metalloproteinase expression.

    Science.gov (United States)

    Yang, Cailing; Yan, Jianguo; Yuan, Guoyan; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Cui, Weigang

    2014-09-01

    Icotinib is an epidermal growth factor receptor tyrosine kinase inhibitor, which has been revealed to inhibit proliferation in tumor cells. However, the effect of icotinib on cancer cell metastasis remains to be explained. This study examines the effect of icotinib on the migration and invasion of squamous cells of tongue carcinoma (Tca8113 cells) in vitro . The results of the Boyden chamber invasion assay demonstrated that icotinib reduced cell invasion, suppressed the protein levels of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and increased the expression of tissue inhibitor of metalloproteinase-1. In addition, icotinib was found to significantly decrease the protein levels of nuclear factor κB (NF-κB) p65, which suggested that icotinib inhibits NF-κB activity. Furthermore, treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate, suppressed cell invasion and MMP-2 expression. These results suggested that icotinib inhibits the invasion of Tca8113 cells by downregulating MMP via the inactivation of the NF-κB signaling pathways.

  19. Induction of autocrine factor inhibiting cell motility from murine B16-BL6 melanoma cells by alpha-melanocyte stimulating hormone.

    Science.gov (United States)

    Murata, J; Ayukawa, K; Ogasawara, M; Watanabe, H; Saiki, I

    1999-03-15

    We have previously reported that neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) successfully inhibited Matrigel invasion and haptotactic migration of B16-BL6 melanoma cells towards both fibronectin and laminin without affecting their growth. In the present study, we investigated the inhibitory mechanism of tumor cell motility by alpha-MSH. Alpha-MSH significantly blocked the autocrine motility factor (AMF)-enhanced cell motility. However, alpha-MSH did neither prevent the secretion of AMF from B16-BL6 cells nor alter the expression level of AMF receptor (gp78). On the other hand, alpha-MSH induced the secretion of the motility inhibitory factor(s) from B16-BL6 cells in a concentration- and time-dependent manner. The induction of the motility inhibitor(s) was proportional to increasing levels of intracellular cAMP induced by alpha-MSH as well as forskolin, and the activity was abolished by an adenylate cyclase inhibitor, 2',5'-dideoxyadenosine (DDA). The motility-inhibiting activity in conditioned medium (CM) from alpha-MSH-treated B16-BL6 cells was found to have a m.w. below 3 kDa after fractionation. This activity was abolished by boiling but insensitive to trypsin. The treatment of tumor cells with cycloheximide reduced the activity in alpha-MSH-stimulated CM. Our results suggest that alpha-MSH inhibited the motility of B16-BL6 cells through induction of autocrine factor(s).

  20. Low-temperature magnetic ordering in the perovskites Pr 1-xA xCoO 3 (A=Ca, Sr)

    Science.gov (United States)

    Deac, Iosif G.; Tetean, Romulus; Balasz, Istvan; Burzo, Emil

    2010-05-01

    The magnetic and electrical properties of polycrystalline Pr 1-xA xCoO 3 cobaltites with A=Ca, Sr and 0≤ x≤0.5 were studied in the temperature range 4 K≤ T≤1000 K and field up to 7 T. The X-ray analyses show the presence of only one phase having monoclinic or orthorhombic symmetry. The magnetic measurements indicate that the Ca-doped samples have at low temperatures, similar properties to the frustrated magnetic materials. PrCoO 3 is a paramagnetic insulator in the range from 4 to 1000 K. The Sr-doped cobaltites exhibit two phase transitions: a paramagnetic-ferromagnetic (or magnetic phase separated state) phase transition at about 240 K and a second one at about 100 K. The magnetic measurements suggest the presence of magnetic clusters and a change in the nature of magnetic coupling between Co ions at low temperatures. A semiconducting type behavior and high negative magnetoresistance was found for the Ca-doped samples, while the Sr-doped ones were metallic and with negligible magnetoresistance. The results are analyzed in the frame of a phase separation scenario in the presence of the spin-state transitions of Co ions.

  1. 14-3-3theta protects against neurotoxicity in a cellular Parkinson's disease model through inhibition of the apoptotic factor Bax.

    Directory of Open Access Journals (Sweden)

    Sunny R Slone

    Full Text Available Disruption of 14-3-3 function by alpha-synuclein has been implicated in Parkinson's disease. As 14-3-3s are important regulators of cell death pathways, disruption of 14-3-3s could result in the release of pro-apoptotic factors, such as Bax. We have previously shown that overexpression of 14-3-3θ reduces cell loss in response to rotenone and MPP(+ in dopaminergic cell culture and reduces cell loss in transgenic C. elegans that overexpress alpha-synuclein. In this study, we investigate the mechanism for 14-3-3θ's neuroprotection against rotenone toxicity. While 14-3-3s can inhibit many pro-apoptotic factors, we demonstrate that inhibition of one factor in particular, Bax, is important to 14-3-3s' protection against rotenone toxicity in dopaminergic cells. We found that 14-3-3θ overexpression reduced Bax activation and downstream signaling events, including cytochrome C release and caspase 3 activation. Pharmacological inhibition or shRNA knockdown of Bax provided protection against rotenone, comparable to 14-3-3θ's neuroprotective effects. A 14-3-3θ mutant incapable of binding Bax failed to protect against rotenone. These data suggest that 14-3-3θ's neuroprotective effects against rotenone are at least partially mediated by Bax inhibition and point to a potential therapeutic role of 14-3-3s in Parkinson's disease.

  2. Stroke Prevention: Managing Modifiable Risk Factors

    Directory of Open Access Journals (Sweden)

    Silvia Di Legge

    2012-01-01

    Full Text Available Prevention plays a crucial role in counteracting morbidity and mortality related to ischemic stroke. It has been estimated that 50% of stroke are preventable through control of modifiable risk factors and lifestyle changes. Antihypertensive treatment is recommended for both prevention of recurrent stroke and other vascular events. The use of antiplatelets and statins has been shown to reduce the risk of recurrent stroke and other vascular events. Angiotensin-converting enzyme inhibitors (ACEIs and angiotensin II receptor blockers (ARBs are indicated in stroke prevention because they also promote vascular health. Effective secondary-prevention strategies for selected patients include carotid revascularization for high-grade carotid stenosis and vitamin K antagonist treatment for atrial fibrillation. The results of recent clinical trials investigating new anticoagulants (factor Xa inhibitors and direct thrombin inhibitors clearly indicate alternative strategies in stroke prevention for patients with atrial fibrillation. This paper describes the current landscape and developments in stroke prevention with special reference to medical treatment in secondary prevention of ischemic stroke.

  3. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  4. Aromatic hydrocarbon receptor inhibits lysophosphatidic acid-induced vascular endothelial growth factor-A expression in PC-3 prostate cancer cells

    International Nuclear Information System (INIS)

    Wu, Pei-Yi; Lin, Yueh-Chien; Lan, Shun-Yan; Huang, Yuan-Li; Lee, Hsinyu

    2013-01-01

    Highlights: •LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT. •PI3K mediated LPA-induced VEGF-A expression. •AHR signaling inhibited LPA-induced VEGF-A expression in PC-3 cells. -- Abstract: Lysophosphatidic acid (LPA) is a lipid growth factor with multiple biological functions and has been shown to stimulate cancer cell secretion of vascular endothelial growth factor-A (VEGF-A) and trigger angiogenesis. Hypoxia-inducible factor-1 (HIF-1), a heterodimer consisting of HIF-1α and HIF-1β (also known as aromatic hydrocarbon receptor nuclear translocator (ARNT)) subunits, is an important regulator of angiogenesis in prostate cancer (PC) through the enhancement of VEGF-A expression. In this study, we first confirmed the ability of LPA to induce VEGF-A expression in PC-3 cells and then validated that LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT through phosphatidylinositol 3-kinase activation. Aromatic hydrocarbon receptor (AHR), a receptor for dioxin-like compounds, functions as a transcription factor through dimerization with ARNT and was found to inhibit prostate carcinogenesis and vanadate-induced VEGF-A production. Since ARNT is a common dimerization partner of AHR and HIF-1α, we hypothesized that AHR might suppress LPA-induced VEGF-A expression in PC-3 cells by competing with HIF-1α for ARNT. Here we demonstrated that overexpression and ligand activation of AHR inhibited HIF-1-mediated VEGF-A induction by LPA treatment of PC-3 cells. In conclusion, our results suggested that AHR activation may inhibit LPA-induced VEGF-A expression in PC-3 cells by attenuating HIF-1α signaling, and subsequently, suppressing angiogenesis and metastasis of PC. These results suggested that AHR presents a potential therapeutic target for the prevention of PC metastasis

  5. Up-regulation of insulin-like growth factor 2 by ketamine requires glycogen synthase kinase-3 inhibition

    Science.gov (United States)

    Grieco, Steven F.; Cheng, Yuyan; Eldar-Finkelman, Hagit; Jope, Richard S.; Beurel, Eléonore

    2016-01-01

    An antidepressant dose of the rapidly-acting ketamine inhibits glycogen synthase kinase-3 (GSK3) in mouse hippocampus, and this inhibition is required for the antidepressant effect of ketamine in learned helplessness depression-like behavior. Here we report that treatment with an antidepressant dose of ketamine (10 mg/kg) increased expression of insulin-like growth factor 2 (IGF2) in mouse hippocampus, an effect that required ketamine-induced inhibition of GSK3. Ketamine also inhibited hippocampal GSK3 and increased expression of hippocampal IGF2 in mice when administered after the induction of learned helplessness. Treatment with the specific GSK3 inhibitor L803-mts was sufficient to up-regulate hippocampal IGF2 expression. Administration of IGF2 siRNA reduced ketamine's antidepressant effect in the learned helplessness paradigm. Mice subjected to the learned helplessness paradigm were separated into two groups, those that were resilient (non-depressed) and those that were susceptible (depressed). Non-depressed resilient mice displayed higher expression of IGF2 than susceptible mice. These results indicate that IGF2 contributes to ketamine's antidepressant effect and that IGF2 may confer resilience to depression-like behavior. PMID:27542584

  6. Should we stop thinking about inhibition? Searching for individual and age differences in inhibition ability.

    Science.gov (United States)

    Rey-Mermet, Alodie; Gade, Miriam; Oberauer, Klaus

    2018-04-01

    Inhibition is often conceptualized as a unitary construct reflecting the ability to ignore and suppress irrelevant information. At the same time, it has been subdivided into inhibition of prepotent responses (i.e., the ability to stop dominant responses) and resistance to distracter interference (i.e., the ability to ignore distracting information). The present study investigated the unity and diversity of inhibition as a psychometric construct, and tested the hypothesis of an inhibition deficit in older age. We measured inhibition in young and old adults with 11 established laboratory tasks: antisaccade, stop-signal, color Stroop, number Stroop, arrow flanker, letter flanker, Simon, global-local, positive and negative compatibility tasks, and n-2 repetition costs in task switching. In both age groups, the inhibition measures from individual tasks had good reliabilities, but correlated only weakly among each other. Structural equation modeling identified a 2-factor model with factors for inhibition of prepotent responses and resistance to distracter interference. Older adults scored worse in the inhibition of prepotent response, but better in the resistance to distracter interference. However, the model had low explanatory power. Together, these findings call into question inhibition as a psychometric construct and the hypothesis of an inhibition deficit in older age. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Alternative dosing of prophylactic enoxaparin in the trauma patient: is more the answer?

    Science.gov (United States)

    Kopelman, Tammy R; O'Neill, Patrick J; Pieri, Paola G; Salomone, Jeffrey P; Hall, Scott T; Quan, Asia; Wells, Jordan R; Pressman, Melissa S

    2013-12-01

    Inadequate anti-factor Xa levels and increased venous thromboembolic events occur in trauma patients receiving standard prophylactic enoxaparin dosing. The aim of this study was to test the hypothesis that higher dosing (40 mg twice daily) would improve peak anti-Xa levels and decrease venous thromboembolism. A retrospective review was performed of trauma patients who received prophylactic enoxaparin and peak anti-Xa levels over 27 months. Patients were divided on the basis of dose: group A received 30 mg twice daily, and group B received 40 mg twice daily. Demographics and rates of venous thromboembolism were compared between dose groups and patients with inadequate or adequate anti-Xa levels. One hundred twenty-four patients were included, 90 in group A and 34 in group B. Demographics were similar, except that patients in group B had a higher mean body weight. Despite this, only 9% of group B patients had inadequate anti-Xa levels, compared with 33% of those in group A (P = .01). Imaging studies were available in 69 patients and revealed 8 venous thromboembolic events (P = NS, group A vs group B) with significantly more venous thromboembolic events occurring in patients with low anti-Xa levels (P = .02). Although higher dosing of enoxaparin led to improved anti-Xa levels, this did not equate to a statistical decrease in venous thromboembolism. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. PANC-1 pancreatic cancer cell growth inhibited by cucurmosin alone and in combination with an epidermal growth factor receptor-targeted drug.

    Science.gov (United States)

    Wang, Congfei; Yang, Aiqin; Zhang, Baoming; Yin, Qiang; Huang, Heguang; Chen, Minghuang; Xie, Jieming

    2014-03-01

    To investigate the inhibition of PANC-1 pancreatic cancer cell growth by cucurmosin (CUS) and its possible mechanism. We observed the inhibition of PANC-1 cell growth by sulforhodamine B and colony-forming experiments in vitro and established nonobese diabetic/severe combined immunodeficiency mouse subcutaneous tumor models in vivo. We used Western blot to analyze protein levels related to apoptosis and epidermal growth factor receptor (EGFR) signaling pathways after drug intervention, whereas the messenger RNA expression of EGFR was analyzed by quantitative real-time polymerase chain reaction. Sulforhodamine B and colony-forming experiments indicated that CUS inhibited PANC-1 cell proliferation in a dose- and time-dependent manner. A stronger inhibitory effect was observed when CUS was combined with gefitinib. The subcutaneous tumor growth was also inhibited. Western blot showed that all the examined proteins decreased, except for 4E-BP1 and the active fragments of caspase 3 and caspase 9 increased. Epidermal growth factor receptor expression did not change significantly in quantitative real-time polymerase chain reaction. Cucurmosin can strongly inhibit the growth of PANC-1 cells in vitro and in vivo. Cucurmosin can down-regulate EGFR protein expression, but not at the messenger RNA level. Cucurmosin can also inhibit the ras/raf and phosphatidylinositol 3-kinase/Akt downstream signaling pathways and enhance the sensitivity of the EGFR-targeted drug gefitinib.

  9. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis.

    Science.gov (United States)

    Yang, Tieshan; Yao, Qian; Cao, Fei; Liu, Qianqian; Liu, Binlei; Wang, Xiu-Hong

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that is activated upon exposure to hypoxic stress. It modulates a number of cellular responses including proliferation, apoptosis, angiogenesis, and metabolism by activating a panel of target genes in response to hypoxia. The HIF-1 level is often upregulated in the hypoxic microenvironment of solid tumors, which contributes to cancer treatment failure. Here we report that silver nanoparticles (AgNPs), which are widely used as an antimicrobial agent, are an effective inhibitor of HIF-1. AgNPs inhibited the activation of a HIF-dependent reporter construct after the cells were exposed to hypoxic conditions or treated with cobalt chloride, a hypoxia mimetic agent. The AgNPs also interfered with the accumulation of HIF-1α protein and the induction of the endogenous HIF target genes, VEGF-A and GLUT1. Since both HIF-1 and vascular endothelial growth factor-A play an important role in angiogenesis, AgNPs also inhibited angiogenesis in vitro. Our data reveal a new mechanism of how AgNPs act on cellular function, that is, they disrupt HIF signaling pathway. This finding provides a novel insight into how AgNPs can inhibit cancer cell growth and angiogenesis.

  10. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells.

    Science.gov (United States)

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook

    2014-05-02

    Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mattingly, Kathleen A.; Klinge, Carolyn M. [University of Louisville School of Medicine, Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, Louisville, KY (United States)

    2012-04-15

    Endothelial dysfunction precedes cardiovascular disease and is accompanied by mitochondrial dysfunction. Here we tested the hypothesis that diesel exhaust particulate extracts (DEPEs), prepared from a truck run at different speeds and engine loads, would inhibit genomic estrogen receptor activation of nuclear respiratory factor-1 (NRF-1) transcription in human umbilical vein endothelial cells (HUVECs). Additionally, we examined how DEPEs affect NRF-1-regulated TFAM expression and, in turn, Tfam-regulated mtDNA-encoded cytochrome c oxidase subunit I (COI, MTCO1) and NADH dehydrogenase subunit I (NDI) expression as well as cell proliferation and viability. We report that 17{beta}-estradiol (E{sub 2}), 4-hydroxytamoxifen (4-OHT), and raloxifene increased NRF-1 transcription in HUVECs in an ER-dependent manner. DEPEs inhibited NRF-1 transcription, and this suppression was not ablated by concomitant treatment with E{sub 2}, 4-OHT, or raloxifene, indicating that the effect was not due to inhibition of ER activity. While E{sub 2} increased HUVEC proliferation and viability, DEPEs inhibited viability but not proliferation. Resveratrol increased NRF-1 transcription in an ER-dependent manner in HUVECs, and ablated DEPE inhibition of basal NRF-1 expression. Given that NRF-1 is a key nuclear transcription factor regulating genes involved in mitochondrial activity and biogenesis, these data suggest that DEPEs may adversely affect mitochondrial function leading to endothelial dysfunction and resveratrol may block these effects. (orig.)

  12. Overexpression of insulin-like growth factor (IGF)-I receptor enhances inhibition of DNA replication in mouse cells exposed to x-rays

    International Nuclear Information System (INIS)

    Wang, Y.; Cheong, N.; Miura, M.; Iliakis, G.

    1997-01-01

    Previous studies from our laboratory provided evidence for the operation of signal transduction pathways involving ras, myc, and staurosporine-sensitive protein kinases in the regulation of DNA replication in irradiated cells. Because ras and myc are also involved in the signal transduction elicited in response to ligand activation of growth factor receptors, we wondered whether growth factor receptors are upstream elements in the regulation of DNA replication in irradiated cells. Here, we report on the role of insulin-like growth factor I receptor (IGF-IR) in the regulation of DNA replication in irradiated cells. We compare radiation-induced inhibition of DNA replication in BALB/c 3T3 cells with that in P6 cells. P6 cells are derived from BALB/c 3T3 cells by transfection with a vector expressing IGF-IR, leading to 30-fold overexpression. We observe a significantly stronger inhibition of DNA replication after irradiation in P6 as compared with BALB/c 3T3 cells at all doses examined. Sedimentation in alkaline sucrose gradients shows that the increased inhibition in P6 cells is due to an increased inhibition of replicon initiation, the main controlling event in DNA replication. Staurosporine at 20 nM reduces radiation-induced inhibition of DNA replication in BALB/c 3T3 cells, but has only a small effect in P6 cells. Caffeine at a concentration of 1 mM, on the other hand, removes over 60% of the inhibition in both cell lines. The results implicate IGF-IR in the regulation of DNA replication in irradiated cells, but also suggest differences between cells of different origins in the proteins involved in the regulating signal transduction pathway. (orig.). With 5 figs

  13. Use of Enoxaparin in Obese Adolescents During Bariatric Surgery--a Pilot Study.

    Science.gov (United States)

    Mushtaq, Alvina; Vaughns, Janelle D; Ziesenitz, Victoria C; Nadler, Evan P; van den Anker, John N

    2015-10-01

    Obese patients have a higher risk of venous thromboembolism when immobilized due to surgery. The objective of this study was to assess anti-factor Xa activity in adolescent bariatric surgical patients receiving prophylactic enoxaparin. Four morbidly obese adolescents undergoing laparoscopic sleeve gastrectomy were enrolled. Enoxaparin was administered (40 mg subcutaneous (SC) if BMI ≤50 kg/m(2) or 60 mg SC if BMI >50 kg/m(2)) for prevention of venous thromboembolism every 12 h starting after induction of anesthesia until discharge. Plasma anti-factor Xa activity was assessed over 12 h after the first dose and used as a surrogate marker for enoxaparin levels. Non-compartmental analysis of anti-factor Xa activity levels was performed and compared with previously published studies. Patients recruited were 16 to 18 years of age with a mean BMI of 52.6 ± 5.8 kg/m(2) (>99th BMI percentile). Peak anti-factor Xa activity ranged from 0.20 to 0.23 IU/mL in our study population, compared to 0.38 to 0.53 IU/mL in the cited lean comparator groups. Our current dosing practice of 40 mg SC for individuals with a BMI ≤50 kg/m(2) and 60 mg for individuals with a BMI ≥50 kg/m(2) resulted in anti-factor Xa activity that was sufficient for adequate thromboprophylaxis in adolescent bariatric surgical patients. Our data also demonstrates lower drug exposures in the obese when compared to lean patients. Therefore, randomized controlled efficacy and safety studies are urgently needed to guide the use of low-molecular-weight heparins in the pediatric and adolescent obese population.

  14. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Wang

    Full Text Available Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC. The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.

  15. Structure-dependent inhibition of the ETS-family transcription factor PU.1 by novel heterocyclic diamidines

    Science.gov (United States)

    Munde, Manoj; Wang, Shuo; Kumar, Arvind; Stephens, Chad E.; Farahat, Abdelbasset A.; Boykin, David W.; Wilson, W. David; Poon, Gregory M. K.

    2014-01-01

    ETS transcription factors mediate a wide array of cellular functions and are attractive targets for pharmacological control of gene regulation. We report the inhibition of the ETS-family member PU.1 with a panel of novel heterocyclic diamidines. These diamidines are derivatives of furamidine (DB75) in which the central furan has been replaced with selenophene and/or one or both of the bridging phenyl has been replaced with benzimidazole. Like all ETS proteins, PU.1 binds sequence specifically to 10-bp sites by inserting a recognition helix into the major groove of a 5′-GGAA-3′ consensus, accompanied by contacts with the flanking minor groove. We showed that diamidines target the minor groove of AT-rich sequences on one or both sides of the consensus and disrupt PU.1 binding. Although all of the diamidines bind to one or both of the expected sequences within the binding site, considerable heterogeneity exists in terms of stoichiometry, site–site interactions and induced DNA conformation. We also showed that these compounds accumulate in live cell nuclei and inhibit PU.1-dependent gene transactivation. This study demonstrates that heterocyclic diamidines are capable of inhibiting PU.1 by targeting the flanking sequences and supports future efforts to develop agents for inhibiting specific members of the ETS family. PMID:24157839

  16. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    International Nuclear Information System (INIS)

    Kang, Khong Bee; Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-01-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)–Akt-DNA–dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H 2 AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H 2 AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G 2 /M arrest and increased γ-H 2 AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H 2 AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are resistant to irradiation

  17. Gefitinib radiosensitizes stem-like glioma cells: inhibition of epidermal growth factor receptor-Akt-DNA-PK signaling, accompanied by inhibition of DNA double-strand break repair.

    Science.gov (United States)

    Kang, Khong Bee; Zhu, Congju; Wong, Yin Ling; Gao, Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-05-01

    We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H(2)AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H(2)AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G(2)/M arrest and increased γ-H(2)AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H(2)AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Stem-like gliomaspheres are resistant to irradiation-induced cytotoxicity, G(2)/M arrest, and DNA DSBs, compared with nonstem

  18. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Khong Bee, E-mail: dmskkb@nccs.com.sg [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore); Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore)

    2012-05-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  19. Unconjugated Bilirubin Inhibits Proteolytic Cleavage of von Willebrand Factor by ADAMTS13 Protease

    Science.gov (United States)

    Lu, Rui-Nan; Yang, Shangbin; Wu, Haifeng M.; Zheng, X. Long

    2015-01-01

    Summary Background Bilirubin is a yellow breakdown product of heme catabolism. Increased serum levels of unconjugated bilirubin are conditions commonly seen in premature neonates and adults with acute hemolysis including thrombotic microangiopathy. Previous studies have shown that unconjugated bilirubin lowers plasma ADAMTS13 activity, but the mechanism is not fully understood. Objectives The study is to determine whether unconjugated bilirubin directly inhibits the cleavage of von Willebrand factor (VWF) and its analogs by ADAMTS13. Methods Fluorogenic, SELDI-TOF mass spectrometric assay, and Western blotting analyses were employed to address this question. Results Unconjugated bilirubin inhibits the cleavage of F485-rVWF73-H, D633-rVWF73-H, and GST-rVWF71-11K by ADAMTS13 in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50) of ~13 μM, ~70 μM, and ~17 μM, respectively. Unconjugated bilirubin also dose-dependently inhibits the cleavage of multimeric VWF by ADAMTS13 under denaturing conditions. The inhibitory activity of bilirubin on the cleavage of D633-rVWF73-H and multimeric VWF, but not F485-rVWF73-H, was eliminated after incubation with bilirubin oxidase that converts bilirubin to biliverdin. Furthermore, plasma ADAMTS13 activity in patients with hyperbilirubinemia is lower prior to than after treatment with bilirubin oxidase. Conclusions unconjugated bilirubin directly inhibits ADAMTS13’s ability to cleave both peptidyl and native VWF substrates in addition to its interference with certain fluorogenic assays. Our findings may help proper interpretation of ADAMTS13 results under pathological conditions. Whether elevated serum unconjugated bilirubin has an adverse effect in vivo remains to be determined in our future study. PMID:25782102

  20. Hantaan Virus Nucleocapsid Protein Binds to Importin alpha Proteins and Inhibits Tumor Necrosis Factor Alpha-Induced Activation of Nuclear Factor Kappa B

    Science.gov (United States)

    2008-11-19

    Microbiology . All Rights Reserved. Hantaan Virus Nucleocapsid Protein Binds to Importin Proteins and Inhibits Tumor Necrosis Factor Alpha-Induced...Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702,1 and Department of Microbiology , Mount Sinai...34–36. 32. Prescott , J., C. Ye, G. Sen, and B. Hjelle. 2005. Induction of innate immune response genes by Sin Nombre hantavirus does not require

  1. Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors.

    Science.gov (United States)

    Narasimhan, Kamesh; Micoine, Kevin; Lacôte, Emmanuel; Thorimbert, Serge; Cheung, Edwin; Hasenknopf, Bernold; Jauch, Ralf

    2014-01-01

    SOX transcription factors constitute an attractive target class for intervention with small molecules as they play a prominent role in the field of regenerative biomedicine and cancer biology. However, rationally engineering specific inhibitors that interfere with transcription factor DNA interfaces continues to be a monumental challenge in the field of transcription factor chemical biology. Polyoxometalates (POMs) are inorganic compounds that were previously shown to target the high-mobility group (HMG) of SOX proteins at nanomolar concentrations. In continuation of this work, we carried out an assessment of the selectivity of a panel of newly synthesized organo-polyoxometalate hybrids in targeting different transcription factor families to enable the usage of polyoxometalates as specific SOX transcription factor drugs. The residual DNA-binding activities of 15 different transcription factors were measured after treatment with a panel of diverse polyoxometalates. Polyoxometalates belonging to the Dawson structural class were found to be more potent inhibitors than the Keggin class. Further, organically modified Dawson polyoxometalates were found to be the most potent in inhibiting transcription factor DNA binding activity. The size of the polyoxometalates and its derivitization were found to be the key determinants of their potency. Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures

  2. Renin-angiotensin system inhibition ameliorates CCl4-induced liver fibrosis in mice through the inactivation of nuclear transcription factor kappa B.

    Science.gov (United States)

    Saber, Sameh; Mahmoud, Amr A A; Helal, Noha S; El-Ahwany, Eman; Abdelghany, Rasha H

    2018-06-01

    Therapeutic interventions for liver fibrosis are still limited due to the complicated molecular pathogenesis. Renin-angiotensin system (RAS) seems to contribute to the development of hepatic fibrosis. Therefore, we aimed to examine the effect of RAS inhibition on CCl 4 -induced liver fibrosis. Mice were treated with silymarin (30 mg·kg -1 ), perindopril (1 mg·kg -1 ), fosinopril (2 mg·kg -1 ), or losartan (10 mg·kg -1 ). The administration of RAS inhibitors improved liver histology and decreased protein expression of alpha smooth muscle actin (α-SMA) and hepatic content of hydroxyproline. These effects found to be mediated via inactivation of nuclear transcription factor kappa B (NFκB) pathway by the inhibition of NFκB p65 phosphorylation at the Ser536 residue and phosphorylation-induced degradation of nuclear factor kappa-B inhibitor alpha (NFκBia) subsequently inhibited NFκB-induced TNF-α and TGF-β1, leading to lower levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) and vascular endothelial growth factor (VEGF). We concluded that the tissue affinity of the angiotensin converting enzyme inhibitors (ACEIs) has no impact on its antifibrotic activity and that interfering the RAS either through the inhibition of ACE or the blockade of AT1R has the same therapeutic benefit. These results suggest RAS inhibitors as promising candidates for further clinical trials in the management of hepatic fibrosis.

  3. Disappearance of a low molecular weight heparin fraction (CY 216) differs from standard heparin in rabbits

    International Nuclear Information System (INIS)

    Boneu, B.; Buchanan, M.R.; Caranobe, C.; Gabaig, A.M.; Dupouy, D.; Sie, P.; Hirsh, J.

    1987-01-01

    In previous studies, we have reported that standard heparin (SH) was cleared by two mechanisms, a saturable mechanism which predominated at low doses (less than 100 anti-factor Xa U/kg) and a non-saturable mechanism which predominated at higher doses, when the first mechanism became saturated. In this study, we examined the importance of these two mechanisms in the disappearance of a low molecular weight heparin fraction (LMWH) (CY 216), by comparing the pharmacokinetics and the pharmacodynamics of a wide range of doses of SH and CY 216 (1.5 to 500 anti-factor Xa U/kg). Pharmacokinetics was measured as the disappearance of 125 I-radiolabelled SH or CY 216. Pharmacodynamics was measured as the disappearance of the anti-factor Xa activity of SH and CY 216. We found that the saturable mechanism contributed little to the disappearance of CY 216 and that it was cleared predominantly by the non-saturable mechanism at all doses tested. Thus, at low doses (less than 100 anti-factor Xa U/kg), SH was cleared more rapidly than CY 216, whereas at higher doses, CY 216 was cleared more rapidly than SH. We conclude that the mechanism of disappearance of LMWH's differ significantly from those of SH, and that this difference may explain the apparent prolonged anticoagulant activity of LMWH's within the therapeutic range doses

  4. Inhibition of Ribosome Recruitment Induces Stress Granule Formation Independently of Eukaryotic Initiation Factor 2α Phosphorylation

    Science.gov (United States)

    Mazroui, Rachid; Sukarieh, Rami; Bordeleau, Marie-Eve; Kaufman, Randal J.; Northcote, Peter; Tanaka, Junichi; Gallouzi, Imed

    2006-01-01

    Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2α phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity, an RNA helicase required for the ribosome recruitment phase of translation initiation, induces SG formation and that this event is not dependent on eIF2α phosphorylation. We also show that inhibition of eIF4A activity does not impair the ability of eIF2α to be phosphorylated under stress conditions. Furthermore, we observed SG assembly upon inhibition of cap-dependent translation after poliovirus infection. We propose that SG modeling can occur via both eIF2α phosphorylation-dependent and -independent pathways that target translation initiation. PMID:16870703

  5. Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation.

    Science.gov (United States)

    Mazroui, Rachid; Sukarieh, Rami; Bordeleau, Marie-Eve; Kaufman, Randal J; Northcote, Peter; Tanaka, Junichi; Gallouzi, Imed; Pelletier, Jerry

    2006-10-01

    Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2alpha phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity, an RNA helicase required for the ribosome recruitment phase of translation initiation, induces SG formation and that this event is not dependent on eIF2alpha phosphorylation. We also show that inhibition of eIF4A activity does not impair the ability of eIF2alpha to be phosphorylated under stress conditions. Furthermore, we observed SG assembly upon inhibition of cap-dependent translation after poliovirus infection. We propose that SG modeling can occur via both eIF2alpha phosphorylation-dependent and -independent pathways that target translation initiation.

  6. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis

    Directory of Open Access Journals (Sweden)

    Yang T

    2016-12-01

    Full Text Available Tieshan Yang,1 Qian Yao,1 Fei Cao,1 Qianqian Liu,1 Binlei Liu,2 Xiu-Hong Wang1 1Laboratory for Biomedical Photonics, Institute of Laser Engineering, Beijing University of Technology, 2Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China Abstract: Hypoxia-inducible factor-1 (HIF-1 is a transcription factor that is activated upon exposure to hypoxic stress. It modulates a number of cellular responses including proliferation, apoptosis, angiogenesis, and metabolism by activating a panel of target genes in response to hypoxia. The HIF-1 level is often upregulated in the hypoxic microenvironment of solid tumors, which contributes to cancer treatment failure. Here we report that silver nanoparticles (AgNPs, which are widely used as an antimicrobial agent, are an effective inhibitor of HIF-1. AgNPs inhibited the activation of a HIF-dependent reporter construct after the cells were exposed to hypoxic conditions or treated with cobalt chloride, a hypoxia mimetic agent. The AgNPs also interfered with the accumulation of HIF-1α protein and the induction of the endogenous HIF target genes, VEGF-A and GLUT1. Since both HIF-1 and vascular endothelial growth factor-A play an important role in angiogenesis, AgNPs also inhibited angiogenesis in vitro. Our data reveal a new mechanism of how AgNPs act on cellular function, that is, they disrupt HIF signaling pathway. This finding provides a novel insight into how AgNPs can inhibit cancer cell growth and angiogenesis. Keywords: silver nanoparticles (AgNPs, hypoxia-inducible factor, transcriptional activity, vascular endothelial growth factor-A, angiogenesis

  7. Irreversible inhibition of RANK expression as a possible mechanism for IL-3 inhibition of RANKL-induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Khapli, Shruti M.; Tomar, Geetanjali B.; Barhanpurkar, Amruta P.; Gupta, Navita; Yogesha, S.D.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-09-03

    Research highlights: {yields} IL-3 inhibits receptor activator of NF-{kappa}B ligand (RANKL)-induced osteoclastogenesis. {yields} IL-3 inhibits RANKL-induced JNK activation. {yields} IL-3 down-regulates expression of c-Fos and NFATc1 transcription factors. {yields} IL-3 down-regulates RANK expression posttranscriptionally and irreversibly. {yields} IL-3 inhibits in vivo RANK expression. -- Abstract: IL-3, a cytokine secreted by activated T lymphocytes, stimulates the proliferation, differentiation and survival of pluripotent hematopoietic stem cells. In this study, we investigated the mechanism of inhibitory action of IL-3 on osteoclast differentiation. We show here that IL-3 significantly inhibits receptor activator of NF-{kappa}B (RANK) ligand (RANKL)-induced activation of c-Jun N-terminal kinase (JNK). IL-3 down-regulates expression of c-Fos and nuclear factor of activated T cells (NFATc1) transcription factors. In addition, IL-3 down-regulates RANK expression posttranscriptionally in both purified osteoclast precursors and whole bone marrow cells. Furthermore, the inhibitory effect of IL-3 on RANK expression was irreversible. Interestingly, IL-3 inhibits in vivo RANK expression in mice. Thus, we provide the first evidence that IL-3 irreversibly inhibits RANK expression that results in inhibition of important signaling molecules induced by RANKL.

  8. Irreversible inhibition of RANK expression as a possible mechanism for IL-3 inhibition of RANKL-induced osteoclastogenesis

    International Nuclear Information System (INIS)

    Khapli, Shruti M.; Tomar, Geetanjali B.; Barhanpurkar, Amruta P.; Gupta, Navita; Yogesha, S.D.; Pote, Satish T.; Wani, Mohan R.

    2010-01-01

    Research highlights: → IL-3 inhibits receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. → IL-3 inhibits RANKL-induced JNK activation. → IL-3 down-regulates expression of c-Fos and NFATc1 transcription factors. → IL-3 down-regulates RANK expression posttranscriptionally and irreversibly. → IL-3 inhibits in vivo RANK expression. -- Abstract: IL-3, a cytokine secreted by activated T lymphocytes, stimulates the proliferation, differentiation and survival of pluripotent hematopoietic stem cells. In this study, we investigated the mechanism of inhibitory action of IL-3 on osteoclast differentiation. We show here that IL-3 significantly inhibits receptor activator of NF-κB (RANK) ligand (RANKL)-induced activation of c-Jun N-terminal kinase (JNK). IL-3 down-regulates expression of c-Fos and nuclear factor of activated T cells (NFATc1) transcription factors. In addition, IL-3 down-regulates RANK expression posttranscriptionally in both purified osteoclast precursors and whole bone marrow cells. Furthermore, the inhibitory effect of IL-3 on RANK expression was irreversible. Interestingly, IL-3 inhibits in vivo RANK expression in mice. Thus, we provide the first evidence that IL-3 irreversibly inhibits RANK expression that results in inhibition of important signaling molecules induced by RANKL.

  9. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Ahnen Dennis

    2005-01-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  10. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts.

    Science.gov (United States)

    Rapisarda, Annamaria; Zalek, Jessica; Hollingshead, Melinda; Braunschweig, Till; Uranchimeg, Badarch; Bonomi, Carrie A; Borgel, Suzanne D; Carter, John P; Hewitt, Stephen M; Shoemaker, Robert H; Melillo, Giovanni

    2004-10-01

    We have previously shown that topotecan, a topoisomerase I poison, inhibits hypoxia-inducible factor (HIF)-1alpha protein accumulation by a DNA damage-independent mechanism. Here, we report that daily administration of topotecan inhibits HIF-1alpha protein expression in U251-HRE glioblastoma xenografts. Concomitant with HIF-1alpha inhibition, topotecan caused a significant tumor growth inhibition associated with a marked decrease of angiogenesis and expression of HIF-1 target genes in tumor tissue. These results provide a compelling rationale for testing topotecan in clinical trials to target HIF-1 in cancer patients.

  11. Suppression of Homologous Recombination by insulin-like growth factor-1 inhibition sensitizes cancer cells to PARP inhibitors

    International Nuclear Information System (INIS)

    Amin, Oreekha; Beauchamp, Marie-Claude; Nader, Paul Abou; Laskov, Ido; Iqbal, Sanaa; Philip, Charles-André; Yasmeen, Amber; Gotlieb, Walter H.

    2015-01-01

    Impairment of homologous recombination (HR) is found in close to 50 % of ovarian and breast cancer. Tumors with BRCA1 mutations show increased expression of the Insulin-like growth factor type 1 receptor (IGF-1R). We previously have shown that inhibition of IGF-1R results in growth inhibition and apoptosis of ovarian tumor cells. In the current study, we aimed to investigate the correlation between HR and sensitivity to IGF-1R inhibition. Further, we hypothesized that IGF-1R inhibition might sensitize HR proficient cancers to Poly ADP ribose polymerase (PARP) inhibitors. Using ovarian and breast cancer cellular models with known BRCA1 status, we evaluated their HR functionality by RAD51 foci formation assay. The 50 % lethal concentration (LC50) of Insulin-like growth factor type 1 receptor kinase inhibitor (IGF-1Rki) in these cells was assessed, and western immunoblotting was performed to determine the expression of proteins involved in the IGF-1R pathway. Moreover, IGF-1R inhibitors were added on HR proficient cell lines to assess mRNA and protein expression of RAD51 by qPCR and western blot. Also, we explored the interaction between RAD51 and Insulin receptor substance 1 (IRS-1) by immunoprecipitation. Next, combination effect of IGF-1R and PARP inhibitors was evaluated by clonogenic assay. Cells with mutated/methylated BRCA1 showed an impaired HR function, and had an overactivation of the IGF-1R pathway. These cells were more sensitive to IGF-1R inhibition compared to HR proficient cells. In addition, the IGF-IR inhibitor reduced RAD51 expression at mRNA and protein levels in HR proficient cells, and sensitized these cells to PARP inhibitor. Targeting IGF-1R might lead to improved personalized therapeutic approaches in cancer patients with HR deficiency. Targeting both PARP and IGF-1R might increase the clinical efficacy in HR deficient patients and increase the population of patients who may benefit from PARP inhibitors

  12. Large enhancement of functional activity of active site-inhibited factor VIIa due to protein dimerization: insights into mechanism of assembly/disassembly from tissue factor.

    Science.gov (United States)

    Stone, Matthew D; Harvey, Stephen B; Martinez, Michael B; Bach, Ronald R; Nelsestuen, Gary L

    2005-04-26

    Active site-inhibited blood clotting factor VIIa (fVIIai) binds to tissue factor (TF), a cell surface receptor that is exposed upon injury and initiates the blood clotting cascade. FVIIai blocks binding of the corresponding enzyme (fVIIa) or zymogen (fVII) forms of factor VII and inhibits coagulation. Although several studies have suggested that fVIIai may have superior anticoagulation effects in vivo, a challenge for use of fVIIai is cost of production. This study reports the properties of dimeric forms of fVIIai that are cross-linked through their active sites. Dimeric wild-type fVIIai was at least 75-fold more effective than monomeric fVIIai in blocking fVIIa association with TF. The dimer of a mutant fVIIai with higher membrane affinity was 1600-fold more effective. Anticoagulation by any form of fVIIai differed substantially from agents such as heparin and showed a delayed mode of action. Coagulation proceeded normally for the first minutes, and inhibition increased as equilibrium binding was established. It is suggested that association of fVIIa(i) with TF in a collision-dependent reaction gives equal access of inhibitor and enzyme to TF. Assembly was not influenced by the higher affinity and slower dissociation of the dimer. As a result, anticoagulation was delayed until the reaction reached equilibrium. Properties of different dissociation experiments suggested that dissociation of fVIIai from TF occurred by a two-step mechanism. The first step was separation of TF-fVIIa(i) while both proteins remained bound to the membrane, and the second step was dissociation of the fVIIa(i) from the membrane. These results suggest novel actions of fVIIai that distinguish it from most of the anticoagulants that block later steps of the coagulation cascade.

  13. Synergistic Induction of Cyclooxygenase-2 by Transforming Growth Factor-β1 and Epidermal Growth Factor Inhibits Apoptosis in Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Debabrata Saha

    1999-12-01

    Full Text Available Increased expression of cyclooxygenase-2 (COX-2 expression has been observed in several human tumor types and in selected animal and cell culture models of carcinogenesis, including lung cancer. Increased expression of COX-2 and production of prostaglandins appear to provide a survival advantage to transformed cells through the inhibition of apoptosis, increased attachment to extracellular matrix, increased invasiveness, the stimulation of angiogenesis. In the present studies, we found that transforming growth factor β1 (TGF-β1 and epidermal growth factor (EGF synergistically induced the expression of COX-2 and prostaglandin E2 (PGE2 production in mink lung epithelial (Mvi Lu cells. EGF, but not PDGF or IGF-1, was able to inhibit TGF-β1-induced apoptosis in Mvi Lu cells and this effect was blocked by NS-398, a selective inhibitor of COX-2 activity, suggesting a possible role for COX-2 in the anti-apoptosic effect of EGF receptor ligands. The combination of TGF-β1 and EGF also significantly induced COX-2 expression in rat intestinal epithelial (RIE-1 cells and completely prevented sodium butyrate (NaBu-induced apoptosis. The synergistic induction of COX-2 by TGF-β1 and EGF was not observed in R1B-L17 cells, a line derived from Mvi Lu cells that lacks the TGF-β type-I receptor. AG1478, a selective inhibitor of EGF receptor tyrosine kinase activity, completely suppressed the induction of COX-2 expression by either EGF or TGF-β1+EGF. Also, PD98059, a specific inhibitor of MEK/ERK pathway, SB203580, a specific inhibitor of p38 MAPK activity, significantly inhibited the induction of COX-2 in response to combined EGF and TGF-β1. These results suggest an important collaborative interaction of TGF-β1 and EGF signaling in the induction of COX-2 and prostaglandin production in Mv1Lu cells.

  14. Site-SpecificCu Labeling of the Serine Protease, Active Site Inhibited Factor Seven Azide (FVIIai-N), Using Copper Free Click Chemistry

    DEFF Research Database (Denmark)

    Jeppesen, Troels E; Kristensen, Lotte K; Nielsen, Carsten H

    2018-01-01

    A method for site-specific radiolabeling of the serine protease active site inhibited factor seven (FVIIai) with64Cu has been applied using a biorthogonal click reaction. FVIIai binds to tissue factor (TF), a trans-membrane protein involved in hemostasis, angiogenesis, proliferation, cell migrati...

  15. Transforming growth factorinhibits CCAAT/enhancer-binding protein expression and PPARγ activity in unloaded bone marrow stromal cells

    International Nuclear Information System (INIS)

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.; Fromigue, O.; Modrowski, D.; Zerath, E.; Marie, P.J.

    2005-01-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-β2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP)α and C/EBPβ α at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor γ (PPARγ2) transcripts at 7 days. TGF-β2 administration in unloaded rats corrected the rise in C/EBPα and C/EBPβ transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPARγ2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBPα and C/EBPβ expression by TGF-β2 was associated with increased PPARγ serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPARγ transactivating activity. The sequential inhibitory effect of TGF-β2 on C/EBPα, C/EBPβ, and PPARγ2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-β2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBPα, C/EBPβ, and PPARγ expression and activity, which provides a sequential mechanism by which TGF-β2 regulates adipogenic differentiation of bone marrow stromal cells in vivo

  16. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    Directory of Open Access Journals (Sweden)

    Yongjun Yin

    2016-05-01

    Full Text Available Activating mutations in fibroblast growth factor receptor 3 (FGFR3 have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9, a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11 with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3.

  17. Inhibition of lactation.

    Science.gov (United States)

    Llewellyn-Jones, D

    1975-01-01

    The mechanism and hormonal regulation of lactation is explained and illustrated with a schematic representation. Circulating estrogen above a critical amount seems to be the inhibitory factor controlling lactation during pregnancy. Once delivery occurs, the level of estrogen falls, that of prolactin rises, and lactation begins. Nonsuckling can be used to inhibit lactation. Estrogens can also be used to inhibit lactation more quickly and with less pain. The reported association between estrogens and puerperal thromboembolism cannot be considered conclusive due to defects in the reporting studies. There is no reason not to use estrogens in lactation inhibition except for women over 35 who experienced a surgical delivery. Alternative therapy is available for these women. The recently-developed drug, brom-ergocryptine, may replace other methods of lactation inhibition.

  18. Ciliary neurotrophic factor inhibits brain and peripheral tumor necrosis factor production and, when coadministered with its soluble receptor, protects mice from lipopolysaccharide toxicity.

    Science.gov (United States)

    Benigni, F; Villa, P; Demitri, M T; Sacco, S; Sipe, J D; Lagunowich, L; Panayotatos, N; Ghezzi, P

    1995-07-01

    The receptor of ciliary neurotrophic factor (CNTF) contains the signal transduction protein gp130, which is also a component of the receptors of cytokines such as interleukin (IL)-6, leukemia-inhibitory factor (LIF), IL-11, and oncostatin M. This suggests that these cytokines might share common signaling pathways. We previously reported that CNTF augments the levels of corticosterone (CS) and of IL-6 induced by IL-1 and induces the production of the acute-phase protein serum amyloid A (SAA). Since the elevation of serum CS is an important feedback mechanism to limit the synthesis of proinflammatory cytokines, particularly tumor necrosis factor (TNF), we have investigated the effect of CNTF on both TNF production and lipopolysaccharide (LPS) toxicity. To induce serum TNF levels, LPS was administered to mice at 30 mg/kg i.p. and CNTF was administered as a single dose of 10 micrograms/mouse i.v., either alone or in combination with its soluble receptor sCNTFR alpha at 20 micrograms/mouse. Serum TNF levels were the measured by cytotoxicity on L929 cells. In order to measure the effects of CNTF on LPS-induced TNF production in the brain, mice were injected intracerebroventricularly (i.c.v.) with 2.5 micrograms/kg LPS. Mouse spleen cells cultured for 4 hr with 1 microgram LPS/ml, with or without 10 micrograms CNTF/ml, were also analyzed for TNF production. CNTF, administered either alone or in combination with its soluble receptor, inhibited the induction of serum TNF levels by LPS. This inhibition was also observed in the brain when CNTF and LPS were administered centrally. In vitro, CNTF only marginally affected TNF production by LPS-stimulated mouse splenocytes, but it acted synergistically with dexamethasone (DEX) in inhibiting TNF production. Most importantly, CNTF administered together with sCNTFR alpha protected mice against LPS-induced mortality. These data suggest that CNTF might act as a protective cytokine against TNF-mediated pathologies both in the brain and

  19. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    Science.gov (United States)

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  20. Gametogenesis in malaria parasites is mediated by the cGMP-dependent protein kinase.

    Directory of Open Access Journals (Sweden)

    Louisa McRobert

    2008-06-01

    Full Text Available Malaria parasite transmission requires differentiation of male and female gametocytes into gametes within a mosquito following a blood meal. A mosquito-derived molecule, xanthurenic acid (XA, can trigger gametogenesis, but the signalling events controlling this process in the human malaria parasite Plasmodium falciparum remain unknown. A role for cGMP was revealed by our observation that zaprinast (an inhibitor of phosphodiesterases that hydrolyse cGMP stimulates gametogenesis in the absence of XA. Using cGMP-dependent protein kinase (PKG inhibitors in conjunction with transgenic parasites expressing an inhibitor-insensitive mutant PKG enzyme, we demonstrate that PKG is essential for XA- and zaprinast-induced gametogenesis. Furthermore, we show that intracellular calcium (Ca2+ is required for differentiation and acts downstream of or in parallel with PKG activation. This work defines a key role for PKG in gametogenesis, elucidates the hierarchy of signalling events governing this process in P. falciparum, and demonstrates the feasibility of selective inhibition of a crucial regulator of the malaria parasite life cycle.

  1. Triptolide inhibits transcription of hTERT through down-regulation of transcription factor specificity protein 1 in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, Cong; Wang, Jingchao [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Guo, Wei [Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Wang, Huan; Wang, Chao; Liu, Yu [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Sun, Xiaoping, E-mail: xsun6@whu.edu.cn [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); State Key Laboratory of Virology, Wuhan University, Wuhan, 430072 (China)

    2016-01-01

    Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated that triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.

  2. Rupatadine inhibits inflammatory mediator release from human laboratory of allergic diseases 2 cultured mast cells stimulated by platelet-activating factor.

    Science.gov (United States)

    Alevizos, Michail; Karagkouni, Anna; Vasiadi, Magdalini; Sismanopoulos, Nikolaos; Makris, Michael; Kalogeromitros, Dimitrios; Theoharides, Theoharis C

    2013-12-01

    Mast cells are involved in allergy and inflammation by the secretion of multiple mediators, including histamine, cytokines, and platelet-activating factor (PAF), in response to different triggers, including emotional stress. PAF has been associated with allergic inflammation, but there are no clinically available PAF inhibitors. To investigate whether PAF could stimulate human mast cell mediator release and whether rupatadine (RUP), a dual histamine-1 and PAF receptor antagonist, could inhibit the effect of PAF on human mast cells. Laboratory of allergic diseases 2 cultured mast cells were stimulated with PAF (0.001, 0.01, and 0.1 μmol/L) and substance P (1 μmol/L) with or without pretreatment with RUP (2.5 and 25 μmol/L), which was added 10 minutes before stimulation. Release of β-hexosaminidase was measured in supernatant fluid by spectrophotoscopy, and histamine, interleukin-8, and tumor necrosis factor were measured by enzyme-linked immunosorbent assay. PAF stimulated a statistically significant release of histamine, interleukin-8, and tumor necrosis factor (0.001-0.1 μmol/L) that was comparable to that stimulated by substance P. Pretreatment with RUP (25 μmol/L) for 10 minutes inhibited this effect. In contrast, pretreatment of laboratory of allergic diseases 2 cells with diphenhydramine (25 μmol/L) did not inhibit mediator release, suggesting that the effect of RUP was not due to its antihistaminic effect. PAF stimulates human mast cell release of proinflammatory mediators that is inhibited by RUP. This action endows RUP with additional properties in treating allergic inflammation. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Cycle Inhibiting Factors (Cifs: Cyclomodulins That Usurp the Ubiquitin-Dependent Degradation Pathway of Host Cells

    Directory of Open Access Journals (Sweden)

    Eric Oswald

    2011-03-01

    Full Text Available Cycle inhibiting factors (Cifs are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are “cyclomodulins” that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions.

  4. Engineered zinc-finger transcription factors inhibit the replication and transcription of HBV in vitro and in vivo.

    Science.gov (United States)

    Luo, Wei; Wang, Junxia; Xu, Dengfeng; Bai, Huili; Zhang, Yangli; Zhang, Yuhong; Li, Xiaosong

    2018-04-01

    In the present study, an artificial zinc-finger transcription factor eukaryotic expression vector specifically recognizing and binding to the hepatitis B virus (HBV) enhancer (Enh) was constructed, which inhibited the replication and expression of HBV DNA. The HBV EnhI‑specific pcDNA3.1‑artificial transcription factor (ATF) vector was successfully constructed, and then transformed or injected into HepG2.2.15 cells and HBV transgenic mice, respectively. The results demonstrated that the HBV EnhI (1,070‑1,234 bp)‑specific ATF significantly inhibited the replication and transcription of HBV DNA in vivo and in vitro. The HBV EnhI‑specific ATF may be a meritorious component of progressive combination therapies for eliminating HBV DNA in infected patients. A radical cure for chronic HBV infection may become feasible by using this bioengineering technology.

  5. A speculated cause of respiratory inhibition in infants.

    Science.gov (United States)

    Minowa, Hideki; Arai, Ikuyo; Yasuhara, Hajime; Ebisu, Reiko; Ohgitani, Ayako

    2018-10-01

    In our previous studies, we documented that threatened premature labor and asymmetrical intrauterine growth restriction were risk factors for respiratory inhibition. The goal of this study was to determine the cause of respiratory inhibition by considering perinatal risk factors. We examined 1497 infants with a gestational age of 36 weeks or greater. All infants were monitored using pulse oximetry and examined via cranial sonography. Respiratory inhibition was defined as severe hypoxemia caused by respiratory inhibition immediately after crying or gastroesophageal reflux or as a respiratory pause during feeding. We examined the relationships between respiratory inhibition and perinatal factors and speculated on the cause of respiratory inhibition. The median gestational age, birth weight, Apgar score at 1 min, and Apgar score at 5 min of the subjects were 38.9 weeks, 2930 g, 8.0 points, and 9.0 points, respectively. Respiratory inhibition was observed in 422 infants. Lateral ventricle enlargement and increased echogenicity in the ganglionic eminence were observed in 417 and 516 infants, respectively. Respiratory inhibition was significantly correlated with shorter gestational periods, twin pregnancies, lateral ventricle enlargement, and increased echogenicity in the ganglionic eminence. We speculate that umbilical cord compression is a major cause of respiratory inhibition.

  6. A cytosolic protein factor from the naked mole-rat activates proteasomes of other species and protects these from inhibition

    Science.gov (United States)

    Rodriguez, Karl A.; Osmulski, Pawel A.; Pierce, Anson; Weintraub, Susan T.; Gaczynska, Maria; Buffenstein, Rochelle

    2015-01-01

    The naked mole-rat maintains robust proteostasis and high levels of proteasome-mediated proteolysis for most of its exceptional (~31y) life span. Here, we report that the highly active proteasome from the naked mole-rat liver resists attenuation by a diverse suite of proteasome-specific small molecule inhibitors. Moreover, mouse, human, and yeast proteasomes exposed to the proteasome-depleted, naked mole-rat cytosolic fractions, recapitulate the observed inhibition resistance, and mammalian proteasomes also show increased activity. Gel filtration coupled with mass spectrometry and atomic force microscopy indicates that these traits are supported by a protein factor that resides in the cytosol. This factor interacts with the proteasome and modulates its activity. Although HSP72 and HSP40 (Hdj1) are among the constituents of this factor, the observed phenomenon, such as increasing peptidase activity and protecting against inhibition cannot be reconciled with any known chaperone functions. This novel function may contribute to the exceptional protein homeostasis in the naked mole-rat and allow it to successfully defy aging. PMID:25018089

  7. Pathotype profile of Xanthomonas oryzae pv. oryzae isolates from North Sumatera

    Science.gov (United States)

    Noer, Z.; Hasanuddin; Lisnawita; Suryanto, D.

    2018-02-01

    The Bacterial blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most important diseases and has caused crop failure in rice crops. This pathogen infects the leaves in all plant growth phases. The purpose of this study is to investigation 10 Xoo isolates pathotype obtained from North Sumatra based on their interactions with 10 near-isogenic rice lines (NIL) of IRRI. The results showed that there are 6 pathotypes of virulence in North Sumatra, they are; pathotype I with incompatible interaction to all Xa genes, pathotype II with compatible interaction to Xa1 and Xa3 genes, while it has incompatible interaction to other genes, pathotype III with compatible interaction to Xa1, Xa5, Xa7, Xa8, Xa10 and Xa11 genes, but it has incompatible interaction to other genes, pathotype IV with compatible interaction to all Xa genes, pathotype V with compatible interaction to Xa1 gene and incompatible interaction to other genes, and pathotype VI with compatible interaction to Xa3 gene and incompatible interaction to other genes. Based on the resistant genes in each individual Xa2, Xa4, and Xa21 genes are the combination of Xa genes which are most suitable for use in the development of rice cultivars in North Sumatra.

  8. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Qing, E-mail: zeng.xiaoqing@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Na, E-mail: Linala.2009@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Pan, Du-Yi, E-mail: lasikesmi@hotmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Miao, Qing, E-mail: sadsadvenus@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Gui-Fen, E-mail: ma.guifen@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Liu, Yi-Mei, E-mail: liuyimei1988@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Tseng, Yu-Jen, E-mail: dianatseng14@gmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Feng, E-mail: li.feng2@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Xu, Li-Li, E-mail: xu.lili3@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: chen.shiyao@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Institute of Endoscopic Research of Zhongshan Hospital, Fudan University, Shanghai (China)

    2015-09-04

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs.

  9. Pathology consultation on anticoagulation monitoring: factor X-related assays.

    Science.gov (United States)

    Wool, Geoffrey D; Lu, Chuanyi M

    2013-11-01

    To review various anticoagulation therapies and related laboratory monitoring issues, with a focus on factor X-related chromogenic assays. A case-based approach is used to review pertinent published literatures and product inserts of anticoagulation drugs and to look back on clinical use of factor X-related chromogenic assays. The number of anticoagulants available to clinicians has increased greatly in the past decade. Whether and how these anticoagulants should be monitored are areas of uncertainty for clinicians, which can lead to misuse of laboratory assays and suboptimal patient management. Factor X-related assays are of particular concern because of the similar and often confusing test names. Based on a common clinical case scenario and literature review regarding anticoagulant monitoring, an up-to-date discussion and review of the various factor X-related assays are provided, focusing on the differences in test designs and clinical utilities between the chromogenic anti-Xa and chromogenic factor X activity assays. Anticoagulation therapy and related laboratory monitoring are rapidly evolving areas of clinical practices. A good knowledge of relevant laboratory assays and their clinical applications is necessary to help optimize patient care.

  10. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp transcription factors

    Directory of Open Access Journals (Sweden)

    Pathi Satya

    2011-08-01

    Full Text Available Abstract Background Betulinic acid (BA inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells. Methods The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth in vivo were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a and ZBTB10 mRNA expression. Results BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS, ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10. Conclusions These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent.

  11. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors

    International Nuclear Information System (INIS)

    Chintharlapalli, Sudhakar; Papineni, Sabitha; Lei, Ping; Pathi, Satya; Safe, Stephen

    2011-01-01

    Betulinic acid (BA) inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells. The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth in vivo were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a) and ZBTB10 mRNA expression. BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS), ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10. These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent

  12. Epidermal growth factor receptor-induced activato protein 1 activity controls density-dependent growht inhibition in normal rat kidney fibroblasts.

    NARCIS (Netherlands)

    Hornberg, J.J.; Dekker, H.; Peters, P.H.J.; Langerak, P.; Westerhoff, H.V.; Lankelma, J.; Zoelen, E.J.J.

    2006-01-01

    Density-dependent growth inhibition secures tissue homeostasis. Dysfunction of the mechanisms, which regulate this type of growth control is a major cause of neoplasia. In confluent normal rat kidney (NRK) fibroblasts, epidermal growth factor (EGF) receptor levels decline, ultimately rendering these

  13. Matrix metalloproteinase inhibition delays wound healing and blocks the latent transforming growth factor-beta1-promoted myofibroblast formation and function

    DEFF Research Database (Denmark)

    Mirastschijski, Ursula; Schnabel, Reinhild; Claes, Juliane

    2010-01-01

    applied topically to full-thickness skin excisional wounds in rats and its ability to inhibit the promotion of myofibroblast formation and function by the latent transforming-growth factor-beta1 (TGF-beta1). BB-94 delayed wound contraction, as well as all other associated aspects of wound healing examined......, including myofibroblast formation, stromal cell proliferation, blood vessel formation, and epithelial wound coverage. Interestingly, BB-94 dramatically increased the level of latent and active MMP-9. The increased levels of active MMP-9 may eventually overcome the ability of BB-94 to inhibit this MMP...... and may explain why wound contraction and other associated events of wound healing were only delayed and not completely inhibited. BB-94 was also found to inhibit the ability of latent TGF-beta1 to promote the formation and function of myofibroblasts. These results suggest that BB-94 could delay wound...

  14. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    Science.gov (United States)

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover.

  15. Lufaxin, a novel factor Xa inhibitor from the salivary gland of the sand fly lutzomyia longipalpis, blocks protease-activated receptor 2 activation and inhibits inflammation and thrombosis in vivo

    Czech Academy of Sciences Publication Activity Database

    Collin, N.; Assumpção, T.C.F.; Mizurini, D.M.; Gilmore, D.; Dutra-Oliveira, A.; Kotsyfakis, Michalis; Sa-Nunes, A.; Teixeira, C.; Ribeiro, J.M.C.; Monteiro, R.Q.; Valenzuela, J. G.; Francischetti, I.M.B.

    2012-01-01

    Roč. 32, č. 9 (2012), s. 2185-2198 ISSN 1079-5642 R&D Projects: GA ČR GAP502/12/2409 Institutional support: RVO:60077344 Keywords : hematophagy * leishmaniasis * microcirculation * thrombosis * vector biology Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.338, year: 2012 http://atvb.ahajournals.org/content/32/9/2185

  16. Assessment of the effects of dalteparin on coagulation variables and determination of a treatment schedule for use in cats.

    Science.gov (United States)

    Schönig, Jette C; Mischke, Reinhard H

    2016-07-01

    OBJECTIVE To determine a treatment protocol for SC administration of dalteparin to cats on the basis of currently available detailed pharmacokinetic data and to assess the effect of SC administration of dalteparin to cats on coagulation variables such as activated partial thromboplastin time (aPTT), thrombin time, and results for thromboelastometry, compared with effects on anti-activated coagulation factor X (anti-Xa) activity. ANIMALS 6 healthy domestic shorthair cats. PROCEDURES Cats received 14 injections of dalteparin (75 anti-Xa U/kg, SC) at 6-hour intervals. Blood samples were collected before and 2 hours after the first and second injections on days 1, 2, and 4. Anti-Xa activity was measured by use of a chromogenic substrate assay, aPTT and thrombin time were measured by use of an automated coagulometer, and viscoelastic measurements were obtained with thromboelastrometry. RESULTS 2 hours after the second injection, the target peak anti-Xa activity range of 0.5 to 1.0 U/mL was achieved in all cats, whereas median trough values remained below this range. Peak anti-Xa activity had only minimal effects on coagulation variables; the maximum median ratio for aPTT (in relationship to the value before the first dalteparin injection) was 1.23. CONCLUSIONS AND CLINICAL RELEVANCE Results of this study indicated that this treatment protocol resulted in reproducible anti-Xa activity in cats that was mostly within the targeted peak range of anti-Xa activity recommended for humans. Treatment in accordance with this protocol may not require routine coagulation monitoring of cats, but this must be confirmed in feline patients.

  17. Interleukin-4 but not interleukin-10 inhibits the production of leukemia inhibitory factor by rheumatoid synovium and synoviocytes.

    Science.gov (United States)

    Dechanet, J; Taupin, J L; Chomarat, P; Rissoan, M C; Moreau, J F; Banchereau, J; Miossec, P

    1994-12-01

    The expression of the proinflammatory cytokine leukemia inhibitory factor (LIF) has been reported in the cartilage and synovium of rheumatoid arthritis (RA) patients. Here, we show that high levels of LIF were constitutively produced by cultures of synovium pieces. Low levels of LIF were produced spontaneously by isolated synoviocytes, but interleukin (IL)-1 beta caused a fourfold enhancement of this secretion. The anti-inflammatory cytokine IL-4 reduced the production of LIF by synovium pieces by 75%, as observed earlier with IL-6, IL-1 beta and tumor necrosis factor (TNF)-alpha. IL-4 had a direct effect since it inhibited LIF production by unstimulated and IL-1 beta- or TNF-alpha-stimulated synoviocytes. Conversely, IL-4 enhanced the production of IL-6, which shares with LIF biological activities and receptor components. The inhibitory effect of IL-4 was dose dependent and was reversed using a blocking anti-IL-4 receptor antibody. Similar inhibitory action of IL-4 on LIF production was observed on synovium pieces from patients with osteoarthritis and on normal synoviocytes. IL-10, another anti-inflammatory cytokine acting on monocytes, had no effect on LIF production by either synovium pieces or isolated synoviocytes. Thus, the production of LIF by synovium tissue was inhibited by IL-4 through both a direct effect on synoviocytes and an indirect effect by inhibition of the production of LIF-inducing cytokines.

  18. The Role of RaxST, a Prokaryotic Sulfotransferase, and RaxABC, a Putative Type I Secretion System, in Activation of the Rice XA21-Mediated Immune Response

    Directory of Open Access Journals (Sweden)

    Pamela C. Ronald

    2014-01-01

    Full Text Available Tyrosine sulfation is an important posttranslational modification that determines the outcome of serious diseases in plants and animals. We have recently demonstrated that the plant pathogen Xanthomonas oryzae pv. oryzae (Xoo carries a functional sulfotransferase (RaxST. raxST is required for activation of rice Xa21-mediated immunity indicating the critical, but unknown, function of raxST in mediating the Xoo/rice interaction. The raxST gene resides in the same operon (raxSTAB as components of a predicted type I secretion and processing system (RaxA and RaxB. These observations suggest a model where RaxST sulfates a molecule that contains a leader peptide, which is cleaved by the peptidase domain of the RaxB protein and secreted outside the bacterial cell by the RaxABC T1SS.

  19. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence.

    Science.gov (United States)

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-10-04

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.

  20. FACTORS WHICH INHIBIT PROFESSORIAL CREATIVITY. PSYCHO PEDAGOGICAL ANALYSIS / FACTORES QUE INHIBEN LA CREATIVIDAD PROFESORAL. ANÁLISIS PSICOPEDAGÓGICO

    Directory of Open Access Journals (Sweden)

    Odiel Estrada Molina

    2012-07-01

    Full Text Available Several researches exposed some factors that inhibit creative thinking, but generally without psychological or pedagogical argument. In this paper is shown from a psycho pedagogical perspective some factors that hinder the development of creativity, and its final execution to students. It presents four types of inhibitory factors of creativity as: a Disorders in the affective process of teachers; b The burnout syndrome, c The modeling, and d the application ineffective communication styles. It refers to the disturbances in the processes of psychological phenomena; outlines the main theories of emotion, burnout, and modeling, and its negative impact on creativity, finally makes a pedagogical reflection on the different communication styles and their relationship with creativity.RESUMENDiversas investigaciones exponen algunos factores que inhiben el pensamiento creativo, pero generalmente sin una previa argumentación psicológica o pedagógica, es por ello que en este trabajo se presenta desde una perspectiva psicopedagógica cuatro factores que impiden el desarrollo de la creatividad, así como su ejecución final ante los alumnos. Los factores que se exponen en este trabajo son a los trastornos en el proceso afectivo del profesor; b el síndrome de desgaste profesional; c la imitación o el modelado; y d la aplicación inefectiva de los estilos de comunicación. En el desarrollo del artículo se alude a los trastornos en los procesos de los fenómenos psicológicos; se exponen las principales teorías sobre las emociones, el burnout y el modelado, y sus consecuencias negativas en la creatividad, por último se realiza una reflexión pedagógica sobre los diferentes estilos de comunicación y su relación con la creatividad.

  1. The immunosuppressives FK 506 and cyclosporin A inhibit the generation of protein factors binding to the two purine boxes of the interleukin 2 enhancer.

    Science.gov (United States)

    Brabletz, T; Pietrowski, I; Serfling, E

    1991-01-11

    Like Cyclosporin A (CsA), the macrolide FK 506 is a potent immunosuppressive that inhibits early steps of T cell activation, including the synthesis of Interleukin 2 (II-2) and numerous other lymphokines. The block of II-2 synthesis occurs at the transcriptional level. At concentrations that block T cell activation, FK 506 and CsA inhibit the proto-enhancer activity of Purine boxes of the II-2 promoter and the generation of lymphocyte-specific factors binding to the Purine boxes. Under the same conditions, the DNA binding of other II-2 enhancer factors remains unaffected by both compounds. These results support the view that FK 506 and CsA, which both inhibit the activity of peptidylprolyl cis/trans isomerases, suppress T cell activation by a similar, if not identical mechanism.

  2. Understanding the Factors That Enable and Inhibit Value Creation in Buyer-Supplier Relationships Within the Outsourcing of IT Services

    DEFF Research Database (Denmark)

    Hald, Kim Sundtoft; Kinra, Aseem; Das, Ajay

    This study contributes to literature on value creation in buyer-supplier relationships as well as literature on IT service provision. It makes a first attempt at building a comprehensive model of the factors that enable and inhibit value creation within buyersupplier relationships. A distinction...

  3. Characterization of cutaneous vascular permeability induced by platelet-activating factor in guinea pigs and rats and its inhibition by a platelet-activating factor receptor antagonist

    International Nuclear Information System (INIS)

    Hwang, S.B.; Li, C.L.; Lam, M.H.; Shen, T.Y.

    1985-01-01

    Mechanisms of platelet-activating factor (PAF)-induced increases of cutaneous vascular permeability in guinea pigs and in rats were further explored. PAF so far is the most potent vasoactive mediator, being more than 1000-fold more potent than histamine and bradykinin in both species. In guinea pigs, there is a time delay of 5 to 10 minutes before PAF action, whereas, in the rat, the increased vasopermeability occurs immediately following the intradermal PAF injection. Relative vasoactive potencies of PAF and several structure-related analogues in both species correlate very well with their relative inhibition of the binding of 3 H-PAF to specific receptor sites on isolated rabbit platelet plasma membranes and their aggregatory abilities of rabbit platelets. Furthermore, the PAF-induced cutaneous vascular permeability is inhibitable by a competitive specific PAF receptor antagonist, kadsurenone, suggesting that binding of PAF to its specific receptor site is the first step to initiate its action of increased cutaneous vascular permeability. Several pure cyclooxygenase inhibitors, including indomethacin, diflunisal, and flurbiprofen, and the dual cyclooxygenase/lipoxygenase inhibitor, BW755C, but not the histamine antagonists, inhibit the PAF-induced vasopermeability in guinea pigs. The inhibition by indomethacin or BW755C can be fully reversed by coinjection intradermally with PAF and prostaglandin E1 but not leukotriene B4. Also, prostaglandin E1 but not leukotriene B4 enhances the guinea pig in vivo response to PAF in this model. However, in rats, none of the cyclooxygenase inhibitors, histamine antagonists, or BW755C inhibit the PAF effect of cutaneous phenomena

  4. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma.

    Science.gov (United States)

    Mazzocca, Antonio; Fransvea, Emilia; Dituri, Francesco; Lupo, Luigi; Antonaci, Salvatore; Giannelli, Gianluigi

    2010-02-01

    Tumor-stroma interactions in hepatocellular carcinoma (HCC) are of key importance to tumor progression. In this study, we show that HCC invasive cells produce high levels of connective tissue growth factor (CTGF) and generate tumors with a high stromal component in a xenograft model. A transforming growth factor beta (TGF-beta) receptor inhibitor, LY2109761, inhibited the synthesis and release of CTGF, as well as reducing the stromal component of the tumors. In addition, the TGF-beta-dependent down-regulation of CTGF diminished tumor growth, intravasation, and metastatic dissemination of HCC cells by inhibiting cancer-associated fibroblast proliferation. By contrast, noninvasive HCC cells were found to produce low levels of CTGF. Upon TGF-beta1 stimulation, noninvasive HCC cells form tumors with a high stromal content and CTGF expression, which is inhibited by treatment with LY2109761. In addition, the acquired intravasation and metastatic spread of noninvasive HCC cells after TGF-beta1 stimulation was blocked by LY2109761. LY2109761 interrupts the cross-talk between cancer cells and cancer-associated fibroblasts, leading to a significant reduction of HCC growth and dissemination. Interestingly, patients with high CTGF expression had poor prognosis, suggesting that treatment aimed at reducing TGF-beta-dependent CTGF expression may offer clinical benefits. Taken together, our preclinical results indicate that LY2109761 targets the cross-talk between HCC and the stroma and provide a rationale for future clinical trials.

  5. Growth Factor Inhibiting PKC Sensor in E-coli Environment Using Classification Technique and ANN Method

    Directory of Open Access Journals (Sweden)

    T. K. BASAK

    2011-03-01

    Full Text Available Protein kinease C plays an important role in angiogenesis and apoptosis in cancer. During the phase of angiogenesis the growth factor is up regulated where as during apoptosis the growth factor is down regulated. For down regulation of growth factor the pH environment of intra-cellular fluid has a specific range in the alkaline medium. Protein kinease C along with E-coli through interaction of Selenometabolite is able to maintain that alkaline environment for the apoptosis of the cancer cell with inhibition of the growth factor related to antioxidant/oxidant ratio. The present paper through implementation of Artificial Neural Network and Decision Tree has focused on metastasis linked with Capacitance Relaxation phenomena and down regulation of growth factor (VGEF. In this paper a distributed neural network has been applied to a data mining problem for classification of cancer stages inorder to have proper diagnosis of patient with PKC sensor. The Network was trained off line using 270 patterns each of 6 inputs. Using the weight obtained during training, fresh patterns were tested for accuracy in diagnosis linked with the stages of cancer.

  6. Inhibition of fibroblast growth factor receptor with AZD4547 mitigates juvenile nasopharyngeal angiofibroma.

    Science.gov (United States)

    Le, Tran; New, Jacob; Jones, Joel W; Usman, Shireen; Yalamanchali, Sreeya; Tawfik, Ossama; Hoover, Larry; Bruegger, Dan E; Thomas, Sufi Mary

    2017-10-01

    Juvenile nasopharyngeal angiofibroma (JNA) is a benign tumor that presents in adolescent males. Although surgical excision is the mainstay of treatment, recurrences complicate treatment. There is a need to develop less invasive approaches for management. JNA tumors are composed of fibroblasts and vascular endothelial cells. We identified fibroblast growth factor receptor (FGFR) and vascular endothelial growth factor (VEGF) expression in JNA-derived fibroblasts. FGFR influences fibroblast proliferation and VEGF is necessary for angiogenesis. We hypothesized that targeting FGFR would mitigate JNA fibroblast proliferation, invasion, and migration, and that targeting the VEGF receptor would attenuate endothelial tubule formation. After informed consent, fibroblasts from JNA explants of 3 patients were isolated. Fibroblasts were treated with FGFR inhibitor AZD4547, 0 to 25 μg/mL for 72 hours and proliferation was quantified using CyQuant assay. Migration and invasion of JNA were assessed using 24-hour transwell assays with subsequent fixation and quantification. Mitigation of FGFR and downstream signaling was evaluated by immunoblotting. Tubule formation was assessed in human umbilical vein endothelial cells (HUVECs) treated with vehicle control (dimethylsulfoxide [DMSO]) or semaxanib (SU5416) as well as in serum-free media (SFM) or JNA conditioned media (CM). Tubule length was compared between treatment groups. Compared to control, AZD4547 inhibited JNA fibroblast proliferation, migration, and invasion through inhibition of FGFR and downstream signaling, specifically phosphorylation of - p44/42 mitogen activated protein kinase (p44/42 MAPK). JNA fibroblast CM significantly increased HUVEC tubule formation (p = 0.0039). AZD4547 effectively mitigates FGFR signaling and decreases JNA fibroblast proliferation, migration, and invasion. SU5416 attenuated JNA fibroblast-induced tubule formation. AZD4547 may have therapeutic potential in the treatment of JNA. © 2017 ARS

  7. HET0016, a selective inhibitor of 20-HETE synthesis, decreases pro-angiogenic factors and inhibits growth of triple negative breast cancer in mice.

    Directory of Open Access Journals (Sweden)

    Thaiz Ferraz Borin

    Full Text Available A selective inhibitor of 20-HETE synthesis, HET0016, has been reported to inhibit angiogenesis. 20-HETE has been known as a second mitogenic messenger of angiogenesis inducing growth factors. HET0016 effects were analyzed on MDA-MB-231 derived breast cancer in mouse and in vitro cell line. MDA-MB-231 tumor cells were implanted in animals' right flank and randomly assigned to early (1 and 2, starting treatments on day 0, or delayed groups (3 and 4 on day 8 after implantation of tumor. Animals received HET0016 (10 mg/kg treatment via intraperitoneal injection for 5 days/week for either 3 or 4 weeks. Control group received vehicle treatment. Tumor sizes were measured on days 7, 14, 21, and 28 and the animals were euthanized on day 22 and 29. Proteins were extracted from the whole tumor and from cells treated with 10 µM HET0016 for 4 and 24 hrs. Protein array kits of 20 different cytokines/factors were used. ELISA was performed to observe the HIF-1α and MMP-2 protein expression. Other markers were confirmed by IHC. HET0016 significantly inhibited tumor growth in all treatment groups at all-time points compared to control (p<0.05. Tumor growth was completely inhibited on three of ten animals on early treatment group. Treatment groups showed significantly lower expression of pro-angiogenic factors compared to control at 21 days; however, there was no significant difference in HIF-1α expression after treatments. Similar results were found in vitro at 24 hrs of HET0016 treatment. After 28 days, significant increase of angiogenin, angiopoietin-1/2, EGF-R and IGF-1 pro-angiogenic factors were found (p<0.05 compared to control, as well as an higher intensity of all factors were found when compared to that of 21 day's data, suggesting a treatment resistance. HET0016 inhibited tumor growth by reducing expression of different set of pro-angiogenic factors; however, a resistance to treatment seemed to happen after 21 days.

  8. Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580.

    Science.gov (United States)

    Conway, James G; McDonald, Brad; Parham, Janet; Keith, Barry; Rusnak, David W; Shaw, Eva; Jansen, Marilyn; Lin, Peiyuan; Payne, Alan; Crosby, Renae M; Johnson, Jennifer H; Frick, Lloyd; Lin, Min-Hwa Jasmine; Depee, Scott; Tadepalli, Sarva; Votta, Bart; James, Ian; Fuller, Karen; Chambers, Timothy J; Kull, Frederick C; Chamberlain, Stanley D; Hutchins, Jeff T

    2005-11-01

    Colony-stimulating-factor-1 (CSF-1) signaling through cFMS receptor kinase is increased in several diseases. To help investigate the role of cFMS kinase in disease, we identified GW2580, an orally bioavailable inhibitor of cFMS kinase. GW2580 completely inhibited human cFMS kinase in vitro at 0.06 microM and was inactive against 26 other kinases. GW2580 at 1 microM completely inhibited CSF-1-induced growth of mouse M-NFS-60 myeloid cells and human monocytes and completely inhibited bone degradation in cultures of human osteoclasts, rat calvaria, and rat fetal long bone. In contrast, GW2580 did not affect the growth of mouse NS0 lymphoblastoid cells, human endothelial cells, human fibroblasts, or five human tumor cell lines. GW2580 also did not affect lipopolysaccharide (LPS)-induced TNF, IL-6, and prostaglandin E2 production in freshly isolated human monocytes and mouse macrophages. After oral administration, GW2580 blocked the ability of exogenous CSF-1 to increase LPS-induced IL-6 production in mice, inhibited the growth of CSF-1-dependent M-NFS-60 tumor cells in the peritoneal cavity, and diminished the accumulation of macrophages in the peritoneal cavity after thioglycolate injection. Unexpectedly, GW2580 inhibited LPS-induced TNF production in mice, in contrast to effects on monocytes and macrophages in vitro. In conclusion, GW2580's selective inhibition of monocyte growth and bone degradation is consistent with cFMS kinase inhibition. The ability of GW2580 to chronically inhibit CSF-1 signaling through cFMS kinase in normal and tumor cells in vivo makes GW2580 a useful tool in assessing the role of cFMS kinase in normal and disease processes.

  9. Inhibition of tumor metastasis by a growth factor receptor bound protein 2 Src homology 2 domain-binding antagonist.

    Science.gov (United States)

    Giubellino, Alessio; Gao, Yang; Lee, Sunmin; Lee, Min-Jung; Vasselli, James R; Medepalli, Sampath; Trepel, Jane B; Burke, Terrence R; Bottaro, Donald P

    2007-07-01

    Metastasis, the primary cause of death in most forms of cancer, is a multistep process whereby cells from the primary tumor spread systemically and colonize distant new sites. Blocking critical steps in this process could potentially inhibit tumor metastasis and dramatically improve cancer survival rates; however, our understanding of metastasis at the molecular level is still rudimentary. Growth factor receptor binding protein 2 (Grb2) is a widely expressed adapter protein with roles in epithelial cell growth and morphogenesis, as well as angiogenesis, making it a logical target for anticancer drug development. We have previously shown that a potent antagonist of Grb2 Src homology-2 domain-binding, C90, blocks growth factor-driven cell motility in vitro and angiogenesis in vivo. We now report that C90 inhibits metastasis in vivo in two aggressive tumor models, without affecting primary tumor growth rate. These results support the potential efficacy of this compound in reducing the metastatic spread of primary solid tumors and establish a critical role for Grb2 Src homology-2 domain-mediated interactions in this process.

  10. Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo

    Directory of Open Access Journals (Sweden)

    Deckard Lindsey A

    2011-04-01

    Full Text Available Abstract Background Medulloblastoma is a highly malignant pediatric brain tumor that requires surgery, whole brain and spine irradiation, and intense chemotherapy for treatment. A more sophisticated understanding of the pathophysiology of medulloblastoma is needed to successfully reduce the intensity of treatment and improve outcomes. Nuclear factor kappa-B (NFκB is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Methods To test the importance of NFκB to medulloblastoma cell growth, the effects of multiple drugs that inhibit NFκB, pyrrolidine dithiocarbamate, diethyldithiocarbamate, sulfasalazine, curcumin and bortezomib, were studied in medulloblastoma cell lines compared to a malignant glioma cell line and normal neurons. Expression of endogenous NFκB was investigated in cultured cells, xenograft flank tumors, and primary human tumor samples. A dominant negative construct for the endogenous inhibitor of NFκB, IκB, was prepared from medulloblastoma cell lines and flank tumors were established to allow specific pathway inhibition. Results We report high constitutive activity of the canonical NFκB pathway, as seen by Western analysis of the NFκB subunit p65, in medulloblastoma tumors compared to normal brain. The p65 subunit of NFκB is extremely highly expressed in xenograft tumors from human medulloblastoma cell lines; though, conversely, the same cells in culture have minimal expression without specific stimulation. We demonstrate that pharmacological inhibition of NFκB in cell lines halts proliferation and leads to apoptosis. We show by immunohistochemical stain that phosphorylated p65 is found in the majority of primary tumor cells examined. Finally, expression of a dominant negative form of the endogenous inhibitor of NFκB, dnIκB, resulted in poor xenograft tumor growth, with average tumor volumes

  11. Effects of epidermal growth factor receptor kinase inhibition on radiation response in canine osteosarcoma cells.

    Science.gov (United States)

    Mantovani, Fernanda B; Morrison, Jodi A; Mutsaers, Anthony J

    2016-05-31

    Radiation therapy is a palliative treatment modality for canine osteosarcoma, with transient improvement in analgesia observed in many cases. However there is room for improvement in outcome for these patients. It is possible that the addition of sensitizing agents may increase tumor response to radiation therapy and prolong quality of life. Epidermal growth factor receptor (EGFR) expression has been documented in canine osteosarcoma and higher EGFR levels have been correlated to a worse prognosis. However, effects of EGFR inhibition on radiation responsiveness in canine osteosarcoma have not been previously characterized. This study examined the effects of the small molecule EGFR inhibitor erlotinib on canine osteosarcoma radiation responses, target and downstream protein expression in vitro. Additionally, to assess the potential impact of treatment on tumor angiogenesis, vascular endothelial growth factor (VEGF) levels in conditioned media were measured. Erlotinib as a single agent reduced clonogenic survival in two canine osteosarcoma cell lines and enhanced the impact of radiation in one out of three cell lines investigated. In cell viability assays, erlotinib enhanced radiation effects and demonstrated single agent effects. Erlotinib did not alter total levels of EGFR, nor inhibit downstream protein kinase B (PKB/Akt) activation. On the contrary, erlotinib treatment increased phosphorylated Akt in these osteosarcoma cell lines. VEGF levels in conditioned media increased after erlotinib treatment as a single agent and in combination with radiation in two out of three cell lines investigated. However, VEGF levels decreased with erlotinib treatment in the third cell line. Erlotinib treatment promoted modest enhancement of radiation effects in canine osteosarcoma cells, and possessed activity as a single agent in some cell lines, indicating a potential role for EGFR inhibition in the treatment of a subset of osteosarcoma patients. The relative radioresistance of

  12. AZD5363 inhibits inflammatory synergy between interleukin-17 and insulin/insulin-like growth factor 1

    Directory of Open Access Journals (Sweden)

    Chong eChen

    2014-12-01

    Full Text Available In the United States, one third of population is affected by obesity and almost 29 million people are suffering from type 2 diabetes. Obese people have elevated serum levels of insulin, insulin-like growth factor 1 (IGF1 and interleukin-17 (IL-17. Insulin and IGF1 are known to enhance IL-17-induced expression of inflammatory cytokines and chemokines, which may contribute to the chronic inflammatory status observed in obese people. We have previously demonstrated that insulin/IGF1 signaling pathway crosstalks with IL-17-activated nuclear factor-kappa B (NF-κB pathway through inhibiting glycogen synthase kinase 3β (GSK3β activity. However, it is unclear whether GSK3α also plays a role and whether this crosstalk can be manipulated by AZD5363, a novel pan-Akt inhibitor that has been shown to increase GSK3 activity through reducing phosphorylation of GSK3α and GSK3β. In this study, we investigated IL-17-induced expression of C-X-C motif ligand 1 (Cxcl1, C-C motif ligand 20 (Ccl20 and interleukin-6 (Il-6 in wild-type, GSK3α-/-, and GSK3β-/- mouse embryonic fibroblast (MEF cells as well as in mouse prostate tissues by real-time quantitative PCR. We examined the proteins involved in the signaling pathways by Western blot analysis. We found that insulin and IGF1 enhanced IL-17- induced expression of Cxcl1, Ccl20 and Il-6, which was associated with increased phosphorylation of GSK3α and GSK3β in the presence of insulin and IGF1. AZD5363 inhibited the synergy between IL-17 and insulin/IGF1 through reducing phosphorylation of GSK3α and GSK3β by inhibiting Akt function. These findings imply that the cooperative crosstalk of IL-17 and insulin/IGF1 in initiating inflammatory responses may be alleviated by AZD5363.

  13. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors.

    Science.gov (United States)

    Subramenium, Ganapathy Ashwinkumar; Vijayakumar, Karuppiah; Pandian, Shunmugiah Karutha

    2015-08-01

    The present study explores the efficacy of limonene, a cyclic terpene found in the rind of citrus fruits, for antibiofilm potential against species of the genus Streptococcus, which have been deeply studied worldwide owing to their multiple pathogenic efficacy. Limonene showed a concentration-dependent reduction in the biofilm formation of Streptococcus pyogenes (SF370), with minimal biofilm inhibitory concentration (MBIC) of 400 μg ml - 1. Limonene was found to possess about 75-95 % antibiofilm activity against all the pathogens tested, viz. Streptococcus pyogenes (SF370 and 5 clinical isolates), Streptococcus mutans (UA159) and Streptococcus mitis (ATCC 6249) at 400 μg ml - 1 concentration. Microscopic analysis of biofilm architecture revealed a quantitative breach in biofilm formation. Results of a surface-coating assay suggested that the possible mode of action of limonene could be by inhibiting bacterial adhesion to surfaces, thereby preventing the biofilm formation cascade. Susceptibility of limonene-treated Streptococcus pyogenes to healthy human blood goes in unison with gene expression studies in which the mga gene was found to be downregulated. Anti-cariogenic efficacy of limonene against Streptococcus mutans was confirmed, with inhibition of acid production and downregulation of the vicR gene. Downregulation of the covR, mga and vicR genes, which play a critical role in regulating surface-associated proteins in Streptococcus pyogenes and Streptococcus mutans, respectively, is yet further evidence to show that limonene targets surface-associated proteins. The results of physiological assays and gene expression studies clearly show that the surface-associated antagonistic mechanism of limonene also reduces surface-mediated virulence factors.

  14. Constitutively Active MAVS Inhibits HIV-1 Replication via Type I Interferon Secretion and Induction of HIV-1 Restriction Factors.

    Directory of Open Access Journals (Sweden)

    Sachin Gupta

    Full Text Available Type I interferon is known to inhibit HIV-1 replication through the induction of interferon stimulated genes (ISG, including a number of HIV-1 restriction factors. To better understand interferon-mediated HIV-1 restriction, we constructed a constitutively active form of the RIG-I adapter protein MAVS. Constitutive MAVS was generated by fusion of full length MAVS to a truncated form of the Epstein Barr virus protein LMP1 (ΔLMP1. Supernatant from ΔLMP1-MAVS-transfected 293T cells contained high levels of type I interferons and inhibited HIV replication in both TZM-bl and primary human CD4+ T cells. Supernatant from ΔLMP1-MAVS-transfected 293T cells also inhibited replication of VSV-G pseudotyped single cycle SIV in TZM-bl cells, suggesting restriction was post-entry and common to both HIV and SIV. Gene array analysis of ΔLMP1-MAVS-transfected 293T cells and trans-activated CD4+ T cells showed significant upregulation of ISG, including previously characterized HIV restriction factors Viperin, Tetherin, MxB, and ISG56. Interferon blockade studies implicated interferon-beta in this response. In addition to direct viral inhibition, ΔLMP1-MAVS markedly enhanced secretion of IFN-β and IL-12p70 by dendritic cells and the activation and maturation of dendritic cells. Based on this immunostimulatory activity, an adenoviral vector (Ad5 expressing ΔLMP1-MAVS was tested as a molecular adjuvant in an HIV vaccine mouse model. Ad5-Gag antigen combined with Ad5-ΔLMP1-MAVS enhanced control of vaccinia-gag replication in a mouse challenge model, with 4/5 animals showing undetectable virus following challenge. Overall, ΔLMP1-MAVS is a promising reagent to inhibit HIV-1 replication in infected tissues and enhance vaccine-mediated immune responses, while avoiding toxicity associated with systemic type I interferon administration.

  15. A review of antithrombotic therapy and the rationale and design of the randomized edoxaban in patients with peripheral artery disease (ePAD) trial adding edoxaban or clopidogrel to aspirin after femoropopliteal endovascular intervention.

    Science.gov (United States)

    Tangelder, Marco J D; Nwachuku, Chuke E; Jaff, Michael; Baumgartner, Iris; Duggal, Anil; Adams, George; Ansel, Gary; Grosso, Michael; Mercuri, Michele; Shi, Minggao; Minar, Erich; Moll, Frans L

    2015-04-01

    Compared with the coronary setting, knowledge about antithrombotic therapies after endovascular treatment (EVT) is inadequate in patients with peripheral artery disease (PAD). Based on a review of trials and guidelines, which is summarized in this article, there is scant evidence that antithrombotic drugs improve outcome after peripheral EVT. To address this knowledge gap, the randomized, open-label, multinational edoxaban in patients with Peripheral Artery Disease (ePAD) study (ClinicalTrials.gov identifier NCT01802775) was designed to explore the safety and efficacy of a combined regimen of antiplatelet therapy with clopidogrel and anticoagulation with edoxaban, a selective and direct factor Xa inhibitor, both combined with aspirin. As of July 2014, 203 patients (144 men; mean age 67 years) from 7 countries have been enrolled. These patients have been allocated to once-daily edoxaban [60 mg for 3 months (or 30 mg in the presence of factors associated with increased exposure)] or clopidogrel (75 mg/d for 3 months). All patients received aspirin (100 mg/d) for the 6-month duration of the study. The primary safety endpoint is major or clinically relevant nonmajor bleeding; the primary efficacy endpoint is restenosis or reocclusion at the treated segment(s) measured at 1, 3, and 6 months using duplex ultrasound scanning. All outcomes will be assessed and adjudicated centrally in a masked fashion. The ePAD study is the first of its kind to investigate a combined regimen of antiplatelet therapy and anticoagulation through factor Xa inhibition with edoxaban. © The Author(s) 2015.

  16. Inhibition of coagulation factors by recombinant barley serpin BSZx

    DEFF Research Database (Denmark)

    Dahl, Søren Weis; Rasmussen, S.K.; Petersen, L..C.

    1996-01-01

    Barley serpin BSZx is a potent inhibitor of trypsin and chymotrypsin at overlapping reactive sites (Dahl, S.W., Rasmussen, S.K. and Hejgaard, J. (1996) J. Biol, Chem., in press), We have now investigated the interactions of BSZx with a range of serine proteinases from human plasma, pancreas......, urokinase and tissue type plasminogen activator, plasmin and pancreas kallikrein and elastase were not or only weakly affected, The inhibition pattern with mammalian proteinases reveal a specificity of BSZx similar to that of antithrombin III. Trypsin from Fusarium was not inhibited while interaction...... with subtilisin Carlsberg and Novo was rapid but most BSZx was cleaved as a substrate, Identification of a monoclonal antibody specific for native BSZx indicate that complex formation and loop cleavage result in similar conformational changes....

  17. Exogenous Bradykinin Inhibits Tissue Factor Induction and Deep Vein Thrombosis via Activating the eNOS/Phosphoinositide 3-Kinase/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ruolan Dong

    2015-11-01

    Full Text Available Background/Aims: Bradykinin has been shown to exert a variety of protective effects against vascular injury, and to reduce the levels of several factors involved in the coagulation cascade. A key determinant of thrombin generation is tissue factor (TF. However, whether bradykinin can regulate TF expression remains to be investigated. Methods: To study the effect of bradykinin on TF expression, we used Lipopolysaccharides (LPS to induce TF expression in human umbilical vein endothelial cells and monocytes. Transcript levels were determined by RT-PCR, protein abundance by Western blotting. In the in vivo study, bradykinin and equal saline were intraperitoneally injected into mice for three days ahead of inferior cava vein ligation that we took to induce thrombus formation, after which bradykinin and saline were injected for another two days. Eventually, the mice were sacrificed and tissues were harvested for tests. Results: Exogenous bradykinin markedly inhibited TF expression in mRNA and protein level induced by LPS in a dose-dependent manner. Moreover, the NO synthase antagonist L-NAME and PI3K inhibitor LY294002 dramatically abolished the inhibitory effects of bradykinin on tissue factor expression. PI3K/Akt signaling pathway activation induced by bradykinin administration reduced the activity of GSK-3ß and MAPK, and reduced NF-κB level in the nucleus, thereby inhibiting TF expression. Consistent with this, intraperitoneal injection of C57/BL6 mice with bradykinin also inhibited the thrombus formation induced by ligation of inferior vena cava. Conclusion: Bradykinin suppressed TF protein expression in human umbilical vein endothelial cells and monocytes in vitro; in line with this, it inhibits thrombus formation induced by ligation of inferior vena cava in vivo.

  18. Pentoxifylline inhibits the fibrogenic activity of pleural effusions and transforming growth factor

    Directory of Open Access Journals (Sweden)

    P. Entzian

    1997-01-01

    Full Text Available Physiopathology of organ fibrosis is far from being completely understood, and the efficacy of the available therapeutic strategies is disappointing. We chose pleural disease for further studies and addressed the questions of which cytokines are relevant in pleural fibrosis and which drugs might interrupt its development. We screened pleural effusions for mediators thought to interfere with fibrogenesis (transforming growth factor-β (TGF-β, tumour necrosis factor α (TNFα, soluble TNF-receptor p55 (sTNF-R and correlated the results with patient clinical outcome in terms of extent of pleural thickenings. We found pleural thickenings correlated with TGF-β (p<0.005 whereas no correlations could be observed with TNFα and sTNF-R. Further, we were interested in finding out how TGF-β effects on fibroblast growth could be modulated. We found that pentoxifylline is able to inhibit both fibroblast proliferation and collagen synthesis independently of the stimulus. We conclude that, judging from in vitro studies, pentoxifylline might offer a new approach in the therapy of pleural as well as pulmonary fibrosis.

  19. Assessment of Heparin Anticoagulation Measured Using i-STAT and Hemochron Activated Clotting Time.

    Science.gov (United States)

    Maslow, Andrew; Chambers, Alison; Cheves, Tracey; Sweeney, Joseph

    2018-01-31

    Adequate anticoagulation, measured using activated clotting time (ACT), is important during vascular and cardiac surgeries. Unfractionated heparin is the most common anticoagulant used. The purpose of this analysis was to compare the i-STAT ACT (iACT) to the Hemochron ACT (hACT), both of which were then compared to anti-factor Xa (anti-Xa) assay, a representation of heparin level and activity. Prospective study. Tertiary care cardiovascular center. Eleven consecutive elective adult cardiac surgical patients. Prior to cardiopulmonary bypass, ACTs were measured using i-STAT and Hemochron technologies and compared to each other and to anti-Xa assay prior to and during a cumulative administration of heparin. Data were compared using bias analyses. Heparin (300 U/kg) was administered in quarterly doses. Coagulation labs were collected prior to and 3 minutes after each quarterly dose of heparin. The baseline ACTs for i-STAT and Hemochron were 147 and 142 seconds, respectively. A significant association was found between iACT and hACT (p = 0.002). The iACT measurements underestimated hACT at ACT levels >180 seconds or anti-Xa levels >0.75 U/mL. No significant difference was found between ACT data at anti-Xa levels 0.75 U/mL. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Insulin like growth factor-1/insulin bypasses Pref-1/FA1-mediated inhibition of adipocyte differentiation

    DEFF Research Database (Denmark)

    Zhang, Hongbin; Nøhr, Jane; Jensen, Charlotte Harken

    2003-01-01

    that forced expression of the soluble form, FA1, or full-length Pref-1 did not inhibit adipocyte differentiation of 3T3-L1 cells when differentiation was induced by standard treatment with methylisobutylxanthine, dexamethasone, and high concentrations of insulin. However, forced expression of either form...... of Pref-1/FA1 in 3T3-L1 or 3T3-F442A cells inhibited adipocyte differentiation when insulin or insulin-like growth factor-1 (IGF-1) was omitted from the differentiation mixture. We demonstrate that the level of the mature form of the IGF-1 receptor is reduced and that IGF-1-dependent activation of p42/p44...... mitogen-activated protein kinases (MAPKs) is compromised in preadipocytes with forced expression of Pref-1. This is accompanied by suppression of clonal expansion and terminal differentiation. Accordingly, supplementation with insulin or IGF-1 rescued p42/p44 MAPK activation, clonal expansion...

  1. Pertussis toxin treatment does not block inhibition by atrial natriuretic factor of aldosterone secretion in cultured bovine zona glomerulosa cells

    International Nuclear Information System (INIS)

    De Lean, A.; Cantin, M.

    1986-01-01

    The authors have previously reported that atrial natriuretic factor (ANF) potently inhibits PGE or forskolin-stimulation aldosterone secretion in bovine zona glomerulosa (ZG) by acting through specific high affinity receptors. In order to evaluate the functional role of the regulatory protein N/sub i/ and the inhibition of adenylate cyclase activity (AC) in ZG, the authors have studied the effect of treatment with PT on inhibition by ANF of aldosterone production. Primary cultures of ZG were treated for 18 hours in serum-free F12 medium with (0-100 ng/ml PT). No effect of PT pretreatment was observed either on basal, PGE-stimulated or ANF-inhibited levels of steroidogenesis. When membranes prepared from control ZG were ADP-ribosylated with [ 32 P] NAD in the presence of PT, two toxin-specific bands with 39 Kd and 41 Kd were documented on SDS gel. Cell pretreatment with as low as 1 ng/ml drastically reduced further labelling of these two bands while higher doses completely abolished them. Since PT treatment covalently modifies completely the toxin substrate without altering ANF inhibition of adrenal steroidogenesis, the authors conclude that N/sub i/ is not involved in the mode of action of ANF on aldosterone production

  2. Modifying chemotherapy response by targeted inhibition of eukaryotic initiation factor 4A

    International Nuclear Information System (INIS)

    Cencic, R; Robert, F; Galicia-Vázquez, G; Malina, A; Ravindar, K; Somaiah, R; Pierre, P; Tanaka, J; Deslongchamps, P; Pelletier, J

    2013-01-01

    Translation is regulated predominantly at the initiation phase by several signal transduction pathways that are often usurped in human cancers, including the PI3K/Akt/mTOR axis. mTOR exerts unique administration over translation by regulating assembly of eukaryotic initiation factor (eIF) 4F, a heterotrimeric complex responsible for recruiting 40S ribosomes (and associated factors) to mRNA 5′ cap structures. Hence, there is much interest in targeted therapies that block eIF4F activity to assess the consequences on tumor cell growth and chemotherapy response. We report here that hippuristanol (Hipp), a translation initiation inhibitor that selectively inhibits the eIF4F RNA helicase subunit, eIF4A, resensitizes Eμ-Myc lymphomas to DNA damaging agents, including those that overexpress eIF4E—a modifier of rapamycin responsiveness. As Mcl-1 levels are significantly affected by Hipp, combining its use with the Bcl-2 family inhibitor, ABT-737, leads to a potent synergistic response in triggering cell death in mouse and human lymphoma and leukemia cells. Suppression of eIF4AI using RNA interference also synergized with ABT-737 in murine lymphomas, highlighting eIF4AI as a therapeutic target for modulating tumor cell response to chemotherapy

  3. 3',5'-Cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation

    International Nuclear Information System (INIS)

    Karaolis, David K.R.; Cheng, Kunrong; Lipsky, Michael; Elnabawi, Ahmed; Catalano, Jennifer; Hyodo, Mamoru; Hayakawa, Yoshihiro; Raufman, Jean-Pierre

    2005-01-01

    The novel cyclic dinucleotide, 3',5'-cyclic diguanylic acid, cGpGp (c-di-GMP), is a naturally occurring small molecule that regulates important signaling mechanisms in prokaryotes. Recently, we showed that c-di-GMP has 'drug-like' properties and that c-di-GMP treatment might be a useful antimicrobial approach to attenuate the virulence and pathogenesis of Staphylococcus aureus and prevent or treat infection. In the present communication, we report that c-di-GMP (≤50 μM) has striking properties regarding inhibition of cancer cell proliferation in vitro. c-di-GMP inhibits both basal and growth factor (acetylcholine and epidermal growth factor)-induced cell proliferation of human colon cancer (H508) cells. Toxicity studies revealed that exposure of normal rat kidney cells and human neuroblastoma cells to c-di-GMP at biologically relevant doses showed no lethal cytotoxicity. Cyclic dinucleotides, such as c-di-GMP, represent an attractive and novel 'drug-platform technology' that can be used not only to develop new antimicrobial agents, but also to develop novel therapeutic agents to prevent or treat cancer

  4. BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression.

    Science.gov (United States)

    Ren, Wei; Sun, Xiaoxiao; Wang, Ke; Feng, Honglei; Liu, Yuehong; Fei, Chang; Wan, Shaoheng; Wang, Wei; Luo, Jinyong; Shi, Qiong; Tang, Min; Zuo, Guowei; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-03-01

    Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-β superfamily, regulate a wide range of cellular responses including cell proliferation, differentiation, adhesion, migration, and apoptosis. BMP9, the latest BMP to be discovered, is reportedly expressed in a variety of human carcinoma cell lines, but the role of BMP9 in breast cancer has not been fully clarified. In a previous study, BMP9 was found to inhibit the growth, migration, and invasiveness of MDA-MB-231 breast cancer cells. In the current study, the effect of BMP9 on the bone metastasis of breast cancer cells was investigated. After absent or low expression of BMP9 was detected in the MDA-MB-231 breast cancer cells and breast non-tumor adjacent tissues using Western blot and immunohistochemistry, In our previous study, BMP9 could inhibit the proliferation and invasiveness of breast cancer cells MDA-MB-231 in vitro and in vivo. This paper shows that BMP9 inhibit the bone metastasis of breast cancer cells by activating the BMP/Smad signaling pathway and downregulating connective tissue growth factor (CTGF); however, when CTGF expression was maintained, the inhibitory effect of BMP9 on the MDA-MB-231 cells was abolished. Together, these observations indicate that BMP9 is an important mediator of breast cancer bone metastasis and a potential therapeutic target for treating this deadly disease.

  5. Macrophage migration inhibitory factor interacts with HBx and inhibits its apoptotic activity

    International Nuclear Information System (INIS)

    Zhang Shimeng; Lin Ruxian; Zhou Zhe; Wen Siyuan; Lin Li; Chen Suhong; Shan Yajun; Cong Yuwen; Wang Shengqi

    2006-01-01

    HBx, a transcriptional transactivating protein of hepatitis B virus (HBV), is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the precise molecular mechanism remains largely elusive. We used the yeast two-hybrid system to identify that HBx interacts with MIF directly. Macrophage migration inhibitory factor (MIF) is implicated in the regulation of inflammation, cell growth, and even tumor formation. The interaction between HBx and MIF was verified with co-immunoprecipitation, GST pull-down, and cellular colocalization. The expression of MIF was up-regulated in HBV particle producing cell 2.2.15 compared with HepG2 cell. Both HBx and MIF cause HepG2 cell G /G 1 phase arrest, proliferation inhibition, and apoptosis. However, MIF can counteract the apoptotic effect of HBx. These results may provide evidence to explain the link between HBV infection and hepatocellular carcinoma

  6. Growth-inhibition patterns and transfer-factor profiles in arsenic-stressed rice (Oryza sativa L.).

    Science.gov (United States)

    Jung, Ha-Il; Lee, Jinwook; Chae, Mi-Jin; Kong, Myung-Suk; Lee, Chang-Hoon; Kang, Seong-Soo; Kim, Yoo-Hak

    2017-11-16

    Arsenic (As) accumulation in rice owing to uptake from the soil is a critical human health issue. Here, we studied the chemical properties of As-treated soils, growth inhibition patterns of As-stressed rice plants, changes in the As content of soil and soil solutions, and the relationship between As accumulation and As transfer factor from the soil to the rice organs. Rice plants were cultivated in a greenhouse under four concentrations of As: 0 (control), 25, 50, and 75 mg kg -1 . A significant positive correlation was found between available P 2 O 5 and exchangeable K and between As concentration and available P 2 O 5 or exchangeable K. The As concentration for 50% shoot growth inhibition was 50 mg kg -1 . As levels in roots and shoots were positively correlated with the growth stages of rice. The transfer factor (TF) root/soil increased with As concentration at the tillering stage but decreased at the heading stage. TF root/soil and TF shoot/soil were higher at the heading stage than at the tillering stage. As accumulation in the 25 mg kg -1 treatment was higher during the heading stage, whereas no difference was found at the tillering stage. As accumulation was related to plant biomass and soil As concentration. We found that As accumulation was greater at As concentrations that allowed for plant growth and development. Thus, species-specific threshold concentrations must be determined based on As phytotoxicity for the phytoremediation of As-contaminated soils. Hence, developing practical approaches for managing safe crop production in farmlands with an As contamination of 25 mg kg -1 or less is necessary.

  7. Platelet-Derived Growth Factor-Receptor α Strongly Inhibits Melanoma Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Debora Faraone

    2009-08-01

    Full Text Available Cutaneous melanoma is the most aggressive skin cancer; it is highly metastatic and responds poorly to current therapies. The expression of platelet-derived growth factor receptors (PDGF-Rs is reported to be reduced in metastatic melanoma compared with benign nevi or normal skin; we then hypothesized that PDGF-Rα may control growth of melanoma cells. We show here that melanoma cells overexpressing PDGF-Rα respond to serum with a significantly lower proliferation compared with that of controls. Apoptosis, cell cycle arrest, pRb dephosphorylation, and DNA synthesis inhibition were also observed in cells overexpressing PDGF-Rα. Proliferation was rescued by PDGF-Rα inhibitors, allowing to exclude nonspecific toxic effects and indicating that PDGF-Rα mediates autocrine antiproliferation signals in melanoma cells. Accordingly, PDGF-Rα was found to mediate staurosporine cytotoxicity. A protein array-based analysis of the mitogen-activated protein kinase pathway revealed that melanoma cells overexpressing PDGF-Rα show a strong reduction of c-Jun phosphorylated in serine 63 and of protein phosphatase 2A/Bα and a marked increase of p38γ, mitogen-activated protein kinase kinase 3, and signal regulatory protein α1 protein expression. In a mouse model of primary melanoma growth, infection with the Ad-vector overexpressing PDGF-Rα reached a significant 70% inhibition of primary melanoma growth (P < .001 and a similar inhibition of tumor angiogenesis. All together, these data demonstrate that PDGF-Rα strongly impairs melanoma growth likely through autocrine mechanisms and indicate a novel endogenous mechanism involved in melanoma control.

  8. Behavioral inhibition and obsessive-compulsive disorder.

    Science.gov (United States)

    Coles, Meredith E; Schofield, Casey A; Pietrefesa, Ashley S

    2006-01-01

    Behavioral inhibition is frequently cited as a vulnerability factor for development of anxiety. However, few studies have examined the unique relationship between behavioral inhibition and obsessive-compulsive disorder (OCD). Therefore, the current study addressed the relationship between behavioral inhibition and OCD in a number of ways. In a large unselected student sample, frequency of current OC symptoms was significantly correlated with retrospective self-reports of total levels of childhood behavioral inhibition. In addition, frequency of current OC symptoms was also significantly correlated with both social and nonsocial components of behavioral inhibition. Further, there was evidence for a unique relationship between behavioral inhibition and OC symptoms beyond the relationship of behavioral inhibition and social anxiety. In addition, results showed that reports of childhood levels of behavioral inhibition significantly predicted levels of OCD symptoms in adulthood. Finally, preliminary evidence suggested that behavioral inhibition may be more strongly associated with some types of OC symptoms than others, and that overprotective parenting may moderate the impact of behavioral inhibition on OC symptoms. The current findings suggest the utility of additional research examining the role of behavioral inhibition in the etiology of OCD.

  9. Chamaecyparis obtusa Essential Oil Inhibits Methicillin-Resistant Staphylococcus aureus Biofilm Formation and Expression of Virulence Factors.

    Science.gov (United States)

    Kim, Eun-Sook; Kang, Sun-Young; Kim, Young-Hoi; Lee, Young-Eun; Choi, Na-Young; You, Yong-Ouk; Kim, Kang-Ju

    2015-07-01

    The emergence of antibiotic-resistant bacteria has caused difficulty in treating infectious diseases. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most commonly recognized antibiotic-resistant bacteria. Novel antibiotics are urgently required to treat these bacteria. Raw materials derived from natural sources can be used for the development of novel antibiotics, such as Chamaecyparis obtusa (C. obtusa), which has been traditionally used in treating asthmatic disease. In this study, the antibacterial activity of the essential oil (EO) extracted from C. obtusa leaves against MRSA was investigated. MRSA growth and acid production from glucose metabolism were inhibited at concentrations greater than 0.1 mg/mL C. obtusa EO. MRSA biofilm formation was observed using scanning electron microscopy and safranin staining. C. obtusa EO inhibited MRSA biofilm formation at concentrations greater than 0.1 mg/mL. Using real-time polymerase chain reaction, mRNA expression of virulence factor genes, sea, agrA, and sarA, was observed. agrA expression was inhibited with C. obtusa EO concentrations greater than 0.2 mg/mL, whereas inhibition of sea and sarA expression was also observed at a concentration of 0.3 mg/mL. C. obtusa EO was analyzed by gas chromatography (GC) and GC coupled for mass spectrometry, which identified 59 constituents, accounting to 98.99% of the total EO. These findings suggest that C. obtusa EO has antibacterial effects against MRSA, which might be associated with the major components of C. obtusa EO, such as sabinene (19.06%), α-terpinyl acetate (16.99%), bornyl acetate (10.48%), limonene (8.54%), elemol (7.47%), myrcene (5.86%), γ-terpinene (4.04%), and hibaene (3.01%).

  10. The E-domain region of mechano-growth factor inhibits cellular apoptosis and preserves cardiac function during myocardial infarction.

    Science.gov (United States)

    Mavrommatis, Evangelos; Shioura, Krystyna M; Los, Tamara; Goldspink, Paul H

    2013-09-01

    Insulin-like growth factor-1 (IGF-1) isoforms are expressed via alternative splicing. Expression of the minor isoform IGF-1Eb [also known as mechano-growth factor (MGF)] is responsive to cell stress. Since IGF-1 isoforms differ in their E-domain regions, we are interested in determining the biological function of the MGF E-domain. To do so, a synthetic peptide analog was used to gain mechanistic insight into the actions of the E-domain. Treatment of H9c2 cells indicated a rapid cellular uptake mechanism that did not involve IGF-1 receptor activation but resulted in a nuclear localization. Peptide treatment inhibited the intrinsic apoptotic pathway in H9c2 cells subjected to cell stress with sorbitol by preventing the collapse of the mitochondrial membrane potential and inhibition of caspase-3 activation. Therefore, we administered the peptide at the time of myocardial infarction (MI) in mice. At 2 weeks post-MI cardiac function, gene expression and cell death were assayed. A significant decline in both systolic and diastolic function was evident in untreated mice based on PV loop analysis. Delivery of the E-peptide ameliorated the decline in function and resulted in significant preservation of cardiac contractility. Associated with these changes were an inhibition of pathologic hypertrophy and significantly fewer apoptotic nuclei in the viable myocardium of E-peptide-treated mice post-MI. We conclude that administration of the MGF E-domain peptide may provide a means of modulating local tissue IGF-1 autocrine/paracrine actions to preserve cardiac function, prevent cell death, and pathologic remodeling in the heart.

  11. Modeling the reduction of gross lithium erosion observed under high-flux deuterium bombardment

    NARCIS (Netherlands)

    Abrams, T.; Jaworski, M. A.; Kaita, R.; Nichols, J. H.; Stotler, D. P.; De Temmerman, G.; van den Berg, M. A.; van der Meiden, H. J.; Morgan, T. W.

    2015-01-01

    Abstract Both thin (<1&#xa0;μm) and thick (∼500&#xa0;μm) lithium films under high-flux deuterium and neon plasma bombardment were studied in the linear plasma device Magnum-PSI at ion fluxes >1024&#xa0;m−2&#xa0;s−1 and surface temperatures <700&#xa0;°C.

  12. Deuterium-induced nanostructure formation on tungsten exposed to high-flux plasma

    NARCIS (Netherlands)

    Xu, H.Y.; De Temmerman, G.; Luo, G. N.; Jia, Y. Z.; Yuan, Y.; Fu, B. Q.; Godfrey, A.; Liu, W.

    2015-01-01

    Surface topography of polycrystalline tungsten (W) have been examined after exposure to a low-energy (38&#xa0;eV/D), high-flux (∼1.1–1.5&#xa0;×&#xa0;1024&#xa0;m−2&#xa0;s−1) deuterium plasma in the Pilot-PSI linear plasma device. The methods used were scanning electron microscopy

  13. Inhibition of Nuclear Transcription Factor-κB and Activation of Peroxisome Proliferator-Activated Receptors in HepG2 Cells by Cucurbitane-Type Triterpene Glycosides from Momordica charantia

    Science.gov (United States)

    Nhiem, Nguyen Xuan; Yen, Pham Hai; Ngan, Nguyen Thi Thanh; Quang, Tran Hong; Kiem, Phan Van; Minh, Chau Van; Tai, Bui Huu; Cuong, Nguyen Xuan; Song, Seok Bean

    2012-01-01

    Abstract Momordica charantia: is used to treat various diseases, including inflammatory conditions. Previous reports indicated that the extract of this plant inhibits activation of nuclear transcription factor-κB (NF-κB) but activates peroxisome proliferator-activated receptor (PPAR). Additionally, cucurbitane-type triterpene glycosides are the main bioactive components of the fruit of M. charantia. Therefore, we investigated the anti-inflammatory activity of 17 cucurbitane-type triterpene glycosides (1–17) isolated from this plant. Their inhibition of NF-κB and activation of PPAR activities in HepG2 cells were measured using luciferase reporter and PPAR subtype transactivation assays. Compounds 6 and 8 were found to inhibit NF-κB activation stimulated by tumor necrosis factor-α (TNFα) in a dose-dependent manner. With 50% inhibition concentration (IC50) values of 0.4 μM, compounds 6 and 8 were more potent inhibitors than the positive control, sulfasalazine (IC50=0.9 μM). Compounds 4, 6, and 8 also inhibited TNFα-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 mRNA. However, only compound 13 significantly increased PPARγ transactivation. PMID:22248180

  14. Paris saponin-induced autophagy promotes breast cancer cell apoptosis via the Akt/mTOR signaling pathway.

    Science.gov (United States)

    Xie, Zhan-Zhi; Li, Man-Mei; Deng, Peng-Fei; Wang, Sheng; Wang, Lei; Lu, Xue-Ping; Hu, Liu-Bing; Chen, Zui; Jie, Hui-Yang; Wang, Yi-Fei; Liu, Xiao-Xiao; Liu, Zhong

    2017-02-25

    Paris saponins possess anticancer, anti-inflammatory, and antiviral effects. However, the anticancer effect of Paris saponins has not been well elucidated and the mechanisms underlying the potential function of Paris saponins in cancer therapy are needed to be further identify. In this study, we report that saponin compounds isolated from Paris polyphylla exhibited antitumor activity against breast cancer cell lines, MCF-7 and MDA-MB-231. Paris saponin XA-2 induced apoptosis in both cell lines, as evidenced by the activation of caspases and cleavage of Poly (ADP-ribose) polymerase. The ability of XA-2 to induce autophagy was confirmed by acridine orange staining, accumulation of autophagosome-bound Long chain 3 (LC3)-II, and measurement of autophagic flux. XA-2-induced autophagy was observed to promote apoptosis by the combined treatment of breast cancer cell lines with XA-2 and autophagy inhibitors 3-methyladenine and bafilomycin A1, respectively. Moreover, we report a decrease in the levels of Akt/mTOR signaling pathway proteins, such as the phosphorylated forms of Akt, mTOR, P70S6K, and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1). Taken together, these results provide important insights explaining the anticancer activity of Paris saponins and the potential development of XA-2 as a new therapeutic agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. 10′(Z),13′(E)-Heptadecadienylhydroquinone Inhibits Swarming and Virulence Factors and Increases Polymyxin B Susceptibility in Proteus mirabilis

    Science.gov (United States)

    Wang, Won-Bo; Yuan, Yu-Han; Hsueh, Po-Ren; Liaw, Shwu-Jen

    2012-01-01

    In this study, we demonstrated that 10′(Z), 13′(E)-heptadecadienylhydroquinone (HQ17-2), isolated from the lacquer tree, could decrease swarming motility and hemolysin activity but increase polymyxin B (PB) susceptibilityof Proteus mirabilis which is intrinsically highly-resistant to PB. The increased PB susceptibility induced by HQ17-2 was also observed in clinical isolates and biofilm-grown cells. HQ17-2 could inhibit swarming in the wild-type and rppA mutant but not in the rcsB mutant, indicating that HQ17-2 inhibits swarming through the RcsB-dependent pathway, a two-component signaling pathway negatively regulating swarming and virulence factor expression. The inhibition of hemolysin activity by HQ17-2 is also mediated through the RcsB-dependent pathway, because HQ17-2 could not inhibit hemolysin activity in the rcsB mutant. Moreover, the finding that HQ17-2 inhibits the expression of flhDC gene in the wild-type and rcsB-complemented strain but not in the rcsB mutant supports the notion. By contrast, HQ17-2 could increase PB susceptibility in the wild-type and rcsB mutant but not in the rppA mutant, indicating that HQ17-2 increases PB susceptibility through the RppA-dependent pathway, a signaling pathway positively regulating PB resistance. In addition, HQ17-2 could inhibit the promoter activities of rppA and pmrI, a gene positively regulated by RppA and involved in PB resistance, in the wild-type but not in the rppA mutant. The inhibition of rppA and pmrI expression caused lipopolysaccharide purified from HQ17-2-treated cells to have higher affinity for PB. Altogether, this study uncovers new biological effects of HQ17-2 and provides evidence for the potential of HQ17-2 in clinical applications. PMID:23029100

  16. [Lactobacillus rhamnosus GG conditioned medium prevents E. coli meningitis by inhibiting nuclear factor-κB pathway].

    Science.gov (United States)

    Zeng, Qing; He, Xiao-Long; Xiao, Han-Sheng; DU, Lei; Li, Yu-Jing; Chen, Le-Cheng; Tian, Hui-Wen; Huang, Sheng-He; Cao, Hong

    2017-01-20

    To investigate whether Lactobacillus rhamnosus GG conditioned medium(LGG-CM)has preventive effect against E. coli K1-induced neuropathogenicity in vitro by inhibiting nuclear factor-κB (NF-κB) signaling pathway. An in vitro blood-brain barrier (BBB) model was constructed using human brain microvascular endothelial cells (HBMECs). The effect of LGG-CM on E. coli-actived NF-κB signaling pathway was assayed using Western blotting. Invasion assay and polymorphonuclear leukocyte (PMN) transmigration assay were performed to explore whether LGG-CM could inhibit E. coli invasion and PMN transmigration across the BBB in vitro. The expressions of ZO-1 and CD44 were detected using Western blotting and immunofluorescence. The changes of trans-epithelial electric resistance (TEER) and bacterial translocation were determined to evaluate the BBB permeability. Pre-treament with LGG-CM inhibited E. coli-activated NF-κB signaling pathway in HBMECs and decreased the invasion of E. coli K1 and transmigration of PMN. Western blotting showed that LGG-CM could alleviate E. coli-induced up-regulation of CD44 and down-regulation of ZO-1 expressions in HBMECs. In addition, pre-treatment with LGG-CM alleviated E. coli K1-induced reduction of TEER and suppressed bacterial translocation across the BBB in vitro. LGG-CM can block E. coli-induced activation of NF-κB signaling pathway and thereby prevents E. coli K1-induced neuropathogenicity by decreasing E. coli K1 invasion rates and PMN transmigration.

  17. A potent complement factor C3 specific nanobody inhibiting multiple functions in the alternative pathway of human and murine complement.

    Science.gov (United States)

    Jensen, Rasmus K; Pihl, Rasmus; Gadeberg, Trine A F; Jensen, Jan K; Andersen, Kasper R; Thiel, Steffen; Laursen, Nick S; Andersen, Gregers Rom

    2018-03-01

    The complement system is a complex, carefully regulated proteolytic cascade for which suppression of aberrant activation is of increasing clinical relevance and inhibition of the complement alternative pathway is a subject of intense research. Here, we describe the nanobody hC3Nb1 that binds to multiple functional states of C3 with sub-nanomolar affinity. The nanobody causes a complete shutdown of alternative pathway activity in human and murine serum when present in concentrations comparable to C3, and hC3Nb1 is shown to prevent both proconvertase assembly as well as binding of the C3 substrate to C3 convertases. Our crystal structure of the C3b-hC3Nb1 complex and functional experiments demonstrate that proconvertase formation is blocked by steric hindrance between the nanobody and an Asn-linked glycan on complement factor B. In addition, hC3Nb1 is shown to prevent factor H binding to C3b rationalizing its inhibition of factor I activity. Our results identify hC3Nb1 as a versatile, inexpensive, and powerful inhibitor of the alternative pathway in both human and murine in vitro model systems of complement activation. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Inhibition of nuclear factor of activated T-cells (NFAT suppresses accelerated atherosclerosis in diabetic mice.

    Directory of Open Access Journals (Sweden)

    Anna V Zetterqvist

    Full Text Available OBJECTIVE OF THE STUDY: Diabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis. METHODOLOGY AND PRINCIPAL FINDINGS: Streptozotocin (STZ-induced diabetes in apolipoprotein E(-/- mice resulted in 2.2 fold increased aortic atherosclerosis and enhanced pro-inflammatory burden, as evidenced by elevated blood monocytes, endothelial activation- and inflammatory markers in aorta, and pro-inflammatory cytokines in plasma. In vivo treatment with the NFAT blocker A-285222 for 4 weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, having no effect in non-diabetic mice. STZ-treated mice exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. NFAT-dependent transcriptional activity was examined in aorta, spleen, thymus, brain, heart, liver and kidney, but only augmented in the aorta of diabetic mice. A-285222 completely blocked this diabetes-driven NFAT activation, but had no impact on the other organs or on splenocyte proliferation or cytokine secretion, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. Instead, NFAT inhibition effectively reduced IL-6, osteopontin, monocyte chemotactic protein 1, intercellular adhesion molecule 1, CD68 and tissue factor expression in the arterial wall and lowered plasma IL-6 in diabetic mice. CONCLUSIONS: Targeting NFAT signaling may be a novel and attractive approach for the treatment of diabetic macrovascular complications.

  19. Transforming growth factor β1 inhibition protects from noise-induced hearing loss

    Directory of Open Access Journals (Sweden)

    Silvia eMurillo-Cuesta

    2015-03-01

    Full Text Available Excessive exposure to noise damages the principal cochlear structures leading to hearing impairment. Inflammatory and immune responses are central mechanisms in cochlear defensive response to noise but, if unregulated, they contribute to inner ear damage and hearing loss. Transforming growth factor ß (TGF-ß is a key regulator of both responses and high levels of this factor have been associated with cochlear injury in hearing loss animal models. To evaluate the potential of targeting TGF-ß as a therapeutic strategy for preventing or ameliorating noise-induced hearing loss, we studied the auditory function, cochlear morphology, gene expression and oxidative stress markers in mice exposed to noise and treated with TGF-ß1 peptidic inhibitors P17 and P144, just before or immediately after noise insult. Our results indicate that systemic administration of both peptides significantly improved both the evolution of hearing thresholds and the degenerative changes induced by noise-exposure in lateral wall structures. Moreover, treatments ameliorated the inflammatory state and redox balance. These therapeutic effects were dose-dependent and more effective if the TGF-ß1 inhibitors were administered prior to inducing the injury. In conclusion, inhibition of TGF-ß1 actions with antagonistic peptides represents a new, promising therapeutic strategy for the prevention and repair of noise-induced cochlear damage.

  20. Leaf Extracts of Mangifera indica L. Inhibit Quorum Sensing – Regulated Production of Virulence Factors and Biofilm in Test Bacteria

    Directory of Open Access Journals (Sweden)

    Iqbal Ahmad

    2017-04-01

    Full Text Available Quorum sensing (QS is a global gene regulatory mechanism in bacteria for various traits including virulence factors. Disabling QS system with anti-infective agent is considered as a potential strategy to prevent bacterial infection. Mangifera indica L. (mango has been shown to possess various biological activities including anti-QS. This study investigates the efficacy of leaf extracts on QS-regulated virulence factors and biofilm formation in Gram negative pathogens. Mango leaf (ML extract was tested for QS inhibition and QS-regulated virulence factors using various indicator strains. It was further correlated with the biofilm inhibition and confirmed by electron microscopy. Phytochemical analysis was carried out using ultra performance liquid chromatography (UPLC and gas chromatography–mass spectrometry (GC-MS analysis. In vitro evaluation of anti-QS activity of ML extracts against Chromobacterium violaceum revealed promising dose-dependent interference in violacein production, by methanol extract. QS inhibitory activity is also demonstrated by reduction in elastase (76%, total protease (56%, pyocyanin (89%, chitinase (55%, exopolysaccharide production (58% and swarming motility (74% in Pseudomonas aeruginosa PAO1 at 800 μg/ml concentration. Biofilm formation by P. aeruginosa PAO1 and Aeromonas hydrophila WAF38 was reduced considerably (36–82% over control. The inhibition of biofilm was also observed by scanning electron microscopy. Moreover, ML extracts significantly reduced mortality of Caenorhabditis elegans pre-infected with PAO1 at the tested concentration. Phytochemical analysis of active extracts revealed very high content of phenolics in methanol extract and a total of 14 compounds were detected by GC-MS and UPLC. These findings suggest that phytochemicals from the ML could provide bioactive anti-infective and needs further investigation to isolate and uncover their therapeutic efficacy.

  1. Leaf Extracts of Mangifera indica L. Inhibit Quorum Sensing – Regulated Production of Virulence Factors and Biofilm in Test Bacteria

    Science.gov (United States)

    Husain, Fohad M.; Ahmad, Iqbal; Al-thubiani, Abdullah S.; Abulreesh, Hussein H.; AlHazza, Ibrahim M.; Aqil, Farrukh

    2017-01-01

    Quorum sensing (QS) is a global gene regulatory mechanism in bacteria for various traits including virulence factors. Disabling QS system with anti-infective agent is considered as a potential strategy to prevent bacterial infection. Mangifera indica L. (mango) has been shown to possess various biological activities including anti-QS. This study investigates the efficacy of leaf extracts on QS-regulated virulence factors and biofilm formation in Gram negative pathogens. Mango leaf (ML) extract was tested for QS inhibition and QS-regulated virulence factors using various indicator strains. It was further correlated with the biofilm inhibition and confirmed by electron microscopy. Phytochemical analysis was carried out using ultra performance liquid chromatography (UPLC) and gas chromatography–mass spectrometry (GC-MS) analysis. In vitro evaluation of anti-QS activity of ML extracts against Chromobacterium violaceum revealed promising dose-dependent interference in violacein production, by methanol extract. QS inhibitory activity is also demonstrated by reduction in elastase (76%), total protease (56%), pyocyanin (89%), chitinase (55%), exopolysaccharide production (58%) and swarming motility (74%) in Pseudomonas aeruginosa PAO1 at 800 μg/ml concentration. Biofilm formation by P. aeruginosa PAO1 and Aeromonas hydrophila WAF38 was reduced considerably (36–82%) over control. The inhibition of biofilm was also observed by scanning electron microscopy. Moreover, ML extracts significantly reduced mortality of Caenorhabditis elegans pre-infected with PAO1 at the tested concentration. Phytochemical analysis of active extracts revealed very high content of phenolics in methanol extract and a total of 14 compounds were detected by GC-MS and UPLC. These findings suggest that phytochemicals from the ML could provide bioactive anti-infective and needs further investigation to isolate and uncover their therapeutic efficacy. PMID:28484444

  2. Nucleotide diversity analysis of three major bacterial blight resistance genes in rice.

    Directory of Open Access Journals (Sweden)

    Waikhom Bimolata

    Full Text Available Nucleotide sequence polymorphisms among R gene alleles influence the process of co-evolutionary interaction between host and pathogen by shaping the response of host plants towards invading pathogens. Here, we present the DNA sequence polymorphisms and diversities present among natural alleles of three rice bacterial blight resistance genes, Xa21, Xa26 and xa5. The diversity was examined across different wild relatives and cultivars of Oryza species. Functional significance of selected alleles was evaluated through semi-quantitative reverse transcription polymerase chain reaction and real time PCR. The greatest nucleotide diversity and singleton variable sites (SVS were present in Xa26 (π = 0.01958; SVS = 182 followed by xa5 and Xa21 alleles. The highest frequency of single nucleotide polymorphisms were observed in Xa21 alleles and least in xa5. Transition bias was observed in all the genes and 'G' to 'A' transitions were more favored than other form of transitions. Neutrality tests failed to show the presence of selection at these loci, though negative Tajima's D values indicate the presence of a rare form of polymorphisms. At the interspecies level, O. nivara exhibited more diversity than O. sativa. We have also identified two nearly identical resistant alleles of xa5 and two sequentially identical alleles of Xa21. The alleles of xa5 showed basal levels of expression while Xa21 alleles were functionally not expressed.

  3. Inhibition of iodine-125-labeled human follitropin binding to testicular receptor by epidermal growth factor and synthetic peptides

    International Nuclear Information System (INIS)

    Sluss, P.M.; Krystek, S.R. Jr.; Andersen, T.T.; Melson, B.E.; Huston, J.S.; Ridge, R.; Reichert, L.E. Jr.

    1986-01-01

    Two tetrapeptide sequence homologies between mouse epidermal growth factor precursor (mEGFP) and human follitropin (FSH) were revealed by a computer program that identifies identical residues among polypeptide sequences. The two tetrapeptides, Lys-Thr-Cys-Thr (KTCT) and Thr-Arg-Asp-Leu (TRDL), are present in the hormone-specific beta subunit of FSH from all species studied. These tetrapeptides are not present in the alpha subunit, which is common to all pituitary glycoprotein hormones. Both tetrapeptides are also found in mEGFP, and one tetrapeptide, TRDL, is located within the 53-residue form of mEGF purified from mouse submaxillary glands. Computer-generated hydropathy profiles predicted that both tetrapeptides are located in hydrophilic portions of the FSH beta subunit and that TRDL is in a hydrophilic portion of commercially available mEGF. Therefore, the tetrapeptides might be accessible to receptor binding sites for FSH. We report that mEGF inhibits binding of 125 I-labeled human FSH to receptors in testis by 50% (I50) at a concentration of 1.8 X 10(-5) M. No binding inhibition was observed by GnRH or arginine-vasopressin at 10(-4) M, neither of which contain the tetrapeptide sequences. FSH beta subunit, which contains both tetrapeptides, also inhibited binding (I50 = 9 X 10(-8) M) of 125 I-labeled human FSH to testis receptor. Thus, it appears that FSH beta subunit and mEGF are capable of inhibiting binding of FSH to testicular FSH receptors, presumably through interactions that include the homologous tetrapeptides. This presumption was supported by the observation that the synthetic tetrapeptides (KTCT or TRDL) were also active in inhibiting binding of 125 I-labeled human FSH to testis receptor

  4. The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia.

    Science.gov (United States)

    Sim, Jingwei; Cowburn, Andrew S; Palazon, Asis; Madhu, Basetti; Tyrakis, Petros A; Macías, David; Bargiela, David M; Pietsch, Sandra; Gralla, Michael; Evans, Colin E; Kittipassorn, Thaksaon; Chey, Yu C J; Branco, Cristina M; Rundqvist, Helene; Peet, Daniel J; Johnson, Randall S

    2018-04-03

    Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. The development of children's inhibition: Does parenting matter?

    OpenAIRE

    Roskam, I.; Stievenart, Marie; Meunier, J.-C.; Noël, M.-P.

    2014-01-01

    Whereas a large body of research has investigated the maturation of inhibition in relation to the prefrontal cortex, far less research has been devoted to environmental factors that could contribute to inhibition improvement. The aim of the current study was to test whether and to what extent parenting matters for inhibition development from 2 to 8. years of age. Data were collected from 421 families, with 348 mother-child dyads and 342 father-child dyads participating. Children's inhibition ...

  6. The distressed (Type D) and Five-Factor Models of personality in young, healthy adults and their association with emotional inhibition and distress

    NARCIS (Netherlands)

    Svansdóttir, E.; van den Broek, K.C.; Karlsson, H.D.; Olason, D.T.; Thorgilsson, H.; Denollet, J.

    2013-01-01

    The distressed (Type D) personality (the combination of negative affectivity and social inhibition traits) has been associated with adverse health outcomes. This study investigated the validity of the Type D construct against the Five-Factor Model (FFM) of personality, and its association with

  7. Radioenzymatic assay of plasma adrenaline and noradrenaline: evidence for a catechol-O-methyltransferase (COMT) inhibiting factor associated with essential hypertension

    International Nuclear Information System (INIS)

    Hoffmann, J.J.M.L.; Willemsen, J.J.; Thien, Th.; Benraad, Th.J.

    1982-01-01

    During the evaluation of a modified radioenzymatic determination of plasma adrenaline and noradrenaline, it has been found that there exists a highly significant (p 0 C, but only in plasma from patients with essential hypertension. Plasma from normotensive persons exhibits a complete lack of correlation between these factors. The consequences of the hypertension-associated COMT-inhibiting factor for the assays' specifications are discussed and data are presented for comparison with a recently-described uremia-associated COMT-inhibitor (Demassieux et al, Clin Chim Acta 115, 377-391; 1981). (Auth.)

  8. The stabilization of hypoxia inducible factor modulates differentiation status and inhibits the proliferation of mouse embryonic stem cells.

    Science.gov (United States)

    Binó, Lucia; Kučera, Jan; Štefková, Kateřina; Švihálková Šindlerová, Lenka; Lánová, Martina; Kudová, Jana; Kubala, Lukáš; Pacherník, Jiří

    2016-01-25

    Hypoxic conditions are suggested to affect the differentiation status of stem cells (SC), including embryonic stem cells (ESC). Hypoxia inducible factor (HIF) is one of the main intracellular molecules responsible for the cellular response to hypoxia. Hypoxia stabilizes HIF by inhibiting the activity of HIF prolyl-hydroxylases (PHD), which are responsible for targeting HIF-alpha subunits for proteosomal degradation. To address the impact of HIF stabilization on the maintenance of the stemness signature of mouse ESC (mESC), we tested the influence of the inhibition of PHDs and hypoxia (1% O2 and 5% O2) on spontaneous ESC differentiation triggered by leukemia inhibitory factor withdrawal for 24 and 48 h. The widely used panhydroxylase inhibitor dimethyloxaloylglycine (DMOG) and PHD inhibitor JNJ-42041935 (JNJ) with suggested higher specificity towards PHDs were employed. Both inhibitors and both levels of hypoxia significantly increased HIF-1alpha and HIF-2alpha protein levels and HIF transcriptional activity in spontaneously differentiating mESC. This was accompanied by significant downregulation of cell proliferation manifested by the complete inhibition of DNA synthesis and partial arrest in the S phase after 48 h. Further, HIF stabilization enhanced downregulation of the expressions of some pluripotency markers (OCT-4, NANOG, ZFP-42, TNAP) in spontaneously differentiating mESC. However, at the same time, there was also a significant decrease in the expression of some genes selected as markers of cell differentiation (e.g. SOX1, BRACH T, ELF5). In conclusion, the short term stabilization of HIF mediated by the PHD inhibitors JNJ and DMOG and hypoxia did not prevent the spontaneous loss of pluripotency markers in mESC. However, it significantly downregulated the proliferation of these cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels

    International Nuclear Information System (INIS)

    Wang, Dang; Fang, Liurong; Luo, Rui; Ye, Rui; Fang, Ying; Xie, Lilan; Chen, Huanchun; Xiao, Shaobo

    2010-01-01

    Research highlights: → FMDV L pro inhibits poly(I:C)-induced IFN-α1/β mRNA expression. → L pro inhibits MDA5-mediated activation of the IFN-α1/β promoter. → L pro significantly reduced the transcription of multiple IRF-responsive genes. → L pro inhibits IFN-α1/β promoter activation by decreasing IRF-3/7 in protein levels. → The ability to process eIF-4G of L pro is not necessary to inhibit IFN-α1/β activation. -- Abstract: The leader proteinase (L pro ) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-β (IFN-β) antagonist that disrupts the integrity of transcription factor nuclear factor κB (NF-κB). In this study, we showed that the reduction of double stranded RNA (dsRNA)-induced IFN-α1/β expression caused by L pro was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-α/β. Furthermore, overexpression of L pro significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L pro mutants indicated that the ability to process eIF-4G of L pro is not required for suppressing dsRNA-induced activation of the IFN-α1/β promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-κB, L pro also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.

  10. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dang; Fang, Liurong; Luo, Rui; Ye, Rui; Fang, Ying; Xie, Lilan; Chen, Huanchun [Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); Xiao, Shaobo, E-mail: shaoboxiao@yahoo.com [Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China)

    2010-08-13

    Research highlights: {yields} FMDV L{sup pro} inhibits poly(I:C)-induced IFN-{alpha}1/{beta} mRNA expression. {yields} L{sup pro} inhibits MDA5-mediated activation of the IFN-{alpha}1/{beta} promoter. {yields} L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes. {yields} L{sup pro} inhibits IFN-{alpha}1/{beta} promoter activation by decreasing IRF-3/7 in protein levels. {yields} The ability to process eIF-4G of L{sup pro} is not necessary to inhibit IFN-{alpha}1/{beta} activation. -- Abstract: The leader proteinase (L{sup pro}) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-{beta} (IFN-{beta}) antagonist that disrupts the integrity of transcription factor nuclear factor {kappa}B (NF-{kappa}B). In this study, we showed that the reduction of double stranded RNA (dsRNA)-induced IFN-{alpha}1/{beta} expression caused by L{sup pro} was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-{alpha}/{beta}. Furthermore, overexpression of L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L{sup pro} mutants indicated that the ability to process eIF-4G of L{sup pro} is not required for suppressing dsRNA-induced activation of the IFN-{alpha}1/{beta} promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-{kappa}B, L{sup pro} also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.

  11. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: L-glutamine inhibits the generation of L-arginine by cultured endothelial cells

    International Nuclear Information System (INIS)

    Sessa, W.C.; Hecker, M.; Mitchell, J.A.; Vane, J.R.

    1990-01-01

    The mechanism by which L-glutamine (L-Gln) inhibits the release of endothelium-derived factor from bovine aortic cultured endothelial cells was investigated. The intracellular concentration of L-arginine (L-Arg) in Arg-depleted endothelial cells was inversely related to the level of L-Gln. Removal of L-Gln from the culture medium (usually containing L-Gln at 2 mM) abolished the inhibitory effect of the culture medium on L-Arg generation. L-Gln (0.2 and 2 mM) but not D-Gln inhibited the generation of L-Arg by both Arg-depleted and nondepleted endothelial cells. L-Gln did not interfere with the uptake of L-Arg or the metabolism of L-Arg-L-Phe to L-Arg but inhibited the formation of L-Arg from L-citrulline (L-Cit), L-Cit-L-Phe, and N G -monomethyl-L-arginine. L-Gln also inhibited the conversion of L-[ 14 C]Cit to L-[ 14 C]Arg by Arg-depleted endothelial cells. However, L-Gln did not inhibit the conversion of L-argininosuccinic acid to L-Arg by endothelial cell homogenates. Thus, L-Gln interferes with the conversion of L-Cit to L-Arg probably by acting on argininosuccinate synthetase rather than argininosuccinate lyase. L-Gln also inhibited the generation of L-Arg by the monocyte-macrophage cell line J774 but had no effect on the conversion of L-Cit to L-Arg by these cells. As the release of endothelium-derived relaxing factor from cultured and non-cultured endothelial cells is limited by the availability of L-Arg, endogenous L-Gln may play a regulatory role in the biosynthesis of endothelium-derived relaxing factor

  12. Association of prothrombin complex concentrate administration and hematoma enlargement in non-vitamin K antagonist oral anticoagulant-related intracerebral hemorrhage.

    Science.gov (United States)

    Gerner, Stefan T; Kuramatsu, Joji B; Sembill, Jochen A; Sprügel, Maximilian I; Endres, Matthias; Haeusler, Karl Georg; Vajkoczy, Peter; Ringleb, Peter A; Purrucker, Jan; Rizos, Timolaos; Erbguth, Frank; Schellinger, Peter D; Fink, Gereon R; Stetefeld, Henning; Schneider, Hauke; Neugebauer, Hermann; Röther, Joachim; Claßen, Joseph; Michalski, Dominik; Dörfler, Arnd; Schwab, Stefan; Huttner, Hagen B

    2018-01-01

    To investigate parameters associated with hematoma enlargement in non-vitamin K antagonist oral anticoagulant (NOAC)-related intracerebral hemorrhage (ICH). This retrospective cohort study includes individual patient data for 190 patients with NOAC-associated ICH over a 5-year period (2011-2015) at 19 departments of neurology across Germany. Primary outcome was the association of prothrombin complex concentrate (PCC) administration with hematoma enlargement. Subanalyses were calculated for blood pressure management and its association with the primary outcome. Secondary outcomes include associations with in-hospital mortality and functional outcome at 3 months assessed using the modified Rankin Scale. The study population for analysis of primary and secondary outcomes consisted of 146 NOAC-ICH patients with available follow-up imaging. Hematoma enlargement occurred in 49/146 (33.6%) patients with NOAC-related ICH. Parameters associated with hematoma enlargement were blood pressure ≥ 160mmHg within 4 hours and-in the case of factor Xa inhibitor ICH-anti-Xa levels on admission. PCC administration prior to follow-up imaging was not significantly associated with a reduced rate of hematoma enlargement either in overall NOAC-related ICH or in patients with factor Xa inhibitor intake (NOAC: risk ratio [RR] = 1.150, 95% confidence interval [CI] = 0.632-2.090; factor Xa inhibitor: RR = 1.057, 95% CI = 0.565-1.977), regardless of PCC dosage given or time interval until imaging or treatment. Systolic blood pressure levels < 160mmHg within 4 hours after admission were significantly associated with a reduction in the proportion of patients with hematoma enlargement (RR = 0.598, 95% CI = 0.365-0.978). PCC administration had no effect on mortality and functional outcome either at discharge or at 3 months. In contrast to blood pressure control, PCC administration was not associated with a reduced rate of hematoma enlargement in NOAC-related ICH

  13. Fear inhibition in high trait anxiety.

    Directory of Open Access Journals (Sweden)

    Merel Kindt

    Full Text Available Trait anxiety is recognized as an individual risk factor for the development of anxiety disorders but the neurobiological mechanisms remain unknown. Here we test whether trait anxiety is associated with impaired fear inhibition utilizing the AX+/BX- conditional discrimination procedure that allows for the independent evaluation of startle fear potentiation and inhibition of fear. Sixty undergraduate students participated in the study--High Trait Anxious: n = 28 and Low Trait Anxious: n = 32. We replicated earlier findings that a transfer of conditioned inhibition for startle responses requires contingency awareness. However, contrary to the fear inhibition hypothesis, our data suggest that high trait anxious individuals show a normal fear inhibition of conditioned startle responding. Only at the cognitive level the high trait anxious individuals showed evidence for impaired inhibitory learning of the threat cue. Together with other findings where impaired fear inhibition was only observed in those PTSD patients who were either high on hyperarousal symptoms or with current anxiety symptoms, we question whether impaired fear inhibition is a biomarker for the development of anxiety disorders.

  14. Spotlight on unmet needs in stroke prevention: The PIONEER AF-PCI, NAVIGATE ESUS and GALILEO trials.

    Science.gov (United States)

    Hemmrich, Melanie; Peterson, Eric D; Thomitzek, Karen; Weitz, Jeffrey I

    2016-09-28

    Atrial fibrillation (AF) is a major healthcare concern, being associated with an estimated five-fold risk of ischaemic stroke. In patients with AF, anticoagulants reduce stroke risk to a greater extent than acetylsalicylic acid (ASA) or dual antiplatelet therapy (DAPT) with ASA plus clopidogrel. Non-vitamin K antagonist oral anticoagulants (NOACs) are now a widely-accepted therapeutic option for stroke prevention in non-valvular AF (NVAF). There are particular patient types with NVAF for whom treatment challenges remain, owing to sparse clinical data, their high-risk nature or a need to harmonise anticoagulant and antiplatelet regimens if co-administered. This article focuses on three randomised controlled trials (RCTs) that are investigating the utility of rivaroxaban, a direct, oral, factor Xa inhibitor, in additional areas of stroke prevention where data for anticoagulants are lacking: oPen-label, randomized, controlled, multicentre study explorIng twO treatmeNt stratEgiEs of Rivaroxaban and a dose-adjusted oral vitamin K antagonist treatment (PIONEER AF-PCI); New Approach riVaroxoban Inhibition of factor Xa in a Global trial vs Aspirin to prevenT Embolism in Embolic Stroke of Undetermined Source (NAVIGATE ESUS); and Global study comparing a rivAroxaban-based antithrombotic strategy to an antipLatelet-based strategy after transcatheter aortIc vaLve rEplacement to Optimize clinical outcomes (GALILEO). Data from these studies present collaborative efforts to build upon existing registrational Phase III data for rivaroxaban, driving the need for effective and safe treatment of a wider range of patients for stroke prevention.

  15. Effects of trigonelline inhibition of the Nrf2 transcription factor in vitro on Echinococcus granulosus.

    Science.gov (United States)

    Qin, Wenjuan; Guan, Dongfang; Ma, Rongji; Yang, Rentan; Xing, Guoqiang; Shi, Hongjuan; Tang, Guangyao; Li, Jiajie; Lv, Hailong; Jiang, Yufeng

    2017-08-01

    The aim of this study was to investigate the impact of trigonelline (TRG) on Echinococcus granulosus, and to explore the inhibition impact of nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway on E. granulosus protoscoleces. Echinococcus granulosus protoscoleces were incubated with various concentrations of TRG, and then Nrf2 protein expression and its localization in protoscoleces were detected by western blot analysis and immunofluorescence assay, respectively. Reactive oxygen species (ROS) level in protoscoleces was measured using ROS detection kit. Caspase-3 activity was measured using a caspase-3 activity assay kit, and NAD(P)H quinone oxidoreductase (NQO)-1 and heme oxygenase (HO)-1 activities in protoscoleces were measured by ELISA. The effect of TRG on protoscoleces viability was investigated using 0.1% eosin staining, and ultrastructural alterations in protoscoleces were examined by scanning electron microscopy (SEM). Immunolocalization experiment clearly showed that Nrf2 protein was predominantly present in cells of protoscoleces. TRG treatment reduced NQO-1 and HO-1 activities in protoscoleces, but could increase ROS level at early time. Protoscoleces could not survive when treated with 250 μM TRG for 12 days. SEM results showed that TRG-treated protoscoleces presented damage in the protoscoleces region, including hook deformation, lesions, and digitiform protuberance. Nrf2 protein expression was significantly decreased and caspase-3 activity was clearly increased in protoscoleces treated with TRG for 24 and 48 h, respectively, when compared with that in controls (P granulosus protoscoleces. Nrf2 protein was mainly expressed in the cells and TRG could efficiently inhibit the Nrf2 signaling pathway in E. granulosus. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For

  16. Inhibition of transcription factor NF-kappaB signaling proteins IKKbeta and p65 through specific cysteine residues by epoxyquinone A monomer: correlation with its anti-cancer cell growth activity.

    Science.gov (United States)

    Liang, Mei-Chih; Bardhan, Sujata; Pace, Emily A; Rosman, Diana; Beutler, John A; Porco, John A; Gilmore, Thomas D

    2006-02-28

    Transcription factor NF-kappaB is constitutively active in many human chronic inflammatory diseases and cancers. Epoxyquinone A monomer (EqM), a synthetic derivative of the natural product epoxyquinol A, has previously been shown to be a potent inhibitor of tumor necrosis factor-alpha (TNF-alpha)-induced activation of NF-kappaB, but the mechanism by which EqM inhibits NF-kappaB activation was not known. In this report, we show that EqM blocks activation of NF-kappaB by inhibiting two molecular targets: IkappaB kinase IKKbeta and NF-kappaB subunit p65. EqM inhibits TNF-alpha-induced IkappaBalpha phosphorylation and degradation by targeting IKKbeta, and an alanine substitution for Cys179 in the activation loop of IKKbeta makes it resistant to EqM-mediated inhibition. EqM also directly inhibits DNA binding by p65, but not p50; moreover, replacement of Cys38 in p65 with Ser abolishes EqM-mediated inhibition of DNA binding. Pretreatment of cells with reducing agent dithiothreitol dose-dependently reduces EqM-mediated inhibition of NF-kappaB, further suggesting that EqM directly modifies the thiol group of Cys residues in protein targets. Modifications of the exocyclic alkene of EqM substantially reduce EqM's ability to inhibit NF-kappaB activation. In the human SUDHL-4 lymphoma cell line, EqM inhibits both proliferation and NF-kappaB DNA binding, and activates caspase-3 activity. EqM also effectively inhibits the growth of human leukemia, kidney, and colon cancer cell lines in the NCI's tumor cell panel. Among six colon cancer cell lines, those with low amounts of constitutive NF-kappaB DNA-binding activity are generally more sensitive to growth inhibition by EqM. Taken together, these results suggest that EqM inhibits growth and induces cell death in tumor cells through a mechanism that involves inhibition of NF-kappaB activity at multiple steps in the signaling pathway.

  17. Quantitative PET Imaging of Tissue Factor Expression Using 18F-Labeled Active Site-Inhibited Factor VII.

    Science.gov (United States)

    Nielsen, Carsten H; Erlandsson, Maria; Jeppesen, Troels E; Jensen, Mette M; Kristensen, Lotte K; Madsen, Jacob; Petersen, Lars C; Kjaer, Andreas

    2016-01-01

    Tissue factor (TF) is upregulated in many solid tumors, and its expression is linked to tumor angiogenesis, invasion, metastasis, and prognosis. A noninvasive assessment of tumor TF expression status is therefore of obvious clinical relevance. Factor VII is the natural ligand to TF. Here we report the development of a new PET tracer for specific imaging of TF using an (18)F-labeled derivative of factor VII. Active site-inhibited factor VIIa (FVIIai) was obtained by inactivation with phenylalanine-phenylalanine-arginine-chloromethyl ketone. FVIIai was radiolabeled with N-succinimidyl 4-(18)F-fluorobenzoate and purified. The corresponding product, (18)F-FVIIai, was injected into nude mice with subcutaneous human pancreatic xenograft tumors (BxPC-3) and investigated using small-animal PET/CT imaging 1, 2, and 4 h after injection. Ex vivo biodistribution was performed after the last imaging session, and tumor tissue was preserved for molecular analysis. A blocking experiment was performed in a second set of mice. The expression pattern of TF in the tumors was visualized by immunohistochemistry and the amount of TF in tumor homogenates was measured by enzyme-linked immunosorbent assay and correlated with the uptake of (18)F-FVIIai in the tumors measured in vivo by PET imaging. The PET images showed high uptake of (18)F-FVIIai in the tumor regions, with a mean uptake of 2.5 ± 0.3 percentage injected dose per gram (%ID/g) (mean ± SEM) 4 h after injection of 7.3-9.3 MBq of (18)F-FVIIai and with an average maximum uptake in the tumors of 7.1 ± 0.7 %ID/g at 4 h. In comparison, the muscle uptake was 0.2 ± 0.01 %ID/g at 4 h. At 4 h, the tumors had the highest uptake of any organ. Blocking with FVIIai significantly reduced the uptake of (18)F-FVIIai from 2.9 ± 0.1 to 1.4 ± 0.1 %ID/g (P < 0.001). The uptake of (18)F-FVIIai measured in vivo by PET imaging correlated (r = 0.72, P < 0.02) with TF protein level measured ex vivo. (18)F-FVIIai is a promising PET tracer for

  18. Inhibition of vascular endothelial growth factor signaling facilitates liver repair from acute ethanol-induced injury in zebrafish

    Directory of Open Access Journals (Sweden)

    Changwen Zhang

    2016-11-01

    Full Text Available Alcoholic liver disease (ALD results from alcohol overconsumption and is among the leading causes of liver-related morbidity and mortality worldwide. Elevated expression of vascular endothelial growth factor (VEGF and its receptors has been observed in ALD, but how it contributes to ALD pathophysiology is unclear. Here, we investigated the impact of VEGF signaling inhibition on an established zebrafish model of acute alcoholic liver injury. Kdrl activity was blocked by chemical inhibitor treatment or by genetic mutation. Exposing 4-day-old zebrafish larvae to 2% ethanol for 24 h induced hepatic steatosis, angiogenesis and fibrogenesis. The liver started self-repair once ethanol was removed. Although inhibiting Kdrl did not block the initial activation of hepatic stellate cells during ethanol treatment, it suppressed their proliferation, extracellular matrix protein deposition and fibrogenic gene expression after ethanol exposure, thus enhancing the liver repair. It also ameliorated hepatic steatosis and attenuated hepatic angiogenesis that accelerated after the ethanol treatment. qPCR showed that hepatic stellate cells are the first liver cell type to increase the expression of VEGF ligand and receptor genes in response to ethanol exposure. Both hepatic stellate cells and endothelial cells, but not hepatic parenchymal cells, expressed kdrl upon ethanol exposure and were likely the direct targets of Kdrl inhibition. Ethanol-induced steatosis and fibrogenesis still occurred in cloche mutants that have hepatic stellate cells but lack hepatic endothelial cells, and Kdrl inhibition suppressed both phenotypes in the mutants. These results suggest that VEGF signaling mediates interactions between activated hepatic stellate cells and hepatocytes that lead to steatosis. Our study demonstrates the involvement of VEGF signaling in regulating sustained liver injuries after acute alcohol exposure. It also provides a proof of principle of using the

  19. Growth-inhibiting effect of tumor necrosis factor on human umbilical vein endothelial cells is enhanced with advancing age in vitro

    International Nuclear Information System (INIS)

    Shimada, Y.; Kaji, K.; Ito, H.; Noda, K.; Matsuo, M.

    1990-01-01

    We have examined the effects of in vitro aging on the growth capacity of human umbilical vein endothelial cells (HUVECs) under the influence of tumor necrosis factor (TNF) with or without interferon-gamma (IFN-gamma). The growth and colony-forming abilities of control cells were impaired with advancing age in vitro, especially at later stages (more than 70-80% of life span completed). It was found that treatment with TNF inhibited growth and colony-forming efficiency at any in vitro age. The effects of TNF were shown to increase with increasing in vitro age, as reflected by a more pronounced increase in doubling times, a decrease in saturation density, and a reduction in colony-forming efficiency. However, the characteristics of TNF receptors, including the dissociation constant, and the number of TNF-binding sites per cell-surface area remained rather constant. The effect of TNF was augmented by IFN-gamma at a dose that alone affected growth and colony formation only slightly. The augmentation by IFN-gamma was also found to depend on in vitro age; the synergy with TNF in the deterioration of colony-forming ability was observed only in aged cells. These results suggest that the intrinsic responsiveness of HUVECs to growth-inhibiting factors, as well as to growth-stimulating factors, changes during aging in vitro

  20. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor

    International Nuclear Information System (INIS)

    Kato, Haruo; Sekine, Yoshitaka; Furuya, Yosuke; Miyazawa, Yoshiyuki; Koike, Hidekazu; Suzuki, Kazuhiro

    2015-01-01

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metformin significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling

  1. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Haruo, E-mail: hal.kato@gunma-u.ac.jp; Sekine, Yoshitaka; Furuya, Yosuke; Miyazawa, Yoshiyuki; Koike, Hidekazu; Suzuki, Kazuhiro

    2015-05-22

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metformin significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling.

  2. Free vibration of elastically supported thin cylinders including gyroscopic effects

    CSIR Research Space (South Africa)

    Loveday, PW

    1998-10-29

    Full Text Available [ The equations D[R[ 747723 JSV 106:2 "Issue# MS 1560 VIBRATION OF THIN CYLINDERS 442 required for this procedure\\ including the gyroscopic terms\\ are included in Appendix A[ The displacement functions can then be written as follows] W"x# C0 cosh a0xa C1 sinh a0... xa C2 cos g1xa C3 sin g1xa epx:a0C4 cos qxa C5 sin qxa 1 e px:a0C6 cos qxa C7 sin qxa 1 "6a# V"x# A0C0 cosh a0xa A0C1 sinh a0xa A2C2 cos g1xa A2C3 sin g1xa epx:a$"A4C4 A5C5# cos qxa "A4C5 A5C4# sin qxa % e px:a$"A4C6 A5C7# cos...

  3. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    Science.gov (United States)

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  4. p8 inhibits the growth of human pancreatic cancer cells and its expression is induced through pathways involved in growth inhibition and repressed by factors promoting cell growth

    Directory of Open Access Journals (Sweden)

    Vasseur Sophie

    2003-11-01

    Full Text Available Abstract Background p8 is a stress-induced protein with multiple functions and biochemically related to the architectural factor HMG-I/Y. We analyzed the expression and function of p8 in pancreatic cancer-derived cells. Methods Expression of p8 was silenced in the human pancreatic cancer cell lines Panc-1 and BxPc-3 by infection with a retrovirus expressing p8 RNA in the antisense orientation. Cell growth was measured in control and p8-silenced cells. Influence on p8 expression of the induction of intracellular pathways promoting cellular growth or growth arrest was monitored. Results p8-silenced cells grew more rapidly than control cells transfected with the empty retrovirus. Activation of the Ras→Raf→MEK→ERK and JNK intracellular pathways down-regulated p8 expression. In addition, the MEK1/2 inhibitor U0126 and the JNK inhibitor SP600125 up-regulates expression of p8. Conversely, p38 or TGFβ-1 induced p8 expression whereas the specific p38 inhibitor SB203580 down-regulated p8 expression. Finally, TGFβ-1 induction was in part mediated through p38. Conclusions p8 inhibits the growth of human pancreatic cancer cells. p8 expression is induced through pathways involved in growth inhibition and repressed by factors that promote cell growth. These results suggest that p8 belongs to a pathway regulating the growth of pancreatic cancer cells.

  5. Responses to the Economic Crisis among Immigrants in the Czech Republic: Impeding and Inhibiting Factors for Staying

    Directory of Open Access Journals (Sweden)

    Marketa Rulikova

    2012-10-01

    This paper is based on research conducted among participants of the government-assisted Voluntary Return Programme and a follow-up ethnographic study in the Vietnamese, Ukrainian and Mongolian communities in Prague. It can be shown that most immigrants decided to stay despite extreme declines in their living conditions. While the motivations of immigrants to leave or stay are multifaceted, this paper offers an alternative to the “pull-push” model that takes into consideration economic as well as cultural factors, which both impede and inhibit migrants from returning “home”.

  6. Selective inhibition of Erwinia amylovora by the herbicidally active germination-arrest factor (GAF) produced by Pseudomonas bacteria.

    Science.gov (United States)

    Halgren, A; Azevedo, M; Mills, D; Armstrong, D; Thimmaiah, M; McPhail, K; Banowetz, G

    2011-10-01

     The germination-arrest factor (GAF) produced by Pseudomonas fluorescens WH6, and identified as 4-formylaminooxyvinylglycine, specifically inhibits the germination of a wide range of grassy weeds. This study was undertaken to determine whether GAF has antimicrobial activity in addition to its inhibitory effects on grass seed germination. Culture filtrate from Ps. fluorescens WH6 had little or no effect on 17 species of bacteria grown in Petri dish lawns, but the in vitro growth of Erwinia amylovora, the causal agent of the disease of orchard crops known as fire blight, was strongly inhibited by the filtrate. The anti-Erwinia activity of WH6 culture filtrate was shown to be due to its GAF content, and a commercially available oxyvinylglycine, 4-aminoethoxyvinylglycine (AVG), exhibited anti-Erwinia activity similar to that of GAF. The effects of GAF on Erwinia were reversed by particular amino acids. The biological properties of GAF include a rather specific antimicrobial activity against Erw. amylovora. This may be a general property of oxyvinylglycines as AVG exhibited similar activity. The ability of particular amino acids to reverse GAF inhibition is consistent with a potential effect of this compound on the activity of aminotransferases. The results presented here demonstrate a novel antimicrobial activity of oxyvinylglycines and suggest that GAF and/or GAF-producing bacteria may have potential for the control of fire blight. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology. No claim to US Government works.

  7. Methanol Extract of Hydroclathrus clathratus Inhibits Production of ...

    African Journals Online (AJOL)

    Methanol Extract of Hydroclathrus clathratus Inhibits Production of Nitric Oxide, Prostaglandin E2 and Tumor Necrosis Factor-α in Lipopolysaccharidestimulated BV2 Microglial Cells via Inhibition of NF-κB Activity. RGPT Jayasooriya, D-O Moon, YH Chol, C-H Yoon, G-Y Kim ...

  8. Kinetic Investigations of the Role of Factor Inhibiting Hypoxia-inducible Factor (FIH) as an Oxygen Sensor.

    Science.gov (United States)

    Tarhonskaya, Hanna; Hardy, Adam P; Howe, Emily A; Loik, Nikita D; Kramer, Holger B; McCullagh, James S O; Schofield, Christopher J; Flashman, Emily

    2015-08-07

    The hypoxia-inducible factor (HIF) hydroxylases regulate hypoxia sensing in animals. In humans, they comprise three prolyl hydroxylases (PHD1-3 or EGLN1-3) and factor inhibiting HIF (FIH). FIH is an asparaginyl hydroxylase catalyzing post-translational modification of HIF-α, resulting in reduction of HIF-mediated transcription. Like the PHDs, FIH is proposed to have a hypoxia-sensing role in cells, enabling responses to changes in cellular O2 availability. PHD2, the most important human PHD isoform, is proposed to be biochemically/kinetically suited as a hypoxia sensor due to its relatively high sensitivity to changes in O2 concentration and slow reaction with O2. To ascertain whether these parameters are conserved among the HIF hydroxylases, we compared the reactions of FIH and PHD2 with O2. Consistent with previous reports, we found lower Km(app)(O2) values for FIH than for PHD2 with all HIF-derived substrates. Under pre-steady-state conditions, the O2-initiated FIH reaction is significantly faster than that of PHD2. We then investigated the kinetics with respect to O2 of the FIH reaction with ankyrin repeat domain (ARD) substrates. FIH has lower Km(app)(O2) values for the tested ARDs than HIF-α substrates, and pre-steady-state O2-initiated reactions were faster with ARDs than with HIF-α substrates. The results correlate with cellular studies showing that FIH is active at lower O2 concentrations than the PHDs and suggest that competition between HIF-α and ARDs for FIH is likely to be biologically relevant, particularly in hypoxic conditions. The overall results are consistent with the proposal that the kinetic properties of individual oxygenases reflect their biological capacity to act as hypoxia sensors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis.

    Science.gov (United States)

    Ferreira, Viviana P; Fazito Vale, Vladimir; Pangburn, Michael K; Abdeladhim, Maha; Mendes-Sousa, Antonio Ferreira; Coutinho-Abreu, Iliano V; Rasouli, Manoochehr; Brandt, Elizabeth A; Meneses, Claudio; Lima, Kolyvan Ferreira; Nascimento Araújo, Ricardo; Pereira, Marcos Horácio; Kotsyfakis, Michalis; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, Jose M C; Gontijo, Nelder F; Collin, Nicolas; Valenzuela, Jesus G

    2016-01-13

    Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.

  10. Inhibition of peripubertal sheep mammary gland development by cysteamine through reducing progesterone and growth factor production.

    Science.gov (United States)

    Zhao, Yong; Feng, Yanni; Zhang, Hongfu; Kou, Xin; Li, Lan; Liu, Xinqi; Zhang, Pengfei; Cui, Liantao; Chu, Meiqiang; Shen, Wei; Min, Lingjiang

    2017-02-01

    Cysteamine has been used for treating cystinosis for many years, and furthermore it has also been used as a therapeutic agent for different diseases including Huntington's disease, Parkinson's disease (PD), nonalcoholic fatty liver disease, malaria, cancer, and others. Although cysteamine has many potential applications, its use may also be problematic. The effects of low doses of cysteamine on the reproductive system, especially the mammary glands are currently unknown. In the current investigation, low dose (10 mg/kg BW/day) of cysteamine did not affect sheep body weight gain or organ index of the liver, spleen, or heart; it did, however, increase the levels of blood lymphocytes, monocytes, and platelets. Most interestingly, it inhibited mammary gland development after 2 or 5 months of treatment by reducing the organ index and the number of mammary gland ducts. Plasma growth hormone and estradiol remained unchanged; however, plasma progesterone levels and the protein level of HSD3β1 in sheep ovaries were decreased by cysteamine. In addition to steroid hormones, growth factors produced in the mammary glands also play crucial roles in mammary gland development. Results showed that protein levels of HGF, GHR, and IGF1R were decreased after 5 months of cysteamine treatment. These findings together suggest that progesterone and local growth factors in mammary glands might be involved in cysteamine initiated inhibition of pubertal ovine mammary gland development. Furthermore, it may lead to a reduction in fertility. Therefore, cysteamine should be used with great caution until its actions have been further investigated and its limitations overcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Adaptation in Response of Excitation and Inhibition Factors of Angiogenesis after 4 Weeks of Progressive Resistant Training in Sedentary Men

    Directory of Open Access Journals (Sweden)

    s. Karami

    2016-09-01

    Full Text Available Aims: The sport activity is an important factor affecting the capillary density and angiogenesis. Nitric oxide (NO and vascular endothelial growth factor (VEGF are the most important stimulative regulators in the angiogenesis. In addition, endostatin is one of the inhibitors of angiogenesis. The aim of this study was to investigate the adaptation in the responses of the angiogenesis inhibition and stimulating factors after 4-week increasing resistive exercises in the sedentary men. Materials & Methods: In the semi-experimental study, 20 healthy and inactive male students, aged between 20 and 25 years, who were residents of Tehran University Dormitory, were studied in the first semester of the academic year 2015-16. The subjects, selected via available sampling method, were divided into two groups including experimental and control groups (n=10 per group. 4-week resistive exercises were done three sessions per week. Blood-sampling was done before and 48 hours after the last exercise session. VEGF, NO, and endostatin were then measured. Data was analyzed by SPSS 18 software using independent and dependent T tests, as well as Pearson correlation coefficient test. Findings: In experimental group, VEGF and No significantly increased at the posttest stage than the pretest (p=0.001. Nevertheless, no significant difference was observed in control group (p>0.05. In both experimental and control groups, endostatin level did not significantly increase at the posttest stage than the pretest (p>0.05. In addition, VEGF and NO were the only variables that were significantly correlated (p=0.016; r=0.82. Conclusion: 4-week increasing resistive exercises in the sedentary men significantly affect the angiogenes stimulating factors, i. e. VEGF and NO, while such exercises do not significantly affect the angiogenesis inhibition factor, i. e. endostatin.

  12. Antagonism of CD11b with neutrophil inhibitory factor (NIF) inhibits vascular lesions in diabetic retinopathy.

    Science.gov (United States)

    Veenstra, Alexander A; Tang, Jie; Kern, Timothy S

    2013-01-01

    Leukocytes and proteins that govern leukocyte adhesion to endothelial cells play a causal role in retinal abnormalities characteristic of the early stages of diabetic retinopathy, including diabetes-induced degeneration of retinal capillaries. Leukocyte integrin αmβ2 (CD11b/CD18, MAC1), a protein mediating adhesion, has been shown to mediate damage to endothelial cells by activated leukocytes in vitro. We hypothesized that Neutrophil Inhibitory Factor (NIF), a selective antagonist of integrin αmβ2, would inhibit the diabetes-induced degeneration of retinal capillaries by inhibiting the excessive interaction between leukocytes and retinal endothelial cells in diabetes. Wild type animals and transgenic animals expressing NIF were made diabetic with streptozotocin and assessed for diabetes-induced retinal vascular abnormalities and leukocyte activation. To assess if the leukocyte blocking therapy compromised the immune system, animals were challenged with bacteria. Retinal superoxide production, leukostasis and leukocyte superoxide production were increased in wild type mice diabetic for 10 weeks, as was the ability of leukocytes isolated from diabetic animals to kill retinal endothelial cells in vitro. Retinal capillary degeneration was significantly increased in wild type mice diabetic 40 weeks. In contrast, mice expressing NIF did not develop any of these abnormalities, with the exception that non-diabetic and diabetic mice expressing NIF generated greater amounts of superoxide than did similar mice not expressing NIF. Importantly, NIF did not significantly impair the ability of mice to clear an opportunistic bacterial challenge, suggesting that NIF did not compromise immune surveillance. We conclude that antagonism of CD11b (integrin αmβ2) by NIF is sufficient to inhibit early stages of diabetic retinopathy, while not compromising the basic immune response.

  13. Xanthium italicum, Xanthium strumarium and Arctium lappa as new hosts for Diaporthe helianthi.

    Science.gov (United States)

    Vrandecic, Karolina; Jurkovic, Drazenka; Riccioni, Luca; Cosic, Jasenka; Duvnjak, Tomislav

    2010-07-01

    Sunflower (Helianthus annuus) stem canker caused by Diaporthe helianthi is one of the most important sunflower diseases in Croatia. Until recently, sunflower was the only known host for D. helianthi. In our research carried out in the area of Eastern Croatia, isolates of Diaporthe/Phomospis were collected from Xanthium italicum, X. strumarium and Arctium lappa. Using morphological, cultural and molecular ITS rDNA data, isolates from these weeds were identified as D. helianthi. The following isolates were used in the pathogenicity test: one isolate originated from sunflower (Su5/04), three from X. italicum (Xa2, Xa3 and Xa5), two from X. strumarium (Xa9 and Xa12), one from Xanthium sp. (Xa13) and one from A. lappa (Ar3). According to the results, it was determined that isolate Xa5 (originated from X. italicum) was the most pathogenic to sunflower stems. The average length of the lesion was 11.3 cm. The lowest level of pathogenicity was found in Xa9 (isolated from X. strumarium). The length of the lesion was 0.1 cm.

  14. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-κB activation

    Science.gov (United States)

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-01-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-α-evoked translocation of nuclear factor (NF)-κB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-κB and production of TNF-α in mouse macrophage RAW264·7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-α level and inhibited the LPS-evoked nuclear translocation of NF-κB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS. PMID:20030669

  15. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-kappaB activation.

    Science.gov (United States)

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-05-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-alpha-evoked translocation of nuclear factor (NF)-kappaB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-kappaB and production of TNF-alpha in mouse macrophage RAW264.7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-alpha level and inhibited the LPS-evoked nuclear translocation of NF-kappaB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS.

  16. Covalent Targeting of Fibroblast Growth Factor Receptor Inhibits Metastatic Breast Cancer.

    Science.gov (United States)

    Brown, Wells S; Tan, Li; Smith, Andrew; Gray, Nathanael S; Wendt, Michael K

    2016-09-01

    Therapeutic targeting of late-stage breast cancer is limited by an inadequate understanding of how tumor cell signaling evolves during metastatic progression and by the currently available small molecule inhibitors capable of targeting these processes. Herein, we demonstrate that both β3 integrin and fibroblast growth factor receptor-1 (FGFR1) are part of an epithelial-mesenchymal transition (EMT) program that is required to facilitate metastatic outgrowth in response to fibroblast growth factor-2 (FGF2). Mechanistically, β3 integrin physically disrupts an interaction between FGFR1 and E-cadherin, leading to a dramatic redistribution of FGFR1 subcellular localization, enhanced FGF2 signaling and increased three-dimensional (3D) outgrowth of metastatic breast cancer cells. This ability of β3 integrin to drive FGFR signaling requires the enzymatic activity of focal adhesion kinase (FAK). Consistent with these mechanistic data, we demonstrate that FGFR, β3 integrin, and FAK constitute a molecular signature capable of predicting decreased survival of patients with the basal-like subtype of breast cancer. Importantly, covalent targeting of a conserved cysteine in the P-loop of FGFR1-4 with our newly developed small molecule, FIIN-4, more effectively blocks 3D metastatic outgrowth as compared with currently available FGFR inhibitors. In vivo application of FIIN-4 potently inhibited the growth of metastatic, patient-derived breast cancer xenografts and murine-derived metastases growing within the pulmonary microenvironment. Overall, the current studies demonstrate that FGFR1 works in concert with other EMT effector molecules to drive aberrant downstream signaling, and that these events can be effectively targeted using our novel therapeutics for the treatment of the most aggressive forms of breast cancer. Mol Cancer Ther; 15(9); 2096-106. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Fucosylated chondroitin sulfate oligosaccharides exert anticoagulant activity by targeting at intrinsic tenase complex with low FXII activation: Importance of sulfation pattern and molecular size.

    Science.gov (United States)

    Li, Junhui; Li, Shan; Yan, Lufeng; Ding, Tian; Linhardt, Robert J; Yu, Yanlei; Liu, Xinyue; Liu, Donghong; Ye, Xingqian; Chen, Shiguo

    2017-10-20

    Fucosylated chondroitin sulfates (fCSs) are structurally unusual glycosaminoglycans isolated from sea cucumbers that exhibit potent anticoagulant activity. These fCSs were isolated from sea cucumber, Isostichopus badionotus and Pearsonothuria graeffei. Fenton reaction followed by gel filtration chromatography afforded fCS oligosaccharides, with different sulfation patterns identified by mass and NMR spectroscopy, and these were used to clarify the relationship between the structures and the anticoagulant activities of fCSs. In vitro activities were measured by activated partial thromboplastin time (APTT), thrombin time (TT), thrombin and factor Xa inhibition, and activation of FXII. The results showed that free radicals preferentially acted on GlcA residues affording oligosaccharides that were purified from both fCSs. The inhibition of thrombin and factor X activities, mediated through antithrombin III and heparin cofactor II of fCSs oligosaccharides were affected by their molecular weight and fucose branches. Oligosaccharides with different sulfation patterns of the fucose branching had a similar ability to inhibit the FXa by the intrinsic factor Xase (factor IXa-VIIIa complex). Oligosaccharides with 2,4-O-sulfo fucose branches from fCS-Ib showed higher activities than ones with 3,4-O-disulfo branches obtained from fCS-Pg. Furthermore, a heptasaccharide is the minimum size oligosaccharide required for anticoagulation and FXII activation. This activity was absent for fCS oligosaccharides smaller than nonasaccharides. Molecular size and fucose branch sulfation are important for anticoagulant activity and reduction of size can reverse the activation of FXII caused by native fCSs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Targeting non-small cell lung cancer cells by dual inhibition of the insulin receptor and the insulin-like growth factor-1 receptor.

    Directory of Open Access Journals (Sweden)

    Emma E Vincent

    Full Text Available Phase III trials of the anti-insulin-like growth factor-1 receptor (IGF1R antibody figitumumab in non-small cell lung cancer (NSCLC patients have been discontinued owing to lack of survival benefit. We investigated whether inhibition of the highly homologous insulin receptor (IR in addition to the IGF1R would be more effective than inhibition of the IGF1R alone at preventing the proliferation of NSCLC cells. Signalling through IGF1R and IR in the NSCLC cell lines A549 and Hcc193 was stimulated by a combination of IGF1, IGF2 and insulin. It was inhibited by antibodies that block ligand binding, αIR3 (IGF1R and IR47-9 (IR, and by the ATP-competitive small molecule tyrosine kinase inhibitors AZ12253801 and NVPAWD742 which inhibit both IGF1R and IR tyrosine kinases. The effect of inhibitors was determined by an anchorage-independent proliferation assay and by analysis of Akt phosphorylation. In Hcc193 cells the reduction in cell proliferation and Akt phosphorylation due to anti-IGF1R antibody was enhanced by antibody-mediated inhibition of the IR whereas in A549 cells, with a relatively low IR:IGF1R expression ratio, it was not. In each cell line proliferation and Akt phosphorylation were more effectively inhibited by AZ12253801 and NVPAWD742 than by combined αIR3 and IR47-9. When the IGF1R alone is inhibited, unencumbered signalling through the IR can contribute to continued NSCLC cell proliferation. We conclude that small molecule inhibitors targeting both the IR and IGF1R more effectively reduce NSCLC cell proliferation in a manner independent of the IR:IGF1R expression ratio, providing a therapeutic rationale for the treatment of this disease.

  19. Icotinib inhibits the invasion of Tca8113 cells via downregulation of nuclear factor κB-mediated matrix metalloproteinase expression

    OpenAIRE

    YANG, CAILING; YAN, JIANGUO; YUAN, GUOYAN; ZHANG, YINGHUA; LU, DERONG; REN, MINGXIN; CUI, WEIGANG

    2014-01-01

    Icotinib is an epidermal growth factor receptor tyrosine kinase inhibitor, which has been revealed to inhibit proliferation in tumor cells. However, the effect of icotinib on cancer cell metastasis remains to be explained. This study examines the effect of icotinib on the migration and invasion of squamous cells of tongue carcinoma (Tca8113 cells) in vitro. The results of the Boyden chamber invasion assay demonstrated that icotinib reduced cell invasion, suppressed the protein levels of matri...

  20. Hypoxic stress simultaneously stimulates vascular endothelial growth factor via hypoxia-inducible factor-1α and inhibits stromal cell-derived factor-1 in human endometrial stromal cells.

    Science.gov (United States)

    Tsuzuki, Tomoko; Okada, Hidetaka; Cho, Hisayuu; Tsuji, Shoko; Nishigaki, Akemi; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2012-02-01

    Hypoxia of the human endometrium is a physiologic event occurring during the perimenstrual period and the local stimulus for angiogenesis. The aim of this study was to investigate the effects of hypoxic stress on the regulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1/CXCL12), and the potential role of hypoxia-inducible factor-1α (HIF-1α) in the endometrium. Human endometrial stromal cells (ESCs, n= 22 samples) were studied in vitro. ESCs were cultured under hypoxic and normoxic conditions and treated with cobalt chloride (CoCl₂; a hypoxia-mimicking agent) and/or echinomycin, a small-molecule inhibitor of HIF-1α activity. The mRNA levels and production of VEGF and SDF-1 were assessed by real-time PCR and ELISA, respectively. The HIF-1α protein levels were measured using western blot analysis. Hypoxia simultaneously induced the expression of mRNA and production of VEGF and attenuated the expression and production of SDF-1 from ESCs in a time-dependent manner. Similar changes were observed in the ESCs after stimulation with CoCl₂ in a dose-dependent manner. CoCl₂ significantly induced the expression of HIF-1α protein, and its highest expression was observed at 6 h. Echinomycin inhibited hypoxia-induced VEGF production without affecting the HIF-1α protein level and cell toxicity and had no effect on SDF-1 secretion (P hypoxic conditions that could influence angiogenesis in the human endometrium.

  1. The effects of blood feeding and exogenous supply of tryptophan on the quantities of xanthurenic acid in the salivary glands of Anopheles stephensi (Diptera: Culicidae).

    Science.gov (United States)

    Okech, Bernard; Arai, Meiji; Matsuoka, Hiroyuki

    2006-03-24

    Xanthurenic acid (XA), produced as a byproduct during the biosynthesis of insect eye pigment (ommochromes), is a strong inducer of Plasmodium gametogenesis at very low concentrations. In previous studies, it was shown that XA is present in Anopheles stephensi (Diptera: Culicidae) mosquito salivary glands and that during blood feeding the mosquitoes ingested their own saliva into the midgut. Considering these two facts together, it is therefore likely that XA is discharged with saliva during blood feeding and is swallowed into the midgut where it exerts its effect on Plasmodium gametocytes. However, the quantities of XA in the salivary glands and midgut are unknown. In this study, we used high performance liquid chromatography with electrochemical detection to detect and quantify XA in the salivary glands and midgut. Based on the results of this study, we found 0.28+/-0.05 ng of XA in the salivary glands of the mosquitoes, accounting for 10% of the total XA content in the mosquito whole body. The amounts of XA in the salivary glands reduced to 0.13+/-0.06 ng after mosquitoes ingested a blood meal. Approximately 0.05+/-0.01 ng of XA was detected in the midgut of nonblood fed An. stephensi mosquitoes. By adding synthetic tryptophan as a source of XA into larval rearing water (2 mM) or in sugar meals (10 mM), we evaluated whether XA levels in the mosquito (salivary glands, midgut, and whole body) were boosted and the subsequent effect on infectivity of Plasmodium berghei in the treated mosquito groups. A female specific increase in XA content was observed in the whole body and in the midgut of mosquito groups where tryptophan was added either in the larval water or sugar meals. However, XA in the salivary glands was not affected by tryptophan addition to larval water, and surprisingly it reduced when tryptophan was added to sugar meals. The P. berghei oocyst loads in the mosquito midguts were lower in mosquitoes fed tryptophan treated sugar meals than in mosquitoes

  2. Functional Marker Assisted Improvement of Stable Cytoplasmic Male Sterile Lines of Rice for Bacterial Blight Resistance

    Directory of Open Access Journals (Sweden)

    Jegadeesan Ramalingam

    2017-06-01

    Full Text Available Bacterial blight (BB, caused by Xanthomonas oryzae pv.oryzae is one among the major diseases in rice, which in severe condition cause losses up to 60% in total yield. Marker assisted pyramiding of three broad spectrum BB resistance genes (xa5, xa13, and Xa21 in prominent rice varieties is the most economical and effective strategy for the management of the BB disease. We report here the pyramiding of three genes (xa5, xa13, and Xa21 in maintainer lines (CO 2B, CO 23B, and CO 24B of three promising wild abortive cytoplasmic male sterile lines (CO 2A, CO 23A, and CO 24A through functional markers assisted back cross breeding. IRBB60 with xa5, xa13, and Xa21 genes is used as a donor parent. BC2F1 and BC2F2 generations from a cross of CO 2B, CO 23B, and CO 24B with IRBB60 were evaluated for bacterial blight and non-fertility restoration. In BC2F1, plants with all three resistance genes (xa5, xa13, and Xa21 and high parent genome recovery was identified. In BC2F2, plants with all resistance genes and without fertility restorer (Rf3 and Rf4 were selected. Based on agronomic traits, BB resistance and maintenance of sterility, two plants each in CO 2B × IRBB60, CO 24B × IRBB60 and one plant in CO 23B × IRBB60 combinations were identified. The identified lines were crossed with respective male sterile lines for conversion of improved B line into CMS line through back-crossing, in addition to selfing. The plants with high recurrent genome and phenotypically similar to parental lines and sterile are being used for the hybrid rice development program. Currently, using these lines (improved CMS line, test crosses were made to develop new rice hybrids. Hybrids combinations viz., CO 23A × AD08009R and CO 24A × IET20898R were found to be stable at different locations with high yield. The R line used in this study has been introgressed with xa5, xa13, and Xa21 genes in a separate breeding program. These new hybrids with resistance against bacterial blight

  3. Higher Anti-Liver Fibrosis Effect of Cordyceps militaris-Fermented Product Cultured with Deep Ocean Water via Inhibiting Proinflammatory Factors and Fibrosis-Related Factors Expressions

    Directory of Open Access Journals (Sweden)

    Yu-Ping Hung

    2017-06-01

    Full Text Available Deep ocean water (DOW has been shown to enhance the functional components of fungi, resulting in increased health benefits. Therefore, using DOW for culturing fungi can enhance the cordycepin and adenosine of Cordyceps militaris (CM and its protective effects on the liver. In this study, the antiliver fibrosis effects and mechanisms of ultrapure water-cultured CM (UCM, DOW-cultured CM (DCM, synthetic water-cultured CM, DOW, cordycepin, and adenosine were compared in the liver fibrosis mice induced by intraperitoneal injections of thioacetamide (TAA. The results indicated that DCM exhibited superior performance in reducing liver collagen accumulation, mitigating liver injuries, inhibiting proinflammatory factors and fibrosis-related factor (TGF-β1, Smad2/3, α-SMA, COL1A1 expression compared with UCM. DOW, cordycepin, and adenosine also performed antiliver fibrosis effect. Therefore, because DCM is rich in DOW and functional components, it can achieve anti-liver fibrosis effects through multiple pathways. These ameliorative effects are considerably superior to those of UCM.

  4. Higher Anti-Liver Fibrosis Effect of Cordyceps militaris-Fermented Product Cultured with Deep Ocean Water via Inhibiting Proinflammatory Factors and Fibrosis-Related Factors Expressions.

    Science.gov (United States)

    Hung, Yu-Ping; Lee, Chun-Lin

    2017-06-08

    Deep ocean water (DOW) has been shown to enhance the functional components of fungi, resulting in increased health benefits. Therefore, using DOW for culturing fungi can enhance the cordycepin and adenosine of Cordyceps militaris (CM) and its protective effects on the liver. In this study, the antiliver fibrosis effects and mechanisms of ultrapure water-cultured CM (UCM), DOW-cultured CM (DCM), synthetic water-cultured CM, DOW, cordycepin, and adenosine were compared in the liver fibrosis mice induced by intraperitoneal injections of thioacetamide (TAA). The results indicated that DCM exhibited superior performance in reducing liver collagen accumulation, mitigating liver injuries, inhibiting proinflammatory factors and fibrosis-related factor (TGF-β1, Smad2/3, α-SMA, COL1A1) expression compared with UCM. DOW, cordycepin, and adenosine also performed antiliver fibrosis effect. Therefore, because DCM is rich in DOW and functional components, it can achieve anti-liver fibrosis effects through multiple pathways. These ameliorative effects are considerably superior to those of UCM.

  5. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    International Nuclear Information System (INIS)

    Cheng, Jian; Zhang, Lin; Dai, Weiqi; Mao, Yuqing; Li, Sainan; Wang, Jingjie; Li, Huanqing; Guo, Chuanyong; Fan, Xiaoming

    2015-01-01

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys 3 ]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation

  6. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian; Zhang, Lin [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Dai, Weiqi [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Mao, Yuqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Li, Sainan [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Wang, Jingjie; Li, Huanqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Guo, Chuanyong [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Fan, Xiaoming, E-mail: xiaomingfan57@sina.com [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China)

    2015-02-27

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.

  7. TIPE2 Inhibits the Expression of Asthma-Related Inflammatory Factors in Hyperstretched Bronchial Epithelial Cells Through the Wnt/β-Catenin Pathway.

    Science.gov (United States)

    Sun, Xinrong; Chen, Lu; Yan, Wen

    2017-06-01

    Childhood asthma, an airway inflammatory disease, is a serious threat to the child's quality of life. Recently, TIPE2 expression was reported to be decreased in children with asthma. Therefore, additional studies focusing on TIPE2 might provide an approach for treating childhood asthma. In this study, we found that TIPE2 was poorly expressed in hyperstretched human bronchial epithelial cells (BEAS-2B). TIPE2 overexpression also significantly suppressed the stretch-induced secretion of asthma-related inflammatory factors (TNF-α, TSLP, MMP-9, and VEGF). In contrast, TIPE2 inhibition significantly promoted the secretion of TNF-α, TSLP, MMP-9, and VEGF. Furthermore, overexpression of TIPE2 remarkably inhibited the activation of Wnt/β-catenin in hyperstretched BEAS-2B cells, while siTIPE2 activated Wnt/β-catenin in hyperstretched BEAS-2B cells. Further analysis showed that the Wnt/β-catenin signal inhibitor Dkk-1 could further enhance the TIPE2-induced suppression of Wnt/β-catenin signaling, which also suppressed the siTIPE2-induced secretion of TNF-α, TSLP, MMP-9, and VEGF in hyperstretched BEAS-2B cells. Dkk-1 reversed the effects of siRNA-TIPE2 on Wnt/β-catenin signaling and inflammatory cytokines. In summary, we have exhibited that TIPE2 inhibited the expression of asthma-related inflammatory factors in hyperstretched BEAS-2B cells by suppressing the Wnt/β-catenin signaling pathway. TIPE2 may be involved in airway inflammation during asthma attack, and it may be used as a potential therapeutic target for bronchial epithelial inflammation in childhood asthma.

  8. Inhibition of CRM1-mediated nuclear export of transcription factors by leukemogenic NUP98 fusion proteins.

    Science.gov (United States)

    Takeda, Akiko; Sarma, Nayan J; Abdul-Nabi, Anmaar M; Yaseen, Nabeel R

    2010-05-21

    NUP98 is a nucleoporin that plays complex roles in the nucleocytoplasmic trafficking of macromolecules. Rearrangements of the NUP98 gene in human leukemia result in the expression of numerous fusion oncoproteins whose effect on nucleocytoplasmic trafficking is poorly understood. The present study was undertaken to determine the effects of leukemogenic NUP98 fusion proteins on CRM1-mediated nuclear export. NUP98-HOXA9, a prototypic NUP98 fusion, inhibited the nuclear export of two known CRM1 substrates: mutated cytoplasmic nucleophosmin and HIV-1 Rev. In vitro binding assays revealed that NUP98-HOXA9 binds CRM1 through the FG repeat motif in a Ran-GTP-dependent manner similar to but stronger than the interaction between CRM1 and its export substrates. Two NUP98 fusions, NUP98-HOXA9 and NUP98-DDX10, whose fusion partners are structurally and functionally unrelated, interacted with endogenous CRM1 in myeloid cells as shown by co-immunoprecipitation. These leukemogenic NUP98 fusion proteins interacted with CRM1, Ran, and the nucleoporin NUP214 in a manner fundamentally different from that of wild-type NUP98. NUP98-HOXA9 and NUP98-DDX10 formed characteristic aggregates within the nuclei of a myeloid cell line and primary human CD34+ cells and caused aberrant localization of CRM1 to these aggregates. These NUP98 fusions caused nuclear accumulation of two transcription factors, NFAT and NFkappaB, that are regulated by CRM1-mediated export. The nuclear entrapment of NFAT and NFkappaB correlated with enhanced transcription from promoters responsive to these transcription factors. Taken together, the results suggest a new mechanism by which NUP98 fusions dysregulate transcription and cause leukemia, namely, inhibition of CRM1-mediated nuclear export with aberrant nuclear retention of transcriptional regulators.

  9. Role of nuclear factor of activated T-cells and activator protein-1 in the inhibition of interleukin-2 gene transcription by cannabinol in EL4 T-cells.

    Science.gov (United States)

    Yea, S S; Yang, K H; Kaminski, N E

    2000-02-01

    We previously reported that immunosuppressive cannabinoids inhibited interleukin (IL)-2 steady-state mRNA expression and secretion by phorbol-12-myristate-13-acetate plus ionomycin-activated mouse splenocytes and EL4 murine T-cells. Here we show that inhibition of IL-2 production by cannabinol, a modest central nervous system-active cannabinoid, is mediated through the inhibition of IL-2 gene transcription. Moreover, electrophoretic mobility shift assays demonstrated that cannabinol markedly inhibited the DNA binding activity of nuclear factor of activated T-cells (NF-AT) and activator protein-1 (AP-1) in a time- and concentration-dependent manner in activated EL4 cells. The inhibitory effects produced by cannabinol on AP-1 DNA binding were quite transient, showing partial recovery by 240 min after cell activation and no effect on the activity of a reporter gene under the control of AP-1. Conversely, cannabinol-mediated inhibition of NF-AT was robust and sustained as demonstrated by an NF-AT-regulated reporter gene. Collectively, these results suggest that decreased IL-2 production by cannabinol in EL4 cells is due to the inhibition of transcriptional activation of the IL-2 gene and is mediated, at least in part, through a transient inhibition of AP-1 and a sustained inhibition of NF-AT.

  10. Inhibiting cancer cell hallmark features through nuclear export inhibition.

    Science.gov (United States)

    Sun, Qingxiang; Chen, Xueqin; Zhou, Qiao; Burstein, Ezra; Yang, Shengyong; Jia, Da

    2016-01-01

    Treating cancer through inhibition of nuclear export is one of the best examples of basic research translation into clinical application. Nuclear export factor chromosomal region maintenance 1 (CRM1; Xpo1 and exportin-1) controls cellular localization and function of numerous proteins that are critical for the development of many cancer hallmarks. The diverse actions of CRM1 are likely to explain the broad ranging anti-cancer potency of CRM1 inhibitors observed in pre-clinical studies and/or clinical trials (phase I-III) on both advanced-stage solid and hematological tumors. In this review, we compare and contrast the mechanisms of action of different CRM1 inhibitors, and discuss the potential benefit of unexplored non-covalent CRM1 inhibitors. This emerging field has uncovered that nuclear export inhibition is well poised as an attractive target towards low-toxicity broad-spectrum potent anti-cancer therapy.

  11. Managing cancer-related venous thromboembolic disease: low-molecular-weight heparins and beyond.

    Science.gov (United States)

    O'Connell, Casey L; Liebman, Howard A

    2008-12-01

    Venous thromboembolism is a major contributor to the morbidity and mortality of patients with cancer. For patients undergoing cancer surgery, several trials support the safety and efficacy of unfractionated heparin and of low-molecular-weight heparin for the prevention of venous thromboembolism, while data regarding the efficacy and safety of these agents in the setting of medical hospitalization is less definitive and must be extracted from trials including noncancer patients with different thrombotic risk factors. Randomized clinical studies confirm that patients with cancer who develop venous thromboembolism have superior outcomes when treated with long-term low-molecular-weight heparin as compared with warfarin. Novel anticoagulants that are orally bioavailable and function by directly inhibiting factor Xa or thrombin are entering the market. To date, data regarding the efficacy and safety of these novel anticoagulants as venous thromboembolism prophylaxis and treatment in cancer patients are not available and must be extracted from larger trials with heterogeneous patient populations.

  12. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis

    Science.gov (United States)

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Arumugam, Arunkumar; Nandy, Sushmita; Boopalan, Thiyagarajan; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer. PMID:24809702

  13. Knockdown of the placental growth factor gene inhibits laser induced choroidal neovascularization in a murine model.

    Science.gov (United States)

    Nourinia, Ramin; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Akrami, Hassan; Rezaei Kanavi, Mozhgan; Samiei, Shahram

    2013-01-01

    To evaluate the effect of placental growth factor (PlGF) gene knockdown in a murine model of laser-induced choroidal neovascularization. Choroidal neovascularization was induced in the left eyes of 11 mice by infrared laser. Small interfering RNA (siRNA, 20 picomoles/10 μl) corresponding to PlGF mRNA was administered intravitreally by Hamilton syringe in all subjects. One month later, fluorescein angiography and histolologic examination were performed. No leakage was apparent in the 11 eyes treated with siRNA cognate to PlGF. The results of histological evaluation were consistent with angiographic findings showing absence of choroidal neovascularization. Knockdown of the PlGF gene can inhibit the growth of laser-induced choroidal neovascularization in mice.

  14. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells.

    Science.gov (United States)

    Croci, Stefania; Landuzzi, Lorena; Astolfi, Annalisa; Nicoletti, Giordano; Rosolen, Angelo; Sartori, Francesca; Follo, Matilde Y; Oliver, Noelynn; De Giovanni, Carla; Nanni, Patrizia; Lollini, Pier-Luigi

    2004-03-01

    Connective tissue growth factor (CTGF/CCN2), a cysteine-rich protein of the CCN (Cyr61, CTGF, Nov) family of genes, emerged from a microarray screen of genes expressed by human rhabdomyosarcoma cells. Rhabdomyosarcoma is a soft tissue sarcoma of childhood deriving from skeletal muscle cells. In this study, we investigated the role of CTGF in rhabdomyosarcoma. Human rhabdomyosarcoma cells of the embryonal (RD/12, RD/18, CCA) and the alveolar histotype (RMZ-RC2, SJ-RH4, SJ-RH30), rhabdomyosarcoma tumor specimens, and normal skeletal muscle cells expressed CTGF. To determine the function of CTGF, we treated rhabdomyosarcoma cells with a CTGF antisense oligonucleotide or with a CTGF small interfering RNA (siRNA). Both treatments inhibited rhabdomyosarcoma cell growth, suggesting the existence of a new autocrine loop based on CTGF. CTGF antisense oligonucleotide-mediated growth inhibition was specifically due to a significant increase in apoptosis, whereas cell proliferation was unchanged. CTGF antisense oligonucleotide induced a strong decrease in the level of myogenic differentiation of rhabdomyosarcoma cells, whereas the addition of recombinant CTGF significantly increased the proportion of myosin-positive cells. CTGF emerges as a survival and differentiation factor and could be a new therapeutic target in human rhabdomyosarcoma.

  15. Antagonism of CD11b with neutrophil inhibitory factor (NIF inhibits vascular lesions in diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Alexander A Veenstra

    Full Text Available Leukocytes and proteins that govern leukocyte adhesion to endothelial cells play a causal role in retinal abnormalities characteristic of the early stages of diabetic retinopathy, including diabetes-induced degeneration of retinal capillaries. Leukocyte integrin αmβ2 (CD11b/CD18, MAC1, a protein mediating adhesion, has been shown to mediate damage to endothelial cells by activated leukocytes in vitro. We hypothesized that Neutrophil Inhibitory Factor (NIF, a selective antagonist of integrin αmβ2, would inhibit the diabetes-induced degeneration of retinal capillaries by inhibiting the excessive interaction between leukocytes and retinal endothelial cells in diabetes. Wild type animals and transgenic animals expressing NIF were made diabetic with streptozotocin and assessed for diabetes-induced retinal vascular abnormalities and leukocyte activation. To assess if the leukocyte blocking therapy compromised the immune system, animals were challenged with bacteria. Retinal superoxide production, leukostasis and leukocyte superoxide production were increased in wild type mice diabetic for 10 weeks, as was the ability of leukocytes isolated from diabetic animals to kill retinal endothelial cells in vitro. Retinal capillary degeneration was significantly increased in wild type mice diabetic 40 weeks. In contrast, mice expressing NIF did not develop any of these abnormalities, with the exception that non-diabetic and diabetic mice expressing NIF generated greater amounts of superoxide than did similar mice not expressing NIF. Importantly, NIF did not significantly impair the ability of mice to clear an opportunistic bacterial challenge, suggesting that NIF did not compromise immune surveillance. We conclude that antagonism of CD11b (integrin αmβ2 by NIF is sufficient to inhibit early stages of diabetic retinopathy, while not compromising the basic immune response.

  16. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    Directory of Open Access Journals (Sweden)

    Mamaghani Shadi

    2009-04-01

    Full Text Available Abstract Background Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine. Methods GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition. Results GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-XL, and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic. Conclusion GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard

  17. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    International Nuclear Information System (INIS)

    Mamaghani, Shadi; Patel, Satish; Hedley, David W

    2009-01-01

    Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine. GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition. GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-X L , and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic. GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard chemotherapy agent gemcitabine. This lack of synergy might be

  18. Gingival tissue-produced inhibition of platelet aggregation and the loss of inhibition in streptozotocin-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Keiichiroh; Tamai, Kazuharu; Shirakawa, Masaharu; Okamoto, Hiroshi; Dohi, Toshihiro; Tsujimoto, Akira

    1988-01-01

    Addition of medium incubated with normal rat gingival tissue to platelet-rich plasma inhibited ADP-induced platelet aggregation. The ability of rat gingiva to produce activity inhibiting platelet aggregation was enhanced by the addition of arachidonic acid. Diabetic rat gingiva failed to inhibit platelet aggregation but did produce the anti-platelet aggregating activity in the presence of arachidonic acid. Indomethacin blocked the production of anti-platelet aggregating activity. There was no difference in conversion of (1-/sup 14/C)arachidonic acid to prostaglandins by normal and diabetic rat gingiva. These results suggest that an arachidonic acid metabolite released from gingiva during incubation inhibits platelet aggregation, and the synthesis of the metabolite is impaired in diabetic rat gingiva. A decrease in availability of arachidonic acid may be a causal factor of the defect in diabetic rat gingiva.

  19. Gingival tissue-produced inhibition of platelet aggregation and the loss of inhibition in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Kawamura, Keiichiroh; Tamai, Kazuharu; Shirakawa, Masaharu; Okamoto, Hiroshi; Dohi, Toshihiro; Tsujimoto, Akira

    1988-01-01

    Addition of medium incubated with normal rat gingival tissue to platelet-rich plasma inhibited ADP-induced platelet aggregation. The ability of rat gingiva to produce activity inhibiting platelet aggregation was enhanced by the addition of arachidonic acid. Diabetic rat gingiva failed to inhibit platelet aggregation but did produce the anti-platelet aggregating activity in the presence of arachidonic acid. Indomethacin blocked the production of anti-platelet aggregating activity. There was no difference in conversion of [1- 14 C]arachidonic acid to prostaglandins by normal and diabetic rat gingiva. These results suggest that an arachidonic acid metabolite released from gingiva during incubation inhibits platelet aggregation, and the synthesis of the metabolite is impaired in diabetic rat gingiva. A decrease in availability of arachidonic acid may be a causal factor of the defect in diabetic rat gingiva. (author)

  20. Azadirachtin interacts with the tumor necrosis factor (TNF) binding domain of its receptors and inhibits TNF-induced biological responses.

    OpenAIRE

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A.; Manna, Sunil K.

    2013-01-01

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor κB (NF-κB) and also expression of NF-κB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-κB (IκBα) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IκBα kinase (IKK...

  1. Inhibiting the inevitable

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2006-01-01

    conservation is to ‘buy time’ for the object. Inhibitive conservation of plastics involves the removal or reduction of factors causing or accelerating degradation including light, oxygen, acids, relative humidity and acidic breakdown products. Specific approaches to conservation have been developed......Once plastics objects are registered in museum collections, the institution becomes responsible for their long term preservation, until the end of their useful lifetime. Plastics appear to deteriorate faster than other materials in museum collections and have a useful lifetime between 5 and 25...... years. Preventive or inhibitive conservation involves controlling the environments in which objects are placed during storage and display, with the aim of slowing the major deterioration reactions. Once in progress, degradation of plastics cannot be stopped or reversed, so the aim of preventive...

  2. Mactosylceramide Prevents Glial Cell Overgrowth by Inhibiting Insulin and Fibroblast Growth Factor Receptor Signaling

    DEFF Research Database (Denmark)

    Gerdøe-Kristensen, Stine; Lund, Viktor K; Wandall, Hans H

    2017-01-01

    , in which the mannosyltransferase Egghead controls conversion of glucosylceramide (GlcCer) to mactosylceramide (MacCer). Lack of elongated GSL in egghead (egh) mutants causes overgrowth of subperineurial glia (SPG), largely due to aberrant activation of phosphatidylinositol 3-kinase (PI3K). However, to what...... of the Drosophila Insulin Receptor (InR) and the FGFR homolog Heartless (Htl) in wild type SPG, and is suppressed by inhibiting Htl and InR activity in egh. Knockdown of GlcCer synthase in the SPG fails to suppress glial overgrowth in egh nerves, and slightly promotes overgrowth in wild type, suggesting that RTK...... hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of Insulin and Fibroblast Growth Factor Receptors in Drosophila glia. This article is protected by copyright. All rights reserved....

  3. Stimulating retinal blood vessel protection with hypoxia-inducible factor stabilization: identification of novel small-molecule hydrazones to inhibit hypoxia-inducible factor prolyl hydroxylase (an American Ophthalmological Society thesis).

    Science.gov (United States)

    Sears, Jonathan E; Hoppe, George

    2013-09-01

    To discover novel small molecules that inhibit hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD), a key enzyme that regulates the posttranslational stability and hence activity of HIF. NIH3T3 cell line stably transfected with firefly luciferase under a HIF-1-inducible promoter was used to screen a Chembridge library of 34,000 small molecules of molecular weight 250 to 550 Da. Positive hits were considered at 4.5-fold higher luminescence than control. Selected compounds were validated in vitro. The most effective dose was then used to treat mice expressing firefly luciferase fused to the oxygen-dependent degradation domain (lucODD) in order to determine the location of the receptor for systemic treatment with small-molecule HIF PHD inhibitors. Twenty-three novel small molecules were discovered, the majority of which were hydrazones and hydrazines. Of the 23 compounds, each had different selectivity for expression of erythropoietin or vascular endothelial growth factor, two angiogenic, HIF-regulated gene products. In addition, each showed different selectivity for hepatocytes or kidney, or both or neither, when injected intraperitoneally in an in vivo reporter gene assay. The discovery of multiple small molecules that inhibit HIF PHD identifies new reagents to develop strategies to prevent the degradation of HIF by its selective PHD. These molecules are novel hypoxia mimetics that may provide new strategies to protect retinovasculature from hyperoxia.

  4. Emerging role of epidermal growth factor receptor inhibition in therapy for advanced malignancy: focus on NSCLC

    International Nuclear Information System (INIS)

    Langer, Corey J.

    2004-01-01

    Combination chemotherapy regimens have emerged as the standard approach in advanced non-small-cell lung cancer. Meta-analyses have demonstrated a 2-month increase in median survival after platinum-based therapy vs. best supportive care, and an absolute 10% improvement in the 1-year survival rate. Just as importantly, cytotoxic therapy has produced benefits in symptom control and quality of life. Newer agents, including the taxanes, vinorelbine, gemcitabine, and irinotecan, have expanded our therapeutic options in the treatment of advanced non-small-cell lung cancer. Despite their contributions, we have reached a therapeutic plateau, with response rates seldom exceeding 30-40% in cooperative group studies and 1-year survival rates stable between 30% and 40%. It is doubtful that substituting one agent for another in various combinations will lead to any further improvement in these rates. The thrust of current research has focused on targeted therapy, and epidermal growth factor receptor inhibition is one of the most promising clinical strategies. Epidermal growth factor receptor inhibitors currently under investigation include the small molecules gefitinib (Iressa, ZD1839) and erlotinib (Tarceva, OSI-774), as well as monoclonal antibodies such as cetuximab (IMC-225, Erbitux). Agents that have only begun to undergo clinical evaluation include CI-1033, an irreversible pan-erbB tyrosine kinase inhibitor, and PKI166 and GW572016, both examples of dual kinase inhibitors (inhibiting epidermal growth factor receptor and Her2). Preclinical models have demonstrated synergy for all these agents in combination with either chemotherapy or radiotherapy, leading to great enthusiasm regarding their ultimate contribution to lung cancer therapy. However, serious clinical challenges persist. These include the identification of the optimal dose(s); the proper integration of these agents into popular, established cytotoxic regimens; and the selection of the optimal setting(s) in which

  5. Inhibition of hypoxia inducible factor-1alpha by dihydroxyphenylethanol, a product from olive oil, blocks microsomal prostaglandin-E synthase-1/vascular endothelial growth factor expression and reduces tumor angiogenesis.

    Science.gov (United States)

    Terzuoli, Erika; Donnini, Sandra; Giachetti, Antonio; Iñiguez, Miguel A; Fresno, Manuel; Melillo, Giovanni; Ziche, Marina

    2010-08-15

    2-(3,4-dihydroxyphenil)-ethanol (DPE), a polyphenol present in olive oil, has been found to attenuate the growth of colon cancer cells, an effect presumably related to its anti-inflammatory activity. To further explore the effects of DPE on angiogenesis and tumor growth we investigated the in vivo efficacy of DPE in a HT-29 xenograft model and in vitro activities in colon cancer cells exposed to interleukin-1beta (IL-1beta) and prostaglandin E-2 (PGE-2). DPE (10 mg/kg/day for 14 days) inhibited tumor growth, reducing vessel lumina and blood perfusion to tumor, and diminished expression of hypoxia inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), and microsomal prostaglandin-E synthase-1 (mPGEs-1). In vitro, DPE (100 mumol/L) neither affected cell proliferation nor induced apoptosis in HT-29 and WiDr cells. DPE prevented the IL-1beta-mediated increase of mPGEs-1 expression and PGE-2 generation, as it did the silencing of HIF-1alpha. Moreover, DPE blocked mPGEs-1-dependent expression of VEGF and inhibited endothelial sprouting induced by tumor cells in a coculture system. PGE-2 triggers a feed-forward loop involving HIF-1alpha, which impinges on mPGEs-1 and VEGF expression, events prevented by DPE via extracellular signal-related kinase 1/2. The reduction of PGE-2 and VEGF levels, caused by DPE, was invariably associated with a marked decrease in HIF-1alpha expression and activity, independent of proteasome activity, indicating that the DPE effects on tumor growth and angiogenesis are dependent on the inhibition of HIF-1alpha translation. We show that the in vivo DPE antitumor effect is associated with anti-inflammatory and antiangiogenic activities resulting from the downregulation of the HIF-1alpha/mPGEs-1/VEGF axis.

  6. Prolonged Cerebral Circulation Time Is the Best Parameter for Predicting Vasospasm during Initial CT Perfusion in Subarachnoid Hemorrhagic Patients.

    Directory of Open Access Journals (Sweden)

    Chun Fu Lin

    Full Text Available We sought to imitate angiographic cerebral circulation time (CCT and create a similar index from baseline CT perfusion (CTP to better predict vasospasm in patients with subarachnoid hemorrhage (SAH.Forty-one SAH patients with available DSA and CTP were retrospectively included. The vasospasm group was comprised of patients with deterioration in conscious functioning and newly developed luminal narrowing; remaining cases were classified as the control group. The angiography CCT (XA-CCT was defined as the difference in TTP (time to peak between the selected arterial ROIs and the superior sagittal sinus (SSS. Four arterial ROIs were selected to generate four corresponding XA-CCTs: the right and left anterior cerebral arteries (XA-CCTRA2 and XA-CCTLA2 and right- and left-middle cerebral arteries (XA-CCTRM2 and XA-CCTLM2. The CCTs from CTP (CT-CCT were defined as the differences in TTP from the corresponding arterial ROIs and the SSS. Correlations of the different CCTs were calculated and diagnostic accuracy in predicting vasospasm was evaluated.Intra-class correlations ranged from 0.96 to 0.98. The correlations of XA-CCTRA2, XA-CCTRM2, XA-CCTLA2, and XA-CCTLM2 with the corresponding CT-CCTs were 0.64, 0.65, 0.53, and 0.68, respectively. All CCTs were significantly prolonged in the vasospasm group (5.8-6.4 s except for XA-CCTLA2. CT-CCTA2 of 5.62 was the optimal cut-off value for detecting vasospasm with a sensitivity of 84.2% and specificity 82.4.CT-CCTs can be used to interpret cerebral flow without deconvolution algorithms, and outperform both MTT and TTP in predicting vasospasm risk. This finding may help facilitate management of patients with SAH.

  7. A chimeric peptide of intestinal trefoil factor containing cholesteryl ester transfer protein B cell epitope significantly inhibits atherosclerosis in rabbits after oral administration.

    Science.gov (United States)

    Qi, Gaofu; Li, Jingjing; Wang, Shengying; Xin, Shanshan; Du, Peng; Zhang, Qingye; Zhao, Xiuyun

    2011-04-01

    Vaccination against cholesteryl ester transfer protein (CETP) is proven to be effective for inhibiting atherosclerosis in animal models. In this study, the proteases-resistant intestinal trefoil factor (TFF3) was used as a molecular vehicle to construct chimeric TFF3 (cTFF3) containing CETP B cell epitope and tetanus toxin helper T cell epitope. It was found that cTFF3 still preserved a trefoil structure, and can resist proteases digestion in vitro. After oral immunization with cTFF3, the CETP-specific IgA and IgG could be found in intestine lavage fluid and serum, and the anti-CETP antibodies could inhibit partial CETP activity to increase high-density lipoprotein cholesterol, decrease low-density lipoprotein cholesterol, and inhibit atherosclerosis in animals. Therefore, TFF3 is a potential molecular vehicle for developing oral peptide vaccines. Our research highlights a novel strategy for developing oral peptide vaccines in the future. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Brucella abortus down-regulates MHC class II by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1 (IRF-1).

    Science.gov (United States)

    Velásquez, Lis N; Milillo, M Ayelén; Delpino, M Victoria; Trotta, Aldana; Fernández, Pablo; Pozner, Roberto G; Lang, Roland; Balboa, Luciana; Giambartolomei, Guillermo H; Barrionuevo, Paula

    2017-03-01

    Brucella abortus is an intracellular pathogen capable of surviving inside of macrophages. The success of B. abortus as a chronic pathogen relies on its ability to orchestrate different strategies to evade the adaptive CD4 + T cell responses that it elicits. Previously, we demonstrated that B. abortus inhibits the IFN-γ-induced surface expression of MHC class II (MHC-II) molecules on human monocytes, and this phenomenon correlated with a reduction in antigen presentation. However, the molecular mechanisms, whereby B. abortus is able to down-regulate the expression of MHC-II, remained to be elucidated. In this study, we demonstrated that B. abortus infection inhibits the IFN-γ-induced transcription of MHC-II, transactivator (CIITA) and MHC-II genes. Accordingly, we observed that the synthesis of MHC-II proteins was also diminished. B. abortus was not only able to reduce the expression of mature MHC-II, but it also inhibited the expression of invariant chain (Ii)-associated immature MHC-II molecules. Outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, diminished the expression of MHC-II and CIITA transcripts to the same extent as B. abortus infection. IL-6 contributes to these down-regulatory phenomena. In addition, B. abortus and its lipoproteins, through IL-6 secretion, induced the transcription of the negative regulators of IFN-γ signaling, suppressor of cytokine signaling (SOCS)-1 and -3, without interfering with STAT1 activation. Yet, B. abortus lipoproteins via IL-6 inhibit the expression of IFN regulatory factor 1 (IRF-1), a critical regulatory transcription factor for CIITA induction. Overall, these results indicate that B. abortus inhibits the expression of MHC-II molecules at very early points in their synthesis and in this way, may prevent recognition by T cells establishing a chronic infection. © Society for Leukocyte Biology.

  9. Beyond Stroke Prevention in Atrial Fibrillation: Exploring Further Unmet Needs with Rivaroxaban.

    Science.gov (United States)

    Gibson, C M; Hankey, G J; Nafee, T; Welsh, R C

    2018-03-22

    With improved life expectancy and the aging population, the global burden of atrial fibrillation (AF) continues to increase, and with AF comes an estimated fivefold increased risk of ischaemic stroke. Prophylactic anticoagulant therapy is more effective in reducing the risk of ischaemic stroke in AF patients than acetylsalicylic acid or dual-antiplatelet therapy combining ASA with clopidogrel. Non-vitamin K antagonist oral anticoagulants are the standard of care for stroke prevention in patients with non-valvular AF. The optimal anticoagulant strategy to prevent thromboembolism in AF patients who are undergoing percutaneous coronary intervention and stenting, those who have undergone successful transcatheter aortic valve replacement and those with embolic stroke of undetermined source are areas of ongoing research. This article provides an update on three randomized controlled trials of rivaroxaban, a direct, oral factor Xa inhibitor, that are complete or are ongoing, in these unmet areas of stroke prevention: oPen-label, randomized, controlled, multicentre study explorIng twO treatmeNt stratEgiEs of Rivaroxaban and a dose-adjusted oral vitamin K antagonist treatment strategy in patients with Atrial Fibrillation who undergo Percutaneous Coronary Intervention (PIONEER AF-PCI) trial; the New Approach riVaroxaban Inhibition of factor Xa in a Global trial vs Aspirin to prevenT Embolism in Embolic Stroke of Undetermined Source (NAVIGATE ESUS) trial and the Global study comparing a rivAroxaban-based antithrombotic strategy to an antipLatelet-based strategy after transcatheter aortIc vaLve rEplacement to Optimize clinical outcomes (GALILEO) trial. The data from these studies are anticipated to help address continuing challenges for a range of patients at risk of stroke. Schattauer.

  10. Vitamin D inhibits the growth of and virulence factor gene expression by Porphyromonas gingivalis and blocks activation of the nuclear factor kappa B transcription factor in monocytes.

    Science.gov (United States)

    Grenier, D; Morin, M-P; Fournier-Larente, J; Chen, H

    2016-06-01

    Increasing evidence suggests that 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), a fat-soluble secosteroid hormone, has a positive impact on periodontal health through diverse mechanisms. The present study was aimed at investigating the effect of 1,25(OH)2 D3 on the growth of and virulence factor gene expression by the periodontopathogenic bacterium Porphyromonas gingivalis. The effect of 1,25(OH)2 D3 on P. gingivalis-mediated activation of nuclear factor kappa B (NF-κB) transcription factor in monocytes was also assessed. A broth microdilution assay was used to determine the antibacterial activity of 1,25(OH)2 D3 . The modulation of virulence factor gene expression in P. gingivalis was assessed by quantitative reverse transcription-polymerase chain reaction. NF-κB activation was assessed using a human monocytic cell line stably transfected with a luciferase reporter containing NF-κB binding sites. Minimal inhibitory concentrations of 1,25(OH)2 D3 against P. gingivalis ranged from 3.125 to 6.25 μg/mL. Moreover, a partial synergistic effect was observed when 1,25(OH)2 D3 was used in association with metronidazole. 1,25(OH)2 D3 attenuated the virulence of P. gingivalis by reducing the expression of genes coding for important virulence factors, including adhesins (fimA, hagA and hagB) and proteinases (rgpA, rgpB and kgp). 1,25(OH)2 D3 dose-dependently prevented P. gingivalis-induced NF-κB activation in a monocyte model. Our study suggested that 1,25(OH)2 D3 selectively inhibits the growth of and virulence factor gene expression by P. gingivalis, in addition to attenuating NF-κB activation by this periodontopathogen. This dual action on P. gingivalis and the inflammatory response of host cells may be of particular interest with a view to developing a novel and inexpensive preventive/therapeutic strategy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Presence of sulfate does not inhibit low-temperature dolomite precipitation

    NARCIS (Netherlands)

    Sánchez-Román, Mónica; McKenzie, Judith A.; de Luca Rebello Wagener, Angela; Rivadeneyra, Maria A.; Vasconcelos, Crisógono

    2009-01-01

    The hypothesis that sulfate inhibits dolomite formation evolved from geochemical studies of porewaters from deep-sea sedimentary sequences and has been tested with hydrothermal experiments. We examined the sulfate inhibition factor using aerobic culture experiments with Virgibacillus marismortui and

  12. Sertoli cells in culture secrete paracrine factor(s) that inhibit peritubular myoid cell proliferation: identification of heparinoids as likely candidates

    International Nuclear Information System (INIS)

    Tung, P.S.; Fritz, I.B.

    1991-01-01

    Conditioned medium from Sertoli cells, prepared from testes of 20-day-old rats, contains component(s) that inhibit the incorporation of [3H]-thymidine into DNA of peritubular myoid cells (PMC) and inhibit the proliferation of PMC. These components are trypsin-resistant, heat-stable compounds having a molecular weight less than 30,000. The active inhibitory components in Sertoli cell conditioned medium are inactivated by treatment with heparinase, but not by treatment with hyaluronidase or chondroitin sulfate lyases. Addition of heparin or heparan sulfate results in inhibition of DNA synthesis by PMC in a dose-dependent manner, whereas other glycosaminoglycans (GAGs) examined (hyaluronic acid, keratan sulfate, and chondroitin sulfate) have no detectable effects. Heparin and heparan sulfate are unique among GAGs tested in inhibiting the characteristic multilayer growth pattern of PMC following the attainment of confluence in serum-rich medium. On the basis of these and other data presented, it is concluded that heparin and other heparin-like GAGs synthesized by Sertoli cells are implicated in the modulation of growth of PMC in vitro during co-culture. It is postulated that heparin may play a similar role in maintaining the quiescent peritubular myoid cell phenotype in vivo

  13. Celecoxib inhibits osteoblast maturation by suppressing the expression of Wnt target genes

    Directory of Open Access Journals (Sweden)

    Akihiro Nagano

    2017-01-01

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs have been shown to impair bone healing. We previously reported that in colon cancer cells, celecoxib, a COX-2-selective NSAID, inhibited the canonical Wnt/β-catenin signaling pathway. Since this pathway also plays an important role in osteoblast growth and differentiation, we examined the effect of celecoxib on maturation of osteoblast-like cell line MC3T3-E1. Celecoxib induced degradation of transcription factor 7-like 2, a key transcription factor of the canonical Wnt pathway. Subsequently, we analyzed the effect of celecoxib on two osteoblast differentiation markers; runt-related transcription factor 2 (RUNX2 and alkaline phosphatase (ALP, both of which are the products of the canonical Wnt pathway target genes. Celecoxib inhibited the expression of both RUNX2 and ALP by suppressing their promoter activity. Consistent with these observations, celecoxib also strongly inhibited osteoblast-mediated mineralization. These results suggest that celecoxib inhibits osteoblast maturation by suppressing Wnt target genes, and this could be the mechanism that NSAIDs inhibit bone formation and fracture healing.

  14. The importance of residues 195-206 of human blood clotting factor VII in the interaction of factor VII with tissue factor

    International Nuclear Information System (INIS)

    Wildgoose, P.; Kisiel, W.; Kazim, A.L.

    1990-01-01

    Previous studies indicated that human and bovine factor VII exhibit 71% amino acid sequence identity. In the present study, competition binding experiments revealed that the interaction of human factor VII with cell-surface human tissue factor was not inhibited by 100-fold molar excess of bovine factor VII. This finding indicated that bovine and human factor VII are not structurally homologous in the region(s) where human factor VII interacts with human tissue factor. On this premise, the authors synthesized three peptides corresponding to regions of human factor VII that exhibited marked structural dissimilarity to bovine factor VII; these regions of dissimilarity included residues 195-206, 263-274, and 314-326. Peptide 195-206 inhibited the interaction of factor VII with cell-surface tissue factor and the activation of factor X by a complex of factor VIIa and tissue factor half-maximally at concentrations of 1-2 mM. A structurally rearranged form of peptide 195-206 containing an aspartimide residue inhibited these reactions half-maximally at concentrations of 250-300 μM. In contrast, neither peptide 263-274 nor peptide 314-326, at 2 mM concentration, significantly affected either factor VIIa interaction with tissue factor or factor VIIa-mediated activation of factor X. The data provide presumptive evidence that residues 195-206 of human factor VII are involved in the interaction of human factor VII with the extracellular domain of human tissue factor apoprotein

  15. In vivo inhibition of nuclear factor of activated T-cells leads to atherosclerotic plaque regression in IGF-II/LDLR-/-ApoB100/100 mice.

    Science.gov (United States)

    Blanco, Fabiana; Heinonen, Suvi E; Gurzeler, Erika; Berglund, Lisa M; Dutius Andersson, Anna-Maria; Kotova, Olga; Jönsson-Rylander, Ann-Cathrine; Ylä-Herttuala, Seppo; Gomez, Maria F

    2018-03-01

    Despite vast clinical experience linking diabetes and atherosclerosis, the molecular mechanisms leading to accelerated vascular damage are still unclear. Here, we investigated the effects of nuclear factor of activated T-cells inhibition on plaque burden in a novel mouse model of type 2 diabetes that better replicates human disease. IGF-II/LDLR -/- ApoB 100/100 mice were generated by crossbreeding low-density lipoprotein receptor-deficient mice that synthesize only apolipoprotein B100 (LDLR -/- ApoB 100/100 ) with transgenic mice overexpressing insulin-like growth factor-II in pancreatic β cells. Mice have mild hyperglycaemia and hyperinsulinaemia and develop complex atherosclerotic lesions. In vivo treatment with the nuclear factor of activated T-cells blocker A-285222 for 4 weeks reduced atherosclerotic plaque area and degree of stenosis in the brachiocephalic artery of IGF-II/LDLR -/- ApoB 100/100 mice, as assessed non-invasively using ultrasound biomicroscopy prior and after treatment, and histologically after termination. Treatment had no impact on plaque composition (i.e. muscle, collagen, macrophages). The reduced plaque area could not be explained by effects of A-285222 on plasma glucose, insulin or lipids. Inhibition of nuclear factor of activated T-cells was associated with increased expression of atheroprotective NOX4 and of the anti-oxidant enzyme catalase in aortic vascular smooth muscle cells. Targeting the nuclear factor of activated T-cells signalling pathway may be an attractive approach for the treatment of diabetic macrovascular complications.

  16. Prevalence of behavioral inhibition among preschool aged children in Tehran, Iran.

    Directory of Open Access Journals (Sweden)

    Alipasha Meysamie

    2014-04-01

    Full Text Available One of the identified risk factors for anxiety disorders in adolescence and adulthood is inhibited behaviors in childhood. The present study sought to examine the relationship between behavioral inhibition with some of the internal (personal and external (family environment factors in a sample of preschool children in kindergartens. In a cross sectional study in 2009, data was collected trough a structured questionnaire completed by parents and teachers in day-care centers. A total of 1403 children were assessed. Analysis was performed through complex sample analysis. The results showed that 7.4% (CI95%= 6.1%-9.1% of children according to parents' and 8.1% (CI95%= 6%- 10.7% according to teachers' evaluation classified as behaviorally inhibited. The higher levels of behavioral inhibition were shown by girls, first children, single parent families and older children. Birth year before 2004, birth rank, living in a single parent family and maternal level of education were independent predictors for behavioral inhibition in logistic regression modeling. There is relatively high prevalence of inhibited behaviors among Iranian children. Further examination of diagnosed children with behavioral inhibition by experienced psychiatrists is needed. Also establishing consultation centers for behaviorally inhibited children and instructing their parents and teachers are recommended.

  17. Inhibition of phospholipase A2 from human plasma by sodium bisulfite

    International Nuclear Information System (INIS)

    Wiggins, C.W.; Franson, R.C.

    1987-01-01

    The anti-oxidant sodium bisulfite has been shown to inhibit acid active(lysosomal), non-Ca ++ -dependent phospholipase A 2 (PLA 2 ), and to interact reversibly with unsaturated fatty acids, altering their chromatographic mobility. The authors examined the effect of bisulfite on neutral active, Ca ++ -dependent PLA 2 from human plasma. Using [1- 14 C]oleate-labelled autoclaved E. coli as substrate, PLA 2 activity was inhibited in a dose-dependent manner by bisulfite. Maximal inhibition occurred at 100μM bisulfite. Preincubation of plasma for 0-30 minutes with bisulfite resulted in a time-dependent increase in PLA 2 inhibition. Preincubation of substrate with bisulfite had no such effect. When the plasma PLA 2 was purified 25-fold by SP-Sephadex chromatography it was no longer inhibited by bisulfite. The SP-Sephadex wash through fraction, which contained greater than 95% of the applied protein but not PLA 2 activity, did not inhibit the purified enzyme. When incubated with bisulfite however, the SP-wash through fraction produced dose-dependent inhibition of the purified enzyme. These results indicate that sodium bisulfite inhibits human plasma PLA 2 , in vitro, indirectly by interaction with a factor(s) present in plasma and suggests that anti-oxidants may similarly influence expression of extracellular PLA 2 in vivo

  18. Endoglin inhibition leads to intussusceptive angiogenesis via activation of factors related to COUP-TFII signaling pathway.

    Directory of Open Access Journals (Sweden)

    Ruslan Hlushchuk

    Full Text Available Angiogenesis is a highly coordinated, extremely complex process orchestrated by multiple signaling molecules and blood flow conditions. While sprouting mode of angiogenesis is very well investigated, the molecular mechanisms underlying intussusception, the second mode of angiogenesis, remain largely unclear. In the current study two molecules involved in vascular growth and differentiation, namely endoglin (ENG/CD105 and chicken ovalbumin upstream promoter transcription factor II (COUP-TFII were examined to unravel their specific roles in angiogenesis. Down- respectively up-regulation of both molecules tightly correlates with intussusceptive microvascular growth. Upon ENG inhibition in chicken embryo model, formation of irregular capillary meshwork accompanied by increased expression of COUP-TFII could be observed. This dynamic expression pattern of ENG and COUP-TFII during vascular development and remodeling correlated with formation of pillars and progression of intussusceptive angiogenesis. Similar findings could be observed in mammalian model of acute rat Thy1.1 glomerulonephritis, which was induced by intravenous injection of anti-Thy1 antibody and has shown upregulation of COUP-TFII in initial phase of intussusception, while ENG expression was not disturbed compared to the controls but decreased over the time of pillar formation. In this study, we have shown that ENG inhibition and at the same time up-regulation of COUP-TFII expression promotes intussusceptive angiogenesis.

  19. Knockdown of the Placental Growth Factor Gene Inhibits Laser Induced Choroidal Neovascularization in a Murine Model

    Directory of Open Access Journals (Sweden)

    Ramin Nourinia

    2013-01-01

    Full Text Available Purpose: To evaluate the effect of placental growth factor (PlGF gene knockdown in a murine model of laser-induced choroidal neovascularization. Methods: Choroidal neovascularization was induced in the left eyes of 11 mice by infrared laser. Small interfering RNA (siRNA, 20 picomoles/10 μl corresponding to PlGF mRNA was administered intravitreally by Hamilton syringe in all subjects. One month later, fluorescein angiography and histolologic examination were performed. Results: No leakage was apparent in the 11 eyes treated with siRNA cognate to PlGF. The results of histological evaluation were consistent with angiographic findings showing absence of choroidal neovascularization. Conclusion: Knockdown of the PlGF gene can inhibit the growth of laser-induced choroidal neovascularization in mice.

  20. Apixaban

    Science.gov (United States)

    ... medications called factor Xa inhibitors. It works by blocking the action of a certain natural substance that ... rash chest pain or tightness swelling of the face or tongue trouble breathing wheezing feeling dizzy or ...

  1. Inhibition of Inwardly Rectifying Potassium (Kir 4.1 Channels Facilitates Brain-Derived Neurotrophic Factor (BDNF Expression in Astrocytes

    Directory of Open Access Journals (Sweden)

    Masato Kinboshi

    2017-12-01

    Full Text Available Inwardly rectifying potassium (Kir 4.1 channels in astrocytes regulate neuronal excitability by mediating spatial potassium buffering. Although dysfunction of astrocytic Kir4.1 channels is implicated in the development of epileptic seizures, the functional mechanisms of Kir4.1 channels in modulating epileptogenesis remain unknown. We herein evaluated the effects of Kir4.1 inhibition (blockade and knockdown on expression of brain-derived neurotrophic factor (BDNF, a key modulator of epileptogenesis, in the primary cultures of mouse astrocytes. For blockade of Kir4.1 channels, we tested several antidepressant agents which reportedly bound to and blocked Kir4.1 channels in a subunit-specific manner. Treatment of astrocytes with fluoxetine enhanced BDNF mRNA expression in a concentration-dependent manner and increased the BDNF protein level. Other antidepressants (e.g., sertraline and imipramine also increased the expression of BDNF mRNA with relative potencies similar to those for inhibition of Kir4.1 channels. In addition, suppression of Kir4.1 expression by the transfection of small interfering RNA (siRNA targeting Kir4.1 significantly increased the mRNA and protein levels of BDNF. The BDNF induction by Kir4.1 siRNA transfection was suppressed by the MEK1/2 inhibitor U0126, but not by the p38 MAPK inhibitor SB202190 or the JNK inhibitor SP600125. The present results demonstrated that inhibition of Kir4.1 channels facilitates BDNF expression in astrocytes primarily by activating the Ras/Raf/MEK/ERK pathway, which may be linked to the development of epilepsy and other neuropsychiatric disorders.

  2. Universal, class-specific and drug-specific reversal agents for the new oral anticoagulants.

    Science.gov (United States)

    Ansell, Jack E

    2016-02-01

    Although there is controversy about the absolute need for a reversal agent for the new direct oral anticoagulants (DOACs), the absence of such an agent is a barrier to more widespread use of these agents. For the management of major life-threatening bleeding with the DOACs, most authorities recommend the use of four factor prothrombin complex concentrates, although the evidence to support their use in terms of improving outcomes is meager. At the present time, there are three antidotes in development and poised to enter the market. Idarucizumab is a drug-specific antidote targeted to reverse the direct thrombin inhibitor, dabigatran. Andexanet alfa is a class-specific antidote targeted to reverse the oral direct factor Xa inhibitors as well as the indirect inhibitor, enoxaparin. Ciraparantag is a universal antidote targeted to reverse the direct thrombin and factor Xa inhibitors as well as the indirect inhibitor, enoxaparin.

  3. Sprouty regulates cell migration by inhibiting the activation of Rac1 GTPase

    International Nuclear Information System (INIS)

    Poppleton, Helen M.; Edwin, Francis; Jaggar, Laura; Ray, Ramesh; Johnson, Leonard R.; Patel, Tarun B.

    2004-01-01

    Sprouty (SPRY) protein negatively modulates fibroblast growth factor and epidermal growth factor actions. We showed that human SPRY2 inhibits cell growth and migration in response to serum and several growth factors. Using rat intestinal epithelial (IEC-6) cells, we investigated the involvement of the Rho family of GTPases, RhoA, Rac1, and cdc42 in SPRY2-mediated inhibition of cell migration and proliferation. The ability of TAT-tagged SPRY2 to inhibit proliferation and migration of IEC-6 cells transfected with constitutively active mutants of RhoA(G14V), Rac1(G12V), and cdc42 (F28L) was determined. Constitutively active RhoA(G14V), Rac1(G12V), or cdc42(F28L) did not protect cells from the anti-proliferative actions of TAT-SPRY2. The ability of TAT-hSPRY2 to inhibit migration was not altered by of RhoA(G14V) and cdc42(F28L). However, Rac1(G12V) obliterated the ability of SPRY2 to inhibit cell autonomous or serum-induced migration. Also, the activation of endogenous Rac1 was attenuated by TAT-SPRY2. Thus, SPRY2 mediates its anti-migratory actions by inhibiting Rac1 activation

  4. DNA methyltransferase inhibitor CDA-II inhibits myogenic differentiation

    International Nuclear Information System (INIS)

    Chen, Zirong; Jin, Guorong; Lin, Shuibin; Lin, Xiumei; Gu, Yumei; Zhu, Yujuan; Hu, Chengbin; Zhang, Qingjiong; Wu, Lizi; Shen, Huangxuan

    2012-01-01

    Highlights: ► CDA-II inhibits myogenic differentiation in a dose-dependent manner. ► CDA-II repressed expression of muscle transcription factors and structural proteins. ► CDA-II inhibited proliferation and migration of C2C12 myoblasts. -- Abstract: CDA-II (cell differentiation agent II), isolated from healthy human urine, is a DNA methyltransferase inhibitor. Previous studies indicated that CDA-II played important roles in the regulation of cell growth and certain differentiation processes. However, it has not been determined whether CDA-II affects skeletal myogenesis. In this study, we investigated effects of CDA-II treatment on skeletal muscle progenitor cell differentiation, migration and proliferation. We found that CDA-II blocked differentiation of murine myoblasts C2C12 in a dose-dependent manner. CDA-II repressed expression of muscle transcription factors, such as Myogenin and Mef2c, and structural proteins, such as myosin heavy chain (Myh3), light chain (Mylpf) and MCK. Moreover, CDA-II inhibited C1C12 cell migration and proliferation. Thus, our data provide the first evidence that CDA-II inhibits growth and differentiation of muscle progenitor cells, suggesting that the use of CDA-II might affect skeletal muscle functions.

  5. Thiazolidinediones inhibit TNFα induction of PAI-1 independent of PPARγ activation

    International Nuclear Information System (INIS)

    Liu, H.B.; Hu, Y.S.; Medcalf, R.L.; Simpson, R.W.; Dear, A.E.

    2005-01-01

    Increased plasminogen activator inhibitor type 1 (PAI-1) levels are observed in endothelial cells stimulated by tumour necrosis factor α (TNFα). Thiazolidinediones (TZDs) may inhibit elevated endothelial cell PAI-1 accounting, in part, for the putative atheroprotective effects of TZDs. In an endothelial cell line, Rosiglitazone (RG) and Pioglitazone (PG) inhibited induction of PAI-1 by TNFα. The specific peroxisome proliferator-activated receptor γ (PPARγ) inhibitor, SR-202, failed to modulate this effect. RG also inhibited the effect of TNFα on a reporter gene construct harbouring the proximal PAI-1 promoter and PAI-1 mRNA in cells co-transfected with a dominant-negative PPARγ construct. RG and PG attenuated TNFα-mediated induction of trans-acting factor(s) Nur77/Nurr1 and binding of nuclear proteins (NP) to the cis-acting element (NBRE). SR-202 failed to modulate these effects. The observations suggest TZDs inhibit TNFα-mediated PAI-1 induction independent of inducible PPARγ activation and this may involve in the modulation of Nur77/Nurr1 expression and NP binding to the PAI-1 NBRE

  6. Transactivation of the TIEG1 confers growth inhibition of transforming growth factor-β-susceptible hepatocellular carcinoma cells

    Science.gov (United States)

    Jiang, Lei; Lai, Yiu-Kay; Zhang, Jin-Fang; Chan, Chu-Yan; Lu, Gang; Lin, Marie CM; He, Ming-Liang; Li, Ji-Cheng; Kung, Hsiang-Fu

    2012-01-01

    AIM: To investigate the role of transforming growth factor (TGF)-β-inducible early gene 1 (TIEG1) in TGF-β-induced growth inhibition in hepatocellular carcinoma (HCC) cells. METHODS: Human hepatocyte and HCC cell lines with varied susceptibilities to TGF-β1 were tested by methylthiazoletetrazolium (MTT) assay. The expression changes of Smad2, Smad3, Smad4, Smad7, TIEG1 and TIEG2 gene following treatment with TGF-β1 in a TGF-β-sensitive hepatocyte cell line (MIHA), a TGF-β-sensitive hepatoma cell line (Hep3B) and two TGF-β-insensitive hepatoma cell lines (HepG2 and Bel7404) were examined. SiRNA targeting TIEG1 was transfected into Hep3B cells and the sensitivity of cells to TGF-β1 was examined. Overexpression of TIEG1 was induced by lentiviral-mediated transduction in TGF-β1-resistant hepatoma cell lines (Bel7404 and HepG2). MTT assay and 4’,6-Diamidino-2-phenylindole staining were used to identify cell viability and apoptosis, respectively. The expression level of stathmin was measured by reverse transcriptase polymerase chain reaction and Western-blotting analysis, and stathmin promoter activity by TIEG1 was monitored by a luciferase reporter gene system. RESULTS: TIEG1 was significantly upregulated by TGF-β1 in the TGF-β1-sensitive HCC cell line, Hep3B, but not in the resistant cell lines. The suppression of TIEG1 by siRNAs decreased the sensitivity of Hep3B cells to TGF-β1, whereas the overexpression of TIEG1 mediated growth inhibition and apoptosis in TGF-β1-resistant HCC cell lines, which resembled those of TGF-β1-sensitive HCC cells treated with TGF-β1. Our data further suggested that stathmin was a direct target of TIEG1, as stathmin was significantly downregulated by TIEG1 overexpression, and stathmin promoter activity was inhibited by TIEG1 in a dose-dependent manner. CONCLUSION: Our data suggest that transactivation of TIEG1 conferred growth inhibition of TGF-β-susceptible human HCC cells. PMID:22563190

  7. A New Platelet-Aggregation-Inhibiting Factor Isolated from Bothrops moojeni Snake Venom

    Directory of Open Access Journals (Sweden)

    Bruna Barbosa de Sousa

    2017-01-01

    Full Text Available This work reports the purification and functional characterization of BmooPAi, a platelet-aggregation-inhibiting factor from Bothrops moojeni snake venom. The toxin was purified by a combination of three chromatographic steps (ion-exchange on DEAE-Sephacel, molecular exclusion on Sephadex G-75, and affinity chromatography on HiTrap™ Heparin HP. BmooPAi was found to be a single-chain protein with an apparent molecular mass of 32 kDa on 14% SDS-PAGE, under reducing conditions. Sequencing of BmooPAi by Edman degradation revealed the amino acid sequence LGPDIVPPNELLEVM. The toxin was devoid of proteolytic, haemorrhagic, defibrinating, or coagulant activities and induced no significant oedema or hyperalgesia. BmooPAi showed a rather specific inhibitory effect on ristocetin-induced platelet aggregation in human platelet-rich plasma, whereas it had little or no effect on platelet aggregation induced by collagen and adenosine diphosphate. The results presented in this work suggest that BmooPAi is a toxin comprised of disintegrin-like and cysteine-rich domains, originating from autolysis/proteolysis of PIII SVMPs from B. moojeni snake venom. This toxin may be of medical interest because it is a platelet aggregation inhibitor, which could potentially be developed as a novel therapeutic agent to prevent and/or treat patients with thrombotic disorders.

  8. Endosulfan inhibiting the meiosis process via depressing expressions of regulatory factors and causing cell cycle arrest in spermatogenic cells.

    Science.gov (United States)

    Guo, Fang-Zi; Zhang, Lian-Shuang; Wei, Jia-Liu; Ren, Li-Hua; Zhang, Jin; Jing, Li; Yang, Man; Wang, Ji; Sun, Zhi-Wei; Zhou, Xian-Qing

    2016-10-01

    Endosulfan is a persistent organic pollutant and widely used in agriculture as a pesticide. It is present in air, water, and soil worldwide; therefore, it is a health risk affecting especially the reproductive system. The aim of this study was to evaluate the toxicity of endosulfan in the reproductive system. To investigate the effect of endosulfan on meiosis process, 32 rats were divided into four groups, treated with 0, 1, 5, and 10 mg/kg/day endosulfan, respectively, and sacrificed after the 21 days of treatments. Results show that endosulfan caused the reductions in sperm concentration and motility rate, which resulted into an increased in sperm abnormality rate; further, endosulfan induced downregulation of spermatogenesis- and oogenesis-specific basic helix-loop-helix transcription factor (Sohlh1) which controls the switch on meiosis in mammals, as well cyclin A1, cyclin-dependent kinases 1 (CDK1), and cyclin-dependent kinases 2 (CDK2). In vitro, endosulfan induced G2/M phase arrest in the spermatogenic cell cycle and caused proliferation inhibition. Moreover, endosulfan induced oxidative stress and DNA damage in vivo and vitro. The results suggested that endosulfan could inhibit the start of meiosis by downregulating the expression of Sohlh1 and induce G2/M phase arrest of cell cycle by decreasing the expression of cyclin A1, CDK1, and CDK2 via oxidative damage, which inhibits the meiosis process, and therefore decrease the amount of sperm.

  9. Plasminogen activator inhibitor-1 is an independent prognostic factor of ovarian cancer and IMD-4482, a novel plasminogen activator inhibitor-1 inhibitor, inhibits ovarian cancer peritoneal dissemination.

    Science.gov (United States)

    Nakatsuka, Erika; Sawada, Kenjiro; Nakamura, Koji; Yoshimura, Akihito; Kinose, Yasuto; Kodama, Michiko; Hashimoto, Kae; Mabuchi, Seiji; Makino, Hiroshi; Morii, Eiichi; Yamaguchi, Yoichi; Yanase, Takeshi; Itai, Akiko; Morishige, Ken-Ichirou; Kimura, Tadashi

    2017-10-27

    In the present study, the therapeutic potential of targeting plasminogen activator inhibitor-1 (PAI-1) in ovarian cancer was tested. Tissues samples from 154 cases of ovarian carcinoma were immunostained with anti-PAI-1 antibody, and the prognostic value was analyzed. Among the samples, 67% (104/154) showed strong PAI-1 expression; this was significantly associated with poor prognosis (progression-free survival: 20 vs. 31 months, P = 0.0033). In particular, among patients with stage II-IV serous adenocarcinoma, PAI-1 expression was an independent prognostic factor. The effect of a novel PAI-1 inhibitor, IMD-4482, on ovarian cancer cell lines was assessed and its therapeutic potential was examined using a xenograft mouse model of ovarian cancer. IMD-4482 inhibited in vitro cell adhesion to vitronectin in PAI-1-positive ovarian cancer cells, followed by the inhibition of extracellular signal-regulated kinase and focal adhesion kinase phosphorylation through dissociation of the PAI-urokinase receptor complex from integrin αVβ3. IMD-4482 caused G0/G1 cell arrest and inhibited the proliferation of PAI-1-positive ovarian cancer cells. In the xenograft model, IMD-4482 significantly inhibited peritoneal dissemination with the reduction of PAI-1 expression and the inhibition of focal adhesion kinase phosphorylation. Collectively, the functional inhibition of PAI-1 significantly inhibited ovarian cancer progression, and targeting PAI-1 may be a potential therapeutic strategy in ovarian cancer.

  10. Bropirimine inhibits osteoclast differentiation through production of interferon-β

    International Nuclear Information System (INIS)

    Suzuki, Hiroaki; Mochizuki, Ayako; Yoshimura, Kentaro; Miyamoto, Yoichi; Kaneko, Kotaro; Inoue, Tomio; Chikazu, Daichi; Takami, Masamichi; Kamijo, Ryutaro

    2015-01-01

    Bropirimine is a synthetic agonist for toll-like receptor 7 (TLR7). In this study, we investigated the effects of bropirimine on differentiation and bone-resorbing activity of osteoclasts in vitro. Bropirimine inhibited osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) induced by receptor activator of nuclear factor κB ligand (RANKL) in a concentration-dependent manner. Furthermore, it suppressed the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), a master transcription factor for osteoclast differentiation, without affecting BMM viability. Bropirimine also inhibited osteoclast differentiation induced in co-cultures of mouse bone marrow cells (BMCs) and mouse osteoblastic UAMS-32 cells in the presence of activated vitamin D_3. Bropirimine partially suppressed the expression of RANKL mRNA in UAMS-32 cells induced by activated vitamin D_3. Finally, the anti-interferon-β (IFN-β) antibody restored RANKL-dependent differentiation of BMMs into osteoclasts suppressed by bropirimine. These results suggest that bropirimine inhibits differentiation of osteoclast precursor cells into osteoclasts via TLR7-mediated production of IFN-β.

  11. Bropirimine inhibits osteoclast differentiation through production of interferon-β

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Hiroaki [Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Mochizuki, Ayako [Department of Oral Physiology, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Yoshimura, Kentaro; Miyamoto, Yoichi [Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Kaneko, Kotaro [Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo 160-0023 (Japan); Inoue, Tomio [Department of Oral Physiology, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Chikazu, Daichi [Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo 160-0023 (Japan); Takami, Masamichi [Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555 (Japan); Kamijo, Ryutaro, E-mail: kamijor@dent.showa-u.ac.jp [Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555 (Japan)

    2015-11-06

    Bropirimine is a synthetic agonist for toll-like receptor 7 (TLR7). In this study, we investigated the effects of bropirimine on differentiation and bone-resorbing activity of osteoclasts in vitro. Bropirimine inhibited osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) induced by receptor activator of nuclear factor κB ligand (RANKL) in a concentration-dependent manner. Furthermore, it suppressed the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), a master transcription factor for osteoclast differentiation, without affecting BMM viability. Bropirimine also inhibited osteoclast differentiation induced in co-cultures of mouse bone marrow cells (BMCs) and mouse osteoblastic UAMS-32 cells in the presence of activated vitamin D{sub 3}. Bropirimine partially suppressed the expression of RANKL mRNA in UAMS-32 cells induced by activated vitamin D{sub 3}. Finally, the anti-interferon-β (IFN-β) antibody restored RANKL-dependent differentiation of BMMs into osteoclasts suppressed by bropirimine. These results suggest that bropirimine inhibits differentiation of osteoclast precursor cells into osteoclasts via TLR7-mediated production of IFN-β.

  12. Trial design: Rivaroxaban for the prevention of major cardiovascular events after transcatheter aortic valve replacement: Rationale and design of the GALILEO study

    NARCIS (Netherlands)

    Windecker, Stephan; Tijssen, Jan; Giustino, Gennaro; Guimarães, Ana H. C.; Mehran, Roxana; Valgimigli, Marco; Vranckx, Pascal; Welsh, Robert C.; Baber, Usman; van Es, Gerrit-Anne; Wildgoose, Peter; Volkl, Albert A.; Zazula, Ana; Thomitzek, Karen; Hemmrich, Melanie; Dangas, George D.

    2017-01-01

    Optimal antithrombotic treatment after transcatheter aortic valve replacement (TAVR) is unknown and determined empirically. The direct factor Xa inhibitor rivaroxaban may potentially reduce TAVR-related thrombotic complications and premature valve failure. GALILEO is an international, randomized,

  13. Inhibition of trypsin by condensed tannins and wine.

    Science.gov (United States)

    Gonçalves, Rui; Soares, Susana; Mateus, Nuno; de Freitas, Victor

    2007-09-05

    Phenolic compounds are abundant vegetable secondary metabolites in the human diet. The ability of procyanidin oligomers and wine polyphenols to inhibit trypsin activity was studied using a versatile and reliable in vitro method. The hydrolysis of the chromogenic substrate N-benzoyl-d,l-arginine-p-nitroanilide (BApNA) by trypsin was followed by spectrophotometry in the presence and absence of condensed tannins and wine. A clear relationship between the degree of polymerization of procyanidins and enzymatic inhibition was observed. Trypsin activity inhibition was also detected in several types of wine. In general, the inhibition increased with the concentration of phenolic compounds in wines. These results may be relevant when considering these compounds as antinutritional factors, thereby contributing to a reduced absorption of nutrients.

  14. Inhibiting glycogen synthase kinase-3 and transforming growth factor-β signaling to promote epithelial transition of human adipose mesenchymal stem cells.

    Science.gov (United States)

    Setiawan, Melina; Tan, Xiao-Wei; Goh, Tze-Wei; Hin-Fai Yam, Gary; Mehta, Jodhbir S

    2017-09-02

    This study was aimed to investigate the epithelial differentiation of human adipose-derived mesenchymal stem cells (ADSCs) by inhibiting glycogen synthase kinase-3 (GSK3) and transforming growth factor β (TGFβ) signaling. STEMPRO human ADSCs at passage 2 were treated with CHIR99021 (GSK3 inhibitor), E-616452 (TGFβ1 receptor kinase inhibitor), A-83-01 (TGFβ type 1 receptor inhibitor), valproic acid (histone deacetylase inhibitor), tranylcypromine (monoamine oxidase inhibitor) and all-trans retinoic acid for 72 h. The mesenchymal-epithelial transition was shown by down-regulation of mesenchymal genes (Slug, Zinc Finger E-box Binding Homeobox 1 ZEB1, integrin α5 ITGA5 and vimentin VIM) and up-regulation of epithelial genes (E-cadherin, Epithelial Cell Adhesion Molecule EpCAM, Zonula Occludens-1 ZO-1, occludin, deltaN p63 δNp63, Transcription Factor 4 TCF4 and Twist Family bHLH Transcription Factor TWIST), compared to untreated ADSCs. Cell morphology and stress fiber pattern were examined and the treated cells became less migratory in scratch wound closure assay. The formation of cell junction complexes was observed under transmission electron microscopy. Global gene expression using GeneChip ® Human Genome U133 Array (Affymetrix) showed that the treatment up-regulated 540 genes (containing genes for cell cycle, cytoskeleton reorganization, chemotaxis, epithelium development and regulation of cell migration) and down-regulated 483 genes. Human ADSCs were transited to epithelial lineage by inhibiting GSK3 and TGFβ signaling. It can be an adult stem cell source for epithelial cell-based therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    International Nuclear Information System (INIS)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen

    2015-01-01

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice

  16. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen, E-mail: srrshurology@163.com

    2015-08-14

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.

  17. Inhibition of repopulation is not a determining factor for the radiosensitizing effects of rapamycin

    International Nuclear Information System (INIS)

    Sarkaria, J.N.; Carlson, B.L.; Mladek, A.C.

    2003-01-01

    The mammalian target of rapamycin (mTOR) is a key downstream effector of the PI3K-Akt signaling pathway, and we have previously shown that inhibition of mTOR by rapamycin significantly enhances the efficacy of prolonged fractionated radiation in U87 glioma cells grown as xenografts or spheroids. To test whether inhibition of repopulation between radiation fractions contributes to the sensitizing effects of rapamycin, the efficacy of our previous protracted radiation schedule was compared with an accelerated regimen in U87 spheroids. Regrowth of individual spheroids was tracked over time following treatment with either accelerated or protracted radiation in the presence or absence of rapamycin. As in our previous studies, treatment with 10 nM rapamycin significantly increased the time required for U87 spheroids to regrow to 10 times their original volume (22 ± 2 days [mean ± 95% CI]) compared to control (7 ± 1 days). Regrowth after protracted radiation (2 Gy every 3 days x 4; 9 ± 2 days)did not significantly differ from control treatment, while accelerated radiation (2 Gy every 4 hours x 4) modestly delayed spheroid regrowth (12 ± 2 days). Specific to our model, the relatively small difference in regrowth time between the two radiation fractionation schedules suggests that repopulation is not a major detrimental factor in the protracted radiation schedule. Interestingly, the combination of rapamycin with either protracted or accelerated RT significantly enhanced the efficacy of the radiation with regrowth times of 31 ± 4 days and 29 ± 4 days, respectively. Consistent with this in vitro data, preliminary results from an animal study suggest that treatment with a rapamycin analog and daily radiation is as effective as protracted radiation/ rapamycin schedules. Thus, any effects of rapamycin on repopulation in our model systems do not contribute significantly to the sensitizing effects of rapamycin

  18. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Han, Eun Hee [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Im, Ji Hye; Lee, Eun Ji; Jin, Sun Woo [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2015-09-25

    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Taken together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.

  19. Genistein-mediated inhibition of glycosaminoglycan synthesis, which corrects storage in cells of patients suffering from mucopolysaccharidoses, acts by influencing an epidermal growth factor-dependent pathway

    Directory of Open Access Journals (Sweden)

    Barańska Sylwia

    2009-03-01

    Full Text Available Abstract Background Mucopolysaccharidoses (MPS are inherited metabolic disorders caused by mutations leading to dysfunction of one of enzymes involved in degradation of glycosaminoglycans (GAGs. Due to their impaired degradation, GAGs accumulate in cells of patients, which results in dysfunction of tissues and organs. Substrate reduction therapy is one of potential treatment of these diseases. It was demonstrated previously that genistein (4', 5, 7-trihydroxyisoflavone inhibits synthesis and reduces levels of GAGs in cultures of fibroblasts of MPS patients. Recent pilot clinical study indicated that such a therapy may be effective in MPS III (Sanfilippo syndrome. Methods To learn on details of the molecular mechanism of genistein-mediated inhibition of GAG synthesis, efficiency of this process was studied by measuring of incorporation of labeled sulfate, storage of GAGs in lysosomes was estimated by using electron microscopic techniques, and efficiency of phosphorylation of epidermal growth factor (EGF receptor was determined by using an ELISA-based assay with fluorogenic substrates. Results Effects of genistein on inhibition of GAG synthesis and accumulation in fibroblasts from patients suffering from various MPS types were abolished in the presence of an excess of EGF, and were partially reversed by an increased concentration of genistein. No such effects were observed when an excess of 17β-estradiol was used instead of EGF. Moreover, EGF-mediated stimulation of phsophorylation of the EGF receptor was impaired in the presence of genistein in both wild-type and MPS fibroblasts. Conclusion The results presented in this report indicate that the mechanism of genistein-mediated inhibition of GAG synthesis operates through epidermal growth factor (EGF-dependent pathway.

  20. Metabolite profiles of rice cultivars containing bacterial blight-resistant genes are distinctive from susceptible rice

    Institute of Scientific and Technical Information of China (English)

    Jiao Wu; Haichuan Yu; Haofu Dai; Wenli Mei; Xin Huang; Shuifang Zhu; Ming Peng

    2012-01-01

    The metabolic changes of bacterial blight-resistant line C418/Xa23 generated by molecular marker-assisted selection (n =12),transgenic variety C418-Xa21 generated by using the Agrobacterium-mediated system (n =12),and progenitor cultivar C418 (n =12) were monitored using gas chromatography/mass spectrometry.The validation,discrimination,and establishment of correlative relationships between metabolite signals were performed by cluster analysis,principal component analysis,and partial least squares-discriminant analysis.Significant and unintended changes were observed in 154 components in C418/Xa23 and 48 components in C418-Xa21 compared with C418 (P < 0.05,Fold change > 2.0).The most significant decreases detected (P< 0.001) in both C418/Xa23 and C418-Xa21 were in three amino acids: glycine,tyrosine,and alanine,and four identified metabolites: malic acid,ferulic acid,succinic acid,and glycerol.Linoleic acid was increased specifically in C418/Xa23 which was derived from traditional breeding.This line,possessing a distinctive metabolite profile as a positive control,shows more differences vs.the parental than the transgenic line.Only succinic acid that falls outside the boundaries of natural variability between the two non-transgenic varieties C418 and C418/Xa23 should be further investigated with respect to safety or nutritional impact.

  1. Periostin Limits Tumor Response to VEGFA Inhibition

    Directory of Open Access Journals (Sweden)

    Ioanna Keklikoglou

    2018-03-01

    Full Text Available Resistance to antiangiogenic drugs limits their applicability in cancer therapy. Here, we show that revascularization and progression of pancreatic neuroendocrine tumors (PNETs under extended vascular-endothelial growth factor A (VEGFA blockade are dependent on periostin (POSTN, a matricellular protein expressed by stromal cells. Genetic deletion of Postn in RIP1-Tag2 mice blunted tumor rebounds of M2-like macrophages and αSMA+ stromal cells in response to prolonged VEGFA inhibition and suppressed PNET revascularization and progression on therapy. POSTN deficiency also impeded the upregulation of basic fibroblast growth factor (FGF2, an adaptive mechanism previously implicated in PNET evasion from antiangiogenic therapy. Higher POSTN expression correlated with markers of M2-like macrophages in human PNETs, and depleting macrophages with a colony-stimulating factor 1 receptor (CSF1R antibody inhibited PNET revascularization and progression under VEGFA blockade despite continued POSTN production. These findings suggest a role for POSTN in orchestrating resistance to anti-VEGFA therapy in PNETs.

  2. A novel monoclonal antibody of human stem cell factor inhibits umbilical cord blood stem cell ex vivo expansion

    Directory of Open Access Journals (Sweden)

    Fan Jie

    2012-12-01

    Full Text Available Abstract Stem cell factor (SCF activates hematopoietic stem cell (HSC self-renewal and is being used to stimulate the ex vivo expansion of HSCs. The mechanism by which SCF supports expansion of HSCs remains poorly understood. In cord blood ex vivo expansion assays, a newly produced anti-SCF monoclonal antibody (clone 23C8 was found to significantly inhibit the expansion of CD34+ cells. This antibody appears to bind directly to a part of SCF that is critical for biological activity toward expansion of CD34+ cells, which is located in the first 104 amino acids from the NH2-terminus.

  3. Personality Factors Predicting Smartphone Addiction Predisposition: Behavioral Inhibition and Activation Systems, Impulsivity, and Self-Control.

    Science.gov (United States)

    Kim, Yejin; Jeong, Jo-Eun; Cho, Hyun; Jung, Dong-Jin; Kwak, Minjung; Rho, Mi Jung; Yu, Hwanjo; Kim, Dai-Jin; Choi, In Young

    2016-01-01

    The purpose of this study was to identify personality factor-associated predictors of smartphone addiction predisposition (SAP). Participants were 2,573 men and 2,281 women (n = 4,854) aged 20-49 years (Mean ± SD: 33.47 ± 7.52); participants completed the following questionnaires: the Korean Smartphone Addiction Proneness Scale (K-SAPS) for adults, the Behavioral Inhibition System/Behavioral Activation System questionnaire (BIS/BAS), the Dickman Dysfunctional Impulsivity Instrument (DDII), and the Brief Self-Control Scale (BSCS). In addition, participants reported their demographic information and smartphone usage pattern (weekday or weekend average usage hours and main use). We analyzed the data in three steps: (1) identifying predictors with logistic regression, (2) deriving causal relationships between SAP and its predictors using a Bayesian belief network (BN), and (3) computing optimal cut-off points for the identified predictors using the Youden index. Identified predictors of SAP were as follows: gender (female), weekend average usage hours, and scores on BAS-Drive, BAS-Reward Responsiveness, DDII, and BSCS. Female gender and scores on BAS-Drive and BSCS directly increased SAP. BAS-Reward Responsiveness and DDII indirectly increased SAP. We found that SAP was defined with maximal sensitivity as follows: weekend average usage hours > 4.45, BAS-Drive > 10.0, BAS-Reward Responsiveness > 13.8, DDII > 4.5, and BSCS > 37.4. This study raises the possibility that personality factors contribute to SAP. And, we calculated cut-off points for key predictors. These findings may assist clinicians screening for SAP using cut-off points, and further the understanding of SA risk factors.

  4. Personality Factors Predicting Smartphone Addiction Predisposition: Behavioral Inhibition and Activation Systems, Impulsivity, and Self-Control.

    Directory of Open Access Journals (Sweden)

    Yejin Kim

    Full Text Available The purpose of this study was to identify personality factor-associated predictors of smartphone addiction predisposition (SAP. Participants were 2,573 men and 2,281 women (n = 4,854 aged 20-49 years (Mean ± SD: 33.47 ± 7.52; participants completed the following questionnaires: the Korean Smartphone Addiction Proneness Scale (K-SAPS for adults, the Behavioral Inhibition System/Behavioral Activation System questionnaire (BIS/BAS, the Dickman Dysfunctional Impulsivity Instrument (DDII, and the Brief Self-Control Scale (BSCS. In addition, participants reported their demographic information and smartphone usage pattern (weekday or weekend average usage hours and main use. We analyzed the data in three steps: (1 identifying predictors with logistic regression, (2 deriving causal relationships between SAP and its predictors using a Bayesian belief network (BN, and (3 computing optimal cut-off points for the identified predictors using the Youden index. Identified predictors of SAP were as follows: gender (female, weekend average usage hours, and scores on BAS-Drive, BAS-Reward Responsiveness, DDII, and BSCS. Female gender and scores on BAS-Drive and BSCS directly increased SAP. BAS-Reward Responsiveness and DDII indirectly increased SAP. We found that SAP was defined with maximal sensitivity as follows: weekend average usage hours > 4.45, BAS-Drive > 10.0, BAS-Reward Responsiveness > 13.8, DDII > 4.5, and BSCS > 37.4. This study raises the possibility that personality factors contribute to SAP. And, we calculated cut-off points for key predictors. These findings may assist clinicians screening for SAP using cut-off points, and further the understanding of SA risk factors.

  5. Borna disease virus nucleoprotein inhibits type I interferon induction through the interferon regulatory factor 7 pathway

    International Nuclear Information System (INIS)

    Song, Wuqi; Kao, Wenping; Zhai, Aixia; Qian, Jun; Li, Yujun; Zhang, Qingmeng; Zhao, Hong; Hu, Yunlong; Li, Hui; Zhang, Fengmin

    2013-01-01

    Highlights: •IRF7 nuclear localisation was inhibited by BDV persistently infected. •BDV N protein resistant to IFN induction both in BDV infected OL cell and N protein plasmid transfected OL cell. •BDV N protein is related to the inhibition of IRF7 nuclear localisation. -- Abstract: The expression of type I interferon (IFN) is one of the most potent innate defences against viral infection in higher vertebrates. Borna disease virus (BDV) establishes persistent, noncytolytic infections in animals and in cultured cells. Early studies have shown that the BDV phosphoprotein can inhibit the activation of type I IFN through the TBK1–IRF3 pathway. The function of the BDV nucleoprotein in the inhibition of IFN activity is not yet clear. In this study, we demonstrated IRF7 activation and increased IFN-α/β expression in a BDV-persistently infected human oligodendroglia cell line following RNA interference-mediated BDV nucleoprotein silencing. Furthermore, we showed that BDV nucleoprotein prevented the nuclear localisation of IRF7 and inhibited endogenous IFN induction by poly(I:C), coxsackie virus B3 and IFN-β. Our findings provide evidence for a previously undescribed mechanism by which the BDV nucleoprotein inhibits type I IFN expression by interfering with the IRF7 pathway

  6. Inhibiting tumor necrosis factor-alpha diminishes desmoplasia and inflammation to overcome chemoresistance in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Zhao, Xianda; Fan, Wei; Xu, Zhigao; Chen, Honglei; He, Yuyu; Yang, Gui; Yang, Gang; Hu, Hanning; Tang, Shihui; Wang, Ping; Zhang, Zheng; Xu, Peipei; Yu, Mingxia

    2016-12-06

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most common cancer death reasons. Anti-tumor necrosis factor-alpha (TNF-α) antibodies have shown promising effects in PDAC pre-clinical models. However, the prognostic values of TNF-α, underlying mechanisms by which anti-TNF-α treatments inhibit PDAC, and potential synergistic effects of anti-TNF-α treatments with chemotherapy are still unclear. To identify the targeting values of TNF-α in PDAC, we measured TNF-α expression in different stages of PDAC initiation and evaluated its prognostic significance in a pancreatic cancer cohort. We found that TNF-α expression elevated in PDAC initiation process, and high expression of TNF-α was an independent prognostic marker of poor survival. We further evaluated anti-tumor effects of anti-TNF-α treatments in PDAC. Anti-TNF-α treatments resulted in decreased cell viability in both PDAC tumor cells and pancreatic satellite cells in similar dose in vitro. In vivo, anti-TNF-α treatments showed effects in reducing desmoplasia and the tumor promoting inflammatory microenvironment in PDAC. Combination of anti-TNF-α treatments with chemotherapy partly overcame chemoresistance of PDAC tumor cells and prolonged the survival of PDAC mouse model. In conclusion, our findings indicated that TNF-α in PDAC can be a prognostic and therapeutic target. Inhibition of TNF-α synergized with chemotherapy in PDAC resulted in better pre-clinical responses via killing tumor cells as well as diminishing desmoplasia and inflammation in PDAC tumor stroma.

  7. Inhibition of the intrinsic factor X activating complex by protein S: evidence for a specific binding of protein S to factor VIII

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    Protein S is a vitamin K-dependent nonenzymatic anticoagulant protein that acts as a cofactor to activated protein C. Recently it was shown that protein S inhibits the prothrombinase reaction independent of activated protein C. In this study, we show that protein S can also inhibit the intrinsic

  8. Proneural Transcription Factors Regulate Different Steps of Cortical Neuron Migration through Rnd-Mediated Inhibition of RhoA Signaling

    Science.gov (United States)

    Pacary, Emilie; Heng, Julian; Azzarelli, Roberta; Riou, Philippe; Castro, Diogo; Lebel-Potter, Mélanie; Parras, Carlos; Bell, Donald M.; Ridley, Anne J.; Parsons, Maddy; Guillemot, François

    2011-01-01

    Summary Little is known of the intracellular machinery that controls the motility of newborn neurons. We have previously shown that the proneural protein Neurog2 promotes the migration of nascent cortical neurons by inducing the expression of the atypical Rho GTPase Rnd2. Here, we show that another proneural factor, Ascl1, promotes neuronal migration in the cortex through direct regulation of a second Rnd family member, Rnd3. Both Rnd2 and Rnd3 promote neuronal migration by inhibiting RhoA signaling, but they control distinct steps of the migratory process, multipolar to bipolar transition in the intermediate zone and locomotion in the cortical plate, respectively. Interestingly, these divergent functions directly result from the distinct subcellular distributions of the two Rnd proteins. Because Rnd proteins also regulate progenitor divisions and neurite outgrowth, we propose that proneural factors, through spatiotemporal regulation of Rnd proteins, integrate the process of neuronal migration with other events in the neurogenic program. PMID:21435554

  9. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    Science.gov (United States)

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Anthrax lethal toxin inhibits translation of hypoxia-inducible factor 1α and causes decreased tolerance to hypoxic stress.

    Science.gov (United States)

    Ouyang, Weiming; Torigoe, Chikako; Fang, Hui; Xie, Tao; Frucht, David M

    2014-02-14

    Hypoxia is considered to be a contributor to the pathology associated with administration of anthrax lethal toxin (LT). However, we report here that serum lactate levels in LT-treated mice are reduced, a finding inconsistent with the anaerobic metabolism expected to occur during hypoxia. Reduced lactate levels are also observed in the culture supernatants of LT-treated cells. LT inhibits the accumulation of hypoxia-inducible factor (HIF)-1α, a subunit of HIF-1, the master regulator directing cellular responses to hypoxia. The toxin has no effect on the transcription or protein turnover of HIF-1α, but instead it acts to inhibit HIF-1α translation. LT treatment diminishes phosphorylation of eIF4B, eIF4E, and rpS6, critical components of the intracellular machinery required for HIF-1α translation. Moreover, blockade of MKK1/2-ERK1/2, but not p38 or JNK signaling, lowers HIF-1α protein levels in both normoxic and hypoxic conditions, consistent with a role for MKK1 and MKK2 as the major targets of LT responsible for the inhibition of HIF-1α translation. The physiological importance of the LT-induced translation blockade is demonstrated by the finding that LT treatment decreases the survival of hepatocyte cell lines grown in hypoxic conditions, an effect that is overcome by preinduction of HIF-1α. Taken together, these data support a role for LT in dysregulating HIF-1α and thereby disrupting homeostatic responses to hypoxia, an environmental characteristic of certain tissues at baseline and/or during disseminated infection with Bacillus anthracis.

  11. Coagulation factor VII is regulated by androgen receptor in breast cancer.

    Science.gov (United States)

    Naderi, Ali

    2015-02-01

    Androgen receptor (AR) is widely expressed in breast cancer; however, there is limited information on the key molecular functions and gene targets of AR in this disease. In this study, gene expression data from a cohort of 52 breast cancer cell lines was analyzed to identify a network of AR co-expressed genes. A total of 300 genes, which were significantly enriched for cell cycle and metabolic functions, showed absolute correlation coefficients (|CC|) of more than 0.5 with AR expression across the dataset. In this network, a subset of 35 "AR-signature" genes were highly co-expressed with AR (|CC|>0.6) that included transcriptional regulators PATZ1, NFATC4, and SPDEF. Furthermore, gene encoding coagulation factor VII (F7) demonstrated the closest expression pattern with AR (CC=0.716) in the dataset and factor VII protein expression was significantly associated to that of AR in a cohort of 209 breast tumors. Moreover, functional studies demonstrated that AR activation results in the induction of factor VII expression at both transcript and protein levels and AR directly binds to a proximal region of F7 promoter in breast cancer cells. Importantly, AR activation in breast cancer cells induced endogenous factor VII activity to convert factor X to Xa in conjunction with tissue factor. In summary, F7 is a novel AR target gene and AR activation regulates the ectopic expression and activity of factor VII in breast cancer cells. These findings have functional implications in the pathobiology of thromboembolic events and regulation of factor VII/tissue factor signaling in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Inhibition of nuclear factor-κB and target genes during combined therapy with proteasome inhibitor bortezomib and reirradiation in patients with recurrent head-and-neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Van Waes, Carter; Chang, Angela A.; Lebowitz, Peter F.; Druzgal, Colleen H.; Chen, Zhong; Elsayed, Yusri A.; Sunwoo, John B.; Rudy, Susan; Morris, John C.; Mitchell, James B.; Camphausen, Kevin; Gius, David; Adams, Julian; Sausville, Edward A.; Conley, Barbara A.

    2005-01-01

    Purpose: To examine the effects the proteasome inhibitor bortezomib (VELCADE) on transcription factor nuclear factor-κB (NF-κB) and target genes and the feasibility of combination therapy with reirradiation in patients with recurrent head-and-neck squamous cell carcinoma (HNSCC). Methods and Materials: The tolerability and response to bortezomib 0.6 mg/m 2 and 0.9 mg/m 2 given twice weekly concurrent with daily reirradiation to 50-70 Gy was explored. Blood proteasome inhibition and NF-κB-modulated cytokines and factors were measured. Proteasome inhibition, nuclear localization of NF-κB phospho-p65, apoptosis, and expression of NF-κB-modulated mRNAs were compared in serial biopsies from accessible tumors. Results: The maximally tolerated dose was exceeded, and study was limited to 7 and 2 patients, respectively, given bortezomib 0.6 mg/m 2 and 0.9 mg/m 2 /dose with reirradiation. Grade 3 hypotension and hyponatremia were dose limiting. Mucositis was Grade 3 or less and was delayed. The mean blood proteasome inhibition at 1, 24, and 48 h after 0.6 mg/m 2 was 32%, 16%, and 7% and after 0.9 mg/m 2 was 56%, 26%, and 14%, respectively. Differences in proteasome and NF-κB activity, apoptosis, and expression of NF-κB-modulated cell cycle, apoptosis, and angiogenesis factor mRNAs were detected in 2 patients with minor tumor reductions and in serum NF-κB-modulated cytokines in 1 patient with a major tumor reduction. Conclusions: In combination with reirradiation, the maximally tolerated dose of bortezomib was exceeded at a dose of 0.6 mg/m 2 and the threshold of proteasome inhibition. Although this regimen with reirradiation is not feasible, bortezomib induced detectable differences in NF-κB localization, apoptosis, and NF-κB-modulated genes and cytokines in tumor and serum in association with tumor reduction, indicating that other schedules of bortezomib combined with primary radiotherapy or reirradiation may merit future investigation

  13. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Feng [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Liu, Yuan [Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing (China); Wang, Xiujuan; Kong, Wei [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Zhao, Feng, E-mail: taixingzhaofeng163@163.com [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China)

    2016-01-29

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  14. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    International Nuclear Information System (INIS)

    Xi, Feng; Liu, Yuan; Wang, Xiujuan; Kong, Wei; Zhao, Feng

    2016-01-01

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  15. Optimizing bone morphogenic protein 4-mediated human embryonic stem cell differentiation into trophoblast-like cells using fibroblast growth factor 2 and transforming growth factor-β/activin/nodal signalling inhibition.

    Science.gov (United States)

    Koel, Mariann; Võsa, Urmo; Krjutškov, Kaarel; Einarsdottir, Elisabet; Kere, Juha; Tapanainen, Juha; Katayama, Shintaro; Ingerpuu, Sulev; Jaks, Viljar; Stenman, Ulf-Hakan; Lundin, Karolina; Tuuri, Timo; Salumets, Andres

    2017-09-01

    Several studies have demonstrated that human embryonic stem cells (hESC) can be differentiated into trophoblast-like cells if exposed to bone morphogenic protein 4 (BMP4) and/or inhibitors of fibroblast growth factor 2 (FGF2) and the transforming growth factor beta (TGF-β)/activin/nodal signalling pathways. The goal of this study was to investigate how the inhibitors of these pathways improve the efficiency of hESC differentiation when compared with basic BMP4 treatment. RNA sequencing was used to analyse the effects of all possible inhibitor combinations on the differentiation of hESC into trophoblast-like cells over 12 days. Genes differentially expressed compared with untreated cells were identified at seven time points. Additionally, expression of total human chorionic gonadotrophin (HCG) and its hyperglycosylated form (HCG-H) were determined by immunoassay from cell culture media. We showed that FGF2 inhibition with BMP4 activation up-regulates syncytiotrophoblast-specific genes (CGA, CGB and LGALS16), induces several molecular pathways involved in embryo implantation and triggers HCG-H production. In contrast, inhibition of the TGF-β/activin/nodal pathway decreases the ability of hESC to form trophoblast-like cells. Information about the conditions needed for hESC differentiation toward trophoblast-like cells helps us to find an optimal model for studying the early development of human trophoblasts in normal and in complicated pregnancy. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Avaliação comparativa das propriedades de xantanas produzidas pelo patovar pruni e clairana com xantana comercial para predição de uso Comparative evaluation of xanthans properties produced by pathovar pruni and clairana with commercial xanthan to predict their uses

    Directory of Open Access Journals (Sweden)

    Patrícia D. Oliveira

    2013-01-01

    Full Text Available O presente trabalho teve como objetivo determinar a adequabilidade de três amostras de biopolímero xantana (Xa 06, Xa 82 e Xa 106 e uma clairana como viscosificantes de fluidos de perfuração de poços de petróleo, comparando com uma amostra de xantana comercial, Xanvis®. Foram realizadas análises reológicas, determinados os conteúdos de acetil, piruvato e íons Na+ K+ e Ca2+, e avaliada a capacidade viscosificante segundo norma específica da Petrobras. Os conteúdos de grupos acetil e piruvato para as xantanas e clairana diferiram significativamente entre si, mas foram compatíveis com valores preconizados ou citados na literatura concernente. Com relação ao conteúdo de íons, a xantana comercial apresentou quantidade de cálcio superior, as amostras Xa 06, Xa 82 e Xa 106 tiveram maior teor de potássio e a clairana maior teor de sódio. A viscosidade e a viscoelasticidade da amostra de xantana comercial foram superiores às demais amostras analisadas. Na análise como viscosificante para fluidos de perfuração as amostras de xantana comercial e Xa 106 atingiram os requisitos estabelecidos para os parâmetros n, K e força gel da norma Petrobras N-2605. Com a interpretação conjunta dos resultados obtidos pode-se inferir que apenas as xantanas Xanvis® e Xa 106 apresentam características adequadas à utilização como viscosificante em fluido de perfuração de petróleo. As demais amostras possuem características reológicas adequadas à utilização como espessantes ou estabilizantes em outros segmentos industriais, como em alimentos, tintas e cosméticos.The aim of this study was to determine the suitability of three xanthans (Xa 06, Xa 82 and Xa 106 and a clairana biopolymer for use as drilling fluid thickeners and comparing them against a commercial sample, Xanvis®. Rheological analyses were performed to determine the acetyl, pyruvate and Na+ K+ and Ca2+ ion content and their thickening ability, according to Petrobras

  17. Modulation of Host Immunity by Human Respiratory Syncytial Virus Virulence Factors: A Synergic Inhibition of Both Innate and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Gisela Canedo-Marroquín

    2017-08-01

    Full Text Available The Human Respiratory Syncytial Virus (hRSV is a major cause of acute lower respiratory tract infections (ARTIs and high rates of hospitalizations in children and in the elderly worldwide. Symptoms of hRSV infection include bronchiolitis and pneumonia. The lung pathology observed during hRSV infection is due in part to an exacerbated host immune response, characterized by immune cell infiltration to the lungs. HRSV is an enveloped virus, a member of the Pneumoviridae family, with a non-segmented genome and negative polarity-single RNA that contains 10 genes encoding for 11 proteins. These include the Fusion protein (F, the Glycoprotein (G, and the Small Hydrophobic (SH protein, which are located on the virus surface. In addition, the Nucleoprotein (N, Phosphoprotein (P large polymerase protein (L part of the RNA-dependent RNA polymerase complex, the M2-1 protein as a transcription elongation factor, the M2-2 protein as a regulator of viral transcription and (M protein all of which locate inside the virion. Apart from the structural proteins, the hRSV genome encodes for the non-structural 1 and 2 proteins (NS1 and NS2. HRSV has developed different strategies to evade the host immunity by means of the function of some of these proteins that work as virulence factors to improve the infection in the lung tissue. Also, hRSV NS-1 and NS-2 proteins have been shown to inhibit the activation of the type I interferon response. Furthermore, the hRSV nucleoprotein has been shown to inhibit the immunological synapsis between the dendritic cells and T cells during infection, resulting in an inefficient T cell activation. Here, we discuss the hRSV virulence factors and the host immunological features raised during infection with this virus.

  18. Dimethyl Fumarate Inhibits the Nuclear Factor κB Pathway in Breast Cancer Cells by Covalent Modification of p65 Protein.

    Science.gov (United States)

    Kastrati, Irida; Siklos, Marton I; Calderon-Gierszal, Esther L; El-Shennawy, Lamiaa; Georgieva, Gergana; Thayer, Emily N; Thatcher, Gregory R J; Frasor, Jonna

    2016-02-12

    In breast tumors, activation of the nuclear factor κB (NFκB) pathway promotes survival, migration, invasion, angiogenesis, stem cell-like properties, and resistance to therapy--all phenotypes of aggressive disease where therapy options remain limited. Adding an anti-inflammatory/anti-NFκB agent to breast cancer treatment would be beneficial, but no such drug is approved as either a monotherapy or adjuvant therapy. To address this need, we examined whether dimethyl fumarate (DMF), an anti-inflammatory drug already in clinical use for multiple sclerosis, can inhibit the NFκB pathway. We found that DMF effectively blocks NFκB activity in multiple breast cancer cell lines and abrogates NFκB-dependent mammosphere formation, indicating that DMF has anti-cancer stem cell properties. In addition, DMF inhibits cell proliferation and significantly impairs xenograft tumor growth. Mechanistically, DMF prevents p65 nuclear translocation and attenuates its DNA binding activity but has no effect on upstream proteins in the NFκB pathway. Dimethyl succinate, the inactive analog of DMF that lacks the electrophilic double bond of fumarate, is unable to inhibit NFκB activity. Also, the cell-permeable thiol N-acetyl l-cysteine, reverses DMF inhibition of the NFκB pathway, supporting the notion that the electrophile, DMF, acts via covalent modification. To determine whether DMF interacts directly with p65, we synthesized and used a novel chemical probe of DMF by incorporating an alkyne functionality and found that DMF covalently modifies p65, with cysteine 38 being essential for the activity of DMF. These results establish DMF as an NFκB inhibitor with anti-tumor activity that may add therapeutic value in the treatment of aggressive breast cancers. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Platelet factor-4 and its p17-70 peptide inhibit myeloma proliferation and angiogenesis in vivo

    International Nuclear Information System (INIS)

    Yang, Longjiang; Du, Juan; Hou, Jian; Jiang, Hua; Zou, Jianfeng

    2011-01-01

    Angiogenesis plays an important role in the development of multiple myeloma (MM). The interaction between MM cells and the bone marrow microenvironment stimulates the proliferation and migration of endothelial progenitor cells (EPCs). Vascular endothelial growth factor (VEGF) contributes to the formation of new blood vessels by actively recruiting circulating EPCs. The production of proangiogenic and antiangiogenic factors is also dysregulated in MM. Platelet factor 4 (PF4) is a potent angiostatic cytokine that inhibits angiogenesis and tumor growth in several animal models. In this study, we stably transfected human myeloma cell lines with the PF4 gene or the sequence encoding its more potent p17-70 peptide and investigated the effects of PF4 and p17-70 on angiogenesis and tumor growth in vitro and in a SCID-rab myeloma model. PF4 and p17-70 significantly attenuated VEGF production, both in vitro and in vivo. In a migration study using a Transwell system, PF4 or p17-70 markedly suppressed the migration of co-cultured human endothelial progenitor cells. PF4 or p17-70 also caused a significant reduction in microvessel densities in myeloma xenografts and markedly reduced the tumor volume in the SCID mice. Kaplan-Meier analysis demonstrated that PF4 and p17-70 significantly extended the overall survival of SCID mice bearing human myeloma xenografts. Our findings indicate that PF4 or p17-70 could be valuable in combating multiple myeloma by disrupting tumor angiogenesis

  20. Water-Soluble Coenzyme Q10 Inhibits Nuclear Translocation of Apoptosis Inducing Factor and Cell Death Caused by Mitochondrial Complex I Inhibition

    Directory of Open Access Journals (Sweden)

    Haining Li

    2014-07-01

    Full Text Available The objectives of the study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of water-soluble Coenzyme Q10 (CoQ10 on the toxic effects of rotenone. Murine hippocampal HT22 cells were cultured with mitochondrial complex I inhibitor rotenone. Water-soluble CoQ10 was added to the culture media 3 h prior to the rotenone incubation. Cell viability was determined by alamar blue, reactive oxygen species (ROS production by dihydroethidine (DHE and mitochondrial membrane potential by tetramethyl rhodamine methyl ester (TMRM. Cytochrome c, caspase-9 and apoptosis-inducing factor (AIF were measured using Western blotting after 24 h rotenone incubation. Rotenone caused more than 50% of cell death, increased ROS production, AIF nuclear translocation and reduction in mitochondrial membrane potential, but failed to cause mitochondrial cytochrome c release and caspase-9 activation. Pretreatment with water-soluble CoQ10 enhanced cell viability, decreased ROS production, maintained mitochondrial membrane potential and prevented AIF nuclear translocation. The results suggest that rotenone activates a mitochondria-initiated, caspase-independent cell death pathway. Water-soluble CoQ10 reduces ROS accumulation, prevents the fall of mitochondrial membrane potential, and inhibits AIF translocation and subsequent cell death.

  1. Abnormal X : autosome ratio, but normal X chromosome inactivation in human triploid cultures

    Directory of Open Access Journals (Sweden)

    Norwood Thomas H

    2006-07-01

    Full Text Available Abstract Background X chromosome inactivation (XCI is that aspect of mammalian dosage compensation that brings about equivalence of X-linked gene expression between females and males by inactivating one of the two X chromosomes (Xi in normal female cells, leaving them with a single active X (Xa as in male cells. In cells with more than two X's, but a diploid autosomal complement, all X's but one, Xa, are inactivated. This phenomenon is commonly thought to suggest 1 that normal development requires a ratio of one Xa per diploid autosomal set, and 2 that an early event in XCI is the marking of one X to be active, with remaining X's becoming inactivated by default. Results Triploids provide a test of these ideas because the ratio of one Xa per diploid autosomal set cannot be achieved, yet this abnormal ratio should not necessarily affect the one-Xa choice mechanism for XCI. Previous studies of XCI patterns in murine triploids support the single-Xa model, but human triploids mostly have two-Xa cells, whether they are XXX or XXY. The XCI patterns we observe in fibroblast cultures from different XXX human triploids suggest that the two-Xa pattern of XCI is selected for, and may have resulted from rare segregation errors or Xi reactivation. Conclusion The initial X inactivation pattern in human triploids, therefore, is likely to resemble the pattern that predominates in murine triploids, i.e., a single Xa, with the remaining X's inactive. Furthermore, our studies of XIST RNA accumulation and promoter methylation suggest that the basic features of XCI are normal in triploids despite the abnormal X:autosome ratio.

  2. Total glucosides of Paeonia lactiflora Pall inhibit vascular endothelial growth factor-induced angiogenesis.

    Science.gov (United States)

    Deng, Hui; Yan, Chunlin; Xiao, Tian; Yuan, Dingfen; Xu, Jinhua

    2010-02-17

    To evaluate the anti-angiogenesis effect of total glucosides of Paeonia lactiflora Pall. In this study, we determined the effect of TGP on the proliferation of human vascular endothelial cells through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and fluorescence-activated cell sorting analysis. A migration assay and a tube formation assay were used to investigate the migration properties and tube formation abilities of human vascular endothelial cells after being treated with TGP. Furthermore, the in vivo anti-angiogenic ability of TGP was determined through a chick chorioallantoic membrane assay. TGP (12.5, 62.5, and 312.5 microg/ml) resulted in a dose-dependent reduction in the proliferation of endothelial cells. This inhibition effect began 6h after treatment and lasted at least 24h. Fluorescence-activated cell sorting analysis data showed an accumulation of cells in the G0/G1 phase of the cell cycle, which exhibited apoptotic features indicative of cell death. The migration properties and tube forming abilities of endothelial cells were dramatically inhibited by the TGP extract. Our results show that TGP can inhibit angiogenesis in vitro and in vivo. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  3. Andrographolide inhibits nuclear factor-κB activation through JNK-Akt-p65 signaling cascade in tumor necrosis factor-α-stimulated vascular smooth muscle cells.

    Science.gov (United States)

    Chen, Yu-Ying; Hsu, Ming-Jen; Hsieh, Cheng-Ying; Lee, Lin-Wen; Chen, Zhih-Cherng; Sheu, Joen-Rong

    2014-01-01

    Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs) exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α). Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK), Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  4. Andrographolide Inhibits Nuclear Factor-κB Activation through JNK-Akt-p65 Signaling Cascade in Tumor Necrosis Factor-α-Stimulated Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Yu-Ying Chen

    2014-01-01

    Full Text Available Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α. Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK, Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  5. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.

    Science.gov (United States)

    Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang

    2012-01-01

    Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Inhibition of urinary calculi -- a spectroscopic study

    Science.gov (United States)

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis

    2008-10-01

    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.

  7. Fucoidan, a Sulfated Polysaccharide, Inhibits Osteoclast Differentiation and Function by Modulating RANKL Signaling

    Directory of Open Access Journals (Sweden)

    Young Woo Kim

    2014-10-01

    Full Text Available Multinucleated osteoclasts differentiate from hematopoietic progenitors of the monocyte/macrophage lineage. Because of its pivotal role in bone resorption, regulation of osteoclast differentiation is a potential therapeutic approach to the treatment of erosive bone disease. In this study, we have found that fucoidan, a sulfated polysaccharide extracted from brown seaweed, inhibited osteoclast differentiation. In particular, addition of fucoidan into the early stage osteoclast cultures significantly inhibited receptor activator of nuclear factor kappa B (NF-κB ligand (RANKL-induced osteoclast formation, thus suggesting that fucoidan affects osteoclast progenitors. Furthermore, fucoidan significantly inhibited the activation of RANKL-dependent mitogen-activated protein kinases (MAPKs such as JNK, ERK, and p38, and also c-Fos and NFATc1, which are crucial transcription factors for osteoclastogenesis. In addition, the activation of NF-κB, which is an upstream transcription factor modulating NFATc1 expression, was alleviated in the fucoidan-treated cells. These results collectively suggest that fucoidan inhibits osteoclastogenesis from bone marrow macrophages by inhibiting RANKL-induced p38, JNK, ERK and NF-κB activation, and by downregulating the expression of genes that partake in both osteoclast differentiation and resorption.

  8. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    NARCIS (Netherlands)

    Buzi, L.; De Temmerman, G.; Unterberg, B.; M. Reinhart,; Dittmar, T.; Matveev, D.; Linsmeier, C.; Breuer, U.; Kreter, A.; Van Oost, G.

    2015-01-01

    The influence of surface temperature, particle flux density and material microstructure on the surface morphology and deuterium retention was studied by exposing tungsten targets (20&#xa0;μm and 40&#xa0;μm grain size) to deuterium plasma at the same particle fluence (1026&#xa0;m−2) and

  9. Combination of interferon-alpha and 5-fluorouracil inhibits endothelial cell growth directly and by regulation of angiogenic factors released by tumor cells

    International Nuclear Information System (INIS)

    Wada, Hiroshi; Tanemura, Masahiro; Umeshita, Koji; Doki, Yuichiro; Mori, Masaki; Nagano, Hiroaki; Yamamoto, Hirofumi; Noda, Takehiro; Murakami, Masahiro; Kobayashi, Shogo; Marubashi, Shigeru; Eguchi, Hidetoshi; Takeda, Yutaka

    2009-01-01

    The combination therapy of interferon (IFN)-alpha and 5-fluorouracil (5-FU) improved the prognosis of the patients with hepatocellular carcinoma (HCC). To determine the molecular mechanisms of the anti-tumor and anti-angiogenic effects, we examined the direct anti-proliferative effects on human umbilical vein endothelial cells (HUVEC) and indirect effects by regulating secretion of angiogenic factors from HCC cells. The direct effects on HUVEC were examined by TUNEL, Annexin-V assays and cell cycles analysis. For analysis of the indirect effects, the apoptosis induced by the conditioned medium from HCC cell treated by IFN-alpha/5-FU and expression of angiogenic factors was examined. IFN-alpha and 5-FU alone had anti-proliferative properties on HUVEC and their combination significantly inhibited the growth (compared with control, 5-FU or IFN alone). TUNEL and Annexin-V assays showed no apoptosis. Cell cycle analysis revealed that IFN-alpha and 5-FU delayed cell cycle progression in HUVEC with S-phase accumulation. The conditioned medium from HuH-7 cells after treatment with IFN/5-FU significantly inhibited HUVEC growth and induced apoptosis, and contained high levels of angiopoietin (Ang)-1 and low levels of vascular endothelial growth factor (VEGF) and Ang-2. Knockdown of Ang-1 in HuH-7 cells abrogated the anti-proliferative effects on HUVEC while knockdown of Ang-2 partially rescue the cells. These results suggested that IFN-alpha and 5-FU had direct growth inhibitory effects on endothelial cells, as well as anti-angiogenic effects through regulation of angiogenic factors released from HCC cells. Modulation of VEGF and Angs secretion by IFN-alpha and 5-FU may contribute to their anti-angiogenic and anti-tumor effects on HCC

  10. The dual action of poly(ADP-ribose polymerase -1 (PARP-1 inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity

    Directory of Open Access Journals (Sweden)

    Slava eRom

    2015-08-01

    Full Text Available The transcription of HIV-1 (HIV is regulated by complex mechanisms involving various cellular factors and virus-encoded transactivators. Poly(ADP-ribose polymerase 1 (PARP-1 inhibition has emerged recently as a potent anti-inflammatory tool, since PARP-1 is involved in the regulation of some genes through its interaction with various transcription factors. We propose a novel approach to diminish HIV replication via PARP-1 inhibition using human primary monocyte-derived macrophages (MDM as an in vitro model system. PARP-1 inhibitors were able to reduce HIV replication in MDM by 60-80% after 7 days infection. Long Terminal Repeat (LTR acts as a switch in virus replication and can be triggered by several agents such as: Tat, tumor necrosis factor α (TNFα, and phorbol 12-myristate 13-acetate (PMA. Overexpression of Tat in MDM transfected with an LTR reporter plasmid led to a 4.2-fold increase in LTR activation; PARP inhibition resulted in 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85-95%. MDM treated with PARP inhibitors showed 90% reduction in NFκB activity (known to mediate PMA- and TNFα-induced HIV LTR activation. Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These findings suggest that HIV replication in MDM could be suppressed by PARP inhibition via NFκB suppression, diminution of LTR activation and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide a potent approach to treatment of HIV infection.

  11. The kunitz protease inhibitor domain of protease nexin-2 inhibits factor XIa and murine carotid artery and middle cerebral artery thrombosis

    Science.gov (United States)

    Wu, Wenman; Li, Hongbo; Navaneetham, Duraiswamy; Reichenbach, Zachary W.; Tuma, Ronald F.

    2012-01-01

    Coagulation factor XI (FXI) plays an important part in both venous and arterial thrombosis, rendering FXIa a potential target for the development of antithrombotic therapy. The kunitz protease inhibitor (KPI) domain of protease nexin-2 (PN2) is a potent, highly specific inhibitor of FXIa, suggesting its possible role in the inhibition of FXI-dependent thrombosis in vivo. Therefore, we examined the effect of PN2KPI on thrombosis in the murine carotid artery and the middle cerebral artery. Intravenous administration of PN2KPI prolonged the clotting time of both human and murine plasma, and PN2KPI inhibited FXIa activity in both human and murine plasma in vitro. The intravenous administration of PN2KPI into WT mice dramatically decreased the progress of FeCl3-induced thrombus formation in the carotid artery. After a similar initial rate of thrombus formation with and without PN2KPI treatment, the propagation of thrombus formation after 10 minutes and the amount of thrombus formed were significantly decreased in mice treated with PN2KPI injection compared with untreated mice. In the middle cerebral artery occlusion model, the volume and fraction of ischemic brain tissue were significantly decreased in PN2KPI-treated compared with untreated mice. Thus, inhibition of FXIa by PN2KPI is a promising approach to antithrombotic therapy. PMID:22674803

  12. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism

    NARCIS (Netherlands)

    Büller, Harry R; Décousus, Hervé; Grosso, Michael A; Mercuri, Michele; Middeldorp, Saskia; Prins, Martin H; Raskob, Gary E; Schellong, Sebastian M; Schwocho, Lee; Segers, Annelise; Shi, Minggao; Verhamme, Peter; Wells, Phil; Kamphuisen, P.W.

    2013-01-01

    BACKGROUND: Whether the oral factor Xa inhibitor edoxaban can be an alternative to warfarin in patients with venous thromboembolism is unclear. METHODS: In a randomized, double-blind, noninferiority study, we randomly assigned patients with acute venous thromboembolism, who had initially received

  13. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  14. Hepatoprotective Effects of Chinese Medicine Herbs Decoction on Liver Cirrhosis in Rats

    Directory of Open Access Journals (Sweden)

    Nor Aziyah Mat-Rahim

    2017-01-01

    Full Text Available Hepatoprotective and curative activities of aqueous extract of decoction containing 10 Chinese medicinal herbs (HPE-XA-08 were evaluated in Sprague–Dawley albino rats with liver damage induced by thioacetamide (TAA. These activities were assessed by investigating the liver enzymes level and also histopathology investigation. Increases in alkaline phosphatase (ALP and gamma-glutamyl transferase (GGT levels were observed in rats with cirrhotic liver. No significant alterations of the liver enzymes were observed following treatment with HPE-XA-08. Histopathology examination of rats treated with HPE-XA-08 at 250 mg/kg body weight, however, exhibited moderate liver protective effects. Reduced extracellular matrix (ECM proteins within the hepatocytes were noted in comparison to the cirrhotic liver. The curative effects of HPE-XA-08 were observed with marked decrease in the level of ALP (more than 3x and level of GGT (more than 2x in cirrhotic rat treated with 600 mg/kg body weight HPE-XA-08 in comparison to cirrhotic rat treated with just water diluent. Reversion of cirrhotic liver to normal liver condition in rats treated with HPE-XA-08 was observed. Results from the present study suggest that HPE-XA-08 treatment assisted in the protection from liver cirrhosis and improved the recovery of cirrhotic liver.

  15. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1α targeted gene expression

    International Nuclear Information System (INIS)

    Miyake, Kotaro; Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan; Uto, Yoshihiro; Nagasawa, Hideko; Hori, Hitoshi; Shimada, Mitsuo

    2012-01-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1α (HIF-1α), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: ► We designed and synthesized novel hypoxic cytoxin, TX-2098. ► TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. ► TX-2098 reduced VEGF protein level than TPZ. ► TX-2098 inhibited mRNA expression of VEGF, GLUT1 and Aldolase A, not HIF-1α. ► TX-2098 improved the survival in

  16. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1{alpha} targeted gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Kotaro, E-mail: hif.panc@gmail.com [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Uto, Yoshihiro [Department of Biological Science and Technology, Institute of Socio Technosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Nagasawa, Hideko [Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Hori, Hitoshi [Department of Biological Science and Technology, Institute of Socio Technosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Shimada, Mitsuo [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan)

    2012-08-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1{alpha} (HIF-1{alpha}), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: Black-Right-Pointing-Pointer We designed and synthesized novel hypoxic cytoxin, TX-2098. Black-Right-Pointing-Pointer TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. Black-Right-Pointing-Pointer TX-2098 reduced VEGF protein level than TPZ. Black-Right-Pointing-Pointer TX-2098

  17. Agmatine inhibits nuclear factor-κB nuclear translocation in acute spinal cord compression injury rat model

    Directory of Open Access Journals (Sweden)

    Doaa M. Samy

    2016-09-01

    Full Text Available Secondary damage after acute spinal cord compression injury (SCCI exacerbates initial insult. Nuclear factor kappa-B (NF-κB-p65 activation is involved in SCCI deleterious effects. Agmatine (Agm showed neuroprotection against various CNS injuries. However, Agm impact on NF-κB signaling in acute SCCI remains to be investigated. The present study compared the effectiveness of Agm therapy and decompression laminectomy (DL in functional recovery, oxidative stress, inflammatory and apoptotic responses, and modulation of NF-κB activation in acute SCCI rat model. Rats were either sham-operated or subjected to SCCI at T8–9, using 2-Fr. catheter. SCCI rats were randomly treated with DL at T8–9, intraperitoneal Agm (100 mg/kg/day, combined (DL/Agm treatment or saline (n = 16/group. After 28-days of neurological follow-up, spinal cords were either subjected to biochemical measurement of oxidative stress and inflammatory markers or histopathology and immuno-histochemistry for NF-κB-p65 and caspase-3 expression (n = 8/group. Agm was comparable to DL in facilitating neurological functions recovery, reducing inflammation (TNF-α/interleukin-6, and apoptosis. Agm was distinctive in combating oxidative stress. Agm neuroprotective effects were paralleled with inhibition of NF-κB-p65 nuclear translocation. Combined pharmacological and surgical interventions were proved superior in functional recovery. In conclusion, present research suggested a new mechanism for Agm neuroprotection in rats SCCI through inhibition of NF-κB activation.

  18. Celastrol inhibits TGF-β1-induced epithelial–mesenchymal transition by inhibiting Snail and regulating E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyereen; Lee, Minjae [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Jang, Sung-Wuk, E-mail: swjang@amc.seoul.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2013-08-09

    Highlights: •We investigated the effects of celastrol on TGF-β1-induced EMT in epithelial cells. •Celastrol regulates TGF-β1-induced morphological changes and E-cadherin expression. •Celastrol inhibits TGF-β1-induced Snail expression. •Celastrol strongly suppresses TGF-β1-induced invasion in MDCK and A549 cells. -- Abstract: The epithelial–mesenchymal transition (EMT) is a pivotal event in the invasive and metastatic potentials of cancer progression. Celastrol inhibits the proliferation of a variety of tumor cells including leukemia, glioma, prostate, and breast cancer; however, the possible role of celastrol in the EMT is unclear. We investigated the effect of celastrol on the EMT. Transforming growth factor-beta 1 (TGF-β1) induced EMT-like morphologic changes and upregulation of Snail expression. The downregulation of E-cadherin expression and upregulation of Snail in Madin–Darby Canine Kidney (MDCK) and A549 cell lines show that TGF-β1-mediated the EMT in epithelial cells; however, celastrol markedly inhibited TGF-β1-induced morphologic changes, Snail upregulation, and E-cadherin expression. Migration and invasion assays revealed that celastrol completely inhibited TGF-β1-mediated cellular migration in both cell lines. These findings indicate that celastrol downregulates Snail expression, thereby inhibiting TGF-β1-induced EMT in MDCK and A549 cells. Thus, our findings provide new evidence that celastrol suppresses lung cancer invasion and migration by inhibiting TGF-β1-induced EMT.

  19. The development of children's inhibition: does parenting matter?

    Science.gov (United States)

    Roskam, Isabelle; Stievenart, Marie; Meunier, Jean-Christophe; Noël, Marie-Pascale

    2014-06-01

    Whereas a large body of research has investigated the maturation of inhibition in relation to the prefrontal cortex, far less research has been devoted to environmental factors that could contribute to inhibition improvement. The aim of the current study was to test whether and to what extent parenting matters for inhibition development from 2 to 8years of age. Data were collected from 421 families, with 348 mother-child dyads and 342 father-child dyads participating. Children's inhibition capacities and parenting behaviors were assessed in a three-wave longitudinal data collection. The main analyses examined the impact of parenting on the development of children's inhibition capacities. They were conducted using a multilevel modeling (MLM) framework. The results lead to the conclusion that both mothers and fathers contribute through their child-rearing behavior to their children's executive functioning, even when controlling for age-related improvement (maturation) and important covariates such as gender, verbal IQ, and place of enrollment. More significant relations between children's inhibition development and parenting were displayed for mothers than for fathers. More precisely, parenting behaviors that involve higher monitoring, lower discipline, inconsistency and negative controlling, and a positive parenting style are associated with good development of inhibition capacities in children. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Periostin Limits Tumor Response to VEGFA Inhibition.

    Science.gov (United States)

    Keklikoglou, Ioanna; Kadioglu, Ece; Bissinger, Stefan; Langlois, Benoît; Bellotti, Axel; Orend, Gertraud; Ries, Carola H; De Palma, Michele

    2018-03-06

    Resistance to antiangiogenic drugs limits their applicability in cancer therapy. Here, we show that revascularization and progression of pancreatic neuroendocrine tumors (PNETs) under extended vascular-endothelial growth factor A (VEGFA) blockade are dependent on periostin (POSTN), a matricellular protein expressed by stromal cells. Genetic deletion of Postn in RIP1-Tag2 mice blunted tumor rebounds of M2-like macrophages and αSMA + stromal cells in response to prolonged VEGFA inhibition and suppressed PNET revascularization and progression on therapy. POSTN deficiency also impeded the upregulation of basic fibroblast growth factor (FGF2), an adaptive mechanism previously implicated in PNET evasion from antiangiogenic therapy. Higher POSTN expression correlated with markers of M2-like macrophages in human PNETs, and depleting macrophages with a colony-stimulating factor 1 receptor (CSF1R) antibody inhibited PNET revascularization and progression under VEGFA blockade despite continued POSTN production. These findings suggest a role for POSTN in orchestrating resistance to anti-VEGFA therapy in PNETs. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Leishmania eukaryotic initiation factor (LeIF inhibits parasite growth in murine macrophages.

    Directory of Open Access Journals (Sweden)

    Olga Koutsoni

    Full Text Available The leishmaniases constitute neglected global public health problems that require adequate control measures, prophylactic clinical vaccines and effective and non-toxic drug treatments. In this study, we explored the potential of Leishmania infantum eukaryotic initiation factor (LieIF, an exosomal protein, as a novel anti-infective therapeutic molecule. More specifically, we assessed the efficacy of recombinant LieIF, in combination with recombinant IFN-γ, in eliminating intracellular L. donovani parasites in an in vitro macrophage model. J774A.1 macrophages were initially treated with LieIF/IFN-γ prior to in vitro infection with L. donovani stationary phase promastigotes (pre-infection treatment, and resistance to infection was observed 72 h after infection. J774A.1 macrophages were also treated with LieIF/IFN-γ after L. donovani infection (post-infection treatment, and resistance to infection was also observed at both time points tested (19 h and 72 h after infection. To elucidate the LieIF/IFN-γ-induced mechanism(s that mediate the reduction of intracellular parasite growth, we examined the generation of potent microbicidal molecules, such as nitric oxide (NO and reactive oxygen species (ROS, within infected macrophages. Furthermore, macrophages pre-treated with LieIF/IFN-γ showed a clear up-regulation in macrophage inflammatory protein 1α (MIP-1α as well as tumor necrosis factor alpha (TNF-α expression. However, significant different protein levels were not detected. In addition, macrophages pre-treated with LieIF/IFN-γ combined with anti-TNF-α monoclonal antibody produced significantly lower amounts of ROS. These data suggest that during the pre-treatment state, LieIF induces intramacrophage parasite growth inhibition through the production of TNF-α, which induces microbicidal activity by stimulating NO and ROS production. The mechanisms of NO and ROS production when macrophages are treated with LieIF after infection are probably

  2. Pharmacologic inhibition of lactate production prevents myofibroblast differentiation.

    Science.gov (United States)

    Kottmann, Robert Matthew; Trawick, Emma; Judge, Jennifer L; Wahl, Lindsay A; Epa, Amali P; Owens, Kristina M; Thatcher, Thomas H; Phipps, Richard P; Sime, Patricia J

    2015-12-01

    Myofibroblasts are one of the primary cell types responsible for the accumulation of extracellular matrix in fibrosing diseases, and targeting myofibroblast differentiation is an important therapeutic strategy for the treatment of pulmonary fibrosis. Transforming growth factor-β (TGF-β) has been shown to be an important inducer of myofibroblast differentiation. We previously demonstrated that lactate dehydrogenase and its metabolic product lactic acid are important mediators of myofibroblast differentiation, via acid-induced activation of latent TGF-β. Here we explore whether pharmacologic inhibition of LDH activity can prevent TGF-β-induced myofibroblast differentiation. Primary human lung fibroblasts from healthy patients and those with pulmonary fibrosis were treated with TGF-β and or gossypol, an LDH inhibitor. Protein and RNA were analyzed for markers of myofibroblast differentiation and extracellular matrix generation. Gossypol inhibited TGF-β-induced expression of the myofibroblast marker α-smooth muscle actin (α-SMA) in a dose-dependent manner in both healthy and fibrotic human lung fibroblasts. Gossypol also inhibited expression of collagen 1, collagen 3, and fibronectin. Gossypol inhibited LDH activity, the generation of extracellular lactic acid, and the rate of extracellular acidification in a dose-dependent manner. Furthermore, gossypol inhibited TGF-β bioactivity in a dose-dependent manner. Concurrent treatment with an LDH siRNA increased the ability of gossypol to inhibit TGF-β-induced myofibroblast differentiation. Gossypol inhibits TGF-β-induced myofibroblast differentiation through inhibition of LDH, inhibition of extracellular accumulation of lactic acid, and inhibition of TGF-β bioactivity. These data support the hypothesis that pharmacologic inhibition of LDH may play an important role in the treatment of pulmonary fibrosis. Copyright © 2015 the American Physiological Society.

  3. Inhibition of MHC class I is a virulence factor in herpes simplex virus infection of mice.

    Directory of Open Access Journals (Sweden)

    Mark T Orr

    2005-09-01

    Full Text Available Herpes simplex virus (HSV has a number of genes devoted to immune evasion. One such gene, ICP47, binds to the transporter associated with antigen presentation (TAP 1/2 thereby preventing transport of viral peptides into the endoplasmic reticulum, loading of peptides onto nascent major histocompatibility complex (MHC class I molecules, and presentation of peptides to CD8 T cells. However, ICP47 binds poorly to murine TAP1/2 and so inhibits antigen presentation by MHC class I in mice much less efficiently than in humans, limiting the utility of murine models to address the importance of MHC class I inhibition in HSV immunopathogenesis. To address this limitation, we generated recombinant HSVs that efficiently inhibit antigen presentation by murine MHC class I. These recombinant viruses prevented cytotoxic T lymphocyte killing of infected cells in vitro, replicated to higher titers in the central nervous system, and induced paralysis more frequently than control HSV. This increase in virulence was due to inhibition of antigen presentation to CD8 T cells, since these differences were not evident in MHC class I-deficient mice or in mice in which CD8 T cells were depleted. Inhibition of MHC class I by the recombinant viruses did not impair the induction of the HSV-specific CD8 T-cell response, indicating that cross-presentation is the principal mechanism by which HSV-specific CD8 T cells are induced. This inhibition in turn facilitates greater viral entry, replication, and/or survival in the central nervous system, leading to an increased incidence of paralysis.

  4. Oxalomalate reduces expression and secretion of vascular endothelial growth factor in the retinal pigment epithelium and inhibits angiogenesis: Implications for age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Sung Hwan Kim

    2016-12-01

    Full Text Available Clinical and experimental observations indicate a critical role for vascular endothelial growth factor (VEGF, secreted by the retinal pigment epithelium (RPE, in pathological angiogenesis and the development of choroidal neovascularization (CNV in age-related macular degeneration (AMD. RPE-mediated VEGF expression, leading to angiogenesis, is a major signaling mechanism underlying ocular neovascular disease. Inhibiting this signaling pathway with a therapeutic molecule is a promising anti-angiogenic strategy to treat this disease with potentially fewer side effects. Oxalomalate (OMA is a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase (IDH, which plays an important role in cellular signaling pathways regulated by reactive oxygen species (ROS. Here, we have investigated the inhibitory effect of OMA on the expression of VEGF, and the associated underlying mechanism of action, using in vitro and in vivo RPE cell models of AMD. We found that OMA reduced the expression and secretion of VEGF in RPE cells, and consequently inhibited CNV formation. This function of OMA was linked to its capacity to activate the pVHL-mediated HIF-1α degradation in these cells, partly via a ROS-dependent ATM signaling axis, through inhibition of IDH enzymes. These findings reveal a novel role for OMA in inhibiting RPE-derived VEGF expression and angiogenesis, and suggest unique therapeutic strategies for treating pathological angiogenesis and AMD development.

  5. Cross System Extensions (CSE) experience

    International Nuclear Information System (INIS)

    Johnston, T.Y.

    1990-08-01

    Cross System Extension (CSE) provides VM/XA systems with the ability to share minidisks and spool in loosely coupled environment. CSE will also cooperate with the VM/HPO Inter System Facility (ISF) in sharing minidisks between VM/XA and VM/HPO to XA, reliability of CSE, and some operational considerations when running with it

  6. Inhibition of TRPA1 channel activity in sensory neurons by the glial cell line-derived neurotrophic factor family member, artemin

    Directory of Open Access Journals (Sweden)

    Wang Shenglan

    2011-05-01

    Full Text Available Abstract Background The transient receptor potential (TRP channel subtype A1 (TRPA1 is known to be expressed on sensory neurons and respond to changes in temperature, pH and local application of certain noxious chemicals such as allyl isothiocyanate (AITC. Artemin is a neuronal survival and differentiation factor and belongs to the glial cell line-derived neurotrophic factor (GDNF family. Both TRPA1 and artemin have been reported to be involved in pathological pain initiation and maintenance. In the present study, using whole-cell patch clamp recording technique, in situ hybridization and behavioral analyses, we examined the functional interaction between TRPA1 and artemin. Results We found that 85.8 ± 1.9% of TRPA1-expressing neurons also expressed GDNF family receptor alpha 3 (GFR α3, and 87.5 ± 4.1% of GFRα3-expressing neurons were TRPA1-positive. In whole-cell patch clamp analysis, a short-term treatment of 100 ng/ml artemin significantly suppressed the AITC-induced TRPA1 currents. A concentration-response curve of AITC resulting from the effect of artemin showed that this inhibition did not change EC50 but did lower the AITC-induced maximum response. In addition, pre-treatment of artemin significantly suppressed the number of paw lifts induced by intraplantar injection of AITC, as well as the formalin-induced pain behaviors. Conclusions These findings that a short-term application of artemin inhibits the TRPA1 channel's activity and the sequential pain behaviors suggest a role of artemin in regulation of sensory neurons.

  7. Ubiquitin-fusion as a strategy to modulate protein half-life: A3G antiviral activity revisited

    International Nuclear Information System (INIS)

    Cadima-Couto, Iris; Freitas-Vieira, Acilino; Nowarski, Roni; Britan-Rosich, Elena; Kotler, Moshe; Goncalves, Joao

    2009-01-01

    The human APOBEC3G (A3G) is a potent inhibitor of HIV-1 replication and its activity is suppressed by HIV-1 virion infectivity factor (Vif). Vif neutralizes A3G mainly by inducing its degradation in the proteasome and blocking its incorporation into HIV-1 virions. Assessing the time needed for A3G incorporation into virions is, therefore, important to determine how quickly Vif must act to induce its degradation. We show that modelling the intracellular half-life of A3G can induce its Vif-independent targeting to the ubiquitin-proteasome system. By using various amino acids (X) in a cleavable ubiquitin-X-A3G fusion, we demonstrate that the half-life (t1/2) of X-A3G can be manipulated. We show that A3G molecules with a half-life of 13 min are incorporated into virions, whereas those with a half-life shorter than 5 min were not. The amount of X-A3G incorporated into virions increases from 13 min (Phe-A3G) to 85 min (Asn-A3G) and remains constant after this time period. Interestingly, despite the presence of similar levels of Arg-A3G (t1/2 = 28 min) and Asp-A3G (t1/2 = 65 min) into HIV-1 Δvif virions, inhibition of viral infectivity was only evident in the presence of A3G proteins with a longer half-life (t1/2 ≥ 65 min).

  8. The Perils of Inhibiting Deficient Factors.

    Science.gov (United States)

    Sayar, Zara; Speed, Victoria; Patel, Jignesh P; Patel, Raj K; Arya, Roopen

    2018-06-08

    We report a case of a previously undiagnosed factor X deficiency in an 83-year old man, who had no previous bleeding history despite multiple haemostatic challenges. He was anticoagulated with warfarin for atrial fibrillation (AF) without bleeding complications; however, major haemorrhage occurred soon after a switch to rivaroxaban. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Effect of Co-Administration of Rivaroxaban and Clopidogrel on Bleeding Time, Pharmacodynamics and Pharmacokinetics: A Phase I Study

    Directory of Open Access Journals (Sweden)

    Michael Becka

    2012-02-01

    interval [CI] 2.82–4.73, compared with 1.13 times baseline (90% CI 0.17–2.09 with rivaroxaban and 1.96 times baseline (90% CI 0.10–2.91 with clopidogrel. Co-administration of clopidogrel had no significant effect on the pharmacokinetics of rivaroxaban and, when compared with rivaroxaban alone, had no further effects on Factor Xa activity or prothrombin time. Inhibition of ADP-stimulated platelet aggregation by clopidogrel was not affected by rivaroxaban. As expected, owing to the mode of action of each study drug, the results of this study demonstrated that co­administration of the Factor Xa inhibitor rivaroxaban and the antiplatelet clopidogrel increased the bleeding time in healthy subjects without affecting other pharmacokinetic or pharmacodynamic parameters of each drug.

  10. Flavonoid glycosides from Hosta longipes, their inhibition on NO production, and nerve growth factor inductive effects

    International Nuclear Information System (INIS)

    Kim, Chung Sub; Lee, Kang Ro; Kwon, Oh Wook; Kim, Sun Yeou

    2014-01-01

    An extended phytochemical investigation of the leaves of Hosta longipes identified the new flavonoid glycoside, kaempferol-3-O-β-D-glucopyranosyl-(1→2)- [6 ' -O-acetyl-β-D-glucopyranoside]-7-O-β-D-glucopyranoside and five known flavonoid derivatives. The structures of two compounds were revealed by extensive NMR methods ( 1 H and 13 C NMR, 1 H- 1 H COSY, HMQC and HMBC) and chemical hydrolysis. NMR data of one of them are published for the first time. Bioactivities of six compounds revealed that five strongly inhibited the production of nitric oxide (NO) with IC 50 values of 11.56-15.97 μm in lipopolysaccharide (LPS)-stimulated BV-2 cells without cell toxicity. Two compounds showed moderate induction of secretion of nerve growth factor (NGF) in C6 glioma cells (124.70 ± 7.71% and 117.02 ± 3.60%, respectively). (author)

  11. Water extract of Acer tegmentosum reduces bone destruction by inhibiting osteoclast differentiation and function.

    Science.gov (United States)

    Ha, Hyunil; Shim, Ki-Shuk; Kim, Taesoo; An, Hyosun; Lee, Chung-Jo; Lee, Kwang Jin; Ma, Jin Yeul

    2014-04-01

    The stem of Acer tegmentosum has been widely used in Korea for the treatment of hepatic disorders. In this study, we investigated the bone protective effect of water extract of the stem of Acer tegmentosum (WEAT). We found that WEAT inhibits osteoclast differentiation induced by receptor activator of nuclear factor-κB ligand (RANKL), an essential cytokine for osteoclast differentiation. In osteoclast precursor cells, WEAT inhibited RANKL-induced activation of JNK, NF-κB, and cAMP response element-binding protein, leading to suppression of the induction of c-Fos and nuclear factor of activated T cells cytoplasmic 1, key transcription factors for osteoclast differentiation. In addition, WEAT inhibited bone resorbing activity of mature osteoclasts. Furthermore, the oral administration of WEAT reduced RANKL-induced bone resorption and trabecular bone loss in mice. Taken together, our study demonstrates that WEAT possesses a protective effect on bone destruction by inhibiting osteoclast differentiation and function.

  12. New oral anticoagulant-induced bleeding: clinical presentation and management

    NARCIS (Netherlands)

    Levy, Jerrold H.; Levi, Marcel

    2014-01-01

    Bleeding is a significant complication of anticoagulant therapy. With the emergence of new oral anticoagulants (NOACs; ie, direct factor IIa or Xa inhibitors), this risk is further compounded by the lack of validated reversal strategies for these agents. Emerging postmarketing evidence suggests that

  13. Camptothecin inhibits platelet-derived growth factor-BB-induced proliferation of rat aortic vascular smooth muscle cells through inhibition of PI3K/Akt signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun-Seok [Department of Applied Biochemistry, Division of Life Science, College of Health and Biomedical Science, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kang, Shin-il [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of); Yoo, Kyu-dong [Hazardous Substances Analysis Division, Gwangju Regional Food and Drug Administration, Gwangju (Korea, Republic of); Lee, Mi-Yea [Department of Nursing Kyungbok University, Pocheon (Korea, Republic of); Yoo, Hwan-Soo; Hong, Jin-Tae [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of); Shin, Hwa-Sup [Department of Applied Biochemistry, Division of Life Science, College of Health and Biomedical Science, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kim, Bokyung [Department of Physiology, Konkuk Medical School, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Yun, Yeo-Pyo, E-mail: ypyun@chungbuk.ac.kr [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of)

    2013-04-15

    The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial wall is a major cause of vascular disorders such as atherosclerosis and restenosis after angioplasty. In this study, we investigated not only the inhibitory effects of camptothecin (CPT) on PDGF-BB-induced VSMC proliferation, but also its molecular mechanism of this inhibition. CPT significantly inhibited proliferation with IC50 value of 0.58 μM and the DNA synthesis of PDGF-BB-stimulated VSMCs in a dose-dependent manner (0.5–2 μM ) without any cytotoxicity. CPT induced the cell cycle arrest at G0/G1 phase. Also, CPT decreased the expressions of G0/G1-specific regulatory proteins including cyclin-dependent kinase (CDK)2, cyclin D1 and PCNA in PDGF-BB-stimulated VSMCs. Pre-incubation of VSMCs with CPT significantly inhibited PDGF-BB-induced Akt activation, whereas CPT did not affect PDGF-receptor beta phosphorylation, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and phospholipase C (PLC)-γ1 phosphorylation in PDGF-BB signaling pathway. Our data showed that CPT pre-treatment inhibited VSMC proliferation, and that the inhibitory effect of CPT was enhanced by LY294002, a PI3K inhibitor, on PDGF-BB-induced VSMC proliferation. In addition, inhibiting the PI3K/Akt pathway by LY294002 significantly enhanced the suppression of PCNA expression and Akt activation by CPT. These results suggest that the anti-proliferative activity of CPT is mediated in part by downregulating the PI3K/Akt signaling pathway. - Highlights: ► CPT inhibits proliferation of PDGF-BB-induced VSMC without cytotoxicity. ► CPT arrests the cell cycle in G0/G1 phase by downregulation of cyclin D1 and CDK2. ► CPT significantly attenuates Akt phosphorylation in PDGF-BB signaling pathway. ► LY294002 enhanced the inhibitory effect of CPT on VSMC proliferation. ► Thus, CPT is mediated by downregulating the PI3K/Akt signaling pathway.

  14. Camptothecin inhibits platelet-derived growth factor-BB-induced proliferation of rat aortic vascular smooth muscle cells through inhibition of PI3K/Akt signaling pathway

    International Nuclear Information System (INIS)

    Park, Eun-Seok; Kang, Shin-il; Yoo, Kyu-dong; Lee, Mi-Yea; Yoo, Hwan-Soo; Hong, Jin-Tae; Shin, Hwa-Sup; Kim, Bokyung; Yun, Yeo-Pyo

    2013-01-01

    The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial wall is a major cause of vascular disorders such as atherosclerosis and restenosis after angioplasty. In this study, we investigated not only the inhibitory effects of camptothecin (CPT) on PDGF-BB-induced VSMC proliferation, but also its molecular mechanism of this inhibition. CPT significantly inhibited proliferation with IC50 value of 0.58 μM and the DNA synthesis of PDGF-BB-stimulated VSMCs in a dose-dependent manner (0.5–2 μM ) without any cytotoxicity. CPT induced the cell cycle arrest at G0/G1 phase. Also, CPT decreased the expressions of G0/G1-specific regulatory proteins including cyclin-dependent kinase (CDK)2, cyclin D1 and PCNA in PDGF-BB-stimulated VSMCs. Pre-incubation of VSMCs with CPT significantly inhibited PDGF-BB-induced Akt activation, whereas CPT did not affect PDGF-receptor beta phosphorylation, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and phospholipase C (PLC)-γ1 phosphorylation in PDGF-BB signaling pathway. Our data showed that CPT pre-treatment inhibited VSMC proliferation, and that the inhibitory effect of CPT was enhanced by LY294002, a PI3K inhibitor, on PDGF-BB-induced VSMC proliferation. In addition, inhibiting the PI3K/Akt pathway by LY294002 significantly enhanced the suppression of PCNA expression and Akt activation by CPT. These results suggest that the anti-proliferative activity of CPT is mediated in part by downregulating the PI3K/Akt signaling pathway. - Highlights: ► CPT inhibits proliferation of PDGF-BB-induced VSMC without cytotoxicity. ► CPT arrests the cell cycle in G0/G1 phase by downregulation of cyclin D1 and CDK2. ► CPT significantly attenuates Akt phosphorylation in PDGF-BB signaling pathway. ► LY294002 enhanced the inhibitory effect of CPT on VSMC proliferation. ► Thus, CPT is mediated by downregulating the PI3K/Akt signaling pathway

  15. The Effects of Kaempferol-Inhibited Autophagy on Osteoclast Formation.

    Science.gov (United States)

    Kim, Chang-Ju; Shin, Sang-Hun; Kim, Bok-Joo; Kim, Chul-Hoon; Kim, Jung-Han; Kang, Hae-Mi; Park, Bong-Soo; Kim, In-Ryoung

    2018-01-02

    Kaempferol, a flavonoid compound, is derived from the rhizome of Kaempferia galanga L ., which is used in traditional medicine in Asia. Autophagy has pleiotropic functions that are involved in cell growth, survival, nutrient supply under starvation, defense against pathogens, and antigen presentation. There are many studies dealing with the inhibitory effects of natural flavonoids in bone resorption. However, no studies have explained the relationship between the autophagic and inhibitory processes of osteoclastogenesis by natural flavonoids. The present study was undertaken to investigate the inhibitory effects of osteoclastogenesis through the autophagy inhibition process stimulated by kaempferol in murin macrophage (RAW 264.7) cells. The cytotoxic effect of Kaempferol was investigated by MTT assay. The osteoclast differentiation and autophagic process were confirmed via tartrate-resistant acid phosphatase (TRAP) staining, pit formation assay, western blot, and real-time PCR. Kaempferol controlled the expression of autophagy-related factors and in particular, it strongly inhibited the expression of p62/SQSTM1. In the western blot and real time-PCR analysis, when autophagy was suppressed with the application of 3-Methyladenine (3-MA) only, osteoclast and apoptosis related factors were not significantly affected. However, we found that after cells were treated with kaempferol, these factors inhibited autophagy and activated apoptosis. Therefore, we presume that kaempferol-inhibited autophagy activated apoptosis by degradation of p62/SQSTM1. Further study of the p62/SQSTM1 gene as a target in the autophagy mechanism, may help to delineate the potential role of kaempferol in the treatment of bone metabolism disorders.

  16. MiR-375 inhibits the hepatocyte growth factor-elicited migration of mesenchymal stem cells by downregulating Akt signaling.

    Science.gov (United States)

    He, Lihong; Wang, Xianyao; Kang, Naixin; Xu, Jianwei; Dai, Nan; Xu, Xiaojing; Zhang, Huanxiang

    2018-04-01

    The migration of mesenchymal stem cells (MSCs) is critical for their use in cell-based therapies. Accumulating evidence suggests that microRNAs are important regulators of MSC migration. Here, we report that the expression of miR-375 was downregulated in MSCs treated with hepatocyte growth factor (HGF), which strongly stimulates the migration of these cells. Overexpression of miR-375 decreased the transfilter migration and the migration velocity of MSCs triggered by HGF. In our efforts to determine the mechanism by which miR-375 affects MSC migration, we found that miR-375 significantly inhibited the activation of Akt by downregulating its phosphorylation at T308 and S473, but had no effect on the activity of mitogen-activated protein kinases. Further, we showed that 3'phosphoinositide-dependent protein kinase-1 (PDK1), an upstream kinase necessary for full activation of Akt, was negatively regulated by miR-375 at the protein level. Moreover, miR-375 suppressed the phosphorylation of focal adhesion kinase (FAK) and paxillin, two important regulators of focal adhesion (FA) assembly and turnover, and decreased the number of FAs at cell periphery. Taken together, our results demonstrate that miR-375 inhibits HGF-elicited migration of MSCs through downregulating the expression of PDK1 and suppressing the activation of Akt, as well as influencing the tyrosine phosphorylation of FAK and paxillin and FA periphery distribution.

  17. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Biver, Emmanuel, E-mail: ebiver@yahoo.fr [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Soubrier, Anne-Sophie [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Thouverey, Cyril [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Cortet, Bernard [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Broux, Odile [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Caverzasio, Joseph [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Hardouin, Pierre [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exert their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.

  18. Inhibition of lignin-derived phenolic compounds to cellulase.

    Science.gov (United States)

    Qin, Lei; Li, Wen-Chao; Liu, Li; Zhu, Jia-Qing; Li, Xia; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-01-01

    Lignin-derived phenolic compounds are universal in the hydrolysate of pretreated lignocellulosic biomass. The phenolics reduce the efficiency of enzymatic hydrolysis and increase the cost of ethanol production. We investigated inhibition of phenolics on cellulase during enzymatic hydrolysis using vanillin as one of the typical lignin-derived phenolics and Avicel as cellulose substrate. As vanillin concentration increased from 0 to 10 mg/mL, cellulose conversion after 72-h enzymatic hydrolysis decreased from 53 to 26 %. Enzyme deactivation and precipitation were detected with the vanillin addition. The enzyme concentration and activity consecutively decreased during hydrolysis, but the inhibition degree, expressed as the ratio of the cellulose conversion without vanillin to the conversion with vanillin (A 0 /A), was almost independent on hydrolysis time. Inhibition can be mitigated by increasing cellulose loading or cellulase concentration. The inhibition degree showed linear relationship with the vanillin concentration and exponential relationship with the cellulose loading and the cellulase concentration. The addition of calcium chloride, BSA, and Tween 80 did not release the inhibition of vanillin significantly. pH and temperature for hydrolysis also showed no significant impact on inhibition degree. The presence of hydroxyl group, carbonyl group, and methoxy group in phenolics affected the inhibition degree. Besides phenolics concentration, other factors such as cellulose loading, enzyme concentration, and phenolic structure also affect the inhibition of cellulose conversion. Lignin-blocking agents have little effect on the inhibition effect of soluble phenolics, indicating that the inhibition mechanism of phenolics to enzyme is likely different from insoluble lignin. The inhibition of soluble phenolics can hardly be entirely removed by increasing enzyme concentration or adding blocking proteins due to the dispersity and multiple binding sites of phenolics

  19. Portulaca oleracea L. aids calcipotriol in reversing keratinocyte differentiation and skin barrier dysfunction in psoriasis through inhibition of the nuclear factor κB signaling pathway

    Science.gov (United States)

    ZHAO, HENGGUANG; LI, SHUANG; LUO, FULING; TAN, QIAN; LI, HUI; ZHOU, WEIKANG

    2015-01-01

    Psoriasis affects 2–4% of the population worldwide and its treatment is currently far from satisfactory. Calcipotriol and Portulaca oleracea have been reported to exhibit the capacity to inhibit inflammation in psoriatic patients and improve their clinical condition. However, the efficacy of a combination regimen of these two components remains unknown. The aim of the present study was to explore the therapeutic efficacy of P. oleracea extract combined with calcipotriol on plaque psoriasis and its potential mechanism. Eleven patients with plaque psoriasis were treated with humectant containing the active ingredients of P. oleracea extract, with or without 0.005% calcipotriol ointment in a right-left bilateral lesion self-control study. Differences were evaluated by investigation of the clinical efficacy, adverse effects, skin barrier function, histological structure, expression and proliferation of keratinocytes, differentiation markers (cytokeratin 10, filaggrin and loricrin), inflammatory factors [tumor necrosis factor (TNF)-α and interleukin (IL)-8], as well as the status of the nuclear factor κB (NF-κB) pathway. The combination of P. oleracea and calcipotriol was revealed to decrease adverse effects, reduce transepidermal water loss, potently reverse keratinocyte differentiation dysfunction, and inhibit the expression of TNF-α and IL-8 and the phosphorylation of the NF-κB inhibitor IκBα. This treatment is therefore anticipated to be suitable for use as a novel adjuvant therapy for psoriatic patients. PMID:25574190

  20. Cortical organization of inhibition-related functions and modulation by psychopathology.

    Science.gov (United States)

    Warren, Stacie L; Crocker, Laura D; Spielberg, Jeffery M; Engels, Anna S; Banich, Marie T; Sutton, Bradley P; Miller, Gregory A; Heller, Wendy

    2013-01-01

    Individual differences in inhibition-related functions have been implicated as risk factors for a broad range of psychopathology, including anxiety and depression. Delineating neural mechanisms of distinct inhibition-related functions may clarify their role in the development and maintenance of psychopathology. The present study tested the hypothesis that activity in common and distinct brain regions would be associated with an ecologically sensitive, self-report measure of inhibition and a laboratory performance measure of prepotent response inhibition. Results indicated that sub-regions of DLPFC distinguished measures of inhibition, whereas left inferior frontal gyrus and bilateral inferior parietal cortex were associated with both types of inhibition. Additionally, co-occurring anxiety and depression modulated neural activity in select brain regions associated with response inhibition. Results imply that specific combinations of anxiety and depression dimensions are associated with failure to implement top-down attentional control as reflected in inefficient recruitment of posterior DLPFC and increased activation in regions associated with threat (MTG) and worry (BA10). Present findings elucidate possible neural mechanisms of interference that could help explain executive control deficits in psychopathology.

  1. Cortical organization of inhibition-related functions and modulation by psychopathology

    Directory of Open Access Journals (Sweden)

    Stacie L. Warren

    2013-06-01

    Full Text Available Individual differences in inhibition-related functions have been implicated as risk factors for a broad range of psychopathology, including anxiety and depression. Delineating neural mechanisms of distinct inhibition-related functions may clarify their role in the development and maintenance of psychopathology. The present study tested the hypothesis that activity in common and distinct brain regions would be associated with an ecologically sensitive, self-report measure of inhibition and a laboratory performance measure of prepotent response inhibition. Results indicated that sub-regions of DLPFC distinguished measures of inhibition, whereas left inferior frontal gyrus and bilateral inferior parietal cortex were associated with both types of inhibition. Additionally, co-occurring anxiety and depression modulated neural activity in select brain regions associated with response inhibition. Results imply that specific combinations of anxiety and depression dimensions are associated with failure to implement top-down attentional control as reflected in inefficient recruitment of posterior DLPFC and increased activation in regions associated with threat (MTG and worry (BA10. Present findings elucidate possible neural mechanisms of interference that could help explain executive control deficits in psychopathology.

  2. CS5931, a Novel Polypeptide in Ciona savignyi, Represses Angiogenesis via Inhibiting Vascular Endothelial Growth Factor (VEGF and Matrix Metalloproteinases (MMPs

    Directory of Open Access Journals (Sweden)

    Ge Liu

    2014-03-01

    Full Text Available CS5931 is a novel polypeptide from Ciona savignyi with anticancer activities. Previous study in our laboratory has shown that CS5931 can induce cell death via mitochondrial apoptotic pathway. In the present study, we found that the polypeptide could inhibit angiogenesis both in vitro and in vivo. CS5931 inhibited the proliferation, migration and formation of capillary-like structures of HUVECs (Human Umbilical Vein Endothelial Cell in a dose-dependent manner. Additionally, CS5931 repressed spontaneous angiogenesis of the zebrafish vessels. Further studies showed that CS5931 also blocked vascular endothelial growth factor (VEGF production but without any effect on its mRNA expression. Moreover, CS5931 reduced the expression of matrix metalloproteinases (MMP-2 and MMP-9 both on protein and mRNA levels in HUVEC cells. We demonstrated that CS5931 possessed strong anti-angiogenic activity both in vitro and in vivo, possible via VEGF and MMPs. This study indicates that CS5931 has the potential to be developed as a novel therapeutic agent as an inhibitor of angiogenesis for the treatment of cancer.

  3. Oryza sativa (Rice) Hull Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in RAW264.7 Macrophages by Suppressing Extracellular Signal-regulated Kinase, c-Jun N-terminal Kinase, and Nuclear Factor-κB Activation.

    Science.gov (United States)

    Ha, Sang Keun; Sung, Jeehye; Choi, Inwook; Kim, Yoonsook

    2016-01-01

    Rice ( Oryza sativa ) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages.Rice hull extract inhibited nitric oxide and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively.Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways.Rice hull extract may provide a potential therapeutic approach for inflammatory diseases. Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin E2, RHE: rice hull extract, ROS: reactive oxygen species

  4. Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity

    International Nuclear Information System (INIS)

    Qi, Wentao; Weber, Christopher R; Wasland, Kaarin; Savkovic, Suzana D

    2011-01-01

    Soy consumption is associated with a lower incidence of colon cancer which is believed to be mediated by one of its of components, genistein. Genistein may inhibit cancer progression by inducing apoptosis or inhibiting proliferation, but mechanisms are not well understood. Epidermal growth factor (EGF)-induced proliferation of colon cancer cells plays an important role in colon cancer progression and is mediated by loss of tumor suppressor FOXO3 activity. The aim of this study was to assess if genistein exerts anti-proliferative properties by attenuating the negative effect of EGF on FOXO3 activity. The effect of genistein on proliferation stimulated by EGF-mediated loss of FOXO3 was examined in human colonic cancer HT-29 cells. EGF-induced FOXO3 phosphorylation and translocation were assessed in the presence of genistein. EGF-mediated loss of FOXO3 interactions with p53 (co-immunoprecipitation) and promoter of p27kip1 (ChIP assay) were examined in presence of genistein in cells with mutated p53 (HT-29) and wild type p53 (HCT116). Silencing of p53 determined activity of FOXO3 when it is bound to p53. Genistein inhibited EGF-induced proliferation, while favoring dephosphorylation and nuclear retention of FOXO3 (active state) in colon cancer cells. Upstream of FOXO3, genistein acts via the PI3K/Akt pathway to inhibit EGF-stimulated FOXO3 phosphorylation (i.e. favors active state). Downstream, EGF-induced disassociation of FOXO3 from mutated tumor suppressor p53, but not wild type p53, is inhibited by genistein favoring FOXO3-p53(mut) interactions with the promoter of the cell cycle inhibitor p27kip1 in colon cancer cells. Thus, the FOXO3-p53(mut) complex leads to elevated p27kip1 expression and promotes cell cycle arrest. These novel anti-proliferative mechanisms of genistein suggest a possible role of combining genistein with other chemoreceptive agents for the treatment of colon cancer

  5. Gemfibrozil, a Lipid-lowering Drug, Inhibits the Induction of Nitric-oxide Synthase in Human Astrocytes*

    Science.gov (United States)

    Pahan, Kalipada; Jana, Malabendu; Liu, Xiaojuan; Taylor, Bradley S.; Wood, Charles; Fischer, Susan M.

    2007-01-01

    Gemfibrozil, a lipid-lowering drug, inhibited cytokine-induced production of NO and the expression of inducible nitric-oxide synthase (iNOS) in human U373MG astroglial cells and primary astrocytes. Similar to gemfibrozil, clofibrate, another fibrate drug, also inhibited the expression of iNOS. Inhibition of human iNOS promoter-driven luciferase activity by gemfibrozil in cytokine-stimulated U373MG astroglial cells suggests that this compound inhibits the transcription of iNOS. Since gemfibrozil is known to activate peroxisome proliferator-activated receptor-α (PPAR-α), we investigated the role of PPAR-α in gemfibrozil-mediated inhibition of iNOS. Gemfibrozil induced peroxisome proliferator-responsive element (PPRE)-dependent luciferase activity, which was inhibited by the expression of ΔhPPAR-α, the dominant-negative mutant of human PPAR-α. However, ΔhPPAR-α was unable to abrogate gemfibrozil-mediated inhibition of iNOS suggesting that gemfibrozil inhibits iNOS independent of PPAR-α. The human iNOS promoter contains consensus sequences for the binding of transcription factors, including interferon-γ (IFN-γ) regulatory factor-1 (IRF-1) binding to interferon-stimulated responsive element (ISRE), signal transducer and activator of transcription (STAT) binding to γ-activation site (GAS), nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and CCAAT/enhancer-binding protein β (C/EBPβ); therefore, we investigated the effect of gemfibrozil on the activation of these transcription factors. The combination of interleukin (IL)-1β and IFN-γ induced the activation of NF-κB, AP-1, C/EBPβ, and GAS but not that of ISRE, suggesting that IRF-1 may not be involved in cytokine-induced expression of iNOS in human astrocytes. Interestingly, gemfibrozil strongly inhibited the activation of NF-κB, AP-1, and C/EBPβ but not that of GAS in cytokine-stimulated astroglial cells. These results suggest that gemfibrozil inhibits the induction of iNOS probably by

  6. The discovery of glycine and related amino acid-based factor Xa inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Kohrt, Jeffrey T.; Filipski, Kevin J.; Cody, Wayne L.; Bigge, Christopher F.; La, Frances; Welch, Kathleen; Dahring, Tawny; Bryant, John W.; Leonard, Daniele; Bolton, Gary; Narasimhan, Lakshmi; Zhang, Erli; Peterson, J. Thomas; Haarer, Staci; Sahasrabudhe, Vaishali; Janiczek, Nancy; Desiraju, Shrilakshmi; Hena, Mostofa; Fiakpui, Charles; Saraswat, Neerja; Sharma, Raman; Sun, Shaoyi; Maiti, Samarendra N.; Leadley, Robert; Edmunds, Jeremy J. (Naeja); (Pfizer)

    2010-12-03

    Herein, we report on the identification of three potent glycine and related amino acid-based series of FXa inhibitors containing a neutral P1 chlorophenyl pharmacophore. A X-ray crystal structure has shown that constrained glycine derivatives with optimized N-substitution can greatly increase hydrophobic interactions in the FXa active site. Also, the substitution of a pyridone ring for a phenylsulfone ring in the P4 sidechain resulted in an inhibitor with enhanced oral bioavailability.

  7. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Nan P.; LaMarche, Matthew J.; Chan, Ho Man; Fekkes, Peter; Garcia-Fortanet, Jorge; Acker, Michael G.; Antonakos, Brandon; Chen, Christine Hiu-Tung; Chen, Zhouliang; Cooke, Vesselina G.; Dobson, Jason R.; Deng, Zhan; Fei, Feng; Firestone, Brant; Fodor, Michelle; Fridrich, Cary; Gao, Hui; Grunenfelder, Denise; Hao, Huai-Xiang; Jacob, Jaison; Ho, Samuel; Hsiao, Kathy; Kang, Zhao B.; Karki, Rajesh; Kato, Mitsunori; Larrow, Jay; La Bonte, Laura R.; Lenoir, Francois; Liu, Gang; Liu, Shumei; Majumdar, Dyuti; Meyer, Matthew J.; Palermo, Mark; Perez, Lawrence; Pu, Minying; Price, Edmund; Quinn, Christopher; Shakya, Subarna; Shultz, Michael D.; Slisz, Joanna; Venkatesan, Kavitha; Wang, Ping; Warmuth, Markus; Williams, Sarah; Yang, Guizhi; Yuan, Jing; Zhang, Ji-Hu; Zhu, Ping; Ramsey, Timothy; Keen, Nicholas J.; Sellers, William R.; Stams, Travis; Fortin , Pascal D. (Novartis)

    2016-06-29

    The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase1. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma1, 2, 3, 4, 5. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway2, 3. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways6, 7. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy8, 9. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.

  8. Nitric oxide and TGF-β1 inhibit HNF-4α function in HEPG2 cells

    International Nuclear Information System (INIS)

    Lucas, Susana de; Lopez-Alcorocho, Juan Manuel; Bartolome, Javier; Carreno, Vicente

    2004-01-01

    This study analyzes if the profibrogenic factors nitric oxide and transforming growth factor-β1 (TGF-β1) affect hepatocyte nuclear factor-4α (HNF-4α) function. For this purpose, HepG2 cells were treated with TGF-β1 or with a nitric oxide donor to determine mRNA levels of coagulation factor VII and HNF-4α. Treatment effect on factor VII gene promoter was assessed by chloramphenicol acetyl-transferase assays in cells transfected with the pFVII-CAT plasmid. HNF-4α binding and protein levels were determined by gel shift assays and Western blot. TGF-β1 and nitric oxide downregulated factor VII mRNA levels by inhibiting its gene promoter activity. This inhibition is caused by a decrease in the DNA binding of HNF-4α. TGF-β1 induces degradation of HNF-4α in the proteasome while nitric oxide provokes nitrosylation of cysteine residues in this factor. TGF-β1 and nitric oxide inhibit HNF-4α activity. These findings may explain the loss of liver functions that occurs during fibrosis progression

  9. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean; Nagra, Parminder; Chan, Jefferson Y., E-mail: jchan@uci.edu

    2013-08-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF–Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 from phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrf1 attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. Highlights: • The effect of GSK3 on Nrf1 expression was examined. • GSK3 destabilizes Nrf1 protein via Fbw7 ubiquitin ligase. • GSK3 binds and phosphorylates Nrf1. • Protection from stress-induced apoptosis by Nrf1 is inhibited by GSK3.

  10. Apixaban versus enoxaparin for thromboprophylaxis after knee replacement (ADVANCE-2): a randomised double-blind trial

    DEFF Research Database (Denmark)

    Lassen, Michael Rud; Raskob, Gary E; Gallus, Alexander

    2010-01-01

    BACKGROUND: Low-molecular-weight heparins such as enoxaparin are preferred for prevention of venous thromboembolism after major joint replacement. Apixaban, an orally active factor Xa inhibitor, might be as effective, have lower bleeding risk, and be easier to use than is enoxaparin. We assessed ...

  11. Edoxaban versus warfarin in patients with atrial fibrillation

    NARCIS (Netherlands)

    Giugliano, R.P.; Ruff, C.T.; Braunwald, E.; Murphy, S.A.; Wiviott, S.D.; Halperin, J.L.; Waldo, A.L.; Ezekowitz, M.D.; Weitz, J.I.; Spinar, J.; Ruzyllo, W.; Ruda, M.; Koretsune, Y.; Betcher, J.; Shi, M.; Grip, L.T.; Patel, S.P.; Patel, I.; Hanyok, J.J.; Mercuri, M.; Antman, E.M.; Verheugt, F.W.A.; et al.,

    2013-01-01

    BACKGROUND: Edoxaban is a direct oral factor Xa inhibitor with proven antithrombotic effects. The long-term efficacy and safety of edoxaban as compared with warfarin in patients with atrial fibrillation is not known. METHODS: We conducted a randomized, double-blind, double-dummy trial comparing two

  12. Edoxaban versus Warfarin in Patients with Atrial Fibrillation

    NARCIS (Netherlands)

    Giugliano, Robert P.; Ruff, Christian T.; Braunwald, Eugene; Murphy, Sabina A.; Wiviott, Stephen D.; Halperin, Jonathan L.; Waldo, Albert L.; Ezekowitz, Michael D.; Weitz, Jeffrey I.; Špinar, Jindřich; Ruzyllo, Witold; Ruda, Mikhail; Koretsune, Yukihiro; Betcher, Joshua; Shi, Minggao; Grip, Laura T.; Patel, Shirali P.; Patel, Indravadan; Hanyok, James J.; Mercuri, Michele; Antman, Elliott M.; Braunwald, E.; Antman, E. M.; Giugliano, R. P.; Ruff, C. T.; Morin, S. E.; Hoffman, E. B.; Murphy, S. A.; Deenadayalu, N.; Grip, L.; Mercuri, M.; Lanz, H.; Patel, I.; Curt, V.; Duggal, A.; Hanyok, J.; Davé, J.; Morgan, D.; Choi, Y.; Shi, M.; Jin, J.; Xie, J.; Crerand, W.; Kappelhof, J.; Maxwell, W.; Zhang, X.; Zhang, Z.; de Groot, J. [=Joris R.; de Vos, R.; Hoekstra, J.

    2013-01-01

    BackgroundEdoxaban is a direct oral factor Xa inhibitor with proven antithrombotic effects. The long-term efficacy and safety of edoxaban as compared with warfarin in patients with atrial fibrillation is not known. MethodsWe conducted a randomized, double-blind, double-dummy trial comparing two

  13. Apixaban with antiplatelet therapy after acute coronary syndrome

    NARCIS (Netherlands)

    Alexander, J.H.; Lopes, R.D.; James, S.; Kilaru, R.; He, Y.; Mohan, P.; Bhatt, D.L.; Goodman, S.; Verheugt, F.W.A.; Flather, M.; Huber, K.; Liaw, D.; Husted, S.E.; Lopez-Sendon, J.; De Caterina, R.; Jansky, P.; Darius, H.; Vinereanu, D.; Cornel, J.H.; Cools, F.; Atar, D.; Leiva-Pons, J.L.; Keltai, M.; Ogawa, H.; Pais, P.; Parkhomenko, A.; Ruzyllo, W.; Diaz, R.; White, H.; Ruda, M.; Geraldes, M.; Lawrence, J.; Harrington, R.A.; Wallentin, L.

    2011-01-01

    BACKGROUND: Apixaban, an oral, direct factor Xa inhibitor, may reduce the risk of recurrent ischemic events when added to antiplatelet therapy after an acute coronary syndrome. METHODS: We conducted a randomized, double-blind, placebo-controlled clinical trial comparing apixaban, at a dose of 5 mg

  14. Flavonoid glycosides from Hosta longipes, their inhibition on NO production, and nerve growth factor inductive effects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chung Sub; Lee, Kang Ro, E-mail: krlee@skku.edu [Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University (Korea, Republic of); Kwon, Oh Wook [Graduate School of East-West Medical Science, Kyung Hee University Global Campus (Korea, Republic of); Kim, Sun Yeou [College of Pharmacy, Gachon University (Korea, Republic of)

    2014-05-15

    An extended phytochemical investigation of the leaves of Hosta longipes identified the new flavonoid glycoside, kaempferol-3-O-β-D-glucopyranosyl-(1→2)- [6{sup '}-O-acetyl-β-D-glucopyranoside]-7-O-β-D-glucopyranoside and five known flavonoid derivatives. The structures of two compounds were revealed by extensive NMR methods ({sup 1}H and {sup 13}C NMR, {sup 1}H-{sup 1}H COSY, HMQC and HMBC) and chemical hydrolysis. NMR data of one of them are published for the first time. Bioactivities of six compounds revealed that five strongly inhibited the production of nitric oxide (NO) with IC{sub 50} values of 11.56-15.97 μm in lipopolysaccharide (LPS)-stimulated BV-2 cells without cell toxicity. Two compounds showed moderate induction of secretion of nerve growth factor (NGF) in C6 glioma cells (124.70 ± 7.71% and 117.02 ± 3.60%, respectively). (author)

  15. Risk factors for epistaxis in patients followed in general practices in Germany.

    Science.gov (United States)

    Seidel, D U; Jacob, L; Kostev, K; Sesterhenn, A M

    2017-12-01

    The goal of the present study was to analyze the risk factors for epistaxis in patients followed in general practices in Germany. The current study sample included patients aged 18 years or older who received a first epistaxis diagnosis between January 2012 and December 2016 (index date). Epistaxis patients and controls without epistaxis were matched (1:1) on the basis of age, gender, insurance status and physician. A total of 16,801 patients with epistaxis and 16,801 control subjects were included in this study. Of the subjects, 53.2% were men, and the mean age was 59.6 years (SD=21.2 years). Epistaxis was found to be positively associated with hypertension, obesity, chronic sinusitis, other disorders of the nose and nasal sinuses, anxiety disorder, and adjustment disorder (ORs ranging from 1.13 to 1.44). Epistaxis was also associated with the prescription of vitamin K antagonists, preparations from the heparin group, platelet aggregation inhibitors excluding heparin, direct thrombin inhibitors, direct factor Xa inhibitors, other antithrombotic agents, selective serotonin reuptake inhibitors and nasal steroids (ORs ranging from 1.15 to 3.55). Overall, epistaxis risk is increased by multiple medical and psychiatric disorders. Several antithrombotic and nasal steroid therapies are also associated with this risk.

  16. Methanol Extract of Polyopes lancifolius Inhibits the Expression of ...

    African Journals Online (AJOL)

    The level of nitric oxide (NO) production was analyzed using Griess reaction. ... Investigation of the effect of MEPL on nuclear factor-κB (NF-κB) activity, which is a potential transcriptional factor for regulating inflammatory genes such as iNOS, COX-2 and TNF-α, showed that MEPL substantially inhibited the LPS-induced ...

  17. What hinders teachers in using computer and video games in the classroom? Exploring factors inhibiting the uptake of computer and video games.

    Science.gov (United States)

    Baek, Young Kyun

    2008-12-01

    The purpose of this study is to identify factors inhibiting teachers' use of computer and video games in the classroom setting and to examine the degree to which teaching experience and gender affect attitudes toward using games. Six factors that hinder teachers' use of games in the classroom were discovered: Inflexibility of curriculum, Negative effects of gaming, Students' lack of readiness, Lack of supporting materials, Fixed class schedules, and Limited budgets. Lack of supporting material, Fixed class schedules, and Limited budgets were factors that female teachers believed to be more serious obstacles to game use in the classroom than male teachers did. Experienced teachers, more so than inexperienced teachers, believed that adopting games in teaching was hindered by Inflexibility of curriculum and Negative effects of gaming. On the other hand, inexperienced teachers, more so than experienced teachers, believed that adopting games in teaching is less hindered by Lack of supporting materials and Fixed class schedules.

  18. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Park, Chang-Jin; Wei, Tong; Sharma, Rita; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differential expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in 'cell death' and 'vesicle-mediated transport'. These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling 'vesicle-mediated transport' in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.

  19. Vaccinia virus protein C6 is a virulence factor that binds TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7.

    Directory of Open Access Journals (Sweden)

    Leonie Unterholzner

    2011-09-01

    Full Text Available Recognition of viruses by pattern recognition receptors (PRRs causes interferon-β (IFN-β induction, a key event in the anti-viral innate immune response, and also a target of viral immune evasion. Here the vaccinia virus (VACV protein C6 is identified as an inhibitor of PRR-induced IFN-β expression by a functional screen of select VACV open reading frames expressed individually in mammalian cells. C6 is a member of a family of Bcl-2-like poxvirus proteins, many of which have been shown to inhibit innate immune signalling pathways. PRRs activate both NF-κB and IFN regulatory factors (IRFs to activate the IFN-β promoter induction. Data presented here show that C6 inhibits IRF3 activation and translocation into the nucleus, but does not inhibit NF-κB activation. C6 inhibits IRF3 and IRF7 activation downstream of the kinases TANK binding kinase 1 (TBK1 and IκB kinase-ε (IKKε, which phosphorylate and activate these IRFs. However, C6 does not inhibit TBK1- and IKKε-independent IRF7 activation or the induction of promoters by constitutively active forms of IRF3 or IRF7, indicating that C6 acts at the level of the TBK1/IKKε complex. Consistent with this notion, C6 immunoprecipitated with the TBK1 complex scaffold proteins TANK, SINTBAD and NAP1. C6 is expressed early during infection and is present in both nucleus and cytoplasm. Mutant viruses in which the C6L gene is deleted, or mutated so that the C6 protein is not expressed, replicated normally in cell culture but were attenuated in two in vivo models of infection compared to wild type and revertant controls. Thus C6 contributes to VACV virulence and might do so via the inhibition of PRR-induced activation of IRF3 and IRF7.

  20. Cytological diagnosis of xanthogranulomatous appendicitis

    Directory of Open Access Journals (Sweden)

    Rajni Kaushik

    2017-01-01

    Full Text Available Xanthogranulomatous reaction can occur in any organ but the most common sites are kidney and gallbladder. Xanthogranulomatous appendicitis (XA is a rare clinical entity. There are a few case reports of XA diagnosed on histopathology but none on cytology. Here we report a case of a 47-year-old lady who presented with acute abdomen and was found to have a mass lesion in the right iliac fossa. She was diagnosed with XA intraoperatively on imprint cytology that was subsequently confirmed on histopathological examination. Due to the rarity of XA itself and the use of imprint cytology for intraoperative diagnosis the case is being presented.

  1. Anxiety and retrieval inhibition: support for an enhanced inhibition account.

    Science.gov (United States)

    Nuñez, Mia; Gregory, Josh; Zinbarg, Richard E

    2017-02-01

    Retrieval inhibition of negative associations is important for exposure therapy for anxiety, but the relationship between memory inhibition and anxiety is not well understood-anxiety could either be associated with enhanced or deficient inhibition. The present study tested these two competing hypotheses by measuring retrieval inhibition of negative stimuli by related neutral stimuli. Non-clinically anxious undergraduates completed measures of trait and state anxiety and completed a retrieval induced forgetting task. Adaptive forgetting varied with state anxiety. Low levels of state anxiety were associated with no evidence for retrieval inhibition for either threatening or non-threatening categories. Participants in the middle tertile of state anxiety scores exhibited retrieval inhibition for non-threatening categories but not for threatening categories. Participants in the highest tertile of state anxiety, however, exhibited retrieval inhibition for both threatening and non-threatening categories with the magnitude of retrieval inhibition being greater for threatening than non-threatening categories. The data are in line with the avoidance aspect of the vigilance-avoidance theory of anxiety and inhibition. Implications for cognitive behavioural therapy practices are discussed.

  2. IGF-1 receptor inhibition by picropodophyllin in medulloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima-Hosoyama, Sachiko; Hosoyama, Tohru; Nelon, Laura D. [Greehey Children' s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Keller, Charles, E-mail: keller@ohsu.edu [Greehey Children' s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229 (United States)

    2010-09-03

    Research highlights: {yields} Igf1r is overexpressed and activated in a Sonic Hedgehog driven model of medulloblastoma. {yields} Picropodophyllin targets and abrogates IGF signaling in medulloblastoma. {yields} Picropodophyllin inhibits medulloblastoma tumor cell growth by induction of apoptosis. -- Abstract: The insulin-like growth factor-1 receptor (Igf1r) is a multifunctional membrane-associated tyrosine kinase associated with regulation of transformation, proliferation, differentiation and apoptosis. Increased IGF pathway activity has been reported in human and murine medulloblastoma. Tumors from our genetically-engineered medulloblastoma mouse model over-express Igf1r, and thus this mouse model is a good platform with which to study the role of Igf1r in tumor progression. We hypothesize that inhibition of IGF pathway in medulloblastoma can slow or inhibit tumor growth and metastasis. To test our hypothesis, we tested the role of IGF in tumor growth in vitro by treatment with the tyrosine kinase small molecule inhibitor, picropodophyllin (PPP), which strongly inhibits the IGF pathway. Our results demonstrate that PPP-mediated downregulation of the IGF pathway inhibits mouse tumor cell growth and induces apoptotic cell death in vitro in primary medulloblastoma cultures that are most reflective of tumor cell behavior in vivo.

  3. IGF-1 receptor inhibition by picropodophyllin in medulloblastoma

    International Nuclear Information System (INIS)

    Ohshima-Hosoyama, Sachiko; Hosoyama, Tohru; Nelon, Laura D.; Keller, Charles

    2010-01-01

    Research highlights: → Igf1r is overexpressed and activated in a Sonic Hedgehog driven model of medulloblastoma. → Picropodophyllin targets and abrogates IGF signaling in medulloblastoma. → Picropodophyllin inhibits medulloblastoma tumor cell growth by induction of apoptosis. -- Abstract: The insulin-like growth factor-1 receptor (Igf1r) is a multifunctional membrane-associated tyrosine kinase associated with regulation of transformation, proliferation, differentiation and apoptosis. Increased IGF pathway activity has been reported in human and murine medulloblastoma. Tumors from our genetically-engineered medulloblastoma mouse model over-express Igf1r, and thus this mouse model is a good platform with which to study the role of Igf1r in tumor progression. We hypothesize that inhibition of IGF pathway in medulloblastoma can slow or inhibit tumor growth and metastasis. To test our hypothesis, we tested the role of IGF in tumor growth in vitro by treatment with the tyrosine kinase small molecule inhibitor, picropodophyllin (PPP), which strongly inhibits the IGF pathway. Our results demonstrate that PPP-mediated downregulation of the IGF pathway inhibits mouse tumor cell growth and induces apoptotic cell death in vitro in primary medulloblastoma cultures that are most reflective of tumor cell behavior in vivo.

  4. A potent complement factor C3 specific nanobody inhibiting multiple functions in the alternative pathway of human and murine complement

    DEFF Research Database (Denmark)

    Jensen, Rasmus K; Pihl, Rasmus; Gadeberg, Trine A F

    2018-01-01

    The complement system is a complex, carefully regulated proteolytic cascade for which suppression of aberrant activation is of increasing clinical relevance and inhibition of the complement alternative pathway is a subject of intense research. Here, we describe the nanobody hC3Nb1 that binds...... to multiple functional states of C3 with sub-nanomolar affinity. The nanobody causes a complete shutdown of alternative pathway activity in human and murine serum when present in concentrations comparable to C3, and hC3Nb1 is shown to prevent both proconvertase assembly as well as binding of the C3 substrate...... to C3 convertases. Our crystal structure of the C3b-hC3Nb1 complex and functional experiments demonstrate that proconvertase formation is blocked by steric hindrance between the nanobody and an Asn-linked glycan on complement factor B. In addition, hC3Nb1 is shown to prevent factor H binding to C3b...

  5. Inhibition of connective tissue growth factor overexpression decreases growth of hepatocellular carcinoma cells in vitro and in vivo.

    Science.gov (United States)

    Jia, Xiao-Qin; Cheng, Hai-Qing; Li, Hong; Zhu, Yan; Li, Yu-Hua; Feng, Zhen-Qing; Zhang, Jian-Ping

    2011-11-01

    We have previously found that connective tissue growth factor (CTGF) is highly expressed in a rat model of liver cancer. Here, we examined expression of CTGF in human hepatocellular carcinoma (HCC) cells and its effect on cell growth. Real-time PCR was used to observe expression of CTGF in human HCC cell lines HepG2, SMMC-7721, MHCC-97H and LO2. siRNA for the CTGF gene was designed, synthesized and cloned into a Plk0.1-GFP-SP6 vector to construct a lentivirus-mediated shRNA/CTGF. CTGF mRNA and protein expression in HepG2 cells treated by CTGF-specific shRNA was evaluated by real-time PCR and Western blotting. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to evaluate the growth effect, and a colony formation assay was used for observing clonogenic growth. In vivo, tumor cell proliferation was evaluated in a nude mouse model of xenotransplantation. Statistical significance was determined by t test for comparison between two groups, or analysis of variance (ANOVA) for multiple groups. Immunohistochemical staining of CTGF was seen in 35 of 40 HCC samples (87.5%). CTGF was overexpressed 5-fold in 20 HCC tissues, compared with surrounding non-tumor liver tissue. CTGF mRNA level was 5 - 8-fold higher in HepG2, SMMC-7721 and MHCC-97H than in LO2 cells. This indicated that the inhibition rate of cell growth was 43% after knockdown of CTGF expression (P < 0.05). Soft agar colony formation assay showed that siRNA mediated knockdown of CTGF inhibited colony formation in soft agar of HepG2 cells (P < 0.05). The volume of tumors from CTGF-shRNA-expressing cells only accounted for 35% of the tumors from the scrambled control-infected HepG2 cells (P < 0.05). CTGF was overexpressed in human HCC cells and downregulation of CTGF inhibited HCC growth in vitro and in vivo. Knockdown of CTGF may be a potential therapeutic strategy for treatment of HCC.

  6. Phospho-aspirin (MDC-22) inhibits breast cancer in preclinical animal models: an effect mediated by EGFR inhibition, p53 acetylation and oxidative stress

    International Nuclear Information System (INIS)

    Huang, Liqun; Wong, Chi C; Mackenzie, Gerardo G; Sun, Yu; Cheng, Ka Wing; Vrankova, Kvetoslava; Alston, Ninche; Ouyang, Nengtai; Rigas, Basil

    2014-01-01

    The anticancer properties of aspirin are restricted by its gastrointestinal toxicity and its limited efficacy. Therefore, we synthesized phospho-aspirin (PA-2; MDC-22), a novel derivative of aspirin, and evaluated its chemotherapeutic and chemopreventive efficacy in preclinical models of triple negative breast cancer (TNBC). Efficacy of PA-2 was evaluated in human breast cancer cells in vitro, and in orthotopic and subcutaneous TNBC xenografts in nude mice. Mechanistic studies were also carried out to elucidate the mechanism of action of PA-2. PA-2 inhibited the growth of TNBC cells in vitro more potently than aspirin. Treatment of established subcutaneous TNBC xenografts (MDA-MB-231 and BT-20) with PA-2 induced a strong growth inhibitory effect, resulting in tumor stasis (79% and 90% inhibition, respectively). PA-2, but not aspirin, significantly prevented the development of orthotopic MDA-MB-231 xenografts (62% inhibition). Mechanistically, PA-2: 1) inhibited the activation of epidermal growth factor receptor (EGFR) and suppressed its downstream signaling cascades, including PI3K/AKT/mTOR and STAT3; 2) induced acetylation of p53 at multiple lysine residues and enhanced its DNA binding activity, leading to cell cycle arrest; and 3) induced oxidative stress by suppressing the thioredoxin system, consequently inhibiting the activation of the redox sensitive transcription factor NF-κB. These molecular alterations were observed in vitro and in vivo, demonstrating their relevance to the anticancer effect of PA-2. Our findings demonstrate that PA-2 possesses potent chemotherapeutic efficacy against TNBC, and is also effective in its chemoprevention, warranting further evaluation as an anticancer agent

  7. MicroRNA-143-3p inhibits hyperplastic scar formation by targeting connective tissue growth factor CTGF/CCN2 via the Akt/mTOR pathway.

    Science.gov (United States)

    Mu, Shengzhi; Kang, Bei; Zeng, Weihui; Sun, Yaowen; Yang, Fan

    2016-05-01

    Post-traumatic hypertrophic scar (HS) is a fibrotic disease with excessive extracellular matrix (ECM) production, which is a response to tissue injury by fibroblasts. Although emerging evidence has indicated that miRNA contributes to hypertrophic scarring, the role of miRNA in HS formation remains unclear. In this study, we found that miR-143-3p was markedly downregulated in HS tissues and fibroblasts (HSFs) using qRT-PCR. The expression of connective tissue growth factor (CTGF/CCN2) was upregulated both in HS tissues and HSFs, which is proposed to play a key role in ECM deposition in HS. The protein expression of collagen I (Col I), collagen III (Col III), and α-smooth muscle actin (α-SMA) was obviously inhibited after treatment with miR-143-3p in HSFs. The CCK-8 assay showed that miR-143-3p transfection reduced the proliferation ability of HSFs, and flow cytometry showed that either early or late apoptosis of HSFs was upregulated by miR-143-3p. In addition, the activity of caspase 3 and caspase 9 was increased after miR-143-3p transfection. On the contrary, the miR-143-3p inhibitor was demonstrated to increase cell proliferation and inhibit apoptosis of HSFs. Moreover, miR-143-3p targeted the 3'-UTR of CTGF and caused a significant decrease of CTGF. Western blot demonstrated that Akt/mTOR phosphorylation and the expression of CTGF, Col I, Col III, and α-SMA were inhibited by miR-143-3p, but increased by CTGF overexpression. In conclusion, we found that miR-143-3p inhibits hypertrophic scarring by regulating the proliferation and apoptosis of human HSFs, inhibiting ECM production-associated protein expression by targeting CTGF, and restraining the Akt/mTOR pathway.

  8. Combination of rapamycin, CI-1040, and 17-AAG inhibits metastatic capacity of prostate cancer via Slug inhibition.

    Directory of Open Access Journals (Sweden)

    Guanxiong Ding

    Full Text Available Though prostate cancer (PCa has slow progression, the hormone refractory (HRCP and metastatic entities are substantially lethal and lack effective treatments. Transcription factor Slug is critical in regulating metastases of various tumors including PCa. Here we studied targeted therapy against Slug using combination of 3 drugs targeting 3 pathways respectively converging via Slug and further regulating PCa metastasis. Using in vitro assays we confirmed that Slug up-regulation incurred inhibition of E-cadherin that was anti-metastatic, and inhibited Bim-regulated cell apoptosis in PCa. Upstream PTEN/Akt, mTOR, Erk, and AR/Hsp90 pathways were responsible for Slug up-regulation and each of these could be targeted by rapamycin, CI-1040, and 17-AAG respectively. In 4 PCa cell lines with different traits in terms of PTEN loss and androgen sensitivity we tested the efficacy of mono- and combined therapy with the drugs. We found that metastatic capacity of the cells was maximally inhibited only when all 3 drugs were combined, due to the crosstalk between the pathways. 17-AAG decreases Slug expression via blockade of HSP90-dependent AR stability. Combination of rapamycin and CI-1040 diminishes invasiveness more potently in PCa cells that are androgen insensitive and with PTEN loss. Slug inhibited Bim-mediated apoptosis that could be rescued by mTOR/Erk/HSP90 inhibitors. Using mouse models for circulating PCa DNA quantification, we found that combination of mTOR/Erk/HSP90 inhibitors reduced circulating PCa cells in vivo significantly more potently than combination of 2 or monotherapy. Conclusively, combination of mTOR/Erk/Hsp90 inhibits metastatic capacity of prostate cancer via Slug inhibition.

  9. Inhibition of photosynthesis and bleaching of zooxanthellae by the coral pathogen Vibrio shiloi.

    Science.gov (United States)

    Ben-Haim, Y; Banim, E; Kushmaro, A; Loya, Y; Rosenberg, E

    1999-06-01

    Vibrio shiloi is the causative agent of bleaching (loss of endosymbiotic zooxanthellae) of the coral Oculina patagonica in the Mediterranean Sea. To obtain information on the mechanism of bleaching, we examined the effect of secreted material (AK1-S) produced by V. shiloi on zooxanthellae isolated from corals. AK1-S caused a rapid inhibition of photosynthesis of the algae, as measured with a Mini-PAM fluorometer. The inhibition of photosynthesis was caused by (i) ammonia produced during the growth of V. shiloi on protein-containing media and (ii) a non-dialysable heat-resistant factor. This latter material did not inhibit photosynthesis of the algae by itself but, when added to different concentrations of NH4Cl, enhanced the inhibition approximately two- to threefold. Ammonia and the enhancer were effective to different degrees on zooxanthellae isolated from four species of coral examined. In addition to the rapid inhibition of photosynthesis, AK1-S caused bleaching (loss of pigmentation) and lysis of zooxanthellae. Bleaching was more rapid than lysis, reaching a peak (25% bleached algae) after 6 h. The factors in AK1-S responsible for bleaching and lysis were different from those responsible for the inhibition of photosynthesis, because they were heat sensitive, non-dialysable and active in the dark. Thus, the coral pathogen V. shiloi produces an array of extracellular materials that can inhibit photosynthesis, bleach and lyse zooxanthellae.

  10. Therapeutic Effects of Topical Netrin-4 Inhibits Corneal Neovascularization in Alkali-Burn Rats

    Science.gov (United States)

    Han, Yun; Shao, Yi; Liu, Tingting; Qu, Yang-Luowa; Li, Wei; Liu, Zuguo

    2015-01-01

    Netrins are secreted molecules involved in axon guidance and angiogenesis. However, the role of netrins in the vasculature remains unclear. Netrin-4 and netrin-1 have been found to be either pro- or antiangiogenic factors. Previously, we found that netrin-1 acts as an anti-angiogenic factor in rats by inhibiting alkali burn-induced corneal neovascularization. Here, we further investigate the effects of netrin-4, another member of the same netrin family, on neovascularization in vitro and in vivo. We found that netrin-4 functions similarly as netrin-1 in angiogenesis. In vitro angiogenesis assay shows that netrin-4 affected human umbilical vein endothelial cell (HUVEC) tube formation, viability and proliferation, apoptosis, migration, and invasion in a dose-dependent manner. Netrin-4 was topically applied in vivo to alkali-burned rat corneas on day 0 (immediately after injury) and/or day 10 post-injury. Netrin-4 subsequently suppressed and reversed corneal neovascularization. Netrin-4 inhibited corneal epithelial and stromal cell apoptosis, inhibited vascular endothelial growth factor (VEGF), but promoted pigment epithelium-derived factor (PEDF) expression, decreased NK-KB p65 expression, and inhibits neutrophil and macrophage infiltration. These results indicate that netrin-4 shed new light on its potential roles in treatmenting for angiogenic diseases that affect the ocular surface, as well as other tissues. PMID:25853509

  11. Atorvastatin inhibits insulin synthesis by inhibiting the Ras/Raf/ERK/CREB pathway in INS-1 cells

    Science.gov (United States)

    Sun, Hongxi; Li, Yu; Sun, Bei; Hou, Ningning; Yang, Juhong; Zheng, Miaoyan; Xu, Jie; Wang, Jingyu; Zhang, Yi; Zeng, Xianwei; Shan, Chunyan; Chang, Bai; Chen, Liming; Chang, Baocheng

    2016-01-01

    Abstract Backround: Type 2 diabetes has become a global epidemic disease. Atorvastatin has become a cornerstone in the prevention and treatment of atherosclerosis. However, increasing evidence showed that statins can dose-dependently increase the risk of diabetes mellitus. The mechanism is not clear. Objective: The Ras complex pathway (Ras/Raf/extracellular signal-regulated kinase [ERK]/cAMP response element-binding protein [CREB]) is the major pathway that regulates the gene transcription. Except for the inhibition of cholesterol synthesis by inhibiting the 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-COA) reductase, statins can also downregulate the phosphorylation of a series of downstream substrates including the key proteins of the Ras complex pathway, therefore may inhibit the insulin syntheses in pancreatic beta cells. In our study, we investigated the inhibitory effect and the underlying mechanism of atorvastatin on insulin synthesis in rat islets. Methods: Islets were isolated from Wistar rats and cultured in Roswell Park Memorial Institute (RPMI)-1640 medium. The insulin content in the medium was measured by radioimmunoassay before and after the treatment of 50 μM atorvastatin. Effect of atorvastatin on the expression of insulin message Ribonucleic acid (mRNA) in pancreatic islet beta cells was also detected using quantitative real-time polymerase chain reaction. Western blotting was used to explore the possible role of the Ras complex pathway (Ras/Raf/ERK/CREB) in atorvastatin-inhibited insulin synthesis. The effects of atorvastatin on the binding of nuclear transcription factor p-CREB with CRE in INS-1 cells were examined via chromatin immunoprecipitation assay. Results: Compared with the control group, the insulin level decreased by 27.1% at 24 hours after atorvastatin treatment. Atorvastatin inhibited insulin synthesis by decreasing insulin mRNA expression of pancreatic islet beta cells. The activities of Ras, Raf-1, and p-CREB in the Ras complex

  12. Oral Rivaroxaban for the Treatment of Symptomatic Pulmonary Embolism

    NARCIS (Netherlands)

    Büller, Harry R.; Prins, Martin H.; Lensin, Anthonie W. A.; Decousus, Hervé; Jacobson, Barry F.; Minar, Erich; Chlumsky, Jaromir; Verhamme, Peter; Wells, Phil; Agnelli, Giancarlo; Cohen, Alexander; Berkowitz, Scott D.; Bounameaux, Henri; Davidson, Bruce L.; Misselwitz, Frank; Gallus, Alex S.; Raskob, Gary E.; Schellong, Sebastian; Segers, Annelise; Berkowitz, Scott; Gallus, Alexander; Lensing, Anthonie W. A.; Haskell, Lloyd; Raskob, Gary; Bauersachs, Rupert; van Bellen, Bonno; Boda, Zoltán; Borris, Lars; Brenner, Benjamin; Brighton, Tim; Davidson, Bruce; Decousus, Herve; Eriksson, Henry; Jacobson, Barry; Kakkar, Ajay; Kwong, Yok-Lam; Lee, Lai Heng; Meijer, Karina; van der Meer, Jan; Monreal, Manuel; Piovella, Franco; Sandset, Per Morten; Smith, Mark; Tomkowski, Witold; Wang, Yuqi; Brandjes, Dees; Mac Gillavry, Melvin; Otten, Hans-Martin; Carlsson, Anders; Kamphuisen, P.

    2012-01-01

    BACKGROUND A fixed-dose regimen of rivaroxaban, an oral factor Xa inhibitor, has been shown to be as effective as standard anticoagulant therapy for the treatment of deep-vein thrombosis, without the need for laboratory monitoring. This approach may also simplify the treatment of pulmonary embolism.

  13. Apixaban versus warfarin in patients with atrial fibrillation

    NARCIS (Netherlands)

    Granger, C.B.; Alexander, J.H.; McMurray, J.J.; Lopes, R.D.; Hylek, E.M.; Hanna, M.; Al-Khalidi, H.R.; Ansell, J.; Atar, D.; Avezum, A.; Bahit, M.C.; Diaz, R.; Easton, J.D.; Ezekowitz, J.A.; Flaker, G.; Garcia, D.; Geraldes, M.; Gersh, B.J.; Golitsyn, S.; Goto, S.; Hermosillo, A.G.; Hohnloser, S.H.; Horowitz, J.; Mohan, P.; Jansky, P.; Lewis, B.S.; Lopez-Sendon, J.L.; Pais, P.; Parkhomenko, A.; Verheugt, F.W.A.; Zhu, J.; Wallentin, L.

    2011-01-01

    BACKGROUND: Vitamin K antagonists are highly effective in preventing stroke in patients with atrial fibrillation but have several limitations. Apixaban is a novel oral direct factor Xa inhibitor that has been shown to reduce the risk of stroke in a similar population in comparison with aspirin.

  14. Inhibition of tumor necrosis factor alpha reduces the outgrowth of hepatic micrometastasis of colorectal tumors in a mouse model of liver ischemia-reperfusion injury.

    Science.gov (United States)

    Jiao, Shu-Fan; Sun, Kai; Chen, Xiao-Jing; Zhao, Xue; Cai, Ning; Liu, Yan-Jun; Xu, Long-Mei; Kong, Xian-Ming; Wei, Li-Xin

    2014-01-08

    Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micrometastases in the liver following IR, we used a mouse model of colorectal liver metastases. In this model, mice received IR treatment seven days after intrasplenic injections of colorectal CT26 cells. Prior to IR treatment, either TNF-α blocker Enbrel or low-dose TNF-α, which could inhibit IR-induced TNF-α elevation, was administered by intraperitoneal injection. Hepatic IR treatment significantly promoted CT26 tumor growth in the liver, but either Enbrel or low-dose TNF-α pretreatment reversed this trend. Further studies showed that the CT26 + IR group prominently increased the levels of ALT and AST, liver necrosis, inflammatory infiltration and the expressions of hepatic IL-6, MMP9 and E-selectin compared to those of CT26 group. Inhibition of TNF-α elevation remarkably attenuated the increases of these liver inflammatory damage indicators and tumor-promoting factors. These findings suggested that inhibition of TNF-α elevation delayed the IR-enhanced outgrowth of colorectal liver metastases by reducing IR-induced inflammatory damage and the formation of tumor-promoting microenvironments. Both Enbrel and low-dose TNF-α represented the potential therapeutic approaches for the protection of colorectal liver metastatic patients against IR injury-induced growth of liver micrometastases foci.

  15. Purification method for recombinant proteins based on a fusion between the target protein and the C-terminus of calmodulin

    Science.gov (United States)

    Schauer-Vukasinovic, Vesna; Deo, Sapna K.; Daunert, Sylvia

    2002-01-01

    Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E. coli and purified on a phenothiazine-derivatized silica column. CaM binds to the phenothiazine on the column in a Ca(2+)-dependent fashion and it was, therefore, used as an affinity tail for the purification of GFP. The fusion protein bound to the affinity column was then subjected to a proteolytic digestion with factor Xa. Pure GFP was eluted with a Ca(2+)-containing buffer, while CaM was eluted later with a buffer containing the Ca(2+)-chelating agent EGTA. The purity of the isolated GFP was verified by SDS-PAGE, and the fluorescence properties of the purified GFP were characterized.

  16. Low-molecular-weight heparins: pharmacologic profile and product differentiation.

    Science.gov (United States)

    Fareed, J; Jeske, W; Hoppensteadt, D; Clarizio, R; Walenga, J M

    1998-09-10

    The interchangeability of low-molecular-weight heparins (LMWHs) has been the subject of discussion since these products were first introduced for the prophylaxis of deep vein thrombosis. Experimental evidence now exists to show that LMWHs differ from each other in a number of characteristics. Products have been differentiated on the basis of molecular weight and biologic properties, but only limited information derived from the clinical setting is available. Potency has been described on the basis of anti-Factor Xa activity, but at equivalent anti-Xa activities, the anti-Factor IIa activity of different products shows marked variations. At the relatively small doses used for the management of postsurgical deep vein thrombosis, the effect of these interproduct differences may be relatively minor, but as LMWHs are developed for therapeutic use at much higher doses, such differences may become clinically important. Variations in safety and efficacy reported in clinical trials of LMWHs may reflect the known differences in their molecular composition and pharmacologic properties.

  17. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy.

    Science.gov (United States)

    Weijer, Ruud; Broekgaarden, Mans; Krekorian, Massis; Alles, Lindy K; van Wijk, Albert C; Mackaaij, Claire; Verheij, Joanne; van der Wal, Allard C; van Gulik, Thomas M; Storm, Gert; Heger, Michal

    2016-01-19

    Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression levels of HIF-1-associated proteins in human perihilar cholangiocarcinomas, (2) investigate the role of HIF-1 in PDT-treated human perihilar cholangiocarcinoma cells, and (3) determine whether HIF-1 inhibition reduces survival signaling and enhances PDT efficacy. Increased expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was confirmed in human perihilar cholangiocarcinomas. PDT with liposome-delivered zinc phthalocyanine caused HIF-1α stabilization in SK-ChA-1 cells and increased transcription of HIF-1α downstream genes. Acriflavine was taken up by SK-ChA-1 cells and translocated to the nucleus under hypoxic conditions. Importantly, pretreatment of SK-ChA-1 cells with acriflavine enhanced PDT efficacy via inhibition of HIF-1 and topoisomerases I and II. The expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was determined by immunohistochemistry in human perihilar cholangiocarcinomas. In addition, the response of human perihilar cholangiocarcinoma (SK-ChA-1) cells to PDT with liposome-delivered zinc phthalocyanine was investigated under both normoxic and hypoxic conditions. Acriflavine, a HIF-1α/HIF-1β dimerization inhibitor and a potential dual topoisomerase I/II inhibitor, was evaluated for its adjuvant effect on PDT efficacy. HIF-1, which is activated in human hilar cholangiocarcinomas, contributes to tumor cell survival following PDT in vitro. Combining PDT with acriflavine pretreatment improves PDT efficacy in cultured cells and therefore warrants further preclinical validation for therapy-recalcitrant perihilar cholangiocarcinomas.

  18. Compound C inhibits macrophage chemotaxis through an AMPK-independent mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngyi [College of Pharmacy, Woosuk University, Wanju, Jeonbuk 55338 (Korea, Republic of); Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896 (Korea, Republic of); Park, Byung-Hyun, E-mail: bhpark@jbnu.ac.kr [Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896 (Korea, Republic of); Bae, Eun Ju, E-mail: ejbae@woosuk.ac.kr [College of Pharmacy, Woosuk University, Wanju, Jeonbuk 55338 (Korea, Republic of)

    2016-01-15

    Macrophage infiltration in adipose tissue is a well-established cause of obesity-linked insulin resistance. AMP-activated protein kinase (AMPK) activation in peripheral tissues such as adipose tissue has beneficial effects on the protection against obesity-induced insulin resistance, which is mainly mediated by prevention of adipose tissue macrophage infiltration and inflammation. In examining the role of AMPK on adipose tissue inflammation, we unexpectedly found that compound C (CC), despite its inhibition of AMPK, robustly inhibited macrophage chemotaxis in RAW 264.7 cells when adipocyte conditioned medium (CM) was used as a chemoattractant. Here, we report that CC inhibition of macrophage migration occurred independently of AMPK. Mechanistically, this inhibitory effect of cell migration by CC was mediated by inhibition of the focal adhesion kinase, AKT, nuclear factor κB pathways. Moreover, the expression of chemokine monocyte chemoattractant protein-1 and pro-inflammatory genes such as tumor necrosis factor α and inducible nitric oxide synthase were prevented by CC treatment in RAW 264.7 cells stimulated with either adipocyte CM or lipopolysaccharide. Lastly, in accord with the findings of the anti-inflammatory effect of CC, we demonstrated that CC functioned as a repressor of macrophage CM-mediated insulin resistance in adipocytes. Taken together, our results suggest that CC serves as a useful inhibitory molecule against macrophage chemotaxis into adipose tissue and thus might have therapeutic potential for the treatment of obesity-linked adipose inflammation. - Highlights: • Compound C (CC) inhibits macrophage chemotaxis regardless of AMPK suppression. • CC enhances insulin sensitivity in adipocytes. • CC inhibits focal adhesion kinase, AKT, and NF-κB signaling in RAW 264.7 cells.

  19. Activation of PI3K-Akt-GSK3β pathway mediates hepatocyte growth factor inhibition of RANTES expression in renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Gong Rujun; Rifai, Abdalla; Dworkin, Lance D.

    2005-01-01

    Hepatocyte growth factor (HGF) was recently reported to ameliorate renal inflammation in a rat model of chronic renal failure. HGF exerted its action through suppression of RANTES expression in renal tubules. In the present study, we utilized an in vitro model of human kidney proximal tubule epithelial cells (HKC) to elucidate the mechanisms of RANTES suppression by HGF. HGF significantly suppressed basal and TNF-α-induced mRNA and protein expression of RANTES in a time and dose dependent fashion. HGF elicited PI3K-Akt activation and inhibited GSK3, a downstream transducer of PI3K-Akt, by inhibitory phosphorylation at Ser-9. When the PI3K-Akt pathway was blocked by wortmannin, HGF inhibition of RANTES was abrogated, demonstrating that the PI3K-Akt pathway is necessary for HGF action. In addition, specific inhibition of GSK3 activity by lithium ion suppressed basal and TNF-α-induced RANTES expression, reminiscent of the action of HGF. To further investigate the role of GSK3 in modulating RANTES expression, we examined the effect of forced expression of wild type GSK3β or an uninhibitable mutant GSK3β, in which the regulatory Ser-9 residue is changed to alanine (S9A-GSK3β) in HKC. Overexpression of wild type GSK3β did not alter the inhibitory action of HGF on RANTES. In contrast, expression of S9A-GSK3β abolished HGF inhibition of basal and TNF-α stimulated RANTES expression. These findings suggest that PI3K-Akt activation and subsequent inhibitory phosphorylation of GSK3β are required for HGF-induced suppression of RANTES in HKC

  20. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection.

    Directory of Open Access Journals (Sweden)

    Milly M Choy

    2015-11-01

    Full Text Available The mosquito-borne dengue virus (DENV is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue.