WorldWideScience

Sample records for factor tf genes

  1. Cis-regulatory control of the nuclear receptor Coup-TF gene in the sea urchin Paracentrotus lividus embryo.

    Directory of Open Access Journals (Sweden)

    Lamprini G Kalampoki

    Full Text Available Coup-TF, an orphan member of the nuclear receptor super family, has a fundamental role in the development of metazoan embryos. The study of the gene's regulatory circuit in the sea urchin embryo will facilitate the placement of this transcription factor in the well-studied embryonic Gene Regulatory Network (GRN. The Paracentrotus lividus Coup-TF gene (PlCoup-TF is expressed throughout embryonic development preferentially in the oral ectoderm of the gastrula and the ciliary band of the pluteus stage. Two overlapping λ genomic clones, containing three exons and upstream sequences of PlCoup-TF, were isolated from a genomic library. The transcription initiation site was determined and 5' deletions and individual segments of a 1930 bp upstream region were placed ahead of a GFP reporter cassette and injected into fertilized P.lividus eggs. Module a (-532 to -232, was necessary and sufficient to confer ciliary band expression to the reporter. Comparison of P.lividus and Strongylocentrotus purpuratus upstream Coup-TF sequences, revealed considerable conservation, but none within module a. 5' and internal deletions into module a, defined a smaller region that confers ciliary band specific expression. Putative regulatory cis-acting elements (RE1, RE2 and RE3 within module a, were specifically bound by proteins in sea urchin embryonic nuclear extracts. Site-specific mutagenesis of these elements resulted in loss of reporter activity (RE1 or ectopic expression (RE2, RE3. It is proposed that sea urchin transcription factors, which bind these three regulatory sites, are necessary for spatial and quantitative regulation of the PlCoup-TF gene at pluteus stage sea urchin embryos. These findings lead to the future identification of these factors and to the hierarchical positioning of PlCoup-TF within the embryonic GRN.

  2. FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells.

    Science.gov (United States)

    Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine

    2016-11-09

    Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment.

  3. FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells

    OpenAIRE

    Julie Bourseguin; Caroline Bonet; Emilie Renaud; Charlotte Pandiani; Marina Boncompagni; Sandy Giuliano; Patrycja Pawlikowska; Houda Karmous-Benailly; Robert Ballotti; Filippo Rosselli; Corine Bertolotto

    2016-01-01

    Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly t...

  4. Integration of Genome-Wide TF Binding and Gene Expression Data to Characterize Gene Regulatory Networks in Plant Development.

    Science.gov (United States)

    Chen, Dijun; Kaufmann, Kerstin

    2017-01-01

    Key transcription factors (TFs) controlling the morphogenesis of flowers and leaves have been identified in the model plant Arabidopsis thaliana. Recent genome-wide approaches based on chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) enable systematic identification of genome-wide TF binding sites (TFBSs) of these regulators. Here, we describe a computational pipeline for analyzing ChIP-seq data to identify TFBSs and to characterize gene regulatory networks (GRNs) with applications to the regulatory studies of flower development. In particular, we provide step-by-step instructions on how to download, analyze, visualize, and integrate genome-wide data in order to construct GRNs for beginners of bioinformatics. The practical guide presented here is ready to apply to other similar ChIP-seq datasets to characterize GRNs of interest.

  5. Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR)

    DEFF Research Database (Denmark)

    Christensen, Anders; Kiss, Katalin; Lelkaitis, Giedrius

    2017-01-01

    Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhib...... with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer....

  6. TF-finder: A software package for identifying transcription factors involved in biological processes using microarray data and existing knowledge base

    Directory of Open Access Journals (Sweden)

    Cui Xiaoqi

    2010-08-01

    Full Text Available Abstract Background Identification of transcription factors (TFs involved in a biological process is the first step towards a better understanding of the underlying regulatory mechanisms. However, due to the involvement of a large number of genes and complicated interactions in a gene regulatory network (GRN, identification of the TFs involved in a biology process remains to be very challenging. In reality, the recognition of TFs for a given a biological process can be further complicated by the fact that most eukaryotic genomes encode thousands of TFs, which are organized in gene families of various sizes and in many cases with poor sequence conservation except for small conserved domains. This poses a significant challenge for identification of the exact TFs involved or ranking the importance of a set of TFs to a process of interest. Therefore, new methods for recognizing novel TFs are desperately needed. Although a plethora of methods have been developed to infer regulatory genes using microarray data, it is still rare to find the methods that use existing knowledge base in particular the validated genes known to be involved in a process to bait/guide discovery of novel TFs. Such methods can replace the sometimes-arbitrary process of selection of candidate genes for experimental validation and significantly advance our knowledge and understanding of the regulation of a process. Results We developed an automated software package called TF-finder for recognizing TFs involved in a biological process using microarray data and existing knowledge base. TF-finder contains two components, adaptive sparse canonical correlation analysis (ASCCA and enrichment test, for TF recognition. ASCCA uses positive target genes to bait TFS from gene expression data while enrichment test examines the presence of positive TFs in the outcomes from ASCCA. Using microarray data from salt and water stress experiments, we showed TF-finder is very efficient in recognizing

  7. Association study between four polymorphisms in the HFE, TF and TFR genes and Parkinson's disease in southern Italy.

    Science.gov (United States)

    Greco, Valentina; De Marco, Elvira Valeria; Rocca, Francesca Emanuela; Annesi, Ferdinanda; Civitelli, Donatella; Provenzano, Giovanni; Tarantino, Patrizia; Scornaienchi, Vittorio; Pucci, Franco; Salsone, Maria; Novellino, Fabiana; Morelli, Maurizio; Paglionico, Sandra; Gambardella, Antonio; Quattrone, Aldo; Annesi, Grazia

    2011-06-01

    Iron overload may lead to neurodegenerative disorders such as Parkinson's disease (PD) and alterations of iron-related genes might be involved in the pathogenesis of this disease. The gene of haemochromatosis (HFE) encodes the HFE protein which interacts with the transferrin receptor (TFR), lowering its affinity for iron-bound transferrin (TF). We examined four known polymorphisms, C282Y and H63D in the HFE gene, G258S in the TF gene and S82G in the TFR gene, in 181 sporadic PD patients and 180 controls from Southern Italy to investigate their possible role in susceptibility to PD. No significant differences were found in genotype and allele frequencies between PD and controls for all the polymorphisms studied, suggesting that these variants do not contribute significantly to the risk of PD.

  8. The expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats.

    Science.gov (United States)

    Katayama, Seiichi; Ashizawa, Koji; Gohma, Hiroshi; Fukuhara, Tadahiro; Narumi, Kazunori; Tsuzuki, Yasuhiro; Tatemoto, Hideki; Nakada, Tadashi; Nagai, Kenji

    2006-12-15

    The objective of this study was to investigate the effects of estrogen receptor (ER) agonists and an ER antagonist on the expression of Hedgehog genes (Indian hedgehog: Ihh; Desert hedgehog: Dhh) and Hedgehog target genes (Patched 1: Ptc1; glioma-associated oncogene homolog 1: Gli1; chicken ovalbumin upstream promoter transcription factor II: Coup-TfII) in the rat uterus. Immature female rats were administered once with 17alpha-ethynyl estradiol (EE, an ER agonist), propyl pyrazole triole (PPT, an ERalpha-selective agonist), diarylpropionitrile (DPN, an ERbeta-selective agonist), or ICI 182,780 (an ER antagonist). Expression of mRNA for Ihh, Dhh, and Ptc1 was dose-dependently downregulated by EE in the uterus of immature rats, mediated by ER as confirmed by coadministration of ICI 182,780. The mRNA expression levels of Ptc1, Gli1, and Coup-TfII were simultaneously downregulated during the period in which the mRNA expression levels of Ihh and Dhh were downregulated in the uterus after administration of EE. PPT downregulated the transcription of Ihh, Dhh, Ptc1, Gli1, and Coup-TfII, indicating that expression of these genes was regulated by the ERalpha-dependent pathway. DPN also downregulated the transcription of Ihh and Dhh, although the effect was weaker than that of PPT, indicating that the regulation of uterine Ihh and Dhh transcription was also affected by the ERbeta-dependent pathway. These results suggest that the expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats.

  9. The expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats

    International Nuclear Information System (INIS)

    Katayama, Seiichi; Ashizawa, Koji; Gohma, Hiroshi; Fukuhara, Tadahiro; Narumi, Kazunori; Tsuzuki, Yasuhiro; Tatemoto, Hideki; Nakada, Tadashi; Nagai, Kenji

    2006-01-01

    The objective of this study was to investigate the effects of estrogen receptor (ER) agonists and an ER antagonist on the expression of Hedgehog genes (Indian hedgehog: Ihh; Desert hedgehog: Dhh) and Hedgehog target genes (Patched 1: Ptc1; glioma-associated oncogene homolog 1: Gli1; chicken ovalbumin upstream promoter transcription factor II: Coup-TfII) in the rat uterus. Immature female rats were administered once with 17α-ethynyl estradiol (EE, an ER agonist), propyl pyrazole triole (PPT, an ERα-selective agonist), diarylpropionitrile (DPN, an ERβ-selective agonist), or ICI 182,780 (an ER antagonist). Expression of mRNA for Ihh, Dhh, and Ptc1 was dose-dependently downregulated by EE in the uterus of immature rats, mediated by ER as confirmed by coadministration of ICI 182,780. The mRNA expression levels of Ptc1, Gli1, and Coup-TfII were simultaneously downregulated during the period in which the mRNA expression levels of Ihh and Dhh were downregulated in the uterus after administration of EE. PPT downregulated the transcription of Ihh, Dhh, Ptc1, Gli1, and Coup-TfII, indicating that expression of these genes was regulated by the ERα-dependent pathway. DPN also downregulated the transcription of Ihh and Dhh, although the effect was weaker than that of PPT, indicating that the regulation of uterine Ihh and Dhh transcription was also affected by the ERβ-dependent pathway. These results suggest that the expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats

  10. Genome-wide association study identifies TF as a significant modifier gene of iron metabolism in HFE hemochromatosis.

    Science.gov (United States)

    de Tayrac, Marie; Roth, Marie-Paule; Jouanolle, Anne-Marie; Coppin, Hélène; le Gac, Gérald; Piperno, Alberto; Férec, Claude; Pelucchi, Sara; Scotet, Virginie; Bardou-Jacquet, Edouard; Ropert, Martine; Bouvet, Régis; Génin, Emmanuelle; Mosser, Jean; Deugnier, Yves

    2015-03-01

    Hereditary hemochromatosis (HH) is the most common form of genetic iron loading disease. It is mainly related to the homozygous C282Y/C282Y mutation in the HFE gene that is, however, a necessary but not a sufficient condition to develop clinical and even biochemical HH. This suggests that modifier genes are likely involved in the expressivity of the disease. Our aim was to identify such modifier genes. We performed a genome-wide association study (GWAS) using DNA collected from 474 unrelated C282Y homozygotes. Associations were examined for both quantitative iron burden indices and clinical outcomes with 534,213 single nucleotide polymorphisms (SNP) genotypes, with replication analyses in an independent sample of 748 C282Y homozygotes from four different European centres. One SNP met genome-wide statistical significance for association with transferrin concentration (rs3811647, GWAS p value of 7×10(-9) and replication p value of 5×10(-13)). This SNP, located within intron 11 of the TF gene, had a pleiotropic effect on serum iron (GWAS p value of 4.9×10(-6) and replication p value of 3.2×10(-6)). Both serum transferrin and iron levels were associated with serum ferritin levels, amount of iron removed and global clinical stage (pHFE-associated HH (HFE-HH) patients, identified the rs3811647 polymorphism in the TF gene as the only SNP significantly associated with iron metabolism through serum transferrin and iron levels. Because these two outcomes were clearly associated with the biochemical and clinical expression of the disease, an indirect link between the rs3811647 polymorphism and the phenotypic presentation of HFE-HH is likely. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  11. Identification of novel mutations in HFE, HFE2, TfR2, and SLC40A1 genes in Chinese patients affected by hereditary hemochromatosis.

    Science.gov (United States)

    Wang, Yongwei; Du, Yali; Liu, Gang; Guo, Shanshan; Hou, Bo; Jiang, Xianyong; Han, Bing; Chang, Yanzhong; Nie, Guangjun

    2017-04-01

    Hereditary hemochromatosis (HH) is a group of inherited iron-overload disorders associated with pathogenic defects in the genes encoding hemochromatosis (HFE), hemojuvelin (HJV/HFE2), hepcidin (HAMP), transferrin receptor 2 (TfR2), and ferroportin (FPN1/SLC40A1) proteins, and the clinical features are well described. However, there have been only a few detailed reports of HH in Chinese populations. Thus, there is insufficient patient information for population-based analyses in Chinese populations or comparative studies among different ethical groups. In the current work, we describe eight Chinese cases of hereditary hemochromatosis. Gene sequencing results revealed eight mutations (five novel mutations) in HFE, HFE2, TfR2, and SLC40A1 genes in these Chinese HH patients. In addition, we used Polymorphism Phenotyping v2 (Polyphen), Sorting Intolerant From Tolerant (SIFT), and a sequence alignment program to predict the molecular consequences of missense mutations.

  12. MiRNA-TF-gene network analysis through ranking of biomolecules for multi-informative uterine leiomyoma dataset.

    Science.gov (United States)

    Mallik, Saurav; Maulik, Ujjwal

    2015-10-01

    Gene ranking is an important problem in bioinformatics. Here, we propose a new framework for ranking biomolecules (viz., miRNAs, transcription-factors/TFs and genes) in a multi-informative uterine leiomyoma dataset having both gene expression and methylation data using (statistical) eigenvector centrality based approach. At first, genes that are both differentially expressed and methylated, are identified using Limma statistical test. A network, comprising these genes, corresponding TFs from TRANSFAC and ITFP databases, and targeter miRNAs from miRWalk database, is then built. The biomolecules are then ranked based on eigenvector centrality. Our proposed method provides better average accuracy in hub gene and non-hub gene classifications than other methods. Furthermore, pre-ranked Gene set enrichment analysis is applied on the pathway database as well as GO-term databases of Molecular Signatures Database with providing a pre-ranked gene-list based on different centrality values for comparing among the ranking methods. Finally, top novel potential gene-markers for the uterine leiomyoma are provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Microarray-Based Identification of Transcription Factor Target Genes

    NARCIS (Netherlands)

    Gorte, M.; Horstman, A.; Page, R.B.; Heidstra, R.; Stromberg, A.; Boutilier, K.A.

    2011-01-01

    Microarray analysis is widely used to identify transcriptional changes associated with genetic perturbation or signaling events. Here we describe its application in the identification of plant transcription factor target genes with emphasis on the design of suitable DNA constructs for controlling TF

  14. Transcription factor trapping by RNA in gene regulatory elements.

    Science.gov (United States)

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.

  15. A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Redman Julia C

    2008-07-01

    Full Text Available Abstract Background Medicago truncatula is a model legume species that is currently the focus of an international genome sequencing effort. Although several different oligonucleotide and cDNA arrays have been produced for genome-wide transcript analysis of this species, intrinsic limitations in the sensitivity of hybridization-based technologies mean that transcripts of genes expressed at low-levels cannot be measured accurately with these tools. Amongst such genes are many encoding transcription factors (TFs, which are arguably the most important class of regulatory proteins. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR is the most sensitive method currently available for transcript quantification, and one that can be scaled up to analyze transcripts of thousands of genes in parallel. Thus, qRT-PCR is an ideal method to tackle the problem of TF transcript quantification in Medicago and other plants. Results We established a bioinformatics pipeline to identify putative TF genes in Medicago truncatula and to design gene-specific oligonucleotide primers for qRT-PCR analysis of TF transcripts. We validated the efficacy and gene-specificity of over 1000 TF primer pairs and utilized these to identify sets of organ-enhanced TF genes that may play important roles in organ development or differentiation in this species. This community resource will be developed further as more genome sequence becomes available, with the ultimate goal of producing validated, gene-specific primers for all Medicago TF genes. Conclusion High-throughput qRT-PCR using a 384-well plate format enables rapid, flexible, and sensitive quantification of all predicted Medicago transcription factor mRNAs. This resource has been utilized recently by several groups in Europe, Australia, and the USA, and we expect that it will become the 'gold-standard' for TF transcript profiling in Medicago truncatula.

  16. Identification and expression of the WRKY transcription factors of Carica papaya in response to abiotic and biotic stresses.

    Science.gov (United States)

    Pan, Lin-Jie; Jiang, Ling

    2014-03-01

    The WRKY transcription factor (TF) plays a very important role in the response of plants to various abiotic and biotic stresses. A local papaya database was built according to the GenBank expressed sequence tag database using the BioEdit software. Fifty-two coding sequences of Carica papaya WRKY TFs were predicted using the tBLASTn tool. The phylogenetic tree of the WRKY proteins was classified. The expression profiles of 13 selected C. papaya WRKY TF genes under stress induction were constructed by quantitative real-time polymerase chain reaction. The expression levels of these WRKY genes in response to 3 abiotic and 2 biotic stresses were evaluated. TF807.3 and TF72.14 are upregulated by low temperature; TF807.3, TF43.76, TF12.199 and TF12.62 are involved in the response to drought stress; TF9.35, TF18.51, TF72.14 and TF12.199 is involved in response to wound; TF12.199, TF807.3, TF21.156 and TF18.51 was induced by PRSV pathogen; TF72.14 and TF43.76 are upregulated by SA. The regulated expression levels of above eight genes normalized against housekeeping gene actin were significant at probability of 0.01 levels. These WRKY TFs could be related to corresponding stress resistance and selected as the candidate genes, especially, the two genes TF807.3 and TF12.199, which were regulated notably by four stresses respectively. This study may provide useful information and candidate genes for the development of transgenic stress tolerant papaya varieties.

  17. From data repositories to submission portals: rethinking the role of domain-specific databases in CollecTF.

    Science.gov (United States)

    Kılıç, Sefa; Sagitova, Dinara M; Wolfish, Shoshannah; Bely, Benoit; Courtot, Mélanie; Ciufo, Stacy; Tatusova, Tatiana; O'Donovan, Claire; Chibucos, Marcus C; Martin, Maria J; Erill, Ivan

    2016-01-01

    Domain-specific databases are essential resources for the biomedical community, leveraging expert knowledge to curate published literature and provide access to referenced data and knowledge. The limited scope of these databases, however, poses important challenges on their infrastructure, visibility, funding and usefulness to the broader scientific community. CollecTF is a community-oriented database documenting experimentally validated transcription factor (TF)-binding sites in the Bacteria domain. In its quest to become a community resource for the annotation of transcriptional regulatory elements in bacterial genomes, CollecTF aims to move away from the conventional data-repository paradigm of domain-specific databases. Through the adoption of well-established ontologies, identifiers and collaborations, CollecTF has progressively become also a portal for the annotation and submission of information on transcriptional regulatory elements to major biological sequence resources (RefSeq, UniProtKB and the Gene Ontology Consortium). This fundamental change in database conception capitalizes on the domain-specific knowledge of contributing communities to provide high-quality annotations, while leveraging the availability of stable information hubs to promote long-term access and provide high-visibility to the data. As a submission portal, CollecTF generates TF-binding site information through direct annotation of RefSeq genome records, definition of TF-based regulatory networks in UniProtKB entries and submission of functional annotations to the Gene Ontology. As a database, CollecTF provides enhanced search and browsing, targeted data exports, binding motif analysis tools and integration with motif discovery and search platforms. This innovative approach will allow CollecTF to focus its limited resources on the generation of high-quality information and the provision of specialized access to the data.Database URL: http://www.collectf.org/. © The Author(s) 2016

  18. Identification and expression of the tig gene coding for trigger factor from psychrophilic bacteria with no information of genome sequence available.

    Science.gov (United States)

    Lee, Kyunghee; Choi, Hyojung; Im, Hana

    2009-08-01

    Trigger factor (TF) plays a key role as a molecular chaperone with a peptidyl-prolyl cis-trans isomerase (PPIase) activity by which cells promote folding of newly synthesized proteins coming out of ribosomes. Since psychrophilic bacteria grow at a quite low temperature, between 4 and 15 degrees C, TF from such bacteria was investigated and compared with that of mesophilic bacteria E. coli in order to offer an explanation of cold-adaptation at a molecular level. Using a combination of gradient PCRs with homologous primers and LA PCR in vitro cloning technology, the tig gene was fully identified from Psychromonas arctica, whose genome sequence is not yet available. The resulting amino acid sequence of the TF was compared with other homologous TFs using sequence alignments to search for common domains. In addition, we have developed a protein expression system, by which TF proteins from P. arctica (PaTF) were produced by IPTG induction upon cloning the tig gene on expression vectors, such as pAED4. We have further examined the role of expressed psychrophilic PaTF on survival against cold treatment at 4 degrees C. Finally, we have attempted the in vitro biochemical characterization of TF proteins with His-tags expressed in a pET system, such as the PPIase activity of PaTF protein. Our results demonstrate that the expressed PaTF proteins helped cells survive against cold environments in vivo and the purified PaTF in vitro display the functional PPIase activity in a concentration dependent manner.

  19. Identifying TF-MiRNA Regulatory Relationships Using Multiple Features.

    Directory of Open Access Journals (Sweden)

    Mingyu Shao

    Full Text Available MicroRNAs are known to play important roles in the transcriptional and post-transcriptional regulation of gene expression. While intensive research has been conducted to identify miRNAs and their target genes in various genomes, there is only limited knowledge about how microRNAs are regulated. In this study, we construct a pipeline that can infer the regulatory relationships between transcription factors and microRNAs from ChIP-Seq data with high confidence. In particular, after identifying candidate peaks from ChIP-Seq data, we formulate the inference as a PU learning (learning from only positive and unlabeled examples problem. Multiple features including the statistical significance of the peaks, the location of the peaks, the transcription factor binding site motifs, and the evolutionary conservation are derived from peaks for training and prediction. To further improve the accuracy of our inference, we also apply a mean reciprocal rank (MRR-based method to the candidate peaks. We apply our pipeline to infer TF-miRNA regulatory relationships in mouse embryonic stem cells. The experimental results show that our approach provides very specific findings of TF-miRNA regulatory relationships.

  20. Gene regulation by growth factors

    International Nuclear Information System (INIS)

    Metz, R.; Gorham, J.; Siegfried, Z.; Leonard, D.; Gizang-Ginsberg, E.; Thompson, M.A.; Lawe, D.; Kouzarides, T.; Vosatka, R.; MacGregor, D.; Jamal, S.; Greenberg, M.E.; Ziff, E.B.

    1988-01-01

    To coordinate the proliferation and differentiation of diverse cell types, cells of higher eukaryotes communicate through the release of growth factors. These peptides interact with specific transmembrane receptors of other cells and thereby generate intracellular messengers. The many changes in cellular physiology and activity that can be induced by growth factors imply that growth factor-induced signals can reach the nucleus and control gene activity. Moreover, current evidence also suggests that unregulated signaling along such pathways can induce aberrant proliferation and the formation of tumors. This paper reviews investigations of growth factor regulation of gene expression conducted by the authors' laboratory

  1. Evolutionary dynamics of DNA-binding sites and direct target genes of a floral master regulatory transcription factor [ChIP-Seq

    NARCIS (Netherlands)

    Muiño, J.M.; Bruijn, de S.A.; Vingron, Martin; Angenent, G.C.; Kaufmann, K.

    2015-01-01

    Plant development is controlled by transcription factors (TFs) which form complex gene-regulatory networks. Genome-wide TF DNA-binding studies revealed that these TFs have several thousands of binding sites in the Arabidopsis genome, and may regulate the expression of many genes directly. Given the

  2. Evolutionary dynamics of DNA-binding sites and direct target genes of a floral master regulatory transcription factor [RNA-Seq

    NARCIS (Netherlands)

    Muiño, J.M.; Bruijn, de S.A.; Vingron, Martin; Angenent, G.C.; Kaufmann, Kerstin

    2015-01-01

    Plant development is controlled by transcription factors (TFs) which form complex gene-regulatory networks. Genome-wide TF DNA-binding studies revealed that these TFs have several thousands of binding sites in the Arabidopsis genome, and may regulate the expression of many genes directly. Given the

  3. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.

  4. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    Science.gov (United States)

    Fang, Xin; Sastry, Anand; Mih, Nathan; Kim, Donghyuk; Tan, Justin; Lloyd, Colton J.; Gao, Ye; Yang, Laurence; Palsson, Bernhard O.

    2017-01-01

    Transcriptional regulatory networks (TRNs) have been studied intensely for >25 y. Yet, even for the Escherichia coli TRN—probably the best characterized TRN—several questions remain. Here, we address three questions: (i) How complete is our knowledge of the E. coli TRN; (ii) how well can we predict gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions were collected from published, validated chromatin immunoprecipitation (ChIP) data and RegulonDB. For 21 different TF knockouts, up to 63% of the differentially expressed genes in the hiTRN were traced to the knocked-out TF through regulatory cascades. Second, we trained supervised machine learning algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems-level functions of an organism’s TRN from disparate data types. PMID:28874552

  5. Tissue factor/FVIIa activates Bcl-2 and prevents doxorubicin-induced apoptosis in neuroblastoma cells

    International Nuclear Information System (INIS)

    Fang, Jun; Gu, Lubing; Zhu, Ningxi; Tang, Hao; Alvarado, Carlos S; Zhou, Muxiang

    2008-01-01

    Tissue factor (TF) is a transmembrane protein that acts as a receptor for activated coagulation factor VII (FVIIa), initiating the coagulation cascade. Recent studies demonstrate that expression of tumor-derived TF also mediates intracellular signaling relevant to tumor growth and apoptosis. Our present study investigates the possible mechanism by which the interaction between TF and FVIIa regulates chemotherapy resistance in neuroblastoma cell lines. Gene and siRNA transfection was used to enforce TF expression in a TF-negative neuroblastoma cell line and to silence endogenous TF expression in a TF-overexpressing neuroblastoma line, respectively. The expression of TF, Bcl-2, STAT5, and Akt as well as the phosphorylation of STAT5 and Akt in gene transfected cells or cells treated with JAK inhibitor and LY294002 were determined by Western blot assay. Tumor cell growth was determined by a clonogenic assay. Cytotoxic and apoptotic effect of doxorubicin on neuroblastoma cell lines was analyzed by WST assay and annexin-V staining (by flow cytometry) respectively. Enforced expression of TF in a TF-negative neuroblastoma cell line in the presence of FVIIa induced upregulation of Bcl-2, leading to resistance to doxorubicin. Conversely, inhibition of endogenous TF expression in a TF-overexpressing neuroblastoma cell line using siRNA resulted in down-regulation of Bcl-2 and sensitization to doxorubicin-induced apoptosis. Additionally, neuroblastoma cells expressing high levels of either endogenous or transfected TF treated with FVIIa readily phosphorylated STAT5 and Akt. Using selective pharmacologic inhibitors, we demonstrated that JAK inhibitor I, but not the PI3K inhibitor LY294002, blocked the TF/FVIIa-induced upregulation of Bcl-2. This study shows that in neuroblastoma cell lines overexpressed TF ligated with FVIIa produced upregulation of Bcl-2 expression through the JAK/STAT5 signaling pathway, resulting in resistance to apoptosis. We surmise that this TF

  6. Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L.

    Science.gov (United States)

    Kakeshpour, Tayebeh; Nayebi, Shadi; Rashidi Monfared, Sajad; Moieni, Ahmad; Karimzadeh, Ghasem

    2015-10-01

    Papaver somniferum L. is an herbaceous, annual and diploid plant that is important from pharmacological and strategic point of view. The cDNA clones of two putative MYB and WRKY genes were isolated (GeneBank accession numbers KP411870 and KP203854, respectively) from this plant, via the nested-PCR method, and characterized. The MYB transcription factor (TF) comprises 342 amino acids, and exhibits the structural features of the R2R3MYB protein family. The WRKY TF, a 326 amino acid-long polypeptide, falls structurally into the group II of WRKY protein family. Quantitative real-time PCR (qRT-PCR) analyses indicate the presence of these TFs in all organs of P. somniferum L. and Papaver bracteatum L. Highest expression levels of these two TFs were observed in the leaf tissues of P. somniferum L. while in P. bracteatum L. the espression levels were highest in the root tissues. Promoter analysis of the 10 co-expressed gene clustered involved in noscapine biosynthesis pathway in P. somniferum L. suggested that not only these 10 genes are co-expressed, but also share common regulatory motifs and TFs including MYB and WRKY TFs, and that may explain their common regulation.

  7. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression.

    Science.gov (United States)

    Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A

    2014-05-02

    To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.

  8. CardioTF, a database of deconstructing transcriptional circuits in the heart system.

    Science.gov (United States)

    Zhen, Yisong

    2016-01-01

    Information on cardiovascular gene transcription is fragmented and far behind the present requirements of the systems biology field. To create a comprehensive source of data for cardiovascular gene regulation and to facilitate a deeper understanding of genomic data, the CardioTF database was constructed. The purpose of this database is to collate information on cardiovascular transcription factors (TFs), position weight matrices (PWMs), and enhancer sequences discovered using the ChIP-seq method. The Naïve-Bayes algorithm was used to classify literature and identify all PubMed abstracts on cardiovascular development. The natural language learning tool GNAT was then used to identify corresponding gene names embedded within these abstracts. Local Perl scripts were used to integrate and dump data from public databases into the MariaDB management system (MySQL). In-house R scripts were written to analyze and visualize the results. Known cardiovascular TFs from humans and human homologs from fly, Ciona, zebrafish, frog, chicken, and mouse were identified and deposited in the database. PWMs from Jaspar, hPDI, and UniPROBE databases were deposited in the database and can be retrieved using their corresponding TF names. Gene enhancer regions from various sources of ChIP-seq data were deposited into the database and were able to be visualized by graphical output. Besides biocuration, mouse homologs of the 81 core cardiac TFs were selected using a Naïve-Bayes approach and then by intersecting four independent data sources: RNA profiling, expert annotation, PubMed abstracts and phenotype. The CardioTF database can be used as a portal to construct transcriptional network of cardiac development. Database URL: http://www.cardiosignal.org/database/cardiotf.html.

  9. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    Directory of Open Access Journals (Sweden)

    Shuchi eSmita

    2015-12-01

    Full Text Available MYB transcription factor (TF is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by top down and guide gene approaches. More than 50% of OsMYBs were strongly correlated under fifty experimental conditions with 51 hub genes via top down approach. Further, clusters were identified using Markov Clustering (MCL. To maximize the clustering performance, parameter evaluation of the MCL inflation score (I was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by guide gene approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  10. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data

    Directory of Open Access Journals (Sweden)

    de los Reyes Benildo G

    2008-04-01

    Full Text Available Abstract Background Integrating data from multiple global assays and curated databases is essential to understand the spatio-temporal interactions within cells. Different experiments measure cellular processes at various widths and depths, while databases contain biological information based on established facts or published data. Integrating these complementary datasets helps infer a mutually consistent transcriptional regulatory network (TRN with strong similarity to the structure of the underlying genetic regulatory modules. Decomposing the TRN into a small set of recurring regulatory patterns, called network motifs (NM, facilitates the inference. Identifying NMs defined by specific transcription factors (TF establishes the framework structure of a TRN and allows the inference of TF-target gene relationship. This paper introduces a computational framework for utilizing data from multiple sources to infer TF-target gene relationships on the basis of NMs. The data include time course gene expression profiles, genome-wide location analysis data, binding sequence data, and gene ontology (GO information. Results The proposed computational framework was tested using gene expression data associated with cell cycle progression in yeast. Among 800 cell cycle related genes, 85 were identified as candidate TFs and classified into four previously defined NMs. The NMs for a subset of TFs are obtained from literature. Support vector machine (SVM classifiers were used to estimate NMs for the remaining TFs. The potential downstream target genes for the TFs were clustered into 34 biologically significant groups. The relationships between TFs and potential target gene clusters were examined by training recurrent neural networks whose topologies mimic the NMs to which the TFs are classified. The identified relationships between TFs and gene clusters were evaluated using the following biological validation and statistical analyses: (1 Gene set enrichment

  11. Mutation in Torenia fournieri Lind. UFO homolog confers loss of TfLFY interaction and results in a petal to sepal transformation.

    Science.gov (United States)

    Sasaki, Katsutomo; Yamaguchi, Hiroyasu; Aida, Ryutaro; Shikata, Masahito; Abe, Tomoko; Ohtsubo, Norihiro

    2012-09-01

    We identified a Torenia fournieri Lind. mutant (no. 252) that exhibited a sepaloid phenotype in which the second whorls were changed to sepal-like organs. This mutant had no stamens, and the floral organs consisted of sepals and carpels. Although the expression of a torenia class B MADS-box gene, GLOBOSA (TfGLO), was abolished in the 252 mutant, no mutation of TfGLO was found. Among torenia homologs such as APETALA1 (AP1), LEAFY (LFY), and UNUSUAL FLORAL ORGANS (UFO), which regulate expression of class B genes in Arabidopsis, only accumulation of the TfUFO transcript was diminished in the 252 mutant. Furthermore, a missense mutation was found in the coding region of the mutant TfUFO. Intact TfUFO complemented the mutant phenotype whereas mutated TfUFO did not; in addition, the transgenic phenotype of TfUFO-knockdown torenias coincided with the mutant phenotype. Yeast two-hybrid analysis revealed that the mutated TfUFO lost its ability to interact with TfLFY protein. In situ hybridization analysis indicated that the transcripts of TfUFO and TfLFY were partially accumulated in the same region. These results clearly demonstrate that the defect in TfUFO caused the sepaloid phenotype in the 252 mutant due to the loss of interaction with TfLFY. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  12. Polymorphisms in the 5' regulatory region of the tissue factor gene and the risk of myocardial infarction and venous thromboembolism: the ECTIM and PATHROS studies. Etude Cas-Témoins de l'Infarctus du Myocarde. Paris Thrombosis case-control Study.

    Science.gov (United States)

    Arnaud, E; Barbalat, V; Nicaud, V; Cambien, F; Evans, A; Morrison, C; Arveiler, D; Luc, G; Ruidavets, J B; Emmerich, J; Fiessinger, J N; Aiach, M

    2000-03-01

    Tissue factor (TF) is a transmembrane protein considered to be responsible for the initiation of coagulation. TF gene expression may be induced in monocytes and endothelial cells and is present in atherosclerotic plaque to initiate thrombus formation. To investigate whether individual differences in TF gene expression could predispose subjects to thrombosis, we sequenced the 5' domain of the gene up to nucleotide 2732 and found 6 different polymorphisms: 4 of them were completely concordant and defined 2 haplotypes with similar frequencies, designated as 1208 D and 1208 I. Genotyping of patients with myocardial infarction in a case-control study involving 2354 subjects showed no association between the polymorphisms and nonfatal coronary thrombosis. In another study involving 255 patients with venous thromboembolism and 1204 controls, allele D was less common in the cases (P=0.022). The odds ratio associated with the presence of at least 1 D allele was 0.72 (P=0. 031). Comparison of subgroups of control subjects who were homozygous for the D or I allele demonstrated a lower plasma TF concentration in DD homozygotes. These results indicate that the TF gene promoter exists in 2 major forms differing at 4 sites. The 1208 D haplotype is not associated with coronary thrombosis but is associated with reduced plasma TF levels and a lower risk of venous thrombosis.

  13. Resveratrol Ameliorates Dysregulation of Th1, Th2, Th17, and T Regulatory Cell-Related Transcription Factor Signaling in a BTBR T + tf/J Mouse Model of Autism.

    Science.gov (United States)

    Bakheet, Saleh A; Alzahrani, Mohammad Zeed; Ansari, Mushtaq Ahmad; Nadeem, Ahmed; Zoheir, Khairy M A; Attia, Sabry M; Al-Ayadhi, Laila Yousef; Ahmad, Sheikh Fayaz

    2017-09-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder. It is characterized by impaired social communication, abnormal social interactions, and repetitive behaviors and/or restricted interests. BTBR T + tf/J (BTBR) inbred mice are commonly used as a model for ASD. Resveratrol is used widely as a beneficial therapeutic in the treatment of an extensive array of pathologies, including neurodegenerative diseases. In the present study, the effect of resveratrol administration (20 and 40 mg/kg) was evaluated in both BTBR and C57BL/6 (B6) mice. Behavioral (self-grooming), Foxp3, T-bet, GATA-3, RORγt, and IL-17A in CD4 + T cells were assessed. Our study showed that BTBR control mice exhibited a distinct immune profile from that of the B6 control mice. BTBR mice were characterized by lower levels of Foxp3 + and higher levels of RORγt + , T-bet + , and GATA-3 + production in CD4 + T cells when compared with B6 control. Resveratrol (20 and 40 mg/kg) treatment to B6 and BTBR mice showed substantial induction of Foxp3 + and reduction of T-bet + , GATA-3 + , and IL-17A + expression in CD4 + cells when compared with the respective control groups. Moreover, resveratrol treatment resulted in upregulated expression of Foxp3 mRNA and decreased expression levels of T-bet, GATA-3, RORγt, and IL-17A in the spleen and brain tissues. Western blot analysis confirmed that resveratrol treatment decreased the protein expression of T-bet, GATA-3, RORγ, and IL-17 and that it increased Foxp3 in B6 and BTBR mice. Our results suggest that autism is associated with dysregulation of transcription factor signaling that can be corrected by resveratrol treatment.

  14. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling

    Directory of Open Access Journals (Sweden)

    Wang Yubing

    2012-12-01

    Full Text Available Abstract Background Brown planthopper (BPH, Nilaparvata lugens Stål, is one of the most destructive insect pests of rice. The molecular responses of plants to sucking insects resemble responses to pathogen infection. However, the molecular mechanism of BPH-resistance in rice remains unclear. Transcription factors (TF are up-stream regulators of various genes that bind to specific DNA sequences, thereby controlling the transcription from DNA to mRNA. They are key regulators for transcriptional expression in biological processes, and are probably involved in the BPH-induced pathways in resistant rice varieties. Results We conducted a microarray experiment to analyze TF genes related to BPH resistance in a Sri Lankan rice cultivar, Rathu Heenati (RHT. We compared the expression profiles of TF genes in RHT with those of the susceptible rice cultivar Taichun Native 1 (TN1. We detected 2038 TF genes showing differential expression signals between the two rice varieties. Of these, 442 TF genes were probably related to BPH-induced resistance in RHT and TN1, and 229 may be related to constitutive resistance only in RHT. These genes showed a fold change (FC of more than 2.0 (P10, there were 37 induced TF genes and 26 constitutive resistance TF genes. Of these, 13 were probably involved in BPH-induced resistance, and 8 in constitutive resistance to BPH in RHT. Conclusions We explored the molecular mechanism of resistance to BPH in rice by comparing expressions of TF genes between RHT and TN1. We speculate that the level of gene repression, especially for early TF genes, plays an important role in the defense response. The fundamental point of the resistance strategy is that plants protect themselves by reducing their metabolic level to inhibit feeding by BPH and prevent damage from water and nutrient loss. We have selected 21 TF genes related to BPH resistance for further analyses to understand the molecular responses to BPH feeding in rice.

  15. Structural modelling and molecular dynamics of a multi-stress responsive WRKY TF-DNA complex towards elucidating its role in stress signalling mechanisms in chickpea.

    Science.gov (United States)

    Konda, Aravind Kumar; Farmer, Rohit; Soren, Khela Ram; P S, Shanmugavadivel; Setti, Aravind

    2017-07-28

    Chickpea is a premier food legume crop with high nutritional quality and attains prime importance in the current era of 795 million people being undernourished worldwide. Chickpea production encounters setbacks due to various stresses and understanding the role of key transcription factors (TFs) involved in multiple stresses becomes inevitable. We have recently identified a multi-stress responsive WRKY TF in chickpea. The present study was conducted to predict the structure of WRKY TF to identify the DNA-interacting residues and decipher DNA-protein interactions. Comparative modelling approach produced 3D model of the WRKY TF with good stereochemistry, local/global quality and further revealed W19, R20, K21, and Y22 motifs within a vicinity of 5 Å to the DNA amongst R18, G23, Q24, K25, Y36, Y37, R38 and K47 and these positions were equivalent to the 2LEX WRKY domain of Arabidopsis. Molecular simulations analysis of reference protein -PDB ID 2LEX, along with Car-WRKY TF modelled structure with the DNA coordinates derived from PDB ID 2LEX and docked using HADDOCK were executed. Root Mean Square (RMS) Deviation and RMS Fluctuation values yielded consistently stable trajectories over 50 ns simulation. Strengthening the obtained results, neither radius of gyration, distance and total energy showed any signs of DNA-WRKY complex falling apart nor any significant dissociation event over 50 ns run. Therefore, the study provides first insights into the structural properties of multi-stress responsive WRKY TF-DNA complex in chickpea, enabling genome wide identification of TF binding sites and thereby deciphers their gene regulatory networks.

  16. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    Science.gov (United States)

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  17. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1.

    Science.gov (United States)

    Lim, Sun-Hyung; Song, Ji-Hye; Kim, Da-Hye; Kim, Jae Kwang; Lee, Jong-Yeol; Kim, Young-Mi; Ha, Sun-Hwa

    2016-03-01

    RsMYB1, a MYB TF of red radish origin, was characterized as a positive regulator to transcriptionally activate the anthocyanin biosynthetic machinery by itself in Arabidopsis and tobacco plants. Anthocyanins, providing the bright red-orange to blue-violet colors, are flavonoid-derived pigments with strong antioxidant activity that have benefits for human health. We isolated RsMYB1, which encodes an R2R3-MYB transcription factor (TF), from red radish plants (Raphanus sativus L.) that accumulate high levels of anthocyanins. RsMYB1 shows higher expression in red radish than in common white radish, in both leaves and roots, at different growth stages. Consistent with RsMYB1 function as an anthocyanin-promoting TF, red radishes showed higher expression of all six anthocyanin biosynthetic and two anthocyanin regulatory genes. Transient expression of RsMYB1 in tobacco showed that RsMYB1 is a positive regulator of anthocyanin production with better efficiency than the basic helix-loop-helix (bHLH) TF gene B-Peru. Also, the synergistic effect of RsMYB1 with B-Peru was larger than the effect of the MYB TF gene mPAP1D with B-peru. Arabidopsis plants stably expressing RsMYB1 produced red pigmentation throughout the plant, accompanied by up-regulation of the six structural and two regulatory genes for anthocyanin production. This broad transcriptional activation of anthocyanin biosynthetic machinery in Arabidopsis included up-regulation of TRANSPARENT TESTA8, which encodes a bHLH TF. These results suggest that overexpression of RsMYB1 promotes anthocyanin production by triggering the expression of endogenous bHLH genes as potential binding partners for RsMYB1. In addition, RsMYB1-overexpressing Arabidopsis plants had a higher antioxidant capacity than did non-transgenic control plants. Taken together, RsMYB1 is an actively positive regulator for anthocyanins biosynthesis in radish plants and it might be one of the best targets for anthocyanin production by single gene

  18. FVIIa-sTF and Thrombin Inhibitory Activities of Compounds Isolated from Microcystis aeruginosa K-139

    Directory of Open Access Journals (Sweden)

    Andrea Roxanne J. Anas

    2017-08-01

    Full Text Available The rise of bleeding and bleeding complications caused by oral anticoagulant use are serious problems nowadays. Strategies that block the initiation step in blood coagulation involving activated factor VII-tissue factor (fVIIa-TF have been considered. This study explores toxic Microcystis aeruginosa K-139, from Lake Kasumigaura, Ibaraki, Japan, as a promising cyanobacterium for isolation of fVIIa-sTF inhibitors. M. aeruginosa K-139 underwent reversed-phase solid-phase extraction (ODS-SPE from 20% MeOH to MeOH elution with 40%-MeOH increments, which afforded aeruginosin K-139 in the 60% MeOH fraction; micropeptin K-139 and microviridin B in the MeOH fraction. Aeruginosin K-139 displayed an fVIIa-sTF inhibitory activity of ~166 µM, within a 95% confidence interval. Micropeptin K-139 inhibited fVIIa-sTF with EC50 10.62 µM, which was more efficient than thrombin inhibition of EC50 26.94 µM. The thrombin/fVIIa-sTF ratio of 2.54 in micropeptin K-139 is higher than those in 4-amidinophenylmethane sulfonyl fluoride (APMSF and leupeptin, when used as positive controls. This study proves that M. aeruginosa K-139 is a new source of fVIIa-sTF inhibitors. It also opens a new avenue for micropeptin K-139 and related depsipeptides as fVIIa-sTF inhibitors.

  19. Divergent Evolutionary Patterns of NAC Transcription Factors Are Associated with Diversification and Gene Duplications in Angiosperm

    Directory of Open Access Journals (Sweden)

    Xiaoli Jin

    2017-06-01

    Full Text Available NAC (NAM/ATAF/CUC proteins constitute one of the biggest plant-specific transcription factor (TF families and have crucial roles in diverse developmental programs during plant growth. Phylogenetic analyses have revealed both conserved and lineage-specific NAC subfamilies, among which various origins and distinct features were observed. It is reasonable to hypothesize that there should be divergent evolutionary patterns of NAC TFs both between dicots and monocots, and among NAC subfamilies. In this study, we compared the gene duplication and loss, evolutionary rate, and selective pattern among non-lineage specific NAC subfamilies, as well as those between dicots and monocots, through genome-wide analyses of sequence and functional data in six dicot and five grass lineages. The number of genes gained in the dicot lineages was much larger than that in the grass lineages, while fewer gene losses were observed in the grass than that in the dicots. We revealed (1 uneven constitution of Clusters of Orthologous Groups (COGs and contrasting birth/death rates among subfamilies, and (2 two distinct evolutionary scenarios of NAC TFs between dicots and grasses. Our results demonstrated that relaxed selection, resulting from concerted gene duplications, may have permitted substitutions responsible for functional divergence of NAC genes into new lineages. The underlying mechanism of distinct evolutionary fates of NAC TFs shed lights on how evolutionary divergence contributes to differences in establishing NAC gene subfamilies and thus impacts the distinct features between dicots and grasses.

  20. Factor IX gene haplotypes in Amerindians.

    Science.gov (United States)

    Franco, R F; Araújo, A G; Zago, M A; Guerreiro, J F; Figueiredo, M S

    1997-02-01

    We have determined the haplotypes of the factor IX gene for 95 Indians from 5 Brazilian Amazon tribes: Wayampí, Wayana-Apalaí, Kayapó, Arára, and Yanomámi. Eight polymorphisms linked to the factor IX gene were investigated: MseI (at 5', nt -698), BamHI (at 5', nt -561), DdeI (intron 1), BamHI (intron 2), XmnI (intron 3), TaqI (intron 4), MspI (intron 4), and HhaI (at 3', approximately 8 kb). The results of the haplotype distribution and the allele frequencies for each of the factor IX gene polymorphisms in Amerindians were similar to the results reported for Asian populations but differed from results for other ethnic groups. Only five haplotypes were identified within the entire Amerindian study population, and the haplotype distribution was significantly different among the five tribes, with one (Arára) to four (Wayampí) haplotypes being found per tribe. These findings indicate a significant heterogeneity among the Indian tribes and contrast with the homogeneous distribution of the beta-globin gene cluster haplotypes but agree with our recent findings on the distribution of alpha-globin gene cluster haplotypes and the allele frequencies for six VNTRs in the same Amerindian tribes. Our data represent the first study of factor IX-associated polymorphisms in Amerindian populations and emphasizes the applicability of these genetic markers for population and human evolution studies.

  1. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors.

    Science.gov (United States)

    Hu, Jiabiao; Lei, Yong; Wong, Wing-Ki; Liu, Senquan; Lee, Kai-Chuen; He, Xiangjun; You, Wenxing; Zhou, Rui; Guo, Jun-Tao; Chen, Xiongfong; Peng, Xianlu; Sun, Hao; Huang, He; Zhao, Hui; Feng, Bo

    2014-04-01

    The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around -120 to -80 bp, while highly effective sgRNAs targeted from -147 to -89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells.

  2. Two-finger (TF) SPUDT cells.

    Science.gov (United States)

    Martin, Guenter; Biryukov, Sergey V; Schmidt, Hagen; Steiner, Bernd; Wall, Bert

    2011-03-01

    SPUDT cells including two fingers are only known thus far for so-called NSPUDT directions. In that case, usual solid-finger cells are used. The purpose of the present paper is to find SPUDT cell types consisting of two fingers only for pure mode directions. Two-finger (TF) cells for pure mode directions on substrates like 128°YX LiNbO(3) and YZ LiNbO(3) were found by means of an optimization procedure. The forward direction of a TF-cell SPUDT on 128°YX LiNbO(3) was determined experimentally. The properties of the new cells are compared with those of conventional SPUDT cells. The reflectivity of TF cells on 128°YX LiNbO(3) turns out to be two to three times larger than that of distributed acoustic reflection transducer (DART) and Hanma-Hunsinger cells at the same metal layer thickness.

  3. Identification and positional distribution analysis of transcription factor binding sites for genes from the wheat fl-cDNA sequences.

    Science.gov (United States)

    Chen, Zhen-Yong; Guo, Xiao-Jiang; Chen, Zhong-Xu; Chen, Wei-Ying; Wang, Ji-Rui

    2017-06-01

    The binding sites of transcription factors (TFs) in upstream DNA regions are called transcription factor binding sites (TFBSs). TFBSs are important elements for regulating gene expression. To date, there have been few studies on the profiles of TFBSs in plants. In total, 4,873 sequences with 5' upstream regions from 8530 wheat fl-cDNA sequences were used to predict TFBSs. We found 4572 TFBSs for the MADS TF family, which was twice as many as for bHLH (1951), B3 (1951), HB superfamily (1914), ERF (1820), and AP2/ERF (1725) TFs, and was approximately four times higher than the remaining TFBS types. The percentage of TFBSs and TF members showed a distinct distribution in different tissues. Overall, the distribution of TFBSs in the upstream regions of wheat fl-cDNA sequences had significant difference. Meanwhile, high frequencies of some types of TFBSs were found in specific regions in the upstream sequences. Both TFs and fl-cDNA with TFBSs predicted in the same tissues exhibited specific distribution preferences for regulating gene expression. The tissue-specific analysis of TFs and fl-cDNA with TFBSs provides useful information for functional research, and can be used to identify relationships between tissue-specific TFs and fl-cDNA with TFBSs. Moreover, the positional distribution of TFBSs indicates that some types of wheat TFBS have different positional distribution preferences in the upstream regions of genes.

  4. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes.

    Science.gov (United States)

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-05-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1-MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein-protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes.

  5. Opposite Smad and chicken ovalbumin upstream promoter transcription factor inputs in the regulation of the collagen VII gene promoter by transforming growth factor-beta.

    Science.gov (United States)

    Calonge, María Julia; Seoane, Joan; Massagué, Joan

    2004-05-28

    A critical component of the epidermal basement membrane, collagen type VII, is produced by keratinocytes and fibroblasts, and its production is stimulated by the cytokine transforming growth factor-beta (TGF-beta). The gene, COL7A1, is activated by TGF-beta via Smad transcription factors in cooperation with AP1. Here we report a previously unsuspected level of complexity in this regulatory process. We provide evidence that TGF-beta may activate the COL7A1 promoter by two distinct inputs operating through a common region of the promoter. One input is provided by TGF-beta-induced Smad complexes via two Smad binding elements that function redundantly depending on the cell type. The second input is provided by relieving the COL7A1 promoter from chicken ovalbumin upstream promoter transcription factor (COUP-TF)-mediated transcriptional repression. We identified COUP-TFI and -TFII as factors that bind to the TGF-beta-responsive region of the COL7A1 promoter in an expression library screening. COUP-TFs bind to a site between the two Smad binding elements independently of Smad or AP1 and repress the basal and TGF-beta-stimulated activities of this promoter. We provide evidence that endogenous COUP-TF activity represses the COL7A1 promoter. Furthermore, we show that TGF-beta addition causes a rapid and profound down-regulation of COUP-TF expression in keratinocytes and fibroblasts. The results suggest that TGF-beta signaling may exert tight control over COL7A1 by offsetting the balance between opposing Smad and COUP-TFs.

  6. Gene expression analysis of WRKY transcription factors in Arabidopsis thaliana cell cultures during a parabolic flight

    Science.gov (United States)

    Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger

    Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.

  7. Strategies to regulate transcription factor-mediated gene positioning and interchromosomal clustering at the nuclear periphery.

    Science.gov (United States)

    Randise-Hinchliff, Carlo; Coukos, Robert; Sood, Varun; Sumner, Michael Chas; Zdraljevic, Stefan; Meldi Sholl, Lauren; Garvey Brickner, Donna; Ahmed, Sara; Watchmaker, Lauren; Brickner, Jason H

    2016-03-14

    In budding yeast, targeting of active genes to the nuclear pore complex (NPC) and interchromosomal clustering is mediated by transcription factor (TF) binding sites in the gene promoters. For example, the binding sites for the TFs Put3, Ste12, and Gcn4 are necessary and sufficient to promote positioning at the nuclear periphery and interchromosomal clustering. However, in all three cases, gene positioning and interchromosomal clustering are regulated. Under uninducing conditions, local recruitment of the Rpd3(L) histone deacetylase by transcriptional repressors blocks Put3 DNA binding. This is a general function of yeast repressors: 16 of 21 repressors blocked Put3-mediated subnuclear positioning; 11 of these required Rpd3. In contrast, Ste12-mediated gene positioning is regulated independently of DNA binding by mitogen-activated protein kinase phosphorylation of the Dig2 inhibitor, and Gcn4-dependent targeting is up-regulated by increasing Gcn4 protein levels. These different regulatory strategies provide either qualitative switch-like control or quantitative control of gene positioning over different time scales. © 2016 Randise-Hinchliff et al.

  8. iTAR: a web server for identifying target genes of transcription factors using ChIP-seq or ChIP-chip data.

    Science.gov (United States)

    Yang, Chia-Chun; Andrews, Erik H; Chen, Min-Hsuan; Wang, Wan-Yu; Chen, Jeremy J W; Gerstein, Mark; Liu, Chun-Chi; Cheng, Chao

    2016-08-12

    Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) or microarray hybridization (ChIP-chip) has been widely used to determine the genomic occupation of transcription factors (TFs). We have previously developed a probabilistic method, called TIP (Target Identification from Profiles), to identify TF target genes using ChIP-seq/ChIP-chip data. To achieve high specificity, TIP applies a conservative method to estimate significance of target genes, with the trade-off being a relatively low sensitivity of target gene identification compared to other methods. Additionally, TIP's output does not render binding-peak locations or intensity, information highly useful for visualization and general experimental biological use, while the variability of ChIP-seq/ChIP-chip file formats has made input into TIP more difficult than desired. To improve upon these facets, here we present are fined TIP with key extensions. First, it implements a Gaussian mixture model for p-value estimation, increasing target gene identification sensitivity and more accurately capturing the shape of TF binding profile distributions. Second, it enables the incorporation of TF binding-peak data by identifying their locations in significant target gene promoter regions and quantifies their strengths. Finally, for full ease of implementation we have incorporated it into a web server ( http://syslab3.nchu.edu.tw/iTAR/ ) that enables flexibility of input file format, can be used across multiple species and genome assembly versions, and is freely available for public use. The web server additionally performs GO enrichment analysis for the identified target genes to reveal the potential function of the corresponding TF. The iTAR web server provides a user-friendly interface and supports target gene identification in seven species, ranging from yeast to human. To facilitate investigating the quality of ChIP-seq/ChIP-chip data, the web server generates the chart of the

  9. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling.

    Science.gov (United States)

    Wang, Yubing; Guo, Huimin; Li, Haichao; Zhang, Hao; Miao, Xuexia

    2012-12-10

    Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most destructive insect pests of rice. The molecular responses of plants to sucking insects resemble responses to pathogen infection. However, the molecular mechanism of BPH-resistance in rice remains unclear. Transcription factors (TF) are up-stream regulators of various genes that bind to specific DNA sequences, thereby controlling the transcription from DNA to mRNA. They are key regulators for transcriptional expression in biological processes, and are probably involved in the BPH-induced pathways in resistant rice varieties. We conducted a microarray experiment to analyze TF genes related to BPH resistance in a Sri Lankan rice cultivar, Rathu Heenati (RHT). We compared the expression profiles of TF genes in RHT with those of the susceptible rice cultivar Taichun Native 1 (TN1). We detected 2038 TF genes showing differential expression signals between the two rice varieties. Of these, 442 TF genes were probably related to BPH-induced resistance in RHT and TN1, and 229 may be related to constitutive resistance only in RHT. These genes showed a fold change (FC) of more than 2.0 (Pgenes related to BPH-induced resistance, most of them were readily induced in TN1 than in RHT by BPH feeding, for instance, 154 TF genes were up-regulated in TN1, but only 31 TF genes were up-regulated in RHT at 24 hours after BPH infestation; 2-4 times more TF genes were induced in TN1 than in RHT by BPH. At an FC threshold of >10, there were 37 induced TF genes and 26 constitutive resistance TF genes. Of these, 13 were probably involved in BPH-induced resistance, and 8 in constitutive resistance to BPH in RHT. We explored the molecular mechanism of resistance to BPH in rice by comparing expressions of TF genes between RHT and TN1. We speculate that the level of gene repression, especially for early TF genes, plays an important role in the defense response. The fundamental point of the resistance strategy is that plants

  10. Structural, functional and evolutionary characterization of major drought transcription factors families in maize

    Science.gov (United States)

    Mittal, Shikha; Banduni, Pooja; Mallikarjuna, Mallana G.; Rao, Atmakuri R.; Jain, Prashant A.; Dash, Prasanta K.; Thirunavukkarasu, Nepolean

    2018-05-01

    Drought is one of the major threats to maize production. In order to improve the production and to breed tolerant hybrids, understanding the genes and regulatory mechanisms during drought stress is important. Transcription factors (TFs) play a major role in gene regulation and many TFs have been identified in response to drought stress. In our experiment, a set of 15 major TF families comprising 1436 genes was structurally and functionally characterized using in-silico tools and a gene expression assay. All 1436 genes were mapped on 10 chromosome of maize. The functional annotation indicated the involvement of these genes in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed individually for each TF family as well as combined TF families. Phylogenetic analysis grouped the TF family of genes into TF-specific and mixed groups. Phylogenetic analysis of genes belonging to various TF families suggested that the origin of TFs occurred in the lineage of maize evolution. Gene structure analysis revealed that more number of genes were intron-rich as compared to intronless genes. Drought-responsive CRE’s such as ABREA, ABREB, DRE1 and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. We also analyzed protein-protein interaction network of 269 drought-responsive genes belonging to different drought-related TFs. The information generated on structural and functional characteristics, expression and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to derive drought-tolerant genotypes in maize.

  11. Sequence2Vec: A novel embedding approach for modeling transcription factor binding affinity landscape

    KAUST Repository

    Dai, Hanjun; Umarov, Ramzan; Kuwahara, Hiroyuki; Li, Yu; Song, Le; Gao, Xin

    2017-01-01

    Motivation: An accurate characterization of transcription factor (TF)-DNA affinity landscape is crucial to a quantitative understanding of the molecular mechanisms underpinning endogenous gene regulation. While recent advances in biotechnology have

  12. Identification of upstream transcription factors (TFs) for expression signature genes in breast cancer.

    Science.gov (United States)

    Zang, Hongyan; Li, Ning; Pan, Yuling; Hao, Jingguang

    2017-03-01

    Breast cancer is a common malignancy among women with a rising incidence. Our intention was to detect transcription factors (TFs) for deeper understanding of the underlying mechanisms of breast cancer. Integrated analysis of gene expression datasets of breast cancer was performed. Then, functional annotation of differentially expressed genes (DEGs) was conducted, including Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Furthermore, TFs were identified and a global transcriptional regulatory network was constructed. Seven publically available GEO datasets were obtained, and a set of 1196 DEGs were identified (460 up-regulated and 736 down-regulated). Functional annotation results showed that cell cycle was the most significantly enriched pathway, which was consistent with the fact that cell cycle is closely related to various tumors. Fifty-three differentially expressed TFs were identified, and the regulatory networks consisted of 817 TF-target interactions between 46 TFs and 602 DEGs in the context of breast cancer. Top 10 TFs covering the most downstream DEGs were SOX10, NFATC2, ZNF354C, ARID3A, BRCA1, FOXO3, GATA3, ZEB1, HOXA5 and EGR1. The transcriptional regulatory networks could enable a better understanding of regulatory mechanisms of breast cancer pathology and provide an opportunity for the development of potential therapy.

  13. Conservation of transcription factor binding events predicts gene expression across species

    Science.gov (United States)

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to function, defined as expression of the target genes. We show that (i) there is a significantly higher degree of conservation of TFBEs when the target gene is expressed in both species; (ii) there is increased conservation of binding events for groups of TFs compared to individual TFs; and (iii) conserved TFBEs have a greater impact on the expression of their target genes than non-conserved ones. These results link conservation of structural elements (TFBEs) to conservation of function (gene expression) and suggest a higher degree of functional conservation than implied by previous studies. PMID:21622661

  14. Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data.

    Directory of Open Access Journals (Sweden)

    Taosheng Xu

    Full Text Available Identifying cancer subtypes is an important component of the personalised medicine framework. An increasing number of computational methods have been developed to identify cancer subtypes. However, existing methods rarely use information from gene regulatory networks to facilitate the subtype identification. It is widely accepted that gene regulatory networks play crucial roles in understanding the mechanisms of diseases. Different cancer subtypes are likely caused by different regulatory mechanisms. Therefore, there are great opportunities for developing methods that can utilise network information in identifying cancer subtypes.In this paper, we propose a method, weighted similarity network fusion (WSNF, to utilise the information in the complex miRNA-TF-mRNA regulatory network in identifying cancer subtypes. We firstly build the regulatory network where the nodes represent the features, i.e. the microRNAs (miRNAs, transcription factors (TFs and messenger RNAs (mRNAs and the edges indicate the interactions between the features. The interactions are retrieved from various interatomic databases. We then use the network information and the expression data of the miRNAs, TFs and mRNAs to calculate the weight of the features, representing the level of importance of the features. The feature weight is then integrated into a network fusion approach to cluster the samples (patients and thus to identify cancer subtypes. We applied our method to the TCGA breast invasive carcinoma (BRCA and glioblastoma multiforme (GBM datasets. The experimental results show that WSNF performs better than the other commonly used computational methods, and the information from miRNA-TF-mRNA regulatory network contributes to the performance improvement. The WSNF method successfully identified five breast cancer subtypes and three GBM subtypes which show significantly different survival patterns. We observed that the expression patterns of the features in some miRNA-TF

  15. Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice.

    Science.gov (United States)

    Sharma, Niharika; Dang, Trang Minh; Singh, Namrata; Ruzicic, Slobodan; Mueller-Roeber, Bernd; Baumann, Ute; Heuer, Sigrid

    2018-01-08

    Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which

  16. "Hit-and-Run" leaves its mark: catalyst transcription factors and chromatin modification.

    Science.gov (United States)

    Varala, Kranthi; Li, Ying; Marshall-Colón, Amy; Para, Alessia; Coruzzi, Gloria M

    2015-08-01

    Understanding how transcription factor (TF) binding is related to gene regulation is a moving target. We recently uncovered genome-wide evidence for a "Hit-and-Run" model of transcription. In this model, a master TF "hits" a target promoter to initiate a rapid response to a signal. As the "hit" is transient, the model invokes recruitment of partner TFs to sustain transcription over time. Following the "run", the master TF "hits" other targets to propagate the response genome-wide. As such, a TF may act as a "catalyst" to mount a broad and acute response in cells that first sense the signal, while the recruited TF partners promote long-term adaptive behavior in the whole organism. This "Hit-and-Run" model likely has broad relevance, as TF perturbation studies across eukaryotes show small overlaps between TF-regulated and TF-bound genes, implicating transient TF-target binding. Here, we explore this "Hit-and-Run" model to suggest molecular mechanisms and its biological relevance. © 2015 The Authors. Bioessays published by WILEY Periodicals, Inc.

  17. TfR Binding Peptide Screened by Phage Display Technology ...

    African Journals Online (AJOL)

    Purpose: To screen an hTfR affinity peptide and investigate its activity in vitro. Methods: hTfR ... Keywords: Peptide, hTfR, Transferrin receptor, Phage display technology, Enhanced green ..... mediated uptake of peptides that bind the human.

  18. A compendium of transcription factor and Transcriptionally active protein coding gene families in cowpea (Vigna unguiculata L.).

    Science.gov (United States)

    Misra, Vikram A; Wang, Yu; Timko, Michael P

    2017-11-22

    Cowpea (Vigna unguiculata (L.) Walp.) is the most important food and forage legume in the semi-arid tropics of sub-Saharan Africa where approximately 80% of worldwide production takes place primarily on low-input, subsistence farm sites. Among the major goals of cowpea breeding and improvement programs are the rapid manipulation of agronomic traits for seed size and quality and improved resistance to abiotic and biotic stresses to enhance productivity. Knowing the suite of transcription factors (TFs) and transcriptionally active proteins (TAPs) that control various critical plant cellular processes would contribute tremendously to these improvement aims. We used a computational approach that employed three different predictive pipelines to data mine the cowpea genome and identified over 4400 genes representing 136 different TF and TAP families. We compare the information content of cowpea to two evolutionarily close species common bean (Phaseolus vulgaris), and soybean (Glycine max) to gauge the relative informational content. Our data indicate that correcting for genome size cowpea has fewer TF and TAP genes than common bean (4408 / 5291) and soybean (4408/ 11,065). Members of the GROWTH-REGULATING FACTOR (GRF) and Auxin/indole-3-acetic acid (Aux/IAA) gene families appear to be over-represented in the genome relative to common bean and soybean, whereas members of the MADS (Minichromosome maintenance deficient 1 (MCM1), AGAMOUS, DEFICIENS, and serum response factor (SRF)) and C2C2-YABBY appear to be under-represented. Analysis of the AP2-EREBP APETALA2-Ethylene Responsive Element Binding Protein (AP2-EREBP), NAC (NAM (no apical meristem), ATAF1, 2 (Arabidopsis transcription activation factor), CUC (cup-shaped cotyledon)), and WRKY families, known to be important in defense signaling, revealed changes and phylogenetic rearrangements relative to common bean and soybean that suggest these groups may have evolved different functions. The availability of detailed

  19. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Naseri, Gita; Balazadeh, Salma; Machens, Fabian; Kamranfar, Iman; Messerschmidt, Katrin; Mueller-Roeber, Bernd

    2017-09-15

    Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.

  20. Analysis of NSTX TF Joint Voltage Measurements

    International Nuclear Information System (INIS)

    Woolley R

    2005-01-01

    This report presents findings of analyses of recorded current and voltage data associated with 72 electrical joints operating at high current and high mechanical stress. The analysis goal was to characterize the mechanical behavior of each joint and thus evaluate its mechanical supports. The joints are part of the toroidal field (TF) magnet system of the National Spherical Torus Experiment (NSTX) pulsed plasma device operating at the Princeton Plasma Physics Laboratory (PPPL). Since there is not sufficient space near the joints for much traditional mechanical instrumentation, small voltage probes were installed on each joint and their voltage monitoring waveforms have been recorded on sampling digitizers during each NSTX ''shot''

  1. Phenylpropanoids accumulation in eggplant fruit: characterization of biosynthetic genes and regulation by a MYB transcription factor

    Directory of Open Access Journals (Sweden)

    Teresa eDocimo

    2016-01-01

    Full Text Available Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena fruits. Chlorogenic acid (CGA accounts for 70 to 90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena.Higher contents of CGA, Delphinidin 3-rutinoside and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group 6 MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties.In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation.Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9 resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of

  2. Integration analysis of microRNA and mRNA paired expression profiling identifies deregulated microRNA-transcription factor-gene regulatory networks in ovarian endometriosis.

    Science.gov (United States)

    Zhao, Luyang; Gu, Chenglei; Ye, Mingxia; Zhang, Zhe; Li, Li'an; Fan, Wensheng; Meng, Yuanguang

    2018-01-22

    The etiology and pathophysiology of endometriosis remain unclear. Accumulating evidence suggests that aberrant microRNA (miRNA) and transcription factor (TF) expression may be involved in the pathogenesis and development of endometriosis. This study therefore aims to survey the key miRNAs, TFs and genes and further understand the mechanism of endometriosis. Paired expression profiling of miRNA and mRNA in ectopic endometria compared with eutopic endometria were determined by high-throughput sequencing techniques in eight patients with ovarian endometriosis. Binary interactions and circuits among the miRNAs, TFs, and corresponding genes were identified by the Pearson correlation coefficients. miRNA-TF-gene regulatory networks were constructed using bioinformatic methods. Eleven selected miRNAs and TFs were validated by quantitative reverse transcription-polymerase chain reaction in 22 patients. Overall, 107 differentially expressed miRNAs and 6112 differentially expressed mRNAs were identified by comparing the sequencing of the ectopic endometrium group and the eutopic endometrium group. The miRNA-TF-gene regulatory network consists of 22 miRNAs, 12 TFs and 430 corresponding genes. Specifically, some key regulators from the miR-449 and miR-34b/c cluster, miR-200 family, miR-106a-363 cluster, miR-182/183, FOX family, GATA family, and E2F family as well as CEBPA, SOX9 and HNF4A were suggested to play vital regulatory roles in the pathogenesis of endometriosis. Integration analysis of the miRNA and mRNA expression profiles presents a unique insight into the regulatory network of this enigmatic disorder and possibly provides clues regarding replacement therapy for endometriosis.

  3. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Venkatasubramanian, Sambasivan; Tripathi, Deepak; Tucker, Torry; Paidipally, Padmaja; Cheekatla, Satyanarayana; Welch, Elwyn; Raghunath, Anjana; Jeffers, Ann; Tvinnereim, Amy R; Schechter, Melissa E; Andrade, Bruno B; Mackman, Nizel; Idell, Steven; Vankayalapati, Ramakrishna

    2016-02-01

    Tissue factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TF(Δ) ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2-like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cross-Family Transcription Factor Interactions

    NARCIS (Netherlands)

    Bemer, Marian; Dijk, van Aalt-Jan; Immink, Richard G.H.; Angenent, Gerco C.

    2017-01-01

    Specific and dynamic gene expression strongly depends on transcription factor (TF) activity and most plant TFs function in a combinatorial fashion. They can bind to DNA and control the expression of the corresponding gene in an additive fashion or cooperate by physical interactions, forming larger

  5. Extending TF1: Argument parsing, function composition, and vectorization

    CERN Document Server

    Tsang Mang Kin, Arthur Leonard

    2017-01-01

    In this project, we extend the functionality of the TF1 function class in root. We add argument parsing, making it possible to freely pass variables and parameters into pre-defined and user-defined functions. We also introduce a syntax to use certain compositions of functions, namely normalized sums and convolutions, directly in TF1. Finally, we introduce some simple vectorization functionality to TF1 and demonstrate the potential to speed up parallelizable computations.

  6. Test facility for PLT TF coils

    International Nuclear Information System (INIS)

    Hearney, J.; File, J.; Dreskin, S.

    1975-01-01

    Past experience with the model C stellerator and other toroidal field devices indicates that mechanical and electrical tests of a toroidal field coil prior to maximum field operation of the device is prudent and desirable. This paper describes a test program for the PLT-TF coils. The test stand consists of one test coil, two background coils and a steel supporting structure. The three coil configuration produces a 67.5 kG field at the inner conductor (38 kG at the bore center) and simulates a 1/R field distribution in the bore of the test coil. The resolution of the field force system and resultant stresses within the test structure are discussed. A test procedure is described which maximizes the information obtained from a 100,000 pulse program

  7. Tissue Factor-Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes.

    Science.gov (United States)

    Koizume, Shiro; Miyagi, Yohei

    2015-01-01

    Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF-fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF-fVII complex. Here, we discuss the roles of the TF-fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF-fVII function.

  8. Evaluating Transcription Factor Activity Changes by Scoring Unexplained Target Genes in Expression Data.

    Directory of Open Access Journals (Sweden)

    Evi Berchtold

    Full Text Available Several methods predict activity changes of transcription factors (TFs from a given regulatory network and measured expression data. But available gene regulatory networks are incomplete and contain many condition-dependent regulations that are not relevant for the specific expression measurement. It is not known which combination of active TFs is needed to cause a change in the expression of a target gene. A method to systematically evaluate the inferred activity changes is missing. We present such an evaluation strategy that indicates for how many target genes the observed expression changes can be explained by a given set of active TFs. To overcome the problem that the exact combination of active TFs needed to activate a gene is typically not known, we assume a gene to be explained if there exists any combination for which the predicted active TFs can possibly explain the observed change of the gene. We introduce the i-score (inconsistency score, which quantifies how many genes could not be explained by the set of activity changes of TFs. We observe that, even for these minimal requirements, published methods yield many unexplained target genes, i.e. large i-scores. This holds for all methods and all expression datasets we evaluated. We provide new optimization methods to calculate the best possible (minimal i-score given the network and measured expression data. The evaluation of this optimized i-score on a large data compendium yields many unexplained target genes for almost every case. This indicates that currently available regulatory networks are still far from being complete. Both the presented Act-SAT and Act-A* methods produce optimal sets of TF activity changes, which can be used to investigate the difficult interplay of expression and network data. A web server and a command line tool to calculate our i-score and to find the active TFs associated with the minimal i-score is available from https://services.bio.ifi.lmu.de/i-score.

  9. A-10/TF34 Turbine Engine Monitoring System (TEMS)

    Science.gov (United States)

    Christopher, R. G.

    1981-01-01

    The hardware and software development of the A-10/TF34 turbine engine monitoring system (TEMS) is described. The operation and interfaces of the A-10/TF34 TEMS hardware are discussed with particular emphasis on function, capabilities, and limitations. The TEMS data types are defined and the various data acquisition modes are explained. Potential data products are also discussed.

  10. Overexpression of a Novel Apple NAC Transcription Factor Gene, MdNAC1, Confers the Dwarf Phenotype in Transgenic Apple (Malus domestica)

    Science.gov (United States)

    Jia, Dongfeng; Gong, Xiaoqing; Li, Mingjun; Li, Chao; Sun, Tingting

    2018-01-01

    Plant height is an important trait for fruit trees. The dwarf characteristic is commonly associated with highly efficient fruit production, a major objective when breeding for apple (Malus domestica). We studied the function of MdNAC1, a novel NAC transcription factor (TF) gene in apple related to plant dwarfing. Localized primarily to the nucleus, MdNAC1 has transcriptional activity in yeast cells. Overexpression of the gene results in a dwarf phenotype in transgenic apple plants. Their reduction in size is manifested by shorter, thinner stems and roots, and a smaller leaf area. The transgenics also have shorter internodes and fewer cells in the stems. Levels of endogenous abscisic acid (ABA) and brassinosteroid (BR) are lower in the transgenic plants, and expression is decreased for genes involved in the biosynthesis of those phytohormones. All of these findings demonstrate that MdNAC1 has a role in plants dwarfism, probably by regulating ABA and BR production. PMID:29702625

  11. An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency.

    Science.gov (United States)

    Guo, Wei-Li; Huang, De-Shuang

    2017-08-22

    Transcription factors (TFs) are DNA-binding proteins that have a central role in regulating gene expression. Identification of DNA-binding sites of TFs is a key task in understanding transcriptional regulation, cellular processes and disease. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) enables genome-wide identification of in vivo TF binding sites. However, it is still difficult to map every TF in every cell line owing to cost and biological material availability, which poses an enormous obstacle for integrated analysis of gene regulation. To address this problem, we propose a novel computational approach, TFBSImpute, for predicting additional TF binding profiles by leveraging information from available ChIP-seq TF binding data. TFBSImpute fuses the dataset to a 3-mode tensor and imputes missing TF binding signals via simultaneous completion of multiple TF binding matrices with positional consistency. We show that signals predicted by our method achieve overall similarity with experimental data and that TFBSImpute significantly outperforms baseline approaches, by assessing the performance of imputation methods against observed ChIP-seq TF binding profiles. Besides, motif analysis shows that TFBSImpute preforms better in capturing binding motifs enriched in observed data compared with baselines, indicating that the higher performance of TFBSImpute is not simply due to averaging related samples. We anticipate that our approach will constitute a useful complement to experimental mapping of TF binding, which is beneficial for further study of regulation mechanisms and disease.

  12. The WRKY Transcription Factor Genes in Lotus japonicus

    OpenAIRE

    Song, Hui; Wang, Pengfei; Nan, Zhibiao; Wang, Xingjun

    2014-01-01

    WRKY transcription factor genes play critical roles in plant growth and development, as well as stress responses. WRKY genes have been examined in various higher plants, but they have not been characterized in Lotus japonicus. The recent release of the L. japonicus whole genome sequence provides an opportunity for a genome wide analysis of WRKY genes in this species. In this study, we identified 61 WRKY genes in the L. japonicus genome. Based on the WRKY protein structure, L. japonicus WRKY (...

  13. Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis.

    Science.gov (United States)

    Luna-Zurita, Luis; Stirnimann, Christian U; Glatt, Sebastian; Kaynak, Bogac L; Thomas, Sean; Baudin, Florence; Samee, Md Abul Hassan; He, Daniel; Small, Eric M; Mileikovsky, Maria; Nagy, Andras; Holloway, Alisha K; Pollard, Katherine S; Müller, Christoph W; Bruneau, Benoit G

    2016-02-25

    Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models.

    Science.gov (United States)

    Siletz, Anaar; Schnabel, Michael; Kniazeva, Ekaterina; Schumacher, Andrew J; Shin, Seungjin; Jeruss, Jacqueline S; Shea, Lonnie D

    2013-01-01

    The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.

  15. Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models.

    Directory of Open Access Journals (Sweden)

    Anaar Siletz

    Full Text Available The epithelial-mesenchymal transition (EMT is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.

  16. Peringkasan Sentimen Esktraktif di Twitter Menggunakan Hybrid TF-IDF dan Cosine Similarity

    Directory of Open Access Journals (Sweden)

    Devid Haryalesmana Wahid

    2016-07-01

    Full Text Available The using of Twitter by selebrities has become a new trend of impression management strategy. Mining public reaction in social media is a good strategy to obtain feedbacks, but extracting it are not trivial matter. Reads hundred of tweets while determine their sentiment polarity are time consuming. Extractive sentiment summarization machine are needed to address this issue. Previous research generally do not include sentiment information contained in a tweet as weight factor, as a results only general topics of discussion are extracted. This research aimed to do an extractive sentiment summarization on both positive and negative sentiment mentioning Indonesian selebrity, Agnes Monica, by combining SentiStrength, Hybrid TF-IDF, and Cosine Similarity. SentiStrength is used to obtain sentiment strength score and classify tweet as a positive, negative or neutral. The summarization of posisitve and negative sentiment can be done by rank tweets using Hybrid TF-IDF summarization and sentiment strength score as additional weight then removing similar tweet by using Cosine Similarity. The test results showed that the combination of SentiStrength, Hybrid TF-IDF, and Cosine Similarity perform better than using Hybrid TF-IDF only, given an average 60% accuracy and 62% f-measure. This is due to the addition of sentiment score as a weight factor in sentiment summ­ari­zation.

  17. Altered AKT1 and MAPK1 Gene Expression on Peripheral Blood Mononuclear Cells and Correlation with T-Helper-Transcription Factors in Systemic Lupus Erythematosus Patients

    Directory of Open Access Journals (Sweden)

    Sonia Garcia-Rodriguez

    2012-01-01

    Full Text Available Kinases have been implicated in the immunopathological mechanisms of Systemic Lupus Erythematosus (SLE. v-akt murine-thymoma viral-oncogene-homolog 1 (AKT1 and mitogen-activated-protein-kinase 1 (MAPK1 gene expressions in peripheral mononuclear cells from thirteen SLE patients with inactive or mild disease were evaluated using quantitative real-time reverse-transcription polymerase-chain-reaction and analyzed whether there was any correlation with T-helper (Th transcription factors (TF gene expression, cytokines, and S100A8/S100A9-(Calprotectin. Age- and gender-matched thirteen healthy controls were examined. AKT1 and MAPK1 expressions were upregulated in SLE patients and correlated with Th17-(Retinoic acid-related orphan receptor (ROR-C, T-regulatory-(Treg-(Transforming Growth Factor Beta (TGFB-2, and Th2-(interleukin (IL-5-related genes. MAPK1 expression correlated with Th1-(IL-12A, T-box TF-(T-bet, Th2-(GATA binding protein-(GATA-3, and IL-10 expressions. IL-10 expression was increased and correlated with plasma Tumor Necrosis Factor (TNF-α and Th0-(IL-2, Th1-(IL-12A, T-bet, GATA3, Treg-(Forkhead/winged-helix transcription factor- (FOXP-3, and IL-6 expressions. FOXP3 expression, FOXP3/RORC, and FOXP3/GATA3 expression ratios were increased. Plasma IL-1β, IL-12(p70, Interferon-(IFN-γ, and IL-6 cytokines were augmented. Plasma IL-1β, IL-6, IL-2, IFN-γ, TNF-α, IL-10, and IL-13 correlated with C-reactive protein, respectively. Increased Calprotectin correlated with neutrophils. Conclusion, SLE patients presented a systemic immunoinflammatory activity, augmented AKT1 and MAPK1 expressions, proinflammatory cytokines, and Calprotectin, together with increased expression of Treg-related genes, suggesting a regulatory feedback opposing the inflammatory activity.

  18. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor.

    Science.gov (United States)

    Kim, Mi Jung; Jang, In-Cheol; Chua, Nam-Hai

    2016-07-01

    The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15 However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Pig BMSCs Transfected with Human TFPI Combat Species Incompatibility and Regulate the Human TF Pathway in Vitro and in a Rodent Model

    Directory of Open Access Journals (Sweden)

    Hongchen Ji

    2015-05-01

    Full Text Available Background: The activation of tissue factor (TF is one of the major reasons for coagulation dysregulation after pig-to-primate xenotransplantation. Tissue factor pathway inhibitor (TFPI is the most important inhibitor of TF. Studies have demonstrated species incompatibility between pig TFPI and human TF. Methods: A pig-to-macaque heterotopic auxiliary liver transplantation model was established to determine the origin of activated TF. Chimeric proteins of human and pig TFPI were constructed to assess the role of Kunitz domains in species incompatibility. Immortalised pig bone marrow mesenchymal stem cells transfected with human TFPI were tested for their ability to inhibit clotting in vitro. Results: TF from recipient was activated early after liver xenotransplantation. Pig TFPI Kunitz domain 2 bound human FXa, but Kunitz domain 1 did not effectively inhibit human TF/FVIIa. Immortalised pig bone marrow mesenchymal cells (BMSCs transfected with human TFPI showed a prolonged recalcification time in vitro and in a rodent model. Conclusion: Recipient TF is relevant to dysregulated coagulation after xenotransplantation. Kunitz domain 1 plays the most important role in species incompatibility between pig TFPI and human TF, and clotting can be inhibited by human TFPI-transfected pig BMSCs. Our study shows a possible way to resolve the incompatibility of pig TFPI.

  20. The WRKY Transcription Factor Genes in Lotus japonicus.

    Science.gov (United States)

    Song, Hui; Wang, Pengfei; Nan, Zhibiao; Wang, Xingjun

    2014-01-01

    WRKY transcription factor genes play critical roles in plant growth and development, as well as stress responses. WRKY genes have been examined in various higher plants, but they have not been characterized in Lotus japonicus. The recent release of the L. japonicus whole genome sequence provides an opportunity for a genome wide analysis of WRKY genes in this species. In this study, we identified 61 WRKY genes in the L. japonicus genome. Based on the WRKY protein structure, L. japonicus WRKY (LjWRKY) genes can be classified into three groups (I-III). Investigations of gene copy number and gene clusters indicate that only one gene duplication event occurred on chromosome 4 and no clustered genes were detected on chromosomes 3 or 6. Researchers previously believed that group II and III WRKY domains were derived from the C-terminal WRKY domain of group I. Our results suggest that some WRKY genes in group II originated from the N-terminal domain of group I WRKY genes. Additional evidence to support this hypothesis was obtained by Medicago truncatula WRKY (MtWRKY) protein motif analysis. We found that LjWRKY and MtWRKY group III genes are under purifying selection, suggesting that WRKY genes will become increasingly structured and functionally conserved.

  1. Conservation of transcription factor binding events predicts gene expression across species

    OpenAIRE

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to funct...

  2. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.

    Science.gov (United States)

    Tsai, Zing Tsung-Yeh; Shiu, Shin-Han; Tsai, Huai-Kuang

    2015-08-01

    Transcription factor (TF) binding is determined by the presence of specific sequence motifs (SM) and chromatin accessibility, where the latter is influenced by both chromatin state (CS) and DNA structure (DS) properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA "intrinsic properties" (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy) that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome.

  3. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.

    Directory of Open Access Journals (Sweden)

    Zing Tsung-Yeh Tsai

    2015-08-01

    Full Text Available Transcription factor (TF binding is determined by the presence of specific sequence motifs (SM and chromatin accessibility, where the latter is influenced by both chromatin state (CS and DNA structure (DS properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA "intrinsic properties" (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome.

  4. Association assessment of platelet derived growth factor B gene ...

    African Journals Online (AJOL)

    Shayesteh Rezayani

    2017-04-21

    Apr 21, 2017 ... susceptibility and environmental risk factors and their interactions. [1] and starts .... Germany) as internal control, and 30 lM of each specific primer. (Eurofins .... thank the Arya Tina Gene company for recruiting study subjects.

  5. Functional Profiling of Transcription Factor Genes in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Alexander J. Carrillo

    2017-09-01

    Full Text Available Regulation of gene expression by DNA-binding transcription factors is essential for proper control of growth and development in all organisms. In this study, we annotate and characterize growth and developmental phenotypes for transcription factor genes in the model filamentous fungus Neurospora crassa. We identified 312 transcription factor genes, corresponding to 3.2% of the protein coding genes in the genome. The largest class was the fungal-specific Zn2Cys6 (C6 binuclear cluster, with 135 members, followed by the highly conserved C2H2 zinc finger group, with 61 genes. Viable knockout mutants were produced for 273 genes, and complete growth and developmental phenotypic data are available for 242 strains, with 64% possessing at least one defect. The most prominent defect observed was in growth of basal hyphae (43% of mutants analyzed, followed by asexual sporulation (38%, and the various stages of sexual development (19%. Two growth or developmental defects were observed for 21% of the mutants, while 8% were defective in all three major phenotypes tested. Analysis of available mRNA expression data for a time course of sexual development revealed mutants with sexual phenotypes that correlate with transcription factor transcript abundance in wild type. Inspection of this data also implicated cryptic roles in sexual development for several cotranscribed transcription factor genes that do not produce a phenotype when mutated.

  6. Integrative Analysis of Transcription Factor Combinatorial Interactions Using a Bayesian Tensor Factorization Approach

    Science.gov (United States)

    Ye, Yusen; Gao, Lin; Zhang, Shihua

    2017-01-01

    Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions. PMID:29033978

  7. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes.

    Science.gov (United States)

    Catinot, Jérémy; Huang, Jing-Bo; Huang, Pin-Yao; Tseng, Min-Yuan; Chen, Ying-Lan; Gu, Shin-Yuan; Lo, Wan-Sheng; Wang, Long-Chi; Chen, Yet-Ran; Zimmerli, Laurent

    2015-12-01

    The ERF (ethylene responsive factor) family is composed of transcription factors (TFs) that are critical for appropriate Arabidopsis thaliana responses to biotic and abiotic stresses. Here we identified and characterized a member of the ERF TF group IX, namely ERF96, that when overexpressed enhances Arabidopsis resistance to necrotrophic pathogens such as the fungus Botrytis cinerea and the bacterium Pectobacterium carotovorum. ERF96 is jasmonate (JA) and ethylene (ET) responsive and ERF96 transcripts accumulation was abolished in JA-insensitive coi1-16 and in ET-insensitive ein2-1 mutants. Protoplast transactivation and electrophoresis mobility shift analyses revealed that ERF96 is an activator of transcription that binds to GCC elements. In addition, ERF96 mainly localized to the nucleus. Microarray analysis coupled to chromatin immunoprecipitation-PCR of Arabidopsis overexpressing ERF96 revealed that ERF96 enhances the expression of the JA/ET defence genes PDF1.2a, PR-3 and PR-4 as well as the TF ORA59 by direct binding to GCC elements present in their promoters. While ERF96-RNAi plants demonstrated wild-type resistance to necrotrophic pathogens, basal PDF1.2 expression levels were reduced in ERF96-silenced plants. This work revealed ERF96 as a key player of the ERF network that positively regulates the Arabidopsis resistance response to necrotrophic pathogens. © 2015 John Wiley & Sons Ltd.

  8. The Tomato Hoffman's Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures.

    Science.gov (United States)

    Qiu, Zhengkun; Wang, Xiaoxuan; Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses.

  9. The Tomato Hoffman's Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures.

    Directory of Open Access Journals (Sweden)

    Zhengkun Qiu

    Full Text Available Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF gene, which corresponds to the ah (Hoffman's anthocyaninless locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses.

  10. The Tomato Hoffman’s Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures

    Science.gov (United States)

    Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses. PMID:26943362

  11. Mapping of the Pim-1 oncogene in mouse t-haplotypes and its use to define the relative map positions of the tcl loci t0(t6) and tw12 and the marker tf (tufted).

    Science.gov (United States)

    Ark, B; Gummere, G; Bennett, D; Artzt, K

    1991-06-01

    Pim-1 is an oncogene activated in mouse T-cell lymphomas induced by Moloney and AKR mink cell focus (MCF) viruses. Pim-1 was previously mapped to chromosome 17 by somatic cell hybrids, and subsequently to the region between the hemoglobin alpha-chain pseudogene 4 (Hba-4ps) and the alpha-crystalline gene (Crya-1) by Southern blot analysis of DNA obtained from panels of recombinant inbred strains. We have now mapped Pim-1 more accurately in t-haplotypes by analysis of recombinant t-chromosomes. The recombinants were derived from Tts6tf/t12 parents backcrossed to + tf/ + tf, and scored for recombination between the loci of T and tf. For simplicity all t-complex lethal genes properly named tcl-tx are shortened to tx. The Pim-1 gene was localized 0.6 cM proximal to the tw12 lethal gene, thus placing the Pim-1 gene 5.2 cM distal to the H-2 region in t-haplotypes. Once mapped, the Pim-1 gene was used as a marker for further genetic analysis of t-haplotypes. tw12 is so close to tf that even with a large number of recombinants it was not possible to determine whether it is proximal or distal to tf. Southern blot analysis of DNA from T-tf recombinants with a separation of tw12 and tf indicated that tw12 is proximal to tf. The mapping of two allelic t-lethals, t0 and t6 with respect to tw12 and tf has also been a problem.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Thirty-seven transcription factor genes differentially respond to a ...

    Indian Academy of Sciences (India)

    Plant transcription factors and insect defence si. Thirty-seven transcription factor genes differentially respond to a harpin protein and affect resistance to the green peach aphid in Arabidopsis. HUNLIN. PIN. RUOXUE LIŲ, BEIBEI LÜ, XIAOMENG WANG, CHUNLING ZHANG, SHUPING ZHANG, JUN QIAN, LEI CHEN,.

  13. Genome Binding and Gene Regulation by Stem Cell Transcription Factors

    NARCIS (Netherlands)

    J.H. Brandsma (Johan)

    2016-01-01

    markdownabstractNearly all cells of an individual organism contain the same genome. However, each cell type transcribes a different set of genes due to the presence of different sets of cell type-specific transcription factors. Such transcription factors bind to regulatory regions such as promoters

  14. Association assessment of platelet derived growth factor B gene ...

    African Journals Online (AJOL)

    Background: Coronary artery disease (CAD) is the most frequent cause of morbidity and mortality in the world and it is known as a multifactorial disorder which is influenced by both genetic and environmental factors. Based on different assays, the platelet derived growth factor B (PDGF-B) gene is shown to be amongst the ...

  15. Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis

    Czech Academy of Sciences Publication Activity Database

    Abdelmagid, N.; Bereczky-Veress, B.; Atanur, S.; Musilová, Alena; Zídek, Václav; Saba, L.; Warnecke, A.; Khademi, M.; Studahl, M.; Aurelius, E.; Hjalmarsson, A.; Garcia-Dias, A.; Denis, C. V.; Bergström, T.; Sköldenberg, B.; Kockum, I.; Aitman, T.; Hübner, N.; Olsson, T.; Pravenec, Michal; Diez, M.

    2016-01-01

    Roč. 11, č. 5 (2016), e0155832 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) 7E10067; GA MŠk(CZ) LL1204 Institutional support: RVO:67985823 Keywords : Von Willebrand Factor gene * Herpes simplex encephalitis * rat * humans Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.806, year: 2016

  16. Inter- and intra-combinatorial regulation by transcription factors and microRNAs

    Directory of Open Access Journals (Sweden)

    Chang Joseph T

    2007-10-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a novel class of non-coding small RNAs. In mammalian cells, miRNAs repress the translation of messenger RNAs (mRNAs or degrade mRNAs. miRNAs play important roles in development and differentiation, and they are also implicated in aging, and oncogenesis. Predictions of targets of miRNAs suggest that they may regulate more than one-third of all genes. The overall functions of mammalian miRNAs remain unclear. Combinatorial regulation by transcription factors alone or miRNAs alone offers a wide range of regulatory programs. However, joining transcriptional and post-transcriptional regulatory mechanisms enables higher complexity regulatory programs that in turn could give cells evolutionary advantages. Investigating coordinated regulation of genes by miRNAs and transcription factors (TFs from a statistical standpoint is a first step that may elucidate some of their roles in various biological processes. Results Here, we studied the nature and scope of coordination among regulators from the transcriptional and miRNA regulatory layers in the human genome. Our findings are based on genome wide statistical assessment of regulatory associations ("interactions" among the sets of predicted targets of miRNAs and sets of putative targets of transcription factors. We found that combinatorial regulation by transcription factor pairs and miRNA pairs is much more abundant than the combinatorial regulation by TF-miRNA pairs. In addition, many of the strongly interacting TF-miRNA pairs involve a subset of master TF regulators that co-regulate genes in coordination with almost any miRNA. Application of standard measures for evaluating the degree of interaction between pairs of regulators show that strongly interacting TF-miRNA, TF-TF or miRNA-miRNA pairs tend to include TFs or miRNAs that regulate very large numbers of genes. To correct for this potential bias we introduced an additional Bayesian measure that incorporates

  17. Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Rieneck, Klaus; Workman, Christopher

    2004-01-01

    To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...... patients, and seven healthy controls. Gene expression of about 10,000 genes were examined using oligonucleotide-based DNA chip microarrays. The analyses showed no significant differences in PBMC expression patterns from RF-positive and RF-negative patients. However, comparisons of gene expression patterns...

  18. [Identifying transcription factors involved in Arabidopsis adventious shoot regeneration by RNA-Seq technology].

    Science.gov (United States)

    Wang, Xingchun; Chen, Zhao; Fan, Juan; He, Miaomiao; Han, Yuanhuai; Yang, Zhirong

    2015-04-01

    Transcriptional regulation is one of the major regulations in plant adventious shoot regeneration, but the exact mechanism remains unclear. In our study, the RNA-seq technology based on the IlluminaHiSeq 2000 sequencing platform was used to identify differentially expressed transcription factor (TF) encoding genes during callus formation stage and adventious shoot regeneration stage between wild type and adventious shoot formation defective mutant be1-3 and during the transition from dedifferentiation to redifferentiation stage in wildtype WS. Results show that 155 TFs were differentially expressed between be1-3 mutant and wild type during callus formation, of which 97 genes were up-regulated, and 58 genes were down-regulated; and that 68 genes were differentially expressed during redifferentiation stage, with 40 genes up-regulated and 28 genes down-regulated; whereas at the transition stage from dedifferentiation to redifferention in WS wild type explants, a total of 231 differentially expressed TF genes were identified, including 160 up-regualted genes and 71 down-regulated genes. Among these TF genes, the adventious shoot related transcription factor 1 (ART1) gene encoding a MYB-related (v-myb avian myeloblastosis viral oncogene homolog) TF, was up-regulated 3 217 folds, and was the highest up-regulated gene during be1-3 callus formation. Over expression of the ART1 gene caused defects in callus formation and shoot regeneration and inhibited seedling growth, indicating that the ART1 gene is a negative regulator of callus formation and shoot regeneration. This work not only enriches our knowledge about the transcriptional regulation mechanism of adventious shoot regeneration, but also provides valuable information on candidate TF genes associated with adventious shoot regeneration for future research.

  19. Tight aspect ratio tokamak power reactor with superconducting TF coils

    International Nuclear Information System (INIS)

    Nishio, S.; Tobita, K.; Konishi, S.; Ando, T.; Hiroki, S.; Kuroda, T.; Yamauchi, M.; Azumi, M.; Nagata, M.

    2003-01-01

    Tight aspect ratio tokamak power reactor with super-conducting toroidal field (TF) coils has been proposed. A center solenoid coil system and an inboard blanket were discarded. The key point was how to find the engineering design solution of the TF coil system with the high field and high current density. The coil system with the center post radius of less than 1 m can generate the maximum field of ∼ 20 T. This coil system causes a compact reactor concept, where the plasma major and minor radii of 3.75 m and 1.9 m, respectively and the fusion power of 1.8 GW. (author)

  20. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    Directory of Open Access Journals (Sweden)

    Qi Yuan(Alan

    2010-01-01

    Full Text Available Abstract The problem of uncovering transcriptional regulation by transcription factors (TFs based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ( status and Estrogen Receptor negative ( status, respectively.

  1. Effects of hemochromatosis and transferrin gene mutations on peripheral iron dyshomeostasis in Mild Cognitive Impairment and Alzheimer’s and Parkinson’s diseases

    Directory of Open Access Journals (Sweden)

    Stefania eMariani

    2013-08-01

    Full Text Available Deregulation of iron metabolism has been observed in patients with neurodegenerative diseases. We have carried out a molecular analysis investigating the interaction between iron specific gene variants [transferrin (TF, P589S, hemochromatosis (HFE C282Y and H63D], iron biochemical variables [iron, Tf, ceruloplasmin (Cp, Cp:Tf ratio and % of Tf saturation (% Tf-sat] Impairment (MCI, 78 Parkinson’s disease (PD patients and 139 healthy controls to investigate mechanisms of iron regulation or toxicity. No difference in genetic variant distributions between patients and controls was found in our Italian sample, but the stratification for the APOE e4 allele revealed that among the APOE e4 carriers was higher the frequency of those carriers of at least a mutated TF P589S allele. Decreased Tf in both AD and MCI and increased Cp:Tf ratio in AD vs. controls were detected. A multinomial logistic regression model revealed that increased iron and Cp:Tf ratio and being man instead of woman increased the risk of having PD, that increased values of Cp:Tf ratio corresponded to a 4-fold increase of the relative risk of having MCI, while higher Cp levels were protective for PD and MCI. Our study has some limitations: the small size of the sample, one ethnic group considered, the rarity of some alleles which prevent the statistical power of some genetic analysis. Even though they need confirmation in larger cohorts, our data suggest the hypothesis that deregulation of iron metabolism, in addition to other factors, has some effect on the PD disease risk.

  2. Tissue factor-factor VIIa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration

    DEFF Research Database (Denmark)

    Hjortoe, Gertrud M; Petersen, Lars C; Albrektsen, Tatjana

    2004-01-01

    Tissue factor (TF), the cellular receptor for factor VIIa (FVIIa), besides initiating blood coagulation, is believed to play an important role in tissue repair, inflammation, angiogenesis, and tumor metastasis. Like TF, the chemokine interleukin-8 (IL-8) is shown to play a critical role...... in these processes. To elucidate the potential mechanisms by which TF contributes to tumor invasion and metastasis, we investigated the effect of FVIIa on IL-8 expression and cell migration in a breast carcinoma cell line, MDA-MB-231, a cell line that constitutively expresses abundant TF. Expression of IL-8 m......RNA in MDA-MB-231 cells was markedly up-regulated by plasma concentrations of FVII or an equivalent concentration of FVIIa (10 nM). Neither thrombin nor other proteases involved in hemostasis were effective in stimulating IL-8 in these cells. Increased transcriptional activation of the IL-8 gene...

  3. WRKY transcription factor genes in wild rice Oryza nivara.

    Science.gov (United States)

    Xu, Hengjian; Watanabe, Kenneth A; Zhang, Liyuan; Shen, Qingxi J

    2016-08-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  4. Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Subhayan, E-mail: subhayansur18@gmail.com [Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal (India); Pal, Debolina; Roy, Rituparna; Barua, Atish [Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal (India); Roy, Anup [North Bengal Medical College and Hospital, West Bengal (India); Saha, Prosenjit [Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal (India); Panda, Chinmay Kumar, E-mail: ckpanda.cnci@gmail.com [Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal (India)

    2016-06-01

    The aim of this study is to understand the molecular mechanisms of N-nitrosodiethylamine (NDEA) induced multi-organ carcinogenesis in tongue and liver of the same mouse and restriction of carcinogenesis by Epigallocatechin gallate (EGCG) and Theaflavin (TF), if any. For that purpose, cellular proliferation/apoptosis, prevalence of CD44 positive stem cell population and expressions of some key regulatory genes of self renewal Wnt and Hedgehog (Hh) pathways and some of their associated genes were analyzed in the NDEA induced tongue and liver lesions in absence or presence of EGCG/TF. Chronic NDEA exposure in oral cavity could decrease mice body weights and induce tongue and liver carcinogenesis with similar histological stages (severe dysplasia up to 30th weeks of NDEA administration). Increasing mice body weights were seen in continuous and post EGCG/TF treated groups. EGCG/TF treatment could restrict both the carcinogenesis at similar histological stages showing potential chemopreventive effect in continuous treated groups (mild dysplasia) followed by pre treatment (moderate dysplasia) and therapeutic efficacy in post treated groups (mild dysplasia) up to 30th week. The mechanism of carcinogenesis by NDEA and restriction by the EGCG/TF in both tongue and liver were similar and found to be associated with modulation in cellular proliferation/apoptosis and prevalence of CD44 positive population. The up-regulation of self renewal Wnt/β-catenin, Hh/Gli1 pathways and their associated genes Cyclin D1, cMyc and EGFR along with down regulation of E-cadherin seen during the carcinogenesis processes were found to be modulated during the restriction processes by EGCG/TF. - Highlights: • Simultaneous tongue and liver carcinogenesis in mice by oral NDEA administration • Restriction of both carcinogenesis by EGCG and TF at early pre-malignant stages • The mechanisms of carcinogenesis and restriction were similar in both the organs. • Changes in proliferation

  5. Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice

    International Nuclear Information System (INIS)

    Sur, Subhayan; Pal, Debolina; Roy, Rituparna; Barua, Atish; Roy, Anup; Saha, Prosenjit; Panda, Chinmay Kumar

    2016-01-01

    The aim of this study is to understand the molecular mechanisms of N-nitrosodiethylamine (NDEA) induced multi-organ carcinogenesis in tongue and liver of the same mouse and restriction of carcinogenesis by Epigallocatechin gallate (EGCG) and Theaflavin (TF), if any. For that purpose, cellular proliferation/apoptosis, prevalence of CD44 positive stem cell population and expressions of some key regulatory genes of self renewal Wnt and Hedgehog (Hh) pathways and some of their associated genes were analyzed in the NDEA induced tongue and liver lesions in absence or presence of EGCG/TF. Chronic NDEA exposure in oral cavity could decrease mice body weights and induce tongue and liver carcinogenesis with similar histological stages (severe dysplasia up to 30th weeks of NDEA administration). Increasing mice body weights were seen in continuous and post EGCG/TF treated groups. EGCG/TF treatment could restrict both the carcinogenesis at similar histological stages showing potential chemopreventive effect in continuous treated groups (mild dysplasia) followed by pre treatment (moderate dysplasia) and therapeutic efficacy in post treated groups (mild dysplasia) up to 30th week. The mechanism of carcinogenesis by NDEA and restriction by the EGCG/TF in both tongue and liver were similar and found to be associated with modulation in cellular proliferation/apoptosis and prevalence of CD44 positive population. The up-regulation of self renewal Wnt/β-catenin, Hh/Gli1 pathways and their associated genes Cyclin D1, cMyc and EGFR along with down regulation of E-cadherin seen during the carcinogenesis processes were found to be modulated during the restriction processes by EGCG/TF. - Highlights: • Simultaneous tongue and liver carcinogenesis in mice by oral NDEA administration • Restriction of both carcinogenesis by EGCG and TF at early pre-malignant stages • The mechanisms of carcinogenesis and restriction were similar in both the organs. • Changes in proliferation

  6. Feline immunodeficiency virus OrfA alters gene expression of splicing factors and proteasome-ubiquitination proteins

    International Nuclear Information System (INIS)

    Sundstrom, Magnus; Chatterji, Udayan; Schaffer, Lana; Rozieres, Sohela de; Elder, John H.

    2008-01-01

    Expression of the feline immunodeficiency virus (FIV) accessory protein OrfA (or Orf2) is critical for efficient viral replication in lymphocytes, both in vitro and in vivo. OrfA has been reported to exhibit functions in common with the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) accessory proteins Vpr and Tat, although the function of OrfA has not been fully explained. Here, we use microarray analysis to characterize how OrfA modulates the gene expression profile of T-lymphocytes. The primary IL-2-dependent T-cell line 104-C1 was transduced to express OrfA. Functional expression of OrfA was demonstrated by trans complementation of the OrfA-defective clone, FIV-34TF10. OrfA-expressing cells had a slightly reduced cell proliferation rate but did not exhibit any significant alteration in cell cycle distribution. Reverse-transcribed RNA from cells expressing green fluorescent protein (GFP) or GFP + OrfA were hybridized to Affymetrix HU133 Plus 2.0 microarray chips representing more than 47,000 genome-wide transcripts. By using two statistical approaches, 461 (Rank Products) and 277 (ANOVA) genes were identified as modulated by OrfA expression. The functional relevance of the differentially expressed genes was explored by Ingenuity Pathway Analysis. The analyses revealed alterations in genes critical for RNA post-transcriptional modifications and protein ubiquitination as the two most significant functional outcomes of OrfA expression. In these two groups, several subunits of the spliceosome, cellular splicing factors and family members of the proteasome-ubiquitination system were identified. These findings provide novel information on the versatile function of OrfA during FIV infection and indicate a fine-tuning mechanism of the cellular environment by OrfA to facilitate efficient FIV replication

  7. Fatigue assessment of the ITER TF coil case based on JJ1 fatigue tests

    International Nuclear Information System (INIS)

    Hamada, K.; Nakajima, H.; Takano, K.; Kudo, Y.; Tsutsumi, F.; Okuno, K.; Jong, C.

    2005-01-01

    The material of the TF coil case in the ITER requires to withstand cyclic electromagnetic forces applied up to 3 x 10 4 cycles at 4.2 K. A cryogenic stainless steel, JJ1, is used in high stress region of TF coil case. The fatigue characteristics (S-N curve) of JJ1 base metal and welded joint at 4.2 K has been measured. The fatigue strength of base metal and welded joint at 3 x 10 4 cycles are measured as 1032 and 848 MPa, respectively. The design S-N curve is derived from the measured data taking account of the safety factor of 20 for cycle-to-failure and 2 for fatigue strength, and it indicates that an equivalent alternating stress of the case should be kept less than 516 MPa for the base metal and 424 MPa for the welded joint at 3 x 10 4 cycles. It is demonstrated that the TF coil case has enough margins for the cyclic operation. It is also shown the welded joint should be located in low cyclic stress region because a residual stress affects the fatigue life

  8. Genomewide analysis of TCP transcription factor gene family in ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 93; Issue 3. Genomewide ... Teosinte branched1/cycloidea/proliferating cell factor1 (TCP) proteins are a large family of transcriptional regulators in angiosperms. They are ... To the best of our knowledge, this is the first study of a genomewide analysis of apple TCP gene family.

  9. Association between Insulin Like Growth Factor-1 (IGF-1) gene ...

    African Journals Online (AJOL)

    The insulin-like growth factor-1 (IGF1) is a key regulator of muscle development and metabolism in birds and other vertebrate. Our objective was to determine the association between IGF1 gene polymorphism and carcass traits in FUNAAB Alpha chicken. Genomic DNA was extracted from the blood of 50 normal feathered ...

  10. Expression of antigen tf and galectin-3 in fibroadenoma.

    Science.gov (United States)

    Gallegos, Itandehui Belem; Pérez-Campos, Eduardo; Martinez, Margarito; Mayoral, Miguel Ángel; Pérez, Laura; Aguilar, Sergio; Zenteno, Edgar; Pina, Maria del Socorro; Hernández, Pedro

    2012-12-24

    Fibroadenomas are benign human breast tumors, characterized by proliferation of epithelial and stromal components of the terminal ductal unit. They may grow, regress or remain unchanged, as the hormonal environment of the patient changes. Expression of antigen TF in mucin or mucin-type glycoproteins and of galectin-3 seems to contribute to proliferation and transformations events; their expression has been reported in ductal breast cancer and in aggressive tumors. Lectin histochemistry, immunohistochemistry, and immunofluorescence were used to examine the expression and distribution of antigen TF and galectin-3. We used lectins from Arachis hypogaea, Artocarpus integrifolia, and Amaranthus lecuocarpus to evaluate TF expression and a monoclonal antibody to evaluate galectin-3 expression. We used paraffin-embedded blocks from 10 breast tissues diagnosed with fibroadenoma and as control 10 healthy tissue samples. Histochemical and immunofluorescence analysis showed positive expression of galectin-3 in fibroadenoma tissue, mainly in stroma, weak interaction in ducts was observed; whereas, in healthy tissue samples the staining was also weak in ducts. Lectins from A. leucocarpus and A. integrifolia specificaly recognized ducts in healthy breast samples, whereas the lectin from A. hypogaea recognized ducts and stroma. In fibroadenoma tissue, the lectins from A. integrifolia, A. Hypogaea, and A. leucocarpus recognized mainly ducts. Our results suggest that expression of antigen TF and galectin-3 seems to participate in fibroadenoma development.

  11. Expression of antigen tf and galectin-3 in fibroadenoma

    Directory of Open Access Journals (Sweden)

    Gallegos Itandehui Belem

    2012-12-01

    Full Text Available Abstract Background Fibroadenomas are benign human breast tumors, characterized by proliferation of epithelial and stromal components of the terminal ductal unit. They may grow, regress or remain unchanged, as the hormonal environment of the patient changes. Expression of antigen TF in mucin or mucin-type glycoproteins and of galectin-3 seems to contribute to proliferation and transformations events; their expression has been reported in ductal breast cancer and in aggressive tumors. Findings Lectin histochemistry, immunohistochemistry, and immunofluorescence were used to examine the expression and distribution of antigen TF and galectin-3. We used lectins from Arachis hypogaea, Artocarpus integrifolia, and Amaranthus lecuocarpus to evaluate TF expression and a monoclonal antibody to evaluate galectin-3 expression. We used paraffin-embedded blocks from 10 breast tissues diagnosed with fibroadenoma and as control 10 healthy tissue samples. Histochemical and immunofluorescence analysis showed positive expression of galectin-3 in fibroadenoma tissue, mainly in stroma, weak interaction in ducts was observed; whereas, in healthy tissue samples the staining was also weak in ducts. Lectins from A. leucocarpus and A. integrifolia specificaly recognized ducts in healthy breast samples, whereas the lectin from A. hypogaea recognized ducts and stroma. In fibroadenoma tissue, the lectins from A. integrifolia, A. Hypogaea, and A. leucocarpus recognized mainly ducts. Conclusions Our results suggest that expression of antigen TF and galectin-3 seems to participate in fibroadenoma development.

  12. Gene expression and yeast two-hybrid studies of transcription factors mediating drought stress response in root tissues of chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Abirami eRamalingam

    2015-12-01

    Full Text Available Drought stress has been one of the serious constraints affecting chickpea productivity to a great extent. Genomic assisted breeding in chickpea has been effective in providing a yield advantage of up to 24 %, thus having a potential to accelerate breeding precisely and efficiently. In order to do so, understanding the molecular mechanisms for drought tolerance and identification of candidate genes are crucial. Transcription factors (TFs have important roles in the regulation of plant stress related genes. In this context, quantitative real time-PCR (qRT-PCR was used to study the differential gene expression of selected TFs, identified from large-scale gene expression analysis, in contrasting drought responsive genotypes. Root tissues of ICC 4958 (tolerant, ICC 1882 (sensitive, JG 11 (elite and JG 11+ (introgression line were used for the study. Subsequently, a candidate single repeat MYB gene (1R-MYB that was remarkably induced in the drought tolerant genotypes under drought stress was cloned and subjected to Y2H analysis by screening a root cDNA library. The protein-protein interaction study identified three interacting peptides, a galactinol-sucrose galactosyltransferase 2, a CBL (Calcineurin B-like-interacting serine/threonine-protein kinase 25 and an ABA responsive 17-like, which were confirmed by the co-transformation of candidate plasmids in yeast. These findings provide preliminary insights into the ability of 1R-MYB TF to co-regulate drought tolerance mechanism in chickpea roots.

  13. ChIP-on-chip analysis identifies IL-22 as direct target gene of ectopically expressed FOXP3 transcription factor in human T cells

    Directory of Open Access Journals (Sweden)

    Jeron Andreas

    2012-12-01

    Full Text Available Abstract Background The transcription factor (TF forkhead box P3 (FOXP3 is constitutively expressed at high levels in naturally occurring CD4+CD25+ regulatory T cells (nTregs. It is not only the most accepted marker for that cell population but is also considered lineage determinative. Chromatin immunoprecipitation (ChIP of TFs in combination with genomic tiling microarray analysis (ChIP-on-chip has been shown to be an appropriate tool for identifying FOXP3 transcription factor binding sites (TFBSs on a genome-wide scale. In combination with microarray expression analysis, the ChIP-on-chip technique allows identification of direct FOXP3 target genes. Results ChIP-on-chip analysis of the human FOXP3 expressed in resting and PMA/ionomycin–stimulated Jurkat T cells revealed several thousand putative FOXP3 binding sites and demonstrated the importance of intronic regions for FOXP3 binding. The analysis of expression data showed that the stimulation-dependent down-regulation of IL-22 was correlated with direct FOXP3 binding in the IL-22 promoter region. This association was confirmed by real-time PCR analysis of ChIP-DNA. The corresponding ChIP-region also contained a matching FOXP3 consensus sequence. Conclusions Knowledge of the general distribution patterns of FOXP3 TFBSs in the human genome under resting and activated conditions will contribute to a better understanding of this TF and its influence on direct target genes, as well as its importance for the phenotype and function of Tregs. Moreover, FOXP3-dependent repression of Th17-related IL-22 may be relevant to an understanding of the phenomenon of Treg/Th17 cell plasticity.

  14. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    Directory of Open Access Journals (Sweden)

    Sirjana Devi Shrestha

    Full Text Available The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076 with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains.

  15. Peritumoral adipose tissue as a source of inflammatory and angiogenic factors in colorectal cancer.

    Science.gov (United States)

    Amor, S; Iglesias-de la Cruz, M C; Ferrero, E; García-Villar, O; Barrios, V; Fernandez, N; Monge, L; García-Villalón, A L; Granado, M

    2016-02-01

    Obesity is a risk factor for the development of human colorectal cancer (CC). The aim of this work is to report the inflammatory and angiogenic scenario in lean (BMI  30 kg/m2) patients with and without CC and to assess the role of peritumoral adipose tissue in CC-induced inflammation. Patients were divided in four experimental groups: obese patients with CC (OB-CC), lean patients with CC (LEAN-CC), obese patients without CC (OB), and lean patients without CC (LEAN). Plasma levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-4, IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in OB-CC patients. Peritumoral adipose tissue (TF) explants and cultured mature adipocytes secreted higher amounts of nitrites and nitrates than did control and non-tumoral (NTF) adipose tissue both alone and in response to lipopolysaccharide (LPS). Nitrite and nitrate secretion was also increased in TF explants from OB-CC patients compared with that from LEAN-CC patients. Gene expression of adiponectin, tumor necrosis factor alpha (TNF-α), insulin-like growth factor type I (IGF-I), cyclooxygenase-2 (COX-2), and peroxisome proliferator-activated receptor γ (PPAR-γ) was increased in TF explants from CC patients. LPS increased the gene expression of IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), and COX-2 in OB and in TF explants from OB-CC patients. COX-2 and PPAR-γ inhibition further increased LPS-induced release of nitrites and nitrates in TF explants and adipocytes from OB-CC patients. In conclusion, OB-CC patients have increased plasma levels of pro-inflammatory and angiogenic factors. TF from OB-CC patients shows an increased secretion of inflammatory markers compared with both TF from LEAN-CC and non-tumoral adipose tissue (AT) through a COX-2- and PPAR-γ-independent mechanism.

  16. PET Imaging of Tissue Factor in Pancreatic Cancer Using 64Cu-Labeled Active Site-Inhibited Factor VII

    DEFF Research Database (Denmark)

    Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Lotte K

    2016-01-01

    with advanced stage, increased microvessel density, metastasis, and poor overall survival. Imaging of TF expression is of clinical relevance as a prognostic biomarker and as a companion diagnostic for TF-directed therapies currently under clinical development. Factor VII (FVII) is the natural ligand to TF......UNLABELLED: Tissue factor (TF) is the main initiator of the extrinsic coagulation cascade. However, TF also plays an important role in cancer. TF expression has been reported in 53%-89% of all pancreatic adenocarcinomas, and the expression level of TF has in clinical studies correlated...

  17. “Hit‐and‐Run” leaves its mark: Catalyst transcription factors and chromatin modification

    Science.gov (United States)

    Varala, Kranthi; Li, Ying; Marshall‐Colón, Amy; Para, Alessia

    2015-01-01

    Understanding how transcription factor (TF) binding is related to gene regulation is a moving target. We recently uncovered genome‐wide evidence for a “Hit‐and‐Run” model of transcription. In this model, a master TF “hits” a target promoter to initiate a rapid response to a signal. As the “hit” is transient, the model invokes recruitment of partner TFs to sustain transcription over time. Following the “run”, the master TF “hits” other targets to propagate the response genome‐wide. As such, a TF may act as a “catalyst” to mount a broad and acute response in cells that first sense the signal, while the recruited TF partners promote long‐term adaptive behavior in the whole organism. This “Hit‐and‐Run” model likely has broad relevance, as TF perturbation studies across eukaryotes show small overlaps between TF‐regulated and TF‐bound genes, implicating transient TF‐target binding. Here, we explore this “Hit‐and‐Run” model to suggest molecular mechanisms and its biological relevance. PMID:26108710

  18. Simplified method to predict mutual interactions of human transcription factors based on their primary structure

    KAUST Repository

    Schmeier, Sebastian

    2011-07-05

    Background: Physical interactions between transcription factors (TFs) are necessary for forming regulatory protein complexes and thus play a crucial role in gene regulation. Currently, knowledge about the mechanisms of these TF interactions is incomplete and the number of known TF interactions is limited. Computational prediction of such interactions can help identify potential new TF interactions as well as contribute to better understanding the complex machinery involved in gene regulation. Methodology: We propose here such a method for the prediction of TF interactions. The method uses only the primary sequence information of the interacting TFs, resulting in a much greater simplicity of the prediction algorithm. Through an advanced feature selection process, we determined a subset of 97 model features that constitute the optimized model in the subset we considered. The model, based on quadratic discriminant analysis, achieves a prediction accuracy of 85.39% on a blind set of interactions. This result is achieved despite the selection for the negative data set of only those TF from the same type of proteins, i.e. TFs that function in the same cellular compartment (nucleus) and in the same type of molecular process (transcription initiation). Such selection poses significant challenges for developing models with high specificity, but at the same time better reflects real-world problems. Conclusions: The performance of our predictor compares well to those of much more complex approaches for predicting TF and general protein-protein interactions, particularly when taking the reduced complexity of model utilisation into account. © 2011 Schmeier et al.

  19. Simplified method to predict mutual interactions of human transcription factors based on their primary structure.

    Directory of Open Access Journals (Sweden)

    Sebastian Schmeier

    Full Text Available BACKGROUND: Physical interactions between transcription factors (TFs are necessary for forming regulatory protein complexes and thus play a crucial role in gene regulation. Currently, knowledge about the mechanisms of these TF interactions is incomplete and the number of known TF interactions is limited. Computational prediction of such interactions can help identify potential new TF interactions as well as contribute to better understanding the complex machinery involved in gene regulation. METHODOLOGY: We propose here such a method for the prediction of TF interactions. The method uses only the primary sequence information of the interacting TFs, resulting in a much greater simplicity of the prediction algorithm. Through an advanced feature selection process, we determined a subset of 97 model features that constitute the optimized model in the subset we considered. The model, based on quadratic discriminant analysis, achieves a prediction accuracy of 85.39% on a blind set of interactions. This result is achieved despite the selection for the negative data set of only those TF from the same type of proteins, i.e. TFs that function in the same cellular compartment (nucleus and in the same type of molecular process (transcription initiation. Such selection poses significant challenges for developing models with high specificity, but at the same time better reflects real-world problems. CONCLUSIONS: The performance of our predictor compares well to those of much more complex approaches for predicting TF and general protein-protein interactions, particularly when taking the reduced complexity of model utilisation into account.

  20. Factoring nonviral gene therapy into a cure for hemophilia A.

    Science.gov (United States)

    Gabrovsky, Vanessa; Calos, Michele P

    2008-10-01

    Gene therapy for hemophilia A has fallen short of success despite several clinical trials conducted over the past decade. Challenges to its success include vector immunogenicity, insufficient transgene expression levels of Factor VIII, and inhibitor antibody formation. Gene therapy has been dominated by the use of viral vectors, as well as the immunogenic and oncogenic concerns that accompany these strategies. Because of the complexity of viral vectors, the development of nonviral DNA delivery methods may provide an efficient and safe alternative for the treatment of hemophilia A. New types of nonviral strategies, such as DNA integrating vectors, and the success of several nonviral animal studies, suggest that nonviral gene therapy has curative potential and justifies its clinical development.

  1. AAV5-Factor VIII Gene Transfer in Severe Hemophilia A.

    Science.gov (United States)

    Rangarajan, Savita; Walsh, Liron; Lester, Will; Perry, David; Madan, Bella; Laffan, Michael; Yu, Hua; Vettermann, Christian; Pierce, Glenn F; Wong, Wing Y; Pasi, K John

    2017-12-28

    Patients with hemophilia A rely on exogenous factor VIII to prevent bleeding in joints, soft tissue, and the central nervous system. Although successful gene transfer has been reported in patients with hemophilia B, the large size of the factor VIII coding region has precluded improved outcomes with gene therapy in patients with hemophilia A. We infused a single intravenous dose of a codon-optimized adeno-associated virus serotype 5 (AAV5) vector encoding a B-domain-deleted human factor VIII (AAV5-hFVIII-SQ) in nine men with severe hemophilia A. Participants were enrolled sequentially into one of three dose cohorts (low dose [one participant], intermediate dose [one participant], and high dose [seven participants]) and were followed through 52 weeks. Factor VIII activity levels remained at 3 IU or less per deciliter in the recipients of the low or intermediate dose. In the high-dose cohort, the factor VIII activity level was more than 5 IU per deciliter between weeks 2 and 9 after gene transfer in all seven participants, and the level in six participants increased to a normal value (>50 IU per deciliter) that was maintained at 1 year after receipt of the dose. In the high-dose cohort, the median annualized bleeding rate among participants who had previously received prophylactic therapy decreased from 16 events before the study to 1 event after gene transfer, and factor VIII use for participant-reported bleeding ceased in all the participants in this cohort by week 22. The primary adverse event was an elevation in the serum alanine aminotransferase level to 1.5 times the upper limit of the normal range or less. Progression of preexisting chronic arthropathy in one participant was the only serious adverse event. No neutralizing antibodies to factor VIII were detected. The infusion of AAV5-hFVIII-SQ was associated with the sustained normalization of factor VIII activity level over a period of 1 year in six of seven participants who received a high dose, with

  2. Is erythropoietin gene a modifier factor in amyotrophic lateral sclerosis?

    Science.gov (United States)

    Ghezzi, Serena; Del Bo, Roberto; Scarlato, Marina; Nardini, Martina; Carlesi, Cecilia; Prelle, Alessandro; Corti, Stefania; Mancuso, Michelangelo; Briani, Chiara; Siciliano, Gabriele; Murri, Luigi; Bresolin, Nereo; Comi, Giacomo Pietro

    2009-05-01

    To investigate the role of erythropoietin (EPO) as genetic determinant in the susceptibility to sporadic amyotrophic lateral sclerosis (SALS). We sequenced a 259-bp region spanning the 3'hypoxia-responsive element of the EPO gene in 222 Italian SALS patients and 204 healthy subjects, matched for age and ethnic origin. No potentially causative variation was detected in SALS subjects; in addition, two polymorphic variants (namely C3434T and G3544T) showed the same genotype and haplotype frequencies in patients and controls. Conversely, a weak but significant association between G3544T and age of disease onset was observed (p=0.04). Overall, our data argue against the hypothesis of EPO as a genetic risk factor for motor neuron dysfunction, at least in Italian population. However, further studies on larger cohort of patients are needed to confirm the evidence of EPO gene as modifier factor.

  3. Characterization of five partial deletions of the factor VIII gene

    International Nuclear Information System (INIS)

    Youssoufian, H.; Antonarakis, S.E.; Aronis, S.; Tsiftis, G.; Phillips, D.G.; Kazazian, H.H. Jr.

    1987-01-01

    Hemophilia A is an X-linked disorder of coagulation caused by a deficiency of factor VIII. By using cloned DNA probes, the authors have characterized the following five different partial deletions of the factor VIII gene from a panel of 83 patients with hemophilia A: (i) a 7-kilobase (kb) deletion that eliminates exon 6; (ii) a 2.5-kb deletion that eliminates 5' sequences of exon 14; (iii) a deletion of at least 7 kb that eliminates exons 24 and 25; (iv) a deletion of at least 16 kb that eliminates exons 23-25; and (v) a 5.5-kb deletion that eliminates exon 22. The first four deletions are associated with severe hemophilia A. By contrast, the last deletion is associated with moderate disease, possibly because of in-frame splicing from adjacent exons. None of those patients with partial gene deletions had circulating inhibitors to factor VIII. One deletion occurred de novo in a germ cell of the maternal grandmother, while a second deletion occurred in a germ cell of the maternal grandfather. These observations demonstrate that de novo deletions of X-linked genes can occur in either male or female gametes

  4. Cobra-TF simulation of BWR bundle dry out experiments

    Energy Technology Data Exchange (ETDEWEB)

    Frepoli, C.; Ireland, A.; Hochreiter, L.; Ivanov, K. [Penn State Univ., Dept. of Mechanical and Nuclear Engineering, University Park, PA (United States); Velten, R. [Siemens Nuclear Power GmbH, Erlangen (Germany)

    2001-07-01

    The COBRA-TF computer code uses a two-fluid, three-field and three-dimensional formulation to model a two-phase flow field in a specific geometry. The liquid phase is divided in a continuous liquid field and a separate dispersed field, which is used to describe the entrained liquid drops. For each space dimension, the code solves three momentum equations, three mass conservation equations and two energy conservation equations. Entrainment and depositions models are implemented into the code to model the mass transfer between the two liquid fields. This study presents the results obtained with COBRA-TF for the simulation of the Siemens 9-9Q BWR Bundle Dryout experiments. The model includes 20 channels and 34 axial nodes in the heated section. The predicted critical power and dryout location is compared with the measured values. An assessment of the code entrainment and de-entrainment models is presented. (authors)

  5. GENIUS-TF: a test facility for the GENIUS project

    OpenAIRE

    Baudis, L.; Dietz, A.; Heusser, G.; Majorovits, B.; Strecker, H.; Klapdor--Kleingrothaus, H. V.

    2000-01-01

    GENIUS is a proposal for a large scale detector of rare events. As a first step of the experiment, a small test version, the GENIUS test facility, will be build up at the Laboratorio Nazionale del Gran Sasso (LNGS). With about 40 kg of natural Ge detectors operated in liquid nitrogen, GENIUS-TF could exclude (or directly confirm) the DAMA annual modulation signature within about two years of measurement.

  6. Systematic identification of yeast cell cycle transcription factors using multiple data sources

    Directory of Open Access Journals (Sweden)

    Li Wen-Hsiung

    2008-12-01

    Full Text Available Abstract Background Eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs that regulate the expression of cell cycle-regulated genes. Results We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor binding site (TFBS, and cell cycle gene expression data. We identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1, Rlm1, Ste12, Stp1, Tec1 are putative novel cell cycle TFs. For each cell cycle TF, we assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes, among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated genes. Most of our predictions are supported by previous experimental or computational studies. Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust. Conclusion Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated genes. Many of our predictions are validated by the literature. Our study shows that integrating multiple data sources is a powerful approach to studying complex biological systems.

  7. A restructuring of TF package for MIDAS computer code

    International Nuclear Information System (INIS)

    Park, S. H.; Song, Y. M.; Kim, D. H.

    2002-01-01

    TF package which defines some interpolation and extrapolation condition through user defined table has been restructured in MIDAS computer code. To do this, data transferring methods of current MELCOR code are modified and adopted into TF package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of the meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of TF package addressed in this paper does module development and subroutine modification, and treats MELGEN which is making restart file as well as MELCOR which is processing calculation. The validation has been done by comparing the results of the modified code with those from the existing code, and it is confirmed that the results are the same. It hints that the similar approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models

  8. Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma.

    Science.gov (United States)

    Xie, Yuran; Kim, Na Hyung; Nadithe, Venkatareddy; Schalk, Dana; Thakur, Archana; Kılıç, Ayşe; Lum, Lawrence G; Bassett, David J P; Merkel, Olivia M

    2016-05-10

    Asthma is a worldwide health problem. Activated T cells (ATCs) in the lung, particularly T helper 2 cells (Th2), are strongly associated with inducing airway inflammatory responses and chemoattraction of inflammatory cells in asthma. Small interfering RNA (siRNA) as a promising anti-sense molecule can specifically silence inflammation related genes in ATCs, however, lack of safe and efficient siRNA delivery systems limits the application of siRNA as a therapeutic molecule in asthma. Here, we designed a novel pulmonary delivery system of siRNA, transferrin-polyethylenimine (Tf-PEI), to selectively deliver siRNA to ATCs in the lung. Tf-PEI polyplexes demonstrated optimal physicochemical properties such as size, distribution, zeta-potential, and siRNA condensation efficiency. Moreover, in vitro studies showed significantly enhanced cellular uptake and gene knockdown mediated by Tf-PEI polyplexes in human primary ATCs. Biodistribution of polyplexes in a murine asthmatic model confirmed that Tf-PEI polyplexes can efficiently and selectively deliver siRNA to ATCs. In conclusion, the present work proves the feasibility to target ATCs in asthma via Tf receptor. This strategy could potentially be used to design an efficient siRNA delivery system for asthma therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering

    DEFF Research Database (Denmark)

    Dossani, Zain Y.; Apel, Amanda Reider; Szmidt-Middleton, Heather

    2018-01-01

    regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein....... Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domain of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes...... levels, using the same synthetic TF and a given estradiol. This set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain....

  10. Frequency Modulation of Transcriptional Bursting Enables Sensitive and Rapid Gene Regulation.

    Science.gov (United States)

    Li, Congxin; Cesbron, François; Oehler, Michael; Brunner, Michael; Höfer, Thomas

    2018-04-25

    Gene regulation is a complex non-equilibrium process. Here, we show that quantitating the temporal regulation of key gene states (transcriptionally inactive, active, and refractory) provides a parsimonious framework for analyzing gene regulation. Our theory makes two non-intuitive predictions. First, for transcription factors (TFs) that regulate transcription burst frequency, as opposed to amplitude or duration, weak TF binding is sufficient to elicit strong transcriptional responses. Second, refractoriness of a gene after a transcription burst enables rapid responses to stimuli. We validate both predictions experimentally by exploiting the natural, optogenetic-like responsiveness of the Neurospora GATA-type TF White Collar Complex (WCC) to blue light. Further, we demonstrate that differential regulation of WCC target genes is caused by different gene activation rates, not different TF occupancy, and that these rates are tuned by both the core promoter and the distance between TF-binding site and core promoter. In total, our work demonstrates the relevance of a kinetic, non-equilibrium framework for understanding transcriptional regulation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Synergistic effect of factor VII gene polymorphisms causing mild factor VII deficiency in a case of severe factor X deficiency.

    Science.gov (United States)

    Deshpande, Rutuja; Ghosh, Kanjaksha; Shetty, Shrimati

    2017-01-01

    Congenital combined deficiency of coagulation factors VII and X are mainly attributed to large deletions involving both the genes in chromosome 13 or occasionally due to the coincidental occurrence of independently occurring mutations. We report the molecular basis of congenital combined deficiency of factors VII and X in a 6-year-old female child. Direct DNA sequencing of both factor VII (F7) and factor X (F10) genes showed a novel homozygous missense mutation p.Cys90Tyr (c.307G>A) in exon 4 of F10. No mutations were detected in F7; however, the patient was homozygous for three polymorphic alleles known to be associated with reduced factor VII levels. The present case illustrates the synergistic effect of multiple polymorphisms resulting in phenotypic factor VII deficiency in the absence of a pathogenic mutation.

  12. Modulation of DNA binding by gene-specific transcription factors.

    Science.gov (United States)

    Schleif, Robert F

    2013-10-01

    The transcription of many genes, particularly in prokaryotes, is controlled by transcription factors whose activity can be modulated by controlling their DNA binding affinity. Understanding the molecular mechanisms by which DNA binding affinity is regulated is important, but because forming definitive conclusions usually requires detailed structural information in combination with data from extensive biophysical, biochemical, and sometimes genetic experiments, little is truly understood about this topic. This review describes the biological requirements placed upon DNA binding transcription factors and their consequent properties, particularly the ways that DNA binding affinity can be modulated and methods for its study. What is known and not known about the mechanisms modulating the DNA binding affinity of a number of prokaryotic transcription factors, including CAP and lac repressor, is provided.

  13. Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis.

    Directory of Open Access Journals (Sweden)

    Nada Abdelmagid

    Full Text Available Herpes simplex encephalitis (HSE is a rare complication of Herpes simplex virus type-1 infection. It results in severe parenchymal damage in the brain. Although viral latency in neurons is very common in the population, it remains unclear why certain individuals develop HSE. Here we explore potential host genetic variants predisposing to HSE. In order to investigate this we used a rat HSE model comparing the HSE susceptible SHR (Spontaneously Hypertensive Rats with the asymptomatic infection of BN (Brown Norway. Notably, both strains have HSV-1 spread to the CNS at four days after infection. A genome wide linkage analysis of 29 infected HXB/BXH RILs (recombinant inbred lines-generated from the prior two strains, displayed variable susceptibility to HSE enabling the definition of a significant QTL (quantitative trait locus named Hse6 towards the end of chromosome 4 (160.89-174Mb containing the Vwf (von Willebrand factor gene. This was the only gene in the QTL with both cis-regulation in the brain and included several non-synonymous SNPs (single nucleotide polymorphism. Intriguingly, in human chromosome 12 several SNPs within the intronic region between exon 43 and 44 of the VWF gene were associated with human HSE pathogenesis. In particular, rs917859 is nominally associated with an odds ratio of 1.5 (95% CI 1.11-2.02; p-value = 0.008 after genotyping in 115 HSE cases and 428 controls. Although there are possibly several genetic and environmental factors involved in development of HSE, our study identifies variants of the VWF gene as candidates for susceptibility in experimental and human HSE.

  14. Epidermal growth factor gene is a newly identified candidate gene for gout

    Science.gov (United States)

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  15. Epidermal growth factor gene is a newly identified candidate gene for gout.

    Science.gov (United States)

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-08-10

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67-0.88, Padjusted = 6.42 × 10(-3)). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations.

  16. Intrinsic limits to gene regulation by global crosstalk

    Science.gov (United States)

    Friedlander, Tamar; Prizak, Roshan; Guet, Călin C.; Barton, Nicholas H.; Tkačik, Gašper

    2016-01-01

    Gene regulation relies on the specificity of transcription factor (TF)–DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF–DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. PMID:27489144

  17. Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: A three factor design

    DEFF Research Database (Denmark)

    Fazio, Alessandro; Jewett, Michael Christopher; Daran-Lapujade, Pascale

    2008-01-01

    , such as Ace2 and Swi6, and stress response regulators, such as Yap1, were also shown to have significantly enriched target sets. Conclusion: Our work, which is the first genome-wide gene expression study to investigate specific growth rate and consider the impact of oxygen availability, provides a more......Background: Characterization of cellular growth is central to understanding living systems. Here, we applied a three-factor design to study the relationship between specific growth rate and genome-wide gene expression in 36 steady-state chemostat cultures of Saccharomyces cerevisiae. The three...... factors we considered were specific growth rate, nutrient limitation, and oxygen availability. Results: We identified 268 growth rate dependent genes, independent of nutrient limitation and oxygen availability. The transcriptional response was used to identify key areas in metabolism around which m...

  18. Cooperative binding of transcription factors promotes bimodal gene expression response.

    Directory of Open Access Journals (Sweden)

    Pablo S Gutierrez

    Full Text Available In the present work we extend and analyze the scope of our recently proposed stochastic model for transcriptional regulation, which considers an arbitrarily complex cis-regulatory system using only elementary reactions. Previously, we determined the role of cooperativity on the intrinsic fluctuations of gene expression for activating transcriptional switches, by means of master equation formalism and computer simulation. This model allowed us to distinguish between two cooperative binding mechanisms and, even though the mean expression levels were not affected differently by the acting mechanism, we showed that the associated fluctuations were different. In the present generalized model we include other regulatory functions in addition to those associated to an activator switch. Namely, we introduce repressive regulatory functions and two theoretical mechanisms that account for the biphasic response that some cis-regulatory systems show to the transcription factor concentration. We have also extended our previous master equation formalism in order to include protein production by stochastic translation of mRNA. Furthermore, we examine the graded/binary scenarios in the context of the interaction energy between transcription factors. In this sense, this is the first report to show that the cooperative binding of transcription factors to DNA promotes the "all-or-none" phenomenon observed in eukaryotic systems. In addition, we confirm that gene expression fluctuation levels associated with one of two cooperative binding mechanism never exceed the fluctuation levels of the other.

  19. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  20. Operation of SST-1 TF power supply during SST-1 campaigns

    International Nuclear Information System (INIS)

    Sharma, Dinesh Kumar; Vora, Murtuza M.; Ojha, Amit; Singh, Akhilesh Kumar; Bhavsar, Chirag

    2015-01-01

    Highlights: • SST-1 TF power supply is 12 pulse SCR converter circuit. • TF power supply protection, measurement and control scheme are explained. • Quench, emergency and normal shot process is explained and results of SST-1 campaigns are shown. • Dynamic control of TF current. • The paper shows the results of last ten SST-1 campaigns. - Abstract: SST-1 TF power supply provides the direct current for the required magnetic field of TF coil. TF power supply includes transformer, 12-pulse converter, bus bar, water-cooled cable, protection and measuring equipments, and isolator, VME DAC system and GUI software. TF power supply is operated through GUI software built in TCL/Tk. VME DAC system monitors the parameters, provides On/Off commands, voltage and current references and initiates predefined reference to emergency shutdown. The emergency shutdown is hardwired to TF power supply from central control. During quench power supply converter opens DCCB and dump resistor is connected in the circuit and VME DAC system acquires bus bar voltage, dump voltage and dump current. Operation of TF power supply also requires monitoring of SCR and transformer temperature and water flow rate of water-cooled cable during high current long pulse shot. Before start up of TF power supply a quench simulation is performed to check the readiness of protection. This paper describes pre startup operation, normal shot operation, emergency and quench process, dynamic control and complete shutdown operation of TF power supply.

  1. Operation of SST-1 TF power supply during SST-1 campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Dinesh Kumar, E-mail: dinesh@ipr.res.in; Vora, Murtuza M.; Ojha, Amit; Singh, Akhilesh Kumar; Bhavsar, Chirag

    2015-10-15

    Highlights: • SST-1 TF power supply is 12 pulse SCR converter circuit. • TF power supply protection, measurement and control scheme are explained. • Quench, emergency and normal shot process is explained and results of SST-1 campaigns are shown. • Dynamic control of TF current. • The paper shows the results of last ten SST-1 campaigns. - Abstract: SST-1 TF power supply provides the direct current for the required magnetic field of TF coil. TF power supply includes transformer, 12-pulse converter, bus bar, water-cooled cable, protection and measuring equipments, and isolator, VME DAC system and GUI software. TF power supply is operated through GUI software built in TCL/Tk. VME DAC system monitors the parameters, provides On/Off commands, voltage and current references and initiates predefined reference to emergency shutdown. The emergency shutdown is hardwired to TF power supply from central control. During quench power supply converter opens DCCB and dump resistor is connected in the circuit and VME DAC system acquires bus bar voltage, dump voltage and dump current. Operation of TF power supply also requires monitoring of SCR and transformer temperature and water flow rate of water-cooled cable during high current long pulse shot. Before start up of TF power supply a quench simulation is performed to check the readiness of protection. This paper describes pre startup operation, normal shot operation, emergency and quench process, dynamic control and complete shutdown operation of TF power supply.

  2. An engineered tale-transcription factor rescues transcription of factor VII impaired by promoter mutations and enhances its endogenous expression in hepatocytes.

    Science.gov (United States)

    Barbon, Elena; Pignani, Silvia; Branchini, Alessio; Bernardi, Francesco; Pinotti, Mirko; Bovolenta, Matteo

    2016-06-24

    Tailored approaches to restore defective transcription responsible for severe diseases have been poorly explored. We tested transcription activator-like effectors fused to an activation domain (TALE-TFs) in a coagulation factor VII (FVII) deficiency model. In this model, the deficiency is caused by the -94C > G or -61T > G mutation, which abrogate the binding of Sp1 or HNF-4 transcription factors. Reporter assays in hepatoma HepG2 cells naturally expressing FVII identified a single TALE-TF (TF4) that, by targeting the region between mutations, specifically trans-activated both the variant (>100-fold) and wild-type (20-40-fold) F7 promoters. Importantly, in the genomic context of transfected HepG2 and transduced primary hepatocytes, TF4 increased F7 mRNA and protein levels (2- to 3-fold) without detectable off-target effects, even for the homologous F10 gene. The ectopic F7 expression in renal HEK293 cells was modestly affected by TF4 or by TALE-TF combinations. These results provide experimental evidence for TALE-TFs as gene-specific tools useful to counteract disease-causing promoter mutations.

  3. Aluminum resistance transcription factor 1 (ART1) contributes to natural variation in rice aluminum resistance

    Science.gov (United States)

    Transcription factors (TFs) mediate stress resistance indirectly via physiological mechanisms driven by the array of genes they regulate. Therefore, when studying TF-mediated stress resistance, it is important to understand how TFs interact with different genetic backgrounds. Here, we fine-mapped th...

  4. Palmitoylation of Sindbis Virus TF Protein Regulates Its Plasma Membrane Localization and Subsequent Incorporation into Virions.

    Science.gov (United States)

    Ramsey, Jolene; Renzi, Emily C; Arnold, Randy J; Trinidad, Jonathan C; Mukhopadhyay, Suchetana

    2017-02-01

    Palmitoylation is a reversible, posttranslational modification that helps target proteins to cellular membranes. The alphavirus small membrane proteins 6K and TF have been reported to be palmitoylated and to positively regulate budding. 6K and TF are isoforms that are identical in their N termini but unique in their C termini due to a -1 ribosomal frameshift during translation. In this study, we used cysteine (Cys) mutants to test differential palmitoylation of the Sindbis virus 6K and TF proteins. We modularly mutated the five Cys residues in the identical N termini of 6K and TF, the four additional Cys residues in TF's unique C terminus, or all nine Cys residues in TF. Using these mutants, we determined that TF palmitoylation occurs primarily in the N terminus. In contrast, 6K is not palmitoylated, even on these shared residues. In the C-terminal Cys mutant, TF protein levels increase both in the cell and in the released virion compared to the wild type. In viruses with the N-terminal Cys residues mutated, TF is much less efficiently localized to the plasma membrane, and it is not incorporated into the virion. The three Cys mutants have minor defects in cell culture growth but a high incidence of abnormal particle morphologies compared to the wild-type virus as determined by transmission electron microscopy. We propose a model where the C terminus of TF modulates the palmitoylation of TF at the N terminus, and palmitoylated TF is preferentially trafficked to the plasma membrane for virus budding. Alphaviruses are a reemerging viral cause of arthritogenic disease. Recently, the small 6K and TF proteins of alphaviruses were shown to contribute to virulence in vivo Nevertheless, a clear understanding of the molecular mechanisms by which either protein acts to promote virus infection is missing. The TF protein is a component of budded virions, and optimal levels of TF correlate positively with wild-type-like particle morphology. In this study, we show that the

  5. GENIUS-TF: a test facility for the GENIUS project

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Baudis, L.; Dietz, A.; Heusser, G.; Krivosheina, I.; Majorovits, B.; Strecker, H.

    2002-01-01

    GENIUS is a proposal for a large scale detector of rare events. As a first step of the experiment, a small test version, the Genius Test-Facility will be built at the Laboratori Nazionali del Gran Sasso. With about 40 kg of natural Ge detectors operated in liquid nitrogen, GENIUS-TF could exclude (or directly confirm) the DAMA annual modulation seasonal modulation signature within about 2 yr of measurement using both, signal and signature of the claimed WIMP Dark Matter. The construction of the experiment has already been started, and four 2.5 kg germanium detectors with an extreme low threshold of 500 eV have been produced

  6. Circadian expression profiles of chromatin remodeling factor genes in Arabidopsis.

    Science.gov (United States)

    Lee, Hong Gil; Lee, Kyounghee; Jang, Kiyoung; Seo, Pil Joon

    2015-01-01

    The circadian clock is a biological time keeper mechanism that regulates biological rhythms to a period of approximately 24 h. The circadian clock enables organisms to anticipate environmental cycles and coordinates internal cellular physiology with external environmental cues. In plants, correct matching of the clock with the environment confers fitness advantages to plant survival and reproduction. Therefore, circadian clock components are regulated at multiple layers to fine-tune the circadian oscillation. Epigenetic regulation provides an additional layer of circadian control. However, little is known about which chromatin remodeling factors are responsible for circadian control. In this work, we analyzed circadian expression of 109 chromatin remodeling factor genes and identified 17 genes that display circadian oscillation. In addition, we also found that a candidate interacts with a core clock component, supporting that clock activity is regulated in part by chromatin modification. As an initial attempt to elucidate the relationship between chromatin modification and circadian oscillation, we identified novel regulatory candidates that provide a platform for future investigations of chromatin regulation of the circadian clock.

  7. Clustering of malaria treatment failure (TF) in Daraweesh: hints for host genetic susceptibility to TF with emphasis on immune-modulating SNPs

    DEFF Research Database (Denmark)

    Giha, Hayder A; ElGhazali, Gehad; Nasr, Amre

    2010-01-01

    In malaria, drug resistance and treatment failure (TF) are not synonymous, although are escalating together. Over 9 years of surveillances for malaria morbidity and TF in Daraweesh village in eastern Sudan (1991-2004), 136 donors (15-78 years) from 43 households, treated for 278 malaria episodes ...

  8. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    Science.gov (United States)

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  9. A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors

    Directory of Open Access Journals (Sweden)

    Jose L. Pruneda-Paz

    2014-07-01

    Full Text Available Extensive transcriptional networks play major roles in cellular and organismal functions. Transcript levels are in part determined by the combinatorial and overlapping functions of multiple transcription factors (TFs bound to gene promoters. Thus, TF-promoter interactions provide the basic molecular wiring of transcriptional regulatory networks. In plants, discovery of the functional roles of TFs is limited by an increased complexity of network circuitry due to a significant expansion of TF families. Here, we present the construction of a comprehensive collection of Arabidopsis TFs clones created to provide a versatile resource for uncovering TF biological functions. We leveraged this collection by implementing a high-throughput DNA binding assay and identified direct regulators of a key clock gene (CCA1 that provide molecular links between different signaling modules and the circadian clock. The resources introduced in this work will significantly contribute to a better understanding of the transcriptional regulatory landscape of plant genomes.

  10. Tumour Necrosis Factor-alpha and Nuclear Factor-kappa B Gene Variants in Sepsis.

    Science.gov (United States)

    Acar, Leyla; Atalan, Nazan; Karagedik, E Hande; Ergen, Arzu

    2018-01-20

    The humoral system is activated and various cytokines are released due to infections in tissues and traumatic damage. Nuclear factor-kappa B dimers are encoded by nuclear factor-kappa B genes and regulate transcription of several crucial proteins of inflammation such as tumour necrosis factor-alpha. To investigate the possible effect of polymorphisms on tumour necrosis factor-alpha serum levels with clinical and prognostic parameters of sepsis by determining the nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A) gene polymorphisms and tumour necrosis factor-alpha serum levels. Case-control study. Seventy-two patients with sepsis and 104 healthy controls were included in the study. In order to determine the polymorphisms of nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A), polymerase chain reaction-restriction fragment length polymorphism analysis was performed and serum tumour necrosis factor-alpha levels were determined using an enzyme-linked immunosorbent assay. We observed no significant differences in tumour necrosis factor-alpha serum levels between the study groups. In the patient group, an increase in the tumour necrosis factor-alpha serum levels in patients carrying the tumour necrosis factor-alpha (-308 G/A) A allele compared to those without the A allele was found to be statistically significant. Additionally, an increase in the tumour necrosis factor-alpha serum levels in patients carrying tumour necrosis factor-alpha (-308 G/A) AA genotype compared with patients carrying the AG or GG genotypes was statistically significant. No significant differences were found in these 2 polymorphisms between the patient and control groups (p>0.05). Our results showed the AA genotype and the A allele of the tumour necrosis factor-alpha (-308 G/A) polymorphism may be used as a predictor of elevated tumour necrosis factor-alpha levels in patients with sepsis.

  11. Short initial length quench on CICC of ITER TF coils

    International Nuclear Information System (INIS)

    Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.; Lacroix, B.; Bessette, D.; Rodriguez-Mateos, F.; Coatanea-Gouachet, M.; Gauthier, F.

    2014-01-01

    Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of the voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed

  12. Short initial length quench on CICC of ITER TF coils

    Energy Technology Data Exchange (ETDEWEB)

    Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.; Lacroix, B. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bessette, D.; Rodriguez-Mateos, F. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Coatanea-Gouachet, M. [ELC Engineering, 350 chemin du Verladet, F-13290 Les Milles (France); Gauthier, F. [Soditech Ingenierie, 4 bis allée des Gabians, ZI La Frayère, 06150 Cannes (France)

    2014-01-29

    Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of the voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed.

  13. Magnetic field shielding effect for CFETR TF coil-case

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiwei; Liu, Xufeng, E-mail: Lxf@ipp.ac.cn; Du, Shuangsong; Zheng, Jinxing

    2017-05-15

    Highlights: • The eddy current of CFETR vacuum vessel can be calculated by using a series of ideal current loops. • The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components. • The shielding effect can be determined from the rate of eddy current magnetic field to the external magnetic field. - Abstract: The operation of superconducting magnet for fusion device is under the complex magnetic field condition, which affect the stabilization of superconductor. The coil-case of TF coil can shield the magnetic field to some extent. The shielding effect is related to the eddy current of coil-case. The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components, respectively. The results indicate that the shielding effect of CFETR TF coil-case has obvious different with the different directional magnetic field, and it’s larger for tangential magnetic compared with that for normal field.

  14. Thermo hydraulic and quench propagation characteristics of SST-1 TF coil

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.N., E-mail: ansharma@ipr.res.in [Institute for Plasma Research, Gandhinagar (India); Pradhan, S. [Institute for Plasma Research, Gandhinagar (India); Duchateau, J.L. [CEA Cadarache, 13108 St Paul lez Durance Cedex (France); Khristi, Y.; Prasad, U.; Doshi, K.; Varmora, P.; Patel, D.; Tanna, V.L. [Institute for Plasma Research, Gandhinagar (India)

    2014-02-15

    Highlights: • Details of SST-1 TF coils, CICC. • Details of SST-1 TF coil cold test. • Quench analysis of TF magnet. • Flow changes following quench. • Predictive analysis of assembled magnet system. - Abstract: SST-1 toroidal field (TF) magnet system is comprising of sixteen superconducting modified ‘D’ shaped TF coils. During single coil test campaigns spanning from June 10, 2010 till January 24, 2011; the electromagnetic, thermal hydraulic and mechanical performances of each TF magnet have been qualified at its respective nominal operating current of 10,000 A in either two-phase or supercritical helium cooling conditions. During the current charging experiments, few quenches have initiated either as a consequence of irrecoverable normal zones or being induced in some of the TF magnets. Quench evolution in the TF coils have been analyzed in detail in order to understand the thermal hydraulic and quench propagation characteristics of the SST-1 TF magnets. The same were also simulated using 1D code Gandalf. This paper elaborates the details of the analyses and the quench simulation results. A predictive quench propagation analysis of 16 assembled TF magnets system has also been reported in this paper.

  15. Predictive modelling of gene expression from transcriptional regulatory elements.

    Science.gov (United States)

    Budden, David M; Hurley, Daniel G; Crampin, Edmund J

    2015-07-01

    Predictive modelling of gene expression provides a powerful framework for exploring the regulatory logic underpinning transcriptional regulation. Recent studies have demonstrated the utility of such models in identifying dysregulation of gene and miRNA expression associated with abnormal patterns of transcription factor (TF) binding or nucleosomal histone modifications (HMs). Despite the growing popularity of such approaches, a comparative review of the various modelling algorithms and feature extraction methods is lacking. We define and compare three methods of quantifying pairwise gene-TF/HM interactions and discuss their suitability for integrating the heterogeneous chromatin immunoprecipitation (ChIP)-seq binding patterns exhibited by TFs and HMs. We then construct log-linear and ϵ-support vector regression models from various mouse embryonic stem cell (mESC) and human lymphoblastoid (GM12878) data sets, considering both ChIP-seq- and position weight matrix- (PWM)-derived in silico TF-binding. The two algorithms are evaluated both in terms of their modelling prediction accuracy and ability to identify the established regulatory roles of individual TFs and HMs. Our results demonstrate that TF-binding and HMs are highly predictive of gene expression as measured by mRNA transcript abundance, irrespective of algorithm or cell type selection and considering both ChIP-seq and PWM-derived TF-binding. As we encourage other researchers to explore and develop these results, our framework is implemented using open-source software and made available as a preconfigured bootable virtual environment. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression

    Directory of Open Access Journals (Sweden)

    Sakaki Yoshiyuki

    2004-02-01

    Full Text Available Abstract Background Gene expression is regulated mainly by transcription factors (TFs that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS using position weight matrices (PWMs that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions. Results We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster, we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI. Conclusion Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1 those that show TFBS clustered in promoters associated with CGI, and (2 those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in

  17. Bivariate Genomic Footprinting Detects Changes in Transcription Factor Activity

    Directory of Open Access Journals (Sweden)

    Songjoon Baek

    2017-05-01

    Full Text Available In response to activating signals, transcription factors (TFs bind DNA and regulate gene expression. TF binding can be measured by protection of the bound sequence from DNase digestion (i.e., footprint. Here, we report that 80% of TF binding motifs do not show a measurable footprint, partly because of a variable cleavage pattern within the motif sequence. To more faithfully portray the effect of TFs on chromatin, we developed an algorithm that captures two TF-dependent effects on chromatin accessibility: footprinting and motif-flanking accessibility. The algorithm, termed bivariate genomic footprinting (BaGFoot, efficiently detects TF activity. BaGFoot is robust to different accessibility assays (DNase-seq, ATAC-seq, all examined peak-calling programs, and a variety of cut bias correction approaches. BaGFoot reliably predicts TF binding and provides valuable information regarding the TFs affecting chromatin accessibility in various biological systems and following various biological events, including in cases where an absolute footprint cannot be determined.

  18. The emerging role of neutrophils in thrombosis – The journey of TF through NETs

    Directory of Open Access Journals (Sweden)

    Konstantinos eKambas

    2012-12-01

    Full Text Available The production of TF by neutrophils and their contribution in thrombosis was until recently a matter of scientific debate. Experimental data suggested the de novo TF production by neutrophils under inflammatory stimuli, while others proposed that these cells acquired microparticle-derived TF. Recent experimental evidence revealed the critical role of neutrophils in thrombotic events. Neutrophil derived TF has been implicated in this process in several human and animal models. Additionally, neutrophil extracellular trap (NET release has emerged as a major contributor in neutrophil-driven thrombogenicity in disease models including sepsis, deep venous thrombosis and malignancy. It is suggested that NETs provide the scaffold for fibrin deposition and platelet entrapment and subsequent activation. The recently reported autophagy-dependent extracellular delivery of TF in NETs further supports the involvement of neutrophils in thrombosis. Herein, we seek to review novel data regarding the role of neutrophils in thrombosis, emphasizing the implication of TF and NETs.

  19. Quantitative comparison of MiTF, Melan-A, HMB-45 and Mel-5 in solar lentigines and melanoma in situ.

    Science.gov (United States)

    Kim, Jinah; Taube, Janis M; McCalmont, Timothy H; Glusac, Earl J

    2011-10-01

    It is often challenging to reliably assess the number of lesional melanocytes in intraepidermal melanocytic proliferations involving sun-damaged skin. Therefore, dermatopathologists routinely use immunostains to help differentiate melanocytes from surrounding keratinocytes. Forty-three cases of solar lentigo or melanoma in situ (of the lentigo maligna type) were retrospectively chosen (20 melanomas in situ and 23 solar lentigo). Microphthalmia transcription factor (MiTF), HMB-45, Melan-A and Mel-5 immunostains were performed with an Azure blue counterstain, and the mean melanocyte counts were calculated within a 1-mm segment of epidermis. In solar lentigines, the mean melanocyte counts were 27 (MiTF), 23 (HMB-45 and Mel-5) and 41 (Melan-A), as compared to hematoxylin and eosin (H&E) (25). In melanoma in situ, the mean melanocyte counts were 112 (MiTF), 149 (Melan-A), 111 (HMB-45) and 80 (Mel-5), as compared to H&E (109). These results show that Melan-A significantly overestimates the density of melanocytes within dermatoheliotic skin. Compared to other tested stains, nuclear staining MiTF allowed greater distinction of melanocytes from keratinocytes with melanized cytoplasm. These findings indicate that MiTF is a superior marker for quantification of melanocytes in the evaluation of subtle intraepidermal melanocytic proliferations and in the differential diagnosis of solar lentigo. Copyright © 2011 John Wiley & Sons A/S.

  20. TIBER-II TF [toroidal-field] winding pack design

    International Nuclear Information System (INIS)

    Kerns, J.A.; Miller, J.R.; Slack, D.S.; Summers, L.T.

    1987-01-01

    The superconducting, toroidal-field (TF) coils in the Tokamak Ignition/Burn Engineering Reactor (TIBER II) are designed with cable-in-conduit conductor (CICC) using Nb 3 Sn composite strands. To design the CICC winding pack, we used an optimization technique that maximizes the conductor stability without violating the constraints imposed by the structure, electrical insulation, quench protection, and fabrication technique. Detailed helium-properties codes calculate the heat removal along a flow path, and detailed field calculations determine the temperature, current, and stability margins. The conductor sheath is designed as distributed structure to partially support the combined in-plane and out-of-plane loads generated within the winding pack. Pancakes of the coil are wound, reacted, and insulated before being potted in the case. This design is aggressive but fully consistent with good engineering practice. 5 refs., 4 figs., 2 tabs

  1. Study for Manufacturing of ITER TF Coil Radial Plates

    International Nuclear Information System (INIS)

    Fietz, W.H.; Muetzel, W.

    2006-01-01

    During the previous design phase of ITER the ITER Toroidal Field Model Coil (TFMC) has been built to verify the TF coil concept of ITER and to proof the feasibility of an industrial fabrication of such a coil. In April 2004, Forschungszentrum and BNG, started a Manufacturing Study for the full scale Radial Plates (RP) of the TF Coils in the frame of an EFDA task. The main part of the Study was to develop feasible concepts of the technology for the manufacturing of the Full Scale Radial Plates starting with the raw material until final testing. The Feasibility Study has covered all manufacturing steps that are necessary for production of the RP. It has included as well a basic layout for the manufacturing process. During the work several proposals for the single manufacturing work steps have been developed. After that an evaluation of the found proposals has taken place. The most feasible proposals have been combined to manufacturing concepts. Finally two main Concepts were elaborated and evaluated: Concept 1 includes the premachining of segments with grooves, the welding of the segments and the final machining of the RP. Concept 2 includes the welding of not machined small segments to the D-shape of the RP and the following machining of the surface and grooves. Both Concepts will be described in detail with a comparison of tooling and manufacturing details, achievement of technological requirements as well as with the requirements coming from the overall time schedule. Based on the results of the assessment of the different concepts and manufacturing techniques Concept 1 shows some advantages compared to Concept 2. These will be described in the paper. In addition a proposal about additional R(and)D in front of the later manufacturing will be made. (author)

  2. Development of manufacturing technology for ITER TF Coil Structure

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Takeru, E-mail: sakurai.takeru@jaea.go.jp; Iguchi, Masahide; Nakahira, Masataka; Inagaki, Takashi; Matsui, Kunihiro; Koizumi, Norikiyo

    2016-11-01

    Highlights: • Heavy thick welding (Max. 287 mm) was performed by balance welding. • Figured out Attachment welding deformation including heavy thick welding. • The deformation of Segments welding was suppressed to 1/3 of previous method. • Based on this study, JAEA started actual ITER TF coil structure manufacturing. - Abstract: Japan Atomic Energy Agency (JAEA) performed a trial of A1 Segment manufacturing of Toroidal Field (TF) coil structure, which is a piece with a radius of curvature 3 m with square channel for coil. Even though both-side welding (balance welding) was preferred to one-side welding considering the welding deformation, it could not be applied to the previous trial due to the difficulty of overhead or horizontal welding by machine. Hence, one-side welding with strong restriction jig was applied in the previous trials. In the latest trial, JAEA adopted a manual balance welding with a development of manufacturing technology. As the result of A1 Segment Mainbody welding trial, welding deformation of the Outer Plate and the Side Plate could have been controlled closer to the target value. JAEA also tried Attachments welding, in which Pre-Compression Flange (PCF) and Extension are welded to A1 Segment Mainbody, and a Segments welding trial, which is a weld between A1 Segment and a part of A2 Segment. A2 Segment is a 3 m straight part with square channel for coil. The inclination of A1 Segment and A2 Segment due to the welding was 2.7 mm. By applying balance welding, the deformation by Segments welding was suppressed to about 1/3 of the one-side welding. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

  3. Structural analysis of TFTR TF coils and support structure for 6 Tesla operation

    International Nuclear Information System (INIS)

    Zatz, I.J.; Cargulia, G.; Lontai, L.

    1995-01-01

    The Tokamak Fusion Test Reactor (TFTR), which has been on line since December 1982, has successfully operated at its design Toroidal Field (TF) of 5.2 Tesla. Analysis of test data has indicated that the measured peak D-D neutron power in supershots may be scaled to the fourth power of TF field. Increasing the TF field to 6 Tesla provides the opportunity to explore the possibility of improving the D-T fusion yield, with the use of tritium. This increase in TF field from 5.2 to 6.0 Tesla increases the centering force by 33% and the out-of-plane force by 15% over previous peak operating levels. To examine the impact of the increase in loads on the TF coil, case and supporting structure, finite element analyses (FEA) were performed with and without the presence of loose bolts in the TF case. Note that the loose bolts comprise a fraction of the total number of bolts fastening the TF case sidewalls to the inner and outer rings of the case. Extensive analysis was performed using the FEA results in conjunction with supplementary calculations. Results are presented for the TF case, bolts, copper conductors, insulation, and supporting structure which indicate that the TF coils can successfully operate at 6 Tesla for a reasonable number of pulses

  4. Quench characterization and thermo hydraulic analysis of SST-1 TF magnet busbar

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.N., E-mail: ansharma@ipr.res.in [Institute for Plasma Research, Gandhinagar (India); Pradhan, S. [Institute for Plasma Research, Gandhinagar (India); Duchateau, J.L. [CEA Cadarache, 13108 St Paul lez Durance Cedex (France); Khristi, Y.; Prasad, U.; Doshi, K.; Varmora, P.; Tanna, V.L.; Patel, D.; Panchal, A. [Institute for Plasma Research, Gandhinagar (India)

    2015-01-15

    Highlights: • Details of SST-1 TF busbar quench detection. • Simulation of slow propagating normal zone. • Thermo hydraulic analyses of TF busbar in current feeder system. - Abstract: Toroidal field (TF) magnet system of steady-state superconducting tokamak-1 (SST-1) has 16 superconducting coils. TF coils are cooled with forced flow supercritical helium at 0.4 MPa, at 4.5 K and operate at nominal current of 10,000 A. Prior to TF magnet system assembly in SST-1 tokamak, each TF coil was tested individually in a test cryostat. During these tests, TF coil was connected to a pair of conventional helium vapor cooled current leads. The connecting busbar was made from the same base cable-in-conduit-conductor (CICC) of SST-1 superconducting magnet system. Quenches experimentally observed in the busbar sections of the single coil test setups have been analyzed in this paper. A steady state thermo hydraulic analysis of TF magnet busbar in actual SST-1 tokamak assembly has been done. The experimental observations of quench and results of relevant thermo hydraulic analyses have been used to predict the safe operation regime of TF magnet system busbar during actual SST-1 tokamak operational scenarios.

  5. A transcription factor active on the epidermal growth factor receptor gene

    International Nuclear Information System (INIS)

    Kageyama, R.; Merlino, G.T.; Pastan, I.

    1988-01-01

    The authors have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. They found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO 4 /polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I footprinting and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR

  6. Gene expression of osteogenic factors following gene therapy in mandibular lengthening.

    Science.gov (United States)

    Wu, Guoping; Zhou, Bin; Hu, Chunbing; Li, Shaolan

    2015-03-01

    This study investigated the effect of gene therapy on the expression of osteogenic mediators in mandibular distraction osteogenesis rabbits. Bilateral mandibular osteotomies were performed in 45 New-Zealand rabbits. After a latency of 3 days, the mandibles were elongated using distractors with a rate of 0.8 mm/d for 7 days. After the completion of distraction, the rabbits were randomly divided into 5 groups: 2 μg (0.1 μg/μL) of recombinant plasmid pIRES-hVEGF165-hBMP-2, recombinant plasmid pIRES-hBMP2, recombinant plasmid pIRES-hVEGF165, pIRES, and the same volume of normal saline were injected into the distraction gap of groups A, B, C, D, and E, respectively, followed by electroporation. Three animals were killed at the 7th, 14th, and 28th day after gene transfected in different groups, respectively. The lengthened mandibles were harvested and processed for immunohistochemical examinations; the mean optic densities (MODs) and integral optical density of bone morphogenetic protein (BMP-2) and transforming growth factor β1 (TGF-β1)-positive cells were measured by CMIAS-2001A computerized image analyzer. The data were analyzed with SPSS (SPSS Inc, Chicago, IL). Bone morphogenetic protein 2 and TGF-β1 staining was mainly located in inflammatory cells, monocytes, fibroblasts, osteoblasts, osteocytes, and chondrocytes in the distraction zones. Their strongest expression reached to the peak at the seventh day and decreased at the 14th day of consolidation stage; at the 28th day, they expressed weakly. Image analysis results show that, at the seventh day, the expression of BMP-2 in group B (0.26 ± 0.03, 0.36 ± 0.02) was the strongest; there was significant difference among them (P < 0.01), whereas the expression of TGF-β1 in group C (0.38 ± 0.06, 1.05 ± 0.19) is strongest followed by group A (0.34 ± 0.05, 0.95 ± 0.16) and B (0.33 ± 0.07, 0.90 ± 0.19). At every time point, the level of expression of BMP-2 and TGF-β1 in gene therapy groups (groups A, B, and

  7. Circadian Enhancers Coordinate Multiple Phases of Rhythmic Gene Transcription In Vivo

    Science.gov (United States)

    Fang, Bin; Everett, Logan J.; Jager, Jennifer; Briggs, Erika; Armour, Sean M.; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A.

    2014-01-01

    SUMMARY Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of eRNAs that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed novel mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed new light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ. PMID:25416951

  8. A new sample treatment for asialo-Tf determination with capillary electrophoresis: an added value to the analysis of CDT.

    Science.gov (United States)

    Porpiglia, Nadia Maria; De Palo, Elio Franco; Savchuk, Sergey Alexandrovich; Appolonova, Svetlana Alexandrovna; Bortolotti, Federica; Tagliaro, Franco

    2018-05-10

    The non-glycosylated glycoform of transferrin (Tf), known as asialo-Tf, was not selected (in favor of disialo-Tf) as the measurand for the standardization of carbohydrate deficient transferrin (CDT) determination because of a lower diagnostic sensitivity provided with the currently available analytical procedures for sera. However, asialo-Tf could provide an additional value to disialo-Tf in the CDT analysis employed in forensic toxicology contexts. The present work aimed at developing an easy sample preparation based on PEG precipitation in order to improve the detectability of asialo-Tf in capillary electrophoresis (CE). Equal volumes (35 μL) of serum and of 30% PEG-8000 were mixed and briefly vortexed. After centrifugation, the supernatant was iron saturated with a ferric solution (1:1, v/v). The mixture was analyzed in CE for asialo-Tf and disialo-Tf determination. PEG-8000 precipitation allowed the improvement of the baseline in the electropherograms in terms of interferences reduction particularly in the asialo-Tf migration region. The detection of asialo-Tf was possible in 89% of samples with disialo-Tf above the cut-off limit, whereas only 16% of them showed asialo-Tf by employing the traditional sample preteatment. Asialo-Tf represents an additional value to disialo-Tf as a biomarker of alcohol abuse in forensic toxicology. Copyright © 2018. Published by Elsevier B.V.

  9. Autism Spectrum Disorder and High Confidence Gene Factors

    OpenAIRE

    Mai, MOCHIZUKI

    2017-01-01

    Autism spectrum disorder (ASD) is a neurological developmental disorder whose mechanism isyet unclear. However, recent ASD studies, which employ exome- and genome-wide sequencing,have identified some high-confidence ASD genes. Those ASD studies have revealed that CHD8is likely associated with ASD. In this article, we highlight that CHD8 may regulate othercandidate ASD risk genes. Current research indicates that there exist some thousand autismsusceptibility candidate genes. Moreover, we sugge...

  10. Clone and expression of human transferrin receptor gene: a marker gene for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Li Li; Liu Lizhi; Lv Yanchun; Liu Xuewen; Cui Chunyan; Wu Peihong; Liu Qicai; Ou Shanxing

    2007-01-01

    Objective: To clone human transferrin receptor (hTfR) gene and construct expression vector producing recombination protein. Methods: Human transferrin receptor gene cDNA was amplified by RT-PCR from human embryonic liver and lung tissue. Recombinant pcDNA3-hTfR and pEGFP-Cl-hTfR plasmids were constructed and confirmed by DNA sequencing. These plasmids were stably transfected into the HEK293 cells. The protein expression in vitro was confirmed by Western Blot. The efficiency of expression and the location of hTfR were also investigated by fluorescence microscopy and confocal fluorescence microscopy. Results: The full length cDNA of hTfR gene (2332 bp) was cloned and sequenced. The hTfR (190 000) was overexpressed in transfected HEK293 cells by Western blot analysis. Fluorescence micrographs displayed that the hTfR was expressed at high level and located predominantly in the cell surface. Conclusions: Human transferrin receptor (hTfR) gene has been successfully cloned and obtained high-level expression in HEK293 cells, and the recombination protein of hTfR distributed predominantly in the cell membrane. (authors)

  11. Association of transforming growth factor-ß3 gene polymorphism ...

    African Journals Online (AJOL)

    Genotyping for the TGF-β3 gene using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and BslI restriction endonuclease showed a mutation in 294-bp fragment located on the fourth intron of chromosome 5. Polymorphism in TGF-β3 gene was significantly (P < 0.1) associated with ...

  12. Special remote tooling developed and utilized to tighten TFTR TF coil casing bolts

    International Nuclear Information System (INIS)

    Burgess, T.W.; Walton, G.R.; Meighan, T.G.; Paul, B.L.

    1993-01-01

    Special tooling has been developed and used to tighten toroidal field (TF) coil casing bolts that have loosened from years of Tokamak Fusion Test Reactor (TFTR) operation. Due to their location, many of the TF casing bolts cannot be directly accessed or viewed; their condition was first discovered during unrelated inspections in 1988. Engineering solutions were, sought until 1992, when a remotely operated wrench concept was successfully demonstrated on a TF coil mockup. The concept was developed into several working tools that have successfully been applied to tighten several thousand TF casing bolts during recent scheduled outages. This effort has improved the integrity and reliability of the TF coil system in preparing for the final experimental phase of the TFTR. This paper discusses the design and application of this tooling

  13. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte

    Directory of Open Access Journals (Sweden)

    Kang Il-Ho

    2010-06-01

    Full Text Available Abstract Background In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. Results Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. Conclusions We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this

  14. Transcription-factor occupancy at HOT regions quantitatively predicts RNA polymerase recruitment in five human cell lines.

    KAUST Repository

    Foley, Joseph W

    2013-10-20

    BACKGROUND: High-occupancy target (HOT) regions are compact genome loci occupied by many different transcription factors (TFs). HOT regions were initially defined in invertebrate model organisms, and we here show that they are a ubiquitous feature of the human gene-regulation landscape. RESULTS: We identified HOT regions by a comprehensive analysis of ChIP-seq data from 96 DNA-associated proteins in 5 human cell lines. Most HOT regions co-localize with RNA polymerase II binding sites, but many are not near the promoters of annotated genes. At HOT promoters, TF occupancy is strongly predictive of transcription preinitiation complex recruitment and moderately predictive of initiating Pol II recruitment, but only weakly predictive of elongating Pol II and RNA transcript abundance. TF occupancy varies quantitatively within human HOT regions; we used this variation to discover novel associations between TFs. The sequence motif associated with any given TF\\'s direct DNA binding is somewhat predictive of its empirical occupancy, but a great deal of occupancy occurs at sites without the TF\\'s motif, implying indirect recruitment by another TF whose motif is present. CONCLUSIONS: Mammalian HOT regions are regulatory hubs that integrate the signals from diverse regulatory pathways to quantitatively tune the promoter for RNA polymerase II recruitment.

  15. Transcription-factor occupancy at HOT regions quantitatively predicts RNA polymerase recruitment in five human cell lines.

    KAUST Repository

    Foley, Joseph W; Sidow, Arend

    2013-01-01

    BACKGROUND: High-occupancy target (HOT) regions are compact genome loci occupied by many different transcription factors (TFs). HOT regions were initially defined in invertebrate model organisms, and we here show that they are a ubiquitous feature of the human gene-regulation landscape. RESULTS: We identified HOT regions by a comprehensive analysis of ChIP-seq data from 96 DNA-associated proteins in 5 human cell lines. Most HOT regions co-localize with RNA polymerase II binding sites, but many are not near the promoters of annotated genes. At HOT promoters, TF occupancy is strongly predictive of transcription preinitiation complex recruitment and moderately predictive of initiating Pol II recruitment, but only weakly predictive of elongating Pol II and RNA transcript abundance. TF occupancy varies quantitatively within human HOT regions; we used this variation to discover novel associations between TFs. The sequence motif associated with any given TF's direct DNA binding is somewhat predictive of its empirical occupancy, but a great deal of occupancy occurs at sites without the TF's motif, implying indirect recruitment by another TF whose motif is present. CONCLUSIONS: Mammalian HOT regions are regulatory hubs that integrate the signals from diverse regulatory pathways to quantitatively tune the promoter for RNA polymerase II recruitment.

  16. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus Lupulus L.

    Directory of Open Access Journals (Sweden)

    Matoušek Jaroslav

    2012-02-01

    Full Text Available Abstract Background Lupulin glands of hop produce a specific metabolome including hop bitter acids valuable for the brewing process and prenylflavonoids with promising health-beneficial activities. The detailed analysis of the transcription factor (TF-mediated regulation of the oligofamily of one of the key enzymes, i.e., chalcone synthase CHS_H1 that efficiently catalyzes the production of naringenin chalcone, a direct precursor of prenylflavonoids in hop, constitutes an important part of the dissection of the biosynthetic pathways leading to the accumulation of these compounds. Results Homologues of flavonoid-regulating TFs HlMyb2 (M2, HlbHLH2 (B2 and HlWDR1 (W1 from hop were cloned using a lupulin gland-specific cDNA library from the hop variety Osvald's 72. Using a "combinatorial" transient GUS expression system it was shown that these unique lupulin-gland-associated TFs significantly activated the promoter (P of chs_H1 in ternary combinations of B2, W1 and either M2 or the previously characterized HlMyb3 (M3. The promoter activation was strongly dependent on the Myb-P binding box TCCTACC having a core sequence CCWACC positioned on its 5' end region and it seems that the complexity of the promoter plays an important role. M2B2W1-mediated activation significantly exceeded the strength of expression of native chs_H1 gene driven by the 35S promoter of CaMV, while M3B2W1 resulted in 30% of the 35S:chs_H1 expression level, as quantified by real-time PCR. Another newly cloned hop TF, HlMyb7, containing a transcriptional repressor-like motif pdLNLD/ELxiG/S (PDLNLELRIS, was identified as an efficient inhibitor of chs_H1-activating TFs. Comparative analyses of hop and A. thaliana TFs revealed a complex activation of Pchs_H1 and Pchs4 in combinatorial or independent manners. Conclusions This study on the sequences and functions of various lupulin gland-specific transcription factors provides insight into the complex character of the regulation of the

  17. JT-60SA TF magnet industrial manufacturing preparation and qualifications

    International Nuclear Information System (INIS)

    Decool, P.; Cloez, H.; Gros, G.; Marechal, J.L.; Torre, A.; Verger, J.M.; Nusbaum, M.; Billotte, G.; Crepel, B.; Bourquard, A.; Davis, S.; Phillips, G.

    2014-01-01

    The general design of the JT-60SA toroidal field system was defined in agreement with all the participants in the project (CEA, ENEA, F4E), the detailed design was issued by the Voluntary Contributors. For the French part including the procurement of 9 of the 18 TF winding packs and their integration in the casings, an industrial contract was signed mid-2011 with Alstom (France). After agreement on manufacturing drawings and QA documentation, the manufacturing process was defined giving the guidelines for the workshop organization and the definition of the required tooling. The critical manufacturing points were identified in the process and, regarding technical requirements, have led to the definition of a set of qualification mockups. They are related to helium inlets, conductor winding and insulation, local conductor bending, electrical joint and terminal areas for the winding pack (WP), as well as winding embedding, case welding, and impregnations for WP integration in the casing. The fabrication processes have been improved and shall be qualified thanks to the manufacture and testing of 12 corresponding mockups. The successful achievement of several key mock-ups gives confidence in the feasibility of the manufacture, and their completion will give the green light to the industrial coils manufacture. (authors)

  18. Qualification tests for ITER TF conductors in SULTAN

    International Nuclear Information System (INIS)

    Bruzzone, P.; Stepanov, B.; Wesche, R.

    2009-01-01

    From February 2007 to May 2008, 18 short length conductor sections have been tested in SULTAN for design verification and manufacturer qualification of the ITER Toroidal Field (TF) conductor. The test program is focussed on the current sharing temperature, T cs , at the nominal operating conditions, 68 kA current and 11.15 T effective field, which can be fully reproduced in the SULTAN test facility. A broad range of results was observed, with over 2 K difference among the T cs of the conductors. In average, the results are poorer compared to the potential performance estimated from the strand scaling law. The key parameters to mitigate the degradation are not yet clearly identified. The experimental challenges to test conductors with performance degradation are highlighted, including enhanced instrumentation sets, the application of gas flow calorimetry to sense the current sharing power and the post-processing of voltage data to cancel the transverse potential across the cable. The updated schedule of the tests in SULTAN is presented with the short-term action plan for conductor test.

  19. Proposals for cold testing of the ITER TF coils

    International Nuclear Information System (INIS)

    Libeyre, P.; Ciazynski, D.; Dolgetta, N.; Duchateau, J.L.; Lyraud, C.; Kircher, F.; Schild, T.; Fietz, W.H.; Zahn, G.

    2005-01-01

    The ITER Toroidal Field (TF) magnet system will be made of 18 coils using Nb 3 Sn as superconducting material. These coils will operate at a maximum field of 11.8 T for a nominal current of 68 kA carried by a dual channel cable-in-conduit conductor cooled by a forced flow of supercritical helium at 4.5 K. In each coil, seven 760 m conductor lengths wound in double pancakes will be connected to each other by low resistance joints. As a final step of the reception tests, it is proposed to perform cold tests of these coils at liquid helium temperature after completion of their manufacture. The testing shall include high voltage tests to check the quality of the insulation, leak tests and pressure drop measurements of the hydraulic circuits as well as measurement of the joint resistances. Testing the coils up to nominal current is a discussed option, addressing on one hand measurement of the electrical performances in self field and on the other hand the mechanical behaviour of the coils. To perform these tests, a dedicated test facility has to be built, allowing possible simultaneous testing of two coils, assembled together in a twin coil configuration, similarly to their assembly in the torus. (authors)

  20. Proposals for cold testing of the ITER TF coils

    Energy Technology Data Exchange (ETDEWEB)

    Libeyre, P.; Ciazynski, D.; Dolgetta, N.; Duchateau, J.L.; Lyraud, C. [Association Euratom/CEA Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France); Kircher, F.; Schild, T. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Fietz, W.H.; Zahn, G. [Association Euratom-Forschungszentrum Karlsruhe, Karlsruhe (Germany)

    2005-07-01

    The ITER Toroidal Field (TF) magnet system will be made of 18 coils using Nb{sub 3}Sn as superconducting material. These coils will operate at a maximum field of 11.8 T for a nominal current of 68 kA carried by a dual channel cable-in-conduit conductor cooled by a forced flow of supercritical helium at 4.5 K. In each coil, seven 760 m conductor lengths wound in double pancakes will be connected to each other by low resistance joints. As a final step of the reception tests, it is proposed to perform cold tests of these coils at liquid helium temperature after completion of their manufacture. The testing shall include high voltage tests to check the quality of the insulation, leak tests and pressure drop measurements of the hydraulic circuits as well as measurement of the joint resistances. Testing the coils up to nominal current is a discussed option, addressing on one hand measurement of the electrical performances in self field and on the other hand the mechanical behaviour of the coils. To perform these tests, a dedicated test facility has to be built, allowing possible simultaneous testing of two coils, assembled together in a twin coil configuration, similarly to their assembly in the torus. (authors)

  1. Transcription factor binding site enrichment analysis predicts drivers of altered gene expression in nonalcoholic steatohepatitis

    Czech Academy of Sciences Publication Activity Database

    Lake, A.D.; Chaput, A.L.; Novák, Petr; Cherrington, N.J.; Smith, C.L.

    2016-01-01

    Roč. 122, December 15 (2016), s. 62-71 ISSN 0006-2952 Institutional support: RVO:60077344 Keywords : Transcription factor * Liver * Gene expression * Bioinformatics Subject RIV: CE - Biochemistry Impact factor: 4.581, year: 2016

  2. Effects of epidermal growth factor, transferrin, and insulin on lipofection efficiency in human lung carcinoma cells.

    Science.gov (United States)

    Yanagihara, K; Cheng, H; Cheng, P W

    2000-01-01

    Poor transfection efficiency is the major drawback of lipofection. We showed previously that addition of transferrin (TF) to Lipofectin enhanced the expression of a reporter gene in HeLa cells by 120-fold and achieved close to 100% transfection efficiency. The purpose of this study was to determine whether TF and other ligands could improve the efficiency of lipofection in lung carcinoma cells. Confluent A549, Calu3, and H292 cells were transfected for 18 hours with a plasmid DNA (pCMVlacZ) using Lipofectin plus TF, insulin, or epidermal growth factor as the vector. The transfected cells were assessed for transfection efficiency by beta-galactosidase activity (light units/microg protein) and the percentage of blue cells following 5-bromo-4-chloro-3-indolyl beta-D-galactopyranoside staining. Lipofectin supplemented with epidermal growth factor yielded the largest enhancement of lipofection efficiency (lipofection efficiency in A549 and Calu3 cells but not in H292 cells, whereas TF showed significant lipofection efficiency-enhancing effect in Calu3 and H292 cells but not in A549 cells. The transfection efficiency correlated well with the amounts of DNA delivered to the nucleus as well as the amounts of the receptor. These results indicate that the gene delivery strategy employing ligand-facilitated lipofection can achieve high transfection efficiency in human lung carcinoma cells. In addition, enhancement of the expression of the receptor may be a possible strategy for increasing the efficiency of gene targeting.

  3. PRISM offers a comprehensive genomic approach to transcription factor function prediction

    KAUST Repository

    Wenger, A. M.; Clarke, S. L.; Guturu, H.; Chen, J.; Schaar, B. T.; McLean, C. Y.; Bejerano, G.

    2013-01-01

    The human genome encodes 1500-2000 different transcription factors (TFs). ChIP-seq is revealing the global binding profiles of a fraction of TFs in a fraction of their biological contexts. These data show that the majority of TFs bind directly next to a large number of context-relevant target genes, that most binding is distal, and that binding is context specific. Because of the effort and cost involved, ChIP-seq is seldom used in search of novel TF function. Such exploration is instead done using expression perturbation and genetic screens. Here we propose a comprehensive computational framework for transcription factor function prediction. We curate 332 high-quality nonredundant TF binding motifs that represent all major DNA binding domains, and improve cross-species conserved binding site prediction to obtain 3.3 million conserved, mostly distal, binding site predictions. We combine these with 2.4 million facts about all human and mouse gene functions, in a novel statistical framework, in search of enrichments of particular motifs next to groups of target genes of particular functions. Rigorous parameter tuning and a harsh null are used to minimize false positives. Our novel PRISM (predicting regulatory information from single motifs) approach obtains 2543 TF function predictions in a large variety of contexts, at a false discovery rate of 16%. The predictions are highly enriched for validated TF roles, and 45 of 67 (67%) tested binding site regions in five different contexts act as enhancers in functionally matched cells.

  4. PRISM offers a comprehensive genomic approach to transcription factor function prediction

    KAUST Repository

    Wenger, A. M.

    2013-02-04

    The human genome encodes 1500-2000 different transcription factors (TFs). ChIP-seq is revealing the global binding profiles of a fraction of TFs in a fraction of their biological contexts. These data show that the majority of TFs bind directly next to a large number of context-relevant target genes, that most binding is distal, and that binding is context specific. Because of the effort and cost involved, ChIP-seq is seldom used in search of novel TF function. Such exploration is instead done using expression perturbation and genetic screens. Here we propose a comprehensive computational framework for transcription factor function prediction. We curate 332 high-quality nonredundant TF binding motifs that represent all major DNA binding domains, and improve cross-species conserved binding site prediction to obtain 3.3 million conserved, mostly distal, binding site predictions. We combine these with 2.4 million facts about all human and mouse gene functions, in a novel statistical framework, in search of enrichments of particular motifs next to groups of target genes of particular functions. Rigorous parameter tuning and a harsh null are used to minimize false positives. Our novel PRISM (predicting regulatory information from single motifs) approach obtains 2543 TF function predictions in a large variety of contexts, at a false discovery rate of 16%. The predictions are highly enriched for validated TF roles, and 45 of 67 (67%) tested binding site regions in five different contexts act as enhancers in functionally matched cells.

  5. Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk.

    Science.gov (United States)

    Kar, Siddhartha P; Tyrer, Jonathan P; Li, Qiyuan; Lawrenson, Kate; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Chenevix-Trench, Georgia; Baker, Helen; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Berchuck, Andrew; Bisogna, Maria; Bjørge, Line; Bogdanova, Natalia; Brinton, Louise; Brooks-Wilson, Angela; Butzow, Ralf; Campbell, Ian; Carty, Karen; Chang-Claude, Jenny; Chen, Yian Ann; Chen, Zhihua; Cook, Linda S; Cramer, Daniel; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas F; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus K; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Paul, James; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kjaer, Susanne K; Kelemen, Linda E; Kellar, Melissa; Kelley, Joseph; Kiemeney, Lambertus A; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Iain A; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Narod, Steven A; Nedergaard, Lotte; Ness, Roberta B; Nevanlinna, Heli; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Pearce, Celeste Leigh; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Phelan, Catherine M; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schildkraut, Joellen M; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Sucheston-Campbell, Lara E; Tangen, Ingvild L; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S; van Altena, Anne M; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Sellers, Thomas A; Monteiro, Alvaro N A; Freedman, Matthew L; Gayther, Simon A; Pharoah, Paul D P

    2015-10-01

    Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations. We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly coexpressed with each selected TF gene in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P < 0.05 and FDR < 0.05). These results were replicated (P < 0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. Network analysis integrating large, context-specific datasets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization. ©2015 American Association for Cancer Research.

  6. Association of transforming growth factor-ß3 gene polymorphism ...

    African Journals Online (AJOL)

    user

    2011-03-07

    Mar 7, 2011 ... traits of interest in agricultural animal species (Rothschild and Soller, 1997). Although, traditional selection for phenotypic values of broiler chickens has made significant ..... the very low density Apolipoprotein-II gene. Poult.

  7. Philips Gemini TF64 PET/CT Acceptance Testing

    International Nuclear Information System (INIS)

    González Gonzalez, Joaquín J.; Calderón Marin, Carlos F.; Varela Corona, Consuelo; Machado Tejeda, Adalberto; González Correa, Héctor J.

    2016-01-01

    The Philips Gemini TF64 is the first PET/CT scanner installed in Cuba at the Institute of Oncology and Radiobiology in 2014. It is a third generation fully tridimensional whole body PET scanner with time-of-flight (TOF) technology combined with a 64-slice Brilliance CT scanner. The CT detector module contains 672x64 solid state detector, incorporating GOS scintillators, optical diodes and electronic signal channels arranged in 64 side by side arcs, with 672 detectors in each arc. There are sixteen 0.75 mm individual detector elements around the center and four 1.5 mm elements at each end, resulting in a 24 mm total detection length. The PET detector consists of 28 pixelar modules of a 23x44 array of 4x4x22 mm3 of LYSO crystals arranged in an Anger-logic detector design. The hardware coincidence-timing window for this scanner is set at 4 ns and delayed coincidence window technique is used to estimate the random coincidences in collected data. In this study the performance characteristics of PET/CT scanner were measured as part of the program tests of acceptance for clinical use.Methodology. The performance characteristics of CT scanner were evaluated by manufacturer protocol using Philips system performance phantom. Some additional geometrical tests were performed by the user. The intrinsic measurements of energy resolution as well as timing resolution, which define the TOF performance of PET scanner, were performed following the recommendations of manufacturer using 18 F. Spatial resolution, sensitivity, scatter fraction, counting rate performance, image quality and accuracy were measured according to the NEMA NU-2 2007 procedures. Additionally, to characterize the effect of TOF reconstruction on lesion contrast and noise, the standard NEMA torso phantom was reconstructed with and without TOF capability. The accuracy of PET/CT image registration was tested according to the manufacturer protocol using an image alignment calibration holder with 6 point sources of 22

  8. Tolerance Evaluation of Poloidal Shear Keys for ITER TF Coil

    International Nuclear Information System (INIS)

    Fu Youkun; Neil, M.; Cees Jong

    2006-01-01

    There are 18 ITER Toroidal Field (TF) Coils. Unlike the other ITER coils, these coils are structurally linked. These links consist of friction between the coil legs in the central vault formed by the inner straight legs of the coils, four outer inter-coil structures (OIS) and one inner inter-coil structure (IIS). The OIS consists essentially of bands around all 18 coils to provide shear support by forming shear panels with the coil case, and the IIS consists of poloidal circular keys placed directly between the coil cases. Global analysis of the 'perfect' coil shape has shown high stresses in the IIS, in the poloidal keyways. Optimization has successfully reduced these stresses to acceptable values as regards the expected fatigue resistance. However it is necessary to confirm that the stresses are still acceptable when realistic values of geometry variations are included (i.e. the effect of coil and case tolerances). Because of the extensive mechanical links between coils the poloidal key stresses can also be affected by tolerances elsewhere in the case. As the first step in assessment of the possible variations in stresses, a substructure technique is being used to develop a local model of the key region. The result of geometry variations between individual coils is a loss in the 18 fold symmetry used to simplify previous analyses. With the new and optimized model it should be possible to relax the 18-fold symmetry, but a full analysis of all 18 coils is still not possible. Systematic ways of representing the tolerance variation in the finite element model have been developed so that parametric studies can be undertaken without a full reconstruction of the model. (author)

  9. Improvements, enhancements, and optimizations of COBRA-TF

    International Nuclear Information System (INIS)

    Salko, R. K.; Avramova, M. N.; Hooper, R.; Palmtag, S.; Popov, E.; Turner, J.

    2013-01-01

    The Reactor Dynamics and Fuel Management Group (RDFMG) at The Pennsylvania State University (PSU) has become active in the Consortium for Advanced Simulation of Light Water Reactors (CASL) program by delivering, supporting, and further developing CTF, the PSU version of the Coolant Boiling in Rod Arrays - Two Fluids (COBRA-TF) Thermal/Hydraulic (T/H), sub-channel program. New development work on CTF was primarily geared towards decreasing the execution time of the code so that it may eventually be used for performing pin-by-pin, full-core simulations. Great gains have been made through targeting sections of source code for optimization. For example, wall clock time has been reduced for a one-assembly, three-dimensional model, containing ∼9,400 mesh cells, from 9.2 min to 1 min. A further improvement has been reduction in code memory usage, which was previously prohibitive for large models. In conjunction with the run time speedups, this has enabled the simulation of a refined quarter-core model (∼460,000 mesh cells), which saw a reduction in memory usage from over 130 GB to less than 3 GB. In addition to the optimization work, RDFMG has also created a preprocessor utility for the fast and less error-prone generation of CTF input decks. Furthermore, basic post-processing capabilities have been implemented by creating a CTF subroutine for producing Visualization Tool-Kit (VTK) files that output mesh data and associated simulation results. These VTK files can be opened with visualization software. (authors)

  10. Using sequence-specific chemical and structural properties of DNA to predict transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Amy L Bauer

    2010-11-01

    Full Text Available An important step in understanding gene regulation is to identify the DNA binding sites recognized by each transcription factor (TF. Conventional approaches to prediction of TF binding sites involve the definition of consensus sequences or position-specific weight matrices and rely on statistical analysis of DNA sequences of known binding sites. Here, we present a method called SiteSleuth in which DNA structure prediction, computational chemistry, and machine learning are applied to develop models for TF binding sites. In this approach, binary classifiers are trained to discriminate between true and false binding sites based on the sequence-specific chemical and structural features of DNA. These features are determined via molecular dynamics calculations in which we consider each base in different local neighborhoods. For each of 54 TFs in Escherichia coli, for which at least five DNA binding sites are documented in RegulonDB, the TF binding sites and portions of the non-coding genome sequence are mapped to feature vectors and used in training. According to cross-validation analysis and a comparison of computational predictions against ChIP-chip data available for the TF Fis, SiteSleuth outperforms three conventional approaches: Match, MATRIX SEARCH, and the method of Berg and von Hippel. SiteSleuth also outperforms QPMEME, a method similar to SiteSleuth in that it involves a learning algorithm. The main advantage of SiteSleuth is a lower false positive rate.

  11. WRKY Transcription Factors: Key Components in Abscisic Acid Signaling

    Science.gov (United States)

    2011-01-01

    networks that take inputs from numerous stimuli and that they are involved in mediating responses to numerous phytohormones including salicylic acid ... jasmonic acid , ABA and GA. These roles in multiple signalling pathways may in turn partly explain the pleiotropic effects commonly seen when TF genes are...Review article WRKY transcription factors: key components in abscisic acid signalling Deena L. Rushton1, Prateek Tripathi1, Roel C. Rabara1, Jun Lin1

  12. TF insert experiment log book. 2nd Experiment of CS model coil

    International Nuclear Information System (INIS)

    Sugimoto, Makoto; Isono, Takaaki; Matsui, Kunihiro

    2001-12-01

    The cool down of CS model coil and TF insert was started on August 20, 2001. It took almost one month and immediately started coil charge since September 17, 2001. The charge test of TF insert and CS model coil was completed on October 19, 2001. In this campaign, total shot numbers were 88 and the size of the data file in the DAS (Data Acquisition System) was about 4 GB. This report is a database that consists of the log list and the log sheets of every shot. This is an experiment logbook for 2nd experiment of CS model coil and TF insert for charge test. (author)

  13. Exploring matrix factorization techniques for significant genes identification of Alzheimer’s disease microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Hu Xiaohua

    2011-07-01

    Full Text Available Abstract Background The wide use of high-throughput DNA microarray technology provide an increasingly detailed view of human transcriptome from hundreds to thousands of genes. Although biomedical researchers typically design microarray experiments to explore specific biological contexts, the relationships between genes are hard to identified because they are complex and noisy high-dimensional data and are often hindered by low statistical power. The main challenge now is to extract valuable biological information from the colossal amount of data to gain insight into biological processes and the mechanisms of human disease. To overcome the challenge requires mathematical and computational methods that are versatile enough to capture the underlying biological features and simple enough to be applied efficiently to large datasets. Methods Unsupervised machine learning approaches provide new and efficient analysis of gene expression profiles. In our study, two unsupervised knowledge-based matrix factorization methods, independent component analysis (ICA and nonnegative matrix factorization (NMF are integrated to identify significant genes and related pathways in microarray gene expression dataset of Alzheimer’s disease. The advantage of these two approaches is they can be performed as a biclustering method by which genes and conditions can be clustered simultaneously. Furthermore, they can group genes into different categories for identifying related diagnostic pathways and regulatory networks. The difference between these two method lies in ICA assume statistical independence of the expression modes, while NMF need positivity constrains to generate localized gene expression profiles. Results In our work, we performed FastICA and non-smooth NMF methods on DNA microarray gene expression data of Alzheimer’s disease respectively. The simulation results shows that both of the methods can clearly classify severe AD samples from control samples, and

  14. Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS-mediated activation of hypoxia-inducible factor 1 (HIF-1) and heat shock factor 1 (HSF-1) and the clustered expression of stress genes.

    Science.gov (United States)

    Klumpen, Eva; Hoffschröer, Nadine; Zeis, Bettina; Gigengack, Ulrike; Dohmen, Elias; Paul, Rüdiger J

    2017-01-01

    Heat stress in ectotherms involves direct (e.g. protein damage) and/or indirect effects (temperature-induced hypoxia and ROS formation), which cause activation of the transcription factors (TF) heat shock factor 1 (HSF-1) and/or hypoxia-inducible factor 1 (HIF-1). The present study focused on the links between stress (ROS) signals, nuclear (n) and cytoplasmic (c) HSF-1/HIF-1 levels, and stress gene expression on mRNA and protein levels (e.g. heat-shock protein 90, HSP90) upon acute heat and ROS (H 2 O 2 ) stress. Acute heat stress (30°C) evoked fluctuations in ROS level. Different feeding regimens, which affected the glutathione (GSH) level, allowed altering the frequency of ROS fluctuations. Other data showed fluctuation frequency to depend also on ROS production rate. The heat-induced slow or fast ROS fluctuations (at high or low GSH levels) evoked slow or fast fluctuations in the levels of nHIF-1α, nHSF-1 and gene products (mRNAs and protein), albeit after different time delays. Time delays to ROS fluctuations were, for example,shorter for nHIF-1α than for nHSF-1 fluctuations, and nHIF-1α fluctuations preceded and nHSF-1 fluctuations followed fluctuations in HSP90 mRNA level. Cytoplasmic TF levels either changed little (cHIF-1α) or showed a steady increase (cHSF-1). Applying acute H 2 O 2 stress (at 20°C) revealed effects on nHIF-1α and mRNA levels, but no significant effects on nHSF-1 level. Transcriptome data additionally showed coordinated fluctuations of mRNA levels upon acute heat stress, involving mRNAs for HSPs and other stress proteins, with all corresponding genes carrying DNA binding motifs for HIF-1 and HSF-1. This study provided evidence for promoting effects of ROS and HIF-1 on early haemoglobin, HIF-1α and HSP90 mRNA expressions upon heat or ROS stress. The increasing cHSF-1 level likely affected nHSF-1 level and later HSP90 mRNA expression. Heat stress evoked ROS fluctuations, with this stress signal forwarded via nHIF-1 and nHSF-1

  15. Co-factors necessary for PPAR mediated transactivation of endogenous target genes

    DEFF Research Database (Denmark)

    Grøntved, Lars; Nielsen, Ronni; Stunnenberg, Henk

    of endogenous target gene in different cell types are elusive. To mutually compare the ability of the PPAR subtypes to activate endogenous target genes in a given cell, PPARa, PPARb/d and PPARg2 were HA tagged and rapidly, equally and synchronously expressed using adenoviral delivery. Within a few hours after...... subtype specific activation of target genes. Accumulating evidence suggests that transcriptional co-factors can function as master regulators for nuclear receptors and impose promoter selectivity. To study co-factor necessity for PPAR mediated transactivation of endogenous target genes, specific co...

  16. Genomewide analysis of TCP transcription factor gene family in ...

    Indian Academy of Sciences (India)

    2014-12-09

    Dec 9, 2014 ... study of a genomewide analysis of apple TCP gene family. These results provide .... synthesize the first-strand cDNA using the PrimeScript First. Strand cDNA ..... only detected in the stem, leaf and fruit (figure 8). When.

  17. Treatment processes and demographic variables as predictors of dropout from trauma-focused cognitive behavioral therapy (TF-CBT) for youth.

    Science.gov (United States)

    Yasinski, Carly; Hayes, Adele M; Alpert, Elizabeth; McCauley, Thomas; Ready, C Beth; Webb, Charles; Deblinger, Esther

    2018-05-22

    Premature dropout is a significant concern in trauma-focused psychotherapy for youth. Previous studies have primarily examined pre-treatment demographic and symptom-related predictors of dropout, but few consistent findings have been reported. The current study examined demographic, symptom, and in-session process variables as predictors of dropout from Trauma-Focused Cognitive Behavioral Therapy (TF-CBT) for youth. Participants were a diverse sample of Medicaid-eligible youth (ages 7-17; n = 108) and their nonoffending caregivers (n = 86), who received TF-CBT through an effectiveness study in a community setting. In-session process variables were coded from audio-recorded sessions, and these and pre-treatment demographic variables and symptom levels were examined as predictors of dropout prior to receiving an adequate dose of TF-CBT (parents or relatives. No other demographic or symptom-related factors predicted dropout. These findings highlight the importance of addressing avoidance and therapeutic relationship difficulties in early sessions of TF-CBT to help reduce dropout, and they have implications for improving efforts to disseminate evidence-based trauma-focused treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    Science.gov (United States)

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-03-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation.

  19. Exploring the bZIP transcription factor regulatory network in Neurospora crassa.

    Science.gov (United States)

    Tian, Chaoguang; Li, Jingyi; Glass, N Louise

    2011-03-01

    Transcription factors (TFs) are key nodes of regulatory networks in eukaryotic organisms, including filamentous fungi such as Neurospora crassa. The 178 predicted DNA-binding TFs in N. crassa are distributed primarily among six gene families, which represent an ancient expansion in filamentous ascomycete genomes; 98 TF genes show detectable expression levels during vegetative growth of N. crassa, including 35 that show a significant difference in expression level between hyphae at the periphery versus hyphae in the interior of a colony. Regulatory networks within a species genome include paralogous TFs and their respective target genes (TF regulon). To investigate TF network evolution in N. crassa, we focused on the basic leucine zipper (bZIP) TF family, which contains nine members. We performed baseline transcriptional profiling during vegetative growth of the wild-type and seven isogenic, viable bZIP deletion mutants. We further characterized the regulatory network of one member of the bZIP family, NCU03905. NCU03905 encodes an Ap1-like protein (NcAp-1), which is involved in resistance to multiple stress responses, including oxidative and heavy metal stress. Relocalization of NcAp-1 from the cytoplasm to the nucleus was associated with exposure to stress. A comparison of the NcAp-1 regulon with Ap1-like regulons in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Aspergillus fumigatus showed both conservation and divergence. These data indicate how N. crassa responds to stress and provide information on pathway evolution.

  20. Epidermal growth factor gene is a newly identified candidate gene for gout

    OpenAIRE

    Lin Han; Chunwei Cao; Zhaotong Jia; Shiguo Liu; Zhen Liu; Ruosai Xin; Can Wang; Xinde Li; Wei Ren; Xuefeng Wang; Changgui Li

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 re...

  1. Medusa structure of the gene regulatory network: dominance of transcription factors in cancer subtype classification.

    Science.gov (United States)

    Guo, Yuchun; Feng, Ying; Trivedi, Niraj S; Huang, Sui

    2011-05-01

    Gene expression profiles consisting of ten thousands of transcripts are used for clustering of tissue, such as tumors, into subtypes, often without considering the underlying reason that the distinct patterns of expression arise because of constraints in the realization of gene expression profiles imposed by the gene regulatory network. The topology of this network has been suggested to consist of a regulatory core of genes represented most prominently by transcription factors (TFs) and microRNAs, that influence the expression of other genes, and of a periphery of 'enslaved' effector genes that are regulated but not regulating. This 'medusa' architecture implies that the core genes are much stronger determinants of the realized gene expression profiles. To test this hypothesis, we examined the clustering of gene expression profiles into known tumor types to quantitatively demonstrate that TFs, and even more pronounced, microRNAs, are much stronger discriminators of tumor type specific gene expression patterns than a same number of randomly selected or metabolic genes. These findings lend support to the hypothesis of a medusa architecture and of the canalizing nature of regulation by microRNAs. They also reveal the degree of freedom for the expression of peripheral genes that are less stringently associated with a tissue type specific global gene expression profile.

  2. Gene Ranking of RNA-Seq Data via Discriminant Non-Negative Matrix Factorization.

    Science.gov (United States)

    Jia, Zhilong; Zhang, Xiang; Guan, Naiyang; Bo, Xiaochen; Barnes, Michael R; Luo, Zhigang

    2015-01-01

    RNA-sequencing is rapidly becoming the method of choice for studying the full complexity of transcriptomes, however with increasing dimensionality, accurate gene ranking is becoming increasingly challenging. This paper proposes an accurate and sensitive gene ranking method that implements discriminant non-negative matrix factorization (DNMF) for RNA-seq data. To the best of our knowledge, this is the first work to explore the utility of DNMF for gene ranking. When incorporating Fisher's discriminant criteria and setting the reduced dimension as two, DNMF learns two factors to approximate the original gene expression data, abstracting the up-regulated or down-regulated metagene by using the sample label information. The first factor denotes all the genes' weights of two metagenes as the additive combination of all genes, while the second learned factor represents the expression values of two metagenes. In the gene ranking stage, all the genes are ranked as a descending sequence according to the differential values of the metagene weights. Leveraging the nature of NMF and Fisher's criterion, DNMF can robustly boost the gene ranking performance. The Area Under the Curve analysis of differential expression analysis on two benchmarking tests of four RNA-seq data sets with similar phenotypes showed that our proposed DNMF-based gene ranking method outperforms other widely used methods. Moreover, the Gene Set Enrichment Analysis also showed DNMF outweighs others. DNMF is also computationally efficient, substantially outperforming all other benchmarked methods. Consequently, we suggest DNMF is an effective method for the analysis of differential gene expression and gene ranking for RNA-seq data.

  3. Transferrin receptor molecular imaging: targeting for diagnosis and monitoring of gene delivery

    International Nuclear Information System (INIS)

    Eun-Mi Kim; Hwan-Jeong Jeong; Jin-Hee Kim; Chang-Guhn Kim

    2004-01-01

    Objective: In this study, we investigated the targetability of Tf conjugated compounds to Tf-R expressed on cancer cells for detection and diagnosis and the usefulness of gamma probe-targeting delivery system on monitoring whether the gene complex bind to the cells specifically. Methods: For the detection and diagnosis of Tf-R positive cancer cells, Tf-chitosan conjugates were synthesized as previously described by Kircheis et al with some modifications. Succinimidyl 6-hydrazino nicotinate hydrochloride (HYNIC) was bound to Tf-chitosan conjugates. HYNIC-Tf-chitosan conjugates were labelled with 99mTc. In the monitoring of Tf-R specific gene delivery system, we used the HYNIC-Tf conjugated dendrimer. For tumor model, 5- to 6-week-old female BALB/c nude mice were injected subcutaneously in the left thigh with Ramos cells (human Burkitt's lymphoma). The gamma imagings were acquired after administration of 99mTc HYNIC-Tf conjugates and 99mTc HYNIC-Tf-DNA polyplexes via the tail vein of tumor bearing nude mice at 10, 30, 60, 90, and 120 min. To compare the image acquired with HYNIC-Tf conjugate, Ga-67 study was performed. To certify the expression of delivered gene via DNA polyplexes, 2 days after gene complex injection we inspected the expression of GFP in dissected tumor tissue. Results: Radiolabeling yields of both HYNIC-Tf conjugate and HYNIC-Tf-dendrimer gene complex were above 90% until 12hr. Uptake in the Ramos model of 99mTc HYNIC-Tf conjugate showed higher than those of Ga-67. A few minutes after injection 99mTc HYNIC-Tf conjugate localized mainly in the circulation (heart), kidneys, and tumor. At later times, radioactivity in tumor increased until 90 min. Pharmacokinetics of Ga-67 were different from those of 99mTc HYNIC-Tf conjugate. Tumor to nontumor ratio of Ga-67 was approximately 2 but in case of 99mTc HYNIC-Tf conjugate showed until 5. In Ramos lymphoma model, 99mTc HYNIC-Tf-DNA polyplexes accumulated the tumor site, and the gene expression of 99m

  4. Local gene regulation details a recognition code within the LacI transcriptional factor family.

    Directory of Open Access Journals (Sweden)

    Francisco M Camas

    2010-11-01

    Full Text Available The specific binding of regulatory proteins to DNA sequences exhibits no clear patterns of association between amino acids (AAs and nucleotides (NTs. This complexity of protein-DNA interactions raises the question of whether a simple set of wide-coverage recognition rules can ever be identified. Here, we analyzed this issue using the extensive LacI family of transcriptional factors (TFs. We searched for recognition patterns by introducing a new approach to phylogenetic footprinting, based on the pervasive presence of local regulation in prokaryotic transcriptional networks. We identified a set of specificity correlations--determined by two AAs of the TFs and two NTs in the binding sites--that is conserved throughout a dominant subgroup within the family regardless of the evolutionary distance, and that act as a relatively consistent recognition code. The proposed rules are confirmed with data of previous experimental studies and by events of convergent evolution in the phylogenetic tree. The presence of a code emphasizes the stable structural context of the LacI family, while defining a precise blueprint to reprogram TF specificity with many practical applications.

  5. Inflammatory Macrophage Phenotype in BTBR T+tf/J Mice

    Directory of Open Access Journals (Sweden)

    Paul eAshwood

    2013-09-01

    Full Text Available Although autism is a behaviorally defined disorder, many studies report an association with increased pro-inflammatory cytokine production. Recent characterization of the BTBR T+tf/J (BTBR inbred mouse strain has revealed several behavioral characteristics including social deficits, repetitive behavior, and atypical vocalizations which may be relevant to autism. We therefore hypothesized that asocial BTBR mice, which exhibit autism-like behaviors, may have an inflammatory immune profile similar to that observed in children with autism. The objectives of this study were to characterize the myeloid immune profile of BTBR mice and to explore their associations with autism-relevant behaviors. C57BL/6J (C57 mice and BTBR mice were tested for social interest and repetitive self-grooming behavior. Cytokine production was measured in bone-marrow derived macrophages incubated for 24 hours in either growth media alone, LPS, IL-4/ LPS, or IFNγ/ LPS to ascertain any M1/M2 skewing. After LPS stimulation, BTBR macrophages produced higher levels of IL-6, MCP-1, and MIP-1α and lower IL-10 (p<0.01 that C57 mice, suggesting an exaggerated inflammatory profile. After exposure to IL-4/LPS BTBR macrophages produced less IL-10 than C57 macrophages and more IL-12p40 (p<0.01 suggesting poor M2 polarization. Levels of IL-12(p70 (p<0.05 were higher in BTBR macrophages after IFNγ/LPS stimulation, suggesting enhanced M1 polarization. We further observed a positive correlation between grooming frequency, and production of IL-12(p40, IL-12p70, IL-6, and TNFα (p<0.05 after treatment with IFNγ/LPS across both strains. Collectively, these data suggest that the asocial BTBR mouse strain exhibits a more inflammatory, or M1, macrophage profile in comparison to social C57 strain. We have further demonstrated a relationship between this relative increase in inflammation and repetitive grooming behavior, which may have relevance to repetitive and stereotyped behavior of autism.

  6. Convergent evolution of RFX transcription factors and ciliary genes predated the origin of metazoans

    Directory of Open Access Journals (Sweden)

    Chen Nansheng

    2010-05-01

    Full Text Available Abstract Background Intraflagellar transport (IFT genes, which are critical for the development and function of cilia and flagella in metazoans, are tightly regulated by the Regulatory Factor X (RFX transcription factors (TFs. However, how and when their evolutionary relationship was established remains unknown. Results We have identified evidence suggesting that RFX TFs and IFT genes evolved independently and their evolution converged before the first appearance of metazoans. Both ciliary genes and RFX TFs exist in all metazoans as well as some unicellular eukaryotes. However, while RFX TFs and IFT genes are found simultaneously in all sequenced metazoan genomes, RFX TFs do not co-exist with IFT genes in most pre-metazoans and thus do not regulate them in these organisms. For example, neither the budding yeast nor the fission yeast possesses cilia although both have well-defined RFX TFs. Conversely, most unicellular eukaryotes, including the green alga Chlamydomonas reinhardtii, have typical cilia and well conserved IFT genes but lack RFX TFs. Outside of metazoans, RFX TFs and IFT genes co-exist only in choanoflagellates including M. brevicollis, and only one fungus Allomyces macrogynus of the 51 sequenced fungus genomes. M. brevicollis has two putative RFX genes and a full complement of ciliary genes. Conclusions The evolution of RFX TFs and IFT genes were independent in pre-metazoans. We propose that their convergence in evolution, or the acquired transcriptional regulation of IFT genes by RFX TFs, played a pivotal role in the establishment of metazoan.

  7. BOREAS TF-06 SSA-YA Surface Energy Flux and Meteorological Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Contains meteorology data collected at the SSA-YA tower flux site by the TF6 group. These data were reported at 10 minute intervals. The flux and ancillary...

  8. BOREAS TF-02 SSA-OA Tethersonde Meteorological and Ozone Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The BOREAS TF-02 team collected various trace gas and energy flux data along with meteorological parameters at the SSA-OA site. This data set contains...

  9. BOREAS TF-02 SSA-OA Tethersonde Meteorological and Ozone Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The BOREAS TF-02 team collected various trace gas and energy flux data along with meteorological parameters at the SSA-OA site. This data set contains meteorological...

  10. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  11. Evaluation and enhancement of COBRA-TF efficiency for LWR calculations

    International Nuclear Information System (INIS)

    Cuervo, Diana; Avramova, Maria; Ivanov, Kostadin; Miro, Rafael

    2006-01-01

    Detailed representations of the reactor core generate computational meshes with a high number of cells where the fluid dynamics equations must be solved. An exhaustive analysis of the CPU times needed by the thermal-hydraulic subchannel code COBRA-TF for different stages in the solution process has revealed that the solution of the linear system of pressure equations is the most time consuming process. To improve code efficiency two optimized matrix solvers, Super LU library and Krylov non-stationary iterative methods have been implemented in the code and their performance has been tested using a suite of five test cases. The results of performed comparative analyses have demonstrated that for large cases, the implementation of the Bi-Conjugate Gradient Stabilized (Bi-CGSTAB) Krylov method combined with the incomplete LU factorization with dual truncation strategy (ILUT) pre-conditioner reduced the time used by the code for the solution of the pressure matrix by a factor of 20. Both new solvers converge smoothly regardless of the nature of simulated cases and the mesh structures and improve the stability and accuracy of results compared to the classic Gauss-Seidel iterative method. The obtained results indicate that the direct inversion method is the best option for small cases

  12. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier.

    Science.gov (United States)

    Couch, Jessica A; Yu, Y Joy; Zhang, Yin; Tarrant, Jacqueline M; Fuji, Reina N; Meilandt, William J; Solanoy, Hilda; Tong, Raymond K; Hoyte, Kwame; Luk, Wilman; Lu, Yanmei; Gadkar, Kapil; Prabhu, Saileta; Ordonia, Benjamin A; Nguyen, Quyen; Lin, Yuwen; Lin, Zhonghua; Balazs, Mercedesz; Scearce-Levie, Kimberly; Ernst, James A; Dennis, Mark S; Watts, Ryan J

    2013-05-01

    Bispecific antibodies using the transferrin receptor (TfR) have shown promise for boosting antibody uptake in brain. Nevertheless, there are limited data on the therapeutic properties including safety liabilities that will enable successful development of TfR-based therapeutics. We evaluate TfR/BACE1 bispecific antibody variants in mouse and show that reducing TfR binding affinity improves not only brain uptake but also peripheral exposure and the safety profile of these antibodies. We identify and seek to address liabilities of targeting TfR with antibodies, namely, acute clinical signs and decreased circulating reticulocytes observed after dosing. By eliminating Fc effector function, we ameliorated the acute clinical signs and partially rescued a reduction in reticulocytes. Furthermore, we show that complement mediates a residual decrease in reticulocytes observed after Fc effector function is eliminated. These data raise important safety concerns and potential mitigation strategies for the development of TfR-based therapies that are designed to cross the blood-brain barrier.

  13. Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Tyrer, Jonathan P; Li, Qiyuan

    2015-01-01

    BACKGROUND: Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified...... in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). RESULTS: Gene set enrichment analysis...

  14. The association of environmental, individual factors, and dopamine pathway gene variation with smoking cessation.

    Science.gov (United States)

    Li, Suyun; Wang, Qiang; Pan, Lulu; Yang, Xiaorong; Li, Huijie; Jiang, Fan; Zhang, Nan; Han, Mingkui; Jia, Chongqi

    2017-09-01

    This study aimed to examine whether dopamine (DA) pathway gene variation were associated with smoking cessation, and compare the relative importance of infulence factors on smoking cessation. Participants were recruited from 17 villages of Shandong Province, China. Twenty-five single nucleotide polymorphisms in 8 DA pathway genes were genotyped. Weighted gene score of each gene was used to analyze the whole gene effect. Logistic regression was used to calculate odds ratios (OR) of the total gene score for smoking cessation. Dominance analysis was employed to compare the relative importance of individual, heaviness of smoking, psychological and genetic factors on smoking cessation. 415 successful spontaneous smoking quitters served as the cases, and 404 unsuccessful quitters served as the controls. A significant negative association of total DA pathway gene score and smoking cessation was observed (p smoking cessation was heaviness of smoking score (42%), following by individual (40%), genetic (10%) and psychological score (8%). In conclusion, although the DA pathway gene variation was significantly associated with successful smoking cessation, heaviness of smoking and individual factors had bigger effect than genetic factors on smoking cessation.

  15. Step out of the groove : epigenetic gene control systems and engineered transcription factors

    NARCIS (Netherlands)

    Verschure, P.J.; Visser, A.E.; Rots, M.G.

    2006-01-01

    At the linear DNA level, gene activity is believed to be driven by binding of transcription factors, which subsequently recruit the RNA polymerase to the gene promoter region. However, it has become clear that transcriptional activation involves large complexes of many different proteins, which not

  16. Shared control of gene expression in bacteria by transcription factors and global physiology of the cell.

    NARCIS (Netherlands)

    Berthoumieux, S.; Jong, H. de; Baptist, G.; Pinel, C.; Ranquet, C.; Ropers, D.; Geiselmann, J.

    2013-01-01

    Gene expression is controlled by the joint effect of (i) the global physiological state of the cell, in particular the activity of the gene expression machinery, and (ii) DNA-binding transcription factors and other specific regulators. We present a model-based approach to distinguish between these

  17. WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes

    Directory of Open Access Journals (Sweden)

    Bol John F

    2011-05-01

    Full Text Available Abstract Background Increased defense against a variety of pathogens in plants is achieved through activation of a mechanism known as systemic acquired resistance (SAR. The broad-spectrum resistance brought about by SAR is mediated through salicylic acid (SA. An important step in SA biosynthesis in Arabidopsis is the conversion of chorismate to isochorismate through the action of isochorismate synthase, encoded by the ICS1 gene. Also AVRPPHB SUSCEPTIBLE 3 (PBS3 plays an important role in SA metabolism, as pbs3 mutants accumulate drastically reduced levels of SA-glucoside, a putative storage form of SA. Bioinformatics analysis previously performed by us identified WRKY28 and WRKY46 as possible regulators of ICS1 and PBS3. Results Expression studies with ICS1 promoter::β-glucuronidase (GUS genes in Arabidopsis thaliana protoplasts cotransfected with 35S::WRKY28 showed that over expression of WRKY28 resulted in a strong increase in GUS expression. Moreover, qRT-PCR analyses indicated that the endogenous ICS1 and PBS3 genes were highly expressed in protoplasts overexpressing WRKY28 or WRKY46, respectively. Electrophoretic mobility shift assays indentified potential WRKY28 binding sites in the ICS1 promoter, positioned -445 and -460 base pairs upstream of the transcription start site. Mutation of these sites in protoplast transactivation assays showed that these binding sites are functionally important for activation of the ICS1 promoter. Chromatin immunoprecipitation assays with haemagglutinin-epitope-tagged WRKY28 showed that the region of the ICS1 promoter containing the binding sites at -445 and -460 was highly enriched in the immunoprecipitated DNA. Conclusions The results obtained here confirm results from our multiple microarray co-expression analyses indicating that WRKY28 and WRKY46 are transcriptional activators of ICS1 and PBS3, respectively, and support this in silico screening as a powerful tool for identifying new components of stress

  18. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis

    Directory of Open Access Journals (Sweden)

    Mukesh Meena

    2017-08-01

    Full Text Available Alternaria is an important fungus to study due to their different life style from saprophytes to endophytes and a very successful fungal pathogen that causes diseases to a number of economically important crops. Alternaria species have been well-characterized for the production of different host-specific toxins (HSTs and non-host specific toxins (nHSTs which depend upon their physiological and morphological stages. The pathogenicity of Alternaria species depends on host susceptibility or resistance as well as quantitative production of HSTs and nHSTs. These toxins are chemically low molecular weight secondary metabolites (SMs. The effects of toxins are mainly on different parts of cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc. Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin, and zinniol. HSTs that act in very low concentrations affect only certain plant varieties or genotype and play a role in determining the host range of specificity of plant pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-toxins which are named by their host specificity and these toxins are classified into different family groups. The HSTs are differentiated on the basis of bio-statistical and other molecular analyses. All these toxins have different mode of action, biochemical reactions and signaling mechanisms to cause diseases. Different species of Alternaria produced toxins which reveal its biochemical and genetic effects on itself as well as on its host cells tissues. The genes responsible for the production of HSTs are found on the conditionally dispensable chromosomes (CDCs which have been well characterized. Different bio-statistical methods like basic local alignment search tool (BLAST data analysis used for the annotation of gene prediction, pathogenicity-related genes may provide surprising knowledge in present and future.

  19. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P; Khan, Sohail R; Futcher, Bruce; Leatherwood, Janet K

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  20. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest.

    Science.gov (United States)

    Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang

    2015-08-20

    Tropical rainforests cover over 50% of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P rainforest. Soil available N could be the key factor in shaping the soil microbial functional gene structure and metabolic potential.

  1. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression. PMID:22238674

  2. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Chen

    Full Text Available In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  3. Comparative analysis of function and interaction of transcription factors in nematodes: Extensive conservation of orthology coupled to rapid sequence evolution

    Directory of Open Access Journals (Sweden)

    Singh Rama S

    2008-08-01

    Full Text Available Abstract Background Much of the morphological diversity in eukaryotes results from differential regulation of gene expression in which transcription factors (TFs play a central role. The nematode Caenorhabditis elegans is an established model organism for the study of the roles of TFs in controlling the spatiotemporal pattern of gene expression. Using the fully sequenced genomes of three Caenorhabditid nematode species as well as genome information from additional more distantly related organisms (fruit fly, mouse, and human we sought to identify orthologous TFs and characterized their patterns of evolution. Results We identified 988 TF genes in C. elegans, and inferred corresponding sets in C. briggsae and C. remanei, containing 995 and 1093 TF genes, respectively. Analysis of the three gene sets revealed 652 3-way reciprocal 'best hit' orthologs (nematode TF set, approximately half of which are zinc finger (ZF-C2H2 and ZF-C4/NHR types and HOX family members. Examination of the TF genes in C. elegans and C. briggsae identified the presence of significant tandem clustering on chromosome V, the majority of which belong to ZF-C4/NHR family. We also found evidence for lineage-specific duplications and rapid evolution of many of the TF genes in the two species. A search of the TFs conserved among nematodes in Drosophila melanogaster, Mus musculus and Homo sapiens revealed 150 reciprocal orthologs, many of which are associated with important biological processes and human diseases. Finally, a comparison of the sequence, gene interactions and function indicates that nematode TFs conserved across phyla exhibit significantly more interactions and are enriched in genes with annotated mutant phenotypes compared to those that lack orthologs in other species. Conclusion Our study represents the first comprehensive genome-wide analysis of TFs across three nematode species and other organisms. The findings indicate substantial conservation of transcription

  4. Factors affecting the gene expression of in vitro cultured human preimplantation embryos

    NARCIS (Netherlands)

    Mantikou, E.; Jonker, M.J.; Wong, K.M.; van Montfoort, A.P.A.; de Jong, M.; Breit, T.M.; Repping, S.; Mastenbroek, S.

    2016-01-01

    STUDY QUESTION: What is the relative effect of common environmental and biological factors on transcriptome changes during human preimplantation development? SUMMARY ANSWER: Developmental stage and maternal age had a larger effect on the global gene expression profile of human preimplantation

  5. The Anti-Adipogenic Potential of COUP-TFII Is Mediated by Downregulation of the Notch Target Gene Hey1.

    Directory of Open Access Journals (Sweden)

    Ilse Scroyen

    Full Text Available Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII belongs to the steroid/thyroid hormone receptor superfamily and may contribute to the pathogenesis of obesity. It has not conclusively been established, however, whether its role is pro- or anti-adipogenic.Gene silencing of Coup-tfII in 3T3-F442A preadipocytes resulted in enhanced differentiation into mature adipocytes. This was associated with upregulation of the Notch signaling target gene Hey1. A functional role of Hey1 was confirmed by gene silencing in 3T3-F442A preadipocytes, resulting in impaired differentiation. In vivo, de novo fat pad formation in NUDE mice was significantly stimulated following injection of preadipocytes with Coup-tfII gene silencing, but impaired with Hey1 gene silencing. Moreover, expression of Coup-tfII was lower and that of Hey1 higher in isolated adipocytes of obese as compared to lean adipose tissue.These in vitro and in vivo data support an anti-adipogenic role of COUP-TFII via downregulating the Notch signaling target gene Hey1.

  6. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes.

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar Rai

    2017-12-01

    Full Text Available Retroviruses and Long Terminal Repeat (LTR-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements.

  7. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes.

    Science.gov (United States)

    Rai, Sudhir Kumar; Sangesland, Maya; Lee, Michael; Esnault, Caroline; Cui, Yujin; Chatterjee, Atreyi Ghatak; Levin, Henry L

    2017-12-01

    Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements.

  8. Cell-type specificity of ChIP-predicted transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Håndstad Tony

    2012-08-01

    Full Text Available Abstract Background Context-dependent transcription factor (TF binding is one reason for differences in gene expression patterns between different cellular states. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identifies genome-wide TF binding sites for one particular context—the cells used in the experiment. But can such ChIP-seq data predict TF binding in other cellular contexts and is it possible to distinguish context-dependent from ubiquitous TF binding? Results We compared ChIP-seq data on TF binding for multiple TFs in two different cell types and found that on average only a third of ChIP-seq peak regions are common to both cell types. Expectedly, common peaks occur more frequently in certain genomic contexts, such as CpG-rich promoters, whereas chromatin differences characterize cell-type specific TF binding. We also find, however, that genotype differences between the cell types can explain differences in binding. Moreover, ChIP-seq signal intensity and peak clustering are the strongest predictors of common peaks. Compared with strong peaks located in regions containing peaks for multiple transcription factors, weak and isolated peaks are less common between the cell types and are less associated with data that indicate regulatory activity. Conclusions Together, the results suggest that experimental noise is prevalent among weak peaks, whereas strong and clustered peaks represent high-confidence binding events that often occur in other cellular contexts. Nevertheless, 30-40% of the strongest and most clustered peaks show context-dependent regulation. We show that by combining signal intensity with additional data—ranging from context independent information such as binding site conservation and position weight matrix scores to context dependent chromatin structure—we can predict whether a ChIP-seq peak is likely to be present in other cellular contexts.

  9. The Role of Genome Accessibility in Transcription Factor Binding in Bacteria.

    Directory of Open Access Journals (Sweden)

    Antonio L C Gomes

    2016-04-01

    Full Text Available ChIP-seq enables genome-scale identification of regulatory regions that govern gene expression. However, the biological insights generated from ChIP-seq analysis have been limited to predictions of binding sites and cooperative interactions. Furthermore, ChIP-seq data often poorly correlate with in vitro measurements or predicted motifs, highlighting that binding affinity alone is insufficient to explain transcription factor (TF-binding in vivo. One possibility is that binding sites are not equally accessible across the genome. A more comprehensive biophysical representation of TF-binding is required to improve our ability to understand, predict, and alter gene expression. Here, we show that genome accessibility is a key parameter that impacts TF-binding in bacteria. We developed a thermodynamic model that parameterizes ChIP-seq coverage in terms of genome accessibility and binding affinity. The role of genome accessibility is validated using a large-scale ChIP-seq dataset of the M. tuberculosis regulatory network. We find that accounting for genome accessibility led to a model that explains 63% of the ChIP-seq profile variance, while a model based in motif score alone explains only 35% of the variance. Moreover, our framework enables de novo ChIP-seq peak prediction and is useful for inferring TF-binding peaks in new experimental conditions by reducing the need for additional experiments. We observe that the genome is more accessible in intergenic regions, and that increased accessibility is positively correlated with gene expression and anti-correlated with distance to the origin of replication. Our biophysically motivated model provides a more comprehensive description of TF-binding in vivo from first principles towards a better representation of gene regulation in silico, with promising applications in systems biology.

  10. oPOSSUM-3: advanced analysis of regulatory motif over-representation across genes or ChIP-Seq datasets.

    Science.gov (United States)

    Kwon, Andrew T; Arenillas, David J; Worsley Hunt, Rebecca; Wasserman, Wyeth W

    2012-09-01

    oPOSSUM-3 is a web-accessible software system for identification of over-represented transcription factor binding sites (TFBS) and TFBS families in either DNA sequences of co-expressed genes or sequences generated from high-throughput methods, such as ChIP-Seq. Validation of the system with known sets of co-regulated genes and published ChIP-Seq data demonstrates the capacity for oPOSSUM-3 to identify mediating transcription factors (TF) for co-regulated genes or co-recovered sequences. oPOSSUM-3 is available at http://opossum.cisreg.ca.

  11. Analysis of the structural genes encoding M-factor in the fission yeast Schizosaccharomyces pombe: identification of a third gene, mfm3

    DEFF Research Database (Denmark)

    Kjaerulff, S; Davey, William John; Nielsen, O

    1994-01-01

    We previously identified two genes, mfm1 and mfm2, with the potential to encode the M-factor mating pheromone of the fission yeast Schizosaccharomyces pombe (J. Davey, EMBO J. 11:951-960, 1992), but further analysis revealed that a mutant strain lacking both genes still produced active M-factor. ......We previously identified two genes, mfm1 and mfm2, with the potential to encode the M-factor mating pheromone of the fission yeast Schizosaccharomyces pombe (J. Davey, EMBO J. 11:951-960, 1992), but further analysis revealed that a mutant strain lacking both genes still produced active M...... that is not rescued by addition of exogenous M-factor. A mutational analysis reveals that all three mfm genes contribute to the production of M-factor. Their transcription is limited to M cells and requires the mat1-Mc and ste11 gene products. Each gene is induced when the cells are starved of nitrogen and further...

  12. Placental gene expression of the placental growth factor (PlGF) in intrauterine growth restriction.

    Science.gov (United States)

    Joó, József Gábor; Rigó, János; Börzsönyi, Balázs; Demendi, Csaba; Kornya, László

    2017-06-01

    We analyzed changes in gene expression of placental growth factor (PIGF) in human placental samples obtained postpartum from pregnancies with IUGR. During a twelve-month study period representing the calendar year of 2012 placental samples from 101 pregnancies with IUGR and from 140 normal pregnancies were obtained for analysis of a potential difference in PIGF gene expression. There was no significant difference in gene activity of the PIGF gene between the IUGR versus normal pregnancy groups (Ln2 α : 0.92; p intrauterine growth restriction PIGF expression does show a significant decrease indicating its potential role in the profound defect in angiogenesis in these cases.

  13. Molecular cloning of a human gene that is a member of the nerve growth factor family

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.R.; Reichardt, L.F. (Howard Hughes Medical Institute, San Francisco, CA (USA))

    1990-10-01

    Cell death within the developing vertebrate nervous system is regulated in part by interactions between neurons and their innervation targets that are mediated by neurotrophic factors. These factors also appear to have a role in the maintenance of the adult nervous system. Two neurotrophic factors, nerve growth factor and brain-derived neurotrophic factor, share substantial amino acid sequence identity. The authors have used a screen that combines polymerase chain reaction amplification of genomic DNA and low-stringency hybridization with degenerate oligonucleotides to isolate human BDNF and a human gene, neurotrophin-3, that is closely related to both nerve growth factor and brain-derived neurotrophic factor. mRNA products of the brain-derived neurotrophic factor and neurotrophin-3 genes were detected in the adult human brain, suggesting that these proteins are involved in the maintenance of the adult nervous system. Neurotrophin-3 is also expected to function in embryonic neural development.

  14. fibroblast growth factor, MTDH/Astrocyte elevated gene-1

    African Journals Online (AJOL)

    2012-12-05

    Dec 5, 2012 ... Expression of basic FGF, MTDH/AEG-1, APC, matrix metalloproteinase 9, and COX-2 markers in prostate carcinomas many genetic and epigenetic alterations have been detected in human PC.[1]. Basic fibroblast growth factor (bFGF), also known as. FGF2 is a member of the FGF family, a group of more.

  15. Risk factors for motor neuron diseases : genes, environment and lifestyle

    NARCIS (Netherlands)

    Sutedja, N.A.

    2010-01-01

    The main focus of this thesis is to identify susceptibility factors in diseases affecting the motor neuron: both motor neuron disease (MND), in which primarily the cell body is affected, and multifocal motor neuropathy (MMN), in which primarily the axon is affected, are covered. Due to its

  16. Robust Nonnegative Matrix Factorization via Joint Graph Laplacian and Discriminative Information for Identifying Differentially Expressed Genes

    Directory of Open Access Journals (Sweden)

    Ling-Yun Dai

    2017-01-01

    Full Text Available Differential expression plays an important role in cancer diagnosis and classification. In recent years, many methods have been used to identify differentially expressed genes. However, the recognition rate and reliability of gene selection still need to be improved. In this paper, a novel constrained method named robust nonnegative matrix factorization via joint graph Laplacian and discriminative information (GLD-RNMF is proposed for identifying differentially expressed genes, in which manifold learning and the discriminative label information are incorporated into the traditional nonnegative matrix factorization model to train the objective matrix. Specifically, L2,1-norm minimization is enforced on both the error function and the regularization term which is robust to outliers and noise in gene data. Furthermore, the multiplicative update rules and the details of convergence proof are shown for the new model. The experimental results on two publicly available cancer datasets demonstrate that GLD-RNMF is an effective method for identifying differentially expressed genes.

  17. Molecular Evolution and Genetic Variation of G2-Like Transcription Factor Genes in Maize.

    Directory of Open Access Journals (Sweden)

    Fang Liu

    Full Text Available The productivity of maize (Zea mays L. depends on the development of chloroplasts, and G2-like transcription factors play a central role in regulating chloroplast development. In this study, we identified 59 G2-like genes in the B73 maize genome and systematically analyzed these genes at the molecular and evolutionary levels. Based on gene structure character, motif compositions and phylogenetic analysis, maize G2-like genes (ZmG1- ZmG59 were divided into seven groups (I-VII. By synteny analysis, 18 collinear gene pairs and strongly conserved microsyntny among regions hosting G2-like genes across maize and sorghum were found. Here, we showed that the vast majority of ZmG gene duplications resulted from whole genome duplication events rather than tandem duplications. After gene duplication events, some ZmG genes were silenced. The functions of G2-like genes were multifarious and most genes that are expressed in green tissues may relate to maize photosynthesis. The qRT-PCR showed that the expression of these genes was sensitive to low temperature and drought. Furthermore, we analyzed differences of ZmGs specific to cultivars in temperate and tropical regions at the population level. Interestingly, the single nucleotide polymorphism (SNP analysis revealed that nucleotide polymorphism associated with different temperature zones. Above all, G2-like genes were highly conserved during evolution, but polymorphism could be caused due to a different geographical location. Moreover, G2-like genes might be related to cold and drought stresses.

  18. In Vivo Gene Therapy of Hemophilia B: Sustained Partial Correction in Factor IX-Deficient Dogs

    Science.gov (United States)

    Kay, Mark A.; Rothenberg, Steven; Landen, Charles N.; Bellinger, Dwight A.; Leland, Frances; Toman, Carol; Finegold, Milton; Thompson, Arthur R.; Read, M. S.; Brinkhous, Kenneth M.; Woo, Savio L. C.

    1993-10-01

    The liver represents a model organ for gene therapy. A method has been developed for hepatic gene transfer in vivo by the direct infusion of recombinant retroviral vectors into the portal vasculature, which results in the persistent expression of exogenous genes. To determine if these technologies are applicable for the treatment of hemophilia B patients, preclinical efficacy studies were done in a hemophilia B dog model. When the canine factor IX complementary DNA was transduced directly into the hepatocytes of affected dogs in vivo, the animals constitutively expressed low levels of canine factor IX for more than 5 months. Persistent expression of the clotting. factor resulted in reductions of whole blood clotting and partial thromboplastin times of the treated animals. Thus, long-term treatment of hemophilia B patients may be feasible by direct hepatic gene therapy in vivo.

  19. EBF factors drive expression of multiple classes of target genes governing neuronal development.

    Science.gov (United States)

    Green, Yangsook S; Vetter, Monica L

    2011-04-30

    Early B cell factor (EBF) family members are transcription factors known to have important roles in several aspects of vertebrate neurogenesis, including commitment, migration and differentiation. Knowledge of how EBF family members contribute to neurogenesis is limited by a lack of detailed understanding of genes that are transcriptionally regulated by these factors. We performed a microarray screen in Xenopus animal caps to search for targets of EBF transcriptional activity, and identified candidate targets with multiple roles, including transcription factors of several classes. We determined that, among the most upregulated candidate genes with expected neuronal functions, most require EBF activity for some or all of their expression, and most have overlapping expression with ebf genes. We also found that the candidate target genes that had the most strongly overlapping expression patterns with ebf genes were predicted to be direct transcriptional targets of EBF transcriptional activity. The identification of candidate targets that are transcription factor genes, including nscl-1, emx1 and aml1, improves our understanding of how EBF proteins participate in the hierarchy of transcription control during neuronal development, and suggests novel mechanisms by which EBF activity promotes migration and differentiation. Other candidate targets, including pcdh8 and kcnk5, expand our knowledge of the types of terminal differentiated neuronal functions that EBF proteins regulate.

  20. EBF factors drive expression of multiple classes of target genes governing neuronal development

    Directory of Open Access Journals (Sweden)

    Vetter Monica L

    2011-04-01

    Full Text Available Abstract Background Early B cell factor (EBF family members are transcription factors known to have important roles in several aspects of vertebrate neurogenesis, including commitment, migration and differentiation. Knowledge of how EBF family members contribute to neurogenesis is limited by a lack of detailed understanding of genes that are transcriptionally regulated by these factors. Results We performed a microarray screen in Xenopus animal caps to search for targets of EBF transcriptional activity, and identified candidate targets with multiple roles, including transcription factors of several classes. We determined that, among the most upregulated candidate genes with expected neuronal functions, most require EBF activity for some or all of their expression, and most have overlapping expression with ebf genes. We also found that the candidate target genes that had the most strongly overlapping expression patterns with ebf genes were predicted to be direct transcriptional targets of EBF transcriptional activity. Conclusions The identification of candidate targets that are transcription factor genes, including nscl-1, emx1 and aml1, improves our understanding of how EBF proteins participate in the hierarchy of transcription control during neuronal development, and suggests novel mechanisms by which EBF activity promotes migration and differentiation. Other candidate targets, including pcdh8 and kcnk5, expand our knowledge of the types of terminal differentiated neuronal functions that EBF proteins regulate.

  1. Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray.

    Science.gov (United States)

    Xie, Wengui; Ji, Lixin; Zhao, Teng; Gao, Pengfei

    2015-05-09

    A number of genes have been identified to be related with primary osteoporosis while less is known about the comprehensive interactions between regulating genes and proteins. We aimed to identify the differentially expressed genes (DEGs) and regulatory effects of transcription factors (TFs) involved in primary osteoporosis. The gene expression profile GSE35958 was obtained from Gene Expression Omnibus database, including 5 primary osteoporosis and 4 normal bone tissues. The differentially expressed genes between primary osteoporosis and normal bone tissues were identified by the same package in R language. The TFs of these DEGs were predicted with the Essaghir A method. DAVID (The Database for Annotation, Visualization and Integrated Discovery) was applied to perform the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DEGs. After analyzing regulatory effects, a regulatory network was built between TFs and the related DEGs. A total of 579 DEGs was screened, including 310 up-regulated genes and 269 down-regulated genes in primary osteoporosis samples. In GO terms, more up-regulated genes were enriched in transcription regulator activity, and secondly in transcription factor activity. A total 10 significant pathways were enriched in KEGG analysis, including colorectal cancer, Wnt signaling pathway, Focal adhesion, and MAPK signaling pathway. Moreover, total 7 TFs were enriched, of which CTNNB1, SP1, and TP53 regulated most up-regulated DEGs. The discovery of the enriched TFs might contribute to the understanding of the mechanism of primary osteoporosis. Further research on genes and TFs related to the WNT signaling pathway and MAPK pathway is urgent for clinical diagnosis and directing treatment of primary osteoporosis.

  2. Enhancement of gene expression under hypoxic conditions using fragments of the human vascular endothelial growth factor and the erythropoietin genes

    International Nuclear Information System (INIS)

    Shibata, Toru; Akiyama, Nobutake; Noda, Makoto; Sasai, Keisuke; Hiraoka, Masahiro

    1998-01-01

    Purpose: Selective gene expression in response to tumor hypoxia may provide new avenues, not only for radiotherapy and chemotherapy, but also for gene therapy. In this study, we have assessed the extent of hypoxia responsiveness of various DNA constructs by the luciferase assay to help design vectors suitable for cancer therapy. Materials and Methods: Reporter plasmids were constructed with fragments of the human vascular endothelial growth factor (VEGF) and the erythropoietin (Epo) genes encompassing the putative hypoxia-responsive elements (HRE) and the pGL3 promoter vector. Test plasmids and the control pRL-CMV plasmid were cotransfected into tumor cells by the calcium phosphate method. After 6 h hypoxic treatment, the reporter assay was performed. Results: The construct pGL3/VEGF containing the 385 bp fragment of the 5' flanking region in human VEGF gene showed significant increases in luciferase activity in response to hypoxia. The hypoxic/aerobic ratios were about 3-4, and 8-12 for murine and human tumor cells, respectively. Despite the very high degree of conservation among the HREs of mammalian VEGF genes, murine cells showed lower responsiveness than human cells. We next tested the construct pGL3/Epo containing the 150 bp fragment of the 3' flanking region in the Epo gene. Luciferase activity of pGL3/Epo was increased with hypoxia only in human cell lines. The insertion of 5 copies of the 35-bp fragments derived from the VEGF HREs and 32 bp of the E1b minimal promoter resulted in maximal enhancement of hypoxia responsiveness. Conclusions: The constructs with VEGF or Epo fragments containing HRE may be useful for inducing specific gene expression in hypoxic cells. Especially, the application of multiple copies of the HREs and an E1b minimal promoter appears to have the advantage of great improvement in hypoxia responsiveness

  3. Relative Tissue Factor Deficiency Attenuates Ventilator-Induced Coagulopathy but Does Not Protect against Ventilator-Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Esther K. Wolthuis

    2012-01-01

    Full Text Available Preventing tissue-factor-(TF- mediated systemic coagulopathy improves outcome in models of sepsis. Preventing TF-mediated pulmonary coagulopathy could attenuate ventilator-induced lung injury (VILI. We investigated the effect of relative TF deficiency on pulmonary coagulopathy and inflammation in a murine model of VILI. Heterozygous TF knockout (TF+/− mice and their wild-type (TF+/+ littermates were sedated (controls or sedated, tracheotomized, and mechanically ventilated with either low or high tidal volumes for 5 hours. Mechanical ventilation resulted in pulmonary coagulopathy and inflammation, with more injury after mechanical ventilation with higher tidal volumes. Compared with TF+/+ mice, TF+/− mice demonstrated significantly lower pulmonary thrombin-antithrombin complex levels in both ventilation groups. There were, however, no differences in lung wet-to-dry ratio, BALF total protein levels, neutrophil influx, and lung histopathology scores between TF+/− and TF+/+ mice. Notably, pulmonary levels of cytokines were significantly higher in TF+/− as compared to TF+/+ mice. Systemic levels of cytokines were not altered by the relative absence of TF. TF deficiency is associated with decreased pulmonary coagulation independent of the ventilation strategy. However, relative TF deficiency does not reduce VILI and actually results in higher pulmonary levels of inflammatory mediators.

  4. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family

    Directory of Open Access Journals (Sweden)

    Bowerman Bruce

    2009-08-01

    Full Text Available Abstract Background GATA transcription factors influence many developmental processes, including the specification of embryonic germ layers. The GATA gene family has significantly expanded in many animal lineages: whereas diverse cnidarians have only one GATA transcription factor, six GATA genes have been identified in many vertebrates, five in many insects, and eleven to thirteen in Caenorhabditis nematodes. All bilaterian animal genomes have at least one member each of two classes, GATA123 and GATA456. Results We have identified one GATA123 gene and one GATA456 gene from the genomic sequence of two invertebrate deuterostomes, a cephalochordate (Branchiostoma floridae and a hemichordate (Saccoglossus kowalevskii. We also have confirmed the presence of six GATA genes in all vertebrate genomes, as well as additional GATA genes in teleost fish. Analyses of conserved sequence motifs and of changes to the exon-intron structure, and molecular phylogenetic analyses of these deuterostome GATA genes support their origin from two ancestral deuterostome genes, one GATA 123 and one GATA456. Comparison of the conserved genomic organization across vertebrates identified eighteen paralogous gene families linked to multiple vertebrate GATA genes (GATA paralogons, providing the strongest evidence yet for expansion of vertebrate GATA gene families via genome duplication events. Conclusion From our analysis, we infer the evolutionary birth order and relationships among vertebrate GATA transcription factors, and define their expansion via multiple rounds of whole genome duplication events. As the genomes of four independent invertebrate deuterostome lineages contain single copy GATA123 and GATA456 genes, we infer that the 0R (pre-genome duplication invertebrate deuterostome ancestor also had two GATA genes, one of each class. Synteny analyses identify duplications of paralogous chromosomal regions (paralogons, from single ancestral vertebrate GATA123 and GATA456

  5. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    OpenAIRE

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A

    1997-01-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, delet...

  6. Double-stranded RNA transcribed from vector-based oligodeoxynucleotide acts as transcription factor decoy

    International Nuclear Information System (INIS)

    Xiao, Xiao; Gang, Yi; Wang, Honghong; Wang, Jiayin; Zhao, Lina; Xu, Li; Liu, Zhiguo

    2015-01-01

    Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself. The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity

  7. Double-stranded RNA transcribed from vector-based oligodeoxynucleotide acts as transcription factor decoy

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiao [State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China); Gang, Yi [State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China); Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi Province (China); Wang, Honghong [No. 518 Hospital of Chinese People’s Liberation Army, Xi’an 710043, Shaanxi Province (China); Wang, Jiayin [The Genome Institute, Washington University in St. Louis, St. Louis, MO 63108 (United States); Zhao, Lina [Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China); Xu, Li, E-mail: lxuhelen@163.com [State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China); Liu, Zhiguo, E-mail: liuzhiguo@fmmu.edu.cn [State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China)

    2015-02-06

    Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself. The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity.

  8. Differential expression and interaction of host factors augment HIV-1 gene expression in neonatal mononuclear cells

    International Nuclear Information System (INIS)

    Sundaravaradan, Vasudha; Mehta, Roshni; Harris, David T.; Zack, Jerome A.; Ahmad, Nafees

    2010-01-01

    We have previously shown a higher level of HIV-1 replication and gene expression in neonatal (cord) blood mononuclear cells (CBMC) compared with adult blood cells (PBMC), which could be due to differential expression of host factors. We performed the gene expression profile of CBMC and PBMC and found that 8013 genes were expressed at higher levels in CBMC than PBMC and 8028 genes in PBMC than CBMC, including 1181 and 1414 genes upregulated after HIV-1 infection in CBMC and PBMC, respectively. Several transcription factors (NF-κB, E2F, HAT-1, TFIIE, Cdk9, Cyclin T1), signal transducers (STAT3, STAT5A) and cytokines (IL-1β, IL-6, IL-10) were upregulated in CBMC than PBMC, which are known to influence HIV-1 replication. In addition, a repressor of HIV-1 transcription, YY1, was down regulated in CBMC than PBMC and several matrix metalloproteinase (MMP-7, -12, -14) were significantly upregulated in HIV-1 infected CBMC than PBMC. Furthermore, we show that CBMC nuclear extracts interacted with a higher extent to HIV-1 LTR cis-acting sequences, including NF-κB, NFAT, AP1 and NF-IL6 compared with PBMC nuclear extracts and retroviral based short hairpin RNA (shRNA) for STAT3 and IL-6 down regulated their own and HIV-1 gene expression, signifying that these factors influenced differential HIV-1 gene expression in CBMC than PBMC.

  9. Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum.

    Science.gov (United States)

    Wu, Jian; Wang, Feiyan; Cheng, Lin; Kong, Fuling; Peng, Zhen; Liu, Songyu; Yu, Xiaolin; Lu, Gang

    2011-11-01

    Auxin response factors (ARFs) encode transcriptional factors that bind specifically to the TGTCTC-containing auxin response elements found in the promoters of primary/early auxin response genes that regulate plant development. In this study, investigation of the tomato genome revealed 21 putative functional ARF genes (SlARFs), a number comparable to that found in Arabidopsis (23) and rice (25). The full cDNA sequences of 15 novel SlARFs were isolated and delineated by sequencing of PCR products. A comprehensive genome-wide analysis of this gene family is presented, including the gene structures, chromosome locations, phylogeny, and conserved motifs. In addition, a comparative analysis between ARF family genes in tomato and maize was performed. A phylogenetic tree generated from alignments of the full-length protein sequences of 21 OsARFs, 23 AtARFs, 31 ZmARFs, and 21 SlARFs revealed that these ARFs were clustered into four major groups. However, we could not find homologous genes in rice, maize, or tomato with AtARF12-15 and AtARF20-23. The expression patterns of tomato ARF genes were analyzed by quantitative real-time PCR. Our comparative analysis will help to define possible functions for many of these newly isolated ARF-family genes in plant development.

  10. The solar kettle-thermos flask (SK-TF) and solar vacuum tube oven

    Energy Technology Data Exchange (ETDEWEB)

    Yak, Alex Kee Koo [AkayConsult Enterprise, Johor Bahru (Malaysia)

    2008-07-01

    The Solar Kettle-Thermos Flask (SK-TF) and Solar Vacuum Tube Oven (SaVeTao): A Cost Effective, Sustainable and Renewable Water Pasteurization and Food Processing System For The Developing World. Based on the perfect solar thermal energy harvesting paradigm of maximum solar radiation absorption and minimum loss of stored converted solar thermal energy, Solar Vacuum Glass Tubes (SVGT) indefinitely delivers solar pasteurized safe drinking water, powered solely by free solar energy. The SVGT is the heart of the SK-TF. Being vacuum insulated, the SK-TF doubles up as a vacuum flask, delivering stored solar heated water in the morning before the Sun is up. With a high stagnation temperature of more than 200 C, the SK-TF can also be used for other heating purposes e.g. an oven or autoclave. Powered solely by free solar energy, the SK-TF and SaVeTaO could very well be the answer in providing safe solar pasteurized drinking water and cooking to the global poor and needy in a sustainable and renewable way. (orig.)

  11. Estimation of Theaflavins (TF) and Thearubigins (TR) Ratio in Black Tea Liquor Using Electronic Vision System

    Science.gov (United States)

    Akuli, Amitava; Pal, Abhra; Ghosh, Arunangshu; Bhattacharyya, Nabarun; Bandhopadhyya, Rajib; Tamuly, Pradip; Gogoi, Nagen

    2011-09-01

    Quality of black tea is generally assessed using organoleptic tests by professional tea tasters. They determine the quality of black tea based on its appearance (in dry condition and during liquor formation), aroma and taste. Variation in the above parameters is actually contributed by a number of chemical compounds like, Theaflavins (TF), Thearubigins (TR), Caffeine, Linalool, Geraniol etc. Among the above, TF and TR are the most important chemical compounds, which actually contribute to the formation of taste, colour and brightness in tea liquor. Estimation of TF and TR in black tea is generally done using a spectrophotometer instrument. But, the analysis technique undergoes a rigorous and time consuming effort for sample preparation; also the operation of costly spectrophotometer requires expert manpower. To overcome above problems an Electronic Vision System based on digital image processing technique has been developed. The system is faster, low cost, repeatable and can estimate the amount of TF and TR ratio for black tea liquor with accuracy. The data analysis is done using Principal Component Analysis (PCA), Multiple Linear Regression (MLR) and Multiple Discriminate Analysis (MDA). A correlation has been established between colour of tea liquor images and TF, TR ratio. This paper describes the newly developed E-Vision system, experimental methods, data analysis algorithms and finally, the performance of the E-Vision System as compared to the results of traditional spectrophotometer.

  12. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    Science.gov (United States)

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol

  13. Staphylococcus aureus nasal carriage in Ukraine: antibacterial resistance and virulence factor encoding genes.

    Science.gov (United States)

    Netsvyetayeva, Irina; Fraczek, Mariusz; Piskorska, Katarzyna; Golas, Marlena; Sikora, Magdalena; Mlynarczyk, Andrzej; Swoboda-Kopec, Ewa; Marusza, Wojciech; Palmieri, Beniamino; Iannitti, Tommaso

    2014-03-05

    The number of studies regarding the incidence of multidrug resistant strains and distribution of genes encoding virulence factors, which have colonized the post-Soviet states, is considerably limited. The aim of the study was (1) to assess the Staphylococcus (S.) aureus nasal carriage rate, including Methicillin Resistant S. aureus (MRSA) strains in adult Ukrainian population, (2) to determine antibiotic resistant pattern and (3) the occurrence of Panton Valentine Leukocidine (PVL)-, Fibronectin-Binding Protein A (FnBPA)- and Exfoliative Toxin (ET)-encoding genes. Nasal samples for S. aureus culture were obtained from 245 adults. The susceptibility pattern for several classes of antibiotics was determined by disk diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The virulence factor encoding genes, mecA, lukS-lukF, eta, etb, etd, fnbA, were detected by Polymerase Chain Reaction (PCR). The S. aureus nasal carriage rate was 40%. The prevalence of nasal MRSA carriage in adults was 3.7%. LukS-lukF genes were detected in over 58% of the strains. ET-encoding genes were detected in over 39% of the strains and the most prevalent was etd. The fnbA gene was detected in over 59% of the strains. All MRSA isolates tested were positive for the mecA gene. LukS-lukF genes and the etd gene were commonly co-present in MRSA, while lukS-lukF genes and the fnbA gene were commonly co-present in Methicillin Sensitive S. aureus (MSSA) isolates. No significant difference was detected between the occurrence of lukS-lukF genes (P > 0.05) and the etd gene (P > 0.05) when comparing MRSA and MSSA. The occurrence of the fnbA gene was significantly more frequent in MSSA strains (P aureus is a common cause of infection. The prevalence of S. aureus nasal carriage in our cohort of patients from Ukraine was 40.4%. We found that 9.1% of the strains were classified as MRSA and all MRSA isolates tested positive for the mecA gene

  14. Upregulation of the coagulation factor VII gene during glucose deprivation is mediated by activating transcription factor 4.

    Science.gov (United States)

    Cronin, Katherine R; Mangan, Thomas P; Carew, Josephine A

    2012-01-01

    Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation proteins by the human hepatoma cell line, HepG2. Expression of coagulation factor VII, which is required for initiation of blood coagulation, was elevated by glucose deprivation, while expression of other coagulation proteins decreased. Realtime PCR and ELISA demonstrated that the relative percentage expression +/- SD of steady-state F7 mRNA and secreted factor VII antigen were significantly increased (from 100+/-15% to 188+/-27% and 100+/-8.8% to 176.3+/-17.3% respectively, pfactor ATF4 and of additional stress-responsive genes. Small interfering RNAs directed against ATF4 potently reduced basal F7 expression, and prevented F7 upregulation by glucose deprivation. The response of the endogenous F7 gene was replicated in reporter gene assays, which further indicated that ATF4 effects were mediated via interaction with an amino acid response element in the F7 promoter. Our data indicated that glucose deprivation enhanced F7 expression in a mechanism reliant on prior ATF4 upregulation primarily due to increased transcription from the ATF4 gene. Of five coagulation protein genes examined, only F7 was upregulated, suggesting that its functions may be important in a systemic response to glucose deprivation stress.

  15. Transcription factors and stress response gene alterations in human keratinocytes following Solar Simulated Ultra Violet Radiation.

    Science.gov (United States)

    Marais, Thomas L Des; Kluz, Thomas; Xu, Dazhong; Zhang, Xiaoru; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2017-10-19

    Ultraviolet radiation (UVR) from sunlight is the major effector for skin aging and carcinogenesis. However, genes and pathways altered by solar-simulated UVR (ssUVR), a mixture of UVA and UVB, are not well characterized. Here we report global changes in gene expression as well as associated pathways and upstream transcription factors in human keratinocytes exposed to ssUVR. Human HaCaT keratinocytes were exposed to either a single dose or 5 repetitive doses of ssUVR. Comprehensive analyses of gene expression profiles as well as functional annotation were performed at 24 hours post irradiation. Our results revealed that ssUVR modulated genes with diverse cellular functions changed in a dose-dependent manner. Gene expression in cells exposed to a single dose of ssUVR differed significantly from those that underwent repetitive exposures. While single ssUVR caused a significant inhibition in genes involved in cell cycle progression, especially G2/M checkpoint and mitotic regulation, repetitive ssUVR led to extensive changes in genes related to cell signaling and metabolism. We have also identified a panel of ssUVR target genes that exhibited persistent changes in gene expression even at 1 week after irradiation. These results revealed a complex network of transcriptional regulators and pathways that orchestrate the cellular response to ssUVR.

  16. Decreased plasma levels of activated factor VII in patients with deep vein thrombosis

    NARCIS (Netherlands)

    Schut, A. M.; Meijers, J. C. M.; Lisman-van Leeuwen, Y.; van Montfoort, M. L.; Roest, M.; de Groot, P. G.; Urbanus, R. T.; Coppens, M.; Lisman, T.

    BackgroundThe initiating trigger in the development of deep vein thrombosis (DVT) remains unidentified. It has been suggested that tissue factor (TF)-bearing microparticles play a key role, which indicates a role for the TF pathway in the initiation of DVT. ObjectiveTo assess the role of the TF

  17. Decreased plasma levels of activated factor VII in patients with deep vein thrombosis

    NARCIS (Netherlands)

    Schut, A. M.; Meijers, J. C M; Lisman- van Leeuwen, Y.; van Montfoort, M. L.; Roest, M.; de Groot, P. G.; Urbanus, R. T.; Coppens, M.; Lisman, T.

    2015-01-01

    Background: The initiating trigger in the development of deep vein thrombosis (DVT) remains unidentified. It has been suggested that tissue factor (TF)-bearing microparticles play a key role, which indicates a role for the TF pathway in the initiation of DVT. Objective: To assess the role of the TF

  18. Decreased plasma levels of activated factor VII in patients with deep vein thrombosis

    NARCIS (Netherlands)

    Schut, A. M.; Meijers, J. C. M.; Lisman-van Leeuwen, Y.; van Montfoort, M. L.; Roest, M.; de Groot, P. G.; Urbanus, R. T.; Coppens, M.; Lisman, T.

    2015-01-01

    The initiating trigger in the development of deep vein thrombosis (DVT) remains unidentified. It has been suggested that tissue factor (TF)-bearing microparticles play a key role, which indicates a role for the TF pathway in the initiation of DVT. To assess the role of the TF pathway in the

  19. Role of WRKY Transcription Factors in Arabidopsis Development and Stress Responses

    OpenAIRE

    Li, Jing

    2014-01-01

    It has been well established that environmentally induced alterations in gene expression are mediated by transcription factors (TFs). One of the important plant-specific TF groups is the WRKY (TFs containing a highly conserved WRKY domain) family, which is involved in regulation of various physiological programs including biotic and abiotic defenses, senescence and trichome development. Two members of WRKY group III in Arabidopsis thaliana, WRKY54 and WRKY70, are demonstrated in this study to...

  20. Gene prediction and RFX transcriptional regulation analysis using comparative genomics

    OpenAIRE

    Chu, Jeffrey Shih Chieh

    2011-01-01

    Regulatory Factor X (RFX) is a family of transcription factors (TF) that is conserved in all metazoans, in some fungi, and in only a few single-cellular organisms. Seven members are found in mammals, nine in fishes, three in fruit flies, and a single member in nematodes and fungi. RFX is involved in many different roles in humans, but a particular function that is conserved in many metazoans is its regulation of ciliogenesis. Probing over 150 genomes for the presence of RFX and ciliary genes ...

  1. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  2. Parallelized preconditioned BiCGStab solution of sparse linear system equations in F-COBRA-TF

    International Nuclear Information System (INIS)

    Geemert, Rene van; Glück, Markus; Riedmann, Michael; Gabriel, Harry

    2011-01-01

    Recently, the in-house development of a preconditioned and parallelized BiCGStab solver has been pursued successfully in AREVA’s advanced sub-channel code F-COBRA-TF. This solver can be run either in a sequential computation mode on a single CPU, or in a parallel computation mode on multiple parallel CPUs. The developed procedure enables the computation of several thousands of successive sparse linear system solutions in F-COBRA-TF with acceptable wall clock run times. The current paper provides general information about F-COBRA-TF in terms of modeling capabilities and application areas, and points out where the relevance arises for the efficient iterative solution of sparse linear systems. Furthermore, the preconditioning and parallelization strategies in the developed BiCGStab iterative solution approach are discussed. The paper is concluded with a number of verification examples. (author)

  3. Gene Overexpression Resources in Cereals for Functional Genomics and Discovery of Useful Genes

    Directory of Open Access Journals (Sweden)

    Kiyomi Abe

    2016-09-01

    Full Text Available Identification and elucidation of functions of plant genes is valuable for both basic and applied research. In addition to natural variation in model plants, numerous loss-of-function resources have been produced by mutagenesis with chemicals, irradiation, or insertions of transposable elements or T-DNA. However, we may be unable to observe loss-of-function phenotypes for genes with functionally redundant homologs, and for those essential for growth and development. To offset such disadvantages, gain-of-function transgenic resources have been exploited. Activation-tagged lines have been generated using obligatory overexpression of endogenous genes by random insertion of an enhancer. Recent progress in DNA sequencing technology and bioinformatics has enabled the preparation of genomewide collections of full-length cDNAs (fl-cDNAs in some model species. Using the fl-cDNA clones, a novel gain-of-function strategy, Fl-cDNA OvereXpressor gene (FOX-hunting system, has been developed. A mutant phenotype in a FOX line can be directly attributed to the overexpressed fl-cDNA. Investigating a large population of FOX lines could reveal important genes conferring favorable phenotypes for crop breeding. Alternatively, a unique loss-of-function approach Chimeric REpressor gene Silencing Technology (CRES-T has been developed. In CRES-T, overexpression of a chimeric repressor, composed of the coding sequence of a transcription factor (TF and short peptide designated as the repression domain, could interfere with the action of endogenous TF in plants. Although plant TFs usually consist of gene families, CRES-T is effective, in principle, even for the TFs with functional redundancy. In this review, we focus on the current status of the gene-overexpression strategies and resources for identifying and elucidating novel functions of cereal genes. We discuss the potential of these research tools for identifying useful genes and phenotypes for application in crop

  4. A Method to Predict Compressor Stall in the TF34-100 Turbofan Engine Utilizing Real-Time Performance Data

    Science.gov (United States)

    2015-06-01

    A METHOD TO PREDICT COMPRESSOR STALL IN THE TF34-100 TURBOFAN ENGINE UTILIZING REAL-TIME PERFORMANCE...THE TF34-100 TURBOFAN ENGINE UTILIZING REAL-TIME PERFORMANCE DATA THESIS Presented to the Faculty Department of Systems Engineering and...036 A METHOD TO PREDICT COMPRESSOR STALL IN THE TF34-100 TURBOFAN ENGINE UTILIZING REAL-TIME PERFORMANCE DATA Shuxiang ‘Albert’ Li, BS

  5. Environmental factors influencing gene transfer agent (GTA mediated transduction in the subtropical ocean.

    Directory of Open Access Journals (Sweden)

    Lauren D McDaniel

    Full Text Available Microbial genomic sequence analyses have indicated widespread horizontal gene transfer (HGT. However, an adequate mechanism accounting for the ubiquity of HGT has been lacking. Recently, high frequencies of interspecific gene transfer have been documented, catalyzed by Gene Transfer Agents (GTAs of marine α-Proteobacteria. It has been proposed that the presence of bacterial genes in highly purified viral metagenomes may be due to GTAs. However, factors influencing GTA-mediated gene transfer in the environment have not yet been determined. Several genomically sequenced strains containing complete GTA sequences similar to Rhodobacter capsulatus (RcGTA, type strain were screened to ascertain if they produced putative GTAs, and at what abundance. Five of nine marine strains screened to date spontaneously produced virus-like particles (VLP's in stationary phase. Three of these strains have demonstrated gene transfer activity, two of which were documented by this lab. These two strains Roseovarius nubinhibens ISM and Nitratireductor 44B9s, were utilized to produce GTAs designated RnGTA and NrGTA and gene transfer activity was verified in culture. Cell-free preparations of purified RnGTA and NrGTA particles from marked donor strains were incubated with natural microbial assemblages to determine the level of GTA-mediated gene transfer. In conjunction, several ambient environmental parameters were measured including lysogeny indicated by prophage induction. GTA production in culture systems indicated that approximately half of the strains produced GTA-like particles and maximal GTA counts ranged from 10-30% of host abundance. Modeling of GTA-mediated gene transfer frequencies in natural samples, along with other measured environmental variables, indicated a strong relationship between GTA mediated gene transfer and the combined factors of salinity, multiplicity of infection (MOI and ambient bacterial abundance. These results indicate that GTA

  6. The Art and Skill of Delivering Culturally Responsive TF-CBT in Tanzania and Kenya

    Science.gov (United States)

    Kava, Christine M.; Akiba, Christopher F.; Lucid, Leah; Dorsey, Shannon

    2016-01-01

    Objective This study explored the facilitators, barriers, and strategies used to deliver a child mental health evidence-based treatment (EBT), trauma-focused cognitive behavioral therapy (TF-CBT), in a culturally responsive manner. In low- and middle-income countries most individuals with mental health problems do not receive treatment due to a shortage of mental health professionals. One approach to addressing this problem is task-sharing, in which lay counselors are trained to deliver mental health treatment. Combining this approach with a focus on EBT provides a strategy for bridging the mental health treatment gap. However, little is known how about western-developed EBTs are delivered in a culturally responsive manner. Method Semistructured qualitative interviews were conducted with 12 TF-CBT lay counselors involved in a large randomized controlled trial of TF-CBT in Kenya and Tanzania. An inductive approach was used to analyze the data. Results Lay counselors described the importance of being responsive to TF-CBT participants’ customs, beliefs, and socioeconomic conditions and highlighted the value of TF-CBT for their community. They also discussed the importance of partnering with other organizations to address unmet socioeconomic needs. Conclusion The findings from this study provide support for the acceptability and appropriateness of TF-CBT as a treatment approach for improving child mental health. Having a better understanding of the strategies used by lay counselors to ensure that treatment is relevant to the cultural and socioeconomic context of participants can help to inform the implementation of future EBTs. PMID:27414470

  7. HPRT gene mutation frequency and the factor of influence in adult peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Zhao Jingyong; Zheng Siying; Cui Fengmei; Wang Liuyi; Lao Qinhua; Wu Hongliang

    2002-01-01

    Objective: To study the HPRT gene loci mutation frequencies and the factor of influence in peripheral blood lymphocytes of adult with ages ranging from 21-50. Methods: HPRT gene mutation frequency (GMf) were examined by the technique of multinuclear cell assay. Relation between GMf and years were fitted with a computer. Results: Relation could be described by the following equation: y = 0.7555 + 0.0440x, r = 0.9829. Smoking has influence on GMf and sex hasn't. Conclusion: HPRT gene mutation frequency increases with increasing of age. Increasing rate is 0.00440% per year

  8. A homeodomain transcription factor gene, PfMSX, activates expression of Pif gene in the pearl oyster Pinctada fucata.

    Directory of Open Access Journals (Sweden)

    Mi Zhao

    Full Text Available We reported pearl oyster Pinctada fucata cDNA and genomic characterization of a new homeobox-containing protein, PfMSX. The PfMSX gene encodes a transcription factor that was localized to the nucleus. Analyses of PfMSX mRNA in tissues and developmental stages showed high expressions in mantle or D-shaped larvae. In electrophoretic mobility shift assays (EMSAs PfMSX binded to MSX consensus binding sites in the 5' flanking region of the Pif promoter. In co-transfection experiment PfMSX transactivated reporter constructs containing Pif promoter sequences, and mutation of the MSX-binding sites attenuated transactivation. A knockdown experiment using PfMSX dsRNA showed decreased Pif mRNA and unregular crystallization of the nacreous layer using scanning electron microscopy. Our results suggested that PfMSX was a conserved homeodomain transcription factor gene, which can activate Pif gene expression through MSX binding site, and was then involved in the mineralization process in pearl oyster Pinctada fucata. Our data provided important clues about mechanisms regulating biomineralization in pearl oyster.

  9. A Homeodomain Transcription Factor Gene, PfMSX, Activates Expression of Pif Gene in the Pearl Oyster Pinctada fucata

    Science.gov (United States)

    Zhao, Mi; He, Maoxian; Huang, Xiande; Wang, Qi

    2014-01-01

    We reported pearl oyster Pinctada fucata cDNA and genomic characterization of a new homeobox-containing protein, PfMSX. The PfMSX gene encodes a transcription factor that was localized to the nucleus. Analyses of PfMSX mRNA in tissues and developmental stages showed high expressions in mantle or D-shaped larvae. In electrophoretic mobility shift assays (EMSAs) PfMSX binded to MSX consensus binding sites in the 5′ flanking region of the Pif promoter. In co-transfection experiment PfMSX transactivated reporter constructs containing Pif promoter sequences, and mutation of the MSX-binding sites attenuated transactivation. A knockdown experiment using PfMSX dsRNA showed decreased Pif mRNA and unregular crystallization of the nacreous layer using scanning electron microscopy. Our results suggested that PfMSX was a conserved homeodomain transcription factor gene, which can activate Pif gene expression through MSX binding site, and was then involved in the mineralization process in pearl oyster Pinctada fucata. Our data provided important clues about mechanisms regulating biomineralization in pearl oyster. PMID:25099698

  10. A homeodomain transcription factor gene, PfMSX, activates expression of Pif gene in the pearl oyster Pinctada fucata.

    Science.gov (United States)

    Zhao, Mi; He, Maoxian; Huang, Xiande; Wang, Qi

    2014-01-01

    We reported pearl oyster Pinctada fucata cDNA and genomic characterization of a new homeobox-containing protein, PfMSX. The PfMSX gene encodes a transcription factor that was localized to the nucleus. Analyses of PfMSX mRNA in tissues and developmental stages showed high expressions in mantle or D-shaped larvae. In electrophoretic mobility shift assays (EMSAs) PfMSX binded to MSX consensus binding sites in the 5' flanking region of the Pif promoter. In co-transfection experiment PfMSX transactivated reporter constructs containing Pif promoter sequences, and mutation of the MSX-binding sites attenuated transactivation. A knockdown experiment using PfMSX dsRNA showed decreased Pif mRNA and unregular crystallization of the nacreous layer using scanning electron microscopy. Our results suggested that PfMSX was a conserved homeodomain transcription factor gene, which can activate Pif gene expression through MSX binding site, and was then involved in the mineralization process in pearl oyster Pinctada fucata. Our data provided important clues about mechanisms regulating biomineralization in pearl oyster.

  11. Identification and network-enabled characterization of auxin response factor genes in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    David J. Burks

    2016-12-01

    Full Text Available The Auxin Response Factor (ARF family of transcription factors is an important regulator of environmental response and symbiotic nodulation in the legume Medicago truncatula. While previous studies have identified members of this family, a recent spurt in gene expression data coupled with genome update and reannotation calls for a reassessment of the prevalence of ARF genes and their interaction networks in M. truncatula. We performed a comprehensive analysis of the M. truncatula genome and transcriptome that entailed search for novel ARF genes and the co-expression networks. Our investigation revealed 8 novel M. truncatula ARF (MtARF genes, of the total 22 identified, and uncovered novel gene co-expression networks as well. Furthermore, the topological clustering and single enrichment analysis of several network models revealed the roles of individual members of the MtARF family in nitrogen regulation, nodule initiation, and post-embryonic development through a specialized protein packaging and secretory pathway. In summary, this study not just shines new light on an important gene family, but also provides a guideline for identification of new members of gene families and their functional characterization through network analyses.

  12. Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression.

    Science.gov (United States)

    Kabadi, Ami M; Gersbach, Charles A

    2014-09-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Searching for the annual modulation of dark matter signal with the GENIUS-TF experiment

    International Nuclear Information System (INIS)

    Tomei, C.; Dietz, A.; Krivosheina, I.; Klapdor-Kleingrothaus, H.V.

    2003-01-01

    The annual modulation of the recoil spectrum observed in an underground detector is well known as the main signature of a possible WIMP signal. The GENIUS-TF experiment, under construction in the Gran Sasso National Laboratory, can search for the annual modulation of the Dark Matter signal using 40 kg of naked-Ge detectors in liquid nitrogen. Starting from a set of data simulated under the hypothesis of modulation and using different methods, we show the potential of GENIUS-TF for extracting the modulated signal and the expected WIMP mass and WIMP cross-section

  14. Impact of maximum TF magnetic field on performance and cost of an advanced physics tokamak

    International Nuclear Information System (INIS)

    Reid, R.L.

    1983-01-01

    Parametric studies were conducted using the Fusion Engineering Design Center (FEDC) Tokamak Systems Code to investigate the impact of variation in the maximum value of the field at the toroidal field (TF) coils on the performance and cost of a low q/sub psi/, quasi-steady-state tokamak. Marginal ignition, inductive current startup plus 100 s of inductive burn, and a constant value of epsilon (inverse aspect ratio) times beta poloidal were global conditions imposed on this study. A maximum TF field of approximately 10 T was found to be appropriate for this device

  15. TF.Learn: TensorFlow's High-level Module for Distributed Machine Learning

    OpenAIRE

    Tang, Yuan

    2016-01-01

    TF.Learn is a high-level Python module for distributed machine learning inside TensorFlow. It provides an easy-to-use Scikit-learn style interface to simplify the process of creating, configuring, training, evaluating, and experimenting a machine learning model. TF.Learn integrates a wide range of state-of-art machine learning algorithms built on top of TensorFlow's low level APIs for small to large-scale supervised and unsupervised problems. This module focuses on bringing machine learning t...

  16. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato

    KAUST Repository

    Thirumalaikumar, Venkatesh P.

    2017-06-22

    Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell-damaging reactive oxygen species, and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus-induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2 O2 ) levels, and a decrease of the expression of various drought-responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2 O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2, and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress-related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato. This article is protected by copyright. All rights reserved.

  17. Status of GENIUS-TF-II and TF-III-The long-term stability of naked detectors in liquid nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Klapdor-Kleingrothaus, H.V. [Max-Planck-Institut fuer Kernphysik, P.O. Box 10 39 80, D-69029 Heidelberg (Germany)]. E-mail: H.Klapdor@mpi-hd.mpg.de; Krivosheina, I.V. [Max-Planck-Institut fuer Kernphysik, P.O. Box 10 39 80, D-69029 Heidelberg (Germany)

    2006-10-15

    GENIUS-TF-II is a setup of six naked high purity Ge detectors (15kg) in liquid nitrogen in Gran Sasso. It has been installed in October, 2004-after the first four naked Ge detectors had been installed on May 5, 2003 (GENIUS-TF-I). The GENIUS-Test-Facility (GENIUS-TF) is the first and up to now only setup ever testing the novel technique aiming at extreme background reduction in search for rare decays in particular underground. The goal of GENIUS-TF was to test some key operational parameters of the full GENIUS project proposal in 1997 [H.V. Klapdor-Kleingrothaus, Int. J. Mod. Phys. A 13 (1998) 3953; H.V. Klapdor-Kleingrothaus, J. Hellmig, M. Hirsch, GENIUS-Proposal, 20 November 1997; J. Hellmig and H.V. Klapdor-Kleingrothaus, Z. Phys. A 359 ( 1997) 351 and nucl-ex/9801004; H.V. Klapdor-Kleingrothaus, M. Hirsch, Z. Phys. A 359 (1997) 361; H.V. Klapdor-Kleingrothaus, J. Hellmig, M. Hirsch, J. Phys. G 24 (1998) 483; H.V. Klapdor-Kleingrothaus, CERN Courier, November 1997, pp. 16-18]. Simultaneous physical goal is to search for the annual modulation of the Dark Matter signal [H.V. Klapdor-Kleingrothaus, et al., Nucl. Instr. and Meth. A 481 (2002) 149; C. Tomei, A. Dietz, I. Krivosheina, H.V. Klapdor-Kleingrothaus, Nucl. Instr. and Meth. 508 (2003) 343]. After operation of GENIUS-TF over three years with finally six naked Ge detectors (15kg) in liquid nitrogen in Gran Sasso we realize serious problems for realization of a full-size GENIUS-like experiment: (1) Background from Rn222 diffusing into the setup, on a level far beyond the expectation. (2) Limited long-term stability of naked detectors in liquid nitrogen as result of increasing leakage current. None of the six detectors is running after three years with the nominal leakage current. Three of the six detectors do not work any more at all. The results of our three years of investigation of the long-term stability may cast doubt on the possibility to perform full GENIUS-like projects.

  18. Status of GENIUS-TF-II and TF-III-The long-term stability of naked detectors in liquid nitrogen

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Krivosheina, I.V.

    2006-01-01

    GENIUS-TF-II is a setup of six naked high purity Ge detectors (15kg) in liquid nitrogen in Gran Sasso. It has been installed in October, 2004-after the first four naked Ge detectors had been installed on May 5, 2003 (GENIUS-TF-I). The GENIUS-Test-Facility (GENIUS-TF) is the first and up to now only setup ever testing the novel technique aiming at extreme background reduction in search for rare decays in particular underground. The goal of GENIUS-TF was to test some key operational parameters of the full GENIUS project proposal in 1997 [H.V. Klapdor-Kleingrothaus, Int. J. Mod. Phys. A 13 (1998) 3953; H.V. Klapdor-Kleingrothaus, J. Hellmig, M. Hirsch, GENIUS-Proposal, 20 November 1997; J. Hellmig and H.V. Klapdor-Kleingrothaus, Z. Phys. A 359 ( 1997) 351 and nucl-ex/9801004; H.V. Klapdor-Kleingrothaus, M. Hirsch, Z. Phys. A 359 (1997) 361; H.V. Klapdor-Kleingrothaus, J. Hellmig, M. Hirsch, J. Phys. G 24 (1998) 483; H.V. Klapdor-Kleingrothaus, CERN Courier, November 1997, pp. 16-18]. Simultaneous physical goal is to search for the annual modulation of the Dark Matter signal [H.V. Klapdor-Kleingrothaus, et al., Nucl. Instr. and Meth. A 481 (2002) 149; C. Tomei, A. Dietz, I. Krivosheina, H.V. Klapdor-Kleingrothaus, Nucl. Instr. and Meth. 508 (2003) 343]. After operation of GENIUS-TF over three years with finally six naked Ge detectors (15kg) in liquid nitrogen in Gran Sasso we realize serious problems for realization of a full-size GENIUS-like experiment: (1) Background from Rn222 diffusing into the setup, on a level far beyond the expectation. (2) Limited long-term stability of naked detectors in liquid nitrogen as result of increasing leakage current. None of the six detectors is running after three years with the nominal leakage current. Three of the six detectors do not work any more at all. The results of our three years of investigation of the long-term stability may cast doubt on the possibility to perform full GENIUS-like projects

  19. Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types

    Directory of Open Access Journals (Sweden)

    Michael Seiler

    2018-04-01

    Full Text Available Summary: Hotspot mutations in splicing factor genes have been recently reported at high frequency in hematological malignancies, suggesting the importance of RNA splicing in cancer. We analyzed whole-exome sequencing data across 33 tumor types in The Cancer Genome Atlas (TCGA, and we identified 119 splicing factor genes with significant non-silent mutation patterns, including mutation over-representation, recurrent loss of function (tumor suppressor-like, or hotspot mutation profile (oncogene-like. Furthermore, RNA sequencing analysis revealed altered splicing events associated with selected splicing factor mutations. In addition, we were able to identify common gene pathway profiles associated with the presence of these mutations. Our analysis suggests that somatic alteration of genes involved in the RNA-splicing process is common in cancer and may represent an underappreciated hallmark of tumorigenesis. : Seiler et al. report that 119 splicing factor genes carry putative driver mutations over 33 tumor types in TCGA. The most common mutations appear to be mutually exclusive and are associated with lineage-independent altered splicing. Samples with these mutations show deregulation of cell-autonomous pathways and immune infiltration. Keywords: splicing, SF3B1, U2AF1, SRSF2, RBM10, FUBP1, cancer, mutation

  20. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    International Nuclear Information System (INIS)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben A

    2008-01-01

    Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. We have analyzed 8 publicly available gene expression data sets. A global approach, 'gene set enrichment analysis' as well as an approach focusing on a subset of significantly differently regulated genes, GenMAPP, has been applied to rank pathway gene sets according to differential regulation in metastasizing tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. The major findings are up-regulation of cell cycle pathways and a metabolic shift towards glucose metabolism reflected in several pathways in metastasizing tumors. Growth factor pathways seem to play dual roles; EGF and PDGF pathways are decreased, while VEGF and sex-hormone pathways are increased in tumors that metastasize. Furthermore, migration, proteasome, immune system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. By pathway meta-analysis many biological mechanisms beyond major characteristics such as proliferation are identified. Transcription factor analysis identifies a number of key factors that support central pathways. Several previously proposed treatment targets are identified and several new pathways that may

  1. Upregulation of the coagulation factor VII gene during glucose deprivation is mediated by activating transcription factor 4.

    Directory of Open Access Journals (Sweden)

    Katherine R Cronin

    Full Text Available BACKGROUND: Constitutive production of blood coagulation proteins by hepatocytes is necessary for hemostasis. Stressful conditions trigger adaptive cellular responses and delay processing of most proteins, potentially affecting plasma levels of proteins secreted exclusively by hepatocytes. We examined the effect of glucose deprivation on expression of coagulation proteins by the human hepatoma cell line, HepG2. METHODOLOGY/PRINCIPAL FINDINGS: Expression of coagulation factor VII, which is required for initiation of blood coagulation, was elevated by glucose deprivation, while expression of other coagulation proteins decreased. Realtime PCR and ELISA demonstrated that the relative percentage expression +/- SD of steady-state F7 mRNA and secreted factor VII antigen were significantly increased (from 100+/-15% to 188+/-27% and 100+/-8.8% to 176.3+/-17.3% respectively, p<0.001 at 24 hr of treatment. The integrated stress response was induced, as indicated by upregulation of transcription factor ATF4 and of additional stress-responsive genes. Small interfering RNAs directed against ATF4 potently reduced basal F7 expression, and prevented F7 upregulation by glucose deprivation. The response of the endogenous F7 gene was replicated in reporter gene assays, which further indicated that ATF4 effects were mediated via interaction with an amino acid response element in the F7 promoter. CONCLUSIONS/SIGNIFICANCE: Our data indicated that glucose deprivation enhanced F7 expression in a mechanism reliant on prior ATF4 upregulation primarily due to increased transcription from the ATF4 gene. Of five coagulation protein genes examined, only F7 was upregulated, suggesting that its functions may be important in a systemic response to glucose deprivation stress.

  2. Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global Transcriptomic Analysis.

    Science.gov (United States)

    Sharma, Anupma; Wai, Ching Man; Ming, Ray; Yu, Qingyi

    2017-09-01

    Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    Science.gov (United States)

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Factors affecting expression of the recF gene of Escherichia coli K-12.

    Science.gov (United States)

    Sandler, S J; Clark, A J

    1990-01-31

    This report describes four factors which affect expression of the recF gene from strong upstream lambda promoters under temperature-sensitive cIAt2-encoded repressor control. The first factor was the long mRNA leader sequence consisting of the Escherichia coli dnaN gene and 95% of the dnaA gene and lambda bet, N (double amber) and 40% of the exo gene. When most of this DNA was deleted, RecF became detectable in maxicells. The second factor was the vector, pBEU28, a runaway replication plasmid. When we substituted pUC118 for pBEU28, RecF became detectable in whole cells by the Coomassie blue staining technique. The third factor was the efficiency of initiation of translation. We used site-directed mutagenesis to change the mRNA leader, ribosome-binding site and the 3 bp before and after the translational start codon. Monitoring the effect of these mutational changes by translational fusion to lacZ, we discovered that the efficiency of initiation of translation was increased 30-fold. Only an estimated two- or threefold increase in accumulated levels of RecF occurred, however. This led us to discover the fourth factor, namely sequences in the recF gene itself. These sequences reduce expression of the recF-lacZ fusion genes 100-fold. The sequences responsible for this decrease in expression occur in four regions in the N-terminal half of recF. Expression is reduced by some sequences at the transcriptional level and by others at the translational level.

  5. miR-370 suppresses HBV gene expression and replication by targeting nuclear factor IA.

    Science.gov (United States)

    Fan, Hongxia; Lv, Ping; Lv, Jing; Zhao, Xiaopei; Liu, Min; Zhang, Guangling; Tang, Hua

    2017-05-01

    Hepatitis B virus (HBV) infection is a major health problem worldwide. The roles of microRNAs in the regulation of HBV expression are being increasingly recognized. In this study, we found that overexpression of miR-370 suppressed HBV gene expression and replication in Huh7 cells, whereas antisense knockdown of endogenous miR-370 enhanced HBV gene expression and replication in Huh7 cells and HepG2.2.15 cells. Further, we identified the transcription factor nuclear factor IA (NFIA) as a new host target of miR-370. Overexpression and knockdown studies showed that NFIA stimulated HBV gene expression and replication. Importantly, overexpression of NFIA counteracted the effect of miR-370 on HBV gene expression and replication. Further mechanistic studies showed that miR-370 suppressed HBV replication and gene expression by repressing HBV Enhancer I activity, and one of the NFIA binding site in the Enhancer I element was responsible for the repressive effect of miR-370 on HBV Enhancer I activity. Altogether, our results demonstrated that miR-370 suppressed HBV gene expression and replication through repressing NFIA expression, which stimulates HBV replication via direct regulation on HBV Enhancer I activities. Our findings may provide a new antiviral strategy for HBV infection. J. Med. Virol. 89:834-844, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Genomic survey of bZIP transcription factor genes related to tanshinone biosynthesis in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2018-03-01

    Full Text Available Tanshinones are a class of bioactive components in the traditional Chinese medicine Salvia miltiorrhiza, and their biosynthesis and regulation have been widely studied. Current studies show that basic leucine zipper (bZIP proteins regulate plant secondary metabolism, growth and developmental processes. However, the bZIP transcription factors involved in tanshinone biosynthesis are unknown. Here, we conducted the first genome-wide survey of the bZIP gene family and analyzed the phylogeny, gene structure, additional conserved motifs and alternative splicing events in S. miltiorrhiza. A total of 70 SmbZIP transcription factors were identified and categorized into 11 subgroups based on their phylogenetic relationships with those in Arabidopsis. Moreover, seventeen SmbZIP genes underwent alternative splicing events. According to the transcriptomic data, the SmbZIP genes that were highly expressed in the Danshen root and periderm were selected. Based on the prediction of bZIP binding sites in the promoters and the co-expression analysis and co-induction patterns in response to Ag+ treatment via quantitative real-time polymerase chain reaction (qRT-PCR, we concluded that SmbZIP7 and SmbZIP20 potentially participate in the regulation of tanshinone biosynthesis. These results provide a foundation for further functional characterization of the candidate SmbZIP genes, which have the potential to increase tanshinone production. KEY WORDS: bZIP genes, Salvia miltiorrhiza, Phylogenetic analysis, Expression pattern analysis, Tanshinone biosynthesis

  7. Evolutionary changes of Hox genes and relevant regulatory factors provide novel insights into mammalian morphological modifications.

    Science.gov (United States)

    Li, Kui; Sun, Xiaohui; Chen, Meixiu; Sun, Yingying; Tian, Ran; Wang, Zhengfei; Xu, Shixia; Yang, Guang

    2018-01-01

    The diversity of body plans of mammals accelerates the innovation of lifestyles and the extensive adaptation to different habitats, including terrestrial, aerial and aquatic habitats. However, the genetic basis of those phenotypic modifications, which have occurred during mammalian evolution, remains poorly explored. In the present study, we synthetically surveyed the evolutionary pattern of Hox clusters that played a powerful role in the morphogenesis along the head-tail axis of animal embryos and the main regulatory factors (Mll, Bmi1 and E2f6) that control the expression of Hox genes. A deflected density of repetitive elements and lineage-specific radical mutations of Mll have been determined in marine mammals with morphological changes, suggesting that evolutionary changes may alter Hox gene expression in these lineages, leading to the morphological modification of these lineages. Although no positive selection was detected at certain ancestor nodes of lineages, the increased ω values of Hox genes implied the relaxation of functional constraints of these genes during the mammalian evolutionary process. More importantly, 49 positively-selected sites were identified in mammalian lineages with phenotypic modifications, indicating adaptive evolution acting on Hox genes and regulatory factors. In addition, 3 parallel amino acid substitutions in some Hox genes were examined in marine mammals, which might be responsible for their streamlined body. © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  8. Neurotransmitter systems and neurotrophic factors in autism: association study of 37 genes suggests involvement of DDC.

    Science.gov (United States)

    Toma, Claudio; Hervás, Amaia; Balmaña, Noemí; Salgado, Marta; Maristany, Marta; Vilella, Elisabet; Aguilera, Francisco; Orejuela, Carmen; Cuscó, Ivon; Gallastegui, Fátima; Pérez-Jurado, Luis Alberto; Caballero-Andaluz, Rafaela; Diego-Otero, Yolanda de; Guzmán-Alvarez, Guadalupe; Ramos-Quiroga, Josep Antoni; Ribasés, Marta; Bayés, Mònica; Cormand, Bru

    2013-09-01

    Neurotransmitter systems and neurotrophic factors can be considered strong candidates for autism spectrum disorder (ASD). The serotoninergic and dopaminergic systems are involved in neurotransmission, brain maturation and cortical organization, while neurotrophic factors (NTFs) participate in neurodevelopment, neuronal survival and synapses formation. We aimed to test the contribution of these candidate pathways to autism through a case-control association study of genes selected both for their role in central nervous system functions and for pathophysiological evidences. The study sample consisted of 326 unrelated autistic patients and 350 gender-matched controls from Spain. We genotyped 369 tagSNPs to perform a case-control association study of 37 candidate genes. A significant association was obtained between the DDC gene and autism in the single-marker analysis (rs6592961, P = 0.00047). Haplotype-based analysis pinpointed a four-marker combination in this gene associated with the disorder (rs2329340C-rs2044859T-rs6592961A-rs11761683T, P = 4.988e-05). No significant results were obtained for the remaining genes after applying multiple testing corrections. However, the rs167771 marker in DRD3, associated with ASD in a previous study, displayed a nominal association in our analysis (P = 0.023). Our data suggest that common allelic variants in the DDC gene may be involved in autism susceptibility.

  9. Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves

    DEFF Research Database (Denmark)

    Christiansen, Michael W; Gregersen, Per L.

    2014-01-01

    -expressed with members of the NAC gene family. In conclusion, a list of up to 15 NAC genes from barley that are strong candidates for being regulatory factors of importance for senescence and biotic stress-related traits affecting the productivity of cereal crop plants has been generated. Furthermore, a list of 71...... in the NAC transcription factor family during senescence of barley flag leaves was studied. Several members of the NAC transcription factor gene family were up-regulated during senescence in a microarray experiment, together with a large range of senescence-associated genes, reflecting the coordinated...... activation of degradation processes in senescing barley leaf tissues. This picture was confirmed in a detailed quantitative reverse transcription–PCR (qRT–PCR) experiment, which also showed distinct gene expression patterns for different members of the NAC gene family, suggesting a group of ~15 out of the 47...

  10. Computer and Statistical Analysis of Transcription Factor Binding and Chromatin Modifications by ChIP-seq data in Embryonic Stem Cell

    Directory of Open Access Journals (Sweden)

    Orlov Yuriy

    2012-06-01

    Full Text Available Advances in high throughput sequencing technology have enabled the identification of transcription factor (TF binding sites in genome scale. TF binding studies are important for medical applications and stem cell research. Somatic cells can be reprogrammed to a pluripotent state by the combined introduction of factors such as Oct4, Sox2, c-Myc, Klf4. These reprogrammed cells share many characteristics with embryonic stem cells (ESCs and are known as induced pluripotent stem cells (iPSCs. The signaling requirements for maintenance of human and murine embryonic stem cells (ESCs differ considerably. Genome wide ChIP-seq TF binding maps in mouse stem cells include Oct4, Sox2, Nanog, Tbx3, Smad2 as well as group of other factors. ChIP-seq allows study of new candidate transcription factors for reprogramming. It was shown that Nr5a2 could replace Oct4 for reprogramming. Epigenetic modifications play important role in regulation of gene expression adding additional complexity to transcription network functioning. We have studied associations between different histone modification using published data together with RNA Pol II sites. We found strong associations between activation marks and TF binding sites and present it qualitatively. To meet issues of statistical analysis of genome ChIP-sequencing maps we developed computer program to filter out noise signals and find significant association between binding site affinity and number of sequence reads. The data provide new insights into the function of chromatin organization and regulation in stem cells.

  11. Virulence factor genes possessing Enterococcus faecalis strains from rabbits and their sensitivity to enterocins

    Directory of Open Access Journals (Sweden)

    M. Pogány Simonová

    2017-03-01

    Full Text Available Information concerning the virulence factor genes and antibiotic resistance of rabbit enterococci is limited, so in this study we tested the virulence factor genes in Enterococcus faecalis strains from rabbits. Moreover, their resistance/sensitivity to antibiotics and sensitivity to enterocins was also tested, with the aim of contributing to our enterocin spectra study and to indicate the possibility of enterocin application in prevention or contaminant elimination in rabbit husbandry. A total of 144 rabbit samples were treated using a standard microbiological method. Thirty-one pure colonies of the species Enterococcus faecalis were identified, using the MALDI-TOF identification system and confirmed using phenotyping, among which 15 strains were virulence factor gene absent. The gelE gene was the most detected (42%; however, the expression of gelatinase phenotype did not always correlate with the detection of gelE. Strains did not show ß-haemolysis and were mostly resistant to tested antibiotics, but sensitive to enterocins (Ent, mainly to Ents EK13=A (P, 2019 and Ent M. Rabbit E. faecalis strains displayed antibiotic resistant traits and the presence of expressed and silent virulence genes, but they showed high levels of sensitivity to natural antimicrobials-enterocins, which indicates the possible prevention of multidrug and virulent enterococcal contaminants by enterocins.

  12. Structure, function and networks of transcription factors involved in abiotic stress responses

    DEFF Research Database (Denmark)

    Lindemose, Søren; O'Shea, Charlotte; Jensen, Michael Krogh

    2013-01-01

    Transcription factors (TFs) are master regulators of abiotic stress responses in plants. This review focuses on TFs from seven major TF families, known to play functional roles in response to abiotic stresses, including drought, high salinity, high osmolarity, temperature extremes...... and the phytohormone ABA. Although ectopic expression of several TFs has improved abiotic stress tolerance in plants, fine-tuning of TF expression and protein levels remains a challenge to avoid crop yield loss. To further our understanding of TFs in abiotic stress responses, emerging gene regulatory networks based...... on TFs and their direct targets genes are presented. These revealed components shared between ABA-dependent and independent signaling as well as abiotic and biotic stress signaling. Protein structure analysis suggested that TFs hubs of large interactomes have extended regions with protein intrinsic...

  13. Nerve Growth Factor Gene Therapy: Activation of Neuronal Responses in Alzheimer Disease.

    Science.gov (United States)

    Tuszynski, Mark H; Yang, Jennifer H; Barba, David; U, Hoi-Sang; Bakay, Roy A E; Pay, Mary M; Masliah, Eliezer; Conner, James M; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H

    2015-10-01

    Alzheimer disease (AD) is the most common neurodegenerative disorder and lacks effective disease-modifying therapies. In 2001, we initiated a clinical trial of nerve growth factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in patients with AD. We present postmortem findings in 10 patients with survival times ranging from 1 to 10 years after treatment. To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. Patients in this anatomicopathological study were enrolled in clinical trials from March 2001 to October 2012 at the University of California, San Diego, Medical Center in La Jolla. Ten patients with early AD underwent NGF gene therapy using ex vivo or in vivo gene transfer. The brains of all 8 patients in the first phase 1 ex vivo trial and of 2 patients in a subsequent phase 1 in vivo trial were examined. Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In 2 patients, NGF protein levels were measured by enzyme-linked immunosorbent assay. Among 10 patients, degenerating neurons in the AD brain responded to NGF. All patients exhibited a trophic response to NGF in the form of axonal sprouting toward the NGF source. Comparing treated and nontreated sides of the brain in 3 patients who underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P < .05). Activation of cellular signaling and functional markers was present in 2 patients who underwent adeno-associated viral vectors (serotype 2)-mediated NGF gene transfer. Neurons exhibiting tau pathology and neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic

  14. Differential evolution of antiretroviral restriction factors in pteropid bats as revealed by APOBEC3 gene complexity.

    Science.gov (United States)

    Hayward, Joshua A; Tachedjian, Mary; Cui, Jie; Cheng, Adam Z; Johnson, Adam; Baker, Michelle; Harris, Reuben S; Wang, Lin-Fa; Tachedjian, Gilda

    2018-03-29

    Bats have attracted attention in recent years as important reservoirs of viruses deadly to humans and other mammals. These infections are typically nonpathogenic in bats raising questions about innate immune differences that might exist between bats and other mammals. The APOBEC3 gene family encodes antiviral DNA cytosine deaminases with important roles in the suppression of diverse viruses and genomic parasites. Here we characterize pteropid APOBEC3 genes and show that species within the genus Pteropus possess the largest and most diverse array of APOBEC3 genes identified in any mammal reported to date. Several bat APOBEC3 proteins are antiviral as demonstrated by restriction of retroviral infectivity using HIV-1 as a model, and recombinant A3Z1 subtypes possess strong DNA deaminase activity. These genes represent the first group of antiviral restriction factors identified in bats with extensive diversification relative to homologues in other mammals.

  15. Innovations in gene and growth factor delivery systems for diabetic wound healing

    Science.gov (United States)

    Laiva, Ashang Luwang; O'Brien, Fergal J.

    2017-01-01

    Abstract The rise in lower extremity amputations due to nonhealing of foot ulcers in diabetic patients calls for rapid improvement in effective treatment regimens. Administration of growth factors (GFs) are thought to offer an off‐the‐shelf treatment; however, the dose‐ and time‐dependent efficacy of the GFs together with the hostile environment of diabetic wound beds impose a major hindrance in the selection of an ideal route for GF delivery. As an alternative, the delivery of therapeutic genes using viral and nonviral vectors, capable of transiently expressing the genes until the recovery of the wounded tissue offers promise. The development of implantable biomaterial dressings capable of modulating the release of either single or combinatorial GFs/genes may offer solutions to this overgrowing problem. This article reviews the state of the art on gene and protein delivery and the strategic optimization of clinically adopted delivery strategies for the healing of diabetic wounds. PMID:28482114

  16. Improvements to the COBRA-TF (EPRI) computer code for steam generator analysis. Final report

    International Nuclear Information System (INIS)

    Stewart, C.W.; Barnhart, J.S.; Koontz, A.S.

    1980-09-01

    The COBRA-TF (EPRI) code has been improved and extended for pressurized water reactor steam generator analysis. New features and models have been added in the areas of subcooled boiling and heat transfer, turbulence, numerics, and global steam generator modeling. The code's new capabilities are qualified against selected experimental data and demonstrated for typical global and microscale steam generator analysis

  17. A Novel Demountable TF Joint Design for Low Aspect Ratio Spherical Torus Tokamaks

    International Nuclear Information System (INIS)

    Woolley, R.D.

    2009-01-01

    A novel shaped design for the radial conductors and demountable electrical joints connecting inner and outer legs of copper TF system conductors in low aspect ratio tokamaks is described and analysis results are presented. Specially shaped designs can optimize profiles of electrical current density, magnetic force, heating, and mechanical stress

  18. Design and implementation of quench detection instrumentation for TF magnet system of SST-1

    International Nuclear Information System (INIS)

    Khristi, Y.; Sharma, A.N.; Doshi, K.; Banaudha, M.; Prasad, U.; Varmora, P.; Patel, D.; Pradhan, S.

    2014-01-01

    Steady State Superconducting Tokamak-1 (SST-1) at Institute for Plasma Research (IPR), India is now in engineering validation phase. The assembled Toroidal Field (TF) magnet system of SST-1 will be operated at 10 kA of nominal current at helium cooled condition of 4.5 K. A reliable and fail proof quench detection (QD) system is essential for the safety and the investment protection requirements of the magnets. This QD system needs to continuously monitor all the superconducting coils, which include 16 TF magnets, return-loop, bus bars and current leads. In case of any event initiating the normal resistive zone and reaching thermal run-away, the QD system needs to trigger the magnet protection circuits. Precision instrumentation and control system with 204 signal channels had been developed for detection of quench anywhere in the entire TF magnet system. In the present configuration of quench detection scheme, the voltage drop across each double pancake (DP) of each TF coil are compared with its two adjacent DPs for the detection of normal zone and cancelation of inductive couples. Two identical redundant systems with one out of two configurations are successfully commissioned and tested at IPR. This paper describes the design and implementation of the QD system, Installation experience, validation test and initial results from the recent SST-1 magnet system charging

  19. Fabrication of new joints for SST-1 TF coil winding packs

    International Nuclear Information System (INIS)

    Prasad, Upendra; Sharma, A.N.; Patel, Dipak; Doshi, Kalpesh; Khristi, Yohan; Varmora, Pankaj; Chauhan, Pradeep; Jadeja, S.J.; Gupta, Pratibha; Pradhan, S.

    2013-01-01

    Highlights: • We have carried out work related with sub-nanoohm joints for superconducting Tokamak winding packs. • We have established fine tune QA/QC procedures for sub-nanoohm joints fabrication. • We have optimised welding parameters for cable in conduit conductors for fusion relevant magnets. • We have established precised measurement data acquisition system for low resistance measurements at cryogenic temperature. -- Abstract: The Toroidal Field (TF) magnet system of SST-1 has sixteen NbTi/Cu based coils with about one hundred Inter-Pancake (IP) and Inter-Coil (IC) joints. New box type helium leak tight, low DC resistance joints have been designed, fabricated and tested at 5 K temperature and 10 kA DC transport current. The prototype of this joint has been validated in laboratory as well as on spare TF coil winding pack. Moreover, the performance of these joints has been realised and validated on actual sixteen TF winding packs, the joint resistance of ∼0.5 nΩ repeatedly measured on hundreds of IP joints. The quality of terminations and joints was ensured at various stages of fabrication. The quality of joint box material was ensured by visual inspection, chemical analysis, radiography test, ultrasonic test, eddy current test, etc. This paper describes joint design drivers, joint design detail, prototype joint fabrication processes, quality assurance (QA)/quality control (QC) adopted during prototype and actual joint fabrication process, joint resistance measurement on actual TF coils and analysis of measured joint resistance in detail

  20. A Novel Demountable TF Joint Design for Low Aspect Ratio Spherical Torus Tokamaks

    International Nuclear Information System (INIS)

    Woolley, Robert D.

    2009-01-01

    A novel shaped design for the radial conductors and demountable electrical joints connecting inner and outer legs of copper TF system conductors in low aspect ratio tokamaks is described and analysis results are presented. Specially shaped designs can optimize profiles of electrical current density, magnetic force, heating, and mechanical stress.

  1. BOREAS TF-8 NSA-OJP Tower Flux, Meteorological, and Soil Temperature Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Huemmrich, Karl (Editor); Moore, Kathleen E.; Fitzjarrald, David R.

    2000-01-01

    The BOREAS TF-8 team collected energy, CO2, and water vapor flux data at the BOREAS NSA-OJP site during the growing season of 1994 and most of the year for 1996. The data are available in tabular ASCII files.

  2. BOREAS TF-3 NSA-OBS Tower Flux, Meteorological, and Soil Temperature Data

    Science.gov (United States)

    Wofsy, Steven; Sutton, Doug; Goulden, Mike; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux (BOREAS TF-3) team collected tower flux, surface meteorological, and soil temperature data at the BOREAS Northern Study Area-Old Black Spruce (NSA-OBS) site continuously from the March 1994 through October 1996. The data are available in tabular ASCII files.

  3. An allele of an ancestral transcription factor dependent on a horizontally acquired gene product.

    Science.gov (United States)

    Chen, H Deborah; Jewett, Mollie W; Groisman, Eduardo A

    2012-01-01

    Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.

  4. PCTFPeval: a web tool for benchmarking newly developed algorithms for predicting cooperative transcription factor pairs in yeast.

    Science.gov (United States)

    Lai, Fu-Jou; Chang, Hong-Tsun; Wu, Wei-Sheng

    2015-01-01

    Computational identification of cooperative transcription factor (TF) pairs helps understand the combinatorial regulation of gene expression in eukaryotic cells. Many advanced algorithms have been proposed to predict cooperative TF pairs in yeast. However, it is still difficult to conduct a comprehensive and objective performance comparison of different algorithms because of lacking sufficient performance indices and adequate overall performance scores. To solve this problem, in our previous study (published in BMC Systems Biology 2014), we adopted/proposed eight performance indices and designed two overall performance scores to compare the performance of 14 existing algorithms for predicting cooperative TF pairs in yeast. Most importantly, our performance comparison framework can be applied to comprehensively and objectively evaluate the performance of a newly developed algorithm. However, to use our framework, researchers have to put a lot of effort to construct it first. To save researchers time and effort, here we develop a web tool to implement our performance comparison framework, featuring fast data processing, a comprehensive performance comparison and an easy-to-use web interface. The developed tool is called PCTFPeval (Predicted Cooperative TF Pair evaluator), written in PHP and Python programming languages. The friendly web interface allows users to input a list of predicted cooperative TF pairs from their algorithm and select (i) the compared algorithms among the 15 existing algorithms, (ii) the performance indices among the eight existing indices, and (iii) the overall performance scores from two possible choices. The comprehensive performance comparison results are then generated in tens of seconds and shown as both bar charts and tables. The original comparison results of each compared algorithm and each selected performance index can be downloaded as text files for further analyses. Allowing users to select eight existing performance indices and 15

  5. The rates and patterns of deletions in the human factor IX gene

    Energy Technology Data Exchange (ETDEWEB)

    Ketterling, R.P.; Vielhaber, E.L.; Lind, T.J.; Thorland, E.C.; Sommer S.S. (Mayo Clinic/Foundation, Rochester, MN (United States))

    1994-02-01

    Deletions are commonly observed in genes with either segments of highly homologous sequences or excessive gene length. However, in the factor IX gene and in most genes, deletions (of [ge]21 bp) are uncommon. The authors have analyzed DNA from 290 families with hemophilia B (203 independent mutations) and have found 12 deletions >20 bp. Eleven of these are >2 kb (range >3-163 kb), and one is 1.1 kb. The junctions of the four deletions that are completely contained within the factor IX gene have been determined. A novel mutation occurred in patient HB128: the data suggest that a 26.8-kb deletion occurred between two segments of alternating purines and pyrimidines and that a 2.3-kb sense strand segment derived from the deleted region was inserted. For a sample of 203 independent mutations, the authors estimate the [open quotes]baseline[close quotes] rates of deletional mutation per base pair per generation as a function of size. The rate for large (>2 kb)I deletions is exceedingly low. For every mutational event in which a given base is at the junction of a large deletion, there are an estimated 58 microdeletions (<20 bp) and 985 single-base substitutions at that base. Analysis of the nine reported deletion junctions in the factor IX gene literature reveals that (i) five are associated with inversion, orphan sequences, or sense strand insertions; (ii) four are simple deletions that display an excess of short direct repeats at their junctions; (iii) there is no dramatic clustering of junctions within the gene; and (iv) with the exception of alternating purines and pyrimidines, deletion junctions are not preferentially associated with repetitive DNA. 58 refs., 5 figs., 5 tabs.

  6. Vascular endothelial growth factor A protein level and gene expression in intracranial meningiomas with brain edema

    DEFF Research Database (Denmark)

    Nassehi, Damoun; Dyrbye, Henrik; Andresen, Morten

    2011-01-01

    (VEGF) is an endothelial cell-specific mitogen and angiogen. VEGF-A protein, which is identical to vascular permeability factor, is a regulator of angiogenesis. In this study, 101 patients with meningiomas, and possible co-factors to PTBE, such as meningioma subtypes and tumor location, were examined....... Forty-three patients had primary, solitary, supratentorial meningiomas with PTBE. In these, correlations in PTBE, edema index, VEGF-A protein, VEGF gene expression, capillary length, and tumor water content were investigated. DNA-branched hybridization was used for measuring VEGF gene expression...... in tissue homogenates prepared from frozen tissue samples. The method for VEGF-A analysis resembled an ELISA assay, but was based on chemiluminescence. The edema index was positively correlated to VEGF-A protein (p = 0.014) and VEGF gene expression (p

  7. [Placental gene activity of significant angiogenetic factors in the background of intrauterine growth restriction].

    Science.gov (United States)

    Kovács, Péter; Rab, Attila; Szentpéteri, Imre; Joó, József Gábor; Kornya, László

    2017-04-01

    Placental vascular endothelial growth factor A (VEGF-A) gene and endoglin gene are both overexpressed in placental samples obtained from pregnancies with intrauterine growth restriction compared to normal pregnancies. In the background of these changes a mechanism can be supposed, in which the increased endoglin activity in intrauterine growth restriction (IUGR) leads to impaired placental circulation through an antioangiogenetic effect. This results in the development of placental vascular dysfunction and chronic fetal hypoxia. It is chronic hypoxia that turns on VEGF-A as a compensatory mechanism to improve fetal vascular blood supply by promoting placental blood vessel formation. Although the maternal serum placental growth factor (PlGF) level is a potential predictor for both IUGR and praeeclampsia, placental PlGF gene activity may be less of an active in the regulation of placental circulation in IUGR pregnancies during the later stages of gestation. Orv. Hetil., 2017, 158(16), 612-617.

  8. Haemophilia A: Database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene

    Energy Technology Data Exchange (ETDEWEB)

    Tuddenham, E.G.D. (Clinical Research Centre, Harrow (United Kingdom)); Cooper, D.N. (Thrombosis Research Inst., London (United Kingdom)); Gitschier, J. (Univ. of California, San Francisco (United States)); Higuchi, M.; Kazazian, H.H.; Antonarakis, S.E. (Johns Hopkins Univ., Baltimore (United States)); Hoyer, L.W. (American Red Cross, Rockville (United States)); Yoshioka, A. (Nara Medical Coll., Kashihara City (Japan)); Peake, I.R. (Royal Hallamshire Hospital, Sheffield (United Kingdom)); Schwaab, R. (Inst. fuer Klinische Biochemie der Univ. Bonn (West Germany)); Lavergne, J.M. (Hopital de Bicetre (France)); Giannelli, F. (Guy' s Hospital, London (United Kingdom))

    1991-09-25

    Mutations at the factor VIII gene locus causing Haemophilia A have now been identified in many patients from a many ethnic groups. Earlier studies used biased methods which detected repetitive mutations at a few CG dinucleotides. More recently rapid gene scanning methods have uncovered an extreme diversity of mutations. Over 80 different point mutations, 6 insertions, 7 small deletions, and 60 large deletions have been characterized. Repetitive mutation has been proved for at least 16 CpG sites. All nonsense mutations cause severe disease. Most missense mutations appear to cause instability of the protein, but some are associated with production of dysfunctional factor VIII molecules, thereby localizing functionally critical regions of the cofactor. Variable phenotype has been observed in association with three of the latter class of genotype. This catalogue of gene lesions in Haemophilia A will be updated annually.

  9. Virulence factors genes of Staphylococcus spp. isolated from caprine subclinical mastitis.

    Science.gov (United States)

    Salaberry, Sandra Renata Sampaio; Saidenberg, André Becker Simões; Zuniga, Eveline; Melville, Priscilla Anne; Santos, Franklin Gerônimo Bispo; Guimarães, Ednaldo Carvalho; Gregori, Fábio; Benites, Nilson Roberti

    2015-08-01

    The aim of this study was to investigate genes involved in adhesion expression, biofilm formation, and enterotoxin production in isolates of Staphylococcus spp. from goats with subclinical mastitis and associate these results with the staphylococcal species. One hundred and twenty-four isolates were identified and polymerase chain reaction (PCR) was performed to detect the following genes: cna, ebpS, eno, fib, fnbA, fnbB, bap, sea, seb, sec, sed and see. The most commonly Staphylococcus species included S. epidermidis, S. lugdunensis, S. chromogenes, S. capitis ss capitis and S. intermedius. With the exception of fnbB, the genes were detected in different frequencies of occurrence in 86.3% of the Staphylococcus spp. isolates. Eno (73.2%) and bap (94.8%) were more frequently detected in coagulase-negative staphylococci (CNS); ebpS (76%), fib (90.9%) and fnbA (87%) were the most frequent genes in coagulase-positive staphylococci (CPS). Regarding enterotoxins, genes sed (28.2%) and see (24.2%) had a higher frequency of occurrence; sec gene was more frequently detected in CPS (58.8%). There was no association between the presence of the genes and the Staphylococcus species. Different virulence factors genes can be detected in caprine subclinical mastitis caused by CNS and CPS. The knowledge of the occurrence of these virulence factors is important for the development of effective control and prevention measures of subclinical mastitis caused by CNS and CPS in goats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The TF-miRNA Coregulation Network in Oral Lichen Planus

    Science.gov (United States)

    Zuo, Yu-Ling; Gong, Di-Ping; Li, Bi-Ze; Zhao, Juan; Zhou, Ling-Yue; Shao, Fang-Yang; Jin, Zhao; He, Yuan

    2015-01-01

    Oral lichen planus (OLP) is a chronic inflammatory disease that affects oral mucosa, some of which may finally develop into oral squamous cell carcinoma. Therefore, pinpointing the molecular mechanisms underlying the pathogenesis of OLP is important to develop efficient treatments for OLP. Recently, the accumulation of the large amount of omics data, especially transcriptome data, provides opportunities to investigate OLPs from a systematic perspective. In this paper, assuming that the OLP associated genes have functional relationships, we present a new approach to identify OLP related gene modules from gene regulatory networks. In particular, we find that the gene modules regulated by both transcription factors (TFs) and microRNAs (miRNAs) play important roles in the pathogenesis of OLP and many genes in the modules have been reported to be related to OLP in the literature. PMID:26064947

  11. The strategy of fusion genes construction determines efficient expression of introduced transcription factors.

    Science.gov (United States)

    Adamus, Tomasz; Konieczny, Paweł; Sekuła, Małgorzata; Sułkowski, Maciej; Majka, Marcin

    2014-01-01

    The main goal in gene therapy and biomedical research is an efficient transcription factors (TFs) delivery system. SNAIL, a zinc finger transcription factor, is strongly involved in tumor, what makes its signaling pathways an interesting research subject. The necessity of tracking activation of intracellular pathways has prompted fluorescent proteins usage as localization markers. Advanced molecular cloning techniques allow to generate fusion proteins from fluorescent markers and transcription factors. Depending on fusion strategy, the protein expression levels and nuclear transport ability are significantly different. The P2A self-cleavage motif through its cleavage ability allows two single proteins to be simultaneously expressed. The aim of this study was to compare two strategies for introducing a pair of genes using expression vector system. We have examined GFP and SNAI1 gene fusions by comprising common nucleotide polylinker (multiple cloning site) or P2A motif in between them, resulting in one fusion or two independent protein expressions respectively. In each case transgene expression levels and translation efficiency as well as nuclear localization of expressed protein have been analyzed. Our data showed that usage of P2A motif provides more effective nuclear transport of SNAIL transcription factor than conventional genes linker. At the same time the fluorescent marker spreads evenly in subcellular space.

  12. Structure and role of neutrophil cytosol factor 1 (NCF1) gene in ...

    African Journals Online (AJOL)

    Yomi

    2010-12-27

    Dec 27, 2010 ... The neutrophil cytosol factor 1 (NCF1) gene consists of 11 exons and is found in two forms; one is wild ... granulomatous disease, multiple sclerosis, arthritis and parasitic infection. ... TCR, T cell receptor; AhR, aryl hydrocarbon receptor; RA, .... During malaria, ROS production can contribute to both.

  13. Factors affecting the gene expression of in vitro cultured human preimplantation embryos

    NARCIS (Netherlands)

    Mantikou, E.; Jonker, M. J.; Wong, K. M.; van Montfoort, A. P. A.; de Jong, M.; Breit, T. M.; Repping, S.; Mastenbroek, S.

    2016-01-01

    What is the relative effect of common environmental and biological factors on transcriptome changes during human preimplantation development? Developmental stage and maternal age had a larger effect on the global gene expression profile of human preimplantation embryos than the culture medium or

  14. Amplification of epidermal growth factor receptor gene in renal cell carcinoma

    DEFF Research Database (Denmark)

    El-Hariry, Iman; Powles, Thomas; Lau, Mike R

    2010-01-01

    Expression of epidermal growth factor receptor (EGFR) may be of prognostic value in renal cell cancer (RCC). Gene amplification of EGFR was investigated in a cohort of 315 patients with advanced RCC from a previously reported randomised study. Using fluorescent in situ hybridisation, only 2...

  15. Gene-Environment Interplay in Internalizing Disorders: Consistent Findings across Six Environmental Risk Factors

    Science.gov (United States)

    Hicks, Brian M.; Dirago, Ana C.; Iacono, William G.; McGue, Matt

    2009-01-01

    Background: Behavior genetic methods can help to elucidate gene-environment (G-E) interplay in the development of internalizing (INT) disorders (i.e., major depression and anxiety disorders). To date, however, no study has conducted a comprehensive analysis examining multiple environmental risk factors with the purpose of delineating general…

  16. Transcription factor 7-like 2 gene links increased in vivo insulin synthesis to type 2 diabetes

    NARCIS (Netherlands)

    S. Jainandunsing (Sjaam); Koole, H.R. (H. Rita); van Miert, J.N.I. (Joram N.I.); T. Rietveld (Trinet); J.L.D. Wattimena (Josias); E.J.G. Sijbrands (Eric); F.W.M. de Rooij (Felix)

    2018-01-01

    textabstractTranscription factor 7-like 2 (TCF7L2) is the main susceptibility gene for type 2 diabetes, primarily through impairing the insulin secretion by pancreatic β cells. However, the exact in vivo mechanisms remain poorly understood. We performed a family study and determined if the T risk

  17. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity

    DEFF Research Database (Denmark)

    Brandt, Julia P; Aziz-Zaman, Sonya; Juozaityte, Vaida

    2012-01-01

    . We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2). The ETS-5 transcription factor is necessary for the specification of CO(2)-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient...

  18. Novel Genomic and Evolutionary Insight of WRKY Transcription Factors in Plant Lineage.

    Science.gov (United States)

    Mohanta, Tapan Kumar; Park, Yong-Hwan; Bae, Hanhong

    2016-11-17

    The evolutionarily conserved WRKY transcription factor (TF) regulates different aspects of gene expression in plants, and modulates growth, development, as well as biotic and abiotic stress responses. Therefore, understanding the details regarding WRKY TFs is very important. In this study, large-scale genomic analyses of the WRKY TF gene family from 43 plant species were conducted. The results of our study revealed that WRKY TFs could be grouped and specifically classified as those belonging to the monocot or dicot plant lineage. In this study, we identified several novel WRKY TFs. To our knowledge, this is the first report on a revised grouping system of the WRKY TF gene family in plants. The different forms of novel chimeric forms of WRKY TFs in the plant genome might play a crucial role in their evolution. Tissue-specific gene expression analyses in Glycine max and Phaseolus vulgaris showed that WRKY11-1, WRKY11-2 and WRKY11-3 were ubiquitously expressed in all tissue types, and WRKY15-2 was highly expressed in the stem, root, nodule and pod tissues in G. max and P. vulgaris.

  19. Control of plant architecture by distinctive TALE homeobox gene interactions

    NARCIS (Netherlands)

    Bao, D.|info:eu-repo/dai/nl/304838063

    2009-01-01

    In eukaryotes, transcription factor (TF)-based network is a widely used mechanism to regulate fundamental developmental processes. Both animals and plants utilize three-amino-acid-loop-extension (TALE) homeodomain (HD) transcription factors to subdivide their body plan. In animals, MEIS/PBC TF

  20. Construction of a mouse model of factor VIII deficiency by gene targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bi, L.; Lawler, A.; Gearhart, J. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)] [and others

    1994-09-01

    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  1. EGR3 Immediate Early Gene and the Brain-Derived Neurotrophic Factor in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Bianca Pfaffenseller

    2018-02-01

    Full Text Available Bipolar disorder (BD is a severe psychiatric illness with a consistent genetic influence, involving complex interactions between numerous genes and environmental factors. Immediate early genes (IEGs are activated in the brain in response to environmental stimuli, such as stress. The potential to translate environmental stimuli into long-term changes in brain has led to increased interest in a potential role for these genes influencing risk for psychiatric disorders. Our recent finding using network-based approach has shown that the regulatory unit of early growth response gene 3 (EGR3 of IEGs family was robustly repressed in postmortem prefrontal cortex of BD patients. As a central transcription factor, EGR3 regulates an array of target genes that mediate critical neurobiological processes such as synaptic plasticity, memory and cognition. Considering that EGR3 expression is induced by brain-derived neurotrophic factor (BDNF that has been consistently related to BD pathophysiology, we suggest a link between BDNF and EGR3 and their potential role in BD. A growing body of data from our group and others has shown that peripheral BDNF levels are reduced during mood episodes and also with illness progression. In this same vein, BDNF has been proposed as an important growth factor in the impaired cellular resilience related to BD. Taken together with the fact that EGR3 regulates the expression of the neurotrophin receptor p75NTR and may also indirectly induce BDNF expression, here we propose a feed-forward gene regulatory network involving EGR3 and BDNF and its potential role in BD.

  2. Transcriptome analyses identify five transcription factors differentially expressed in the hypothalamus of post- versus prepubertal Brahman heifers.

    Science.gov (United States)

    Fortes, M R S; Nguyen, L T; Weller, M M D C A; Cánovas, A; Islas-Trejo, A; Porto-Neto, L R; Reverter, A; Lehnert, S A; Boe-Hansen, G B; Thomas, M G; Medrano, J F; Moore, S S

    2016-09-01

    Puberty onset is a developmental process influenced by genetic determinants, environment, and nutrition. Mutations and regulatory gene networks constitute the molecular basis for the genetic determinants of puberty onset. The emerging knowledge of these genetic determinants presents opportunities for innovation in the breeding of early pubertal cattle. This paper presents new data on hypothalamic gene expression related to puberty in (Brahman) in age- and weight-matched heifers. Six postpubertal heifers were compared with 6 prepubertal heifers using whole-genome RNA sequencing methodology for quantification of global gene expression in the hypothalamus. Five transcription factors (TF) with potential regulatory roles in the hypothalamus were identified in this experiment: , , , , and . These TF genes were significantly differentially expressed in the hypothalamus of postpubertal versus prepubertal heifers and were also identified as significant according to the applied regulatory impact factor metric ( cancer and developmental processes. Mutations in were associated with puberty in humans. Mutations in these TF, together with other genetic determinants previously discovered, could be used in genomic selection to predict the genetic merit of cattle (i.e., the likelihood of the offspring presenting earlier than average puberty for Brahman). Knowledge of key mutations involved in genetic traits is an advantage for genomic prediction because it can increase its accuracy.

  3. Comparative Evaluation of Tubex TF (Inhibition Magnetic Binding Immunoassay) for Typhoid Fever in Endemic Area.

    Science.gov (United States)

    Khanna, Ashish; Khanna, Menka; Gill, Karamjit Singh

    2015-11-01

    Typhoid fever remains a significant health problem in endemic countries like India. Various serological tests for the diagnosis of typhoid fever are available commercially. We assessed the usefulness of rapid test based on magnetic particle separation to detect Immunoglobulin against Salmonella typhi O9 lipopolysaccharide. Aim of this study was to compare the sensitivity and specificity of widal test, typhidot and tubex TF test for the diagnosis of typhoid fever in an endemic country like India. Serum samples collected from 50 patients of typhoid fever, 50 patients of non typhoid fever and 100 normal healthy individuals residing in Amritsar were subjected to widal test, typhidot test and tubex TF test as per manufacturer's instructions. Data collected was assessed to find sensitivity and specificity of these tests in an endemic area. Significant widal test results were found positive in 68% of patients of typhoid fever and only 4% of non typhoid fever patients. Typhidot (IgM or IgG) was positive in 72% of typhoid fever patients and 10% and 6% in non typhoid fever and normal healthy individuals respectively. Tubex TF showed higher sensitivity of 76% and specificity of 96-99% which was higher than typhidot and comparable to widal test. This was the first evaluation of rapid tubex TF test in northern India. In countries which can afford high cost of test, tubex TF should be recommended for the diagnosis in acute stage of the disease in clinical setting. However, there is urgent need for a highly specific and sensitive test for the diagnosis of typhoid fever in clinical settings in endemic areas.

  4. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana.

    Science.gov (United States)

    Shi, Yihao; Huang, Jiaying; Sun, Tianshu; Wang, Xuefei; Zhu, Chenqi; Ai, Yuxi; Gu, Hongya

    2017-02-01

    The transcription factors CBF1/2/3 are reported to play a dominant role in the cold responsive network of Arabidopsis by directly regulating the expression levels of cold responsive (COR) genes. In this study, we obtained CRISPR/Cas9-mediated loss-of-function mutants of cbf1∼3. Over 3,000 COR genes identified by RNA-seq analysis showed a slight but significant change in their expression levels in the mutants compared to the wild-type plants after being treated at 4 °C for 12 h. The C-repeat (CRT) motif (5'-CCGAC-3') was enriched in promoters of genes that were up-regulated by CBF2 and CBF3 but not in promoters of genes up-regulated by CBF1. These data suggest that CBF2 and CBF3 play a more important role in directing the cold response by regulating different sets of downstream COR genes. More than 2/3 of COR genes were co-regulated by two or three CBFs and were involved mainly in cellular signal transduction and metabolic processes; less than 1/3 of the genes were regulated by one CBF, and those genes up-regulated were enriched in cold-related abiotic stress responses. Our results indicate that CBFs play an important role in the trade-off between cold tolerance and plant growth through the precise regulation of COR genes in the complicated transcriptional network. © 2016 The Authors. Journal of Integrative Plant Biology Published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  5. Nerve Growth Factor Gene Therapy Activates Neuronal Responses in Alzheimer’s Disease

    Science.gov (United States)

    Tuszynski, Mark H.; Yang, Jennifer H.; Barba, David; U, H S.; Bakay, Roy; Pay, Mary M.; Masliah, Eliezer; Conner, James M.; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H.

    2016-01-01

    IMPORTANCE Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and lacks effective disease modifying therapies. In 2001 we initiated a clinical trial of Nerve Growth Factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in AD patients. We present post-mortem findings in 10 subjects with survival times ranging from 1 to 10 years post-treatment. OBJECTIVE To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. DESIGN, SETTING, AND PARTICIPANTS 10 patients with early AD underwent NGF gene therapy using either ex vivo or in vivo gene transfer. The brains of all eight patients in the first Phase 1 ex vivo trial and two patients in a subsequent Phase 1 in vivo trial were examined. MAIN OUTCOME MEASURES Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In two cases, NGF protein levels were measured by ELISA. RESULTS Degenerating neurons in the AD brain respond to NGF. All patients exhibited a trophic response to NGF, in the form of axonal sprouting toward the NGF source. Comparing treated and non-treated sides of the brain in three patients that underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P>0.05). Activation of cellular signaling and functional markers were present in two patients that underwent AAV2-mediated NGF gene transfer. Neurons exhibiting tau pathology as well as neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic genes with resulting activation of cell signaling. No adverse pathological effects related to NGF were observed. CONCLUSIONS AND RELEVANCE These findings indicate that

  6. The hematopoietic transcription factor PU.1 regulates RANK gene expression in myeloid progenitors

    International Nuclear Information System (INIS)

    Kwon, Oh Hyung; Lee, Chong-Kil; Lee, Young Ik; Paik, Sang-Gi; Lee, Hyun-Jun

    2005-01-01

    Osteoclasts are bone resorbing cells of hematopoietic origin. The hematopoietic transcription factor PU.1 is critical for osteoclastogenesis; however, the molecular mechanisms of PU.1-regulated osteoclastogenesis have not been explored. Here, we present evidence that the receptor activator of nuclear factor κB (RANK) gene that has been shown to be crucial for osteoclastogenesis is a transcriptional target of PU.1. The PU.1 -/- progenitor cells failed to express the RANK gene and reconstitution of PU.1 in these cells induced RANK expression. Treatment of the PU.1 reconstituted cells with M-CSF and RANKL further augmented the RANK gene expression. To explore the regulatory mechanism of the RANK gene expression by PU.1, we have cloned the human RANK promoter. Transient transfection assays have revealed that the 2.2-kb RANK promoter was functional in a monocyte line RAW264.7, whereas co-transfection of PU.1 transactivated the RANK promoter in HeLa cells. Taken together, these results suggest that PU.1 regulates the RANK gene transcription and this may represent one of the key roles of PU.1 in osteoclast differentiation

  7. Gene activated by growth factors is related to the oncogene v-jun

    International Nuclear Information System (INIS)

    Ryder, K.; Lau, L.F.; Nathans, D.

    1988-01-01

    The authors have recently identified by cDNA cloning a set of genes that are rapidly activated in cultured mouse cells by protein growth factors. Here they report that the nucleotide sequence of a cDNA (clone 465) derived from one of these immediate early genes (hereafter called jun-B) encodes a protein homologous to that encoded by the avian sarcoma virus 17 oncogene v-jun. Homology between the jun-B and v-jun proteins is in two regions: one near the N terminus and the other at the C terminus. The latter sequence was shown to have regions of sequence similarity to the DNA-binding domain of the yeast transcriptional regulatory protein GCN4 and to the oncogenic protein fos. Southern blots of human, mouse, and chicken DNA demonstrate that jun-B and c-jun are different genes and that there may be other vertebrate genes related to jun-B and c-jun. These findings suggest that there is a jun family of genes encoding related transcriptional regulatory proteins. The jun-B protein, and perhaps other members of the jun family, may play a role in regulating the genomic response to growth factors

  8. Transcription factor CREB is involved in CaSR-mediated cytoskeleton gene expression.

    Science.gov (United States)

    Huang, Shuaishuai; Ren, Yu; Wang, Ping; Li, Yanyuan; Wang, Xue; Zhuang, Haihui; Fang, Rong; Wang, Yuduo; Liu, Ningsheng; Hehir, Michael; Zhou, Jeff X

    2015-03-01

    Our previous studies illustrated that a steady increase of intracellular calcium concentration ([Ca2+]i) was important for maintaining microtubules (MTs) rearrangement in apoptotic cells. However, little is known about the effect of calcium sensing receptor (CaSR)-mediated increase in [Ca2+]i on cytoskeleton gene expression. We examined the impact of taxol or CaSR agonist/antagonist on the regulation of [Ca2+]i concentration, cytoskeleton arrangement, phosphorylated CREB and cytoskeleton gene expressions in HeLa cells with dominant negative plasmid of CREB (PM). This study demonstrated that Gdcl3 (a specific CaSR agonist) evoked a rapid increase of [Ca2+]i, formed a rigid bundle of MTs which surrounded the nucleus and decreased the cytoskeleton gene expressions in HeLa cells. These effects were rescued by addition of NPS2390 (a specific CaSR antagonist). Moreover, CaSR activity affected cytoskeleton gene expression through transcription factor CREB. Histoscores of pCREB immunoreactivity in tissues of cervical adenocarcinoma, renal clear cell carcinoma, and diffuse large B-cell lymphoma were markedly increased compared with non malignant tissue. These data demonstrate, for the first time, that CaSR-mediated increase in [Ca2+]i probably modulate cytoskeleton organization and gene expression via transcription factor. © 2014 Wiley Periodicals, Inc.

  9. Pulmonary artery hypertension in childhood: The transforming growth factor-β superfamily-related genes

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2018-04-01

    Full Text Available Pulmonary artery hypertension (PAH is very rare in childhood, and it can be divided into heritable, idiopathic drug- and toxin-induced and other disease (connective tissue disease, human immunodeficiency virus infection, portal hypertension, congenital heart disease, or schistosomiasis-associated types. PAH could not be interpreted solely by pathophysiological theories. The impact of the transforming growth factor-β superfamily-related genes on the development of PAH in children remains to be clarified. Pertinent literature on the transforming growth factor-β superfamily-related genes in relation to PAH in children published after the year 2000 was reviewed and analyzed. Bone morphogenetic protein receptor type II gene mutation promotes cell division or prevents cell death, resulting in an overgrowth of cells in small arteries throughout the lungs. About 20% of individuals with a bone morphogenetic protein receptor type II gene mutation develop symptomatic PAH. In heritable PAH, bone morphogenetic protein receptor type II mutations may be absent; while mutations of other genes, such as type I receptor activin receptor-like kinase 1 and the type III receptor endoglin (both associated with hereditary hemorrhagic telangiectasia, caveolin-1 and KCNK3, the gene encoding potassium channel subfamily K, member 3, can be detected, instead. Gene mutations, environmental changes and acquired adjustment, etc. may explain the development of PAH. The researches on PAH rat model and familial PAH members may facilitate the elucidations of the mechanisms and further provide theories for prophylaxis and treatment of PAH. Key Words: bone morphogenetic proteins, mutation, pulmonary hypertension

  10. Virulence Factor Genes in Staphylococcus aureus Isolated From Diabetic Foot Soft Tissue and Bone Infections.

    Science.gov (United States)

    Víquez-Molina, Gerardo; Aragón-Sánchez, Javier; Pérez-Corrales, Cristian; Murillo-Vargas, Christian; López-Valverde, María Eugenia; Lipsky, Benjamin A

    2018-03-01

    The aim of this study is to describe the presence of genes encoding for 4 virulence factors (pvl, eta, etb, and tsst), as well as the mecA gene conferring resistance to beta-lactam antibiotics, in patients with diabetes and a staphylococcal foot infection. We have also analyzed whether isolates of Staphylococcus aureus from bone infections have a different profile for these genes compared with those from exclusively soft tissue infections. In this cross-sectional study of a prospectively recruited series of patients admitted to the Diabetic Foot Unit, San Juan de Dios Hospital, San José, Costa Rica with a moderate or severe diabetic foot infection (DFI), we collected samples from infected soft tissue and from bone during debridement. During the study period (June 1, 2014 to May 31, 2016), we treated 379 patients for a DFI. S aureus was isolated from 101 wound samples, of which 43 were polymicrobial infections; we only included the 58 infections that were monomicrobial S aureus for this study. Infections were exclusively soft tissue in 17 patients (29.3%) while 41 (70.7%) had bone involvement (osteomyelitis). The mecA gene was detected in 35 cases (60.3%), pvl gene in 4 cases (6.9%), and tsst gene in 3 (5.2%). We did not detect etA and etB in any of the cases. There were no differences in the profile of S aureus genes encoding for virulence factors (pvl, etA, etB, and tsst) recovered from DFIs between those with just soft tissue compared to those with osteomyelitis. However, we found a significantly higher prevalence of pvl+ strains of S aureus associated with soft tissue compared with bone infections. Furthermore, we observed a significantly longer time to healing among patients infected with mecA+ (methicillin-resistant) S aureus (MRSA).

  11. Identification of the Drosophila Mes4 gene as a novel target of the transcription factor DREF

    Energy Technology Data Exchange (ETDEWEB)

    Suyari, Osamu; Ida, Hiroyuki [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Yoshioka, Yasuhide; Kato, Yasuko; Hashimoto, Reina [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Venture Laboratory, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Yamaguchi, Masamitsu, E-mail: myamaguc@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan)

    2009-05-01

    The Mes4 gene has been identified as one of the maternal Dorsal target genes in Drosophila. In the present study, we found a DNA replication-related element (DRE, 5'-TATCGATA) in the Mes4 promoter recognized by the DRE-binding factor (DREF). Luciferase transient expression assays in S2 cells using Mes4 promoter-luciferase fusion plasmids revealed that the DRE sequence is essential for Mes4 promoter activity. Requirement of DRE for Mes4 promoter activity was further confirmed by anti-{beta}-galactosidase antibody-staining of various tissues from transgenic flies carrying Mes4 promoter-lacZ fusion genes. Furthermore, wild type Mes4 promoter activity was decreased by 40% in DREF-depleted S2 cells. These results indicate that DREF positively regulates Mes4 gene expression. Band mobility shift analyses using Kc cell nuclear extracts further indicated that the DRE sequence in the Mes4 promoter is especially important for binding to DREF. Moreover, specific binding of DREF to the involved genomic region could be demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. These results, taken together, indicate that the DRE/DREF system activates transcription of the Mes4 gene. In addition, knockdown of the Mes4 gene in wing imaginal discs using the GAL4-UAS system caused an atrophied wing phenotype, suggesting that Mes4 is required for wing morphogenesis.

  12. The WRKY Transcription Factor Family in Citrus: Valuable and Useful Candidate Genes for Citrus Breeding.

    Science.gov (United States)

    Ayadi, M; Hanana, M; Kharrat, N; Merchaoui, H; Marzoug, R Ben; Lauvergeat, V; Rebaï, A; Mzid, R

    2016-10-01

    WRKY transcription factors belong to a large family of plant transcriptional regulators whose members have been reported to be involved in a wide range of biological roles including plant development, adaptation to environmental constraints and response to several diseases. However, little or poor information is available about WRKY's in Citrus. The recent release of completely assembled genomes sequences of Citrus sinensis and Citrus clementina and the availability of ESTs sequences from other citrus species allowed us to perform a genome survey for Citrus WRKY proteins. In the present study, we identified 100 WRKY members from C. sinensis (51), C. clementina (48) and Citrus unshiu (1), and analyzed their chromosomal distribution, gene structure, gene duplication, syntenic relation and phylogenetic analysis. A phylogenetic tree of 100 Citrus WRKY sequences with their orthologs from Arabidopsis has distinguished seven groups. The CsWRKY genes were distributed across all ten sweet orange chromosomes. A comprehensive approach and an integrative analysis of Citrus WRKY gene expression revealed variable profiles of expression within tissues and stress conditions indicating functional diversification. Thus, candidate Citrus WRKY genes have been proposed as potentially involved in fruit acidification, essential oil biosynthesis and abiotic/biotic stress tolerance. Our results provided essential prerequisites for further WRKY genes cloning and functional analysis with an aim of citrus crop improvement.

  13. Identification of the Drosophila Mes4 gene as a novel target of the transcription factor DREF

    International Nuclear Information System (INIS)

    Suyari, Osamu; Ida, Hiroyuki; Yoshioka, Yasuhide; Kato, Yasuko; Hashimoto, Reina; Yamaguchi, Masamitsu

    2009-01-01

    The Mes4 gene has been identified as one of the maternal Dorsal target genes in Drosophila. In the present study, we found a DNA replication-related element (DRE, 5'-TATCGATA) in the Mes4 promoter recognized by the DRE-binding factor (DREF). Luciferase transient expression assays in S2 cells using Mes4 promoter-luciferase fusion plasmids revealed that the DRE sequence is essential for Mes4 promoter activity. Requirement of DRE for Mes4 promoter activity was further confirmed by anti-β-galactosidase antibody-staining of various tissues from transgenic flies carrying Mes4 promoter-lacZ fusion genes. Furthermore, wild type Mes4 promoter activity was decreased by 40% in DREF-depleted S2 cells. These results indicate that DREF positively regulates Mes4 gene expression. Band mobility shift analyses using Kc cell nuclear extracts further indicated that the DRE sequence in the Mes4 promoter is especially important for binding to DREF. Moreover, specific binding of DREF to the involved genomic region could be demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. These results, taken together, indicate that the DRE/DREF system activates transcription of the Mes4 gene. In addition, knockdown of the Mes4 gene in wing imaginal discs using the GAL4-UAS system caused an atrophied wing phenotype, suggesting that Mes4 is required for wing morphogenesis.

  14. Identification of target genes of transcription factor activator protein 2 gamma in breast cancer cells

    International Nuclear Information System (INIS)

    Ailan, He; Shuanglin, Xiang; Xiangwen, Xiao; Daolong, Ren; Lu, Gan; Xiaofeng, Ding; Xi, Qiao; Xingwang, Hu; Rushi, Liu; Jian, Zhang

    2009-01-01

    Activator protein 2 gamma (AP-2γ) is a member of the transcription factor activator protein-2 (AP-2) family, which is developmentally regulated and plays a role in human neoplasia. AP-2γ has been found to be overexpressed in most breast cancers, and have a dual role to inhibit tumor initiation and promote tumor progression afterwards during mammary tumorigensis. To identify the gene targets that mediate its effects, we performed chromatin immunoprecipitation (ChIP) to isolate AP-2γ binding sites on genomic DNA from human breast cancer cell line MDA-MB-453. 20 novel DNA fragments proximal to potential AP-2γ targets were obtained. They are categorized into functional groups of carcinogenesis, metabolism and others. A combination of sequence analysis, reporter gene assays, quantitative real-time PCR, electrophoretic gel mobility shift assays and immunoblot analysis further confirmed the four AP-2γ target genes in carcinogenesis group: ErbB2, CDH2, HPSE and IGSF11. Our results were consistent with the previous reports that ErbB2 was the target gene of AP-2γ. Decreased expression and overexpression of AP-2γ in human breast cancer cells significantly altered the expression of these four genes, indicating that AP-2γ directly regulates them. This suggested that AP-2γ can coordinate the expression of a network of genes, involving in carcinogenesis, especially in breast cancer. They could serve as therapeutic targets against breast cancers in the future

  15. The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1.

    Science.gov (United States)

    Zhou, Xiangjun; Sun, Tian-Hu; Wang, Ning; Ling, Hong-Qing; Lu, Shan; Li, Li

    2011-04-01

    The cauliflower (Brassica oleracea var. botrytis) Orange (Or) gene affects plant growth and development in addition to conferring β-carotene accumulation. This study was undertaken to investigate the molecular basis for the effects of the Or gene mutation in on plant growth. The OR protein was found to interact with cauliflower and Arabidopsis eukaryotic release factor 1-2 (eRF1-2), a member of the eRF1 family, by yeast two-hybrid analysis and by bimolecular fluorescence complementation (BiFC) assay. Concomitantly, the Or mutant showed reduced expression of the BoeRF1 family genes. Transgenic cauliflower plants with suppressed expression of BoeRF1-2 and BoeRF1-3 were generated by RNA interference. Like the Or mutant, the BoeRF1 RNAi lines showed increased elongation of the leaf petiole. This long-petiole phenotype was largely caused by enhanced cell elongation, which resulted from increased cell length and elevated expression of genes involved in cell-wall loosening. These findings demonstrate that the cauliflower Or gene controls petiole elongation by suppressing the expression of eRF1 genes, and provide new insights into the molecular mechanism of leaf petiole regulation. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  16. Hessian regularization based non-negative matrix factorization for gene expression data clustering.

    Science.gov (United States)

    Liu, Xiao; Shi, Jun; Wang, Congzhi

    2015-01-01

    Since a key step in the analysis of gene expression data is to detect groups of genes that have similar expression patterns, clustering technique is then commonly used to analyze gene expression data. Data representation plays an important role in clustering analysis. The non-negative matrix factorization (NMF) is a widely used data representation method with great success in machine learning. Although the traditional manifold regularization method, Laplacian regularization (LR), can improve the performance of NMF, LR still suffers from the problem of its weak extrapolating power. Hessian regularization (HR) is a newly developed manifold regularization method, whose natural properties make it more extrapolating, especially for small sample data. In this work, we propose the HR-based NMF (HR-NMF) algorithm, and then apply it to represent gene expression data for further clustering task. The clustering experiments are conducted on five commonly used gene datasets, and the results indicate that the proposed HR-NMF outperforms LR-based NMM and original NMF, which suggests the potential application of HR-NMF for gene expression data.

  17. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    International Nuclear Information System (INIS)

    Kanbe, Takamasa; Murai, Rie; Mukoyama, Tomoyuki; Murawaki, Yoshiyuki; Hashiguchi, Ko-ichi; Yoshida, Yoko; Tsuchiya, Hiroyuki; Kurimasa, Akihiro; Harada, Ken-ichi; Yashima, Kazuo; Nishimuki, Eiji; Shabana, Noriko; Kishimoto, Yukihiro; Kojyo, Haruhiko; Miura, Kunihiko; Murawaki, Yoshikazu; Kawasaki, Hironaka; Shiota, Goshi

    2006-01-01

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SRα promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells than in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes

  18. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  19. Structure and expression of sulfatase and sulfatase modifying factor genes in the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Ma, Xiao-Li; He, Wei-Yi; Chen, Wei; Xu, Xue-Jiao; Qi, Wei-Ping; Zou, Ming-Min; You, Yan-Chun; Baxter, Simon W; Wang, Ping; You, Min-Sheng

    2017-06-01

    The diamondback moth, Plutella xylostella (L.), uses sulfatases (SULF) to counteract the glucosinolate-myrosinase defensive system that cruciferous plants have evolved to deter insect feeding. Sulfatase activity is regulated by post-translational modification of a cysteine residue by sulfatase modifying factor 1 (SUMF1). We identified 12 SULF genes (PxylSulfs) and two SUMF1 genes (PxylSumf1s) in the P. xylostella genome. Phylogenetic analysis of SULFs and SUMFs from P. xylostella, Bombyx mori, Manduca sexta, Heliconius melpomene, Danaus plexippus, Drosophila melanogaster, Tetranychus urticae and Homo sapiens showed that the SULFs were clustered into five groups, and the SUMFs could be divided into two groups. Profiling of the expression of PxylSulfs and PxylSumfs by RNA-seq and by quantitative real-time polymerase chain reaction showed that two glucosinolate sulfatase genes (GSS), PxylSulf2 and PxylSulf3, were primarily expressed in the midgut of 3rd- and 4th-instar larvae. Moreover, expression of sulfatases PxylSulf2, PxylSulf3 and PxylSulf4 were correlated with expression of the sulfatases modifying factor PxylSumf1a. The findings from this study provide new insights into the structure and expression of SUMF1 and PxylSulf genes that are considered to be key factors for the evolutionary success of P. xylostella as a specialist herbivore of cruciferous plants. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  20. Molecular cloning, nucleotide sequence, and expression of the gene encoding human eosinophil differentiation factor (interleukin 5)

    International Nuclear Information System (INIS)

    Campbell, H.D.; Tucker, W.Q.J.; Hort, Y.; Martinson, M.E.; Mayo, G.; Clutterbuck, E.J.; Sanderson, C.J.; Young, I.G.

    1987-01-01

    The human eosinophil differentiation factor (EDF) gene was cloned from a genomic library in λ phage EMBL3A by using a murine EDF cDNA clone as a probe. The DNA sequence of a 3.2-kilobase BamHI fragment spanning the gene was determined. The gene contains three introns. The predicted amino acid sequence of 134 amino acids is identical with that recently reported for human interleukin 5 but shows no significant homology with other known hemopoietic growth regulators. The amino acid sequence shows strong homology (∼ 70% identity) with that of murine EDF. Recombinant human EDF, expressed from the human EDF gene after transfection into monkey COS cells, stimulated the production of eosinophils and eosinophil colonies from normal human bone marrow but had no effect on the production of neutrophils or mononuclear cells (monocytes and lymphoid cells). The apparent specificity of human EDF for the eosinophil lineage in myeloid hemopoiesis contrasts with the properties of human interleukin 3 and granulocyte/macrophage and granulocyte colony-stimulating factors but is directly analogous to the biological properties of murine EDF. Human EDF therefore represents a distinct hemopoietic growth factor that could play a central role in the regulation of eosinophilia

  1. DMPD: Type I interferon [corrected] gene induction by the interferon regulatory factorfamily of transcription factors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16979567 Type I interferon [corrected] gene induction by the interferon regulatory factorfamily...ng) (.svg) (.html) (.csml) Show Type I interferon [corrected] gene induction by the interferon regulatory factorfamily...orrected] gene induction by the interferon regulatory factorfamily of transcription factors. Authors Honda K

  2. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT[A,C,G...... abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  3. HFE gene mutation is a risk factor for tissue iron accumulation in hemodialysis patients.

    Science.gov (United States)

    Turkmen, Ercan; Yildirim, Tolga; Yilmaz, Rahmi; Hazirolan, Tuncay; Eldem, Gonca; Yilmaz, Engin; Aybal Kutlugun, Aysun; Altindal, Mahmut; Altun, Bulent

    2017-07-01

    HFE gene mutations are responsible from iron overload in general population. Studies in hemodialysis patients investigated the effect of presence of HFE gene mutations on serum ferritin and transferrin saturation (TSAT) with conflicting results. However effect of HFE mutations on iron overload in hemodialysis patients was not previously extensively studied. 36 hemodialysis patients (age 51.3 ± 15.6, (18/18) male/female) and 44 healthy control subjects included in this cross sectional study. Hemoglobin, ferritin, TSAT in the preceding 2 years were recorded. Iron and erythropoietin (EPO) administered during this period were calculated. Iron accumulation in heart and liver was detected by MRI. Relationship between HFE gene mutation, hemoglobin, iron parameters and EPO doses, and tissue iron accumulation were determined. Iron overload was detected in nine (25%) patients. Hemoglobin, iron parameters, weekly EPO doses, and monthly iron doses of patients with and without iron overload were similar. There was no difference between control group and hemodialysis patients with respect to the prevalence of HFE gene mutations. Iron overload was detected in five of eight patients who had HFE gene mutations, but iron overload was present in 4 of 28 patients who had no mutations (P = 0.01). Hemoglobin, iron parameters, erythropoietin, and iron doses were similar in patients with and without gene mutations. HFE gene mutations remained the main determinant of iron overload after multivariate logistic regression analysis (P = 0.02; OR, 11.6). Serum iron parameters were not adequate to detect iron overload and HFE gene mutation was found to be an important risk factor for iron accumulation. © 2017 International Society for Hemodialysis.

  4. Modulation of hepatocyte growth factor gene expression by estrogen in mouse ovary.

    Science.gov (United States)

    Liu, Y; Lin, L; Zarnegar, R

    1994-09-01

    Hepatocyte growth factor (HGF) is expressed in a variety of tissues and cell types under normal conditions and in response to various stimuli such as tissue injury. In the present study, we demonstrate that the transcription of the HGF gene is stimulated by estrogen in mouse ovary. A single injection of 17 beta-estradiol results in a dramatic and transient elevation of the levels of mouse HGF mRNA. Sequence analysis has found that two putative estrogen responsive elements (ERE) reside at -872 in the 5'-flanking region and at +511 in the first intron, respectively, of the mouse HGF gene. To test whether these ERE elements are responsible for estrogen induction of HGF gene expression, chimeric plasmids containing variable regions of the 5'-flanking sequence of HGF gene and the coding region for chloramphenicol acetyltransferase (CAT) gene were transiently transfected into both human endometrial carcinoma RL 95-2 cells and mouse fibroblast NIH 3T3 cells to assess hormone responsiveness. Transfection results indicate that the ERE elements of the mouse HGF gene can confer estrogen action to either homologous or heterologous promoters. Nuclear protein extracts either from RL95-2 cells transfected with the estrogen receptor expression vector or from mouse liver bound in vitro to ERE elements specifically, as shown by band shift assay. Therefore, our results demonstrate that the HGF gene is transcriptionally regulated by estrogen in mouse ovary; and such regulation is mediated via a direct interaction of the estrogen receptor complex with cis-acting ERE elements identified in the mouse HGF gene.

  5. A new FACS approach isolates hESC derived endoderm using transcription factors.

    Directory of Open Access Journals (Sweden)

    Yuqiong Pan

    2011-03-01

    Full Text Available We show that high quality microarray gene expression profiles can be obtained following FACS sorting of cells using combinations of transcription factors. We use this transcription factor FACS (tfFACS methodology to perform a genomic analysis of hESC-derived endodermal lineages marked by combinations of SOX17, GATA4, and CXCR4, and find that triple positive cells have a much stronger definitive endoderm signature than other combinations of these markers. Additionally, SOX17(+ GATA4(+ cells can be obtained at a much earlier stage of differentiation, prior to expression of CXCR4(+ cells, providing an important new tool to isolate this earlier definitive endoderm subtype. Overall, tfFACS represents an advancement in FACS technology which broadly crosses multiple disciplines, most notably in regenerative medicine to redefine cellular populations.

  6. Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families

    International Nuclear Information System (INIS)

    Zhang, Zhongbao; Li, Xianglong; Zhang, Chun; Zou, Huawen; Wu, Zhongyi

    2016-01-01

    NUCLEAR FACTOR-Y (NF-Y) has been shown to play an important role in growth, development, and response to environmental stress. A NF-Y complex, which consists of three subunits, NF-YA, NF-YB, and, NF-YC, binds to CCAAT sequences in a promoter to control the expression of target genes. Although NF-Y proteins have been reported in Arabidopsis and rice, a comprehensive and systematic analysis of ZmNF-Y genes has not yet been performed. To examine the functions of ZmNF-Y genes in this family, we isolated and characterized 50 ZmNF-Y (14 ZmNF-YA, 18 ZmNF-YB, and 18 ZmNF-YC) genes in an analysis of the maize genome. The 50 ZmNF-Y genes were distributed on all 10 maize chromosomes, and 12 paralogs were identified. Multiple alignments showed that maize ZmNF-Y family proteins had conserved regions and relatively variable N-terminal or C-terminal domains. The comparative syntenic map illustrated 40 paralogous NF-Y gene pairs among the 10 maize chromosomes. Microarray data showed that the ZmNF-Y genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results suggested that ZmNF-YB2, 4, 8, 10, 13, and 16 and ZmNF-YC6, 8, and 15 were induced, while ZmNF-YA1, 3, 4, 6, 7, 10, 12, and 13, ZmNF-YB15, and ZmNF-YC3 and 9 were suppressed by drought stress. ZmNF-YA3, ZmNF-YA8 and ZmNF-YA12 were upregulated after infection by the three pathogens, while ZmNF-YA1 and ZmNF-YB2 were suppressed. These results indicate that the ZmNF-Ys may have significant roles in the response to abiotic and biotic stresses. - Highlights: • We indicated a total of 50 members of ZmNF-Y gene family in maize genome. • We analyzed gene structure, protein architecture of ZmNF-Y genes. • Evolution pattern and phylogenic relationships were analyzed among 50 ZmNF-Y genes. • Expression pattern of ZmNF-Ys were detected in various maize tissues. • Transcript levels of ZmNF-Ys were measured under various abiotic and biotic stresses.

  7. Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Deniaud

    Full Text Available BACKGROUND: The ubiquitous transcription factor Sp1 regulates the expression of a vast number of genes involved in many cellular functions ranging from differentiation to proliferation and apoptosis. Sp1 expression levels show a dramatic increase during transformation and this could play a critical role for tumour development or maintenance. Although Sp1 deregulation might be beneficial for tumour cells, its overexpression induces apoptosis of untransformed cells. Here we further characterised the functional and transcriptional responses of untransformed cells following Sp1 overexpression. METHODOLOGY AND PRINCIPAL FINDINGS: We made use of wild-type and DNA-binding-deficient Sp1 to demonstrate that the induction of apoptosis by Sp1 is dependent on its capacity to bind DNA. Genome-wide expression profiling identified genes involved in cancer, cell death and cell cycle as being enriched among differentially expressed genes following Sp1 overexpression. In silico search to determine the presence of Sp1 binding sites in the promoter region of modulated genes was conducted. Genes that contained Sp1 binding sites in their promoters were enriched among down-regulated genes. The endogenous sp1 gene is one of the most down-regulated suggesting a negative feedback loop induced by overexpressed Sp1. In contrast, genes containing Sp1 binding sites in their promoters were not enriched among up-regulated genes. These results suggest that the transcriptional response involves both direct Sp1-driven transcription and indirect mechanisms. Finally, we show that Sp1 overexpression led to a modified expression of G1/S transition regulatory genes such as the down-regulation of cyclin D2 and the up-regulation of cyclin G2 and cdkn2c/p18 expression. The biological significance of these modifications was confirmed by showing that the cells accumulated in the G1 phase of the cell cycle before the onset of apoptosis. CONCLUSION: This study shows that the binding to DNA

  8. Analysis of mutations in the entire coding sequence of the factor VIII gene

    Energy Technology Data Exchange (ETDEWEB)

    Bidichadani, S.I.; Lanyon, W.G.; Connor, J.M. [Glascow Univ. (United Kingdom)] [and others

    1994-09-01

    Hemophilia A is a common X-linked recessive disorder of bleeding caused by deleterious mutations in the gene for clotting factor VIII. The large size of the factor VIII gene, the high frequency of de novo mutations and its tissue-specific expression complicate the detection of mutations. We have used a combination of RT-PCR of ectopic factor VIII transcripts and genomic DNA-PCRs to amplify the entire essential sequence of the factor VIII gene. This is followed by chemical mismatch cleavage analysis and direct sequencing in order to facilitate a comprehensive search for mutations. We describe the characterization of nine potentially pathogenic mutations, six of which are novel. In each case, a correlation of the genotype with the observed phenotype is presented. In order to evaluate the pathogenicity of the five missense mutations detected, we have analyzed them for evolutionary sequence conservation and for their involvement of sequence motifs catalogued in the PROSITE database of protein sites and patterns.

  9. Genome-wide strategies identify downstream target genes of chick connective tissue-associated transcription factors.

    Science.gov (United States)

    Orgeur, Mickael; Martens, Marvin; Leonte, Georgeta; Nassari, Sonya; Bonnin, Marie-Ange; Börno, Stefan T; Timmermann, Bernd; Hecht, Jochen; Duprez, Delphine; Stricker, Sigmar

    2018-03-29

    Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc-finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling of chick limb micromass cultures revealed a set of common genes regulated by all five transcription factors, which we describe as a connective tissue core expression set. This common core was enriched with genes associated with axon guidance and myofibroblast signature, including fibrosis-related genes. In addition, each transcription factor regulated a specific set of signalling molecules and extracellular matrix components. This suggests a concept whereby local molecular niches can be created by the expression of specific transcription factors impinging on the specification of local microenvironments. The regulatory network established here identifies common and distinct molecular signatures of limb connective tissue subtypes, provides novel insight into the signalling pathways governing connective tissue specification, and serves as a resource for connective tissue development. © 2018. Published by The Company of Biologists Ltd.

  10. Intra-Gene DNA Methylation Variability Is a Clinically Independent Prognostic Marker in Women's Cancers.

    Directory of Open Access Journals (Sweden)

    Thomas E Bartlett

    Full Text Available We introduce a novel per-gene measure of intra-gene DNA methylation variability (IGV based on the Illumina Infinium HumanMethylation450 platform, which is prognostic independently of well-known predictors of clinical outcome. Using IGV, we derive a robust gene-panel prognostic signature for ovarian cancer (OC, n = 221, which validates in two independent data sets from Mayo Clinic (n = 198 and TCGA (n = 358, with significance of p = 0.004 in both sets. The OC prognostic signature gene-panel is comprised of four gene groups, which represent distinct biological processes. We show the IGV measurements of these gene groups are most likely a reflection of a mixture of intra-tumour heterogeneity and transcription factor (TF binding/activity. IGV can be used to predict clinical outcome in patients individually, providing a surrogate read-out of hard-to-measure disease processes.

  11. Intra-Gene DNA Methylation Variability Is a Clinically Independent Prognostic Marker in Women's Cancers.

    Science.gov (United States)

    Bartlett, Thomas E; Jones, Allison; Goode, Ellen L; Fridley, Brooke L; Cunningham, Julie M; Berns, Els M J J; Wik, Elisabeth; Salvesen, Helga B; Davidson, Ben; Trope, Claes G; Lambrechts, Sandrina; Vergote, Ignace; Widschwendter, Martin

    2015-01-01

    We introduce a novel per-gene measure of intra-gene DNA methylation variability (IGV) based on the Illumina Infinium HumanMethylation450 platform, which is prognostic independently of well-known predictors of clinical outcome. Using IGV, we derive a robust gene-panel prognostic signature for ovarian cancer (OC, n = 221), which validates in two independent data sets from Mayo Clinic (n = 198) and TCGA (n = 358), with significance of p = 0.004 in both sets. The OC prognostic signature gene-panel is comprised of four gene groups, which represent distinct biological processes. We show the IGV measurements of these gene groups are most likely a reflection of a mixture of intra-tumour heterogeneity and transcription factor (TF) binding/activity. IGV can be used to predict clinical outcome in patients individually, providing a surrogate read-out of hard-to-measure disease processes.

  12. Association between the epidermal growth factor gene and intelligence in major depression patients.

    Science.gov (United States)

    Tian, Wen-min; Zhang, Ke-ran; Zhang, Juan; Shen, Yan; Xu, Qi

    2010-06-01

    To study the association between the epidermal growth factor (EGF) gene and intelligence in patients with major depression. Intelligence measurement using Wechsler Adult Intelligence Scale (WAIS) was performed on 120 unrelated patients with major depression and 46 control subjects. Blood was collected from all subjects for extraction of genomic DNA. Four single nucleotide polymorphisms (SNPs) in the EGF gene were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI- TOF-MS). Mean scores of both score lang and score task, two subtests in WAIS, differed significantly between major depression patients and controls (Pintelligence in patients with major depression. Genetic variation in the EGF gene may increase the susceptibility of major depression.

  13. Association of apolipoprotein e gene polymorphisms with blood lipids and their interaction with dietary factors

    DEFF Research Database (Denmark)

    Shatwan, Israa M.; Winther, Kristian Hillert; Ellahi, Basma

    2018-01-01

    of two single nucleotide polymorphisms (SNPs) at LPL, seven tagging SNPs at the APOE gene, and a common APOE haplotype (two SNPs) with blood lipids, and examined the interaction of these SNPs with dietary factors. Methods: The population studied for this investigation included 660 individuals from...... the Prevention of Cancer by Intervention with Selenium (PRECISE) study who supplied baseline data. The findings of the PRECISE study were further replicated using 1238 individuals from the Caerphilly Prospective cohort (CaPS). Dietary intake was assessed using a validated food-frequency questionnaire (FFQ......Background: Several candidate genes have been identified in relation to lipid metabolism, and among these, lipoprotein lipase (LPL) and apolipoprotein E (APOE) gene polymorphisms are major sources of genetically determined variation in lipid concentrations. This study investigated the association...

  14. Vascular endothelial growth factor A protein level and gene expression in intracranial meningiomas with brain edema

    DEFF Research Database (Denmark)

    Nassehi, Damoun; Dyrbye, Henrik; Andresen, Morten

    2011-01-01

    Meningiomas are the second most common primary intracranial tumors in adults. Although meningiomas are mostly benign, more than 50% of patients with meningioma develop peritumoral brain edema (PTBE), which may be fatal because of increased intracranial pressure. Vascular endothelial growth factor....... Forty-three patients had primary, solitary, supratentorial meningiomas with PTBE. In these, correlations in PTBE, edema index, VEGF-A protein, VEGF gene expression, capillary length, and tumor water content were investigated. DNA-branched hybridization was used for measuring VEGF gene expression...... in tissue homogenates prepared from frozen tissue samples. The method for VEGF-A analysis resembled an ELISA assay, but was based on chemiluminescence. The edema index was positively correlated to VEGF-A protein (p = 0.014) and VEGF gene expression (p

  15. Diversification of the insulin-like growth factor 1 gene in mammals.

    Directory of Open Access Journals (Sweden)

    Peter Rotwein

    Full Text Available Insulin-like growth factor 1 (IGF1, a small, secreted peptide growth factor, is involved in a variety of physiological and patho-physiological processes, including somatic growth, tissue repair, and metabolism of carbohydrates, proteins, and lipids. IGF1 gene expression appears to be controlled by several different signaling cascades in the few species in which it has been evaluated, with growth hormone playing a major role by activating a pathway involving the Stat5b transcription factor. Here, genes encoding IGF1 have been evaluated in 25 different mammalian species representing 15 different orders and ranging over ~180 million years of evolutionary diversification. Parts of the IGF1 gene have been fairly well conserved. Like rat Igf1 and human IGF1, 21 of 23 other genes are composed of 6 exons and 5 introns, and all 23 also contain recognizable tandem promoters, each with a unique leader exon. Exon and intron lengths are similar in most species, and DNA sequence conservation is moderately high in orthologous exons and proximal promoter regions. In contrast, putative growth hormone-activated Stat5b-binding enhancers found in analogous locations in rodent Igf1 and in human IGF1 loci, have undergone substantial variation in other mammals, and a processed retro-transposed IGF1 pseudogene is found in the sloth locus, but not in other mammalian genomes. Taken together, the fairly high level of organizational and nucleotide sequence similarity in the IGF1 gene among these 25 species supports the contention that some common regulatory pathways had existed prior to the beginning of mammalian speciation.

  16. Fat phenotype, associated factors and rs9939609 polymorphism of the FTO gene

    Directory of Open Access Journals (Sweden)

    William Alves Lima

    2010-02-01

    Full Text Available The purpose of this work was to review the main results of studies that have analysed the relationship between the rs9939609 single nucleotide polymorphism (SNP of the FTO gene and the manifestation of overweight/obesity with its associated co-morbidity, and to discuss the interaction of this polymorphism with the other factors which cause obesity. The search was performed using the MEDLINE, Highwire, Science Direct and SciELO databases, applying the following key words: FTO rs9939609, obesity genetic, gene associated obesity, FTO contributes obesity. Inclusion criteria were: original articles where the search was performed in humans and including the rs9939609. Articles that analysed the FTO gene associated with preinstalled hormonal diseases were excluded. Of the several SNP associated with the FTO gene, rs9939609 has been the most researched (studied. This SNP comprises the A and T alleles, with the A homozygote being most susceptible to the development of overweight/obesity in all age ranges, especially in the caucasian population. In this situation, the control of environmental factors (alimentation and physical activity can prevent the excessive build up of fats. Obesity is related to the development of non-transmissible chronic illnesses. Association of rs9939609 polymorphism with the lipidic profile and glycemia were observed. The practicing of physical exercise and feeding habits seem to be the main contributors in the development of overweight/obesity and its resulting co-morbidity.

  17. Transcription factor SP4 is a susceptibility gene for bipolar disorder.

    Directory of Open Access Journals (Sweden)

    Xianjin Zhou

    Full Text Available The Sp4 transcription factor plays a critical role for both development and function of mouse hippocampus. Reduced expression of the mouse Sp4 gene results in a variety of behavioral abnormalities relevant to human psychiatric disorders. The human SP4 gene is therefore examined for its association with both bipolar disorder and schizophrenia in European Caucasian and Chinese populations respectively. Out of ten SNPs selected from human SP4 genomic locus, four displayed significant association with bipolar disorder in European Caucasian families (rs12668354, p = 0.022; rs12673091, p = 0.0005; rs3735440, p = 0.019; rs11974306, p = 0.018. To replicate the genetic association, the same set of SNPs was examined in a Chinese bipolar case control sample. Four SNPs displayed significant association (rs40245, p = 0.009; rs12673091, p = 0.002; rs1018954, p = 0.001; rs3735440, p = 0.029, and two of them (rs12673091, rs3735440 were shared with positive SNPs from European Caucasian families. Considering the genetic overlap between bipolar disorder and schizophrenia, we extended our studies in Chinese trios families for schizophrenia. The SNP7 (rs12673091, p = 0.012 also displayed a significant association. The SNP7 (rs12673091 was therefore significantly associated in all three samples, and shared the same susceptibility allele (A across all three samples. On the other hand, we found a gene dosage effect for mouse Sp4 gene in the modulation of sensorimotor gating, a putative endophenotype for both schizophrenia and bipolar disorder. The deficient sensorimotor gating in Sp4 hypomorphic mice was partially reversed by the administration of dopamine D2 antagonist or mood stabilizers. Both human genetic and mouse pharmacogenetic studies support Sp4 gene as a susceptibility gene for bipolar disorder or schizophrenia. The studies on the role of Sp4 gene in hippocampal development may provide novel insights for the contribution of hippocampal abnormalities in these

  18. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1.

    Directory of Open Access Journals (Sweden)

    Christopher Terranova

    Full Text Available Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  19. Characterization of shark complement factor I gene(s): genomic analysis of a novel shark-specific sequence.

    Science.gov (United States)

    Shin, Dong-Ho; Webb, Barbara M; Nakao, Miki; Smith, Sylvia L

    2009-07-01

    Complement factor I is a crucial regulator of mammalian complement activity. Very little is known of complement regulators in non-mammalian species. We isolated and sequenced four highly similar complement factor I cDNAs from the liver of the nurse shark (Ginglymostoma cirratum), designated as GcIf-1, GcIf-2, GcIf-3 and GcIf-4 (previously referred to as nsFI-a, -b, -c and -d) which encode 689, 673, 673 and 657 amino acid residues, respectively. They share 95% (shark-specific sequence between the leader peptide (LP) and the factor I membrane attack complex (FIMAC) domain. The cDNA sequences differ only in the size and composition of the shark-specific region (SSR). Sequence analysis of each SSR has identified within the region two novel short sequences (SS1 and SS2) and three repeat sequences (RS1-3). Genomic analysis has revealed the existence of three introns between the leader peptide and the FIMAC domain, tentatively designated intron 1, intron 2, and intron 3 which span 4067, 2293 and 2082bp, respectively. Southern blot analysis suggests the presence of a single gene copy for each cDNA type. Phylogenetic analysis suggests that complement factor I of cartilaginous fish diverged prior to the emergence of mammals. All four GcIf cDNA species are expressed in four different tissues and the liver is the main tissue in which expression level of all four is high. This suggests that the expression of GcIf isotypes is tissue-dependent.

  20. Parametric system studies of candidate TF coil system options for the Tokamak Fusion Core Experiment (TFCX)

    International Nuclear Information System (INIS)

    Reiersen, W.T.; Flanagan, C.A.; Miller, J.B.

    1983-01-01

    System studies were performed to determine the sensitivity of hybrid and superconducting toroidal field (TF) coil system options to maximum field at the TF coil and to field enhancement due to resistive insert coils. The studies were performed using Tokamak Fusion Core Experiment (TFCX) design assumptions, guidelines, and criteria and involved iterative execution of the Fusion Engineering Design Center (FEDC) systems code, magnetohydrodynamics (MHD) equilibrium code, and EFFI (a code to evaluate magnetic field strength). The results indicate that for TFCX with no minimum wall loading specified, a design point chosen solely on the basis of cost would likely be in the low-field region of design space where the cost advantage of hybrids is least apparent. However, as the desired neutron wall loading increases, the hybrid option suggests an increasing cost advantage over the all-superconducting option; this cost advantage is countered by increased complexity in design -- particularly in assembly and maintenance

  1. Shear strength of the ASDEX upgrade TF coil insulation: Rupture, fatigue and creep behaviour

    International Nuclear Information System (INIS)

    Streibl, B.; Maier, E.A.; Perchermeier, J.; Cimbrico, P.L.; Varni, G.; Pisani, D.; Deska, R.; Endreat, J.

    1987-03-01

    This report is concerned with the interlaminar shear strength of the insulation system for the 16 toroidal field (TF) coils of ASDEX upgrade. The interlaminar shear properties of the glass-epoxy insulation are primarily determined by the resin system (ARALDIT-F, HT 907, DZ 40) and its curing procedure. The pure resin was therefore tested first in tension. The results were taken into account for setting up the method of curing the TF coils. Shear tests of the complete glass-epopxy system were then conducted with tubular torque specimens providing a nearly homogeneous stress distribution. In particular, the influence of the amount of flexibilizer (5, 10, 15 parts of resin weight = PoW) on the rupture and fatigue strengths was assessed at a temperature T=60 C, as also was the temperature dependence of the creep rate (40 C, 60 C, 80 C). The results obtained are not based on safe statistics. Nevertheless, they show clear trends. (orig.)

  2. Cryogenic analysis of forced-cooled, superconducting TF magnets for compact tokamak reactors

    International Nuclear Information System (INIS)

    Kerns, J.A.; Slack, D.S.; Miller, J.R.

    1988-01-01

    Current designs for compact tokamak reactors require the toroidal- field (TF) superconducting magnets to produce fields from 10 to 15 T at the winding pack, using high-current densities to high nuclear heat loads (greater than 1 kW/coil in some instances), which are significantly greater than the conduction and radiation heat loads for which cryogenic systems are usually designed. A cryogenic system for the TF winding pack for two such tokamak designs has been verified by performing a detailed, steady-state heat-removal analysis. Helium properties along the forced-cooled conductor flow path for a range of nuclear heat loads have been calculated. The results and implications of this analysis are presented. 12 refs., 6 figs

  3. Parametric system studies of candidate TF coil system options for the Tokamak Fusion Core Experiment (TFCX)

    International Nuclear Information System (INIS)

    Reiersen, W.T.; Flanagan, C.A.; Miller, J.B.

    1983-01-01

    System studies were performed to determine the sensitivity of hybrid and superconducting toroidal field (TF) coil system options to maximum field at the TF coil and to field enhancement due to resistive insert coils. The studies were performed using Tokamak Fusion Core Experiment (TFCX) design assumptions, guidelines, and criteria and involved iterative execution of the Fusion Engineering Design Center (FEDC) systems code, magnetohydrodynamics (MHD) equilibrium code, and EFFI (a code to evaluate magnetic field strength). The results indicate that for TFCX with no minimum wall loading specified, a design point chosen solely on the basis of cost would likely be in the low-field region of design space where the cost advantage of hybrids is least apparent. However, as the desired neutron wall loading increases, the hybrid option suggests an increasing cost advantage over the all-superconducting option; this cost advantage is countered by increased complexity in design - particularly in assembly and maintenance

  4. Formation of tissue factor activity following incubation of recombinant human tissue factor apoprotein with plasma lipoproteins

    International Nuclear Information System (INIS)

    Sakai, T.; Kisiel, W.

    1990-01-01

    Incubation of recombinant human tissue factor apoprotein (Apo-TF) with human plasma decreased the recalcified clotting time of this plasma in a time-and dose-dependent manner suggesting relipidation of the Apo-TF by plasma lipoproteins. Incubation of Apo-TF with purified preparations of human very low density, low density and high density lipoproteins resulted in tissue factor activity in a clotting assay. The order of effectiveness was VLDL greater than LDL much greater than HDL. Tissue factor activity generated by incubation of a fixed amount of Apo-TF with plasma lipoproteins was lipoprotein concentration-dependent and saturable. The association of Apo-TF with lipoprotein particles was supported by gel filtration studies in which 125 I-Apo-TF coeluted with the plasma lipoprotein in the void volume of a Superose 6 column in the presence and absence of calcium ions. In addition, void-volume Apo-TF-lipoprotein fractions exhibited tissue factor activity. These results suggest that the factor VIII-bypassing activity of bovine Apo-TF observed in a canine hemophilic model may be due, in part, to its association with plasma lipoproteins and expression of functional tissue factor activity

  5. Association of Polymorphisms in Connective Tissue Growth Factor and Epidermal Growth Factor Receptor Genes With Human Longevity.

    Science.gov (United States)

    Donlon, Timothy A; Morris, Brian J; He, Qimei; Chen, Randi; Masaki, Kamal H; Allsopp, Richard C; Willcox, D Craig; Tranah, Gregory J; Parimi, Neeta; Evans, Daniel S; Flachsbart, Friederike; Nebel, Almut; Kim, Duk-Hwan; Park, Joobae; Willcox, Bradley J

    2017-08-01

    Growth pathways play key roles in longevity. The present study tested single-nucleotide polymorphisms (SNPs) in the connective tissue growth factor gene (CTGF) and the epidermal growth factor receptor gene (EGFR) for association with longevity. Comparison of allele and genotype frequencies of 12 CTGF SNPs and 41 EGFR SNPs between 440 American men of Japanese ancestry aged ≥95 years and 374 men of average life span revealed association with longevity at the p cases, consistent with heterozygote advantage in living to extreme old age. No associations of the most significant SNPs were observed in whites or Koreans. In conclusion, the present findings indicate that genetic variation in CTGF and EGFR may contribute to the attainment of extreme old age in Japanese. More research is needed to confirm that genetic variation in CTGF and EGFR contributes to the attainment of extreme old age across human populations. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model.

    Science.gov (United States)

    Schmidt-Kastner, R; van Os, J; Esquivel, G; Steinbusch, H W M; Rutten, B P F

    2012-12-01

    Investigating and understanding gene-environment interaction (G × E) in a neurodevelopmentally and biologically plausible manner is a major challenge for schizophrenia research. Hypoxia during neurodevelopment is one of several environmental factors related to the risk of schizophrenia, and links between schizophrenia candidate genes and hypoxia regulation or vascular expression have been proposed. Given the availability of a wealth of complex genetic information on schizophrenia in the literature without knowledge on the connections to environmental factors, we now systematically collected genes from candidate studies (using SzGene), genome-wide association studies (GWAS) and copy number variation (CNV) analyses, and then applied four criteria to test for a (theoretical) link to ischemia-hypoxia and/or vascular factors. In all, 55% of the schizophrenia candidate genes (n=42 genes) met the criteria for a link to ischemia-hypoxia and/or vascular factors. Genes associated with schizophrenia showed a significant, threefold enrichment among genes that were derived from microarray studies of the ischemia-hypoxia response (IHR) in the brain. Thus, the finding of a considerable match between genes associated with the risk of schizophrenia and IHR and/or vascular factors is reproducible. An additional survey of genes identified by GWAS and CNV analyses suggested novel genes that match the criteria. Findings for interactions between specific variants of genes proposed to be IHR and/or vascular factors with obstetric complications in patients with schizophrenia have been reported in the literature. Therefore, the extended gene set defined here may form a reasonable and evidence-based starting point for hypothesis-based testing of G × E interactions in clinical genetic and translational neuroscience studies.

  7. Effects of transforming growth factor-beta1 and vascular endothelial growth factor 165 gene transfer on Achilles tendon healing.

    Science.gov (United States)

    Hou, Yu; Mao, ZeBin; Wei, XueLei; Lin, Lin; Chen, LianXu; Wang, HaiJun; Fu, Xin; Zhang, JiYing; Yu, Changlong

    2009-07-01

    Repaired Achilles tendons typically take weeks before they are strong enough to handle physiological loads. Gene therapy is a promising treatment for Achilles tendon defects. The aim of the present study was to evaluate the histological/biomechanical effects of Transforming growth factor-beta1 (TGF-beta1) and vascular endothelial growth factor 165 (VEGF(165)) gene transfer on Achilles tendon healing in rabbits. Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) were transduced with adenovirus carrying human TGF-beta1 cDNA (Ad-TGF-beta1), human VEGF(165) cDNA (Ad-VEGF(165)), or both (PIRES-TGF-beta1/VEGF(165)) Viruses, no cDNA (Ad-GFP), and the BMSCs without gene transfer and the intact tendon were used as control. BMSCs were surgically implanted into the experimentally injured Achilles tendons. TGF-beta1 distribution, cellularity, nuclear aspect ratio, nuclear orientation angle, vascular number, collagen synthesis, and biomechanical features were measured at 1, 2, 4, and 8 weeks after surgery. The TGF-beta1 and TGF beta 1/VEGF(165) co-expression groups exhibited improved parameters compared with other groups, while the VEGF(165) expression group had a negative impact. In the co-expression group, the angiogenesis effects of VEGF(165) were diminished by TGF-beta1, while the collagen synthesis effects of TGF-beta1 were unaltered by VEGF(165). Thus treatment with TGF-beta1 cDNA-transduced BMSCs grafts is a promising therapy for acceleration and improvement of tendon healing, leading to quicker recovery and improved biomechanical properties of Achilles tendons.

  8. Qualification of the US Made Conductors for ITER TF Magnet System

    International Nuclear Information System (INIS)

    Martovetsky, Nicolai N.; Hatfield, Daniel R.; Miller, John R.; Bruzzone, P.; Stepanov, B.; Seber, B.

    2010-01-01

    The US Domestic Agency (USDA) is one of the six suppliers of the Toroidal Field (TF) conductor for the International Thermonuclear Experimental Reactor (ITER). In order to qualify conductors according to ITER requirements we prepared several lengths of the CICC and short samples for testing in the SULTAN facility in CRPP, Switzerland. We also fully characterized the strands that were used in these SULTAN samples. Fabrication experience and test results are presented and discussed.

  9. Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code

    International Nuclear Information System (INIS)

    Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.

    1992-01-01

    FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime

  10. Comprehensive reanalysis of transcription factor knockout expression data in Saccharomyces cerevisiae reveals many new targets.

    Science.gov (United States)

    Reimand, Jüri; Vaquerizas, Juan M; Todd, Annabel E; Vilo, Jaak; Luscombe, Nicholas M

    2010-08-01

    Transcription factor (TF) perturbation experiments give valuable insights into gene regulation. Genome-scale evidence from microarray measurements may be used to identify regulatory interactions between TFs and targets. Recently, Hu and colleagues published a comprehensive study covering 269 TF knockout mutants for the yeast Saccharomyces cerevisiae. However, the information that can be extracted from this valuable dataset is limited by the method employed to process the microarray data. Here, we present a reanalysis of the original data using improved statistical techniques freely available from the BioConductor project. We identify over 100,000 differentially expressed genes-nine times the total reported by Hu et al. We validate the biological significance of these genes by assessing their functions, the occurrence of upstream TF-binding sites, and the prevalence of protein-protein interactions. The reanalysed dataset outperforms the original across all measures, indicating that we have uncovered a vastly expanded list of relevant targets. In summary, this work presents a high-quality reanalysis that maximizes the information contained in the Hu et al. compendium. The dataset is available from ArrayExpress (accession: E-MTAB-109) and it will be invaluable to any scientist interested in the yeast transcriptional regulatory system.

  11. A Follow-Up Study from a Multisite, Randomized Controlled Trial for Traumatized Children Receiving TF-CBT.

    Science.gov (United States)

    Jensen, Tine K; Holt, Tonje; Ormhaug, Silje M

    2017-11-01

    Trauma-focused cognitive behavioral therapy (TF-CBT) is the treatment of choice for traumatized youth, however, follow-up studies are scarce, and treatment effects for co-occurring depression show mixed findings. The aims of this study were to examine whether treatment effects of TF-CBT are maintained at 18 month follow-up and whether degree of co-occurring depression influences treatment effects. As rapid improvement in psychological functioning is warranted for youth, we also investigated whether the symptom trajectory was different for TF-CBT compared to therapy as usual (TAU). The sample consisted of 156 youth (M age = 15.05, 79.50% girls) randomly assigned to TF-CBT or TAU. The youth were assessed for posttraumatic stress symptoms (PTSS), depression, anxiety and general mental health symptoms. Mixed effects analyses followed the symptom courses over 5 time points. Youth receiving TF-CBT maintained their symptom improvement at 18 months follow-up with scores below clinical cut-of on all symptom measures. The most depressed youth had also a significant decline in symptoms that were maintained at follow-up. Symptom trajectories differed as the TF-CBT group reported a more rapid symptom reduction compared to the TAU condition. In the TAU condition, participants received 1.5 times the number of treatment sessions compared to the TF-CBT participants. After 18 months the groups were significantly different on general mental health symptoms only. In conclusion, youth receiving TF-CBT experienced more efficient improvement in trauma related symptoms than youth receiving TAU and these improvements were maintained after 18 months. Also youth experiencing serious co-occurring depression benefitted from TF-CBT.

  12. Non Nuclear Testing of Reactor Systems In The Early Flight Fission Test Facilities (EFF-TF)

    International Nuclear Information System (INIS)

    Van Dyke, Melissa; Martin, James

    2004-01-01

    The Early Flight Fission-Test Facility (EFF-TF) can assist in the design and development of systems through highly effective non-nuclear testing of nuclear systems when technical issues associated with near-term space fission systems are 'non-nuclear' in nature (e.g. system's nuclear operations are understood). For many systems, thermal simulators can be used to closely mimic fission heat deposition. Axial power profile, radial power profile, and fuel pin thermal conductivity can be matched. In addition to component and subsystem testing, operational and lifetime issues associated with the steady state and transient performance of the integrated reactor module can be investigated. Instrumentation at the EFF-TF allows accurate measurement of temperature, pressure, strain, and bulk core deformation (useful for accurately simulating nuclear behavior). Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE laboratories, industry, universities, and other Nasa centers. This paper describes the current efforts for the latter portion of 2003 and beginning of 2004. (authors)

  13. A new meshless approach to map electromagnetic loads for FEM analysis on DEMO TF coil system

    International Nuclear Information System (INIS)

    Biancolini, Marco Evangelos; Brutti, Carlo; Giorgetti, Francesco; Muzzi, Luigi; Turtù, Simonetta; Anemona, Alessandro

    2015-01-01

    Graphical abstract: - Highlights: • Generation and mapping of magnetic load on DEMO using radial basis function. • Good agreement between RBF interpolation and EM TOSCA computations. • Resultant forces are stable with respect to the target mesh used. • Stress results are robust and accurate even if a coarse cloud is used for RBF interpolation. - Abstract: Demonstration fusion reactors (DEMO) are being envisaged to be able to produce commercial electrical power. The design of the DEMO magnets and of the constituting conductors is a crucial issue in the overall engineering design of such a large fusion machine. In the frame of the EU roadmap of the so-called fast track approach, mechanical studies of preliminary DEMO toroidal field (TF) coil system conceptual designs are being enforced. The magnetic field load acting on the DEMO TF coil conductor has to be evaluated as input in the FEM model mesh, in order to evaluate the stresses on the mechanical structure. To gain flexibility, a novel approach based on the meshless method of radial basis functions (RBF) has been implemented. The present paper describes this original and flexible approach for the generation and mapping of magnetic load on DEMO TF coil system.

  14. Design considerations for the TF center conductor post for the Ignition Spherical Torus (IST)

    International Nuclear Information System (INIS)

    Dalton, G.R.; Haines, J.R.

    1986-01-01

    A trade-off study has been carried out to compare the differential costs of using high-strength alloy copper versus oxygen-free, high-conductivity (OFHC) copper for the center legs of the toroidal field (TF) coils of an Ignition Spherical Torus (IST). The electrical heating, temperatures, stresses, cooling requirements, material costs, pump costs, and power to drive the TF coils and pumps are all assessed for both materials for a range of compact tokamak reactors. The alloy copper material is found to result in a more compact reactor and to allow use of current densities of up to 170 MA/m 2 versus 40 MA/m 2 for the OFHC copper. The OFHC conductor system with high current density is $24 million less expensive than more conventional copper systems with 30 MA/m 2 . The alloy copper system costs $32 million less than conventional systems. Therefore, the alloy system offers a net savings of $8 million compared to the 50% cold-worked OFHC copper system. Although the savings are a significant fraction of the center conductor post cost, they are relatively insignificant in terms of the total device cost. It is concluded that the use of alloy copper contributes very little to the economic or technical viability of the compact IST. It is recommended that a similar systematic approach be applied to evaluating coil material and current density trade-offs for other compact copper-TF-coil tokamak designs. 9 refs., 13 figs., 13 tabs

  15. Full scale trials for qualification of the manufacture of the ITER TF coils in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Kunihiro, E-mail: matsui.kunihiro@jaea.go.jp; Hemmi, Tsutomu; Kajitani, Hideki; Yamane, Minoru; Mizutani, Takumi; Nakano, Toshihide; Takano, Katsutoshi; Ando, Shinji; Koizumi, Norikiyo

    2016-11-01

    Highlights: • High accuracy conductor winding of 0.1% was achieved in TF coil fabrication. • Conductor elongation due to heat treatment satisfied with the expected value of 0.06% ± 0.02%. • Commissioning of a transfer tooling without adding strain to conductor was completed. • Commissioning of a conductor insulation and CP welding was successfully completed. - Abstract: JAEA performed full-scale trials to qualify and optimize manufacturing procedure of TF coil fabrication prior to series production. In the full-scale trials, conductor winding, heat treatment, conductor transfer, conductor insulation and cover plate (CP) welding trials were performed to resolve some technical issues and to demonstrate the fabrication procedure. The followings are major achievement. (1) High accuracy conductor winding of 0.01%, (2) the evaluation of 0.06% conductor elongation due to heat treatment, (3) conductor transfer in a radial plate (RP) groove with addition strain under 0.1%, (4) conductor insulation without breakage of the insulation tape and (5) flatness of 2 mm of the double pancake (DP) by CP welding. Then JAEA started the 1st TF coil fabrication from March 2014, and has already completed ten conductor windings and heat treatment of nine windings.

  16. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Directory of Open Access Journals (Sweden)

    Masayoshi Hashimoto

    2016-10-01

    Full Text Available The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  17. The Synergistic Effect between Electrical and Chemical Factors in Plasma Gene/Molecule-Transfection

    Science.gov (United States)

    Jinno, Masafumi

    2016-09-01

    This study has been done to know what kind of factors in plasma and processes on cells promote plasma gene/molecule transfection. We have discovered a new plasma source using a microcapillary electrode which enables high transfection efficiency and high cell survivability simultaneously. However, the mechanism of the transfection by plasma was not clear. To clarify the transfection mechanisms by micro plasma, we focused on the effects of electrical (current, charge, field, etc.) and chemical (radicals, RONS, etc.) factors generated by the micro plasma and evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones. At first, the necessity of the electrical factors was estimated by the laser produced plasma (LPP). Mouse L-929 fibroblast cell was cultured on a 96-well plate or 12-well micro slide chamber. Plasmids pCX-EGFP in Tris-EDTA buffer was dropped on the cells and they were exposed to the capillary discharge plasma (CDP) or the LPP. In the case of the CDP, the plasma was generated between the tip of the capillary electrode and the cells so that both electrical and chemical factors were supplied to the cells. In this setup, about 20% of average transfection efficiency was obtained. In the case of the LPP, the plasma was generated apart from the cells so that electrical factors were not supplied to the cells. In this setup, no transfection was observed. These results show that the electrical factors are necessary for the plasma gene transfection. Next, the necessity of the chemical factors was estimated the effect of catalase to remove H2O2 in CDP. The transfection efficiency decreased to 0.4 by scavenging H2O2 with catalase. However, only the solution of H2O2 caused no gene transfection in cells. These results shows that H2O2 is important species to cause gene/molecule transfection but still needs a synergistic effect with electrical or other chemical factors. This work was partly supported by

  18. TALE factors use two distinct functional modes to control an essential zebrafish gene expression program.

    Science.gov (United States)

    Ladam, Franck; Stanney, William; Donaldson, Ian J; Yildiz, Ozge; Bobola, Nicoletta; Sagerström, Charles G

    2018-06-18

    TALE factors are broadly expressed embryonically and known to function in complexes with transcription factors (TFs) like Hox proteins at gastrula/segmentation stages, but it is unclear if such generally expressed factors act by the same mechanism throughout embryogenesis. We identify a TALE-dependent gene regulatory network (GRN) required for anterior development and detect TALE occupancy associated with this GRN throughout embryogenesis. At blastula stages, we uncover a novel functional mode for TALE factors, where they occupy genomic DECA motifs with nearby NF-Y sites. We demonstrate that TALE and NF-Y form complexes and regulate chromatin state at genes of this GRN. At segmentation stages, GRN-associated TALE occupancy expands to include HEXA motifs near PBX:HOX sites. Hence, TALE factors control a key GRN, but utilize distinct DNA motifs and protein partners at different stages - a strategy that may also explain their oncogenic potential and may be employed by other broadly expressed TFs. © 2018, Ladam et al.

  19. A combined structural dynamics approach identifies a putative switch in factor VIIa employed by tissue factor to initiate blood coagulation

    DEFF Research Database (Denmark)

    Olsen, Ole H; Rand, Kasper D; Østergaard, Henrik

    2007-01-01

    Coagulation factor VIIa (FVIIa) requires tissue factor (TF) to attain full catalytic competency and to initiate blood coagulation. In this study, the mechanism by which TF allosterically activates FVIIa is investigated by a structural dynamics approach that combines molecular dynamics (MD......) simulations and hydrogen/deuterium exchange (HX) mass spectrometry on free and TF-bound FVIIa. The differences in conformational dynamics from MD simulations are shown to be confined to regions of FVIIa observed to undergo structural stabilization as judged by HX experiments, especially implicating activation...... in the presence of TF or an active-site inhibitor. Based on MD simulations, a key switch of the TF-induced structural changes is identified as the interacting pair Leu305{163} and Phe374{225} in FVIIa, whose mutual conformations are guided by the presence of TF and observed to be closely linked to the structural...

  20. Progestin and thrombin regulate tissue factor expression in human term decidual cells.

    Science.gov (United States)

    Lockwood, C J; Murk, W; Kayisli, U A; Buchwalder, L F; Huang, S-T; Funai, E F; Krikun, G; Schatz, F

    2009-06-01

    Perivascular cell membrane-bound tissue factor (TF) initiates hemostasis via thrombin generation. The identity and potential regulation of TF-expressing cells at the human maternal-fetal interface that confers hemostatic protection during normal and preterm delivery is unclear. The objective of the study were to identify TF-expressing cells at the maternal-fetal interface in term and preterm decidual sections by immunohistochemistry and evaluate progestin, thrombin, TNF-alpha, and IL-1beta effects on TF expression by cultured human term decidual cells (DCs). Serial placental sections were immunostained for TF. Leukocyte-free term DC monolayers were incubated with 10(-8) M estradiol (E2) or E2 plus 10(-7) M medroxyprogestrone acetate (MPA) +/- thrombin or TNF-alpha or IL-1beta. ELISA and Western blotting assessed TF in cell lysates. Quantitative real-time RT-PCR measured TF mRNA levels. Immunolocalized TF in DC membranes in preterm and term placental sections displayed higher Histologic Scores than villous mesenchymal cells (P term placental sections, DC-expressed TF exceeds that of other cell types at the maternal-fetal interface and is localized at the cell membranes in which it can bind to factor VII and meet the hemostatic demands of labor and delivery via thrombin formation. Unlike the general concept that TF is constitutive in cells that highly express it, MPA and thrombin significantly enhanced TF expression in term DC monolayers.

  1. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    Directory of Open Access Journals (Sweden)

    Arnoldo J Müller-Molina

    Full Text Available To know the map between transcription factors (TFs and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  2. Tumor necrosis factor receptor-associated factor 6 (TRAF6) participates in anti-lipopolysaccharide factors (ALFs) gene expression in mud crab.

    Science.gov (United States)

    Sun, Wan-Wei; Zhang, Xin-Xu; Wan, Wei-Song; Wang, Shu-Qi; Wen, Xiao-Bo; Zheng, Huai-Ping; Zhang, Yue-Ling; Li, Sheng-Kang

    2017-02-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a key cytoplasm signal adaptor that mediates signals activated by tumor necrosis factor receptor (TNFR) superfamily and the Interleukin-1 receptor/Toll-like receptor (IL-1/TLR) superfamily. The full-length 2492 bp TRAF6 (Sp-TRAF6) from Scylla paramamosain contains 1800 bp of open reading frame (ORF) encoding 598 amino acids, including an N-terminal RING-type zinc finger, two TRAF-type zinc fingers and a conserved C-terminal meprin and TRAF homology (MATH) domain. Multiple alignment analysis shows that the putative amino acid sequence of Sp-TRAf6 has highest identity of 88% with Pt-TRAF6 from Portunus trituberculatus, while the similarity of Sp-TRAF6 with other crustacean sequences was 54-55%. RT-PCR analysis indicated that Sp-TRAF6 transcripts were predominantly expressed in the hepatopancreas and stomach, whereas it was barely detected in the heart and hemocytes in our study. Moreover, Sp-TRAF6 transcripts were significantly up-regulated after Vibrio parahemolyticus and LPS challenges. RNA interference assay was carried out used by siRNA to investigate the genes expression patterns regulated by Sp-TRAF6. The qRT-PCR results showed that silencing Sp-TRAF6 gene could inhibit SpALF1, SpALF2, SpALF5 and SpALF6 expression in hemocytes, while inhibit SpALF1, SpALF3, SpALF4, SpALF5 and SpALF6 expression in hepatopancreas. Taken together, the acute-phase response to immune challenges and the inhibition of SpALFs gene expression indicate that Sp-TRAF6 plays an important role in host defense against pathogen invasions via regulation of ALF gene expression in S. paramamosain. Copyright © 2016. Published by Elsevier Ltd.

  3. Differential expression of anti-angiogenic factors and guidance genes in the developing macula.

    Science.gov (United States)

    Kozulin, Peter; Natoli, Riccardo; O'Brien, Keely M Bumsted; Madigan, Michele C; Provis, Jan M

    2009-01-01

    The primate retina contains a specialized, cone-rich macula, which mediates high acuity and color vision. The spatial resolution provided by the neural retina at the macula is optimized by stereotyped retinal blood vessel and ganglion cell axon patterning, which radiate away from the macula and reduce shadowing of macular photoreceptors. However, the genes that mediate these specializations, and the reasons for the vulnerability of the macula to degenerative disease, remain obscure. The aim of this study was to identify novel genes that may influence retinal vascular patterning and definition of the foveal avascular area. We used RNA from human fetal retinas at 19-20 weeks of gestation (WG; n=4) to measure differential gene expression in the macula, a region nasal to disc (nasal) and in the surrounding retina (surround) by hybridization to 12 GeneChip microarrays (HG-U133 Plus 2.0). The raw data was subjected to quality control assessment and preprocessing, using GC-RMA. We then used ANOVA analysis (Partek) Genomic Suite 6.3) and clustering (DAVID website) to identify the most highly represented genes clustered according to "biological process." The neural retina is fully differentiated at the macula at 19-20 WG, while neuronal progenitor cells are present throughout the rest of the retina. We therefore excluded genes associated with the cell cycle, and markers of differentiated neurons, from further analyses. Significantly regulated genes (pmacula versus surround" and "macula versus nasal." KEGG pathway clustering of the filtered gene lists identified 25 axon guidance-related genes that are differentially regulated in the macula. Furthermore, we found significant upregulation of three anti-angiogenic factors in the macula: pigment epithelium derived factor (PEDF), natriuretic peptide precurusor B (NPPB), and collagen type IValpha2. Differential expression of several members of the ephrin and semaphorin axon guidance gene families, PEDF, and NPPB was verified by

  4. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    International Nuclear Information System (INIS)

    Asting, Annika Gustafsson; Carén, Helena; Andersson, Marianne; Lönnroth, Christina; Lagerstedt, Kristina; Lundholm, Kent

    2011-01-01

    Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4) showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3) were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue

  5. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    Directory of Open Access Journals (Sweden)

    Lagerstedt Kristina

    2011-06-01

    Full Text Available Abstract Background Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Method Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Results Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4 showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3 were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Conclusions Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue.

  6. Relationships between genetic polymorphisms in inflammation-related factor gene and the pathogenesis of nasopharyngeal cancer.

    Science.gov (United States)

    Qu, Yan-Li; Yu, Hong; Chen, Yan-Zhi; Zhao, Yu-Xia; Chen, Guang-Jun; Bai, Lu; Liu, Dan; Su, Hong-Xin; Wang, He-Tong

    2014-09-01

    Our study aims to discuss the association between inflammation-related factors such as single nucleotide polymorphisms (SNPs) with susceptibility and recurrence in nasopharyngeal carcinoma. We used Taqman real-time polymerase chain reaction (PCR) to characterize the genetic variation of five SNPs in 194 nasopharyngeal carcinoma patients and 231 healthy subjects. All statistical analysis is performed with statistical product and service solutions v13.0; odds ratio (OR) value and 95 % confidence interval (CI) were calculated. There is no relationship between TGFβ1 -869 T/C, IL-6 -634C/G, TGFβ1 -509C/T, IL1 -511C/T and nasopharyngeal carcinoma susceptibility. Both single factor and multiple factors analysis showed that IL1a -889 T/T genotype is significantly associated with nasopharyngeal carcinoma in decreasing the risk of nasopharyngeal carcinoma. A highly significant association was found between IL1a -889 T/T genotype and protective genotype as defined by various pathological types. This is more obvious in the protective genotype of the non-keratin-type squamous carcinoma undifferentiated type. We also discovered that genotype G/G and C/G + G/G of IL6 -634 gene are associated with reduced recurrence of nasopharyngeal carcinoma. IL1a -889 gene polymorphism and susceptibility is related to nasopharyngeal carcinoma and can potentially decrease the risk of nasopharyngeal carcinoma in the Han Chinese population in north China. IL1-889 TT genotype is protective genotype for nasopharyngeal carcinoma. We have provided evidence that the GG genotype of the IL6 -634 gene is associated with recurrent risk of nasopharyngeal carcinoma. The G allele is the protective gene of nasopharyngeal carcinoma recurrence.

  7. Comparative transcriptome analysis reveals differentially expressed genes associated with sex expression in garden asparagus (Asparagus officinalis).

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2017-08-22

    Garden asparagus (Asparagus officinalis) is a highly valuable vegetable crop of commercial and nutritional interest. It is also commonly used to investigate the mechanisms of sex determination and differentiation in plants. However, the sex expression mechanisms in asparagus remain poorly understood. De novo transcriptome sequencing via Illumina paired-end sequencing revealed more than 26 billion bases of high-quality sequence data from male and female asparagus flower buds. A total of 72,626 unigenes with an average length of 979 bp were assembled. In comparative transcriptome analysis, 4876 differentially expressed genes (DEGs) were identified in the possible sex-determining stage of female and male/supermale flower buds. Of these DEGs, 433, including 285 male/supermale-biased and 149 female-biased genes, were annotated as flower related. Of the male/supermale-biased flower-related genes, 102 were probably involved in anther development. In addition, 43 DEGs implicated in hormone response and biosynthesis putatively associated with sex expression and reproduction were discovered. Moreover, 128 transcription factor (TF)-related genes belonging to various families were found to be differentially expressed, and this finding implied the essential roles of TF in sex determination or differentiation in asparagus. Correlation analysis indicated that miRNA-DEG pairs were also implicated in asparagus sexual development. Our study identified a large number of DEGs involved in the sex expression and reproduction of asparagus, including known genes participating in plant reproduction, plant hormone signaling, TF encoding, and genes with unclear functions. We also found that miRNAs might be involved in the sex differentiation process. Our study could provide a valuable basis for further investigations on the regulatory networks of sex determination and differentiation in asparagus and facilitate further genetic and genomic studies on this dioecious species.

  8. Vitamin D inhibits the growth of and virulence factor gene expression by Porphyromonas gingivalis and blocks activation of the nuclear factor kappa B transcription factor in monocytes.

    Science.gov (United States)

    Grenier, D; Morin, M-P; Fournier-Larente, J; Chen, H

    2016-06-01

    Increasing evidence suggests that 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), a fat-soluble secosteroid hormone, has a positive impact on periodontal health through diverse mechanisms. The present study was aimed at investigating the effect of 1,25(OH)2 D3 on the growth of and virulence factor gene expression by the periodontopathogenic bacterium Porphyromonas gingivalis. The effect of 1,25(OH)2 D3 on P. gingivalis-mediated activation of nuclear factor kappa B (NF-κB) transcription factor in monocytes was also assessed. A broth microdilution assay was used to determine the antibacterial activity of 1,25(OH)2 D3 . The modulation of virulence factor gene expression in P. gingivalis was assessed by quantitative reverse transcription-polymerase chain reaction. NF-κB activation was assessed using a human monocytic cell line stably transfected with a luciferase reporter containing NF-κB binding sites. Minimal inhibitory concentrations of 1,25(OH)2 D3 against P. gingivalis ranged from 3.125 to 6.25 μg/mL. Moreover, a partial synergistic effect was observed when 1,25(OH)2 D3 was used in association with metronidazole. 1,25(OH)2 D3 attenuated the virulence of P. gingivalis by reducing the expression of genes coding for important virulence factors, including adhesins (fimA, hagA and hagB) and proteinases (rgpA, rgpB and kgp). 1,25(OH)2 D3 dose-dependently prevented P. gingivalis-induced NF-κB activation in a monocyte model. Our study suggested that 1,25(OH)2 D3 selectively inhibits the growth of and virulence factor gene expression by P. gingivalis, in addition to attenuating NF-κB activation by this periodontopathogen. This dual action on P. gingivalis and the inflammatory response of host cells may be of particular interest with a view to developing a novel and inexpensive preventive/therapeutic strategy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Pre-analytical and Analytical Variables Affecting the Measurement of Plasma-Derived Microparticle Tissue Factor Activity

    Science.gov (United States)

    Lee, RD; Barcel, DA; Williams, JC; Wang, JG; Boles, JC; Manly, DA; Key, NS; Mackman, N

    2011-01-01

    Introduction Elevated levels of tissue factor positive (TF+) microparticles (MPs) are observed in plasma from a variety of patients with an increased risk of thrombosis. We and others have described the measurement of TF activity in MPs isolated from plasma. The aim of this study was to investigate the effects of pre-analytical and analytical variables on TF activity of MPs isolated from blood of healthy volunteers treated ex vivo with or without bacterial lipopolysaccharide. Materials and Methods We evaluated the following parameters: use of different centrifugation speeds to isolate the MPs; comparison of TF activity of MPs isolated from platelet poor plasma versus platelet free plasma; effect of freeze/thaw on MP TF activity; and comparison of the MP TF activity assay with the measurement of TF protein by ELISA or flow cytometry. Results MPs prepared from platelet poor plasma by centrifugation at 20,000 × g or 100,000 × g for 15 minutes had similar levels of TF activity. However, significantly less TF activity was found in MPs isolated from platelet free plasma compared with platelet poor plasma. Interestingly, freeze/thawing of the plasma showed donor to donor variation in MP TF activity, with a moderate increase in some individuals. Conclusion TF+ MPs can be quantitatively isolated from platelet poor or platelet free plasma by centrifugation at 20,000 × g for 15 minutes. Measurement of MP TF activity in plasma can be used to detect a prothrombotic state in patients with various diseases. PMID:21737126

  10. Regression Analysis of Combined Gene Expression Regulation in Acute Myeloid Leukemia

    Science.gov (United States)

    Li, Yue; Liang, Minggao; Zhang, Zhaolei

    2014-01-01

    Gene expression is a combinatorial function of genetic/epigenetic factors such as copy number variation (CNV), DNA methylation (DM), transcription factors (TF) occupancy, and microRNA (miRNA) post-transcriptional regulation. At the maturity of microarray/sequencing technologies, large amounts of data measuring the genome-wide signals of those factors became available from Encyclopedia of DNA Elements (ENCODE) and The Cancer Genome Atlas (TCGA). However, there is a lack of an integrative model to take full advantage of these rich yet heterogeneous data. To this end, we developed RACER (Regression Analysis of Combined Expression Regulation), which fits the mRNA expression as response using as explanatory variables, the TF data from ENCODE, and CNV, DM, miRNA expression signals from TCGA. Briefly, RACER first infers the sample-specific regulatory activities by TFs and miRNAs, which are then used as inputs to infer specific TF/miRNA-gene interactions. Such a two-stage regression framework circumvents a common difficulty in integrating ENCODE data measured in generic cell-line with the sample-specific TCGA measurements. As a case study, we integrated Acute Myeloid Leukemia (AML) data from TCGA and the related TF binding data measured in K562 from ENCODE. As a proof-of-concept, we first verified our model formalism by 10-fold cross-validation on predicting gene expression. We next evaluated RACER on recovering known regulatory interactions, and demonstrated its superior statistical power over existing methods in detecting known miRNA/TF targets. Additionally, we developed a feature selection procedure, which identified 18 regulators, whose activities clustered consistently with cytogenetic risk groups. One of the selected regulators is miR-548p, whose inferred targets were significantly enriched for leukemia-related pathway, implicating its novel role in AML pathogenesis. Moreover, survival analysis using the inferred activities identified C-Fos as a potential AML

  11. Genetically engineered Rice with transcription factor DREB genes for abiotic stress tolerance(abstract)

    International Nuclear Information System (INIS)

    Datta, S.K.; Datta, K.

    2005-01-01

    Water stress (drought and Salinity) is the most severe limitation to rice productivity. Several breeding approaches (MAS, QTL) applied to suitable genotypes are in place at IRRI and elsewhere. Phenotyping of water stress tolerance is in progress with potential predictability. Dr. Shinozaki's group has cloned a number of transcription factor genes, which have been shown to work in Arabidopsis to achieve drought, cold, and salinity tolerant plants. None of these genes have as yet displayed their potential functioning in rice. Genetic engineering aims at cross talk between different stress signaling pathways leading to stress tolerance. Osmotic Adjustment (OA) is an effective component of abiotic stress (drought and salinity) tolerance in many plants including rice. When plant experiences water stress, OA contributes to turgor maintenance of both shoots and roots. Conventional breeding could not achieve the OA in rice excepting a few rice cultivars, which are partially adapted to water-stress conditions. Several stress-related genes have now been cloned and transferred in to enhance the osmolytes and some transgenic lines showed increased tolerance to osmotic stress. A few strategies could be effectively deployed for a better understanding of water-stress tolerance in rice and to develop transgenic rice, which can survive for a critical period of water-stress conditions: 1) Switching on of transcription factor regulating the expression of several genes related to abiotic stress, 2) Use of a suitable stress inducible promoter driving the target gene for an efficient and directed expression in plants, 3) Understanding of phenotyping and GxE in a given environment, 4) Selection of a few adaptive rice cultivars suitable in drought/salinity prone areas, 5) Microarray, proteomics, QTL and MAS may expedite the cloning and characterizing the stress induced genes, and 6) Finally, the efficient transformation system for generating a large number of transgenic rice of different

  12. Gene therapy with growth factors for periodontal tissue engineering–A review

    Science.gov (United States)

    Gupta, Shipra; Mahendra, Aneet

    2012-01-01

    The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. A challenge faced by periodontal therapy is the predictable regeneration of periodontal tissues lost as a consequence of disease. Growth factors are critical to the development, maturation, maintenance and repair of oral tissues as they establish an extra-cellular environment that is conducive to cell and tissue growth. Tissue engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microenvironment for tissue development. The aim of this paper is to review emerging periodontal therapies in the areas of materials science, growth factor biology and cell/gene therapy. Various such materials have been formulated into devices that can be used as vehicles for delivery of cells, growth factors and DNA. Different mechanisms of drug delivery are addressed in the context of novel approaches to reconstruct and engineer oral and tooth supporting structure. Key words: Periodontal disease, gene therapy, regeneration, tissue repair, growth factors, tissue engineering. PMID:22143705

  13. Mipu1, a novel direct target gene, is involved in hypoxia inducible factor 1-mediated cytoprotection.

    Directory of Open Access Journals (Sweden)

    Kangkai Wang

    Full Text Available Mipu1 (myocardial ischemic preconditioning up-regulated protein 1, recently identified in our lab, is a novel zinc-finger transcription factor which is up-regulated during ischemic preconditioning. However, it is not clear what transcription factor contributes to its inducible expression. In the present study, we reported that HIF-1 regulates the inducible expression of Mipu1 which is involved in the cytoprotection of HIF-1α against oxidative stress by inhibiting Bax expression. Our results showed that the inducible expression of Mipu1 was associated with the expression and activation of transcription factor HIF-1 as indicated by cobalt chloride (CoCl2 treatment, HIF-1α overexpression and knockdown assays. EMSA and luciferase reporter gene assays showed that HIF-1α bound to the hypoxia response element (HRE within Mipu1 promoter region and promoted its transcription. Moreover, our results revealed that Mipu1 inhibited the expression of Bax, an important pro-apoptosis protein associated with the intrinsic pathway of apoptosis, elevating the cytoprotection of HIF-1 against hydrogen peroxide (H2O2-mediated injury in H9C2 cells. Our findings implied that Bax may be a potential target gene of transcription factor Mipu1, and provided a novel insight for understanding the cytoprotection of HIF-1 and new clues for further elucidating the mechanisms by which Mipu1 protects cell against pathological stress.

  14. Anti-vascular agent Combretastatin A-4-P modulates Hypoxia Inducible Factor-1 and gene expression

    Directory of Open Access Journals (Sweden)

    Currie Margaret J

    2006-12-01

    Full Text Available Abstract Background A functional vascular network is essential for the survival, growth and spread of solid tumours, making blood vessels a key target for therapeutic strategies. Combretastatin A-4 phosphate (CA-4-P is a tubulin-depolymerising agent in Phase II clinical trials as a vascular disrupting agent. Not much is known of the molecular effect of CA-4-P under tumour conditions. The tumour microenvironment differs markedly from that in normal tissue, specifically with respect to oxygenation (hypoxia. Gene regulation under tumour conditions is governed by hypoxia inducible factor 1 (HIF-1, controlling angiogenic and metastatic pathways. Methods We investigated the effect of CA-4-P on factors of the upstream and downstream signalling pathway of HIF-1 in vitro. Results CA-4-P treatment under hypoxia tended to reduce HIF-1 accumulation in a concentration-dependent manner, an effect which was more prominent in endothelial cells than in cancer cell lines. Conversely, CA-4-P increased HIF-1 accumulation under aerobic conditions in vitro. At these concentrations of CA-4-P under aerobic conditions, nuclear factor κB was activated via the small GTPase RhoA, and expression of the HIF-1 downstream angiogenic effector gene, vascular endothelial growth factor (VEGF-A, was increased. Conclusion Our findings advance the understanding of signal transduction pathways involved in the actions of the anti-vascular agent CA-4-P.

  15. The experimental study of CT-guided hepatocyte growth factor gene therapy for cerebral ischemic diseases

    International Nuclear Information System (INIS)

    Zhang Xiaobo; Jin Zhengyu; Li Mingli; Wang Renzhi; Li Guilin; Kong Yanguo; Wang Jianming; Gao Shan; Guan Hongzhi; Wang Detian; Luo Yufeng

    2006-01-01

    Objectives: To investigate the feasibility of CT guided hepatocyte growth factor (HGF) gene therapy for cerebral ischemic diseases. Methods: Human HGF cDNA was ligated to pIRES 2 -EGFP vector. The recombinant plasmid was transfected into the penumbra tissue with liposome, guided by CT perfusion images. After seven days of transfer with recombinant plasmid, the cut sections of rat brain tissues of the treated and control groups were analyzed including immunohistochemistry, vessel count, cerebral blood flow and infarct volume etc. in order to investigate HGF gene expression and biological effect. Results: Enzymatic digestion and electrophoresis confirmed that HGF fragments had been correctly cloned into the space between the BamH I and Sal I sites of pIRES 2 -EGFP. After 7 days of HGF gene transfection, expression of HGF in transfected neurocytes of treated group was observed with immunohistochemistry. The number of vessels in penumbra tissues transfected with HGF vectors and the CBF measured by perfusion CT all were significantly increased than those of the controls (P 2 -EGFP-HGF complexes can transfect the penumbra tissues and definitely express HGF protein. The HGF gene products can stimulate angiogenesis, promote collateral circulation formation and reduce infarct volume in vivo and therefore is beneficial to the treatment of cerebral ischemia. (authors)

  16. Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice.

    Science.gov (United States)

    Ochiai, Kumiko; Shimizu, Akifumi; Okumoto, Yutaka; Fujiwara, Toru; Matoh, Toru

    2011-07-01

    We identified a gene responsible for tolerance to boron (B) toxicity in rice (Oryza sativa), named BORON EXCESS TOLERANT1. Using recombinant inbred lines derived from the B-toxicity-sensitive indica-ecotype cultivar IR36 and the tolerant japonica-ecotype cultivar Nekken 1, the region responsible for tolerance to B toxicity was narrowed to 49 kb on chromosome 4. Eight genes are annotated in this region. The DNA sequence in this region was compared between the B-toxicity-sensitive japonica cultivar Wataribune and the B-toxicity-tolerant japonica cultivar Nipponbare by eco-TILLING analysis and revealed a one-base insertion mutation in the open reading frame sequence of the gene Os04g0477300. The gene encodes a NAC (NAM, ATAF, and CUC)-like transcription factor and the function of the transcript is abolished in B-toxicity-tolerant cultivars. Transgenic plants in which the expression of Os04g0477300 is abolished by RNA interference gain tolerance to B toxicity.

  17. Tumor necrosis factor-alpha and interleukin-4 gene polymorphisms in Chinese patients with gout.

    Science.gov (United States)

    Chen, M-L; Tsai, F-J; Tsai, C-H; Huang, C-M

    2007-01-01

    The purpose of this study was to examine whether polymorphisms of interleukin-4 (IL-4) (promoter-590 and intron 3) and tumor necrosis factor-alpha (TNF-alpha) promoter-308 genes are markers of susceptibility to or clinical manifestations of gout in Taiwanese patients. The study included 196 Taiwanese patients with gout and 103 unrelated healthy control subjects living in central Taiwan. Polymorphisms of the IL-4 (promoter-590 and intron 3) and TNF-alpha (promoter-308) genes were typed from genomic DNA. Allelic frequencies and carriage rates were then compared between gout patients and control subjects. The correlation between allelic frequencies, carriage rates and clinical manifestations of gout were evaluated. No significant differences were observed in the allelic frequencies and carriage rates of the IL-4 (promoter-590 and intron 3) and TNF-alpha gene polymorphisms between patients with gout and healthy control subjects. Furthermore, the IL-4 (promoter-590 and intron 3) and TNF-alpha genotypes were not found to be associated with the clinical and laboratory profiles in gout patients. However, there was a significant difference in the TNF-alphapolymorphism genotype between patients with and without hypertriglyceridemia (P=0.001, xi2=11.47, OR=10.3, 95%CI=3.57-29.7). The results of our study suggest that polymorphisms of the IL-4 (promoter-590 and intron 3) and TNF-alpha promoter-308 genes are not related to gout in Chinese patients in Taiwan.

  18. The Impact of the Brain-Derived Neurotrophic Factor Gene on Trauma and Spatial Processing

    Directory of Open Access Journals (Sweden)

    Jessica K. Miller

    2017-11-01

    Full Text Available The influence of genes and the environment on the development of Post-Traumatic Stress Disorder (PTSD continues to motivate neuropsychological research, with one consistent focus being the Brain-Derived Neurotrophic Factor (BDNF gene, given its impact on the integrity of the hippocampal memory system. Research into human navigation also considers the BDNF gene in relation to hippocampal dependent spatial processing. This speculative paper brings together trauma and spatial processing for the first time and presents exploratory research into their interactions with BDNF. We propose that quantifying the impact of BDNF on trauma and spatial processing is critical and may well explain individual differences in clinical trauma treatment outcomes and in navigation performance. Research has already shown that the BDNF gene influences PTSD severity and prevalence as well as navigation behaviour. However, more data are required to demonstrate the precise hippocampal dependent processing mechanisms behind these influences in different populations and environmental conditions. This paper provides insight from recent studies and calls for further research into the relationship between allocentric processing, trauma processing and BDNF. We argue that research into these neural mechanisms could transform PTSD clinical practice and professional support for individuals in trauma-exposing occupations such as emergency response, law enforcement and the military.

  19. The Impact of the Brain-Derived Neurotrophic Factor Gene on Trauma and Spatial Processing.

    Science.gov (United States)

    Miller, Jessica K; McDougall, Siné; Thomas, Sarah; Wiener, Jan

    2017-11-27

    The influence of genes and the environment on the development of Post-Traumatic Stress Disorder (PTSD) continues to motivate neuropsychological research, with one consistent focus being the Brain-Derived Neurotrophic Factor (BDNF) gene, given its impact on the integrity of the hippocampal memory system. Research into human navigation also considers the BDNF gene in relation to hippocampal dependent spatial processing. This speculative paper brings together trauma and spatial processing for the first time and presents exploratory research into their interactions with BDNF. We propose that quantifying the impact of BDNF on trauma and spatial processing is critical and may well explain individual differences in clinical trauma treatment outcomes and in navigation performance. Research has already shown that the BDNF gene influences PTSD severity and prevalence as well as navigation behaviour. However, more data are required to demonstrate the precise hippocampal dependent processing mechanisms behind these influences in different populations and environmental conditions. This paper provides insight from recent studies and calls for further research into the relationship between allocentric processing, trauma processing and BDNF. We argue that research into these neural mechanisms could transform PTSD clinical practice and professional support for individuals in trauma-exposing occupations such as emergency response, law enforcement and the military.

  20. Effects of ultrasound on Transforming Growth Factor-beta genes in bone cells

    Directory of Open Access Journals (Sweden)

    J Harle

    2005-12-01

    Full Text Available Therapeutic ultrasound (US is a widely used form of biophysical stimulation that is increasingly applied to promote fracture healing. Transforming growth factor-beta (TGF-beta, which is encoded by three related but different genes, is known to play a major part in bone growth and repair. However, the effects of US on the expression of the TGF-beta genes and the physical acoustic mechanisms involved in initiating changes in gene expression in vitro, are not yet known. The present study demonstrates that US had a differential effect on these TGF-beta isoforms in a human osteoblast cell line, with the highest dose eliciting the most pronounced up-regulation of both TGF-beta1 and TGF-beta3 at 1 hour after treatment and thereafter declining. In contrast, US had no effect on TGF-beta2 expression. Fluid streaming rather than thermal effects or cavitation was found to be the most likely explanation for the gene responses observed in vitro.

  1. Structural organization and chromosomal assignment of the mouse embryonic TEA domain-containing factor (ETF) gene.

    Science.gov (United States)

    Suzuki, K; Yasunami, M; Matsuda, Y; Maeda, T; Kobayashi, H; Terasaki, H; Ohkubo, H

    1996-09-01

    Embryonic TEA domain-containing factor (ETF) belongs to the family of proteins structurally related to transcriptional enhancer factor-1 (TEF-1) and is implicated in neural development. Isolation and characterization of the cosmid clones encoding the mouse ETF gene (Etdf) revealed that Etdf spans approximately 17.9 kb and consists of 12 exons. The exon-intron structure of Etdf closely resembles that of the Drosophila scalloped gene, indicating that these genes may have evolved from a common ancestor. The multiple transcription initiation sites revealed by S1 protection and primer extension analyses are consistent with the absence of the canonical TATA and CAAT boxes in the 5'-flanking region, which contains many potential regulatory sequences, such as the E-box, N-box, Sp1 element, GATA-1 element, TAATGARAT element, and B2 short interspersed element (SINE) as well as several direct and inverted repeat sequences. The Etdf locus was assigned to the proximal region of mouse chromosome 7 using fluorescence in situ hybridization and linkage mapping analyses. These results provide the molecular basis for studying the regulation, in vivo function, and evolution of Etdf.

  2. Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation.

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2011-07-01

    Full Text Available Hypoxia-inducible factor (HIF is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance.

  3. Hypoxia-Inducible Factor Directs POMC Gene to Mediate Hypothalamic Glucose Sensing and Energy Balance Regulation

    Science.gov (United States)

    Zhang, Hai; Zhang, Guo; Gonzalez, Frank J.; Park, Sung-min; Cai, Dongsheng

    2011-01-01

    Hypoxia-inducible factor (HIF) is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance. PMID:21814490

  4. Transcriptional Activity of Nuclear Factor κB Family Genes in Patients with Systemic Sclerosis.

    Science.gov (United States)

    Lis-Święty, Anna; Gola, Joanna; Mazurek, Urszula; Brzezińska-Wcisło, Ligia

    2017-05-01

    Systemic sclerosis (SSc) is a connective tissue disease of unknown etiology and unclear pathogenesis. Evaluation of the activation of nuclear factor κB (NF-κB) family genes IκBα, p50, p52, p65, and c-Rel, potentially involved in the regulation of immunity, inflammation, angiogenesis, and tissue remodeling in SSc, was carried out. The study included 19 patients with limited SSc, 11 patients with early SSc, and 10 healthy persons constituting the control group. Real-time QRT-PCR was used to evaluate the mRNAs in peripheral blood samples. The patients with early SSc showed a decrease in transcriptional activity of IκBα inhibitor and c-Rel subunit. Transcriptional activity decrease in the other patients with limited SSc included genes encoding c-Rel and p50, subunits of NF-κB factor. Deregulation of intracellular signal transduction by NF-κB takes place at the beginning of SSc and in its fibrosis stage. Associations between clinical variables and NF-κB related gene expression as well as the activation of NF-κB family members in SSc patients should be addressed in future studies. © 2017 by the Association of Clinical Scientists, Inc.

  5. Isolation and characterization of StERF transcription factor genes from potato (Solanum tuberosum L.).

    Science.gov (United States)

    Wang, Zemin; Zhang, Ning; Zhou, Xiangyan; Fan, Qiang; Si, Huaijun; Wang, Di

    2015-04-01

    Ethylene response factor (ERF) is a major subfamily of the AP2/ERF family and plays significant roles in the regulation of abiotic- and biotic-stress responses. ERF proteins can interact with the GCC-box cis-element and then initiate a transcriptional cascade activating downstream ethylene response and enhancing plant stress tolerance. In this research, we cloned five StERF genes from potato (Solanum tuberosum L.). The expressional analysis of StERF genes revealed that they showed tissue- or organ-specific expression patterns and the expression levels in leaf, stem, root, flower, and tuber were different. The assays of quantitative real-time polymerase chain reaction (qRT-PCR) and the reverse transcription-PCR (RT-PCR) showed that the expression of five StERF genes was regulated by ethephon, methyl jasmonate (MeJA), salt and drought stress. The result from the yeast one-hybrid experiment showed that five StERFs had trans-activation activity and could specifically bind to the GCC-box cis-elements. The StERFs responded to abiotic factors and hormones suggested that they possibly had diverse roles in stress and hormone regulation of potato. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  6. Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution.

    Science.gov (United States)

    Okpeku, Moses; Esmailizadeh, Ali; Adeola, Adeniyi C; Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M; Imumorin, Ikhide G; Peters, Sunday O; Zhang, Jiajin; Dong, Yang; Wang, Wen

    2016-01-01

    The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats' populations. Fu and Li tests were significantly positive but Tajima's D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat IRF3

  7. The Composition and Spatial Patterns of Bacterial Virulence Factors and Antibiotic Resistance Genes in 19 Wastewater Treatment Plants.

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    Full Text Available Bacterial pathogenicity and antibiotic resistance are of concern for environmental safety and public health. Accumulating evidence suggests that wastewater treatment plants (WWTPs are as an important sink and source of pathogens and antibiotic resistance genes (ARGs. Virulence genes (encoding virulence factors are good indicators for bacterial pathogenic potentials. To achieve a comprehensive understanding of bacterial pathogenic potentials and antibiotic resistance in WWTPs, bacterial virulence genes and ARGs in 19 WWTPs covering a majority of latitudinal zones of China were surveyed by using GeoChip 4.2. A total of 1610 genes covering 13 virulence factors and 1903 genes belonging to 11 ARG families were detected respectively. The bacterial virulence genes exhibited significant spatial distribution patterns of a latitudinal biodiversity gradient and a distance-decay relationship across China. Moreover, virulence genes tended to coexist with ARGs as shown by their strongly positive associations. In addition, key environmental factors shaping the overall virulence gene structure were identified. This study profiles the occurrence, composition and distribution of virulence genes and ARGs in current WWTPs in China, and uncovers spatial patterns and important environmental variables shaping their structure, which may provide the basis for further studies of bacterial virulence factors and antibiotic resistance in WWTPs.

  8. Interactions of trans-acting factor(s) with the estradiol response element and nuclear factor 1 of the vitellogenin II gene of Japanese quail.

    Science.gov (United States)

    Gupta, S; Upadhayay, R; Kanungo, M S

    1996-08-01

    This study was directed at achieving an understanding of the mechanisms by which steroid hormones control the synthesis of vitellogenin (VTG) protein in the liver of the Japanese quail. Northern hybridization shows that administration of estradiol alone or with progesterone stimulates the synthesis of VTG mRNA. Gel mobility shift assay of DNA fragments containing the ERE and NF 1 shows that estradiol alone or with progesterone increases the levels of nuclear proteins that bind to these cis-acting elements of the promoter of the VTG gene. The cooperative effect of the two hormones seen at the level of expression of the VTG gene may be due to protein-protein interactions of trans-acting factors that bind to ERE and NF 1.

  9. Orf virus interleukin-10 and vascular endothelial growth factor-E modulate gene expression in cultured equine dermal fibroblasts.

    Science.gov (United States)

    Wise, Lyn M; Bodaan, Christa J; Mercer, Andrew A; Riley, Christopher B; Theoret, Christine L

    2016-10-01

    Wounds in horses often exhibit sustained inflammation and inefficient vascularization, leading to excessive fibrosis and clinical complications such as "proud flesh". Orf virus-derived proteins, vascular endothelial growth factor (VEGF)-E and interleukin (ovIL)-10, enhance angiogenesis and control inflammation and fibrosis in skin wounds of laboratory animals. The study aimed to determine if equine dermal cells respond to VEGF-E and ovIL-10. Equine dermal cells are expected to express VEGF and IL-10 receptors, so viral protein treatment is likely to alter cellular gene expression and behaviour in a manner conducive to healing. Skin samples were harvested from the lateral thoracic wall of two healthy thoroughbred horses. Equine dermal cells were isolated using a skin explant method and their phenotype assessed by immunofluorescence. Cells were treated with recombinant proteins, with or without inflammatory stimuli. Gene expression was examined using standard and quantitative reverse transcriptase PCR. Cell behaviour was evaluated in a scratch assay. Cultured cells were half vimentin(+ve) fibroblasts and half alpha smooth muscle actin(+ve) and vimentin(+ve) myofibroblasts. VEGF-E increased basal expression of IL-10 mRNA, whereas VEGF-A and collagenase-1 mRNA expression was increased by ovIL-10. In cells exposed to inflammatory stimulus, both treatments dampened tumour necrosis factor mRNA expression, and ovIL-10 exacerbated expression of monocyte chemoattractant protein. Neither viral protein influenced cell migration greatly. This study shows that VEGF-E and ovIL-10 are active on equine dermal cells and exert anti-inflammatory and anti-fibrotic effects that may enhance skin wound healing in horses. © 2016 ESVD and ACVD.

  10. DNA Barcoding for Identification of "Candidatus Phytoplasmas" Using a Fragment of the Elongation Factor Tu Gene

    DEFF Research Database (Denmark)

    Makarova, Olga; Contaldo, Nicoletta; Paltrinieri, Samanta

    2012-01-01

    Background Phytoplasmas are bacterial phytopathogens responsible for significant losses in agricultural production worldwide. Several molecular markers are available for identification of groups or strains of phytoplasmas. However, they often cannot be used for identification of phytoplasmas from...... different groups simultaneously or are too long for routine diagnostics. DNA barcoding recently emerged as a convenient tool for species identification. Here, the development of a universal DNA barcode based on the elongation factor Tu (tuf) gene for phytoplasma identification is reported. Methodology....../Principal Findings We designed a new set of primers and amplified a 420–444 bp fragment of tuf from all 91 phytoplasmas strains tested (16S rRNA groups -I through -VII, -IX through -XII, -XV, and -XX). Comparison of NJ trees constructed from the tuf barcode and a 1.2 kbp fragment of the 16S ribosomal gene revealed...

  11. Knockdown of the placental growth factor gene inhibits laser induced choroidal neovascularization in a murine model.

    Science.gov (United States)

    Nourinia, Ramin; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Akrami, Hassan; Rezaei Kanavi, Mozhgan; Samiei, Shahram

    2013-01-01

    To evaluate the effect of placental growth factor (PlGF) gene knockdown in a murine model of laser-induced choroidal neovascularization. Choroidal neovascularization was induced in the left eyes of 11 mice by infrared laser. Small interfering RNA (siRNA, 20 picomoles/10 μl) corresponding to PlGF mRNA was administered intravitreally by Hamilton syringe in all subjects. One month later, fluorescein angiography and histolologic examination were performed. No leakage was apparent in the 11 eyes treated with siRNA cognate to PlGF. The results of histological evaluation were consistent with angiographic findings showing absence of choroidal neovascularization. Knockdown of the PlGF gene can inhibit the growth of laser-induced choroidal neovascularization in mice.

  12. Knockdown of the Placental Growth Factor Gene Inhibits Laser Induced Choroidal Neovascularization in a Murine Model

    Directory of Open Access Journals (Sweden)

    Ramin Nourinia

    2013-01-01

    Full Text Available Purpose: To evaluate the effect of placental growth factor (PlGF gene knockdown in a murine model of laser-induced choroidal neovascularization. Methods: Choroidal neovascularization was induced in the left eyes of 11 mice by infrared laser. Small interfering RNA (siRNA, 20 picomoles/10 μl corresponding to PlGF mRNA was administered intravitreally by Hamilton syringe in all subjects. One month later, fluorescein angiography and histolologic examination were performed. Results: No leakage was apparent in the 11 eyes treated with siRNA cognate to PlGF. The results of histological evaluation were consistent with angiographic findings showing absence of choroidal neovascularization. Conclusion: Knockdown of the PlGF gene can inhibit the growth of laser-induced choroidal neovascularization in mice.

  13. Enhanced Vascular Endothelial Growth Factor Gene Expression in Ischaemic Skin of Critical Limb Ischaemia Patients

    Directory of Open Access Journals (Sweden)

    Silvia Bleda

    2012-01-01

    Full Text Available Objectives. To perform a quantitative analysis of the vascular endothelial growth factor (VEGF gene transcription in the skin of ischemic legs and provide information for VEGF in the pathogenesis in critical limb ischemia (CLI. Methods. Skin biopsies were obtained from 40 patients with CLI. Control samples came from 44 patients with chronic venous disease. VEGF gene expression was analysed using quantitative polymerase chain reaction. Results. Patients with CLI had higher skin VEGF expression than control group (RQ: 1.3 ± 0.1 versus 1, P=0.04. Conclusions. We found an association between ischemic skin and an elevated VEGF expression in legs from patients with CLI. These data support that the mechanism for VEGF upregulation in hypoxia conditions is intact and acts appropriately in the ischaemic limbs from patients with CLI.

  14. Validation of candidate genes associated with cardiovascular risk factors in psychiatric patients

    Science.gov (United States)

    Windemuth, Andreas; de Leon, Jose; Goethe, John W.; Schwartz, Harold I.; Woolley, Stephen; Susce, Margaret; Kocherla, Mohan; Bogaard, Kali; Holford, Theodore R.; Seip, Richard L.; Ruaño, Gualberto

    2016-01-01

    The purpose of this study was to identify genetic variants predictive of cardiovascular risk factors in a psychiatric population treated with second generation antipsychotics (SGA). 924 patients undergoing treatment for severe mental illness at four US hospitals were genotyped at 1.2 million single nucleotide polymorphisms. Patients were assessed for fasting serum lipid (low density lipoprotein cholesterol [LDLc], high density lipoprotein cholesterol [HDLc], and triglycerides) and obesity phenotypes (body mass index, BMI). Thirteen candidate genes from previous studies of the same phenotypes in non-psychiatric populations were tested for association. We confirmed 8 of the 13 candidate genes at the 95% confidence level. An increased genetic effect size was observed for triglycerides in the psychiatric population compared to that in the cardiovascular population. PMID:21851846

  15. GENIUS and the Genius TF: A New Observatory for WIMP Dark Matter and Neutrinoless Double Beta Decay

    OpenAIRE

    Klapdor-Kleingrothaus, H. V.; Majorovits, B.

    2001-01-01

    The GENIUS proposal is described and some of it's physics potential is outlined. Also in the light of the contradictive results from the DAMA and CDMS experiments the Genius TF, a new experimental setup is proposed. The Genius TF could probe the DAMA evidence region using the WIMP nucleus recoil signal and WIMP annual modulation signature simultaneously. Besides that it can prove the long term feasibility of the detector technique to be implemented into the GENIUS setup and will in this sense...

  16. Intra-Gene DNA Methylation Variability Is a Clinically Independent Prognostic Marker in Women’s Cancers

    Science.gov (United States)

    Bartlett, Thomas E.; Jones, Allison; Goode, Ellen L.; Fridley, Brooke L.; Cunningham, Julie M.; Berns, Els M. J. J.; Wik, Elisabeth; Salvesen, Helga B.; Davidson, Ben; Trope, Claes G.; Lambrechts, Sandrina; Vergote, Ignace; Widschwendter, Martin

    2015-01-01

    We introduce a novel per-gene measure of intra-gene DNA methylation variability (IGV) based on the Illumina Infinium HumanMethylation450 platform, which is prognostic independently of well-known predictors of clinical outcome. Using IGV, we derive a robust gene-panel prognostic signature for ovarian cancer (OC, n = 221), which validates in two independent data sets from Mayo Clinic (n = 198) and TCGA (n = 358), with significance of p = 0.004 in both sets. The OC prognostic signature gene-panel is comprised of four gene groups, which represent distinct biological processes. We show the IGV measurements of these gene groups are most likely a reflection of a mixture of intra-tumour heterogeneity and transcription factor (TF) binding/activity. IGV can be used to predict clinical outcome in patients individually, providing a surrogate read-out of hard-to-measure disease processes. PMID:26629914

  17. Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells.

    Science.gov (United States)

    Chen, Bai-Song; Xie, Hua; Zhang, Sheng-Li; Geng, Hong-Quan; Zhou, Jun-Mei; Pan, Jun; Chen, Fang

    2011-12-01

    This study assessed the use of vascular endothelial growth factor (VEGF) gene-modified endothelial progenitor cells (EPCs) seeded onto bladder acellular matrix grafts (BAMGs), to enhance the blood supply in tissue-engineered bladders in a porcine model. Autologous porcine peripheral EPCs were isolated, cultured, expanded, characterized, and modified with the VEGF gene using an adenovirus vector. The expression of VEGF was examined using reverse transcriptase polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA). VEGF gene modified EPCs were seeded onto BAMG and cultured for 3 days before implantation into pigs for bladder tissue engineering. A partial bladder cystectomy was performed in 12 pigs. The experimental group (6 pigs) received VEGF gene-modified EPC-seeded BAMG. The control group (6 pigs) received BAMG without seeded EPCs. The resulting tissue-engineered bladders were subject to a general and histological analysis. Microvessel density (MVD) was assessed using immunohistochemistry. The ex vivo transfection efficiency of EPCs was greater than 60%-70% when concentrated adenovirus was used. The genetically modified cells expressed both VEGF and green fluorescent protein (GFP). Scanning electron microscopy (SEM) and Masson's trichrome staining of cross sections of the cultured cells seeded to BAMG showed cell attachment and proliferation on the surface of the BAMG. Histological examination revealed bladder regeneration in a time-dependent fashion. Significant increases in MVD were observed in the experimental group, in comparison with the control group. VEGF-modified EPCs significantly enhanced neovascularization, compared with BAMG alone. These results indicate that EPCs, combined with VEGF gene therapy, may be a suitable approach for increasing blood supply in the tissue engineering of bladders. Thus, a useful strategy to achieve a tissue-engineered bladder is indicated.

  18. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    LENUS (Irish Health Repository)

    Pangilinan, Faith

    2012-08-02

    AbstractBackgroundNeural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T) and MTHFD1 rs2236225 (R653Q)) have been found to increase NTD risk. We hypothesized that variants in additional folate\\/B12 pathway genes contribute to NTD risk.MethodsA tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate\\/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents), including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects.ResultsNearly 70 SNPs in 30 genes were found to be associated with NTDs at the p < 0.01 level. The ten strongest association signals (p-value range: 0.0003–0.0023) were found in nine genes (MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury)) and included the known NTD risk factor MTHFD1 R653Q (rs2236225). The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele). Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing.ConclusionsTo our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the

  19. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family

    Science.gov (United States)

    Zhao, Jiao; Guo, Rongrong; Guo, Chunlei; Hou, Hongmin; Wang, Xiping; Gao, Hua

    2016-01-01

    Transcription factors (TFs) play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu) zipper (bZIP) TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling, and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh) bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes). Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in 10 different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones. PMID:27066030

  20. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family

    Directory of Open Access Journals (Sweden)

    Jiao eZhao

    2016-03-01

    Full Text Available Transcription factors (TFs play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu zipper (bZIP TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes. Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in ten different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones.

  1. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    International Nuclear Information System (INIS)

    Yasmin, Tania; Takahashi-Yanaga, Fumi; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-01-01

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of β-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3β (GSK-3β) and inhibition of GSK-3β attenuated the DIF-1-induced β-catenin degradation, indicating the involvement of GSK-3β in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/β-catenin signaling, resulting in the suppression of cyclin D1 promoter activity

  2. Small-Molecule Inhibitors of the SOX18 Transcription Factor.

    Science.gov (United States)

    Fontaine, Frank; Overman, Jeroen; Moustaqil, Mehdi; Mamidyala, Sreeman; Salim, Angela; Narasimhan, Kamesh; Prokoph, Nina; Robertson, Avril A B; Lua, Linda; Alexandrov, Kirill; Koopman, Peter; Capon, Robert J; Sierecki, Emma; Gambin, Yann; Jauch, Ralf; Cooper, Matthew A; Zuegg, Johannes; Francois, Mathias

    2017-03-16

    Pharmacological modulation of transcription factors (TFs) has only met little success over the past four decades. This is mostly due to standard drug discovery approaches centered on blocking protein/DNA binding or interfering with post-translational modifications. Recent advances in the field of TF biology have revealed a central role of protein-protein interaction in their mode of action. In an attempt to modulate the activity of SOX18 TF, a known regulator of vascular growth in development and disease, we screened a marine extract library for potential small-molecule inhibitors. We identified two compounds, which inspired a series of synthetic SOX18 inhibitors, able to interfere with the SOX18 HMG DNA-binding domain, and to disrupt HMG-dependent protein-protein interaction with RBPJ. These compounds also perturbed SOX18 transcriptional activity in a cell-based reporter gene system. This approach may prove useful in developing a new class of anti-angiogenic compounds based on the inhibition of TF activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Analysis of factor VIII gene inversions in 164 unrelated hemophilia A families

    Energy Technology Data Exchange (ETDEWEB)

    Vnencak-Jones, L.; Phillips, J.A. III; Janco, R.L. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States)] [and others

    1994-09-01

    Hemophilia A is an X-linked recessive disease with variable phenotype and both heterogeneous and wide spread mutations in the factor VIII (F8) gene. As a result, diagnostic carrier or prenatal testing often relies upon laborious DNA linkage analysis. Recently, inversion mutations resulting from an intrachromosomal recombination between DNA sequences in one of two A genes {approximately}500 kb upstream from the F8 gene and a homologous A gene in intron 22 of the F8 gene were identified and found in 45% of severe hemophiliacs. We have analyzed banked DNA collected since 1986 from affected males or obligate carrier females representing 164 unrelated hemophilia A families. The disease was sporadic in 37%, familial in 54% and in 10% of families incomplete information was given. A unique deletion was identified in 1/164, a normal pattern was observed in 110/164 (67%), and 53/164 (32%) families had inversion mutations with 43/53 (81%) involving the distal A gene (R3 pattern) and 10/53 (19%) involving the proximal A gene (R2 pattern). While 19% of all rearrangements were R2, in 35 families with severe disease (< 1% VIII:C activity) all 16 rearrangements seen were R3. In 18 families with the R3 pattern and known activities, 16 (89%) had levels < 1%, with the remaining 2 families having {le} 2.4% activity. Further, 18 referrals specifically noted the production of inhibitors and 8/18 (45%) had the R3 pattern. Our findings demonstrate that the R3 inversion mutation patterns is (1) only seen with VIII:C activity levels of {le} 2.4%, (2) seen in 46% of families with severe hemophilia, (3) seen in 45% of hemophiliacs known to have inhibitors, (4) not correlated with sporadic or familial disease and (5) not in disequilibrium with the Bcl I or Taq I intron 18 or ST14 polymorphisms. Finally, in families positive for an inversion mutation, direct testing offers a highly accurate and less expensive alternative to DNA linkage analysis.

  4. Analysis of inversions in the factor VIII gene in Spanish hemophilia A patients and families

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, M.; Tizzano, E.; Baiget, M. [Hospital de Sant Pau, Barcelona (Spain); Altisent, C. [Hospital Vall d`Hebron, Barcelona (Spain)

    1994-09-01

    Intron 22 is the largest intron of the factor VIII gene and contains a CpG island from which two additional transcripts originate. One of these transcripts corresponds to the F8A gene which have telomeric extragenic copies in the X chromosome. An inversion involving homologous recombination between the intragenic and the distal or proximal copies of the F8A gene has been recently described as a common cause of severe hemophilia A (HA). We analyzed intron 22 rearrangements in 195 HA patients (123 familial and 72 sporadic cases). According to factor VIII levels, our sample was classified as severe in 114 cases, moderate in 29 cases and mild in 52 cases. An intron 22 (F8A) probe was hybridized to Southern blots of BcII digested DNA obtained from peripheral blood. A clear pattern of altered bands identifies distal or proximal inversions. We detected an abnormal pattern identifying an inversion in 49 (25%) of the analyzed cases. 43% of severe HA patients (49 cases) showed an inversion. As expected, no inversion was found in the moderate and mild group of patients. We found a high proportion (78%) of the distal rearrangement. From 49 identified inversions, 33 were found in familial cases (27%), while the remaining 15 were detected in sporadic patients (22%) in support that this mutational event occurs with a similar frequency in familial or sporadic cases. In addition, we detected a significant tendency of distal inversion to occur more frequently in familial cases than in sporadic cases. Inhibitor development to factor VIII was documented in approximately 1/3 of the patients with inversion. The identification of such a frequent molecular event in severe hemophilia A patients has been applied in our families to carrier and prenatal diagnosis, to determine the origin of the mutation in the sporadic cases and to detect the presence of germinal mosaicism.

  5. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    International Nuclear Information System (INIS)

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-01-01

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic β-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  6. Gene copy number reduction in the azoospermia factor c (AZFc) region and its effect on total motile sperm count

    NARCIS (Netherlands)

    Noordam, Michiel J.; Westerveld, G. Henrike; Hovingh, Suzanne E.; van Daalen, Saskia K. M.; Korver, Cindy M.; van der Veen, Fulco; van Pelt, Ans M. M.; Repping, Sjoerd

    2011-01-01

    The azoospermia factor c (AZFc) region harbors multi-copy genes that are expressed in the testis. Deletions of the AZFc region lead to reduced copy numbers of these genes. Four (partial) AZFc deletions have been described of which the b2/b4 and gr/gr deletions affect semen quality. In most studies,

  7. Tagging target genes of the mat1-2-1 transcription factor in Fusarium verticillioides (Gibberella fujikuroi MP-A)

    NARCIS (Netherlands)

    Keszthelyi, A.; Jeney, A.; Kerenyi, Z.; Mendes, O.; Waalwijk, C.; Hornok, L.

    2007-01-01

    Mating type in filamentous ascomycetes is controlled by idiomorphic alleles, named MAT1-1 and MAT1-2, which contain 1-3 genes. Of these genes MAT1-1-1 and MAT1-2-1 encode putative transcription factors and are thus considered to be the major regulators of sexual communication and mating. Fungi with

  8. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development.

    Science.gov (United States)

    Vimolmangkang, Sornkanok; Han, Yuepeng; Wei, Guochao; Korban, Schuyler S

    2013-11-07

    Red coloration of fruit is an important trait in apple, and it is mainly attributed to the accumulation of anthocyanins, a class of plant flavonoid metabolites. Anthocyanin biosynthesis is genetically determined by structural and regulatory genes. Plant tissue pigmentation patterns are mainly controlled by expression profiles of regulatory genes. Among these regulatory genes are MYB transcription factors (TFs), wherein the class of two-repeats (R2R3) is deemed the largest, and these are associated with the anthocyanin biosynthesis pathway. Although three MdMYB genes, almost identical in nucleotide sequences, have been identified in apple, it is likely that there are other R2R3 MYB TFs that are present in the apple genome that are also involved in the regulation of coloration of red color pigmentation of the skin of apple fruits. In this study, a novel R2R3 MYB gene has been isolated and characterized in apple. This MYB gene is closely related to the Arabidopsis thaliana AtMYB3, and has been designated as MdMYB3. This TF belongs to the subgroup 4 R2R3 family of plant MYB transcription factors. This apple MdMYB3 gene is mapped onto linkage group 15 of the integrated apple genetic map. Transcripts of MdMYB3 are detected in all analyzed tissues including leaves, flowers, and fruits. However, transcripts of MdMYB3 are higher in excocarp of red-skinned apple cultivars than that in yellowish-green skinned apple cultivars. When this gene is ectopically expressed in Nicotiana tabacum cv. Petite Havana SR1, flowers of transgenic tobacco lines carrying MdMYB3 have exhibited increased pigmentation and accumulate higher levels of anthocyanins and flavonols than wild-type flowers. Overexpression of MdMYB3 has resulted in transcriptional activation of several flavonoid pathway genes, including CHS, CHI, UFGT, and FLS. Moreover, peduncles of flowers and styles of pistils of transgenic plants overexpressing MdMYB3 are longer than those of wild-type plants, thus suggesting that this

  9. The effect of a short-term hypocaloric diet on liver gene expression and metabolic risk factors in obese women.

    Science.gov (United States)

    Hietaniemi, M; Jokela, M; Rantala, M; Ukkola, O; Vuoristo, J T; Ilves, M; Rysä, J; Kesäniemi, Y

    2009-03-01

    Most gene expression studies examining the effect of obesity and weight loss have been performed using adipose tissue. However, the liver also plays a central role in maintaining energy balance. We wanted to study the effects of a hypocaloric diet on overall hepatic gene expression and metabolic risk factors. The study subjects were middle-aged, obese women. The diet intervention subjects (n=12) were on a hypocaloric, low-fat diet for 8 weeks with a daily energy intake of 5.0 MJ (1200 kcal), while the control subjects (n=19) maintained their weight. Liver biopsies were taken at the end of the diet period during a gallbladder operation. Hepatic gene expression was analyzed using microarrays by comparing the gene expression profiles from four subjects per group. A global decrease in gene expression was observed with 142 down-regulated genes and only one up-regulated gene in the diet intervention group. The diet resulted in a mean weight loss of 5% of body weight. Triglyceride and fasting insulin concentrations decreased significantly after the diet. The global decrease in hepatic gene expression was unexpected but the results are interesting, since they included several genes not previously linked to weight reduction. However, since the comparison was made only after the weight reduction, other factors in addition to weight loss may also have been involved in the differences in gene expression between the groups. The decrease in triglyceride and fasting plasma insulin concentrations is in accordance with results from previous weight-loss studies.

  10. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    Science.gov (United States)

    Rista, P. E. C.; Shull, J.; Sargent, S.

    2015-12-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen & helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper.

  11. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    International Nuclear Information System (INIS)

    C Rista, P E; Shull, J; Sargent, S

    2015-01-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen and helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper. (paper)

  12. Recombinant nematode anticoagulant protein c2, an inhibitor of tissue factor/factor VIIa, attenuates coagulation and the interleukin-10 response in human endotoxemia

    NARCIS (Netherlands)

    de Pont, A. C. J. M.; Moons, A. H. M.; de Jonge, E.; Meijers, J. C. M.; Vlasuk, G. P.; Rote, W. E.; Büller, H. R.; van der Poll, T.; Levi, M. [=Marcel M.

    2004-01-01

    The tissue factor-factor (F)VIIa complex (TF/FVIIa) is responsible for the initiation of blood coagulation under both physiological and pathological conditions. Recombinant nematode anticoagulant protein c2 (rNAPc2) is a potent inhibitor of TF/FVIIa. mechanistically distinct from tissue factor

  13. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gutiérrez Rodrigo A

    2008-09-01

    Full Text Available Abstract Background Microarray technology is a widely used approach for monitoring genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray hybridizations representing many different experimental conditions on Affymetrix™ ATH1 gene chips alone. This huge amount of data offers a unique opportunity to infer the principles that govern the regulation of gene expression in plants. Results We used bioinformatics methods to analyze publicly available data obtained using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were normalized and filtered to eliminate low-quality hybridizations. We classified and compared control and treatment hybridizations and determined differential gene expression. The largest differences in gene expression were observed when comparing samples obtained from different organs. On average, ten-fold more genes were differentially expressed between organs as compared to any other experimental variable. We defined "gene responsiveness" as the number of comparisons in which a gene changed its expression significantly. We defined genes with the highest and lowest responsiveness levels as hypervariable and housekeeping genes, respectively. Remarkably, housekeeping genes were best distinguished from hypervariable genes by differences in methylation status in their transcribed regions. Moreover, methylation in the transcribed region was inversely correlated (R2 = 0.8 with gene responsiveness on a genome-wide scale. We provide an example of this negative relationship using genes encoding TCA cycle enzymes, by contrasting their regulatory responsiveness to nitrate and methylation status in their transcribed regions. Conclusion Our results indicate that the Arabidopsis transcriptome is largely established during development and is comparatively stable when faced with external perturbations. We suggest a novel functional role for DNA methylation in the transcribed region as a key determinant

  14. Conference on heat mass transfer and properties of liquid metals TF-2002

    International Nuclear Information System (INIS)

    Efanov, A.D.; Kozlov, F.A.

    2003-01-01

    Results of the conference TF-2002 devoted to the combined approach to problems of harnessing liquid metals as coolants for NPU are presented. The conference takes place in Obninsk, 29 - 31 October, 2002. Papers of the conference involve items on thermal hydraulics, mass transfer and safety of NPU with liquid metal coolants, structure, physical and chemical properties of liquid metal and liquid metal solutions, decommissioning of units and ecology, application of liquid metals divorced with NPU. Most of the papers of the conference are devoted to the investigation into lead and lead-bismuth coolants [ru

  15. Solvent extraction of Pu(IV) with TODGA in C6mimTf2N

    International Nuclear Information System (INIS)

    Xiaohong Huang; Qiuyue Zhang; Jinping Liu; Hui He; Wenbin Zhu; Xiaorong Wang

    2013-01-01

    Studies on the solvent extraction of Plutonium(Pu(IV)) from aqueous nitric acid by N,N,N'N'tetraoctyl-diglycolamide (TODGA) in 1-hexyl-3-methylimidazolium-bis(trifluoromethylsulfonyl) imide (C 6 mimTf 2 N) room temperature ionic liquid (RTIL) were carried out. It was found that Pu(IV) is extracted into RTIL phase as [Pu(NO 3 )(TODGA)] 3+ through cation exchange mechanism. Extraction reaction equation is obtained by the influence of acidity and extractant concentration, and the parameters of thermodynamic equilibrium constant was calculated. (author)

  16. tf_unet: Generic convolutional neural network U-Net implementation in Tensorflow

    Science.gov (United States)

    Akeret, Joel; Chang, Chihway; Lucchi, Aurelien; Refregier, Alexandre

    2016-11-01

    tf_unet mitigates radio frequency interference (RFI) signals in radio data using a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. The code is not tied to a specific segmentation and can be used, for example, to detect radio frequency interference (RFI) in radio astronomy or galaxies and stars in widefield imaging data. This U-Net implementation can outperform classical RFI mitigation algorithms.

  17. BOREAS TF-8 NSA-OJP and SSA-OBS Ceilometer Data

    Science.gov (United States)

    Moore, Kathleen E.; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor); Fitzjarrald, David R.

    2000-01-01

    The BOREAS TF-8 team used ceilometers to collect data on the fraction of the sky covered with clouds and the cloud height. Included with these data is the surface-based lifting condensation level, derived from temperature and humidity values acquired at the flux tower at the NSA-OJP site. Ceilo-meter data were collected at the NSA-OJP site in 1994 and at the NSA-OJP and SSA-OBS sites in 1996. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884).

  18. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-09-01

    Full Text Available Abstract Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS" but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq not to be biological transcription factor binding sites ("empirical TFBS". We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation.

  19. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian; Wang, Junguo; Miki, Daisuke; Xia, Ran; Yu, Wenxiang; He, Junna; Zheng, Zhimin; Zhu, Jian-Kang; Gonga, Zhizhong

    2010-01-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  20. The WRKY transcription factor genes in eggplant (Solanum melongena L.) and Turkey Berry (Solanum torvum Sw.).

    Science.gov (United States)

    Yang, Xu; Deng, Cao; Zhang, Yu; Cheng, Yufu; Huo, Qiuyue; Xue, Linbao

    2015-04-07

    WRKY transcription factors, which play critical roles in stress responses, have not been characterized in eggplant or its wild relative, turkey berry. The recent availability of RNA-sequencing data provides the opportunity to examine WRKY genes from a global perspective. We identified 50 and 62 WRKY genes in eggplant (SmelWRKYs) and turkey berry (StorWRKYs), respectively, all of which could be classified into three groups (I-III) based on the WRKY protein structure. The SmelWRKYs and StorWRKYs contain ~76% and ~95% of the number of WRKYs found in other sequenced asterid species, respectively. Positive selection analysis revealed that different selection constraints could have affected the evolution of these groups. Positively-selected sites were found in Groups IIc and III. Branch-specific selection pressure analysis indicated that most WRKY domains from SmelWRKYs and StorWRKYs are conserved and have evolved at low rates since their divergence. Comparison to homologous WRKY genes in Arabidopsis revealed several potential pathogen resistance-related SmelWRKYs and StorWRKYs, providing possible candidate genetic resources for improving stress tolerance in eggplant and probably other Solanaceae plants. To our knowledge, this is the first report of a genome-wide analyses of the SmelWRKYs and StorWRKYs.

  1. Association of transforming growth-factor alpha gene polymorphisms with nonsyndromic cleft palate only (CPO)

    Energy Technology Data Exchange (ETDEWEB)

    Shiang, R. (Univ. of California, Irvine, CA (United States)); Lidral, A.C.; Ardinger, H.H.; Murray, J.C.; Romitti, P.A.; Munger, R.G.; Buetow, K.H.

    1993-10-01

    Genetic analysis and tissue-specific expression studies support a role for transforming growth-factor alpha (TGFA) in craniofacial development. Previous studies have confirmed an association of alleles for TGFA with nonsyndromic cleft lip with or without cleft palate (CL/P) in humans. The authors carried out a retrospective association study to determine whether specific allelic variants of the TGFA gene are also associated with cleft palate only (CPO). The PCR products from 12 overlapping sets of primers to the TGFA cDNA were examined by using single-strand conformational polymorphism analysis. Four DNA polymorphic sites for TGFA were identified in the 3[prime] untranslated region of the TGFA gene. These variants, as well as previously identified RFLPs for TGFA, were characterized in case and control populations for CPO by using X[sup 2] analysis. A significant association between alleles of TGFA and CPO was identified which further supports a role for this gene as one of the genetic determinants of craniofacial development. Sequence analysis of the variants disclosed a cluster of three variable sites within 30 bp of each other in the 3[prime] untranslated region previously associated with an antisense transcript. These studies extend the role for TGFA in craniofacial morphogenesis and support an interrelated mechanism underlying nonsyndromic forms of CL/P. 46 refs., 3 figs., 3 tabs.

  2. The Prognostic Value of Haplotypes in the Vascular Endothelial Growth Factor A Gene in Colorectal Cancer

    International Nuclear Information System (INIS)

    Hansen, Torben F.; Spindler, Karen-Lise G.; Andersen, Rikke F.; Lindebjerg, Jan; Kølvraa, Steen; Brandslund, Ivan; Jakobsen, Anders

    2010-01-01

    New prognostic markers in patients with colorectal cancer (CRC) are a prerequisite for individualized treatment. Prognostic importance of single nucleotide polymorphisms (SNPs) in the vascular endothelial growth factor A (VEGF-A) gene has been proposed. The objective of the present study was to investigate the prognostic importance of haplotypes in the VEGF-A gene in patients with CRC. The study included 486 patients surgically resected for stage II and III CRC, divided into two independent cohorts. Three SNPs in the VEGF-A gene were analyzed by polymerase chain reaction. Haplotypes were estimated using the PHASE program. The prognostic influence was evaluated using Kaplan-Meir plots and log rank tests. Cox regression method was used to analyze the independent prognostic importance of different markers. All three SNPs were significantly related to survival. A haplotype combination, responsible for this effect, was present in approximately 30% of the patients and demonstrated a significant relationship with poor survival, and it remained an independent prognostic marker after multivariate analysis, hazard ratio 2.46 (95% confidence interval 1.49–4.06), p < 0.001. Validation was provided by consistent findings in a second and independent cohort. Haplotype combinations call for further investigation

  3. Association of interleukin 10 and transforming growth factor β gene polymorphisms with chronic idiopathic urticaria.

    Science.gov (United States)

    Tavakol, Marzieh; Movahedi, Masoud; Amirzargar, Ali Akbar; Aryan, Zahra; Bidoki, Alireza Zare; Heidari, Kimia; Soltani, Samaneh; Gharagozlou, Mohammad; Aghamohammadi, Asghar; Nabavi, Mohammad; Nasiri, Rasoul; Ahmadvand, Alireza; Rezaei, Nima

    2014-01-01

    Transforming growth factor β (TGF-β) and interleukin 10 (IL-10) are two anti-inflammatory cytokines that are implicated in the pathogenesis of urticaria. The goal of this study was to examine the possible association of polymorphisms of TGF-β and IL-10 genes with susceptibility to chronic idiopathic urticaria (CIU). This study was conducted on 90 patients with CIU. Polymerase chain reaction (PCR) was done to determine the genotype at 5 polymorphic sites; TGF-β (codon10C/T and codon25G/C) and IL-10 (-1082G/A, -819C/T, and -592C/A). The C allele at codon 25 of TGF-β was more prevalent in CIU patients compared to controls (OR = 9.5, 95% CI = 5.4-16.8, P<0.001). Genotypes of CT and CG at 10 and 25 codons of TGF-β gene, respectively, and AG, CT, and CA for loci of -1082, -819, and -592 of IL-10 gene were significantly higher in CIU patients (P<0.001). In haplotype analysis, frequency of TGF-β haplotypes differed between patients with CIU and controls; CC haplotype was overrepresented, while CG and TG haplotypes were underrepresented (P<0.001). These results suggest that TGF-β and IL-10 genetic variability could contribute to susceptibility to CIU. Additionally, patients with CIU seem to have genotypes leading to high production of TGF-β and IL-10.

  4. Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency.

    Science.gov (United States)

    Katsu-Jiménez, Yurika; Loría, Frida; Corona, Juan Carlos; Díaz-Nido, Javier

    2016-05-01

    Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration.

  5. Involvement of Fibroblast Growth Factor Receptor Genes in Benign Prostate Hyperplasia in a Korean Population

    Directory of Open Access Journals (Sweden)

    Hae Jeong Park

    2013-01-01

    Full Text Available Fibroblast growth factors (FGFs and their receptors (FGFRs have been implicated in prostate growth and are overexpressed in benign prostatic hyperplasia (BPH. In this study, we investigated whether single nucleotide polymorphisms (SNPs of the FGFR genes (FGFR1 and FGFR2 were associated with BPH and its clinical phenotypes in a population of Korean men. We genotyped four SNPs in the exons of FGFR1 and FGFR2 (rs13317 in FGFR1; rs755793, rs1047100, and rs3135831 in FGFR2 using direct sequencing in 218 BPH patients and 213 control subjects. No SNPs of FGFR1 or FGFR2 genes were associated with BPH. However, analysis according to clinical phenotypes showed that rs1047100 of FGFR2 was associated with prostate volume in BPH in the dominant model (GA/AA versus GG, P = 0.010. In addition, a significant association was observed between rs13317 of FGFR1 and international prostate symptom score (IPSS in the additive (TC versus CC versus TT, P = 0.0022 and dominant models (TC/CC versus TT, P = 0.005. Allele frequency analysis also showed significant association between rs13317 and IPSS (P = 0.005. These results suggested that FGFR genes could be related to progression of BPH.

  6. Nuclear factor 1 regulates adipose tissue-specific expression in the mouse GLUT4 gene

    International Nuclear Information System (INIS)

    Miura, Shinji; Tsunoda, Nobuyo; Ikeda, Shinobu; Kai, Yuko; Cooke, David W.; Lane, M. Daniel; Ezaki, Osamu

    2004-01-01

    Previous studies demonstrated that an adipose tissue-specific element(s) (ASE) of the murine GLUT4 gene is located between -551 and -506 in the 5'-flanking sequence and that a high-fat responsive element(s) for down-regulation of the GLUT4 gene is located between bases -701 and -552. A binding site for nuclear factor 1 (NF1), that mediates insulin and cAMP-induced repression of GLUT4 in 3T3-L1 adipocytes is located between bases -700 and -688. To examine the role of NF1 in the regulation of GLUT4 gene expression in white adipose tissues (WAT) in vivo, we created two types of transgenic mice harboring mutated either 5' or 3' half-site of NF1-binding sites in GLUT4 minigene constructs. In both cases, the GLUT4 minigene was not expressed in WAT, while expression was maintained in brown adipose tissue, skeletal muscle, and heart. This was an unexpected finding, since a -551 GLUT4 minigene that did not have the NF1-binding site was expressed in WAT. We propose a model that explains the requirement for both the ASE and the NF1-binding site for expression of GLUT4 in WAT

  7. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian

    2010-07-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  8. Negative regulation of human parathyroid hormone gene promoter by vitamin D3 through nuclear factor Y

    International Nuclear Information System (INIS)

    Jaeaeskelaeinen, T.; Huhtakangas, J.; Maeenpaeae, P.H.

    2005-01-01

    The negative regulation of the human parathyroid hormone (PTH) gene by biologically active vitamin D 3 (1,25-dihydroxyvitamin D 3 ; 1,25(OH) 2 D 3 ) was studied in rat pituitary GH4C1 cells, which express factors needed for the negative regulation. We report here that NF-Y binds to sequences downstream of the site previously reported to bind the vitamin D receptor (VDR). Additional binding sites for NF-Y reside in the near vicinity and were shown to be important for full activity of the PTH gene promoter. VDR and NF-Y were shown to exhibit mutually exclusive binding to the VDRE region. According to our results, sequestration of binding partners for NF-Y by VDR also affects transcription through a NF-Y consensus binding element in GH4C1 but not in ROS17/2.8 cells. These results indicate that 1,25(OH) 2 D 3 may affect transcription of the human PTH gene both by competitive binding of VDR and NF-Y, and by modulating transcriptional activity of NF-Y

  9. Role of tumour necrosis factor gene polymorphisms (-308 and -238) in breast cancer susceptibility and severity

    International Nuclear Information System (INIS)

    Azmy, Iman AF; Balasubramanian, Saba P; Wilson, Anthony G; Stephenson, Timothy J; Cox, Angela; Brown, Nicola J; Reed, Malcolm WR

    2004-01-01

    Genetic polymorphisms in the promoter region of the tumour necrosis factor (TNF) gene can regulate gene expression and have been associated with inflammatory and malignant conditions. We have investigated two polymorphisms in the promoter of the TNF gene (-308 G>A and -238 G>A) for their role in breast cancer susceptibility and severity by means of an allelic association study. Using a case–control study design, breast cancer patients (n = 709) and appropriate age-matched and sex-matched controls obtained from the Breast Screening Unit (n = 498) were genotyped for these TNF polymorphisms, using a high-throughput allelic discrimination method. Allele frequencies for both polymorphisms were similar in both breast cancer cases and controls. However, the -308 polymorphism was found to be associated with vascular invasion in breast tumours (P = 0.024). Comparison with other standard prognostic indices did not show any association for either genotype. We demonstrated no association between the -308G>A polymorphism and the -238G>A polymorphism in the promoter region of TNF and susceptibility to breast cancer, in a large North European population. However, the -308 G>A polymorphism was found to be associated with the presence of vascular invasion in breast tumours

  10. A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Lindemose, Søren; Jensen, Michael Krogh; de Velde, Jan Van

    2014-01-01

    regulatory networks of 12 NAC transcription factors. Our data offer specific single-base resolution fingerprints for most TFs studied and indicate that NAC DNA-binding specificities might be predicted from their DNA-binding domain's sequence. The developed methodology, including the application......Target gene identification for transcription factors is a prerequisite for the systems wide understanding of organismal behaviour. NAM-ATAF1/2-CUC2 (NAC) transcription factors are amongst the largest transcription factor families in plants, yet limited data exist from unbiased approaches to resolve...... the DNA-binding preferences of individual members. Here, we present a TF-target gene identification workflow based on the integration of novel protein binding microarray data with gene expression and multi-species promoter sequence conservation to identify the DNA-binding specificities and the gene...

  11. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families.

    Science.gov (United States)

    Lehti-Shiu, Melissa D; Panchy, Nicholas; Wang, Peipei; Uygun, Sahra; Shiu, Shin-Han

    2017-01-01

    Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Arabidopsis MAP Kinase 4 regulates gene expression via transcription factor release in the nucleus

    DEFF Research Database (Denmark)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus

    2008-01-01

    kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from...... MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further...... supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation....

  13. Tissue factor activates allosteric networks in factor VIIa through structural and dynamic changes

    DEFF Research Database (Denmark)

    Madsen, Jesper Jonasson; Persson, E.; Olsen, O. H.

    2015-01-01

    that are not likely to be inferred from mutagenesis studies. Furthermore, paths from Met306 to Ile153 (N-terminus) and Trp364, both representing hallmark residues of allostery, are 7% and 37% longer, respectively, in free FVIIa. Thus, there is significantly weaker coupling between the TF contact point and key......Background: Tissue factor (TF) promotes colocalization of enzyme (factorVIIa) and substrate (FX or FIX), and stabilizes the active conformation of FVIIa. Details on how TF induces structural and dynamic changes in the catalytic domain of FVIIa to enhance its efficiency remain elusive. Objective......: To elucidate the activation of allosteric networks in the catalytic domain of the FVIIa protease it is when bound to TF.MethodsLong-timescale molecular dynamics simulations of FVIIa, free and in complex with TF, were executed and analyzed by dynamic network analysis. Results: Allosteric paths of correlated...

  14. Insulin-Like Growth Factor-1 Inscribes a Gene Expression Profile for Angiogenic Factors and Cancer Progression in Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    J.S. Oh

    2002-01-01

    Full Text Available Activation of the insulin-like growth factor-1 receptor (IGF-11R by IGF-1 is associated with the risk and progression of many types of cancer, although despite this it remains unclear how activated IGF-1 R contributes to cancer progression. In this study, gene expression changes elicited by IGF-1 were profiled in breast epithelial cells. We noted that many genes are functionally linked to cancer progression and angiogenesis. To validate some of the changes observed, the RNA and/or protein was confirmed for c-fos, cytochrome P4501Al, cytochrome P450 1131, interleukin-1 beta, fas ligand, vascular endothelial growth factor, and urokinase plasminogen activator. Nuclear proteins were also temporally monitored to address how gene expression changes were regulated. We found that IGF-1 stimulated the nuclear translocation of phosphorylated AKT, hypoxic-inducible factor-1 alpha, and phosphorylated cAMP-responsive element-binding protein, which correlated with temporal changes in gene expression. Next, the promoter regions of IGF-1-regulated genes were searched in silico. The promoters of genes that clustered together had similar regulatory regions. In summary, IGF-1 inscribes a gene expression profile relevant to cancer progression, and this study provides insight into the mechanism(s whereby some of these changes occur.

  15. Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL

    Science.gov (United States)

    Dixit, Shalabh; Kumar Biswal, Akshaya; Min, Aye; Henry, Amelia; Oane, Rowena H.; Raorane, Manish L.; Longkumer, Toshisangba; Pabuayon, Isaiah M.; Mutte, Sumanth K.; Vardarajan, Adithi R.; Miro, Berta; Govindan, Ganesan; Albano-Enriquez, Blesilda; Pueffeld, Mandy; Sreenivasulu, Nese; Slamet-Loedin, Inez; Sundarvelpandian, Kalaipandian; Tsai, Yuan-Ching; Raghuvanshi, Saurabh; Hsing, Yue-Ie C.; Kumar, Arvind; Kohli, Ajay

    2015-01-01

    Sub-QTLs and multiple intra-QTL genes are hypothesized to underpin large-effect QTLs. Known QTLs over gene families, biosynthetic pathways or certain traits represent functional gene-clusters of genes of the same gene ontology (GO). Gene-clusters containing genes of different GO have not been elaborated, except in silico as coexpressed genes within QTLs. Here we demonstrate the requirement of multiple intra-QTL genes for the full impact of QTL qDTY12.1 on rice yield under drought. Multiple evidences are presented for the need of the transcription factor ‘no apical meristem’ (OsNAM12.1) and its co-localized target genes of separate GO categories for qDTY12.1 function, raising a regulon-like model of genetic architecture. The molecular underpinnings of qDTY12.1 support its effectiveness in further improving a drought tolerant genotype and for its validity in multiple genotypes/ecosystems/environments. Resolving the combinatorial value of OsNAM12.1 with individual intra-QTL genes notwithstanding, identification and analyses of qDTY12.1has fast-tracked rice improvement towards food security. PMID:26507552

  16. Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes of stage I lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Mai Yamauchi

    Full Text Available PURPOSE: To identify stage I lung adenocarcinoma patients with a poor prognosis who will benefit from adjuvant therapy. PATIENTS AND METHODS: Whole gene expression profiles were obtained at 19 time points over a 48-hour time course from human primary lung epithelial cells that were stimulated with epidermal growth factor (EGF in the presence or absence of a clinically used EGF receptor tyrosine kinase (RTK-specific inhibitor, gefitinib. The data were subjected to a mathematical simulation using the State Space Model (SSM. "Gefitinib-sensitive" genes, the expressional dynamics of which were altered by addition of gefitinib, were identified. A risk scoring model was constructed to classify high- or low-risk patients based on expression signatures of 139 gefitinib-sensitive genes in lung cancer using a training data set of 253 lung adenocarcinomas of North American cohort. The predictive ability of the risk scoring model was examined in independent cohorts of surgical specimens of lung cancer. RESULTS: The risk scoring model enabled the identification of high-risk stage IA and IB cases in another North American cohort for overall survival (OS with a hazard ratio (HR of 7.16 (P = 0.029 and 3.26 (P = 0.0072, respectively. It also enabled the identification of high-risk stage I cases without bronchioalveolar carcinoma (BAC histology in a Japanese cohort for OS and recurrence-free survival (RFS with HRs of 8.79 (P = 0.001 and 3.72 (P = 0.0049, respectively. CONCLUSION: The set of 139 gefitinib-sensitive genes includes many genes known to be involved in biological aspects of cancer phenotypes, but not known to be involved in EGF signaling. The present result strongly re-emphasizes that EGF signaling status in cancer cells underlies an aggressive phenotype of cancer cells, which is useful for the selection of early-stage lung adenocarcinoma patients with a poor prognosis. TRIAL REGISTRATION: The Gene Expression Omnibus (GEO GSE31210.

  17. Interferon regulatory factor 5 gene polymorphism in Egyptian children with systemic lupus erythematosus.

    Science.gov (United States)

    Hammad, A; Mossad, Y M; Nasef, N; Eid, R

    2017-07-01

    Background Increased expression of interferon-inducible genes is implicated in the pathogenesis of systemic lupus erythematosus (SLE). Interferon regulatory factor 5 (IRF5) is one of the transcription factors regulating interferon and was proved to be implicated in the pathogenesis of SLE in different populations. Objectives The objective of this study was to investigate the correlation between polymorphisms of the IRF5 gene and SLE susceptibility in a cohort of Egyptian children and to investigate their association with clinico-pathological features, especially lupus nephritis. Subjects and methods Typing of interferon regulatory factor 5 rs10954213, rs2004640 and rs2280714 polymorphisms were done using polymerase chain reaction-restriction fragment length polymorphism for 100 children with SLE and 100 matched healthy controls. Results Children with SLE had more frequent T allele and TT genotype of rs2004640 ( P c  = 0.003 and 0.024, respectively) compared to controls. Patients with nephritis had more frequent T allele of rs2004640 compared to controls ( P c  = 0.003). However the allele and genotype frequencies of the three studied polymorphisms did not show any difference in patients with nephritis in comparison to those without nephritis. Haplotype GTA of rs10954213, rs2004640 and rs2280714, respectively, was more frequent in lupus patients in comparison to controls ( p = 0.01) while the haplotype GGG was more frequent in controls than lupus patients ( p = 0.011). Conclusion The rs2004640 T allele and TT genotype and GTA haplotype of rs rs10954213, rs2004640, and rs2280714, respectively, can be considered as risk factors for the development of SLE. The presence of the rs2004640 T allele increases the risk of nephritis development in Egyptian children with SLE.

  18. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    Directory of Open Access Journals (Sweden)

    Pangilinan Faith

    2012-08-01

    Full Text Available Abstract Background Neural tube defects (NTDs are common birth defects (~1 in 1000 pregnancies in the US and Europe that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T and MTHFD1 rs2236225 (R653Q have been found to increase NTD risk. We hypothesized that variants in additional folate/B12 pathway genes contribute to NTD risk. Methods A tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents, including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects. Results Nearly 70 SNPs in 30 genes were found to be associated with NTDs at the p MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury and included the known NTD risk factor MTHFD1 R653Q (rs2236225. The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele. Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing. Conclusions To our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the stringency of correction are likely to have contributed to real associations failing to survive

  19. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance.

    Science.gov (United States)

    Li, Yiliang; Su, Xiaohua; Zhang, Bingyu; Huang, Qinjun; Zhang, Xianghua; Huang, Rongfeng

    2009-02-01

    The stress resistance of plants can be enhanced by regulating the expression of multiple downstream genes associated with stress resistance. We used the Agrobacterium method to transfer the tomato jasmonic ethylene responsive factors (JERFs) gene that encodes the ethylene response factor (ERF) like transcription factor to the genome of a hybrid poplar (Populus alba x Populus berolinensis). Eighteen resistant plants were obtained, of which 13 were identified by polymerase chain reaction (PCR), reverse transcriptase PCR and Southern blot analyses as having incorporated the JERFs gene and able to express it at the transcriptional level. Salinity tests were conducted in a greenhouse with 0, 100, 200 and 300 mM NaCl. In the absence of NaCl, the transgenic plants were significantly taller than the control plants, but no statistically significant differences in the concentrations of proline and chlorophyll were observed. With increasing salinity, the extent of damage was significantly less in transgenic plants than that in control plants, and the reductions in height, basal diameter and biomass were less in transgenic plants than those in control plants. At 200 and 300 mM NaCl concentrations, transgenic plants were 128.9% and 98.8% taller, respectively, and had 199.8% and 113.0% more dry biomass, respectively, than control plants. The saline-induced reduction in leaf water content and increase in root/crown ratio were less in transgenic plants than in control plants. Foliar proline concentration increased more in response to salt treatment in transgenic plants than in control plants. Foliar Na(+) concentration was higher in transgenic plants than in control plants. In the coastal area in Panjin of Liaoning where the total soil salt concentra