WorldWideScience

Sample records for factor vegf pathway

  1. VEGF-independent angiogenic pathways induced by PDGF-C

    Science.gov (United States)

    Kumar, Anil; Zhang, Fan; Lee, Chunsik; Li, Yang; Tang, Zhongshu; Arjunan, Pachiappan

    2010-01-01

    VEGF is believed to be a master regulator in both developmental and pathological angiogenesis. The role of PDGF-C in angiogenesis, however, is only at the beginning of being revealed. We and others have shown that PDGF-C is a critical player in pathological angiogenesis because of its pleiotropic effects on multiple cellular targets. The angiogenic pathways induced by PDGF-C are, to a large extent, VEGF-independent. These pathways may include, but not limited to, the direct effect of PDGF-C on vascular cells, the effect of PDGF-C on tissue stroma fibroblasts, and its effect on macrophages. Taken together, the pleiotropic, versatile and VEGF-independent angiogenic nature of PDGF-C has placed it among the most important target genes for antiangiogenic therapy. PMID:20871734

  2. CXCL7-Mediated Stimulation of Lymphangiogenic Factors VEGF-C, VEGF-D in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Minghuan Yu

    2010-01-01

    Full Text Available Increased expression of lymphangiogenesis factors VEGF-C/D and heparanase has been correlated with the invasion of cancer. Furthermore, chemokines may modify matrix to facilitate metastasis, and they are associated with VEGF-C and heparanase. The chemokine CXCL7 binds heparin and the G-protein-linked receptor CXCR2. We investigated the effect of CXCR2 blockade on the expression of VEGF-C/D, heparanase, and on invasion. CXCL7 siRNA and a specific antagonist of CXCR2 (SB225002 were used to treat CXCL7 stably transfected MCF10AT cells. Matrigel invasion assays were performed. VEGF-C/D expression and secretion were determined by real-time PCR and ELISA assay, and heparanase activity was quantified by ELISA. SB225002 blocked VEGF-C/D expression and secretion (P<.01. CXCL7 siRNA knockdown decreased heparanase (P<.01. Both SB225002 and CXCL7 siRNA reduced the Matrigel invasion (P<.01. The MAP kinase signaling pathway was not involved. The CXCL7/CXCR2 axis is important for cell invasion and the expression of VEGF-C/D and heparanase, all linked to invasion.

  3. Vascular endothelial growth factor ( VEGF ) receptor expression ...

    African Journals Online (AJOL)

    Avidin-biotin complex method was employed for immunohistochemical detection of VEGF. Results: VEGF immuno-expression was positive in 51.9% of CRC, while it was 18.2% in the normal colonic tissue (p<0.05). VEGF immunostaining was positively correlated with grade of colonic malignancy (p<0.05). Conclusion: ...

  4. Transcription regulation of the vegf gene by the BMP/Smad pathway in the angioblast of zebrafish embryos

    International Nuclear Information System (INIS)

    He Chen; Chen Xiaozhuo

    2005-01-01

    Vascular endothelial growth factor (VEGF) is a mitogen that is critically involved in vasculogenesis, angiogenesis, and hematopoiesis. However, what and how transcription factors participate in the regulation of vegf gene expression are not fully understood. Here we report the cloning and sequencing of the zebrafish vegf promoter which revealed that the promoter contains a number of bone morphogenetic protein (BMP)-activated Smad binding elements (SBE), implicating Smad1 and Smad5 in the regulation of BMP-induced expression of vegf. Electrophoretic mobility shift assays of adding recombinant Smad proteins to the SBE-containing DNA oligonucleotides that represent portions of zebrafish vegf promoter resulted in mobility shift of the oligonucleotides. These changes demonstrate potential interactions between Smad1/5 and the vegf promoter. Reporter activity assays using the wild-type or SBE-deleted vegf promoters to drive the luciferase reporter gene expression revealed that Smad1 stimulated while Smad5 repressed the vegf promoter activity in zebrafish embryos. These data indicate that the BMP/Smad signaling pathway is involved in the regulation of zebrafish vegf transcription. In addition, we demonstrate that transgenic expression of human BMP4 in zebrafish embryos induced an expansion of the posterior intermediate cell mass (ICM, also commonly called blood island), a population of cells containing endothelial and hematopoietic precursors. In the expanded ICM, vegf and VEGF receptor 2 (flk-1) were ectopically co-expressed, suggesting that an autocrine/paracrine regulation of vegf expression may exist and contribute to the BMP-induced hemangiogenic cell proliferation

  5. IL-6 Promotes FSH-Induced VEGF Expression Through JAK/STAT3 Signaling Pathway in Bovine Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Meng Yang

    2017-11-01

    Full Text Available Background/Aims: Vascular endothelial growth factor (VEGF has been demonstrated to play a pivotal role in the regulation of angiogenesis in ovarian follicular development, particularly during the preovulatory period. Although numerous studies have shown that interleukin-6 (IL-6 is one of the major inducing factors that regulate the expression of VEGF in non-ovarian cells, whether it involved in regulating the expression of VEGF in normal ovarian granulosa cells is still unknown. The aim of this study was to elucidate the mechanisms underlying the effect of IL-6 on FSH-induced VEGF expression in bovine granulosa cells derived from large follicles. Methods: VEGF mRNA expression in granulosa cells after IL-6 with/without inhibitors treatment was analyzed by RT-qPCR. Phosphorylation levels of ERK1/2 and STAT3 proteins induced by IL-6 were analyzed by western blotting. The protein levels produced by granulosa cells were detected by ELISA. Results: High concentration of IL-6 (10ng/ml can significantly up-regulate FSH-induced VEGF gene and protein expression levels in granulosa cells, and also promote the VEGF upstream regulators HIF-1α and COX2 mRNA expression. VEGF expression levels were significantly decreased after specifically blocking HIF-1α and COX2 by using inhibitors. The up-regulation effect of IL-6 on FSH-induced VEGF expression in granulosa cells mainly through activating the JAK/STAT3 signaling pathway, which can be impaired by JAK inhibitors. Conclusion: IL-6 can promote FSH-induced VEGF expression in granulosa cells, which is mainly achieved by increasing the expression of HIF-1α and COX2.This promoting effect is mediated by activating the JAK/STAT3 pathway. Moreover, there may be a synergistic relationship between FSH and IL-6 in the regulation of VEGF expression.

  6. Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco.

    Science.gov (United States)

    Wojtukiewicz, Marek Z; Sierko, Ewa; Skalij, Piotr; Kamińska, Magda; Zimnoch, Lech; Brekken, Ralf A; Thorpe, Philip E

    2016-01-01

    Doxorubicin and docetaxel-based chemotherapy regimens used in breast cancer patients are associated with high risk of febrile neutropenia (FN). Granulocyte colony-stimulating factors (G-CSF) are recommended for both treating and preventing chemotherapy-induced neutropenia. Increased thrombosis incidence in G-CSF treated patients was reported; however, the underlying mechanisms remain unclear. The principal activator of blood coagulation in cancer is tissue factor (TF). It additionally contributes to cancer progression and stimulates angiogenesis. The main proangiogenic factor is vascular endothelial growth factor (VEGF). The aim of the study was to evaluate granulocyte-colony stimulating factor receptor (G-CSFR), tissue factor (TF) expression and vascular endothelial growth factor receptor (VEGF-R) bound VEGF in human breast cancer in loco. G-CSFR, TF and VEGFR bound VEGF (VEGF: VEGFR) were assessed in 28 breast cancer tissue samples. Immunohistochemical (IHC) methodologies according to ABC technique and double staining IHC procedure were employed utilizing antibodies against G-CSFR, TF and VEGF associated with VEGFR (VEGF: VEGFR). Expression of G-CSFR was demonstrated in 20 breast cancer tissue specimens (71%). In 6 cases (21%) the expression was strong (IRS 9-12). Strong expression of TF was observed in all investigated cases (100%). Moreover, expression of VEGF: VEGFR was visualized in cancer cells (IRS 5-8). No presence of G-CSFR, TF or VEGF: VEGFR was detected on healthy breast cells. Double staining IHC studies revealed co-localization of G-CSFR and TF, G-CSFR and VEGF: VEGFR, as well as TF and VEGF: VEGFR on breast cancer cells and ECs. The results of the study indicate that GCSFR, TF and VEGF: VEGFR expression as well as their co-expression might influence breast cancer biology, and may increase thromboembolic adverse events incidence.

  7. The power of VEGF (vascular endothelial growth factor) family molecules.

    Science.gov (United States)

    Thomas, Jean-Leon; Eichmann, Anne

    2013-05-01

    Vascular endothelial growth factors (VEGFs) and their high-affinity tyrosine kinase VEGF receptors (VEGFRs) are key regulators of both angiogenesis and neurogenesis. The current issue of CMLS discusses recent literature and work implementing these signals in nervous system development, maintenance and disease pathology.

  8. Increased vascular endothelial growth factor (VEGF) expression in ...

    African Journals Online (AJOL)

    User

    2011-05-16

    May 16, 2011 ... Vascular endothelial growth factor (VEGF), a well known angiogenic factor, has been shown to have direct and/or ... Endogenous repair efforts fail to repair ... Spinal cord injury model preparation and intramedullary spinal.

  9. Increased vascular endothelial growth factor (VEGF) expression in ...

    African Journals Online (AJOL)

    User

    2011-05-16

    May 16, 2011 ... was quantified by means of western blot and immunohistochemistry technology. ... Key words: Vascular endothelial growth factor (VEGF), spinal cord injury, ... accordance with the National Institute of Health Guide for the Care.

  10. EG-VEGF: a key endocrine factor in placental development.

    Science.gov (United States)

    Brouillet, Sophie; Hoffmann, Pascale; Feige, Jean-Jacques; Alfaidy, Nadia

    2012-10-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF), also named prokineticin 1, is the canonical member of the prokineticin family. Numerous reports suggest a direct involvement of this peptide in normal and pathological reproductive processes. Recent advances propose EG-VEGF as a key endocrine factor that controls many aspects of placental development and suggest its involvement in the development of preeclampsia (PE), the most threatening pathology of human pregnancy. This review describes the finely tuned action and regulation of EG-VEGF throughout human pregnancy, argues for its clinical relevance as a potential diagnostic marker of the onset of PE, and discusses future research directions for therapeutic targeting of EG-VEGF. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Endogenous Vascular Endothelial Growth Factor-A (VEGF-A) Maintains Endothelial Cell Homeostasis by Regulating VEGF Receptor-2 Transcription*

    Science.gov (United States)

    E, Guangqi; Cao, Ying; Bhattacharya, Santanu; Dutta, Shamit; Wang, Enfeng; Mukhopadhyay, Debabrata

    2012-01-01

    Vascular endothelial growth factor A (VEGF-A) is one of the most important factors controlling angiogenesis. Although the functions of exogenous VEGF-A have been widely studied, the roles of endogenous VEGF-A remain unclear. Here we focused on the mechanistic functions of endogenous VEGF-A in endothelial cells. We found that it is complexed with VEGF receptor 2 (VEGFR-2) and maintains a basal expression level for VEGFR-2 and its downstream signaling activation. Endogenous VEGF-A also controls expression of key endothelial specific genes including VEGFR-2, Tie-2, and vascular endothelial cadherin. Of importance, endogenous VEGF-A differs from exogenous VEGF-A by regulating VEGFR-2 transcription through mediation of FoxC2 binding to the FOX:ETS motif, and the complex formed by endogenous VEGF-A with VEGFR-2 is localized within the EEA1 (early endosome antigen 1) endosomal compartment. Taken together, our results emphasize the importance of endogenous VEGF-A in endothelial cells by regulating key vascular proteins and maintaining the endothelial homeostasis. PMID:22167188

  12. Vascular endothelial growth factor (VEGF and prostate pathology

    Directory of Open Access Journals (Sweden)

    Francisco Botelho

    2010-08-01

    Full Text Available PURPOSE: Previous studies suggest that vascular endothelial growth factor (VEGF circulating levels might improve identification of patients with prostate cancer but results are conflicting. Our aim was to compare serum VEGF levels across different prostate pathologies (including benign prostatic hyperplasia, prostatitis, high grade prostate intraepithelial neoplasia and prostate cancer in patients at high risk of prostate cancer. MATERIALS AND METHODS: We consecutively enrolled 186 subjects with abnormal digital rectal examination and/or total PSA (tPSA = 2.5 ng/mL. Blood was collected before diagnostic ultrasound guided trans-rectal prostate biopsy, or any prostate oncology treatment, to measure PSA isoforms and VEGF. Unconditional logistic regression was used to compute age-, tPSA- and free/total PSA-adjusted odds ratios (OR and respective 95% confidence intervals (95% CI for the association between serum VEGF and different prostatic pathologies. RESULTS: Prostate biopsy main diagnoses were normal or benign prostatic hyperplasia (27.3%, prostatitis (16.6%, and prostatic cancer (55.0%. The median VEGF levels (ng/mL in these groups were 178.2, 261.3 and 266.4 (p = 0.029, respectively, but no significant differences were observed for benign vs. malignant pathologies (215.2 vs. 266.4, p = 0.551. No independent association was observed between VEGF (3rd vs. 1st third and prostate cancer, when compared to benign conditions (adjusted OR = 1.44; CI 95%: 0.64-3.26. CONCLUSIONS: In patients at high risk of prostate cancer, circulating VEGF levels have no clinical role in deciding which patients should be submitted to prostate biopsy. Prostatitis patients, often with higher PSA levels, also present high serum levels of VEGF, and their inclusion in control groups might explain the heterogeneous results in previous studies.

  13. M-CSF signals through the MAPK/ERK pathway via Sp1 to induce VEGF production and induces angiogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Jennifer M Curry

    Full Text Available BACKGROUND: M-CSF recruits mononuclear phagocytes which regulate processes such as angiogenesis and metastases in tumors. VEGF is a potent activator of angiogenesis as it promotes endothelial cell proliferation and new blood vessel formation. Previously, we reported that in vitro M-CSF induces the expression of biologically-active VEGF from human monocytes. METHODOLOGY AND RESULTS: In this study, we demonstrate the molecular mechanism of M-CSF-induced VEGF production. Using a construct containing the VEGF promoter linked to a luciferase reporter, we found that a mutation reducing HIF binding to the VEGF promoter had no significant effect on luciferase production induced by M-CSF stimulation. Further analysis revealed that M-CSF induced VEGF through the MAPK/ERK signaling pathway via the transcription factor, Sp1. Thus, inhibition of either ERK or Sp1 suppressed M-CSF-induced VEGF at the mRNA and protein level. M-CSF also induced the nuclear localization of Sp1, which was blocked by ERK inhibition. Finally, mutating the Sp1 binding sites within the VEGF promoter or inhibiting ERK decreased VEGF promoter activity in M-CSF-treated human monocytes. To evaluate the biological significance of M-CSF induced VEGF production, we used an in vivo angiogenesis model to illustrate the ability of M-CSF to recruit mononuclear phagocytes, increase VEGF levels, and enhance angiogenesis. Importantly, the addition of a neutralizing VEGF antibody abolished M-CSF-induced blood vessel formation. CONCLUSION: These data delineate an ERK- and Sp1-dependent mechanism of M-CSF induced VEGF production and demonstrate for the first time the ability of M-CSF to induce angiogenesis via VEGF in vivo.

  14. Crosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways

    International Nuclear Information System (INIS)

    Tufro, Alda; Teichman, Jason; Banu, Nazifa; Villegas, Guillermo

    2007-01-01

    Vascular endothelial growth factor (VEGF-A) plays multiple roles in kidney development: stimulates cell proliferation, survival, tubulogenesis, and branching morphogenesis. However, the mechanism that mediates VEGF-A induced ureteric bud branching is unclear. Glial-derived neurotrophic factor (GDNF) signaling through tyrosine kinase c-RET is the major regulator of ureteric bud branching. Here we examined whether VEGF-A regulates RET signaling. We determined that ureteric bud-derived cells express the main VEGF-A signaling receptor, VEGFR2 and RET, by RT-PCR, immunoblotting, and immunocytochemistry. We show that the VEGF-A isoform VEGF 165 induces RET-tyr 1062 phosphorylation in addition to VEGFR2 autophosphorylation, that VEGF 165 and GDNF have additive effects on RET-tyr 1062 phosphorylation, and that VEGFR2 and RET co-immunoprecipitate. Functionally, VEGF 165 induces ureteric bud cell proliferation and branching morphogenesis. Similarly, in embryonic kidney explants VEGF 165 induces RET-tyr 1062 phosphorylation and upregulates GDNF. These findings provide evidence for a novel cooperative interaction between VEGFR2 and RET that mediates VEGF-A functions in ureteric bud cells

  15. Cyclooxygenase-2 Pathway Correlates with VEGF Expression in Head and Neck Cancer. Implications for Tumor Angiogenesis and Metastasis

    Directory of Open Access Journals (Sweden)

    Oreste Gallo

    2001-01-01

    Full Text Available We evaluated the role of COX-2 pathway in 35 head and neck cancers (HNCs by analyzing COX-2 expression and prostaglandin E2 (PGE2 production in relation to tumor angiogenesis and lymph node metastasis. COX-2 activity was also correlated to vascular endothelial growth factor (VEGF mRNA and protein expression. COX-2 mRNA and protein expression was higher in tumor samples than in normal mucosa. PGE2 levels were higher in the tumor front zone in comparison with tumor core and normal mucosa (P<0001. Specimens from patients with lymph node metastasis exhibited higher COX-2 protein expression (P=.0074, PGEZ levels (P=.0011 and microvessel density (P<.0001 than specimens from patients without metastasis. A significant correlation between COX-2 and tumor vascularization (rs=0.450, P=.007 as well as between COX-2 and microvessel density with VEGF expression in tumor tissues was found (rs=0.450, P=.007; rs=0.620, P=.0001, respectively. The induction of COX-2 mRNA and PGE2 synthesis by EGF and Escherichia coli lipopolysaccharide (LPS in A-431 and SCC-9 cell lines, resulted in an increase in VEGF mRNA and protein production. Indomethacin and celecoxib reversed the EGF- and LPS-dependent COX-2, VEGF, and PGE2 increases. This study suggests a central role of COX-2 pathway in HNC angiogenesis by modulating VEGF production and indicates that COX-2 inhibitors may be useful in HNC treatment.

  16. Germline Polymorphisms of the VEGF Pathway Predict Recurrence in Nonadvanced Differentiated Thyroid Cancer.

    Science.gov (United States)

    Marotta, Vincenzo; Sciammarella, Concetta; Capasso, Mario; Testori, Alessandro; Pivonello, Claudia; Chiofalo, Maria Grazia; Gambardella, Claudio; Grasso, Marica; Antonino, Antonio; Annunziata, Annamaria; Macchia, Paolo Emidio; Pivonello, Rosario; Santini, Luigi; Botti, Gerardo; Losito, Simona; Pezzullo, Luciano; Colao, Annamaria; Faggiano, Antongiulio

    2017-02-01

    Tumor angiogenesis is determined by host genetic background rather than environment. Germline single nucleotide polymorphisms (SNPs) of the vascular endothelial growth factor (VEGF) pathway have demonstrated prognostic value in different tumors. Our main objective was to test the prognostic value of germline SNPs of the VEGF pathway in nonadvanced differentiated thyroid cancer (DTC). Secondarily, we sought to correlate analyzed SNPs with microvessel density (MVD). Multicenter, retrospective, observational study. Four referral centers. Blood samples were obtained from consecutive DTC patients. Genotyping was performed according to the TaqMan protocol, including 4 VEGF-A (-2578C>A, -460T>C, +405G>C, and +936C>T) and 2 VEGFR-2 (+1192 C>T and +1719 T>A) SNPs. MVD was estimated by means of CD34 staining. Rate of recurrent structural disease/disease-free survival (DFS). Difference in MVD between tumors from patients with different genotype. Two hundred four patients with stage I-II DTC (mean follow-up, 73 ± 64 months) and 240 patients with low- to intermediate-risk DTC (mean follow-up, 70 ± 60 months) were enrolled. Two "risk" genotypes were identified by combining VEGF-A SNPs -2578 C>A, -460 T>C, and +405 G>C. The ACG homozygous genotype was protective in both stage I-II (odds ratio [OR], 0.08; 95% confidence interval [CI], 0.01 to 1.43; P = 0.018) and low- to intermediate-risk (OR, 0.14; 95% CI, 0.01 to 1.13; P = 0.035) patients. The CTG homozygous genotype was significantly associated with recurrence in stage I-II (OR, 5.47; 95% CI, 1.15 to 26.04; P = 0.018) and was slightly deleterious in low- to intermediate-risk (OR, 3.39; 95% CI, 0.8 to 14.33; P = 0.079) patients. MVD of primary tumors from patients harboring a protective genotype was significantly lower (median MVD, 76.5 ± 12.7 and 86.7 ± 27.9, respectively; P = 0.024). Analysis of germline VEGF-A SNPs could empower a prognostic approach to DTC. Copyright © 2017 by the Endocrine Society

  17. Antioxidant properties of glutamine and its role in VEGF-Akt pathways in portal hypertension gastropathy.

    Science.gov (United States)

    Marques, Camila; Licks, Francielli; Zattoni, Ingrid; Borges, Beatriz; de Souza, Luiz Eduardo Rizzo; Marroni, Claudio Augusto; Marroni, Norma Possa

    2013-07-28

    To investigate the effects of glutamine on oxidative/nitrosative stress and the vascular endothelial growth factor (VEGF)-Akt-endothelial nitric oxide synthase (eNOS) signaling pathway in an experimental model of portal hypertension induced by partial portal vein ligation (PPVL). Portal hypertension was induced by PPVL. The PPVL model consists of a partial obstruction of the portal vein, performed using a 20 G blunt needle as a guide, which is gently removed after the procedure. PPVL model was performed for 14 d beginning treatment with glutamine on the seventh day. On the fifteenth day, the mesenteric vein pressure was checked and the stomach was removed to test immunoreactivity and oxidative stress markers. We evaluated the expression and the immunoreactivity of proteins involved in the VEGF-Akt-eNOS pathway by Western blotting and immunohistochemical analysis. Oxidative stress was measured by quantification of the cytosolic concentration of thiobarbituric acid reactive substances (TBARS) as well as the levels of total glutathione (GSH), superoxide dismutase (SOD) activity, nitric oxide (NO) production and nitrotyrosine immunoreactivity. All data are presented as the mean ± SE. The production of TBARS and NO was significantly increased in PPVL animals. A reduction of SOD activity was detected in PPVL + G group. In the immunohistochemical analyses of nitrotyrosine, Akt and eNOS, the PPVL group exhibited significant increases, whereas decreases were observed in the PPVL + G group, but no difference in VEGF was detected between these groups. Western blotting analysis detected increased expression of phosphatidylinositol-3-kinase (PI3K), P-Akt and eNOS in the PPVL group compared with the PPVL + G group, which was not observed for the expression of VEGF when comparing these groups. Glutamine administration markedly alleviated oxidative/nitrosative stress, normalized SOD activity, increased levels of total GSH and blocked NO overproduction as well as the formation of

  18. NLRC5 promotes cell proliferation via regulating the AKT/VEGF-A signaling pathway in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    He, Ying-hua; Li, Ming-fang; Zhang, Xing-yan; Meng, Xiao-ming; Huang, Cheng; Li, Jun

    2016-01-01

    NLRC5, a newly found member of the NLR family and the largest member of nucleotide-binding, has been reported to regulate immune responses and is associated with hepatocellular carcinoma (HCC). We investigated the mechanisms and signaling pathways of NLRC5 in HCC progression. Increased expression of NLRC5, vascular endothelial growth factor-A (VEGF-A) were found in human HCC tissue. There was a positive correlation between NLRC5 and VEGF-A expression and cell proliferation were enhanced in NLRC5-overexpressing HepG2 cells, but inhibited in cells with NLRC5 silencing treatment. Interestingly, we found that up-regulation of NLRC5 also coordinated the activation of PI3K/AKT signaling pathway. An AKT inhibitor LY294002 blocked VEGF-A expression and AKT phosphorylation in HepG2 cells and NLRC5-overexpressing HepG2 cells. These results demonstrate that NLRC5 promotes HCC progression via the AKT/VEGF-A signaling pathway.

  19. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways

    Science.gov (United States)

    Wang, P; Chen, S-H; Hung, W-C; Paul, C; Zhu, F; Guan, P-P; Huso, DL; Kontrogianni-Konstantopoulos, A; Konstantopoulos, K

    2015-01-01

    Interstitial fluid flow in and around the tumor tissue is a physiologically relevant mechanical signal that regulates intracellular signaling pathways throughout the tumor. Yet, the effects of interstitial flow and associated fluid shear stress on the tumor cell function have been largely overlooked. Using in vitro bioengineering models in conjunction with molecular cell biology tools, we found that fluid shear (2 dyn/cm2) markedly upregulates matrix metalloproteinase 12 (MMP-12) expression and its activity in human chondrosarcoma cells. MMP-12 expression is induced in human chondrocytes during malignant transformation. However, the signaling pathway regulating MMP-12 expression and its potential role in human chondrosarcoma cell invasion and metastasis have yet to be delineated. We discovered that fluid shear stress induces the synthesis of insulin growth factor-2 (IGF-2) and vascular endothelial growth factor (VEGF) B and D, which in turn transactivate MMP-12 via PI3-K, p38 and JNK signaling pathways. IGF-2-, VEGF-B- or VEGF-D-stimulated chondrosarcoma cells display markedly higher migratory and invasive potentials in vitro, which are blocked by inhibiting MMP-12, PI3-K, p38 or JNK activity. Moreover, recombinant human MMP-12 or MMP-12 overexpression can potentiate chondrosarcoma cell invasion in vitro and the lung colonization in vivo. By reconstructing and delineating the signaling pathway regulating MMP-12 activation, potential therapeutic strategies that interfere with chondrosarcoma cell invasion may be identified. PMID:25435370

  20. HIF-VEGF pathways are critical for chronic otitis media in Junbo and Jeff mouse mutants.

    Directory of Open Access Journals (Sweden)

    Michael T Cheeseman

    2011-10-01

    Full Text Available Otitis media with effusion (OME is the commonest cause of hearing loss in children, yet the underlying genetic pathways and mechanisms involved are incompletely understood. Ventilation of the middle ear with tympanostomy tubes is the commonest surgical procedure in children and the best treatment for chronic OME, but the mechanism by which they work remains uncertain. As hypoxia is a common feature of inflamed microenvironments, moderation of hypoxia may be a significant contributory mechanism. We have investigated the occurrence of hypoxia and hypoxia-inducible factor (HIF mediated responses in Junbo and Jeff mouse mutant models, which develop spontaneous chronic otitis media. We found that Jeff and Junbo mice labeled in vivo with pimonidazole showed cellular hypoxia in inflammatory cells in the bulla lumen, and in Junbo the middle ear mucosa was also hypoxic. The bulla fluid inflammatory cell numbers were greater and the upregulation of inflammatory gene networks were more pronounced in Junbo than Jeff. Hif-1α gene expression was elevated in bulla fluid inflammatory cells, and there was upregulation of its target genes including Vegfa in Junbo and Jeff. We therefore investigated the effects in Junbo of small-molecule inhibitors of VEGFR signaling (PTK787, SU-11248, and BAY 43-9006 and destabilizing HIF by inhibiting its chaperone HSP90 with 17-DMAG. We found that both classes of inhibitor significantly reduced hearing loss and the occurrence of bulla fluid and that VEGFR inhibitors moderated angiogenesis and lymphangiogenesis in the inflamed middle ear mucosa. The effectiveness of HSP90 and VEGFR signaling inhibitors in suppressing OM in the Junbo model implicates HIF-mediated VEGF as playing a pivotal role in OM pathogenesis. Our analysis of the Junbo and Jeff mutants highlights the role of hypoxia and HIF-mediated pathways, and we conclude that targeting molecules in HIF-VEGF signaling pathways has therapeutic potential in the treatment of

  1. VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2

    NARCIS (Netherlands)

    Garrett, Tiana A.; van Buul, Jaap D.; Burridge, Keith

    2007-01-01

    Vascular endothelial growth factor (VEGF) signaling is critical for both normal and disease-associated vascular development. Dysregulated VEGF signaling has been implicated in ischemic stroke, tumor angiogenesis, and many other vascular diseases. VEGF signals through several effectors, including the

  2. Amphiregulin enhances VEGF-A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR-206 via FAK/c-Src/PKCδ pathway.

    Science.gov (United States)

    Wang, Chao-Qun; Huang, Yu-Wen; Wang, Shih-Wei; Huang, Yuan-Li; Tsai, Chun-Hao; Zhao, Yong-Ming; Huang, Bi-Fei; Xu, Guo-Hong; Fong, Yi-Chin; Tang, Chih-Hsin

    2017-01-28

    Chondrosarcoma is the second most common primary malignancy of bone after myeloma and osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). The expression of VEGF-A has been recognized as a prognostic marker in angiogenesis. Amphiregulin (AR), an epidermal growth factor receptor ligand, promotes tumor proliferation, metastasis and angiogenesis. However, the role of AR in VEGF-A expression and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that AR promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, AR-enhanced VEGF-A expression and angiogenesis involved the FAK, c-Src and PKCδ signaling pathways, while miR-206 expression was negatively mediated by AR via the FAK, c-Src and PKCδ pathways. Our results illustrate the clinical significance between AR, VEGF-A and miR-206, as well as tumor stage, in human chondrosarcoma. AR may represent a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. CCL5 promotes VEGF-dependent angiogenesis by down-regulating miR-200b through PI3K/Akt signaling pathway in human chondrosarcoma cells

    Science.gov (United States)

    Liu, Guan-Ting; Chen, Hsien-Te; Tsou, Hsi-Kai; Tan, Tzu-Wei; Fong, Yi-Chin; Chen, Po-Chen; Yang, Wei-Hung; Wang, Shih-Wei; Chen, Jui-Chieh; Tang, Chih-Hsin

    2014-01-01

    Chondrosarcoma is the second most common primary malignant bone cancer, with potential for local invasion and distant metastasis. Chemokine CCL5 (formerly RANTES) of the CC-chemokine family plays a crucial role in metastasis. Angiogenesis is essential for the cancer metastasis. However, correlation of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is still unknown. CCL5-mediated VEGF expression was assessed by qPCR, ELISA, and Western blotting. CCL5-induced angiogenesis was examined by migration and tube formation in endothelial progenitor cells in vitro. CCL5 increased VEGF expression and also promoted chondrosarcoma conditional medium-mediated angiogenesis in vitro and in vivo. Stimulation of chondrosarcoma with CCL5 augmented PI3K and Akt phosphorylation, while PI3K and Akt inhibitor or siRNA abolished CCL5-induced VEGF expression and angiogenesis. We also demonstrated CCL5 inhibiting miR-200b expression and miR-200b mimic reversing the CCL5-enhanced VEGF expression and angiogenesis. Moreover, in chondrosarcoma patients showed the positive correlation between CCL5 and VEGF; negative correlation between CCL5 and miR-200b. Taken together, results demonstrate CCL5 promoting VEGF-dependent angiogenesis in human chondrosarcoma cells by down-regulating miR-200b through PI3K/Akt signaling pathway. PMID:25301739

  4. Peritoneal VEGF-A expression is regulated by TGF-β1 through an ID1 pathway in women with endometriosis.

    Science.gov (United States)

    Young, Vicky J; Ahmad, Syed F; Brown, Jeremy K; Duncan, W Colin; Horne, Andrew W

    2015-11-18

    VEGF-A, an angiogenic factor, is increased in the peritoneal fluid of women with endometriosis. The cytokine TGF-β1 is thought to play a role in the establishment of endometriosis lesions. Inhibitor of DNA binding (ID) proteins are transcriptional targets of TGF-β1 and ID1 has been implicated in VEGF-A regulation during tumor angiogenesis. Herein, we determined whether peritoneal expression of VEGF-A is regulated by TGF-β1 through the ID1 pathway in women with endometriosis. VEGF-A was measured in peritoneal fluid by ELISA (n = 16). VEGF-A and ID1 expression was examined in peritoneal biopsies (n = 13), and primary peritoneal and immortalized mesothelial cells (MeT5A) by immunohistochemistry, qRT-PCR and ELISA. VEGF-A was increased in peritoneal fluid from women with endometriosis and levels correlated with TGF-β1 concentrations (P peritoneal mesothelium and TGF-β1 increased VEGFA mRNA (P endometriosis and TGF-β1 increased concentrations of ID1 mRNA (P endometriosis, as an effector of TGFβ1 dependent upregulation of VEGF-A, and highlights a novel potential therapeutic target.

  5. Soluble vascular endothelial growth factor (VEGF) receptor-1 inhibits migration of human monocytic THP-1 cells in response to VEGF.

    Science.gov (United States)

    Zhu, Cansheng; Xiong, Zhaojun; Chen, Xiaohong; Lu, Zhengqi; Zhou, Guoyu; Wang, Dunjing; Bao, Jian; Hu, Xueqiang

    2011-08-01

    We aimed to investigate the regulation and contribution of vascular endothelial growth factor (VEGF) and sFlt-1(1-3) to human monocytic THP-1 migration. Ad-sFlt-1/FLAG, a recombinant adenovirus carrying the human sFlt-1(1-3) (the first three extracellular domains of FLT-1, the hVEGF receptor-1) gene, was constructed. L929 cells were infected with Ad-sFlt-1/FLAG and the expression of sFlt-1 was detected by immunofluorescent assay and ELISA. Corning(®) Transwell(®) Filter Inserts containing polyethylene terephthalate (PET) membranes with pore sizes of 3 μm were used as an experimental model to simulate THP-1 migration. Five VEGF concentrations (0, 0.1, 1, 10 and 100 ng/ml), four concentrations of sFlt-1(1-3)/FLAG expression supernatants (0.1, 1, 10 and 100 ng/ml), and monocyte chemoattractant protein-1 (MCP-1, 10 ng/ml) were used to test the ability of THP-1 cells to migrate through PET membranes. The sFlt-1(1-3) gene was successfully recombined into Ad-sFlt-1/FLAG. sFlt-1(1-3) was expressed in L929 cells transfected with Ad-sFlt-1/FLAG. THP-1 cell migration increased with increasing concentrations of VEGF, while cell migration decreased with increasing concentrations of sFlt1(1-3)/FLAG. sFlt1(1-3)/FLAG had no effect on MCP-1-induced cell migration. This study demonstrated that VEGF is able to elicit a migratory response in THP-1 cells, and that sFlt-1(1-3) is an effective inhibitor of THP-1 migration towards VEGF.

  6. VEGF Signaling in Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Joon W. Shim

    2018-01-01

    Full Text Available Vascular endothelial growth factor (VEGF is a potent growth factor playing diverse roles in vasculogenesis and angiogenesis. In the brain, VEGF mediates angiogenesis, neural migration and neuroprotection. As a permeability factor, excessive VEGF disrupts intracellular barriers, increases leakage of the choroid plexus endothelia, evokes edema, and activates the inflammatory pathway. Recently, we discovered that a heparin binding epidermal growth factor like growth factor (HB-EGF—a class of EGF receptor (EGFR family ligands—contributes to the development of hydrocephalus with subarachnoid hemorrhage through activation of VEGF signaling. The objective of this review is to entail a recent update on causes of death due to neurological disorders involving cerebrovascular and age-related neurological conditions and to understand the mechanism by which angiogenesis-dependent pathological events can be treated with VEGF antagonisms. The Global Burden of Disease study indicates that cancer and cardiovascular disease including ischemic and hemorrhagic stroke are two leading causes of death worldwide. The literature suggests that VEGF signaling in ischemic brains highlights the importance of concentration, timing, and alternate route of modulating VEGF signaling pathway. Molecular targets distinguishing two distinct pathways of VEGF signaling may provide novel therapies for the treatment of neurological disorders and for maintaining lower mortality due to these conditions.

  7. VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway.

    Science.gov (United States)

    Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y

    2015-07-09

    We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.

  8. A Novel Natural Product-Derived Compound, Vestaine A1, Exerts both Pro-Angiogenic and Anti-Permeability Activity via a Different Pathway from VEGF

    Directory of Open Access Journals (Sweden)

    Yoko Ishimoto

    2016-10-01

    Full Text Available Background/Aims: Vascular endothelial growth factor (VEGF is a key molecule in the regulation of both angiogenesis and vascular permeability. However, it is known that overproduction of VEGF induces abnormal blood vessel formation and these vessels cause several disease pathologies, such as diabetic retinopathy. The purpose of this study was to find novel vasoactive compounds which have different properties from VEGF. Methods/Results: We screened a natural product library using a co-culture angiogenic assay of endothelial cells and fibroblasts. By focusing on morphological changes of endothelial cells, we isolated the novel compounds vestaine A1 and vestaine B1 from the cultured broth of an actinomycete strain, Streptomyces sp. SANK 63697. Vestaine A1 enhanced tube formation of endothelial cells in Matrigel and suppressed cell death induced by serum deprivation. Vestaine A1 activated both MEK1/2 and PI-3 kinase pathways independently of the VEGF pathway in a dose- and time-dependent fashion. Finally, vestaine A1 potently suppressed VEGF-induced vascular permeability both in vitro and in vivo. Conclusion: Vestaine A1 has the potential to exhibit both pro-angiogenic and anti-permeability properties, and would therefore be useful for therapeutic treatment for abnormal vascular permeability-related diseases.

  9. Celecoxib Down-Regulates the Hypoxia-Induced Expression of HIF-1α and VEGF Through the PI3K/AKT Pathway in Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yi-zhou Sun

    2017-12-01

    Full Text Available Background/Aims: The goal of this study was to detect the expression of hypoxia-inducible factor 1α (HIF-1α and vascular endothelial growth factor (VEGF in human retinal pigmented epithelial (RPE cells treated with celecoxib, a selective cyclooxygenase-2 (COX-2 inhibitor, under hypoxic and normoxic conditions and to explore the signaling mechanism involved in regulating the hypoxia-induced expression of HIF-1α and VEGF in RPE cells. Methods: D407 cells were cultured in normoxic or hypoxic conditions, with or without celecoxib or a PI3K inhibitor (LY294002. The anti-proliferative effect of celecoxib was assessed using the MTT assay. RT-PCR, Western blotting and ELISA were performed to detect the levels of PI3K, phosphorylated AKT (p-AKT, HIF-1α, VEGF and COX-2. Results: Celecoxib inhibited the proliferation of RPE cells in a dose-dependent manner. Celecoxib suppressed the expression of VEGF at both the mRNA and protein levels and decreased HIF-1α protein expression. HIF-1α activation was regulated by the PI3K/AKT pathway. The celecoxib-induced down-regulation of HIF-1α and VEGF required the suppression of the hypoxia-induced PI3K/AKT pathway. However, the down-regulation of COX-2 did not occur in cells treated with celecoxib. Conclusions: The antiangiogenic effects of celecoxib in RPE cells under hypoxic conditions resulted from the inhibition of HIF-1α and VEGF expression, which may be partly mediated by a COX-2-independent, PI3K/AKT-dependent pathway.

  10. VEGF as a Survival Factor in Ex Vivo Models of Early Diabetic Retinopathy.

    Science.gov (United States)

    Amato, Rosario; Biagioni, Martina; Cammalleri, Maurizio; Dal Monte, Massimo; Casini, Giovanni

    2016-06-01

    Growing evidence indicates neuroprotection as a therapeutic target in diabetic retinopathy (DR). We tested the hypothesis that VEGF is released and acts as a survival factor in the retina in early DR. Ex vivo mouse retinal explants were exposed to stressors similar to those characterizing DR, that is, high glucose (HG), oxidative stress (OS), or advanced glycation end-products (AGE). Neuroprotection was provided using octreotide (OCT), a somatostatin analog, and pituitary adenylate cyclase activating peptide (PACAP), two well-documented neuroprotectants. Data were obtained with real-time RT-PCR, Western blot, ELISA, and immunohistochemistry. Apoptosis was induced in the retinal explants by HG, OS, or AGE treatments. At the same time, explants also showed increased VEGF expression and release. The data revealed that VEGF is released shortly after exposure of the explants to stressors and before the level of cell death reaches its maximum. Retinal cell apoptosis was inhibited by OCT and PACAP. At the same time, OCT and PACAP also reduced VEGF expression and release. Vascular endothelial growth factor turned out to be a protective factor for the stressed retinal explants, because inhibiting VEGF with a VEGF trap further increased cell death. These data show that protecting retinal neurons from diabetic stress also reduces VEGF expression and release, while inhibiting VEGF leads to exacerbation of apoptosis. These observations suggest that the retina in early DR releases VEGF as a prosurvival factor. Neuroprotective agents may decrease the need of VEGF production by the retina, therefore limiting the risk, in the long term, of pathologic angiogenesis.

  11. Butyrate-induced proapoptotic and antiangiogenic pathways in EAT cells require activation of CAD and downregulation of VEGF

    International Nuclear Information System (INIS)

    Belakavadi, Madesh; Prabhakar, B.T.; Salimath, Bharathi P.

    2005-01-01

    Butyrate, a short-chain fatty acid produced in the colon, induces cell cycle arrest, differentiation, and apoptosis in transformed cell lines. In this report, we study the effects of butyrate (BuA) on the growth of Ehrlich ascites tumor (EAT) cells in vivo. BuA, when injected intraperitoneally (i.p) into mice, inhibited proliferation of EAT cells. Further, induction of apoptosis in EAT cells was monitored by nuclear condensation, annexin-V staining, DNA fragmentation, and translocation of caspase-activated DNase into nucleus upon BuA-treatment. Ac-DEVD-CHO, a caspase-3 inhibitor, completely inhibited BuA-induced apoptosis, indicating that activation of caspase-3 mediates the apoptotic pathway in EAT cells. The proapoptotic effect of BuA also reflects on the antiangiogenic pathway in EAT cells. The antiangiogenic effect of BuA in vivo was demonstrated by the downregulation of the secretion of VEGF in EAT cells. CD31 immunohistochemical staining of peritoneum sections clearly indicated a potential angioinhibitory effect of BuA in EAT cells. These results suggest that BuA, besides regulating other fundamental cellular processes, is able to modulate the expression/secretion of the key angiogenic growth factor VEGF in EAT cells

  12. KIF26B, a novel oncogene, promotes proliferation and metastasis by activating the VEGF pathway in gastric cancer.

    Science.gov (United States)

    Zhang, H; Ma, R-R; Wang, X-J; Su, Z-X; Chen, X; Shi, D-B; Guo, X-Y; Liu, H-T; Gao, P

    2017-10-05

    Tumor metastasis is the main reason of cancer-related death for gastric cancer (GC) patients and gene expression microarray data indicate that kinesin family member 26B (KIF26B) is one of the most upregulated genes in metastatic GC samples. Specifically, KIF26B expression was upregulated in a stepwise manner from non-tumorous gastric mucosa, primary GC tissues without metastasis, via primary GC tissues with metastasis, to secondary lymph node metastatic (LNM) foci. Increased expression of KIF26B was correlated with tumor size, positive LNM or distant metastases and poor prognosis. KIF26B, negatively regulated by miR-372, promoted GC cell proliferation and metastasis in vitro and in vivo. Mechanistic investigations confirmed that the main target of KIF26B was the vascular endothelial growth factor (VEGF) signaling pathway, particularly by inhibition or overexpression of VEGFA, PXN, FAK, PIK3CA, BCL2 and CREB1. Thus, KIF26B, a novel oncogene regulated by miR-372, promotes proliferation and metastasis through the VEGF pathway in GC.

  13. A possible role of acrolein in diabetic retinopathy: involvement of a VEGF/TGFβ signaling pathway of the retinal pigment epithelium in hyperglycemia.

    Science.gov (United States)

    Grigsby, Jeffery; Betts, Brandi; Vidro-Kotchan, Eileen; Culbert, Richard; Tsin, Andrew

    2012-11-01

    Acrolein has been implicated in retinal pigment epithelium (RPE) cell death, and has been associated with diabetic retinopathy. Our purpose was to investigate the potential effect of high glucose in influencing acrolein-mediated RPE cytokine production and cell death. We investigated the influence of the acrolein effect on ARPE-19 cells in high glucose conditions and quantified the release of transforming growth factor β (TGFβ1 and 2) and vascular endothelial growth factor (VEGF). We assessed the ability of N-benzylhydroxylamine(NBHA) as well as TGFβ pathway inhibitors SIS3 and SB431542 to prevent this effect of acrolein on ARPE-19 cells. Confluent ARPE-19 cells were treated with acrolein and/or NBHA in both 5.5 and 18.8 mM glucose conditions. Cells were also pretreated with SIS3, a specific inhibitor of the SMAD3 pathway, and SB431542, a specific inhibitor of TGFβ signaling pathway, before treating them with acrolein. Viable cells were counted and ELISAs were performed to measure the cytokines TGFβ1 and 2, and VEGF released into the conditioned media. In ARPE-19 cells exposed to acrolein and hyperglycemia there was reduced cell viability and an increase in the cell media of VEGF, TGFβ1, and TGFβ2, which was reversed by NBHA. Acrolein/hyperglycemia-induced cell viability reduction and cytokine overproduction was also reduced by TGFβ pathway blockade. We conclude that the effect of acrolein on the reduction of viability and VEGF increase by ARPE-19 cells in hyperglycemic media is conducted through the TGFβ signaling pathway. Our results suggest that benefits of sequestering acrolein by NBHA and the blockage of the TGFβ pathway by SB431542 and SIS3 offer suggestions as to potential useful pharmacological drug candidates for the prevention of diabetes-induced complications in the eye.

  14. A Possible Role of Acrolein in Diabetic Retinopathy: Involvement of a VEGF/TGFβ Signaling Pathway of the Retinal Pigment Epithelium in Hyperglycemia

    Science.gov (United States)

    Grigsby, Jeffery; Betts, Brandi; Vidro-Kotchan, Eileen; Culbert, Richard; Tsin, Andrew

    2015-01-01

    Purpose Acrolein has been implicated in retinal pigment epithelium (RPE) cell death, and has been associated with diabetic retinopathy. Our purpose was to investigate the potential effect of high glucose in influencing acrolein-mediated RPE cytokine production and cell death. We investigated the influence of the acrolein effect on ARPE-19 cells in high glucose conditions and quantified the release of transforming growth factor β (TGFβ1 and 2) and vascular endothelial growth factor (VEGF). We assessed the ability of N-benzylhydroxylamine(NBHA) as well as TGFβ pathway inhibitors SIS3 and SB431542 to prevent this effect of acrolein on ARPE-19 cells. Materials and methods Confluent ARPE-19 cells were treated with acrolein and/or NBHA in both 5.5 and 18.8 mM glucose conditions. Cells were also pretreated with SIS3, a specific inhibitor of the SMAD3 pathway, and SB431542, a specific inhibitor of TGFβ signaling pathway, before treating them with acrolein. Viable cells were counted and ELISAs were performed to measure the cytokines TGFβ1 and 2, and VEGF released into the conditioned media. Results In ARPE-19 cells exposed to acrolein and hyperglycemia there was reduced cell viability and an increase in the cell media of VEGF, TGFβ1, and TGFβ2, which was reversed by NBHA. Acrolein/hyperglycemia-induced cell viability reduction and cytokine overproduction was also reduced by TGFβ pathway blockade. Conclusions We conclude that the effect of acrolein on the reduction of viability and VEGF increase by ARPE-19 cells in hyperglycemic media is conducted through the TGFβ signaling pathway. Our results suggest that benefits of sequestering acrolein by NBHA and the blockage of the TGFβ pathway by SB431542 and SIS3 offer suggestions as to potential useful pharmacological drug candidates for the prevention of diabetes-induced complications in the eye. PMID:22906079

  15. Alteration of protein expression pattern of vascular endothelial growth factor (VEGF) from soluble to cell-associated isoform during tumourigenesis

    International Nuclear Information System (INIS)

    Cressey, Ratchada; Wattananupong, Onusa; Lertprasertsuke, Nirush; Vinitketkumnuen, Usanee

    2005-01-01

    Vascular endothelial growth factor (VEGF) is a potent mitogen for endothelial cells, and its expression has been correlated with increased tumour angiogenesis. Although numerous publications dealing with the measurement of circulating VEGF for diagnostic and therapeutic monitoring have been published, the relationship between the production of tissue VEGF and its concentration in blood is still unclear. The aims of this study were to determine: 1) The expression pattern of VEGF isoforms at the protein level in colorectal and lung adenocarcinoma in comparison to the pattern in corresponding adjacent normal tissues 2) The relationship between the expression pattern of VEGF and total level of circulating VEGF in the blood to clarify whether the results of measuring circulating VEGF can be used to predict VEGF expression in tumour tissues. Ninety-four tissue samples were obtained from patients, 76 colorectal tumour tissues and 18 lung tumour tissues. VEGF protein expression pattern and total circulating VEGF were examined using western blot and capture ELISA, respectively. Three major protein bands were predominately detected in tumour samples with an apparent molecular mass under reducing conditions of 18, 23 and 26 kDa. The 18 kDa VEGF protein was expressed equally in both normal and colorectal tumour tissues and predominately expressed in normal tissues of lung, whereas the 23 and 26 kDa protein was only detected at higher levels in tumour tissues. The 18, 23 and 26 kDa proteins are believed to represent the VEGF 121 , the VEGF 165 and the VEGF 189 , respectively. There was a significant correlation of the expression of VEGF 165 with a smaller tumour size maximum diameter <5 cm (p < 0.05), and there was a significant correlation of VEGF 189 with advanced clinical stage of colorectal tumours. The measurement of total circulating VEGF in serum revealed that cancer patients significantly (p < 0.001) possessed a higher level of circulating VEGF (1081 ± 652 pg/ml in

  16. Targeting the VEGF pathway: antiangiogenic strategies in the treatment of non-small cell lung cancer.

    Science.gov (United States)

    Aita, Marianna; Fasola, Gianpiero; Defferrari, Carlotta; Brianti, Annalisa; Bello, Maria Giovanna Dal; Follador, Alessandro; Sinaccio, Graziella; Pronzato, Paolo; Grossi, Francesco

    2008-12-01

    The management of advanced non-small cell lung cancer (NSCLC) has evolved considerably in recent years, due to a progressive understanding of tumour biology and the identification of promising molecular targets. Several agents have been developed so far inhibiting vascular endothelial growth factor (VEGF) - a key protein in tumour neoangiogenesis, growth and dissemination - or its receptor signalling system. The finding in study E4599 of a survival benefit for carboplatin-paclitaxel plus bevacizumab - a humanised anti-VEGF monoclonal antibody - over chemotherapy (CT) alone led the U.S. Food and Drug Administration (FDA) to approve the novel combination for first-line treatment of patients with unresectable, locally advanced, recurrent or metastatic non-squamous NSCLC. In a randomised phase III trial presented at the American Society of Clinical Oncology (ASCO) 2007 Annual Meeting, patients receiving cisplatin-gemcitabine plus bevacizumab experienced a significantly longer progression-free survival (PFS) compared to the standard arm. Based on these data, the European Medicines Agency (EMEA) has granted marketing authorisation for bevacizumab in addition to any platinum-based CT for first-line treatment of advanced NSCLC other than predominantly squamous histology. Aim of this report is to provide an overview on bevacizumab in NSCLC, with special emphasis on clinical results presented at ASCO last meeting. Multitargeted tyrosine kinase inhibitors (TKIs), sharing a focus on both the angiogenesis process and additional cell-surface receptors, and VEGF Trap, a novel fusion protein with markedly higher affinity for VEGF than bevacizumab, will be briefly discussed as well.

  17. Adiponectin promotes VEGF-C-dependent lymphangiogenesis by inhibiting miR-27b through a CaMKII/AMPK/p38 signaling pathway in human chondrosarcoma cells.

    Science.gov (United States)

    Huang, Chun-Yin; Chang, An-Chen; Chen, Hsien-Te; Wang, Shih-Wei; Lo, Yuan-Shun; Tang, Chih-Hsin

    2016-09-01

    Chondrosarcoma is the second most frequently occurring type of bone malignancy characterized by distant metastatic propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumour lymphangiogenesis and lymphatic metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. In recent years, adiponectin has also been indicated as facilitating tumorigenesis, angiogenesis and metastasis. However, the effect of adiponectin on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has remained largely a mystery. In the present study, we have shown a clinical correlation between adiponectin and VEGF-C, as well as tumour stage, in human chondrosarcoma tissues. We further demonstrated that adiponectin promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium from adiponectin-treated cells significantly induced tube formation and migration of human lymphatic endothelial cells. In addition, adiponectin knock down inhibited lymphangiogenesis in vitro and in vivo We also found that adiponectin-induced VEGF-C is mediated by the calmodulin-dependent protein kinase II (CaMKII), AMP-activated protein kinase (AMPK) and p38 signaling pathway. Furthermore, the expression of miR-27b was negatively regulated by adiponectin via the CaMKII, AMPK and p38 cascade. The present study is the first to describe the mechanism of adiponectin-promoted lymphangiogenesis by up-regulating VEGF-C expression in chondrosarcomas. Thus, adiponectin could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  18. Anemia and elevated systemic levels of vascular endothelial growth factor (VEGF)

    International Nuclear Information System (INIS)

    Dunst, J.; Becker, A.; Lautenschlaeger, C.; Markau, S.; Becker, H.; Fischer, K.; Haensgen, G.

    2002-01-01

    Background: Tissue hypoxia is a major stimulus for the up-regulation of vascular endothelial growth factor (VEGF). Anemia might theoretically impact on angiogenesis via impairment of tissue oxygenation. We have investigated this hypothesis in patients with solid cancers and benign diseases. Patients and methods: 49 patients with untreated locoregionally confined solid cancers of the head and neck, cervix, rectum and lung and 59 additional patients with non-malignant diseases (36 normemic patients without serious diseases and 23 patients with renal anemia) were enrolled and the impact of anemia on plasma VEGF levels were determined. VEGF was measured with a commercially available sandwich enzyme immunoassay technique. Results: Plasma levels of VEGF were 16.2±12.7 pg/ml in 36 normemic patients without malignant disease, 49,2±34.5 pg/ml in 49 patients with cancers (p [de

  19. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells

    International Nuclear Information System (INIS)

    Yamagishi, Naoko; Teshima-Kondo, Shigetada; Masuda, Kiyoshi; Nishida, Kensei; Kuwano, Yuki; Dang, Duyen T; Dang, Long H; Nikawa, Takeshi; Rokutan, Kazuhito

    2013-01-01

    Vascular endothelial growth factor-a (VEGF)-targeted therapies have become an important treatment for a number of human malignancies. The VEGF inhibitors are actually effective in several types of cancers, however, the benefits are transiently, and the vast majority of patients who initially respond to the therapies will develop resistance. One of possible mechanisms for the acquired resistance may be the direct effect(s) of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGFR). Thus, we investigated here the direct effect of chronic VEGF inhibition on phenotype changes in human colorectal cancer (CRC) cells. To chronically inhibit cancer cell-derived VEGF, human CRC cell lines (HCT116 and RKO) were chronically exposed (2 months) to an anti-VEGF monoclonal antibody (mAb) or were disrupted the Vegf gene (VEGF-KO). Effects of VEGF family members were blocked by treatment with a VEGF receptor tyrosine kinase inhibitor (VEGFR-TKI). Hypoxia-induced apoptosis under VEGF inhibited conditions was measured by TUNEL assay. Spheroid formation ability was assessed using a 3-D spheroid cell culture system. Chronic inhibition of secreted/extracellular VEGF by an anti-VEGF mAb redundantly increased VEGF family member (PlGF, VEGFR1 and VEGFR2), induced a resistance to hypoxia-induced apoptosis, and increased spheroid formation ability. This apoptotic resistance was partially abrogated by a VEGFR-TKI, which blocked the compensate pathway consisted of VEGF family members, or by knockdown of Vegf mRNA, which inhibited intracellular function(s) of all Vegf gene products. Interestingly, chronic and complete depletion of all Vegf gene products by Vegf gene knockout further augmented these phenotypes in the compensate pathway-independent manner. These accelerated phenotypes were significantly suppressed by knockdown of hypoxia-inducible factor-1α that was up-regulated in the VEGF-KO cell lines. Our findings suggest that chronic inhibition of tumor cell-derived VEGF

  20. Vascular endothelial growth factor (VEGF-C - a potent risk factor in children diagnosed with stadium 4 neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Bogdan Miskowiak

    2009-01-01

    Full Text Available To evaluate the immunohistochemical expression of VEGF-C, CD34 and VEGFR-2 in cancer tissue of children diagnosed with stadium 4 neuroblastoma (NB and correlate their presence with the survival rate of children diagnosed with that stage of the disease. Eighteen children assigned to stadium 4 composed the study group. Fourteen patients (allocated to stadium 3 formed a control group. VEGF-C, CD34 and VEGFR-2 expressions were evaluated by immunohistochemical assay. Consecutive slides incubated with anti-CD34 and anti-VEGFR-2 antibodies revealed that the two markers were colocalized within endothelial layer of the blood vessels. On the other hand, VEGF-C was expressed exclusively in tumour cells. As demonstrated by Fisher's exact test, the risk of NB treatment failure (progression or relapse as well as tumour related death, when all the patients were considered, was found to be significant in VEGF-C positive patients. VEGF-C expression in NB constitutes a potent risk factor and may direct future anti-angiogenic treatment strategy. The proximity of VEGF-C and CD34/VEGFR-2 of NB could be the equivalent of a potentially interesting VEGF-C fashion involving a tumour cell invasion into the blood vessels in an early phase of metastases promoting.

  1. RIP1 regulates TNF-α-mediated lymphangiogenesis and lymphatic metastasis in gallbladder cancer by modulating the NF-κB-VEGF-C pathway.

    Science.gov (United States)

    Li, Cheng-Zong; Jiang, Xiao-Jie; Lin, Bin; Hong, Hai-Jie; Zhu, Si-Yuan; Jiang, Lei; Wang, Xiao-Qian; Tang, Nan-Hong; She, Fei-Fei; Chen, Yan-Ling

    2018-01-01

    Tumor necrosis factor alpha (TNF-α) enhances lymphangiogenesis in gallbladder carcinoma (GBC) via activation of nuclear factor (NF-κB)-dependent vascular endothelial growth factor-C (VEGF-C). Receptor-interacting protein 1 (RIP1) is a multifunctional protein in the TNF-α signaling pathway and is highly expressed in GBC. However, whether RIP1 participates in the signaling pathway of TNF-α-mediated VEGF-C expression that enhances lymphangiogenesis in GBC remains unclear. The RIP1 protein levels in the GBC-SD and NOZ cells upon stimulation with increasing concentrations of TNF-α as indicated was examined using Western blot. Lentiviral RIP1 shRNA and siIκBα were constructed and transduced respectively them into NOZ and GBC-SD cells, and then PcDNA3.1-RIP1 vectors was transduced into siRIP1 cell lines to reverse RIP1 expression. The protein expression of RIP1, inhibitor of NF-κB alpha (IκBα), p-IκBα, TAK1, NF-κB essential modulator were examined through immunoblotting or immunoprecipitation. Moreover, VEGF-C mRNA levels were measured by quantitative real-time polymerase chain reaction, VEGF-C protein levels were measured by immunoblotting and enzyme-linked immunosorbent assay, and VEGF-C promoter and NF-κB activities were quantified using a dual luciferase reporter assay. The association of NF-κB with the VEGF-C promoter was analysed by chromatin immunoprecipitation assay. A three-dimensional coculture method and orthotopic transplantation nude mice model were used to evaluate lymphatic tube-forming and metastasis ability in GBC cells. The expression of RIP1 protein, TNF-α protein and lymphatic vessels in human GBC tissues was examined by immunohistochemistry, and the dependence between RIP1 protein with TNF-α protein and lymphatic vessel density was analysed. TNF-α dose- and time-dependently increased RIP1 protein expression in the GBC-SD and NOZ cells of GBC, and the strongest effect was observed with a concentration of 50 ng/ml. RIP1 is fundamental

  2. Suppression of Retinal Neovascularization in vivo by Inhibition of Vascular Endothelial Growth Factor (VEGF) Using Soluble VEGF-Receptor Chimeric Proteins

    Science.gov (United States)

    Aiello, Lloyd Paul; Pierce, Eric A.; Foley, Eliot D.; Takagi, Hitoshi; Chen, Helen; Riddle, Lavon; Ferrara, Napoleone; King, George L.; Smith, Lois E. H.

    1995-11-01

    The majority of severe visual loss in the United States results from complications associated with retinal neovascularization in patients with ischemic ocular diseases such as diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. Intraocular expression of the angiogenic protein vascular endothelial growth factor (VEGF) is closely correlated with neovascularization in these human disorders and with ischemia-induced retinal neovascularization in mice. In this study, we evaluated whether in vivo inhibition of VEGF action could suppress retinal neovascularization in a murine model of ischemic retinopathy. VEGF-neutralizing chimeric proteins were constructed by joining the extracellular domain of either human (Flt) or mouse (Flk) high-affinity VEGF receptors with IgG. Control chimeric proteins that did not bind VEGF were also used. VEGF-receptor chimeric proteins eliminated in vitro retinal endothelial cell growth stimulation by either VEGF (P hypoxic conditioned medium (P < 0.005) without affecting growth under nonstimulated conditions. Control proteins had no effect. To assess in vivo response, animals with bilateral retinal ischemia received intravitreal injections of VEGF antagonist in one eye and control protein in the contralateral eye. Retinal neovascularization was quantitated histologically by a masked protocol. Retinal neovascularization in the eye injected with human Flt or murine Flk chimeric protein was reduced in 100% (25/25; P < 0.0001) and 95% (21/22; P < 0.0001) of animals, respectively, compared to the control treated eye. This response was evident after only a single intravitreal injection and was dose dependent with suppression of neovascularization noted after total delivery of 200 ng of protein (P < 0.002). Reduction of histologically evident neovascular nuclei per 6-um section averaged 47% ± 4% (P < 0.001) and 37% ± 2% (P < 0.001) for Flt and Flk chimeric proteins with maximal inhibitory effects of 77% and 66

  3. Determination of serum leptin and vascular endothelial growth factor (VEGF) contents in patients with breast cancer

    International Nuclear Information System (INIS)

    Huang Xudong; Jin Wentao; Pan Meizhen

    2006-01-01

    Objective: To investigate the serum expression of leptin and vascular endothelial growth factor (VEGF) in patients with breast cancer and assess its diagnostic significance. Methods: Thirty-six patients with breast cancer and thirty-one patients with benign breast disorders entered this study. Serum concentration of leptin (with RIA) and VEGF ( with ELISA) were determined in these patients before operation as well as in 56 controls. All the tested subjects were post-menopausal women. Results: The difference between the leptin levels in the controls and patients with benign breast disorders was significantly; 80 was the difference between the leptin levels in controls and patients with breast cancer. Significant difference also existed between the VEGF levels in controls and patients with cancer as well as between the levels in patients with benign breast disease and patients with cancer. Also, the serum leptin and VEGF levels in the cancerous patients with axillary metastasis were significantly higher than those in patients without metastasis. Conclusion: Serum leptin and VEGF might be taken as diagnostic tumor markers for malignanay and metastasis in patients with breast cancer. (authors)

  4. Protective or pathogenic effects of vascular endothelial growth factor (VEGF) as potential biomarker in cerebral malaria.

    Science.gov (United States)

    Canavese, Miriam; Spaccapelo, Roberta

    2014-03-01

    Cerebral malaria (CM) is the major lethal complication of Plasmodium falciparum infection. It is characterized by persistent coma along with symmetrical motor signs. Several clinical, histopathological, and laboratory studies have suggested that cytoadherence of parasitized erythrocytes, neural injury by malarial toxin, and excessive inflammatory cytokine production are possible pathogenic mechanisms. Although the detailed pathophysiology of CM remains unsolved, it is thought that the binding of parasitized erythrocytes to the cerebral endothelia of microvessels, leading to their occlusion and the consequent angiogenic dysregulation play a key role in the disease pathogenesis. Recent evidences showed that vascular endothelial growth factor (VEGF) and its receptor-related molecules are over-expressed in the brain tissues of CM patients, as well as increased levels of VEGF are detectable in biologic samples from malaria patients. Whether the modulation of VEGF is causative agent of CM mortality or a specific phenotype of patients with susceptibility to fatal CM needs further evaluation. Currently, there is no biological test available to confirm the diagnosis of CM and its complications. It is hoped that development of biomarkers to identify patients and potential risk for adverse outcomes would greatly enhance better intervention and clinical management to improve the outcomes. We review and discuss here what it is currently known in regard to the role of VEGF in CM as well as VEGF as a potential biomarker.

  5. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia.

    Directory of Open Access Journals (Sweden)

    Zhong Hua

    Full Text Available MicroRNAs (miRNAs are a class of 20-24 nt non-coding RNAs that regulate gene expression primarily through post-transcriptional repression or mRNA degradation in a sequence-specific manner. The roles of miRNAs are just beginning to be understood, but the study of miRNA function has been limited by poor understanding of the general principles of gene regulation by miRNAs. Here we used CNE cells from a human nasopharyngeal carcinoma cell line as a cellular system to investigate miRNA-directed regulation of VEGF and other angiogenic factors under hypoxia, and to explore the principles of gene regulation by miRNAs. Through computational analysis, 96 miRNAs were predicted as putative regulators of VEGF. But when we analyzed the miRNA expression profile of CNE and four other VEGF-expressing cell lines, we found that only some of these miRNAs could be involved in VEGF regulation, and that VEGF may be regulated by different miRNAs that were differentially chosen from 96 putative regulatory miRNAs of VEGF in different cells. Some of these miRNAs also co-regulate other angiogenic factors (differential regulation and co-regulation principle. We also found that VEGF was regulated by multiple miRNAs using different combinations, including both coordinate and competitive interactions. The coordinate principle states that miRNAs with independent binding sites in a gene can produce coordinate action to increase the repressive effect of miRNAs on this gene. By contrast, the competitive principle states when multiple miRNAs compete with each other for a common binding site, or when a functional miRNA competes with a false positive miRNA for the same binding site, the repressive effects of miRNAs may be decreased. Through the competitive principle, false positive miRNAs, which cannot directly repress gene expression, can sometimes play a role in miRNA-mediated gene regulation. The competitive principle, differential regulation, multi-miRNA binding sites, and false

  6. Brain-derived neurotrophic factor promotes VEGF-C-dependent lymphangiogenesis by suppressing miR-624-3p in human chondrosarcoma cells.

    Science.gov (United States)

    Lin, Chih-Yang; Wang, Shih-Wei; Chen, Yen-Ling; Chou, Wen-Yi; Lin, Ting-Yi; Chen, Wei-Cheng; Yang, Chen-Yu; Liu, Shih-Chia; Hsieh, Chia-Chu; Fong, Yi-Chin; Wang, Po-Chuan; Tang, Chih-Hsin

    2017-08-03

    Chondrosarcoma is the second most common primary malignancy of bone, and one of the most difficult bone tumors to diagnose and treat. It is well known that increased levels of vascular endothelial growth factor-C (VEGF-C) promote active tumor lymphangiogenesis and lymphatic tumor spread to regional lymph nodes. Brain-derived neurotrophic factor (BDNF) is known to promote metastasis in human chondrosarcoma cells. Knowing more about the mechanism of BDNF in VEGF-C expression and lymphangiogenesis in human chondrosarcoma would improve our understanding as how to prevent chondrosarcoma angiogenesis and metastasis, which currently lacks effective adjuvant treatment. Here, we found that BDNF expression was at least 2.5-fold higher in the highly migratory JJ012(S10) cell line as compared with the primordial cell line (JJ012). In addition, VEGF-C expression and secretion was markedly increased in JJ012(S10) cells. Conditioned medium from JJ012(S10) cells significantly promoted migration and tube formation of human lymphatic endothelial cells (LECs), whereas knockdown of BDNF attenuated LEC migration and tube formation by suppressing VEGF-C production in JJ012(S10) cells. Mechanistic investigations indicated that BDNF facilitated VEGF-C-dependent lymphangiogenesis through the MEK/ERK/mTOR signaling pathway. We also showed that microRNA (miR)-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade. Importantly, BDNF knockdown profoundly inhibited tumor-associated lymphangiogenesis in vivo. Further analyses identified that BDNF promoted tumor lymphangiogenesis by downregulating miR-624-3p in human chondrosarcoma tissues. In conclusion, this study is the first to reveal the mechanism underlying BDNF-induced lymphangiogenesis. We suggest that BDNF may serve as a promising therapeutic target for the restriction of VEGF-C-mediated tumor lymphangiogenesis and lymphatic metastasis.

  7. CRH promotes human colon cancer cell proliferation via IL-6/JAK2/STAT3 signaling pathway and VEGF-induced tumor angiogenesis.

    Science.gov (United States)

    Fang, Xianjun; Hong, Yali; Dai, Li; Qian, Yuanyuan; Zhu, Chao; Wu, Biao; Li, Shengnan

    2017-11-01

    Corticotrophin-releasing hormone (CRH) has been demonstrated to participate in various diseases. Our previous study showed that its receptor CRHR1 mediated the development of colitis-associated cancer in mouse model. However, the detailed mechanisms remain unclear. In this study, we explored the oncogenetic role of CRH/CRHR1 signaling in colon cancer cells. Cell proliferation and colony formation assays revealed that CRH contributed to cell proliferation. Moreover, tube formation assay showed that CRH-treated colon cancer cell supernatant significantly promoted tube formation of human umbilical vein endothelial cells (HUVECs). And these effects could be reversed by the CRHR1 specific antagonist Antalarmin. Further investigation showed that CRH significantly upregulated the expressions of interlukin-6 (IL-6) and vascular endothelial growth factor (VEGF) through activating nuclear factor-kappa B (NF-κB). The CRH-induced IL-6 promoted phosphorylation of janus kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3). STAT3 inhibition by Stattic significantly inhibited the CRH-induced cell proliferation. In addition, silence of VEGF resulted in declined tube formation induced by CRH. Taken together, CRH/CRHR1 signaling promoted human colon cancer cell proliferation via NF-κB/IL-6/JAK2/STAT3 signaling pathway and tumor angiogenesis via NF-κB/VEGF signaling pathway. Our results provide evidence to support a critical role for the CRH/CRHR1 signaling in colon cancer progression and suggest its potential utility as a new therapeutic target for colon cancer. © 2017 Wiley Periodicals, Inc.

  8. Heparanase-1-induced shedding of heparan sulfate from syndecan-1 in hepatocarcinoma cell facilitates lymphatic endothelial cell proliferation via VEGF-C/ERK pathway

    International Nuclear Information System (INIS)

    Yu, Shengjin; Lv, Huiming; Zhang, He; Jiang, Yu; Hong, Yu; Xia, Rongjun; Zhang, Qifang; Ju, Weiwei; Jiang, Lili; Ou, Geng; Zhang, Jinhui; Wang, Shujing; Zhang, Jianing

    2017-01-01

    Heparanase-1/syndecan-1 axis plays critical roles in tumorigenesis and development. The main mechanism includes heparanase-1 (HPA-1) degrades the heparan sulfate chain of syndecan-1 (SDC-1), and the following shedding of heparan sulfate from tumor cell releases and activates SDC-1 sequestered growth factors. However, the significance of Heparanase-1/syndecan-1 axis and its effects on the microenvironment of lymphatic metastasis in hepatocellular carcinogenesis (HCC) procession have not been reported. Herein, we found that HPA-1 could degrade the heparan sulfate on hepatocarcinoma cell surface. Importantly, HPA-1-induced shedding of heparan sulfate chain from SDC-1 facilitated the release of vascular endothelial growth factor C (VEGF-C) from SDC-1/VEGF-C complex into the medium of hepatocarcinoma cell. Further studies indicated that VEGF-C secretion from hepatocarcinoma cell promoted lymphatic endothelial cell growth through activating extracellular signal-regulated kinase (ERK) signaling. Taken together, this study reveals a novel existence of Heparanase-1/syndecan-1 axis in hepatocarcinoma cell and its roles in the cross-talking with the microenvironment of lymphatic metastasis. - Highlights: • SDC-1 anchors VEGF-C via its HS chains. • Secreted HPA-1 from hepatocarcinoma cell cleaves HS chains of SDC-1. • The shedding of SDC-1 HS chains releases VEGF-C from SDC-1/VEGF-C complex. • LMWH inhibits VEGF-C secretion through stabilizing SDC-1/VEGF-C complex. • VEGF-C secretion from hepatocarcinoma cell facilitates LEC growth via ERK signaling.

  9. Endocrine gland-derived endothelial growth factor (EG-VEGF) is a potential novel regulator of human parturition.

    Science.gov (United States)

    Dunand, C; Hoffmann, P; Sapin, V; Blanchon, L; Salomon, A; Sergent, F; Benharouga, M; Sabra, S; Guibourdenche, J; Lye, S J; Feige, J J; Alfaidy, N

    2014-09-01

    EG-VEGF is an angiogenic factor that we identified as a new placental growth factor during human pregnancy. EG-VEGF is also expressed in the mouse fetal membrane (FM) by the end of gestation, suggesting a local role for this protein in the mechanism of parturition. However, injection of EG-VEGF to gravid mice did not induce labor, suggesting a different role for EG-VEGF in parturition. Here, we searched for its role in the FM in relation to human parturition. Human pregnant sera and total FM, chorion, and amnion were collected during the second and third trimesters from preterm no labor, term no labor, and term labor patients. Primary human chorion trophoblast and FM explants cultures were also used. We demonstrate that circulating EG-VEGF increased toward term and significantly decreased at the time of labor. EG-VEGF production was higher in the FM compared to placentas matched for gestational age. Within the FM, the chorion was the main source of EG-VEGF. EG-VEGF receptors, PROKR1 and PROKR2, were differentially expressed within the FM with increased expression toward term and an abrupt decrease with the onset of labor. In chorion trophoblast and FM explants collected from nonlaboring patients, EG-VEGF decreased metalloproteinase-2 and -9 activities and increased PGDH (prostaglandin-metabolizing enzyme) expression. Altogether these data demonstrate that EG-VEGF is a new cytokine that acts locally to ensure FM protection in late pregnancy. Its fine contribution to the initiation of human labor is exhibited by the abrupt decrease in its levels as well as a reduction in its receptors. © 2014 by the Society for the Study of Reproduction, Inc.

  10. Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors.

    Science.gov (United States)

    Brouillet, S; Hoffmann, P; Chauvet, S; Salomon, A; Chamboredon, S; Sergent, F; Benharouga, M; Feige, J J; Alfaidy, N

    2012-05-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.

  11. Gene expression patterns of vascular endothelial growth factor (VEGF-A) in human placenta from pregnancies with intrauterine growth restriction.

    Science.gov (United States)

    Szentpéteri, Imre; Rab, Attila; Kornya, László; Kovács, Péter; Joó, József Gábor

    2013-07-01

    In this study, we describe changes in gene expression pattern of vascular endothelial growth factor (VEGF)-A in human placenta obtained from pregnancies with intrauterine growth restriction using placenta from normal pregnancies as control. We compared gene expression of VEGF-A in placental samples from Intrauterine growth restriction (IUGR) pregnancies versus placenta obtained from normal pregnancies. Among potential confounders, important clinical informations were also analyzed. In the IUGR group, the VEGF-A gene was overexpressed compared to the normal pregnancy group (Ln 2(α)β-actin: 1.32; Ln 2(α)GADPH: 1.56). There was no correlation between the degree of growth restriction and VEGF-A gene expression (Ln 2(α)(0-5)percentile: 0.58; Ln 2(α)(5-10)percentile: 0.64). Within the IUGR group, there was a trend toward a positive correlation between placental VEGF-A gene activity and gestational age at delivery (Ln 2(α) 37 weeks: 1.35). Our findings suggest that the increase in placental expression of the VEGF-A gene and the resultant stimulation of angiogenesis are a response to hypoxic environment developing in the placental tissue in IUGR. Thus, it appears to be a secondary event rather than a primary factor in the development of IUGR There is a trend toward a positive correlation between gestational age and placental VEGF-A gene activity.

  12. Design of a variant of vascular endothelial growth factor-A (VEGF-A) antagonizing KDR/Flk-1 and Flt-1.

    NARCIS (Netherlands)

    Leenders, W.P.J.; Lubsen, N.H.; Altena, M.C. van; Clauss, M.; Deckers, M.; Lowik, C.W.G.M.; Breier, G.; Ruiter, D.J.; Waal, R.M.W. de

    2002-01-01

    Because of its central role in pathological angiogenesis, vascular endothelial growth factor (VEGF) has become a major target for anti-angiogenic therapies. We report here the construction of a heterodimeric antagonistic VEGF variant (HD-VEGF). In this antagonist, binding domains for the

  13. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Fang; Li, Xiuli [Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing (China); Kong, Jian [Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing (China); Pan, Bing [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Sun, Min [Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xian (China); Zheng, Lemin, E-mail: zhengl@bjmu.edu.cn [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Yao, Yuanqing, E-mail: yqyao@126.com [Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing (China)

    2013-11-08

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA{sub 3.1} empty vector, pcDNA{sub 3.1}-VEGF111b or pcDNA{sub 3.1}-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.

  14. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    International Nuclear Information System (INIS)

    Gu, Fang; Li, Xiuli; Kong, Jian; Pan, Bing; Sun, Min; Zheng, Lemin; Yao, Yuanqing

    2013-01-01

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA 3.1 empty vector, pcDNA 3.1 -VEGF111b or pcDNA 3.1 -VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth

  15. Combined blockade of vascular endothelial growth factor and programmed death 1 pathways in advanced kidney cancer.

    Science.gov (United States)

    Einstein, David J; McDermott, David F

    2017-06-01

    Targeted and immune-based therapies have improved outcomes in advanced kidney cancer, yet novel strategies are needed to extend the duration of these benefits and expand them to more patients. Combined inhibition of vascular endothelial growth factor (VEGF) and the programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) pathways with therapeutic agents already in clinical use may offer such a strategy. Here, we describe the development and clinical evaluation of VEGF inhibitors and, separately, PD-1/PD-L1 inhibitors. We present preclinical evidence of interaction between these pathways and the rationale for combined blockade. Beyond well-known effects on pathologic angiogenesis, VEGF blockade also may decrease immune tolerance and enhance PD-1/PD-L1 blockade. We conclude with the results of several early trials of combined VEGF and PD-1/PD-L1 blockade, which demonstrate encouraging antitumor activity, and we pose questions for future study.

  16. DNA binding-independent transcriptional activation of the vascular endothelial growth factor gene (VEGF) by the Myb oncoprotein

    International Nuclear Information System (INIS)

    Lutwyche, Jodi K.; Keough, Rebecca A.; Hunter, Julie; Coles, Leeanne S.; Gonda, Thomas J.

    2006-01-01

    Myb is a key transcription factor that can regulate proliferation, differentiation, and apoptosis, predominantly in the haemopoietic system. Abnormal expression of Myb is associated with a number of cancers, both haemopoietic and non-haemopoietic. In order to better understand the role of Myb in normal and tumorigenic processes, we undertook a cDNA array screen to identify genes that are regulated by this factor. In this way, we identified the gene encoding vascular endothelial growth factor (VEGF) as being potentially regulated by the Myb oncoprotein in myeloid cells. To determine whether this was a direct effect on VEGF gene transcription, we examined the activity of the murine VEGF promoter in the presence of either wild-type (WT) or mutant forms of Myb. It was found that WT Myb was able to activate the VEGF promoter and that a minimal promoter region of 120 bp was sufficient to confer Myb responsiveness. Surprisingly, activation of the VEGF promoter was independent of DNA binding by Myb. This was shown by the use of DNA binding-defective Myb mutants and by mutagenesis of a potential Myb-binding site in the minimal promoter. Mutation of Sp1 sites within this region abolished Myb-mediated regulation of a reporter construct, suggesting that Myb DNA binding-independent activation of VEGF expression occurs via these Sp1 binding elements. Regulation of VEGF production by Myb has implications for the potential role of Myb in myeloid leukaemias and in solid tumours where VEGF may be functioning as an autocrine growth factor

  17. Vascular endothelial growth factor (VEGF-634G/C) polymorphism and retinopathy of prematurity: a meta-analysis

    Science.gov (United States)

    Malik, Manzoor Ahmad; Shukla, Swati; Azad, Shorya Vardhan; Kaur, Jasbir

    2014-01-01

    Purpose Vascular endothelial growth factor polymorphism (VEGF-634G/C, rs 2010963) has been considered a risk factor for the development of retinopathy of prematurity (ROP). However, the results remain controversial. Therefore, the aim of the present meta-analysis was to determine the association between VEGF-634G/C polymorphism and ROP risk. Methods Published literature from PubMed and other databases were retrieved. All studies evaluating the association between VEGF-634G/C polymorphism and ROP risk were included. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using random or fixed effects model. A total of six case-control studies including 355 cases and 471 controls were included. Results By pooling all the studies, we found that VEGF-634G/C polymorphism was not associated with ROP risk at co-dominant and allele levels and no association was also found in dominant and recessive models. While stratifying on ethnicity level no association was observed in Caucasian and Asian population. Discussion This meta-analysis suggests that VEGF-634G/C polymorphism may not be associated with ROP risk, the association between single VEGF-634G/C polymorphism and ROP risk awaits further investigation. PMID:25473347

  18. Permeability to macromolecular contrast media quantified by dynamic MRI correlates with tumor tissue assays of vascular endothelial growth factor (VEGF)

    International Nuclear Information System (INIS)

    Cyran, Clemens C.; Sennino, Barbara; Fu, Yanjun; Rogut, Victor; Shames, David M.; Chaopathomkul, Bundit; Wendland, Michael F.; McDonald, Donald M.; Brasch, Robert C.; Raatschen, Hans-Juergen

    2012-01-01

    Purpose: To correlate dynamic MRI assays of macromolecular endothelial permeability with microscopic area–density measurements of vascular endothelial growth factor (VEGF) in tumors. Methods and material: This study compared tumor xenografts from two different human cancer cell lines, MDA-MB-231 tumors (n = 5), and MDA-MB-435 (n = 8), reported to express respectively higher and lower levels of VEGF. Dynamic MRI was enhanced by a prototype macromolecular contrast medium (MMCM), albumin-(Gd-DTPA)35. Quantitative estimates of tumor microvascular permeability (K PS ; μl/min × 100 cm 3 ), obtained using a two-compartment kinetic model, were correlated with immunohistochemical measurements of VEGF in each tumor. Results: Mean K PS was 2.4 times greater in MDA-MB-231 tumors (K PS = 58 ± 30.9 μl/min × 100 cm 3 ) than in MDA-MB-435 tumors (K PS = 24 ± 8.4 μl/min × 100 cm 3 ) (p < 0.05). Correspondingly, the area–density of VEGF in MDA-MB-231 tumors was 2.6 times greater (27.3 ± 2.2%, p < 0.05) than in MDA-MB-435 cancers (10.5 ± 0.5%, p < 0.05). Considering all tumors without regard to cell type, a significant positive correlation (r = 0.67, p < 0.05) was observed between MRI-estimated endothelial permeability and VEGF immunoreactivity. Conclusion: Correlation of MRI assays of endothelial permeability to a MMCM and VEGF immunoreactivity of tumors support the hypothesis that VEGF is a major contributor to increased macromolecular permeability in cancers. When applied clinically, the MMCM-enhanced MRI approach could help to optimize the appropriate application of VEGF-inhibiting therapy on an individual patient basis.

  19. Regulation of human feto-placental endothelial barrier integrity by vascular endothelial growth factors: competitive interplay between VEGF-A165a, VEGF-A165b, PIGF and VE-cadherin.

    Science.gov (United States)

    Pang, Vincent; Bates, David O; Leach, Lopa

    2017-12-01

    The human placenta nourishes and protects the developing foetus whilst influencing maternal physiology for fetal advantage. It expresses several members of the vascular endothelial growth factor (VEGF) family including the pro-angiogenic/pro-permeability VEGF-A 165 a isoform, the anti-angiogenic VEGF-A 165 b, placental growth factor (PIGF) and their receptors, VEGFR1 and VEGFR2. Alterations in the ratio of these factors during gestation and in complicated pregnancies have been reported; however, the impact of this on feto-placental endothelial barrier integrity is unknown. The present study investigated the interplay of these factors on junctional occupancy of VE-cadherin and macromolecular leakage in human endothelial monolayers and the perfused placental microvascular bed. Whilst VEGF-A 165 a (50 ng/ml) increased endothelial monolayer albumin permeability ( P 0.05) or PlGF ( P >0.05) did not. Moreover, VEGF-A 165 b (100 ng/ml; P 0.05) inhibited VEGF-A 165 a-induced permeability when added singly. PlGF abolished the VEGF-A 165 b-induced reduction in VEGF-A 165 a-mediated permeability ( P >0.05); PlGF was found to compete with VEGF-A 165 b for binding to Flt-1 at equimolar affinity. Junctional occupancy of VE-cadherin matched alterations in permeability. In the perfused microvascular bed, VEGF-A 165 b did not induce microvascular leakage but inhibited and reversed VEGF-A 165 a-induced loss of junctional VE-cadherin and tracer leakage. These results indicate that the anti-angiogenic VEGF-A 165 b isoform does not increase permeability in human placental microvessels or HUVEC primary cells and can interrupt VEGF-A 165 a-induced permeability. Moreover, the interplay of these isoforms with PIGF (and s-flt1) suggests that the ratio of these three factors may be important in determining the placental and endothelial barrier in normal and complicated pregnancies. © 2017 The Author(s).

  20. Gamabufotalin, a major derivative of bufadienolide, inhibits VEGF-induced angiogenesis by suppressing VEGFR-2 signaling pathway.

    Science.gov (United States)

    Tang, Ning; Shi, Lei; Yu, Zhenlong; Dong, Peipei; Wang, Chao; Huo, Xiaokui; Zhang, Baojing; Huang, Shanshan; Deng, Sa; Liu, Kexin; Ma, Tonghui; Wang, Xiaobo; Wu, Lijun; Ma, Xiao-Chi

    2016-01-19

    Gamabufotalin (CS-6), a main active compound isolated from Chinese medicine Chansu, has been shown to strongly inhibit cancer cell growth and inflammatory response. However, its effects on angiogenesis have not been known yet. Here, we sought to determine the biological effects of CS-6 on signaling mechanisms during angiogenesis. Our present results fully demonstrate that CS-6 could significantly inhibit VEGF triggered HUVECs proliferation, migration, invasion and tubulogenesis in vitro and blocked vascularization in Matrigel plugs impregnated in C57/BL6 mice as well as reduced vessel density in human lung tumor xenograft implanted in nude mice. Computer simulations revealed that CS-6 interacted with the ATP-binding sites of VEGFR-2 using molecular docking. Furthermore, western blot analysis indicated that CS-6 inhibited VEGF-induced phosphorylation of VEGFR-2 kinase and suppressed the activity of VEGFR-2-mediated signaling cascades. Therefore, our studies demonstrated that CS-6 inhibited angiogenesis by inhibiting the activation of VEGFR-2 signaling pathways and CS-6 could be a potential candidate in angiogenesis-related disease therapy.

  1. Irresponsiveness of two retinoblastoma cases to conservative therapy correlates with up- regulation of hERG1 channels and of the VEGF-A pathway

    Directory of Open Access Journals (Sweden)

    La Torre Agostino

    2010-09-01

    Full Text Available Abstract Background Treatment strategies for Retinoblastoma (RB, the most common primary intraocular tumor in children, have evolved over the past few decades and chemoreduction is currently the most popular treatment strategy. Despite success, systemic chemotherapeutic treatment has relevant toxicity, especially in the pediatric population. Antiangiogenic therapy has thus been proposed as a valuable alternative for pediatric malignancies, in particolar RB. Indeed, it has been shown that vessel density correlates with both local invasive growth and presence of metastases in RB, suggesting that angiogenesis could play a pivotal role for both local and systemic invasive growth in RB. We present here two cases of sporadic, bilateral RB that did not benefit from the conservative treatment and we provide evidence that the VEGF-A pathway is significantly up-regulated in both RB cases along with an over expression of hERG1 K+ channels. Case presentation Two patients showed a sporadic, bilateral RB, classified at Stage II of the Reese-Elsworth Classification. Neither of them got benefits from conservative treatment, and the two eyes were enucleated. In samples from both RB cases we studied the VEGF-A pathway: VEGF-A showed high levels in the vitreous, the vegf-a, flt-1, kdr, and hif1-α transcripts were over-expressed. Moreover, both the transcripts and proteins of the hERG1 K+ channels turned out to be up-regulated in the two RB cases compared to the non cancerous retinal tissue. Conclusions We provide evidence that the VEGF-A pathway is up-regulated in two particular aggressive cases of bilateral RB, which did not experience any benefit from conservative treatment, showing the overexpression of the vegf-a, flt-1, kdr and hif1-α transcripts and the high secretion of VEGF-A. Moreover we also show for the first time that the herg1 gene transcripts and protein are over expressed in RB, as occurs in several aggressive tumors. These results further stress

  2. Overexpression of LncRNA AC067945.2 Down-Regulates Collagen Expression in Skin Fibroblasts and Possibly Correlates with the VEGF and Wnt Signalling Pathways.

    Science.gov (United States)

    Chen, Ling; Li, Jingyun; Li, Qian; Li, Xue; Gao, Yanli; Hua, Xiangdong; Zhou, Bei; Li, Jun

    2018-01-01

    Long non-coding RNAs (lncRNAs) are thought to play crucial roles in human diseases. However, the function of lncRNAs in hypertrophic scar formation remains poorly understood. Utilizing qRT-PCR, we explored the expression changes of AC067945.2. Overexpression of AC067945.2 in normal skin fibroblasts was performed by transient plasmid transfection. Western blot was used to check the proteins' expression changes. Cell Counting Kit-8 (CCK-8) assay and Annexin V/7-AAD staining were used to examine cell proliferation and apoptosis, respectively. mRNA-seq was applied to dissect the differentially expressed mRNAs in AC067945.2 overexpressed cells. We also performed ELISA to detect the VEGF secretion. AC067945.2 was down-regulated in hypertrophic scar tissues. Overexpression of AC067945.2 did not affect cell proliferation, but it mildly promoted early apoptosis in normal skin fibroblasts. Furthermore, AC067945.2 overexpression inhibited the expression of COL1A1, COL1A2, COL3A1 and α-SMA proteins. Transforming growth factor-β1 (TGF-β1) could inhibit the expression of AC067945.2. Based on mRNA-seq data, compared with mRNAs in the control group, 138 mRNAs were differentially expressed, including 14 up-regulated and 124 down-regulated transcripts, in the AC067945.2 overexpression group. Gene ontology and pathway analyses revealed that AC067945.2 overexpression was correlated with developmental processes, binding, extracellular region, and the vascular endothelial cell growth factor (VEGF) and Wnt signalling pathways. ELISA confirmed that AC067945.2 overexpression could repress VEGF secretion. Taken together, our data uncovered the functions of a novel lncRNA AC067945.2, which might help us understand the mechanisms regulated by AC067945.2 in the pathogenesis of hypertrophic scar formation. © 2018 The Author(s). Published by S. Karger AG, Basel.

  3. Prognostic Significance of Vascular Endothelial Growth Factor (VEGF) and Her-2 Protein in the Genesis of Cervical Carcinoma.

    Science.gov (United States)

    Rahmani, Arshad H; Babiker, Ali Yousif; Alsahli, Mohammed A; Almatroodi, Saleh A; Husain, Nazik Elmalaika O S

    2018-02-15

    Angiogenesis plays a pivotal role in the progression of tumours through the formation of new blood vessels. Vascular endothelial growth factor (VEGF) is a chief factor responsible for inducing and regulating angiogenesis. Additionally, the human epidermal growth factor receptor family of receptors also plays an important role in the pathogenesis of tumours. This study aimed to examine the association between VEGF and Her-2 protein expression and its correlation with clinic-pathological characteristics; in particular, prognosis. A total of 65 cases of cervical carcinoma and 10 samples of inflammatory lesions were evaluated for VEGF and Her-2 protein expression. Expression of VEGF and Her-2 was detected in 63.07% and 43.07% in cervical carcinoma cases respectively whereas control cases did not show any expression. The difference in the expression pattern of both markers comparing cancer and control cases was statistically significant (p 0.05). Comparing different grades of a tumour, expression of Her-2 was detected in 31.8% of well-differentiated tumours, 36.0 % in moderately differentiated tumours and 66.66 % in poorly differentiated cancers. The expression of Her-2 was increased in high-grade tumours, and the difference of expression level between tumour grades was statistically significant (p 0.05). The present study supports earlier findings that over-expression / up-regulation of VEGF and Her - 2 is linked with poor prognosis and may play a vital role in the development and progression of cervical cancer.

  4. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and its receptor PROKR2 are associated to human colorectal cancer progression and peritoneal carcinomatosis.

    Science.gov (United States)

    Benlahfid, Mohammed; Traboulsi, Wael; Sergent, Frederic; Benharouga, Mohamed; Elhattabi, Khalid; Erguibi, Driss; Karkouri, Mehdi; Elattar, Hicham; Fadil, Abdelaziz; Fahmi, Yassine; Aboussaouira, Touria; Alfaidy, Nadia

    2018-02-06

    The highest risk factor for mortality among malignant tumors is metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor which biological activity is mediated via two G protein-coupled receptors, prokineticin receptor1 (PROKR1) and PROKR2. Recent studies suggested that EG-VEGF expression is deregulated in multiple cancers including colorectal cancer (CRC). Using distinctive CRC and peritoneal carcinomatosis (PC) cohorts and a corresponding control cohort, we determined the circulating levels of EG-VEGF and its in situ expression, and that of its related receptors. Circulating EG-VEGF levels were significantly increased in patients with metastatic PC compared to CRC and control patients (p< 0.05). Furthermore, according to clinicopathologic examinations, local EG-VEGF expression correlated with higher tumor and nodal stages (p< 0.001) of CRC. EG-VEGF and PROKR2 were highly expressed in colorectal primary lesions compared to positive controls. PROKR1 expression was lower and did not change in tumor specimens. Also, EG-VEGF and its receptor PROKR2 were differentially expressed in the colorectal primary lesions and in the control groups. Altogether these findings suggest that EG-VEGF/receptors system might be an important actor in the CRC progression into PC and might be involved in the ability of tumor cells to invade other organs. Circulating EG-VEGF could be proposed as a prognostic marker in human CRC and its progression into PC.

  5. Helicobacter pylori induces vascular endothelial growth factor production in gastric epithelial cells through hypoxia-inducible factor-1α-dependent pathway.

    Science.gov (United States)

    Kang, Min-Jung; Song, Eun-Jung; Kim, Bo-Yeon; Kim, Dong-Jae; Park, Jong-Hwan

    2014-12-01

    Although Helicobacter pylori have been known to induce vascular endothelial growth factor (VEGF) production in gastric epithelial cells, the precise mechanism for cellular signaling is incompletely understood. In this study, we investigated the role of bacterial virulence factor and host cellular signaling in VEGF production of H. pylori-infected gastric epithelial cells. We evaluated production of VEGF, activation of nuclear factor nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) and hypoxia-inducible factor-1α (HIF-1α) stabilization in gastric epithelial cells infected with H. pylori WT or isogenic mutants deficient in type IV secretion system (T4SS). H. pylori induced VEGF production in gastric epithelial cells via both T4SS-dependent and T4SS-independent pathways, although T4SS-independent pathway seems to be the dominant signaling. The inhibitor assay implicated that activation of NF-κB and MAPKs is dispensable for H. pylori-induced VEGF production in gastric epithelial cells. H. pylori led to HIF-1α stabilization in gastric epithelial cells independently of T4SS, NF-κB, and MAPKs, which was essential for VEGF production in these cells. N-acetyl-cysteine (NAC), a reactive oxygen species (ROS) inhibitor, treatment impaired H. pylori-induced HIF-1α stabilization and VEGF production in gastric epithelial cells. We defined the important role of ROS-HIF-1α axis in VEGF production of H. pylori-infected gastric epithelial cells, and bacterial T4SS has a minor role in H. pylori-induced VEGF production of gastric epithelial cells. © 2014 John Wiley & Sons Ltd.

  6. Role of Endocrine Gland-Derived Vascular Endothelial Growth Factor (EG-VEGF) and Its Receptors in Adrenocortical Tumors.

    Science.gov (United States)

    Heck, Dorothee; Wortmann, Sebastian; Kraus, Luitgard; Ronchi, Cristina L; Sinnott, Richard O; Fassnacht, Martin; Sbiera, Silviu

    2015-12-01

    Angiogenesis is essential for tumor growth and metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor predominantly expressed in steroidogenic organs like the adrenal gland, ovary, testes, and placenta. EG-VEGF has antiapoptotic, mitogenic, and chemoattractive properties mediated via the two G protein-coupled receptors prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). We investigated the expression of EG-VEGF and its receptors in a large number of normal adrenal glands (NAG), adrenocortical adenomas (ACA), and carcinomas (ACC) using real-time PCR (NAG, n = 12; ACA, n = 24; and ACC, n = 30) and immunohistochemistry (NAG, n = 9; ACA, n = 23; and ACC, n = 163) and evaluated its impact on patients' survival. EG-VEGF, PKR1, and PKR2 mRNA and protein are expressed in NAG and the vast majority of ACA and ACC samples. The mean EG-VEGF mRNA expression was significantly lower in ACC (606.5 ± 77.1 copies) compared to NAG (4,043 ± 1,111) and cortisol-producing adenomas (CPA) (4,433 ± 2,378) (p < 0.01 and p < 0.05, respectively). However, cytoplasmic and nuclear EG-VEGF protein expression was either significantly higher or similar in ACC (H score 2.4 ± 0.05, p < 0.05 and 1.7 ± 0.08, n.s., respectively) compared to NAG (1.8 ± 0.14 and 1.7 ± 0.2). Nuclear protein expression of either EG-VEGF or PKR1 or both is predictive for a higher mortality compared to patients without nuclear expression (hazard ratio (HR) = 5.15; 95% confidence interval (CI) = 1.24-21.36, n = 100, p = 0.02 independent of age, sex, and tumor stage). These findings suggest that EG-VEGF and its receptor PKR1 might play a role in the pathogenesis of adrenocortical tumors and could serve as prognostic markers for this rare malignant disease.

  7. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: Novel insights into angiogenesis

    International Nuclear Information System (INIS)

    Sun, Hui-Yan; Wei, Shu-Ping; Xu, Rui-Cheng; Xu, Peng-Xiao; Zhang, Wen-Cheng

    2010-01-01

    Sphingosine-1-phosphate (S1P)-induced migration and proliferation of endothelial cells are critical for angiogenesis. C2H2-zinc finger (ZNF) proteins usually play an essential role in altering gene expression and regulating the angiogenesis. The aim of this study is to investigate whether a novel human C2H2-zinc finger gene ZNF580 (Gene ID: 51157) is involved in the migration and proliferation of endothelial cells stimulated by S1P. Our study shows that EAhy926 endothelial cells express S1P1, S1P3 and S1P5 receptors. Furthermore, S1P upregulates both ZNF580 mRNA and protein levels in a concentration- and time-dependent manner. SB203580, the specific inhibitor of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, blocks the S1P-induced upregulation of ZNF580. Moreover, overexpression/downexpression of ZNF580 in EAhy926 cells leads to the enhancement/decrease of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) expression as well as the migration and proliferation of EAhy926 endothelial cells. These results elucidate the important role that ZNF580 plays in the process of migration and proliferation of endothelial cells, which provides a foundation for a novel approach to regulate angiogenesis.

  8. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: Novel insights into angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hui-Yan, E-mail: shy35309@sohu.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Wei, Shu-Ping, E-mail: weishuping_83@163.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Xu, Rui-Cheng, E-mail: xu_rc@sohu.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Xu, Peng-Xiao, E-mail: xupengxiao1228@sina.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Zhang, Wen-Cheng, E-mail: wenchengzhang@yahoo.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China)

    2010-05-07

    Sphingosine-1-phosphate (S1P)-induced migration and proliferation of endothelial cells are critical for angiogenesis. C2H2-zinc finger (ZNF) proteins usually play an essential role in altering gene expression and regulating the angiogenesis. The aim of this study is to investigate whether a novel human C2H2-zinc finger gene ZNF580 (Gene ID: 51157) is involved in the migration and proliferation of endothelial cells stimulated by S1P. Our study shows that EAhy926 endothelial cells express S1P1, S1P3 and S1P5 receptors. Furthermore, S1P upregulates both ZNF580 mRNA and protein levels in a concentration- and time-dependent manner. SB203580, the specific inhibitor of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, blocks the S1P-induced upregulation of ZNF580. Moreover, overexpression/downexpression of ZNF580 in EAhy926 cells leads to the enhancement/decrease of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) expression as well as the migration and proliferation of EAhy926 endothelial cells. These results elucidate the important role that ZNF580 plays in the process of migration and proliferation of endothelial cells, which provides a foundation for a novel approach to regulate angiogenesis.

  9. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity.

    Science.gov (United States)

    Malykhina, Anna P; Lei, Qi; Erickson, Chris S; Epstein, Miles L; Saban, Marcia R; Davis, Carole A; Saban, Ricardo

    2012-12-19

    This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity.In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor.To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na(+) channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of neural plasticity in the pelvis and

  10. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity

    Directory of Open Access Journals (Sweden)

    Malykhina Anna P

    2012-12-01

    Full Text Available Abstract Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1 and cholinergic nerves (ChAT was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a

  11. Inhibition of protein kinase C delta attenuates allergic airway inflammation through suppression of PI3K/Akt/mTOR/HIF-1 alpha/VEGF pathway.

    Directory of Open Access Journals (Sweden)

    Yun Ho Choi

    Full Text Available Vascular endothelial growth factor (VEGF is supposed to contribute to the pathogenesis of allergic airway disease. VEGF expression is regulated by a variety of stimuli such as nitric oxide, growth factors, and hypoxia-inducible factor-1 alpha (HIF-1α. Recently, inhibition of the mammalian target of rapamycin (mTOR has been shown to alleviate cardinal asthmatic features, including airway hyperresponsiveness, eosinophilic inflammation, and increased vascular permeability in asthma models. Based on these observations, we have investigated whether mTOR is associated with HIF-1α-mediated VEGF expression in allergic asthma. In studies with the mTOR inhibitor rapamycin, we have elucidated the stimulatory role of a mTOR-HIF-1α-VEGF axis in allergic response. Next, the mechanisms by which mTOR is activated to modulate this response have been evaluated. mTOR is known to be regulated by phosphoinositide 3-kinase (PI3K/Akt or protein kinase C-delta (PKC δ in various cell types. Consistent with these, our results have revealed that suppression of PKC δ by rottlerin leads to the inhibition of PI3K/Akt activity and the subsequent blockade of a mTOR-HIF-1α-VEGF module, thereby attenuating typical asthmatic attack in a murine model. Thus, the present data indicate that PKC δ is necessary for the modulation of the PI3K/Akt/mTOR signaling cascade, resulting in a tight regulation of HIF-1α activity and VEGF expression. In conclusion, PKC δ may represent a valuable target for innovative therapeutic treatment of allergic airway disease.

  12. The influence of fractionated radiation therapy on plasma vascular endothelial growth factor (VEGF) concentration in dogs with spontaneous tumors and its impact on outcome

    International Nuclear Information System (INIS)

    Wergin, Melanie C.; Roos, Malgorzata; Inteeworn, Nathalie; Laluhova, Dagmar; Allemann, Katrin; Kaser-Hotz, Barbara

    2006-01-01

    Back ground and purpose: Vascular endothelial growth factor (VEGF), a specific pro-angiogenic factor is proposed to be involved in cancer progression and resistance to radiation therapy by promoting angiogenesis and by protecting endothelial cells from radiation induced apoptosis. The aim of this study, was first to assess the influence of ionizing radiation on plasma VEGF concentration in spontaneous canine tumors during fractionated radiation therapy with curative or palliative intent and second to analyze plasma VEGF concentration as predictor for treatment outcome. Patients and methods: For plasma VEGF analysis a human VEGF enzyme linked immunosorbent assay was used. Sixty dogs with various tumor types were included in this study. Dogs were irradiated with either low dose per fx (3-3.5 Gy per fraction, total dose: 42-49 Gy, group A: curative intent) or high dose per fx (6-8 Gy per fraction, total dose: 24-30 Gy, group B: palliative intent). Blood samples were taken before and after dose application at certain time points during therapy. Follow-up evaluation was performed for analysis of time to treatment failure and survival. Results: Repeated measures analysis showed no increase of plasma VEGF in dogs treated with fractionated radiation therapy (group A and B). Dichotomizing baseline plasma VEGF into two groups with high and low plasma VEGF, resulted in shorter time to treatment failure in dogs with high plasma VEGF levels (TTF, group A: P=0.038, group B: P=0.041). Conclusions: This study demonstrated that dogs with a plasma VEGF level higher than 5 pg/ml had a poorer outcome after radiation therapy. It is therefore, suggested, to use plasma VEGF as predictor for treatment outcome in radiation therapy

  13. Effects of hyperthyroidism on expression of vascular endothelial growth factor (VEGF) and apoptosis in fetal adrenal glands.

    Science.gov (United States)

    Karaca, T; Hulya Uz, Y; Karabacak, R; Karaboga, I; Demirtas, S; Cagatay Cicek, A

    2015-11-26

    This study investigated the expression of vascular endothelial growth factor (VEGF), vascular density, and apoptosis in fetal rat adrenal glands with hyperthyroidism in late gestation. Twelve mature female Wistar albino rats with the same biological and physiological features were used for this study. Rats were divided into two groups: control and hyperthyroidism. Hyperthyroidism was induced by daily subcutaneous injections of L-thyroxine (250 μg/kg) before pregnancy for 21 days and during pregnancy. Rats in the control and hyperthyroidism groups were caged according to the number of male rats. Zero day of pregnancy (Day 0) was indicated when the animals were observed to have microscopic sperm in vaginal smears. Pregnant rats were sacrificed on the 20th day of pregnancy; blood from each animal was collected to determine the concentrations of maternal adrenocorticotropic hormone and thyroxine. Rat fetuses were then quickly removed from the uterus, and the adrenal glands of the fetuses were dissected. VEGF expression, vascular density, and apoptosis were analyzed in fetal rat adrenal glands. Maternal serum levels of the adrenocorticotropic hormone and free thyroxine were significantly higher in the hyperthyroidism group than in the control group. Immunohistochemistry revealed that the number of VEGF positive cells and vessel density significantly increased in the hyperthyroidism rat fetal adrenal group compared with the control group. Hyperthyroidism did not change the fetal and placental weights and the number of fetuses. This study demonstrates that hyperthyroidism may have an effect on the development of rat adrenal glands mediated by VEGF expression, angiogenesis, and apoptosis.

  14. [Potential role of the angiogenic factor "EG-VEGF" in gestational trophoblastic diseases].

    Science.gov (United States)

    Boufettal, H; Feige, J-J; Benharouga, M; Aboussaouira, T; Nadifi, S; Mahdaoui, S; Samouh, N; Alfaidy, N

    2013-10-01

    Gestational trophoblastic disease (MGT) includes a wide spectrum of pathologies of the placenta, ranging from benign precancerous lesions, with gestational trophoblastic tumors. Metastases are the leading causes of death as a result of this tumor. They represent a major problem for obstetrics and for the public health system. To date, there is no predictor of the progression of molar pregnancies to gestational trophoblastic tumor (GTT). Only an unfavorable plasma hCG monitoring after evacuation of hydatidiform mole is used to diagnose a TTG. The causes of the development of this cancer are still poorly understood. Increasing data in the literature suggests a close association between the development of this tumor and poor placental vascularization during the first trimester of pregnancy. The development of the human placenta depends on a coordination between the trophoblast and endothelial cells. A disruption in the expression of angiogenic factors could contribute to uterine or extra-uterine tissue invasion by extravillous trophoblast, contributing to the development of TTG. This review sheds lights on the phenomenon of angiogenesis during normal and abnormal placentation, especially during the MGT and reports preliminary finding concerning, the variability of expression of "Endocrine Gland-Derived Vascular Endothelial Growth Factor" (EG-VEGF), a specific placental angiogenic factor, in normal and molar placentas, and the potential role of differentiated expressions of the main placental angiogenic factors in the scalability of hydatidiform moles towards a recovery or towards the development of gestational trophoblastic tumor. Deciphering the mechanisms by which the angiogenic factor influences these processes will help understand the pathophysiology of MGT and to create opportunities for early diagnosis and treatment of the latter. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood-brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats.

    Science.gov (United States)

    Shi, Xudan; Doycheva, Desislava Met; Xu, Liang; Tang, Jiping; Yan, Min; Zhang, John H

    2016-11-01

    Hypoxic ischemic (HI) encephalopathy remains the leading cause of perinatal brain injury resulting in long term disabilities. Stabilization of blood brain barrier (BBB) after HI is an important target, therefore, in this study we aim to determine the role of sestrin2, a stress inducible protein which is elevated after various insults, on BBB stabilization after moderate and severe HI injuries. Rat pups underwent common carotid artery ligation followed by either 150min (severe model) or 100min (moderate model) of hypoxia. 1h post HI, rats were intranasally administered with recombinant human sestrin2 (rh-sestrin2) and sacrificed for infarct area, brain water content, righting reflex and geotaxis reflex. Sestrin2 was silenced using siRNA and an activator/inhibitor of hypoxia inducible factor1α (HIF1α) was used to examine their roles on BBB permeability. Rats subjected to severe HI exhibited larger infarct area and higher sestrin2 expression compared to rats in the moderate HI group. rh-sestrin2 attenuated brain infarct and edema, while silencing sestrin2 reversed these protective effects after severe HI. HIF1α induced sestrin2 activation in severe HI but not in moderate HI groups. A HIF1a agonist was shown to increase permeability of the BBB via vascular endothelial growth factor (VEGF) after moderate HI. However, after severe HI, HIF1α activated both VEGF and sestrin2. But HIF1α dependent sestrin2 activation was the predominant pathway after severe HI which inhibited VEGF and attenuated BBB permeability. rh-sestrin2 attenuated BBB permeability via upregulation of endogenous sestrin2 which was induced by HIF1α after severe HI. However, HIF1α's effects as a prodeath or prosurvival signal were influenced by the severity of HI injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  17. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis.

    Science.gov (United States)

    Fearnley, Gareth W; Smith, Gina A; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T; Zachary, Ian C; Tomlinson, Darren C; Harrison, Michael A; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2016-05-15

    Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A-VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor-ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. © 2016. Published by The Company of Biologists Ltd.

  18. Melittin suppresses HIF-1α/VEGF expression through inhibition of ERK and mTOR/p70S6K pathway in human cervical carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jae-Moon Shin

    Full Text Available OBJECTIVE: Melittin (MEL, a major component of bee venom, has been associated with various diseases including arthritis, rheumatism and various cancers. In this study, the anti-angiogenic effects of MEL in CaSki cells that were responsive to the epidermal growth factor (EGF were examined. METHODOLOGY/PRINCIPAL FINDINGS: MEL decreased the EGF-induced hypoxia-inducible factor-1α (HIF-1α protein and significantly regulated angiogenesis and tumor progression. We found that inhibition of the HIF-1α protein level is due to the shortened half-life by MEL. Mechanistically, MEL specifically inhibited the EGF-induced HIF-1α expression by suppressing the phosphorylation of ERK, mTOR and p70S6K. It also blocked the EGF-induced DNA binding activity of HIF-1α and the secretion of the vascular endothelial growth factor (VEGF. Furthermore, the chromatin immunoprecipitation (ChIP assay revealed that MEL reduced the binding of HIF-1α to the VEGF promoter HRE region. The anti-angiogenesis effects of MEL were confirmed through a matrigel plus assay. CONCLUSIONS: MEL specifically suppressed EGF-induced VEGF secretion and new blood vessel formation by inhibiting HIF-1α. These results suggest that MEL may inhibit human cervical cancer progression and angiogenesis by inhibiting HIF-1α and VEGF expression.

  19. Chronic intermittent fasting improves the survival following large myocardial ischemia by activation of BDNF/VEGF/PI3K signaling pathway.

    Science.gov (United States)

    Katare, Rajesh G; Kakinuma, Yoshihiko; Arikawa, Mikihiko; Yamasaki, Fumiyasu; Sato, Takayuki

    2009-03-01

    Chronic heart failure (CHF) is the major cause of death in the developed countries. Calorie restriction is known to improve the recovery in these patients; however, the exact mechanism behind this protective effect is unknown. Here we demonstrate the activation of cell survival PI3kinase/Akt and VEGF pathway as the mechanism behind the protection induced by intermittent fasting in a rat model of established chronic myocardial ischemia (MI). Chronic MI was induced in rats by occlusion of the left coronary artery. Two weeks later, the rats were randomly assigned to a normal feeding group (MI-NF) and an alternate-day feeding group (MI-IF). After 6 weeks of observation, we evaluated the effect of intermittent fasting on cellular and ventricular remodeling and long-term survival after CHF. Compared with the normally fed group, intermittent fasting markedly improved the survival of rats with CHF (88.5% versus 23% survival, Pfasted hearts. Immunohistochemical studies confirmed increased capillary density (Pfasting also upregulated the expression of other anti-apoptotic factors such as Akt and Bcl-2 and reduced the TUNEL positive apoptotic nuclei in the border zone. Chronic intermittent fasting markedly improves the long-term survival after CHF by activation through its pro-angiogenic, anti-apoptotic and anti-remodeling effects.

  20. Cerebrovascular defects in Foxc1 mutants correlate with aberrant WNT and VEGF-A pathways downstream of retinoic acid from the meninges.

    Science.gov (United States)

    Mishra, Swati; Choe, Youngshik; Pleasure, Samuel J; Siegenthaler, Julie A

    2016-12-01

    Growth and maturation of the cerebrovasculature is a vital event in neocortical development however mechanisms that control cerebrovascular development remain poorly understood. Mutations in or deletions that include the FOXC1 gene are associated with congenital cerebrovascular anomalies and increased stroke risk in patients. Foxc1 mutant mice display severe cerebrovascular hemorrhage at late gestational ages. While these data demonstrate Foxc1 is required for cerebrovascular development, its broad expression in the brain vasculature combined with Foxc1 mutant's complex developmental defects have made it difficult to pinpoint its function(s). Using global and conditional Foxc1 mutants, we find 1) significant cerebrovascular growth defects precede cerebral hemorrhage and 2) expression of Foxc1 in neural crest-derived meninges and brain pericytes, though not endothelial cells, is required for normal cerebrovascular development. We provide evidence that reduced levels of meninges-derived retinoic acid (RA), caused by defects in meninges formation in Foxc1 mutants, is a major contributing factor to the cerebrovascular growth defects in Foxc1 mutants. We provide data that suggests that meninges-derived RA ensures adequate growth of the neocortical vasculature via regulating expression of WNT pathway proteins and neural progenitor derived-VEGF-A. Our findings offer the first evidence for a role of the meninges in brain vascular development and provide new insight into potential causes of cerebrovascular defects in patients with FOXC1 mutations. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Perlecan Domain V induces VEGf secretion in brain endothelial cells through integrin α5β1 and ERK-dependent signaling pathways.

    Directory of Open Access Journals (Sweden)

    Douglas N Clarke

    Full Text Available Perlecan Domain V (DV promotes brain angiogenesis by inducing VEGF release from brain endothelial cells (BECs following stroke. In this study, we define the specific mechanism of DV interaction with the α(5β(1 integrin, identify the downstream signal transduction pathway, and further investigate the functional significance of resultant VEGF release. Interestingly, we found that the LG3 portion of DV, which has been suggested to possess most of DV's angio-modulatory activity outside of the brain, binds poorly to α(5β(1 and induces less BEC proliferation compared to full length DV. Additionally, we implicate DV's DGR sequence as an important element for the interaction of DV with α(5β(1. Furthermore, we investigated the importance of AKT and ERK signaling in DV-induced VEGF expression and secretion. We show that DV increases the phosphorylation of ERK, which leads to subsequent activation and stabilization of eIF4E and HIF-1α. Inhibition of ERK activity by U0126 suppressed DV-induced expression and secretion of VEGR in BECs. While DV was capable of phosphorylating AKT we show that AKT phosphorylation does not play a role in DV's induction of VEGF expression or secretion using two separate inhibitors, LY294002 and Akt IV. Lastly, we demonstrate that VEGF activity is critical for DV increases in BEC proliferation, as well as angiogenesis in a BEC-neuronal co-culture system. Collectively, our findings expand our understanding of DV's mechanism of action on BECs, and further support its potential as a novel stroke therapy.

  2. Perlecan Domain V Induces VEGf Secretion in Brain Endothelial Cells through Integrin α5β1 and ERK-Dependent Signaling Pathways

    Science.gov (United States)

    Clarke, Douglas N.; Al Ahmad, Abraham; Lee, Boyeon; Parham, Christi; Auckland, Lisa; Fertala, Andrezj; Kahle, Michael; Shaw, Courtney S.; Roberts, Jill; Bix, Gregory J.

    2012-01-01

    Perlecan Domain V (DV) promotes brain angiogenesis by inducing VEGF release from brain endothelial cells (BECs) following stroke. In this study, we define the specific mechanism of DV interaction with the α5β1 integrin, identify the downstream signal transduction pathway, and further investigate the functional significance of resultant VEGF release. Interestingly, we found that the LG3 portion of DV, which has been suggested to possess most of DV’s angio-modulatory activity outside of the brain, binds poorly to α5β1 and induces less BEC proliferation compared to full length DV. Additionally, we implicate DV’s DGR sequence as an important element for the interaction of DV with α5β1. Furthermore, we investigated the importance of AKT and ERK signaling in DV-induced VEGF expression and secretion. We show that DV increases the phosphorylation of ERK, which leads to subsequent activation and stabilization of eIF4E and HIF-1α. Inhibition of ERK activity by U0126 suppressed DV-induced expression and secretion of VEGR in BECs. While DV was capable of phosphorylating AKT we show that AKT phosphorylation does not play a role in DV’s induction of VEGF expression or secretion using two separate inhibitors, LY294002 and Akt IV. Lastly, we demonstrate that VEGF activity is critical for DV increases in BEC proliferation, as well as angiogenesis in a BEC-neuronal co-culture system. Collectively, our findings expand our understanding of DV’s mechanism of action on BECs, and further support its potential as a novel stroke therapy. PMID:23028886

  3. Serological inflammatory factors as biomarkers for anatomic response in diabetic macular edema treated with anti-VEGF.

    Science.gov (United States)

    Brito, Pedro; Costa, Jorge; Gomes, Nuno; Costa, Sandra; Correia-Pinto, Jorge; Silva, Rufino

    2018-05-11

    To study the relationship between systemic pro-inflammatory factors and macular structural response to intravitreal bevacizumab for diabetic macular edema (DME). Prospective study including 30 cases with DME, treated with bevacizumab and a minimum follow-up of 6 months. All cases underwent baseline laboratory testing for cardiovascular risk (high sensitivity C-reactive protein (hsCRP), homocystein), dyslipidemia, renal dysfunction and glucose control. Serum levels of VEGF, soluble ICAM-1, MCP-1 and TNF-α were assessed by enzyme-linked immunosorbent assay kits. Significant associations between systemic factors and quantitative and qualitative spectral-domain optical coherence macular features were analyzed. A mean of 4.82 ± 0.56 intravitreal injections was performed, resulting in significant improvement of central foveal thickness (CFT) (p anatomic response (area under the curve (AUC) = 0.807, p = 0.009 for hsCRP; AUC = 0.788, p = 0.014 for ICAM1). ROC curve analysis revealed hsCRP as a significant biomarker for 6th month CFT decrease anatomic response to anti-VEGF treatment. Cases with higher serum levels of such factors had increased CFT values, despite treatment, suggesting inner blood-retinal barrier breakdown that is not adequately responsive to anti-VEGF monotherapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Adiponectin promotes VEGF-A-dependent angiogenesis in human chondrosarcoma through PI3K, Akt, mTOR, and HIF-α pathway.

    Science.gov (United States)

    Lee, Hsiang-Ping; Lin, Chih-Yang; Shih, Jhao-Sheng; Fong, Yi-Chin; Wang, Shih-Wei; Li, Te-Mao; Tang, Chih-Hsin

    2015-11-03

    Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. On the other hand, angiogenesis is a critical step in tumor growth and metastasis. However, the relationship of adiponectin with vascular endothelial growth factor-A (VEGF-A) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study we first demonstrated that the expression of adiponectin was correlated with tumor stage of human chondrosarcoma tissues. In addition, we also found that adiponectin increased VEGF-A expression in human chondrosarcoma cells and subsequently induced migration and tube formation in human endothelial progenitor cells (EPCs). Adiponectin promoted VEGF-A expression through adiponectin receptor (AdipoR), phosphoinositide 3 kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF)-1α signaling cascades. Knockdown of adiponectin decreased VEGF-A expression and also abolished chondrosarcoma conditional medium-mediated tube formation in EPCs in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. Therefore, adiponectin is crucial for tumor angiogenesis and growth, which may represent a novel target for anti-angiogenic therapy in human chondrosarcoma.

  5. Artemisinic acid exhibits antitumor activity in MCF-7 breast cancer cells through the inhibition of angiogenesis, VEGF, m-TOR and AKT signalling pathways

    Directory of Open Access Journals (Sweden)

    Yan Cui

    2016-09-01

    Full Text Available The aim of the present study was to evaluate the antitumor and anti-angiogenic effects of artemisinic acid in MCF-7 human breast cancer cells. Various cell signalling pathways (VEGF, m-TOR and AKT signalling pathways and MTT assay were used. The in vivo antitumor activity of artemisinic acid was evaluated by means of tumor xenograft mouse model. Transwell cell migration assay was used to examine the chemotactic motility of the human umbilical vascular endothelial cells (HUVECs, while as endothelial cell capillary-like tube formation assay was used to evaluate the effect of artemisinic acid on the tube formation in HUVECs. We found that artemisinic acid considerably reduced both the volume and weight of concrete tumors and reduced angiogenesis in a xenograft mouse tumor model in vivo. Further, artemisinic acid suppressed the VEGF-induced cell migration and capillary-like tube formation of HUVECs in a dose-dependent manner. Artemisinic acid was found to suppress the VEGF-induced phosphorylation of VEGFR2 and also the activity of AKT and m-TOR.

  6. Dual growth factor delivery from biofunctionalized allografts: Sequential VEGF and BMP-2 release to stimulate allograft remodeling.

    Science.gov (United States)

    Sharmin, Farzana; McDermott, Casey; Lieberman, Jay; Sanjay, Archana; Khan, Yusuf

    2017-05-01

    Autografts have been shown to stimulate osteogenesis, osteoclastogenesis, and angiogenesis, and subsequent rapid graft incorporation. Large structural allografts, however, suffer from limited new bone formation and remodeling, both of which are directly associated with clinical failure due to non-unions, late graft fractures, and infections, making it a priority to improve large structural allograft healing. We have previously shown the osteogenic ability of a polymer-coated allograft that delivers bone morphogenetic protein-2 both in vitro and in vivo through both burst release and sustained release kinetics. In this study, we have demonstrated largely sequential delivery of bone morphogenetic protein-2 and vascular endothelial growth factor from the same coated allograft. Release data showed that loading both growth factors onto a polymeric coating with two different techniques resulted in short-term (95% release within 2 weeks) and long-term (95% release within 5 weeks) delivery kinetics. We have also demonstrated how released VEGF, traditionally associated with angiogenesis, can also provide a stimulus for allograft remodeling via resorption. Bone marrow derived mononuclear cells were co-cultured with VEGF released from the coated allograft and showed a statistically significant (p exposed to VEGF released from the allografts over controls (p < 0.05). These results indicate that by using different loading protocols temporal control can be achieved when delivering multiple growth factors from a polymer-coated allograft. Further, released VEGF can also stimulate osteoclastogenesis that may enhance allograft incorporation, and thus mitigate long-term clinical complications. © 2017 Orthopedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1086-1095, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Sulodexide prevents activation of the PLA2/COX-2/VEGF inflammatory pathway in human retinal endothelial cells by blocking the effect of AGE/RAGE.

    Science.gov (United States)

    Giurdanella, Giovanni; Lazzara, Francesca; Caporarello, Nunzia; Lupo, Gabriella; Anfuso, Carmelina Daniela; Eandi, Chiara M; Leggio, Gian Marco; Drago, Filippo; Bucolo, Claudio; Salomone, Salvatore

    2017-10-15

    Diabetic retinopathy is characterized by the breakdown of endothelial blood-retinal barrier. We tested the hypothesis that sulodexide (SDX), a highly purified glycosaminoglycan composed of 80% iduronylglycosaminoglycan sulfate and 20% dermatan sulfate, protects human retinal endothelial cells (HREC) from high glucose (HG)-induced damage, through the suppression of inflammatory ERK/cPLA2/COX-2/PGE 2 pathway, by blocking the effect of advanced glycation end-products (AGEs). HREC were treated with HG (25mM) or AGEs (glycated-BSA, 2mg/ml) for 48h, with or without SDX (60μg/ml) or aflibercept (AFL, 40μg/ml), a VEGF-trap. SDX protected HREC from HG-induced damage (MTT and LDH release) and preserved their blood-retinal barrier-like properties (Trans Endothelial Electrical Resistance and junction proteins, claudin-5, VE-cadherin and occludin, immunofluorescence and immunoblot) as well as their angiogenic potential (Tube Formation Assay). Both HG and AGEs increased phosphoERK and phospho-cPLA 2 , an effect counteracted by SDX and, less efficiently, by AFL. Both HG and exogenous VEGF (80ng/ml) increased PGE 2 release, an effect partially reverted by SDX for HG and by AFL for VEGF. Analysis of NFκB activity revealed that HG increased the abundance of p65 in the nuclear fraction (nuclear translocation), an effect entirely reverted by SDX, but only partially by AFL. SDX, AFL and SDX+AFL protected HREC even when added 24h after HG. These data show that SDX protects HREC from HG damage and suggest that it counteracts the activation of ERK/cPLA2/COX-2/PGE 2 pathway by reducing AGE-related signaling and downstream NFκB activity. This mechanism, partially distinct from VEGF blockade, may contribute to the therapeutic effect of SDX. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. CS5931, a Novel Polypeptide in Ciona savignyi, Represses Angiogenesis via Inhibiting Vascular Endothelial Growth Factor (VEGF and Matrix Metalloproteinases (MMPs

    Directory of Open Access Journals (Sweden)

    Ge Liu

    2014-03-01

    Full Text Available CS5931 is a novel polypeptide from Ciona savignyi with anticancer activities. Previous study in our laboratory has shown that CS5931 can induce cell death via mitochondrial apoptotic pathway. In the present study, we found that the polypeptide could inhibit angiogenesis both in vitro and in vivo. CS5931 inhibited the proliferation, migration and formation of capillary-like structures of HUVECs (Human Umbilical Vein Endothelial Cell in a dose-dependent manner. Additionally, CS5931 repressed spontaneous angiogenesis of the zebrafish vessels. Further studies showed that CS5931 also blocked vascular endothelial growth factor (VEGF production but without any effect on its mRNA expression. Moreover, CS5931 reduced the expression of matrix metalloproteinases (MMP-2 and MMP-9 both on protein and mRNA levels in HUVEC cells. We demonstrated that CS5931 possessed strong anti-angiogenic activity both in vitro and in vivo, possible via VEGF and MMPs. This study indicates that CS5931 has the potential to be developed as a novel therapeutic agent as an inhibitor of angiogenesis for the treatment of cancer.

  9. Intermittent Hypoxia Influences Alveolar Bone Proper Microstructure via Hypoxia-Inducible Factor and VEGF Expression in Periodontal Ligaments of Growing Rats

    Directory of Open Access Journals (Sweden)

    Shuji Oishi

    2016-09-01

    Full Text Available Intermittent hypoxia (IH recapitulates morphological changes in the maxillofacial bones in children with obstructive sleep apnea (OSA. Recently, we found that IH increased bone mineral density (BMD in the inter-radicular alveolar bone (reflecting enhanced osteogenesis in the mandibular first molar (M1 region in the growing rats, but the underlying mechanism remains unknown. In this study, we focused on the hypoxia-inducible factor (HIF pathway to assess the effect of IH by testing the null hypothesis of no significant differences in the mRNA-expression levels of relevant factors associated with the HIF pathway, between control rats and growing rats with IH. To test the null hypothesis, we investigated how IH enhances mandibular osteogenesis in the alveolar bone proper with respect to HIF-1α and vascular endothelial growth factor (VEGF in periodontal ligament (PDL tissues. Seven-week-old male Sprague–Dawley rats were exposed to IH for 3 weeks. The microstructure and BMD in the alveolar bone proper of the distal root of the mandibular M1 were evaluated using micro-computed tomography (micro-CT. Expression of HIF-1α and VEGF mRNA in PDL tissues were measured, whereas osteogenesis was evaluated by measuring mRNA levels for alkaline phosphatase (ALP and bone morphogenetic protein-2 (BMP-2. The null hypothesis was rejected: we found an increase in the expression of all of these markers after IH exposure. The results provided the first indication that IH enhanced osteogenesis of the mandibular M1 region in association with PDL angiogenesis during growth via HIF-1α in an animal model.

  10. Anti-VEGF agents in metastatic colorectal cancer (mCRC: are they all alike?

    Directory of Open Access Journals (Sweden)

    Saif MW

    2013-06-01

    Full Text Available Muhammad Wasif Saif GI Oncology Program, Tufts University School of Medicine, Boston, MA, USA Abstract: Bevacizumab is a monoclonal antibody that binds and neutralizes vascular endothelial growth factor (VEGF-A, a key player in the angiogenesis pathway. Despite benefits of bevacizumab in cancer therapy, it is clear that the VEGF pathway is complex, involving multiple isoforms, receptors, and alternative ligands such as VEGF-B, and placental growth factor, which could enable escape from VEGF-A-targeted angiogenesis inhibition. Recently developed therapies have targeted other ligands in the VEGF pathway (eg, aflibercept, known as ziv-aflibercept in the United States, VEGF receptors (eg, ramucirumab, and their tyrosine kinase signaling (ie, tyrosine kinase inhibitors. The goal of the current review was to identify comparative preclinical data for the currently available VEGF-targeted therapies. Sources were compiled using PubMed searches (2007 to 2012, using search terms including, but not limited to: “bevacizumab,” “aflibercept,” “ramucirumab,” and “IMC-18F1.” Two preclinical studies were identified that compared bevacizumab and the newer agent, aflibercept. These studies identified some important differences in binding and pharmacodynamic activity, although the potential clinical relevance of these findings is not known. Newer antiangiogenesis therapies should help further expand treatment options for colorectal and other cancers. Comparative preclinical data on these agents is currently lacking. Keywords: aflibercept, antiangiogenesis, metastatic colorectal cancer (mCRC, tyrosine kinase inhibitor (TKI, vascular endothelial growth factor (VEGF

  11. Differential expression of VEGF ligands and receptors in prostate cancer.

    Science.gov (United States)

    Woollard, David J; Opeskin, Kenneth; Coso, Sanja; Wu, Di; Baldwin, Megan E; Williams, Elizabeth D

    2013-05-01

    Prostate cancer disseminates to regional lymph nodes, however the molecular mechanisms responsible for lymph node metastasis are poorly understood. The vascular endothelial growth factor (VEGF) ligand and receptor family have been implicated in the growth and spread of prostate cancer via activation of the blood vasculature and lymphatic systems. The purpose of this study was to comprehensively examine the expression pattern of VEGF ligands and receptors in the glandular epithelium, stroma, lymphatic vasculature and blood vessels in prostate cancer. The localization of VEGF-A, VEGF-C, VEGF-D, VEGF receptor (VEGFR)-1, VEGFR-2, and VEGFR-3 was examined in cancerous and adjacent benign prostate tissue from 52 subjects representing various grades of prostate cancer. Except for VEGFR-2, extensive staining was observed for all ligands and receptors in the prostate specimens. In epithelial cells, VEGF-A and VEGFR-1 expression was higher in tumor tissue compared to benign tissue. VEGF-D and VEGFR-3 expression was significantly higher in benign tissue compared to tumor in the stroma and the endothelium of lymphatic and blood vessels. In addition, the frequency of lymphatic vessels, but not blood vessels, was lower in tumor tissue compared with benign tissue. These results suggest that activation of VEGFR-1 by VEGF-A within the carcinoma, and activation of lymphatic endothelial cell VEGFR-3 by VEGF-D within the adjacent benign stroma may be important signaling mechanisms involved in the progression and subsequent metastatic spread of prostate cancer. Thus inhibition of these pathways may contribute to therapeutic strategies for the management of prostate cancer. Copyright © 2012 Wiley Periodicals, Inc.

  12. Coffee induces vascular endothelial growth factor (VEGF) expression in human neuroblastama SH-SY5Y cells.

    Science.gov (United States)

    Kakio, Shota; Funakoshi-Tago, Megumi; Kobata, Kenji; Tamura, Hiroomi

    2017-07-01

    Recent evidence indicates that hypoxia-inducible vascular endothelial growth factor (VEGF) has neurotrophic and neuroprotective effects on neuronal and glial cells. On the other hand, recent epidemiological studies showed that daily coffee consumption has been associated with a lower risk of several neuronal disorders. Therefore, we investigated the effect of coffee on VEGF expression in human neuroblastoma SH-SY5Y cells. We found that even low concentration of coffee (coffee was attributed to the coffee-dependent inhibition of prolyl hydroxylation of HIF1α, which is essential for proteolytic degradation of HIF-1α. However, no inhibition was observed at the catalytic activity in vitro. Coffee component(s) responsible for the activation of HIF-1α was not major constituents such as caffeine, caffeic acid, chlorogenic acid, and trigonelline, but was found to emerge during roasting process. The active component(s) was extractable with ethyl acetate. Our results suggest that daily consumption of coffee may induce VEGF expression in neuronal cells. This might be related to protective effect of coffee on neural disorders such as Alzheimer's disease and Parkinson's disease.

  13. Effects of hyperthyroidism on expression of vascular endothelial growth factor (VEGF and apoptosis in fetal adrenal glands

    Directory of Open Access Journals (Sweden)

    T. Karaca

    2015-11-01

    Full Text Available This study investigated the expression of vascular endothelial growth factor (VEGF, vascular density, and apoptosis in fetal rat adrenal glands with hyperthyroidism in late gestation. Twelve mature female Wistar albino rats with the same biological and physiological features were used for this study. Rats were divided into two groups: control and hyperthyroidism. Hyperthyroidism was induced by daily subcutaneous injections of L-thyroxine (250 μg/kg before pregnancy for 21 days and during pregnancy. Rats in the control and hyperthyroidism groups were caged according to the number of male rats. Zero day of pregnancy (Day 0 was indicated when the animals were observed to have microscopic sperm in vaginal smears. Pregnant rats were sacrificed on the 20th day of pregnancy; blood from each animal was collected to determine the concentrations of maternal adrenocorticotropic hormone and thyroxine. Rat fetuses were then quickly removed from the uterus, and the adrenal glands of the fetuses were dissected. VEGF expression, vascular density, and apoptosis were analyzed in fetal rat adrenal glands. Maternal serum levels of the adrenocorticotropic hormone and free thyroxine were significantly higher in the hyperthyroidism group than in the control group. Immunohistochemistry revealed that the number of VEGF positive cells and vessel density significantly increased in the hyperthyroidism rat fetal adrenal group compared with the control group. Hyperthyroidism did not change the fetal and placental weights and the number of fetuses. This study demonstrates that hyperthyroidism may have an effect on the development of rat adrenal glands mediated by VEGF expression, angiogenesis, and apoptosis. 

  14. Zeaxanthin Inhibits Hypoxia-Induced VEGF Secretion by RPE Cells through Decreased Protein Levels of Hypoxia-Inducible Factors-1α

    Directory of Open Access Journals (Sweden)

    Richard Rosen

    2015-01-01

    Full Text Available Hypoxia is the most important stimulus leading to upregulation of VEGF in the retina and this is caused by accumulation of hypoxia-inducible factors-1α (HIF-1α protein. The effects of zeaxanthin, a natural phytochemical, on the VEGF and HIF-1α expression in the primary culture of human retinal pigment epithelial (RPE cells were studied. An in vitro RPE cell hypoxia model was established by placing cells under 1% oxygen pressure or by adding cobalt chloride (CoCl2 to the culture medium. RPE cells and conditioned media were collected from cultures treated with and without zeaxanthin under normoxic and hypoxic conditions. VEGF and HIF-1α protein and RNA levels were measured by ELISA kits and RT-PCR, respectively. Hypoxia caused a significant increase of VEGF expression and accumulation of HIF-1α in RPE cells. Zeaxanthin at 50–150 μM significantly inhibited the expression of VEGF and accumulation of HIF-1α protein caused by hypoxia but did not affect expression of VEGF and HIF-1α under normoxic conditions. This is the first report on the effect of zeaxanthin on VEGF and HIF-1α levels in cultured RPE cells and suggests that zeaxanthin may have potential value in the prevention and treatment of various retinal diseases associated with vascular leakage and neovascularization.

  15. Nogo-B Promotes Angiogenesis in Proliferative Diabetic Retinopathy via VEGF/PI3K/Akt Pathway in an Autocrine Manner

    Directory of Open Access Journals (Sweden)

    Yuelu Zhang

    2017-10-01

    Full Text Available Background/Aims: Nogo-B, a conservative protein of endoplasmic reticulum, is a member of the reticulon family of proteins. Proliferative diabetic retinopathy (PDR is the major concerning problem of diabetic retinopathy. This study explored the role of Nogo-B in the regulation of angiogenesis in PDR patients and primary human retinal endothelial cells (HRMECs. Methods: Nogo-B was down-regulated through the use of Lentivirus-NogoB-RNAi, the effects of Nogo-B on angiogenesis under high glucose stimulation were evaluated via CCK-8 assay, wound closure assay, transwell assay, and tube formation assay. Expression of Nogo-B, VEGF, PI3K and Akt were determined by western blotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA. Co-culture systerm was used to explore cell communication. Results: Nogo-B was highly enriched in ocular tissues of PDR patients and in HRMECs exposed to high glucose. Down-regulation of Nogo-B attenuated high glucose induced cell migration and tube formation in HRMECs. Mechanistically, in comparison with the negative control group, Lentivirus-NogoB-RNAi group had exhibited reduced VEGF secretion, weakened PI3K and Akt activation. Besides, high glucose treatment promoted the secretion of Nogo-B and presented as a “long-term memory”. Conclusions: These data collectively indicated that Nogo-B promoted angiogenesis in HRMECs via VEGF/PI3K/Akt pathway in an autocrine manner.

  16. Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone?

    Science.gov (United States)

    Brouwers, J E M; van Donkelaar, C C; Sengers, B G; Huiskes, R

    2006-01-01

    Endochondral ossification is the process of differentiation of cartilaginous into osseous tissue. Parathyroid hormone related protein (PTHrP), Indian hedgehog (Ihh) and vascular endothelial growth factor (VEGF), which are synthesized in different zones of the growth plate, were found to have crucial roles in regulating endochondral ossification. The aim of this study was to evaluate whether the three growth factors PTHrP, Ihh and VEGF, together, could regulate longitudinal growth in a normal human, fetal femur. For this purpose, a one-dimensional finite element (FE) model, incorporating growth factor signaling, was developed of the human, distal, femoral growth plate. It included growth factor synthesis in the relevant zones, their transport and degradation and their effects. Simulations ran from initial hypertrophy in the center of the bone until secondary ossification starts at approximately 3.5 months postnatal. For clarity, we emphasize that no mechanical stresses were considered. The FE model showed a stable growth plate in which the bone growth rate was constant and the number of cells per zone oscillated around an equilibrium. Simulations incorporating increased and decreased PTHrP and Ihh synthesis rates resulted, respectively, in more and less cells per zone and in increased and decreased bone growth rates. The FE model correctly reflected the development of a growth plate and the rate of bone growth in the femur. Simulations incorporating increased and decreased PTHrP and Ihh synthesis rates reflected growth plate pathologies and growth plates in PTHrP-/- and Ihh-/- mice. The three growth factors, PTHrP, Ihh and VEGF, could potentially together regulate tissue differentiation.

  17. The impact of hyperbaric oxygen therapy on serological values of vascular endothelial growth factor (VEGF and basic fibroblast growth factor (bFGF

    Directory of Open Access Journals (Sweden)

    Ziebura Thomas

    2010-12-01

    Full Text Available Abstract Background Hyperbaric oxygen (HBO therapy is an effective adjunct treatment for ischemic disorders such as chronic infection or chronic wounds. It combines hyperoxic effects with the stimulating potential of post-therapeutic reactive hypoxia. As its crucial effects, stimulation of fibroblast growth, induction of collagen synthesis and the initiation of angiogenesis are discussed. Angiogenesis is a multistage process resulting in the growth of blood vessels. It includes degradation of extracellular matrix, proliferation and migration of different cell populations and finally formation of new vessel structures. This complex chain of procedures is orchestrated by different cytokines and growth factors. Crucial mediators of angiogenesis are basic fibroblast growth factor (bFGF and vascular endothelial growth factor (VEGF; their in-vivo function is still not fully understood. Methods Forty-three patients suffering from sudden sensorineural hearing loss or tinnitus were treated with HBO. The therapy included 10 sessions of 90 minutes each, one session a day. Serological levels of bFGF and VEGF were assessed by enzyme-linked immunosorbent assays performed according to the manufacturer's instructions on day 1, 2, 5 and 10 of HBO therapy and were compared to mean values of the control group, related to the patient's age and sex, and their development observed over the ten days of HBO. Results There was no sex- or age dependency of bFGF observed in the present study, whereas under HBO our results showed a significant mitigation of the bFGF concentration. In the present data, there was no connection between the VEGF concentration and the patients' ages. Women showed significantly higher levels of VEGF. There was no significant change of VEGF concentration or the VEGF/bFGF ratio during HBO. All scored results varied within the range of standard values as described in the current literature. Conclusions A significant effect of HBO on serum

  18. CD147 induces up-regulation of vascular endothelial growth factor in U937-derived foam cells through PI3K/AKT pathway.

    Science.gov (United States)

    Zong, JiaXin; Li, YunTian; Du, DaYong; Liu, Yang; Yin, YongJun

    2016-11-01

    Intraplaque angiogenesis has been recognized as an important risk factor for the rupture of advanced atherosclerotic plaques in recent years. CD147, also called Extracellular Matrix Metalloproteinase Inducer, has been found the ability to promote angiogenesis in many pathological conditions such as cancer diseases and rheumatoid arthritis via the up-regulation of vascular endothelial growth factor (VEGF), a critical mediator of angiogenesis. We investigated whether CD147 would also induce the up-regulation of VEGF in the foam cells formation process and explored the probable signaling pathway. The results showed the expression of CD147 and VEGF was significantly higher in U937-derived foam cells. After CD147 stealth siRNA transfection treatment, the production of VEGF was reduced depended on the inhibition efficiency of CD147 siRNAs.The special signaling pathway inhibitors LY294002, SP600125, SB203580 and U0126 were added to cultures respectively and the results showed LY294002 dose-dependently inhibited the expression of VEGF. The reduction of phospho-Akt was observed in both LY294002 and siRNA groups, suggested that the phosphatidylinositol 3-kinase/Akt pathway may be the probable signaling pathway underlying CD147 induced up-regulation of VEGF in U937-derived foam cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Vascular endothelial growth factor (VEGF), produced by feline infectious peritonitis (FIP) virus-infected monocytes and macrophages, induces vascular permeability and effusion in cats with FIP.

    Science.gov (United States)

    Takano, Tomomi; Ohyama, Taku; Kokumoto, Aiko; Satoh, Ryoichi; Hohdatsu, Tsutomu

    2011-06-01

    Feline infectious peritonitis virus (FIPV) causes a fatal disease called FIP in Felidae. The effusion in body cavity is commonly associated with FIP. However, the exact mechanism of accumulation of effusion remains unclear. We investigated vascular endothelial growth factor (VEGF) to examine the relationship between VEGF levels and the amounts of effusion in cats with FIP. Furthermore, we examined VEGF production in FIPV-infected monocytes/macrophages, and we used feline vascular endothelial cells to examine vascular permeability induced by the culture supernatant of FIPV-infected macrophages. In cats with FIP, the production of effusion was related with increasing plasma VEGF levels. In FIPV-infected monocytes/macrophages, the production of VEGF was associated with proliferation of virus. Furthermore, the culture supernatant of FIPV-infected macrophages induced hyperpermeability of feline vascular endothelial cells. It was suggested that vascular permeability factors, including VEGF, produced by FIPV-infected monocytes/macrophages might increase the vascular permeability and the amounts of effusion in cats with FIP. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Acute Podocyte Vascular Endothelial Growth Factor (VEGF-A) Knockdown Disrupts alphaVbeta3 Integrin Signaling in the Glomerulus

    Science.gov (United States)

    Veron, Delma; Villegas, Guillermo; Aggarwal, Pardeep Kumar; Bertuccio, Claudia; Jimenez, Juan; Velazquez, Heino; Reidy, Kimberly; Abrahamson, Dale R.; Moeckel, Gilbert; Kashgarian, Michael; Tufro, Alda

    2012-01-01

    Podocyte or endothelial cell VEGF-A knockout causes thrombotic microangiopathy in adult mice. To study the mechanism involved in acute and local injury caused by low podocyte VEGF-A we developed an inducible, podocyte-specific VEGF-A knockdown mouse, and we generated an immortalized podocyte cell line (VEGFKD) that downregulates VEGF-A upon doxycycline exposure. Tet-O-siVEGF:podocin-rtTA mice express VEGF shRNA in podocytes in a doxycycline-regulated manner, decreasing VEGF-A mRNA and VEGF-A protein levels in isolated glomeruli to ∼20% of non-induced controls and urine VEGF-A to ∼30% of control values a week after doxycycline induction. Induced tet-O-siVEGF:podocin-rtTA mice developed acute renal failure and proteinuria, associated with mesangiolysis and microaneurisms. Glomerular ultrastructure revealed endothelial cell swelling, GBM lamination and podocyte effacement. VEGF knockdown decreased podocyte fibronectin and glomerular endothelial alphaVbeta3 integrin in vivo. VEGF receptor-2 (VEGFR2) interacts with beta3 integrin and neuropilin-1 in the kidney in vivo and in VEGFKD podocytes. Podocyte VEGF knockdown disrupts alphaVbeta3 integrin activation in glomeruli, detected by WOW1-Fab. VEGF silencing in cultured VEGFKD podocytes downregulates fibronectin and disrupts alphaVbeta3 integrin activation cell-autonomously. Collectively, these studies indicate that podocyte VEGF-A regulates alphaVbeta3 integrin signaling in the glomerulus, and that podocyte VEGF knockdown disrupts alphaVbeta3 integrin activity via decreased VEGFR2 signaling, thereby damaging the three layers of the glomerular filtration barrier, causing proteinuria and acute renal failure. PMID:22808199

  1. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration.

    Science.gov (United States)

    Fearnley, Gareth W; Bruns, Alexander F; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-04-24

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response. © 2015. Published by The Company of Biologists Ltd.

  2. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2015-07-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response.

  3. Increased plasma levels of soluble vascular endothelial growth factor (VEGF) receptor 1 (sFlt-1) in women by moderate exercise and increased plasma levels of VEGF in overweight/obese women

    Science.gov (United States)

    Makey, Kristina L.; Patterson, Sharla G.; Robinson, James; Loftin, Mark; Waddell, Dwight E.; Miele, Lucio; Chinchar, Edmund; Huang, Min; Smith, Andrew D.; Weber, Mark; Gu, Jian-Wei

    2012-01-01

    The incidence of breast cancer is increasing worldwide, and this seems to be related to an increase in lifestyle risk factors, including physical inactivity, and overweight/obesity. We previously reported that exercise induced a circulating angiostatic phenotype characterized by increased sFlt-1 and endostatin and decreased unbound-VEGF in men. However, there is no data on women. The present study determines the following: 1) whether moderate exercise increased sFlt-1 and endostatin and decreased unbound-VEGF in the circulation of adult female volunteers; 2) whether overweight/obese women have a higher plasma level of unbound-VEGF than lean women. 72 African American and Caucasian adult women volunteers aged from 18–44 were enrolled into the exercise study. All the participants walked on a treadmill for 30 minutes at a moderate intensity (55–59% heart rate reserve), and oxygen consumption (VO2) was quantified by utilizing a metabolic cart. We had the blood samples before and immediately after exercise from 63 participants. ELISA assays (R&D Systems) showed that plasma levels of sFlt-1 were 67.8±3.7 pg/ml immediately after exercise (30 minutes), significantly higher than basal levels, 54.5±3.3 pg/ml, before exercise (P < 0.01; n=63). There was no significant difference in the % increase of sFlt-1 levels after exercise between African American and Caucasian (P=0.533) or between lean and overweight/obese women (P=0.892). There was no significant difference in plasma levels of unbound VEGF (35.28±5.47 vs. 35.23±4.96 pg/ml; P=0.99) or endostatin (111.12±5.48 vs. 115.45±7.15 ng/ml; P=0.63) before and after exercise. Basal plasma levels of unbound-VEGF in overweight/obese women were 52.26±9.6 pg/ml, significantly higher than basal levels of unbound-VEGF in lean women, 27.34±4.99 pg/ml (P < 0.05). The results support our hypothesis that exercise-induced plasma levels of sFlt-1 could be an important clinical biomarker to explore the mechanisms of exercise

  4. Effects of antibodies to EG-VEGF on angiogenesis in the chick embryo chorioallantoic membrane.

    Science.gov (United States)

    Feflea, Stefana; Cimpean, Anca Maria; Ceausu, Raluca Amalia; Gaje, Pusa; Raica, Marius

    2012-01-01

    Endocrine gland-related vascular endothelial growth factor (EG-VEGF), is an angiogenic factor specifically targeting endothelial cells derived from endocrine tissues. The inhibition of the EG-VEGF/prokineticin receptor pathway could represent a selective antiangiogenic and anticancer strategy. to evaluate the impact of an antibody to EG-VEGF on the rapidly growing capillary plexus of the chick embryo chorioallantoic membrane (CAM). The in ovo CAM assay was performed for the humanized EG-VEGF antibody. Hemorrhagic damage was induced in the capillaries, which led to early death of the embryos. Upon morphological staining, there was evidence of vascular disruption and extravasation of red blood cells in the chorion. Signs of vacuolization of the covering epithelium were also observed. Blocking endogenous EG-VEGF might represent a valuable approach of impairing or inhibiting angiogenesis in steroidogenic-derived embryonic tissues.

  5. Radiolabeling of VEGF165 with 99mTc to evaluate VEGFR expression in tumor angiogenesis.

    Science.gov (United States)

    Galli, Filippo; Artico, Marco; Taurone, Samanta; Manni, Isabella; Bianchi, Enrica; Piaggio, Giulia; Weintraub, Bruce D; Szkudlinski, Mariusz W; Agostinelli, Enzo; Dierckx, Rudi A J O; Signore, Alberto

    2017-06-01

    Angiogenesis is the main process responsible for tumor growth and metastatization. The principal effector of such mechanism is the vascular endothelial growth factor (VEGF) secreted by cancer cells and other components of tumor microenvironment. Radiolabeled VEGF analogues may provide a useful tool to noninvasively image tumor lesions and evaluate the efficacy of anti-angiogenic drugs that block the VEGFR pathway. Aim of the present study was to radiolabel the human VEGF165 analogue with 99mTechnetium (99mTc) and to evaluate the expression of VEGFR in both cancer and endothelial cells in the tumor microenvironment. 99mTc-VEGF showed in vitro binding to HUVEC cells and in vivo to xenograft tumors in mice (ARO, K1 and HT29). By comparing in vivo data with immunohistochemical analysis of excised tumors we found an inverse correlation between 99mTc-VEGF165 uptake and VEGF histologically detected, but a positive correlation with VEGF receptor expression (VEGFR1). Results of our studies indicate that endogenous VEGF production by cancer cells and other cells of tumor microenvironment should be taken in consideration when performing scintigraphy with radiolabeled VEGF, because of possible false negative results due to saturation of VEGFRs.

  6. Impact of vascular endothelial growth factor (VEGF and vascular endothelial growth factor receptor (VEGFR single nucleotide polymorphisms on outcome in gastroenteropancreatic neuroendocrine neoplasms.

    Directory of Open Access Journals (Sweden)

    Rossana Berardi

    Full Text Available Angiogenesis represents a key event in cancer development, leading to local invasion e metastatization, and might be considered a basic feature in gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs with a high expression of angiogenic molecules. We aimed to analyze the prognostic and predictive role of angiogenic factors in GEP-NENs through the analysis of single nucleotide polymorphisms (SNPs of VEGF-A, VEGFR2 and VEGFR3. The genomic DNA of 58 consecutive patients with GEP-NENs treated at our Institution was extracted from peripheral blood. Two SNPs were identified respectively in VEGF-A (rs2010963G>C, rs699947A>C, VEGFR-2 (rs2305948C>T, rs1870377T>A, and VEGFR-3 (rs307821T>C, rs307826C>A gene. Gene polymorphisms were determined by Real-Time PCR using TaqMan assays. Median age was 57 years (range 24-79 years; 32 patients were male and 77.5% of NENs were localized in the pancreas. The allele frequency of VEGFR-2 rs2305948T and of VEGF-A rs2010963C showed a trend of higher frequency than in general population (12.1% vs. 8.0% and 34.5% vs. 31.2%, respectively. Three out SNPs (VEGF-A rs699947C, VEGF-A rs2010963GC and VEGFR-3 rs307821C showed a correlation with an increased risk of disease relapse. Moreover median PFS changes according to the presence of 0-1 SNPs (20.7% of cases; 61.9 months, 2 SNPs (25.9%; 49.2 months and 3 SNPs (53.4%; 27.8 months (p = 0.034. Results suggest, for the first time, that specific SNPs in VEGF-A and VEGFR-3 correlate with poor prognosis in GEP-NENs. The identification of this new prognostic factor might be helpful in order to optimize the management of these heterogeneous neoplasms.

  7. Anti-VEGF drugs: evidence for effectiveness

    OpenAIRE

    Evans, Jennifer; Virgili, Gianni

    2014-01-01

    Anti-vascular endothelial growth factors (anti-VEGF) are targeted biological drugs (e.g. monoclonal antibodies) that prevent the growth of new vessels by inhibiting VEGF. VEGF is a cytokine (cell-signalling protein) that promotes the growth of, and leakage from, new vessels. Currently there are three anti-VEGF drugs licensed for use in eye disease: pegaptanib, aflibercept, ranibizumab and one that is not licensed but is commonly used off-label (bevacizumab).

  8. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis

    International Nuclear Information System (INIS)

    Shibuya, Masabumi; Claesson-Welsh, Lena

    2006-01-01

    The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases

  9. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Hideki, E-mail: hkimura@u-fukui.ac.jp [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Mikami, Daisuke; Kamiyama, Kazuko [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Sugimoto, Hidehiro [Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Kasuno, Kenji; Takahashi, Naoki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Yoshida, Haruyoshi [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Division of Nephrology, Obama Municipal Hospital, Obama, Fukui (Japan); Iwano, Masayuki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan)

    2014-11-14

    Highlights: • TNF-α increased VEGF-C expression by enhancing phosphorylation of p38MAPK and HSP27. • Telmisartan decreased TNF-α-stimulated expression of VEGF-C. • Telmisartan suppressed TNF-α-induced phosphorylation of p38MAPK and HSP27. • Telmisartan activated endogenous PPAR-δ protein. • Telmisartan suppressed p38MAPK phosphorylation in a PPAR-δ-dependent manner. - Abstract: Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area by producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.

  10. A DC-81-indole conjugate agent suppresses melanoma A375 cell migration partially via interrupting VEGF production and stromal cell-derived factor-1α-mediated signaling

    International Nuclear Information System (INIS)

    Hsieh, Ming-Chu; Hu, Wan-Ping; Yu, Hsin-Su; Wu, Wen-Chuan; Chang, Long-Sen; Kao, Ying-Hsien; Wang, Jeh-Jeng

    2011-01-01

    Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) chemicals are antitumor antibiotics inhibiting nucleic acid synthesis. An indole carboxylate-PBD hybrid with six-carbon spacer structure (IN6CPBD) has been previously demonstrated to induce melanoma cell apoptosis and reduce metastasis in mouse lungs. This study aimed at investigating the efficacy of the other hybrid compound with four-carbon spacer (IN4CPBD) and elucidating its anti-metastatic mechanism. Human melanoma A375 cells with IN4CPBD treatment underwent cytotoxicity and apoptosis-associated assays. Transwell migration assay, Western blotting, and ELISA were used for mechanistic study. IN4CPBD exhibited potent melanoma cytotoxicity through interrupting G1/S cell cycle progression, increasing DNA fragmentation and hypodipoidic DNA contents, and reducing mitochondrial membrane potential. Caspase activity elevation suggested that both intrinsic and extrinsic pathways were involved in IN4CPBD-induced melanoma apoptosis. IN4CPBD up-regulated p53 and p21, thereby concomitantly derailing the equilibrium between Bcl-2 and Bax levels. Transwell migration assay demonstrated that stromal cell-derived factor-1α (SDF-1α) stimulated A375 cell motility, while kinase inhibitors treatment confirmed that Rho/ROCK, Akt, ERK1/2, and p38 MAPK pathways were involved in SDF-1α-enhanced melanoma migration. IN4CPBD not only abolished the SDF-1α-enhanced chemotactic motility but also suppressed constitutive MMP-9 and VEGF expression. Mechanistically, IN4CPBD down-regulated Akt, ERK1/2, and p38 MAPK total proteins and MYPT1 phosphorylation. In conclusion, beyond the fact that IN4CPBD induces melanoma cell apoptosis at cytotoxic dose, the interruption in the VEGF expression and the SDF-1α-related signaling at cytostatic dose may partially constitute the rationale for its in vivo anti-metastatic potency. - Research highlights: → A novel carboxylate-PBD hybrid as anti-melanoma drug. → IN4CPBD interrupts melanoma cell cycle progression

  11. Interplay between VEGF and Nrf2 regulates angiogenesis due to intracranial venous hypertension.

    Science.gov (United States)

    Li, Liwen; Pan, Hao; Wang, Handong; Li, Xiang; Bu, Xiaomin; Wang, Qiang; Gao, Yongyue; Wen, Guodao; Zhou, Yali; Cong, Zixiang; Yang, Youqing; Tang, Chao; Liu, Zhengwei

    2016-11-21

    Venous hypertension(VH) plays an important role in the pathogenesis of cerebral arteriovenous malformations (AVMs) and is closely associated with the HIF-1α/VEGF signaling pathway. Nuclear factor erythroid 2-related factor 2(Nrf2) significantly influences angiogenesis; however, the interplay between Nrf2 and VEGF under VH in brain AVMs remains unclear. Therefore, our study aimed to investigate the interplay between Nrf2 and VEGF due to VH in brain AVMs. Immunohistochemistry indicated that Nrf2 and VEGF were highly expressed in human brain AVM tissues. In vivo, we established a VH model in both wild-type (WT) and siRNA-mediated Nrf2 knockdown rats. VH significantly increased the expression of Nrf2 and VEGF. Loss of Nrf2 markedly inhibited the upregulation of VEGF, as determined by Western blot analysis and qRT-PCR. In vitro, primary brain microvascular endothelial cells (BMECs) were isolated from WT and Nrf2 -/- mice, and a VEGF-Nrf2 positive feed-back loop was observed in BMECs. By trans well assay and angiogenesis assay, Nrf2 knockout significantly inhibited the migration and vascular tube formation of BMECs. These findings suggest that the interplay between Nrf2 and VEGF can contribute to VH-induced angiogenesis in brain AVMs pathogenesis.

  12. Importancia del Factor de Crecimiento del Endotelio Vascular (VEGF) y de sus receptores en el ciclo ovárico. Revisión

    OpenAIRE

    Ana María Rosales Torres; Adrián Guzmán Sánchez

    2012-01-01

    El objetivo de esta revisión fue recopilar y analizar la información más reciente acerca del papel del Factor de Crecimiento del Endotelio Vascular (VEGF, por sus siglas en inglés), sus receptores de membrana (VEGFR1 y VEGFR2) y receptores solubles (sVEGFR1 y sVEGFR2), durante los procesos involucrados en el ciclo ovárico. La principal función del sistema VEGF (VEGF y sus receptores), es controlar la formación de nuevos vasos sanguíneos y la protección de células endoteliales y de la granulos...

  13. Refractive errors in premature infants with retinopathy of prematurity after anti-vascular endothelial growth factor (anti-VEGF therapy

    Directory of Open Access Journals (Sweden)

    Vujanović Milena S.

    2017-01-01

    Full Text Available Background/Aim. Retinopathy of prematurity (ROP is a vasoproliferative retinopathy which affects the blood vessels of the retina during its development. The aim of this study was to evaluate the incidence and the degree of refractive errors in premature infants with severe ROP treated with antivascular endothelial growth factor (anti-VEGF (bevacizumab. Methods. This prospective study included 21 patients (42 eyes nine months old who received intravitreal injection of anti-VEGF therapy. The control group consisted of 45 patients (90 eyes who were subjected to laser treatment. In cycloplegia each patient underwent retinoscopy, keratorefractometry, and A-scan ultrasonography. Results. Myopia was present in 47.62% of the eyes in the study group and in 33.33% of the eyes in the control group, but there were no statistically significant differences between these groups. Seven (16.67% eyes in the study group and 17 (18.89% eyes in the control group were discovered to have high myopia (SE– spherical equivalents < -3.0 D – dioptre. Clinically significant hypermetropia was higher in the study group (47.62% than in the control group (34.44%, but with no statistically significant difference. In addition, high hypermetropia was significantly greater in the control group (15.56% than in the study group (11.90% (p < 0.001. Astigmatism was more common in the control group than in the study group (81.11% vs 71.43%, respectively, especially high astigmatism (56% vs 43%, respectively. Also the more common form of astigmatism was with the rule (WTR both in the study and the control group (42.86% vs 55.56%, respectively. Anisometropia was significantly greater in the control group (24.44% than in the study group (9.52% (p < 0.05. The children from the study group had significantly greater lens thickness, and a shorter anterior chamber depth than children from the control group (p < 0.01. There was no significant difference in the axial length of the eye between

  14. VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK

    International Nuclear Information System (INIS)

    Li, Wei; Man, Xiao-Yong; Li, Chun-Ming; Chen, Jia-Qi; Zhou, Jiong; Cai, Sui-Qing; Lu, Zhong-Fa; Zheng, Min

    2012-01-01

    Vascular endothelial growth factor (VEGF) is one of the strongest regulators of physiological and pathological angiogenesis. VEGF receptor 2 (VEGFR-2), the primary receptor for VEGF, is thought to mediate major functional effects of VEGF. Previously, we have localized both VEGF and VEGFR-2 in human hair follicles. In this study, we further defined the expression and roles of VEGFR-2 on human hair follicle dermal papilla (DP) cells. The expression of VEGFR-2 on DP cells was examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis separately, and localization of VEGFR-2 was defined by immunofluorescence. The effect of VEGF on DP cells was analyzed by MTT assays and specific inhibitors. Finally, the role of VEGF involved in the signaling pathways was investigated by Western blot. RT-PCR and Western blot analysis demonstrated the expression of VEGFR-2 on DP cells. Immunostaining for VEGFR-2 showed strong signal on cultured human DP cells in vitro. Exogenous VEGF 165 stimulated proliferation of DP cells in a dose-dependent manner. Furthermore, this stimulation was blocked by a VEGFR-2 neutralizing antibody (MAB3571) and an ERK inhibitor (PD98059). VEGF 165 -induced phosphorylation of ERK1/2 was abolished by MAB3571 and PD98059, while the phosphorylation of p38, JNK and AKT were not changed by VEGF 165 . Taken together, VEGFR-2 is expressed on primary human hair follicle DP cells and VEGF induces proliferation of DP cells through VEGFR-2/ERK pathway, but not p38, JNK or AKT signaling. -- Highlights: ► We examine the expression of VEGFR-2 on cultured human dermal papilla (DP) cells. ► VEGF 165 stimulated proliferation of human DP cells in a dose-dependent manner. ► This stimulation was through VEGFR-2-mediated activation of ERK.

  15. CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells.

    Science.gov (United States)

    Wang, Li-Hong; Lin, Chih-Yang; Liu, Shih-Chia; Liu, Guan-Ting; Chen, Yen-Ling; Chen, Jih-Jung; Chan, Chia-Han; Lin, Ting-Yi; Chen, Chi-Kuan; Xu, Guo-Hong; Chen, Shiou-Sheng; Tang, Chih-Hsin; Wang, Shih-Wei

    2016-06-14

    Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumor lymphangiogenesis and lymphatic metastasis. Chemokine CCL5 has been reported to facilitate angiogenesis and metastasis in chondrosarcoma. However, the effect of chemokine CCL5 on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has largely remained a mystery. In this study, we showed a clinical correlation between CCL5 and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that CCL5 promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium (CM) from CCL5-overexpressed cells significantly induced tube formation of human lymphatic endothelial cells (LECs). Mechanistic investigations showed that CCL5 activated VEGF-C-dependent lymphangiogenesis by down-regulating miR-507. Moreover, inhibiting CCL5 dramatically reduced VEGF-C and lymphangiogenesis in the chondrosarcoma xenograft animal model. Collectively, we document for the first time that CCL5 induces tumor lymphangiogenesis by the induction of VEGF-C in human cancer cells. Our present study reveals miR-507/VEGF-C signaling as a novel mechanism in CCL5-mediated tumor lymphangiogenesis. Targeting both CCL5 and VEGF-C pathways might serve as the potential therapeutic strategy to block cancer progression and metastasis in chondrosarcoma.

  16. [Antitumor effect of recombinant Xenopus laevis vascular endothelial growth factor (VEGF) as a vaccine combined with adriamycin on EL4 lymphoma in mice].

    Science.gov (United States)

    Niu, Ting; Liu, Ting; Jia, Yong-Qian; Liu, Ji-Yan; Wu, Yang; Hu, Bing; Tian, Ling; Yang, Li; Kan, Bing; Wei, Yu-Quan

    2005-09-01

    To explore the antitumor effect of immunotherapy with recombinant Xenopus laevis vascular endothelial growth factor (xVEGF) as a vaccine combined with adriamycin on lymphoma model in mice. EL4 lymphoma model was established in C57BL/6 mice. Mice were randomized into four groups: combination therapy, adriamycin alone, xVEGF alone and normal saline (NS) groups, and then were given relevant treatments. The growth of tumor, the survival rate of tumor-bearing mice, and the potential toxicity of regimens above were observed. Anti-VEGF antibody-producing B cells (APBCs) were detected by enzyme-linked immunospot (ELISPOT) assay. In addition, microvessel density (MVD) of tumor was detected by immunohistochemistry, and tumor cell apoptosis was also detected by TUNEL staining. The tumor volumes of mice were significantly smaller in combination group than those in other three groups (P < 0.05). Complete regression of tumor was observed in 3 of 10 mice in combination group. Forty-eight days after inoculation of tumor cells, the survival rate of mice was significantly higher in combination group than in NS group (P < 0.01). The anti-VEGF APBC count in combination group or xVEGF group was significantly higher, compared with that in adriamycin group or NS group (P < 0.01). MVD in tumor tissues was significantly lower in combination group than those in other three groups (P < 0.05). Moreover, tumor cell apoptosis was significantly higher in combination group than those in other three groups (P < 0.05). In this experimental study, the use of xVEGF vaccine and adriamycin as a combination of immunotherapy with chemotherapy has sucessfully produced synergistic antitumor effect on lymphoma in mice.

  17. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    International Nuclear Information System (INIS)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben A

    2008-01-01

    Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. We have analyzed 8 publicly available gene expression data sets. A global approach, 'gene set enrichment analysis' as well as an approach focusing on a subset of significantly differently regulated genes, GenMAPP, has been applied to rank pathway gene sets according to differential regulation in metastasizing tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. The major findings are up-regulation of cell cycle pathways and a metabolic shift towards glucose metabolism reflected in several pathways in metastasizing tumors. Growth factor pathways seem to play dual roles; EGF and PDGF pathways are decreased, while VEGF and sex-hormone pathways are increased in tumors that metastasize. Furthermore, migration, proteasome, immune system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. By pathway meta-analysis many biological mechanisms beyond major characteristics such as proliferation are identified. Transcription factor analysis identifies a number of key factors that support central pathways. Several previously proposed treatment targets are identified and several new pathways that may

  18. Helicobacter pylori promotes angiogenesis depending on Wnt/beta-catenin-mediated vascular endothelial growth factor via the cyclooxygenase-2 pathway in gastric cancer

    International Nuclear Information System (INIS)

    Liu, Ningning; Zhou, Ning; Chai, Ni; Liu, Xuan; Jiang, Haili; Wu, Qiong; Li, Qi

    2016-01-01

    Helicobacter pylori is an important pathogenic factor in gastric carcinogenesis. Angiogenesis (i.e., the growth of new blood vessels) is closely associated with the incidence and development of gastric cancer. Our previous study found that COX-2 stimulates gastric cancer cells to induce expression of the angiogenic growth factor VEGF through an unknown mechanism. Therefore, the aim of this study was to clarify the role of angiogenesis in H. pylori-induced gastric cancer development. To clarify the relationship between H. pylori infection and angiogenesis, we first investigated H. pylori colonization, COX-2, VEGF, beta-catenin expression, and microvessel density (MVD) in gastric cancer tissues from 106 patients. In addition, COX-2, phospho-beta-catenin, and beta-catenin expression were measured by western blotting, and VEGF expression was measured by ELISA in H. pylori-infected SGC7901 and MKN45 human gastric cancer cells. H. pylori colonization occurred in 36.8 % of gastric carcinoma samples. Furthermore, COX-2, beta-catenin, and VEGF expression, and MVD were significantly higher in H. pylori-positive gastric cancer tissues than in H. pylori-negative gastric cancer tissues (P < 0.01). H. pylori infection was not related to sex or age in gastric cancer patients, but correlated with the depth of tumor invasion, lymph node metastasis, and tumor–node–metastasis stage (P < 0.05) and correlated with the COX-2 expression and beta-catenin expression(P < 0.01). Further cell experiments confirmed that H. pylori infection upregulated VEGF in vitro. Further analysis revealed that H. pylori-induced VEGF expression was mediated by COX-2 via activation of the Wnt/beta-catenin pathway. The COX-2/Wnt/beta-catenin/VEGF pathway plays an important role in H. pylori-associated gastric cancer development. The COX-2/Wnt/beta-catenin pathway is therefore a novel therapeutic target for H. pylori-associated gastric cancers

  19. Importancia del Factor de Crecimiento del Endotelio Vascular (VEGF y de sus receptores en el ciclo ovárico. Revisión

    Directory of Open Access Journals (Sweden)

    Ana María Rosales Torres

    2012-01-01

    Full Text Available El objetivo de esta revisión fue recopilar y analizar la información más reciente acerca del papel del Factor de Crecimiento del Endotelio Vascular (VEGF, por sus siglas en inglés, sus receptores de membrana (VEGFR1 y VEGFR2 y receptores solubles (sVEGFR1 y sVEGFR2, durante los procesos involucrados en el ciclo ovárico. La principal función del sistema VEGF (VEGF y sus receptores, es controlar la formación de nuevos vasos sanguíneos y la protección de células endoteliales y de la granulosa. Es conocido que durante el ciclo ovárico, los cambios vasculares son importantes para controlar el desarrollo folicular, la ovulación y la formación y regresión del cuerpo lúteo (CL. En la selección folicular, VEGF y el receptor VEGFR2 incrementan su expresión para favorecer el aporte de nutrientes al folículo. En la ovulación VEGF, VEGFR1 y VEGFR2m reducen su expresión para evitar una hemorragia, y se incrementa inmediatamente después para promover la formación de vasos sanguíneos y el desarrollo del CL. Finalmente durante la regresión del CL el VEGF y VEGFR2 reducen su expresión coincidiendo con la muerte de las células que lo forman. Las evidencias revisadas permiten sugerir que VEGF y VEGFR2 son los principales promotores de la angiogénesis y protección celular en el desarrollo del folículo y CL, sin embargo los otros miembros del sistema VEGF; VEGFR1 y sVEGFR1 y sVEGFR2, parecen desempeñar funciones anti-angiogénicas en los procesos ováricos mencionados.

  20. Prognostic Significance of Vascular Endothelial Growth Factor (VEGF and Her-2 Protein in the Genesis of Cervical Carcinoma

    Directory of Open Access Journals (Sweden)

    Arshad H. Rahmani

    2018-02-01

    CONCLUSION: The present study supports earlier findings that over-expression / up-regulation of VEGF and Her - 2 is linked with poor prognosis and may play a vital role in the development and progression of cervical cancer.

  1. A Systematic Review and Meta-Analysis on the Safety of Vascular Endothelial Growth Factor (VEGF) Inhibitors for the Treatment of Retinopathy of Prematurity

    Science.gov (United States)

    Pertl, Laura; Steinwender, Gernot; Mayer, Christoph; Hausberger, Silke; Pöschl, Eva-Maria; Wackernagel, Werner; Wedrich, Andreas; El-Shabrawi, Yosuf; Haas, Anton

    2015-01-01

    Introduction Laser photocoagulation is the current gold standard treatment for proliferative retinopathy of prematurity (ROP). However, it permanently reduces the visual field and might induce myopia. Vascular endothelial growth factor (VEGF) inhibitors for the treatment of ROP may enable continuing vascularization of the retina, potentially allowing the preservation of the visual field. However, for their use in infants concern remains. This meta-analysis explores the safety of VEGF inhibitors. Methods The Ovid Interface was used to perform a systematic review of the literature in the databases PubMed, EMBASE and the Cochrane Library. Results This meta-analysis included 24 original reports (including 1.457 eyes) on VEGF inhibitor treatment for ROP. The trials were solely observational except for one randomized and two case-control studies. We estimated a 6-month risk of retreatment per eye of 2.8%, and a 6-month risk of ocular complication without the need of retreatment of 1.6% per eye. Systemic complications were only reported as isolated incidents. Discussion VEGF inhibitors seem to be associated with low recurrence rates and ocular complication rates. They may have the benefit of potentially allowing the preservation of visual field and lower rates of myopia. Due to the lack of data, the risk of systemic side effects cannot be assessed. PMID:26083024

  2. Vascular endothelial growth factor (VEGF and monocyte chemoattractant protein (MCP-1 levels unaltered in symptomatic atherosclerotic carotid plaque patients from North India

    Directory of Open Access Journals (Sweden)

    Dheeraj eKhurana

    2013-04-01

    Full Text Available We aimed to identify the role of vascular endothelial growth factor(VEGF and monocyte chemoattractant protein(MCP-1 as a serum biomarker of symptomatic carotid atherosclerotic plaque in North Indian population. Individuals with symptomatic carotid atherosclerotic plaque have high risk of ischemic stroke. Previous studies from western countries have shown an association between VEGF and MCP-1 levels and the incidence of ischemic stroke. In this study, venous blood from 110 human subjects was collected, 57 blood samples of which were obtained from patients with carotid plaques, 38 neurological controls without carotid plaques and another 15 healthy controls who had no history of serious illness. Serum VEGF and MCP-1 levels were measured using commercially available enzyme-linked immunosorbent assay(ELISA. We also correlated the data clinically and carried out risk factor analysis based on the detailed questionnaire obtained from each patient. For risk factor analysis, a total of 70 symptomatic carotid plaque cases and equal number of age and sex matched healthy controls were analyzed. We found that serum VEGF levels in carotid plaque patients did not show any significant change when compared to either of the controls. Similarly, there was no significant upregulation of monocyte chemoattractant protein-1 in the serum of these patients. The risk factor analysis revealed that hypertension, diabetes, and physical inactivity were the main correlates of carotid atherosclerosis(p<0.05. Prevalence of patients was higher residing in urban areas as compared to rural region. We also found that patients coming from mountaineer region were relatively less vulnerable to cerebral atherosclerosis as compared to the ones residing at plain region. We conclude that the pathogenesis of carotid plaques may progress independent of these inflammatory molecules. In parallel, risk factor analysis indicates hypertension, diabetes and sedentary lifestyle as the most

  3. TNF-α decreases VEGF secretion in highly polarized RPE cells but increases it in non-polarized RPE cells related to crosstalk between JNK and NF-κB pathways.

    Directory of Open Access Journals (Sweden)

    Hiroto Terasaki

    Full Text Available Asymmetrical secretion of vascular endothelial growth factor (VEGF by retinal pigment epithelial (RPE cells in situ is critical for maintaining the homeostasis of the retina and choroid. VEGF is also involved in the development and progression of age-related macular degeneration (AMD. We studied the effect of tumor necrosis factor-α (TNF-α on the secretion of VEGF in polarized and non-polarized RPE cells (P-RPE cells and N-RPE cells, respectively in culture and in situ in rats. A subretinal injection of TNF-α caused a decrease in VEGF expression and choroidal atrophy. Porcine RPE cells were seeded on Transwell™ filters, and their maturation and polarization were confirmed by the asymmetrical VEGF secretion and trans electrical resistance. Exposure to TNF-α decreased the VEGF secretion in P-RPE cells but increased it in N-RPE cells in culture. TNF-α inactivated JNK in P-RPE cells but activated it in N-RPE cells, and TNF-α activated NF-κB in P-RPE cells but not in N-RPE cells. Inhibition of NF-κB activated JNK in both types of RPE cells indicating crosstalk between JNK and NF-κB. TNF-α induced the inhibitory effects of NF-κB on JNK in P-RPE cells because NF-κB is continuously inactivated. In N-RPE cells, however, it was not evident because NF-κB was already activated. The basic activation pattern of JNK and NF-κB and their crosstalk led to opposing responses of RPE cells to TNF-α. These results suggest that VEGF secretion under inflammatory conditions depends on cellular polarization, and the TNF-α-induced VEGF down-regulation may result in choroidal atrophy in polarized physiological RPE cells. TNF-α-induced VEGF up-regulation may cause neovascularization by non-polarized or non-physiological RPE cells.

  4. Anti-VEGF therapy in the management of retinopathy of prematurity: what we learn from representative animal models of oxygen-induced retinopathy.

    Science.gov (United States)

    Wang, Haibo

    2016-01-01

    Retinopathy of prematurity (ROP) remains a leading cause of childhood blindness, affecting infants born prematurely. ROP is characterized by the onset of delayed physiological retinal vascular development (PRVD) and followed by pathologic neovascularization into the vitreous instead of the retina, called intravitreal neovascularization (IVNV). Therefore, the therapeutic strategy for treating ROP is to promote PRVD and inhibit or prevent IVNV. Vascular endothelial growth factor (VEGF) plays an important role in the pathogenesis of ROP. There is a growing body of studies testing the use of anti-VEGF agents as a treatment for ROP. Intravitreal anti-VEGF treatment for ROP has potential advantages compared with laser photocoagulation, the gold standard for the treatment of severe ROP; however, intravitreal anti-VEGF treatment has been associated with reactivation of ROP and suppression of systemic VEGF that may affect body growth and organ development in preterm infants. Therefore, it is important to understand the role of VEGF in PRVD and IVNV. This review includes the current knowledge of anti-VEGF treatment for ROP from animal models of oxygen-induced retinopathy (OIR), highlighting the importance of VEGF inhibition by targeting retinal Müller cells, which inhibits IVNV and permits PRVD. The signaling events involved in mediating VEGF expression and promoting VEGF-mediated angiogenesis, including hypoxia-dependent signaling, erythropoietin/erythropoietin receptor-, oxidative stress-, beta-adrenergic receptor-, integrin-, Notch/Delta-like ligand 4- and exon guidance molecules-mediated signaling pathways, are also discussed.

  5. Specific inhibition of hypoxia-inducible factor (HIF)-1 alpha activation and of vascular endothelial growth factor (VEGF) production by flavonoids.

    Science.gov (United States)

    Hasebe, Yuki; Egawa, Kiyoshi; Yamazaki, Yoko; Kunimoto, Setsuko; Hirai, Yasuaki; Ida, Yoshiteru; Nose, Kiyoshi

    2003-10-01

    Screening using a reporter under the control of the hypoxia-response element (HRE) identified several flavonoids and homoisoflavonoids that inhibit the activation of HRE under hypoxic conditions. Among various compounds, isorhamnetin, luteolin, quercetin, and methyl ophiopogonanone B (MOB) were effective at 3 to 9 microg/ml in inhibiting the reporter activity. The expression of vascular endothelial growth factor (VEGF) mRNA during hypoxia was also inhibited by MOB in HepG2 cells, but the effective doses were 10 to 20 microg/ml. MOB caused destabilization of hypoxia-inducible factor (HIF)-1alpha, as revealed by Western blotting, that was dependent on proteasome activity and the tumor suppressor, p53. The tubular formation and migration of human umbilical vein endothelial cells was also inhibited by MOB. MOB is expected to act as an inhibitor of angiogenesis.

  6. VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing

    International Nuclear Information System (INIS)

    Constantino Rosa Santos, Susana; Miguel, Claudia; Domingues, Ines; Calado, Angelo; Zhu Zhenping; Wu Yan; Dias, Sergio

    2007-01-01

    Vascular endothelial growth factor (VEGF) receptor activation regulates endothelial cell (EC) survival, migration and proliferation. Recently, it was suggested the cross-talk between the VEGF receptors-1 (FLT-1) and -2 (KDR) modulated several of these functions, but the detailed molecular basis for such interactions remained unexplained. Here we demonstrate for the first time that VEGF stimulation of EC monolayers induced a rapid FLT-1-mediated internalization of KDR to the nucleus, via microtubules and the endocytic pathway, internalization which required the activation of PI 3-kinase/AKT. KDR deletion mutants were generated in several tyrosine residues; in these, VEGF-induced KDR internalization was impaired, demonstrating this process required activation (phosphorylation) of the receptor. Furthermore, we demonstrate that in vitro wounding of EC monolayers leads to a rapid and transient internalization of VEGF + KDR to the nucleus, which is essential for monolayer recovery. Notably, FLT-1 blockade impedes VEGF and KDR activation and internalization, blocking endothelial monolayer recovery. Our data reveal a previously unrecognized mechanism induced by VEGF on EC, which regulates EC recovery following wounding, and as such indicate novel targets for therapeutic intervention

  7. Kaempferol inhibits angiogenic ability by targeting VEGF receptor-2 and downregulating the PI3K/AKT, MEK and ERK pathways in VEGF-stimulated human umbilical vein endothelial cells.

    Science.gov (United States)

    Chin, Hsien-Kuo; Horng, Chi-Ting; Liu, Yi-Shan; Lu, Chi-Cheng; Su, Chen-Ying; Chen, Pei-Syuan; Chiu, Hong-Yi; Tsai, Fuu-Jen; Shieh, Po-Chuen; Yang, Jai-Sing

    2018-05-01

    Anti-angiogenesis is one of the most general clinical obstacles in cancer chemotherapy. Kaempferol is a flavonoid phytochemical found in many fruits and vegetables. Our previous study revealed that kaempferol triggered apoptosis in human umbilical vein endothelial cells (HUVECs) by ROS‑mediated p53/ATM/death receptor signaling. However, the anti‑angiogenic potential of kaempferol remains unclear and its underlying mechanism warranted further exploration in VEGF‑stimulated HUVECs. In the present study, kaempferol significantly reduced VEGF‑stimulated HUVEC viability. Kaempferol treatment also inhibited cell migration, invasion, and tube formation in VEGF‑stimulated HUVECs. VEGF receptor‑2 (VEGFR‑2), and its downstream signaling cascades (such as AKT, mTOR and MEK1/2‑ERK1/2) were reduced as determined by western blotting and kinase activity assay in VEGF‑stimulated HUVECs after treatment with kaempferol. The present study revealed that kaempferol may possess angiogenic inhibition through regulation of VEGF/VEGFR‑2 and its downstream signaling cascades (PI3K/AKT, MEK and ERK) in VEGF-stimulated endothelial cells.

  8. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1{alpha} targeted gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Kotaro, E-mail: hif.panc@gmail.com [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Uto, Yoshihiro [Department of Biological Science and Technology, Institute of Socio Technosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Nagasawa, Hideko [Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Hori, Hitoshi [Department of Biological Science and Technology, Institute of Socio Technosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Shimada, Mitsuo [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan)

    2012-08-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1{alpha} (HIF-1{alpha}), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: Black-Right-Pointing-Pointer We designed and synthesized novel hypoxic cytoxin, TX-2098. Black-Right-Pointing-Pointer TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. Black-Right-Pointing-Pointer TX-2098 reduced VEGF protein level than TPZ. Black-Right-Pointing-Pointer TX-2098

  9. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1α targeted gene expression

    International Nuclear Information System (INIS)

    Miyake, Kotaro; Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan; Uto, Yoshihiro; Nagasawa, Hideko; Hori, Hitoshi; Shimada, Mitsuo

    2012-01-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1α (HIF-1α), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: ► We designed and synthesized novel hypoxic cytoxin, TX-2098. ► TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. ► TX-2098 reduced VEGF protein level than TPZ. ► TX-2098 inhibited mRNA expression of VEGF, GLUT1 and Aldolase A, not HIF-1α. ► TX-2098 improved the survival in

  10. Snake venom VEGF Vammin induces a highly efficient angiogenic response in skeletal muscle via VEGFR-2/NRP specific signaling.

    Science.gov (United States)

    Toivanen, Pyry I; Nieminen, Tiina; Laakkonen, Johanna P; Heikura, Tommi; Kaikkonen, Minna U; Ylä-Herttuala, Seppo

    2017-07-17

    Vascular Endothelial Growth Factors (VEGFs) are promising molecules for the treatment of ischemic diseases by pro-angiogenic therapy. Snake venom VEGFs are a novel subgroup with unique receptor binding profiles and as such are potential new therapeutic agents. We determined the ligand-receptor interactions, gene regulation and angiogenic properties of Vipera ammodytes venom VEGF, Vammin, and compared it to the canonical angiogenic factor VEGF-A to evaluate the use of Vammin for therapeutic angiogenesis. Vammin efficiently induced VEGFR-2 mediated proliferation and expression of genes associated with proliferation, migration and angiogenesis. VEGF-A 165 and especially VEGF-A 109 induced less pronounced effects. Vammin regulates a number of signaling pathways by inducing the expression of NR4A family nuclear receptors and regulators of calcium signaling and MAP kinase pathways. Interestingly, MARC1, which encodes an enzyme discovered to catalyze reduction of nitrate to NO, was identified as a novel VEGFR-2 regulated gene. In rabbit skeletal muscle adenoviral delivery of Vammin induced prominent angiogenic responses. Both the vector dose and the co-receptor binding of the ligand were critical parameters controlling the type of angiogenic response from sprouting angiogenesis to vessel enlargement. Vammin induced VEGFR-2/NRP-1 mediated signaling more effectively than VEGF-A, consequently it is a promising candidate for development of pro-angiogenic therapies.

  11. The Role of Growth Factors (VEGF, TGF-β1 and Cyclic Guanosine Monophosphate in the Formation of Pulmonary Hypertension in Children with Bronchopulmonary Dysplasia

    Directory of Open Access Journals (Sweden)

    A.S. Senatorova

    2013-10-01

    Full Text Available In 82 children with bronchopulmonary dysplasia (from 1 to 36 months of corrected age we investigated the level of VEGF, TGF-β1 in blood and cyclic guanosine monophosphate (cGMP in sputum. It was revealed that children with bronchopulmonary dysplasia had a significant increase in TGF-β1 (p < 0.05 and cGMP (p < 0.01–0.001, reduced VEGF (p < 0.05, indicating inhibition of angiogenesis, activation of fibrosis factors and endothelium-dependent vasodilation. Reliable direct dependence of activation of TGF-β1 in blood and cGMP in sputum, as well as inverse correlation between VEGF in blood and rLA had been proved, which gave reason to think of pulmonary hypertension as an adverse factor in fibrosis activation and angiogenesis inhibition in children with bronchopulmonary dysplasia. Reduced oxygen saturation and oxygen partial pressure moderately activated cGMP, but did not provide a sufficient reduction of pressure in the pulmonary artery.

  12. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1α targeted gene expression.

    Science.gov (United States)

    Miyake, Kotaro; Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan; Uto, Yoshihiro; Nagasawa, Hideko; Hori, Hitoshi; Shimada, Mitsuo

    2012-08-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1α (HIF-1α), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P<0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P<0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells: IMPLICATIONS IN VEGF-DEPENDENT ANGIOGENESIS AND DIABETIC WOUND HEALING.

    Science.gov (United States)

    Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua

    2017-01-13

    The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. [Effect of Biejiajian Pills on Wnt signal pathway molecules β-catenin and GSK-3β and the target genes CD44v6 and VEGF in hepatocellular carcinoma cells].

    Science.gov (United States)

    Sun, Haitao; He, Songqi; Wen, Bin; Jia, Wenyan; Fan, Eryan; Zheng, Yan

    2014-10-01

    To investigate the effect of Biejiajian Pills on the expressions of the signal molecules and target genes of Wnt signal pathway in HepG2 cells and explore the mechanisms by which Biejiajian pills suppress the invasiveness of hepatocellular carcinoma. HepG2 cells were cultured for 48 h in the presence of serum collected from rats fed with Biejiajian Pills. The expressions of β-catenin, GSK-3β and P-GSK-3β in the cultured cells were assessed by Western blotting and the expressions of CD44v6 and VEGF were detected using immunohistochemistry. HepG2 cells cultured with the serum of rats fed with Biejiajian Pills showed lowered expressions of β-catenin protein both in the cytoplasm and the nuclei with also inhibition of phosphorylation of GSK-3β and reduced expression of CD44v6 and VEGF. Biejiajian Pills can significantly reduce the expression of β-catenin by decreasing the phosphorylation of GSK-3β and blocking the Wnt/β-catenin signaling pathway to cause down-regulation of the target genes CD44v6 and VEGF, which may be one of the molecular mechanisms by which Biejiajian Pills suppress the proliferation and invasiveness of hepatocellular carcinoma.

  15. Modulation of VEGF-induced migration and network formation by lymphatic endothelial cells: Roles of platelets and podoplanin.

    Science.gov (United States)

    Langan, Stacey A; Navarro-Núñez, Leyre; Watson, Steve P; Nash, Gerard B

    2017-07-20

    Lymphatic endothelial cells (LEC) express the transmembrane receptor podoplanin whose only known endogenous ligand CLEC-2 is found on platelets. Both podoplanin and CLEC-2 are required for normal lymphangiogenesis as mice lacking either protein develop a blood-lymphatic mixing phenotype. We investigated the roles of podoplanin and its interaction with platelets in migration and tube formation by LEC. Addition of platelets or antibody-mediated crosslinking of podoplanin inhibited LEC migration induced by vascular endothelial growth factors (VEGF-A or VEGF-C), but did not modify basal migration or the response to basic fibroblast growth factor or epidermal growth factor. In addition, platelets and podoplanin crosslinking disrupted networks of LEC formed in co-culture with fibroblasts. Depletion of podoplanin in LEC using siRNA negated the pro-migratory effect of VEGF-A and VEGF-C. Inhibition of RhoA or Rho-kinase reduced LEC migration induced by VEGF-C, but had no further effect after crosslinking of podoplanin, suggesting that podoplanin is required for signaling downstream of VEGF-receptors but upstream of RhoA. Together, these data reveal for the first time that podoplanin is an intrinsic specific regulator of VEGF-mediated migration and network formation in LEC and identify crosslinking of podoplanin by platelets or antibodies as mechanisms to modulate this pathway.

  16. Angiomodulin is a specific marker of vasculature and regulates VEGF-A dependent neo-angiogenesis

    Science.gov (United States)

    Hooper, Andrea T.; Shmelkov, Sergey V.; Gupta, Sunny; Milde, Till; Bambino, Kathryn; Gillen, Kelly; Goetz, Mollie; Chavala, Sai; Baljevic, Muhamed; Murphy, Andrew J.; Valenzuela, David M.; Gale, Nicholas W.; Thurston, Gavin; Yancopoulos, George D.; Vahdat, Linda; Evans, Todd; Rafii, Shahin

    2010-01-01

    Blood vessel formation is controlled by the balance between pro- and anti-angiogenic pathways. Although much is known about the factors that drive sprouting of neovessels, the factors that stabilize and pattern neovessels are undefined. The expression of angiomodulin (AGM), a VEGF-A binding protein, was increased in the vasculature of several human tumors as compared to normal tissue, raising the hypothesis that AGM may modulate VEGF-A-dependent vascular patterning. To elucidate the expression pattern of AGM, we developed an AGM knockin reporter mouse (AGMlacZ/+) wherein we demonstrate that AGM is predominantly expressed in the vasculature of developing embryos and adult organs. During physiological and pathological angiogenesis, AGM is upregulated in the angiogenic vasculature. Using the zebrafish model, we found that AGM is restricted to developing vasculature by 17-22 hpf. Blockade of AGM activity with morpholino oligomers (MO) results in prominent angiogenesis defects in vascular sprouting and remodeling. Concurrent knockdown of both AGM and VEGF-A results in synergistic angiogenesis defects. When VEGF-A is overexpressed, the compensatory induction of the VEGF-A receptor, VEGFR-2/flk-1, is blocked by the simultaneous injection of AGM MO. These results demonstrate that the vascular-specific marker AGM modulates vascular remodeling in part by temporizing the pro-angiogenic effects of VEGF-A. PMID:19542015

  17. Genetics of VEGF serum variation in human isolated populations of cilento: importance of VEGF polymorphisms.

    Directory of Open Access Journals (Sweden)

    Daniela Ruggiero

    Full Text Available Vascular Endothelial Growth Factor (VEGF is the main player in angiogenesis. Because of its crucial role in this process, the study of the genetic factors controlling VEGF variability may be of particular interest for many angiogenesis-associated diseases. Although some polymorphisms in the VEGF gene have been associated with a susceptibility to several disorders, no genome-wide search on VEGF serum levels has been reported so far. We carried out a genome-wide linkage analysis in three isolated populations and we detected a strong linkage between VEGF serum levels and the 6p21.1 VEGF region in all samples. A new locus on chromosome 3p26.3 significantly linked to VEGF serum levels was also detected in a combined population sample. A sequencing of the gene followed by an association study identified three common single nucleotide polymorphisms (SNPs influencing VEGF serum levels in one population (Campora, two already reported in the literature (rs3025039, rs25648 and one new signal (rs3025020. A fourth SNP (rs41282644 was found to affect VEGF serum levels in another population (Cardile. All the identified SNPs contribute to the related population linkages (35% of the linkage explained in Campora and 15% in Cardile. Interestingly, none of the SNPs influencing VEGF serum levels in one population was found to be associated in the two other populations. These results allow us to exclude the hypothesis that the common variants located in the exons, intron-exon junctions, promoter and regulative regions of the VEGF gene may have a causal effect on the VEGF variation. The data support the alternative hypothesis of a multiple rare variant model, possibly consisting in distinct variants in different populations, influencing VEGF serum levels.

  18. Immunohistochemical study of the growth factors, aFGF, bFGF, PDGF-AB, VEGF-A and its receptor (Flk-1) during arteriogenesis.

    Science.gov (United States)

    Wu, Song; Wu, Xiaoqiong; Zhu, Wu; Cai, Wei-Jun; Schaper, Jutta; Schaper, Wolfgang

    2010-10-01

    Growth factors are viewed as main arteriogenic stimulators for collateral vessel growth. However, the information about their native expression and distribution in collateral vessels is still limited. This study was designed to profile expression of acidic and basic FGF, platelet-derived growth factor (PDGF-AB) and vascular endothelial growth factor (VEGF-A) and its receptor, fetal liver kinase-1 (Flk-1) during arteriogenesis by confocal immunofluorescence in both dog ameroid constrictor model and rabbit arteriovenous shunt model of arteriogenesis. We found that: (1) in normal arteries (NA) in dog heart, aFGF, bFGF, and PDGF-AB all were mainly expressed in endothelial cells (EC) and media smooth muscle cells (SMC), but the expression of aFGF was very weak, with those of the other two being moderate; (2) in collateral arteries (CAs), aFGF, bFGF, and PDGF-AB all were significantly upregulated (P growth factors, aFGF, bFGF, and PDGF-AB are significantly upregulated in collateral vessels in dog heart, and enhanced VEGF-A and its receptor, Flk-1, are associated with rapid and lasting increased shear stress. These findings suggest that endogenous production of growth factors could be an important factor promoting collateral vessel growth.

  19. Vascular endothelial growth factor (VEGF) gene polymorphisms and breast cancer risk in Punjabi population from North West India.

    Science.gov (United States)

    Kapahi, Ruhi; Guleria, Kamlesh; Sambyal, Vasudha; Manjari, Mridu; Sudan, Meena; Uppal, Manjit Singh; Singh, Neeti Rajan

    2014-11-01

    The purpose of this study was to evaluate the association of seven VEGF promoter polymorphisms with breast cancer risk in Punjabi population from North West India. We screened DNA samples of 102 sporadic breast cancer patients and 102 unrelated healthy, gender, and age-matched individuals for seven VEGF promoter polymorphisms [-417 C/T (rs833062), -172 C/A (rs59260042), -165 C/T (rs79469752), -160 C/T, -152 G/A (rs13207351), -141 A/C (rs28357093) and -116 G/A (rs1570360)] by direct sequencing. The frequency of GG, GA, and AA genotype of -152 G/A polymorphism was 26.47 vs 38.34%, 46.08 vs 51.96%, and 27.45 vs 9.80%, in patients and controls, respectively. VEGF -152 AA genotype was significantly associated with increased risk for breast cancer (OR = 4.04, 95%CI, 1.69-9.68, p = 0.001; recessive model OR = 3.48, 95%CI, 1.59-7.63, p = 0.001). For VEGF -116 G/A polymorphism, G and A allele frequencies were 65.2 vs 76.47% and 34.8 vs 23.53% in patients and controls, respectively. Individuals having -116 AA genotype (OR = 3.40; 95%CI, 1.24-9.37; p = 0.014) and A allele (OR = 1.73; 95%CI, 1.12-2.67; p = 0.012) were associated with increased risk for breast cancer. VEGF -165 C/T and -141 A/C polymorphisms were associated with reduced risk for breast cancer. There was significantly decreased frequency of CT genotype (4.90 vs 18.63%; p = 0.002) and T allele (2.45 vs 9.31%; p = 0.003) of -165 C/T polymorphism among breast cancer patients as compared to controls. VEGF -141 A and C allele frequency were 96.57 vs 91.18% and 3.43 vs 8.82% in patients and controls, respectively. Significant reduced risk for breast cancer was observed with AC genotype (OR = 0.34, 95%CI, 0.14-0.86; p = 0.019) and C allele (OR = 0.37; 95%CI, 0.15-0.89; p = 0.023) of -141 A/C polymorphism. We did not observe association of VEGF -417 T/C, -172 C/A, -160 C/T polymorphisms with breast cancer risk in the studied subjects (p > 0.05). The VEGF -152 G/A and -116 G/A polymorphisms were found to be significantly

  20. Hydroxyapatite paste Ostim, without elevation of full-thickness flaps, improves alveolar healing stimulating BMP- and VEGF-mediated signal pathways: an experimental study in humans.

    Science.gov (United States)

    Canuto, R A; Pol, R; Martinasso, G; Muzio, G; Gallesio, G; Mozzati, M

    2013-08-01

    Tooth extraction is considered as the starting point of jaw atrophy via osteoclast activity stimulation. The maintenance of dental alveolar bone depends on surgery procedure and use of materials to maintain prior space favoring bone regeneration. Among substitutes used in dentistry to fill bone defects, Ostim-Pastes (Ostim) is a nanocrystalline paste tested for treatment of severe clinical conditions. This research first investigated the effect of Ostim on alveolar healing, comparing in the same healthy subjects, an Ostim-filled socket with a not-filled one. Moreover, it also proposed a new surgical protocol for the post-extractive socket treatment using the graft materials without elevation of full-thickness flaps. Fourteen patients were enrolled to bilateral maxillary or mandibular extraction that was performed without elevation of full-thickness flaps. In each patient, one socket was filled using Ostim, and the other one was allowed to undergo natural healing. No suture was carried out. Clinical and biologic parameters were screened at 1, 7, and 14 days. Obtained results evidenced that nanocrystalline hydroxyapatite supports bone regeneration, increasing the synthesis of pro-osteogenic factors as bone morphogenetics protein (BMP)-4, BMP-7, alkaline phosphatase, and osteocalcin. Moreover, filling post-extractive socket with nanocrystalline hydroxyapatite paste leads to a complete epithelialization already at 7 days after extraction, despite the fact that the teeth were extracted without elevation of full-thickness flaps . The improved epithelialization is mediated by increased vascular endothelial growth factor (VEGF) expression. No significant change was observed in inflammatory parameters, with exception of an early and transient IL-1β induction, that could trigger and improve alveolar healing. Clinical and biomolecular observations of this explorative study evidenced that nanocrystalline hydroxyapatite improves alveolar socket healing, increasing angiogenesis

  1. Potent neutralization of VEGF biological activities with a fully human antibody Fab fragment directed against VEGF receptor 2

    International Nuclear Information System (INIS)

    Miao, H.-Q.; Hu, Kun; Jimenez, Xenia; Navarro, Elizabeth; Zhang, Haifan; Lu Dan; Ludwig, Dale L.; Balderes, Paul; Zhu Zhenping

    2006-01-01

    Compelling evidence suggest that vascular endothelial growth factor (VEGF) and its receptors, especially receptor 2 (VEGFR2, or kinase insert domain-containing receptor, KDR), play a critical role in angiogenesis under both physiological and pathological conditions, including cancer and angiogenic retinopathies such as age-related macular degeneration (AMD). To this end, inhibition of angiogenesis with antagonists to either VEGF or KDR has yielded significant therapeutic efficacy both in preclinical studies in animal models and in clinical trials in patients with cancer and AMD. We previously reported the identification of a high affinity, fully human anti-KDR antibody fragment, 1121B Fab, through a highly stringent affinity maturation process with a Fab originally isolated from a naive human antibody phage display library. In this study, we demonstrate that 1121B Fab is able to strongly block KDR/VEGF interaction, resulting in potent inhibition of an array of biological activities of VEGF, including activation of the receptor and its signaling pathway, intracellular calcium mobilization, and migration and proliferation of endothelial cells. Taken together, our data lend strong support to the further development of 1121B Fab fragment as an anti-angiogenesis agent in both cancer and angiogenic retinopathies

  2. Enhanced mitogenic activity of recombinant human vascular endothelial growth factor VEGF121 expressed in E. coli Origami B (DE3) with molecular chaperones

    Czech Academy of Sciences Publication Activity Database

    Kaplan, Ondřej; Zárubová, J.; Mikulová, Barbora; Filová, E.; Bártová, J.; Bačáková, L.; Brynda, Eduard

    2016-01-01

    Roč. 11, č. 10 (2016), s. 1-22, č. článku e0163697. E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109; GA MZd NV15-29153A Institutional support: RVO:61389013 ; RVO:61388971 Keywords : angiogenic gene-therapy * Escherichia coli * VEGF-A Subject RIV: EB - Genetics ; Molecular Biology; EE - Microbiology, Virology (MBU-M) Impact factor: 2.806, year: 2016

  3. Enhanced Mitogenic Activity of Recombinant Human Vascular Endothelial Growth Factor VEGF(121) Expressed in E. coli Origami B (DE3) with Molecular Chaperones

    Czech Academy of Sciences Publication Activity Database

    Kaplan, Ondřej; Zárubová, Jana; Mikulová, Barbora; Filová, Elena; Bártová, J.; Bačáková, Lucie; Brynda, E.

    2016-01-01

    Roč. 11, č. 10 (2016), č. článku e0163697. E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109; GA MZd NV15-29153A; GA TA ČR(CZ) TA04011345 Institutional support: RVO:67985823 Keywords : angiogenic gene-therapy * Escherichia coli * VEGF-A Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.806, year: 2016

  4. Localization of vascular endothelial growth factor (VEGF) and its receptors VEGFR-1 and VEGFR-2 in bovine placentomes from implantation until term

    DEFF Research Database (Denmark)

    Pfarrer, C.D.; Ruziwa, S.D.; Winther, H.

    2006-01-01

    Interactions of vascular endothelial growth factor (VEGF) with its receptors VEGFR-1 and VEGFR-2 promoting angiogenesis have been described in placentation of human, mink and pig. The bovine placenta is multiplex, villous and synepitheliochorial due to migratory trophoblast giant cells (TGC...... reactivity in giant cells. VEGFR-1 was observed in trophoblast and uterine epithelium around implantation. Later, in definite placentomes, VEGFR-1 was localized in TGC near the chorionic plate and in maternal endothelial cells in the center of the placentome. VEGFR-1 and VEGFR-2 were co-localized in uterine...

  5. Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia.

    Science.gov (United States)

    Hulse, R P; Beazley-Long, N; Hua, J; Kennedy, H; Prager, J; Bevan, H; Qiu, Y; Fernandes, E S; Gammons, M V; Ballmer-Hofer, K; Gittenberger de Groot, A C; Churchill, A J; Harper, S J; Brain, S D; Bates, D O; Donaldson, L F

    2014-11-01

    Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the formation of new blood vessels. Neutralization of VEGF-A with anti-VEGF therapy e.g. bevacizumab, can be painful, and this is hypothesized to result from a loss of VEGF-A-mediated neuroprotection. The multiple vegf-a gene products consist of two alternatively spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), both of which are neuroprotective. Under pathological conditions, such as in inflammation and cancer, the pro-angiogenic VEGF-A165a is upregulated and predominates over the VEGF-A165b isoform. We show here that in rats and mice VEGF-A165a and VEGF-A165b have opposing effects on pain, and that blocking the proximal splicing event - leading to the preferential expression of VEGF-A165b over VEGF165a - prevents pain in vivo. VEGF-A165a sensitizes peripheral nociceptive neurons through actions on VEGFR2 and a TRPV1-dependent mechanism, thus enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a. After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater expression of VEGF-Axxxa compared to VEGF-Axxxb, through an SRPK1-dependent pre-mRNA splicing mechanism. Pharmacological inhibition of SRPK1 after traumatic nerve injury selectively reduced VEGF-Axxxa expression and reversed associated neuropathic pain. Exogenous VEGF-A165b also ameliorated neuropathic pain. We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for pain modulation under both normal conditions and in sensory neuropathy. Altering VEGF-Axxxa/VEGF-Axxxb balance by targeting alternative RNA splicing may be a new analgesic strategy. Copyright © 2014. Published by Elsevier Inc.

  6. Identification of functional VEGF receptors on human platelets.

    Science.gov (United States)

    Selheim, Frode; Holmsen, Holm; Vassbotn, Flemming S

    2002-02-13

    Platelets secrete platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) upon stimulation. We have demonstrated that platelets have functionally active PDGF alpha-receptors, a transmembrane tyrosine kinase involved in negative feedback regulation. Here we demonstrate the presence of the related VEGF receptors fms-like tyrosine kinase-1 and kinase-insert domain region on human platelets. VEGF itself did not cause platelet aggregation. However, addition of exogenous VEGF to SFRLLN or thrombin-stimulated platelets potentiated platelet aggregation. Moreover, thrombin-induced phosphoinositide 3-kinase and mitogen-activated protein kinase activity were enhanced in the presence of VEGF.

  7. 4-Hydroxy estradiol but not 2-hydroxy estradiol induces expression of hypoxia-inducible factor 1α and vascular endothelial growth factor A through phosphatidylinositol 3-kinase/Akt/FRAP pathway in OVCAR-3 and A2780-CP70 human ovarian carcinoma cells

    International Nuclear Information System (INIS)

    Gao Ning; Nester, Rebecca A.; Sarkar, Mohamadi A.

    2004-01-01

    Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix transcription factor composed of HIF-1α and HIF-1β subunits. HIF-1 expression is induced by hypoxia, growth factors, and activation of oncogenes. HIF-1 activates downstream target genes such as vascular endothelial growth factor A (VEGF-A), which plays an important role in tumor progression and angiogenesis. Estrogen exposure is considered to be the major risk factor for ovarian cancer. Estradiol (E2) is usually metabolized by CYP1A1/1A2 and CYP3A4 to the 2-hydroxy estradiol (2-OHE2) and 4-hydroxy estradiol (4-OHE2) in human liver. Many reports have suggested that the formation of 4-OHE2 is important for mammary carcinogenesis. However, the formation of 2-OHE2 may play an important role in exhibiting anticarcinogenic effects. In the present study, we have demonstrated that one of the catechol estrogen metabolites of E2, 4-OHE2, induces HIF-1α and VEGF-A expression at protein level in two human ovarian cancer cell lines, OVCAR-3 and A2780-CP70 cells, in dose- and time-dependent manners, whereas the other catechol estrogen metabolite of E2, 2-OHE2, does not alter HIF-1α and VEGF-A expression. To explore the mechanism of 4-OHE2-induced HIF-1α and VEGF-A expression, we studied whether phosphatidylinositol 3-kinase (PI3K) or mitogen-activated protein kinase (MAPK) signaling pathways are involved in 4-OHE2-induced HIF-1α and VEGF-A expression. Our findings indicate that PI3K inhibitors, LY294002 and wortmannin, inhibited HIF-1α and VEGF-A expression, whereas MAPK inhibitor, PD98059, did not alter HIF-1α and VEGF-A expression induced by 4-OHE2. 4-OHE2, but not 2-OHE2, also induced Akt phosphorylation at Ser473 in dose- and time-dependent manners, and LY294002 and wortmannin inhibited Akt phosphorylation at Ser473 induced by 4-OHE2. Our results also indicated that the mTOR/FRAP inhibitor, rapamycin, inhibited 4-OHE2-induced HIF-1α and VEGF-A expression. These results suggest that the PI3K

  8. Autocrine VEGF and IL-8 Promote Migration via Src/Vav2/Rac1/PAK1 Signaling in Human Umbilical Vein Endothelial Cells.

    Science.gov (United States)

    Ju, Li; Zhou, Zhiwen; Jiang, Bo; Lou, Yue; Guo, Xirong

    2017-01-01

    Pro-angiogenic factors VEGF and IL-8 play a major role in modulating the migratory potential of endothelial cells. The goal of this study was to investigate the effect of autocrine VEGF and IL-8 in the form of self-conditioned medium (CM) on human umbilical vein endothelial cells (HUVECs). Enzyme-linked immunosorbent assay (ELISA) examined the automatic secretion of VEGF and IL-8 protein by HUVECs. Western blot, small interfering RNA (siRNA), pulldown and Transwell assays were used to explore the role and the mechanism of autocrine VEGF and IL-8 in migration of HUVECs. Neutralizing VEGF and IL-8 in CM significantly abrogated CM-induced migration of HUVECs. Autocrine VEGF and IL-8 increased Src phosphorylation, Rac1 activity and PAK1 phosphorylation in a time dependent manner. Additionally, blocking Rac1 activity with Rac1 siRNA largely abolished autocrine VEGF and IL-8-induced cell migration. Vav2 siRNA suppressed autocrine VEGF and IL-8-induced Rac1 activation and cell migration. Furthermore, blocking Src signaling with PP2, a specific inhibitor for Src, markedly prevented autocrine VEGF and IL-8-induced Vav2 and Rac1 activation as well as consequently cell migration. PAK1 siRNA also significantly abolished autocrine VEGF and IL-8-induced cell migration. We demonstrated for the first time that autocrine VEGF and IL-8 promoted endothelial cell migration via the Src/Vav2/Rac1/PAK1 signaling pathway. This finding reveals the molecular mechanism in the increase of endothelial cell migration induced by autocrine growth factors and cytokines, which is expected to provide a novel therapeutic target in vascular diseases. © 2017 The Author(s)Published by S. Karger AG, Basel.

  9. Radiation-induced VEGF-C expression and endothelial cell proliferation in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Hsuan [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University, Pharmacological Institute, College of Medicine, Taipei (China); Pan, Shiow-Lin; Wang, Jing-Chi; Teng, Che-Ming [National Taiwan University, Pharmacological Institute, College of Medicine, Taipei (China); Kuo, Sung-Hsin [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University College of Medicine, Department of Internal Medicine, Taipei (China); Cheng, Jason Chia-Hsien [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University College of Medicine, Graduate Institute of Clinical Medicine, Taipei (China)

    2014-12-15

    The present study was undertaken to investigate whether radiation induces the expression of vascular endothelial growth factor C (VEGF-C) through activation of the PI3K/Akt/mTOR pathway,subsequently affecting endothelial cells. Radiotherapy-induced tumor micro-lymphatic vessel density (MLVD) was determined in a lung cancer xenograft model established in SCID mice. The protein expression and phosphorylation of members of the PI3K/Akt/mTOR pathway and VEGF-C secretion and mRNA expression in irradiated lung cancer cells were assessed by Western blot analysis, enzyme-linked immunosorbent assays (ELISAs), and reverse transcriptase-polymerase chain reaction (RT-PCR). Moreover, specific chemical inhibitors were used to evaluate the role of the PI3K/Akt/mTOR signaling pathway. Conditioned medium (CM) from irradiated control-siRNA or VEGF-C-siRNA-expressing A549 cells was used to evaluate the proliferation of endothelial cells by the MTT assay. Radiation increased VEGF-C expression in a dose-dependent manner over time at the protein but not at the mRNA level. Radiation also up-regulated the phosphorylation of Akt, mTOR, 4EBP, and eIF4E, but not of p70S6K. Radiation-induced VEGF-C expression was down-regulated by LY294002 and rapamycin (both p < 0.05). Furthermore, CM from irradiated A549 cells enhanced human umbilical vein endothelial cell (HUVEC) and lymphatic endothelial cell (LEC) proliferation, which was not observed with CM from irradiated VEGF-C-siRNA-expressing A549 cells. Radiation-induced activation of the PI3K/Akt/mTOR signaling pathway increases VEGF-C expression in lung cancer cells, thereby promoting endothelial cell proliferation. (orig.) [German] Die vorliegende Studie untersucht, ob die Strahlung die Expression von VEGF-C (vascular endothelial growth factor C) mittels Aktivierung des PI3K/Akt/mTOR-Signalwegs induziert und anschliessend die endothelialen Zellen beeinflusst. Die durch Strahlentherapie induzierte Mikrolymphgefaessdichte (MLVD) im Tumor wurde in

  10. VEGF-A isoforms differentially regulate ATF-2-dependent VCAM-1 gene expression and endothelial-leukocyte interactions.

    Science.gov (United States)

    Fearnley, Gareth W; Odell, Adam F; Latham, Antony M; Mughal, Nadeem A; Bruns, Alexander F; Burgoyne, Nicholas J; Homer-Vanniasinkam, Shervanthi; Zachary, Ian C; Hollstein, Monica C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2014-08-15

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways. © 2014 Fearnley et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Resistin facilitates VEGF-C-associated lymphangiogenesis by inhibiting miR-186 in human chondrosarcoma cells.

    Science.gov (United States)

    Su, Chen-Ming; Tang, Chih-Hsin; Chi, Meng-Ju; Lin, Chih-Yang; Fong, Yi-Chin; Liu, Yueh-Ching; Chen, Wei-Cheng; Wang, Shih-Wei

    2018-05-03

    Chondrosarcoma is a common primary malignant tumor of the bone that can metastasize through the vascular system to other organs. A key step in the metastatic process, lymphangiogenesis, involves vascular endothelial growth factor-C (VEGF-C). However, the effects of lymphangiogenesis in chondrosarcoma metastasis remain to be clarified. Accumulating evidence shows that resistin, a cytokine secreted from adipocytes and monocytes, also promotes tumor pathogenesis. Notably, chondrosarcoma can easily metastasize. In this study, we demonstrate that resistin enhances VEGF-C expression and lymphatic endothelial cells (LECs)-associated lymphangiogenesis in human chondrosarcoma cells. We also show that resistin triggers VEGF-C-dependent lymphangiogenesis via the c-Src signaling pathway and down-regulating micro RNA (miR)-186. Overexpression of resistin in chondrosarcoma cells significantly enhanced VEGF-C production and LECs-associated lymphangiogenesis in vitro and tumor-related lymphangiogenesis in vivo. Resistin levels were positively correlated with VEGF-C-dependent lymphangiogenesis via the down-regulation of miR-186 expression in clinical samples from chondrosarcoma tissue. This study is the first to evaluate the mechanism underlying resistin-induced promotion of LECs-associated lymphangiogenesis via the upregulation of VEGF-C expression in human chondrosarcomas. We suggest that resistin may represent a molecular target in VEGF-C-associated tumor lymphangiogenesis in chondrosarcoma metastasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue

    International Nuclear Information System (INIS)

    Lv, Jia; Xiu, Peng; Tan, Jie; Cai, Hong; Liu, Zhongjun; Jia, Zhaojun

    2015-01-01

    Electron beam melting (EBM)-fabricated porous titanium implants possessing low elastic moduli and tailored structures are promising biomaterials for orthopedic applications. However, the bio-inert nature of porous titanium makes reinforcement with growth factors (GFs) a promising method to enhance implant in vivo performance. Bone-morphogenic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) are key factors of angiogenesis and osteogenesis. Therefore, the present study is aimed at evaluating EBM-fabricated porous titanium implants incorporating GF-doped fibrin glue (FG) as composite scaffolds providing GFs for improvement of angiogenesis and osteogenesis in rabbit femoral condyle defects. BMP-2 and VEGF were added into the constituent compounds of FG, and then this GF-doped FG was subsequently injected into the porous scaffolds. In five groups of implants, angiogenesis and osteogenesis were evaluated at 4 weeks post-implantation using Microfil perfusion and histological analysis: eTi (empty scaffolds), cTi (containing undoped FG), BMP/cTi (containing 50 μg rhBMP-2), VEGF/cTi (containing 0.5 μg VEGF) and Dual/cTi (containing 50 μg rhBMP-2 and 0.5 μg VEGF). The results demonstrate that these composite implants are biocompatible and provide the desired gradual release of the bioactive growth factors. Incorporation of GF delivery, whether a single factor or dual factors, significantly enhanced both angiogenesis and osteogenesis inside the porous scaffolds. However, the synergistic effect of the dual factors combination was observable on angiogenesis but absent on osteogenesis. In conclusion, fibrin glue is a biocompatible material that could be employed as a delivery vehicle in EBM-fabricated porous titanium for controlled release of BMP-2 and VEGF. Application of this method for loading a porous titanium scaffold to incorporate growth factors is a convenient and promising strategy for improving osteogenesis of critical-sized bone defects

  13. The VEGF system and tie-2 are spatio-temporal expressed during tayassu placentation

    DEFF Research Database (Denmark)

    Miglino, M.A.; Santos, T.C.; Papa, P.C.

    Objectives: The vascular endothelial growth factor (VEGF) is one of the most important vascular mitogens, while the angiotensin receptor Tie-2 binds to the angiopoietin and stabilizes newly formed vessels. We therefore wanted to localize VEGF and its receptors VEGF-R1, VEGF-R2 and the Tie-2 recep...

  14. The impact of carboplatin and toceranib phosphate on serum vascular endothelial growth factor (VEGF) and metalloproteinase-9 (MMP-9) levels and survival in canine osteosarcoma.

    Science.gov (United States)

    Gieger, Tracy L; Nettifee-Osborne, Julie; Hallman, Briana; Johannes, Chad; Clarke, Dawn; Nolan, Michael W; Williams, Laurel E

    2017-07-01

    In this pilot study, 10 dogs with osteosarcoma (OSA) were treated with amputation and subsequent carboplatin chemotherapy (300 mg/m 2 IV q3wk × 4 doses) followed by toceranib phosphate (2.75 mg/kg PO q48h starting at day 14 post carboplatin). Monthly clinical monitoring and serum measurements of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) were acquired. No dogs were removed from the study due to toxicity. Levels of VEGF and MMP-9 did not change over time. Seven dogs died related to local recurrence and/or pulmonary or bone metastasis and the remainder died of other causes. Median OSA-free survival was 238 d with 34% 1-year progression-free survival. Median overall survival was 253 d with 30% alive at 1.5 y and 10% alive at 2 y. Although this regimen was well-tolerated, survival times did not exceed previously published data from dogs treated with amputation plus chemotherapy alone.

  15. Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways

    International Nuclear Information System (INIS)

    Laxmanan, Sreenivas; Robertson, Stuart W.; Wang Enfeng; Lau, Julie S.; Briscoe, David M.; Mukhopadhyay, Debabrata

    2005-01-01

    Vascular endothelial growth factor (VEGF) is an angiogenic cytokine that plays an important role in tumor growth and progression. Recent evidence suggests an alternate, albeit indirect, role of VEGF on host immune response to tumors. VEGF appears to diminish host immunity by altering the function of major antigen-presenting cells such as dendritic cells (DCs) [D.I. Gabrilovich, T. Ishida, S. Nadaf, J.E. Ohm, D.P. Carbone, Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function, Clin. Cancer Res. 5 (1999) 2963-2970, D. Gabrilovich, T. Ishida, T. Oyama, S. Ran, V. Kravtsov, S. Nadaf, D.P. Carbone, Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo, Blood 92 (1998) 4150-4166, T. Oyama, S. Ran, T. Ishida, S. Nadaf, L. Kerr, D.P. Carbone, D.I. Gabrilovich, Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells, J. Immunol. 160 (1998) 1224-1232.]. DCs are prime initiators of host immunity as they are known to activate both primary as well as secondary immune responses [J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y.J. Liu, B. Pulendran, K. Palucka, Immunobiology of dendritic cells, Ann. Rev. Immunol. 18 (2000) 767-811.]. However, the exact nature of how VEGF suppresses DC function is not fully clear. In this report, we show that DCs cultured in the presence of VEGF are less potent in stimulating antigen-specific T-cells. Furthermore, by using DCs derived from Id1 -/- mice that are defective in Flt-1 signaling, we demonstrated that the inhibitory function of VEGF on DC function is most likely mediated by Flt-1. Thus, the role of VEGF in downregulating host immunity may highlight a unique role of VEGF in the pathogenesis of cancer

  16. Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia

    Directory of Open Access Journals (Sweden)

    Meng-Chuan Chen

    2015-07-01

    Full Text Available Activation of hypoxia-induced hypoxia-inducible factors-1 (HIF-1 plays a critical role in promoting tumor angiogenesis, growth and metastasis. Low molecular weight fucoidan (LMWF is prepared from brown algae, and exhibits anticancer activity. However, whether LMWF attenuates hypoxia-induced angiogenesis in bladder cancer cells and the molecular mechanisms involved remain unclear. This is the first study to demonstrate that LMWF can inhibit hypoxia-stimulated H2O2 formation, HIF-1 accumulation and transcriptional activity vascular endothelial growth factor (VEGF secretion, and the migration and invasion in hypoxic human bladder cancer cells (T24 cells. LMWF also downregulated hypoxia-activated phosphorylation of PI3K/AKT/mTOR/p70S6K/4EBP-1 signaling in T24 cells. Blocking PI3K/AKT or mTOR activity strongly diminished hypoxia-induced HIF-1α expression and VEGF secretion in T24 cells, supporting the involvement of PI3K/AKT/mTOR in the induction of HIF-1α and VEGF. Additionally, LMWF significantly attenuated angiogenesis in vitro and in vivo evidenced by reduction of tube formation of hypoxic human umbilical vascular endothelial cells and blood capillary generation in the tumor. Similarly, administration of LMWF also inhibited the HIF-1α and VEGF expression in vivo, accompanied by a reduction of tumor growth. In summary, under hypoxia conditions, the antiangiogenic activity of LMWF in bladder cancer may be associated with suppressing HIF-1/VEGF-regulated signaling pathway.

  17. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    International Nuclear Information System (INIS)

    Oka, Naoki; Soeda, Akio; Inagaki, Akihito; Onodera, Masafumi; Maruyama, Hidekazu; Hara, Akira; Kunisada, Takahiro; Mori, Hideki; Iwama, Toru

    2007-01-01

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche

  18. Clinical significance of determination of changes of plasma vascular endothelial growth factor (VEGF) contents after treatment in patients with acute leukemia

    International Nuclear Information System (INIS)

    Guo Min

    2006-01-01

    Objective: To investigate the changes of plasma VEGF after treatment in patients with acute leukemia. Methods: Plasma VEGF levels were determined with (ELISA) in 34 patients with acute leukemia both before and after treatment as well as in 35 controls. Results: Before treatment the plasma levels of VEGF levels in patients were significantly higher than those in the controls (P<0.01). After three months of treatment the levels dropped markedly but still remained significantly higher than those in controls (P<0.05). Conclusion: Development of acute leukemia was closely related to the plasma levels of VEGF. (authors)

  19. Anti-VEGF therapy in the management of retinopathy of prematurity: what we learn from representative animal models of oxygen-induced retinopathy

    Directory of Open Access Journals (Sweden)

    Wang H

    2016-05-01

    Full Text Available Haibo Wang Department of Ophthalmology, John A Moran Eye Center, The University of Utah, Salt Lake City, UT, USA Abstract: Retinopathy of prematurity (ROP remains a leading cause of childhood blindness, affecting infants born prematurely. ROP is characterized by the onset of delayed physiological retinal vascular development (PRVD and followed by pathologic neovascularization into the vitreous instead of the retina, called intravitreal neovascularization (IVNV. Therefore, the therapeutic strategy for treating ROP is to promote PRVD and inhibit or prevent IVNV. Vascular endothelial growth factor (VEGF plays an important role in the pathogenesis of ROP. There is a growing body of studies testing the use of anti-VEGF agents as a treatment for ROP. Intravitreal anti-VEGF treatment for ROP has potential advantages compared with laser photocoagulation, the gold standard for the treatment of severe ROP; however, intravitreal anti-VEGF treatment has been associated with reactivation of ROP and suppression of systemic VEGF that may affect body growth and organ development in preterm infants. Therefore, it is important to understand the role of VEGF in PRVD and IVNV. This review includes the current knowledge of anti-VEGF treatment for ROP from animal models of oxygen-induced retinopathy (OIR, highlighting the importance of VEGF inhibition by targeting retinal Müller cells, which inhibits IVNV and permits PRVD. The signaling events involved in mediating VEGF expression and promoting VEGF-mediated angiogenesis, including hypoxia-dependent signaling, erythropoietin/erythropoietin receptor-, oxidative stress-, beta-adrenergic receptor-, integrin-, Notch/Delta-like ligand 4- and exon guidance molecules-mediated signaling pathways, are also discussed. Keywords: vascular endothelial growth factor, retinopathy of prematurity, intravitreal neovascularization, oxygen-induced retinopathy model, physiological retinal vascular development

  20. VEGF and VEGFR genotyping in the prediction of clinical outcome for HCC patients receiving sorafenib: the ALICE-1 study.

    Science.gov (United States)

    Scartozzi, Mario; Faloppi, Luca; Svegliati Baroni, Gianluca; Loretelli, Cristian; Piscaglia, Fabio; Iavarone, Massimo; Toniutto, Pierluigi; Fava, Giammarco; De Minicis, Samuele; Mandolesi, Alessandra; Bianconi, Maristella; Giampieri, Riccardo; Granito, Alessandro; Facchetti, Floriana; Bitetto, Davide; Marinelli, Sara; Venerandi, Laura; Vavassori, Sara; Gemini, Stefano; D'Errico, Antonietta; Colombo, Massimo; Bolondi, Luigi; Bearzi, Italo; Benedetti, Antonio; Cascinu, Stefano

    2014-09-01

    Although new treatment modalities changed the global approach to hepatocellular carcinoma (HCC), this disease still represents a medical challenge. Currently, the therapeutic stronghold is sorafenib, a tyrosine kinase inhibitor (TKI) directed against the vascular endothelial growth factor (VEGF) family. Previous observations suggested that polymorphisms of VEGF and its receptor (VEGFR) genes may regulate angiogenesis and lymphangiogenesis and thus tumour growth control. The aim of our study was to evaluate the role of VEGF and VEGFR polymorphisms in determining the clinical outcome of HCC patients receiving sorafenib. From a multicentre experience 148 samples (tumour or blood samples) of HCC patients receiving sorafenib were tested for VEGF-A, VEGF-C and VEGFR-1,2,3 single nucleotide polymorphisms (SNPs). Patients' progression-free survival (PFS) and overall survival (OS) were analysed. At univariate analysis VEGF-A alleles C of rs25648, T of rs833061, C of rs699947, C of rs2010963, VEGF-C alleles T of rs4604006, G of rs664393, VEGFR-2 alleles C of rs2071559, C of rs2305948 were significant predictors of PFS and OS. At multivariate analysis rs2010963, rs4604006 and BCLC (Barcelona Clinic Liver Cancer) stage resulted to be independent factors influencing PFS and OS. Once prospectively validated, the analysis of VEGF and VEGFR SNPs may represent a clinical tool to better identify HCC patients more likely to benefit from sorafenib. On the other hand, the availability of more accurate predictive factors could help avoiding unnecessary toxicities to potentially resistant patients who may be optimal candidates for different treatments interfering with other tumour molecular pathways. © 2014 UICC.

  1. Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Harrison, Michael A; Tomlinson, Darren C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-07-01

    Vascular endothelial growth factors (VEGFs) bind to VEGF receptor tyrosine kinases (VEGFRs). The VEGF and VEGFR gene products regulate diverse regulatory pathways in mammalian development, health and disease. The interaction between a particular VEGF and its cognate VEGFR activates multiple signal transduction pathways which regulate different cellular responses including metabolism, gene expression, proliferation, migration, and survival. The family of VEGF isoforms regulate vascular physiology and promote tissue homeostasis. VEGF dysfunction is implicated in major chronic disease states including atherosclerosis, diabetes, and cancer. More recent studies implicate a strong link between response to VEGF and regulation of vascular metabolism. Understanding how this family of multitasking cytokines regulates cell and animal function has implications for treating many different diseases.

  2. Coregulation of glucose uptake and vascular endothelial growth factor (VEGF) in two small-cell lung cancer (SCLC) sublines in vivo and in vitro

    DEFF Research Database (Denmark)

    Pedersen, M W; Holm, S; Lund, E L

    2001-01-01

    We examined the relationship between (18)F- labeled 2-fluro-2-deoxy-d-glucose (FDG) uptake, and expression of glucose transporters (GLUTs) in two human small-cell lung cancer (SCLC) lines CPH 54A and CPH 54B. Changes in the expression of GLUTs and vascular endothelial growth factor (VEGF) during 12......-, 18-, and 24 hours of severe hypoxia in vivo (xenografts) and in vitro (cell cultures) were recorded for both tumor lines. The two SCLC lines are subpopulations of the same patient tumor. In spite of their common genomic origin they represent consistently different metabolic and microenvironmental...... phenotypes as well as treatment sensitivities. There were higher levels of Glut-1 protein in 54B and a correspondingly higher FDG uptake in this tumor line (P

  3. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    International Nuclear Information System (INIS)

    Baek, Yi-Yong; Lee, Dong-Keon; So, Ju-Hoon; Kim, Cheol-Hee; Jeoung, Dooil; Lee, Hansoo; Choe, Jongseon; Won, Moo-Ho; Ha, Kwon-Soo; Kwon, Young-Guen; Kim, Young-Myeong

    2015-01-01

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC 50 of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases

  4. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yi-Yong; Lee, Dong-Keon [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); So, Ju-Hoon; Kim, Cheol-Hee [Department of Biology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Jeoung, Dooil [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Lee, Hansoo [Department of Life Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Choe, Jongseon [Department of Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Won, Moo-Ho [Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Ha, Kwon-Soo [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Kwon, Young-Guen [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752 (Korea, Republic of); Kim, Young-Myeong, E-mail: ymkim@kangwon.ac.kr [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of)

    2015-08-07

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC{sub 50} of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases.

  5. WISP-3 inhibition of miR-452 promotes VEGF-A expression in chondrosarcoma cells and induces endothelial progenitor cells angiogenesis.

    Science.gov (United States)

    Lin, Chih-Yang; Tzeng, Huey-En; Li, Te-Mao; Chen, Hsien-Te; Lee, Yi; Yang, Yi-Chen; Wang, Shih-Wei; Yang, Wei-Hung; Tang, Chih-Hsin

    2017-06-13

    Chondrosarcoma is the second most prevalent general primary tumor of bone following osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). VEGF-A level has been recognized as a prognostic marker in angiogenesis. WNT1-inducible signaling pathway protein-3 (WISP)-3/CCN6 belongs to the CCN family and is involved in regulating several cellular functions, including cell proliferation, differentiation, and migration. Nevertheless, the effect of WISP-3 on VEGF-A production and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that WISP-3 promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, WISP-3-enhanced VEGF-A expression and angiogenesis involved the c-Src and p38 signaling pathways, while miR-452 expression was negatively affected by WISP-3 via the c-Src and p38 pathways. Our results illustrate the clinical significance of WISP-3, VEGF-A and miR-452 in human chondrosarcoma patients. WISP-3 may illustrate a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma.

  6. Fundamental principles of an anti-VEGF treatment regimen: optimal application of intravitreal anti-vascular endothelial growth factor therapy of macular diseases.

    Science.gov (United States)

    Lanzetta, Paolo; Loewenstein, Anat

    2017-07-01

    Intravitreal anti-vascular endothelial growth factor (VEGF) therapy is now considered the gold standard for the treatment of various retinal disorders. As therapy has evolved, so too have the treatment regimens employed by physicians in clinical practice; however, visual outcomes observed in the real world have typically not reflected those reported in clinical trials. Possible reasons for this include a lack of consensus on treatment regimens and a lack of clarity about what the aims of treatment should be. The Vision Academy Steering Committee met to discuss the principles of an ideal treatment regimen, using evidence from the literature to substantiate each point. Literature searches were performed using the MEDLINE/PubMed database (cut-off date: March 2016) and restricted to English-language publications. Studies with fewer than ten patients were excluded from this review. The Steering Committee identified the following four key principles for the ideal treatment regimen for anti-VEGF management of retinal diseases: 1. Maximize and maintain visual acuity (VA) benefits for all patients 2. Decide when to treat next, rather than whether to treat now 3. Titrate the treatment intervals to match patients' needs 4. Treat at each monitoring visit. It is proposed that the adoption of a proactive and more personalized approach in the clinic such as a treat-and-extend regimen will lead to benefits for both the patient and the physician, through a reduction in the associated treatment burden and better utilization of clinic resources. Implementation of the four principles should also lead to better VA outcomes for each patient, with a minimized risk of vision loss.

  7. Leptin promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-27b in human chondrosarcoma cells.

    Science.gov (United States)

    Yang, Wei-Hung; Chang, An-Chen; Wang, Shih-Wei; Wang, Shoou-Jyi; Chang, Yung-Sen; Chang, Tzu-Ming; Hsu, Shao-Keh; Fong, Yi-Chin; Tang, Chih-Hsin

    2016-06-27

    Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the chief lymphangiogenic mediator, and makes crucial contributions to tumor lymphangiogenesis. Leptin is an adipocytokine and has been indicated to facilitate tumorigenesis, angiogenesis and metastasis. However, the effect of leptin on VEGF-C regulation and lymphangiogenesis in human chondrosarcoma has hugely remained a mystery. Our results showed a clinical correlation between leptin and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that leptin promoted VEGF-C production and secretion in human chondrosarcoma cells. The conditioned medium from leptin-treated chondrosarcoma cells induced lymphangiogenesis of human lymphatic endothelial cells. We also found that leptin-induced VEGF-C is mediated by the FAK, PI3K and Akt signaling pathway. Furthermore, the expression of microRNA-27b was negatively regulated by leptin via the FAK, PI3K and Akt cascade. Our study is the first to describe the mechanism of leptin-promoted lymphangiogenesis by upregulating VEGF-C expression in chondrosarcomas. Thus, leptin could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis.

  8. Gene-gene interactions and gene polymorphisms of VEGFA and EG-VEGF gene systems in recurrent pregnancy loss.

    Science.gov (United States)

    Su, Mei-Tsz; Lin, Sheng-Hsiang; Chen, Yi-Chi; Kuo, Pao-Lin

    2014-06-01

    Both vascular endothelial growth factor A (VEGFA) and endocrine gland-derived vascular endothelial growth factor (EG-VEGF) systems play major roles in angiogenesis. A body of evidence suggests VEGFs regulate critical processes during pregnancy and have been associated with recurrent pregnancy loss (RPL). However, little information is available regarding the interaction of these two major major angiogenesis-related systems in early human pregnancy. This study was conducted to investigate the association of gene polymorphisms and gene-gene interaction among genes in VEGFA and EG-VEGF systems and idiopathic RPL. A total of 98 women with history of idiopathic RPL and 142 controls were included, and 5 functional SNPs selected from VEGFA, KDR, EG-VEGF (PROK1), PROKR1 and PROKR2 were genotyped. We used multifactor dimensionality reduction (MDR) analysis to choose a best model and evaluate gene-gene interactions. Ingenuity pathways analysis (IPA) was introduced to explore possible complex interactions. Two receptor gene polymorphisms [KDR (Q472H) and PROKR2 (V331M)] were significantly associated with idiopathic RPL (P<0.01). The MDR test revealed that the KDR (Q472H) polymorphism was the best loci to be associated with RPL (P=0.02). IPA revealed EG-VEGF and VEGFA systems shared several canonical signaling pathways that may contribute to gene-gene interactions, including the Akt, IL-8, EGFR, MAPK, SRC, VHL, HIF-1A and STAT3 signaling pathways. Two receptor gene polymorphisms [KDR (Q472H) and PROKR2 (V331M)] were significantly associated with idiopathic RPL. EG-VEGF and VEGFA systems shared several canonical signaling pathways that may contribute to gene-gene interactions, including the Akt, IL-8, EGFR, MAPK, SRC, VHL, HIF-1A and STAT3.

  9. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium.

    Science.gov (United States)

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J; Wiegand, Stanley J; Rabinovitch, Marlene; Druzin, Maurice L; Brenner, Robert M; Giudice, Linda C; Nayak, Nihar R

    2008-10-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangiogenesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2-neuropilin 1 (VEGFR2-NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endometrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angiogenesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.

  10. Dll4 blockade potentiates the anti-tumor effects of VEGF inhibition in renal cell carcinoma patient-derived xenografts.

    Directory of Open Access Journals (Sweden)

    Kiersten Marie Miles

    Full Text Available The Notch ligand Delta-like 4 (Dll4 is highly expressed in vascular endothelium and has been shown to play a pivotal role in regulating tumor angiogenesis. Blockade of the Dll4-Notch pathway in preclinical cancer models has been associated with non-productive angiogenesis and reduced tumor growth. Given the cross-talk between the vascular endothelial growth factor (VEGF and Delta-Notch pathways in tumor angiogenesis, we examined the activity of a function-blocking Dll4 antibody, REGN1035, alone and in combination with anti-VEGF therapy in renal cell carcinoma (RCC.Severe combined immunodeficiency (SCID mice bearing patient-derived clear cell RCC xenografts were treated with REGN1035 and in combination with the multi-targeted tyrosine kinase inhibitor sunitinib or the VEGF blocker ziv-aflibercept. Immunohistochemical and immunofluorescent analyses were carried out, as well as magnetic resonance imaging (MRI examinations pre and 24 hours and 2 weeks post treatment. Single agent treatment with REGN1035 resulted in significant tumor growth inhibition (36-62% that was equivalent to or exceeded the single agent anti-tumor activity of the VEGF pathway inhibitors sunitinib (38-54% and ziv-aflibercept (46%. Importantly, combination treatments with REGN1035 plus VEGF inhibitors resulted in enhanced anti-tumor effects (72-80% growth inhibition, including some tumor regression. Magnetic resonance imaging showed a marked decrease in tumor perfusion in all treatment groups. Interestingly, anti-tumor efficacy of the combination of REGN1035 and ziv-aflibercept was also observed in a sunitinib resistant ccRCC model.Overall, these findings demonstrate the potent anti-tumor activity of Dll4 blockade in RCC patient-derived tumors and a combination benefit for the simultaneous targeting of the Dll4 and VEGF signaling pathways, highlighting the therapeutic potential of this treatment modality in RCC.

  11. Cellular and molecular aspects of diabetic nephropathy; the role of VEGF-A.

    Science.gov (United States)

    Carranza, Katherine; Veron, Dolores; Cercado, Alicia; Bautista, Noemi; Pozo, Wilson; Tufro, Alda; Veron, Delma

    2015-01-01

    The prevalence of diabetes mellitus increased during the last century and it is estimated that 45% of the patients are not diagnosed. In South America the prevalence of diabetes and chronic kidney disease (CKD) increased, with a great disparity among the countries with respect to access to dialysis. In Ecuador it is one of the main causes of mortality, principally in the provinces located on the coast of the Pacific Ocean. The greatest single cause of beginning dialysis is diabetic nephropathy (DN). Even using the best therapeutic options for DN, the residual risk of proteinuria and of terminal CKD remains high. In this review we indicate the importance of the problem globally and in our region. We analyse relevant cellular and molecular studies that illustrate the crucial significance of glomerular events in DN development and evolution and in insulin resistance. We include basic anatomical, pathophysiological and clinical concepts, with special attention to the role of angiogenic factors such as the vascular endothelial growth factor (VEGF-A) and their relationship to the insulin receptor, endothelial isoform of nitric oxide synthase (eNOS) and angiopoietins. We also propose various pathways that have therapeutic potential in our opinion. Greater in-depth study of VEGF-A and angiopoietins, the state of glomerular VEGF resistance, the relationship of VEGF receptor 2/nephrin, VEGF/insulin receptors/nephrin and the relationship of VEGF/eNOS-NO at glomerular level could provide solutions to the pressing world problem of DN and generate new treatment alternatives. Copyright © 2015. Published by Elsevier España, S.L.U.

  12. Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGFβ1-induced macrophages

    International Nuclear Information System (INIS)

    Machado, Camila Maria Longo; Andrade, Luciana Nogueira Sousa; Teixeira, Verônica Rodrigues; Costa, Fabrício Falconi; Melo, Camila Morais; Santos, Sofia Nascimento dos; Nonogaki, Suely; Liu, Fu-Tong; Bernardes, Emerson Soares; Camargo, Anamaria Aranha; Chammas, Roger

    2014-01-01

    In order to study the role of galectin-3 in tumor angiogenesis associated with tumor-associated macrophages (TAM) and tumor parenchyma, the galectin-3 expression was reconstituted in Tm1 melanoma cell line that lacks this protein. Galectin-3-expressing cells (Tm1G3) and mock-vector transfected cells (Tm1N3) were injected into wild-type (WT) and galectin-3 knockout (KO) C57Bl/6 mice. Tumors originated from Tm1G3 were larger in tumor volume with enlarged functional vessels, decreased necrotic areas, and increased vascular endothelial growth factor (VEGF) protein levels. Galectin-3-nonexpressing-cells injected into WT and KO showed increased levels of transforming growth factor beta 1 (TGFβ1) and, in WT animals this feature was also accompanied by increased VEGFR2 expression and its phosphorylation. In KO animals, tumors derived from galectin-3-expressing cells were infiltrated by CD68 + -cells, whereas in tumors derived from galectin-3-nonexpressing-cells, CD68 + cells failed to infiltrate tumors and accumulated in the periphery of the tumor mass. In vitro studies showed that Tm1G3 secreted more VEGF than Tm1N3 cells. In the latter case, TGFβ1 induced VEGF production. Basal secretion of VEGF was higher in WT-bone marrow-derived macrophages (BMDM) than in KO-BMDM. TGFβ1 induced secretion of VEGF only in WT-BMDM. Tm1G3-induced tumors had the Arginase I mRNA increased, which upregulated alternative macrophage (M2)/TAM induction. M2 stimuli, such as interleukin-4 (IL4) and TGFβ1, increased Arginase I protein levels and galectin-3 expression in WT- BMDM, but not in cells from KO mice. Hence, we report that galectin-3 disruption in tumor stroma and parenchyma decreases angiogenesis through interfering with the responses of macrophages to the interdependent VEGF and TGFβ1 signaling pathways

  13. Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture

    NARCIS (Netherlands)

    Poldervaart, Michelle T; Gremmels, Hendrik; van Deventer, Kelly; Fledderus, Joost O; Oner, F Cumhur; Verhaar, Marianne C; Dhert, Wouter J A; Alblas, Jacqueline

    2014-01-01

    Timely vascularization is essential for optimal performance of bone regenerative constructs. Vascularization is efficiently stimulated by vascular endothelial growth factor (VEGF), a substance with a short half-life time. This study investigates the controlled release of VEGF from gelatin

  14. C1q/Tumor Necrosis Factor-related Protein-3 Attenuates Brain Injury after Intracerebral Hemorrhage via AMPK-dependent pathway in Rat

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    2016-10-01

    Full Text Available C1q/tumor necrosis factor-related protein-3 (CTRP3 is a recently discovered adiponectin paralog with established metabolic regulatory properties. However, the role of CTRP3 in intracerebral hemorrhage (ICH is still mostly unresolved. The aim of the present report was to explore the possible neuroprotective effect of CTRP3 in an ICH rat model and to elucidate the fundamental mechanisms. ICH was induced in rats by intracerebral infusion of autologous arterial blood. The effects of exogenous CTRP3 (recombinant or lentivirus CTRP3 on brain injury were explored on day 7. Treatment with CTRP3 reduced brain edema, protected against disruption of the blood-brain barrier, improved neurological functions, and promoted angiogenesis. Furthermore, CTRP3 greatly intensified phosphorylation of AMP-activated protein kinase (AMPK in addition to expression of hypoxia inducing factor-1α (HIF-1α and vascular endothelial growth factor (VEGF. Finally, the protective effects of CTRP3 could be blocked by either AMPK or VEGF inhibitors. Our findings give the first evidence that CTRP3 is a new proangiogenic and neuroprotective adipokine, which may exert its protective effects at least partly through an AMPK/HIF-1α/ VEGF-dependent pathway, and suggest that CTRP3 may provide a new therapeutic strategy for ICH.

  15. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft

    NARCIS (Netherlands)

    Nagengast, Wouter B.; Hospers, Geke A.; Mulder, Nanno H.; de Jong, Johan R.; Hollema, Harry; Brouwers, Adrienne H.; van Dongen, Guns A.; Perk, Lars R.; Lub-de Hooge, Marjolijn N.

    Vascular endothelial growth factor (VEGF), released by tumor cells, is an important growth factor in tumor angiogenesis. The humanized monoclonal antibody bevacizumab blocks VEGF-induced tumor angiogenesis by binding, thereby neutralizing VEGF. Our aim was to develop radiolabeled bevacizumab for

  16. Regulation of VEGF signaling by membrane traffic.

    Science.gov (United States)

    Horowitz, Arie; Seerapu, Himabindu Reddy

    2012-09-01

    Recent findings have drawn attention to the role of membrane traffic in the signaling of vascular endothelial growth factor (VEGF). The significance of this development stems from the pivotal function of VEGF in vasculogenesis and angiogenesis. The outline of the regulation of VEGF receptor (VEGFR) signaling by membrane traffic is similar to that of the epidermal growth factor receptor (EGFR), a prototype of the intertwining between membrane traffic and signaling. There are, however, unique features in VEGFR signaling that are conferred in part by the involvement of the co-receptor neuropilin (Nrp). Nrp1 and VEGFR2 are integrated into membrane traffic through the adaptor protein synectin, which recruits myosin VI, a molecular motor that drives inward trafficking [17,21,64]. The recent detection of only mild vascular defects in a knockin mouse model that expresses Nrp1 lacking a cytoplasmic domain [104], questions the co-receptor's role in VEGF signaling and membrane traffic. The regulation of endocytosis by ephrin-B2 is another feature unique to VEGR2/3 [18,19], but it awaits a mechanistic explanation. Current models do not fully explain how membrane traffic bridges between VEGFR and the downstream effectors that produce its functional outcome, such as cell migration. VEGF-A appears to accomplish this task in part by recruiting endocytic vesicles carrying RhoA to internalized active VEGFR2 [58]. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Elevated IGFIR expression regulating VEGF and VEGF-C predicts lymph node metastasis in human colorectal cancer

    International Nuclear Information System (INIS)

    Zhang, Chunhui; Hao, Li; Wang, Liang; Xiao, Yichuan; Ge, Hailiang; Zhu, Zhenya; Luo, Yunbao; Zhang, Yi; Zhang, Yanyun

    2010-01-01

    Insulin-like growth factor-I receptor (IGFIR) has been shown to regulate the tumor development. The objective of the current study is to determine the association of IGFIR with lymph node metastasis and to explore the related mechanism in human colorectal cancer in clinic. In a random series of 98 colorectal cancer patients, the expressions of IGFIR, vascular endothelial growth factor (VEGF) and VEGF-C were investigated by immunohistochemistry, and the association of these expressions with lymph node metastasis was statistically analyzed. The expressions of VEGF and VEGF-C in colorectal cancer cells stimulated with IGF-I were also examined by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Higher rates of IGFIR (46%), VEGF (53%), and VEGF-C (46%) expression were found in colorectal cancer tissues than in normal and colorectal adenoma tissues. These expressions were significantly associated with clinicopathologic factors and lymph node status. We also found the concomitant high expressions of IGFIR/VEGF (P < 0.001) and IGFIR/VEGF-C (P = 0.001) had a stronger correlation with lymph node metastasis than did each alone or both low expressions. In addition, IGF-I could effectively induce the VEGF and VEGF-C mRNA expression and protein secretion in colorectal cancer cells expressing IGFIR molecules. Moreover, Patients who had strong staining for IGFIR, VEGF and VEGF-C showed significantly less favorable survival rates compared with patients who had low staining for these molecules (P < 0.001). The survival rates of patients who were both high expression of IGFIR/VEGF and IGFIR/VEGF-C also were significantly lower compared with patients who were negative or one of high expression of these molecules (P < 0.001). Together the findings indicated for the first time that simultaneous examination of the expressions of IGFIR, VEGF and VEGF-C will benefit the diagnosis of lymph node metastasis in order to assay the

  18. VEGF immunoexpression in penile carcinoma

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Pereira Martins

    2002-01-01

    Full Text Available OBJECTIVE: To investigate the vessel endothelial growth factor (VEGF as a risk factor in squamous cell carcinoma of the penis (SCCP. METHODS: Forty-seven patients with penile carcinoma were evaluated retrospectively. The mean age and standard deviation were 61.1±11.7 years. All of them were treated by penectomy and those with positive nodes underwent groin lymphadenectomy. Tumor grading was 35 G1 and 12 G2/3. Primary lesion stage was 24 pT1 and 23 pT2-4. Positive inguinal nodes were observed in 15 patients. Selected paraffin embedded sections were submitted to VEGF immunohistochemical analysis by the avidin-biotin-immunoperoxidase method with antigen retrieval. All slides were examined using an automatic analyzer system and the proportion of labeled cells in 10 high magnification power fields (400X were recorded in a blind analysis. RESULTS: Median (% labeling index was 2.3 in G1 versus 2.2 in G2/3 tumors (p=0.60, and 4.0 in pT1 versus 1.8 pT2-4 tumors (p=0.10. The respective data for pN0 patients was 2.8 and for pN+ was 2.1 (p=0.20. Survival curves showed no association with patients survival. CONCLUSION: In squamous cell carcinoma of the penis the VEGF immunoexpression has no association with tumor grade or stage, as well as with patient survival.

  19. Canonical hedgehog signaling augments tumor angiogenesis by induction of VEGF-A in stromal perivascular cells

    Science.gov (United States)

    Chen, Weiwei; Tang, Tracy; Eastham-Anderson, Jeff; Dunlap, Debra; Alicke, Bruno; Nannini, Michelle; Gould, Stephen; Yauch, Robert; Modrusan, Zora; DuPree, Kelly J.; Darbonne, Walter C.; Plowman, Greg; de Sauvage, Frederic J.; Callahan, Christopher A.

    2011-01-01

    Hedgehog (Hh) signaling is critical to the patterning and development of a variety of organ systems, and both ligand-dependent and ligand-independent Hh pathway activation are known to promote tumorigenesis. Recent studies have shown that in tumors promoted by Hh ligands, activation occurs within the stromal microenvironment. Testing whether ligand-driven Hh signaling promotes tumor angiogenesis, we found that Hh antagonism reduced the vascular density of Hh-producing LS180 and SW480 xenografts. In addition, ectopic expression of sonic hedgehog in low-Hh–expressing DLD-1 xenografts increased tumor vascular density, augmented angiogenesis, and was associated with canonical Hh signaling within perivascular tumor stromal cells. To better understand the molecular mechanisms underlying Hh-mediated tumor angiogenesis, we established an Hh-sensitive angiogenesis coculture assay and found that fibroblast cell lines derived from a variety of human tissues were Hh responsive and promoted angiogenesis in vitro through a secreted paracrine signal(s). Affymetrix array analyses of cultured fibroblasts identified VEGF-A, hepatocyte growth factor, and PDGF-C as candidate secreted proangiogenic factors induced by Hh stimulation. Expression studies of xenografts and angiogenesis assays using combinations of Hh and VEGF-A inhibitors showed that it is primarily Hh-induced VEGF-A that promotes angiogenesis in vitro and augments tumor-derived VEGF to promote angiogenesis in vivo. PMID:21597001

  20. The effects of Nigella sativa on thyroid function, serum Vascular Endothelial Growth Factor (VEGF) - 1, Nesfatin-1 and anthropometric features in patients with Hashimoto's thyroiditis: a randomized controlled trial.

    Science.gov (United States)

    Farhangi, Mahdieh Abbasalizad; Dehghan, Parvin; Tajmiri, Siroos; Abbasi, Mehran Mesgari

    2016-11-16

    Hashimoto's thyroiditis is an autoimmune disorder and the most common cause of hypothyroidism. The use of Nigella sativa, a potent herbal medicine, continues to increase worldwide as an alternative treatment of several chronic diseases including hyperlipidemia, hypertension and type 2 diabetes mellitus (T2DM). The aim of the current study was to evaluate the effects of Nigella sativa on thyroid function, serum Vascular Endothelial Growth Factor (VEGF) - 1, Nesfatin-1 and anthropometric features in patients with Hashimoto's thyroiditis. Forty patients with Hashimoto's thyroiditis, aged between 22 and 50 years old, participated in the trial and were randomly allocated into two groups of intervention and control receiving powdered Nigella sativa or placebo daily for 8 weeks. Changes in anthropometric variables, dietary intakes, thyroid status, serum VEGF and Nesfatin-1 concentrations after 8 weeks were measured. Treatment with Nigella sativa significantly reduced body weight and body mass index (BMI). Serum concentrations of thyroid stimulating hormone (TSH) and anti-thyroid peroxidase (anti-TPO) antibodies decreased while serum T3 concentrations increased in Nigella sativa-treated group after 8 weeks. There was a significant reduction in serum VEGF concentrations in intervention group. None of these changes had been observed in placebo treated group. In stepwise multiple regression model, changes in waist to hip ratio (WHR) and thyroid hormones were significant predictors of changes in serum VEGF and Nesgfatin-1 values in Nigella sativa treated group (P thyroid status and anthropometric variables in patients with Hashimoto's thyroiditis. Moreover, Nigella sativa significantly reduced serum VEGF concentrations in these patients. Considering observed health- promoting effect of this medicinal plant in ameliorating the disease severity, it can be regarded as a useful therapeutic approach in management of Hashimoto's thyroiditis. Iranian registry of clinical trials

  1. Kaempferol inhibited VEGF and PGF expression and in vitro angiogenesis of HRECs under diabetic-like environment.

    Science.gov (United States)

    Xu, X H; Zhao, C; Peng, Q; Xie, P; Liu, Q H

    2017-03-02

    Diabetic retinopathy (DR) is one of the common and specific microvascular complications of diabetes. This study aimed to investigate the anti-angiogenic effect of kaempferol and explore its underlying molecular mechanisms. The mRNA expression level of vascular endothelial growth factor (VEGF) and placenta growth factor (PGF) and the concentrations of secreted VEGF and PGF were measured by qTR-PCR and ELISA assay, respectively. Human retinal endothelial cells (HRECs) proliferation, migration, and sprouting were measured by CCK-8 and transwell, scratching wound, and tube formation assays, respectively. Protein levels were determined by western blot. High glucose (25 mM) increased the mRNA expression levels of VEGF and PGF as well as the concentrations of secreted VEGF and PGF in HRECs, which can be antagonized by kaempferol (25 µM). Kaempferol (5-25 µM) significantly suppressed cell proliferation, migration, migration distance and sprouting of HRECs under high glucose condition. The anti-angiogenic effect of kaempferol was mediated via downregulating the expression of PI3K and inhibiting the activation of Erk1/2, Src, and Akt1. This study indicates that kaempferol suppressed angiogenesis of HRECs via targeting VEGF and PGF to inhibit the activation of Src-Akt1-Erk1/2 signaling pathway. The results suggest that kaempferol may be a potential drug for better management of DR.

  2. Effect of high ovarian response on the expression of endocrine gland-derived vascular endothelial growth factor (EG-VEGF) in peri-implantation endometrium in IVF women.

    Science.gov (United States)

    Xu, Li-Zhen; Gao, Min-Zhi; Yao, Li-Hua; Liang, A-Juan; Zhao, Xiao-Ming; Sun, Zhao-Gui

    2015-01-01

    To investigate the effect of ovarian stimulation on the expression of EG-VEGF mRNA and protein in peri-implantation endometrium in women undergoing IVF and its relation with endometrial receptivity (ER). Prospective laboratory study. University hospital. Eighteen women in stimulated cycles (SC) as study subjects and 18 women in natural cycles (NC) as controls. Women in SC group were classified with two subgroups, high ovarian response (SC1, n=9) with peak serum E2>5,000 pg/mL and moderate ovarian response (SC2, n=9) with peak serum E2 1,000-5,000 pg/mL. Endometrial biopsies were collected 6 days after ovulation in NC or after oocyte retrieval in SC. Endometrium histological dating was observed with HE staining. EG-VEGF mRNA expression levels determined by real-time polymerase chain reaction analysis, and protein levels by immunohistochemistry. All endometrial samples were in the secretory phase. The endometrial development in SC1 was 1 to 2 days advanced to NC, and with dyssynchrony between glandular and stromal tissue. Immunohistochemistry analysis showed that EG-VEGF protein was predominantly expressed in the glandular epithelial cells and endothelial cells of vessels, and also presented in the stroma. The image analysis confirmed that both the gland and stroma of endometrium in SC1 had a significantly lower EG-VEGF protein expression than that in SC2 and NC endometrium. Moreover, EG-VEGF mRNA levels were significantly lower in SC1 than in NC. Both EG-VEGF protein and mRNA levels had no significant difference between SC2 and NC. Decreased expression of EG-VEGF in the peri-implantation is associated with high ovarian response, which may account for the impaired ER and lower implantation rate in IVF cycles.

  3. Effects of EG-VEGF, VEGF and TGF-β1 on pregnancy outcome in patients undergoing IVF-ET treatment.

    Science.gov (United States)

    Gao, Min-zhi; Zhao, Xiao-ming; Lin, Yi; Sun, Zhao-gui; Zhang, Hui-qin

    2012-10-01

    To investigate the correlation of endocrine gland-derived vascular endothelial growth factor (EG-VEGF), vascular endothelial growth factor (VEGF) and transforming growth factor beta 1 (TGF-β1) with the corresponding reproductive outcome in patients who received in vitro fertilization-embryo transfer (IVF-ET). Sixty-seven women undergoing IVF-ET at a university tertiary hospital were recruited for a prospective study. Concentrations of EG-VEGF, VEGF and TGF-β1 were measured by enzyme-linked immunosorbent assay (ELISA) in follicular fluid (FF) collected during oocyte retrieval (OR) and in serum collected 2 days after OR. In FF, concentrations of both EG-VEGF and VEGF were negatively correlated with peak E2 and the number of MII oocytes retrieved, and positively correlated with each other. In serum, concentrations of all the three growth factors were positively correlated with the rate of good quality embryo, and with one another. Patients in the pregnancy group had lower peak E2 concentrations and higher serum EG-VEGF concentrations than those in the non-pregnancy group, but such tendency was not observed in the case of VEGF and TGF-β1. Both concentrations of EG-VEGF and VEGF in FF were negatively correlated with ovarian response and oocyte maturation. Concentrations of all the three growth factors in serum were positively correlated with embryo quality, but only serum concentrations of EG-VEGF were associated with the pregnancy outcome.

  4. Novel VEGF decoy receptor fusion protein conbercept targeting multiple VEGF isoforms provide remarkable anti-angiogenesis effect in vivo.

    Directory of Open Access Journals (Sweden)

    Qin Wang

    Full Text Available VEGF family factors are known to be the principal stimulators of abnormal angiogenesis, which play a fundamental role in tumor and various ocular diseases. Inhibition of VEGF is widely applied in antiangiogenic therapy. Conbercept is a novel decoy receptor protein constructed by fusing VEGF receptor 1 and VEGF receptor 2 extracellular domains with the Fc region of human immunoglobulin. In this study, we systematically evaluated the binding affinity of conbercept with VEGF isoforms and PlGF by using anti-VEGF antibody (Avastin as reference. BIACORE and ELISA assay results indicated that conbercept could bind different VEGF-A isoforms with higher affinity than reference. Furthermore, conbercept could also bind VEGF-B and PlGF, whereas Avastin showed no binding. Oxygen-induced retinopathy model showed that conbercept could inhibit the formation of neovasularizations. In tumor-bearing nude mice, conbercept could also suppress tumor growth very effectively in vivo. Overall, our study have demonstrated that conbercept could bind with high affinity to multiple VEGF isoforms and consequently provide remarkable anti-angiogenic effect, suggesting the possibility to treat angiogenesis-related diseases such as cancer and wet AMD etc.

  5. Induction of erythropoiesis by hypoxia-inducible factor prolyl hydroxylase inhibitors without promotion of tumor initiation, progression, or metastasis in a VEGF-sensitive model of spontaneous breast cancer

    Science.gov (United States)

    Seeley, Todd W; Sternlicht, Mark D; Klaus, Stephen J; Neff, Thomas B; Liu, David Y

    2017-01-01

    The effects of pharmacological hypoxia-inducible factor (HIF) stabilization were investigated in the MMTV-Neundl-YD5 (NeuYD) mouse model of breast cancer. This study first confirmed the sensitivity of this model to increased vascular endothelial growth factor (VEGF), using bigenic NeuYD;MMTV-VEGF-25 mice. Tumor initiation was dramatically accelerated in bigenic animals. Bigenic tumors were also more aggressive, with shortened doubling times and increased lung metastasis as compared to NeuYD controls. In separate studies, NeuYD mice were treated three times weekly from 7 weeks of age until study end with two different HIF prolyl hydroxylase inhibitors (HIF-PHIs), FG-4497 or roxadustat (FG-4592). In NeuYD mice, HIF-PHI treatments elevated erythropoiesis markers, but no differences were detected in tumor onset or the phenotypes of established tumors. PMID:28331872

  6. VEGF improves survival of mesenchymal stem cells in infarcted hearts

    International Nuclear Information System (INIS)

    Pons, Jennifer; Huang Yu; Arakawa-Hoyt, Janice; Washko, Daniel; Takagawa, Junya; Ye, Jianqin; Grossman, William; Su Hua

    2008-01-01

    Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16 INK , p21 and p19 ARF . VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs or VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI

  7. Biological variations in plasma VEGF and VEGFR-1 may compromise their biomarker value in colorectal cancer

    DEFF Research Database (Denmark)

    Svendsen, Mads N.; Brunner, Nils; Christensen, Ib Jarle

    2010-01-01

    Vascular Endothelial Growth Factor (VEGF) plays a prominent role in tumor angiogenesis and plasma VEGF concentration may carry prognostic information in colorectal cancer. The VEGF receptor 1 (VEGFR-1) is a regulatory receptor which is shredded into plasma of patients with colorectal cancer. For ....... For both molecules, large biological variation and lack of standardization of assay procedures are major challenges....

  8. Exercise induced capillary growth in human skeletal muscle and the dynamics of VEGF

    DEFF Research Database (Denmark)

    Høier, Birgitte; Hellsten, Ylva

    2014-01-01

    , such as shear stress and passive stretch, lead to cellular signalling, enhanced expression of angiogenic factors and initiation of capillary growth. The most central angiogenic factor in skeletal muscle capillary growth is vascular endothelial growth factor (VEGF). During muscle contraction, VEGF increases...... in the muscle interstitium, acts on VEGF receptors on the capillary endothelium and thereby stimulates angiogenic processes. A primary source of muscle interstitial VEGF during exercise is the skeletal muscle fibers which contain large stores of VEGF within vesicles. We propose that, during muscle activity...

  9. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2.

    Science.gov (United States)

    Peach, Chloe J; Mignone, Viviane W; Arruda, Maria Augusta; Alcobia, Diana C; Hill, Stephen J; Kilpatrick, Laura E; Woolard, Jeanette

    2018-04-23

    Vascular endothelial growth factor-A (VEGF-A) is a key mediator of angiogenesis, signalling via the class IV tyrosine kinase receptor family of VEGF Receptors (VEGFRs). Although VEGF-A ligands bind to both VEGFR1 and VEGFR2, they primarily signal via VEGFR2 leading to endothelial cell proliferation, survival, migration and vascular permeability. Distinct VEGF-A isoforms result from alternative splicing of the Vegfa gene at exon 8, resulting in VEGF xxx a or VEGF xxx b isoforms. Alternative splicing events at exons 5⁻7, in addition to recently identified posttranslational read-through events, produce VEGF-A isoforms that differ in their bioavailability and interaction with the co-receptor Neuropilin-1. This review explores the molecular pharmacology of VEGF-A isoforms at VEGFR2 in respect to ligand binding and downstream signalling. To understand how VEGF-A isoforms have distinct signalling despite similar affinities for VEGFR2, this review re-evaluates the typical classification of these isoforms relative to the prototypical, “pro-angiogenic” VEGF 165 a. We also examine the molecular mechanisms underpinning the regulation of VEGF-A isoform signalling and the importance of interactions with other membrane and extracellular matrix proteins. As approved therapeutics targeting the VEGF-A/VEGFR signalling axis largely lack long-term efficacy, understanding these isoform-specific mechanisms could aid future drug discovery efforts targeting VEGF receptor pharmacology.

  10. Clinical significance of the VEGF level in urinary bladder carcinoma.

    Science.gov (United States)

    Sankhwar, Monica; Sankhwar, Satya Narayan; Abhishek, Amar; Rajender, Singh

    2015-01-01

    To investigate the correlation of Vascular Endothelial Growth Factor (VEGF) and micro-vessel density (MVD) with urinary bladder tumor and its stage. The study was conducted between January 2010 and December 2012. The study included screening of 122 patients at elevated risk for bladder cancer, of which 35 patients were finally enrolled in the study. Diagnosis was made on the basis of urine cytology, radiological investigation (ultrasound KUB, and CT-scan) and histopathology. Thirty-five normal cancer-free individuals were enrolled as controls. Human VEGF levels were measured using an enzyme linked immunoassay and protein content (pg/mg protein) by Lowry method. SPSS for Windows version 10.0.7 (SPSS, Chicago, IL, USA) was used for statistical analysis of the data. Mean urine VEGF level in the cases was significantly higher in comparison to the control group. There was a direct correlation between VEGF level and tumor stage. Mean urine VEGF values were minimum in the control group (22.75 ± 15.41 pg/mg creatinine) and maximum in stage IV patients (180.15 ± 75.93 pg/mg creatinine). Tissue VEGF levels also showed a similar trend of increase with increase in stage. Urine VEGF level also showed a correlation with tissue VEGF level. Similarly, MVD showed a significant increase with increase in tumor stage. A correlation between bladder cancer and MVD and VEGF suggest that the latter can serve as markers for therapeutic guidance. This is the first study from India on clinical and pathological correlation among urine VEGF, tumor tissue VEGF levels, and Micro Vessel Density (MVD) in urinary bladder cancer patients.

  11. Cytotoxicity of VEGF121/rGel on vascular endothelial cells resulting in inhibition of angiogenesis is mediated via VEGFR-2

    Directory of Open Access Journals (Sweden)

    Hittelman Walter N

    2011-08-01

    Full Text Available Abstract Background The fusion protein VEGF121/rGel composed of the growth factor VEGF121 and the plant toxin gelonin targets the tumor neovasculature and exerts impressive anti-vascular effects. We have previously shown that VEGF121/rGel is cytotoxic to endothelial cells overexpressing VEGFR-2 but not to endothelial cells overexpressing VEGFR-1. In this study, we examined the basis for the specific toxicity of this construct and assessed its intracellular effects in vitro and in vivo. Methods We investigated the binding, cytotoxicity and internalization profile of VEGF121/rGel on endothelial cells expressing VEGFR-1 or VEGFR-2, identified its effects on angiogenesis models in vitro and ex vivo, and explored its intracellular effects on a number of molecular pathways using microarray analysis. Results Incubation of PAE/VEGFR-2 and PAE/VEGFR-1 cells with 125I-VEGF121/rGel demonstrated binding specificity that was competed with unlabeled VEGF121/rGel but not with unlabeled gelonin. Assessment of the effect of VEGF121/rGel on blocking tube formation in vitro revealed a 100-fold difference in IC50 levels between PAE/VEGFR-2 (1 nM and PAE/VEGFR-1 (100 nM cells. VEGF121/rGel entered PAE/VEGFR-2 cells within one hour of treatment but was not detected in PAE/VEGFR-1 cells up to 24 hours after treatment. In vascularization studies using chicken chorioallantoic membranes, 1 nM VEGF121/rGel completely inhibited bFGF-stimulated neovascular growth. The cytotoxic effects of VEGF121/rGel were not apoptotic since treated cells were TUNEL-negative with no evidence of PARP cleavage or alteration in the protein levels of select apoptotic markers. Microarray analysis of VEGF121/rGel-treated HUVECs revealed the upregulation of a unique "fingerprint" profile of 22 genes that control cell adhesion, apoptosis, transcription regulation, chemotaxis, and inflammatory response. Conclusions Taken together, these data confirm the selectivity of VEGF121/rGel for VEGFR-2

  12. AKT increases VEGF expression in tumor cells by transactivating the proximal VEGF promoter

    International Nuclear Information System (INIS)

    Pore, N.; Bernhard, E.J.; Shu, H.-K.; Li, B.; O'Rourke, D.M.; Maity, A.; Haas-Kogan, D.

    2003-01-01

    Vascular endothelial growth factor (VEGF) is overexpressed in many cancers including glioblastomas and may contribute to their growth. Epidermal growth factor receptor (EGFR) amplification and loss of PTEN, commonly found in glioblastomas leading to increase phosphatidylinositol-3-kinase (PI3K) activity and VEGF expression. In the current study we show that AKT, which is downstream of PI3K, regulates VEGF expression. U87MG human glioblastoma cells lack wildtype PTEN and express high levels of phosphorylated AKT. Over expression of AKT either by stable expression in immortalized human astrocytes or by transduction with adenovirus containing activated myristoylated AKT in SF188 glioblastoma cells increases VEGF expression. Moreover the elevation of angiogenesis by constitutively expressed AKT is further confirmed by in vivo matrigel plug assay in nude mice. The upregulation of VEGF by AKT is mediated through a region in the proximal promoter located between -88 and -70 (+1 is transcription start site). In transient transfection activity of a luciferase reporter containing the -88/+54 region of the VEGF promoter is increased by cotransfection with myristoylated AKT and downregulated by a dominant negative AKT expression vector. Mutation of the putative Sp1 binding sites located in the -88/-70 region we show that AKT acts through Sp1 to transactivate the VEGF promoter. Cotransfection of the VEGF promoter reporter with both Sp1 and myristoylated AKT expression vectors increases promoter activity to a greater extent than either Sp1 or Akt by itself. In vivo phosphate labeling of proteins reveals that AKT leads to increased Sp1 phosphorylation. Gel shift assays using a radio labeled probe corresponding to nucleotides -88 through -66 in the promoter show increased binding with nuclear extracts from cells transduced with adenovirus expressing myristoylated AKT. In conclusion, our results suggest that loss of PTEN leads to increased VEGF expression by increasing AKT

  13. Changing paradigms of anti-VEGF in the Indian scenario

    Directory of Open Access Journals (Sweden)

    P Mahesh Shanmugam

    2014-01-01

    Full Text Available Anti-vascular endothelial growth factors (VEGF agents have revolutionized the treatment of retinal diseases. Use of anti-VEGF agents in the Indian Scenario present some unique challenges considering the absence of compounding pharmacies, poor penetrance of health insurance and limited affordability of the citizens of a developing economy. To study the changing paradigms of anti-VEGF use in the Indian scenario, all articles published by Indian authors, data from web-based surveys amongst Indian vitreo-retinal specialists were reviewed. In the paucity of compounding pharmacies in India, fractionation and injection techniques differ from those of developed countries. Frequent anti-VEGF monotherapy offers the best anatomical and visual results, but economics of scale do not allow the same in the Indian scenario, resulting in PRN dosing and combination of anti-VEGF with laser photocoagulation, being the commonly employed treatment protocols.

  14. VEGF signaling inside vascular endothelial cells and beyond.

    Science.gov (United States)

    Eichmann, Anne; Simons, Michael

    2012-04-01

    Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Low grade inflammation inhibits VEGF induced HUVECs migration in p53 dependent manner

    International Nuclear Information System (INIS)

    Panta, Sushil; Yamakuchi, Munekazu; Shimizu, Toshiaki; Takenouchi, Kazunori; Oyama, Yoko; Koriyama, Toyoyasu; Kojo, Tsuyoshi; Hashiguchi, Teruto

    2017-01-01

    In the course of studying crosstalk between inflammation and angiogenesis, high doses of pro-inflammatory factors have been reported to induce apoptosis in cells. Under normal circumstances also the pro-inflammatory cytokines are being released in low doses and are actively involved in cell signaling pathways. We studied the effects of low grade inflammation in growth factor induced angiogenesis using tumor necrosis factor alfa (TNFα) and vascular endothelial growth factor A (VEGF) respectively. We found that low dose of TNFα can inhibit VEGF induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Low dose of TNFα induces mild upregulation and moreover nuclear localization of tumor suppressor protein 53 (P53) which causes decrease in inhibitor of DNA binding-1 (Id1) expression and shuttling to the cytoplasm. In absence of Id1, HUVECs fail to upregulate β 3 -integrin and cell migration is decreased. Connecting low dose of TNFα induced p53 to β 3 -integrin through Id1, we present additional link in cross talk between inflammation and angiogenesis. - Highlights: • Low grade inflammation (low dose of TNF alfa) inhibits VEGF induced endothelial cells migration. • The low grade inflammation with VEGF treatment upregulates P53 to a nonlethal level. • P53 activation inhibits Id1 shuttling to the cytoplasm in endothelial cells. • Inhibition of Id1 resulted in downregulation of β 3 -integrin which cause decrease in cell migration. • Inflammation and angiogenesis might cross-talk by P53 – Id1 – β 3 -integrin pathway in endothelial cells.

  16. Assessment of uterine, subendometrial blood flows and endometrial gland vascular endothelial growth factor (EG-VEGF in women with unexplained infertility

    Directory of Open Access Journals (Sweden)

    H. El-Zenneni

    2015-06-01

    Conclusion: Subendometrial, but not the uterine, blood flow and the EG-VEGF score seem to be significantly lower during the mid-luteal phase in women with unexplained infertility. This may suggest significantly poorer angiogenesis during the assumed peri-implantation period.

  17. VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A

    Directory of Open Access Journals (Sweden)

    Pio Ruben

    2010-12-01

    Full Text Available Abstract Background Different isoforms of VEGF-A (mainly VEGF121, VEGF165 and VEGF189 have been shown to display particular angiogenic properties in the generation of a functional tumor vasculature. Recently, a novel class of VEGF-A isoforms, designated as VEGFxxxb, generated through alternative splicing, have been described. Previous studies have suggested that these isoforms may inhibit angiogenesis. In the present work we have produced recombinant VEGF121/165b proteins in the yeast Pichia pastoris and constructed vectors to overexpress these isoforms and assess their angiogenic potential. Results Recombinant VEGF121/165b proteins generated either in yeasts or mammalian cells activated VEGFR2 and its downstream effector ERK1/2, although to a lesser extent than VEGF165. Furthermore, treatment of endothelial cells with VEGF121/165b increased cell proliferation compared to untreated cells, although such stimulation was lower than that induced by VEGF165. Moreover, in vivo angiogenesis assays confirmed angiogenesis stimulation by VEGF121/165b isoforms. A549 and PC-3 cells overexpressing VEGF121b or VEGF165b (or carrying the PCDNA3.1 empty vector, as control and xenotransplanted into nude mice showed increased tumor volume and angiogenesis compared to controls. To assess whether the VEGFxxxb isoforms are differentially expressed in tumors compared to healthy tissues, immunohistochemical analysis was conducted on a breast cancer tissue microarray. A significant increase (p xxxb and total VEGF-A protein expression in infiltrating ductal carcinomas compared to normal breasts was observed. A positive significant correlation (r = 0.404, p = 0.033 between VEGFxxxb and total VEGF-A was found. Conclusions Our results demonstrate that VEGF121/165b are not anti-angiogenic, but weakly angiogenic isoforms of VEGF-A. In addition, VEGFxxxb isoforms are up-regulated in breast cancer in comparison with non malignant breast tissues. These results are to be taken

  18. Comparison of efficacy between anti-vascular endothelial growth factor (VEGF) and laser treatment in Type-1 and threshold retinopathy of prematurity (ROP).

    Science.gov (United States)

    Li, Zijing; Zhang, Yichi; Liao, Yunru; Zeng, Rui; Zeng, Peng; Lan, Yuqing

    2018-01-30

    Retinopathy of Prematurity (ROP) is one of the most common causes of childhood blindness worldwide. Comparisons of anti-VEGF and laser treatments in ROP are relatively lacking, and the data are scattered and limited. The objective of this meta-analysis is to compare the efficacy of both treatments in type-1 and threshold ROP. A comprehensive literature search on ROP treatment was conducted using PubMed and Embase up to March 2017 in all languages. Major evaluation indexes were extracted from the included studies by two authors. The fixed-effects and random-effects models were used to measure the pooled estimates. The test of heterogeneity was performed using the Q statistic. Ten studies were included in this meta-analysis. Retreatment incidence was significantly increased for anti-VEGF (OR 2.52; 95% CI 1.37 to 4.66; P = 0.003) compared to the laser treatment, while the incidences of eye complications (OR 0.29; 95% CI 0.10 to 0.82; P = 0.02) and myopia were significantly decreased with anti-VEGF compared to the laser treatment. However, there was no difference in the recurrence incidence (OR 1.86; 95% CI 0.37 to 9.40; P = 0.45) and time between treatment and retreatment (WMD 7.54 weeks; 95% CI 2.00 to 17.08; P = 0.12). This meta-analysis indicates that laser treatment may be more efficacious than anti-VEGF treatment. However, the results of this meta-analysis also suggest that laser treatment may cause more eye complications and increase myopia. Large-scale prospective RCTs should be performed to assess the efficacy and safety of anti-VEGF versus laser treatment in the future.

  19. Critical success factors in implementing clinical pathways/case management.

    Science.gov (United States)

    Choo, J

    2001-07-01

    With the advent of casemix reimbursement implementation, rapid technological changes, an ageing population and changing consumer behaviour, the Singapore health care industry is faced with the impetus to provide a cost-effective and efficient care delivery system. One ubiquitous tool used is the establishment of a clinical pathway/case management programme within the hospital. As the concept of clinical pathway for patient care is a relatively new concept in Singapore, several critical factors must be considered to ensure successful implementation of clinical pathway/case management programme. One key success factor lies in continued clinician support and acceptance. Other factors include top management leadership and support and a dedicated team of case managers, nurses and paramedical professionals.

  20. Ingestion Pathway Transfer Factors for Plutonium and Americium

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    Overall transfer factors for major ingestion pathways are derived for plutonium and americium. These transfer factors relate the radionuclide concentration in a given foodstuff to deposition on the soil. Equations describing basic relationships consistent with Regulatory Guide 1.109 are followed. Updated values and coefficients from IAEA Technical Reports Series No. 364 are used when a available. Preference is given to using factors specific to the Savannah River Site

  1. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates.

    Science.gov (United States)

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2015-12-01

    This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. DNA methylation regulates expression of VEGF-C, and S-adenosylmethionine is effective for VEGF-C methylation and for inhibiting cancer growth

    Energy Technology Data Exchange (ETDEWEB)

    Da, M.X. [Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou (China); Zhang, Y.B. [Department of Surgery, Ningxia Medical University, Yinchuan (China); Yao, J.B. [Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou (China); Duan, Y.X. [Department of Surgery, Ningxia Medical University, Yinchuan (China)

    2014-09-30

    DNA hypomethylation may activate oncogene transcription, thus promoting carcinogenesis and tumor development. S-adenosylmethionine (SAM) is a methyl donor in numerous methylation reactions and acts as an inhibitor of intracellular demethylase activity, which results in hypermethylation of DNA. The main objectives of this study were to determine whether DNA hypomethylation correlated with vascular endothelial growth factor-C (VEGF-C) expression, and the effect of SAM on VEGF-C methylation and gastric cancer growth inhibition. VEGF-C expression was assayed by Western blotting and RT-qPCR in gastric cancer cells, and by immunohistochemistry in tumor xenografts. VEGF-C methylation was assayed by bisulfite DNA sequencing. The effect of SAM on cell apoptosis was assayed by flow cytometry analyses and its effect on cancer growth was assessed in nude mice. The VEGF-C promoters of MGC-803, BGC-823, and SGC-7901 gastric cancer cells, which normally express VEGF-C, were nearly unmethylated. After SAM treatment, the VEGF-C promoters in these cells were highly methylated and VEGF-C expression was downregulated. SAM also significantly inhibited tumor growth in vitro and in vivo. DNA methylation regulates expression of VEGF-C. SAM can effectively induce VEGF-C methylation, reduce the expression of VEGF-C, and inhibit tumor growth. SAM has potential as a drug therapy to silence oncogenes and block the progression of gastric cancer.

  3. Mathematical Modeling of Cellular Cross-Talk Between Endothelial and Tumor Cells Highlights Counterintuitive Effects of VEGF-Targeted Therapies.

    Science.gov (United States)

    Jain, Harsh; Jackson, Trachette

    2018-05-01

    Tumor growth and progression are critically dependent on the establishment of a vascular support system. This is often accomplished via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. VEGF ligands are overexpressed in a wide variety of solid tumors and therefore have inspired optimism that inhibition of the different axes of the VEGF pathway-alone or in combination-would represent powerful anti-angiogenic therapies for most cancer types. When considering treatments that target VEGF and its receptors, it is difficult to tease out the differential anti-angiogenic and anti-tumor effects of all combinations experimentally because tumor cells and vascular endothelial cells are engaged in a dynamic cross-talk that impacts key aspects of tumorigenesis, independent of angiogenesis. Here we develop a mathematical model that connects intracellular signaling responsible for both endothelial and tumor cell proliferation and death to population-level cancer growth and angiogenesis. We use this model to investigate the effect of bidirectional communication between endothelial cells and tumor cells on treatments targeting VEGF and its receptors both in vitro and in vivo. Our results underscore the fact that in vitro therapeutic outcomes do not always translate to the in vivo situation. For example, our model predicts that certain therapeutic combinations result in antagonism in vivo that is not observed in vitro. Mathematical modeling in this direction can shed light on the mechanisms behind experimental observations that manipulating VEGF and its receptors is successful in some cases but disappointing in others.

  4. VEGF in nuclear medicine: Clinical application in cancer and future perspectives (Review).

    Science.gov (United States)

    Taurone, Samanta; Galli, Filippo; Signore, Alberto; Agostinelli, Enzo; Dierckx, Rudi A J O; Minni, Antonio; Pucci, Marcella; Artico, Marco

    2016-08-01

    Clinical trials using antiangiogenic drugs revealed their potential against cancer. Unfortunately, a large percentage of patients does not yet benefit from this therapeutic approach highlighting the need of diagnostic tools to non-invasively evaluate and monitor response to therapy. It would also allow to predict which kind of patient will likely benefit of antiangiogenic therapy. Reasons for treatment failure might be due to a low expression of the drug targets or prevalence of other pathways. Molecular imaging has been therefore explored as a diagnostic technique of choice. Since the vascular endothelial growth factor (VEGF/VEGFR) pathway is the main responsible of tumor angiogenesis, several new drugs targeting either the soluble ligand or its receptor to inhibit signaling leading to tumor regression could be involved. Up today, it is difficult to determine VEGF or VEGFR local levels and their non-invasive measurement in tumors might give insight into the available target for VEGF/VEGFR-dependent antiangiogenic therapies, allowing therapy decision making and monitoring of response.

  5. Effect and possible mechanism of monocyte-derived VEGF on monocyte-endothelial cellular adhesion after electrical burns.

    Science.gov (United States)

    Ruan, Qiongfang; Zhao, Chaoli; Ye, Ziqing; Ruan, Jingjing; Xie, Qionghui; Xie, Weiguo

    2015-06-01

    One of the major obstacles in the treatment of severe electrical burns is properly handling the resulting uncontrolled inflammation. Such inflammation often causes secondary injury and necrosis, thus complicating patient outcomes. Vascular endothelial grow factor (VEGF) has emerged as an important mediator for the recruitment of monocytes to the site inflammation. This study was designed to explore the effects and possible mechanism of VEGF on monocyte-endothelial cellular adhesion. To do so, we used a cultured human monocytic cell line (THP-1) that was stimulated with serum derived from rats that had received electrical burns. Serum was obtained from rats that had received electrical burns. Both the VEGF and soluble flt-1 (sflt-1) concentrations of the serum were determined by double-antibody sandwich ELISA. The concentrations of VEGF, sflt-1, and TNF-α obtained from the cell-free cultured supernatant of THP-1 cells that had been exposed to the serum were then determined by double-antibody sandwich ELISA. Serum-stimulated THP-1 cells were added to wells with a monolayer of endothelial cells to detect the level of monocyte-endothelial cells adhesion. Finally, the state of phosphorylation of AKT was determined by Western blotting. Both in vivo and in vitro studies showed that compared to controls, the levels of VEGF were significantly increased after electrical burns. This increased was accompanied by a reduction of sflt-1 levels. Furthermore, the serum of rats that had received electrical burns was able to both activate monocytes to secrete TNF-α and enhance monocyte-endothelial cell adhesion. Treatment with the serum also resulted in an up-regulation of the phosphorylation of AKT, but had no effect on the total levels of AKT. Phosphatidylinositide 3-kinases (PI3K) inhibition decreased the number of THP-1 cells that were adhered to endothelial cells. Finally, sequestering VEGF with sflt-1 was able to reduce the effect on monocyte-endothelial cells adhesion by

  6. Induction of erythropoiesis by hypoxia-inducible factor prolyl hydroxylase inhibitors without promotion of tumor initiation, progression, or metastasis in a VEGF-sensitive model of spontaneous breast cancer

    Directory of Open Access Journals (Sweden)

    Seeley TW

    2017-03-01

    Full Text Available Todd W Seeley, Mark D Sternlicht, Stephen J Klaus, Thomas B Neff, David Y Liu Therapeutics R&D, FibroGen, Inc., San Francisco, CA, USA Abstract: The effects of pharmacological hypoxia-inducible factor (HIF stabilization were investigated in the MMTV-Neundl-YD5 (NeuYD mouse model of breast cancer. This study first confirmed the sensitivity of this model to increased vascular endothelial growth factor (VEGF, using bigenic NeuYD;MMTV-VEGF-25 mice. Tumor initiation was dramatically accelerated in bigenic animals. Bigenic tumors were also more aggressive, with shortened doubling times and increased lung metastasis as compared to NeuYD controls. In separate studies, NeuYD mice were treated three times weekly from 7 weeks of age until study end with two different HIF prolyl hydroxylase inhibitors (HIF-PHIs, FG-4497 or roxadustat (FG-4592. In NeuYD mice, HIF-PHI treatments elevated erythropoiesis markers, but no differences were detected in tumor onset or the phenotypes of established tumors. Keywords: cancer progression, erythropoiesis, hypoxia-inducible factor, hypoxia-inducible factor prolyl hydroxylase inhibitors, vascular endothelial growth factor, MMTV-Neu breast cancer model

  7. The immunohistochemical expression of endocrine gland-derived-VEGF (EG-VEGF) as a prognostic marker in ovarian cancer.

    Science.gov (United States)

    Bălu, Sevilla; Pirtea, L; Gaje, Puşa; Cîmpean, Anca Maria; Raica, M

    2012-01-01

    Ovarian cancer-related angiogenesis is a complex process orchestrated by many positive and negative regulators. Many growth factors are involved in the development of the tumor-associated vasculature, and from these, endocrine gland-derived vascular endothelial growth factor (EG-VEGF) seems to play a crucial role. EG-VEGF is the first organ-specific angiogenic factor and its effects are restricted to the endothelial cells of the endocrine glands. Although EG-VEGF was detected in both normal and neoplastic ovaries, its clinical significance remains controversial. In the present study, we analyzed 30 patients with epithelial ovarian cancer, and the immunohistochemical expression of EG-VEGF was compared with the conventional clinico-pathological parameters of prognosis. Neoplastic cells of the ovarian carcinoma expressed EG-VEGF in 73.33% of the cases, as a cytoplasmic granular product of reaction. We found a strong correlation between the expression of EG-VEGF at protein level and tumor stage, grade, and microscopic type. The expression of EG-VEGF was found in patients with stage III and IV, but not in stage II. The majority of serous adenocarcinoma, half of the cases with clear cell carcinoma and two cases with endometrioid carcinoma showed definite expression in tumor cells. No positive reaction was found in the cases with mucinous carcinoma. Our results showed that EG-VEGF expression is an indicator not only of the advanced stage, but also of ovarian cancer progression. Based on these data, we concluded that EG-VEGF expression in tumor cells of the epithelial ovarian cancer is a good marker of unfavorable prognosis and could be an attractive therapeutic target in patients with advanced-stage tumors, refractory conventional chemotherapy.

  8. Radioiodinated VEGF to image tumor angiogenesis in a LS180 tumor xenograft model

    International Nuclear Information System (INIS)

    Yoshimoto, Mitsuyoshi; Kinuya, Seigo; Kawashima, Atsuhiro; Nishii, Ryuichi; Yokoyama, Kunihiko; Kawai, Keiichi

    2006-01-01

    Introduction: Angiogenesis is essential for tumor growth or metastasis. A method involving noninvasive detection of angiogenic activity in vivo would provide diagnostic information regarding antiangiogenic therapy targeting vascular endothelial cells as well as important insight into the role of vascular endothelial growth factor (VEGF) and its receptor (flt-1 and KDR) system in tumor biology. We evaluated radioiodinated VEGF 121 , which displays high binding affinity for KDR, and VEGF 165 , which possesses high binding affinity for flt-1 and low affinity for KDR, as angiogenesis imaging agents using the LS180 tumor xenograft model. Methods: VEGF 121 and VEGF 165 were labeled with 125 I by the chloramine-T method. Biodistribution was observed in an LS180 human colon cancer xenograft model. Additionally, autoradiographic imaging and immunohistochemical staining of tumors were performed with 125 I-VEGF 121 . Results: 125 I-VEGF 121 and 125 I-VEGF 165 exhibited strong, continuous uptake by tumors and the uterus, an organ characterized by angiogenesis. 125 I-VEGF 121 uptake in tumors was twofold higher than that of 125 I-VEGF 165 (9.12±98 and 4.79±1.08 %ID/g at 2 h, respectively). 125 I-VEGF 121 displayed higher tumor to nontumor (T/N) ratios in most normal organs in comparison with 125 I-VEGF 165 . 125 I-VEGF 121 accumulation in tumors decreased with increasing tumor volume. Autoradiographic and immunohistochemical analyses confirmed that the difference in 125 I-VEGF 121 tumor accumulation correlated with degree of tumor vascularity. Conclusion: Radioiodinated VEGF 121 is a promising tracer for noninvasive delineation of angiogenesis in vivo

  9. VEGF Correlates with Inflammation and Fibrosis in Tuberculous Pleural Effusion

    Science.gov (United States)

    Bien, Mauo-Ying; Wu, Ming-Ping; Chen, Wei-Lin; Chung, Chi-Li

    2015-01-01

    Objective. To investigate the relationship among angiogenic cytokines, inflammatory markers, and fibrinolytic activity in tuberculous pleural effusion (TBPE) and their clinical importance. Methods. Forty-two patients diagnosed with TBPE were studied. Based on chest ultrasonography, there were 26 loculated and 16 nonloculated TBPE patients. The effusion size radiological scores and effusion vascular endothelial growth factor (VEGF), interleukin- (IL-) 8, plasminogen activator inhibitor type-1 (PAI-1), and tissue type plasminogen activator (tPA) were measured. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT), were assessed at 6-month follow-up. Results. The effusion size and effusion lactate dehydrogenase (LDH), VEGF, IL-8, PAI-1, and PAI-1/tPA ratio were significantly higher, while effusion glucose, pH value, and tPA were significantly lower, in loculated than in nonloculated TBPE. VEGF and IL-8 correlated positively with LDH and PAI-1/tPA ratio and negatively with tPA in both loculated and nonloculated TBPE. Patients with higher VEGF or greater effusion size were prone to develop RPT (n = 14; VEGF, odds ratio 1.28, P = 0.01; effusion size, odds ratio 1.01, P = 0.02), and VEGF was an independent predictor of RPT in TBPE (receiver operating characteristic curve AUC = 0.985, P Effusion VEGF correlates with pleural inflammation and fibrosis and may be targeted for adjunct therapy for TBPE. PMID:25884029

  10. VEGF Correlates with Inflammation and Fibrosis in Tuberculous Pleural Effusion

    Directory of Open Access Journals (Sweden)

    Mauo-Ying Bien

    2015-01-01

    Full Text Available Objective. To investigate the relationship among angiogenic cytokines, inflammatory markers, and fibrinolytic activity in tuberculous pleural effusion (TBPE and their clinical importance. Methods. Forty-two patients diagnosed with TBPE were studied. Based on chest ultrasonography, there were 26 loculated and 16 nonloculated TBPE patients. The effusion size radiological scores and effusion vascular endothelial growth factor (VEGF, interleukin- (IL- 8, plasminogen activator inhibitor type-1 (PAI-1, and tissue type plasminogen activator (tPA were measured. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT, were assessed at 6-month follow-up. Results. The effusion size and effusion lactate dehydrogenase (LDH, VEGF, IL-8, PAI-1, and PAI-1/tPA ratio were significantly higher, while effusion glucose, pH value, and tPA were significantly lower, in loculated than in nonloculated TBPE. VEGF and IL-8 correlated positively with LDH and PAI-1/tPA ratio and negatively with tPA in both loculated and nonloculated TBPE. Patients with higher VEGF or greater effusion size were prone to develop RPT (n=14; VEGF, odds ratio 1.28, P=0.01; effusion size, odds ratio 1.01, P=0.02, and VEGF was an independent predictor of RPT in TBPE (receiver operating characteristic curve AUC=0.985, P<0.001. Conclusions. Effusion VEGF correlates with pleural inflammation and fibrosis and may be targeted for adjunct therapy for TBPE.

  11. VEGF correlates with inflammation and fibrosis in tuberculous pleural effusion.

    Science.gov (United States)

    Bien, Mauo-Ying; Wu, Ming-Ping; Chen, Wei-Lin; Chung, Chi-Li

    2015-01-01

    To investigate the relationship among angiogenic cytokines, inflammatory markers, and fibrinolytic activity in tuberculous pleural effusion (TBPE) and their clinical importance. Forty-two patients diagnosed with TBPE were studied. Based on chest ultrasonography, there were 26 loculated and 16 nonloculated TBPE patients. The effusion size radiological scores and effusion vascular endothelial growth factor (VEGF), interleukin- (IL-) 8, plasminogen activator inhibitor type-1 (PAI-1), and tissue type plasminogen activator (tPA) were measured. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT), were assessed at 6-month follow-up. The effusion size and effusion lactate dehydrogenase (LDH), VEGF, IL-8, PAI-1, and PAI-1/tPA ratio were significantly higher, while effusion glucose, pH value, and tPA were significantly lower, in loculated than in nonloculated TBPE. VEGF and IL-8 correlated positively with LDH and PAI-1/tPA ratio and negatively with tPA in both loculated and nonloculated TBPE. Patients with higher VEGF or greater effusion size were prone to develop RPT (n=14; VEGF, odds ratio 1.28, P=0.01; effusion size, odds ratio 1.01, P=0.02), and VEGF was an independent predictor of RPT in TBPE (receiver operating characteristic curve AUC=0.985, PEffusion VEGF correlates with pleural inflammation and fibrosis and may be targeted for adjunct therapy for TBPE.

  12. Ovarian hyperstimulation syndrome is correlated with a reduction of soluble VEGF receptor protein level and a higher amount of VEGF-A.

    Science.gov (United States)

    Pietrowski, D; Szabo, L; Sator, M; Just, A; Egarter, C

    2012-01-01

    Ovarian hyperstimulation syndrome (OHSS) is a potentially life-threatening condition associated with increased vascular permeability. The vascular endothelial growth factor (VEGF) system and its receptors have been identified as the main angiogenic factors responsible for increased capillary permeability and are therefore discussed as crucial for the occurrence of OHSS. Recently, a number of soluble receptors for the VEGFs have been detected (sVEGF-Rs) and it has been shown that these sVEGF-Rs compete with the membrane-standing VEGF-R to bind VEGFs. We analyzed the serum levels of soluble VEGF-R1, -R2 and -R3 in 34 patients suffering from OHSS and in 34 controls without this disease. In a subgroup analysis, we correlated the severity of the OHSS with the detected amounts of VEGF-R1, -R2 and -R3. In addition, we determined the amount of total VEGF-A in the samples. All the three soluble VEGF receptors tended to be higher in the control group compared with that in the OHSS group but this difference only reached significance for sVEGF-R2 (mean ± SEM: 15.5 ± 0.6 versus 13.8 ± 0.5 ng/ml, respectively, P< 0.05). In the subgroup analysis, sVEGF-R2 levels decreased as the severity of OHSS increased (OHSS-I: 16.8 ± 1.9 ng/ml and OHSS-III: 12.7 ± 1.0 ng/ml, P< 0.05) Moreover, the serum levels of total VEGF-A were higher in the OHSS group than those in the controls (537.7 ± 38.9 versus 351 ± 53.4 pg/ml, respectively P< 0.05). We propose that VEGF-A plays a role in the occurrence of OHSS, that the amount of biologically available VEGF-A is modulated by sVEGF-Rs and that different combinations of VEGF-A and sVEGF-R levels might contribute to the severity of OHSS.

  13. Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth

    Directory of Open Access Journals (Sweden)

    Li J

    2015-02-01

    Full Text Available Jie Li,1 Chao Zhang,1 Hongchuan Jiang,1 Jiao Cheng21Department of General Surgery, 2Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital, Beijing, People’s Republic of ChinaAbstract: Hypoxia-inducible factor-1 (HIF-1 is a master regulator of the transcriptional response to hypoxia. HIF-1α is one of the most compelling anticancer targets. Andrographolide (Andro was newly identified to inhibit HIF-1 in T47D cells (a half maximal effective concentration [EC50] of 1.03×10-7 mol/L, by a dual-luciferase reporter assay. It suppressed HIF-1α protein and gene accumulation, which was dependent on the inhibition of upstream phosphatidylinositol 3-kinase (PI3K/AKT pathway. It also abrogated the expression of HIF-1 target vascular endothelial growth factor (VEGF gene and protein. Further, Andro inhibited T47D and MDA-MB-231 cell proliferation and colony formation. In addition, it exhibited significant in vivo efficacy and antitumor potential against the MDA-MB-231 xenograft in nude mice. In conclusion, these results highlighted the potential effects of Andro, which inhibits HIF-1, and hence may be developed as an antitumor agent for breast cancer therapy in future.Keywords: Andrographolide (Andro, HIF-1α, inhibit, breast cancer, hypoxia, PI3k/AKT/mTOR pathway

  14. The MAPK-dependent regulation of the Jagged/Notch gene expression by VEGF, bFGF or PPAR gamma mediated angiogenesis in HUVEC

    DEFF Research Database (Denmark)

    Kiec-Wilk, B; Grzybowska-Galuszka, J; Polus, A

    2010-01-01

    The Jagged-Notch signalling, plays a crucial role in cell differentiation. Angiogenesis, is regulated by VEGF, bFGF as well as by the free fatty acid metabolites , which are regulators of transcription factors such as peroxisome proliferation activating receptors (PPARs). The study analyzed...... the signalling pathways involved in the regulation of Jagged-1/Notch-4 expression in endothelial cells (HUVECs) in response to VEGF, bFGF and PPAR-gamma exogenous activator - ciglitazone. HUVECs were incubated with investigated substances for 24 hours, with or without the presence of the MAP-kinases inhibitors...... were used. Jagged-1 and Notch-4 gene expression was determined using quantitative Real-Time PCR. The Jagged-1/Notch-4 protein expression was compared by flow cytometry, when the phosphorylation-dependent activation of kinases was estimated by Western-blot method. The opposite effect of VEGF, b...

  15. Vascular endothelial growth factor (VEGF-related single nucleotide polymorphisms rs10738760 and rs6921438 are not associated with diabetic retinopathy (DR in Slovenian patients with type 2 diabetes mellitus (T2DM

    Directory of Open Access Journals (Sweden)

    Rifet Terzić

    2017-11-01

    Full Text Available Diabetic retinopathy (DR is a complication of diabetes characterized by vascular permeability, increased tissue ischemia, and angiogenesis. One of the most important proteins involved in angiogenesis is vascular endothelial growth factor (VEGF, also known as VEGFA. A previous study demonstrated that two single nucleotide polymorphisms (SNPs, rs6921438 and rs10738760, account for nearly half the variation in circulating VEGF levels. The aim of our study was to assess the association between rs6921438 and rs10738760 and DR in Slovenian patients with type 2 diabetes mellitus (T2DM. This case-control study enrolled 1037 unrelated Slovenian individuals (Caucasians with T2DM. DR group included 415 T2DM patients with DR, while control group included 622 T2DM patients with no clinical signs of DR. The clinical and laboratory data were obtained from the medical records of the patients. The genotyping of rs6921438 and rs10738760 SNPs was carried out with real-time PCR assays. Significant differences were observed between patients with DR and controls in the duration of diabetes (p < 0.001, insulin therapy (p < 0.001, glycated hemoglobin (p = 0.001, body mass index (p = 0.002, total cholesterol (p = 0.002, and low-density lipoprotein cholesterol (p < 0.001. However, we did not observe significant differences in the genotype and allele distribution of the two SNPs, between DR and control group (p < 0.05. Logistic regression analysis showed that rs6921438 and rs10738760 were not independent genetic risk factors for DR in the co-dominant model adjusted for the above-mentioned clinical and laboratory data. In conclusion, VEGF-related SNPs rs10738760 and rs6921438 are not associated with DR in our group of Slovenian patients (Caucasians with T2DM.

  16. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    DEFF Research Database (Denmark)

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin

    2010-01-01

    and that the contraction induced secretion of VEGF is partially mediated via adenosine acting on A(2B) adenosine receptors. Moreover, the contraction induced secretion of VEGF protein from muscle is dependent on both PKA and MAPK activation, but only the MAPK pathway appears to be adenosine dependent.......The role of adenosine and contraction for secretion of VEGF in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted into the thigh muscle of seven male subjects and dialysate was collected at rest, during infusion of adenosine...... and contraction caused secretion of VEGF (pcontraction induced secretion of VEGF protein was abolished by the A(2B) antagonist enprofyllin and markedly reduced by inhibition of PKA or MAPK. The results demonstrate that adenosine causes secretion of VEGF from human skeletal muscle cells...

  17. Vascular Endothelial Growth Factor and Angiopoietin-1 Stimulate Postnatal Hematopoiesis by Recruitment of Vasculogenic and Hematopoietic Stem Cells

    Science.gov (United States)

    Hattori, Koichi; Dias, Sergio; Heissig, Beate; Hackett, Neil R.; Lyden, David; Tateno, Masatoshi; Hicklin, Daniel J.; Zhu, Zhenping; Witte, Larry; Crystal, Ronald G.; Moore, Malcolm A.S.; Rafii, Shahin

    2001-01-01

    Tyrosine kinase receptors for angiogenic factors vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) are expressed not only by endothelial cells but also by subsets of hematopoietic stem cells (HSCs). To further define their role in the regulation of postnatal hematopoiesis and vasculogenesis, VEGF and Ang-1 plasma levels were elevated by injecting recombinant protein or adenoviral vectors expressing soluble VEGF165, matrix-bound VEGF189, or Ang-1 into mice. VEGF165, but not VEGF189, induced a rapid mobilization of HSCs and VEGF receptor (VEGFR)2+ circulating endothelial precursor cells (CEPs). In contrast, Ang-1 induced delayed mobilization of CEPs and HSCs. Combined sustained elevation of Ang-1 and VEGF165 was associated with an induction of hematopoiesis and increased marrow cellularity followed by proliferation of capillaries and expansion of sinusoidal space. Concomitant to this vascular remodeling, there was a transient depletion of hematopoietic activity in the marrow, which was compensated by an increase in mobilization and recruitment of HSCs and CEPs to the spleen resulting in splenomegaly. Neutralizing monoclonal antibody to VEGFR2 completely inhibited VEGF165, but not Ang-1–induced mobilization and splenomegaly. These data suggest that temporal and regional activation of VEGF/VEGFR2 and Ang-1/Tie-2 signaling pathways are critical for mobilization and recruitment of HSCs and CEPs and may play a role in the physiology of postnatal angiogenesis and hematopoiesis. PMID:11342585

  18. The prognosis was poorer in colorectal cancers that expressed both VEGF and PROK1 (No correlation coefficient between VEGF and PROK1).

    Science.gov (United States)

    Goi, Takanori; Nakazawa, Toshiyuki; Hirono, Yasuo; Yamaguchi, Akio

    2015-10-06

    The angiogenic proteins vascular endothelial growth factor (VEGF) and prokineticin1 (PROK1) proteins are considered important in colorectal cancer, the relationship between their simultaneous expression and prognosis was investigated in the present study. VEGF and PROK1 expression in 620 primary human colorectal cancer lesions was confirmed via immunohistochemical staining with anti-VEGF and anti-PROK1 antibodies, and the correlation between the expression of these 2 proteins and recurrence/prognosis were investigated. VEGF protein was expressed in 329 (53.1%) and PROK1 protein was expressed in 223 (36.0%). PROK1 and VEGF were simultaneously expressed in 116 (18.7%) of the 620 cases. The correlation coefficient between VEGF expression and PROK1 expression was r = 0.11, and therefore correlation was not observed. Clinical pathology revealed that substantially lymphnode matastasis, hematogenous metastasis, or TMN advanced-stage IV was significantly more prevalent in cases that expressed both VEGF and PROK1 than in the cases negative for both proteins or those positive for only 1 of the proteins. Also the cases positive for both proteins exhibited the worst recurrence and prognosis. In the Cox proportional hazards model, VEGF and PROK1 expression was an independent prognostic factor. The prognosis was poorer in colorectal cancers that expressed both PROK1 and VEGF relative to the cases that expressed only 1 protein, and the expression of both proteins was found to be an independent prognostic factor.

  19. K20E, an oxidative-coupling compound of methyl caffeate, exhibits anti-angiogenic activities through down-regulations of VEGF and VEGF receptor-2

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chun-Hsu [Department of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); Lin, Wen-Hsin; Chien, Yi-Chung; Liu, Fon-Chang; Sheu, Ming-Jyh [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Kuo, Yueh-Hsiung, E-mail: kuoyh@mail.cmu.edu.tw [Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung 40402, Taiwan (China); Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan (China); Department of Biotechnology, Asia University, Taichung 41354, Taiwan (China); Wu, Chieh-Hsi, E-mail: chhswu@tmu.edu.tw [Department of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan (China)

    2015-01-15

    Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viability was found to be significantly reduced by arresting cell cycle at G{sub 2}/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs). - Highlights: • K20E is an oxidative-coupling compound of methyl caffeate. • K20E exhibits anti-tumor and anti-angiogenesis effects. • K20E suppresses the expressions of VEGF and VEGF receptor-2 (VEGFR-2) proteins. • K20E deactivates VEGFR-2-mediated downstream signaling pathways to inhibit angiogenesis. • K20E up-regulates p53-p21 pathway to induce apoptosis and cell arrest at G2/M phase.

  20. The endothelial adaptor molecule TSAd is required for VEGF-induced angiogenic sprouting through junctional c-Src activation

    NARCIS (Netherlands)

    Gordon, Emma J; Fukuhara, Daisuke; Weström, Simone; Padhan, Narendra; Sjöström, Elisabet O; van Meeteren, Laurens|info:eu-repo/dai/nl/299142353; He, Liqun; Orsenigo, Fabrizio; Dejana, Elisabetta; Bentley, Katie; Spurkland, Anne; Claesson-Welsh, Lena

    2016-01-01

    Activation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) by VEGF binding is critical for vascular morphogenesis. In addition, VEGF disrupts the endothelial barrier by triggering the phosphorylation and turnover of the junctional molecule VE-cadherin, a process mediated by the

  1. TIPE2 Inhibits the Expression of Asthma-Related Inflammatory Factors in Hyperstretched Bronchial Epithelial Cells Through the Wnt/β-Catenin Pathway.

    Science.gov (United States)

    Sun, Xinrong; Chen, Lu; Yan, Wen

    2017-06-01

    Childhood asthma, an airway inflammatory disease, is a serious threat to the child's quality of life. Recently, TIPE2 expression was reported to be decreased in children with asthma. Therefore, additional studies focusing on TIPE2 might provide an approach for treating childhood asthma. In this study, we found that TIPE2 was poorly expressed in hyperstretched human bronchial epithelial cells (BEAS-2B). TIPE2 overexpression also significantly suppressed the stretch-induced secretion of asthma-related inflammatory factors (TNF-α, TSLP, MMP-9, and VEGF). In contrast, TIPE2 inhibition significantly promoted the secretion of TNF-α, TSLP, MMP-9, and VEGF. Furthermore, overexpression of TIPE2 remarkably inhibited the activation of Wnt/β-catenin in hyperstretched BEAS-2B cells, while siTIPE2 activated Wnt/β-catenin in hyperstretched BEAS-2B cells. Further analysis showed that the Wnt/β-catenin signal inhibitor Dkk-1 could further enhance the TIPE2-induced suppression of Wnt/β-catenin signaling, which also suppressed the siTIPE2-induced secretion of TNF-α, TSLP, MMP-9, and VEGF in hyperstretched BEAS-2B cells. Dkk-1 reversed the effects of siRNA-TIPE2 on Wnt/β-catenin signaling and inflammatory cytokines. In summary, we have exhibited that TIPE2 inhibited the expression of asthma-related inflammatory factors in hyperstretched BEAS-2B cells by suppressing the Wnt/β-catenin signaling pathway. TIPE2 may be involved in airway inflammation during asthma attack, and it may be used as a potential therapeutic target for bronchial epithelial inflammation in childhood asthma.

  2. VEGF-production by CCR2-dependent macrophages contributes to laser-induced choroidal neovascularization.

    Directory of Open Access Journals (Sweden)

    Torsten A Krause

    Full Text Available Age-related macular degeneration (AMD is the most prevalent cause of blindness in the elderly, and its exsudative subtype critically depends on local production of vascular endothelial growth factor A (VEGF. Mononuclear phagocytes, such as macrophages and microglia cells, can produce VEGF. Their precursors, for example monocytes, can be recruited to sites of inflammation by the chemokine receptor CCR2, and this has been proposed to be important in AMD. To investigate the role of macrophages and CCR2 in AMD, we studied intracellular VEGF content in a laser-induced murine model of choroidal neovascularisation. To this end, we established a technique to quantify the VEGF content in cell subsets from the laser-treated retina and choroid separately. 3 days after laser, macrophage numbers and their VEGF content were substantially elevated in the choroid. Macrophage accumulation was CCR2-dependent, indicating recruitment from the circulation. In the retina, microglia cells were the main VEGF+ phagocyte type. A greater proportion of microglia cells contained VEGF after laser, and this was CCR2-independent. On day 6, VEGF-expressing macrophage numbers had already declined, whereas numbers of VEGF+ microglia cells remained increased. Other sources of VEGF detectable by flow cytometry included in dendritic cells and endothelial cells in both retina and choroid, and Müller cells/astrocytes in the retina. However, their VEGF content was not increased after laser. When we analyzed flatmounts of laser-treated eyes, CCR2-deficient mice showed reduced neovascular areas after 2 weeks, but this difference was not evident 3 weeks after laser. In summary, CCR2-dependent influx of macrophages causes a transient VEGF increase in the choroid. However, macrophages augmented choroidal neovascularization only initially, presumably because VEGF production by CCR2-independent eye cells prevailed at later time points. These findings identify macrophages as a relevant source

  3. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis.

    Science.gov (United States)

    Takyar, Seyedtaghi; Vasavada, Hema; Zhang, Jian-ge; Ahangari, Farida; Niu, Naiqian; Liu, Qing; Lee, Chun Geun; Cohn, Lauren; Elias, Jack A

    2013-09-23

    Asthma, the prototypic Th2-mediated inflammatory disorder of the lung, is an emergent disease worldwide. Vascular endothelial growth factor (VEGF) is a critical regulator of pulmonary Th2 inflammation, but the underlying mechanism and the roles of microRNAs (miRNAs) in this process have not been defined. Here we show that lung-specific overexpression of VEGF decreases miR-1 expression in the lung, most prominently in the endothelium, and a similar down-regulation occurs in lung endothelium in Th2 inflammation models. Intranasal delivery of miR-1 inhibited inflammatory responses to ovalbumin, house dust mite, and IL-13 overexpression. Blocking VEGF inhibited Th2-mediated lung inflammation, and this was restored by antagonizing miR-1. Using mRNA arrays, Argonaute pull-down assays, luciferase expression assays, and mutational analysis, we identified Mpl as a direct target of miR-1 and showed that VEGF controls the expression of endothelial Mpl during Th2 inflammation via the regulation of miR-1. In vivo knockdown of Mpl inhibited Th2 inflammation and indirectly inhibited the expression of P-selectin in lung endothelium. These experiments define a novel VEGF-miR-1-Mpl-P-selectin effector pathway in lung Th2 inflammation and herald the utility of miR-1 and Mpl as potential therapeutic targets for asthma.

  4. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice.

    Science.gov (United States)

    Knapp, Amy E; Goldberg, Daniel; Delavar, Hamid; Trisko, Breanna M; Tang, Kechun; Hogan, Michael C; Wagner, Peter D; Breen, Ellen C

    2016-07-01

    A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity. Copyright © 2016 the American Physiological Society.

  5. VEGF-A is increased in exogenous endophthalmitis.

    Science.gov (United States)

    Seamone, Mark E; Lewis, Darrell R; Haidl, Ian D; Gupta, R Rishi; O' Brien, Daniel M; Dickinson, John; Samad, Arif; Marshall, Jean S; Cruess, Alan F

    2017-06-01

    Exogenous endophthalmitis is an ophthalmologic emergency defined by panocular inflammation. Vascular endothelial growth factor A (VEGF-A) contributes to inflammation by promoting chemotaxis of monocytes and granulocytes and by increasing vascular permeability. The purpose of this article is to determine if VEGF-A is elevated in the vitreous samples obtained from individuals with exogenous endophthalmitis. Vitreous samples from individuals with exogenous endophthalmitis (n = 18) were analyzed via Luminex assay and enzyme-linked immunosorbent assay for the cytokines VEGF-A, tumor necrosis factor (TNF), interleukin 6 (IL-6), IL-8 (chemokine [CXCL]-8), IL-1β, IL-10, IL-12p70, IL-33, interferon (IFN)-γ, IFN-α, IFN-β, chemokine ligand (CCL)-3, IL-2, IL-5, IL-15, CXCL-10, CCL-2, IL-1Ra, CCL-5, IL-17, and CCL-11. Vitreous samples obtained at the time of macular hole surgery served as controls (n = 8). Concentrations of VEGF-A were significantly elevated in vitreous samples from individuals with exogenous endophthalmitis compared with macular hole (p exogenous endophthalmitis after cataract surgery (p = 0.001), vitrectomy (p = 0.024), and intravitreal injection (p = 0.012). VEGF-A concentrations were similar in both culture-positive and culture-negative populations (p > 0.05). In a linear regression model, levels of VEGF-A correlated significantly with the chemokine CXCL-8 (p = 0.028). We demonstrate that VEGF-A is potently upregulated in exogenous endophthalmitis. This observation provides a foundation for future studies of targeted VEGF-A blockade in the management of endophthalmitis. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  6. Estadios precoces de cancer oral: pronóstico en relación con gradación histológica, linfagiogénesis intratumoral y expresión de factor de crecimiento endotelial vascular Tipo-C (VEGF-C Early stage oral cancer: prognosis with regard to histological grading, intratumoral lymphangiogenesis, and the expression of vascular endothelial growth factor-C (VEGF-C

    Directory of Open Access Journals (Sweden)

    M.F. Muñoz-Guerra

    2006-02-01

    Full Text Available Objetivos. Los sistemas de gradación histológica se han usado clásicamente como factor pronóstico y marcadores de comportamiento clínico en el carcinoma epidermoide intra-oral (CEI. Sin embargo, su utilidad pronóstica permanece controvertida. Nuestro objetivo ha sido evaluar la presencia de linfangiogénesis intratumoral (LI, un nuevo hallazgo morfológico, en un análisis retrospectivo de muestras de tejido en parafina dentro de un grupo de estadios precoces de CEI, relacionándolo con clásicos sistemas de gradación histológica y teniendo en cuenta su importancia pronóstica. Asimismo, pretendemos determinar si la expresión del factor de crecimiento endotelial vascular -C (VEGF-C se correlaciona con la evolución de la enfermedad. Diseño. Realizamos un estudio retrospectivo basado en 96 casos de CEI. Todos los pacientes presentaban tumores intraorales T1-T2 y fueron tratados primariamente mediante resección local asociada con disección cervical electiva, la cual mostró ausencia de afectación ganglionar regional. En el grupo de 96 muestras analizamos la LI utilizando el marcador específico del endotelio linfático PA2.26. Adicionalmente, estudiamos la expresión del VEGF-C. Todos los casos fueron clasificados de acuerdo con los sistemas de gradación histológica descritos por Broders, Anneroth y Bryne. El estudio estadístico se fundamentó en el análisis univariante de supervivencia causa-específica y supervivencia libre de recidiva según el método de Kaplan-Meier. Resultados. El grupo de pacientes con ausencia de LI mostró mejor pronóstico en cuanto a supervivencia y periodo libre de enfermedad, aunque la diferencia no mostró valores estadísticamente significativos. El estudio no mostró una relación entre la expresión de VEGF-C y la presencia de LI. Sin embargo, no observamos recidivas entre el grupo con ausencia de expresión de VEGF-C. El análisis comparativo de los sistemas de gradación histológica mostró una

  7. Overexpression of decorin promoted angiogenesis in diabetic cardiomyopathy via IGF1R-AKT-VEGF signaling.

    Science.gov (United States)

    Lai, Jinsheng; Chen, Fuqiong; Chen, Jing; Ruan, Guoran; He, Mengying; Chen, Chen; Tang, Jiarong; Wang, Dao Wen

    2017-03-14

    Microcirculatory dysfunction is believed to play an important role in diabetic cardiomyopathy. The small leucine-rich proteoglycan decorin is generally considered a pro-angiogenic factor. Here, we investigate whether overexpression of decorin ameliorates diabetic cardiomyopathy and its effects on angiogenesis in vivo and in vitro. Diabetes was induced through intraperitoneal injection with streptozotocin combined with a high-fat diet, and decorin was overexpressed via recombinant adeno-associated virus in Wistar rats. Six months later, cardiac function was determined using an echocardiography and cardiac catheter system. The results showed that cardiac function was decreased in diabetic rats and restored by overexpression of decorin. In addition, overexpression of decorin upregulated the expression of VEGF and attenuated the reduction in the cardiac capillary density. In the in vitro study, high glucose induced apoptosis and inhibited the capabilities of tube formation, migration and proliferation, which were all ameliorated by decorin overexpression. Meanwhile, decorin overexpression increased the expression of VEGF and IGF1R, as well as the phosphorylation level of AKT and AP-1. Nonetheless, all of these effects were abolished by pretreatment with the IGF1R antibody or AKT inhibitor. In conclusion, overexpression of decorin ameliorated diabetic cardiomyopathy and promoted angiogenesis through the IGF1R-AKT-VEGF signaling pathway in vivo and in vitro.

  8. The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Tomlinson, Darren C; Harrison, Michael A; Ponnambalam, Sreenivasan

    2015-08-18

    VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR-VEGF complexes with membrane trafficking along the endosome-lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR-VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments. © 2015 Authors.

  9. Platelet-activating factor receptor (PAF-R)-dependent pathways control tumour growth and tumour response to chemotherapy

    International Nuclear Information System (INIS)

    Oliveira, Soraya I de; Andrade, Luciana NS; Onuchic, Ana C; Nonogaki, Sueli; Fernandes, Patrícia D; Pinheiro, Mônica C; Rohde, Ciro BS; Chammas, Roger; Jancar, Sonia

    2010-01-01

    Phagocytosis of apoptotic cells by macrophages induces a suppressor phenotype. Previous data from our group suggested that this occurs via Platelet-activating factor receptor (PAF-R)-mediated pathways. In the present study, we investigated the impact of apoptotic cell inoculation or induction by a chemotherapeutic agent (dacarbazine, DTIC) on tumour growth, microenvironmental parameters and survival, and the effect of treatment with a PAF-R antagonist (WEB2170). These studies were performed in murine tumours: Ehrlich Ascitis Tumour (EAT) and B16F10 melanoma. Tumour growth was assessed by direct counting of EAT cells in the ascitis or by measuring the volume of the solid tumour. Parameters of the tumour microenvironment, such as the frequency of cells expressing cyclo-oxygenase-2 (COX-2), caspase-3 and galectin-3, and microvascular density, were determined by immunohistochemistry. Levels of vascular endothelium growth factor (VEGF) and prostaglandin E2 (PGE2) were determined by ELISA, and levels of nitric oxide (NO) by Griess reaction. PAF-R expression was analysed by immunohistochemistry and flow cytometry. Inoculation of apoptotic cells before EAT implantation stimulated tumour growth. This effect was reversed by in vivo pre-treatment with WEB2170. This treatment also reduced tumour growth and modified the microenvironment by reducing PGE2, VEGF and NO production. In B16F10 melanoma, WEB2170 alone or in association with DTIC significantly reduced tumour volume. Survival of the tumour-bearing mice was not affected by WEB2170 treatment but was significantly improved by the combination of DTIC with WEB2170. Tumour microenvironment elements were among the targets of the combination therapy since the relative frequency of COX-2 and galectin-3 positive cells and the microvascular density within the tumour mass were significantly reduced by treatment with WEB2170 or DTIC alone or in combination. Antibodies to PAF-R stained the cells from inside the tumour, but not the

  10. Thrombospondin-1 and VEGF in inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Canan Alkim

    2012-01-01

    Full Text Available Angiogenesis is an important process in the pathogenesis of chronic inflammation. We aimed to study the angiogeneic balance in inflammatory bowel disease (IBD by evaluating the expression of vascular endothelial growth factor (VEGF and thrombospondin-1 (TSP-1 on colonic epithelial cells, together with the expression of inducible nitric oxide synthase (iNOS.Twenty-one ulcerative colitis (UC, 14 Crohn's disease (CD, 11 colorectal cancer patients, and 11 healthy controls colonic biopsy samples were evaluated immunohistochemically.The expressions of TSP-1, VEGF, and iNOS in UC and CD groups were higher than expression in healthy control group, all with statistical significance. However, in colorectal cancer group, VEGF and iNOS expressions were increased importantly, but TSP-1 expression was not statistically different from healthy control group's expression. Both TSP-1 and VEGF expressions were correlated with iNOS expression distinctly but did not correlate with each other.Both pro-angiogeneic VEGF and antiangiogeneic TSP-1 expressions were found increased in our IBD groups, but in colorectal cancer group, only VEGF expression was increased. TSP-1 increases in IBD patients as a response to inflammatory condition, but this increase was not enough to suppress pathologic angiogenesis and inflammation in IBD.

  11. VEGF-121 plasma level as biomarker for response to anti-angiogenetic therapy in recurrent glioblastoma.

    Science.gov (United States)

    Martini, Maurizio; de Pascalis, Ivana; D'Alessandris, Quintino Giorgio; Fiorentino, Vincenzo; Pierconti, Francesco; Marei, Hany El-Sayed; Ricci-Vitiani, Lucia; Pallini, Roberto; Larocca, Luigi Maria

    2018-05-10

    Vascular endothelial growth factor (VEGF) isoforms, particularly the diffusible VEGF-121, could play a major role in the response of recurrent glioblastoma (GB) to anti-angiogenetic treatment with bevacizumab. We hypothesized that circulating VEGF-121 may reduce the amount of bevacizumab available to target the heavier isoforms of VEGF, which are the most clinically relevant. We assessed the plasma level of VEGF-121 in a brain xenograft model, in human healthy controls, and in patients suffering from recurrent GB before and after bevacizumab treatment. Data were matched with patients' clinical outcome. In athymic rats with U87MG brain xenografts, the level of plasma VEGF-121 relates with tumor volume and it significantly decreases after iv infusion of bevacizumab. Patients with recurrent GB show higher plasma VEGF-121 than healthy controls (p = 0.0002) and treatment with bevacizumab remarkably reduced the expression of VEGF-121 in plasma of these patients (p = 0.0002). Higher plasma level of VEGF-121 was significantly associated to worse PFS and OS (p = 0.0295 and p = 0.0246, respectively). Quantitative analysis of VEGF-121 isoform in the plasma of patients with recurrent GB could be a promising predictor of response to anti-angiogenetic treatment.

  12. Differential regulation of ANG2 and VEGF-A in human granulosa lutein cells by choriogonadotropin.

    Science.gov (United States)

    Pietrowski, D; Keck, C

    2004-04-01

    The growth and development of the corpus luteum after rupture of the follicle is a highly regulated process characterised by a rapid vascularization of the follicle surrounding granulosa cells. Vascularization is regulated by a large number of growth factors and cytokines whereas members of the angiopoietin family and VEGF-A are reported to play a principal role. The gonadotropic hormones luteinizing hormone and choriogonadotropin are reported to be essential for corpus luteum formation. In this study we investigated by RT PCR if the growth factors PGF, PDGF-A, PDGF-B, VEGF-A, VEGF-B, VEGF-C, VEGF-D, ANG1, ANG2, ANG3 and ANG4 are expressed in granulosa cells. We show the expression of VEGF-A, VEGF-B, PDGF-A, ANG1 and ANG2 in granulosa cells. Using RT-PCR and Real-Time PCR we demonstrate that angiopoietin 2 is downregulated in human granulosa cells in vitro after choriogonadotropin treatment whereas the expression of angiopoietin 1 is not significantly altered. The expression of VEGF on the RNA- and on the protein level was determined. It was shown that in granulosa cells VEGF is upregulated after choriogonadotropin treatment on the RNA level and that increasing concentrations of choriogonadotropin from 0 to 10 U/ml leads to an increasing amount of VEGF in the cell culture supernatants. The amount of VEGF in the supernatants reaches a plateau at 0.5 U/ml and is increased only slightly and not significantly after treatment of the cells with 10 U/ml choriogonadotropin compared to 0.5 U/ml. In total these findings suggests that in granulosa cells the mRNA of various growth factors is detectable by RT-PCR and that VEGF-A and ANG2 is regulated by the gonadotropic hormone choriogonadotropin. These findings may add impact on the hypothesis of choriogonadotropin as a novel angiogenic factor.

  13. Estimation of Immunohistochemical Expression of VEGF in Ductal Carcinomas of the Breast

    DEFF Research Database (Denmark)

    Maae, Else; Nielsen, Martin; Dahl Steffensen, Karina

    2011-01-01

    Vascular endothelial growth factor A (VEGF-A) is a very important growth factor in angiogenesis and holds the potential as both a predictive marker for anti-angiogenic cancer treatment and as a prognostic variable. Consequently, reliable estimation of VEGF expression is crucial. We immunostained ...

  14. Activation of Protease-Activated Receptor 2 Induces VEGF Independently of HIF-1

    DEFF Research Database (Denmark)

    Rasmussen, J.G.; Riis, Simone Elkjær; Frøbert, O.

    2012-01-01

    Human adipose stem cells (hASCs) can promote angiogenesis through secretion of proangiogenic factors such as vascular endothelial growth factor (VEGF). In other cell types, it has been shown that induction of VEGF is mediated by both protease activated receptor 2 (PAR2) and hypoxia inducible fact...

  15. Estimation of Immunohistochemical Expression of VEGF in Ductal Carcinomas of the Breast

    DEFF Research Database (Denmark)

    Maae, Else; Nielsen, Martin; Dahl Steffensen, Karina

    2011-01-01

    Vascular endothelial growth factor A (VEGF-A) is a very important growth factor in angiogenesis and holds the potential as both a predictive marker for anti-angiogenic cancer treatment and as a prognostic variable. Consequently, reliable estimation of VEGF expression is crucial. We immunostained...

  16. Estimation of Immunohistochemical Expression of VEGF in Ductal Carcinomas of the Breast

    DEFF Research Database (Denmark)

    Maae, Else; Nielsen, Martin; Dahl Steffensen, Karina

    2012-01-01

    Introduction: Vascular endothelial growth factor A (VEGF-A) is a very important growth factor in angiogenesis and holds the potential as both a predictive marker for anti-angiogenic cancer treatment and as a prognostic variable. Consequently, reliable estimation of VEGF expression is crucial...

  17. The significance of VEGF expression in stage II carcinoma of uterine cervix treated with definitive radiotherapy

    International Nuclear Information System (INIS)

    Park, Won; Choi, Yoon La; Huh, Seung Jae; Yoon, Sang Min; Park, Young Je; Nam, Hee Rim; Ahn, Yong Chan; Lim, Do Hoon; Park, Hee Chul

    2006-01-01

    We wanted to determine the clinical characteristics and prognosis according to the VEGF expression in stage II cervical carcinoma patients treated with definitive radiotherapy. We enrolled 31 patients who were diagnosed with cervical cancer from 1995 to 2003 at Samsumg Medical Center and their paraffin block tissue samples were available for study. The median age of the patients was 65 years. The mean tumor size was 4.1 cm (range: 1.2 ∼8.2 cm). Seven patients (22.6%) were suspected of having pelvic lymph node metastasis. An external beam irradiation dose of 45-56.4 Gy was administered to the whole pelvis with a 15 MV linear accelerator, and an additional 24 Gy was given to point A by HDR intracavitary brachytherapy. VEGF staining was defined as positive when more than 10% of the tumor cells were stained. The median follow-up duration was 58 months. A positive VEGF expression was observed in 21 patients (67.7%). There was no significant correlation between the VEGF expression and pelvic lymph node metastasis, tumor size and the response of radiotherapy. During follow-up, 7 patients had recurrence. The complete response rate was not significant between the VEGF (-) and VEGF(+) tumors. However, the VEGF(+) tumors showed a significantly higher recurrence rate in comparison with the VEGF(-) tumors (ρ = 0.040). The three year disease-free survival rates were 100% and 66.7%, respectively, for patients with VEGF(-) or VEGF(+) tumor (ρ = 0.047). The VEGF expression was a significant factor for recurrence and disease-free survival. However, the significance of the VEGF expression is still controversial because of the various definitions of VEGF expression and the mismatches of the clinical data in the previous studies

  18. AdVEGF-B186 and AdVEGF-DΔNΔC induce angiogenesis and increase perfusion in porcine myocardium.

    Science.gov (United States)

    Nurro, Jussi; Halonen, Paavo J; Kuivanen, Antti; Tarkia, Miikka; Saraste, Antti; Honkonen, Krista; Lähteenvuo, Johanna; Rissanen, Tuomas T; Knuuti, Juhani; Ylä-Herttuala, Seppo

    2016-11-01

    Coronary heart disease remains a significant clinical problem, and new therapies are needed especially for patients with refractory angina for whom the current therapies do not provide sufficient relief. The aim of this study was to find out if angiogenic gene therapy using new members of the vascular endothelial growth factor (VEGF) family, VEGF-B 186 and VEGF-D ΔNΔC , increase myocardial perfusion as measured by the positron emission tomography (PET) 15 O-imaging, and whether there would be coronary steal effect to the contralateral side. Furthermore, safety of intramyocardial angiogenic adenoviral gene transfer was evaluated. Intramyocardial adenoviral (Ad) VEGF-B 186 or AdVEGF-D ΔNΔC gene transfers were given endovascularly into the porcine posterolateral wall of the left ventricle (n=34). Six days later, PET 15 O-imaging for myocardial perfusion and coronary angiography were performed. AdVEGF-B 186 and AdVEGF-D ΔNΔC induced angiogenesis and increased total microvascular area 1.8-fold (95% CI 0.2 to 3.5) and 2.8-fold (95% CI 1.4 to 4.3), respectively. At rest, perfusion was maintained at normal levels, but at stress, relative perfusion was increased 1.4-fold (95% CI 1.1 to 1.7) for AdVEGF-B 186 and 1.3-fold (95% CI 1.0 to 1.7) for AdVEGF-D ΔNΔC , without causing coronary steal effect in the control area. The therapy was well tolerated and did not lead to any significant changes in laboratory safety parameters. Both AdVEGF-B 186 and AdVEGF-D ΔNΔC gene transfers induced efficient angiogenesis in the myocardium resulting in an increased myocardial perfusion measured by PET. Importantly, local perfusion increase did not induce any coronary steal effect. As such, both treatments seem suitable new candidates for the induction of therapeutic angiogenesis for the treatment of refractory angina. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. A Novel Vascular Endothelial Growth Factor Receptor Participates in White Spot Syndrome Virus Infection in Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Shihao Li

    2017-11-01

    Full Text Available Vascular endothelial growth factor (VEGF signaling pathway is known to play key roles in endothelial cell proliferation, migration, angiogenesis, vascular permeability, inhibition of apoptosis, and virus infection. In the present study, a novel VEGFR gene (LvVEGFR2 was identified and characterized from Litopenaeus vannamei. The deduced amino acid sequence of LvVEGFR2 possessed typical features of VEGFRs reported in other species, including six IG-like domains, a transmembrane motif, a protein kinase (PK domain, and one tyrosine-PK active site. The transcripts of LvVEGFR2 were mainly detected in hemocytes and lymphoid organ (Oka. Subcellular localization analysis showed that LvVEGFR2 was a membrane protein. Its expression level was obviously upregulated in hemocytes and Oka of the shrimp after white spot syndrome virus (WSSV infection. Knockdown of LvVEGFR2 gene expression by double-strand RNA mediated interference could lead to a decrease of virus copy number in WSSV-infected shrimp. The interaction between LvVEGFR2 and different LvVEGFs (LvVEGF1, LvVEGF2, and LvVEGF3 in shrimp was analyzed at the transcription level and protein level, respectively. Knockdown of LvVEGF2 or LvVEGF3 could downregulate the expression level of LvVEGFR2, and injection of the recombinant LvVEGF2 or LvVEGF3 could upregulate the expression level of LvVEGFR2. Yeast two-hybrid analysis showed that LvVEGFR2 could interact with LvVEGF2 and LvVEGF3 directly. The study improved our understanding on the VEGF signaling pathway of shrimp and its role during WSSV infection.

  20. Serial measurements of serum PDGF-AA, PDGF-BB, FGF2, and VEGF in multiresistant ovarian cancer patients treated with bevacizumab

    Directory of Open Access Journals (Sweden)

    Madsen Christine

    2012-09-01

    Full Text Available Abstract Introduction Anti-VEGF treatment has proven effective in recurrent ovarian cancer. However, the identification of the patients most likely to respond is still pending. It is well known that the angiogenesis is regulated by several other pro-angiogenic proteins, e.g. the platelet - derived growth factor (PDGF system and the fibroblast growth factor (FGF system. These other signaling pathways may remain active or become upregulated during anti-VEGF treatment. The aim of the present study was to investigate if potential changes of PDGF-BB, PDGF-AA, and FGF2 before and during bevacizumab treatment had predictive value for early progression or survival. Furthermore, we wanted to investigate the importance of serum VEGF in the same cohort. Methods This study included 106 patients with chemotherapy-resistant epithelial ovarian cancer who were treated with single agent bevacizumab as part of a biomarker protocol. Patients were evaluated for response by the Response Evaluation Criteria In Solid Tumors (RECIST and/ or Gynecologic Cancer Intergroup (GCIG CA125 criteria. Serum samples were collected at baseline and prior to each treatment. FGF2, PDGF-BB, PDGF-AA were quantified simultaneously using the Luminex system, and VEGF-A was measured by ELISA. Eighty-eight baseline samples were avaliable for FGF2, PDGF-BB, PDGF-AA analysis, and 93 baseline samples for VEGF. Results High baseline serum VEGF was related to poor overall survival. Furthermore, high serum PDGF-BB and FGF2 was of prognostic significance. None of the markers showed predictive value, neither at baseline level nor during the treatment.

  1. Associations of vascular endothelial growth factor (VEGF gene and cytokine (IL-1B, IL-4, IL-6, IL-10, TNFA genes combinations with type 2 diabetes mellitus in women

    Directory of Open Access Journals (Sweden)

    Vladimir Iosifovich Konenkov

    2012-09-01

    Full Text Available Aim. To study the association between vascular endothelial growth factor (VEGF and cytokine (IL1B, IL4, IL6, IL10 and TNFAgene polymorphism combinations with type 2 diabetes mellitus (T2DM in women. Materials and methods. 374 Caucasian women without carbohydrate metabolism disorders from 23 to 68 years of age and 212 womenwith T2DM from 28 to 69 years of age were included in the study. The combinations of polymorphism А-2578С, С+936Т in VEGFgene with polymorphism in IL1B С-31Т, IL4 С-590Т, IL6 G-174C, IL10 A-592C and А-1082G, TNFA А-238G, A-308G and A-863Cwere studied. Results. Analysis revealed 52 combined genetic variations with different rate of occurrence between diabetic and control groups(р

  2. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    International Nuclear Information System (INIS)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica; Gonzalez Espinosa, Claudia

    2010-01-01

    Research highlights: → Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. → CoCl 2 -induced VEGF secretion in mast cells occurs by a Ca 2+ -insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. → Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits FcεRI-dependent anaphylactic degranulation in mast cells. → Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl 2 ) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl 2 promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl 2 -induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl 2 -induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl 2 in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals-dependent Fyn kinase activation.

  3. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico); Gonzalez Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico)

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals

  4. SREBP inhibits VEGF expression in human smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Motoyama, Koka [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Fukumoto, Shinya [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Koyama, Hidenori [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Emoto, Masanori [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Shimano, Hitoshi [Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, Ibaraki (Japan); Maemura, Koji [Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo (Japan); Nishizawa, Yoshiki [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan)

    2006-03-31

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs.

  5. SREBP inhibits VEGF expression in human smooth muscle cells

    International Nuclear Information System (INIS)

    Motoyama, Koka; Fukumoto, Shinya; Koyama, Hidenori; Emoto, Masanori; Shimano, Hitoshi; Maemura, Koji; Nishizawa, Yoshiki

    2006-01-01

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs

  6. CD147 promotes liver fibrosis progression via VEGF-A/VEGFR2 signalling-mediated cross-talk between hepatocytes and sinusoidal endothelial cells.

    Science.gov (United States)

    Yan, Zhaoyong; Qu, Kai; Zhang, Jing; Huang, Qichao; Qu, Ping; Xu, Xinsen; Yuan, Peng; Huang, Xiaojun; Shao, Yongping; Liu, Chang; Zhang, Hongxin; Xing, Jinliang

    2015-10-01

    Although previous evidence indicates close involvement of CD147 in the pathogenesis of liver fibrosis, the underlying molecular mechanisms and its therapeutic value remain largely unknown. In the present study, we investigated the biological roles of CD147 in liver fibrosis and assessed its therapeutic value as a target molecule in the CCl4-induced liver fibrosis mouse model. We found that CD147 was highly expressed in both hepatocytes and SECs (sinusoidal endothelial cells) in fibrotic liver tissues. Additionally, it was significantly associated with the fibrosis stage. TGF-β1 (transforming growth factor β1) was found to be mainly responsible for the up-regulation of CD147. Bioinformatic and experimental data suggest a functional link between CD147 expression and VEGF-A (vascular endothelial growth factor A)/VEGR-2 (VEGF receptor 2) signalling-mediated angiogenesis in fibrotic liver tissues. Furthermore, we observed that the CD147-induced activation of the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway promotes the production of VEGF-A in hepatocytes and expression of VEGFR-2 in SECs, which was found to enhance the angiogenic capability of SECs. Finally, our data indicate that blocking of CD147 using an mAb (monoclonal antibody) attenuated liver fibrosis progression via inhibition of VEGF-A/VEGFR-2 signalling and subsequent amelioration of microvascular abnormality in the CCl4-induced mouse model. Our findings suggest a novel functional mechanism that CD147 may promote liver fibrosis progression via inducing the VEGF-A/VEGFR-2 signalling pathway-mediated cross-talk between hepatocytes and SECs. New strategies based on the intervention of CD147 can be expected for prevention of liver fibrosis. © 2015 Authors; published by Portland Press Limited.

  7. Anti-tumor activity of a novel HS-mimetic-vascular endothelial growth factor binding small molecule.

    Directory of Open Access Journals (Sweden)

    Kazuyuki Sugahara

    Full Text Available The angiogenic process is controlled by variety of factors of which the vascular endothelial growth factor (VEGF pathway plays a major role. A series of heparan sulfate mimetic small molecules targeting VEGF/VEGFR pathway has been synthesized. Among them, compound 8 (2-butyl-5-chloro-3-(4-nitro-benzyl-3H-imidazole-4-carbaldehyde was identified as a significant binding molecule for the heparin-binding domain of VEGF, determined by high-throughput-surface plasmon resonance assay. The data predicted strong binding of compound 8 with VEGF which may prevent the binding of VEGF to its receptor. We compared the structure of compound 8 with heparan sulfate (HS, which have in common the functional ionic groups such as sulfate, nitro and carbaldehyde that can be located in similar positions of the disaccharide structure of HS. Molecular docking studies predicted that compound 8 binds at the heparin binding domain of VEGF through strong hydrogen bonding with Lys-30 and Gln-20 amino acid residues, and consistent with the prediction, compound 8 inhibited binding of VEGF to immobilized heparin. In vitro studies showed that compound 8 inhibits the VEGF-induced proliferation migration and tube formation of mouse vascular endothelial cells, and finally the invasion of a murine osteosarcoma cell line (LM8G7 which secrets high levels of VEGF. In vivo, these effects produce significant decrease of tumor burden in an experimental model of liver metastasis. Collectively, these data indicate that compound 8 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of endothelial cell migration and angiogenesis mediated by VEGF. In conclusion, compound 8 may normalize the tumor vasculature and microenvironment in tumors probably by inhibiting the binding of VEGF to its receptor.

  8. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis

    Science.gov (United States)

    Zhang, Fan; Tang, Zhongshu; Hou, Xu; Lennartsson, Johan; Li, Yang; Koch, Alexander W.; Scotney, Pierre; Lee, Chunsik; Arjunan, Pachiappan; Dong, Lijin; Kumar, Anil; Rissanen, Tuomas T.; Wang, Bin; Nagai, Nobuo; Fons, Pierre; Fariss, Robert; Zhang, Yongqing; Wawrousek, Eric; Tansey, Ginger; Raber, James; Fong, Guo-Hua; Ding, Hao; Greenberg, David A.; Becker, Kevin G.; Herbert, Jean-Marc; Nash, Andrew; Yla-Herttuala, Seppo; Cao, Yihai; Watts, Ryan J.; Li, Xuri

    2009-01-01

    VEGF-B, a homolog of VEGF discovered a long time ago, has not been considered an important target in antiangiogenic therapy. Instead, it has received little attention from the field. In this study, using different animal models and multiple types of vascular cells, we revealed that although VEGF-B is dispensable for blood vessel growth, it is critical for their survival. Importantly, the survival effect of VEGF-B is not only on vascular endothelial cells, but also on pericytes, smooth muscle cells, and vascular stem/progenitor cells. In vivo, VEGF-B targeting inhibited both choroidal and retinal neovascularization. Mechanistically, we found that the vascular survival effect of VEGF-B is achieved by regulating the expression of many vascular prosurvival genes via both NP-1 and VEGFR-1. Our work thus indicates that the function of VEGF-B in the vascular system is to act as a “survival,” rather than an “angiogenic” factor and that VEGF-B inhibition may offer new therapeutic opportunities to treat neovascular diseases. PMID:19369214

  9. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment

    DEFF Research Database (Denmark)

    Farajpour, Zahra; Rahbarizadeh, Fatemeh; Kazemi, Bahram

    2014-01-01

    Compelling evidence suggests that vascular endothelial growth factor (VEGF), due to its essential role in angiogenesis, is a critical target for cancer treatment. Neutralizing monoclonal antibodies against VEGF are important class of drugs used in cancer therapy. However, the cost of production...

  10. Radiolabeling of VEGF(165) with Tc-99m to evaluate VEGFR expression in tumor angiogenesis

    NARCIS (Netherlands)

    Galli, Filippo; Artico, Marco; Taurone, Samanta; Manni, Isabella; Bianchi, Enrica; Piaggio, Giulia; Weintraub, Bruce D.; Szkudlinski, Mariusz W.; Agostinelli, Enzo; Dierckx, Rudi A. J. O.; Signore, Alberto

    Angiogenesis is the main process responsible for tumor growth and metastatization. The principal effector of such mechanism is the vascular endothelial growth factor (VEGF) secreted by cancer cells and other components of tumor microenvironment. Radiolabeled VEGF analogues may provide a useful tool

  11. Identification and in vitro characterization of phage-displayed VHHs targeting VEGF

    DEFF Research Database (Denmark)

    Farajpour, Zahra; Rahbarizadeh, Fatemeh; Kazemi, Bahram

    2014-01-01

    Vascular endothelial growth factor (VEGF) is a potential target for cancer treatment because of its role in angiogenesis and its overexpression in most human cancers. Currently, anti-VEGF antibodies have been shown to be promising tools for therapeutic applications. However, large size, poor tumo...

  12. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow

    International Nuclear Information System (INIS)

    Semino, Carlos E.; Kamm, Roger D.; Lauffenburger, Douglas A.

    2006-01-01

    We show here that autocrine ligand activation of epidermal growth factor (EGF) receptor in combination with interstitial flow is critically involved in the morphogenetic response of endothelial cells to VEGF stimulation. Human umbilical vein endothelial cell (HUVEC) monolayers cultured on a collagen gel and exposed to low interstitial flow in the absence of EGF and VEGF remained viable and mitotic but exhibited little evidence of vascular morphogenesis. Addition of VEGF produced a flow-dependent morphogenetic response within 48 to 72 h, characterized by branched capillary-like structures. The response was substantially abolished by inhibitors related to the autocrine EGF receptor pathway including Galardin, AG1478, PD98059, and an EGF receptor-blocking antibody, indicating that regulation of the morphogenetic process operates via autocrine EGF receptor activation. Moreover, we observed that in our system the EGF receptor was always activated independently of the interstitial flow, and, in addition, the EGF receptor inhibitors used above reduced the phosphorylation state of the receptor, correlating with inhibition of capillary morphogenesis. Finally, 5'bromo-2'-deoxyuridine (BrdU) labeling identified dividing cells at the monolayer but not in the extending capillary-like structures. EGF pathway inhibitors Galardin and AG1478 did not reduce BrdU incorporation in the monolayer, indicating that the EGF-receptor-mediated morphogenetic behavior is mainly due to cell migration rather than proliferation. Based on these results, we propose a two-step model for in vitro capillary morphogenesis in response to VEGF stimulation with interstitial fluid flow: monolayer maintenance by mitotic activity independent of EGF receptors and a migratory response mediated by autocrine EGF receptor activation wherein cells establish capillary-like structures

  13. VEGFR1-mediated pericyte ablation links VEGF and PlGF to cancer-associated retinopathy

    DEFF Research Database (Denmark)

    Cao, Renhai; Xue, Yuan; Hedlund, Eva-Maria

    2010-01-01

    . Moreover, blockade of VEGFR1 but not VEGFR2 significantly restores pericyte saturation in mature retinal vessels. Our findings link VEGF and PlGF to cancer-associated retinopathy, reveal the molecular mechanisms of VEGFR1 ligand-mediated retinopathy, and define VEGFR1 as an important target......, and adenoviral vectors ablates pericytes from the mature retinal vasculature through the VEGF receptor 1 (VEGFR1)-mediated signaling pathway, leading to increased vascular leakage. In contrast, we demonstrate VEGF receptor 2 (VEGFR2) is primarily expressed in nonvascular photoreceptors and ganglion cells...

  14. Evaluation of anticancer peptide VEGF111b secretion in HEK293 human cells

    Directory of Open Access Journals (Sweden)

    Morteza Sadeghi

    2017-04-01

    Full Text Available Background: VEGF111b is a new isoform of vascular endothelial growth factor (VEGF recently considered as a new anticancer drug. The aim of this study was to evaluate the VEGF111b secretion from HEK293 cell wall in order to commercial production of this recombinant factor. Materials and Methods: After the design of VEGF111b sequence using OLIGO software and NCBI gene bank data, it was cloned into the pBUD.cE4.1 vector. The pBUD.VEGF111b recombinant vector was transfected into HEK293 cells using lipofectamine kit. Forty-eight hours after the transfection the production of VEGF111b was estimated by Western blotting and Human anti VEGF antibody. The VEGF111b secretion into cell culture and cell lysate extract was measured using ELISA. Results: The correct cloning of VEGF111b into pBUD.cE4.1vector was confirmed using enzymatic digestion and gel electrophoresis. The observed production of recombinant peptide in HEK293 was confirmed with 12KDa band in cell lysate extract of Western blotting. The ELISA results at 450 nanometer absorbance for cell culture media and cell lysate extract were 19.20±2.81 pg/ml and 32.87±7.42 pg/ml, respectively. However, no VEGF111b expression was observed in negative controls. Conclusion: The findings of this study indicate the powerful ability of transformation and secretion of VEGF111b from HEK293 cell wall to cell culture media with no breaking and proteolytic digestion. It seems that the commercial production and purification of this therapeutic peptide from HEK293 cell culture would be possible with high efficiency.

  15. Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases

    Science.gov (United States)

    Lesslie, D P; Summy, J M; Parikh, N U; Fan, F; Trevino, J G; Sawyer, T K; Metcalf, C A; Shakespeare, W C; Hicklin, D J; Ellis, L M; Gallick, G E

    2006-01-01

    Vascular endothelial growth factor (VEGF) is the predominant pro-angiogenic cytokine in human malignancy, and its expression correlates with disease recurrence and poor outcomes in patients with colorectal cancer. Recently, expression of vascular endothelial growth factor receptors (VEGFRs) has been observed on tumours of epithelial origin, including those arising in the colon, but the molecular mechanisms governing potential VEGF-driven biologic functioning in these tumours are not well characterised. In this report, we investigated the role of Src family kinases (SFKs) in VEGF-mediated signalling in human colorectal carcinoma (CRC) cell lines. Vascular endothelial growth factor specifically activated SFKs in HT29 and KM12L4 CRC cell lines. Further, VEGF stimulation resulted in enhanced cellular migration, which was effectively blocked by pharmacologic inhibition of VEGFR-1 or Src kinase. Correspondingly, migration studies using siRNA clones with reduced Src expression confirmed the requirement for Src in VEGF-induced migration in these cells. Furthermore, VEGF treatment enhanced VEGFR-1/SFK complex formation and increased tyrosine phosphorylation of focal adhesion kinase, p130 cas and paxillin. Finally, we demonstrate that VEGF-induced migration is not due, at least in part, to VEGF acting as a mitogen. These results suggest that VEGFR-1 promotes migration of tumour cells through a Src-dependent pathway linked to activation of focal adhesion components that regulate this process. PMID:16685275

  16. Molecular characterization of EG-VEGF-mediated angiogenesis: differential effects on microvascular and macrovascular endothelial cells.

    Science.gov (United States)

    Brouillet, Sophie; Hoffmann, Pascale; Benharouga, Mohamed; Salomon, Aude; Schaal, Jean-Patrick; Feige, Jean-Jacques; Alfaidy, Nadia

    2010-08-15

    Endocrine gland derived vascular endothelial growth factor (EG-VEGF) also called prokineticin (PK1), has been identified and linked to several biological processes including angiogenesis. EG-VEGF is abundantly expressed in the highest vascularized organ, the human placenta. Here we characterized its angiogenic effect using different experimental procedures. Immunohistochemistry was used to localize EG-VEGF receptors (PROKR1 and PROKR2) in placental and umbilical cord tissue. Primary microvascular placental endothelial cell (HPEC) and umbilical vein-derived macrovascular EC (HUVEC) were used to assess its effects on proliferation, migration, cell survival, pseudovascular organization, spheroid sprouting, permeability and paracellular transport. siRNA and neutralizing antibody strategies were used to differentiate PROKR1- from PROKR2-mediated effects. Our results show that 1) HPEC and HUVEC express both types of receptors 2) EG-VEGF stimulates HPEC's proliferation, migration and survival, but increases only survival in HUVECs. and 3) EG-VEGF was more potent than VEGF in stimulating HPEC sprout formation, pseudovascular organization, and it significantly increases HPEC permeability and paracellular transport. More importantly, we demonstrated that PROKR1 mediates EG-VEGF angiogenic effects, whereas PROKR2 mediates cellular permeability. Altogether, these data characterized angiogenic processes mediated by EG-VEGF, depicted a new angiogenic factor in the placenta, and suggest a novel view of the regulation of angiogenesis in placental pathologies.

  17. VEGF controls lung Th2 inflammation via the miR-1–Mpl (myeloproliferative leukemia virus oncogene)–P-selectin axis

    Science.gov (United States)

    Vasavada, Hema; Zhang, Jian-ge; Ahangari, Farida; Niu, Naiqian; Liu, Qing; Lee, Chun Geun; Cohn, Lauren

    2013-01-01

    Asthma, the prototypic Th2-mediated inflammatory disorder of the lung, is an emergent disease worldwide. Vascular endothelial growth factor (VEGF) is a critical regulator of pulmonary Th2 inflammation, but the underlying mechanism and the roles of microRNAs (miRNAs) in this process have not been defined. Here we show that lung-specific overexpression of VEGF decreases miR-1 expression in the lung, most prominently in the endothelium, and a similar down-regulation occurs in lung endothelium in Th2 inflammation models. Intranasal delivery of miR-1 inhibited inflammatory responses to ovalbumin, house dust mite, and IL-13 overexpression. Blocking VEGF inhibited Th2-mediated lung inflammation, and this was restored by antagonizing miR-1. Using mRNA arrays, Argonaute pull-down assays, luciferase expression assays, and mutational analysis, we identified Mpl as a direct target of miR-1 and showed that VEGF controls the expression of endothelial Mpl during Th2 inflammation via the regulation of miR-1. In vivo knockdown of Mpl inhibited Th2 inflammation and indirectly inhibited the expression of P-selectin in lung endothelium. These experiments define a novel VEGF–miR-1–Mpl–P-selectin effector pathway in lung Th2 inflammation and herald the utility of miR-1 and Mpl as potential therapeutic targets for asthma. PMID:24043765

  18. Role of EG-VEGF in human placentation: Physiological and pathological implications.

    Science.gov (United States)

    Hoffmann, Pascale; Saoudi, Yasmina; Benharouga, Mohamed; Graham, Charles H; Schaal, Jean-Patrick; Mazouni, Chafika; Feige, Jean-Jacques; Alfaidy, Nadia

    2009-08-01

    Pre-eclampsia (PE), the major cause of maternal morbidity and mortality, is thought to be caused by shallow invasion of the maternal decidua by extravillous trophoblasts (EVT). Data suggest that a fine balance between the expressions of pro- and anti-invasive factors might regulate EVT invasiveness. Recently, we showed that the expression of the new growth factor endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is high in early pregnancy but falls after 11 weeks, suggesting an essential role for this factor in early pregnancy. Using human villous explants and HTR-8/SVneo, a first trimester extravillous trophoblast cell line, we showed differential expression of EG-VEGF receptors, PKR1 and PKR2, in the placenta and demonstrated that EG-VEGF inhibits EVT migration, invasion and tube-like organisation. EG-VEGF inhibitory effect on invasion was supported by a decrease in matrix metalloproteinase (MMP)-2 and MMP-9 production. Interference with PKR2 expression, using specific siRNAs, reversed the EG-VEGF-induced inhibitory effects. Furthermore, we determined EG-VEGF circulating levels in normal and PE patients. Our results showed that EG-VEGF levels were highest during the first trimester of pregnancy and decreased thereafter to non-pregnant levels. More important, EG-VEGF levels were significantly elevated in PE patients compared with age-matched controls. These findings identify EG-VEGF as a novel paracrine regulator of trophoblast invasion. We speculate that a failure to correctly down-regulate placental expression of EG-VEGF at the end of the first trimester of pregnancy might lead to PE.

  19. Detection of VEGF-A(xxx)b isoforms in human tissues.

    Science.gov (United States)

    Bates, David O; Mavrou, Athina; Qiu, Yan; Carter, James G; Hamdollah-Zadeh, Maryam; Barratt, Shaney; Gammons, Melissa V; Millar, Ann B; Salmon, Andrew H J; Oltean, Sebastian; Harper, Steven J

    2013-01-01

    Vascular Endothelial Growth Factor-A (VEGF-A) can be generated as multiple isoforms by alternative splicing. Two families of isoforms have been described in humans, pro-angiogenic isoforms typified by VEGF-A165a, and anti-angiogenic isoforms typified by VEGF-A165b. The practical determination of expression levels of alternative isoforms of the same gene may be complicated by experimental protocols that favour one isoform over another, and the use of specific positive and negative controls is essential for the interpretation of findings on expression of the isoforms. Here we address some of the difficulties in experimental design when investigating alternative splicing of VEGF isoforms, and discuss the use of appropriate control paradigms. We demonstrate why use of specific control experiments can prevent assumptions that VEGF-A165b is not present, when in fact it is. We reiterate, and confirm previously published experimental design protocols that demonstrate the importance of using positive controls. These include using known target sequences to show that the experimental conditions are suitable for PCR amplification of VEGF-A165b mRNA for both q-PCR and RT-PCR and to ensure that mispriming does not occur. We also provide evidence that demonstrates that detection of VEGF-A165b protein in mice needs to be tightly controlled to prevent detection of mouse IgG by a secondary antibody. We also show that human VEGF165b protein can be immunoprecipitated from cultured human cells and that immunoprecipitating VEGF-A results in protein that is detected by VEGF-A165b antibody. These findings support the conclusion that more information on the biology of VEGF-A165b isoforms is required, and confirm the importance of the experimental design in such investigations, including the use of specific positive and negative controls.

  20. Monitoring PAI-1 and VEGF Levels in 6 Human Squamous Cell Carcinoma Xenografts During Fractionated Irradiation

    International Nuclear Information System (INIS)

    Bayer, Christine; Kielow, Achim; Schilling, Daniela; Maftei, Constantin-Alin; Zips, Daniel; Yaromina, Ala; Baumann, Michael; Molls, Michael; Multhoff, Gabriele

    2012-01-01

    Purpose: Previous studies have shown that the plasminogen activator inhibitor type-1 (PAI-1) and vascular endothelial growth factor (VEGF) are regulated by hypoxia and irradiation and are involved in neoangiogenesis. The aim of this study was to determine in vivo whether changes in PAI-1 and VEGF during fractionated irradiation could predict for radiation resistance. Methods and Materials: Six xenografted tumor lines from human squamous cell carcinomas (HSCC) of the head and neck were irradiated with 0, 3, 5, 10, and 15 daily fractions of 2 Gy. The PAI-1 and VEGF antigen levels in tumor lysates were determined by enzyme-linked immunosorbent assay kits. The amounts of PAI-1 and VEGF were compared with the dose to cure 50% of tumors (TCD 50 ). Colocalization of PAI-1, pimonidazole (hypoxia), CD31 (endothelium), and Hoechst 33342 (perfusion) was examined by immunofluorescence. Results: Human PAI-1 and VEGF (hVEGF) expression levels were induced by fractionated irradiation in UT-SCC-15, UT-SCC-14, and UT-SCC-5 tumors, and mouse VEGF (msVEGF) was induced only in UT-SCC-5 tumors. High hVEGF levels were significantly associated with radiation sensitivity after 5 fractions (P=.021), and high msVEGF levels were significantly associated with radiation resistance after 10 fractions (P=.007). PAI-1 staining was observed in the extracellular matrix, the cytoplasm of fibroblast-like stroma cells, and individual tumor cells at all doses of irradiation. Colocalization studies showed PAI-1 staining close to microvessels. Conclusions: These results indicate that the concentration of tumor-specific and host-specific VEGF during fractionated irradiation could provide considerably divergent information for the outcome of radiation therapy.

  1. A two-compartment model of VEGF distribution in the mouse.

    Directory of Open Access Journals (Sweden)

    Phillip Yen

    Full Text Available Vascular endothelial growth factor (VEGF is a key regulator of angiogenesis--the growth of new microvessels from existing microvasculature. Angiogenesis is a complex process involving numerous molecular species, and to better understand it, a systems biology approach is necessary. In vivo preclinical experiments in the area of angiogenesis are typically performed in mouse models; this includes drug development targeting VEGF. Thus, to quantitatively interpret such experimental results, a computational model of VEGF distribution in the mouse can be beneficial. In this paper, we present an in silico model of VEGF distribution in mice, determine model parameters from existing experimental data, conduct sensitivity analysis, and test the validity of the model. The multiscale model is comprised of two compartments: blood and tissue. The model accounts for interactions between two major VEGF isoforms (VEGF(120 and VEGF(164 and their endothelial cell receptors VEGFR-1, VEGFR-2, and co-receptor neuropilin-1. Neuropilin-1 is also expressed on the surface of parenchymal cells. The model includes transcapillary macromolecular permeability, lymphatic transport, and macromolecular plasma clearance. Simulations predict that the concentration of unbound VEGF in the tissue is approximately 50-fold greater than in the blood. These concentrations are highly dependent on the VEGF secretion rate. Parameter estimation was performed to fit the simulation results to available experimental data, and permitted the estimation of VEGF secretion rate in healthy tissue, which is difficult to measure experimentally. The model can provide quantitative interpretation of preclinical animal data and may be used in conjunction with experimental studies in the development of pro- and anti-angiogenic agents. The model approximates the normal tissue as skeletal muscle and includes endothelial cells to represent the vasculature. As the VEGF system becomes better characterized in

  2. Correlation between the immunohistochemical expressions of MMP-1, MMP-7 and VEGF and prognostic factors in colorectal adenocarcinoma Correlação entre as expressões imunohistoquímicas da MMP-1, MMP-7 e do VEGF no adenocarcinoma colorretal com fatores prognósticos

    Directory of Open Access Journals (Sweden)

    Edmundo Guilherme de Almeida Gomes

    2009-08-01

    Full Text Available PURPOSE: To analyze the expression of metalloproteinase-1, metalloproteinase-7 and vascular endothelial growth factor (VEGF in colorectal adenocarcinoma, and to correlate these with the clinical-pathological prognostic factors. METHODS: Tumor tissue from 82 patients was fixed in formalin and embedded in paraffin blocks. These samples were analyzed by means of the streptavidin-biotin immunohistochemical method, using the tissue microarray technique. Marker positivity was evaluated using categorical scores that determined cutoff percentages of stained tumor cells. Protein tissue expression was correlated with the variables of degree of cell differentiation, staging, disease-free interval, recurrence, survival and specific mortality. The Fisher exact and Kaplan-Meier tests were used to assess associations between the markers and the study variables. The log-rank and Wilcoxon tests were used to assess the significance of differences between curves of disease-free interval and survival. RESULTS: All tumors were positive for metalloproteinase-1; 50 (61% were positive and 32 (39% were negative for metalloproteinase-7; and 60 (74.1% were positive and 21 (25.9% were negative for VEGF. Correlation of marker expression, both in groups and individually, did not show statistical significance in relation to the degree of cell differentiation, staging, disease-free interval, survival or specific mortality. Recurrence showed a statistically significant correlation with positive expression of the three markers, when analyzed as a group (p = 0.038. CONCLUSION: The associated expression of metalloproteinase-1, metalloproteinase-7 and VEGF in colorectal adenocarcinoma is related to the incidence of disease recurrence.OBJETIVO: Analisar as expressões da metaloproteinase-1, metaloproteinase-7 e do fator de crescimento endotelial vascular no adenocarcinoma colorretal e correlacionar com os fatores prognósticos clínico-patológicos. MÉTODOS: Foram analisados

  3. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis

    Directory of Open Access Journals (Sweden)

    Zuzanna Rzepka

    2016-06-01

    Full Text Available Melanins are natural pigments of skin, hair and eyes and can be classified into two main types: brown to black eumelanin and yellow to reddish-brown pheomelanin. Biosynthesis of melanins takes place in melanosomes, which are specialized cytoplasmic organelles of melanocytes - dendritic cells located in the basal layer of the epidermis, uveal tract of the eye, hair follicles, as well as in the inner ear, central nervous system and heart. Melanogenesis is a multistep process and begins with the conversion of amino acid L-tyrosine to DOPAquinone. The addition of cysteine or glutathione to DOPAquinone leads to the intermediates formation, followed by subsequent transformations and polymerization to the final product, pheomelanin. In the absence of thiol compounds DOPAquinone undergoes an intramolecular cyclization and oxidation to form DOPAchrome, which is then converted to 5,6-dihydroksyindole (DHI or 5,6-dihydroxyindole-2-carboxylic acid (DHICA. Eumelanin is formed by polymerization of DHI and DHICA and their quinones. Regulation of melanogenesis is achieved by physical and biochemical factors. The article presents the intracellular signaling pathways: cAMP/PKA/CREB/MITF cascade, MAP kinases cascade, PLC/DAG/PKCβ cascade and NO/cGMP/PKG cascade, which are involved in the regulation of expression and activity of the melanogenesis-related proteins by ultraviolet radiation and endogenous agents (cytokines, hormones. Activity of the key melanogenic enzyme, tyrosinase, is also affected by pH and temperature. Many pharmacologically active substances are able to inhibit or stimulate melanin biosynthesis, as evidenced by in vitro studies on cultured pigment cells.

  4. RELATIONSHIP BETWEEN THE PROANGIOGENIC ROLE OF EG-VEGF, CLINICOPATHOLOGICAL CHARACTERISTICS AND SURVIVAL IN TUMORAL OVARY.

    Science.gov (United States)

    Lozneanu, Ludmila; Avădănei, Roxana; Cîmpean, Anca Maria; Giuşcă, Simona Eliza; Amălinei, Cornelia; Căruntu, Irina-Draga

    2015-01-01

    To prove the presence of EG-VEGF in tumor ovary and to analyze its involvement in the ovarian carcinogenesis, as promoter of angiogenesis, in relationship with the clinicopathological prognostic factors and survival. The study group comprises tumor tissue specimens from 50 cases of surgically treated ovarian cancer that were immunohistochemically investigated. A scoring system based on the percentage of positive cells and the intensity of staining was applied for the semiquantitative assessment of EG-VEGF, as negative or positive. Statistics involved χ2 test, and Kaplan-Meier and log-rank test. EG-VEGF was positive in 35 cases (70%) and negative in 15 cases (30%). Our data confirmed the predominance of EG-VEGF positivity in the serous subiype as compared to endometrioid and clear cell subtypes, and its absence in mucinous subtype. Moreover, we demonstrated that EG-VEGF is overexpressed mainly in high-grade ovarian carcinomas (type II) than in low-grade ones. Significant differences were registered between the EG-VEGF positive or negative expression and tumor stage and histological subtypes, respectively. Survival analysis showed no differences in patient's survival and EG-VEGF positive and negative cases. The analysis of EG-VEGF expression in ovarian tumors points out the relationship between the enhanced potential for tumor angiogenesis and the tumor aggressivity.

  5. The adapter protein, Grb10, is a positive regulator of vascular endothelial growth factor signaling.

    Science.gov (United States)

    Giorgetti-Peraldi, S; Murdaca, J; Mas, J C; Van Obberghen, E

    2001-07-05

    Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis and angiogenesis. Activation of VEGF receptors leads to the recruitment of SH2 containing proteins which link the receptors to the activation of signaling pathways. Here we report that Grb10, an adapter protein of which the biological role remains unknown, is tyrosine phosphorylated in response to VEGF in endothelial cells (HUVEC) and in 293 cells expressing the VEGF receptor KDR. An intact SH2 domain is required for Grb10 tyrosine phosphorylation in response to VEGF, and this phosphorylation is mediated in part through the activation of Src. In HUVEC, VEGF increases Grb10 mRNA level. Expression of Grb10 in HUVEC or in KDR expressing 293 cells results in an increase in the amount and in the tyrosine phosphorylation of KDR. In 293 cells, this is correlated with the activation of signaling molecules, such as MAP kinase. By expressing mutants of Grb10, we found that the positive action of Grb10 is independent of its SH2 domain. Moreover, these Grb10 effects on KDR seem to be specific since Grb10 has no effect on the insulin receptor, and Grb2, another adapter protein, does not mimic the effect of Grb10 on KDR. In conclusion, we propose that VEGF up-regulates Grb10 level, which in turn increases KDR molecules, suggesting that Grb10 could be involved in a positive feedback loop in VEGF signaling.

  6. Laminin promotes vascular network formation in 3D in vitro collagen scaffolds by regulating VEGF uptake.

    Science.gov (United States)

    Stamati, Katerina; Priestley, John V; Mudera, Vivek; Cheema, Umber

    2014-09-10

    Angiogenesis is an essential neovascularisation process, which if recapitulated in 3D in vitro, will provide better understanding of endothelial cell (EC) behaviour. Various cell types and growth factors are involved, with vascular endothelial growth factor (VEGF) and its receptors VEGFR1 and VEGFR2 key components. We were able to control the aggregation pattern of ECs in 3D collagen hydrogels, by varying the matrix composition and/or having a source of cells signalling angiogenic proteins. These aggregation patterns reflect the different developmental pathways that ECs take to form different sized tubular structures. Cultures with added laminin and thus increased expression of α6 integrin showed a significant increase (p3D. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Tumour cells expressing single VEGF isoforms display distinct growth, survival and migration characteristics.

    Directory of Open Access Journals (Sweden)

    Chryso Kanthou

    Full Text Available Vascular endothelial growth factor-A (VEGF is produced by most cancer cells as multiple isoforms, which display distinct biological activities. VEGF plays an undisputed role in tumour growth, vascularisation and metastasis; nevertheless the functions of individual isoforms in these processes remain poorly understood. We investigated the effects of three main murine isoforms (VEGF188, 164 and 120 on tumour cell behaviour, using a panel of fibrosarcoma cells we developed that express them individually under endogenous promoter control. Fibrosarcomas expressing only VEGF188 (fs188 or wild type controls (fswt were typically mesenchymal, formed ruffles and displayed strong matrix-binding activity. VEGF164- and VEGF120-producing cells (fs164 and fs120 respectively were less typically mesenchymal, lacked ruffles but formed abundant cell-cell contacts. On 3D collagen, fs188 cells remained mesenchymal while fs164 and fs120 cells adopted rounded/amoeboid and a mix of rounded and elongated morphologies respectively. Consistent with their mesenchymal characteristics, fs188 cells migrated significantly faster than fs164 or fs120 cells on 2D surfaces while contractility inhibitors accelerated fs164 and fs120 cell migration. VEGF164/VEGF120 expression correlated with faster proliferation rates and lower levels of spontaneous apoptosis than VEGF188 expression. Nevertheless, VEGF188 was associated with constitutively active/phosphorylated AKT, ERK1/2 and Stat3 proteins. Differences in proliferation rates and apoptosis could be explained by defective signalling downstream of pAKT to FOXO and GSK3 in fs188 and fswt cells, which also correlated with p27/p21 cyclin-dependent kinase inhibitor over-expression. All cells expressed tyrosine kinase VEGF receptors, but these were not active/activatable suggesting that inherent differences between the cell lines are governed by endogenous VEGF isoform expression through complex interactions that are independent of tyrosine

  8. DMPD: TLR pathways and IFN-regulatory factors: to each its own. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available Immunol. 2007 Feb;37(2):306-9. (.png) (.svg) (.html) (.csml) Show TLR pathways and IFN-regulatory factors: ...ng) SVG File (.svg) HTML File (.html) CSML File (.csml) Open .csml file with CIOPlayer Open .csml file with

  9. Vascular endothelial growth factor receptor-3 directly interacts with phosphatidylinositol 3-kinase to regulate lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Sanja Coso

    Full Text Available BACKGROUND: Dysfunctional lymphatic vessel formation has been implicated in a number of pathological conditions including cancer metastasis, lymphedema, and impaired wound healing. The vascular endothelial growth factor (VEGF family is a major regulator of lymphatic endothelial cell (LEC function and lymphangiogenesis. Indeed, dissemination of malignant cells into the regional lymph nodes, a common occurrence in many cancers, is stimulated by VEGF family members. This effect is generally considered to be mediated via VEGFR-2 and VEGFR-3. However, the role of specific receptors and their downstream signaling pathways is not well understood. METHODS AND RESULTS: Here we delineate the VEGF-C/VEGF receptor (VEGFR-3 signaling pathway in LECs and show that VEGF-C induces activation of PI3K/Akt and MEK/Erk. Furthermore, activation of PI3K/Akt by VEGF-C/VEGFR-3 resulted in phosphorylation of P70S6K, eNOS, PLCγ1, and Erk1/2. Importantly, a direct interaction between PI3K and VEGFR-3 in LECs was demonstrated both in vitro and in clinical cancer specimens. This interaction was strongly associated with the presence of lymph node metastases in primary small cell carcinoma of the lung in clinical specimens. Blocking PI3K activity abolished VEGF-C-stimulated LEC tube formation and migration. CONCLUSIONS: Our findings demonstrate that specific VEGFR-3 signaling pathways are activated in LECs by VEGF-C. The importance of PI3K in VEGF-C/VEGFR-3-mediated lymphangiogenesis provides a potential therapeutic target for the inhibition of lymphatic metastasis.

  10. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis

    DEFF Research Database (Denmark)

    Cao, Renhai; Ji, Hong; Feng, Ninghan

    2012-01-01

    Interplay between various lymphangiogenic factors in promoting lymphangiogenesis and lymphatic metastasis remains poorly understood. Here we show that FGF-2 and VEGF-C, two lymphangiogenic factors, collaboratively promote angiogenesis and lymphangiogenesis in the tumor microenvironment, leading...... endothelial cell tip cell formation is a prerequisite for FGF-2-stimulated lymphangiogenesis. In the tumor microenvironment, the reciprocal interplay between FGF-2 and VEGF-C collaboratively stimulated tumor growth, angiogenesis, intratumoral lymphangiogenesis, and metastasis. Thus, intervention and targeting...

  11. [Systemic safety following intravitreal injections of anti-VEGF].

    Science.gov (United States)

    Baillif, S; Levy, B; Girmens, J-F; Dumas, S; Tadayoni, R

    2018-03-01

    The goal of this manuscript is to assess data suggesting that intravitreal injection of anti-vascular endothelial growth factors (anti-VEGFs) could result in systemic adverse events (AEs). The class-specific systemic AEs should be similar to those encountered in cancer trials. The most frequent AE observed in oncology, hypertension and proteinuria, should thus be the most common expected in ophthalmology, but their severity should be lower because of the much lower doses of anti-VEGFs administered intravitreally. Such AEs have not been frequently reported in ophthalmology trials. In addition, pharmacokinetic and pharmacodynamic data describing systemic diffusion of anti-VEGFs should be interpreted with caution because of significant inconsistencies reported. Thus, safety data reported in ophthalmology trials and pharmacokinetic/pharmacodynamic data provide robust evidence that systemic events after intravitreal injection are very unlikely. Additional studies are needed to explore this issue further, as much remains to be understood about local and systemic side effects of anti-VEGFs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Mural cell associated VEGF is required for organotypic vessel formation.

    Directory of Open Access Journals (Sweden)

    Lasse Evensen

    Full Text Available BACKGROUND: Blood vessels comprise endothelial cells, mural cells (pericytes/vascular smooth muscle cells and basement membrane. During angiogenesis, mural cells are recruited to sprouting endothelial cells and define a stabilizing context, comprising cell-cell contacts, secreted growth factors and extracellular matrix components, that drives vessel maturation and resistance to anti-angiogenic therapeutics. METHODS AND FINDINGS: To better understand the basis for mural cell regulation of angiogenesis, we conducted high content imaging analysis on a microtiter plate format in vitro organotypic blood vessel system comprising primary human endothelial cells co-cultured with primary human mural cells. We show that endothelial cells co-cultured with mural cells undergo an extensive series of phenotypic changes reflective of several facets of blood vessel formation and maturation: Loss of cell proliferation, pathfinding-like cell migration, branching morphogenesis, basement membrane extracellular matrix protein deposition, lumen formation, anastamosis and development of a stabilized capillary-like network. This phenotypic sequence required endothelial-mural cell-cell contact, mural cell-derived VEGF and endothelial VEGFR2 signaling. Inhibiting formation of adherens junctions or basement membrane structures abrogated network formation. Notably, inhibition of mural cell VEGF expression could not be rescued by exogenous VEGF. CONCLUSIONS: These results suggest a unique role for mural cell-associated VEGF in driving vessel formation and maturation.

  13. Emerging vascular endothelial growth factor antagonists to treat neovascular age-related macular degeneration.

    Science.gov (United States)

    Hussain, Rehan M; Ciulla, Thomas A

    2017-09-01

    Evolving anti-vascular endothelial growth factor (VEGF) treatments for neovascular age-related macular degeneration (nAMD) include long acting agents, combination strategies involving new pathways, topical agents, sustained-release, and genetic therapy strategies. Areas covered: Brolucizumab and abicipar pegol have smaller molecular size, facilitating higher concentrations and potentially longer duration than current anti-VEGF agents. Agents being combined with anti-VEGFs include OPT-302 (to inhibit VEGF-C and VEGF-D); pegpleranib and rinucumab (to inhibit platelet derived growth factor, PDGF - but both failed to show consistently improved visual outcomes compared to anti-VEGF monotherapy); and RG7716, ARP-1536 and nesvacumab (to activate the Tie-2 tyrosine kinase receptor, which reduces permeability). X-82 is an oral anti-VEGF and anti-PDGF being tested in phase 2 studies. Topical anti-VEGF ± anti-PDGF drugs under study include pazopanib, PAN-90806, squalamine lactate, regorafinib, and LHA510. Sustained-release anti-VEGF delivery treatments, such as the ranibizumab Port Delivery System, GB-102, NT-503, hydrogel depot, Durasert, and ENV1305 aim to reduce the burden of frequent injections. Gene therapies with new viral vectors hold the potential to induce sustained expression of anti-angiogenic proteins via the retina's cellular apparatus, and include AVA-101/201, ADVM-202/302, AAV2-sFLT01, RGX314, and Retinostat. Expert opinion: There are many emerging anti-VEGF treatments that aim to improve visual outcomes and reduce the treatment burden of nAMD.

  14. VEGF and bFGF Gene Polymorphisms in Patients with Non-Hodgkin's Lymphoma

    Directory of Open Access Journals (Sweden)

    Tomasz Wróbel

    2013-01-01

    Full Text Available Angiogenesis and lymphangiogenesis are important in the proliferation and survival of the malignant hematopoietic neoplasms, including non-Hodgkin’s lymphomas (NHLs. Vascular endothelial growth factor (VEGF and basic fibroblast growth factor (bFGF play an important role in the initiation of angiogenesis. Both VEGF and bFGF have been reported to have prognostic significance in NHL. The present study aimed to determine an association between the VEGF and bFGF gene polymorphisms and disease susceptibility and progression. VEGF (rs3025039; 936 C>T and bFGF (rs308395, −921 G>C variants were determined in 78 NHL patients and 122 healthy individuals by PCR-RFLP technique. The presence of the VEGF 936T allele was found to significantly associate with worse prognosis of the disease (expressed by the highest International Prognostic Index (IPI (0.41 versus 0.20, for IPI 4 among patients having and lacking the T allele. The VEGF 936T variant was also more frequent among patients with IPI 4 than in controls (OR = 3.37, . The bFGF −921G variant was more frequently detected among patients with aggressive as compared to those with indolent histological subtype (0.37 versus 0.18, and healthy individuals (0.37 versus 0.19, OR = 2.51, . These results imply that VEGF and bFGF gene polymorphisms have prognostic significance in patients with NHL.

  15. Vibration induced hearing loss in guinea pig cochlea: expression of TNF-alpha and VEGF.

    Science.gov (United States)

    Zou, Jing; Pyykkö, Ilmari; Sutinen, Päivi; Toppila, Esko

    2005-04-01

    Transcranial vibration was applied for seven animals at a frequency of 250 Hz for 15 min, and five animals were used as normal controls to investigate cellular and molecular mechanism linked to vibration-induced hearing loss in animal model. Compound action potential (CAP) thresholds were measured by round window niche electrode. The expression of tumour necrosis factor alpha (TNF-alpha) and its receptors (TNF R1, TNF R2), vascular endothelium growth factor (VEGF) and its receptors (VEGF R1, VEGF R2) were analysed by immunohistochemistry. Transcranial vibration caused expression of TNF-alpha, TNF R1 and TNF R2 in the cochlea and the expression of TNF R2 was stronger than that of TNF R1. Vibration also induced VEGF and VEGF R2 expression in the cochlea. The average immediate hearing loss was 62 dB and after three days still 48 dB. It is concluded that transcranial vibration as during temporal bone drilling produces cochlear shear stress that is connected with up-regulation of TNF-alpha and its receptors. Also VEGF and VEGF R2 are up-regulated. These responses may be linked to both the damage and repair process of the cochlea.

  16. Expression and significance of HIF-1α and VEGF in rats with diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Hong-Tao Yan; Guan-Fang Su

    2014-01-01

    Objective:To investigate the expression of hypoxia inducible factor-1α(HIF-1α) and vascular endothelial growth factor(VEGF) in diabetic retinopathy(DR) rats and its effect on theDR occurrence and development.Methods:A total of120SD rats were randomly divided into trial group and control group with60 in each.STZi.p. was used in the trial group to establish theDM model, citrate buffer salt of same amount was usedi.p. to the control group.1,3 and6 months after injection, respective20 rats were sacrificed in each group to observe expression ofHIF-1α andVEGF in the rat retina tissue at different time points.Results:Expression ofHIF-1α andVEGF were negative in the control group; expression ofHIF-1α andVEGF protein in retinal tissue were weak after1 month ofDR mold formation.It showed progressive enhancement along with the progression in different organizations, differences between groups were significant (P<0.05).Conclusions:Expressions ofHIF-1α andVEGF were correlated with disease progression in early diabetic retinopathy.Retinal oxygen can induce over-expression ofHIF-1α andVEGF.It shows thatHIF-1α andVEGF play an important role in the pathogenesis ofDR.

  17. VEGF(121)b, a new member of the VEGF(xxx)b family of VEGF-A splice isoforms, inhibits neovascularisation and tumour growth in vivo.

    Science.gov (United States)

    Rennel, E S; Varey, A H R; Churchill, A J; Wheatley, E R; Stewart, L; Mather, S; Bates, D O; Harper, S J

    2009-10-06

    The key mediator of new vessel formation in cancer and other diseases is VEGF-A. VEGF-A exists as alternatively spliced isoforms - the pro-angiogenic VEGF(xxx) family generated by exon 8 proximal splicing, and a sister family, termed VEGF(xxx)b, exemplified by VEGF(165)b, generated by distal splicing of exon 8. However, it is unknown whether this anti-angiogenic property of VEGF(165)b is a general property of the VEGF(xxx)b family of isoforms. The mRNA and protein expression of VEGF(121)b was studied in human tissue. The effect of VEGF(121)b was analysed by saturation binding to VEGF receptors, endothelial migration, apoptosis, xenograft tumour growth, pre-retinal neovascularisation and imaging of biodistribution in tumour-bearing mice with radioactive VEGF(121)b. The existence of VEGF(121)b was confirmed in normal human tissues. VEGF(121)b binds both VEGF receptors with similar affinity as other VEGF isoforms, but inhibits endothelial cell migration and is cytoprotective to endothelial cells through VEGFR-2 activation. Administration of VEGF(121)b normalised retinal vasculature by reducing both angiogenesis and ischaemia. VEGF(121)b reduced the growth of xenografted human colon tumours in association with reduced microvascular density, and an intravenous bolus of VEGF(121)b is taken up into colon tumour xenografts. Here we identify a second member of the family, VEGF(121)b, with similar properties to those of VEGF(165)b, and underline the importance of the six amino acids of exon 8b in the anti-angiogenic activity of the VEGF(xxx)b isoforms.

  18. VEGF regulates TRPC6 channels in podocytes

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Loddenkemper, Christoph

    2012-01-01

    increased TRPC6 mRNA expression and TRPC6 protein levels. The effects of VEGF165 were dose dependent and could be blocked by phosphoinositide-3-kinase inhibitors. In the presence of cycloheximide, an inhibitor of protein biosynthesis, we did not observe an effect of VEGF on TRPC6 protein levels, indicating...

  19. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer

    Science.gov (United States)

    Willett, Christopher G; Boucher, Yves; di Tomaso, Emmanuelle; Duda, Dan G; Munn, Lance L; Tong, Ricky T; Chung, Daniel C; Sahani, Dushyant V; Kalva, Sanjeeva P; Kozin, Sergey V; Mino, Mari; Cohen, Kenneth S; Scadden, David T; Hartford, Alan C; Fischman, Alan J; Clark, Jeffrey W; Ryan, David P; Zhu, Andrew X; Blaszkowsky, Lawrence S; Chen, Helen X; Shellito, Paul C; Lauwers, Gregory Y; Jain, Rakesh K

    2009-01-01

    The effects of vascular endothelial growth factor (VEGF) blockade on the vascular biology of human tumors are not known. Here we show here that a single infusion of the VEGF-specific antibody bevacizumab decreases tumor perfusion, vascular volume, microvascular density, interstitial fluid pressure and the number of viable, circulating endothelial and progenitor cells, and increases the fraction of vessels with pericyte coverage in rectal carcinoma patients. These data indicate that VEGF blockade has a direct and rapid antivascular effect in human tumors. PMID:14745444

  20. EG-VEGF Maintenance Over Early Gestation to Develop a Pregnancy-Induced Hypertensive Animal Model.

    Science.gov (United States)

    Reynaud, Déborah; Sergent, Frédéric; Abi Nahed, Roland; Brouillet, Sophie; Benharouga, Mohamed; Alfaidy, Nadia

    2018-01-01

    During the last decade, multiple animal models have been developed to mimic hallmarks of pregnancy-induced hypertension (PIH) diseases, which include gestational hypertension, preeclampsia (PE), or eclampsia. Converging in vitro, ex vivo, and clinical studies from our group strongly suggested the potential involvement of the new angiogenic factor EG-VEGF (endocrine gland-derived-VEGF) in the development of PIH. Here, we described the protocol that served to demonstrate that maintenance of EG-VEGF production over 11.5 days post coitus (dpc) in the gravid mice caused the development of PIH. The developed model exhibited most hallmarks of preeclampsia.

  1. Expression and localization of tissue factor pathway inhibitor-2 in normal and atherosclerotic human vessels

    NARCIS (Netherlands)

    Crawley, James T. B.; Goulding, David A.; Ferreira, Valérie; Severs, Nicholas J.; Lupu, Florea

    2002-01-01

    Tissue factor pathway inhibitor-2 (TFPI-2) is a Kunitz-type, serine protease inhibitor with inhibitory activity toward activated factor XI, plasma kallikrein, plasmin, certain matrix metalloproteinases, and the tissue factor:activated factor VII complex. In this study, we investigated TFPI-2

  2. [VEGF expression in dog retina after chorioretinal venous anastomosis].

    Science.gov (United States)

    Lu, Ning; Li, Zhihui; Sun, Xianli; Wang, Guanglu; Zhang, Feng; Peng, Xiaoyan

    2002-09-01

    To identify changes in vascular endothelial growth factor (VEGF) expression in the dog retina after laser-induced chorioretinal venous anastomosis (CRVA), in order to find out the relationship between CRVA treatment and the related neovascular complications. Immediately after branch retinal vein occlusion (BRVO) model was made in 5 eyes of 5 normal dogs, CRVA treatment was done over a small tributary vein in the drainage distribution of the occluded vein. In each eye, there were 2 - 3 treatment sites. Four to six weeks later, a repeated treatment was given if the first treatment failed to show the anastomosis. The treatment sites with successful CRVA were divided into two groups: the small laser spot group, which received one treatment and the big laser spot group, which received more than one treatment. The expression of VEGF was investigated immunohistochemically in the treatment sites with successful anastomoses and in the 5 normal fellow eyes (control). There were totally 10 successful anastomoses in the 5 experimental eyes, among which, five received one treatment and the other 5 received more than one treatment. On fundus examination, the small laser spots were round and small, and the big laser spots were large with local proliferation. VEGF immunoreactivity was absent/weak in the normal dog retina, and remained unchanged in the small laser spot group, but somewhat increased in the big laser spot group. No neovascular complications occurred. All immunostaining experiments were accompanied by proper controls and none of the negative controls showed any immunoreactivity. Proper laser treatment can induce CRVA quite safely in nonischemic dog retina, which does not cause changes in the expression of VEGF, but severe laser damage in the treatment site can cause increased VEGF expression which may be related to neovascular complications.

  3. Protection of Vascular Endothelial Growth Factor to Brain Edema Following Intracerebral Hemorrhage and Its Involved Mechanisms: Effect of Aquaporin-4.

    Directory of Open Access Journals (Sweden)

    Heling Chu

    Full Text Available Vascular endothelial growth factor (VEGF has protective effects on many neurological diseases. However, whether VEGF acts on brain edema following intracerebral hemorrhage (ICH is largely unknown. Our previous study has shown aquaporin-4 (AQP4 plays an important role in brain edema elimination following ICH. Meanwhile, there is close relationship between VEGF and AQP4. In this study, we aimed to test effects of VEGF on brain edema following ICH and examine whether they were AQP4 dependent. Recombinant human VEGF165 (rhVEGF165 was injected intracerebroventricularly 1 d after ICH induced by microinjecting autologous whole blood into striatum. We detected perihemotomal AQP4 protein expression, then examined the effects of rhVEGF165 on perihemotomal brain edema at 1 d, 3 d, and 7 d after injection in wild type (AQP4(+/+ and AQP4 knock-out (AQP4(-/- mice. Furthermore, we assessed the possible signal transduction pathways activated by VEGF to regulate AQP4 expression via astrocyte cultures. We found perihemotomal AQP4 protein expression was highly increased by rhVEGF165. RhVEGF165 alleviated perihemotomal brain edema in AQP4(+/+ mice at each time point, but had no effect on AQP4(-/- mice. Perihemotomal EB extravasation was increased by rhVEGF165 in AQP4(-/- mice, but not AQP4(+/+ mice. RhVEGF165 reduced neurological deficits and increased Nissl's staining cells surrounding hemotoma in both types of mice and these effects were related to AQP4. RhVEGF165 up-regulated phospharylation of C-Jun amino-terminal kinase (p-JNK and extracellular signal-regulated kinase (p-ERK and AQP4 protein in cultured astrocytes. The latter was inhibited by JNK and ERK inhibitors. In conclusion, VEGF reduces neurological deficits, brain edema, and neuronal death surrounding hemotoma but has no influence on BBB permeability. These effects are closely related to AQP4 up-regulation, possibly through activating JNK and ERK pathways. The current study may present new insights to

  4. The growth and aggressive behavior of human osteosarcoma is regulated by a CaMKII-controlled autocrine VEGF signaling mechanism.

    Science.gov (United States)

    Daft, Paul G; Yang, Yang; Napierala, Dobrawa; Zayzafoon, Majd

    2015-01-01

    Osteosarcoma (OS) is a hyperproliferative malignant tumor that requires a high vascular density to maintain its large volume. Vascular Endothelial Growth Factor (VEGF) plays a crucial role in angiogenesis and acts as a paracrine and autocrine agent affecting both endothelial and tumor cells. The alpha-Ca2+/Calmodulin kinase two (α-CaMKII) protein is an important regulator of OS growth. Here, we investigate the role of α-CaMKII-induced VEGF in the growth and tumorigenicity of OS. We show that the pharmacologic and genetic inhibition of α-CaMKII results in decreases in VEGF gene expression (50%) and protein secretion (55%), while α- CaMKII overexpression increases VEGF gene expression (250%) and protein secretion (1,200%). We show that aggressive OS cells (143B) express high levels of VEGF receptor 2 (VEGFR-2) and respond to exogenous VEGF (100nm) by increasing intracellular calcium (30%). This response is ameliorated by the VEGFR inhibitor CBO-P11, suggesting that secreted VEGF results in autocrine stimulated α-CaMKII activation. Furthermore, we show that VEGF and α-CaMKII inhibition decreases the transactivation of the HIF-1α and AP-1 reporter constructs. Additionally, chromatin immunoprecipitation assay shows significantly decreased binding of HIF-1α and AP-1 to their responsive elements in the VEGF promoter. These data suggest that α-CaMKII regulates VEGF transcription by controlling HIF-1α and AP-1 transcriptional activities. Finally, CBO-P11, KN-93 (CaMKII inhibitor) and combination therapy significantly reduced tumor burden in vivo. Our results suggest that VEGF-induced OS tumor growth is controlled by CaMKII and dual therapy by CaMKII and VEGF inhibitors could be a promising therapy against this devastating adolescent disease.

  5. The growth and aggressive behavior of human osteosarcoma is regulated by a CaMKII-controlled autocrine VEGF signaling mechanism.

    Directory of Open Access Journals (Sweden)

    Paul G Daft

    Full Text Available Osteosarcoma (OS is a hyperproliferative malignant tumor that requires a high vascular density to maintain its large volume. Vascular Endothelial Growth Factor (VEGF plays a crucial role in angiogenesis and acts as a paracrine and autocrine agent affecting both endothelial and tumor cells. The alpha-Ca2+/Calmodulin kinase two (α-CaMKII protein is an important regulator of OS growth. Here, we investigate the role of α-CaMKII-induced VEGF in the growth and tumorigenicity of OS. We show that the pharmacologic and genetic inhibition of α-CaMKII results in decreases in VEGF gene expression (50% and protein secretion (55%, while α- CaMKII overexpression increases VEGF gene expression (250% and protein secretion (1,200%. We show that aggressive OS cells (143B express high levels of VEGF receptor 2 (VEGFR-2 and respond to exogenous VEGF (100nm by increasing intracellular calcium (30%. This response is ameliorated by the VEGFR inhibitor CBO-P11, suggesting that secreted VEGF results in autocrine stimulated α-CaMKII activation. Furthermore, we show that VEGF and α-CaMKII inhibition decreases the transactivation of the HIF-1α and AP-1 reporter constructs. Additionally, chromatin immunoprecipitation assay shows significantly decreased binding of HIF-1α and AP-1 to their responsive elements in the VEGF promoter. These data suggest that α-CaMKII regulates VEGF transcription by controlling HIF-1α and AP-1 transcriptional activities. Finally, CBO-P11, KN-93 (CaMKII inhibitor and combination therapy significantly reduced tumor burden in vivo. Our results suggest that VEGF-induced OS tumor growth is controlled by CaMKII and dual therapy by CaMKII and VEGF inhibitors could be a promising therapy against this devastating adolescent disease.

  6. Prokaryotic Soluble Overexpression and Purification of Human VEGF165 by Fusion to a Maltose Binding Protein Tag.

    Directory of Open Access Journals (Sweden)

    Minh Tan Nguyen

    Full Text Available Human vascular endothelial growth factor (VEGF is a key regulator of angiogenesis and plays a central role in the process of tumor growth and metastatic dissemination. Escherichia coli is one of the most common expression systems used for the production of recombinant proteins; however, expression of human VEGF in E. coli has proven difficult because the E. coli-expressed VEGF tends to be misfolded and forms inclusion bodies, resulting in poor solubility. In this study, we successfully produced semi-preparative amounts of soluble bioactive human VEGF165 (hVEGF. We created seven N-terminal fusion tag constructs with hexahistidine (His6, thioredoxin (Trx, glutathione S-transferase (GST, maltose-binding protein (MBP, N-utilization substance protein A (NusA, human protein disulfide isomerase (PDI, and the b'a' domain of PDI (PDIb'a', and tested each construct for soluble overexpression in E. coli. We found that at 18°C, 92.8% of the MBP-tagged hVEGF to be soluble and that this tag significantly increased the protein's solubility. We successfully purified 0.8 mg of pure hVEGF per 500 mL cell culture. The purified hVEGF is stable after tag cleavage, contains very low levels of endotoxin, and is 97.6% pure. Using an Flk1+ mesodermal precursor cell (MPC differentiation assay, we show that the purified hVEGF is not only bioactive but has similar bioactivity to hVEGF produced in mammalian cells. Previous reports on producing hVEGF in E. coli have all been based on refolding of the protein from inclusion bodies. To our knowledge, this is the first report on successfully expressing and purifying soluble hVEGF in E. coli.

  7. Improvement in autologous human fat transplant survival with SVF plus VEGF-PLA nano-sustained release microspheres.

    Science.gov (United States)

    Li, Liqun; Pan, Shengsheng; Ni, Binting; Lin, Yuanshao

    2014-08-01

    Early neovascularization is important for autologous fat transplant survival. SVF cells are ideal seed cells. Both vascular endothelial growth factor (VEGF) and SVF cells can promote neovascularization. However, the half-life (about 50 min) of VEGF is too short to sustain an adequate local concentration. We have investigated whether VEGF-polylactic acid (PLA) nano-sustained release microspheres plus SVF cells can improve neovascularization and survival of transplanted fat tissues. SVF cells were harvested and constructed VEGF-PLA nano-sustained release microspheres in vitro. Human fat tissues was mixed with SVF cells plus VEGF-PLA, SVF cells alone or Dulbecco's modified Eagle's medium as the control. These three mixtures were injected into random sites in 18 nude mice. Two months later, the transplants were weighed and examined histologically; and capillaries were counted to quantify neovascularization. Hematoxylin-eosin (HE) and anti-VEGF stains were applied to reveal cell infiltration. The mean wet weight of fat in the SVF plus VEGF-PLA, SVF alone, and control transplants were 0.18 ± 0.013 g, 0.16 ± 0.015 g, and 0.071 ± 0.12 g, respectively; the differences between groups were statistically significant. More vessels were present in the SVF plus VEGF-PLA transplants than in the other two types. Transplants mixed with SVF cells also had an acceptable density of capillaries. Histological analysis revealed that both the SVF plus VEGF-PLA and SVF alone transplants, but not the control transplants, were composed of adipose tissue, and had less fat necrosis and less fibrosis than control specimens. SVF plus VEGF-PLA transplants had significantly greater capillary density and VEGF expression than the other two transplant groups. Thus transplanted fat tissue survival and quality can be enhanced by the addition of VEGF-PLA nano-sustained release microspheres plus SVF cells. © 2014 International Federation for Cell Biology.

  8. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment.

    Science.gov (United States)

    Farajpour, Zahra; Rahbarizadeh, Fatemeh; Kazemi, Bahram; Ahmadvand, Davoud

    2014-03-28

    Compelling evidence suggests that vascular endothelial growth factor (VEGF), due to its essential role in angiogenesis, is a critical target for cancer treatment. Neutralizing monoclonal antibodies against VEGF are important class of drugs used in cancer therapy. However, the cost of production, large size, and immunogenicity are main drawbacks of conventional monoclonal therapy. Nanobodies are the smallest antigen-binding antibody fragments, which occur naturally in camelidae. Because of their remarkable features, we decided to use an immune library of nanobody to direct phage display to recognition of novel functional epitopes on VEGF. Four rounds of selection were performed and six phage-displayed nanobodies were obtained from an immune phage library. The most reactive clone in whole-cell ELISA experiments, was purified and assessed in proliferation inhibition assay. Purified ZFR-5 not only blocked interaction of VEGF with its receptor in cell ELISA experiments, but also was able to significantly inhibit proliferation response of human umbilical vein endothelial cells to VEGF in a dose-dependent manner. Taken together, our study demonstrates that by using whole-cell ELISA experiments, nanobodies against antigenic regions included in interaction of VEGF with its receptors can be directed. Because of unique and intrinsic properties of a nanobody and the ability of selected nanobody for blocking the epitope that is important for biological function of VEGF, it represents novel potential drug candidate. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Increased expression of EMMPRIN and VEGF in the rat brain after gamma irradiation.

    Science.gov (United States)

    Wei, Ming; Li, Hong; Huang, Huiling; Xu, Desheng; Zhi, Dashi; Liu, Dong; Zhang, Yipei

    2012-03-01

    The extracellular matrix metalloproteinase inducer (EMMPRIN) has been known to play a key regulatory role in pathological angiogenesis. A elevated activation of vascular endothelial growth factor (VEGF) following radiation injury has been shown to mediate blood-brain barrier (BBB) breakdown. However, the roles of EMMPRIN and VEGF in radiation-induced brain injury after gamma knife surgery (GKS) are not clearly understood. In this study, we investigated EMMPRIN changes in a rat model of radiation injury following GKS and examined potential associations between EMMPRIN and VEGF expression. Adult male rats were subjected to cerebral radiation injury by GKS under anesthesia. We found that EMMPRIN and VEGF expression were markedly upregulated in the target area at 8-12 weeks after GKS compared with the control group by western blot, immunohistochemistry, and RT-PCR analysis. Immunofluorescent double staining demonstrated that EMMPRIN signals colocalized with caspase-3 and VEGF-positive cells. Our data also demonstrated that increased EMMPRIN expression was correlated with increased VEGF levels in a temporal manner. This is the first study to show that EMMPRIN and VEGF may play a role in radiation injuries of the central nervous system after GKS.

  10. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    International Nuclear Information System (INIS)

    Sun, Jinqiao; Sha, Bin; Zhou, Wenhao; Yang, Yi

    2010-01-01

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  11. Intravitreally Injected Anti-VEGF Antibody Reduces Brown Fat in Neonatal Mice.

    Science.gov (United States)

    Jo, Dong Hyun; Park, Sung Wook; Cho, Chang Sik; Powner, Michael B; Kim, Jin Hyoung; Fruttiger, Marcus; Kim, Jeong Hun

    2015-01-01

    Anti-vascular endothelial growth factor (VEGF) agents are the mainstay treatment for various angiogenesis-related retinal diseases. Currently, bevacizumab, a recombinant humanized anti-VEGF antibody, is trailed in retinopathy of prematurity, a vasoproliferative retinal disorder in premature infants. However, the risks of systemic complications after intravitreal injection of anti-VEGF antibody in infants are not well understood. In this study, we show that intravitreally injected anti-VEGF antibody is transported into the systemic circulation into the periphery where it reduces brown fat in neonatal C57BL/6 mice. A considerable amount of anti-VEGF antibody was detected in serum after intravitreal injection. Furthermore, in interscapular brown adipose tissue, we found lipid droplet accumulation, decreased VEGF levels, loss of vascular network, and decreased expression of mitochondria-related genes, Ppargc1a and Ucp1, all of which are characteristics of "whitening" of brown fat. With increasing age and body weight, brown fat restored its morphology and vascularity. Our results show that there is a transient, but significant impact of intravitreally administered anti-VEGF antibody on brown adipose tissue in neonatal mice. We suggest that more attention should be focused on the metabolic and developmental significance of brown adipose tissue in bevacizumab treated retinopathy of prematurity infants.

  12. Intravitreally Injected Anti-VEGF Antibody Reduces Brown Fat in Neonatal Mice.

    Directory of Open Access Journals (Sweden)

    Dong Hyun Jo

    Full Text Available Anti-vascular endothelial growth factor (VEGF agents are the mainstay treatment for various angiogenesis-related retinal diseases. Currently, bevacizumab, a recombinant humanized anti-VEGF antibody, is trailed in retinopathy of prematurity, a vasoproliferative retinal disorder in premature infants. However, the risks of systemic complications after intravitreal injection of anti-VEGF antibody in infants are not well understood. In this study, we show that intravitreally injected anti-VEGF antibody is transported into the systemic circulation into the periphery where it reduces brown fat in neonatal C57BL/6 mice. A considerable amount of anti-VEGF antibody was detected in serum after intravitreal injection. Furthermore, in interscapular brown adipose tissue, we found lipid droplet accumulation, decreased VEGF levels, loss of vascular network, and decreased expression of mitochondria-related genes, Ppargc1a and Ucp1, all of which are characteristics of "whitening" of brown fat. With increasing age and body weight, brown fat restored its morphology and vascularity. Our results show that there is a transient, but significant impact of intravitreally administered anti-VEGF antibody on brown adipose tissue in neonatal mice. We suggest that more attention should be focused on the metabolic and developmental significance of brown adipose tissue in bevacizumab treated retinopathy of prematurity infants.

  13. Primary Cilium-Regulated EG-VEGF Signaling Facilitates Trophoblast Invasion.

    Science.gov (United States)

    Wang, Chia-Yih; Tsai, Hui-Ling; Syu, Jhih-Siang; Chen, Ting-Yu; Su, Mei-Tsz

    2017-06-01

    Trophoblast invasion is an important event in embryo implantation and placental development. During these processes, endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is the key regulator mediating the crosstalk at the feto-maternal interface. The primary cilium is a cellular antenna receiving environmental signals and is crucial for proper development. However, little is known regarding the role of the primary cilium in early human pregnancy. Here, we demonstrate that EG-VEGF regulates trophoblast cell invasion via primary cilia. We found that EG-VEGF activated ERK1/2 signaling and subsequent upregulation of MMP2 and MMP9, thereby facilitating cell invasion in human trophoblast HTR-8/SVneo cells. Inhibition of ERK1/2 alleviated the expression of MMPs and trophoblast cell invasion after EG-VEGF treatment. In addition, primary cilia were observed in all the trophoblast cell lines tested and, more importantly, in human first-trimester placental tissue. The receptor of EG-VEGF, PROKR1, was detected in primary cilia. Depletion of IFT88, the intraflagellar transporter required for ciliogenesis, inhibited primary cilium growth, thereby ameliorating ERK1/2 activation, MMP upregulation, and trophoblast cell invasion promoted by EG-VEGF. These findings demonstrate a novel function of primary cilia in controlling EG-VEGF-regulated trophoblast invasion and reveal the underlying molecular mechanism. J. Cell. Physiol. 232: 1467-1477, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration

    International Nuclear Information System (INIS)

    Xiao Caiwen; Zhou Huifang; Fu Yao; Gu Ping; Fan Xianqun; Liu Guangpeng; Zhang Peng; Hou Hongliang; Tang Tingting

    2011-01-01

    Bone graft substitutes with osteogenic factors alone often exhibit poor bone regeneration due to inadequate vascularization. Combined delivery of osteogenic and angiogenic factors from biodegradable scaffolds may enhance bone regeneration. We evaluated the effects of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF), combined with natural coral scaffolds, on the repair of critical-sized bone defects in rabbit orbits. In vitro expanded rabbit bone marrow stromal cells (BMSCs) were transfected with human BMP2 and VEGF165 genes. Target protein expression and osteogenic differentiation were confirmed after gene transduction. Rabbit orbital defects were treated with a coral scaffold loaded with BMP2-transduced and VEGF-transduced BMSCs, BMP2-expressing BMSCs, VEGF-expressing BMSCs, or BMSCs without gene transduction. Volume and density of regenerated bone were determined by micro-computed tomography at 4, 8, and 16 weeks after implantation. Neovascularity, new bone deposition rate, and new bone formation were measured by immunostaining, tetracycline and calcein labelling, and histomorphometric analysis at different time points. The results showed that VEGF increased blood vessel formation relative to groups without VEGF. Combined delivery of BMP2 and VEGF increased new bone deposition and formation, compared with any single factor. These findings indicate that mimicking the natural bone development process by combined BMP2 and VEGF delivery improves healing of critical-sized orbital defects in rabbits.

  15. VEGF system expression by immunohistochemistry and real-time RT-PCR study on collared peccary placenta

    DEFF Research Database (Denmark)

    Santos, Tatiana C.; Oliveira, Moacir F.; Papa, Paula C.

    2014-01-01

    Vascular endothelial growth factor (VEGF) is known to induce endothelial cell proliferation, to promote cell migration, and to inhibit apoptosis, thus playing a central role in angiogenesis and in the regulation of vasculogenesis. The expression of the VEGF-ligand receptor system was studied in t...

  16. Estimation of Immunohistochemical Expression of VEGF in Ductal Carcinomas of the Breast

    DEFF Research Database (Denmark)

    Maae, Else; Nielsen, Martin; Dahl Steffensen, Karina

    2012-01-01

    Introduction: Vascular endothelial growth factor A (VEGF-A) is a very important growth factor in angiogenesis and holds the potential as both a predictive marker for anti-angiogenic cancer treatment and as a prognostic variable. Consequently, reliable estimation of VEGF expression is crucial...... an automated method for analyzing VEGF expression (so-called AI score) using the same tumor sections. Analysis of 100% of the tumor area was performed and the results were compared to the reduced analysis of 25% of the tumor area. These analyses were performed at 5x and 10x magnification and each analysis...... was repeated in a second run with a new delineation of the tumor area. Results: We found that the AI scores were correlated to the manual scoring of VEGF intensity, but the reproducibility of manual IHC scores was rather poor. The AI scores were reproducible and the restricted analysis of 25% of the tumor area...

  17. A compartment model of VEGF distribution in humans in the presence of soluble VEGF receptor-1 acting as a ligand trap.

    Directory of Open Access Journals (Sweden)

    Florence T H Wu

    Full Text Available Vascular endothelial growth factor (VEGF, through its activation of cell surface receptor tyrosine kinases including VEGFR1 and VEGFR2, is a vital regulator of stimulatory and inhibitory processes that keep angiogenesis--new capillary growth from existing microvasculature--at a dynamic balance in normal physiology. Soluble VEGF receptor-1 (sVEGFR1--a naturally-occurring truncated version of VEGFR1 lacking the transmembrane and intracellular signaling domains--has been postulated to exert inhibitory effects on angiogenic signaling via two mechanisms: direct sequestration of angiogenic ligands such as VEGF; or dominant-negative heterodimerization with surface VEGFRs. In pre-clinical studies, sVEGFR1 gene and protein therapy have demonstrated efficacy in inhibiting tumor angiogenesis; while in clinical studies, sVEGFR1 has shown utility as a diagnostic or prognostic marker in a widening array of angiogenesis-dependent diseases. Here we developed a novel computational multi-tissue model for recapitulating the dynamic systemic distributions of VEGF and sVEGFR1. Model features included: physiologically-based multi-scale compartmentalization of the human body; inter-compartmental macromolecular biotransport processes (vascular permeability, lymphatic drainage; and molecularly-detailed binding interactions between the ligand isoforms VEGF(121 and VEGF(165, signaling receptors VEGFR1 and VEGFR2, non-signaling co-receptor neuropilin-1 (NRP1, as well as sVEGFR1. The model was parameterized to represent a healthy human subject, whereupon we investigated the effects of sVEGFR1 on the distribution and activation of VEGF ligands and receptors. We assessed the healthy baseline stability of circulating VEGF and sVEGFR1 levels in plasma, as well as their reliability in indicating tissue-level angiogenic signaling potential. Unexpectedly, simulated results showed that sVEGFR1 - acting as a diffusible VEGF sink alone, i.e., without sVEGFR1-VEGFR heterodimerization

  18. VEGF-C Is a Thyroid Marker of Malignancy Superior to VEGF-A in the Differential Diagnostics of Thyroid Lesions.

    Directory of Open Access Journals (Sweden)

    Kosma Woliński

    Full Text Available Thyroid nodular goiter is one of the most common medical conditions affecting even over a half of adult population. The risk of malignancy is rather small but noticeable-estimated by numerous studies to be about 3-10%. The definite differentiation between benign and malignant ones is a vital issue in endocrine practice. The aim of the current study was to assess the expression of vascular endothelial growth factor A (VEGF-A and VEGF-C on the mRNA level in FNAB washouts in case of benign and malignant thyroid nodules and to evaluate the diagnostic value of these markers of malignancy.Patients undergoing fine-needle aspiration biopsy (FNAB in our department between January 2013 and May 2014 were included. In case of all patients who gave the written consent, after ultrasonography (US and fine-needle aspiration biopsy (FNAB performed as routine medical procedure the needle was flushed with RNA Later solution, the washouts were frozen in -80 Celsius degrees. Expression of VEGF-A and VEGF-C and GADPH (reference gene was assessed in washouts on the mRNA level using the real-time PCR technique. Probes of patients who underwent subsequent thyroidectomy and were diagnosed with differentiated thyroid cancer (DTC; proved by post-surgical histopathology were analyzed. Similar number of patients with benign cytology were randomly selected to be a control group.Thirty one DTCs and 28 benign thyroid lesions were analyzed. Expression of VEGF-A was insignificantly higher in patients with DTCs (p = 0.13. Expression of VEGF-C was significantly higher in patients with DTC. The relative expression of VEGF-C (in comparison with GAPDH was 0.0049 for DTCs and 0.00070 for benign lesions, medians - 0.0036 and 0.000024 respectively (p<0.0001.Measurement of expression VEGF-C on the mRNA level in washouts from FNAB is more useful than more commonly investigated VEGF-A. Measurement of VEGF-C in FNAB washouts do not allow for fully reliable differentiation of benign and

  19. Excess HB-EGF, which promotes VEGF signaling, leads to hydrocephalus

    Science.gov (United States)

    Shim, Joon W.; Sandlund, Johanna; Hameed, Mustafa Q.; Blazer-Yost, Bonnie; Zhou, Feng C.; Klagsbrun, Michael; Madsen, Joseph R.

    2016-01-01

    Heparin binding epidermal growth factor-like growth factor (HB-EGF) is an angiogenic factor mediating radial migration of the developing forebrain, while vascular endothelial growth factor (VEGF) is known to influence rostral migratory stream in rodents. Cell migratory defects have been identified in animal models of hydrocephalus; however, the relationship between HB-EGF and hydrocephalus is unclear. We show that mice overexpressing human HB-EGF with β-galactosidase reporter exhibit an elevated VEGF, localization of β-galactosidase outside the subventricular zone (SVZ), subarachnoid hemorrhage, and ventriculomegaly. In Wistar polycystic kidney rats with hydrocephalus, alteration of migratory trajectory is detected. Furthermore, VEGF infusions into the rats result in ventriculomegaly with an increase of SVZ neuroblast in rostral migratory stream, whereas VEGF ligand inhibition prevents it. Our results support the idea that excess HB-EGF leads to a significant elevation of VEGF and ventricular dilatation. These data suggest a potential pathophysiological mechanism that elevated HB-EGF can elicit VEGF induction and hydrocephalus. PMID:27243144

  20. Anti-tumor effects of ONC201 in combination with VEGF-inhibitors significantly impacts colorectal cancer growth and survival in vivo through complementary non-overlapping mechanisms.

    Science.gov (United States)

    Wagner, Jessica; Kline, C Leah; Zhou, Lanlan; Khazak, Vladimir; El-Deiry, Wafik S

    2018-01-22

    Small molecule ONC201 is an investigational anti-tumor agent that upregulates intra-tumoral TRAIL expression and the integrated stress response pathway. A Phase I clinical trial using ONC201 therapy in advanced cancer patients has been completed and the drug has progressed into Phase II trials in several cancer types. Colorectal cancer (CRC) remains one of the leading causes of cancer worldwide and metastatic disease has a poor prognosis. Clinical trials in CRC and other tumor types have demonstrated that therapeutics targeting the vascular endothelial growth factor (VEGF) pathway, such as bevacizumab, are effective in combination with certain chemotherapeutic agents. We investigated the potential combination of VEGF inhibitors such as bevacizumab and its murine-counterpart; along with other anti-angiogenic agents and ONC201 in both CRC xenograft and patient-derived xenograft (PDX) models. We utilized non-invasive imaging and immunohistochemistry to determine potential mechanisms of action. Our results demonstrate significant tumor regression or complete tumor ablation in human xenografts with the combination of ONC201 with bevacizumab, and in syngeneic MC38 colorectal cancer xenografts using a murine VEGF-A inhibitor. Imaging demonstrated the impact of this combination on decreasing tumor growth and tumor metastasis. Our results indicate that ONC201 and anti-angiogenic agents act through distinct mechanisms while increasing tumor cell death and inhibiting proliferation. With the use of both a murine VEGF inhibitor in syngeneic models, and bevacizumab in human cell line-derived xenografts, we demonstrate that ONC201 in combination with anti-angiogenic therapies such as bevacizumab represents a promising approach for further testing in the clinic for the treatment of CRC.

  1. VEGF-A/NRP1 stimulates GIPC1 and Syx complex formation to promote RhoA activation and proliferation in skin cancer cells

    Directory of Open Access Journals (Sweden)

    Ayumi Yoshida

    2015-09-01

    Full Text Available Neuropilin-1 (NRP1 has been identified as a VEGF-A receptor. DJM-1, a human skin cancer cell line, expresses endogenous VEGF-A and NRP1. In the present study, the RNA interference of VEGF-A or NRP1 suppressed DJM-1 cell proliferation. Furthermore, the overexpression of the NRP1 wild type restored shNRP1-treated DJM-1 cell proliferation, whereas NRP1 cytoplasmic deletion mutants did not. A co-immunoprecipitation analysis revealed that VEGF-A induced interactions between NRP1 and GIPC1, a scaffold protein, and complex formation between GIPC1 and Syx, a RhoGEF. The knockdown of GIPC1 or Syx reduced active RhoA and DJM-1 cell proliferation without affecting the MAPK or Akt pathway. C3 exoenzyme or Y27632 inhibited the VEGF-A-induced proliferation of DJM-1 cells. Conversely, the overexpression of the constitutively active form of RhoA restored the proliferation of siVEGF-A-treated DJM-1 cells. Furthermore, the inhibition of VEGF-A/NRP1 signaling upregulated p27, a CDK inhibitor. A cell-penetrating oligopeptide that targeted GIPC1/Syx complex formation inhibited the VEGF-A-induced activation of RhoA and suppressed DJM-1 cell proliferation. In conclusion, this new signaling pathway of VEGF-A/NRP1 induced cancer cell proliferation by forming a GIPC1/Syx complex that activated RhoA to degrade the p27 protein.

  2. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment

    International Nuclear Information System (INIS)

    Farajpour, Zahra; Rahbarizadeh, Fatemeh; Kazemi, Bahram; Ahmadvand, Davoud

    2014-01-01

    Highlights: • A novel nanobody directed to antigenic regions on VEGF was identified. • Our nanobody was successfully purified. • Our nanobody significantly inhibited VEGF-induced proliferation of HUVECs in a dose dependent manner. - Abstract: Compelling evidence suggests that vascular endothelial growth factor (VEGF), due to its essential role in angiogenesis, is a critical target for cancer treatment. Neutralizing monoclonal antibodies against VEGF are important class of drugs used in cancer therapy. However, the cost of production, large size, and immunogenicity are main drawbacks of conventional monoclonal therapy. Nanobodies are the smallest antigen-binding antibody fragments, which occur naturally in camelidae. Because of their remarkable features, we decided to use an immune library of nanobody to direct phage display to recognition of novel functional epitopes on VEGF. Four rounds of selection were performed and six phage-displayed nanobodies were obtained from an immune phage library. The most reactive clone in whole-cell ELISA experiments, was purified and assessed in proliferation inhibition assay. Purified ZFR-5 not only blocked interaction of VEGF with its receptor in cell ELISA experiments, but also was able to significantly inhibit proliferation response of human umbilical vein endothelial cells to VEGF in a dose-dependent manner. Taken together, our study demonstrates that by using whole-cell ELISA experiments, nanobodies against antigenic regions included in interaction of VEGF with its receptors can be directed. Because of unique and intrinsic properties of a nanobody and the ability of selected nanobody for blocking the epitope that is important for biological function of VEGF, it represents novel potential drug candidate

  3. Expression and significance of VEGF, CD34, Ki-67 and p21 in pterygium

    Directory of Open Access Journals (Sweden)

    Li-Bo Wang

    2014-07-01

    Full Text Available AIM: To investigate the expression of VEGF, CD34, Ki-67 and p21 in pterygium as well as the correlation between their expression and clinical pathological characteristics; explore its pathogenesis. METHODS: Immunohistochemical S-P staining method was adopted in detecting the expression of VEGF, CD34, Ki-67 and p21 in 62 cases of pterygia and 20 cases of normal conjunctival tissues. Relationship between these markers and clinical pathological characteristics was analyzed. RESULTS:(1The positive expression of VEGF, CD34, Ki-67 and p21 in 62 cases of pterygia was 74.2%(46/62, 77.4%(48/62, 66.1%(41/62and 40.3%(25/62respectively. The differences were statistically significant compared with normal conjunctival tissues(PPP>0.05; the expression of Ki-67 was correlated with clinical stages(PP>0.05; the expression of p21 was correlated with clinical stages and pterygium characters(PP>0.05.(3Spearman correlation showed that there was a positive correlation between VEGF and Ki-67(r=0.279, Pr=0.299, Pr=-0.267, PP>0.05.CONCLUSION:(1Overexpression of VEGF, Ki-67, CD34 and low expression of p21 suggest that these markers are concerned with the development and progression of pterygium.(2Expression of VEGF and CD34 increases along with the increase of clinical types and stages, expression of Ki-67 increases along with the increase of clinical stages, and expression of p21 decreases along with the improvement of clinical types or stages; they suggest that these markers may play important roles in the development and recurrence of pterygium.(3There is positive correlation between VEGF and Ki-67, VEGF and CD34 as well as negative correlation between VEGF and p21. They suggest that there may be synergistic action between two factors during the development and progression of pterygium.

  4. Hypoxia induced VEGF synthesis in visceral adipose depots of obese diabetic patients.

    Science.gov (United States)

    Fusaru, Ana Marina; Pisoschi, Cătălina Gabriela; Bold, Adriana; Taisescu, C; Stănescu, R; Hîncu, Mihaela; Crăiţoiu, Stefania; Baniţă, Ileana Monica

    2012-01-01

    VEGF is one the pro-inflammatory adipokines synthesized by the "adipose secretoma" of obese subjects as a response to hypoxic conditions; but the main function of VEGF is angiogenesis, being recognized as the most important factor increasing blood capillaries in the adipose tissue by stimulating endothelial cell growth. In this paper, we propose a comparative study of the vascular response to VEGF synthesis in the subcutaneous and central-peritoneal adipose depots in lean, obese and obese diabetic patients. We used CD31 to label the endothelial cells in order to evaluate the response of the vascular network to VEGF synthesis. Our results showed an increase of VEGF protein synthesis in obese and obese-diabetic patients compared to lean subjects where the protein was absent. The positivity for VEGF in obese diabetic samples was observed in numerous structures from the adipose depots, both in the stromal vascular fraction--blood vessels and stromal cells--as well as in the cytoplasm of adipocytes. Positivity in the vascular wall was observed more frequently in areas of perivascular and intralobular fibrosis. Obese and diabetic patients showed similar incidence of CD31 immunoreactivity with lean subjects in both subcutaneous and peritoneal depots. In conclusion, human adipose depots show a different incidence of VEGF positive cells in relation with their disposal and the metabolic status. VEGF synthesis in visceral adipose tissue is inefficient being not followed by angiogenesis to counterbalance tissue hypoxia. We suggest that may be a pathogenic link between the degrees of intralobular fibrosis in adipose depots and VEGF expression.

  5. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Farajpour, Zahra [Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahbarizadeh, Fatemeh, E-mail: rahbarif@modares.ac.ir [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Kazemi, Bahram [Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ahmadvand, Davoud [School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-03-28

    Highlights: • A novel nanobody directed to antigenic regions on VEGF was identified. • Our nanobody was successfully purified. • Our nanobody significantly inhibited VEGF-induced proliferation of HUVECs in a dose dependent manner. - Abstract: Compelling evidence suggests that vascular endothelial growth factor (VEGF), due to its essential role in angiogenesis, is a critical target for cancer treatment. Neutralizing monoclonal antibodies against VEGF are important class of drugs used in cancer therapy. However, the cost of production, large size, and immunogenicity are main drawbacks of conventional monoclonal therapy. Nanobodies are the smallest antigen-binding antibody fragments, which occur naturally in camelidae. Because of their remarkable features, we decided to use an immune library of nanobody to direct phage display to recognition of novel functional epitopes on VEGF. Four rounds of selection were performed and six phage-displayed nanobodies were obtained from an immune phage library. The most reactive clone in whole-cell ELISA experiments, was purified and assessed in proliferation inhibition assay. Purified ZFR-5 not only blocked interaction of VEGF with its receptor in cell ELISA experiments, but also was able to significantly inhibit proliferation response of human umbilical vein endothelial cells to VEGF in a dose-dependent manner. Taken together, our study demonstrates that by using whole-cell ELISA experiments, nanobodies against antigenic regions included in interaction of VEGF with its receptors can be directed. Because of unique and intrinsic properties of a nanobody and the ability of selected nanobody for blocking the epitope that is important for biological function of VEGF, it represents novel potential drug candidate.

  6. Up-regulation of VEGF and its receptor in refractory leukemia cells

    OpenAIRE

    Wang, Lei; Zhang, Wenjun; Ding, Yi; Xiu, Bing; Li, Ping; Dong, Yan; Zhu, Qi; Liang, Aibin

    2015-01-01

    Objective: To analyze the causative mechanisms in refractory leukemia cells. Methods: Vascular endothelial growth factor (VEGF) blood plasma concentrations in 35 de novo, 6 relapse, 20 remission leukemia patients and 10 healthy kids were determined via ELISA analyses. Transcription levels of the VEGF receptors (VEGFR) Fms-like tyrosine kinase-1 (Flt-1) and kinase-domain insert containing receptor (KDR) were determined in participants’ leucocytes with RT-PCR. Apoptosis rates as well as Cyt-C a...

  7. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium

    OpenAIRE

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J.; Wiegand, Stanley J.; Rabinovitch, Marlene; Druzin, Maurice L.; Brenner, Robert M.; Giudice, Linda C.; Nayak, Nihar R.

    2008-01-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that ...

  8. VEGF Correlates with Inflammation and Fibrosis in Tuberculous Pleural Effusion

    OpenAIRE

    Bien, Mauo-Ying; Wu, Ming-Ping; Chen, Wei-Lin; Chung, Chi-Li

    2015-01-01

    Objective. To investigate the relationship among angiogenic cytokines, inflammatory markers, and fibrinolytic activity in tuberculous pleural effusion (TBPE) and their clinical importance. Methods. Forty-two patients diagnosed with TBPE were studied. Based on chest ultrasonography, there were 26 loculated and 16 nonloculated TBPE patients. The effusion size radiological scores and effusion vascular endothelial growth factor (VEGF), interleukin- (IL-) 8, plasminogen activator inhibitor type-1 ...

  9. BDNF and VEGF in the pathogenesis of stress-induced affective diseases: an insight from experimental studies.

    Science.gov (United States)

    Nowacka, Marta; Obuchowicz, Ewa

    2013-01-01

    Stress is known to play an important role in etiology, development and progression of affective diseases. Especially, chronic stress, by initiating changes in the hypothalamic-pituitary-adrenal axis (HPA), neurotransmission and the immune system, acts as a trigger for affective diseases. It has been reported that the rise in the concentration of pro-inflammatory cytokines and persistent up-regulation of glucocorticoid expression in the brain and periphery increases the excitotoxic effect on CA3 pyramidal neurons in the hippocampus resulting in dendritic atrophy, apoptosis of neurons and possibly inhibition of neurogenesis in adult brain. Stress was observed to disrupt neuroplasticity in the brain, and growing evidence demonstrates its role in the pathomechanism of affective disorders. Experimental studies indicate that a well-known brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) which have recently focused increasing attention of neuroscientists, promote cell survival, positively modulate neuroplasticity and hippocampal neurogenesis. In this paper, we review the alterations in BDNF and VEGF pathways induced by chronic and acute stress, and their relationships with HPA axis activity. Moreover, behavioral effects evoked in rodents by both above-mentioned factors and the effects consequent to their deficit are presented. Biochemical as well as behavioral findings suggest that BDNF and VEGF play an important role as components of cascade of changes in the pathomechanism of stress-induced affective diseases. Further studies on the mechanisms regulating their expression in stress conditions are needed to better understand the significance of trophic hypothesis of stress-induced affective diseases.

  10. Tissue Factor and Tissue Factor Pathway Inhibitor in the Wound-Healing Process After Neurosurgery.

    Science.gov (United States)

    Ślusarz, Robert; Głowacka, Mariola; Biercewicz, Monika; Barczykowska, Ewa; Haor, Beata; Rość, Danuta; Gadomska, Grażyna

    2016-03-01

    The aim of the study was to assess the concentrations of tissue factor (TF) and tissue factor pathway inhibitor (TFPI) in the blood of patients with a postoperative wound after neurosurgery. Participants included 20 adult patients who underwent neurosurgery because of degenerative spine changes. The concentration of TF and TFPI in the patients' blood serum was measured 3 times: before surgery, during the first 24 hr after surgery, and between the 5th and 7th days after surgery. The control group comprised 20 healthy volunteers similar to the patient group with respect to gender and age. A statistically significant difference was observed between TF concentration at all three measurement time points in the research group and TF concentration in the control group (p = .018, p = .010, p = .001). A statistically significant difference was found between TFPI concentration at the second time point in the research group and TFPI concentration in the control group (p = .041). No statistically significant within-subject difference was found between TF concentrations before and after surgery. A statistically significant within-subject difference was found between TFPI concentrations within 24 hr after surgery and 5-7 days after surgery (p = .004). High perioperative concentrations of TF indicate not only the presence of thrombophilia but also the importance of TF in the wound-healing process. Perioperative changes in TFPI concentrations are related to its compensatory influence on hemostasis in thrombophilic conditions. © The Author(s) 2015.

  11. Clinical procedure for colon carcinoma tissue sampling directly affects the cancer marker-capacity of VEGF family members

    International Nuclear Information System (INIS)

    Pringels, Sarah; Van Damme, Nancy; De Craene, Bram; Pattyn, Piet; Ceelen, Wim; Peeters, Marc; Grooten, Johan

    2012-01-01

    mRNA levels of members of the Vascular Endothelial Growth Factor family (VEGF-A, -B, -C, -D, Placental Growth Factor/PlGF) have been investigated as tissue-based markers of colon cancer. These studies, which used specimens obtained by surgical resection or colonoscopic biopsy, yielded contradictory results. We studied the effect of the sampling method on the marker accuracy of VEGF family members. Comparative RT-qPCR analysis was performed on healthy colon and colon carcinoma samples obtained by biopsy (n = 38) or resection (n = 39) to measure mRNA expression levels of individual VEGF family members. mRNA levels of genes encoding the eicosanoid enzymes cyclooxygenase 2 (COX2) and 5-lipoxygenase (5-LOX) and of genes encoding the hypoxia markers glucose transporter 1 (GLUT-1) and carbonic anhydrase IX (CAIX) were included as markers for cellular stress and hypoxia. Expression levels of COX2, 5-LOX, GLUT-1 and CAIX revealed the occurrence in healthy colon resection samples of hypoxic cellular stress and a concurrent increment of basal expression levels of VEGF family members. This increment abolished differential expression of VEGF-B and VEGF-C in matched carcinoma resection samples and created a surgery-induced underexpression of VEGF-D. VEGF-A and PlGF showed strong overexpression in carcinoma samples regardless of the sampling method. Sampling-induced hypoxia in resection samples but not in biopsy samples affects the marker-reliability of VEGF family members. Therefore, biopsy samples provide a more accurate report on VEGF family mRNA levels. Furthermore, this limited expression analysis proposes VEGF-A and PlGF as reliable, sampling procedure insensitive mRNA-markers for molecular diagnosis of colon cancer

  12. EG-VEGF controls placental growth and survival in normal and pathological pregnancies: case of fetal growth restriction (FGR).

    Science.gov (United States)

    Brouillet, S; Murthi, P; Hoffmann, P; Salomon, A; Sergent, F; De Mazancourt, P; Dakouane-Giudicelli, M; Dieudonné, M N; Rozenberg, P; Vaiman, D; Barbaux, S; Benharouga, M; Feige, J-J; Alfaidy, N

    2013-02-01

    Identifiable causes of fetal growth restriction (FGR) account for 30 % of cases, but the remainders are idiopathic and are frequently associated with placental dysfunction. We have shown that the angiogenic factor endocrine gland-derived VEGF (EG-VEGF) and its receptors, prokineticin receptor 1 (PROKR1) and 2, (1) are abundantly expressed in human placenta, (2) are up-regulated by hypoxia, (3) control trophoblast invasion, and that EG-VEGF circulating levels are the highest during the first trimester of pregnancy, the period of important placental growth. These findings suggest that EG-VEGF/PROKR1 and 2 might be involved in normal and FGR placental development. To test this hypothesis, we used placental explants, primary trophoblast cultures, and placental and serum samples collected from FGR and age-matched control women. Our results show that (1) EG-VEGF increases trophoblast proliferation ([(3)H]-thymidine incorporation and Ki67-staining) via the homeobox-gene, HLX (2) the proliferative effect involves PROKR1 but not PROKR2, (3) EG-VEGF does not affect syncytium formation (measurement of syncytin 1 and 2 and β hCG production) (4) EG-VEGF increases the vascularization of the placental villi and insures their survival, (5) EG-VEGF, PROKR1, and PROKR2 mRNA and protein levels are significantly elevated in FGR placentas, and (6) EG-VEGF circulating levels are significantly higher in FGR patients. Altogether, our results identify EG-VEGF as a new placental growth factor acting during the first trimester of pregnancy, established its mechanism of action, and provide evidence for its deregulation in FGR. We propose that EG-VEGF/PROKR1 and 2 increases occur in FGR as a compensatory mechanism to insure proper pregnancy progress.

  13. Radiation up-regulated the expression of VEGF in a canine oral melanoma cell line

    International Nuclear Information System (INIS)

    Flickinger, I.; Rütgen, B.C.; Gerner, W.; Tichy, A.; Saalmüller, A.; Kleiter, M.; Calice, I.

    2013-01-01

    To evaluate radiosensitivity and the effects of radiation on the expression of vascular endothelial growth factor (VEGF) and VEGF receptors in the canine oral melanoma cell line, TLM 1, cells were irradiated with doses of 0, 2, 4, 6, 8 and 10 Gray (Gy). Survival rates were then determined by a MTT assay, while vascular endothelial growth factor receptor (VEGFR)-1 and -2 expression was measured by flow cytometry and apoptotic cell death rates were investigated using an Annexin assay. Additionally, a commercially available canine VEGF ELISA kit was used to measure VEGF. Radiosensitivity was detected in TLM 1 cells, and mitotic and apoptotic cell death was found to occur in a radiation dose dependent manner. VEGF was secreted constitutively and significant up-regulation was observed in the 8 and 10 Gy irradiated cells. In addition, a minor portion of TLM 1 cells expressed vascular endothelial growth factor receptor (VEGFR)-1 intracellularly. VEGFR-2 was detected in the cytoplasm and was down-regulated following radiation with increasing dosages. In TLM 1 cells, apoptosis plays an important role in radiation induced cell death. It has also been suggested that the significantly higher VEGF production in the 8 and 10 Gy group could lead to tumour resistance. (author)

  14. Correlation of vascular endothelial growth factor and microvascular damage in diabetic retinopathy%糖尿病性视网膜病变患者 VEGF 与微血管损伤的相关性

    Institute of Scientific and Technical Information of China (English)

    温积权; 汪怿; 杨杰; 吴若欣

    2015-01-01

    ?AIM:To explore the correlation of vascular endothelial growth factor ( VEGF ) level and microvascular damage degree in patients with proliferative diabetic retinopathy ( DR) . ?METHODS:Seventy-one patients with diabetes were analyzed retrospectively, and divided into 3 groups according to the degree of DR:the pure diabetes group ( n=31), the pure DR group (n=22) and the proliferative DR group ( n=18 ) .The incidence of microvascular damage was compared;At the same time, fasting venous blood of patients was extracted, and the VEGF levels were detected with ELISA kits, the endothelial cells ( ECs ) , endothelial progenitor cells ( EPCs ) and circulating progenitor cells ( CPCs ) counts were detected with flow cytometry. ?RESULTS:The incidence of diabetic nephropathy and diabetic neuropathy was significantly different in three groups, proliferative DR group was higher than pure DR group and pure diabetes group, the difference was statistically significant (P ?CONCLUSION:VEGF has important significance in the clinical diagnosis and medical treatment of diabetic retinopathy, especially proliferative diabetic retinopathy.%目的:探讨糖尿病视网膜病变( diabetic retinopathy, DR)患者血管内皮生长因子( vascular endothelial growth factor, VEGF)水平与微血管损伤程度的相关性。  方法:回顾性分析本院收治的糖尿病患者71例,根据有无DR及病变程度分为三组:单纯糖尿病组( n=31)、单纯型DR组( n=22)、增殖型DR组( n=18),比较各组微血管病变发生率。同时,取患者空腹肘静脉血,采用ELISA试剂盒测定血清VEGF水平,采用流式细胞仪检测内皮细胞( ECs)、内皮祖细胞( EPCs)、循环祖细胞( CPCs)计数。  结果:各组糖尿病肾病和糖尿病神经病变发生率有明显差异,增殖型DR组高于单纯型DR组和单纯糖尿病组,差异有统计学意义( P<0.05)。各组VEGF水平有明显差异

  15. Minoxidil Induction of VEGF Is Mediated by Inhibition of HIF-Prolyl Hydroxylase

    Directory of Open Access Journals (Sweden)

    Soohwan Yum

    2017-12-01

    Full Text Available The topical application of minoxidil may achieve millimolar concentrations in the skin. We investigated whether millimolar minoxidil could induce vascular endothelial growth factor (VEGF, a possible effector for minoxidil-mediated hair growth, and how it occurred at the molecular level. Cell-based experiments were performed to investigate a molecular mechanism underlying the millimolar minoxidil induction of VEGF. The inhibitory effect of minoxidil on hypoxia-inducible factor (HIF prolyl hydroxylase-2 (PHD-2 was tested by an in vitro von Hippel–Lindau protein (VHL binding assay. To examine the angiogenic potential of millimolar minoxidil, a chorioallantoic membrane (CAM assay was used. In human keratinocytes and dermal papilla cells, millimolar minoxidil increased the secretion of VEGF, which was not attenuated by a specific adenosine receptor antagonist that inhibits the micromolar minoxidil induction of VEGF. Millimolar minoxidil induced hypoxia-inducible factor-1α (HIF-1α, and the induction of VEGF was dependent on HIF-1. Moreover, minoxidil applied to the dorsal area of mice increased HIF-1α and VEGF in the skin. In an in vitro VHL binding assay, minoxidil directly inhibited PHD-2, thus preventing the hydroxylation of cellular HIF-1α and VHL-dependent proteasome degradation and resulting in the stabilization of HIF-1α protein. Minoxidil inhibition of PHD-2 was reversed by ascorbate, a cofactor of PHD-2, and the minoxidil induction of cellular HIF-1α was abrogated by the cofactor. Millimolar minoxidil promoted angiogenesis in the CAM assay, an in vivo angiogenic test, and this was nullified by the specific inhibition of VEGF. Our data demonstrate that PHD may be the molecular target for millimolar minoxidil-mediated VEGF induction via HIF-1.

  16. Minoxidil Induction of VEGF Is Mediated by Inhibition of HIF-Prolyl Hydroxylase

    Science.gov (United States)

    Yum, Soohwan; Jeong, Seongkeun; Kim, Dohoon; Lee, Sunyoung; Kim, Wooseong; Yoo, Jin-Wook; Kwon, Oh Sang; Kim, Dae-Duk; Min, Do Sik; Jung, Yunjin

    2017-01-01

    The topical application of minoxidil may achieve millimolar concentrations in the skin. We investigated whether millimolar minoxidil could induce vascular endothelial growth factor (VEGF), a possible effector for minoxidil-mediated hair growth, and how it occurred at the molecular level. Cell-based experiments were performed to investigate a molecular mechanism underlying the millimolar minoxidil induction of VEGF. The inhibitory effect of minoxidil on hypoxia-inducible factor (HIF) prolyl hydroxylase-2 (PHD-2) was tested by an in vitro von Hippel–Lindau protein (VHL) binding assay. To examine the angiogenic potential of millimolar minoxidil, a chorioallantoic membrane (CAM) assay was used. In human keratinocytes and dermal papilla cells, millimolar minoxidil increased the secretion of VEGF, which was not attenuated by a specific adenosine receptor antagonist that inhibits the micromolar minoxidil induction of VEGF. Millimolar minoxidil induced hypoxia-inducible factor-1α (HIF-1α), and the induction of VEGF was dependent on HIF-1. Moreover, minoxidil applied to the dorsal area of mice increased HIF-1α and VEGF in the skin. In an in vitro VHL binding assay, minoxidil directly inhibited PHD-2, thus preventing the hydroxylation of cellular HIF-1α and VHL-dependent proteasome degradation and resulting in the stabilization of HIF-1α protein. Minoxidil inhibition of PHD-2 was reversed by ascorbate, a cofactor of PHD-2, and the minoxidil induction of cellular HIF-1α was abrogated by the cofactor. Millimolar minoxidil promoted angiogenesis in the CAM assay, an in vivo angiogenic test, and this was nullified by the specific inhibition of VEGF. Our data demonstrate that PHD may be the molecular target for millimolar minoxidil-mediated VEGF induction via HIF-1. PMID:29295567

  17. Inhibition of VEGF: a novel mechanism to control angiogenesis by Withania somnifera's key metabolite Withaferin A.

    Science.gov (United States)

    Saha, Sanjib; Islam, Md Khirul; Shilpi, Jamil A; Hasan, Shihab

    2013-01-01

    Angiogenesis, or new blood vessel formation from existing one, plays both beneficial and detrimental roles in living organisms in different aspects. Vascular endothelial growth factor (VEGF), a signal protein, well established as key regulator of vasculogenesis and angiogenesis. VEGF ensures oxygen supply to the tissues when blood supply is not adequate, or tissue environment is in hypoxic condition. Limited expression of VEGF is necessary, but if it is over expressed, then it can lead to serious disease like cancer. Cancers that have ability to express VEGF are more efficient to grow and metastasize because solid cancers cannot grow larger than a limited size without adequate blood and oxygen supply. Anti-VEGF drugs are already available in the market to control angiogenesis, but they are often associated with severe side-effects like fetal bleeding and proteinuria in the large number of patients. To avoid such side-effects, new insight is required to find potential compounds as anti-VEGF from natural sources. In the present investigation, molecular docking studies were carried out to find the potentiality of Withaferin A, a key metabolite of Withania somnifera, as an inhibitor of VEGF. Molecular Docking studies were performed in DockingServer and SwissDock. Bevacizumab, a commercial anti-VEGF drug, was used as reference to compare the activity of Withaferin A. X-ray crystallographic structure of VEGF, was retrieved from Protein Data Bank (PDB), and used as drug target protein. Structure of Withaferin A and Bevacizumab was obtained from PubChem and ZINC databases. Molecular visualization was performed using UCSF Chimera. Withaferin A showed favorable binding with VEGF with low binding energy in comparison to Bevacizumab. Molecular Docking studies also revealed potential protein-ligand interactions for both Withaferin A and Bevacizumab. Conclusively our results strongly suggest that Withaferin A is a potent anti-VEGF agent as ascertained by its potential

  18. Review Youth violence: A review of risk factors, causal pathways ...

    African Journals Online (AJOL)

    This paper presents a review of theoretical and empirical research on risk factors for: 1) the development of violent and other antisocial behaviour; 2) international interventions targeting antisocial, including violent youths; and 3) outcome evaluations and meta-analyses of interventions targeting antisocial, including violent ...

  19. An analysis on the roles of angiogenesis-related factors including serum vitamin D, soluble endoglin (sEng), soluble fms-like tyrosine kinase 1 (sFlt1), and vascular endothelial growth factor (VEGF) in the diagnosis and severity of late-onset preeclampsia.

    Science.gov (United States)

    Cim, Numan; Kurdoglu, Mertihan; Ege, Serhat; Yoruk, Ibrahim; Yaman, Gorkem; Yildizhan, Recep

    2017-07-01

    The aim of this study was to evaluate the roles of proangiogenic factors including serum vitamin D and vascular endothelial growth factor (VEGF) and anti-angiogenic factors including soluble endoglin (sEng) and soluble fms-like tyrosine kinase 1 (sFlt1) in the diagnosis and severity of late-onset preeclampsia. The study was conducted at Yuzuncu Yil University Research and Education Hospital Department of Gynecology and Obstetrics. The study included a patient group of 40 women with late-onset preeclampsia who were pregnant at ≥32 weeks of gestation according to the last menstrual period (LMP) or ultrasonographic fetal biometric measurement and a control group of 40 healthy pregnant women who presented to our clinic for routine pregnancy examination and were at the same age and gestational period with those in the patient group. The two groups were compared in terms of maternal age, gravida, parity, week of gestation, systolic/diastolic blood pressure, total protein in spot urine sample, 24-h urine protein, white blood cell (WBC), hemoglobin (Hgb), platelet count, urea, creatinine, liver function tests (AST, ALT, LDH), vitamin D 3 , 25(OH) vitamin D 3 , 1,25(OH) vitamin D 3 , sEng, sFlt1, and VEGF levels, mode of delivery, the infant APGAR score at 1 and 5 min after delivery, and infant weight at delivery. The groups were similar in terms of age, gravida, parity, week of gestation, serum vitamin D 3 , 25(OH) vitamin D 3 , 1,25(OH) 2 vitamin D 3 and VEGF levels, and infant weight at delivery (p > 0.05). Systolic/diastolic blood pressure, total protein in spot urine sample, 24-h urine protein, WBC, Hgb, serum urea, creatine, AST, ALT, and LDH were significantly higher in the preeclamptic group compared to the healthy group (p preeclampsia compared to the women with mild preeclampsia (p preeclampsia (p > 0.05). Both sEng and sFlt1 levels are remarkably high in patients with late-onset preeclampsia; however, only sEng may be a useful tool in the

  20. Inhibitory Effect of Vascular Endothelial Growth Factor on the Slowly Activating Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes.

    Science.gov (United States)

    Lin, Zhenhao; Xing, Wenlu; Gao, Chuanyu; Wang, Xianpei; Qi, Datun; Dai, Guoyou; Zhao, Wen; Yan, Ganxin

    2018-01-26

    Vascular endothelial growth factor (VEGF) exerts a number of beneficial effects on ischemic myocardium via its angiogenic properties. However, little is known about whether VEGF has a direct effect on the electrical properties of cardiomyocytes. In the present study, we investigated the effects of different concentrations of VEGF on delayed rectifier potassium currents (I K ) in guinea pig ventricular myocytes and their effects on action potential (AP) parameters. I K and AP were recorded by the whole-cell patch clamp method in ventricular myocytes. Cells were superfused with control solution or solution containing VEGF at different concentrations for 10 minutes before recording. Some ventricular myocytes were pretreated with a phosphatidylinositol 3-kinase inhibitor for 1 hour before the addition of VEGF. We found that VEGF inhibited the slowly activating delayed rectifier potassium current (I K s ) in a concentration-dependent manner (18.13±1.04 versus 12.73±0.34, n=5, P =0.001; 12.73±0.34 versus 9.05±1.20, n=5, P =0.036) and prolonged AP duration (894.5±36.92 versus 746.3±33.71, n=5, P =0.021). Wortmannin, a phosphatidylinositol 3-kinase inhibitor, eliminated these VEGF-induced effects. VEGF had no significant effect on the rapidly activating delayed rectifier potassium current (I K r ), resting membrane potential, AP amplitude, or maximal velocity of depolarization. VEGF inhibited I K s in a concentration-dependent manner through a phosphatidylinositol 3-kinase-mediated signaling pathway, leading to AP prolongation. The results indicate a promising therapeutic potential of VEGF in prevention of ventricular tachyarrhythmias under conditions of high sympathetic activity and ischemia. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  1. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  2. Alternative pathways of thromboplastin-dependent activation of human factor X in plasma

    International Nuclear Information System (INIS)

    Marlar, R.A.; Griffin, J.H.

    1981-01-01

    To determine the interrelationships of the major coagulation pathways, the activation of 3H-labeled factor X in normal and various deficient human plasmas was evaluated when clotting was triggered by dilute rabbit or human thromboplastin. Various dilutions of thromboplastin and calcium were added to plasma samples containing 3H-factor X, and the time course of factor X activation was determined. At a 1/250 dilution of rabbit brain thromboplastin, the rate of factor X activation in plasmas deficient in factor VIII or factor IX was 10% of the activation rate of normal plasma or of factor XI deficient plasma. Reconstitution of the deficient plasmas with factors VIII or IX, respectively, reconstituted normal factor X activation. Similar results were obtained when various dilutions of human thromboplastin replaced the rabbit thromboplastin. From these plasma experiments, it is inferred that the dilute thromboplastin-dependent activation of factor X requires factors VII, IX, and VIII. An alternative extrinsic pathway that involves factors IX and VIII may be the physiologic extrinsic pathway and hence help to explain the consistent clinical observations of bleeding diatheses in patients deficient in factors IX or VIII

  3. Metronomic chemotherapy in metastatic breast cancer Impact on VEGF

    International Nuclear Information System (INIS)

    Ezz El-Arab, L.R.; Menha Swellam, M.; El Mahdy, M.M.

    2012-01-01

    Background: Anticancer chemotherapy is thought to be effective by means of direct cytotoxicity on tumor cells. Alternative mechanisms of efficacy have been ascribed to several common anticancer agents; including cyclophosphamide (CTX) and capecitabine (Cap) when given at lower doses for prolonged period (metronomic chemotherapy) postulating an antiangiogenic activity as well, Aim of work :To evaluate the action and tolerability of metronomic chemotherapy (MC) and its impact on serum vascular endothetial growth factor (VEGF) levels in metastatic breast cancer (MBC) patients. Patients and methods: In this study we evaluated the clinical efficacy and tolerability of low dose, capecitabine (500 mg twice daily) together with oral cyclophosphamide (CTX) (a dose of 50 mg once daily) in patients with metastatic breast cancer. Vascular endothelial growth factor (VEGF), an angiogenic marker, was measured in the serum samples; at base line, and after 2 and 6 months of therapy. Results: Sixty patients were evaluable. One achieved complete response (CR), 12 partial responses (PR), and 21 stable diseases (SD), while 26 were with progressive disease (PD). The overall response rate was 21.7% with overall disease control (CR, PR, and SD) 56.7%. The median time to progression was 7±2.59 months and overall survival 16 ±8.02 months. Toxicity was mild, Palmar-plantar erythrodythesia was the must common side effect and was observed in 22 patients (37%), leucopenia (Gl + 2) was the most common hematological toxicity, and it was reported in 27% of the cases. The median VEGF level was significantly declined after 2 and 6 months of therapy compared to the base line among the patients with disease control (CR, PR, and SD). In multivariate logisatic regression analysis, patients with post-menopausal, positive hormonal receptors, negative HER-2/Neu, and one, metastatic site, were statistically significant and have a better disease control rate. Coclcusions: MC induced drop in VEGF, and was

  4. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head.

    Science.gov (United States)

    Zhang, Hao-Xuan; Zhang, Xiu-Ping; Xiao, Gui-Yong; Hou, Yong; Cheng, Lei; Si, Meng; Wang, Shuai-Shuai; Li, Yu-Hua; Nie, Lin

    2016-03-01

    Avascular necrosis of the femoral head (ANFH) is difficult to treat due to high pressure and hypoxia, and reduced levels of growth factors such as bone morphogenetic protein (BMP), and vascular endothelial growth factor (VEGF). We generated a novel calcium phosphate (CPC) composite scaffold, which contains BMP-VEGF-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (BMP-VEGF-PLGA-CPC). The BMP-VEGF-loaded microspheres have an encapsulation efficiency of 89.15% for BMP, and 78.55% for VEGF. The BMP-VEGF-PLGA-CPC scaffold also demonstrated a porosity of 62% with interconnected porous structures, and pore sizes of 219 μm and compressive strength of 6.60 MPa. Additionally, bone marrow mesenchymal stem cells (BMSCs) were seeded on scaffolds in vitro. Further characterization showed that the BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. Using a rabbit model of ANFH, BMP-VEGF-PLGA-CPC scaffolds were implanted into the bone tunnels of core decompression in the femoral head for 6 and 12 weeks. Radiographic and histological analysis demonstrated that the BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. These results indicate that the BMP-VEGF-PLGA-CPC scaffold may improve the therapeutic effect of core decompression surgery and be used as a treatment for ANFH. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Role for HIF-1α and Downstream Pathways in Regulating Neuronal Injury after Intracerebral Hemorrhage in Diabetes

    Directory of Open Access Journals (Sweden)

    Zhen Yu

    2015-08-01

    Full Text Available Background/Aims: HIF-1α is accumulated in the cellular nucleus and cytoplasm under conditions of oxygen deprivation and engaged in pathophysiologic changes of homeostasis by modulating the expression of several target genes. As an endogenous signaling protein, HIF-1α contributes to in neuroprotection, erythropoiesis, and apoptosis modulation. The purpose of this study was to examine the role played by HIF-1α in regulating neurological injury evoked by intracerebral hemorrhage (ICH through its downstream product, namely vascular endothelial growth factor (VEGF. In particular, we examined the effects of diabetic hyperglycemia on HIF-1α response in the processing of ICH. Methods: ELISA was used to measure HIF-1α and VEGF; and Western Blot analysis to examine the protein expression of VEGFR-2 and Caspase-3. Neurological Severity Score and brain water content were used to indicate neurological function and brain edema. Results: HIF-1α and VEGF were significantly increased in the brain after induction of ICH in non-diabetic control rats and diabetic rats; however, the amplified levels of HIF-1α and VEGF were attenuated in diabetic rats (Pvs. non-diabetic rats as compared with non-diabetic rats. Also, the protein expression of VEGF receptor subtype 2 was significantly less in the brain of diabetic rats (Pvs. non-diabetic rats. Further, cerebral infusion of HIF-1 activator stabilized VEGF levels, attenuated Caspase-3 and improved neurological deficits induced by ICH and the effects are smaller in diabetic animals. Conclusion: HIF-1α activated by ICH likely plays a beneficial role via VEGF mechanisms and response of HIF-1α is largely impaired in diabetes. This has pharmacological implications to target specific HIF-1α and VEGF pathway for neuronal dysfunction and vulnerability related to ICH.

  6. Efficient VEGF targeting delivery of DOX using Bevacizumab conjugated SiO2@LDH for anti-neuroblastoma therapy.

    Science.gov (United States)

    Zhu, Rongrong; Wang, Zhaoqi; Liang, Peng; He, Xiaolie; Zhuang, Xizhen; Huang, Ruiqi; Wang, Mei; Wang, Qigang; Qian, Yechang; Wang, Shilong

    2017-11-01

    Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis and is highly expressed in carcinoma, which make it an important target for tumor targeting therapy. Neuroblastoma is the main cause for cancer-related death in children. Like most solid tumors, it is also accompanied with the overexpression of VEGF. Doxorubicin Hydrochloride (DOX), a typical chemotherapeutic agent, exhibits efficient anticancer activities for various cancers. However, DOX, without targeting ability, usually causes severe damage to normal tissues. To overcome the shortages, we designed a novel nano-composite, which is Bevacizumab (Bev) modified SiO 2 @LDH nanoparticles (SiO 2 @LDH-Bev), loading with DOX to achieve targeting ability and curative efficiency. SiO 2 @LDH-DOX and SiO 2 @LDH-Bev-DOX nanoparticles were synthesized and the physicochemical properties were characterized by TEM detection, Zeta potential analysis, FTIR, Raman and XPS analysis. Then in vitro and in vivo anti-neuroblastoma efficiency, targeting ability and mechanisms of anti-carcinoma and anti-angiogenesis of SiO 2 @LDH-Bev-DOX were explored. Our results indicated that we obtained the core-shell structure SiO 2 @LDH-Bev with an average diameter of 253±10nm and the amount of conjugated Bev was 4.59±0.38μg/mg SiO 2 @LDH-Bev. SiO 2 @LDH-Bev-DOX could improve the cellular uptake and the targeting effect of DOX to brain and tumor, enhance the anti-neuroblastoma and anti-angiogenesis efficiency both in vitro and in vivo, and alleviate side effects of DOX sharply, especially hepatic injury. In addition, we also demonstrated that angiogenesis inhibitory effect was mediated by DOX and VEGF triggered signal pathways, including PI3K/Akt, Raf/MEK/ERK, and adhesion related pathways. In summary, SiO 2 @LDH-Bev could be a potential VEGF targeting nanocarrier applied in VEGF positive cancer therapy. This paper explored that a novel core-shell structure nanomaterial SiO 2 @LDH and modified SiO 2 @LDH with

  7. Active Component of Danshen (Salvia miltiorrhiza Bunge, Tanshinone I, Attenuates Lung Tumorigenesis via Inhibitions of VEGF, Cyclin A, and Cyclin B Expressions

    Directory of Open Access Journals (Sweden)

    Yu-Tang Tung

    2013-01-01

    Full Text Available Tanshinone I (T1 and tanshinone II (T2 are the major diterpenes isolated from Danshen (Salvia miltiorrhiza Bunge. Three human lung adenocarcinoma cell lines, A549, CL1-0, and CL1-5, were treated with T1 and T2 for the in vitro antitumor test. Results showed that T1 was more effective than T2 in inhibiting the growth of lung cancer cells via suppressing the expression of VEGF, Cyclin A, and Cyclin B proteins in a dose-dependent manner. Moreover, a transgenic mice model of the human vascular endothelial growth factor-A165 (hVEGF-A165 gene-induced pulmonary tumor was further treated with T1 for the in vivo lung cancer therapy test. T1 significantly attenuated hVEGF-A165 overexpression to normal levels of the transgenic mice (Tg that were pretreated with human monocytic leukemia THP-1 cell-derived conditioned medium (CM. It also suppressed the formation of lung adenocarcinoma tumors (16.7% compared with two placebo groups (50% for Tg/Placebo and 83.3% for Tg/CM/Placebo; P<0.01. This antitumor effect is likely to slow the progression of cells through the S and G2/M phases of the cell cycle. Blocking of the tumor-activated cell cycle pathway may be a critical mechanism for the observed antitumorigenic effects of T1 treatment on vasculogenesis and angiogenesis.

  8. Epidermal growth factor pathway substrate 15, Eps15

    DEFF Research Database (Denmark)

    Salcini, A E; Chen, H; Iannolo, G

    1999-01-01

    Eps15 was originally identified as a substrate for the kinase activity of the epidermal growth factor receptor (EGFR). Eps15 has a tripartite structure comprising a NH2-terminal portion, which contains three EH domains, a central putative coiled-coil region, and a COOH-terminal domain containing...... multiple copies of the amino acid triplet Aspartate-Proline-Phenylalanine. A pool of Eps15 is localized at clathrin coated pits where it interacts with the clathrin assembly complex AP-2 and a novel AP-2 binding protein, Epsin. Perturbation of Eps15 and Epsin function inhibits receptor-mediated endocytosis...... of EGF and transferrin, demonstrating that both proteins are components of the endocytic machinery. Since the family of EH-containing proteins is implicated in various aspects of intracellular sorting, biomolecular strategies aimed at interfering with these processes can now be envisioned...

  9. Ginsenoside Rg1 enhances lymphatic transport of intrapulmonary silica via VEGF-C/VEGFR-3 signaling in silicotic rats.

    Science.gov (United States)

    Yu, Jie; Mao, Lijun; Guan, Li; Zhang, Yanlin; Zhao, Jinyuan

    2016-03-25

    Ginsenoside Rg1, extracted mainly from Panax ginseng, has been shown to exert strong pro-angiogenic activities in vivo. But it is unclear whether ginsenoside Rg1 could promote lung lymphangiogenesis to improve lymphatic transport of intrapulmonary silica in silicotic rats. Here we investigated the effect of ginsenoside Rg1 on lymphatic transport of silica during experimental silicosis, and found that ginsenoside Rg1 treatment significantly raised the silicon content in tracheobronchial lymph nodes and serum to reduce the silicon level in lung interstitium, meanwhile increased pulmonary lymphatic vessel density by enhancing the protein and mRNA expressions of vascular endothelial growth factor-C (VEGF-C) and vascular endothelial growth factor receptor-3 (VEGFR-3). The stimulative effect of ginsenoside Rg1 on lymphatic transport of silica was actively correlated with its pro-lymphangiogenic identity. And VEGFR-3 inhibitor SAR131675 blocked these above effects of ginsenoside Rg1. These findings suggest that ginsenoside Rg1 exhibits good protective effect against lung burden of silica during experimental silicosis through improving lymphatic transport of intrapulmonary silica, which is potentially associated with the activation of VEGF-C/VEGFR-3 signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao-Xuan [Department of Orthopedics, Shandong University Qilu Hospital, Jinan, Shandong (China); Zhang, Xiu-Ping [School of Public Health, Fudan University, Shanghai (China); Xiao, Gui-Yong [School of Materials Science and Engineering, Shandong University, Jinan, Shandong (China); Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong (China); Hou, Yong; Cheng, Lei; Si, Meng; Wang, Shuai-Shuai [Department of Orthopedics, Shandong University Qilu Hospital, Jinan, Shandong (China); Li, Yu-Hua, E-mail: qiluyuhua@126.com [Department of Orthopedics, Shandong University Qilu Hospital, Jinan, Shandong (China); Nie, Lin, E-mail: hoho05@126.com [Department of Orthopedics, Shandong University Qilu Hospital, Jinan, Shandong (China)

    2016-03-01

    Avascular necrosis of the femoral head (ANFH) is difficult to treat due to high pressure and hypoxia, and reduced levels of growth factors such as bone morphogenetic protein (BMP), and vascular endothelial growth factor (VEGF). We generated a novel calcium phosphate (CPC) composite scaffold, which contains BMP-VEGF-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (BMP-VEGF-PLGA-CPC). The BMP-VEGF-loaded microspheres have an encapsulation efficiency of 89.15% for BMP, and 78.55% for VEGF. The BMP-VEGF-PLGA-CPC scaffold also demonstrated a porosity of 62% with interconnected porous structures, and pore sizes of 219 μm and compressive strength of 6.60 MPa. Additionally, bone marrow mesenchymal stem cells (BMSCs) were seeded on scaffolds in vitro. Further characterization showed that the BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. Using a rabbit model of ANFH, BMP-VEGF-PLGA-CPC scaffolds were implanted into the bone tunnels of core decompression in the femoral head for 6 and 12 weeks. Radiographic and histological analysis demonstrated that the BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. These results indicate that the BMP-VEGF-PLGA-CPC scaffold may improve the therapeutic effect of core decompression surgery and be used as a treatment for ANFH. - Highlights: • BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. • BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. • BMP-VEGF-PLGA-CPC scaffolds provided a new approach for the treatment of avascular necrosis of the femoral head (ANFH).

  11. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head

    International Nuclear Information System (INIS)

    Zhang, Hao-Xuan; Zhang, Xiu-Ping; Xiao, Gui-Yong; Hou, Yong; Cheng, Lei; Si, Meng; Wang, Shuai-Shuai; Li, Yu-Hua; Nie, Lin

    2016-01-01

    Avascular necrosis of the femoral head (ANFH) is difficult to treat due to high pressure and hypoxia, and reduced levels of growth factors such as bone morphogenetic protein (BMP), and vascular endothelial growth factor (VEGF). We generated a novel calcium phosphate (CPC) composite scaffold, which contains BMP-VEGF-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (BMP-VEGF-PLGA-CPC). The BMP-VEGF-loaded microspheres have an encapsulation efficiency of 89.15% for BMP, and 78.55% for VEGF. The BMP-VEGF-PLGA-CPC scaffold also demonstrated a porosity of 62% with interconnected porous structures, and pore sizes of 219 μm and compressive strength of 6.60 MPa. Additionally, bone marrow mesenchymal stem cells (BMSCs) were seeded on scaffolds in vitro. Further characterization showed that the BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. Using a rabbit model of ANFH, BMP-VEGF-PLGA-CPC scaffolds were implanted into the bone tunnels of core decompression in the femoral head for 6 and 12 weeks. Radiographic and histological analysis demonstrated that the BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. These results indicate that the BMP-VEGF-PLGA-CPC scaffold may improve the therapeutic effect of core decompression surgery and be used as a treatment for ANFH. - Highlights: • BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. • BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. • BMP-VEGF-PLGA-CPC scaffolds provided a new approach for the treatment of avascular necrosis of the femoral head (ANFH).

  12. The NF-κB pathway: regulation of the instability of atherosclerotic plaques activated by Fg, Fb, and FDPs.

    Science.gov (United States)

    Cao, Yongjun; Zhou, Xiaomei; Liu, Huihui; Zhang, Yanlin; Yu, Xiaoyan; Liu, Chunfeng

    2013-11-01

    Recently, the molecular mechanism responsible for the instability of atherosclerotic plaques has gradually become a hot topic among researchers and clinicians. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play an important role in the processes of formation and development of atherosclerosis. In this study, we established and employed the transwell co-culture system of rabbit aortic endothelial cells and smooth muscle cells to explore the relationship between fibrin (Fb), fibrinogen (Fg), and/or their degradation products (FDPs) in relation to the instability of atherosclerotic plaques; meanwhile, we observed the effects of Fg, Fb, and FDPs on the mRNA levels of MMPs and VEGF as well as on the activation of nuclear factor-kappa B (NF-κB). We concluded that Fb, Fg, and FDPs are involved in the progression of the instability of atherosclerotic plaques via increasing the expression of MMPs and VEGF. This effect might be mediated by the NF-кB pathway.

  13. VEGF-A, cytoskeletal dynamics, and the pathological vascular phenotype

    International Nuclear Information System (INIS)

    Nagy, Janice A.; Senger, Donald R.

    2006-01-01

    Normal angiogenesis is a complex process involving the organization of proliferating and migrating endothelial cells (ECs) into a well-ordered and highly functional vascular network. In contrast, pathological angiogenesis, which is a conspicuous feature of tumor growth, ischemic diseases, and chronic inflammation, is characterized by vessels with aberrant angioarchitecture and compromised barrier function. Herein we review the subject of pathological angiogenesis, particularly that driven by vascular endothelial growth factor (VEGF-A), from a new perspective. We propose that the serious structural and functional anomalies associated with VEGF-A-elicited neovessels, reflect, at least in part, imbalances in the internal molecular cues that govern the ordered assembly of ECs into three dimensional vascular networks and preserve vessel barrier function. Adopting such a viewpoint widens the focus from solely on specific pro-angiogenic stimuli such as VEGF-A to include a key set of cytoskeletal regulatory molecules, the Rho GTPases, which are known to direct multiple aspects of vascular morphogenesis including EC motility, alignment, multi-cellular organization, as well as intercellular junction integrity. We offer this perspective to draw attention to the importance of endothelial cytoskeletal dynamics for proper neovascularization and to suggest new therapeutic strategies with the potential to improve the pathological vascular phenotype

  14. VEGF Promotes Malaria-Associated Acute Lung Injury in Mice

    Science.gov (United States)

    Carapau, Daniel; Pena, Ana C.; Ataíde, Ricardo; Monteiro, Carla A. A.; Félix, Nuno; Costa-Silva, Artur; Marinho, Claudio R. F.; Dias, Sérgio; Mota, Maria M.

    2010-01-01

    The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies. PMID:20502682

  15. Genetic variation in VEGF does not contribute significantly to the risk of congenital cardiovascular malformation.

    Directory of Open Access Journals (Sweden)

    Helen R Griffin

    Full Text Available Several previous studies have investigated the role of common promoter variants in the vascular endothelial growth factor (VEGF gene in causing congenital cardiovascular malformation (CVM. However, results have been discrepant between studies and no study to date has comprehensively characterised variation throughout the gene. We genotyped 771 CVM cases, of whom 595 had the outflow tract malformation Tetralogy of Fallot (TOF, and carried out TDT and case-control analyses using haplotype-tagging SNPs in VEGF. We carried out a meta-analysis of previous case-control or family-based studies that had typed VEGF promoter SNPs, which included an additional 570 CVM cases. To identify rare variants potentially causative of CVM, we carried out mutation screening in all VEGF exons and splice sites in 93 TOF cases. There was no significant effect of any VEGF haplotype-tagging SNP on the risk of CVM in our analyses of 771 probands. When the results of this and all previous studies were combined, there was no significant effect of the VEGF promoter SNPs rs699947 (OR 1.05 [95% CI 0.95-1.17]; rs1570360 (OR 1.17 [95% CI 0.99-1.26]; and rs2010963 (OR 1.04 [95% CI 0.93-1.16] on the risk of CVM in 1341 cases. Mutation screening of 93 TOF cases revealed no VEGF coding sequence variants and no changes at splice consensus sequences. Genetic variation in VEGF appears to play a small role, if any, in outflow tract CVM susceptibility.

  16. Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity.

    Science.gov (United States)

    Jais, Alexander; Solas, Maite; Backes, Heiko; Chaurasia, Bhagirath; Kleinridders, André; Theurich, Sebastian; Mauer, Jan; Steculorum, Sophie M; Hampel, Brigitte; Goldau, Julia; Alber, Jens; Förster, Carola Y; Eming, Sabine A; Schwaninger, Markus; Ferrara, Napoleone; Karsenty, Gerard; Brüning, Jens C

    2016-05-05

    High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Interleukin-6 secreted by oral cancer- associated fibroblast accelerated VEGF expression in tumor and stroma cells.

    Science.gov (United States)

    Mirkeshavarz, M; Ganjibakhsh, M; Aminishakib, P; Farzaneh, P; Mahdavi, N; Vakhshiteh, F; Karimi, A; Gohari, N S; Kamali, F; Kharazifard, M J; Shahzadeh Fazeli, S A; Nasimian, A

    2017-10-31

    Oral cancer represents the sixth most common cancer type worldwide. Patients with oral cancer express high levels of IL-6 which is associated with very poor prognosis. Previous studies illustrated that IL-6 cytokine induces angiogenesis. It has also been reported that the presence of Cancer- Associated Fibroblasts (CAFs) is essential for angiogenesis. In this study, we examined the correlation between IL-6 and CAF and the role of this correlation on VEGF production. In this study, quantitative expression level of IL-6 and VEGF in CAF and Oral Cancer Cells (OCCs) examined through Real Time PCR and ELISA and western blot analysis. In addition, maintenance and retention of IL-6 and VEGF checked out in co-culture experiment of CAF and OCC cells. These experiments demonstrated that in oral cancer, CAF cell line secretes significantly more IL-6 than OCC. Also IL-6 is a factor that causes VEGF secretion in CAF cell line. CAF is the basic and the most essential source for producing IL-6 in patients with oral cancer. Secreted IL-6 is able to induce VEGF production in both CAF and OCCs. Correlation between CAF, IL-6 and VEGF could be considered as an approach for cancer therapy.

  18. Endocrine gland derived-VEGF is down-regulated in human pituitary adenoma.

    Science.gov (United States)

    Raica, Marius; Coculescu, Mihail; Cimpean, Anca Maria; Ribatti, Domenico

    2010-10-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic molecule restricted to endocrine glands and, particularly, to steroid-secreting cells. The expression of EG-VEGF and its significance in human adenohypophysis in physiological and pathological conditions is still unknown. In this study, we investigated by immunohistochemistry the expression of EG-VEGF in 2 samples of normal adenohypophysis and 43 bioptic samples of pituitary adenoma. Moreover, the expression of growth hormone (GH), prolactin (PRL), follicle-stimulating hormone (FSH), luteinizing hormone (LH), thyroid-stimulating hormone (TSH) and adrenocorticoprophic hormone (ACTH) were also estimated. The results of this study for the first time demonstrate a down-regulation of EG-VEGF expression in human pituitary adenoma as compared to normal adenohypophysis, suggesting an impaired function of the neoplastic cells in terms of hormone release in the blood stream, as a consequence of impaired tumor angiogenesis in the tumor. On the basis of our data showing a marked decrease in the expression of EG-VEGF in pituitary adenoma, with the exception of LH-secreting adenomas, we suggest that LH might be involved in the induction of EG-VEGF secretion.

  19. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Mishima Satoshi

    2009-11-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ, bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs. Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.

  20. Hypoxia-inducible factor-1α mediates the toll-like receptor 4 signaling pathway leading to anti-tumor effects in human hepatocellular carcinoma cells under hypoxic conditions.

    Science.gov (United States)

    Zhang, Xiaoyu; Li, Shuchen; Li, Mingrong; Huang, Haiying; Li, Jingyuan; Zhou, Changwei

    2016-08-01

    Hypoxia-inducible factor-1α (HIF-1α) and toll-like receptor 4 (TLR4) are involved in numerous mechanisms of cancer biology, including cell proliferation and survival; however the interaction of the two factors under hypoxic conditions remains unclear. The present study investigated the in vitro mechanism that results in the suppression of tumor cell growth and cellular functions when HIF-1α is silenced. In the present study, the human hepatocellular carcinoma HepG2 cell line was transfected with short hairpin RNA (shRNA) against HIF-1α and cultured under hypoxic conditions (1% O 2 for 24 h). The expression of HIF-1α and various growth factors, including epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2), were examined using quantitative polymerase chain reaction and immunoblotting. Tumor growth was measured using a Cell Counting Kit-8 assay and tumor activity was measured using tumor cell invasion and migration assays. Lipopolysaccharide and TAK-242 were used to activate and inhibit TLR4, respectively, to observe the role of TLR4 in the HIF-1α silenced tumor cells. The expression of TLR4 signaling pathway associates, including myeloid differentiation primary response gene 88 (MyD88), apoptosis signal-regulating kinase 1 (ASK1), p38 mitogen-activated protein kinases and HIF-1α, were analyzed by western blot assay. Under hypoxic conditions, silencing of HIF-1α expression suppressed tumor cell growth and regulated the expression of tumor growth-associated genes, including EGF, HGF, VEGF and FG2. Suppression of tumor cell invasion and migration was also observed in the HIF-1α silenced HepG2 cell line. In addition, TLR4 was identified to be involved in HIF-1α and MyD88 accumulation, and activation of ASK1 and p38 were demonstrated to be critical for TLR4-mediated HIF-1α pathway. In conclusion, silencing of HIF-1α expression may induce anti-tumor effects under hypoxic

  1. In vivo tumor angiogenesis imaging with site-specific labeled 99mTc-HYNIC-VEGF

    International Nuclear Information System (INIS)

    Blankenberg, Francis G.; Backer, Marina V.; Patel, Vimalkumar; Backer, Joseph M.; Levashova, Zoia

    2006-01-01

    We recently developed a cysteine-containing peptide tag (C-tag) that allows for site-specific modification of C-tag-containing fusion proteins with a bifunctional chelator, HYNIC (hydrazine nicotinamide)-maleimide. We then constructed and expressed C-tagged vascular endothelial growth factor (VEGF) and labeled it with HYNIC. We wished to test 99m Tc-HYNIC-C-tagged VEGF ( 99m Tc-HYNIC-VEGF) for the imaging of tumor vasculature before and after antiangiogenic (low continuous dosing, metronomic) and tumoricidal (high-dose) cyclophosphamide treatment. HYNIC-maleimide was reacted with the two thiol groups of C-tagged VEGF without any effect on biologic activity in vitro. 99m Tc-HYNIC-VEGF was prepared using tin/tricine as an exchange reagent, and injected via the tail vein (200-300 μCi, 1-2 μg protein) followed by microSPECT imaging 1 h later. Sequencing analysis of HYNIC-containing peptides obtained after digestion confirmed the site-specific labeling of the two accessible thiol groups of C-tagged VEGF. Tumor vascularity was easily visualized with 99m Tc/VEGF in Balb/c mice with 4T1 murine mammary carcinoma 10 days after implantation into the left axillary fat pad in controls (12.3±5.0 tumor/bkg, n=27) along with its decrease following treatment with high (150 mg/kg q.o.d. x 4; 1.14±0.48 tumor/bkg, n=9) or low (25 mg/kg q.d. x 7; 1.03±0.18 tumor/bkg, n=9) dose cyclophosphamide. Binding specificity was confirmed by observing a 75% decrease in tumor uptake of 99m Tc/biotin-inactivated VEGF, as compared with 99m Tc-HYNIC-VEGF. 99m Tc can be loaded onto C-tagged VEGF in a site-specific fashion without reducing its bioactivity. 99m Tc-HYNIC-VEGF can be rapidly prepared for the imaging of tumor vasculature and its response to different types of chemotherapy. (orig.)

  2. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    International Nuclear Information System (INIS)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A.; Gallardo-Escarate, C.; Molina, A.; Valdés, J.A.

    2015-01-01

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast

  3. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Gallardo-Escarate, C. [Laboratory of Biotechnology and Aquatic Genomics, Universidad de Concepción, Concepción (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Molina, A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Valdés, J.A., E-mail: jvaldes@unab.cl [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile)

    2015-08-21

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.

  4. Impact of VEGF and VEGF receptor 1 (FLT1) expression on the prognosis of stage III esophageal cancer patients after radiochemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Rades, D. [Dept. of Radiation Oncology, Univ. Medical Center Hamburg-Eppendorf (Germany); Dept. of Radiation Oncology, Univ. Hospital Schleswig-Holstein, Luebeck (Germany); Golke, H. [Dept. of Radiation Oncology, Univ. Medical Center Hamburg-Eppendorf (Germany); Inst. of Pathology, Univ. Medical Center Hamburg-Eppendorf (Germany); Schild, S.E. [Dept. of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States); Kilic, E. [Inst. of Pathology, Univ. Medical Center Hamburg-Eppendorf (Germany); Inst. of Pathology, Univ. Hospital Basel-Stadt (Switzerland)

    2008-08-15

    Background and purpose: high expression of vascular endothelial growth factor (VEGF) is negatively associated with clinical outcome. The prognostic value of VEGF receptor 1 (FLT1) is unclear. This retrospective study investigated the impact of tumor expression of VEGF and FLT1 on outcome in 68 stage III esophageal cancer patients. Material and methods: the impact of tumor VEGF and FLT expression (< 10% vs. > 10%) and five additional potential prognostic factors on overall survival (OS) and locoregional control (LC) was retrospectively evaluated. These factors included T-stage (T3 vs. T4), N-stage (NO vs. N1), treatment (radiochemotherapy plus resection vs. radiochemotherapy alone), erythropoietin (ERYPO {sup registered} 10000, Janssen-Cilag, Neuss, Germany) administration during radiotherapy, and majority of hemoglobin levels during radiotherapy (< 12 vs. {>=} 12 g/dl). Subgroup analyses were performed for patients receiving resection (R0 vs. R1/2 resection). The factors found to be significant on univariate analyses (Kaplan-Meier method, log-rank test) were included in multivariate analyses performed with the Cox proportional hazard model. Results: on univariate analysis, improved OS was associated with T3 stage (p = 0.011), surgery (p = 0.019), and hemoglobin {>=} 12 g/dl (p < 0.001). Improved LC was associated with T3 stage (p = 0.025), hemoglobin {>=} 12 g/dl (p < 0.001), and VEGF negativity (p = 0.045). On multivariate analyses, only hemoglobin maintained significance. In patients having surgery, R0 resection was significantly better than R1/2 resection for OS (p < 0.001) and LC (p < 0.001). Conclusion: preradiotherapy tumor VEGF expression appears negatively correlated with outcomes, whereas FLT1 expression appears to have no significant impact on OS and LC. (orig.)

  5. Impact of VEGF and VEGF receptor 1 (FLT1) expression on the prognosis of stage III esophageal cancer patients after radiochemotherapy

    International Nuclear Information System (INIS)

    Rades, D.; Golke, H.; Schild, S.E.; Kilic, E.

    2008-01-01

    Background and purpose: high expression of vascular endothelial growth factor (VEGF) is negatively associated with clinical outcome. The prognostic value of VEGF receptor 1 (FLT1) is unclear. This retrospective study investigated the impact of tumor expression of VEGF and FLT1 on outcome in 68 stage III esophageal cancer patients. Material and methods: the impact of tumor VEGF and FLT expression ( 10%) and five additional potential prognostic factors on overall survival (OS) and locoregional control (LC) was retrospectively evaluated. These factors included T-stage (T3 vs. T4), N-stage (NO vs. N1), treatment (radiochemotherapy plus resection vs. radiochemotherapy alone), erythropoietin (ERYPO registered 10000, Janssen-Cilag, Neuss, Germany) administration during radiotherapy, and majority of hemoglobin levels during radiotherapy (< 12 vs. ≥ 12 g/dl). Subgroup analyses were performed for patients receiving resection (R0 vs. R1/2 resection). The factors found to be significant on univariate analyses (Kaplan-Meier method, log-rank test) were included in multivariate analyses performed with the Cox proportional hazard model. Results: on univariate analysis, improved OS was associated with T3 stage (p = 0.011), surgery (p = 0.019), and hemoglobin ≥ 12 g/dl (p < 0.001). Improved LC was associated with T3 stage (p = 0.025), hemoglobin ≥ 12 g/dl (p < 0.001), and VEGF negativity (p = 0.045). On multivariate analyses, only hemoglobin maintained significance. In patients having surgery, R0 resection was significantly better than R1/2 resection for OS (p < 0.001) and LC (p < 0.001). Conclusion: preradiotherapy tumor VEGF expression appears negatively correlated with outcomes, whereas FLT1 expression appears to have no significant impact on OS and LC. (orig.)

  6. DNA sequence variants in PPARGC1A, a gene encoding a coactivator of the ω-3 LCPUFA sensing PPAR-RXR transcription complex, are associated with NV AMD and AMD-associated loci in genes of complement and VEGF signaling pathways.

    Directory of Open Access Journals (Sweden)

    John Paul SanGiovanni

    Full Text Available Increased intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFAs and use of peroxisome proliferator activator receptor (PPAR-activating drugs are associated with attenuation of pathologic retinal angiogenesis. ω-3 LCPUFAs are endogenous agonists of PPARs. We postulated that DNA sequence variation in PPAR gamma (PPARG co-activator 1 alpha (PPARGC1A, a gene encoding a co-activator of the LCPUFA-sensing PPARG-retinoid X receptor (RXR transcription complex, may influence neovascularization (NV in age-related macular degeneration (AMD.We applied exact testing methods to examine distributions of DNA sequence variants in PPARGC1A for association with NV AMD and interaction of AMD-associated loci in genes of complement, lipid metabolism, and VEGF signaling systems. Our sample contained 1858 people from 3 elderly cohorts of western European ancestry. We concurrently investigated retinal gene expression profiles in 17-day-old neonatal mice on a 2% LCPUFA feeding paradigm to identify LCPUFA-regulated genes both associated with pathologic retinal angiogenesis and known to interact with PPARs or PPARGC1A.A DNA coding variant (rs3736265 and a 3'UTR-resident regulatory variant (rs3774923 in PPARGC1A were independently associated with NV AMD (exact P = 0.003, both SNPs. SNP-SNP interactions existed for NV AMD (P<0.005 with rs3736265 and a AMD-associated variant in complement factor B (CFB, rs512559. PPARGC1A influences activation of the AMD-associated complement component 3 (C3 promoter fragment and CFB influences activation and proteolysis of C3. We observed interaction (P ≤ 0.003 of rs3736265 with a variant in vascular endothelial growth factor A (VEGFA, rs3025033, a key molecule in retinal angiogenesis. Another PPARGC1A coding variant (rs8192678 showed statistical interaction with a SNP in the VEGFA receptor fms-related tyrosine kinase 1 (FLT1, rs10507386; P ≤ 0.003. C3 expression was down-regulated 2-fold in retinas of ω-3 LCPUFA-fed mice

  7. DNA sequence variants in PPARGC1A, a gene encoding a coactivator of the ω-3 LCPUFA sensing PPAR-RXR transcription complex, are associated with NV AMD and AMD-associated loci in genes of complement and VEGF signaling pathways.

    Science.gov (United States)

    SanGiovanni, John Paul; Chen, Jing; Sapieha, Przemyslaw; Aderman, Christopher M; Stahl, Andreas; Clemons, Traci E; Chew, Emily Y; Smith, Lois E H

    2013-01-01

    Increased intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFAs) and use of peroxisome proliferator activator receptor (PPAR)-activating drugs are associated with attenuation of pathologic retinal angiogenesis. ω-3 LCPUFAs are endogenous agonists of PPARs. We postulated that DNA sequence variation in PPAR gamma (PPARG) co-activator 1 alpha (PPARGC1A), a gene encoding a co-activator of the LCPUFA-sensing PPARG-retinoid X receptor (RXR) transcription complex, may influence neovascularization (NV) in age-related macular degeneration (AMD). We applied exact testing methods to examine distributions of DNA sequence variants in PPARGC1A for association with NV AMD and interaction of AMD-associated loci in genes of complement, lipid metabolism, and VEGF signaling systems. Our sample contained 1858 people from 3 elderly cohorts of western European ancestry. We concurrently investigated retinal gene expression profiles in 17-day-old neonatal mice on a 2% LCPUFA feeding paradigm to identify LCPUFA-regulated genes both associated with pathologic retinal angiogenesis and known to interact with PPARs or PPARGC1A. A DNA coding variant (rs3736265) and a 3'UTR-resident regulatory variant (rs3774923) in PPARGC1A were independently associated with NV AMD (exact P = 0.003, both SNPs). SNP-SNP interactions existed for NV AMD (Pcomplement factor B (CFB, rs512559). PPARGC1A influences activation of the AMD-associated complement component 3 (C3) promoter fragment and CFB influences activation and proteolysis of C3. We observed interaction (P ≤ 0.003) of rs3736265 with a variant in vascular endothelial growth factor A (VEGFA, rs3025033), a key molecule in retinal angiogenesis. Another PPARGC1A coding variant (rs8192678) showed statistical interaction with a SNP in the VEGFA receptor fms-related tyrosine kinase 1 (FLT1, rs10507386; P ≤ 0.003). C3 expression was down-regulated 2-fold in retinas of ω-3 LCPUFA-fed mice - these animals also showed 70% reduction in retinal NV (P

  8. Acidic pH reduces VEGF-mediated endothelial cell responses by downregulation of VEGFR-2; relevance for anti-angiogenic therapies.

    Science.gov (United States)

    Faes, Seraina; Uldry, Emilie; Planche, Anne; Santoro, Tania; Pythoud, Catherine; Demartines, Nicolas; Dormond, Olivier

    2016-12-27

    Anti-angiogenic treatments targeting the vascular endothelial growth factor or its receptors have shown clinical benefits. However, impact on long-term survival remains limited. Solid tumors display an acidic microenvironment that profoundly influences their biology. Consequences of acidity on endothelial cells and anti-angiogenic therapies remain poorly characterized and hence are the focus of this study. We found that exposing endothelial cells to acidic extracellular pH resulted in reduced cell proliferation and migration. Also, whereas VEGF increased endothelial cell proliferation and survival at pH 7.4, it had no effect at pH 6.4. Furthermore, in acidic conditions, stimulation of endothelial cells with VEGF did not result in activation of downstream signaling pathways such as AKT. At a molecular level, acidity significantly decreased the expression of VEGFR-2 by endothelial cells. Consequently, anti-angiogenic therapies that target VEGFR-2 such as sunitinib and sorafenib failed to block endothelial cell proliferation in acidic conditions. In vivo, neutralizing tumor acidity with sodium bicarbonate increased the percentage of endothelial cells expressing VEGFR-2 in tumor xenografts. Furthermore, combining sodium bicarbonate with sunitinib provided stronger anti-cancer activity than either treatment alone. Histological analysis showed that sunitinib had a stronger anti-angiogenic effect when combined with sodium bicarbonate. Overall, our results show that endothelial cells prosper independently of VEGF in acidic conditions partly as a consequence of decreased VEGFR-2 expression. They further suggest that strategies aiming to raise intratumoral pH can improve the efficacy of anti-VEGF treatments.

  9. Effects of different progestin regimens in hormone replacement therapy on blood coagulation factor VII and tissue factor pathway inhibitor

    DEFF Research Database (Denmark)

    Bladbjerg, E-M; Skouby, S O.; Andersen, L F

    2002-01-01

    BACKGROUND: Long-term hormone replacement therapy (HRT) reduces cardiovascular risk, but an early increased risk was reported in women with coronary heart disease. In such women the arterial intima can express tissue factor, and changes in coagulation factor VII (factor VII) and tissue factor...... pathway inhibitor (TFPI) may be deleterious. METHODS: We measured factor VII clotting activity, activated factor VII, and concentrations of factor VII and TFPI during 12 months in healthy post-menopausal women randomized to: (i). cyclic oral estrogen/progestin (n = 25); (ii). long-cycle oral estrogen......: No variations were observed in the reference group. There was a substantial decrease in TFPI concentrations in the HRT groups irrespective of the type of progestin. In women receiving long-cycle treatment, all factor VII measures increased during the unopposed estrogen periods, and the increase was reversed...

  10. Intracoronary Cytoprotective Gene Therapy: A Study of VEGF-B167 in a Pre-Clinical Animal Model of Dilated Cardiomyopathy.

    Science.gov (United States)

    Woitek, Felix; Zentilin, Lorena; Hoffman, Nicholas E; Powers, Jeffery C; Ottiger, Isabel; Parikh, Suraj; Kulczycki, Anna M; Hurst, Marykathryn; Ring, Nadja; Wang, Tao; Shaikh, Farah; Gross, Polina; Singh, Harinder; Kolpakov, Mikhail A; Linke, Axel; Houser, Steven R; Rizzo, Victor; Sabri, Abdelkarim; Madesh, Muniswamy; Giacca, Mauro; Recchia, Fabio A

    2015-07-14

    Vascular endothelial growth factor (VEGF)-B activates cytoprotective/antiapoptotic and minimally angiogenic mechanisms via VEGF receptors. Therefore, VEGF-B might be an ideal candidate for the treatment of dilated cardiomyopathy, which displays modest microvascular rarefaction and increased rate of apoptosis. This study evaluated VEGF-B gene therapy in a canine model of tachypacing-induced dilated cardiomyopathy. Chronically instrumented dogs underwent cardiac tachypacing for 28 days. Adeno-associated virus serotype 9 viral vectors carrying VEGF-B167 genes were infused intracoronarily at the beginning of the pacing protocol or during compensated heart failure. Moreover, we tested a novel VEGF-B167 transgene controlled by the atrial natriuretic factor promoter. Compared with control subjects, VEGF-B167 markedly preserved diastolic and contractile function and attenuated ventricular chamber remodeling, halting the progression from compensated to decompensated heart failure. Atrial natriuretic factor-VEGF-B167 expression was low in normally functioning hearts and stimulated by cardiac pacing; it thus functioned as an ideal therapeutic transgene, active only under pathological conditions. Our results, obtained with a standard technique of interventional cardiology in a clinically relevant animal model, support VEGF-B167 gene transfer as an affordable and effective new therapy for nonischemic heart failure. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Vascular endothelial growth factor C promotes cervical cancer metastasis via up-regulation and activation of RhoA/ROCK-2/moesin cascade

    International Nuclear Information System (INIS)

    He, Mian; Cheng, Yang; Li, Wen; Liu, Qiongshan; Liu, Junxiu; Huang, Jinghe; Fu, Xiaodong

    2010-01-01

    The elevated expression of vascular endothelial growth factor C (VEGF-C) is correlated with clinical cervical cancer metastasis and patient survival, which is interpreted by VEGF-C functions to stimulate angiogenesis and lymphatic genesis. However, the direct impact of VEGF-C on cervical cancer cell motility remains largely unknown. In this study, we investigated the effects of VEGF-C on actin cytoskeleton remodeling and on cervical cancer cell migration and invasion and how the actin-regulatory protein, moesin regulated these effects through RhoA/ROCK-2 signaling pathway. On cervical carcinoma cell line SiHa cells, exposure of VEGF-C triggered remodeling of the actin cytoskeleton and the formation of membrane ruffles, which was required for cell movement. VEGF-C significantly enhanced SiHa cells horizontal migration and three-dimensional invasion into matrices. These actions were dependent on increased expression and phosphorylation of the actin-regulatory protein moesin and specific moesin siRNA severely impaired VEGF-C stimulated-cell migration. The extracellular small GTPase RhoA/ROCK-2 cascade mediated the increased moesin expression and phosphorylation, which was discovered by the use of Y-27632, a specific inhibitor of Rho kinase and by transfected constitutively active, dominant-negative RhoA as well as ROCK-2 SiRNA. Furthermore, in the surgical cervical specimen from the patients with FIGO stage at cervical intra-epithelial neoplasia and I-II cervical squamous cell carcinoma, the expression levels of moesin were found to be significantly correlated with tumor malignancy and metastasis. These results implied that VEGF-C promoted cervical cancer metastasis by upregulation and activation of moesin protein through RhoA/ROCK-2 pathway. Our findings offer new insight into the role of VEGF-C on cervical cancer progression and may provide potential targets for cervical cancer therapy

  12. Vascular endothelial growth factor C promotes cervical cancer metastasis via up-regulation and activation of RhoA/ROCK-2/moesin cascade

    Directory of Open Access Journals (Sweden)

    Huang Jinghe

    2010-04-01

    Full Text Available Abstract Background The elevated expression of vascular endothelial growth factor C (VEGF-C is correlated with clinical cervical cancer metastasis and patient survival, which is interpreted by VEGF-C functions to stimulate angiogenesis and lymphatic genesis. However, the direct impact of VEGF-C on cervical cancer cell motility remains largely unknown. Methods In this study, we investigated the effects of VEGF-C on actin cytoskeleton remodeling and on cervical cancer cell migration and invasion and how the actin-regulatory protein, moesin regulated these effects through RhoA/ROCK-2 signaling pathway. Results On cervical carcinoma cell line SiHa cells, exposure of VEGF-C triggered remodeling of the actin cytoskeleton and the formation of membrane ruffles, which was required for cell movement. VEGF-C significantly enhanced SiHa cells horizontal migration and three-dimensional invasion into matrices. These actions were dependent on increased expression and phosphorylation of the actin-regulatory protein moesin and specific moesin siRNA severely impaired VEGF-C stimulated-cell migration. The extracellular small GTPase RhoA/ROCK-2 cascade mediated the increased moesin expression and phosphorylation, which was discovered by the use of Y-27632, a specific inhibitor of Rho kinase and by transfected constitutively active, dominant-negative RhoA as well as ROCK-2 SiRNA. Furthermore, in the surgical cervical specimen from the patients with FIGO stage at cervical intra-epithelial neoplasia and I-II cervical squamous cell carcinoma, the expression levels of moesin were found to be significantly correlated with tumor malignancy and metastasis. Conclusions These results implied that VEGF-C promoted cervical cancer metastasis by upregulation and activation of moesin protein through RhoA/ROCK-2 pathway. Our findings offer new insight into the role of VEGF-C on cervical cancer progression and may provide potential targets for cervical cancer therapy.

  13. The ABA-INSENSITIVE-4 (ABI4) transcription factor links redox, hormone and sugar signaling pathways.

    Science.gov (United States)

    Foyer, Christine H; Kerchev, Pavel I; Hancock, Robert D

    2012-02-01

    The cellular reduction-oxidation (redox) hub processes information from metabolism and the environment and so regulates plant growth and defense through integration with the hormone signaling network. One key pathway of redox control involves interactions with ABSCISIC ACID (ABA). Accumulating evidence suggests that the ABA-INSENSITIVE-4 (ABI4) transcription factor plays a key role in transmitting information concerning the abundance of ascorbate and hence the ability of cells to buffer oxidative challenges. ABI4 is required for the ascorbate-dependent control of growth, a process that involves enhancement of salicylic acid (SA) signaling and inhibition of jasmonic acid (JA) signaling pathways. Low redox buffering capacity reinforces SA- JA- interactions through the mediation of ABA and ABI4 to fine-tune plant growth and defense in relation to metabolic cues and environmental challenges. Moreover, ABI4-mediated pathways of sugar sensitivity are also responsive to the abundance of ascorbate, providing evidence of overlap between redox and sugar signaling pathways.

  14. Alternative splicing of TIA-1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance.

    Science.gov (United States)

    Hamdollah Zadeh, Maryam A; Amin, Elianna M; Hoareau-Aveilla, Coralie; Domingo, Enric; Symonds, Kirsty E; Ye, Xi; Heesom, Katherine J; Salmon, Andrew; D'Silva, Olivia; Betteridge, Kai B; Williams, Ann C; Kerr, David J; Salmon, Andrew H J; Oltean, Sebastian; Midgley, Rachel S; Ladomery, Michael R; Harper, Steven J; Varey, Alexander H R; Bates, David O

    2015-01-01

    The angiogenic capability of colorectal carcinomas (CRC), and their susceptibility to anti-angiogenic therapy, is determined by expression of vascular endothelial growth factor (VEGF) isoforms. The intracellular protein T-cell Intracellular Antigen (TIA-1) alters post-transcriptional RNA processing and binds VEGF-A mRNA. We therefore tested the hypothesis that TIA-1 could regulate VEGF-A isoform expression in colorectal cancers. TIA-1 and VEGF-A isoform expression was measured in colorectal cancers and cell lines. We discovered that an endogenous splice variant of TIA-1 encoding a truncated protein, short TIA-1 (sTIA-1) was expressed in CRC tissues and invasive K-Ras mutant colon cancer cells and tissues but not in adenoma cell lines. sTIA-1 was more highly expressed in CRC than in normal tissues and increased with tumour stage. Knockdown of sTIA-1 or over-expression of full length TIA-1 (flTIA-1) induced expression of the anti-angiogenic VEGF isoform VEGF-A165b. Whereas flTIA-1 selectively bound VEGF-A165 mRNA and increased translation of VEGF-A165b, sTIA-1 prevented this binding. In nude mice, xenografted colon cancer cells over-expressing flTIA-1 formed smaller, less vascular tumours than those expressing sTIA-1, but flTIA-1 expression inhibited the effect of anti-VEGF antibodies. These results indicate that alternative splicing of an RNA binding protein can regulate isoform specific expression of VEGF providing an added layer of complexity to the angiogenic profile of colorectal cancer and their resistance to anti-angiogenic therapy. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. [The function of transcription factor P63 and its signaling pathway during limb development].

    Science.gov (United States)

    Ma, Wei; Tian, Wen

    2014-08-01

    The development of human limb is controlled by several transcription factors and signaling pathways, which are organized in precise time- and space-restricted manners. Recent studies showed that P63 and its signaling pathway play important roles in this process. Transcription factor P63, one member of the P53 family, is characterized by a similar amino acid domain, plays a crucial role in the development of limb and ectoderm differentiation, especially with its DNA binding domain, and sterile alpha motif domains. Mutated P63 gene may produce abnormal transcription factor P63 which can affect the signaling pathway. Furthermore, defective signaling protein in structure and/or quantity is synthesized though the pathway. Eventually, members of the signaling protein family are involved in the regulation of differentiation and development of stem cell, which causes deformity of limbs. In brief, three signaling pathways are related to the digit formation along three axes, including SHH-ZPA, FGFs-AER and Lmx1B-Wnt7a-En1. Each contains numerous signaling molecules which are integrated in self-regulatory modules that assure the acquisition or the correct digit complements. These finding has brought new clues for deciphering the etiology of congenital limb malformation and may provide alternatives for both prevention and treatment.

  16. Gamma-secretase inhibitor treatment promotes VEGF-A-driven blood vessel growth and vascular leakage but disrupts neovascular perfusion.

    Directory of Open Access Journals (Sweden)

    Mattias Kalén

    Full Text Available The Notch signaling pathway is essential for normal development due to its role in control of cell differentiation, proliferation and survival. It is also critically involved in tumorigenesis and cancer progression. A key enzyme in the activation of Notch signaling is the gamma-secretase protein complex and therefore, gamma-secretase inhibitors (GSIs--originally developed for Alzheimer's disease--are now being evaluated in clinical trials for human malignancies. It is also clear that Notch plays an important role in angiogenesis driven by Vascular Endothelial Growth Factor A (VEGF-A--a process instrumental for tumor growth and metastasis. The effect of GSIs on tumor vasculature has not been conclusively determined. Here we report that Compound X (CX, a GSI previously reported to potently inhibit Notch signaling in vitro and in vivo, promotes angiogenic sprouting in vitro and during developmental angiogenesis in mice. Furthermore, CX treatment suppresses tumor growth in a mouse model of renal carcinoma, leads to the formation of abnormal vessels and an increased tumor vascular density. Using a rabbit model of VEGF-A-driven angiogenesis in skeletal muscle, we demonstrate that CX treatment promotes abnormal blood vessel growth characterized by vessel occlusion, disrupted blood flow, and increased vascular leakage. Based on these findings, we propose a model for how GSIs and other Notch inhibitors disrupt tumor blood vessel perfusion, which might be useful for understanding this new class of anti-cancer agents.

  17. Higher expression of vascular endothelial growth factor (VEGF and its receptor VEGFR-2 (Flk-1 and metalloproteinase-9 (MMP-9 in a rat model of peritoneal endometriosis is similar to cancer diseases

    Directory of Open Access Journals (Sweden)

    Nasciutti Luiz E

    2010-01-01

    Full Text Available Abstract Background Endometriosis is a common disease characterized by the presence of a functional endometrium outside the uterine cavity, causing pelvic pain, dysmenorrheal, and infertility. This disease has been associated to development of different types of malignancies; therefore new blood vessels are essential for the survival of the endometrial implant. Our previous observations on humans showed that angiogenesis is predominantly found in rectosigmoid endometriosis, a deeply infiltrating disease. In this study, we have established the experimental model of rat peritoneal endometriosis to evaluate the process of angiogenesis and to compare with eutopic endometrium. Methods We have investigated the morphological characteristics of these lesions and the vascular density, VEGF and its receptor Flk-1 and MMP-9 expression, and activated macrophage distribution, using immunohistochemistry and RT-PCR. Results As expected, the auto-transplantation of endometrium pieces into the peritoneal cavity is a well-established method for endometriosis induction in rats. The lesions were cystic and vascularized, and demonstrated histological hallmarks of human pathology, such as endometrial glands and stroma. The vascular density and the presence of VEGF and Flk-1 and MMP-9 were significantly higher in endometriotic lesions than in eutopic endometrium, and confirmed the angiogenic potential of these lesions. We also observed an increase in the number of activated macrophages (ED-1 positive cells in the endometriotic lesions, showing a positive correlation with VEGF. Conclusion The present endometriosis model would be useful for investigation of the mechanisms of angiogenesis process involved in the peritoneal attachment of endometrial cells, as well as of the effects of therapeutic drugs, particularly with antiangiogenic activity.

  18. Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines

    International Nuclear Information System (INIS)

    Fossey, Stacey L; Bear, Misty D; Kisseberth, William C; Pennell, Michael; London, Cheryl A

    2011-01-01

    We have previously demonstrated that both canine and human OSA cell lines, as well as 8 fresh canine OSA tumor samples, exhibit constitutive phosphorylation of STAT3, and that this correlates with enhanced expression of matrix metalloproteinase-2 (MMP2). While multiple signal transduction pathways can result in phosphorylation of STAT3, stimulation of the cytokine receptor gp130 through either IL-6 or Oncostatin M (OSM) is the most common mechanism through which STAT3 is activated. The purpose of this study was to evaluate the role of IL-6 and OSM stimulation on both canine and human OSA cell lines to begin to determine the role of these cytokines in the biology of OSA. RT-PCR and Western blotting were used to interrogate the consequences of OSM and IL-6 stimulation of OSA cell lines. OSA cells were stimulated with OSM and/or hepatocyte growth factor (HGF) and the effects on MMP2 activity (gel zymography), proliferation (CyQUANT), invasion (Matrigel transwell assay), and VEGF production (Western blotting, ELISA) were assessed. The small molecule STAT3 inhibitor LLL3 was used to investigate the impact of STAT3 inhibition following OSM stimulation of OSA cells. Our data demonstrate that the OSM receptor (OSMR), but not IL-6 or its receptor, is expressed by all human and canine OSA cell lines and canine OSA tumor samples; additionally, OSM expression was noted in all tumor samples. Treatment of OSA cell lines with OSM induced phosphorylation of STAT3, Src, and JAK2. OSM stimulation also resulted in a dose dependent increase in MMP2 activity and VEGF expression that was markedly reduced following treatment with the small molecule STAT3 inhibitor LLL3. Lastly, OSM stimulation of OSA cell lines enhanced invasion through Matrigel, particularly in the presence of rhHGF. In contrast, both OSM and HGF stimulation of OSA cell lines did not alter their proliferative capacity. These data indicate OSM stimulation of human and canine OSA cells induces STAT3 activation, thereby

  19. Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Kisseberth William C

    2011-04-01

    Full Text Available Abstract Background We have previously demonstrated that both canine and human OSA cell lines, as well as 8 fresh canine OSA tumor samples, exhibit constitutive phosphorylation of STAT3, and that this correlates with enhanced expression of matrix metalloproteinase-2 (MMP2. While multiple signal transduction pathways can result in phosphorylation of STAT3, stimulation of the cytokine receptor gp130 through either IL-6 or Oncostatin M (OSM is the most common mechanism through which STAT3 is activated. The purpose of this study was to evaluate the role of IL-6 and OSM stimulation on both canine and human OSA cell lines to begin to determine the role of these cytokines in the biology of OSA. Methods RT-PCR and Western blotting were used to interrogate the consequences of OSM and IL-6 stimulation of OSA cell lines. OSA cells were stimulated with OSM and/or hepatocyte growth factor (HGF and the effects on MMP2 activity (gel zymography, proliferation (CyQUANT, invasion (Matrigel transwell assay, and VEGF production (Western blotting, ELISA were assessed. The small molecule STAT3 inhibitor LLL3 was used to investigate the impact of STAT3 inhibition following OSM stimulation of OSA cells. Results Our data demonstrate that the OSM receptor (OSMR, but not IL-6 or its receptor, is expressed by all human and canine OSA cell lines and canine OSA tumor samples; additionally, OSM expression was noted in all tumor samples. Treatment of OSA cell lines with OSM induced phosphorylation of STAT3, Src, and JAK2. OSM stimulation also resulted in a dose dependent increase in MMP2 activity and VEGF expression that was markedly reduced following treatment with the small molecule STAT3 inhibitor LLL3. Lastly, OSM stimulation of OSA cell lines enhanced invasion through Matrigel, particularly in the presence of rhHGF. In contrast, both OSM and HGF stimulation of OSA cell lines did not alter their proliferative capacity. Conclusions These data indicate OSM stimulation of

  20. Increased serum levels of sortilin are associated with depression and correlated with BDNF and VEGF

    DEFF Research Database (Denmark)

    Buttenschøn, Henriette Nørmølle; Demontis, Ditte; Ollendorff, Mathias Kaas

    2015-01-01

    measured by immunoassay, and potential determinants of the serum sortilin level were assessed by generalized linear models. Serum levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) were measured in previous studies. We identified a significant increase of serum...... sortilin levels in depressed individuals compared with controls (P = 0.0002) and significant positive correlation between serum sortilin levels and the corresponding levels of BDNF and VEGF. None of the genotyped SNPs were associated with depression. Additional analyses showed that the serum sortilin level...... was influenced by several other factors. Alcohol intake and body mass index, as well as depression, serum BDNF and serum VEGF were identified as predictors of serum sortilin levels in our final multivariate model. In conclusion, the results suggest a role of circulating sortilin in depression which may relate...

  1. High expression of SDF-1 and VEGF is associated with poor prognosis in patients with synovial sarcomas.

    Science.gov (United States)

    Feng, Qi; Guo, Peng; Wang, Jin; Zhang, Xiaoyu; Yang, Hui-Chai; Feng, Jian-Gang

    2018-03-01

    Stromal cell-derived factor-1 (SDF-1) predicts poor clinical outcomes of certain types of cancer. Furthermore, vascular endothelial growth factor (VEGF) promotes the growth and metastasis of solid tumors. The aim of the present study was to examine the expression of SDF-1 and VEGF in patients with synovial sarcoma and to determine their expression is correlated with unfavorable outcomes. Levels of SDF-1 and VEGF proteins were evaluated in 54 patients with synovial sarcoma using immunohistochemical and immunofluorescence staining. Potential associations between the expression of SDF-1 and VEGF and various clinical parameters were analyzed using Pearson's χ 2 test and the Spearman-rho test. Additionally, univariate and multivariate Cox regression analyses were used to identify potential prognostic factors, and the Kaplan-Meier method was used to analyze the overall survival rates of patients. Low SDF-1 and VEGF expression was detected in 20.4% (11/54) and 22.2% (12/54) of patients with synovial sarcoma; moderate expression was detected in 35.2% (19/54) and 37.0% (20/54) of patients and high expression was detected in 44.4% (24 of 54) and 40.7% (22 of 54) of patients, respectively. Levels of SDF-1 and VEGF proteins were significantly associated with histological grade (P<0.05), metastasis (P<0.05) and American Joint Committee on Cancer staging (P<0.05). In addition, levels of SDF-1 and VEGF expression were positively correlated with each other (P<0.001). Univariate analysis also indicated that VEGF expression was associated with shorter overall survival rates in (P<0.05), whereas multivariate analysis demonstrated that SDF-1 expression was associated with shorter patient survival rates (P<0.05). Finally, both SDF-1 and VEGF expression were associated with various characteristics of synovial sarcoma. Therefore, SDF-1 expression may be a potential independent prognostic indicator in patients with synovial sarcomas.

  2. Genetic variation in the transforming growth factor-β-signaling pathway, lifestyle factors, and risk of colon or rectal cancer.

    Science.gov (United States)

    Slattery, Martha L; Lundgreen, Abbie; Wolff, Roger K; Herrick, Jennifer S; Caan, Bette J

    2012-05-01

    The transforming growth factor-β-signaling pathway has been identified as being involved in colorectal cancer. The aim of this study was to determine how diet and lifestyle factors in combination with genetic variation in the transforming growth factor-β-signaling pathway alters colorectal cancer risk. We used data from 2 population-based case-control studies. Participants included patients with colon cancer (n = 1574) and controls (n = 1970) and patients with rectal cancer ( n = 791) and controls (n = 999). The primary outcomes measured were newly diagnosed cases of colon or rectal cancer. Colon and rectal cancer risk increased with the number of at-risk genotypes within the transforming growth factor-β-signaling pathway (OR 3.68, 95% CI 2.74,4.94 for colon cancer; OR 3.89, 95% CI 2.66,5.69 for rectal cancer). A high at-risk lifestyle score also resulted in significant increased risk with number of at-risk lifestyle factors (OR 2.99, 95% CI 2.32,3.85 for colon cancer; OR 3.37, 95% CI 2.24,5.07 for rectal cancer). The combination of high-risk genotype and high-risk lifestyle results in the greatest increase in risk (OR 7.89, 95% CI 4.45,13.96 for colon cancer; OR 8.75, 95% CI 3.66,20.89 for rectal cancer). The study results need validation in other large studies of colon and rectal cancer. In summary, our data suggest that there is increased colon and rectal cancer risk with increasing number of at-risk genotypes and at-risk lifestyle factors. Although the integrity of the pathway can be diminished by a number of high-risk genotypes, this risk can be offset, in part, by maintaining a healthy lifestyle.

  3. The association of environmental, individual factors, and dopamine pathway gene variation with smoking cessation.

    Science.gov (United States)

    Li, Suyun; Wang, Qiang; Pan, Lulu; Yang, Xiaorong; Li, Huijie; Jiang, Fan; Zhang, Nan; Han, Mingkui; Jia, Chongqi

    2017-09-01

    This study aimed to examine whether dopamine (DA) pathway gene variation were associated with smoking cessation, and compare the relative importance of infulence factors on smoking cessation. Participants were recruited from 17 villages of Shandong Province, China. Twenty-five single nucleotide polymorphisms in 8 DA pathway genes were genotyped. Weighted gene score of each gene was used to analyze the whole gene effect. Logistic regression was used to calculate odds ratios (OR) of the total gene score for smoking cessation. Dominance analysis was employed to compare the relative importance of individual, heaviness of smoking, psychological and genetic factors on smoking cessation. 415 successful spontaneous smoking quitters served as the cases, and 404 unsuccessful quitters served as the controls. A significant negative association of total DA pathway gene score and smoking cessation was observed (p smoking cessation was heaviness of smoking score (42%), following by individual (40%), genetic (10%) and psychological score (8%). In conclusion, although the DA pathway gene variation was significantly associated with successful smoking cessation, heaviness of smoking and individual factors had bigger effect than genetic factors on smoking cessation.

  4. Paracrine Pathways in Uterine Leiomyoma Stem Cells Involve Insulinlike Growth Factor 2 and Insulin Receptor A.

    Science.gov (United States)

    Moravek, Molly B; Yin, Ping; Coon, John S; Ono, Masanori; Druschitz, Stacy A; Malpani, Saurabh S; Dyson, Matthew T; Rademaker, Alfred W; Robins, Jared C; Wei, Jian-Jun; Kim, J Julie; Bulun, Serdar E

    2017-05-01

    Uterine leiomyomas (fibroids) are the most common benign tumors in women. Recently, three populations of leiomyoma cells were discovered on the basis of CD34 and CD49b expression, but molecular differences between these populations remain unknown. To define differential gene expression and signaling pathways in leiomyoma cell populations. Cells from human leiomyoma tissue were sorted by flow cytometry into three populations: CD34+/CD49b+, CD34+/CD49b-, and CD34-/CD49b-. Microarray gene expression profiling and pathway analysis were performed. To investigate the insulinlike growth factor (IGF) pathway, real-time quantitative polymerase chain reaction, immunoblotting, and 5-ethynyl-2'-deoxyuridine incorporation studies were performed in cells isolated from fresh leiomyoma. Research laboratory. Eight African American women. None. Gene expression patterns, cell proliferation, and differentiation. A total of 1164 genes were differentially expressed in the three leiomyoma cell populations, suggesting a hierarchical differentiation order whereby CD34+/CD49b+ stem cells differentiate to CD34+/CD49b- intermediary cells, which then terminally differentiate to CD34-/CD49b- cells. Pathway analysis revealed differential expression of several IGF signaling pathway genes. IGF2 was overexpressed in CD34+/CD49b- vs CD34-/CD49b- cells (83-fold; P leiomyoma stem cell proliferation and may represent paracrine signaling between leiomyoma cell types. Therapies targeting the IGF pathway should be investigated for both treatment and prevention of leiomyomas. Copyright © 2017 by the Endocrine Society

  5. Antagonism of EG-VEGF Receptors as Targeted Therapy for Choriocarcinoma Progression In Vitro and In Vivo.

    Science.gov (United States)

    Traboulsi, Wael; Sergent, Frédéric; Boufettal, Houssine; Brouillet, Sophie; Slim, Rima; Hoffmann, Pascale; Benlahfid, Mohammed; Zhou, Qun Y; Balboni, Gianfranco; Onnis, Valentina; Bolze, Pierre A; Salomon, Aude; Sauthier, Philippe; Mallet, François; Aboussaouira, Touria; Feige, Jean J; Benharouga, Mohamed; Alfaidy, Nadia

    2017-11-15

    Purpose: Choriocarcinoma (CC) is the most malignant gestational trophoblastic disease that often develops from complete hydatidiform moles (CHM). Neither the mechanism of CC development nor its progression is yet characterized. We recently identified endocrine gland-derived vascular endothelial growth factor (EG-VEGF) as a novel key placental growth factor that controls trophoblast proliferation and invasion. EG-VEGF acts via two receptors, PROKR1 and PROKR2. Here, we demonstrate that EG-VEGF receptors can be targeted for CC therapy. Experimental Design: Three approaches were used: (i) a clinical investigation comparing circulating EG-VEGF in control ( n = 20) and in distinctive CHM ( n = 38) and CC ( n = 9) cohorts, (ii) an in vitro study investigating EG-VEGF effects on the CC cell line JEG3, and (iii) an in vivo study including the development of a novel CC mouse model, through a direct injection of JEG3-luciferase into the placenta of gravid SCID-mice. Results: Both placental and circulating EG-VEGF levels were increased in CHM and CC (×5) patients. EG-VEGF increased JEG3 proliferation, migration, and invasion in two-dimensional (2D) and three-dimensional (3D) culture systems. JEG3 injection in the placenta caused CC development with large metastases compared with their injection into the uterine horn. Treatment of the animal model with EG-VEGF receptor's antagonists significantly reduced tumor development and progression and preserved pregnancy. Antibody-array and immunohistological analyses further deciphered the mechanism of the antagonist's actions. Conclusions: Our work describes a novel preclinical animal model of CC and presents evidence that EG-VEGF receptors can be targeted for CC therapy. This may provide safe and less toxic therapeutic options compared with the currently used multi-agent chemotherapies. Clin Cancer Res; 23(22); 7130-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  7. VEGF selectively induces Down syndrome critical region 1 gene expression in endothelial cells: a mechanism for feedback regulation of angiogenesis?

    International Nuclear Information System (INIS)

    Yao, Y.-G; Duh, Elia J.

    2004-01-01

    The Down syndrome critical region 1 (DSCR1) gene (also known as MCIP1, Adapt78) encodes a regulatory protein that binds to calcineurin catalytic A subunit and acts as a regulator of the calcineurin-mediated signaling pathway. We show in this study that DSCR1 is greatly induced in endothelial cells in response to VEGF, TNF-α, and A23187 treatment, and that this up-regulation is inhibited by inhibitors of the calcineurin-NFAT (nuclear factor of activated T cells) signaling pathway as well as by PKC inhibition and a Ca 2+ chelator. We hypothesized that the up-regulation of DSCR1 gene expression in endothelial cells could act as an endogenous feedback inhibitor for angiogenesis by regulating the calcineurin-NFAT signaling pathway. Our transient transfection analyses confirm that the overexpression of DSCR1 abrogates the up-regulation of reporter gene expression driven by both the cyclooxygenase 2 and DSCR1 promoters in response to stimulators. Our results indicate that DSCR1 up-regulation may represent a potential molecular mechanism underlying the regulation of angiogenic genes activated by the calcineurin-NFAT signaling pathway in endothelial cells

  8. Albendazole inhibits HIF-1α-dependent glycolysis and VEGF expression in non-small cell lung cancer cells.

    Science.gov (United States)

    Zhou, Fang; Du, Jin; Wang, Jianjun

    2017-04-01

    Albendazole (ABZ) has an anti-tumor ability and inhibits HIF-1α activity. HIF-1α is associated with glycolysis and vascular endothelial cell growth factor (VEGF) expression, which plays an important role in cancer progression. These clues indicate that ABZ exerts an anti-cancer effect by regulating glycolysis and VEGF expression. The aim of this study is to clarify the effects of ABZ on non-small cell lung cancer (NSCLC) cells and explore the underlying molecular mechanisms. The expression levels of HIF-1α and VEGF were detected using western blot analysis, and the effect of ABZ on glycolysis was evaluated by measuring the relative activities of hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) and detecting the production of lactate in A549 and H1299 cells. The results showed that ABZ decreased the expression levels of HIF-1α and VEGF and suppressed glycolysis in under hypoxia, but not normoxic condition. Inhibiting HIF-1α also suppressed glycolysis and VEGF expression. Additionally, ABZ inhibited the volume and weight, decreased the relative activities of HK, PK, and LDH, and reduced the levels of HIF-1α and VEGF of A549 xenografts in mouse models. In conclusion, ABZ inhibited growth of NSCLC cells by suppressing HIF-1α-dependent glycolysis and VEGF expression.

  9. Survival-related profile, pathways, and transcription factors in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Anne P G Crijns

    2009-02-01

    Full Text Available BACKGROUND: Ovarian cancer has a poor prognosis due to advanced stage at presentation and either intrinsic or acquired resistance to classic cytotoxic drugs such as platinum and taxoids. Recent large clinical trials with different combinations and sequences of classic cytotoxic drugs indicate that further significant improvement in prognosis by this type of drugs is not to be expected. Currently a large number of drugs, targeting dysregulated molecular pathways in cancer cells have been developed and are introduced in the clinic. A major challenge is to identify those patients who will benefit from drugs targeting these specific dysregulated pathways.The aims of our study were (1 to develop a gene expression profile associated with overall survival in advanced stage serous ovarian cancer, (2 to assess the association of pathways and transcription factors with overall survival, and (3 to validate our identified profile and pathways/transcription factors in an independent set of ovarian cancers. METHODS AND FINDINGS: According to a randomized design, profiling of 157 advanced stage serous ovarian cancers was performed in duplicate using approximately 35,000 70-mer oligonucleotide microarrays. A continuous predictor of overall survival was built taking into account well-known issues in microarray analysis, such as multiple testing and overfitting. A functional class scoring analysis was utilized to assess pathways/transcription factors for their association with overall survival. The prognostic value of genes that constitute our overall survival profile was validated on a fully independent, publicly available dataset of 118 well-defined primary serous ovarian cancers. Furthermore, functional class scoring analysis was also performed on this independent dataset to assess the similarities with results from our own dataset. An 86-gene overall survival profile discriminated between patients with unfavorable and favorable prognosis (median survival, 19

  10. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Se-Hee [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Schmitt, Christopher E.; Woolls, Melissa J. [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States); Holland, Melinda B. [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Kim, Jun-Dae [Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States); Jin, Suk-Won, E-mail: suk-won.jin@yale.edu [Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States)

    2013-01-25

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process.

  11. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    International Nuclear Information System (INIS)

    Kim, Se-Hee; Schmitt, Christopher E.; Woolls, Melissa J.; Holland, Melinda B.; Kim, Jun-Dae; Jin, Suk-Won

    2013-01-01

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process

  12. Activation of factor VII bound to tissue factor: a key early step in the tissue factor pathway of blood coagulation.

    OpenAIRE

    Rao, L V; Rapaport, S I

    1988-01-01

    Whether the factor VII/tissue factor complex that forms in tissue factor-dependent blood coagulation must be activated to factor VIIa/tissue factor before it can activate its substrates, factor X and factor IX, has been a difficult question to answer because the substrates, once activated, back-activate factor VII. Our earlier studies suggested that human factor VII/tissue factor cannot activate factor IX. Studies have now been extended to the activation of factor X. Reaction mixtures were ma...

  13. Activation of factor VII bound to tissue factor: A key early step in the tissue factor pathway of blood coagulation

    International Nuclear Information System (INIS)

    Rao, L.V.M.; Rapaport, S.I.

    1988-01-01

    Whether the factor VII/tissue factor complex that forms in tissue factor-dependent blood coagulation must be activated to factor VIIa/tissue factor before it can activate its substrates, factor X and IX, has been a difficult question to answer because the substrates, once activated, back-activate factor VII. The earlier studies suggested that human factor VII/tissue factor cannot activate factor IX. Studies have now been extended to the activation of factor X. Reaction mixtures were made with purified factor VII, X, and tissue factor; in some experiments antithrombin III and heparin were added to prevent back-activation of factor VII. Factor X was activated at similar rates in reaction mixtures containing either VII or factor VIIa after an initial 30-sec lag with factor VII. In reaction mixtures with factor VII a linear activation of factor X was established several minutes before cleavage of 125 I-labeled factor VII to the two-chain activated molecule was demonstrable on gel profiles. These data suggest that factor VII/tissue factor cannot activate measurable amounts of factor X over several minutes. Overall, the results support the hypothesis that a rapid preferential activation of factor VII bound to tissue factor by trace amounts of factor Xa is a key early step in tissue factor-dependent blood coagulation

  14. Directed random walks and constraint programming reveal active pathways in hepatocyte growth factor signaling.

    Science.gov (United States)

    Kittas, Aristotelis; Delobelle, Aurélien; Schmitt, Sabrina; Breuhahn, Kai; Guziolowski, Carito; Grabe, Niels

    2016-01-01

    An effective means to analyze mRNA expression data is to take advantage of established knowledge from pathway databases, using methods such as pathway-enrichment analyses. However, pathway databases are not case-specific and expression data could be used to infer gene-regulation patterns in the context of specific pathways. In addition, canonical pathways may not always describe the signaling mechanisms properly, because interactions can frequently occur between genes in different pathways. Relatively few methods have been proposed to date for generating and analyzing such networks, preserving the causality between gene interactions and reasoning over the qualitative logic of regulatory effects. We present an algorithm (MCWalk) integrated with a logic programming approach, to discover subgraphs in large-scale signaling networks by random walks in a fully automated pipeline. As an exemplary application, we uncover the signal transduction mechanisms in a gene interaction network describing hepatocyte growth factor-stimulated cell migration and proliferation from gene-expression measured with microarray and RT-qPCR using in-house perturbation experiments in a keratinocyte-fibroblast co-culture. The resulting subgraphs illustrate possible associations of hepatocyte growth factor receptor c-Met nodes, differentially expressed genes and cellular states. Using perturbation experiments and Answer Set programming, we are able to select those which are more consistent with the experimental data. We discover key regulator nodes by measuring the frequency with which they are traversed when connecting signaling between receptors and significantly regulated genes and predict their expression-shift consistently with the measured data. The Java implementation of MCWalk is publicly available under the MIT license at: https://bitbucket.org/akittas/biosubg. © 2015 FEBS.

  15. Cooperation of Indian Hedgehog and Vascular Endothelial Growth Factor in Tumor Angiogenesis and Growth in Human Hepatocellular Carcinomas, an Immunohistochemical Study.

    Science.gov (United States)

    Li, Yang; Liu, Yang; Wang, Guangxi; Wang, Yuxiang; Guo, Limei

    2018-04-07

    The Hedgehog pathway was recently shown to be involved in vascular development and neovascularization in human embryogenesis and disease. However, the role of Hedgehog pathway in modulating tumor angiogenesis is still unexplored. In the current study, we investigated the expression of Indian Hedgehog (Ihh) and vascular endothelial cell growth factor (VEGF) in human hepatocellular carcinomas (HCCs) with immunohistochemical staining and compared the immunoreaction data with various clinicopathologic characteristics. Immunoreactivity of Ihh and VEGF proteins was observed in 61.5% (56/91) and 64.5% (59/91) cases of HCC tumor tissues, respectively, which was considerably higher than the adjacent nonmalignant tissues. Ihh protein was observed predominantly in the cytoplasm of the tumor cells with a staining pattern of which was sparse and dot-like, or circular around the cell membrane. VEGF protein was expressed heterogenously in the cytoplasm in tumor cells and was negative in peritumoral areas in all cases. CD34 showed diffuse staining in the tumor parenchyma in most HCC specimens. The association of expression of Ihh and VEGF with tumor size was statistically significant (PIhh and VEGF proteins in HCC (r=0.6, PIhh and CD34 staining (r=0.261, P=0.012). Our findings suggest that Ihh is involved in the development of HCC. These findings are also consistent with the concept that cooperation of Ihh and VEGF modulate HCC tumor angiogenesis and growth.

  16. Uncovering transcription factor and microRNA risk regulatory pathways associated with osteoarthritis by network analysis.

    Science.gov (United States)

    Song, Zhenhua; Zhang, Chi; He, Lingxiao; Sui, Yanfang; Lin, Xiafei; Pan, Jingjing

    2018-05-01

    Osteoarthritis (OA) is the most common form of joint disease. The development of inflammation have been considered to play a key role during the progression of OA. Regulatory pathways are known to play crucial roles in many pathogenic processes. Thus, deciphering these risk regulatory pathways is critical for elucidating the mechanisms underlying OA. We constructed an OA-specific regulatory network by integrating comprehensive curated transcription and post-transcriptional resource involving transcription factor (TF) and microRNA (miRNA). To deepen our understanding of underlying molecular mechanisms of OA, we developed an integrated systems approach to identify OA-specific risk regulatory pathways. In this study, we identified 89 significantly differentially expressed genes between normal and inflamed areas of OA patients. We found the OA-specific regulatory network was a standard scale-free network with small-world properties. It significant enriched many immune response-related functions including leukocyte differentiation, myeloid differentiation and T cell activation. Finally, 141 risk regulatory pathways were identified based on OA-specific regulatory network, which contains some known regulator of OA. The risk regulatory pathways may provide clues for the etiology of OA and be a potential resource for the discovery of novel OA-associated disease genes. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head.

    Science.gov (United States)

    Liao, Hongxing; Zhong, Zhixiong; Liu, Zhanliang; Li, Liangping; Ling, Zemin; Zou, Xuenong

    2018-01-01

    The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo . In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy.

  18. PPARγ controls pregnancy outcome through activation of EG-VEGF: new insights into the mechanism of placental development.

    Science.gov (United States)

    Garnier, Vanessa; Traboulsi, Wael; Salomon, Aude; Brouillet, Sophie; Fournier, Thierry; Winkler, Carine; Desvergne, Beatrice; Hoffmann, Pascale; Zhou, Qun-Yong; Congiu, Cenzo; Onnis, Valentina; Benharouga, Mohamed; Feige, Jean-Jacques; Alfaidy, Nadia

    2015-08-15

    PPARγ-deficient mice die at E9.5 due to placental abnormalities. The mechanism by which this occurs is unknown. We demonstrated that the new endocrine factor EG-VEGF controls the same processes as those described for PPARγ, suggesting potential regulation of EG-VEGF by PPARγ. EG-VEGF exerts its functions via prokineticin receptor 1 (PROKR1) and 2 (PROKR2). This study sought to investigate whether EG-VEGF mediates part of PPARγ effects on placental development. Three approaches were used: 1) in vitro, using human primary isolated cytotrophoblasts and the extravillous trophoblast cell line (HTR-8/SVneo); 2) ex vivo, using human placental explants (n = 46 placentas); and 3) in vivo, using gravid wild-type PPARγ(+/-) and PPARγ(-/-) mice. Major processes of placental development that are known to be controlled by PPARγ, such as trophoblast proliferation, migration, and invasion, were assessed in the absence or presence of PROKR1 and PROKR2 antagonists. In both human trophoblast cell and placental explants, we demonstrated that rosiglitazone, a PPARγ agonist, 1) increased EG-VEGF secretion, 2) increased EG-VEGF and its receptors mRNA and protein expression, 3) increased placental vascularization via PROKR1 and PROKR2, and 4) inhibited trophoblast migration and invasion via PROKR2. In the PPARγ(-/-) mouse placentas, EG-VEGF levels were significantly decreased, supporting an in vivo control of EG-VEGF/PROKRs system during pregnancy. The present data reveal EG-VEGF as a new mediator of PPARγ effects during pregnancy and bring new insights into the fine mechanism of trophoblast invasion. Copyright © 2015 the American Physiological Society.

  19. Correlation between serum VEGF level and CT perfusion imaging in patients with primary liver cancer pre-and post TACE

    International Nuclear Information System (INIS)

    Jia Zhongzhi; Huang Yuanquan; Feng Yaoliang; Shi Haibin

    2010-01-01

    Objective: To investigate the correlation between serum vascular endothelial growth factor(VEGF) level and CT perfusion parameters in patients with primary liver cancer (PLC) pre-and post-transcatheter arterial chemoembolization (TACE) treatment. Methods: Serum VEGF level was measured and CT perfusion imaging was performed 1 day before and 6 ∼ 8, 32 ∼ 40 days after TACE in 18 patients with PLC. Before and after TACE, the serum VEGF level, the tumor's artery liver perfusion (ALP), the portal vein perfusion (PVP) and the hepatic artery perfusion index (HPI) were measured pre-and post-TACE. The pre-TACE and post-TACE results were compared and statistically analyzed. Results: Based on the therapeutic results, the patients were divided into complete response (CR) group and partial response or stable disease(PR+SD) group. Although no significant difference in serum VEGF level, tumor's ALP, PVP and HPI existed between two groups pre-TACE, there was significant difference in ALP, HPI 6-8 days after TACE (P<0.05). Significant difference in serum VEGF level also existed in CR group (P<0.05), but not in (PR+SD) group, at (32-40) days post-TACE (P=0.221). The serum VEGF level carried a positive correlation with the tumor's ALP and HPI. Conclusion: The serum VEGF level can indirectly reflect the neovascularization of the tumor, while the CTPI can directly and quantitatively reflect the hemodynamic changes of the tumor post-TACE. Moreover, a positive correlation exists between serum VEGF level and ALP, HPI. Therefore, the determination of serum VEGF level together with CTPI is very useful in both evaluating TACE efficacy and making therapeutic schedule. (authors)

  20. Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1

    Science.gov (United States)

    Ye, Shoudong; Li, Ping; Tong, Chang; Ying, Qi-Long

    2013-01-01

    Mouse embryonic stem cell (mESC) self-renewal can be maintained by activation of the leukaemia inhibitory factor (LIF)/signal transducer and activator of transcription 3 (Stat3) signalling pathway or dual inhibition (2i) of glycogen synthase kinase 3 (Gsk3) and mitogen-activated protein kinase kinase (MEK). Several downstream targets of the pathways involved have been identified that when individually overexpressed can partially support self-renewal. However, none of these targets is shared among the involved pathways. Here, we show that the CP2 family transcription factor Tfcp2l1 is a common target in LIF/Stat3- and 2i-mediated self-renewal, and forced expression of Tfcp2l1 can recapitulate the self-renewal-promoting effect of LIF or either of the 2i components. In addition, Tfcp2l1 can reprogram post-implantation epiblast stem cells to naïve pluripotent ESCs. Tfcp2l1 upregulates Nanog expression and promotes self-renewal in a Nanog-dependent manner. We conclude that Tfcp2l1 is at the intersection of LIF- and 2i-mediated self-renewal pathways and plays a critical role in maintaining ESC identity. Our study provides an expanded understanding of the current model of ground-state pluripotency. PMID:23942238

  1. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Chuang, Cheng-Hung; Liu, Chia-Hua; Lu, Ta-Jung; Hu, Miao-Lin

    2014-01-01

    Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay. We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. - Graphical abstract: Possible mechanisms of α-TEA on inhibited angiogenesis of human umbilical vein endothelial cells. Brief summary In the present study, we have demonstrated that VEGF-mediated angiogenesis is significantly inhibited by α-TEA, and that this effect involves inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways related to invasion and migration. - Highlights: • The anti-angiogenic effect and the mechanistic action of α-TEA were investigated. • α-TEA significantly inhibited VEGF-mediated angiogenesis both in vitro and ex vivo. • α-TEA down

  2. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Cheng-Hung, E-mail: chchuang@hk.edu.tw [Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, 1018 Sec. 6 Taiwan Boulevard, Taichung 43302, Taiwan, ROC (China); Liu, Chia-Hua [Department of Food Science and Biotechnology, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China); Lu, Ta-Jung [Department of Chemistry, Institute of Technology and Innovation Management, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China); Hu, Miao-Lin, E-mail: mlhuhu@dragon.nchu.edu.tw [Department of Food Science and Biotechnology, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China)

    2014-12-15

    Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay. We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. - Graphical abstract: Possible mechanisms of α-TEA on inhibited angiogenesis of human umbilical vein endothelial cells. Brief summary In the present study, we have demonstrated that VEGF-mediated angiogenesis is significantly inhibited by α-TEA, and that this effect involves inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways related to invasion and migration. - Highlights: • The anti-angiogenic effect and the mechanistic action of α-TEA were investigated. • α-TEA significantly inhibited VEGF-mediated angiogenesis both in vitro and ex vivo. • α-TEA down

  3. Deleterious effects of progestagen treatment in VEGF expression in corpora lutea of pregnant ewes.

    Science.gov (United States)

    Letelier, C A; Sanchez, M A; Garcia-Fernandez, R A; Sanchez, B; Garcia-Palencia, P; Gonzalez-Bulnes, A; Flores, J M

    2011-06-01

    The aim of the current study was to determine the possible effects of progestagen oestrous synchronization on vascular endothelial growth factor (VEGF) expression during sheep luteogenesis and the peri-implantation period and the relationship with luteal function. At days 9, 11, 13, 15, 17 and 21 of pregnancy, the ovaries from 30 progestagen treated and 30 ewes cycling after cloprostenol injection were evaluated by ultrasonography and, thereafter, collected and processed for immunohistochemical evaluation of VEGF; blood samples were drawn for evaluating plasma progesterone. The progestagen-treated group showed smaller corpora lutea than cloprostenol-treated and lower progesterone secretion. The expression of VEGF in the luteal cells increased with time in the cloprostenol group, but not in the progestagen-treated group, which even showed a decrease between days 11 and 13. In progestagen-treated sheep, VEGF expression in granulosa-derived parenchymal lobule capillaries was correlated with the size of the luteal tissue, larger corpora lutea had higher expression, and tended to have a higher progesterone secretion. In conclusion, the current study indicates the existence of deleterious effects from exogenous progestagen treatments on progesterone secretion from induced corpora lutea, which correlate with alterations in the expression of VEGF in the luteal tissue and, this, presumably in the processes of neoangiogenesis and luteogenesis. © 2010 Blackwell Verlag GmbH.

  4. Retinal reperfusion in diabetic retinopathy following treatment with anti-VEGF intravitreal injections

    Directory of Open Access Journals (Sweden)

    Levin AM

    2017-01-01

    Full Text Available Ariana M Levin, Irene Rusu, Anton Orlin, Mrinali P Gupta, Peter Coombs, Donald J D’Amico, Szilárd Kiss Department of Ophthalmology, Weill Cornell Medical College, New York, NY, USA Purpose: The aim of this study is to report peripheral reperfusion of ischemic areas of the retina on ultra-widefield fluorescein angiography (UWFA following anti-vascular endothelial growth factor (VEGF intravitreal injections in patients treated for diabetic retinopathy. Methods: This study is a retrospective review of 16 eyes of 15 patients with diabetic retinopathy, who received anti-VEGF intravitreal injections and underwent pre- and postinjection UWFA. The main outcome measured was the presence of reperfusion in postinjection UWFA images in areas of the retina that demonstrated nonperfusion in preinjection images. Images were analyzed for reperfusion qualitatively and quantitatively by two graders. Results: Twelve of 16 eyes (75% or 11 of 15 patients (73.3% demonstrated reperfusion following anti-VEGF injection. On UWFA, reperfusion was detected both within the field of 7-standard field (7SF fluorescein angiography and in the periphery outside the 7SF. Four of 16 eyes or 4 of 15 patients did not demonstrate reperfusion, one of which had extensive scarring from prior panretinal photocoagulation. Conclusion: In patients with diabetic retinopathy, treatment with anti-VEGF agents can be associated with reperfusion of areas of nonperfusion, as demonstrated by UWFA. Keywords: anti-VEGF, diabetes, diabetic retinopathy, ischemia, perfusion, reperfusion

  5. Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease.

    Science.gov (United States)

    Falkevall, Annelie; Mehlem, Annika; Palombo, Isolde; Heller Sahlgren, Benjamin; Ebarasi, Lwaki; He, Liqun; Ytterberg, A Jimmy; Olauson, Hannes; Axelsson, Jonas; Sundelin, Birgitta; Patrakka, Jaakko; Scotney, Pierre; Nash, Andrew; Eriksson, Ulf

    2017-03-07

    Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering.

    Science.gov (United States)

    Khojasteh, Arash; Fahimipour, Farahnaz; Eslaminejad, Mohamadreza Baghaban; Jafarian, Mohammad; Jahangir, Shahrbanoo; Bastami, Farshid; Tahriri, Mohammadreza; Karkhaneh, Akbar; Tayebi, Lobat

    2016-12-01

    Bone tissue engineering is sought to apply strategies for bone defects healing without limitations and short-comings of using either bone autografts or allografts and xenografts. The aim of this study was to fabricate a thin layer poly(lactic-co-glycolic) acid (PLGA) coated beta-tricalcium phosphate (β-TCP) scaffold with sustained release of vascular endothelial growth factor (VEGF). PLGA coating increased compressive strength of the β-TCP scaffolds significantly. For in vitro evaluations, canine mesenchymal stem cells (cMSCs) and canine endothelial progenitor cells (cEPCs) were isolated and characterized. Cell proliferation and attachment were demonstrated and the rate of cells proliferation on the VEGF released scaffold was significantly more than compared to the scaffolds with no VEGF loading. A significant increase in expression of COL1 and RUNX2 was indicated in the scaffolds loaded with VEGF and MSCs compared to the other groups. Consequently, PLGA coated β-TCP scaffold with sustained and localized release of VEGF showed favourable results for bone regeneration in vitro, and this scaffold has the potential to use as a drug delivery device in the future. Copyright © 2016. Published by Elsevier B.V.

  7. The role of VEGF and KDR polymorphisms in moyamoya disease and collateral revascularization.

    Directory of Open Access Journals (Sweden)

    Young Seok Park

    Full Text Available We conducted a case-control study to investigate whether vascular endothelial growth factor (VEGF -2578, -1154, -634, and 936 and kinase insert domain containing receptor (KDR -604, 1192, and 1719 polymorphisms are associated with moyamoya disease. Korean patients with moyamoya disease (n = 107, mean age, 20.9±15.9 years; 66.4% female and 243 healthy control subjects (mean age, 23.0±16.1 years; 56.8% female were included. The subjects were divided into pediatric and adult groups. Among the 64 surgical patients, we evaluated collateral vessel formation after 2 years and divided patients into good (collateral grade A or poor (collateral grade B and C groups. The frequencies and distributions of four VEGF (-2578, -1154, -634, and 936 and KDR (-604, 1192, and 1719 polymorphisms were assessed from patients with moyamoya disease and compared to the control group. No differences were observed in VEGF -2578, -1154, -634, and 936 or KDR -604, 1192, and 1719 polymorphisms between the control group and moyamoya disease group. However, we found the -634CC genotype occurred less frequently in the pediatric moyamoya group (p = 0.040 whereas the KDR -604C/1192A/1719T haplotype increased the risk of pediatric moyamoya (p = 0.024. Patients with the CC genotype of VEGF -634 had better collateral vessel formation after surgery. Our results suggest that the VEGF -634G allele is associated with pediatric moyamoya disease and poor collateral vessel formation.

  8. Hypoxia-inducible factor 1α mediates neuroprotection of hypoxic postconditioning against global cerebral ischemia.

    Science.gov (United States)

    Zhu, Tingna; Zhan, Lixuan; Liang, Donghai; Hu, Jiaoyue; Lu, Zhiwei; Zhu, Xinyong; Sun, Weiwen; Liu, Liu; Xu, En

    2014-10-01

    Hypoxia administered after transient global cerebral ischemia (tGCI) has been shown to induce neuroprotection in adult rats, but the underlying mechanisms for this protection are unclear. Here, we tested the hypothesis that hypoxic postconditioning (HPC) induces neuroprotection through upregulation of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF), and that this involves phosphatidylinositol-3-kinase (PI3K), p38 mitogen-activated protein kinase (p38 MAPK), and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) pathways. The expression of HIF-1α, VEGF, and cleaved caspase-9 were determined by immunohistochemistry and Western blot. As pharmacologic interventions, the HIF-1α inhibitor 2-methoxyestradiol (2ME2), PI3K inhibitor LY294002, p38 MAPK inhibitor SB203580, and MEK inhibitor U0126 were administered before HPC or after tGCI. We found that HPC maintained the higher expression of HIF-1α and VEGF and decreased cleaved caspase-9 levels in CA1 after tGCI. These effects were reversed by 2ME2 administered before HPC, and the neuroprotection of HPC was abolished. LY294002 and SB203580 decreased the expression of HIF-1α and VEGF after HPC, whereas U0126 increased HIF-1α and VEGF after tGCI. These findings suggested that HIF-1α exerts neuroprotection induced by HPC against tGCI through VEGF upregulation and cleaved caspase-9 downregulation, and that the PI3K, p38 MAPK, and MEK pathways are involved in the regulation of HIF-1α and VEGF.

  9. Poly(lactic-co-glycolide) polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible defect repair.

    Science.gov (United States)

    Das, Anusuya; Fishero, Brian A; Christophel, J Jared; Li, Ching-Ju; Kohli, Nikita; Lin, Yong; Dighe, Abhijit S; Cui, Quanjun

    2016-04-01

    We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (P(VEGF)) or BMP-6 (P(BMP-6)) or both (P(VEGF+BMP-6)) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with P(VEGF+BMP-6) scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the P(VEGF+BMP-6) group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in P(VEGF), P(BMP-6) and P(VEGF+BMP-6) but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with P(VEGF), P(BMP-6), or P(VEGF+BMP-6) but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on P(VEGF+BMP-6) but not on P, P(VEGF), or P(BMP-6). Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.

  10. Irradiation-induced regulation of plasminogen activator inhibitor type-1 and vascular endothelial growth factor in six human squamous cell carcinoma lines of the head and neck; Bestrahlungsinduzierte Regulation des Plasminogenaktivator-Inhibitor Typ 1 (PAI-1) und des vaskulaeren endothelialen Wachstumsfaktors (VEGF) in sechs Plattenepithelkarzinomzelllinien der Kopf-Hals-Region

    Energy Technology Data Exchange (ETDEWEB)

    Artman, Meri Tuuli

    2014-01-29

    Radiation therapy is frequently used to treat squamous cell carcinoma of the head and neck (SCCHN), although, it can be unsuccessful due to radiation resistance of the tumor. Currently, there are no established predictive markers for radiation resistance in SCCHN. The aim of this work was to investigate PAI-1 and VEGF secretion as markers for radiation resistance in six human SCCHN cell lines. The cell lines differed in their basal secretion levels and in their in vitro radiation sensitivity. PAI-1 and VEGF levels increased after irradiation in a dose-dependent manner. A significant correlation was detected between radiation-induced PAI-1 and VEGF secretion, which suggests that irradiation-induced secretion of PAI-1 and VEGF are partially regulated by related mechanisms. However, neither basal levels nor radiation-induced PAI-1 and VEGF secretion correlated with radiation resistance. Therefore, PAI-1 and VEGF are most likely not predictive markers for radiation resistance in SCCHN.

  11. Mechanisms of regulation in the interferon factor 3 (IRF- 3) pathway

    OpenAIRE

    Limmer, Kirsten

    2008-01-01

    Interferon regulatory factor 3 (IRF-3) plays a critical role in the host cell response to both bacterial and viral infection. IRF-3 is activated by Toll-like receptors (TLRs) and cytoplasmic nucleic acid sensors, and serves to upregulate interferon beta and interferon stimulated genes (ISGs), thereby providing a quick and effective response to infection. In this work, two novel mechanisms of regulation in the IRF-3 pathway are revealed. The first part of this thesis work shows that upon bindi...

  12. Anti-VEGF therapy in symptomatic peripheral exudative hemorrhagic chorioretinopathy (PEHCR) involving the macula.

    Science.gov (United States)

    Seibel, Ira; Hager, Annette; Duncker, Tobias; Riechardt, Aline I; Nürnberg, Daniela; Klein, Julian P; Rehak, Matus; Joussen, Antonia M

    2016-04-01

    The purpose of this study was to describe the anatomical and functional outcome of vascular endothelial growth factor inhibitor (anti-VEGF) treatment in symptomatic peripheral exudative hemorrhagic chorioretinopathy (PEHCR) involving the macula. Clinical records from patients seen between 2012 and 2013 at a single academic center were reviewed to identify PEHCR patients receiving anti-VEGF therapy due to disease-associated changes involving the macula. Affected eyes were either treated with consecutive intravitreal injections of anti-VEGF or vitrectomy combined with anti-VEGF followed by pro re nata injections. The mean age of the patients was 76 years (range 70-89 years). In all nine eyes, visual acuity was reduced due to central subretinal fluid. On average, three anti-VEGF injections (range 2-5 injections) were required initially to achieve complete resolution of macular subretinal fluid. In three eyes, subretinal fluid reappeared after an average of 10 months (range 5-16 months), and an average of 2.5 anti-VEGF injections (range 2-3 injections) were necessary to attain complete resolution of macular subretinal fluid a second time. Median visual acuity at the visit before the first injection was 1.0 logMAR (range 2.1-0.4 logMAR) and increased to 0.8 logMAR (range 2-0.1 logMAR) at the last visit. Results of this study show that for cases in which PEHCR becomes symptomatic due to macular involvement, anti-VEGF treatment may have drying potential. Although vision was improved in some patients, it remained limited in cases with long-term macular involvement, precluding any definitive functional conclusion. However, we believe that the use of anti-VEGF agents should be recommended in PEHCR that threatens the macula. Due to its often self-limiting course, peripheral lesions should be closely observed. Larger studies are needed in order to provide clear evidence of the efficacy of anti-VEGF therapy in PEHCR.

  13. Multimodal doxorubicin loaded magnetic nanoparticles for VEGF targeted theranostics of breast cancer.

    Science.gov (United States)

    Semkina, Alevtina S; Abakumov, Maxim A; Skorikov, Alexander S; Abakumova, Tatiana O; Melnikov, Pavel A; Grinenko, Nadejda F; Cherepanov, Sergey A; Vishnevskiy, Daniil A; Naumenko, Victor A; Ionova, Klavdiya P; Majouga, Alexander G; Chekhonin, Vladimir P

    2018-05-03

    In presented paper we have developed new system for cancer theranostics based on vascular endothelial growth factor (VEGF) targeted magnetic nanoparticles. Conjugation of anti-VEGF antibodies with bovine serum albumin coated PEGylated magnetic nanoparticles allows for improved binding with murine breast adenocarcinoma 4T1 cell line and facilitates doxorubicin delivery to tumor cells. It was shown that intravenous injection of doxorubicin loaded VEGF targeted nanoparticles increases median survival rate of mice bearing 4T1 tumors up to 50%. On the other hand magnetic resonance imaging (MRI) of 4T1 tumors 24 h after intravenous injection showed accumulation of nanoparticles in tumors, thus allowing simultaneous cancer therapy and diagnostics. Copyright © 2018. Published by Elsevier Inc.

  14. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    International Nuclear Information System (INIS)

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Kim, Sung-Ho

    2016-01-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation

  15. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Qing-Mei, E-mail: 34713316@qq.com [Department of Radiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin (China); Jiang, Ping, E-mail: jiangping@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Yang, Min, E-mail: YangMin@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Qian, Xue-Jiao, E-mail: qianxuejiao@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Liu, Jiang-Bo, E-mail: LJB1984@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Kim, Sung-Ho, E-mail: chenghao0726@hotmail.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China)

    2016-10-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation

  16. A Switch in the Dynamics of Intra-Platelet VEGF-A from Cancer to the Later Phase of Liver Regeneration after Partial Hepatectomy in Humans.

    Directory of Open Access Journals (Sweden)

    Bibek Aryal

    Full Text Available Liver regeneration (LR involves an early inductive phase characterized by the proliferation of hepatocytes, and a delayed angiogenic phase distinguished by the expansion of non-parenchymal compartment. The interest in understanding the mechanism of LR has lately shifted from the proliferation and growth of parenchymal cells to vascular remodeling during LR. Angiogenesis accompanied by LR exerts a pivotal role to accomplish the process. Vascular endothelial growth factor (VEGF has been elucidated as the most dynamic regulator of angiogenesis. From this perspective, platelet derived/Intra-platelet (IP VEGF-A should be associated with LR.Thirty-seven patients diagnosed with hepatocellular carcinoma and undergoing partial hepatectomy (PH were enrolled in the study. Serum and IP VEGF-A was monitored preoperatively and at four weeks of PH. Liver volumetry was determined on computer models derived from computed tomography (CT scan.Serum and IP VEGF-A was significantly elevated at four weeks of PH. Preoperative IP VEGF-A was higher in patients with advanced cancer and vascular invasion. Postoperative IP VEGF-A was higher after major liver resection. There was a statistically significant correlation between postoperative IP VEGF-A and the future remnant liver volume. Moreover, the soluble vascular endothelial growth factor receptor-1 (sVEGFR1 was distinctly down-regulated suggesting a fine-tuned angiogenesis at the later phase of LR.IP VEGF-A is overexpressed during later phase of LR suggesting its implications in inducing angiogenesis during LR.

  17. Diagnostic value of urinary CK-20 RNA and VEGF in bladder cancer ...

    African Journals Online (AJOL)

    The present study was carried out to evaluate the diagnostic value of urinary cytokeratin 20 (CK-20) RNA and vascular endothelial growth factor (VEGF) in comparison with urine cytology in the detection of bladder cancer. This study included 80 patients with bladder cancer, 20 patients with bilharzial bladder lesions and 20 ...

  18. Angiogenic activity of bFGF and VEGF suppressed by proteolytic cleavage by neutrophil elastase

    International Nuclear Information System (INIS)

    Ai, Shingo; Cheng Xianwu; Inoue, Aiko; Nakamura, Kae; Okumura, Kenji; Iguchi, Akihisa; Murohara, Toyoaki; Kuzuya, Masafumi

    2007-01-01

    Neutrophil elastase (NE), a serine protease released from the azurophil granules of activated neutrophil, proteolytically cleaves multiple cytokines, and cell surface proteins. In the present study, we examined whether NE affects the biological abilities of angiogenic growth factors such as basic-fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). NE degraded bFGF and VEGF in a time- and concentration-dependent manner, and these degradations were suppressed by sivelestat, a synthetic inhibitor of NE. The bFGF- or VEGF-mediated proliferative activity of human umbilical vein endothelial cells was inhibited by NE, and the activity was recovered by sivelestat. Furthermore, NE reduced the bFGF- or VEGF-induced tubulogenic response of the mice aortas, ex vivo angiogenesis assay, and these effects were also recovered by sivelestat. Neutrophil-derived NE degraded potent angiogenic factors, resulting in loss of their angiogenic activity. These findings provide additional insight into the role played by neutrophils in the angiogenesis process at sites of inflammation

  19. Hemophilia as a defect of the tissue factor pathway of blood coagulation: Effect of factors VIII and IX on factor X activation in a continuous-flow reactor

    International Nuclear Information System (INIS)

    Repke, D.; Gemmell, C.H.; Guha, A.; Turitto, V.T.; Nemerson, Y.; Broze, G.J. Jr.

    1990-01-01

    The effect of factors VIII and IX on the ability of the tissue factor-factor VIIa complex to activate factor X was studied in a continuous-flow tubular enzyme reactor. Tissue factor immobilized in a phospholipid bilayer on the inner surface of the tube was exposed to a perfusate containing factors VIIa, VIII, IX, and X flowing at a wall shear rate of 57, 300, or 1130 sec -1 . The addition of factors VIII and IX at their respective plasma concentrations resulted in a further 2 endash-to 3 endash fold increase. The direct activation of factor X by tissue factor-factor VIIa could be virtually eliminated by the lipoprotein-associated coagulation inhibitor. These results suggest that the tissue factor pathway, mediated through factors VIII and IX, produces significant levels of factor Xa even in the presence of an inhibitor of the tissue factor-factor VIIa complex; moreover, the activation is dependent on local shear conditions. These findings are consistent both with a model of blood coagulation in which initiation of the system results from tissue factor and with the bleeding observed in hemophilia

  20. Intermittent Hypoxia Is Associated With High Hypoxia Inducible Factor-1α but Not High Vascular Endothelial Growth Factor Cell Expression in Tumors of Cutaneous Melanoma Patients

    Directory of Open Access Journals (Sweden)

    Isaac Almendros

    2018-04-01

    Full Text Available Epidemiological associations linking between obstructive sleep apnea and poorer solid malignant tumor outcomes have recently emerged. Putative pathways proposed to explain that these associations have included enhanced hypoxia inducible factor (HIF-1α and vascular endothelial growth factor (VEGF cell expression in the tumor and altered immune functions via intermittent hypoxia (IH. Here, we examined relationships between HIF-1α and VEGF expression and nocturnal IH in cutaneous melanoma (CM tumor samples. Prospectively recruited patients with CM tumor samples were included and underwent overnight polygraphy. General clinical features, apnea–hypopnea index (AHI, desaturation index (DI4%, and CM characteristics were recorded. Histochemical assessments of VEGF and HIF-1α were performed, and the percentage of positive cells (0, <25, 25–50, 51–75, >75% was blindly tabulated for VEGF expression, and as 0, 0–5.9, 6.0–10.0, >10.0% for HIF-1α expression, respectively. Cases with HIF-1α expression >6% (high expression were compared with those <6%, and VEGF expression >75% of cells was compared with those with <75%. 376 patients were included. High expression of VEGF and HIF-1α were seen in 88.8 and 4.2% of samples, respectively. High expression of VEGF was only associated with increasing age. However, high expression of HIF-1α was significantly associated with age, Breslow index, AHI, and DI4%. Logistic regression showed that DI4% [OR 1.03 (95% CI: 1.01–1.06] and Breslow index [OR 1.28 (95% CI: 1.18–1.46], but not AHI, remained independently associated with the presence of high HIF-1α expression. Thus, IH emerges as an independent risk factor for higher HIF-1α expression in CM tumors and is inferentially linked to worse clinical CM prognostic indicators.

  1. UPP mediated Diabetic Retinopathy via ROS/PARP and NF-κB inflammatory factor pathways.

    Science.gov (United States)

    Luo, D-W; Zheng, Z; Wang, H; Fan, Y; Chen, F; Sun, Y; Wang, W-J; Sun, T; Xu, X

    2015-01-01

    Diabetic retinopathy (DR) is a leading cause of blindness in adults at working age. Human diabetic retinopathy is characterized by the basement membrane thick, pericytes loss, microaneurysms formation, retina neovascularization and vitreous hemorrhage. To investigate whether UPP activated ROS/PARP and NF-κB inflammatory factor pathways in Diabetic Retinopathy, human retinal endothelial cells (HRECs) and rats with streptozotocin-induced diabetes were used to determine the effect of UPP on ROS generation, cell apoptosis, mitochondrial membrane potential (ΔΨm) and inflammatory factor protein expression, through flow cytometry assay, immunohistochemistry, Real-time PCR, Western blot analysis and ELISA. The levels of ROS and apoptosis and the expressions of UPP (Ub and E3) and inflammatory factor protein were increased in high glucose-induced HRECs and retina of diabetic rats, while ΔΨm was decreased. The UPP inhibitor and UbshRNA could attenuate these effects through inhibiting the pathway of ROS/PARP and the expression of NF-κB inflammatory factors, and the increased UPP was a result of high glucose-induced increase of ROS generation and NF-κBp65 expression, accompanied with the decrease of ΔΨm. Clinical study showed the overexpression of UPP and detachment of epiretinal membranes in proliferative DR (PDR) patients. It has been indicated that the pathogenic effect of UPP on DR was involved in the increase of ROS generation and NF-κB expression, which associated with the ROS/PARP and NF-κB inflammatory factor pathways. Our study supports a new insight for further application of UPP inhibitor in DR treatment.

  2. COX-2, VEGF and tumour angiogenesis.

    LENUS (Irish Health Repository)

    Toomey, D P

    2009-06-01

    Epidemiological evidence suggests a protective effective of regular NSAID use against developing cancer. Cyclooxygenase-2, a target of NSAIDs, is upregulated in many cancers and has been associated with increased VEGF production and angiogenesis. Angiogenesis is the formation of new vessels from existing vasculature and as an essential process for tumour development represents an important therapeutic target. Following an extensive review of the literature this article details the current knowledge on the role of COX-2 in tumorigenesis focusing on its relationship to angiogenesis and VEGF production by tumour cells. While COX-2 is clearly detrimental to prognosis and NSAIDs have a beneficial effect, the possibility of COX-2 independent effects being partly or wholly responsible for this benefit cannot be excluded.

  3. Mechanism of selective VEGF-A binding by neuropilin-1 reveals a basis for specific ligand inhibition.

    Directory of Open Access Journals (Sweden)

    Matthew W Parker

    Full Text Available Neuropilin (Nrp receptors function as essential cell surface receptors for the Vascular Endothelial Growth Factor (VEGF family of proangiogenic cytokines and the semaphorin 3 (Sema3 family of axon guidance molecules. There are two Nrp homologues, Nrp1 and Nrp2, which bind to both overlapping and distinct members of the VEGF and Sema3 family of molecules. Nrp1 specifically binds the VEGF-A(164/5 isoform, which is essential for developmental angiogenesis. We demonstrate that VEGF-A specific binding is governed by Nrp1 residues in the b1 coagulation factor domain surrounding the invariant Nrp C-terminal arginine binding pocket. Further, we show that Sema3F does not display the Nrp-specific binding to the b1 domain seen with VEGF-A. Engineered soluble Nrp receptor fragments that selectively sequester ligands from the active signaling complex are an attractive modality for selectively blocking the angiogenic and chemorepulsive functions of Nrp ligands. Utilizing the information on Nrp ligand binding specificity, we demonstrate Nrp constructs that specifically sequester Sema3 in the presence of VEGF-A. This establishes that unique mechanisms are used by Nrp receptors to mediate specific ligand binding and that these differences can be exploited to engineer soluble Nrp receptors with specificity for Sema3.

  4. An anti-VEGF ribozyme embedded within the adenoviral VAI sequence inhibits glioblastoma cell angiogenic potential in vitro.

    Science.gov (United States)

    Ciafrè, Silvia Anna; Niola, Francesco; Wannenes, Francesca; Farace, Maria Giulia

    2004-01-01

    Vascular endothelial growth factor (VEGF) plays an important role in tumor angiogenesis, where it functions as one of the major angiogenic factors sustaining growth and draining catabolites. In this study, we developed an anti-VEGF ribozyme targeted to the 5' part of human VEGF mRNA. We endowed this ribozyme with an additional feature expected to improve its activity in vivo, by cloning it into a VAI transcriptional cassette. VAI is originally part of the adenovirus genome, and is characterized by high transcription rates, good stability due to its strong secondary structure and cytoplasmic localization. Transfection of U87 human glioblastoma cells with plasmid vectors encoding for this ribozyme resulted in a strong (-56%) reduction of VEGF secreted in the extracellular medium, indicating a good biological activity of the ribozyme. Moreover, this reduction in VEGF secretion had the important functional consequence of drastically diminishing the formation of tube-like structures of human umbilical vascular endothelial cells in a Matrigel in vitro angiogenesis assay. In conclusion, our VAI-embedded anti-VEGF ribozyme is a good inhibitor of angiogenesis in vitro, in a glioblastoma cell context. Thus, it may represent a useful tool for future applications in vivo, for antiangiogenic gene therapy of glioblastoma and of highly vascularized tumors. Copyright 2004 S. Karger AG, Basel

  5. Decreased VEGF-A and sustained PEDF expression in a human retinal pigment epithelium cell line cultured under hypothermia

    Directory of Open Access Journals (Sweden)

    Masayuki Takeyama

    2015-01-01

    Full Text Available BACKGROUND: Previous reports have described a decrease in retinal temperature and clinical improvement of wet age-related macular degeneration (AMD after vitrectomy. We hypothesized that the retinal temperature decrease after vitrectomy plays a part in the suppression of wet AMD development. To test this hypothesis, we evaluated the temperature dependence of the expression of vascular endothelial growth factor-A (VEGF-A and in vitro angiogen-esis in retinal pigment epithelium (RPE. RESULTS: We cultured ARPE-19 cells at 37, 35, 33 and 31°C and measured the expression of VEGF-A, VEGF-A splicing variants, and pigment epithelium-derived factor (PEDF. We performed an in vitro tube formation assay. The dehydrogenase activity was also evaluated at each temperature. Expression of VEGF-A significantly decreased with decreased temperature while PEDF expression did not. VEGF165 expression and in vitro angiogenesis also were temperature dependent. The dehydrogenase activity significantly decreased as the culture temperature decreased. CONCLUSIONS: RPE cultured under hypothermia that decreased cellular metabolism also had decreased VEGF-A and sustained PEDF expression, creating an anti-angiogenic environment. This mechanism may be associated with a beneficial effect after vitrectomy in patients with wet AMD.

  6. Heat Shock Protein 70 Negatively Regulates TGF-β-Stimulated VEGF Synthesis via p38 MAP Kinase in Osteoblasts

    Directory of Open Access Journals (Sweden)

    Go Sakai

    2017-11-01

    Full Text Available Background/Aims: We previously demonstrated that transforming growth factor-β (TGF-β stimulates the synthesis of vascular endothelial growth factor (VEGF through the activation of p38 mitogen-activated protein (MAP kinase in osteoblast-like MC3T3-E1 cells. Heat shock protein70 (HSP70 is a ubiquitously expressed molecular chaperone. In the present study, we investigated the involvement of HSP70 in the TGF-β-stimulated VEGF synthesis and the underlying mechanism in these cells. Methods: Culture MC3T3-E1 cells were stimulated by TGF-β. Released VEGF was measured using an ELISA assay. VEGF mRNA level was quantified by RT-PCR. Phosphorylation of each protein kinase was analyzed by Western blotting. Results: VER-155008 and YM-08, both of HSP70 inhibitors, significantly amplified the TGF-β-stimulated VEGF release. In addition, the expression level of VEGF mRNA induced by TGF-β was enhanced by VER-155008. These inhibitors markedly strengthened the TGF-β-induced phosphorylation of p38 MAP kinase. The TGF-β-induced phosphorylation of p38 MAP kinase was amplified in HSP70-knockdown cells. SB203580, an inhibitor of p38 MAP kinase, significantly suppressed the amplification by these inhibitors of the TGF-β-induced VEGF release. Conclusion: These results strongly suggest that HSP70 acts as a negative regulator in the TGF-β-stimulated VEGF synthesis in osteoblasts, and that the inhibitory effect of HSP70 is exerted at a point upstream of p38 MAP kinase.

  7. Alternative complement pathway and factor B activities in rats with altered blood levels of thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Bitencourt, C.S. [Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Duarte, C.G.; Azzolini, A.E.C.S.; Assis-Pandochi, A.I. [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-03-02

    Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production.

  8. Alternative complement pathway and factor B activities in rats with altered blood levels of thyroid hormone

    International Nuclear Information System (INIS)

    Bitencourt, C.S.; Duarte, C.G.; Azzolini, A.E.C.S.; Assis-Pandochi, A.I.

    2012-01-01

    Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production

  9. Expression of VEGF(xxx)b, the inhibitory isoforms of VEGF, in malignant melanoma.

    Science.gov (United States)

    Pritchard-Jones, R O; Dunn, D B A; Qiu, Y; Varey, A H R; Orlando, A; Rigby, H; Harper, S J; Bates, D O

    2007-07-16

    Malignant melanoma is the most lethal of the skin cancers and the UK incidence is rising faster than that of any other cancer. Angiogenesis - the growth of new vessels from preexisting vasculature - is an absolute requirement for tumour survival and progression beyond a few hundred microns in diameter. We previously described a class of anti-angiogenic isoforms of VEGF, VEGF(xxx)b, that inhibit tumour growth in animal models, and are downregulated in some cancers, but have not been investigated in melanoma. To determine whether VEGF(xxx)b expression was altered in melanoma, PCR and immunohistochemistry of archived human tumour samples were used. In normal epidermis and in a proportion of melanoma samples, VEGF(xxx)b staining was seen. Some melanomas had much weaker staining. Subsequent examination revealed that expression was significantly reduced in primary melanoma samples (both horizontal and vertical growth phases) from patients who subsequently developed tumour metastasis compared with those who did not (analysis of variance (ANOVA) Pxxx)b expression appears to predict metastatic spread in patients with primary melanoma. These results suggest that there is a switch in splicing as part of the metastatic process, from anti-angiogenic to pro-angiogenic VEGF isoforms. This may form part of a wider metastatic splicing phenotype.

  10. The role of vascular endothelial growth factor in proliferation of odontogenic cysts and tumors: An immunohistochemical study.

    Science.gov (United States)

    Gupta, Bhavana; Chandra, Shaleen; Singh, Anil; Sah, Kunal; Raj, Vineet; Gupta, Vivek

    2016-01-01

    Vascular endothelial growth factor (VEGF) is capable of initiating angiogenesis in blood vessels and may act as mitogenic agent for epithelium of odontogenic cysts and tumors. This study was conducted to evaluate the role of epithelial VEGF expression in odontogenic cysts and ameloblastoma and its correlation with argyrophilic nucleolar organizer region counts to assess its role in their biological behavior. In this retrospective cross-sectional study, 45 histologically confirmed cases, 15 cases of each of keratocystic odontogenic tumors (KCOTs), dentigerous cysts, and ameloblastomas were examined for immunohistochemical expression for epithelial VEGF, and argyrophilic nucleolar organizer regions (AgNORs) (used as secondary marker in this study) staining was done for comparing the proliferative capacity with VEGF. KCOT shows mild expression within the basal layers and strong expression in the suprabasal layer whereas, in dentigerous cysts, a majority showed no VEGF expression whereas ameloblastomas showed strong expression in all cases by stellate reticulum-like cells at the center of the follicles and suprabasal layers of epithelium. The results of AgNOR counts were higher in KCOTs as compared to ameloblastoma and least in dentigerous cysts. VEGF expression by the epithelium of odontogenic cysts and tumors may play a role in epithelial proliferation via autocrine mechanism as reflected by increased AgNOR counts. The angiogenic activity via paracrine pathway may be responsible for the difference in growth rate and neoplastic behavior of the lesions.

  11. Up-regulation of intestinal vascular endothelial growth factor by Afa/Dr diffusely adhering Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Gaëlle Cane

    Full Text Available BACKGROUND: Angiogenesis has been recently described as a novel component of inflammatory bowel disease pathogenesis. The level of vascular endothelial growth factor (VEGF has been found increased in Crohn's disease and ulcerative colitis mucosa. To question whether a pro-inflammatory Escherichia coli could regulate the expression of VEGF in human intestinal epithelial cells, we examine the response of cultured human colonic T84 cells to infection by E. coli strain C1845 that belongs to the typical Afa/Dr diffusely adhering E. coli family (Afa/Dr DAEC. METHODOLOGY: VEGF mRNA expression was examined by Northern blotting and q-PCR. VEGF protein levels were assayed by ELISA and its bioactivity was analysed in endothelial cells. The bacterial factor involved in VEGF induction was identified using recombinant E. coli expressing Dr adhesin, purified Dr adhesin and lipopolysaccharide. The signaling pathway activated for the up-regulation of VEGF was identified using a blocking monoclonal anti-DAF antibody, Western blot analysis and specific pharmacological inhibitors. PRINCIPAL FINDINGS: C1845 bacteria induce the production of VEGF protein which is bioactive. VEGF is induced by adhering C1845 in both a time- and bacteria concentration-dependent manner. This phenomenon is not cell line dependent since we reproduced this observation in intestinal LS174, Caco2/TC7 and INT407 cells. Up-regulation of VEGF production requires: (1 the interaction of the bacterial F1845 adhesin with the brush border-associated decay accelerating factor (DAF, CD55 acting as a bacterial receptor, and (2 the activation of a Src protein kinase upstream of the activation of the Erk and Akt signaling pathways. CONCLUSIONS: Results demonstrate that a Afa/Dr DAEC strain induces an adhesin-dependent activation of DAF signaling that leads to the up-regulation of bioactive VEGF in cultured human intestinal cells. Thus, these results suggest a link between an entero-adherent, pro

  12. Differential regulation of type I interferon and epidermal growth factor pathways by a human Respirovirus virulence factor.

    Directory of Open Access Journals (Sweden)

    Grégory Caignard

    2009-09-01

    Full Text Available A number of paramyxoviruses are responsible for acute respiratory infections in children, elderly and immuno-compromised individuals, resulting in airway inflammation and exacerbation of chronic diseases like asthma. To understand the molecular pathogenesis of these infections, we searched for cellular targets of the virulence protein C of human parainfluenza virus type 3 (hPIV3-C. We found that hPIV3-C interacts directly through its C-terminal domain with STAT1 and GRB2, whereas C proteins from measles or Nipah viruses failed to do so. Binding to STAT1 explains the previously reported capacity of hPIV3-C to block type I interferon signaling, but the interaction with GRB2 was unexpected. This adaptor protein bridges Epidermal Growth Factor (EGF receptor to MAPK/ERK pathway, a signaling cascade recently found to be involved in airway inflammatory response. We report that either hPIV3 infection or transient expression of hPIV3-C both increase cellular response to EGF, as assessed by Elk1 transactivation and phosphorylation levels of ERK1/2, 40S ribosomal subunit protein S6 and translation initiation factor 4E (eIF4E. Furthermore, inhibition of MAPK/ERK pathway with U0126 prevented viral protein expression in infected cells. Altogether, our data provide molecular basis to explain the role of hPIV3-C as a virulence factor and determinant of pathogenesis and demonstrate that Paramyxoviridae have evolved a single virulence factor to block type I interferon signaling and to boost simultaneous cellular response to growth factors.

  13. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    Science.gov (United States)

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  14. Pathway-based factor analysis of gene expression data produces highly heritable phenotypes that associate with age.

    Science.gov (United States)

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-03-09

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping an