WorldWideScience

Sample records for factor system genes

  1. Step out of the groove : Epigenetic gene control systems and engineered transcription factors

    NARCIS (Netherlands)

    Verschure, Pernette J.; Visser, Astrid E.; Rots, Marianne G.; Hall, JC; Dunlap, JC; Friedmann, T; VanHeyningen,

    2006-01-01

    At the linear DNA level, gene activity is believed to be driven by binding of transcription factors, which subsequently recruit the RNA polymerase to the gene promoter region. However, it has become clear that transcriptional activation involves large complexes of many different proteins, which not

  2. Step out of the groove : epigenetic gene control systems and engineered transcription factors

    NARCIS (Netherlands)

    Verschure, P.J.; Visser, A.E.; Rots, M.G.

    2006-01-01

    At the linear DNA level, gene activity is believed to be driven by binding of transcription factors, which subsequently recruit the RNA polymerase to the gene promoter region. However, it has become clear that transcriptional activation involves large complexes of many different proteins, which not

  3. Interferon regulatory factor 5 gene polymorphism in Egyptian children with systemic lupus erythematosus.

    Science.gov (United States)

    Hammad, A; Mossad, Y M; Nasef, N; Eid, R

    2017-07-01

    Background Increased expression of interferon-inducible genes is implicated in the pathogenesis of systemic lupus erythematosus (SLE). Interferon regulatory factor 5 (IRF5) is one of the transcription factors regulating interferon and was proved to be implicated in the pathogenesis of SLE in different populations. Objectives The objective of this study was to investigate the correlation between polymorphisms of the IRF5 gene and SLE susceptibility in a cohort of Egyptian children and to investigate their association with clinico-pathological features, especially lupus nephritis. Subjects and methods Typing of interferon regulatory factor 5 rs10954213, rs2004640 and rs2280714 polymorphisms were done using polymerase chain reaction-restriction fragment length polymorphism for 100 children with SLE and 100 matched healthy controls. Results Children with SLE had more frequent T allele and TT genotype of rs2004640 ( P c  = 0.003 and 0.024, respectively) compared to controls. Patients with nephritis had more frequent T allele of rs2004640 compared to controls ( P c  = 0.003). However the allele and genotype frequencies of the three studied polymorphisms did not show any difference in patients with nephritis in comparison to those without nephritis. Haplotype GTA of rs10954213, rs2004640 and rs2280714, respectively, was more frequent in lupus patients in comparison to controls ( p = 0.01) while the haplotype GGG was more frequent in controls than lupus patients ( p = 0.011). Conclusion The rs2004640 T allele and TT genotype and GTA haplotype of rs rs10954213, rs2004640, and rs2280714, respectively, can be considered as risk factors for the development of SLE. The presence of the rs2004640 T allele increases the risk of nephritis development in Egyptian children with SLE.

  4. Origins of immunity: transcription factors and homologues of effector genes of the vertebrate immune system expressed in sea urchin coelomocytes.

    Science.gov (United States)

    Pancer, Z; Rast, J P; Davidson, E H

    1999-08-01

    Echinoderms share common ancestry with the chordates within the deuterostome clade. Molecular features that are shared between their immune systems and that of mammals thus illuminate the basal genetic framework on which these immune systems have been constructed during evolution. The immune effector cells of sea urchins are the coelomocytes, whose primary function is protection against invasive marine pathogens; here we identify six genes expressed in coelomocytes, homologues of which are also expressed in cells of the mammalian immune system. Three coelomocyte genes reported here encode transcription factors. These are an NFKB homologue (SpNFKB); a GATA-2/3 homologue (SpGATAc); and a runt domain factor (SpRunt-1). All three of these coelomocyte genes respond sharply to bacterial challenge: SpNFKB and SpRunt-1 genes are rapidly up-regulated, while transcripts of SpGATAc factor disappear within hours of injection of bacteria. Sham injection also activates SpNFKB and SpRunt, though with slower kinetics, but does not affect SpGATAc levels. Another gene, SpHS, encodes a protein related to the signal transduction intermediate HS1 of lymphoid cells. Two other newly discovered genes, SpSRCR1 and SpSRCR5, encode proteins featuring SRCR repeats. These genes are members of a complex family of SRCR genes all expressed specifically in coelomocytes. The SRCR repeats most closely resemble those of mammalian macrophage scavenger receptors. Remarkably, each individual sea urchin expresses a specific pattern of SRCR genes. Our results imply some shared immune functions and more generally, a shared regulatory architecture which underlies immune system gene expression in all deuterostomes. We conclude that the vertebrate immune system has evolved by inserting new genes into old gene regulatory networks dedicated to immunity.

  5. Evidence of new risk genetic factor to systemic lupus erythematosus: the UBASH3A gene.

    Directory of Open Access Journals (Sweden)

    Lina-Marcela Diaz-Gallo

    Full Text Available The ubiquitin associated and Src-homology 3 (SH3 domain containing A (UBASH3a is a suppressor of T-cell receptor signaling, underscoring antigen presentation to T-cells as a critical shared mechanism of diseases pathogenesis. The aim of the present study was to determine whether the UBASH3a gene influence the susceptibility to systemic lupus erythematosus (SLE in Caucasian populations. We evaluated five UBASH3a polymorphisms (rs2277798, rs2277800, rs9976767, rs13048049 and rs17114930, using TaqMan® allelic discrimination assays, in a discovery cohort that included 906 SLE patients and 1165 healthy controls from Spain. The SNPs that exhibit statistical significance difference were evaluated in a German replication cohort of 360 SLE patients and 379 healthy controls. The case-control analysis in the Spanish population showed a significant association between the rs9976767 and SLE (Pc = 9.9E-03 OR = 1.21 95%CI = 1.07-1.37 and a trend of association for the rs2277798 analysis (P = 0.09 OR = 0.9 95%CI = 0.79-1.02. The replication in a German cohort and the meta-analysis confirmed that the rs9976767 (Pc = 0.02; Pc = 2.4E-04, for German cohort and meta-analysis, respectively and rs2277798 (Pc = 0.013; Pc = 4.7E-03, for German cohort and meta-analysis, respectively UBASH3a variants are susceptibility factors for SLE. Finally, a conditional regression analysis suggested that the most likely genetic variation responsible for the association was the rs9976767 polymorphism. Our results suggest that UBASH3a gene plays a role in the susceptibility to SLE. Moreover, our study indicates that UBASH3a can be considered as a common genetic factor in autoimmune diseases.

  6. Development of analyzing system for gene functions of nerve growth factor using {gamma}-radiation induced mutants of Oryzias latipes

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kazuo; Nagoya, Hiroyuki; Okamoto, Hiroyuki [National Research Inst. of Aquaculture, Mie (Japan)

    1999-02-01

    Oryzias latipes mutants that have abnormalities in the nervous system were screened with an aim to develop a model system to investigate the functions of nerve growing factor gene. When male O. latipes was exposed to {gamma}-ray at a dose of 4.5 to 5.0 Gy, its mutants were most effectively produced. Then, F{sub 2} pairs that might produce offspring with abnormalities in the brain, chorda and tail were selected and cultured successively. The embryos of thus obtained mutants, nt and ut were histologically observed at various stages of their developments and these mutants were found to have abnormalities in the chorda. Then, the expressions of Brachury and HNF3{beta} genes, which possibly control the expression of nerve growth factor gene and closely mediate the embryogenesis were investigated in the chorda and the mesoderm of these mutants by in situ hybridization method. Brachury gene in nt mutant as well as the wild strain was expressed in the region of the tail end, whereas HNF3{beta} gene of nt was not expressed in the chordal end and its adjacent mesoderm. This suggests that the gene of growth factor of which expression is induced by HNF3{beta}, might be inactive in the caudal region of the embryo. When these mutants with abnormalities in caudal formation were crossed each other, any abnormality was not observed in the chordal formation of the offspring. Therefore, it was concluded that the abnormalities in the chordal formation of these mutants might be caused by a mutation at different genes. (M.N.)

  7. Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility.

    Directory of Open Access Journals (Sweden)

    Jian Zhao

    2011-05-01

    Full Text Available Systemic lupus erythematosus (SLE, a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH and five CFH-related proteins (CFHR1-CFHR5 within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA and African Americans (AA, which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, P(meta = 6.6×10(-8, OR = 1.18 and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, P(meta = 2.9×10(-7, OR = 1.17 rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS. Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ~146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ, a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (P(meta = 3.2×10(-7, OR = 1.47 conferred a higher risk of SLE than heterozygous deletion (P(meta = 3.5×10(-4, OR = 1.14. These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of

  8. Isolation, characterization, and nucleotide sequence of the Streptococcus mutans mannitol-phosphate dehydrogenase gene and the mannitol-specific factor III gene of the phosphoenolpyruvate phosphotransferase system.

    Science.gov (United States)

    Honeyman, A L; Curtiss, R

    1992-08-01

    Streptococcus mutans, the causative agent of dental caries, utilizes carbohydrates by means of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). The PTS facilitates vectorial translocation of metabolizable carbohydrates to form the corresponding sugar-phosphates, which are subsequently converted to glycolytic intermediates. The PTS consists of both sugar-specific and sugar-independent components. Complementation of an Escherichia coli mtlD mutation with a streptococcal recombinant DNA library allowed isolation of the mannitol-1-phosphate dehydrogenase gene (mtlD) and the adjacent sugar-specific mannitol factor III gene (mtlF) from S. mutans. Subsequent transposon mutagenesis of the complementing DNA fragment with Tn5seq1 defined the region that encodes the mtlD-complementing activity, the streptococcal mtlD gene. Nucleotide sequence analysis of this region revealed two complete open reading frames (ORFs) from within the streptococcal mannitol PTS operon. One ORF encodes the mtlD gene product, a 43.0-kDa protein which exhibits similarity to the E. coli and Enterococcus faecalis mannitol-1-phosphate dehydrogenases. The second ORF encodes a 15.8-kDa protein which exhibits similarity to mannitol factor III proteins from several bacterial species. In vitro transcription-translation assays were used to produce proteins of the sizes predicted by the streptococcal ORFs. These data indicate that the S. mutans mannitol PTS utilizes an enzyme II-factor III complex similar to the mannitol system found in other gram-positive organisms, as opposed to that of E. coli, which utilizes an independent enzyme II system.

  9. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration

    Directory of Open Access Journals (Sweden)

    Yu T

    2016-02-01

    Full Text Available Ting Yu,1,* Bei Xu,1,* Lili He,2 Shan Xia,3 Yan Chen,1 Jun Zeng,1 Yongmei Liu,1 Shuangzhi Li,1 Xiaoyue Tan,4 Ke Ren,1 Shaohua Yao,1 Xiangrong Song1 1State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 2College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, 3Central Laboratory, Science Education Department, Chengdu Normal University, Chengdu, Sichuan, 4Department of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%, probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on

  10. Gene regulation by growth factors

    International Nuclear Information System (INIS)

    Metz, R.; Gorham, J.; Siegfried, Z.; Leonard, D.; Gizang-Ginsberg, E.; Thompson, M.A.; Lawe, D.; Kouzarides, T.; Vosatka, R.; MacGregor, D.; Jamal, S.; Greenberg, M.E.; Ziff, E.B.

    1988-01-01

    To coordinate the proliferation and differentiation of diverse cell types, cells of higher eukaryotes communicate through the release of growth factors. These peptides interact with specific transmembrane receptors of other cells and thereby generate intracellular messengers. The many changes in cellular physiology and activity that can be induced by growth factors imply that growth factor-induced signals can reach the nucleus and control gene activity. Moreover, current evidence also suggests that unregulated signaling along such pathways can induce aberrant proliferation and the formation of tumors. This paper reviews investigations of growth factor regulation of gene expression conducted by the authors' laboratory

  11. Synergy of feedback mechanisms in gene regulation systems with promoter and repressor transcription factors

    Czech Academy of Sciences Publication Activity Database

    Šrobár, Fedor

    2008-01-01

    Roč. 6, č. 1 (2008), s. 38-44 ISSN 1895-1082 Institutional research plan: CEZ:AV0Z20670512 Keywords : biophysics * feedback * signal flow graphs Subject RIV: BO - Biophysics Impact factor: 0.448, year: 2008

  12. Synthetic sustained gene delivery systems.

    Science.gov (United States)

    Agarwal, Ankit; Mallapragada, Surya K

    2008-01-01

    Gene therapy today is hampered by the need of a safe and efficient gene delivery system that can provide a sustained therapeutic effect without cytotoxicity or unwanted immune responses. Bolus gene delivery in solution results in the loss of delivered factors via lymphatic system and may cause undesired effects by the escape of bioactive molecules to distant sites. Controlled gene delivery systems, acting as localized depot of genes, provide an extended sustained release of genes, giving prolonged maintenance of the therapeutic level of encoded proteins. They also limit the DNA degradation in the nuclease rich extra-cellular environment. While attempts have been made to adapt existing controlled drug delivery technologies, more novel approaches are being investigated for controlled gene delivery. DNA encapsulated in nano/micro spheres of polymers have been administered systemically/orally to be taken up by the targeted tissues and provide sustained release once internalized. Alternatively, DNA entrapped in hydrogels or scaffolds have been injected/implanted in tissues/cavities as platforms for gene delivery. The present review examines these different modalities for sustained delivery of viral and non-viral gene-delivery vectors. Design parameters and release mechanisms of different systems made with synthetic or natural polymers are presented along with their prospective applications and opportunities for continuous development.

  13. Psychological factors and DNA methylation of genes related to immune/inflammatory system markers: the VA Normative Aging Study.

    Science.gov (United States)

    Kim, Daniel; Kubzansky, Laura D; Baccarelli, Andrea; Sparrow, David; Spiro, Avron; Tarantini, Letizia; Cantone, Laura; Vokonas, Pantel; Schwartz, Joel

    2016-01-05

    Although psychological factors have been associated with chronic diseases such as coronary heart disease (CHD), the underlying pathways for these associations have yet to be elucidated. DNA methylation has been posited as a mechanism linking psychological factors to CHD risk. In a cohort of community-dwelling elderly men, we explored the associations between positive and negative psychological factors with DNA methylation in promoter regions of multiple genes involved in immune/inflammatory processes related to atherosclerosis. Prospective cohort study. Greater Boston, Massachusetts area. Samples of 538 to 669 men participating in the Normative Aging Study cohort with psychological measures and DNA methylation measures, collected on 1-4 visits between 1999 and 2006 (mean age=72.7 years at first visit). We examined anxiety, depression, hostility and life satisfaction as predictors of leucocyte gene-specific DNA methylation. We estimated repeated measures linear mixed models, controlling for age, smoking, education, history of heart disease, stroke or diabetes, % lymphocytes, % monocytes and plasma folate. Psychological distress measured by anxiety, depression and hostility was positively associated, and happiness and life satisfaction were inversely associated with average Intercellular Adhesion Molecule-1 (ICAM-1) and coagulation factor III (F3) promoter methylation levels. There was some evidence that hostility was positively associated with toll-like receptor 2 (TLR-2) promoter methylation, and that life satisfaction was inversely associated with TLR-2 and inducible nitric oxide synthase (iNOS) promoter methylation. We observed less consistent and significant associations between psychological factors and average methylation for promoters of the genes for glucocorticoid receptor (NR3C1), interferon-γ (IFN-γ) and interleukin 6 (IL-6). These findings suggest that positive and negative psychological factors affect DNA methylation of selected genes involved in

  14. A novel fibroblast growth factor gene expressed in the developing nervous system is a downstream target of the chimeric homeodomain oncoprotein E2A-Pbx1.

    Science.gov (United States)

    McWhirter, J R; Goulding, M; Weiner, J A; Chun, J; Murre, C

    1997-09-01

    Pbx1 is a homeodomain transcription factor that has the ability to form heterodimers with homeodomain proteins encoded by the homeotic selector (Hox) gene complexes and increase their DNA-binding affinity and specificity. A current hypothesis proposes that interactions with Pbx1 are necessary for Hox proteins to regulate downstream target genes that in turn control growth, differentiation and morphogenesis during development. In pre B cell leukemias containing the t(1;19) chromosome translocation, Pbx1 is converted into a strong transactivator by fusion to the activation domain of the bHLH transcription factor E2A. The E2A-Pbx1 fusion protein should therefore activate transcription of genes normally regulated by Pbx1. We have used the subtractive process of representational difference analysis to identify targets of E2A-Pbx1. We show that E2A-Pbx1 can directly activate transcription of a novel member of the fibroblast growth factor family of intercellular signalling molecules, FGF-15. The FGF-15 gene is expressed in a regionally restricted pattern in the developing nervous system, suggesting that FGF-15 may play an important role in regulating cell division and patterning within specific regions of the embryonic brain, spinal cord and sensory organs.

  15. Iron Starvation Conditions Upregulate Ehrlichia ruminantium Type IV Secretion System, tr1 Transcription Factor and map1 Genes Family through the Master Regulatory Protein ErxR

    Directory of Open Access Journals (Sweden)

    Amal Moumène

    2018-01-01

    Full Text Available Ehrlichia ruminantium is an obligatory intracellular bacterium that causes heartwater, a fatal disease in ruminants. Due to its intracellular nature, E. ruminantium requires a set of specific virulence factors, such as the type IV secretion system (T4SS, and outer membrane proteins (Map proteins in order to avoid and subvert the host's immune response. Several studies have been conducted to understand the regulation of the T4SS or outer membrane proteins, in Ehrlichia, but no integrated approach has been used to understand the regulation of Ehrlichia pathogenicity determinants in response to environmental cues. Iron is known to be a key nutrient for bacterial growth both in the environment and within hosts. In this study, we experimentally demonstrated the regulation of virB, map1, and tr1 genes by the newly identified master regulator ErxR (for Ehrlichia ruminantium expression regulator. We also analyzed the effect of iron depletion on the expression of erxR gene, tr1 transcription factor, T4SS and map1 genes clusters in E. ruminantium. We show that exposure of E. ruminantium to iron starvation induces erxR and subsequently tr1, virB, and map1 genes. Our results reveal tight co-regulation of T4SS and map1 genes via the ErxR regulatory protein at the transcriptional level, and, for the first time link map genes to the virulence function sensu stricto, thereby advancing our understanding of Ehrlichia's infection process. These results suggest that Ehrlichia is able to sense changes in iron concentrations in the environment and to regulate the expression of virulence factors accordingly.

  16. The combination of Ile225Thr polymorphism of Fcg receptor IIB gene and hypersensitiveness as risk factor for human systemic lupus erythematosus in chinese populations

    Directory of Open Access Journals (Sweden)

    Pan Faming

    2007-01-01

    Full Text Available Background: The aim of this study was to investigate the role of FcgRIIB gene in susceptibility to systemic lupus erythematosus (SLE using family-based association study and to examine possible interaction between the Ile225Thr (rs1050501, exon 5 polymorphism of Fcg receptor IIB gene and hypersensitivity. Objectives: A total of 119 patients with SLE from 95 nuclear families, aged 14 to 78 years, according to the American College of Rheumatology (ACR 1997 criteria were recruited. In addition, 316 family members of these patients were also genotyped. Seventy patients and their 70 normal siblings from 95 nuclear families were selected by the case-combined-control design. Materials and Methods: A family-based association study was used to explore the relationship between gene polymorphism and SLE. We studied a single-nucleotide polymorphisms (SNPs encoding non-synonymous substitution in the FcgRIIB gene with respect to genetic susceptibility to SLE, the FcgRIIB gene were genotyped by restriction fragment length polymorphism (RFLP method. The interaction of gene-environment was assessed by conditional logistic regression model. Results: Among 119 SLE patients, The frequencies of FcgRIIB Ile225Ile, Ile225Thr and Thr 225 Thr genotypes were 8.1%, 61.3% and 30.6%. Univariate (single-marker family-based association tests (FBATs demonstrated that variant allele at SNP rs1050501, in exon 5 of FcgRIIB gene was significantly associated with genetic susceptibility to SLE in additive model (exon 5, Z=3.707, P =0.00020. Transmission/disequilibrium test (TDT and sibship disequilibuium test (SDT analysis showed an excess of the allele of 225Thr ( Ile225Thr loci from heterozygous parents to affected offspring (c 2=7.14, P =0.0105; Moreover, conditional logistic regression results showed that there was statistically significant multiplicative interaction of FcgRa!B gene and the Hypersensitiveness [c 2=5.013, P =0.024; OR=2.444, CI (1.126-5.309]. Conclusions: Our

  17. KCNA5 gene is not confirmed as a systemic sclerosis-related pulmonary arterial hypertension genetic susceptibility factor

    Science.gov (United States)

    2012-01-01

    Introduction Potassium voltage-gated channel shaker-related subfamily member 5 (KCNA5) is implicated in vascular tone regulation, and its inhibition during hypoxia produces pulmonary vasoconstriction. Recently, a protective association of the KCNA5 locus with systemic sclerosis (SSc) patients with pulmonary arterial hypertension (PAH) was reported. Hence, the aim of this study was to replicate these findings in an independent multicenter Caucasian SSc cohort. Methods The 2,343 SSc cases (179 PAH positive, confirmed by right-heart catheterization) and 2,690 matched healthy controls from five European countries were included in this study. Rs10744676 single-nucleotide polymorphism (SNP) was genotyped by using a TaqMan SNP genotyping assay. Results Individual population analyses of the selected KCNA5 genetic variant did not show significant association with SSc or any of the defined subsets (for example, limited cutaneous SSc, diffuse cutaneous SSc, anti-centromere autoantibody positive and anti-topoisomerase autoantibody positive). Furthermore, pooled analyses revealed no significant evidence of association with the disease or any of the subsets, not even the PAH-positive group. The comparison of PAH-positive patients with PAH-negative patients showed no significant differences among patients. Conclusions Our data do not support an important role of KCNA5 as an SSc-susceptibility factor or as a PAH-development genetic marker for SSc patients. PMID:23270786

  18. Epigenetic regulation of nociceptin/orphanin FQ and corticotropin-releasing factor system genes in frustration stress-induced binge-like palatable food consumption.

    Science.gov (United States)

    Pucci, Mariangela; Micioni Di Bonaventura, Maria Vittoria; Giusepponi, Maria Elena; Romano, Adele; Filaferro, Monica; Maccarrone, Mauro; Ciccocioppo, Roberto; Cifani, Carlo; D'Addario, Claudio

    2016-11-01

    Evidence suggests that binge eating may be caused by a unique interaction between dieting and stress. We developed a binge-eating model in which female rats with a history of intermittent food restriction show binge-like palatable food consumption after a 15-minute exposure to the sight of the palatable food (frustration stress). The aim of the present study was to investigate the regulation of the stress neurohormone corticotropin-releasing factor (CRF) system and of the nociceptin/orphanin FQ (N/OFQ) system genes in selective rat brain regions, using our animal model. Food restriction by itself seems to be responsible in the hypothalamus for the downregulation on messenger RNA levels of CRF-1 receptor, N/OFQ and its receptor (NOP). For the latter, this alteration might be due to selective histone modification changes. Instead, CRF gene appears to be upregulated in the hypothalamus as well as in the ventral tegmental area only when rats are food restricted and exposed to frustration stress, and, of relevance, these changes appear to be due to a reduction in DNA methylation at gene promoters. Moreover, also CRF-1 receptor gene resulted to be differentially regulated in these two brain regions. Epigenetic changes may be viewed as adaptive mechanisms to environmental perturbations concurring to facilitate food consumption in adverse conditions, that is, in this study, under food restriction and stressful conditions. Our data on N/OFQ and CRF signaling provide insight on the use of this binge-eating model for the study of epigenetic modifications in controlled genetic and environmental backgrounds. © 2015 Society for the Study of Addiction.

  19. [Detection of epidermal growth factor receptor gene mutations in different types of non-small cell lung cancer by droplet digital PCR and amplification refractory mutation system].

    Science.gov (United States)

    Li, R; Ye, S B; He, Y; Wang, X; Wu, N; Xia, Q Y; Shen, Q; Shi, S S

    2017-11-08

    Objective: To compare amplification refractory mutation system(ARMS) and droplet digital PCR (ddPCR) in the detection of epidermal growth factor receptor (EGFR) gene mutations in patients with non-small cell lung cancer (NSCLC), and to investigate the clinical value of ddPCR. Methods: A total of 79 specimens of NSCLC, including 22 cases of cell block, 18 cases of surgical specimens, 12 cases of biopsy specimens and 27 cases of plasma samples, were analyzed for the mutation status of EGFR gene by ARMS and droplet digital PCR method. Results: In 18 cases of surgical specimens and 12 cases of biopsy specimens, the detection results by the two methods were identical with positive rates of 9/18 and 5/12, respectively. In 22 cases of effusion cell blocks, ARMS detected 19-del and L858R of EGFR gene in two cases, in which droplet digital PCR detected 19-del+ T790M mutations in one case and L858R+ T790M mutation in another. L858R mutation was detected by droplet digital PCR in one case but ARMS assay was negative. The remaining 19 cases were consistent by the two methods. In blood samples, the positive rate was 33.3%(9/27) by ARMS and 37.0%(10/27) by droplet digital PCR. Two cases showed L858R and 19-del+ T790M mutation by droplet digital PCR but ARMS assay detected only 19-del. The remaining 25 cases were consistent by the two methods. Conclusion: Droplet digital PCR method is more sensitive and accurate than ARMS for the detection of EGFR mutations in pleural fluid and blood samples, can be used in clinical test.

  20. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  1. Contributions of dopamine-related genes and environmental factors to highly sensitive personality: a multi-step neuronal system-level approach.

    Directory of Open Access Journals (Sweden)

    Chunhui Chen

    Full Text Available Traditional behavioral genetic studies (e.g., twin, adoption studies have shown that human personality has moderate to high heritability, but recent molecular behavioral genetic studies have failed to identify quantitative trait loci (QTL with consistent effects. The current study adopted a multi-step approach (ANOVA followed by multiple regression and permutation to assess the cumulative effects of multiple QTLs. Using a system-level (dopamine system genetic approach, we investigated a personality trait deeply rooted in the nervous system (the Highly Sensitive Personality, HSP. 480 healthy Chinese college students were given the HSP scale and genotyped for 98 representative polymorphisms in all major dopamine neurotransmitter genes. In addition, two environment factors (stressful life events and parental warmth that have been implicated for their contributions to personality development were included to investigate their relative contributions as compared to genetic factors. In Step 1, using ANOVA, we identified 10 polymorphisms that made statistically significant contributions to HSP. In Step 2, these polymorphism's main effects and interactions were assessed using multiple regression. This model accounted for 15% of the variance of HSP (p<0.001. Recent stressful life events accounted for an additional 2% of the variance. Finally, permutation analyses ascertained the probability of obtaining these findings by chance to be very low, p ranging from 0.001 to 0.006. Dividing these loci by the subsystems of dopamine synthesis, degradation/transport, receptor and modulation, we found that the modulation and receptor subsystems made the most significant contribution to HSP. The results of this study demonstrate the utility of a multi-step neuronal system-level approach in assessing genetic contributions to individual differences in human behavior. It can potentially bridge the gap between the high heritability estimates based on traditional

  2. Contributions of dopamine-related genes and environmental factors to highly sensitive personality: a multi-step neuronal system-level approach.

    Science.gov (United States)

    Chen, Chunhui; Chen, Chuansheng; Moyzis, Robert; Stern, Hal; He, Qinghua; Li, He; Li, Jin; Zhu, Bi; Dong, Qi

    2011-01-01

    Traditional behavioral genetic studies (e.g., twin, adoption studies) have shown that human personality has moderate to high heritability, but recent molecular behavioral genetic studies have failed to identify quantitative trait loci (QTL) with consistent effects. The current study adopted a multi-step approach (ANOVA followed by multiple regression and permutation) to assess the cumulative effects of multiple QTLs. Using a system-level (dopamine system) genetic approach, we investigated a personality trait deeply rooted in the nervous system (the Highly Sensitive Personality, HSP). 480 healthy Chinese college students were given the HSP scale and genotyped for 98 representative polymorphisms in all major dopamine neurotransmitter genes. In addition, two environment factors (stressful life events and parental warmth) that have been implicated for their contributions to personality development were included to investigate their relative contributions as compared to genetic factors. In Step 1, using ANOVA, we identified 10 polymorphisms that made statistically significant contributions to HSP. In Step 2, these polymorphism's main effects and interactions were assessed using multiple regression. This model accounted for 15% of the variance of HSP (p<0.001). Recent stressful life events accounted for an additional 2% of the variance. Finally, permutation analyses ascertained the probability of obtaining these findings by chance to be very low, p ranging from 0.001 to 0.006. Dividing these loci by the subsystems of dopamine synthesis, degradation/transport, receptor and modulation, we found that the modulation and receptor subsystems made the most significant contribution to HSP. The results of this study demonstrate the utility of a multi-step neuronal system-level approach in assessing genetic contributions to individual differences in human behavior. It can potentially bridge the gap between the high heritability estimates based on traditional behavioral genetics

  3. Human factors information system

    International Nuclear Information System (INIS)

    Goodman, P.C.; DiPalo, C.A.

    1991-01-01

    Nuclear power plant safety is dependent upon human performance related to plant operations. To provide improvements in human performance, data collection and assessment play key roles. This paper reports on the Human factors Information System (HFIS) which is designed to meet the needs of the human factors specialists of the United States Nuclear Regulatory Commission. These specialists identify personnel errors and provide guidance designed to prevent such errors. HFIS is a simple and modular system designed for use on a personal computer. It is designed to contain four separate modules that provide information indicative of program or function effectiveness as well as safety-related human performance based on programmatic and performance data. These modules include the Human Factors Status module; the Regulatory Programs module; the Licensee Event Report module; and the Operator Requalification Performance module. Information form these modules can either be used separately or can be combined due to the integrated nature of the system. HFIS has the capability, therefore, to provide insights into those areas of human factors that can reduce the probability of events caused by personnel error at nuclear power plants and promote the health and safety of the public. This information system concept can be applied to other industries as well as the nuclear industry

  4. DMPD: The interferon-alpha/beta system in antiviral responses: a multimodal machineryof gene regulation by the IRF family of transcription factors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11790540 The interferon-alpha/beta system in antiviral responses: a multimodal mach...l. 2002 Feb;14(1):111-6. (.png) (.svg) (.html) (.csml) Show The interferon-alpha/beta system in antiviral responses: a multimoda...ion factors. PubmedID 11790540 Title The interferon-alpha/beta system in antiviral responses: a multimodal m

  5. Nonviral Gene Delivery of Growth and Differentiation Factor 5 to Human Mesenchymal Stem Cells Injected into a 3D Bovine Intervertebral Disc Organ Culture System

    Directory of Open Access Journals (Sweden)

    Christian Bucher

    2013-01-01

    Full Text Available Intervertebral disc (IVD cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5 by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate and GDF5 gene transfer was achieved by in vitro electroporation. Transfected cells were cultured as monolayers and as 3D cultures in 1.2% alginate bead culture. MSC expressed GDF5 efficiently for up to 21 days. The combination of GDF5 gene transfer and 3D culture in alginate showed an upregulation of aggrecan and SOX9, two markers for chondrogenesis, and KRT19 as a marker for discogenesis compared to untransfected cells. The cells encapsulated in alginate produced more proteoglycans expressed in GAG/DNA ratio. Furthermore, GDF5 transfected MCS injected into an IVD papain degeneration organ culture model showed a partial recovery of the GAG/DNA ratio after 7 days. In this study we demonstrate the potential of GDF5 transfected MSC as a promising approach for clinical translation for disc regeneration.

  6. Nonviral Delivery Systems For Cancer Gene Therapy: Strategies And Challenges.

    Science.gov (United States)

    Shim, Gayong; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Kwon, Taekhyun; Oh, Yu-Kyoung

    2018-01-19

    Gene therapy has been receiving widespread attention due to its unique advantage in regulating the expression of specific target genes. In the field of cancer gene therapy, modulation of gene expression has been shown to decrease oncogenic factors in cancer cells or increase immune responses against cancer. Due to the macromolecular size and highly negative physicochemical features of plasmid DNA, efficient delivery systems are an essential ingredient for successful gene therapy. To date, a variety of nanostructures and materials have been studied as nonviral gene delivery systems. In this review, we will cover nonviral delivery strategies for cancer gene therapy, with a focus on target cancer genes and delivery materials. Moreover, we will address current challenges and perspectives for nonviral delivery-based cancer gene therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor.

    Science.gov (United States)

    Zhang, Danfeng; Wu, Suowei; An, Xueli; Xie, Ke; Dong, Zhenying; Zhou, Yan; Xu, Liwen; Fang, Wen; Liu, Shensi; Liu, Shuangshuang; Zhu, Taotao; Li, Jinping; Rao, Liqun; Zhao, Jiuran; Wan, Xiangyuan

    2018-02-01

    Although hundreds of genetic male sterility (GMS) mutants have been identified in maize, few are commercially used due to a lack of effective methods to produce large quantities of pure male-sterile seeds. Here, we develop a multicontrol sterility (MCS) system based on the maize male sterility 7 (ms7) mutant and its wild-type Zea mays Male sterility 7 (ZmMs7) gene via a transgenic strategy, leading to the utilization of GMS in hybrid seed production. ZmMs7 is isolated by a map-based cloning approach and encodes a PHD-finger transcription factor orthologous to rice PTC1 and Arabidopsis MS1. The MCS transgenic maintainer lines are developed based on the ms7-6007 mutant transformed with MCS constructs containing the (i) ZmMs7 gene to restore fertility, (ii) α-amylase gene ZmAA and/or (iii) DNA adenine methylase gene Dam to devitalize transgenic pollen, (iv) red fluorescence protein gene DsRed2 or mCherry to mark transgenic seeds and (v) herbicide-resistant gene Bar for transgenic seed selection. Self-pollination of the MCS transgenic maintainer line produces transgenic red fluorescent seeds and nontransgenic normal colour seeds at a 1:1 ratio. Among them, all the fluorescent seeds are male fertile, but the seeds with a normal colour are male sterile. Cross-pollination of the transgenic plants to male-sterile plants propagates male-sterile seeds with high purity. Moreover, the transgene transmission rate through pollen of transgenic plants harbouring two pollen-disrupted genes is lower than that containing one pollen-disrupted gene. The MCS system has great potential to enhance the efficiency of maize male-sterile line propagation and commercial hybrid seed production. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Cooperative binding of transcription factors promotes bimodal gene expression response.

    Directory of Open Access Journals (Sweden)

    Pablo S Gutierrez

    Full Text Available In the present work we extend and analyze the scope of our recently proposed stochastic model for transcriptional regulation, which considers an arbitrarily complex cis-regulatory system using only elementary reactions. Previously, we determined the role of cooperativity on the intrinsic fluctuations of gene expression for activating transcriptional switches, by means of master equation formalism and computer simulation. This model allowed us to distinguish between two cooperative binding mechanisms and, even though the mean expression levels were not affected differently by the acting mechanism, we showed that the associated fluctuations were different. In the present generalized model we include other regulatory functions in addition to those associated to an activator switch. Namely, we introduce repressive regulatory functions and two theoretical mechanisms that account for the biphasic response that some cis-regulatory systems show to the transcription factor concentration. We have also extended our previous master equation formalism in order to include protein production by stochastic translation of mRNA. Furthermore, we examine the graded/binary scenarios in the context of the interaction energy between transcription factors. In this sense, this is the first report to show that the cooperative binding of transcription factors to DNA promotes the "all-or-none" phenomenon observed in eukaryotic systems. In addition, we confirm that gene expression fluctuation levels associated with one of two cooperative binding mechanism never exceed the fluctuation levels of the other.

  9. AAV5-Factor VIII Gene Transfer in Severe Hemophilia A.

    Science.gov (United States)

    Rangarajan, Savita; Walsh, Liron; Lester, Will; Perry, David; Madan, Bella; Laffan, Michael; Yu, Hua; Vettermann, Christian; Pierce, Glenn F; Wong, Wing Y; Pasi, K John

    2017-12-28

    Patients with hemophilia A rely on exogenous factor VIII to prevent bleeding in joints, soft tissue, and the central nervous system. Although successful gene transfer has been reported in patients with hemophilia B, the large size of the factor VIII coding region has precluded improved outcomes with gene therapy in patients with hemophilia A. We infused a single intravenous dose of a codon-optimized adeno-associated virus serotype 5 (AAV5) vector encoding a B-domain-deleted human factor VIII (AAV5-hFVIII-SQ) in nine men with severe hemophilia A. Participants were enrolled sequentially into one of three dose cohorts (low dose [one participant], intermediate dose [one participant], and high dose [seven participants]) and were followed through 52 weeks. Factor VIII activity levels remained at 3 IU or less per deciliter in the recipients of the low or intermediate dose. In the high-dose cohort, the factor VIII activity level was more than 5 IU per deciliter between weeks 2 and 9 after gene transfer in all seven participants, and the level in six participants increased to a normal value (>50 IU per deciliter) that was maintained at 1 year after receipt of the dose. In the high-dose cohort, the median annualized bleeding rate among participants who had previously received prophylactic therapy decreased from 16 events before the study to 1 event after gene transfer, and factor VIII use for participant-reported bleeding ceased in all the participants in this cohort by week 22. The primary adverse event was an elevation in the serum alanine aminotransferase level to 1.5 times the upper limit of the normal range or less. Progression of preexisting chronic arthropathy in one participant was the only serious adverse event. No neutralizing antibodies to factor VIII were detected. The infusion of AAV5-hFVIII-SQ was associated with the sustained normalization of factor VIII activity level over a period of 1 year in six of seven participants who received a high dose, with

  10. Construction of an attenuated Salmonella delivery system harboring genes encoding various virulence factors of avian pathogenic Escherichia coli and its potential as a candidate vaccine for chicken colibacillosis.

    Science.gov (United States)

    Chaudhari, Atul A; Matsuda, Kiku; Lee, John Hwa

    2013-03-01

    An attenuated Salmonella (deltalon, deltacpxR, and deltaasdA16) delivery system containing the genes encoding P-fimbriae (papa and papG), aerobactin receptor (iutA), and CS31A surface antigen (clpG) of avian pathogenic Escherichia coli (APEC) was constructed, and its potential as a vaccine candidate against APEC infection in chickens was evaluated. The birds were divided into three groups designated group A (nonvaccinated control), group B (given a single immunization), and group C (administered prime and boost immunizations). Prime and booster vaccinations with the constructions were administered to 1-day-old and 14-day-old birds, respectively. Immune responses were measured postimmunization, and the birds were challenged via an intra-air sac route with a virulent APEC strain at the second, third, and fourth weeks of age. Group B birds were partially protected against the challenge and showed increased levels of plasma immunoglobulin (Ig)G, mucosal IgA antibodies, and lymphocyte proliferation. Group C birds showed greater protection against the challenge, with significantly stronger immune responses compared with the birds in the other groups. Overall, our data suggest that the Salmonella delivery system with recombinant constructs is capable of inducing robust immune responses and induces effective protection against colibacillosis caused by APEC.

  11. [A study on relationship between single nucleotide polymorphisms of vascular endothelial growth factor gene and susceptibility to systemic lupus erythematosus in China north Han population].

    Science.gov (United States)

    Lv, Hao-Zhe; Lin, Tao; Zhu, Xiang-Yang; Zhang, Jin-Tao; Lu, Jing

    2010-12-01

    To investigate relationship between single nucleotide polymorphism(SNP) of VEGF gene and susceptibility to systemic lupus erythematosus(SLE) in China north population. Six VEGF SNPs (rs2010963, rs3024994, rs3025000, rs3025010, rs3025035 and rs833070) of forty-four patients with SLE and one hundred healthy controls were examined by Sequenom chip-based MALDI-TOF mass spectomery platform. Different genotypes were analyzed statistically by SPSS 11.5. There was no significant difference between SLE patients and controls in frequency of rs2010963, rs3024994, rs3025000, rs3025010, rs3025035 genotype and allele (P>0.05). The frequency of rs833070 A allele was significantly higher in SLE than that in controls. (31.2% vs 20%, x(2);=4.547, P=0.033, OR=1.818 , 95% CI 1.045-3.162). In the patient with SLE, rs833070 G decreased the susceptibility of arthritis(56% vs 80.4%, x(2);=5.613, P=0.018, OR=0.336, 95% CI 0.134-0.843), while the genotype of rs833070 GG significantly decreased the susceptibility to arthritis(GGvsAG+AA: 28% vs 65.2%, x(2);=6.684, P=0.010, OR=0.207, 95% CI 0.061-0.705). VEGF rs833070 A may represent an inreased susceptibility to SLE in China north Han population. VEGF rs833070 G and rs833070 GG may play protective roles in the case of lupus arthritis.

  12. Possible incorrect genotyping of heterozygous factor V Leiden and Prothrombin 20210 gene mutations by the GeneXpert assay.

    Science.gov (United States)

    Marturano, Alessandro; Bury, Loredana; Gresele, Paolo

    2014-08-05

    The GeneXpert analyzer is a hands-off system for the detection of Factor V Leiden and of Prothrombin G20210A (GPRO) gene thrombophilic mutations. Although the system is efficient and easy to use, we report the rare possibility of incorrect genotyping. 1648 samples were evaluated using the GeneXpert HemosIL Factor II and Factor V assay: 1319 were freshly analyzed while 329 were frozen, thawed and diluted with saline prior to analysis to avoid clogging of the instrument syringe. Two samples, both heterozygous, one for the factor V Leiden and the other for the GPRO gene, were incorrectly genotyped as homozygous for the relative mutation. Inspection of the Ct values and amplification curves and genotyping with PCR revealed the correct genotype as heterozygous for factor V Leiden and GPRO mutation. The GeneXpert HemosIL Factor II and Factor V assay is an automated, fast genotyping assay requiring almost no sample manipulation, advantageous characteristics if compared with other PCR-based methods. However, an inattentive use of it can generate incorrect diagnosis. A careful handling of the sample, in particular correct dilution of frozen/thawed samples before analysis, and the inspection of the amplification curves and Ct values are required to avoid artifacts. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. depolymerizing factor gene in Hevea brasiliensis

    African Journals Online (AJOL)

    Yomi

    2010-11-08

    Nov 8, 2010 ... In Arabidopsis, the ancient subclasses of ADF genes exhibited novel and differential expression profiles. (Ruzicka et al., 2007). These data point to the differential regulation of plant ADFs, and also provide a framework for a model where the differentially expressed actins and. ABPs co-evolved in specific ...

  14. Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis

    Czech Academy of Sciences Publication Activity Database

    Abdelmagid, N.; Bereczky-Veress, B.; Atanur, S.; Musilová, Alena; Zídek, Václav; Saba, L.; Warnecke, A.; Khademi, M.; Studahl, M.; Aurelius, E.; Hjalmarsson, A.; Garcia-Dias, A.; Denis, C. V.; Bergström, T.; Sköldenberg, B.; Kockum, I.; Aitman, T.; Hübner, N.; Olsson, T.; Pravenec, Michal; Diez, M.

    2016-01-01

    Roč. 11, č. 5 (2016), e0155832 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) 7E10067; GA MŠk(CZ) LL1204 Institutional support: RVO:67985823 Keywords : Von Willebrand Factor gene * Herpes simplex encephalitis * rat * humans Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.806, year: 2016

  15. Association assessment of platelet derived growth factor B gene ...

    African Journals Online (AJOL)

    Shayesteh Rezayani

    2017-04-21

    Apr 21, 2017 ... Background: Coronary artery disease (CAD) is the most frequent cause of morbidity and mortality in the world and it is known as a multifactorial disorder which is influenced by both genetic and environmental factors. Based on different assays, the platelet derived growth factor B (PDGF-B) gene is shown to ...

  16. Genome Binding and Gene Regulation by Stem Cell Transcription Factors

    NARCIS (Netherlands)

    J.H. Brandsma (Johan)

    2016-01-01

    markdownabstractNearly all cells of an individual organism contain the same genome. However, each cell type transcribes a different set of genes due to the presence of different sets of cell type-specific transcription factors. Such transcription factors bind to regulatory regions such as promoters

  17. Association assessment of platelet derived growth factor B gene ...

    African Journals Online (AJOL)

    Background: Coronary artery disease (CAD) is the most frequent cause of morbidity and mortality in the world and it is known as a multifactorial disorder which is influenced by both genetic and environmental factors. Based on different assays, the platelet derived growth factor B (PDGF-B) gene is shown to be amongst the ...

  18. Synergistic effect of electrical and chemical factors on endocytosis in micro-discharge plasma gene transfection

    Science.gov (United States)

    Jinno, M.; Ikeda, Y.; Motomura, H.; Isozaki, Y.; Kido, Y.; Satoh, S.

    2017-06-01

    We have developed a new micro-discharge plasma (MDP)-based gene transfection method, which transfers genes into cells with high efficiency and low cytotoxicity; however, the mechanism underlying the method is still unknown. Studies revealed that the N-acetylcysteine-mediated inhibition of reactive oxygen species (ROS) activity completely abolished gene transfer. In this study, we used laser-produced plasma to demonstrate that gene transfer does not occur in the absence of electrical factors. Our results show that both electrical and chemical factors are necessary for gene transfer inside cells by microplasma irradiation. This indicates that plasma-mediated gene transfection utilizes the synergy between electrical and chemical factors. The electric field threshold required for transfection was approximately 1 kV m-1 in our MDP system. This indicates that MDP irradiation supplies sufficient concentrations of ROS, and the stimulation intensity of the electric field determines the transfection efficiency in our system. Gene transfer by plasma irradiation depends mainly on endocytosis, which accounts for at least 80% of the transfer, and clathrin-mediated endocytosis is a dominant endocytosis. In plasma-mediated gene transfection, alterations in electrical and chemical factors can independently regulate plasmid DNA adhesion and triggering of endocytosis, respectively. This implies that plasma characteristics can be adjusted according to target cell requirements, and the transfection process can be optimized with minimum damage to cells and maximum efficiency. This may explain how MDP simultaneously achieves high transfection efficiency with minimal cell damage.

  19. Tetracycline-inducible gene expression system in Leishmania mexicana

    Czech Academy of Sciences Publication Activity Database

    Kraeva, N.; Ishemgulova, A.; Lukeš, Julius; Yurchenko, Vyacheslav

    2014-01-01

    Roč. 198, č. 1 (2014), s. 11-13 ISSN 0166-6851 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Leishmania mexicana * Gene expression * Tet-inducible system Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.787, year: 2014

  20. Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Rieneck, Klaus; Workman, Christopher

    2004-01-01

    To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...... patients, and seven healthy controls. Gene expression of about 10,000 genes were examined using oligonucleotide-based DNA chip microarrays. The analyses showed no significant differences in PBMC expression patterns from RF-positive and RF-negative patients. However, comparisons of gene expression patterns...

  1. Cyclin D1 gene polymorphism as a risk factor for squamous cell carcinoma of the upper aerodigestive system in non-alcoholics

    DEFF Research Database (Denmark)

    Nishimoto, Ines Nobuko; Pinheiro, Nidia Alice; Rogatto, Silvia Regina

    2004-01-01

    cancer. To investigate the relationship between CCND1 polymorphism on susceptibility for UADT cancers, 147 cancer and 135 non-cancer subjects were included in this study. CCND1 genotype at codon 242(G870A) in exon 4 was undertaken using denaturing high performance liquid chromatography (DHPLC) and DNA...... sequencing. Significant odds ratio (OR) of the AA+GA genotypes [OR=7.5 (95% CI: 1.4-39.7)] was observed in non-drinkers but for non-smokers a non-significant [OR=5.4 (95% CI: 0.9-31.4)] was found in the adjusted model. These results suggest that allele A may be a risk factor for UADT cancer, especially...

  2. Gene expression of transcription factor NFATc1 in periodontal diseases

    OpenAIRE

    Belibasakis, G N; Emingil, G; Saygan, B; Turkoglu, O; Atilla, G; Bostanci, N

    2011-01-01

    Belibasakis GN, Emingil G, Saygan B, Turkoglu O, Atilla G, Bostanci N. Gene expression of transcription factor NFATc1 in periodontal diseases. APMIS 2011; 119: 167-172. Periodontitis is a disease of infectious aetiology that causes inflammatory destruction of the tooth-supporting tissues. Activated T cells are central to the pathogenesis of the disease, by producing receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) that stimulates bone resorption. Antigenic activation of T cells ...

  3. Transcription factor trapping by RNA in gene regulatory elements.

    Science.gov (United States)

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.

  4. KIR gene content in amerindians indicates influence of demographic factors.

    Directory of Open Access Journals (Sweden)

    Danillo Gardenal Augusto

    Full Text Available Although the KIR gene content polymorphism has been studied worldwide, only a few isolated or Amerindian populations have been analyzed. This extremely diverse gene family codifies receptors that are expressed mainly in NK cells and bind HLA class I molecules. KIR-HLA combinations have been associated to several diseases and population studies are important to comprehend their evolution and their role in immunity. Here we analyzed, by PCR-SSP (specific sequencing priming, 327 individuals from four isolated groups of two of the most important Brazilian Amerindian populations: Kaingang and Guarani. The pattern of KIR diversity among these and other ten Amerindian populations disclosed a wide range of variation for both KIR haplotypes and gene frequencies, indicating that demographic factors, such as bottleneck and founder effects, were the most important evolutionary factors in shaping the KIR polymorphism in these populations.

  5. Association between Insulin Like Growth Factor-1 (IGF-1) gene ...

    African Journals Online (AJOL)

    The insulin-like growth factor-1 (IGF1) is a key regulator of muscle development and metabolism in birds and other vertebrate. Our objective was to determine the association between IGF1 gene polymorphism and carcass traits in FUNAAB Alpha chicken. Genomic DNA was extracted from the blood of 50 normal feathered ...

  6. Genomewide analysis of TCP transcription factor gene family in ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 93; Issue 3. Genomewide ... Teosinte branched1/cycloidea/proliferating cell factor1 (TCP) proteins are a large family of transcriptional regulators in angiosperms. They are ... To the best of our knowledge, this is the first study of a genomewide analysis of apple TCP gene family.

  7. Tumour necrosis factor-alpha gene polymorphisms in Iranian ...

    African Journals Online (AJOL)

    ... progressive inflammatory destructive process of the bile ducts. This study evaluated the relationship between single-nucleotide polymorphisms in the promoter region of tumour necrosis factor-alpha (TNF-α) gene and bilaiary atresia. Materials and Methods: Genomic deoxyribonucleic acid from 16 patients with established ...

  8. Growth differentiation factor 9 gene variants in Sudanese desert ...

    African Journals Online (AJOL)

    Certain variants in the growth differentiation factor 9 (GDF9) gene have major effects on the ovulation rate in sheep. The aim of this study was to analyse GDF9 variability in the Sudanese desert sheep ecotypes Ashgar, Dubasi and Watish, and to test identified variants for association with litter size. For this purpose, ewes of ...

  9. fibroblast growth factor, MTDH/Astrocyte elevated gene-1

    African Journals Online (AJOL)

    2012-12-05

    Dec 5, 2012 ... Background: The etiopathogenesis of prostate cancer (PC) is still not clear, but hormonal, genetic, and environmental factors are thought to play a role in the tumor pathogenesis. Astrocyte elevated gene-1(AEG-1) as a novel transmembrane protein is predominantly located in the perinuclear region and ...

  10. Tumour necrosis factor alpha and interleukin 10 gene ...

    Indian Academy of Sciences (India)

    Tumour necrosis factor alpha and interleukin 10 gene polymorphisms and the risk of ischemic stroke in south Indian population. Shehnaz Sultana Venkata K. Kolla Yasovanthi Jeedigunta Pranay K. Penagaluru Sindhu Joshi P. Usha Rani P. P. Reddy. Research Note Volume 90 Issue 2 August 2011 pp 361-364 ...

  11. Epigenetic regulation of inducible gene expression in the immune system.

    Science.gov (United States)

    Lim, Pek Siew; Li, Jasmine; Holloway, Adele F; Rao, Sudha

    2013-07-01

    T cells are exquisitely poised to respond rapidly to pathogens and have proved an instructive model for exploring the regulation of inducible genes. Individual genes respond to antigenic stimulation in different ways, and it has become clear that the interplay between transcription factors and the chromatin platform of individual genes governs these responses. Our understanding of the complexity of the chromatin platform and the epigenetic mechanisms that contribute to transcriptional control has expanded dramatically in recent years. These mechanisms include the presence/absence of histone modification marks, which form an epigenetic signature to mark active or inactive genes. These signatures are dynamically added or removed by epigenetic enzymes, comprising an array of histone-modifying enzymes, including the more recently recognized chromatin-associated signalling kinases. In addition, chromatin-remodelling complexes physically alter the chromatin structure to regulate chromatin accessibility to transcriptional regulatory factors. The advent of genome-wide technologies has enabled characterization of the chromatin landscape of T cells in terms of histone occupancy, histone modification patterns and transcription factor association with specific genomic regulatory regions, generating a picture of the T-cell epigenome. Here, we discuss the multi-layered regulation of inducible gene expression in the immune system, focusing on the interplay between transcription factors, and the T-cell epigenome, including the role played by chromatin remodellers and epigenetic enzymes. We will also use IL2, a key inducible cytokine gene in T cells, as an example of how the different layers of epigenetic mechanisms regulate immune responsive genes during T-cell activation. © 2013 John Wiley & Sons Ltd.

  12. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    Directory of Open Access Journals (Sweden)

    Sirjana Devi Shrestha

    Full Text Available The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076 with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains.

  13. Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: A three factor design

    DEFF Research Database (Denmark)

    Fazio, Alessandro; Jewett, Michael Christopher; Daran-Lapujade, Pascale

    2008-01-01

    transcription factor target sets, transcription factors that coordinate balanced growth were also identified. Our analysis shows that FhII, Rap1, and Sfp1, regulating protein biosynthesis, have significantly enriched target sets for genes up-regulated with increasing growth rate. Cell cycle regulators...

  14. Advances in study of molecular imaging reporte gene systems

    International Nuclear Information System (INIS)

    Wu Tao; An Rui

    2010-01-01

    The use of molecular imaging reporter gene systems has allowed gene therapy to move from the laboratory to the clinical application, which provides methodology to monitor the expression of therapeutic gene noninvasively and achieve quantitative outcome in vivo. Recently, the radionuclide reporter gene still is the focus many studies, but MRI and optical reporter gene have gradually played a important part in reporter gene systems. On the basis of combination of multi-subject, for example applied chemistry and molecular biology, more and more new modified reporter genes and molecular probes have spread out. This paper mainly introduces the advantages and disadvantages of reporter gene system and development trends. (authors)

  15. Systems biology of lupus: mapping the impact of genomic and environmental factors on gene expression signatures, cellular signaling, metabolic pathways, hormonal and cytokine imbalance, and selecting targets for treatment.

    Science.gov (United States)

    Perl, Andras

    2010-02-01

    Systemic lupus erythematosus (SLE) is characterized by the dysfunction of T cells, B cells, and dendritic cells, the release of pro-inflammatory nuclear materials from necrotic cells, and the formation of antinuclear antibodies (ANA) and immune complexes of ANA with DNA, RNA, and nuclear proteins. Activation of the mammalian target of rapamycin (mTOR) has recently emerged as a key factor in abnormal activation of T and B cells in SLE. In T cells, increased production of nitric oxide and mitochondrial hyperpolarization (MHP) were identified as metabolic checkpoints upstream of mTOR activation. mTOR controls the expression T-cell receptor-associated signaling proteins CD4 and CD3zeta through increased expression of the endosome recycling regulator Rab5 and HRES-1/Rab4 genes, enhances Ca2+ fluxing and skews the expression of tyrosine kinases both in T and B cells, and blocks the expression of Foxp3 and the generation of regulatory T cells. MHP, increased activity of mTOR, Rab GTPases, and Syk kinases, and enhanced Ca2+ flux have emerged as common T and B cell biomarkers and targets for treatment in SLE.

  16. Potential of the FES-hERL PET reporter gene system - Basic evaluation for gene therapy monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Takako [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan)]. E-mail: takakof@fmsrsa.fukui-med.ac.jp; Lohith, Talakad G. [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Takamatsu, Shinji [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Mori, Tetsuya [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Tanaka, Takeshi [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Department of Otorhinolaryngology, University of Fukui, Fukui 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan)

    2006-01-15

    Purpose: In vivo reporter genes can be powerful tools in supporting and ensuring the success of gene therapy. A careful and rational design of a reporter system is essential to realize a noninvasive in vivo reporter gene imaging system applicable for humans. We designed a new in vivo reporter gene imaging system that uses F-18-labeled estradiol (FES) and human estrogen receptor ligand (hERL) binding domain, taking advantage that FES is a radiopharmaceutical already being used for human studies with access to a wide range of tissues, including the brain, and that hERL lacking DNA binding domain can no longer work as a transcription factor, and carried out basic studies to evaluate its potential for gene therapy monitoring. Methods: We constructed a plasmid (pTIER) to coexpress a model therapeutic gene and the reporter gene hERL and transfected Cos7 cells and examined their uptake of [{sup 3}H]estradiol and FES in culture media. The uptake of FES by mouse calf muscle electroporated with pTIER was also tested. Results: The cells transfected with pTIER took up the radioligands efficiently and specifically in culture media. Also, the mouse calf muscle electroporated with pTIER accumulated a higher amount of FES than did the control. Conclusion: The data indicate that our new reporter gene system seems promising for in vivo imaging of gene expression and gene therapy monitoring.

  17. Structure and role of neutrophil cytosol factor 1 (NCF1) gene in ...

    African Journals Online (AJOL)

    Yomi

    2010-12-27

    Dec 27, 2010 ... in innate immunity and produce reactive oxygen species and reduce the severity and duration of parasitic infection and autoimmune disease. NCF1 also has a role in T cell activation. Key words: Neutrophil cytosol factor 1 (NCF1) gene, exons, T cell activation. INTRODUCTION. An immune system is a ...

  18. Characterization of five partial deletions of the factor VIII gene

    International Nuclear Information System (INIS)

    Youssoufian, H.; Antonarakis, S.E.; Aronis, S.; Tsiftis, G.; Phillips, D.G.; Kazazian, H.H. Jr.

    1987-01-01

    Hemophilia A is an X-linked disorder of coagulation caused by a deficiency of factor VIII. By using cloned DNA probes, the authors have characterized the following five different partial deletions of the factor VIII gene from a panel of 83 patients with hemophilia A: (i) a 7-kilobase (kb) deletion that eliminates exon 6; (ii) a 2.5-kb deletion that eliminates 5' sequences of exon 14; (iii) a deletion of at least 7 kb that eliminates exons 24 and 25; (iv) a deletion of at least 16 kb that eliminates exons 23-25; and (v) a 5.5-kb deletion that eliminates exon 22. The first four deletions are associated with severe hemophilia A. By contrast, the last deletion is associated with moderate disease, possibly because of in-frame splicing from adjacent exons. None of those patients with partial gene deletions had circulating inhibitors to factor VIII. One deletion occurred de novo in a germ cell of the maternal grandmother, while a second deletion occurred in a germ cell of the maternal grandfather. These observations demonstrate that de novo deletions of X-linked genes can occur in either male or female gametes

  19. Association analysis between polymorphisms in the conserved dopamine neurotrophic factor (CDNF) gene and cocaine dependence

    OpenAIRE

    Lohoff, Falk W.; Bloch, Paul J.; Ferraro, Thomas N.; Berrettini, Wade H.; Pettinati, Helen M.; Dackis, Charles A.; O’Brien, Charles P.; Kampman, Kyle M.; Oslin, David W.

    2009-01-01

    Cocaine induced neuroplasticity changes in the mesocorticolimbic dopamine systems are thought to be involved in the pathophysiology of cocaine dependence. Since neurotrophic factors have been observed to prevent/reverse and mimic cocaine-induced neurobiological changes in the brain, related genes are plausible candidates for susceptibility to cocaine dependence. The novel conserved dopamine neurotrophic factor protein (CDNF) promotes the survival, growth, and function of dopamine-specific neu...

  20. Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example

    Directory of Open Access Journals (Sweden)

    Hironori eTaniguchi

    2015-07-01

    Full Text Available Bacteria are known to cope with environmental changes by using alternative sigma factors binding to RNA polymerase core enzyme. Sigma factor is one of the targets to modify transcription regulation in bacteria and to influence production capacities. In this study, the effect of overexpressing each annotated sigma factor gene in C. glutamicum WT was assayed using an IPTG inducible plasmid system and different IPTG concentrations. It was revealed that growth was severely decreased when sigD or sigH were overexpressed with IPTG concentrations higher than 50 μM. Overexpression of sigH led to an obvious phenotypic change, a yellow-colored supernatant. HPLC analysis revealed that riboflavin was excreted to the medium when sigH was overexpressed and DNA microarray analysis confirmed increased expression of riboflavin biosynthesis genes. In addition, genes for enzymes related to the pentose phosphate pathway and for enzymes dependent on FMN, FAD or NADPH as cofactor were upregulated when sigH was overexpressed. To test if sigH overexpression can be exploited for production of riboflavin-derived FMN or FAD, the endogenous gene for bifunctional riboflavin kinase/FMN adenyltransferase was co-expressed with sigH from a plasmid. Balanced expression of sigH and ribF improved accumulation of riboflavin (19.8 ± 0.3 μM and allowed for its conversion to FMN (33.1 ± 1.8 μM in the supernatant. While a proof-of-concept was reached, conversion was not complete and titers were not high. This study revealed that inducible and gradable overexpression of sigma factor genes is an interesting approach to switch gene expression profiles and to discover untapped potential of bacteria for chemical production.

  1. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  2. Environmental factors influencing gene transfer agent (GTA mediated transduction in the subtropical ocean.

    Directory of Open Access Journals (Sweden)

    Lauren D McDaniel

    Full Text Available Microbial genomic sequence analyses have indicated widespread horizontal gene transfer (HGT. However, an adequate mechanism accounting for the ubiquity of HGT has been lacking. Recently, high frequencies of interspecific gene transfer have been documented, catalyzed by Gene Transfer Agents (GTAs of marine α-Proteobacteria. It has been proposed that the presence of bacterial genes in highly purified viral metagenomes may be due to GTAs. However, factors influencing GTA-mediated gene transfer in the environment have not yet been determined. Several genomically sequenced strains containing complete GTA sequences similar to Rhodobacter capsulatus (RcGTA, type strain were screened to ascertain if they produced putative GTAs, and at what abundance. Five of nine marine strains screened to date spontaneously produced virus-like particles (VLP's in stationary phase. Three of these strains have demonstrated gene transfer activity, two of which were documented by this lab. These two strains Roseovarius nubinhibens ISM and Nitratireductor 44B9s, were utilized to produce GTAs designated RnGTA and NrGTA and gene transfer activity was verified in culture. Cell-free preparations of purified RnGTA and NrGTA particles from marked donor strains were incubated with natural microbial assemblages to determine the level of GTA-mediated gene transfer. In conjunction, several ambient environmental parameters were measured including lysogeny indicated by prophage induction. GTA production in culture systems indicated that approximately half of the strains produced GTA-like particles and maximal GTA counts ranged from 10-30% of host abundance. Modeling of GTA-mediated gene transfer frequencies in natural samples, along with other measured environmental variables, indicated a strong relationship between GTA mediated gene transfer and the combined factors of salinity, multiplicity of infection (MOI and ambient bacterial abundance. These results indicate that GTA

  3. Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis.

    Directory of Open Access Journals (Sweden)

    Nada Abdelmagid

    Full Text Available Herpes simplex encephalitis (HSE is a rare complication of Herpes simplex virus type-1 infection. It results in severe parenchymal damage in the brain. Although viral latency in neurons is very common in the population, it remains unclear why certain individuals develop HSE. Here we explore potential host genetic variants predisposing to HSE. In order to investigate this we used a rat HSE model comparing the HSE susceptible SHR (Spontaneously Hypertensive Rats with the asymptomatic infection of BN (Brown Norway. Notably, both strains have HSV-1 spread to the CNS at four days after infection. A genome wide linkage analysis of 29 infected HXB/BXH RILs (recombinant inbred lines-generated from the prior two strains, displayed variable susceptibility to HSE enabling the definition of a significant QTL (quantitative trait locus named Hse6 towards the end of chromosome 4 (160.89-174Mb containing the Vwf (von Willebrand factor gene. This was the only gene in the QTL with both cis-regulation in the brain and included several non-synonymous SNPs (single nucleotide polymorphism. Intriguingly, in human chromosome 12 several SNPs within the intronic region between exon 43 and 44 of the VWF gene were associated with human HSE pathogenesis. In particular, rs917859 is nominally associated with an odds ratio of 1.5 (95% CI 1.11-2.02; p-value = 0.008 after genotyping in 115 HSE cases and 428 controls. Although there are possibly several genetic and environmental factors involved in development of HSE, our study identifies variants of the VWF gene as candidates for susceptibility in experimental and human HSE.

  4. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    International Nuclear Information System (INIS)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben A

    2008-01-01

    Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. We have analyzed 8 publicly available gene expression data sets. A global approach, 'gene set enrichment analysis' as well as an approach focusing on a subset of significantly differently regulated genes, GenMAPP, has been applied to rank pathway gene sets according to differential regulation in metastasizing tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. The major findings are up-regulation of cell cycle pathways and a metabolic shift towards glucose metabolism reflected in several pathways in metastasizing tumors. Growth factor pathways seem to play dual roles; EGF and PDGF pathways are decreased, while VEGF and sex-hormone pathways are increased in tumors that metastasize. Furthermore, migration, proteasome, immune system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. By pathway meta-analysis many biological mechanisms beyond major characteristics such as proliferation are identified. Transcription factor analysis identifies a number of key factors that support central pathways. Several previously proposed treatment targets are identified and several new pathways that may

  5. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  6. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    DEFF Research Database (Denmark)

    Fang, Xin; Sastry, Anand; Mih, Nathan

    2017-01-01

    gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions...... algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose...... definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems...

  7. Identification of the Drosophila Mes4 gene as a novel target of the transcription factor DREF

    Energy Technology Data Exchange (ETDEWEB)

    Suyari, Osamu; Ida, Hiroyuki [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Yoshioka, Yasuhide; Kato, Yasuko; Hashimoto, Reina [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Venture Laboratory, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Yamaguchi, Masamitsu, E-mail: myamaguc@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan)

    2009-05-01

    The Mes4 gene has been identified as one of the maternal Dorsal target genes in Drosophila. In the present study, we found a DNA replication-related element (DRE, 5'-TATCGATA) in the Mes4 promoter recognized by the DRE-binding factor (DREF). Luciferase transient expression assays in S2 cells using Mes4 promoter-luciferase fusion plasmids revealed that the DRE sequence is essential for Mes4 promoter activity. Requirement of DRE for Mes4 promoter activity was further confirmed by anti-{beta}-galactosidase antibody-staining of various tissues from transgenic flies carrying Mes4 promoter-lacZ fusion genes. Furthermore, wild type Mes4 promoter activity was decreased by 40% in DREF-depleted S2 cells. These results indicate that DREF positively regulates Mes4 gene expression. Band mobility shift analyses using Kc cell nuclear extracts further indicated that the DRE sequence in the Mes4 promoter is especially important for binding to DREF. Moreover, specific binding of DREF to the involved genomic region could be demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. These results, taken together, indicate that the DRE/DREF system activates transcription of the Mes4 gene. In addition, knockdown of the Mes4 gene in wing imaginal discs using the GAL4-UAS system caused an atrophied wing phenotype, suggesting that Mes4 is required for wing morphogenesis.

  8. Multi-factor dimensionality reduction applied to a large prospective investigation on gene-gene and gene-environment interactions.

    Science.gov (United States)

    Manuguerra, M; Matullo, G; Veglia, F; Autrup, H; Dunning, A M; Garte, S; Gormally, E; Malaveille, C; Guarrera, S; Polidoro, S; Saletta, F; Peluso, M; Airoldi, L; Overvad, K; Raaschou-Nielsen, O; Clavel-Chapelon, F; Linseisen, J; Boeing, H; Trichopoulos, D; Kalandidi, A; Palli, D; Krogh, V; Tumino, R; Panico, S; Bueno-De-Mesquita, H B; Peeters, P H; Lund, E; Pera, G; Martinez, C; Amiano, P; Barricarte, A; Tormo, M J; Quiros, J R; Berglund, G; Janzon, L; Jarvholm, B; Day, N E; Allen, N E; Saracci, R; Kaaks, R; Ferrari, P; Riboli, E; Vineis, P

    2007-02-01

    It is becoming increasingly evident that single-locus effects cannot explain complex multifactorial human diseases like cancer. We applied the multi-factor dimensionality reduction (MDR) method to a large cohort study on gene-environment and gene-gene interactions. The study (case-control nested in the EPIC cohort) was established to investigate molecular changes and genetic susceptibility in relation to air pollution and environmental tobacco smoke (ETS) in non-smokers. We have analyzed 757 controls and 409 cases with bladder cancer (n=124), lung cancer (n=116) and myeloid leukemia (n=169). Thirty-six gene variants (DNA repair and metabolic genes) and three environmental exposure variables (measures of air pollution and ETS at home and at work) were analyzed. Interactions were assessed by prediction error percentage and cross-validation consistency (CVC) frequency. For lung cancer, the best model was given by a significant gene-environment association between the base excision repair (BER) XRCC1-Arg399Gln polymorphism, the double-strand break repair (DSBR) BRCA2-Asn372His polymorphism and the exposure variable 'distance from heavy traffic road', an indirect and robust indicator of air pollution (mean prediction error of 26%, PT (mean prediction error of 22%, PT, MnSOD-Ala9Val and CYP1A1-Ile462Val had a minimum prediction error of 31% (P<0.001) and a maximum CVC of 4.40 (P=0.086). The MDR method seems promising, because it provides a limited number of statistically stable interactions; however, the biological interpretation remains to be understood.

  9. CDC Behavioral Risk Factor Surveillance System (BRFSS)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Behavioral Risk Factor Surveillance System (BRFSS) is a state-based system of health surveys that collects information on health risk behaviors, preventive...

  10. Pluripotency gene network dynamics: System views from parametric analysis.

    Science.gov (United States)

    Akberdin, Ilya R; Omelyanchuk, Nadezda A; Fadeev, Stanislav I; Leskova, Natalya E; Oschepkova, Evgeniya A; Kazantsev, Fedor V; Matushkin, Yury G; Afonnikov, Dmitry A; Kolchanov, Nikolay A

    2018-01-01

    Multiple experimental data demonstrated that the core gene network orchestrating self-renewal and differentiation of mouse embryonic stem cells involves activity of Oct4, Sox2 and Nanog genes by means of a number of positive feedback loops among them. However, recent studies indicated that the architecture of the core gene network should also incorporate negative Nanog autoregulation and might not include positive feedbacks from Nanog to Oct4 and Sox2. Thorough parametric analysis of the mathematical model based on this revisited core regulatory circuit identified that there are substantial changes in model dynamics occurred depending on the strength of Oct4 and Sox2 activation and molecular complexity of Nanog autorepression. The analysis showed the existence of four dynamical domains with different numbers of stable and unstable steady states. We hypothesize that these domains can constitute the checkpoints in a developmental progression from naïve to primed pluripotency and vice versa. During this transition, parametric conditions exist, which generate an oscillatory behavior of the system explaining heterogeneity in expression of pluripotent and differentiation factors in serum ESC cultures. Eventually, simulations showed that addition of positive feedbacks from Nanog to Oct4 and Sox2 leads mainly to increase of the parametric space for the naïve ESC state, in which pluripotency factors are strongly expressed while differentiation ones are repressed.

  11. In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression

    International Nuclear Information System (INIS)

    Carlin, Sean; Pugachev, Andrei; Sun Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C. Clifton; Humm, John L.

    2009-01-01

    Purpose: To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer 18 F-fluoromisonidazole ( 18 F-FMISO). Methods: Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe 124 I-2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil ( 124 I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between 124 I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe 18 F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with 124 I-FIAU (3 h before sacrifice) and 18 F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between 18 F-FMISO and 124 I-FIAU on a pixel-by-pixel basis was performed. Results: Correlation coefficients between 124 I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between 18 F-FMISO and 124 I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. Conclusions: We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of

  12. Gene Regulation System of Vasopressin and Corticotoropin-Releasing Hormone

    Directory of Open Access Journals (Sweden)

    Masanori Yoshida

    2008-01-01

    Full Text Available The neurohypophyseal hormones, arginine vasopressin and corticotropin-releasing hormone (CRH, play a crucial role in the physiological and behavioral response to various kinds of stresses. Both neuropeptides activate the hypophysialpituitary-adrenal (HPA axis, which is a central mediator of the stress response in the body. Conversely, they receive the negative regulation by glucocorticoid, which is an end product of the HPA axis. Vasopressin and CRH are closely linked to immune response; they also interact with pro-inflammatory cytokines. Moreover, as for vasopressin, it has another important role, which is the regulation of water balance through its potent antidiuretic effect. Hence, it is conceivable that vasopressin and CRH mediate the homeostatic responses for survival and protect organisms from the external world. A tight and elaborate regulation system of the vasopressin and CRH gene is required for the rapid and flexible response to the alteration of the surrounding environments. Several important regulatory elements have been identified in the proximal promoter region in the vasopressin and CRH gene. Many transcription factors and intracellular signaling cascades are involved in the complicated gene regulation system. This review focuses on the current status of the basic research of vasopressin and CRH. In addition to the numerous known facts about their divergent physiological roles, the recent topics of promoter analyses will be discussed.

  13. Resveratrol regulates gene transcription via activation of stimulus-responsive transcription factors.

    Science.gov (United States)

    Thiel, Gerald; Rössler, Oliver G

    2017-03-01

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin of grapes and other fruits and plants, is a common constituent of our diet and of dietary supplements. Many health-promoting benefits have been connected with resveratrol in the treatment of cardiovascular diseases, cancer, diabetes, inflammation, neurodegeneration, and diseases connected with aging. To explain the pleiotropic effects of resveratrol, the molecular targets of this compound have to be identified on the cellular level. Resveratrol induces intracellular signal transduction pathways which ultimately lead to changes in the gene expression pattern of the cells. Here, we review the effect of resveratrol on the activation of the stimulus-responsive transcription factors CREB, AP-1, Egr-1, Elk-1, and Nrf2. Following activation, these transcription factors induce transcription of delayed response genes. The gene products of these delayed response genes are ultimately responsible for the changes in the biochemistry and physiology of resveratrol-treated cells. The activation of stimulus-responsive transcription factors may explain many of the intracellular activities of resveratrol. However, results obtained in vitro may not easily be transferred to in vivo systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Genomewide analysis of TCP transcription factor gene family in ...

    Indian Academy of Sciences (India)

    2014-12-09

    Dec 9, 2014 ... this study, a total of 52 TCP genes were identified in apple (Malus domestica) genome. Bioinformatic methods were employed to predicate and analyse their relevant gene classification, gene structure, chromosome location, sequence alignment and con- served domains of MdTCP proteins. Expression ...

  15. Virulence Factors IN Fungi OF Systemic Mycoses

    Directory of Open Access Journals (Sweden)

    KUROKAWA Cilmery Suemi

    1998-01-01

    Full Text Available Pathogenic fungi that cause systemic mycoses retain several factors which allow their growth in adverse conditions provided by the host, leading to the establishment of the parasitic relationship and contributing to disease development. These factors are known as virulence factors which favor the infection process and the pathogenesis of the mycoses. The present study evaluates the virulence factors of pathogenic fungi such as Blastomyces dermatitidis, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis in terms of thermotolerance, dimorphism, capsule or cell wall components as well as enzyme production. Virulence factors favor fungal adhesion, colonization, dissemination and the ability to survive in hostile environments and elude the immune response mechanisms of the host. Both the virulence factors presented by different fungi and the defense mechanisms provided by the host require action and interaction of complex processes whose knowledge allows a better understanding of the pathogenesis of systemic mycoses.

  16. GeneLibrarian: an effective gene-information summarization and visualization system

    Directory of Open Access Journals (Sweden)

    Liu Heng-Hui

    2006-08-01

    Full Text Available Abstract Background Abundant information about gene products is stored in online searchable databases such as annotation or literature. To efficiently obtain and digest such information, there is a pressing need for automated information-summarization and functional-similarity clustering of genes. Results We have developed a novel method for semantic measurement of annotation and integrated it with a biomedical literature summarization system to establish a platform, GeneLibrarian, to provide users well-organized information about any specific group of genes (e.g. one cluster of genes from a microarray chip they might be interested in. The GeneLibrarian generates a summarized viewgraph of candidate genes for a user based on his/her preference and delivers the desired background information effectively to the user. The summarization technique involves optimizing the text mining algorithm and Gene Ontology-based clustering method to enable the discovery of gene relations. Conclusion GeneLibrarian is a Java-based web application that automates the process of retrieving critical information from the literature and expanding the number of potential genes for further analysis. This study concentrates on providing well organized information to users and we believe that will be useful in their researches. GeneLibrarian is available on http://gen.csie.ncku.edu.tw/GeneLibrarian/

  17. Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex

    Directory of Open Access Journals (Sweden)

    McTaggart Seanna J

    2012-05-01

    Full Text Available Abstract Background Understanding which parts of the genome have been most influenced by adaptive evolution remains an unsolved puzzle. Some evidence suggests that selection has the greatest impact on regions of the genome that interact with other evolving genomes, including loci that are involved in host-parasite co-evolutionary processes. In this study, we used a population genetic approach to test this hypothesis by comparing DNA sequences of 30 putative immune system genes in the crustacean Daphnia pulex with 24 non-immune system genes. Results In support of the hypothesis, results from a multilocus extension of the McDonald-Kreitman (MK test indicate that immune system genes as a class have experienced more adaptive evolution than non-immune system genes. However, not all immune system genes show evidence of adaptive evolution. Additionally, we apply single locus MK tests and calculate population genetic parameters at all loci in order to characterize the mode of selection (directional versus balancing in the genes that show the greatest deviation from neutral evolution. Conclusions Our data are consistent with the hypothesis that immune system genes undergo more adaptive evolution than non-immune system genes, possibly as a result of host-parasite arms races. The results of these analyses highlight several candidate loci undergoing adaptive evolution that could be targeted in future studies.

  18. GeneLibrarian: an effective gene-information summarization and visualization system

    Science.gov (United States)

    Chiang, Jung-Hsien; Shin, Jyh-Wei; Liu, Heng-Hui; Chin, Chong-Liang

    2006-01-01

    Background Abundant information about gene products is stored in online searchable databases such as annotation or literature. To efficiently obtain and digest such information, there is a pressing need for automated information-summarization and functional-similarity clustering of genes. Results We have developed a novel method for semantic measurement of annotation and integrated it with a biomedical literature summarization system to establish a platform, GeneLibrarian, to provide users well-organized information about any specific group of genes (e.g. one cluster of genes from a microarray chip) they might be interested in. The GeneLibrarian generates a summarized viewgraph of candidate genes for a user based on his/her preference and delivers the desired background information effectively to the user. The summarization technique involves optimizing the text mining algorithm and Gene Ontology-based clustering method to enable the discovery of gene relations. Conclusion GeneLibrarian is a Java-based web application that automates the process of retrieving critical information from the literature and expanding the number of potential genes for further analysis. This study concentrates on providing well organized information to users and we believe that will be useful in their researches. GeneLibrarian is available on PMID:16939640

  19. Using the BITOLA system to identify candidate genes for Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Amela Karić

    2011-08-01

    Full Text Available Complexity of multifactorial diseases as Parkinson’s disease (PD often complicate identifying causal genetic factors by traditional approaches such as positional cloning and candidate gene analyses. PD is etiologically and genetically complex disease and second most common neurodegenerative disorder after Alzheimer’s disease. The most cases of PD are idiopathic and small growing subset of individuals have single gene defect as the cause. The main goal of this research was to identify the potential candidate genes for idiopathic PD by using biomedical discovery support system (BITOLA. For detecting the potential candidate genes for PD was used opened system of bioinformatics tool BITOLA. Data of chromosome location, tissue specific expression of potential candidate genes and their potential association with PD were obtained from Medline, Locus Link, Gene Cards and OMIM. By using BITOLA system is identified 17 genes as potential candidate genes for PD. The role of three genes (MAPT, PARK2, UCHL1 in PD were confirmed earlier. Discovering the novel candidate genes for multifactiorial diseases by using specially mentioned bioinformatics tool BITOLA could offer the new opportunity for researching genetics base of PD without using tissue samples of patients.

  20. Probing transcription factor binding activity and downstream gene silencing in living cells with a DNA nanoswitch.

    Science.gov (United States)

    Bertucci, Alessandro; Guo, Junling; Oppmann, Nicolas; Glab, Agata; Ricci, Francesco; Caruso, Frank; Cavalieri, Francesca

    2018-01-25

    Transcription factor DNA binding activity is of pivotal importance in living systems because of its primary involvement in the regulation of genetic machinery. The analysis of transient expression levels of transcription factors in response to a certain cell status is a powerful means for investigating cellular dynamics at the biomolecular level. Herein, a DNA-based molecular switch that enables probing of transcription factor DNA binding activity is directly used in living cells. We demonstrate that the DNA nanoswitch allows for dynamic fluorescence imaging of NF-κB and quantification of downstream gene silencing in real time. The present strategy is based on a functional DNA nanodevice that transduces, through a binding-induced conformational change, the recognition of a specific transcription factor into a fluorescent signal. In addition, stochastic optical resolution microscopy, a super-resolution microscopy technique, is used to track the internalization and intracellular trafficking of the DNA nanodevice with high spatial resolution. Overall, it has been shown that a rationally designed DNA nanodevice can be used to achieve rapid, simple, and cost-effective real-time determination of transcription factor binding activity and downstream gene silencing.

  1. Autism Spectrum Disorder and High Confidence Gene Factors

    OpenAIRE

    Mai, MOCHIZUKI

    2017-01-01

    Autism spectrum disorder (ASD) is a neurological developmental disorder whose mechanism isyet unclear. However, recent ASD studies, which employ exome- and genome-wide sequencing,have identified some high-confidence ASD genes. Those ASD studies have revealed that CHD8is likely associated with ASD. In this article, we highlight that CHD8 may regulate othercandidate ASD risk genes. Current research indicates that there exist some thousand autismsusceptibility candidate genes. Moreover, we sugge...

  2. Human gene therapy: novel approaches to improve the current gene delivery systems.

    Science.gov (United States)

    Cucchiarini, Magali

    2016-06-01

    Even though gene therapy made its way through the clinics to treat a number of human pathologies since the early years of experimental research and despite the recent approval of the first gene-based product (Glybera) in Europe, the safe and effective use of gene transfer vectors remains a challenge in human gene therapy due to the existence of barriers in the host organism. While work is under active investigation to improve the gene transfer systems themselves, the use of controlled release approaches may offer alternative, convenient tools of vector delivery to achieve a performant gene transfer in vivo while overcoming the various physiological barriers that preclude its wide use in patients. This article provides an overview of the most significant contributions showing how the principles of controlled release strategies may be adapted for human gene therapy.

  3. Scaling of gene expression with transcription-factor fugacity.

    Science.gov (United States)

    Weinert, Franz M; Brewster, Robert C; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K

    2014-12-19

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve.

  4. Control of gene expression by CRISPR-Cas systems

    Science.gov (United States)

    2013-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) loci and their associated cas (CRISPR-associated) genes provide adaptive immunity against viruses (phages) and other mobile genetic elements in bacteria and archaea. While most of the early work has largely been dominated by examples of CRISPR-Cas systems directing the cleavage of phage or plasmid DNA, recent studies have revealed a more complex landscape where CRISPR-Cas loci might be involved in gene regulation. In this review, we summarize the role of these loci in the regulation of gene expression as well as the recent development of synthetic gene regulation using engineered CRISPR-Cas systems. PMID:24273648

  5. A two-cassette reporter system for assessing target gene translation and target gene product inclusion body formation

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a dual cassette reporter system capable of assessing target gene translation and target gene product folding. The present invention further relates to vectors and host cells comprising the dual cassette reporter system. In addition the invention relates to the use...... of the dual cassette reporter system for assessing target gene translation and target gene product folding....

  6. Scaling of gene expression with transcription-factor fugacity

    NARCIS (Netherlands)

    Weinert, Franz M; Brewster, Robert C; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K

    2014-01-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by

  7. Association of transforming growth factor-ß3 gene polymorphism ...

    African Journals Online (AJOL)

    Genotyping for the TGF-β3 gene using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and BslI restriction endonuclease showed a mutation in 294-bp fragment located on the fourth intron of chromosome 5. Polymorphism in TGF-β3 gene was significantly (P < 0.1) associated with ...

  8. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression

    Directory of Open Access Journals (Sweden)

    Řičicová Markéta

    2010-04-01

    Full Text Available Abstract Background Candida albicans infections are often associated with biofilm formation. Previous work demonstrated that the expression of HWP1 (hyphal wall protein and of genes belonging to the ALS (agglutinin-like sequence, SAP (secreted aspartyl protease, PLB (phospholipase B and LIP (lipase gene families is associated with biofilm growth on mucosal surfaces. We investigated using real-time PCR whether genes encoding potential virulence factors are also highly expressed in biofilms associated with abiotic surfaces. For this, C. albicans biofilms were grown on silicone in microtiter plates (MTP or in the Centres for Disease Control (CDC reactor, on polyurethane in an in vivo subcutaneous catheter rat (SCR model, and on mucosal surfaces in the reconstituted human epithelium (RHE model. Results HWP1 and genes belonging to the ALS, SAP, PLB and LIP gene families were constitutively expressed in C. albicans biofilms. ALS1-5 were upregulated in all model systems, while ALS9 was mostly downregulated. ALS6 and HWP1 were overexpressed in all models except in the RHE and MTP, respectively. The expression levels of SAP1 were more pronounced in both in vitro models, while those of SAP2, SAP4 and SAP6 were higher in the in vivo model. Furthermore, SAP5 was highly upregulated in the in vivo and RHE models. For SAP9 and SAP10 similar gene expression levels were observed in all model systems. PLB genes were not considerably upregulated in biofilms, while LIP1-3, LIP5-7 and LIP9-10 were highly overexpressed in both in vitro models. Furthermore, an elevated lipase activity was detected in supernatans of biofilms grown in the MTP and RHE model. Conclusions Our findings show that HWP1 and most of the genes belonging to the ALS, SAP and LIP gene families are upregulated in C. albicans biofilms. Comparison of the fold expression between the various model systems revealed similar expression levels for some genes, while for others model-dependent expression

  9. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte

    Directory of Open Access Journals (Sweden)

    Kang Il-Ho

    2010-06-01

    Full Text Available Abstract Background In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. Results Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. Conclusions We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this

  10. Problem-Based Test: The Effect of Fibroblast Growth Factor on Gene Expression

    Science.gov (United States)

    Szeberenyi, Jozsef

    2011-01-01

    This paper shows the results of an experiment in which the effects of fibroblast growth factor (FGF), actinomycin D (Act D; an inhibitor of transcription), and cycloheximide (CHX; an inhibitor of translation) were studied on the expression of two genes: a gene called "Fnk" and the gene coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).…

  11. Validation of human factor engineering integrated system

    International Nuclear Information System (INIS)

    Fang Zhou

    2013-01-01

    Apart from hundreds of thousands of human-machine interface resources, the control room of a nuclear power plant is a complex system integrated with many factors such as procedures, operators, environment, organization and management. In the design stage, these factors are considered by different organizations separately. However, whether above factors could corporate with each other well in operation and whether they have good human factors engineering (HFE) design to avoid human error, should be answered in validation of the HFE integrated system before delivery of the plant. This paper addresses the research and implementation of the ISV technology based on case study. After introduction of the background, process and methodology of ISV, the results of the test are discussed. At last, lessons learned from this research are summarized. (authors)

  12. Transcription factor binding site enrichment analysis predicts drivers of altered gene expression in nonalcoholic steatohepatitis

    Czech Academy of Sciences Publication Activity Database

    Lake, A.D.; Chaput, A.L.; Novák, Petr; Cherrington, N.J.; Smith, C.L.

    2016-01-01

    Roč. 122, December 15 (2016), s. 62-71 ISSN 0006-2952 Institutional support: RVO:60077344 Keywords : Transcription factor * Liver * Gene expression * Bioinformatics Subject RIV: CE - Biochemistry Impact factor: 4.581, year: 2016

  13. Discovery of functional genes for systemic acquired resistance in Arabidopsis thaliana through integrated data mining.

    Science.gov (United States)

    Pan, Youlian; Pylatuik, Jeffrey D; Ouyang, Junjun; Famili, A Fazel; Fobert, Pierre R

    2004-12-01

    Various data mining techniques combined with sequence motif information in the promoter region of genes were applied to discover functional genes that are involved in the defense mechanism of systemic acquired resistance (SAR) in Arabidopsis thaliana. A series of K-Means clustering with difference-in-shape as distance measure was initially applied. A stability measure was used to validate this clustering process. A decision tree algorithm with the discover-and-mask technique was used to identify a group of most informative genes. Appearance and abundance of various transcription factor binding sites in the promoter region of the genes were studied. Through the combination of these techniques, we were able to identify 24 candidate genes involved in the SAR defense mechanism. The candidate genes fell into 2 highly resolved categories, each category showing significantly unique profiles of regulatory elements in their promoter regions. This study demonstrates the strength of such integration methods and suggests a broader application of this approach.

  14. The Impact of the Brain-Derived Neurotrophic Factor Gene on Trauma and Spatial Processing

    Directory of Open Access Journals (Sweden)

    Jessica K. Miller

    2017-11-01

    Full Text Available The influence of genes and the environment on the development of Post-Traumatic Stress Disorder (PTSD continues to motivate neuropsychological research, with one consistent focus being the Brain-Derived Neurotrophic Factor (BDNF gene, given its impact on the integrity of the hippocampal memory system. Research into human navigation also considers the BDNF gene in relation to hippocampal dependent spatial processing. This speculative paper brings together trauma and spatial processing for the first time and presents exploratory research into their interactions with BDNF. We propose that quantifying the impact of BDNF on trauma and spatial processing is critical and may well explain individual differences in clinical trauma treatment outcomes and in navigation performance. Research has already shown that the BDNF gene influences PTSD severity and prevalence as well as navigation behaviour. However, more data are required to demonstrate the precise hippocampal dependent processing mechanisms behind these influences in different populations and environmental conditions. This paper provides insight from recent studies and calls for further research into the relationship between allocentric processing, trauma processing and BDNF. We argue that research into these neural mechanisms could transform PTSD clinical practice and professional support for individuals in trauma-exposing occupations such as emergency response, law enforcement and the military.

  15. An Allele of an Ancestral Transcription Factor Dependent on a Horizontally Acquired Gene Product

    OpenAIRE

    Chen, H. Deborah; Jewett, Mollie W.; Groisman, Eduardo A.

    2012-01-01

    Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the...

  16. Male sex in houseflies is determined by Mdmd, a paralog of the generic splice factor gene CWC22

    NARCIS (Netherlands)

    Sharma, Akash; Heinze, Svenia D; Wu, Yanli; Kohlbrenner, Tea; Morilla, Ian; Brunner, Claudia; Wimmer, Ernst A; van de Zande, Louis; Robinson, Mark D; Beukeboom, Leo W; Bopp, Daniel

    2017-01-01

    Across species, animals have diverse sex determination pathways, each consisting of a hierarchical cascade of genes and its associated regulatory mechanism. Houseflies have a distinctive polymorphic sex determination system in which a dominant male determiner, the M-factor, can reside on any of the

  17. Environmental Factors, Toxicants and Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Anselm Mak

    2014-09-01

    Full Text Available Systemic lupus erythematosus (SLE is an immune-complex-mediated multi-systemic autoimmune condition of multifactorial etiology, which mainly affects young women. It is currently believed that the onset of SLE and lupus flares are triggered by various environmental factors in genetically susceptible individuals. Various environmental agents and toxicants, such as cigarette smoke, alcohol, occupationally- and non-occupationally-related chemicals, ultraviolet light, infections, sex hormones and certain medications and vaccines, have been implicated to induce SLE onset or flares in a number case series, case-control and population-based cohort studies and very few randomized controlled trials. Here, we will describe some of these recognized environmental lupus triggering and perpetuating factors and explain how these factors potentially bias the immune system towards autoimmunity through their interactions with genetic and epigenetic alterations. Further in-depth exploration of how potentially important environmental factors mechanistically interact with the immune system and the genome, which trigger the onset of SLE and lupus flares, will certainly be one of the plausible steps to prevent the onset and to decelerate the progress of the disease.

  18. The PIANC Safety Factor System for Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    2000-01-01

    The paper presents a summary of the recommendations for implementation of safety in breakwater designs given by the PIANC PTC IT Working Group No 12 on Analysis of Rubble Mound Breakwaters with Vertical and Inclined Concrete Walls. The working groups developed for the most important failure modes...... a system of partial safety factors which facilitate design to any target safety level....

  19. Optimization of transient gene expression system in Gerbera jemosonii petals.

    Science.gov (United States)

    Hussein, Gihan M; Abu El-Heba, Ghada A; Abdou, Sara M; Abdallah, Naglaa A

    2013-01-01

    Low transformation efficiency and long generation time for production of transgenic Gerbera jemosonii plants leads to vulnerable gene function studies. Thus, transient expression of genes would be an efficient alternative. In this investigation, a transient expression system for gerbera petals based on the Agrobacterium infiltration protocol was developed using the reporter genes β-glucuronidase (gus) and green florescence protein (gfp). Results revealed the incapability of using the gfp gene as a reporter gene for transient expression study in gerbera flowers due to the detection of green fluorescent color in the non-infiltrated gerbera flower petals. However, the gus reporter gene was successfully utilized for optimizing and obtaining the suitable agroinfiltration system in gerbera flowers. The expression of GUS was detectable after three days of agroinfiltration in gerbera cultivars "Express" and "White Grizzly" with dark pink and white flower colors, respectively. The vacuum agroinfiltration protocol has been applied on the cultivar "Express" for evaluating the transient expression of the two genes involved in the anthocyanin pathway (iris-dfr and petunia-f3' 5'h), which is responsible for the color in flowers. In comparison to the control, transient expression results showed change in the anthocyanin pigment in all infiltrated flowers with color genes. Additionally, blue color was detected in the stigma and pollen grains in the infiltrated flowers. Moreover, blue colors with variant intensities were observed in produced calli during the routine work of stable transformation with f3' 5'h gene.

  20. Role of Dicer1-Dependent Factors in the Paracrine Regulation of Epididymal Gene Expression.

    Directory of Open Access Journals (Sweden)

    Olivia Jerczynski

    Full Text Available Dicer1 is an endoribonuclease involved in the biogenesis of functional molecules such as microRNAs (miRNAs and endogenous small interfering RNAs (endo-siRNAs. These small non-coding RNAs are important regulators of post-transcriptional gene expression and participate in the control of male fertility. With the knowledge that 1 Dicer1-dependent factors are required for proper sperm maturation in the epididymis, and that 2 miRNAs are potent mediators of intercellular communication in most biological systems, we investigated the role of Dicer1-dependent factors produced by the proximal epididymis (initial segment/caput- including miRNAs- on the regulation of epididymal gene expression in the distal epididymis regions (i.e. corpus and cauda. To this end, we performed comparative microarray and ANOVA analyses on control vs. Defb41iCre/wt;Dicer1fl/fl mice in which functional Dicer1 is absent from the principal cells of the proximal epididymis. We identified 35 and 33 transcripts that displayed significant expression level changes in the corpus and cauda regions (Fold change > 2 or 2 or < -2; p < 0.01. These miRNAs are secreted via extracellular vesicles (EVs derived from the DC2 epididymal principal cell line, and their expression correlates with target transcripts involved in distinct biological pathways, as evidenced by in silico analysis. Albeit correlative and based on in silico approach, our study proposes that Dicer1-dependent factors trigger- directly or not-significant genes expression changes in distinct regions of this organ. The paracrine control of functions important to post-testicular sperm maturation by Dicer1-dependent factors may open new avenues for the identification of molecular targets important to male fertility control.

  1. Genetically engineered Rice with transcription factor DREB genes for abiotic stress tolerance(abstract)

    International Nuclear Information System (INIS)

    Datta, S.K.; Datta, K.

    2005-01-01

    Water stress (drought and Salinity) is the most severe limitation to rice productivity. Several breeding approaches (MAS, QTL) applied to suitable genotypes are in place at IRRI and elsewhere. Phenotyping of water stress tolerance is in progress with potential predictability. Dr. Shinozaki's group has cloned a number of transcription factor genes, which have been shown to work in Arabidopsis to achieve drought, cold, and salinity tolerant plants. None of these genes have as yet displayed their potential functioning in rice. Genetic engineering aims at cross talk between different stress signaling pathways leading to stress tolerance. Osmotic Adjustment (OA) is an effective component of abiotic stress (drought and salinity) tolerance in many plants including rice. When plant experiences water stress, OA contributes to turgor maintenance of both shoots and roots. Conventional breeding could not achieve the OA in rice excepting a few rice cultivars, which are partially adapted to water-stress conditions. Several stress-related genes have now been cloned and transferred in to enhance the osmolytes and some transgenic lines showed increased tolerance to osmotic stress. A few strategies could be effectively deployed for a better understanding of water-stress tolerance in rice and to develop transgenic rice, which can survive for a critical period of water-stress conditions: 1) Switching on of transcription factor regulating the expression of several genes related to abiotic stress, 2) Use of a suitable stress inducible promoter driving the target gene for an efficient and directed expression in plants, 3) Understanding of phenotyping and GxE in a given environment, 4) Selection of a few adaptive rice cultivars suitable in drought/salinity prone areas, 5) Microarray, proteomics, QTL and MAS may expedite the cloning and characterizing the stress induced genes, and 6) Finally, the efficient transformation system for generating a large number of transgenic rice of different

  2. An in vivo transfection system for inducible gene expression and gene silencing in murine hepatocytes.

    Science.gov (United States)

    Hubner, Eric K; Lechler, Christian; Kohnke-Ertel, Birgit; Zmoos, Anne-Flore; Sage, Julien; Schmid, Roland M; Ehmer, Ursula

    2017-01-01

    Hydrodynamic tail vein injection (HTVI) of transposon-based integration vectors is an established system for stably transfecting mouse hepatocytes in vivo that has been successfully employed to study key questions in liver biology and cancer. Refining the vectors for transposon-mediated hepatocyte transfection will further expand the range of applications of this technique in liver research. In the present study, we report an advanced transposon-based system for manipulating gene expression in hepatocytes in vivo. Transposon-based vector constructs were generated to enable the constitutive expression of inducible Cre recombinase (CreER) together with tetracycline-inducible transgene or miR-small hairpin RNA (shRNA) expression (Tet-ON system). Transposon and transposase expression vectors were co-injected into R26R-mTmG reporter mice by HTVI. Cre-mediated gene recombination was induced by tamoxifen, followed by the administration of doxycycline to drive tetracycline-inducible gene or shRNA expression. Expression was visualized by immunofluorescence staining in livers of injected mice. After HTVI, Cre recombination by tamoxifen led to the expression of membrane-bound green fluorescent protein in transfected hepatocytes. Activation of inducible gene or shRNA expression was detected by immunostaining in up to one-third of transfected hepatocytes, with an efficiency dependent on the promoter driving the Tet-ON system. Our vector system combines Cre-lox mediated gene mutation with inducible gene expression or gene knockdown, respectively. It provides the opportunity for rapid and specific modification of hepatocyte gene expression and can be a useful tool for genetic screening approaches and analysis of target genes specifically in genetically engineered mouse models. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Fusion genes in malignant neoplastic disorders of haematopoietic system.

    Science.gov (United States)

    Saleem, Mohamed; Yusoff, Narazah Mohd

    2016-10-01

    The new World Health Organization's (WHO) classification of haematopoietic and lymphoid tissue neoplasms incorporating the recurrent fusion genes as the defining criteria for different haematopoietic malignant phenotypes is reviewed. The recurrent fusion genes incorporated in the new WHO's classification and other chromosomal rearrangements of haematopoietic and lymphoid tissue neoplasms are reviewed. Cytokines and transcription factors in haematopoiesis and leukaemic mechanisms are described. Genetic features and clinical implications due to the encoded chimeric neoproteins causing malignant haematopoietic disorders are reviewed. Multiple translocation partner genes are well known for leukaemia such as MYC, MLL, RARA, ALK, and RUNX1. With the advent of more sophisticated diagnostic tools and bioinformatics algorithms, an exponential growth in fusion genes discoveries is likely to increase. Demonstration of fusion genes and their specific translocation breakpoints in malignant haematological disorders are crucial for understanding the molecular pathogenesis and clinical phenotype of cancer, determining prognostic indexes and therapeutic responses, and monitoring residual disease and relapse status.

  4. TGF-β1 Gene Polymorphism at Position -800G /A and Systemic Lupus Erythematosus

    OpenAIRE

    S Naeimi

    2016-01-01

    Introduction: Systemic lupus erythematosus (SLE) is a chronic systemic inflammatory autoimmune disease characterized by a breakdown of self-tolerance. Transforming growth factor-β1 is a cytokine produced by both immune and non immune cells, and it has a wide operating range. human TGF-β1 gene is located on chromosome 19q13 . The aim of this study was investigating the TGF-β1 Gene Polymorphism at Position -800G /A and Systemic Lupus Erythematosus the possible difference in two p...

  5. Co-factors necessary for PPAR mediated transactivation of endogenous target genes

    DEFF Research Database (Denmark)

    Grøntved, Lars; Nielsen, Ronni; Stunnenberg, Henk

    of endogenous target gene in different cell types are elusive. To mutually compare the ability of the PPAR subtypes to activate endogenous target genes in a given cell, PPARa, PPARb/d and PPARg2 were HA tagged and rapidly, equally and synchronously expressed using adenoviral delivery. Within a few hours after...... subtype specific activation of target genes. Accumulating evidence suggests that transcriptional co-factors can function as master regulators for nuclear receptors and impose promoter selectivity. To study co-factor necessity for PPAR mediated transactivation of endogenous target genes, specific co...

  6. Exploring matrix factorization techniques for significant genes identification of Alzheimer’s disease microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Hu Xiaohua

    2011-07-01

    Full Text Available Abstract Background The wide use of high-throughput DNA microarray technology provide an increasingly detailed view of human transcriptome from hundreds to thousands of genes. Although biomedical researchers typically design microarray experiments to explore specific biological contexts, the relationships between genes are hard to identified because they are complex and noisy high-dimensional data and are often hindered by low statistical power. The main challenge now is to extract valuable biological information from the colossal amount of data to gain insight into biological processes and the mechanisms of human disease. To overcome the challenge requires mathematical and computational methods that are versatile enough to capture the underlying biological features and simple enough to be applied efficiently to large datasets. Methods Unsupervised machine learning approaches provide new and efficient analysis of gene expression profiles. In our study, two unsupervised knowledge-based matrix factorization methods, independent component analysis (ICA and nonnegative matrix factorization (NMF are integrated to identify significant genes and related pathways in microarray gene expression dataset of Alzheimer’s disease. The advantage of these two approaches is they can be performed as a biclustering method by which genes and conditions can be clustered simultaneously. Furthermore, they can group genes into different categories for identifying related diagnostic pathways and regulatory networks. The difference between these two method lies in ICA assume statistical independence of the expression modes, while NMF need positivity constrains to generate localized gene expression profiles. Results In our work, we performed FastICA and non-smooth NMF methods on DNA microarray gene expression data of Alzheimer’s disease respectively. The simulation results shows that both of the methods can clearly classify severe AD samples from control samples, and

  7. Bioinformatics analysis of the factors controlling type I IFN gene expression in autoimmune disease and virus-induced immunity

    Directory of Open Access Journals (Sweden)

    Di eFeng

    2013-09-01

    Full Text Available Patients with systemic lupus erythematosus (SLE and Sjögren's syndrome (SS display increased levels of type I IFN-induced genes. Plasmacytoid dendritic cells (PDCs are natural interferon producing cells and considered to be a primary source of IFN-α in these two diseases. Differential expression patterns of type I IFN inducible transcripts can be found in different immune cell subsets and in patients with both active and inactive autoimmune disease. A type I IFN gene signature generally consists of three groups of IFN-induced genes - those regulated in response to virus-induced type I IFN, those regulated by the IFN-induced mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK pathway, and those by the IFN-induced phosphoinositide-3 kinase (PI-3K pathway. These three groups of type I IFN-regulated genes control important cellular processes such as apoptosis, survival, adhesion, and chemotaxis, that when dysregulated, contribute to autoimmunity. With the recent generation of large datasets in the public domain from next-generation sequencing and DNA microarray experiments, one can perform detailed analyses of cell type-specific gene signatures as well as identify distinct transcription factors that differentially regulate these gene signatures. We have performed bioinformatics analysis of data in the public domain and experimental data from our lab to gain insight into the regulation of type I IFN gene expression. We have found that the genetic landscape of the IFNA and IFNB genes are occupied by transcription factors, such as insulators CTCF and cohesin, that negatively regulate transcription, as well as IRF5 and IRF7, that positively and distinctly regulate IFNA subtypes. A detailed understanding of the factors controlling type I IFN gene transcription will significantly aid in the identification and development of new therapeutic strategies targeting the IFN pathway in autoimmune disease.

  8. Contextual factors affecting health information system strengthening.

    Science.gov (United States)

    Thomas, James C

    2017-12-01

    At the turn of the century, several major efforts were initiated to combat HIV/AIDS and other major epidemics affecting low- and middle-income countries (LMICs). They were accompanied by initiatives to enable recipient countries to collect and use data to guide their public health programmes. These health information systems (HIS) typify systems in that they have multiple interacting components, and they are embedded within larger systems. Components of a larger system act as the context for all lower-level systems. Their effects can be pervasive, and thus be taken for granted or regarded as unchangeable. We identify four contextual factors that affect efforts to strengthen HIS: hierarchical roles, aid funding, corruption, and competing priorities. We provide examples of each as experienced by those working to strengthen HIS in LMICs. Each of these contextual factors can seriously diminish the effectiveness of HIS strengthening efforts and their long-term sustainability. We propose research questions about each that would enable those engaged in HIS strengthening to work effectively and sustainably.

  9. Medusa structure of the gene regulatory network: dominance of transcription factors in cancer subtype classification.

    Science.gov (United States)

    Guo, Yuchun; Feng, Ying; Trivedi, Niraj S; Huang, Sui

    2011-05-01

    Gene expression profiles consisting of ten thousands of transcripts are used for clustering of tissue, such as tumors, into subtypes, often without considering the underlying reason that the distinct patterns of expression arise because of constraints in the realization of gene expression profiles imposed by the gene regulatory network. The topology of this network has been suggested to consist of a regulatory core of genes represented most prominently by transcription factors (TFs) and microRNAs, that influence the expression of other genes, and of a periphery of 'enslaved' effector genes that are regulated but not regulating. This 'medusa' architecture implies that the core genes are much stronger determinants of the realized gene expression profiles. To test this hypothesis, we examined the clustering of gene expression profiles into known tumor types to quantitatively demonstrate that TFs, and even more pronounced, microRNAs, are much stronger discriminators of tumor type specific gene expression patterns than a same number of randomly selected or metabolic genes. These findings lend support to the hypothesis of a medusa architecture and of the canalizing nature of regulation by microRNAs. They also reveal the degree of freedom for the expression of peripheral genes that are less stringently associated with a tissue type specific global gene expression profile.

  10. Bioinformatic landscapes for plant transcription factor system research.

    Science.gov (United States)

    Wang, Yijun; Lu, Wenjie; Deng, Dexiang

    2016-02-01

    Diverse bioinformatic resources have been developed for plant transcription factor (TF) research. This review presents the bioinformatic resources and methodologies for the elucidation of plant TF-mediated biological events. Such information is helpful to dissect the transcriptional regulatory systems in the three reference plants Arabidopsis , rice, and maize and translation to other plants. Transcription factors (TFs) orchestrate diverse biological programs by the modulation of spatiotemporal patterns of gene expression via binding cis-regulatory elements. Advanced sequencing platforms accompanied by emerging bioinformatic tools revolutionize the scope and extent of TF research. The system-level integration of bioinformatic resources is beneficial to the decoding of TF-involved networks. Herein, we first briefly introduce general and specialized databases for TF research in three reference plants Arabidopsis, rice, and maize. Then, as proof of concept, we identified and characterized heat shock transcription factor (HSF) members through the TF databases. Finally, we present how the integration of bioinformatic resources at -omics layers can aid the dissection of TF-mediated pathways. We also suggest ways forward to improve the bioinformatic resources of plant TFs. Leveraging these bioinformatic resources and methodologies opens new avenues for the elucidation of transcriptional regulatory systems in the three model systems and translation to other plants.

  11. Nymphal RNAi: systemic RNAi mediated gene knockdown in juvenile grasshopper

    Directory of Open Access Journals (Sweden)

    Dong Ying

    2005-10-01

    Full Text Available Abstract Background Grasshopper serves as important model system in neuroscience, development and evolution. Representatives of this primitive insect group are also highly relevant targets of pest control efforts. Unfortunately, the lack of genetics or gene specific molecular manipulation imposes major limitations to the study of grasshopper biology. Results We investigated whether juvenile instars of the grasshopper species Schistocerca americana are conducive to gene silencing via the systemic RNAi pathway. Injection of dsRNA corresponding to the eye colour gene vermilion into first instar nymphs triggered suppression of ommochrome formation in the eye lasting through two instars equivalent to 10–14 days in absolute time. QRT-PCR analysis revealed a two fold decrease of target transcript levels in affected animals. Control injections of EGFP dsRNA did not result in detectable phenotypic changes. RT-PCR and in situ hybridization detected ubiquitous expression of the grasshopper homolog of the dsRNA channel protein gene sid-1 in embryos, nymphs and adults. Conclusion Our results demonstrate that systemic dsRNA application elicits specific and long-term gene silencing in juvenile grasshopper instars. The conservation of systemic RNAi in the grasshopper suggests that this pathway can be exploited for gene specific manipulation of juvenile and adult instars in a wide range of primitive insects.

  12. An efficient transient expression system for gene function analysis in rose.

    Science.gov (United States)

    Lu, Jun; Bai, Mengjuan; Ren, Haoran; Liu, Jinyi; Wang, Changquan

    2017-01-01

    Roses are widely used as garden ornamental plants and cut flowers. Rosa chinensis cv 'Old Blush' has been used as a model genotype in rose studies due to its contribution to recurrent flowering and tea scent traits of modern roses. The deficiency of efficient genetic transformation systems is a handicap limiting functional genetics studies of roses. Agrobacterium -mediated transient transformation offers a powerful tool for the characterization of gene function in plants. A convenient and highly efficient Agrobacterium mediated genetic transformation protocol using R. chinensis cv 'Old Blush' seedlings in vitro as an expression system is described in this paper. The most important factor affecting transformation efficiency in this system is seedling age; 3/4-week-old rose shoots with or without roots from sub-culturing are optimal for transformation, requiring no complicated inoculation media, supplements, or carefully tuned plant growth conditions. This transient expression system was successfully applied to analysis of the gene promoter activities, DNA binding capacity of transcription factors, protein-protein interaction in physiological contexts using luciferase as a reporter gene. This transient transformation system was validated as a robust and efficient platform, thus providing a new option for gene function and signaling pathway investigation in roses and further extending the utility of R. chinensis cv 'Old Blush' as a model plant to study diverse gene function and signaling pathways in Rosaceae.

  13. Neural stem cell transcriptional networks highlight genes essential for nervous system development.

    Science.gov (United States)

    Southall, Tony D; Brand, Andrea H

    2009-12-16

    Neural stem cells must strike a balance between self-renewal and multipotency, and differentiation. Identification of the transcriptional networks regulating stem cell division is an essential step in understanding how this balance is achieved. We have shown that the homeodomain transcription factor, Prospero, acts to repress self-renewal and promote differentiation. Among its targets are three neural stem cell transcription factors, Asense, Deadpan and Snail, of which Asense and Deadpan are repressed by Prospero. Here, we identify the targets of these three factors throughout the genome. We find a large overlap in their target genes, and indeed with the targets of Prospero, with 245 genomic loci bound by all factors. Many of the genes have been implicated in vertebrate stem cell self-renewal, suggesting that this core set of genes is crucial in the switch between self-renewal and differentiation. We also show that multiply bound loci are enriched for genes previously linked to nervous system phenotypes, thereby providing a shortcut to identifying genes important for nervous system development.

  14. Development of a radiation-responsive gene expression system

    International Nuclear Information System (INIS)

    Ogawa, Ryohei; Morii, Akihiro; Watanabe, Akihiko

    2013-01-01

    We have obtained a promoter enhancing expression of a gene of our interest connected downstream after activation in response to radiation stimulation and it could be used in radiogenetic therapy, a combination between radiotherapy and gene therapy. The promoter has been chosen out of a library of DNA fragments constructed by connecting the TATA box to randomly combined binding sequences of transcription factors that are activated in response to radiation. Although it was shown that the promoter activation was cell type specific, it turned out that radiation responsive promoters could be obtained for a different type of cells by using another set of transcription factor binding sequences, suggesting that the method would be feasible to obtain promoters functioning in any type of cells. Radiation reactivity of obtained promoters could be improved by techniques such as random introduction of point mutations. The improved promoters significantly enhanced expression of the luciferase gene connected downstream in response to radiation even in vivo, in addition, a gene cassette composed of one such promoter and the fcy::fur gene was confirmed useful for suicide gene therapy as shown in vitro simulation experiment, suggesting possible clinical application. (author)

  15. Lineage-specific transcription factors and the evolution of gene regulatory networks

    OpenAIRE

    Nowick, Katja; Stubbs, Lisa

    2010-01-01

    Nature is replete with examples of diverse cell types, tissues and body plans, forming very different creatures from genomes with similar gene complements. However, while the genes and the structures of proteins they encode can be highly conserved, the production of those proteins in specific cell types and at specific developmental time points might differ considerably between species. A full understanding of the factors that orchestrate gene expression will be essential to fully understand ...

  16. Gene expression programming for power system static security ...

    African Journals Online (AJOL)

    user

    methodology has been examined using three IEEE standard test systems, where the input to the neural network is the voltage profile at each bus, the output of the PNN classifies the security of the power system into three classes, normal, alert and emergency. Gene expression programming (GEP) is a new evolutionary ...

  17. Analysis of the structural genes encoding M-factor in the fission yeast Schizosaccharomyces pombe: identification of a third gene, mfm3

    DEFF Research Database (Denmark)

    Kjaerulff, S; Davey, William John; Nielsen, O

    1994-01-01

    that is not rescued by addition of exogenous M-factor. A mutational analysis reveals that all three mfm genes contribute to the production of M-factor. Their transcription is limited to M cells and requires the mat1-Mc and ste11 gene products. Each gene is induced when the cells are starved of nitrogen and further...

  18. Structure and role of neutrophil cytosol factor 1 (NCF1) gene in ...

    African Journals Online (AJOL)

    Yomi

    2010-12-27

    NCF1) gene, exons, T cell activation. INTRODUCTION. An immune system is a system of biological structures and processes within an organism that protects against disease by identifying and killing pathogens. Detection is.

  19. Association of transforming growth factor-ß3 gene polymorphism ...

    African Journals Online (AJOL)

    user

    2011-03-07

    ). Expression of transforming growth factor-beta s 1-4 in chicken embryo chondrocytes and myocytes. Dev. Biol. 143: 135-. 148. Javanrouh A, Banabazi MH, Esmaeilkhanian S, Amirinia C, Seyedabadi. HR, Emrani H (2006).

  20. Catalase overexpression prevents nuclear factor erythroid 2-related factor 2 stimulation of renal angiotensinogen gene expression, hypertension, and kidney injury in diabetic mice.

    Science.gov (United States)

    Abdo, Shaaban; Shi, Yixuan; Otoukesh, Abouzar; Ghosh, Anindya; Lo, Chao-Sheng; Chenier, Isabelle; Filep, Janos G; Ingelfinger, Julie R; Zhang, Shao Ling; Chan, John S D

    2014-10-01

    This study investigated the impact of catalase (Cat) overexpression in renal proximal tubule cells (RPTCs) on nuclear factor erythroid 2-related factor 2 (Nrf2) stimulation of angiotensinogen (Agt) gene expression and the development of hypertension and renal injury in diabetic Akita transgenic mice. Additionally, adult male mice were treated with the Nrf2 activator oltipraz with or without the inhibitor trigonelline. Rat RPTCs, stably transfected with plasmid containing either rat Agt or Nrf2 gene promoter, were also studied. Cat overexpression normalized systolic BP, attenuated renal injury, and inhibited RPTC Nrf2, Agt, and heme oxygenase-1 (HO-1) gene expression in Akita Cat transgenic mice compared with Akita mice. In vitro, high glucose level, hydrogen peroxide, and oltipraz stimulated Nrf2 and Agt gene expression; these changes were blocked by trigonelline, small interfering RNAs of Nrf2, antioxidants, or pharmacological inhibitors of nuclear factor-κB and p38 mitogen-activated protein kinase. The deletion of Nrf2-responsive elements in the rat Agt gene promoter abolished the stimulatory effect of oltipraz. Oltipraz administration also augmented Agt, HO-1, and Nrf2 gene expression in mouse RPTCs and was reversed by trigonelline. These data identify a novel mechanism, Nrf2-mediated stimulation of intrarenal Agt gene expression and activation of the renin-angiotensin system, by which hyperglycemia induces hypertension and renal injury in diabetic mice. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis

    Directory of Open Access Journals (Sweden)

    Mukesh Meena

    2017-08-01

    Full Text Available Alternaria is an important fungus to study due to their different life style from saprophytes to endophytes and a very successful fungal pathogen that causes diseases to a number of economically important crops. Alternaria species have been well-characterized for the production of different host-specific toxins (HSTs and non-host specific toxins (nHSTs which depend upon their physiological and morphological stages. The pathogenicity of Alternaria species depends on host susceptibility or resistance as well as quantitative production of HSTs and nHSTs. These toxins are chemically low molecular weight secondary metabolites (SMs. The effects of toxins are mainly on different parts of cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc. Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin, and zinniol. HSTs that act in very low concentrations affect only certain plant varieties or genotype and play a role in determining the host range of specificity of plant pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-toxins which are named by their host specificity and these toxins are classified into different family groups. The HSTs are differentiated on the basis of bio-statistical and other molecular analyses. All these toxins have different mode of action, biochemical reactions and signaling mechanisms to cause diseases. Different species of Alternaria produced toxins which reveal its biochemical and genetic effects on itself as well as on its host cells tissues. The genes responsible for the production of HSTs are found on the conditionally dispensable chromosomes (CDCs which have been well characterized. Different bio-statistical methods like basic local alignment search tool (BLAST data analysis used for the annotation of gene prediction, pathogenicity-related genes may provide surprising knowledge in present and future.

  2. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis

    Science.gov (United States)

    Meena, Mukesh; Gupta, Sanjay K.; Swapnil, Prashant; Zehra, Andleeb; Dubey, Manish K.; Upadhyay, Ram S.

    2017-01-01

    Alternaria is an important fungus to study due to their different life style from saprophytes to endophytes and a very successful fungal pathogen that causes diseases to a number of economically important crops. Alternaria species have been well-characterized for the production of different host-specific toxins (HSTs) and non-host specific toxins (nHSTs) which depend upon their physiological and morphological stages. The pathogenicity of Alternaria species depends on host susceptibility or resistance as well as quantitative production of HSTs and nHSTs. These toxins are chemically low molecular weight secondary metabolites (SMs). The effects of toxins are mainly on different parts of cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc. Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin, and zinniol. HSTs that act in very low concentrations affect only certain plant varieties or genotype and play a role in determining the host range of specificity of plant pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-toxins which are named by their host specificity and these toxins are classified into different family groups. The HSTs are differentiated on the basis of bio-statistical and other molecular analyses. All these toxins have different mode of action, biochemical reactions and signaling mechanisms to cause diseases. Different species of Alternaria produced toxins which reveal its biochemical and genetic effects on itself as well as on its host cells tissues. The genes responsible for the production of HSTs are found on the conditionally dispensable chromosomes (CDCs) which have been well characterized. Different bio-statistical methods like basic local alignment search tool (BLAST) data analysis used for the annotation of gene prediction, pathogenicity-related genes may provide surprising knowledge in present and future. PMID:28848500

  3. The association of environmental, individual factors, and dopamine pathway gene variation with smoking cessation.

    Science.gov (United States)

    Li, Suyun; Wang, Qiang; Pan, Lulu; Yang, Xiaorong; Li, Huijie; Jiang, Fan; Zhang, Nan; Han, Mingkui; Jia, Chongqi

    2017-09-01

    This study aimed to examine whether dopamine (DA) pathway gene variation were associated with smoking cessation, and compare the relative importance of infulence factors on smoking cessation. Participants were recruited from 17 villages of Shandong Province, China. Twenty-five single nucleotide polymorphisms in 8 DA pathway genes were genotyped. Weighted gene score of each gene was used to analyze the whole gene effect. Logistic regression was used to calculate odds ratios (OR) of the total gene score for smoking cessation. Dominance analysis was employed to compare the relative importance of individual, heaviness of smoking, psychological and genetic factors on smoking cessation. 415 successful spontaneous smoking quitters served as the cases, and 404 unsuccessful quitters served as the controls. A significant negative association of total DA pathway gene score and smoking cessation was observed (p smoking cessation was heaviness of smoking score (42%), following by individual (40%), genetic (10%) and psychological score (8%). In conclusion, although the DA pathway gene variation was significantly associated with successful smoking cessation, heaviness of smoking and individual factors had bigger effect than genetic factors on smoking cessation.

  4. TF Target Mapper: A BLAST search tool for the identification of Transcription Factor target genes

    Directory of Open Access Journals (Sweden)

    van der Spek Peter

    2006-03-01

    Full Text Available Abstract Background In the current era of high throughput genomics a major challenge is the genome-wide identification of target genes for specific transcription factors. Chromatin immunoprecipitation (ChIP allows the isolation of in vivo binding sites of transcription factors and provides a powerful tool for examining gene regulation. Crosslinked chromatin is immunoprecipitated with antibodies against specific transcription factors, thus enriching for sequences bound in vivo by these factors in the immunoprecipitated DNA. Cloning and sequencing the immunoprecipitated sequences allows identification of transcription factor target genes. Routinely, thousands of such sequenced clones are used in BLAST searches to map their exact location in the genome and the genes located in the vicinity. These genes represent potential targets of the transcription factor of interest. Such bioinformatics analysis is very laborious if performed manually and for this reason there is a need for developing bioinformatic tools to automate and facilitate it. Results In order to facilitate this analysis we generated TF Target Mapper (Transcription Factor Target Mapper. TF Target Mapper is a BLAST search tool allowing rapid extraction of annotated information on genes around each hit. It combines sequence cleaning/filtering, pattern searching and BLAST searches with extraction of information on genes located around each BLAST hit and comparisons of the output list of genes or gene ontology IDs with user-implemented lists. We successfully applied and tested TF Target Mapper to analyse sequences bound in vivo by the transcription factor GATA-1. We show that TF Target Mapper efficiently extracted information on genes around ChIPed sequences, thus identifying known (e.g. α-globin and ζ-globin and potentially novel GATA-1 gene targets. Conclusion TF Target Mapper is a very efficient BLAST search tool that allows the rapid extraction of annotated information on the genes

  5. Factors affecting the gene expression of in vitro cultured human preimplantation embryos

    NARCIS (Netherlands)

    Mantikou, E.; Jonker, M.J.; Wong, K.M.; van Montfoort, A.P.A.; de Jong, M.; Breit, T.M.; Repping, S.; Mastenbroek, S.

    2016-01-01

    STUDY QUESTION: What is the relative effect of common environmental and biological factors on transcriptome changes during human preimplantation development? SUMMARY ANSWER: Developmental stage and maternal age had a larger effect on the global gene expression profile of human preimplantation

  6. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest.

    Science.gov (United States)

    Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang

    2015-08-20

    Tropical rainforests cover over 50% of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P The relative abundance of genes related to N cycling detected was significantly (P the uncultured bacteria. The gene categories related to ammonification had a high relative abundance. Both canonical correspondence analysis and multivariate regression tree analysis showed that soil available N was the most correlated with soil microbial functional gene structure. Overall high microbial functional gene diversity and different soil microbial metabolic potential for different biogeochemical processes were considered to exist in tropical rainforest. Soil available N could be the key factor in shaping the soil microbial functional gene structure and metabolic potential.

  7. Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes.

    Directory of Open Access Journals (Sweden)

    Stella A G D Salvo

    Full Text Available Embryogenic tissue culture systems are utilized in propagation and genetic engineering of crop plants, but applications are limited by genotype-dependent culture response. To date, few genes necessary for embryogenic callus formation have been identified or characterized. The goal of this research was to enhance our understanding of gene expression during maize embryogenic tissue culture initiation. In this study, we highlight the expression of candidate genes that have been previously regarded in the literature as having important roles in somatic embryogenesis. We utilized RNA based sequencing (RNA-seq to characterize the transcriptome of immature embryo explants of the highly embryogenic and regenerable maize genotype A188 at 0, 24, 36, 48, and 72 hours after placement of explants on tissue culture initiation medium. Genes annotated as functioning in stress response, such as glutathione-S-transferases and germin-like proteins, and genes involved with hormone transport, such as PINFORMED, increased in expression over 8-fold in the study. Maize genes with high sequence similarity to genes previously described in the initiation of embryogenic cultures, such as transcription factors BABY BOOM, LEAFY COTYLEDON, and AGAMOUS, and important receptor-like kinases such as SOMATIC EMBRYOGENESIS RECEPTOR LIKE KINASES and CLAVATA, were also expressed in this time course study. By combining results from whole genome transcriptome analysis with an in depth review of key genes that play a role in the onset of embryogenesis, we propose a model of coordinated expression of somatic embryogenesis-related genes, providing an improved understanding of genomic factors involved in the early steps of embryogenic culture initiation in maize and other plant species.

  8. Epidermal growth factor receptor gene status by fluorescence in situ hybridization in malignant, atypical, and benign hidradenomas.

    Science.gov (United States)

    Piris, Adriano; Scopsi, Lucio; Clemente, Claudio; Cetti Serbelloni, Federica; Mihm, Martin C; Hoang, Mai P

    2010-08-01

    Epidermal growth factor receptor (EGFR) protein overexpression and gene amplification are important prognostic factors in various tumors and EGFR inhibitors are now available as promising chemotherapeutic agents. There is little information in the literature regarding the EGFR protein and gene status in hidradenocarcinomas which has an aggressive biologic course characterized by repeated local recurrences and systemic metastasis. We have previously reported EGFR protein overexpression in malignant, atypical, and benign hidradenomas and would like to further evaluate their gene status by fluorescence in situ hybridization. Fluorescence in situ hybridization by 2-color probe Vysis LSI EGFR SpectrumOrange/CEP 7 SpectrumGreen Probe (Abbott Molecular) and EGFR immunostain (H11, Dakocytomation) were performed in 15 malignant, 15 atypical, and 7 benign hidradenomas. High polysomy and low trisomy was noted in 1 and 4 hidradenocarcinoma, respectively; however, EGFR overexpression was seen only in 1 low trisomy case. Disomy is noted in the remaining 29 cases (9 hidradenocarcinomas, 15 atypical hidradenomas, and 5 benign hidradenomas). EGFR overexpression was seen in 3/12 (25%) malignant hidradenomas, 7/15 (47%) atypical hidradenomas, and 3/5 (60%) benign hidradenomas; none of these cases demonstrated EGFR gene amplification. Polysomy/trisomy is more frequently seen in hidradenocarcinoma than atypical and benign hidradenomas. The role of EGFR inhibitor therapy in hidradenocarcinoma cases with protein overexpression remains unclear. Lack of correlation between the protein expression and polysomy/gene amplification suggests that molecular mechanisms other than gene amplification play a role in EGFR overexpression in malignant, atypical, and benign hidradenomas.

  9. Engineered CRISPR Systems for Next Generation Gene Therapies.

    Science.gov (United States)

    Pineda, Michael; Moghadam, Farzaneh; Ebrahimkhani, Mo R; Kiani, Samira

    2017-09-15

    An ideal in vivo gene therapy platform provides safe, reprogrammable, and precise strategies which modulate cell and tissue gene regulatory networks with a high temporal and spatial resolution. Clustered regularly interspaced short palindromic repeats (CRISPR), a bacterial adoptive immune system, and its CRISPR-associated protein 9 (Cas9), have gained attention for the ability to target and modify DNA sequences on demand with unprecedented flexibility and precision. The precision and programmability of Cas9 is derived from its complexation with a guide-RNA (gRNA) that is complementary to a desired genomic sequence. CRISPR systems open-up widespread applications including genetic disease modeling, functional screens, and synthetic gene regulation. The plausibility of in vivo genetic engineering using CRISPR has garnered significant traction as a next generation in vivo therapeutic. However, there are hurdles that need to be addressed before CRISPR-based strategies are fully implemented. Some key issues center on the controllability of the CRISPR platform, including minimizing genomic-off target effects and maximizing in vivo gene editing efficiency, in vivo cellular delivery, and spatial-temporal regulation. The modifiable components of CRISPR systems: Cas9 protein, gRNA, delivery platform, and the form of CRISPR system delivered (DNA, RNA, or ribonucleoprotein) have recently been engineered independently to design a better genome engineering toolbox. This review focuses on evaluating CRISPR potential as a next generation in vivo gene therapy platform and discusses bioengineering advancements that can address challenges associated with clinical translation of this emerging technology.

  10. Single and combinatorial chromatin coupling events underlies the function of transcript factor krüppel-like factor 11 in the regulation of gene networks

    Science.gov (United States)

    2014-01-01

    Background Krüppel-like factors (KLFs) are a group of master regulators of gene expression conserved from flies to human. However, scant information is available on either the mechanisms or functional impact of the coupling of KLF proteins to chromatin remodeling machines, a deterministic step in transcriptional regulation. Results and discussion In the current study, we use genome-wide analyses of chromatin immunoprecipitation (ChIP-on-Chip) and Affymetrix-based expression profiling to gain insight into how KLF11, a human transcription factor involved in tumor suppression and metabolic diseases, works by coupling to three co-factor groups: the Sin3-histone deacetylase system, WD40-domain containing proteins, and the HP1-histone methyltransferase system. Our results reveal that KLF11 regulates distinct gene networks involved in metabolism and growth by using single or combinatorial coupling events. Conclusion This study, the first of its type for any KLF protein, reveals that interactions with multiple chromatin systems are required for the full gene regulatory function of these proteins. PMID:24885560

  11. Advances in detection systems of gene and chromosome abnormalities

    International Nuclear Information System (INIS)

    Yatagai, Takeo

    2002-01-01

    This review is described from the aspect of radiation biology. For analysis at gene level, oxidative lesion of DNA like 7,8-dihydro-8-oxoguanine formation and its repair by DNA polymerase η etc in bacteria, yeast and mammalian cells are suggested to be a useful index of radiation mutation. Transgenic mice with E. coli and/or phage gene as a reporter can be a tool for gene analysis for specific organ mutation: data obtained by irradiation of X-ray, γ-ray and accelerated carbon beam to the mouse gpt delta are presented. For analysis from gene to chromosome levels, loss of heterozygosity of a specific gene is a key for analysis of chromosome aberration at the molecular level. Studies in yeast and mammalian cells are presented. The author also described data of gene mutation in TK6 cells irradiated by 2 Gy of X-ray and 10 cGy of carbon beam (135 MeV/u) generated by ring-cycrotron. Human-hamster hybrid cell is an alternative tool. Concerning significance at the individual level, the author quoted studies of irradiation of parent mice resulting in increased incidence of somatic cell mutation and of cancer in offspring. Future systems for gene mutation will be a use of transgenic mice or of markers like a specific cancer. (K.H.)

  12. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  13. The Physcomitrella patens System for Transient Gene Expression Assays.

    Science.gov (United States)

    Thévenin, Johanne; Xu, Wenjia; Vaisman, Louise; Lepiniec, Loïc; Dubreucq, Bertrand; Dubos, Christian

    2016-01-01

    Transient expression assays are valuable techniques to study in vivo the transcriptional regulation of gene expression. These methods allow to assess the transcriptional properties of a given transcription factor (TF) or a complex of regulatory proteins against specific DNA motifs, called cis-regulatory elements. Here, we describe a fast, efficient, and reliable method based on the use of Physcomitrella patens protoplasts that allows the study of gene expression in a qualitative and quantitative manner by combining the advantage of GFP (green fluorescent protein) as a marker of promoter activity with flow cytometry for accurate measurement of fluorescence in individual cells.

  14. Robust Nonnegative Matrix Factorization via Joint Graph Laplacian and Discriminative Information for Identifying Differentially Expressed Genes

    Directory of Open Access Journals (Sweden)

    Ling-Yun Dai

    2017-01-01

    Full Text Available Differential expression plays an important role in cancer diagnosis and classification. In recent years, many methods have been used to identify differentially expressed genes. However, the recognition rate and reliability of gene selection still need to be improved. In this paper, a novel constrained method named robust nonnegative matrix factorization via joint graph Laplacian and discriminative information (GLD-RNMF is proposed for identifying differentially expressed genes, in which manifold learning and the discriminative label information are incorporated into the traditional nonnegative matrix factorization model to train the objective matrix. Specifically, L2,1-norm minimization is enforced on both the error function and the regularization term which is robust to outliers and noise in gene data. Furthermore, the multiplicative update rules and the details of convergence proof are shown for the new model. The experimental results on two publicly available cancer datasets demonstrate that GLD-RNMF is an effective method for identifying differentially expressed genes.

  15. LU factorization for accelerator-based systems

    KAUST Repository

    Agullo, Emmanuel

    2011-12-01

    Multicore architectures enhanced with multiple GPUs are likely to become mainstream High Performance Computing (HPC) platforms in a near future. In this paper, we present the design and implementation of an LU factorization using tile algorithm that can fully exploit the potential of such platforms in spite of their complexity. We use a methodology derived from previous work on Cholesky and QR factorizations. Our contributions essentially consist of providing new CPU/GPU hybrid LU kernels, studying the impact on performance of the looking variants as well as the storage layout in presence of pivoting, tuning the kernels for two different machines composed of multiple recent NVIDIA Tesla S1070 (four GPUs total) and Fermi-based S2050 GPUs (three GPUs total), respectively. The hybrid tile LU asymptotically achieves 1 Tflop/s in single precision on both hardwares. The performance in double precision arithmetic reaches 500 Gflop/s on the Fermi-based system, twice faster than the old GPU generation of Tesla S1070. We also discuss the impact of the number of tiles on the numerical stability. We show that the numerical results of the tile LU factorization will be accurate enough for most applications as long as the computations are performed in double precision arithmetic. © 2011 IEEE.

  16. Hox gene regulation in the central nervous system of Drosophila

    Directory of Open Access Journals (Sweden)

    Maheshwar eGummalla

    2014-04-01

    Full Text Available Hox genes specify the structures that form along the anteroposterior (AP axis of bilateria. Within the genome, they often form clusters where, remarkably enough, their position within the clusters reflects the relative positions of the structures they specify along the AP axis. This correspondence between genomic organization and gene expression pattern has been conserved through evolution and provides a unique opportunity to study how chromosomal context affects gene regulation. In Drosophila, a general rule, often called posterior dominance, states that Hox genes specifying more posterior structures repress the expression of more anterior Hox genes. This rule explains the apparent spatial complementarity of Hox gene expression patterns in Drosophila. Here we review a noticeable exception to this rule where the more-posteriorly expressed Abd-B hox gene fails to repress the more-anterior abd-A gene in cells of the central nervous system (CNS. While Abd-B is required to repress ectopic expression of abd-A in the posterior epidermis, abd-A repression in the posterior CNS is accomplished by a different mechanism that involves a large 92kb long non-coding RNA (lncRNA encoded by the intergenic region separating abd-A and Abd-B (the iab8ncRNA. Dissection of this lncRNA revealed that abd-A is repressed by the lncRNA using two redundant mechanisms. The 1st mechanism is mediated by a microRNA (mir-iab-8 encoded by intronic sequence within the large iab8-ncRNA. Meanwhile, the second mechanism seems to involve transcriptional interference by the long iab-8 ncRNA on the abd-A promoter. Recent work demonstrating CNS-specific regulation of genes by ncRNAs in Drosophila, seem to highlight a potential role for the iab-8-ncRNA in the evolution of the Drosophila hox complexes

  17. Inflammatory genes and psychological factors predict induced shoulder pain phenotype.

    Science.gov (United States)

    George, Steven Z; Parr, Jeffrey J; Wallace, Margaret R; Wu, Samuel S; Borsa, Paul A; Dai, Yunfeng; Fillingim, Roger B

    2014-10-01

    The pain experience has multiple influences, but little is known about how specific biological and psychological factors interact to influence pain responses. The current study investigated the combined influences of genetic (pro-inflammatory) and psychological factors on several preclinical shoulder pain phenotypes. An exercise-induced shoulder injury model was used, and a priori selected genetic (IL1B, TNF/LTA region, and IL6 single nucleotide polymorphisms (SNP)) and psychological (anxiety, depression symptoms, pain catastrophizing, fear of pain, and kinesiophobia) factors were included as the predictors of interest. The phenotypes were pain intensity (5-d average and peak reported on numerical rating scale), upper extremity disability (5-d average and peak reported on the Quick Disabilities of the Arm, Shoulder and Hand instrument), and duration of shoulder pain (d). After controlling for age, sex, and race, the genetic and psychological predictors were entered separately as main effects and interaction terms in regression models for each pain phenotype. Results from the recruited cohort (n = 190) indicated strong statistical evidence for the interactions between 1) TNF/LTA SNP rs2229094 and depression symptoms for average pain intensity and duration and 2) IL1B two SNP diplotype and kinesiophobia for average shoulder pain intensity. Moderate statistical evidence for prediction of additional shoulder pain phenotypes included interactions of kinesiophobia, fear of pain, or depressive symptoms with TNF/LTA rs2229094 and IL1B. These findings support the combined predictive ability of specific genetic and psychological factors for shoulder pain phenotypes by revealing novel combinations that may merit further investigation in clinical cohorts to determine their involvement in the transition from acute to chronic pain conditions.

  18. PTTG Binding Factor – a New Gene in Breast Cancer

    OpenAIRE

    Watkins, Rachel J; Read, Martin L; Smith, Vicki E; Sharma, Neil; Reynolds, Gary M; Buckley, Laura; Doig, Craig; Campbell, Moray J; Lewy, Greg; Eggo, Margaret C; Loubiere, Laurence S; Franklyn, Jayne A; Boelaert, Kristien; McCabe, Christopher J

    2010-01-01

    PTTG Binding Factor (PBF; PTTG1IP) is a relatively uncharacterized oncoprotein whose function remains obscure. Because of the presence of putative oestrogen response elements (ERE) in its promoter, we assessed PBF regulation by oestrogen. PBF mRNA and protein expression were induced by both diethylstilbestrol and 17ß-estradiol in oestrogen receptor alpha (ERα) positive MCF-7 cells. Detailed analysis of the PBF promoter showed that the region −399 to −291 relative to the translational start si...

  19. Genome-wide identification and expression profiling of auxin response factor (ARF gene family in maize

    Directory of Open Access Journals (Sweden)

    Zhang Yirong

    2011-04-01

    Full Text Available Abstract Background Auxin signaling is vital for plant growth and development, and plays important role in apical dominance, tropic response, lateral root formation, vascular differentiation, embryo patterning and shoot elongation. Auxin Response Factors (ARFs are the transcription factors that regulate the expression of auxin responsive genes. The ARF genes are represented by a large multigene family in plants. The first draft of full maize genome assembly has recently been released, however, to our knowledge, the ARF gene family from maize (ZmARF genes has not been characterized in detail. Results In this study, 31 maize (Zea mays L. genes that encode ARF proteins were identified in maize genome. It was shown that maize ARF genes fall into related sister pairs and chromosomal mapping revealed that duplication of ZmARFs was associated with the chromosomal block duplications. As expected, duplication of some ZmARFs showed a conserved intron/exon structure, whereas some others were more divergent, suggesting the possibility of functional diversification for these genes. Out of these 31 ZmARF genes, 14 possess auxin-responsive element in their promoter region, among which 7 appear to show small or negligible response to exogenous auxin. The 18 ZmARF genes were predicted to be the potential targets of small RNAs. Transgenic analysis revealed that increased miR167 level could cause degradation of transcripts of six potential targets (ZmARF3, 9, 16, 18, 22 and 30. The expressions of maize ARF genes are responsive to exogenous auxin treatment. Dynamic expression patterns of ZmARF genes were observed in different stages of embryo development. Conclusions Maize ARF gene family is expanded (31 genes as compared to Arabidopsis (23 genes and rice (25 genes. The expression of these genes in maize is regulated by auxin and small RNAs. Dynamic expression patterns of ZmARF genes in embryo at different stages were detected which suggest that maize ARF genes may

  20. Factors influencing codon usage of mitochondrial ND1 gene in pisces, aves and mammals.

    Science.gov (United States)

    Uddin, Arif; Choudhury, Monisha Nath; Chakraborty, Supriyo

    2017-11-01

    Animal mitochondrial genome harbours 13 protein coding genes which regulate the process of respiration. The mitochondrial NADH dehydrogenase 1 (MT-ND1) gene, one of the 13 protein-coding genes, encodes the NADH dehydrogenase 1 enzyme of the respiratory chain. Analysis of codon usage bias (CUB) acquires importance for better understanding of the molecular biology, new gene discovery, design of transgenes and gene evolution. The MT-ND1 gene seems to be a good candidate for analyzing codon usage pattern, since no work has yet been reported. Moreover, it is still not clear which factors significantly influence the codon usage pattern. In the present study, comparative analysis of codon usage pattern, expression level and influencing factors for MT-ND1 gene from 100 different species each of pisces, aves and mammals were used for CUB analysis. Our result suggests that the gene is AT rich in pisces, aves and mammals and most of the nucleotides significantly differ among them as revealed from t-test. CUB was not remarkable as reflected by high value of effective number of codons and it also significantly differs among pisces, aves and mammals. Although we found that CUB is mainly influenced by natural selection and mutation pressure for MT-ND1 gene as suggested by correlation and correspondence analysis but neutrality plot further revealed that natural selection played a major role and mutation pressure played a minor role in codon usage pattern. Additionally, t-test analysis showed that the MT-ND1 gene has a wide significant discrepancy in codon choices in pisces, aves and mammals. This study has contributed to boost our understanding about the mechanism of distribution of the codons and the factors that may influence the evolution of the MT-ND1 gene. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  1. In Vivo Gene Therapy of Hemophilia B: Sustained Partial Correction in Factor IX-Deficient Dogs

    Science.gov (United States)

    Kay, Mark A.; Rothenberg, Steven; Landen, Charles N.; Bellinger, Dwight A.; Leland, Frances; Toman, Carol; Finegold, Milton; Thompson, Arthur R.; Read, M. S.; Brinkhous, Kenneth M.; Woo, Savio L. C.

    1993-10-01

    The liver represents a model organ for gene therapy. A method has been developed for hepatic gene transfer in vivo by the direct infusion of recombinant retroviral vectors into the portal vasculature, which results in the persistent expression of exogenous genes. To determine if these technologies are applicable for the treatment of hemophilia B patients, preclinical efficacy studies were done in a hemophilia B dog model. When the canine factor IX complementary DNA was transduced directly into the hepatocytes of affected dogs in vivo, the animals constitutively expressed low levels of canine factor IX for more than 5 months. Persistent expression of the clotting. factor resulted in reductions of whole blood clotting and partial thromboplastin times of the treated animals. Thus, long-term treatment of hemophilia B patients may be feasible by direct hepatic gene therapy in vivo.

  2. The Schizosaccharomyces pombe mam1 gene encodes an ABC transporter mediating secretion of M-factor

    DEFF Research Database (Denmark)

    Christensen, P U; Davey, William John; Nielsen, O

    1997-01-01

    In the fission yeast Schizosaccharomyces pombe, cells of opposite mating type communicate via diffusible peptide pheromones prior to mating. We have cloned the S. pombe mam1 gene, which encodes a 1336-amino acid protein belonging to the ATP-binding cassette (ABC) superfamily. The mam1 gene is only...... expressed in M cells and the gene product is responsible for the secretion of the mating pheromone. M-factor, a nonapeptide that is S-farnesylated and carboxy-methylated on its C-terminal cysteine residue. The predicted Mam1 protein is highly homologous to mammalian multiple drug-resistance proteins...... and to the Saccharomyces cerevisiae STE6 gene product, which mediates export of a-factor mating pheromone. We show that STE6 can also mediate secretion of M-factor in S. pombe....

  3. Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation.

    Science.gov (United States)

    Wagner, Doris; Wellmer, Frank; Dilks, Kieran; William, Dilusha; Smith, Michael R; Kumar, Prakash P; Riechmann, José Luis; Greenland, Andrew J; Meyerowitz, Elliot M

    2004-07-01

    We have developed a versatile floral induction system that is based on ectopic overexpression of the transcription factor LEAFY (LFY) in callus. During shoot regeneration, flowers or floral organs are formed directly from root explants without prior formation of rosette leaves. Morphological and reporter gene analyses show that leaf-like structures are converted to floral organs in response to LFY activity. Thus, increased levels of LFY activity are sufficient to bypass normal vegetative development and to direct formation of flowers in tissue culture. We found that about half of the cultured cells respond to inducible LFY activity with a rapid upregulation of the known direct target gene of LFY, APETALA1 (AP1). This dramatic increase in the number of LFY-responsive cells compared to whole plants suggested that the tissue culture system could greatly facilitate the analysis of LFY-dependent gene regulation by genomic approaches. To test this, we monitored the gene expression changes that occur in tissue culture after activation of LFY using a flower-specific cDNA microarray. Induction of known LFY target genes was readily detected in these experiments. In addition, several other genes were identified that had not been implicated in signaling downstream of LFY before. Thus, the floral induction system is suitable for the detection of low abundance transcripts whose expression is controlled in an LFY-dependent manner.

  4. TF Target Mapper: a BLAST search tool for the identification of Transcription Factor target genes.

    NARCIS (Netherlands)

    S. Horsman (Sebastiaan); M.J. Moorhouse (Michael); V. de Jager (Victor); P.J. van der Spek (Peter); F.G. Grosveld (Frank); J. Strouboulis (John); E. Katsantoni (Eleni)

    2006-01-01

    textabstractBACKGROUND: In the current era of high throughput genomics a major challenge is the genome-wide identification of target genes for specific transcription factors. Chromatin immunoprecipitation (ChIP) allows the isolation of in vivo binding sites of transcription factors and provides a

  5. Timing of gene expression from different genetic systems in shaping ...

    Indian Academy of Sciences (India)

    Timing of gene expression from different genetic systems in shaping leucine and isoleucine contents of rapeseed (Brassica napus L.) meal ... Department of Agronomy, Zhejiang University, Hangzhou, 310029, People's Republic of China; School of Agriculture and Food Science, Zhejiang A & F University, Lin'an, 311300, ...

  6. Gene expression programming for power system static security ...

    African Journals Online (AJOL)

    In this paper, a novel gene expression programming (GEP) algorithm is presented for power system static security assessment. The GEP algorithms as evolutionary algorithms for pattern classification have recently received attention for classification problems because they can perform global searches and achieve high ...

  7. Association of TRPM Channel Gene Polymorphisms with Systemic Sclerosis.

    Science.gov (United States)

    Oztuzcu, Serdar; Onat, Ahmet M; Pehlivan, Yavuz; Alibaz-Oner, Fatma; Donmez, Salim; Cetin, Gozde Y; Yolbas, Servet; Bozgeyik, Ibrahim; Yilmaz, Neslihan; Ozgen, Metin; Cagatay, Yonca; Kisacik, Bunyamin; Koca, Suleyman S; Pamuk, Omer Nuri; Sayarlioglu, Mehmet; Direskeneli, Haner; Demiryurek, Abdullah T

    2015-01-01

    Systemic sclerosis (SSc) is an inflammatory disease characterized by vascular abnormalities and fibrosis. The aim of the present study was to investigate the possible role of transient receptor potential melastatin (TRPM) channel genes in the susceptibility and phenotype expression of SSc. A total of 339 patients with SSc and 302 healthy controls were studied. Genomic DNA was extracted from leukocytes of the peripheral blood, and 25 single nucleotide polymorphisms in the TRPM channel genes were analyzed by the BioMark HD dynamic array system. There were marked increases in the CC genotype (94.7% vs 81.8%, pTRPM5 rs34551253 (Ala456Thr) polymorphism in SSc patients when compared to controls. TRPM3 gene rs1328142 polymorphism was also markedly associated with disease phenotype. However, no associations with the other 23 polymorphisms studied were found. This is the first study to examine the involvement of TRPM channel gene variations on the risk of SSc incidence. Our results suggest roles of TRPM3 and TRPM5 gene variants in the susceptibility to or clinical expression of SSc in the Turkish population. Copyright © 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Derepression of the Iroquois Homeodomain Transcription Factor Gene IRX3 Confers Differentiation Block in Acute Leukemia

    Directory of Open Access Journals (Sweden)

    Tim D.D. Somerville

    2018-01-01

    Full Text Available The Iroquois homeodomain transcription factor gene IRX3 is expressed in the developing nervous system, limb buds, and heart, and transcript levels specify obesity risk in humans. We now report a functional role for IRX3 in human acute leukemia. Although transcript levels are very low in normal human bone marrow cells, high IRX3 expression is found in ∼30% of patients with acute myeloid leukemia (AML, ∼50% with T-acute lymphoblastic leukemia, and ∼20% with B-acute lymphoblastic leukemia, frequently in association with high-level HOXA gene expression. Expression of IRX3 alone was sufficient to immortalize hematopoietic stem and progenitor cells (HSPCs in myeloid culture and induce lymphoid leukemias in vivo. IRX3 knockdown induced terminal differentiation of AML cells. Combined IRX3 and Hoxa9 expression in murine HSPCs impeded normal T-progenitor differentiation in lymphoid culture and substantially enhanced the morphologic and phenotypic differentiation block of AML in myeloid leukemia transplantation experiments through suppression of a terminal myelomonocytic program. Likewise, in cases of primary human AML, high IRX3 expression is strongly associated with reduced myelomonocytic differentiation. Thus, tissue-inappropriate derepression of IRX3 contributes significantly to the block in differentiation, which is the pathognomonic feature of human acute leukemias.

  9. Differential expression and interaction of host factors augment HIV-1 gene expression in neonatal mononuclear cells

    International Nuclear Information System (INIS)

    Sundaravaradan, Vasudha; Mehta, Roshni; Harris, David T.; Zack, Jerome A.; Ahmad, Nafees

    2010-01-01

    We have previously shown a higher level of HIV-1 replication and gene expression in neonatal (cord) blood mononuclear cells (CBMC) compared with adult blood cells (PBMC), which could be due to differential expression of host factors. We performed the gene expression profile of CBMC and PBMC and found that 8013 genes were expressed at higher levels in CBMC than PBMC and 8028 genes in PBMC than CBMC, including 1181 and 1414 genes upregulated after HIV-1 infection in CBMC and PBMC, respectively. Several transcription factors (NF-κB, E2F, HAT-1, TFIIE, Cdk9, Cyclin T1), signal transducers (STAT3, STAT5A) and cytokines (IL-1β, IL-6, IL-10) were upregulated in CBMC than PBMC, which are known to influence HIV-1 replication. In addition, a repressor of HIV-1 transcription, YY1, was down regulated in CBMC than PBMC and several matrix metalloproteinase (MMP-7, -12, -14) were significantly upregulated in HIV-1 infected CBMC than PBMC. Furthermore, we show that CBMC nuclear extracts interacted with a higher extent to HIV-1 LTR cis-acting sequences, including NF-κB, NFAT, AP1 and NF-IL6 compared with PBMC nuclear extracts and retroviral based short hairpin RNA (shRNA) for STAT3 and IL-6 down regulated their own and HIV-1 gene expression, signifying that these factors influenced differential HIV-1 gene expression in CBMC than PBMC.

  10. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development.

    Science.gov (United States)

    Pajoro, Alice; Madrigal, Pedro; Muiño, Jose M; Matus, José Tomás; Jin, Jian; Mecchia, Martin A; Debernardi, Juan M; Palatnik, Javier F; Balazadeh, Salma; Arif, Muhammad; Ó'Maoiléidigh, Diarmuid S; Wellmer, Frank; Krajewski, Pawel; Riechmann, José-Luis; Angenent, Gerco C; Kaufmann, Kerstin

    2014-03-03

    Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood. We characterized the relationship of chromatin accessibility, gene expression, and DNA binding of two MADS-domain proteins at different stages of Arabidopsis flower development. Dynamic changes in APETALA1 and SEPALLATA3 DNA binding correlated with changes in gene expression, and many of the target genes could be associated with the developmental stage in which they are transcriptionally controlled. We also observe dynamic changes in chromatin accessibility during flower development. Remarkably, DNA binding of APETALA1 and SEPALLATA3 is largely independent of the accessibility status of their binding regions and it can precede increases in DNA accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate chromatin accessibility, thereby facilitating access of other transcriptional regulators to their target genes. Our findings indicate that different homeotic factors regulate partly overlapping, yet also distinctive sets of target genes in a partly stage-specific fashion. By combining the information from DNA-binding and gene expression data, we are able to propose models of stage-specific regulatory interactions, thereby addressing dynamics of regulatory networks throughout flower development. Furthermore, MADS-domain TFs may regulate gene expression by alternative strategies, one of which is modulation of chromatin accessibility.

  11. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    Science.gov (United States)

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol

  12. A System Dynamics Analysis of the Factors Affecting Combat Readiness

    Science.gov (United States)

    1980-06-01

    capability of those weapon systems ( ASCAP ) and then modifying this value by an aircrew capability factor (ACCF) and weapon systems availability factor...NOTE USR - UNITED STATES READINESS NOTE ACCF - AIRCREW CAPABILITY FACTOR w NOTE ASCAP - AIRCRAFT SYSTEMS CAPABILITY NOTE LOWS - LEVEL OF WEAPON SYSTEMS

  13. Targeted gene expression in transgenic Xenopus using the binary Gal4-UAS system.

    Science.gov (United States)

    Hartley, Katharine O; Nutt, Stephen L; Amaya, Enrique

    2002-02-05

    The transgenic technique in Xenopus allows one to misexpress genes in a temporally and spatially controlled manner. However, this system suffers from two experimental limitations. First, the restriction enzyme-mediated integration procedure relies on chromosomal damage, resulting in a percentage of embryos failing to develop normally. Second, every transgenic embryo has unique sites of integration and unique transgene copy number, resulting in variable transgene expression levels and variable phenotypes. For these reasons, we have adapted the Gal4-UAS method for targeted gene expression to Xenopus. This technique relies on the generation of transgenic lines that carry "activator" or "effector" constructs. Activator lines express the yeast transcription factor, Gal4, under the control of a desired promoter, whereas effector lines contain DNA-binding motifs for Gal4-(UAS) linked to the gene of interest. We show that on intercrossing of these lines, the effector gene is transcribed in the temporal and spatial manner of the activator's promoter. Furthermore, we use the Gal4-UAS system to misexpress Xvent-2, a transcriptional target of bone morphogenetic protein 4 (BMP4) signaling during early embryogenesis. Embryos inheriting both the Gal4 activator and Xvent-2 effector transgenes display a consistent microcephalic phenotype. Finally, we exploit this system to characterize the neural and mesodermal defects obtained from early misexpression of Xvent-2. These results emphasize the potential of this system for the controlled analyses of gene function in Xenopus.

  14. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    Science.gov (United States)

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  15. Transcription factors and stress response gene alterations in human keratinocytes following Solar Simulated Ultra Violet Radiation.

    Science.gov (United States)

    Marais, Thomas L Des; Kluz, Thomas; Xu, Dazhong; Zhang, Xiaoru; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2017-10-19

    Ultraviolet radiation (UVR) from sunlight is the major effector for skin aging and carcinogenesis. However, genes and pathways altered by solar-simulated UVR (ssUVR), a mixture of UVA and UVB, are not well characterized. Here we report global changes in gene expression as well as associated pathways and upstream transcription factors in human keratinocytes exposed to ssUVR. Human HaCaT keratinocytes were exposed to either a single dose or 5 repetitive doses of ssUVR. Comprehensive analyses of gene expression profiles as well as functional annotation were performed at 24 hours post irradiation. Our results revealed that ssUVR modulated genes with diverse cellular functions changed in a dose-dependent manner. Gene expression in cells exposed to a single dose of ssUVR differed significantly from those that underwent repetitive exposures. While single ssUVR caused a significant inhibition in genes involved in cell cycle progression, especially G2/M checkpoint and mitotic regulation, repetitive ssUVR led to extensive changes in genes related to cell signaling and metabolism. We have also identified a panel of ssUVR target genes that exhibited persistent changes in gene expression even at 1 week after irradiation. These results revealed a complex network of transcriptional regulators and pathways that orchestrate the cellular response to ssUVR.

  16. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  17. Transcription activation of a UV-inducible Clostridium perfringens bacteriocin gene by a novel sigma factor.

    Science.gov (United States)

    Dupuy, Bruno; Mani, Nagraj; Katayama, Seiichi; Sonenshein, Abraham L

    2005-02-01

    Expression of the plasmid-encoded Clostridium perfringens gene for bacteriocin BCN5 was shown to depend in vivo and in vitro on the activity of UviA protein. UviA, also plasmid-encoded, proved to be an RNA polymerase sigma factor and was also partly autoregulatory. The uviA gene has two promoters; one provided a UviA-independent, basal level of gene expression while the stronger, UviA-dependent promoter was only utilized after the cell experienced DNA damage. As a result, BCN5 synthesis is induced by treatment with UV light or mitomycin C. UviA is related to a special class of sigma factors found to date only in Clostridium species and responsible for activating transcription of toxin genes in Clostridium difficile, Clostridium tetani, and Clostridium botulinum.

  18. [Experimental approach to the gene therapy of motor neuron disease with the use of genes hypoxia-inducible factors].

    Science.gov (United States)

    Ismailov, Sh M; Barykova, Iu A; Shmarov, M M; Tarantul, V Z; Barskov, I V; Kucherianu, V G; Brylev, L V; Logunov, D Iu; Tutykhina, I L; Bocharov, E V; Zakharova, M N; Naroditskiĭ, B S; Illarioshkin, S N

    2014-05-01

    Motor neuron disease (MND), or amyotrophic lateral sclerosis, is a fatal neurodegenerative disorder characterized by a progressive loss of motor neurons in the spinal cord and the brain. Several angiogenic and neurogenic growth factors, such as the vascular endothelial growth factor (VEGF), angiogenin (ANG), insulin-like growth factor (IGF) and others, have been shown to promote survival of the spinal motor neurons during ischemia. We constructed recombinant vectors using human adenovirus 5 (Ad5) carrying the VEGF, ANG or IGF genes under the control of the cytomegalovirus promoter. As a model for MND, we employed a transgenic mice strain, B6SJL-Tg (SOD1*G93A)d11 Gur/J that develops a progressive degeneration of the spinal motor neurons caused by the expression of a mutated Cu/Zn superoxide dismutase gene SOD1. Delivery of the therapeutic genes to the spinal motor neurons was done using the effect of the retrograde axonal transport after multiple injections of the Ad5-VEGF, Ad5-ANG and Ad5-IGF vectors and their combinations into the limbs and back muscles of the SOD1(G93A) mice. Viral transgene expression in the spinal cord motor neurons was confirmed by immunocytochemistry and RT-RCR. We assessed the neurological status, motor activity and lifespan of experimental and control animal groups. We discovered that SOD1(G93A) mice injected with the Ad5-VEGF + Ad5-ANG combination showed a 2-3 week delay in manifestation of the disease, higher motor activity at the advanced stages of the disease, and at least a 10% increase in the lifespan compared to the control and other experimental groups. These results support the safety and therapeutic efficacy of the tested recombinant treatment. We propose that the developed experimental MND treatment based on viral delivery of VEGF + ANG can be used as a basis for gene therapy drug development and testing in the preclinical and clinical trials of the MND.

  19. Echinoderm systems for gene regulatory studies in evolution and development.

    Science.gov (United States)

    Arnone, Maria Ina; Andrikou, Carmen; Annunziata, Rossella

    2016-08-01

    One of the main challenges in Evolutionary Developmental Biology is to understand to which extent developmental changes are driven by regulatory alterations in the genomic sequence. In the recent years, the focus of comparative developmental studies has moved towards a systems biology approach providing a better understanding of the evolution of gene interactions that form the so called Gene Regulatory Networks (GRN). Echinoderms provide a powerful system to reveal regulatory mechanisms and within the past decade, due to the latest technological innovations, a great number of studies have provided valuable information for comparative GRN analyses. In this review we describe recent advances in evolution of GRNs arising from echinoderm systems, focusing on the properties of conserved regulatory kernels, circuit co-option events and GRN topological rearrangements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. GeneNetwork: A Toolbox for Systems Genetics.

    Science.gov (United States)

    Mulligan, Megan K; Mozhui, Khyobeni; Prins, Pjotr; Williams, Robert W

    2017-01-01

    The goal of systems genetics is to understand the impact of genetic variation across all levels of biological organization, from mRNAs, proteins, and metabolites, to higher-order physiological and behavioral traits. This approach requires the accumulation and integration of many types of data, and also requires the use of many types of statistical tools to extract relevant patterns of covariation and causal relations as a function of genetics, environment, stage, and treatment. In this protocol we explain how to use the GeneNetwork web service, a powerful and free online resource for systems genetics. We provide workflows and methods to navigate massive multiscalar data sets and we explain how to use an extensive systems genetics toolkit for analysis and synthesis. Finally, we provide two detailed case studies that take advantage of human and mouse cohorts to evaluate linkage between gene variants, addiction, and aging.

  1. Patterns of positive selection of the myogenic regulatory factor gene family in vertebrates.

    Science.gov (United States)

    Zhao, Xiao; Yu, Qi; Huang, Ling; Liu, Qing-Xin

    2014-01-01

    The functional divergence of transcriptional factors is critical in the evolution of transcriptional regulation. However, the mechanism of functional divergence among these factors remains unclear. Here, we performed an evolutionary analysis for positive selection in members of the myogenic regulatory factor (MRF) gene family of vertebrates. We selected 153 complete vertebrate MRF nucleotide sequences from our analyses, which revealed substantial evidence of positive selection. Here, we show that sites under positive selection were more frequently detected and identified from the genes encoding the myogenic differentiation factors (MyoG and Myf6) than the genes encoding myogenic determination factors (Myf5 and MyoD). Additionally, the functional divergence within the myogenic determination factors or differentiation factors was also under positive selection pressure. The positive selection sites were more frequently detected from MyoG and MyoD than Myf6 and Myf5, respectively. Amino acid residues under positive selection were identified mainly in their transcription activation domains and on the surface of protein three-dimensional structures. These data suggest that the functional gain and divergence of myogenic regulatory factors were driven by distinct positive selection of their transcription activation domains, whereas the function of the DNA binding domains was conserved in evolution. Our study evaluated the mechanism of functional divergence of the transcriptional regulation factors within a family, whereby the functions of their transcription activation domains diverged under positive selection during evolution.

  2. Central nervous system gene expression changes in a transgenic mouse model for bovine spongiform encephalopathy

    Directory of Open Access Journals (Sweden)

    Tortosa Raül

    2011-10-01

    Full Text Available Abstract Gene expression analysis has proven to be a very useful tool to gain knowledge of the factors involved in the pathogenesis of diseases, particularly in the initial or preclinical stages. With the aim of finding new data on the events occurring in the Central Nervous System in animals affected with Bovine Spongiform Encephalopathy, a comprehensive genome wide gene expression study was conducted at different time points of the disease on mice genetically modified to model the bovine species brain in terms of cellular prion protein. An accurate analysis of the information generated by microarray technique was the key point to assess the biological relevance of the data obtained in terms of Transmissible Spongiform Encephalopathy pathogenesis. Validation of the microarray technique was achieved by RT-PCR confirming the RNA change and immunohistochemistry techniques that verified that expression changes were translated into variable levels of protein for selected genes. Our study reveals changes in the expression of genes, some of them not previously associated with prion diseases, at early stages of the disease previous to the detection of the pathological prion protein, that might have a role in neuronal degeneration and several transcriptional changes showing an important imbalance in the Central Nervous System homeostasis in advanced stages of the disease. Genes whose expression is altered at early stages of the disease should be considered as possible therapeutic targets and potential disease markers in preclinical diagnostic tool development. Genes non-previously related to prion diseases should be taken into consideration for further investigations.

  3. A genome-wide MeSH-based literature mining system predicts implicit gene-to-gene relationships and networks.

    Science.gov (United States)

    Xiang, Zuoshuang; Qin, Tingting; Qin, Zhaohui S; He, Yongqun

    2013-10-16

    system that effectively predicts implicit gene-gene interaction relationships and networks in a genome-wide scope.

  4. A genome-wide MeSH-based literature mining system predicts implicit gene-to-gene relationships and networks

    Science.gov (United States)

    2013-01-01

    -wide, MeSH-based literature mining system that effectively predicts implicit gene-gene interaction relationships and networks in a genome-wide scope. PMID:24555475

  5. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    International Nuclear Information System (INIS)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting

    2014-01-01

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd 2+ uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance

  6. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting, E-mail: qixiaoting@cnu.edu.cn

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  7. A systems biology approach to construct the gene regulatory network of systemic inflammation via microarray and databases mining

    Directory of Open Access Journals (Sweden)

    Lan Chung-Yu

    2008-09-01

    Full Text Available Abstract Background Inflammation is a hallmark of many human diseases. Elucidating the mechanisms underlying systemic inflammation has long been an important topic in basic and clinical research. When primary pathogenetic events remains unclear due to its immense complexity, construction and analysis of the gene regulatory network of inflammation at times becomes the best way to understand the detrimental effects of disease. However, it is difficult to recognize and evaluate relevant biological processes from the huge quantities of experimental data. It is hence appealing to find an algorithm which can generate a gene regulatory network of systemic inflammation from high-throughput genomic studies of human diseases. Such network will be essential for us to extract valuable information from the complex and chaotic network under diseased conditions. Results In this study, we construct a gene regulatory network of inflammation using data extracted from the Ensembl and JASPAR databases. We also integrate and apply a number of systematic algorithms like cross correlation threshold, maximum likelihood estimation method and Akaike Information Criterion (AIC on time-lapsed microarray data to refine the genome-wide transcriptional regulatory network in response to bacterial endotoxins in the context of dynamic activated genes, which are regulated by transcription factors (TFs such as NF-κB. This systematic approach is used to investigate the stochastic interaction represented by the dynamic leukocyte gene expression profiles of human subject exposed to an inflammatory stimulus (bacterial endotoxin. Based on the kinetic parameters of the dynamic gene regulatory network, we identify important properties (such as susceptibility to infection of the immune system, which may be useful for translational research. Finally, robustness of the inflammatory gene network is also inferred by analyzing the hubs and "weak ties" structures of the gene network

  8. The Schizosaccharomyces pombe mam1 gene encodes an ABC transporter mediating secretion of M-factor

    DEFF Research Database (Denmark)

    Christensen, P U; Davey, William John; Nielsen, O

    1997-01-01

    In the fission yeast Schizosaccharomyces pombe, cells of opposite mating type communicate via diffusible peptide pheromones prior to mating. We have cloned the S. pombe mam1 gene, which encodes a 1336-amino acid protein belonging to the ATP-binding cassette (ABC) superfamily. The mam1 gene is only...... expressed in M cells and the gene product is responsible for the secretion of the mating pheromone. M-factor, a nonapeptide that is S-farnesylated and carboxy-methylated on its C-terminal cysteine residue. The predicted Mam1 protein is highly homologous to mammalian multiple drug-resistance proteins...

  9. HPRT gene mutation frequency and the factor of influence in adult peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Zhao Jingyong; Zheng Siying; Cui Fengmei; Wang Liuyi; Lao Qinhua; Wu Hongliang

    2002-01-01

    Objective: To study the HPRT gene loci mutation frequencies and the factor of influence in peripheral blood lymphocytes of adult with ages ranging from 21-50. Methods: HPRT gene mutation frequency (GMf) were examined by the technique of multinuclear cell assay. Relation between GMf and years were fitted with a computer. Results: Relation could be described by the following equation: y = 0.7555 + 0.0440x, r = 0.9829. Smoking has influence on GMf and sex hasn't. Conclusion: HPRT gene mutation frequency increases with increasing of age. Increasing rate is 0.00440% per year

  10. Arabidopsis MAP Kinase 4 regulates gene expression via transcription factor release in the nucleus

    DEFF Research Database (Denmark)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus

    2008-01-01

    Plant and animal perception of microbes through pathogen surveillance proteins leads to MAP kinase signalling and the expression of defence genes. However, little is known about how plant MAP kinases regulate specific gene expression. We report that, in the absence of pathogens, Arabidopsis MAP...... supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation....

  11. The RFC2 gene encoding a subunit of replication factor C of Saccharomyces cerevisiae.

    OpenAIRE

    Noskov, V; Maki, S; Kawasaki, Y; Leem, S H; Ono, B; Araki, H; Pavlov, Y; Sugino, A

    1994-01-01

    Replication Factor C (RF-C) of Saccharomyces cerevisiae is a complex that consists of several different polypeptides ranging from 120- to 37 kDa (Yoder and Burgers, 1991; Fien and Stillman, 1992), similar to human RF-C. We have isolated a gene, RFC2, that appears to be a component of the yeast RF-C. The RFC2 gene is located on chromosome X of S. cerevisiae and is essential for cell growth. Disruption of the RFC2 gene led to a dumbbell-shaped terminal morphology, common to mutants having a def...

  12. Copper-dependent and -independent hypoxia-inducible factor-1 regulation of gene expression.

    Science.gov (United States)

    Zhang, Zhen; Qiu, Liying; Lin, Chen; Yang, Hong; Fu, Haiying; Li, Rui; Kang, Y James

    2014-10-01

    Hypoxia-inducible factor-1 (HIF-1) regulates the expression of the vascular endothelial growth factor (VEGF), a process requiring copper (Cu) participation. HIF-1 is also involved in the expression of more than a hundred of genes, but it is unknown how HIF-1 differentially controls the expression of these genes timely and spatially. The present study was undertaken to test the hypothesis that Cu is not required for the expression of all HIF-1-regulated genes, thus exploring mechanistic insights into the differential control of multiple gene expression by one transcription factor. Human umbilical vein endothelial cells (HUVECs) were treated with siRNA targeting HIF-1α to define the essential role of HIF-1 in the regulation of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and insulin-like growth factor 2 (IGF-2) expression. A Cu chelator, tetraethylenepentamine (TEPA), was used to reduce intracellular availability of Cu. In comparison, a zinc chelator, N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN), was used to reduce intracellular zinc concentration. The expression of both BNIP3 and IGF-2 was completely suppressed in the HIF-1α deficient cells. The removal of Cu suppressed the expression of BNIP3, but did not affect that of IGF-2. The reduction of intracellular zinc did not cause the same effect. Further screening identified a group of genes whose expression required Cu and the others did not need Cu. The present study thus demonstrates Cu-dependent and -independent HIF-1 regulation of gene expression, indicating a mechanism for differential control of multiple gene expression by one transcription factor.

  13. Using interpolation to estimate system uncertainty in gene expression experiments.

    Directory of Open Access Journals (Sweden)

    Lee J Falin

    Full Text Available The widespread use of high-throughput experimental assays designed to measure the entire complement of a cell's genes or gene products has led to vast stores of data that are extremely plentiful in terms of the number of items they can measure in a single sample, yet often sparse in the number of samples per experiment due to their high cost. This often leads to datasets where the number of treatment levels or time points sampled is limited, or where there are very small numbers of technical and/or biological replicates. Here we introduce a novel algorithm to quantify the uncertainty in the unmeasured intervals between biological measurements taken across a set of quantitative treatments. The algorithm provides a probabilistic distribution of possible gene expression values within unmeasured intervals, based on a plausible biological constraint. We show how quantification of this uncertainty can be used to guide researchers in further data collection by identifying which samples would likely add the most information to the system under study. Although the context for developing the algorithm was gene expression measurements taken over a time series, the approach can be readily applied to any set of quantitative systems biology measurements taken following quantitative (i.e. non-categorical treatments. In principle, the method could also be applied to combinations of treatments, in which case it could greatly simplify the task of exploring the large combinatorial space of future possible measurements.

  14. Inducible Promoter Systems for Gene Perturbation Experiments in Arabidopsis.

    Science.gov (United States)

    Thomson, Bennett; Graciet, Emmanuelle; Wellmer, Frank

    2017-01-01

    Assessing molecular changes that occur through altering a gene's activity is often hampered by difficulties that arise due to the typically static nature of the introduced perturbation. This is especially problematic when investigating molecular events at specific stages and/or in certain tissues or organs during Arabidopsis development. To circumvent these issues, we have employed chemically inducible artificial microRNAs (amiRNAs) for the specific knockdown of developmental regulators. For our own research, we have combined this gene perturbation approach with a floral induction system, which allows the simultaneous induction of a large number of flowers on the inflorescence of a single plant, and the ability to knock down a gene's activity at any given stage of development. To enable the plant community to avail of the full benefits of these systems, we describe, in this chapter, strategies for amiRNA-mediated gene perturbations and address some common problems that can be encountered when generating inducible amiRNA constructs, growing these plants, and collecting floral buds for analysis.

  15. Transcription factor organic cation transporter 1 (OCT-1 affects the expression of porcine Klotho (KL gene

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-07-01

    Full Text Available Klotho (KL, originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (−418 bp to −3 bp as the porcine KL core promoter. MARC0022311SNP (A or G in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1, which was confirmed using electrophoretic mobility shift assays (EMSA and chromatin immune-precipitation (ChIP. Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1.

  16. Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types

    Directory of Open Access Journals (Sweden)

    Michael Seiler

    2018-04-01

    Full Text Available Summary: Hotspot mutations in splicing factor genes have been recently reported at high frequency in hematological malignancies, suggesting the importance of RNA splicing in cancer. We analyzed whole-exome sequencing data across 33 tumor types in The Cancer Genome Atlas (TCGA, and we identified 119 splicing factor genes with significant non-silent mutation patterns, including mutation over-representation, recurrent loss of function (tumor suppressor-like, or hotspot mutation profile (oncogene-like. Furthermore, RNA sequencing analysis revealed altered splicing events associated with selected splicing factor mutations. In addition, we were able to identify common gene pathway profiles associated with the presence of these mutations. Our analysis suggests that somatic alteration of genes involved in the RNA-splicing process is common in cancer and may represent an underappreciated hallmark of tumorigenesis. : Seiler et al. report that 119 splicing factor genes carry putative driver mutations over 33 tumor types in TCGA. The most common mutations appear to be mutually exclusive and are associated with lineage-independent altered splicing. Samples with these mutations show deregulation of cell-autonomous pathways and immune infiltration. Keywords: splicing, SF3B1, U2AF1, SRSF2, RBM10, FUBP1, cancer, mutation

  17. Analysis of the structural genes encoding M-factor in the fission yeast Schizosaccharomyces pombe: identification of a third gene, mfm3

    DEFF Research Database (Denmark)

    Kjaerulff, S; Davey, William John; Nielsen, O

    1994-01-01

    We previously identified two genes, mfm1 and mfm2, with the potential to encode the M-factor mating pheromone of the fission yeast Schizosaccharomyces pombe (J. Davey, EMBO J. 11:951-960, 1992), but further analysis revealed that a mutant strain lacking both genes still produced active M-factor. ...

  18. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.

  19. Insulin-like growth factor-I gene delivery to astrocytes reduces their inflammatory response to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Goya Rodolfo G

    2011-03-01

    Full Text Available Abstract Background Insulin-like growth factor-I (IGF-I exerts neuroprotective actions in the central nervous system that are mediated at least in part by control of activation of astrocytes. In this study we have assessed the efficacy of exogenous IGF-I and IGF-I gene therapy in reducing the inflammatory response of astrocytes from cerebral cortex. Methods An adenoviral vector harboring the rat IGF-I gene and a control adenoviral vector harboring a hybrid gene encoding the herpes simplex virus type 1 thymidine kinase fused to Aequorea victoria enhanced green fluorescent protein were used in this study. Primary astrocytes from mice cerebral cortex were incubated for 24 h or 72 h with vehicle, IGF-I, the IGF-I adenoviral vector, or control vector; and exposed to bacterial lipopolysaccharide to induce an inflammatory response. IGF-I levels were measured by radioimmunoassay. Levels of interleukin 6, tumor necrosis factor-α, interleukin-1β and toll-like receptor 4 mRNA were assessed by quantitative real-time polymerase chain reaction. Levels of IGF-I receptor and IGF binding proteins 2 and 3 were assessed by western blotting. The subcellular distribution of nuclear factor κB (p65 was assessed by immunocytochemistry. Statistical significance was assessed by one way analysis of variance followed by the Bonferroni pot hoc test. Results IGF-I gene therapy increased IGF-I levels without affecting IGF-I receptors or IGF binding proteins. Exogenous IGF-I, and IGF-I gene therapy, decreased expression of toll-like receptor 4 and counteracted the lipopolysaccharide-induced inflammatory response of astrocytes. In addition, IGF-I gene therapy decreased lipopolysaccharide-induced translocation of nuclear factor κB (p65 to the cell nucleus. Conclusion These findings demonstrate efficacy of exogenous IGF-I and of IGF-I gene therapy in reducing the inflammatory response of astrocytes. IGF-I gene therapy may represent a new approach to reduce inflammatory

  20. Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by high-throughput gene knockout in the rice blast fungus.

    Directory of Open Access Journals (Sweden)

    Jianping Lu

    2014-10-01

    Full Text Available Because of great challenges and workload in deleting genes on a large scale, the functions of most genes in pathogenic fungi are still unclear. In this study, we developed a high-throughput gene knockout system using a novel yeast-Escherichia-Agrobacterium shuttle vector, pKO1B, in the rice blast fungus Magnaporthe oryzae. Using this method, we deleted 104 fungal-specific Zn(2Cys(6 transcription factor (TF genes in M. oryzae. We then analyzed the phenotypes of these mutants with regard to growth, asexual and infection-related development, pathogenesis, and 9 abiotic stresses. The resulting data provide new insights into how this rice pathogen of global significance regulates important traits in the infection cycle through Zn(2Cys(6TF genes. A large variation in biological functions of Zn(2Cys(6TF genes was observed under the conditions tested. Sixty-one of 104 Zn(2Cys(6 TF genes were found to be required for fungal development. In-depth analysis of TF genes revealed that TF genes involved in pathogenicity frequently tend to function in multiple development stages, and disclosed many highly conserved but unidentified functional TF genes of importance in the fungal kingdom. We further found that the virulence-required TF genes GPF1 and CNF2 have similar regulation mechanisms in the gene expression involved in pathogenicity. These experimental validations clearly demonstrated the value of a high-throughput gene knockout system in understanding the biological functions of genes on a genome scale in fungi, and provided a solid foundation for elucidating the gene expression network that regulates the development and pathogenicity of M. oryzae.

  1. TGF-β1 Gene Polymorphism at Position -800G /A and Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    S Naeimi

    2016-06-01

    Full Text Available Introduction: Systemic lupus erythematosus (SLE is a chronic systemic inflammatory autoimmune disease characterized by a breakdown of self-tolerance. Transforming growth factor-β1 is a cytokine produced by both immune and non immune cells, and it has a wide operating range. human TGF-β1 gene is located on chromosome 19q13 . The aim of this study was investigating the TGF-β1 Gene Polymorphism at Position -800G /A and Systemic Lupus Erythematosus the possible difference in two promoter polymorphisms of the transforming growth factor-β1 (TGF-β1 gene (-800G / A, -509C / T. Methods: In this case - control study, a total of 150 patients with SLE and 150 healthy subjects were examined. DNA was extracted by saluting out method and Single nucleotide Polymorphisms of the TGF-β1gene were analyzed by the PCR-RFLP method and the .Data were compared in both groups by using Pearson’s chi-square and Hardy-weinberg equilibrium test. Results: There was a statistically significant difference in AA genotype and A allele frequency distributions between SLE patients and the control group for the -800G / A polymorphism of the TGF-β1 gene (P < 0.05. At position -509, there was no statically significant difference in genotype and allele frequency between the patients and the control subjects. Conclusion : The results of our study indicate that TGF-β1 gene promoter polymorphisms at positions -800 G/A maybe discuss susceptibility to SLE in southern Iranian patients.

  2. Gene regulation in the immune system by long noncoding RNAs.

    Science.gov (United States)

    Chen, Y Grace; Satpathy, Ansuman T; Chang, Howard Y

    2017-08-22

    Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression in the immune system. Studies have shown that lncRNAs are expressed in a highly lineage-specific manner and control the differentiation and function of innate and adaptive cell types. In this Review, we focus on mechanisms used by lncRNAs to regulate genes encoding products involved in the immune response, including direct interactions with chromatin, RNA and proteins. In addition, we address new areas of lncRNA biology, such as the functions of enhancer RNAs, circular RNAs and chemical modifications to RNA in cellular processes. We emphasize critical gaps in knowledge and future prospects for the roles of lncRNAs in the immune system and autoimmune disease.

  3. Controlled systemic release of interleukin-12 after gene electrotransfer to muscle for cancer gene therapy alone or in combination with ionizing radiation in murine sarcomas.

    Science.gov (United States)

    Tevz, Gregor; Kranjc, Simona; Cemazar, Maja; Kamensek, Urska; Coer, Andrej; Krzan, Mojca; Vidic, Suzana; Pavlin, Darja; Sersa, Gregor

    2009-12-01

    The present study aimed to evaluate the antitumor effectiveness of systemic interleukin (IL)-12 gene therapy in murine sarcoma models, and to evaluate its interaction with the irradiation of tumors and metastases. To avoid toxic side-effects of IL-12 gene therapy, the objective was to achieve the controlled release of IL-12 after intramuscular gene electrotransfer. Gene electrotransfer of the plasmid pORF-mIL12 was performed into the tibialis cranialis in A/J and C57BL/6 mice. Systemic release of the IL-12 was monitored in the serum of mice after carrying out two sets of intramuscular IL-12 gene electrotransfer of two different doses of plasmid DNA. The antitumor effectiveness of IL-12 gene electrotransfer alone or in combination with local tumor or lung irradiation with X-rays, was evaluated on subcutaneous SA-1 and LPB tumors, as well as on lung metastases. A synergistic antitumor effect of intramuscular gene electrotransfer combined with local tumor irradiation was observed as a result of the systemic distribution of IL-12. The gene electrotransfer resulted in up to 28% of complete responses of tumors. In combination with local tumor irradiation, the curability was increased by up to 100%. The same effect was observed for lung metastases, where a potentiating factor of 1.3-fold was determined. The amount of circulating IL-12 was controlled by the number of repeats of gene electrotransfer and by the amount of the injected plasmid. The present study demonstrates the feasibility of treatment by IL-12 gene electrotransfer combined with local tumor or lung metastases irradiation on sarcoma tumors for translation into the clinical setting. Copyright (c) 2009 John Wiley & Sons, Ltd.

  4. Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection.

    Science.gov (United States)

    Jinno, Masafumi; Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu

    2016-09-01

    This study has been done to know what kind of factors in plasmas and processes on cells induce plasma gene transfection. We evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones, inducing gene transfection. First, the laser produced plasma (LPP) was employed to estimate the contribution of the chemical factors. Second, liposomes were fabricated and employed to evaluate the effects of plasma irradiation on membrane under the condition without biochemical reaction. Third, the clathrin-dependent endocytosis, one of the biochemical processes was suppressed. It becomes clear that chemical factors (radicals and reactive oxygen/nitrogen species) do not work by itself alone and electrical factors (electrical current, charge and field) are essential to plasma gene transfection. It turned out the clathrin-dependent endocytosis is the process of the transfection against the 60% in all the transfected cells. The endocytosis and electrical poration are dominant in plasma gene transfection, and neither permeation through ion channels nor chemical poration is dominant processes. The simultaneous achievement of high transfection efficiency and high cell survivability is attributed to the optimization of the contribution weight among three groups of processes by controlling the weight of electrical and chemical factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Preimplantation embryo-secreted factors modulate maternal gene expression in rat uterus.

    Science.gov (United States)

    Yamagami, Kazuki; Islam, M Rashedul; Yoshii, Yuka; Mori, Kazuki; Tashiro, Kosuke; Yamauchi, Nobuhiko

    2016-05-01

    In mammalian reproduction, embryo implantation into the uterus is spatiotemporally regulated by a complex process triggered by a number of factors. Although previous studies have suggested that uterine receptivity is mediated by blastocyst-derived factors, specific functions of embryos remain to be defined during preimplantation. Therefore, the present study was conducted to identify the maternal genes regulated by embryo-secreted factors in the rat uterus. RNA-sequencing (RNA-seq) data revealed that 10 genes are up-regulated in the delayed implantation uterus compared with the pseudopregnancy uterus. The RNA-seq results were further verified by real-time quantitative polymerase chain reaction. Sulf1 expression is significantly (P uterus, although Areg, Calca, Fxyd4 and Lamc3 show a definite but non-statistically significant increase in their expression levels. During early pregnancy, the levels of Areg, Calca, Fxyd4, Lamc3 and Sulf1 expression at 3.5 days post coitus (dpc) are significantly (P < 0.05) higher than those at 1.5 dpc. Treatment with embryo-conditioned media revealed that Lamc3 and Sulf1 are up-regulated compared with the other genes studied. Thus, embryo-derived factors regulate maternal gene expression, with Lamc3 and Sulf1 possibly being suitable markers for a response study of embryo-secreted factors to improve our understanding of embryo-maternal communication.

  6. Novel Data Fusion Method and Exploration of Multiple Information Sources for Transcription Factor Target Gene Prediction

    Science.gov (United States)

    Dai, Xiaofeng; Yli-Harja, Olli; Lähdesmäki, Harri

    2010-12-01

    Background. Revealing protein-DNA interactions is a key problem in understanding transcriptional regulation at mechanistic level. Computational methods have an important role in predicting transcription factor target gene genomewide. Multiple data fusion provides a natural way to improve transcription factor target gene predictions because sequence specificities alone are not sufficient to accurately predict transcription factor binding sites. Methods. Here we develop a new data fusion method to combine multiple genome-level data sources and study the extent to which DNA duplex stability and nucleosome positioning information, either alone or in combination with other data sources, can improve the prediction of transcription factor target gene. Results. Results on a carefully constructed test set of verified binding sites in mouse genome demonstrate that our new multiple data fusion method can reduce false positive rates, and that DNA duplex stability and nucleosome occupation data can improve the accuracy of transcription factor target gene predictions, especially when combined with other genome-level data sources. Cross-validation and other randomization tests confirm the predictive performance of our method. Our results also show that nonredundant data sources provide the most efficient data fusion.

  7. The transcription factor FoxK participates with Nup98 to regulate antiviral gene expression.

    Science.gov (United States)

    Panda, Debasis; Gold, Beth; Tartell, Michael A; Rausch, Keiko; Casas-Tinto, Sergio; Cherry, Sara

    2015-04-07

    Upon infection, pathogen recognition leads to a rapidly activated gene expression program that induces antimicrobial effectors to clear the invader. We recently found that Nup98 regulates the expression of a subset of rapidly activated antiviral genes to restrict disparate RNA virus infections in Drosophila by promoting RNA polymerase occupancy at the promoters of these antiviral genes. How Nup98 specifically targets these loci was unclear; however, it is known that Nup98 participates with transcription factors to regulate developmental-gene activation. We reasoned that additional transcription factors may facilitate the Nup98-dependent expression of antiviral genes. In a genome-wide RNA interference (RNAi) screen, we identified a relatively understudied forkhead transcription factor, FoxK, as active against Sindbis virus (SINV) in Drosophila. Here we find that FoxK is active against the panel of viruses that are restricted by Nup98, including SINV and vesicular stomatitis virus (VSV). Mechanistically, we show that FoxK coordinately regulates the Nup98-dependent expression of antiviral genes. Depletion of FoxK significantly reduces Nup98-dependent induction of antiviral genes and reduces the expression of a forkhead response element-containing luciferase reporter. Together, these data show that FoxK-mediated activation of gene expression is Nup98 dependent. We extended our studies to mammalian cells and found that the mammalian ortholog FOXK1 is antiviral against two disparate RNA viruses, SINV and VSV, in human cells. Interestingly, FOXK1 also plays a role in the expression of antiviral genes in mammals: depletion of FOXK1 attenuates virus-inducible interferon-stimulated response element (ISRE) reporter expression. Overall, our results demonstrate a novel role for FOXK1 in regulating the expression of antiviral genes, from insects to humans. Innate immunity is characterized by rapid gene expression programs, from insects to mammals. Furthermore, we find that Nup98

  8. Perinatal systemic gene delivery using adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Rajvinder eKarda

    2014-11-01

    Full Text Available Neurodegenerative monogenic diseases can also affect a broad range of tissues and organs throughout the body. An effective treatment would require a systemic approach. The intravenous administration of novel therapies is ideal but is hampered by the inability of such drugs to cross the blood-brain barrier and precludes efficacy in the central nervous system. A number of these early lethal intractable diseases also present devastating irreversible pathology at birth or soon after. Therefore, any therapy would ideally be administered during the perinatal period to prevent, stop or ameliorate disease progression. The concept of perinatal gene therapy has moved a step further towards being a feasible approach to treating such disorders. This has primarily been driven by the recent discoveries that particular serotypes of adeno-associated virus (AAV gene delivery vectors have the ability to cross the blood-brain barrier following intravenous administration. Furthermore, this has been safely demonstrated in perinatal mice and non-human primates. This review focuses on the progress made in using AAV to achieve systemic transduction and what this means for developing perinatal gene therapy for early lethal neurodegenerative diseases.

  9. Synthetic Transcription Amplifier System for Orthogonal Control of Gene Expression in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Anssi Rantasalo

    Full Text Available This work describes the development and characterization of a modular synthetic expression system that provides a broad range of adjustable and predictable expression levels in S. cerevisiae. The system works as a fixed-gain transcription amplifier, where the input signal is transferred via a synthetic transcription factor (sTF onto a synthetic promoter, containing a defined core promoter, generating a transcription output signal. The system activation is based on the bacterial LexA-DNA-binding domain, a set of modified, modular LexA-binding sites and a selection of transcription activation domains. We show both experimentally and computationally that the tuning of the system is achieved through the selection of three separate modules, each of which enables an adjustable output signal: 1 the transcription-activation domain of the sTF, 2 the binding-site modules in the output promoter, and 3 the core promoter modules which define the transcription initiation site in the output promoter. The system has a novel bidirectional architecture that enables generation of compact, yet versatile expression modules for multiple genes with highly diversified expression levels ranging from negligible to very strong using one synthetic transcription factor. In contrast to most existing modular gene expression regulation systems, the present system is independent from externally added compounds. Furthermore, the established system was minimally affected by the several tested growth conditions. These features suggest that it can be highly useful in large scale biotechnology applications.

  10. miR-370 suppresses HBV gene expression and replication by targeting nuclear factor IA.

    Science.gov (United States)

    Fan, Hongxia; Lv, Ping; Lv, Jing; Zhao, Xiaopei; Liu, Min; Zhang, Guangling; Tang, Hua

    2017-05-01

    Hepatitis B virus (HBV) infection is a major health problem worldwide. The roles of microRNAs in the regulation of HBV expression are being increasingly recognized. In this study, we found that overexpression of miR-370 suppressed HBV gene expression and replication in Huh7 cells, whereas antisense knockdown of endogenous miR-370 enhanced HBV gene expression and replication in Huh7 cells and HepG2.2.15 cells. Further, we identified the transcription factor nuclear factor IA (NFIA) as a new host target of miR-370. Overexpression and knockdown studies showed that NFIA stimulated HBV gene expression and replication. Importantly, overexpression of NFIA counteracted the effect of miR-370 on HBV gene expression and replication. Further mechanistic studies showed that miR-370 suppressed HBV replication and gene expression by repressing HBV Enhancer I activity, and one of the NFIA binding site in the Enhancer I element was responsible for the repressive effect of miR-370 on HBV Enhancer I activity. Altogether, our results demonstrated that miR-370 suppressed HBV gene expression and replication through repressing NFIA expression, which stimulates HBV replication via direct regulation on HBV Enhancer I activities. Our findings may provide a new antiviral strategy for HBV infection. J. Med. Virol. 89:834-844, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Lineage-specific transcription factors and the evolution of gene regulatory networks.

    Science.gov (United States)

    Nowick, Katja; Stubbs, Lisa

    2010-01-01

    Nature is replete with examples of diverse cell types, tissues and body plans, forming very different creatures from genomes with similar gene complements. However, while the genes and the structures of proteins they encode can be highly conserved, the production of those proteins in specific cell types and at specific developmental time points might differ considerably between species. A full understanding of the factors that orchestrate gene expression will be essential to fully understand evolutionary variety. Transcription factor (TF) proteins, which form gene regulatory networks (GRNs) to act in cooperative or competitive partnerships to regulate gene expression, are key components of these unique regulatory programs. Although many TFs are conserved in structure and function, certain classes of TFs display extensive levels of species diversity. In this review, we highlight families of TFs that have expanded through gene duplication events to create species-unique repertoires in different evolutionary lineages. We discuss how the hierarchical structures of GRNs allow for flexible small to large-scale phenotypic changes. We survey evidence that explains how newly evolved TFs may be integrated into an existing GRN and how molecular changes in TFs might impact the GRNs. Finally, we review examples of traits that evolved due to lineage-specific TFs and species differences in GRNs.

  12. Genomic survey of bZIP transcription factor genes related to tanshinone biosynthesis in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2018-03-01

    Full Text Available Tanshinones are a class of bioactive components in the traditional Chinese medicine Salvia miltiorrhiza, and their biosynthesis and regulation have been widely studied. Current studies show that basic leucine zipper (bZIP proteins regulate plant secondary metabolism, growth and developmental processes. However, the bZIP transcription factors involved in tanshinone biosynthesis are unknown. Here, we conducted the first genome-wide survey of the bZIP gene family and analyzed the phylogeny, gene structure, additional conserved motifs and alternative splicing events in S. miltiorrhiza. A total of 70 SmbZIP transcription factors were identified and categorized into 11 subgroups based on their phylogenetic relationships with those in Arabidopsis. Moreover, seventeen SmbZIP genes underwent alternative splicing events. According to the transcriptomic data, the SmbZIP genes that were highly expressed in the Danshen root and periderm were selected. Based on the prediction of bZIP binding sites in the promoters and the co-expression analysis and co-induction patterns in response to Ag+ treatment via quantitative real-time polymerase chain reaction (qRT-PCR, we concluded that SmbZIP7 and SmbZIP20 potentially participate in the regulation of tanshinone biosynthesis. These results provide a foundation for further functional characterization of the candidate SmbZIP genes, which have the potential to increase tanshinone production. KEY WORDS: bZIP genes, Salvia miltiorrhiza, Phylogenetic analysis, Expression pattern analysis, Tanshinone biosynthesis

  13. Characterization of Transcription Factor Gene OsDRAP1 Conferring Drought Tolerance in Rice

    Directory of Open Access Journals (Sweden)

    Liyu Huang

    2018-02-01

    Full Text Available HIGHLIGHTSOverexpressing and RNA interfering OsDRAP1 transgenic rice plants exhibited significantly improved and reduced drought tolerance, but accompanied with negative effects on development and yield.The dehydration responsive element binding (DREBs genes are important transcription factors which play a crucial role in plant abiotic stress tolerances. In this study, we functionally characterized a DREB2-like gene, OsDRAP1 conferring drought tolerance (DT in rice. OsDRAP1, containing many cis-elements in its promoter region, was expressed in all organs (mainly expressed in vascular tissues of rice, and induced by a variety of environmental stresses and plant hormones. Overexpressing OsDRAP1 transgenic plants exhibited significantly improved DT; while OsDRAP1 RNA interfering plants exhibited significantly reduced DT which also accompanied with significant negative effects on development and yield. Overexpression of OsDRAP1 has a positive impact on maintaining water balance, redox homeostasis and vascular development in transgenic rice plants under drought stress. OsDRAP1 interacted with many genes/proteins and could activate many downstream DT related genes, including important transcription factors such as OsCBSX3 to response drought stress, indicating the OsDRAP1-mediated pathways for DT involve complex genes networks. All these results provide a basis for further complete understanding of the OsDRAP1 mediated gene networks and their related phenotypic effects.

  14. Characterization of Transcription Factor GeneOsDRAP1Conferring Drought Tolerance in Rice.

    Science.gov (United States)

    Huang, Liyu; Wang, Yinxiao; Wang, Wensheng; Zhao, Xiuqin; Qin, Qiao; Sun, Fan; Hu, Fengyi; Zhao, Yan; Li, Zichao; Fu, Binying; Li, Zhikang

    2018-01-01

    HIGHLIGHTS Overexpressing and RNA interfering OsDRAP1 transgenic rice plants exhibited significantly improved and reduced drought tolerance, but accompanied with negative effects on development and yield. The dehydration responsive element binding (DREBs) genes are important transcription factors which play a crucial role in plant abiotic stress tolerances. In this study, we functionally characterized a DREB2-like gene, OsDRAP1 conferring drought tolerance (DT) in rice. OsDRAP1 , containing many cis -elements in its promoter region, was expressed in all organs (mainly expressed in vascular tissues) of rice, and induced by a variety of environmental stresses and plant hormones. Overexpressing OsDRAP1 transgenic plants exhibited significantly improved DT; while OsDRAP1 RNA interfering plants exhibited significantly reduced DT which also accompanied with significant negative effects on development and yield. Overexpression of OsDRAP1 has a positive impact on maintaining water balance, redox homeostasis and vascular development in transgenic rice plants under drought stress. OsDRAP1 interacted with many genes/proteins and could activate many downstream DT related genes, including important transcription factors such as OsCBSX3 to response drought stress, indicating the OsDRAP1 -mediated pathways for DT involve complex genes networks. All these results provide a basis for further complete understanding of the OsDRAP1 mediated gene networks and their related phenotypic effects.

  15. Unexpected functional similarities between gatekeeper tumour suppressor genes and proto-oncogenes revealed by systems biology.

    Science.gov (United States)

    Zhao, Yongzhong; Epstein, Richard J

    2011-05-01

    Familial tumor suppressor genes comprise two subgroups: caretaker genes (CTs) that repair DNA, and gatekeeper genes (GKs) that trigger cell death. Since GKs may also induce cell cycle delay and thus enhance cell survival by facilitating DNA repair, we hypothesized that the prosurvival phenotype of GKs could be selected during cancer progression, and we used a multivariable systems biology approach to test this. We performed multidimensional data analysis, non-negative matrix factorization and logistic regression to compare the features of GKs with those of their putative antagonists, the proto-oncogenes (POs), as well as with control groups of CTs and functionally unrelated congenital heart disease genes (HDs). GKs and POs closely resemble each other, but not CTs or HDs, in terms of gene structure (Pexpression level and breadth (Pimplied suggest a common functional attribute that is strongly negatively selected-that is, a shared phenotype that enhances cell survival. The counterintuitive finding of similar evolutionary pressures affecting GKs and POs raises an intriguing possibility: namely, that cancer microevolution is accelerated by an epistatic cascade in which upstream suppressor gene defects subvert the normal bifunctionality of wild-type GKs by constitutively shifting the phenotype away from apoptosis towards survival. If correct, this interpretation would explain the hitherto unexplained phenomenon of frequent wild-type GK (for example, p53) overexpression in tumors.

  16. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Directory of Open Access Journals (Sweden)

    Maria Victoria Maliandi

    2011-01-01

    Full Text Available The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  17. Renin-angiotensin system gene expression and neurodegenerative diseases.

    Science.gov (United States)

    Goldstein, Benjamin; Speth, Robert C; Trivedi, Malav

    2016-07-01

    Single nucleotide polymorphisms and altered gene expression of components of the renin-angiotensin system (RAS) are associated with neurodegenerative diseases. Drugs that interact with the RAS have been shown to affect the course of neurodegenerative disease, suggesting that abnormalities in the RAS may contribute to neurodegenerative disease. A meta-analysis of genome-wide association studies and gene expression data for 14 RAS-related proteins was carried out for five neurodegenerative diseases: Alzheimer's disease, Parkinson's disease, narcolepsy, amyotrophic lateral sclerosis and multiple sclerosis. No single nucleotide polymorphisms in any of the 14 RAS-related protein genes were significantly associated with the five neurodegenerative diseases investigated. There was an inverse association between expression of ATP6AP2, which encodes the (pro)renin receptor, and multiple sclerosis, Alzheimer's disease and Parkinson's disease. An association of AGTR, which encodes the AT1 angiotensin II receptor, and Parkinson's disease and Alzheimer's disease was also observed. To date, no single nucleotide polymorphisms in components of the RAS can be definitively linked to the neurodegenerative diseases evaluated in this study. However, altered gene expression of several components of the RAS is associated with several neurodegenerative diseases, which may indicate that the RAS contributes to the pathology of these diseases. © The Author(s) 2016.

  18. Genome-wide identification of Bcl11b gene targets reveals role in brain-derived neurotrophic factor signaling.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available B-cell leukemia/lymphoma 11B (Bcl11b is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq in combination with genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. ChIP-seq analysis demonstrated that Bcl11b bound a mixture of coding and non-coding sequences that were within 10 kb of the transcription start site of an annotated gene. Integrating all ChIP-seq hits with the microarray expression data, 248 direct targets of Bcl11b were identified. Functional analysis on the integrated gene target list identified several zinc-finger encoding genes as Bcl11b targets, and further revealed a significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. Analysis of ChIP-seq binding regions revealed significant consensus DNA binding motifs for Bcl11b. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders. Specific targeting of the Bcl11b-DNA interaction could represent a novel therapeutic approach to lowering BDNF signaling specifically in striatal cells.

  19. Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves

    DEFF Research Database (Denmark)

    Christiansen, Michael W; Gregersen, Per L.

    2014-01-01

    activation of degradation processes in senescing barley leaf tissues. This picture was confirmed in a detailed quantitative reverse transcription–PCR (qRT–PCR) experiment, which also showed distinct gene expression patterns for different members of the NAC gene family, suggesting a group of ~15 out of the 47...... in the NAC transcription factor family during senescence of barley flag leaves was studied. Several members of the NAC transcription factor gene family were up-regulated during senescence in a microarray experiment, together with a large range of senescence-associated genes, reflecting the coordinated...... studied NAC genes to be important for signalling processes and for the execution of degradation processes during leaf senescence in barley. Seven models for DNA-binding motifs for NAC transcription factors were designed based on published motifs, and available promoter sequences of barley genes were...

  20. Promoter polymorphism of transforming growth factor-beta1 gene and ulcerative colitis.

    Science.gov (United States)

    Tamizifar, B; Lankarani, K B; Naeimi, S; Rismankar Zadeh, M; Taghavi, A; Ghaderi, A

    2008-01-14

    To elucidate the possible difference in two promoter polymorphisms of the transforming growth factor-beta1 (TGF-beta1) gene (-800G > A, -509C > T) between ulcerative colitis (UC) patients and normal subjects. A total of 155 patients with established ulcerative colitis and 139 normal subjects were selected as controls. Two single nucleotide polymorphisms within the promoter region of TGF-beta1 gene (-509C > T and -800G > A) were genotyped using PCR-RFLP. There was a statistically significant difference in genotype and allele frequency distributions between UC patients and controls for the -800G > A polymorphism of the TGF-beta1 gene (P A of TGF-beta1 gene promoter between Iranian patients with UC and normal subjects.

  1. Bookmarking target genes in mitosis: a shared epigenetic trait of phenotypic transcription factors and oncogenes?

    Science.gov (United States)

    Zaidi, Sayyed K; Grandy, Rodrigo A; Lopez-Camacho, Cesar; Montecino, Martin; van Wijnen, Andre J; Lian, Jane B; Stein, Janet L; Stein, Gary S

    2014-01-15

    The regulatory information for phenotype, proliferation, and growth of normal and tumor cells must be maintained through genome replication in the S phase and cell division during mitosis. Epigenetic mechanisms that include DNA methylation, posttranslational modifications of histones, selective utilization of histone variants, and inheritable RNA molecules play pivotal roles in maintaining cellular identity through mitotic divisions. Recent studies demonstrate that mitotic occupancy of genes, which are determinants of cell fate, growth, and proliferation, by lineage-restricted transcription factors is a key epigenetic mechanism for retention and transmission of cellular expression memory. Evidence is emerging for the presence of distinct transcriptional regulatory microenvironments in mitotic chromosomes in which the genes bookmarked for reactivation postmitotically reside. Importantly, some oncoproteins are present in mitotic microenvironments where they occupy target genes during mitosis and may contribute to perpetuating the transformed phenotype. We discuss emerging regulatory implications of epigenetically bookmarking genes during mitosis for physiologic control as well as for the onset and progression of cancer.

  2. Analysis of gene expression in the nervous system identifies key genes and novel candidates for health and disease.

    Science.gov (United States)

    Carpanini, Sarah M; Wishart, Thomas M; Gillingwater, Thomas H; Manson, Jean C; Summers, Kim M

    2017-04-01

    The incidence of neurodegenerative diseases in the developed world has risen over the last century, concomitant with an increase in average human lifespan. A major challenge is therefore to identify genes that control neuronal health and viability with a view to enhancing neuronal health during ageing and reducing the burden of neurodegeneration. Analysis of gene expression data has recently been used to infer gene functions for a range of tissues from co-expression networks. We have now applied this approach to transcriptomic datasets from the mammalian nervous system available in the public domain. We have defined the genes critical for influencing neuronal health and disease in different neurological cell types and brain regions. The functional contribution of genes in each co-expression cluster was validated using human disease and knockout mouse phenotypes, pathways and gene ontology term annotation. Additionally a number of poorly annotated genes were implicated by this approach in nervous system function. Exploiting gene expression data available in the public domain allowed us to validate key nervous system genes and, importantly, to identify additional genes with minimal functional annotation but with the same expression pattern. These genes are thus novel candidates for a role in neurological health and disease and could now be further investigated to confirm their function and regulation during ageing and neurodegeneration.

  3. [Factor analysis of interactions between alfalfa nodule bacteria (Sinorhizobium meliloti) genes that regulate symbiotic nitrogen fixation].

    Science.gov (United States)

    Provorov, N A; Chuklina, E; Vorob'ev, N I; Onishchuk, O P; Simarov, B V

    2013-04-01

    Factor analysis has been conducted for the data on the interaction between the genes of the root nodule bacteria (rhizobia), which influence the efficiency of symbiosis with leguminous plants, including dctA (encoding succinate permease), dctBD (activating the dctA gene due to binding its enhancer in the presence of succinate), rpoN (activating the promoters of dctA and nitrogenase genes nifHDK), and nifA (activating the nitrogenase genes due to binding their enhancers). The analysis of the alfalfa rhizobia (Sinorhizobium meliloti) recombinants that contain additional copies ofthese genes suggested the antagonistic (epistatic) interaction between nifA and rpoN. It may be associated either with the competition for C compounds imported into the nodules between the energy production and nitrogen assimilation processes or with the competition for redox potentials between the oxidative phosphorylation and nitrogen fixation processes. Since the phenotypic effects of the studied genes depend on the activity of nitrogen export into the aerial parts of plants, we suppose that its accumulation in bacteroids impairs the activation of the nifHDK genes by the NifA protein due to its interaction with the GlnB protein (the nitrogen metabolism regulator) or with the FixLJ and ActSR proteins (the redox potential regulators).

  4. Molecular Cloning and Functional Characterization of Factors Involved in Post-transcriptional Gene Expression

    OpenAIRE

    Jin, Shao-Bo

    2004-01-01

    Gene expression in the eukaryotic cell is a fundamental cellular process, which consists of several distinct steps but extensively coupled to each other. From site of transcription in the nucleus to the cytoplasm, both mRNA and rRNA are associated with a proper set of proteins. These proteins influence RNA processing, transport as well as ribosome maturation. We have tried to take advantage of different model systems to understand the process of eukaryotic gene expression at the post-transcri...

  5. The rates and patterns of deletions in the human factor IX gene

    Energy Technology Data Exchange (ETDEWEB)

    Ketterling, R.P.; Vielhaber, E.L.; Lind, T.J.; Thorland, E.C.; Sommer S.S. (Mayo Clinic/Foundation, Rochester, MN (United States))

    1994-02-01

    Deletions are commonly observed in genes with either segments of highly homologous sequences or excessive gene length. However, in the factor IX gene and in most genes, deletions (of [ge]21 bp) are uncommon. The authors have analyzed DNA from 290 families with hemophilia B (203 independent mutations) and have found 12 deletions >20 bp. Eleven of these are >2 kb (range >3-163 kb), and one is 1.1 kb. The junctions of the four deletions that are completely contained within the factor IX gene have been determined. A novel mutation occurred in patient HB128: the data suggest that a 26.8-kb deletion occurred between two segments of alternating purines and pyrimidines and that a 2.3-kb sense strand segment derived from the deleted region was inserted. For a sample of 203 independent mutations, the authors estimate the [open quotes]baseline[close quotes] rates of deletional mutation per base pair per generation as a function of size. The rate for large (>2 kb)I deletions is exceedingly low. For every mutational event in which a given base is at the junction of a large deletion, there are an estimated 58 microdeletions (<20 bp) and 985 single-base substitutions at that base. Analysis of the nine reported deletion junctions in the factor IX gene literature reveals that (i) five are associated with inversion, orphan sequences, or sense strand insertions; (ii) four are simple deletions that display an excess of short direct repeats at their junctions; (iii) there is no dramatic clustering of junctions within the gene; and (iv) with the exception of alternating purines and pyrimidines, deletion junctions are not preferentially associated with repetitive DNA. 58 refs., 5 figs., 5 tabs.

  6. Virulence factors genes of Staphylococcus spp. isolated from caprine subclinical mastitis.

    Science.gov (United States)

    Salaberry, Sandra Renata Sampaio; Saidenberg, André Becker Simões; Zuniga, Eveline; Melville, Priscilla Anne; Santos, Franklin Gerônimo Bispo; Guimarães, Ednaldo Carvalho; Gregori, Fábio; Benites, Nilson Roberti

    2015-08-01

    The aim of this study was to investigate genes involved in adhesion expression, biofilm formation, and enterotoxin production in isolates of Staphylococcus spp. from goats with subclinical mastitis and associate these results with the staphylococcal species. One hundred and twenty-four isolates were identified and polymerase chain reaction (PCR) was performed to detect the following genes: cna, ebpS, eno, fib, fnbA, fnbB, bap, sea, seb, sec, sed and see. The most commonly Staphylococcus species included S. epidermidis, S. lugdunensis, S. chromogenes, S. capitis ss capitis and S. intermedius. With the exception of fnbB, the genes were detected in different frequencies of occurrence in 86.3% of the Staphylococcus spp. isolates. Eno (73.2%) and bap (94.8%) were more frequently detected in coagulase-negative staphylococci (CNS); ebpS (76%), fib (90.9%) and fnbA (87%) were the most frequent genes in coagulase-positive staphylococci (CPS). Regarding enterotoxins, genes sed (28.2%) and see (24.2%) had a higher frequency of occurrence; sec gene was more frequently detected in CPS (58.8%). There was no association between the presence of the genes and the Staphylococcus species. Different virulence factors genes can be detected in caprine subclinical mastitis caused by CNS and CPS. The knowledge of the occurrence of these virulence factors is important for the development of effective control and prevention measures of subclinical mastitis caused by CNS and CPS in goats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Heat Shock Factor 1 Deficiency Affects Systemic Body Temperature Regulation.

    Science.gov (United States)

    Ingenwerth, Marc; Noichl, Erik; Stahr, Anna; Korf, Horst-Werner; Reinke, Hans; von Gall, Charlotte

    2016-01-01

    Heat shock factor 1 (HSF1) is a ubiquitous heat-sensitive transcription factor that mediates heat shock protein transcription in response to cellular stress, such as increased temperature, in order to protect the organism against misfolded proteins. In this study, we analysed the effect of HSF1 deficiency on core body temperature regulation. Body temperature, locomotor activity, and food consumption of wild-type mice and HSF1-deficient mice were recorded. Prolactin and thyroid-stimulating hormone levels were measured by ELISA. Gene expression in brown adipose tissue was analysed by quantitative real-time PCR. Hypothalamic HSF1 and its co-localisation with tyrosine hydroxylase was analysed using confocal laser scanning microscopy. HSF1-deficient mice showed an increase in core body temperature (hyperthermia), decreased overall locomotor activity, and decreased levels of prolactin in pituitary and blood plasma reminiscent of cold adaptation. HSF1 could be detected in various hypothalamic regions involved in temperature regulation, suggesting a potential role of HSF1 in hypothalamic thermoregulation. Moreover, HSF1 co-localises with tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, suggesting a potential role of HSF1 in the hypothalamic control of prolactin release. In brown adipose tissue, levels of prolactin receptor and uncoupled protein 1 were increased in HSF1-deficient mice, consistent with an up-regulation of heat production. Our data suggest a role of HSF1 in systemic thermoregulation. © 2015 S. Karger AG, Basel.

  8. Gene-Environment Interplay in Internalizing Disorders: Consistent Findings across Six Environmental Risk Factors

    Science.gov (United States)

    Hicks, Brian M.; Dirago, Ana C.; Iacono, William G.; McGue, Matt

    2009-01-01

    Background: Behavior genetic methods can help to elucidate gene-environment (G-E) interplay in the development of internalizing (INT) disorders (i.e., major depression and anxiety disorders). To date, however, no study has conducted a comprehensive analysis examining multiple environmental risk factors with the purpose of delineating general…

  9. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity

    DEFF Research Database (Denmark)

    Brandt, Julia P; Aziz-Zaman, Sonya; Juozaityte, Vaida

    2012-01-01

    . We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2). The ETS-5 transcription factor is necessary for the specification of CO(2)-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient...

  10. Factors affecting the gene expression of in vitro cultured human preimplantation embryos

    NARCIS (Netherlands)

    Mantikou, E.; Jonker, M. J.; Wong, K. M.; van Montfoort, A. P. A.; de Jong, M.; Breit, T. M.; Repping, S.; Mastenbroek, S.

    2016-01-01

    What is the relative effect of common environmental and biological factors on transcriptome changes during human preimplantation development? Developmental stage and maternal age had a larger effect on the global gene expression profile of human preimplantation embryos than the culture medium or

  11. Amplification of epidermal growth factor receptor gene in renal cell carcinoma

    DEFF Research Database (Denmark)

    El-Hariry, Iman; Powles, Thomas; Lau, Mike R

    2010-01-01

    Expression of epidermal growth factor receptor (EGFR) may be of prognostic value in renal cell cancer (RCC). Gene amplification of EGFR was investigated in a cohort of 315 patients with advanced RCC from a previously reported randomised study. Using fluorescent in situ hybridisation, only 2 patie...

  12. [From gene to disease; tumor necrosis factor receptor and a syndrome of familial periodic fever

    NARCIS (Netherlands)

    Simon, A.; Drenth, J.P.H.; Meer, J.W.M. van der

    2001-01-01

    Familial Hibernian fever (FHF) is a rare hereditary syndrome that causes periodic attacks of fever and inflammation. It is an autosomal dominantly inherited disorder. The gene involved in FHF encodes for a receptor for tumour necrosis factor (TNFR1). These mutations are thought to result in impaired

  13. Positive selection of HIV host factors and the evolution of lentivirus genes

    Directory of Open Access Journals (Sweden)

    Lengauer Thomas

    2010-06-01

    Full Text Available Abstract Background Positive selection of host proteins that interact with pathogens can indicate factors relevant for infection and potentially be a measure of pathogen driven evolution. Results Our analysis of 1439 primate genes and 175 lentivirus genomes points to specific host factors of high genetic variability that could account for differences in susceptibility to disease and indicate specific mechanisms of host defense and pathogen adaptation. We find that the largest amount of genetic change occurs in genes coding for cellular membrane proteins of the host as well as in the viral envelope genes suggesting cell entry and immune evasion as the primary evolutionary interface between host and pathogen. We additionally detect the innate immune response as a gene functional group harboring large differences among primates that could potentially account for the different levels of immune activation in the HIV/SIV primate infection. We find a significant correlation between the evolutionary rates of interacting host and viral proteins pointing to processes of the host-pathogen biology that are relatively conserved among species and to those undergoing accelerated genetic evolution. Conclusions These results indicate specific host factors and their functional groups experiencing pathogen driven evolutionary selection pressures. Individual host factors pointed to by our analysis might merit further study as potential targets of antiretroviral therapies.

  14. Construction of a mouse model of factor VIII deficiency by gene targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bi, L.; Lawler, A.; Gearhart, J. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)] [and others

    1994-09-01

    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  15. EGR3 Immediate Early Gene and the Brain-Derived Neurotrophic Factor in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Bianca Pfaffenseller

    2018-02-01

    Full Text Available Bipolar disorder (BD is a severe psychiatric illness with a consistent genetic influence, involving complex interactions between numerous genes and environmental factors. Immediate early genes (IEGs are activated in the brain in response to environmental stimuli, such as stress. The potential to translate environmental stimuli into long-term changes in brain has led to increased interest in a potential role for these genes influencing risk for psychiatric disorders. Our recent finding using network-based approach has shown that the regulatory unit of early growth response gene 3 (EGR3 of IEGs family was robustly repressed in postmortem prefrontal cortex of BD patients. As a central transcription factor, EGR3 regulates an array of target genes that mediate critical neurobiological processes such as synaptic plasticity, memory and cognition. Considering that EGR3 expression is induced by brain-derived neurotrophic factor (BDNF that has been consistently related to BD pathophysiology, we suggest a link between BDNF and EGR3 and their potential role in BD. A growing body of data from our group and others has shown that peripheral BDNF levels are reduced during mood episodes and also with illness progression. In this same vein, BDNF has been proposed as an important growth factor in the impaired cellular resilience related to BD. Taken together with the fact that EGR3 regulates the expression of the neurotrophin receptor p75NTR and may also indirectly induce BDNF expression, here we propose a feed-forward gene regulatory network involving EGR3 and BDNF and its potential role in BD.

  16. Transposon mutagenesis identifies candidate genes that cooperate with loss of Transforming Growth Factor-beta signaling in mouse intestinal neoplasms

    Science.gov (United States)

    Morris, Shelli M.; Davison, Jerry; Carter, Kelly T.; O’Leary, Rachele M.; Trobridge, Patty; Knoblaugh, Sue E.; Myeroff, Lois L.; Markowitz, Sanford D.; Brett, Benjamin T.; Scheetz, Todd E.; Dupuy, Adam J.; Starr, Timothy K.; Grady, William M.

    2017-01-01

    Colorectal cancer (CRC) results from the accumulation of gene mutations and epigenetic alterations in colon epithelial cells, which promotes CRC formation through deregulating signaling pathways. One of the most commonly deregulated signaling pathways in CRC is the transforming growth factor β (TGF-β) pathway. Importantly, the effects of TGF-β signaling inactivation in CRC are modified by concurrent mutations in the tumor cell, and these concurrent mutations determine the ultimate biological effects of impaired TGF-β signaling in the tumor. However, many of the mutations that cooperate with the deregulated TGF-β signaling pathway in CRC remain unknown. Therefore, we sought to identify candidate driver genes that promote the formation of CRC in the setting of TGF-β signaling inactivation. We performed a forward genetic screen in mice carrying conditionally inactivated alleles of the TGF-β receptor, type II (Tgfbr2) using Sleeping Beauty (SB) transposon mediated mutagenesis. We used TAPDANCE and Gene-centric statistical methods to identify common insertion sites (CIS) and, thus, candidate tumor suppressor genes and oncogenes within the tumor genome. CIS analysis of multiple neoplasms from these mice identified many candidate Tgfbr2 cooperating genes and the Wnt/β-catenin, Hippo and MAPK pathways as the most commonly affected pathways. Importantly, the majority of candidate genes were also found to be mutated in human CRC. The SB transposon system provides an unbiased method to identify Tgfbr2 cooperating genes in mouse CRC that are functionally relevant and that may provide further insight into the pathogenesis of human CRC. PMID:27790711

  17. USH2A Gene Editing Using the CRISPR System

    Directory of Open Access Journals (Sweden)

    Carla Fuster-García

    2017-09-01

    Full Text Available Usher syndrome (USH is a rare autosomal recessive disease and the most common inherited form of combined visual and hearing impairment. Up to 13 genes are associated with this disorder, with USH2A being the most prevalent, due partially to the recurrence rate of the c.2299delG mutation. Excluding hearing aids or cochlear implants for hearing impairment, there are no medical solutions available to treat USH patients. The repair of specific mutations by gene editing is, therefore, an interesting strategy that can be explored using the CRISPR/Cas9 system. In this study, this method of gene editing is used to target the c.2299delG mutation on fibroblasts from an USH patient carrying the mutation in homozygosis. Successful in vitro mutation repair was demonstrated using locus-specific RNA-Cas9 ribonucleoproteins with subsequent homologous recombination repair induced by an engineered template supply. Effects on predicted off-target sites in the CRISPR-treated cells were discarded after a targeted deep-sequencing screen. The proven effectiveness and specificity of these correction tools, applied to the c.2299delG pathogenic variant of USH2A, indicates that the CRISPR system should be considered to further explore a potential treatment of USH.

  18. Transforming growth factor β (CiTGF-β) gene expression is induced in the inflammatory reaction of Ciona intestinalis.

    Science.gov (United States)

    Vizzini, Aiti; Di Falco, Felicia; Parrinello, Daniela; Sanfratello, Maria Antonietta; Cammarata, Matteo

    2016-02-01

    Transforming growth factor (TGF-β) is a well-known component of a regulatory cytokines superfamily that has pleiotropic functions in a broad range of cell types and is involved, in vertebrates, in numerous physiological and pathological processes. In the current study, we report on Ciona intestinalis molecular characterisation and expression of a transforming growth factor β homologue (CiTGF-β). The gene organisation, phylogenetic tree and modelling supported the close relationship with the mammalian TGF suggesting that the C. intestinalis TGF-β gene shares a common ancestor in the chordate lineages. Functionally, real-time PCR analysis showed that CiTGF-β was transcriptionally upregulated in the inflammatory process induced by LPS inoculation, suggesting that is involved in the first phase and significant in the secondary phase of the inflammatory response in which cell differentiation occurs. In situ hybridisation assays revealed that the genes transcription was upregulated in the pharynx, the main organ of the ascidian immune system, and expressed by cluster of hemocytes inside the pharynx vessels. These data supported the view that CiTGF-β is a potential molecule in immune defence systems against bacterial infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12.

    OpenAIRE

    Braun, T; Bober, E; Winter, B; Rosenthal, N; Arnold, H H

    1990-01-01

    The Myf-6 gene, a novel member of the human gene family of muscle determination factors has been detected by its highly conserved sequence coding for a putative helix-loop-helix domain. This sequence motif is a common feature of all Myf factors and other regulatory proteins. The new Myf gene is located on human chromosome 12, approximately 6.5 Kb upstream of the Myf-5 locus in a closely linked cluster of myogenic determination genes. Myf-6 cDNAs were isolated from human and mouse skeletal mus...

  20. Gene x environment interactions as dynamical systems: clinical implications

    Directory of Open Access Journals (Sweden)

    Sarah S. Knox

    2015-12-01

    Full Text Available The etiology and progression of the chronic diseases that account for the highest rates of mortality in the US, namely, cardiovascular diseases and cancers, involve complex gene x environment interactions. Yet despite the general agreement in the medical community given to this concept, there is a widespread lack of clarity as to what the term ‘interaction’ actually means. The consequence is the use of linear statistical methods to describe processes that are biologically nonlinear, resulting in clinical applications that are often not optimal. Gene x environment interactions are characterized by dynamic, nonlinear molecular networks that change and evolve over time; and by emergent properties that cannot be deduced from the characteristics of their individual subcomponents. Given the nature of these systemic properties, reductionist methods are insufficient for fully providing the information relevant to improving therapeutic outcomes. The purpose of this article is to provide an overview of these concepts and their relevance to prevention and interventions.

  1. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana.

    Science.gov (United States)

    Shi, Yihao; Huang, Jiaying; Sun, Tianshu; Wang, Xuefei; Zhu, Chenqi; Ai, Yuxi; Gu, Hongya

    2017-02-01

    The transcription factors CBF1/2/3 are reported to play a dominant role in the cold responsive network of Arabidopsis by directly regulating the expression levels of cold responsive (COR) genes. In this study, we obtained CRISPR/Cas9-mediated loss-of-function mutants of cbf1∼3. Over 3,000 COR genes identified by RNA-seq analysis showed a slight but significant change in their expression levels in the mutants compared to the wild-type plants after being treated at 4 °C for 12 h. The C-repeat (CRT) motif (5'-CCGAC-3') was enriched in promoters of genes that were up-regulated by CBF2 and CBF3 but not in promoters of genes up-regulated by CBF1. These data suggest that CBF2 and CBF3 play a more important role in directing the cold response by regulating different sets of downstream COR genes. More than 2/3 of COR genes were co-regulated by two or three CBFs and were involved mainly in cellular signal transduction and metabolic processes; less than 1/3 of the genes were regulated by one CBF, and those genes up-regulated were enriched in cold-related abiotic stress responses. Our results indicate that CBFs play an important role in the trade-off between cold tolerance and plant growth through the precise regulation of COR genes in the complicated transcriptional network. © 2016 The Authors. Journal of Integrative Plant Biology Published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  2. Association between Factor V Gene Polymorphism and Risk of Ischemic Stroke: An Updated Meta-Analysis.

    Science.gov (United States)

    Alhazzani, Adel Ali; Kumar, Amit; Selim, Magdy

    2018-02-22

    Ischemic stroke is a complex, multifactorial, and polygenic disease. Reports on relationship between Factor V G1691A single nucleotide gene polymorphism and ischemic stroke have revealed inconsistent results. We conducted an updated meta-analysis to determine the role of Factor V single nucleotide gene polymorphism in ischemic stroke. We searched the literature using academic electronic databases that is, PubMed, Trip Data Base, EBSCO, and Google Scholar, last search up to September 2017. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated from fixed or random effects models whichever applicable using software STATA version 13 (StataCorp LP, College Station, TX). Forty case-control studies met the inclusion criteria, which included 6860 cases and 18,025 controls. Altogether, 19 studies in young adults (age  40). Four studies did not report the mean age at recruitment. Significant association between Factor V G1691A gene polymorphism and risk of ischemic stroke were observed under dominant model (OR 1.40; 95% CI: 1.22 to 1.62, P value analysis suggested substantial association of Factor V gene polymorphism and risk of ischemic stroke in cases with onset at young age (OR 1.84; 95% CI: 1.47 to 2.30), but was not statistical significant in cases at old age (>40 years). Factor V G1691A single nucleotide gene polymorphism was associated with risk of ischemic stroke mainly in young adults. Further research with adequately powered prospective studies in homogenous subjects are required to determine the nature of association in young stroke. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  3. 75 FR 35093 - Civil Service Retirement System; Present Value Factors

    Science.gov (United States)

    2010-06-21

    ... OFFICE OF PERSONNEL MANAGEMENT Civil Service Retirement System; Present Value Factors AGENCY... providing notice of adjusted present value factors applicable to retirees under the Civil Service Retirement... present value factors to changes in demographic factors adopted by the Board of Actuaries of the Civil...

  4. 75 FR 35096 - Federal Employees' Retirement System; Present Value Factors

    Science.gov (United States)

    2010-06-21

    ... OFFICE OF PERSONNEL MANAGEMENT Federal Employees' Retirement System; Present Value Factors AGENCY... providing notice of adjusted present value factors applicable to retirees who elect to provide survivor.... This notice is necessary to conform the present value factors to changes in demographic factors adopted...

  5. Transcription factor CREB is involved in CaSR-mediated cytoskeleton gene expression.

    Science.gov (United States)

    Huang, Shuaishuai; Ren, Yu; Wang, Ping; Li, Yanyuan; Wang, Xue; Zhuang, Haihui; Fang, Rong; Wang, Yuduo; Liu, Ningsheng; Hehir, Michael; Zhou, Jeff X

    2015-03-01

    Our previous studies illustrated that a steady increase of intracellular calcium concentration ([Ca2+]i) was important for maintaining microtubules (MTs) rearrangement in apoptotic cells. However, little is known about the effect of calcium sensing receptor (CaSR)-mediated increase in [Ca2+]i on cytoskeleton gene expression. We examined the impact of taxol or CaSR agonist/antagonist on the regulation of [Ca2+]i concentration, cytoskeleton arrangement, phosphorylated CREB and cytoskeleton gene expressions in HeLa cells with dominant negative plasmid of CREB (PM). This study demonstrated that Gdcl3 (a specific CaSR agonist) evoked a rapid increase of [Ca2+]i, formed a rigid bundle of MTs which surrounded the nucleus and decreased the cytoskeleton gene expressions in HeLa cells. These effects were rescued by addition of NPS2390 (a specific CaSR antagonist). Moreover, CaSR activity affected cytoskeleton gene expression through transcription factor CREB. Histoscores of pCREB immunoreactivity in tissues of cervical adenocarcinoma, renal clear cell carcinoma, and diffuse large B-cell lymphoma were markedly increased compared with non malignant tissue. These data demonstrate, for the first time, that CaSR-mediated increase in [Ca2+]i probably modulate cytoskeleton organization and gene expression via transcription factor. © 2014 Wiley Periodicals, Inc.

  6. Vascular endothelial growth factor A protein level and gene expression in intracranial meningiomas with brain edema

    DEFF Research Database (Denmark)

    Nassehi, Damoun; Dyrbye, Henrik; Andresen, Morten

    2011-01-01

    Meningiomas are the second most common primary intracranial tumors in adults. Although meningiomas are mostly benign, more than 50% of patients with meningioma develop peritumoral brain edema (PTBE), which may be fatal because of increased intracranial pressure. Vascular endothelial growth factor...... (VEGF) is an endothelial cell-specific mitogen and angiogen. VEGF-A protein, which is identical to vascular permeability factor, is a regulator of angiogenesis. In this study, 101 patients with meningiomas, and possible co-factors to PTBE, such as meningioma subtypes and tumor location, were examined....... Forty-three patients had primary, solitary, supratentorial meningiomas with PTBE. In these, correlations in PTBE, edema index, VEGF-A protein, VEGF gene expression, capillary length, and tumor water content were investigated. DNA-branched hybridization was used for measuring VEGF gene expression...

  7. Pulmonary artery hypertension in childhood: The transforming growth factor-β superfamily-related genes

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2018-04-01

    Full Text Available Pulmonary artery hypertension (PAH is very rare in childhood, and it can be divided into heritable, idiopathic drug- and toxin-induced and other disease (connective tissue disease, human immunodeficiency virus infection, portal hypertension, congenital heart disease, or schistosomiasis-associated types. PAH could not be interpreted solely by pathophysiological theories. The impact of the transforming growth factor-β superfamily-related genes on the development of PAH in children remains to be clarified. Pertinent literature on the transforming growth factor-β superfamily-related genes in relation to PAH in children published after the year 2000 was reviewed and analyzed. Bone morphogenetic protein receptor type II gene mutation promotes cell division or prevents cell death, resulting in an overgrowth of cells in small arteries throughout the lungs. About 20% of individuals with a bone morphogenetic protein receptor type II gene mutation develop symptomatic PAH. In heritable PAH, bone morphogenetic protein receptor type II mutations may be absent; while mutations of other genes, such as type I receptor activin receptor-like kinase 1 and the type III receptor endoglin (both associated with hereditary hemorrhagic telangiectasia, caveolin-1 and KCNK3, the gene encoding potassium channel subfamily K, member 3, can be detected, instead. Gene mutations, environmental changes and acquired adjustment, etc. may explain the development of PAH. The researches on PAH rat model and familial PAH members may facilitate the elucidations of the mechanisms and further provide theories for prophylaxis and treatment of PAH. Key Words: bone morphogenetic proteins, mutation, pulmonary hypertension

  8. Identification of genes encoding critical factors regulating B-cell terminal differentiation in torafugu (Takifugu rubripes).

    Science.gov (United States)

    Ohtani, Maki; Miyadai, Toshiaki; Hiroishi, Shingo

    2006-03-01

    Many transcription factors, and associated co-factors, are involved in the regulation of B-cell terminal differentiation in mammals. In the teleost and cartilaginous fish, although evidence has strongly suggested the existence of B-cell like lymphocytes, the mechanism of terminal differentiation of B-cells remains to be elucidated. In the present study, we searched for the nucleotide and amino acid sequences similar to the critical regulatory factors facilitating the terminal differentiation of B-cells using the fugu BLAST server. We cloned the following cDNAs from Takifugu rubripes: (1) B-lymphocyte-induced maturation protein-1 (Blimp-1), which plays a major role in promoting plasma cell differentiation by repressing the transcription of many genes that participate in maintaining the differentiation of mature B-cells; (2) Bcl-6, which facilitates germinal center formation and represses Blimp-1 expression; (3) X-box binding protein-1 (XBP-1), which operates Ig secretion by activating transcription of the ER-stress responsible genes; (4) Pax-5, which suppresses XBP-1 and enhances the expression of activation-induced cytidine deaminase (AID), an inducer of somatic hypermutation and class-switch recombination of the immunoglobulin gene; and (5) TLE-3, one of the Groucho family proteins, a co-factor for Blimp-1. We also identified other co-factors and many target genes of Blimp-1 by in silico and/or cDNA cloning. These finding indicates that the basal process of B-cell terminal differentiation in fish is controlled by factors identical to those in mammals.

  9. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  10. Serum response factor MADS box serine -162 phosphorylation switches proliferation and myogenic gene programs

    Science.gov (United States)

    Iyer, Dinakar; Chang, David; Marx, Joe; Wei, Lei; Olson, Eric N.; Parmacek, Michael S.; Balasubramanyam, Ashok; Schwartz, Robert J.

    2006-01-01

    Phosphorylation of a cluster of amino acids in the serum response factor (SRF) “MADS box” αI coil DNA binding domain regulated the transcription of genes associated with proliferation or terminal muscle differentiation. Mimicking phosphorylation of serine-162, a target of protein kinase C-α, with an aspartic acid substitution (SRF-S162D) completely inhibited SRF–DNA binding and blocked α-actin gene transcription even in the presence of potent myogenic cofactors, while preserving c-fos promoter activity because of stabilization of the ternary complex via Elk-1. Introduction of SRF-S162D into SRF null ES cells permitted transcription of the c-fos gene but was unable to rescue expression of myogenic contractile genes. Transition of proliferating C2C12 myoblasts to postfusion myocytes after serum withdrawal was associated with a progressive decline in SRF-S162 phosphorylation and an increase in α-actin gene expression. Hence, the phosphorylation status of serine-162 in the αI coil may constitute a novel switch that directs target gene expression into proliferation or differentiation programs. PMID:16537394

  11. Identification of target genes of transcription factor activator protein 2 gamma in breast cancer cells

    International Nuclear Information System (INIS)

    Ailan, He; Shuanglin, Xiang; Xiangwen, Xiao; Daolong, Ren; Lu, Gan; Xiaofeng, Ding; Xi, Qiao; Xingwang, Hu; Rushi, Liu; Jian, Zhang

    2009-01-01

    Activator protein 2 gamma (AP-2γ) is a member of the transcription factor activator protein-2 (AP-2) family, which is developmentally regulated and plays a role in human neoplasia. AP-2γ has been found to be overexpressed in most breast cancers, and have a dual role to inhibit tumor initiation and promote tumor progression afterwards during mammary tumorigensis. To identify the gene targets that mediate its effects, we performed chromatin immunoprecipitation (ChIP) to isolate AP-2γ binding sites on genomic DNA from human breast cancer cell line MDA-MB-453. 20 novel DNA fragments proximal to potential AP-2γ targets were obtained. They are categorized into functional groups of carcinogenesis, metabolism and others. A combination of sequence analysis, reporter gene assays, quantitative real-time PCR, electrophoretic gel mobility shift assays and immunoblot analysis further confirmed the four AP-2γ target genes in carcinogenesis group: ErbB2, CDH2, HPSE and IGSF11. Our results were consistent with the previous reports that ErbB2 was the target gene of AP-2γ. Decreased expression and overexpression of AP-2γ in human breast cancer cells significantly altered the expression of these four genes, indicating that AP-2γ directly regulates them. This suggested that AP-2γ can coordinate the expression of a network of genes, involving in carcinogenesis, especially in breast cancer. They could serve as therapeutic targets against breast cancers in the future

  12. Hessian regularization based non-negative matrix factorization for gene expression data clustering.

    Science.gov (United States)

    Liu, Xiao; Shi, Jun; Wang, Congzhi

    2015-01-01

    Since a key step in the analysis of gene expression data is to detect groups of genes that have similar expression patterns, clustering technique is then commonly used to analyze gene expression data. Data representation plays an important role in clustering analysis. The non-negative matrix factorization (NMF) is a widely used data representation method with great success in machine learning. Although the traditional manifold regularization method, Laplacian regularization (LR), can improve the performance of NMF, LR still suffers from the problem of its weak extrapolating power. Hessian regularization (HR) is a newly developed manifold regularization method, whose natural properties make it more extrapolating, especially for small sample data. In this work, we propose the HR-based NMF (HR-NMF) algorithm, and then apply it to represent gene expression data for further clustering task. The clustering experiments are conducted on five commonly used gene datasets, and the results indicate that the proposed HR-NMF outperforms LR-based NMM and original NMF, which suggests the potential application of HR-NMF for gene expression data.

  13. Localization of the gene for the ciliary neutrotrophic factor receptor (CNTFR) to human chromosome 9

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, D.H.; Jones, C.; Patterson, D. (Eleanor Roosevelt Institute, Denver, CO (United States) Univ. of Colorado Health Science Center, Denver, CO (United States)); Britt, D.E.; Jackson, C.L. (Brown Univ., Providence, RI (United States))

    1993-09-01

    Ciliary neurotrophic factor (CNTF) has recently been found to be important for the survival of motor neurons and has shown activity in animal models of amyotrophic lateral sclerosis (ALS). CNTF therefore holds promise as a treatment for ALS, and it and its receptor (CNTFR) are candidates for a gene involved in familial ALS. The CNTFR gene was mapped to chromosome 9 by PCR on a panel of human/CHO somatic cell hybrids and localized to 9p13 by PCR on a panel of radiation hybrids. 18 ref., 1 fig., 2 tabs.

  14. Factors Associated with Photovoltaic System Costs (Topical Issues Brief)

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, J.

    2001-06-12

    A variety of factors can affect the cost of photovoltaic systems. This report analyses the relationship among such factors by using information entered into a voluntary registry of PV systems and performing regression analyses. The results showed statistically significant relationships between photovoltaic system cost and (a) grid connection, (b) installation year, (c) areas where the utility had entered into volume purchasing agreements.

  15. DMPD: Type I interferon [corrected] gene induction by the interferon regulatory factorfamily of transcription factors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16979567 Type I interferon [corrected] gene induction by the interferon regulatory factorfamily...ng) (.svg) (.html) (.csml) Show Type I interferon [corrected] gene induction by the interferon regulatory factorfamily...orrected] gene induction by the interferon regulatory factorfamily of transcription factors. Authors Honda K

  16. pncA gene expression and prediction factors on pyrazinamide resistance in Mycobacterium tuberculosis.

    Science.gov (United States)

    Sheen, Patricia; Lozano, Katherine; Gilman, Robert H; Valencia, Hugo J; Loli, Sebastian; Fuentes, Patricia; Grandjean, Louis; Zimic, Mirko

    2013-09-01

    Mutations in the pyrazinamidase (PZAse) coding gene, pncA, have been considered as the main cause of pyrazinamide (PZA) resistance in Mycobacterium tuberculosis. However, recent studies suggest there is no single mechanism of resistance to PZA. The pyrazinoic acid (POA) efflux rate is the basis of the PZA susceptibility Wayne test, and its quantitative measurement has been found to be a highly sensitive and specific predictor of PZA resistance. Based on biological considerations, the POA efflux rate is directly determined by the PZAse activity, the level of pncA expression, and the efficiency of the POA efflux pump system. This study analyzes the individual and the adjusted contribution of PZAse activity, pncA expression and POA efflux rate on PZA resistance. Thirty M. tuberculosis strains with known microbiological PZA susceptibility or resistance were analyzed. For each strain, PZAse was recombinantly produced and its enzymatic activity measured. The level of pncA mRNA was estimated by quantitative RT-PCR, and the POA efflux rate was determined. Mutations in the pncA promoter were detected by DNA sequencing. All factors were evaluated by multiple regression analysis to determine their adjusted effects on the level of PZA resistance. Low level of pncA expression associated to mutations in the pncA promoter region was observed in pncA wild type resistant strains. POA efflux rate was the best predictor after adjusting for the other factors, followed by PZAse activity. These results suggest that tests which rely on pncA mutations or PZAse activity are likely to be less predictive of real PZA resistance than tests which measure the rate of POA efflux. This should be further analyzed in light of the development of alternate assays to determine PZA resistance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Efficient gene delivery using chitosan-polyethylenimine hybrid systems

    International Nuclear Information System (INIS)

    Jiang, Hu-Lin; Kim, Tae-Hee; Kim, You-Kyoung; Park, In-Young; Cho, Chong-Su; Cho, Myung-Haing

    2008-01-01

    Chitosan and chitosan derivatives have been investigated as non-viral vectors because they have several advantages, such as biocompatibility, biodegradability, low cytotoxicity and low immunogenicity. However, low transfection efficiency and low cell specificity must be solved for their use in clinical trials. In this paper, chitosan-polyethylenimine (PEI) hybrid systems such as chitosan/PEI blend and chitosan-graft-PEI are described for efficient gene delivery because the PEI has high transfection efficiency owing to a proton sponge effect and chitosan has biocompatibility. Also, hepatocyte specificity of the galactosylated chitosan is explained after combination with PEI

  18. Injury-induced CRMP4 expression in adult sensory neurons; a possible target gene for ciliary neurotrophic factor.

    Science.gov (United States)

    Jang, So Young; Shin, Yoon Kyung; Jung, Junyang; Lee, Sang Hwa; Seo, Su-Yeong; Suh, Duk Joon; Park, Hwan Tae

    2010-11-12

    Neurotrophic cytokines, such as ciliary neurotrophic factor (CNTF) play an important role in the development and regeneration of the nervous system. In the present study, we screened gene expression induced by CNTF in adult dorsal root ganglion (DRG) neurons using the Illumina microarray. We found that the expression of both short and long forms of collapsin response-mediator protein 4 (CRMP4) was increased in cultured primary sensory neurons by CNTF. In addition, sciatic nerve injury induced the expression of CRMP4 mRNA and protein in DRG neurons. Finally, the increased CRMP4 protein was transported into peripheral axons following nerve injury. These findings indicate that CRMP4 may be a target gene for CNTF in the regenerative axon growth of DRG neurons after injury. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Typing TREX1 gene in patients with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    M. Fredi

    2015-06-01

    Full Text Available An impaired expression of interferon-α regulated genes has been reported in patients with either systemic lupus erythematosus (SLE or Aicardi-Goutières syndrome (AGS, a rare monogenic encephalopathy with onset in infancy. One of mutations causing AGS is located in the TREX1 gene on chromosome 3. Heterozygous mutations in TREX1 were reported in SLE patients. TREX1 is a DNA exonuclease with specificity for ssDNA. An impairment of its activity may result in the accumulation of nucleid acid. A recent study described a significant association between a haplotype including several common single nucleotide polymorphisms (SNPs of TREX1 and neurological manifestations in European SLE patients. Fifty-one SLE patients were screened for TREX1 gene, and the corresponding data were collected from clinical charts. A novel heterozygous variant (p.Asp130Asn was identified in one patient and in none of 150 controls. A missense variation was located in one of the three active sites of the gene and was classified as probably damaging. Variations of SNP rs11797 were detected in 33 SLE patients and a variation of rs3135944 in one. A significantly higher rate of the minor allele (T nucleotide of SNP rs11797 was found in SLE patients with neuropsychiatric manifestations [12/16 (75% vs 28/86 (32.5% O=0.002, odds ratio=6.42 95% confidence interval (1.7-26.2]. Only 1 out of 8 patients (12.5% with neuropsychiatric SLE carried the wild-type form in homozygosity. Although we analyzed a small number of patients, we found a novel variation of TREX1, which may be pathogenic. The polymorphism of rs11797 was more frequent in SLE patients with neurological manifestations.

  20. RGFinder: a system for determining semantically related genes using GO graph minimum spanning tree.

    Science.gov (United States)

    Taha, Kamal

    2015-01-01

    Biologists often need to know the set S' of genes that are the most functionally and semantically related to a given set S of genes. For determining the set S', most current gene similarity measures overlook the structural dependencies among the Gene Ontology (GO) terms annotating the set S, which may lead to erroneous results. We introduce in this paper a biological search engine called RGFinder that considers the structural dependencies among GO terms by employing the concept of existence dependency. RGFinder assigns a weight to each edge in GO graph to represent the degree of relatedness between the two GO terms connected by the edge. The value of the weight is determined based on the following factors: 1) type of the relation represented by the edge (e.g., an "is-a" relation is assigned a different weight than a "part-of" relation), 2) the functional relationship between the two GO terms connected by the edge, and 3) the string-substring relationship between the names of the two GO terms connected by the edge. RGFinder then constructs a minimum spanning tree of GO graph based on these weights. In the framework of RGFinder, the set S' is annotated to the GO terms located at the lowest convergences of the subtree of the minimum spanning tree that passes through the GO terms annotating set S. We evaluated RGFinder experimentally and compared it with four gene set enrichment systems. Results showed marked improvement.

  1. Analysis of mutations in the entire coding sequence of the factor VIII gene

    Energy Technology Data Exchange (ETDEWEB)

    Bidichadani, S.I.; Lanyon, W.G.; Connor, J.M. [Glascow Univ. (United Kingdom)] [and others

    1994-09-01

    Hemophilia A is a common X-linked recessive disorder of bleeding caused by deleterious mutations in the gene for clotting factor VIII. The large size of the factor VIII gene, the high frequency of de novo mutations and its tissue-specific expression complicate the detection of mutations. We have used a combination of RT-PCR of ectopic factor VIII transcripts and genomic DNA-PCRs to amplify the entire essential sequence of the factor VIII gene. This is followed by chemical mismatch cleavage analysis and direct sequencing in order to facilitate a comprehensive search for mutations. We describe the characterization of nine potentially pathogenic mutations, six of which are novel. In each case, a correlation of the genotype with the observed phenotype is presented. In order to evaluate the pathogenicity of the five missense mutations detected, we have analyzed them for evolutionary sequence conservation and for their involvement of sequence motifs catalogued in the PROSITE database of protein sites and patterns.

  2. Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Deniaud

    Full Text Available BACKGROUND: The ubiquitous transcription factor Sp1 regulates the expression of a vast number of genes involved in many cellular functions ranging from differentiation to proliferation and apoptosis. Sp1 expression levels show a dramatic increase during transformation and this could play a critical role for tumour development or maintenance. Although Sp1 deregulation might be beneficial for tumour cells, its overexpression induces apoptosis of untransformed cells. Here we further characterised the functional and transcriptional responses of untransformed cells following Sp1 overexpression. METHODOLOGY AND PRINCIPAL FINDINGS: We made use of wild-type and DNA-binding-deficient Sp1 to demonstrate that the induction of apoptosis by Sp1 is dependent on its capacity to bind DNA. Genome-wide expression profiling identified genes involved in cancer, cell death and cell cycle as being enriched among differentially expressed genes following Sp1 overexpression. In silico search to determine the presence of Sp1 binding sites in the promoter region of modulated genes was conducted. Genes that contained Sp1 binding sites in their promoters were enriched among down-regulated genes. The endogenous sp1 gene is one of the most down-regulated suggesting a negative feedback loop induced by overexpressed Sp1. In contrast, genes containing Sp1 binding sites in their promoters were not enriched among up-regulated genes. These results suggest that the transcriptional response involves both direct Sp1-driven transcription and indirect mechanisms. Finally, we show that Sp1 overexpression led to a modified expression of G1/S transition regulatory genes such as the down-regulation of cyclin D2 and the up-regulation of cyclin G2 and cdkn2c/p18 expression. The biological significance of these modifications was confirmed by showing that the cells accumulated in the G1 phase of the cell cycle before the onset of apoptosis. CONCLUSION: This study shows that the binding to DNA

  3. Plastid gene expression and plant development require a plastidic protein of the mitochondrial transcription termination factor family

    Science.gov (United States)

    Babiychuk, Elena; Vandepoele, Klaas; Wissing, Josef; Garcia-Diaz, Miguel; De Rycke, Riet; Akbari, Hana; Joubès, Jérôme; Beeckman, Tom; Jänsch, Lothar; Frentzen, Margrit; Van Montagu, Marc C. E.; Kushnir, Sergei

    2011-01-01

    Plastids are DNA-containing organelles unique to plant cells. In Arabidopsis, one-third of the genes required for embryo development encode plastid-localized proteins. To help understand the role of plastids in embryogenesis and postembryonic development, we characterized proteins of the mitochondrial transcription termination factor (mTERF) family, which in animal models, comprises DNA-binding regulators of mitochondrial transcription. Of 35 Arabidopsis mTERF proteins, 11 are plastid-localized. Genetic complementation shows that at least one plastidic mTERF, BELAYA SMERT' (BSM), is required for embryogenesis. The main postembryonic phenotypes of genetic mosaics with the bsm mutation are severe abnormalities in leaf development. Mutant bsm cells are albino, are compromised in growth, and suffer defects in global plastidic gene expression. The bsm phenotype could be phenocopied by inhibition of plastid translation with spectinomycin. Plastid translation is essential for cell viability in dicotyledonous species such as tobacco but not in monocotyledonous maize. Here, genetic interactions between BSM and the gene encoding plastid homomeric acetyl-CoA carboxylase ACC2 suggest that there is a functional redundancy in malonyl-CoA biosynthesis that permits bsm cell survival in Arabidopsis. Overall, our results indicate that biosynthesis of malonyl-CoA and plastid-derived systemic growth-promoting compounds are the processes that link plant development and plastid gene expression. PMID:21464319

  4. Molecular cloning of the human gene for von Willebrand factor and identification of the transcription initiation site

    International Nuclear Information System (INIS)

    Collins, C.J.; Underdahl, J.P.; Levene, R.B.; Ravera, C.P.; Morin, M.J.; Dombalagian, M.J.; Ricca, G.; Livingston, D.M.; Lynch, D.C.

    1987-01-01

    A series of overlapping cosmid genomic clones have been isolated that contain the entire coding unit of the human gene for van Willebrand factor (vWf), a major component of the hemostatic system. The cloned segments span ≅ 175 kilobases of human DNA sequence, and hybridization analysis suggest that the vWf coding unit is ≅150 kilobases in length. Within one of these clones, the vWF transcription initiation site has been mapped and a portion of the vWf promoter region has been sequenced, revealing a typical TATA box, a downstream CCAAT box, and a perfect downstream repeat of the 8 base pairs containing the transcription start site. Sequencing of a segment of another genomic clone has revealed the vWF translation termination codon. Where tested, comparative restriction analysis of cloned and chromosomal DNA segments strongly suggests that no major alterations occurred during cloning and that there is only one complete copy of the vWf gene in the human haploid genome. Similar analyses of DNA from vWf-producing endothelial cells and nonexpressing leukocytes suggest that vWf gene expression is not accompanied by gross genomic rearrangements. In addition, there is significant homology of C-terminal coding sequences among the vWf genes of several vertebrate species

  5. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT......[A,C,G]CGT as ATAF1 consensus binding sequences. Co-expression analysis across publicly available microarray experiments identified 25 genes co-expressed with ATAF1. The promoter regions of ATAF1 co-expressors were significantly enriched for ATAF1 binding sites, and TTGCGTA was identified in the promoter of the key...... abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  6. Hepatocyte nuclear factor 1alpha is an accessory factor required for activation of glucose-6-phosphatase gene transcription by glucocorticoids.

    Science.gov (United States)

    Lin, B; Morris, D W; Chou, J Y

    1998-11-01

    Deficiency of glucose-6-phosphatase (G6Pase), a key enzyme in glucose homeostasis, causes glycogen storage disease type 1a (GSD-1a), also know as von Gierke disease. Expression of the G6Pase gene is regulated by multiple hormones, including glucocorticoids. The synthetic glucocorticoid dexamethasone increased G6Pase mRNA abundance and gene transcription in H4-IIE hepatoma cells. Transient transfection assays demonstrated that the G6Pase promoter was active in H4-IIE cells only in the presence of dexamethasone. The minimal G6Pase promoter was contained within nucleotides -234/+3, which has two putative glucocorticoid response elements (GREs) at nucleotides -178/-164 (site 1) and -154/-140 (site 2). Electromobility shift and transient transfection assays showed that only GRE site 1 was required for glucocorticoid-activated transcription from the G6Pase promoter. Deletion analysis demonstrated that the DNA elements absolutely essential for glucocorticoid-stimulated transcription from the G6Pase promoter were contained within nucleotides -234/-212, encompassing binding motifs for hepatocyte nuclear factors (HNFs) 1 (-226/-212) and 4 (-231/-220). Electromobility shift and cotransfection assays showed that HNF1alpha bound to its cognate site and mediated transcription activation of the G6Pase gene by glucocorticoids.

  7. Arrangement of the Clostridium baratii F7 toxin gene cluster with identification of a σ factor that recognizes the botulinum toxin gene cluster promoters.

    Science.gov (United States)

    Dover, Nir; Barash, Jason R; Burke, Julianne N; Hill, Karen K; Detter, John C; Arnon, Stephen S

    2014-01-01

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.

  8. A high-resolution gene expression atlas of epistasis between gene-specific transcription factors exposes potential mechanisms for genetic interactions.

    Science.gov (United States)

    Sameith, Katrin; Amini, Saman; Groot Koerkamp, Marian J A; van Leenen, Dik; Brok, Mariel; Brabers, Nathalie; Lijnzaad, Philip; van Hooff, Sander R; Benschop, Joris J; Lenstra, Tineke L; Apweiler, Eva; van Wageningen, Sake; Snel, Berend; Holstege, Frank C P; Kemmeren, Patrick

    2015-12-23

    Genetic interactions, or non-additive effects between genes, play a crucial role in many cellular processes and disease. Which mechanisms underlie these genetic interactions has hardly been characterized. Understanding the molecular basis of genetic interactions is crucial in deciphering pathway organization and understanding the relationship between genotype, phenotype and disease. To investigate the nature of genetic interactions between gene-specific transcription factors (GSTFs) in Saccharomyces cerevisiae, we systematically analyzed 72 GSTF pairs by gene expression profiling double and single deletion mutants. These pairs were selected through previously published growth-based genetic interactions as well as through similarity in DNA binding properties. The result is a high-resolution atlas of gene expression-based genetic interactions that provides systems-level insight into GSTF epistasis. The atlas confirms known genetic interactions and exposes new ones. Importantly, the data can be used to investigate mechanisms that underlie individual genetic interactions. Two molecular mechanisms are proposed, "buffering by induced dependency" and "alleviation by derepression". These mechanisms indicate how negative genetic interactions can occur between seemingly unrelated parallel pathways and how positive genetic interactions can indirectly expose parallel rather than same-pathway relationships. The focus on GSTFs is important for understanding the transcription regulatory network of yeast as it uncovers details behind many redundancy relationships, some of which are completely new. In addition, the study provides general insight into the complex nature of epistasis and proposes mechanistic models for genetic interactions, the majority of which do not fall into easily recognizable within- or between-pathway relationships.

  9. Self-Assembling Multifunctional Peptide Dimers for Gene Delivery Systems

    Directory of Open Access Journals (Sweden)

    Kitae Ryu

    2015-01-01

    Full Text Available Self-assembling multifunctional peptide was designed for gene delivery systems. The multifunctional peptide (MP consists of cellular penetrating peptide moiety (R8, matrix metalloproteinase-2 (MMP-2 specific sequence (GPLGV, pH-responsive moiety (H5, and hydrophobic moiety (palmitic acid (CR8GPLGVH5-Pal. MP was oxidized to form multifunctional peptide dimer (MPD by DMSO oxidation of thiols in terminal cysteine residues. MPD could condense pDNA successfully at a weight ratio of 5. MPD itself could self-assemble into submicron micelle particles via hydrophobic interaction, of which critical micelle concentration is about 0.01 mM. MPD showed concentration-dependent but low cytotoxicity in comparison with PEI25k. MPD polyplexes showed low transfection efficiency in HEK293 cells expressing low level of MMP-2 but high transfection efficiency in A549 and C2C12 cells expressing high level of MMP-2, meaning the enhanced transfection efficiency probably due to MMP-induced structural change of polyplexes. Bafilomycin A1-treated transfection results suggest that the transfection of MPD is mediated via endosomal escape by endosome buffering ability. These results show the potential of MPD for MMP-2 targeted gene delivery systems due to its multifunctionality.

  10. Inverse bifurcation analysis: application to simple gene systems

    Directory of Open Access Journals (Sweden)

    Schuster Peter

    2006-07-01

    Full Text Available Abstract Background Bifurcation analysis has proven to be a powerful method for understanding the qualitative behavior of gene regulatory networks. In addition to the more traditional forward problem of determining the mapping from parameter space to the space of model behavior, the inverse problem of determining model parameters to result in certain desired properties of the bifurcation diagram provides an attractive methodology for addressing important biological problems. These include understanding how the robustness of qualitative behavior arises from system design as well as providing a way to engineer biological networks with qualitative properties. Results We demonstrate that certain inverse bifurcation problems of biological interest may be cast as optimization problems involving minimal distances of reference parameter sets to bifurcation manifolds. This formulation allows for an iterative solution procedure based on performing a sequence of eigen-system computations and one-parameter continuations of solutions, the latter being a standard capability in existing numerical bifurcation software. As applications of the proposed method, we show that the problem of maximizing regions of a given qualitative behavior as well as the reverse engineering of bistable gene switches can be modelled and efficiently solved.

  11. Construction of an integrated gene regulatory network link to stress-related immune system in cattle.

    Science.gov (United States)

    Behdani, Elham; Bakhtiarizadeh, Mohammad Reza

    2017-10-01

    The immune system is an important biological system that is negatively impacted by stress. This study constructed an integrated regulatory network to enhance our understanding of the regulatory gene network used in the stress-related immune system. Module inference was used to construct modules of co-expressed genes with bovine leukocyte RNA-Seq data. Transcription factors (TFs) were then assigned to these modules using Lemon-Tree algorithms. In addition, the TFs assigned to each module were confirmed using the promoter analysis and protein-protein interactions data. Therefore, our integrated method identified three TFs which include one TF that is previously known to be involved in immune response (MYBL2) and two TFs (E2F8 and FOXS1) that had not been recognized previously and were identified for the first time in this study as novel regulatory candidates in immune response. This study provides valuable insights on the regulatory programs of genes involved in the stress-related immune system.

  12. Adipose tissue gene expression of factors related to lipid processing in obesity.

    Directory of Open Access Journals (Sweden)

    Mercedes Clemente-Postigo

    Full Text Available BACKGROUND: Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT and visceral (VAT adipose tissue according to body mass index (BMI and the degree of insulin resistance (IR. METHODS AND PRINCIPAL FINDINGS: VLDL receptor (VLDLR, lipoprotein lipase (LPL, acylation stimulating protein (ASP, LDL receptor-related protein 1 (LRP1 and fatty acid binding protein 4 (FABP4 gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT. CONCLUSIONS: Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons.

  13. Diversification of the insulin-like growth factor 1 gene in mammals.

    Directory of Open Access Journals (Sweden)

    Peter Rotwein

    Full Text Available Insulin-like growth factor 1 (IGF1, a small, secreted peptide growth factor, is involved in a variety of physiological and patho-physiological processes, including somatic growth, tissue repair, and metabolism of carbohydrates, proteins, and lipids. IGF1 gene expression appears to be controlled by several different signaling cascades in the few species in which it has been evaluated, with growth hormone playing a major role by activating a pathway involving the Stat5b transcription factor. Here, genes encoding IGF1 have been evaluated in 25 different mammalian species representing 15 different orders and ranging over ~180 million years of evolutionary diversification. Parts of the IGF1 gene have been fairly well conserved. Like rat Igf1 and human IGF1, 21 of 23 other genes are composed of 6 exons and 5 introns, and all 23 also contain recognizable tandem promoters, each with a unique leader exon. Exon and intron lengths are similar in most species, and DNA sequence conservation is moderately high in orthologous exons and proximal promoter regions. In contrast, putative growth hormone-activated Stat5b-binding enhancers found in analogous locations in rodent Igf1 and in human IGF1 loci, have undergone substantial variation in other mammals, and a processed retro-transposed IGF1 pseudogene is found in the sloth locus, but not in other mammalian genomes. Taken together, the fairly high level of organizational and nucleotide sequence similarity in the IGF1 gene among these 25 species supports the contention that some common regulatory pathways had existed prior to the beginning of mammalian speciation.

  14. Variants of opioid system genes are associated with non-dependent opioid use and heroin dependence.

    Science.gov (United States)

    Randesi, Matthew; van den Brink, Wim; Levran, Orna; Blanken, Peter; Butelman, Eduardo R; Yuferov, Vadim; da Rosa, Joel Correa; Ott, Jurg; van Ree, Jan M; Kreek, Mary Jeanne

    2016-11-01

    Heroin addiction is a chronic, relapsing brain disease. Genetic factors are involved in the development of drug addiction. The aim of this study was to determine whether specific variants in genes of the opioid system are associated with non-dependent opioid use and heroin dependence. Genetic information from four subject groups was collected: non-dependent opioid users (NOD) [n=163]; opioid-dependent (OD) patients in methadone maintenance treatment (MMT) [n=143]; opioid-dependent MMT-resistant patients in heroin-assisted treatment (HAT) [n=138]; and healthy controls with no history of opioid use (HC) [n=153]. Eighty-two variants in eight opioid system genes were studied. To establish the role of these genes in (a) non-dependent opioid use, and (b) heroin dependence, the following groups were compared: HC vs. NOD; HC vs. OD (MMT+HAT); and NOD vs. OD (MMT+HAT). Five unique SNPs in four genes showed nominally significant associations with non-dependent opioid use and heroin dependence. The association of the delta opioid receptor (OPRD1) intronic SNP rs2236861 with non-dependent opioid use (HC vs. NOD) remained significant after correction for multiple testing (OR=0.032; p corrected =0.015). This SNP exhibited a significant gene-gene interaction with prepronociceptin (PNOC) SNP rs2722897 (OR=5.24; p corrected =0.041) (HC vs. NOD). This study identifies several new and some previously reported associations of variants with heroin dependence and with non-dependent opioid use, an important and difficult to obtain group not extensively studied previously. Further studies are warranted to confirm and elucidate the potential roles of these variants in the vulnerability to illicit drug use and drug addiction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Stimuli-Regulated Smart Polymeric Systems for Gene Therapy

    Directory of Open Access Journals (Sweden)

    Ansuja Pulickal Mathew

    2017-04-01

    Full Text Available The physiological condition of the human body is a composite of different environments, each with its own parameters that may differ under normal, as well as diseased conditions. These environmental conditions include factors, such as pH, temperature and enzymes that are specific to a type of cell, tissue or organ or a pathological state, such as inflammation, cancer or infection. These conditions can act as specific triggers or stimuli for the efficient release of therapeutics at their destination by overcoming many physiological and biological barriers. The efficacy of conventional treatment modalities can be enhanced, side effects decreased and patient compliance improved by using stimuli-responsive material that respond to these triggers at the target site. These stimuli or triggers can be physical, chemical or biological and can be internal or external in nature. Many smart/intelligent stimuli-responsive therapeutic gene carriers have been developed that can respond to either internal stimuli, which may be normally present, overexpressed or present in decreased levels, owing to a disease, or to stimuli that are applied externally, such as magnetic fields. This review focuses on the effects of various internal stimuli, such as temperature, pH, redox potential, enzymes, osmotic activity and other biomolecules that are present in the body, on modulating gene expression by using stimuli-regulated smart polymeric carriers.

  16. Association of Polymorphisms in Connective Tissue Growth Factor and Epidermal Growth Factor Receptor Genes With Human Longevity.

    Science.gov (United States)

    Donlon, Timothy A; Morris, Brian J; He, Qimei; Chen, Randi; Masaki, Kamal H; Allsopp, Richard C; Willcox, D Craig; Tranah, Gregory J; Parimi, Neeta; Evans, Daniel S; Flachsbart, Friederike; Nebel, Almut; Kim, Duk-Hwan; Park, Joobae; Willcox, Bradley J

    2017-08-01

    Growth pathways play key roles in longevity. The present study tested single-nucleotide polymorphisms (SNPs) in the connective tissue growth factor gene (CTGF) and the epidermal growth factor receptor gene (EGFR) for association with longevity. Comparison of allele and genotype frequencies of 12 CTGF SNPs and 41 EGFR SNPs between 440 American men of Japanese ancestry aged ≥95 years and 374 men of average life span revealed association with longevity at the p cases, consistent with heterozygote advantage in living to extreme old age. No associations of the most significant SNPs were observed in whites or Koreans. In conclusion, the present findings indicate that genetic variation in CTGF and EGFR may contribute to the attainment of extreme old age in Japanese. More research is needed to confirm that genetic variation in CTGF and EGFR contributes to the attainment of extreme old age across human populations. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Genome-wide identification and characterization of TCP transcription factor genes in upland cotton (Gossypium hirsutum).

    Science.gov (United States)

    Li, Wen; Li, Deng-Di; Han, Li-Hong; Tao, Miao; Hu, Qian-Qian; Wu, Wen-Ying; Zhang, Jing-Bo; Li, Xue-Bao; Huang, Geng-Qing

    2017-08-31

    TCP proteins are plant-specific transcription factors (TFs), and perform a variety of physiological functions in plant growth and development. In this study, 74 non-redundant TCP genes were identified in upland cotton (Gossypium hirsutum L.) genome. Cotton TCP family can be classified into two classes (class I and class II) that can be further divided into 11 types (groups) based on their motif composition. Quantitative RT-PCR analysis indicated that GhTCPs display different expression patterns in cotton tissues. The majority of these genes are preferentially or specifically expressed in cotton leaves, while some GhTCP genes are highly expressed in initiating fibers and/or elongating fibers of cotton. Yeast two-hybrid results indicated that GhTCPs can interact with each other to form homodimers or heterodimers. In addition, GhTCP14a and GhTCP22 can interact with some transcription factors which are involved in fiber development. These results lay solid foundation for further study on the functions of TCP genes during cotton fiber development.

  18. Classification analysis of organization factors related to system safety

    International Nuclear Information System (INIS)

    Liu Huizhen; Zhang Li; Zhang Yuling; Guan Shihua

    2009-01-01

    This paper analyzes the different types of organization factors which influence the system safety. The organization factor can be divided into the interior organization factor and exterior organization factor. The latter includes the factors of political, economical, technical, law, social culture and geographical, and the relationships among different interest groups. The former includes organization culture, communication, decision, training, process, supervision and management and organization structure. This paper focuses on the description of the organization factors. The classification analysis of the organization factors is the early work of quantitative analysis. (authors)

  19. Effects of transforming growth factor-beta1 and vascular endothelial growth factor 165 gene transfer on Achilles tendon healing.

    Science.gov (United States)

    Hou, Yu; Mao, ZeBin; Wei, XueLei; Lin, Lin; Chen, LianXu; Wang, HaiJun; Fu, Xin; Zhang, JiYing; Yu, Changlong

    2009-07-01

    Repaired Achilles tendons typically take weeks before they are strong enough to handle physiological loads. Gene therapy is a promising treatment for Achilles tendon defects. The aim of the present study was to evaluate the histological/biomechanical effects of Transforming growth factor-beta1 (TGF-beta1) and vascular endothelial growth factor 165 (VEGF(165)) gene transfer on Achilles tendon healing in rabbits. Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) were transduced with adenovirus carrying human TGF-beta1 cDNA (Ad-TGF-beta1), human VEGF(165) cDNA (Ad-VEGF(165)), or both (PIRES-TGF-beta1/VEGF(165)) Viruses, no cDNA (Ad-GFP), and the BMSCs without gene transfer and the intact tendon were used as control. BMSCs were surgically implanted into the experimentally injured Achilles tendons. TGF-beta1 distribution, cellularity, nuclear aspect ratio, nuclear orientation angle, vascular number, collagen synthesis, and biomechanical features were measured at 1, 2, 4, and 8 weeks after surgery. The TGF-beta1 and TGF beta 1/VEGF(165) co-expression groups exhibited improved parameters compared with other groups, while the VEGF(165) expression group had a negative impact. In the co-expression group, the angiogenesis effects of VEGF(165) were diminished by TGF-beta1, while the collagen synthesis effects of TGF-beta1 were unaltered by VEGF(165). Thus treatment with TGF-beta1 cDNA-transduced BMSCs grafts is a promising therapy for acceleration and improvement of tendon healing, leading to quicker recovery and improved biomechanical properties of Achilles tendons.

  20. MTHFR , prothrombin and Factor V gene variants in Turkish patients with coronary artery stenosis

    Directory of Open Access Journals (Sweden)

    Müge Caner

    2008-01-01

    Full Text Available Many epidemiological studies have reported an association between hemostatic factors and risk of both coronary and peripheral artery diseases. Using polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP analysis, we investigated the association between coronary artery disease and polymorphisms in the methylenetetrahydrofolate reductase ( MTHFR C677T and A1298C, prothrombin (G20210A, and factor V (A4070G genes. We screened these gene variants in 174 subjects who had undergone coronary angiography - 115 patients with patent coronary artery disease (grade 3 vessel disease, i.e. , significant coronary stenosis, and 59 healthy controls with grade 0 vessel disease. The analysis of our data did not show any statistically significant association between coronary artery disease (CAD and the investigated polymorphisms.

  1. Amplification of the E2F1 transcription factor gene in the HEL erythroleukemia cell line

    DEFF Research Database (Denmark)

    Saito, M; Helin, K; Valentine, M B

    1995-01-01

    The E2F transcription factor plays an important regulatory role in cell proliferation, mediating the expression of genes whose products are essential for inducing resting cells to enter the cell cycle and synthesize DNA. To investigate the possible involvement of E2F in hematopoietic malignancies...... and overexpressed in HEL erythroleukemia cells and translocated to other chromosomes in several established human leukemia cell lines. This study provides the first evidence of gene amplification involving a member of the E2F family of transcription factors. We propose that E2F1 overexpression in erythroid...... progenitors may stimulate abnormal cell proliferation by overriding negative regulatory signals mediated by tumor suppressor proteins such as pRb....

  2. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben

    2008-01-01

    studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. METHODS: We have......ABSTRACT: BACKGROUND: Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent...... tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. RESULTS: The major findings are upregulation of cell cycle pathways...

  3. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe

    Science.gov (United States)

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  4. Transcription factor SP4 is a susceptibility gene for bipolar disorder.

    Directory of Open Access Journals (Sweden)

    Xianjin Zhou

    Full Text Available The Sp4 transcription factor plays a critical role for both development and function of mouse hippocampus. Reduced expression of the mouse Sp4 gene results in a variety of behavioral abnormalities relevant to human psychiatric disorders. The human SP4 gene is therefore examined for its association with both bipolar disorder and schizophrenia in European Caucasian and Chinese populations respectively. Out of ten SNPs selected from human SP4 genomic locus, four displayed significant association with bipolar disorder in European Caucasian families (rs12668354, p = 0.022; rs12673091, p = 0.0005; rs3735440, p = 0.019; rs11974306, p = 0.018. To replicate the genetic association, the same set of SNPs was examined in a Chinese bipolar case control sample. Four SNPs displayed significant association (rs40245, p = 0.009; rs12673091, p = 0.002; rs1018954, p = 0.001; rs3735440, p = 0.029, and two of them (rs12673091, rs3735440 were shared with positive SNPs from European Caucasian families. Considering the genetic overlap between bipolar disorder and schizophrenia, we extended our studies in Chinese trios families for schizophrenia. The SNP7 (rs12673091, p = 0.012 also displayed a significant association. The SNP7 (rs12673091 was therefore significantly associated in all three samples, and shared the same susceptibility allele (A across all three samples. On the other hand, we found a gene dosage effect for mouse Sp4 gene in the modulation of sensorimotor gating, a putative endophenotype for both schizophrenia and bipolar disorder. The deficient sensorimotor gating in Sp4 hypomorphic mice was partially reversed by the administration of dopamine D2 antagonist or mood stabilizers. Both human genetic and mouse pharmacogenetic studies support Sp4 gene as a susceptibility gene for bipolar disorder or schizophrenia. The studies on the role of Sp4 gene in hippocampal development may provide novel insights for the contribution of hippocampal abnormalities in these

  5. Orthologous transcription factors in bacteria have different functions and regulate different genes.

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    2007-09-01

    Full Text Available Transcription factors (TFs form large paralogous gene families and have complex evolutionary histories. Here, we ask whether putative orthologs of TFs, from bidirectional best BLAST hits (BBHs, are evolutionary orthologs with conserved functions. We show that BBHs of TFs from distantly related bacteria are usually not evolutionary orthologs. Furthermore, the false orthologs usually respond to different signals and regulate distinct pathways, while the few BBHs that are evolutionary orthologs do have conserved functions. To test the conservation of regulatory interactions, we analyze expression patterns. We find that regulatory relationships between TFs and their regulated genes are usually not conserved for BBHs in Escherichia coli K12 and Bacillus subtilis. Even in the much more closely related bacteria Vibrio cholerae and Shewanella oneidensis MR-1, predicting regulation from E. coli BBHs has high error rates. Using gene-regulon correlations, we identify genes whose expression pattern differs between E. coli and S. oneidensis. Using literature searches and sequence analysis, we show that these changes in expression patterns reflect changes in gene regulation, even for evolutionary orthologs. We conclude that the evolution of bacterial regulation should be analyzed with phylogenetic trees, rather than BBHs, and that bacterial regulatory networks evolve more rapidly than previously thought.

  6. Factors affecting interactome-based prediction of human genes associated with clinical signs.

    Science.gov (United States)

    González-Pérez, Sara; Pazos, Florencio; Chagoyen, Mónica

    2017-07-17

    Clinical signs are a fundamental aspect of human pathologies. While disease diagnosis is problematic or impossible in many cases, signs are easier to perceive and categorize. Clinical signs are increasingly used, together with molecular networks, to prioritize detected variants in clinical genomics pipelines, even if the patient is still undiagnosed. Here we analyze the ability of these network-based methods to predict genes that underlie clinical signs from the human interactome. Our analysis reveals that these approaches can locate genes associated with clinical signs with variable performance that depends on the sign and associated disease. We analyzed several clinical and biological factors that explain these variable results, including number of genes involved (mono- vs. oligogenic diseases), mode of inheritance, type of clinical sign and gene product function. Our results indicate that the characteristics of the clinical signs and their related diseases should be considered for interpreting the results of network-prediction methods, such as those aimed at discovering disease-related genes and variants. These results are important due the increasing use of clinical signs as an alternative to diseases for studying the molecular basis of human pathologies.

  7. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1.

    Directory of Open Access Journals (Sweden)

    Christopher Terranova

    Full Text Available Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  8. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1).

    Science.gov (United States)

    Terranova, Christopher; Narla, Sridhar T; Lee, Yu-Wei; Bard, Jonathan; Parikh, Abhirath; Stachowiak, Ewa K; Tzanakakis, Emmanuel S; Buck, Michael J; Birkaya, Barbara; Stachowiak, Michal K

    2015-01-01

    Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  9. Factors Affecting Successful Implementation of Hospital Information Systems

    OpenAIRE

    Farzandipur, Mehrdad; jeddi, Fatemeh Rangraz; Azimi, Esmaeil

    2016-01-01

    Background: Today, the use of information systems in health environments, like any other fields, is necessary and organizational managers are convinced to use these systems. However, managers? satisfaction is not the only factor in successfully implementing these systems and failed information technology projects (IT) are reported despite the consent of the directors. Therefore, this study aims to determine the factors affecting the successful implementation of a hospital information system. ...

  10. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice.

    Science.gov (United States)

    Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M; Bansal, Kailash C

    2015-01-01

    MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by "top-down" and "guide-gene" approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via "top-down" approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by "guide-gene" approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought response in rice

  11. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    Directory of Open Access Journals (Sweden)

    Shuchi eSmita

    2015-12-01

    Full Text Available MYB transcription factor (TF is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by top down and guide gene approaches. More than 50% of OsMYBs were strongly correlated under fifty experimental conditions with 51 hub genes via top down approach. Further, clusters were identified using Markov Clustering (MCL. To maximize the clustering performance, parameter evaluation of the MCL inflation score (I was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by guide gene approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  12. Histamine suppresses gene expression and synthesis of tumor necrosis factor alpha via histamine H2 receptors

    OpenAIRE

    1991-01-01

    Histamine and tumor necrosis factor alpha (TNF-alpha) can each contribute to the pathogenesis of allergic reactions and chronic inflammatory diseases. We now report the effect of histamine on gene expression and total cellular synthesis of TNF-alpha. Lipopolysaccharide (LPS)-induced synthesis of TNF-alpha in peripheral blood mononuclear cells (PBMC) from 18 healthy donors was suppressed by histamine concentrations from 10(-6) to 10(-4) M, levels comparable with those measured in tissues after...

  13. Prevalence of Genes Encoding Outer Membrane Virulence Factors Among Fecal Escherichia coli Isolates

    Directory of Open Access Journals (Sweden)

    Ahmad Rashki

    2017-03-01

    Full Text Available Objective: Escherichia coli is commensal bacterium of human intestine. The gut is a common pool of E. coli isolates causing urinary tract infections (UTIs. Some of fecal E. coli (FeEC by the possession of certain virulence factors is able to cause diseases in human and other mammalian models. To evaluate the health threats coordinated with a given fecal source of E. coli strains, we determined the frequency of genes expressing virulence determinants in fecal E. coli isolates collected from human feces in Zabol, southeast of Iran. Methods: Escherichia coli isolates (n = 94 were separated from the feces of patients attending teaching hospitals, and screened for various virulence genes: fimH, his, hlyA, ompT, irp2, iucD, iroN, and cnf1 by using the multiplex polymerase chain reaction (PCR method. Results: The prevalence of virulence genes was as follows: adhesins (fimH, 98% and iha, 26%, alpha-hemolysins (hlyA, 10%, outer membrane protease (ompT, 67%, aerobactin (iucD, 67%, iron-repressible protein (irp2, 91% and salmochelin (iroN, 33% and cytotoxic necrotizing factor 1 (cnf1. According to the diversity of different virulence genes, the examined isolates exhibited 29 different patterns. Conclusion: Our results demonstrated that most of the assessed isolates harbored several virulence factors. Our findings propose possibility of human feces serving as a source for pathogenic organisms, supporting the notion that fecal materials of humans play a role in the epidemiological chain of extra-intestinal pathogenic E. coli. This is the first report of the frequency of virulence factors among E. coli isolates collected from human feces in Iran.

  14. Association of tumor necrosis factor-α and -β gene polymorphisms in inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Al-Meghaiseeb ES

    2016-06-01

    Full Text Available Ebtissam Saleh Al-Meghaiseeb,1 Abdulrahman A Al-Robayan,1 Mulfi Mubarak Al-Otaibi,1 Misbahul Arfin,2 Abdulrahman K Al-Asmari2 1Department of Gastroenterology, 2Research Centre, Prince Sultan Military Medical City, Riyadh, Saudi Arabia Abstract: Inflammatory bowel disease (IBD is a complex, multifactorial, chronic inflammatory disorder of the gastrointestinal tract in which immune dysregulation caused by genetic and/or environmental factors plays an important role. The aim of this case–­control study was to evaluate the association of tumor necrosis factor-alpha (TNF-α (308 and -β (+252 polymorphisms with susceptibility of IBD. A total of 379 Saudi subjects including 179 IBD patients (ulcerative colitis (UC =84 and Crohn’s disease (CD =95 and 200 age- and sex-matched healthy controls were recruited. TNF-a and TNF-b genes were amplified using an amplification refractory mutation systems polymerase chain reaction methodology to detect TNF-α (–308 and -β (+252 polymorphisms. The frequency of the GA genotype of TNF-α (–308G/A was higher, and the frequencies of the GG and AA genotypes were significantly lower in IBD patients compared with those in controls, indicating that genotype GA-positive individuals are susceptible to IBD and that the GG and AA genotypes exert a protective effect. The frequency of allele A of TNF-α (–308G/A was significantly higher and that of allele G was lower in IBD patients compared with those in controls, indicating an association of allele A with IBD risk in Saudi patients. On stratification of IBD patients into UC and CD, an almost similar pattern was noticed in both the groups. The results of TNF-β (+252A/G polymorphisms showed a significant increase in the frequency of the GG genotype in IBD patients, suggesting a positive association of GG genotype with IBD risk. On stratification of IBD patients into UC and CD, the genotype GG of TNF-β was associated with susceptibility risk to UC but not CD. The

  15. An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model.

    Science.gov (United States)

    Schmidt-Kastner, R; van Os, J; Esquivel, G; Steinbusch, H W M; Rutten, B P F

    2012-12-01

    Investigating and understanding gene-environment interaction (G × E) in a neurodevelopmentally and biologically plausible manner is a major challenge for schizophrenia research. Hypoxia during neurodevelopment is one of several environmental factors related to the risk of schizophrenia, and links between schizophrenia candidate genes and hypoxia regulation or vascular expression have been proposed. Given the availability of a wealth of complex genetic information on schizophrenia in the literature without knowledge on the connections to environmental factors, we now systematically collected genes from candidate studies (using SzGene), genome-wide association studies (GWAS) and copy number variation (CNV) analyses, and then applied four criteria to test for a (theoretical) link to ischemia-hypoxia and/or vascular factors. In all, 55% of the schizophrenia candidate genes (n=42 genes) met the criteria for a link to ischemia-hypoxia and/or vascular factors. Genes associated with schizophrenia showed a significant, threefold enrichment among genes that were derived from microarray studies of the ischemia-hypoxia response (IHR) in the brain. Thus, the finding of a considerable match between genes associated with the risk of schizophrenia and IHR and/or vascular factors is reproducible. An additional survey of genes identified by GWAS and CNV analyses suggested novel genes that match the criteria. Findings for interactions between specific variants of genes proposed to be IHR and/or vascular factors with obstetric complications in patients with schizophrenia have been reported in the literature. Therefore, the extended gene set defined here may form a reasonable and evidence-based starting point for hypothesis-based testing of G × E interactions in clinical genetic and translational neuroscience studies.

  16. DNA binding-independent transcriptional activation of the vascular endothelial growth factor gene (VEGF) by the Myb oncoprotein

    International Nuclear Information System (INIS)

    Lutwyche, Jodi K.; Keough, Rebecca A.; Hunter, Julie; Coles, Leeanne S.; Gonda, Thomas J.

    2006-01-01

    Myb is a key transcription factor that can regulate proliferation, differentiation, and apoptosis, predominantly in the haemopoietic system. Abnormal expression of Myb is associated with a number of cancers, both haemopoietic and non-haemopoietic. In order to better understand the role of Myb in normal and tumorigenic processes, we undertook a cDNA array screen to identify genes that are regulated by this factor. In this way, we identified the gene encoding vascular endothelial growth factor (VEGF) as being potentially regulated by the Myb oncoprotein in myeloid cells. To determine whether this was a direct effect on VEGF gene transcription, we examined the activity of the murine VEGF promoter in the presence of either wild-type (WT) or mutant forms of Myb. It was found that WT Myb was able to activate the VEGF promoter and that a minimal promoter region of 120 bp was sufficient to confer Myb responsiveness. Surprisingly, activation of the VEGF promoter was independent of DNA binding by Myb. This was shown by the use of DNA binding-defective Myb mutants and by mutagenesis of a potential Myb-binding site in the minimal promoter. Mutation of Sp1 sites within this region abolished Myb-mediated regulation of a reporter construct, suggesting that Myb DNA binding-independent activation of VEGF expression occurs via these Sp1 binding elements. Regulation of VEGF production by Myb has implications for the potential role of Myb in myeloid leukaemias and in solid tumours where VEGF may be functioning as an autocrine growth factor

  17. Model correction factor method for system analysis

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Johannesen, Johannes M.

    2000-01-01

    The Model Correction Factor Method is an intelligent response surface method based on simplifiedmodeling. MCFM is aimed for reliability analysis in case of a limit state defined by an elaborate model. Herein it isdemonstrated that the method is applicable for elaborate limit state surfaces on which...... severallocally most central points exist without there being a simple geometric definition of the corresponding failuremodes such as is the case for collapse mechanisms in rigid plastic hinge models for frame structures. Taking as simplifiedidealized model a model of similarity with the elaborate model...... surface than existing in the idealized model....

  18. Interferon regulatory factor 5 (IRF5) gene variants are associated with multiple sclerosis in three distinct populations

    Science.gov (United States)

    Kristjansdottir, G; Sandling, J K; Bonetti, A; Roos, I M; Milani, L; Wang, C; Gustafsdottir, S M; Sigurdsson, S; Lundmark, A; Tienari, P J; Koivisto, K; Elovaara, I; Pirttilä, T; Reunanen, M; Peltonen, L; Saarela, J; Hillert, J; Olsson, T; Landegren, U; Alcina, A; Fernández, O; Leyva, L; Guerrero, M; Lucas, M; Izquierdo, G; Matesanz, F; Syvänen, A-C

    2008-01-01

    Background: IRF5 is a transcription factor involved both in the type I interferon and the toll-like receptor signalling pathways. Previously, IRF5 has been found to be associated with systemic lupus erythematosus, rheumatoid arthritis and inflammatory bowel diseases. Here we investigated whether polymorphisms in the IRF5 gene would be associated with yet another disease with features of autoimmunity, multiple sclerosis (MS). Methods: We genotyped nine single nucleotide polymorphisms and one insertion-deletion polymorphism in the IRF5 gene in a collection of 2337 patients with MS and 2813 controls from three populations: two case–control cohorts from Spain and Sweden, and a set of MS trio families from Finland. Results: Two single nucleotide polymorphism (SNPs) (rs4728142, rs3807306), and a 5 bp insertion-deletion polymorphism located in the promoter and first intron of the IRF5 gene, showed association signals with values of pmultiple autoimmune diseases, and that the type I interferon system is likely to be involved in the development of these diseases. PMID:18285424

  19. Construction and Testing of a Bacterial Luciferase Reporter Gene System for in Vivo Measurement of Nonsense Suppression in Streptomyces

    Czech Academy of Sciences Publication Activity Database

    Weiser, Jaroslav; Buriánková, Karolína; Kalachová, Ladislava; Branny, Pavel; Pernodet, J.-L.

    2006-01-01

    Roč. 51, č. 1 (2006), s. 62-64 ISSN 0015-5632 R&D Projects: GA ČR GA310/03/0292 Institutional research plan: CEZ:AV0Z50200510 Keywords : streptomyces * reporter gene system Subject RIV: EE - Microbiology, Virology Impact factor: 0.963, year: 2006

  20. The Synergistic Effect between Electrical and Chemical Factors in Plasma Gene/Molecule-Transfection

    Science.gov (United States)

    Jinno, Masafumi

    2016-09-01

    This study has been done to know what kind of factors in plasma and processes on cells promote plasma gene/molecule transfection. We have discovered a new plasma source using a microcapillary electrode which enables high transfection efficiency and high cell survivability simultaneously. However, the mechanism of the transfection by plasma was not clear. To clarify the transfection mechanisms by micro plasma, we focused on the effects of electrical (current, charge, field, etc.) and chemical (radicals, RONS, etc.) factors generated by the micro plasma and evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones. At first, the necessity of the electrical factors was estimated by the laser produced plasma (LPP). Mouse L-929 fibroblast cell was cultured on a 96-well plate or 12-well micro slide chamber. Plasmids pCX-EGFP in Tris-EDTA buffer was dropped on the cells and they were exposed to the capillary discharge plasma (CDP) or the LPP. In the case of the CDP, the plasma was generated between the tip of the capillary electrode and the cells so that both electrical and chemical factors were supplied to the cells. In this setup, about 20% of average transfection efficiency was obtained. In the case of the LPP, the plasma was generated apart from the cells so that electrical factors were not supplied to the cells. In this setup, no transfection was observed. These results show that the electrical factors are necessary for the plasma gene transfection. Next, the necessity of the chemical factors was estimated the effect of catalase to remove H2O2 in CDP. The transfection efficiency decreased to 0.4 by scavenging H2O2 with catalase. However, only the solution of H2O2 caused no gene transfection in cells. These results shows that H2O2 is important species to cause gene/molecule transfection but still needs a synergistic effect with electrical or other chemical factors. This work was partly supported by

  1. The Drosophila stonewall gene encodes a putative transcription factor essential for germ cell development.

    Science.gov (United States)

    Clark, K A; McKearin, D M

    1996-03-01

    The differentiation of Drosophila germ cells is a useful model for studying mechanisms of cell specification. We report the identification of a gene, stonewall, that is required for germ cell development. Mutations in stonewall block proper oocyte differentiation and frequently cause the presumptive oocyte to develop as a nurse cell. Eventually, germ cells degenerate apoptotically. Stonewall is a germ cell nuclear protein; Stonewall has a DNA binding domain that shows similarities to the Myb and Adf-1 transcription factors and has other features that suggest that it is a transcription activating factor. We suggest that Stonewall transcriptional regulation is essential in cystocytes for maturation into specialized nurse cells and oocyte.

  2. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Directory of Open Access Journals (Sweden)

    Masayoshi Hashimoto

    2016-10-01

    Full Text Available The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  3. Changing Paradigm of Hemophilia Management: Extended Half-Life Factor Concentrates and Gene Therapy.

    Science.gov (United States)

    Kumar, Riten; Dunn, Amy; Carcao, Manuel

    2016-02-01

    Management of hemophilia has evolved significantly in the last century-from recognition of the causative mechanism in the 1950s to commercially available clotting factor concentrates in the 1960s. Availability of lyophilized concentrates in the 1970s set the stage for home-based therapy, followed by introduction of virally attenuated plasma-derived, and then recombinant factor concentrates in the 1980s and 1990s, respectively. The subsequent years saw a paradigm shift in treatment goals from on-demand therapy to prophylactic factor replacement starting at an early age, to prevent hemarthrosis becoming the standard of care for patients with severe hemophilia. In the developed world, the increasing use of home-based prophylactic regimens has significantly improved the quality of life, and life expectancy of patients with severe hemophilia. Seminal developments in the past 5 years, including the commercial availability of extended half-life factor concentrates and the publication of successful results of gene therapy for patients with hemophilia B, promise to further revolutionize hemophilia care over the next few decades. In this review, we summarize the evolution of management for hemophilia, with a focus on extended half-life factor concentrates and gene therapy. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. 76 FR 32241 - Civil Service Retirement System; Present Value Factors

    Science.gov (United States)

    2011-06-03

    ... OFFICE OF PERSONNEL MANAGEMENT Civil Service Retirement System; Present Value Factors AGENCY... providing notice of adjusted present value factors applicable to retirees under the Civil Service Retirement... nonappropriated fund instrumentalities. This notice is necessary to conform the present value factors to changes...

  5. 76 FR 32243 - Federal Employees' Retirement System; Present Value Factors

    Science.gov (United States)

    2011-06-03

    ... OFFICE OF PERSONNEL MANAGEMENT Federal Employees' Retirement System; Present Value Factors AGENCY... providing notice of adjusted present value factors applicable to retirees who elect to provide survivor.... This notice is necessary to conform the present value factors to changes in the economic assumptions...

  6. Changing the general factor of personality and the c-fos gene expression with methylphenidate and self-regulation therapy.

    Science.gov (United States)

    Micó, Joan C; Amigó, Salvador; Caselles, Antonio

    2012-07-01

    A deepening in the biological nature of the general factor of personality (GFP) is suggested: the activation level of the stress system is here represented by the gene expression of c-fos. The results of a single case experimental design are reported. A model of four coupled differential equations that explains the human personality dynamics as a consequence of a single stimulant drug intake has been fitted to psychological and biological experimental data. The stimulant-drug conditioning and its adaptation to the considered mathematical model is also studied for both kinds of measures. The dynamics of the c-fos expression presents a similar pattern to the dynamics of the psychological measures of personality assessed by the GFP-FAS (Five-Adjective Scale of the General Factor of Personality) as a consequence of a single dose of stimulant drug (methylphenidate). The model predicts similar dynamic patterns for both psychological and biological measures. This study proves that describing mathematically the dynamics of the effects of a stimulant drug as well as the effects of a conditioning method on psychological or subjective variables and on gene expression is possible. It verifies the existence of biological mechanisms underlying the dynamics of the General Factor of Personality (GFP).

  7. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    International Nuclear Information System (INIS)

    Asting, Annika Gustafsson; Carén, Helena; Andersson, Marianne; Lönnroth, Christina; Lagerstedt, Kristina; Lundholm, Kent

    2011-01-01

    Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4) showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3) were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue

  8. Relationship between CDX2 gene methylation and dietary factors in gastric cancer patients.

    Science.gov (United States)

    Yuasa, Yasuhito; Nagasaki, Hiromi; Akiyama, Yoshimitsu; Sakai, Hidekazu; Nakajima, Tomoko; Ohkura, Yasuo; Takizawa, Touichirou; Koike, Morio; Tani, Masao; Iwai, Takehisa; Sugihara, Kenichi; Imai, Kazue; Nakachi, Kei

    2005-01-01

    Epigenetic gene silencing through DNA methylation is one of the important steps in the mechanism underlying tumorigenesis, including in the stomach. Past lifestyle factors of cancer patients, such as intake of vegetables, are very important in affecting gastric carcinogenesis. However, the relationship between DNA methylation and past dietary habits in cancer patients remains largely unknown. The CDX2 homeobox transcription factor plays a key role in intestinal development, but CDX2 is also expressed in most of the intestinal metaplasia and part of the carcinomas of the stomach. We analyzed the methylation status of the CDX2 5' CpG island in gastric cancer cell lines by methylation-specific PCR (MSP), and then CDX2 mRNA was found to be activated after 5-aza-2'-deoxycytidine treatment of the methylation-positive cells. We further examined the methylation status of CDX2 in primary gastric carcinomas by MSP and compared it with the past lifestyle of the patients, including dietary habits. Methylation of CDX2 was found in 20 (34.5%) of the 58 male patients and one (6.7%) of the 15 female patients. Since the methylation frequency was low in the female patients, the analysis was performed only on the male cases. CDX2 methylation was correlated with the decreased intake of green tea and cruciferous vegetables, and also with full or overeating habits. These findings are consistent with epidemiological observations on gastric cancer. We also analyzed the methylation status of p16/INK4a and hMLH1, but their frequencies were not associated with dietary factors or other lifestyle factors. Thus, diet could be an important factor determining the methylation status of genes such as CDX2 and the resultant aberrant expression of genes involved in carcinogenesis.

  9. The Cpx System Regulates Virulence Gene Expression in Vibrio cholerae

    Science.gov (United States)

    Acosta, Nicole; Pukatzki, Stefan

    2015-01-01

    Bacteria possess signal transduction pathways capable of sensing and responding to a wide variety of signals. The Cpx envelope stress response, composed of the sensor histidine kinase CpxA and the response regulator CpxR, senses and mediates adaptation to insults to the bacterial envelope. The Cpx response has been implicated in the regulation of a number of envelope-localized virulence determinants across bacterial species. Here, we show that activation of the Cpx pathway in Vibrio cholerae El Tor strain C6706 leads to a decrease in expression of the major virulence factors in this organism, cholera toxin (CT) and the toxin-coregulated pilus (TCP). Our results indicate that this occurs through the repression of production of the ToxT regulator and an additional upstream transcription factor, TcpP. The effect of the Cpx response on CT and TCP expression is mostly abrogated in a cyclic AMP receptor protein (CRP) mutant, although expression of the crp gene is unaltered. Since TcpP production is controlled by CRP, our data suggest a model whereby the Cpx response affects CRP function, which leads to diminished TcpP, ToxT, CT, and TCP production. PMID:25824837

  10. Vitamin D inhibits the growth of and virulence factor gene expression by Porphyromonas gingivalis and blocks activation of the nuclear factor kappa B transcription factor in monocytes.

    Science.gov (United States)

    Grenier, D; Morin, M-P; Fournier-Larente, J; Chen, H

    2016-06-01

    Increasing evidence suggests that 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), a fat-soluble secosteroid hormone, has a positive impact on periodontal health through diverse mechanisms. The present study was aimed at investigating the effect of 1,25(OH)2 D3 on the growth of and virulence factor gene expression by the periodontopathogenic bacterium Porphyromonas gingivalis. The effect of 1,25(OH)2 D3 on P. gingivalis-mediated activation of nuclear factor kappa B (NF-κB) transcription factor in monocytes was also assessed. A broth microdilution assay was used to determine the antibacterial activity of 1,25(OH)2 D3 . The modulation of virulence factor gene expression in P. gingivalis was assessed by quantitative reverse transcription-polymerase chain reaction. NF-κB activation was assessed using a human monocytic cell line stably transfected with a luciferase reporter containing NF-κB binding sites. Minimal inhibitory concentrations of 1,25(OH)2 D3 against P. gingivalis ranged from 3.125 to 6.25 μg/mL. Moreover, a partial synergistic effect was observed when 1,25(OH)2 D3 was used in association with metronidazole. 1,25(OH)2 D3 attenuated the virulence of P. gingivalis by reducing the expression of genes coding for important virulence factors, including adhesins (fimA, hagA and hagB) and proteinases (rgpA, rgpB and kgp). 1,25(OH)2 D3 dose-dependently prevented P. gingivalis-induced NF-κB activation in a monocyte model. Our study suggested that 1,25(OH)2 D3 selectively inhibits the growth of and virulence factor gene expression by P. gingivalis, in addition to attenuating NF-κB activation by this periodontopathogen. This dual action on P. gingivalis and the inflammatory response of host cells may be of particular interest with a view to developing a novel and inexpensive preventive/therapeutic strategy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Control of stochastic gene expression by host factors at the HIV promoter.

    Directory of Open Access Journals (Sweden)

    John C Burnett

    2009-01-01

    Full Text Available The HIV promoter within the viral long terminal repeat (LTR orchestrates many aspects of the viral life cycle, from the dynamics of viral gene expression and replication to the establishment of a latent state. In particular, after viral integration into the host genome, stochastic fluctuations in viral gene expression amplified by the Tat positive feedback loop can contribute to the formation of either a productive, transactivated state or an inactive state. In a significant fraction of cells harboring an integrated copy of the HIV-1 model provirus (LTR-GFP-IRES-Tat, this bimodal gene expression profile is dynamic, as cells spontaneously and continuously flip between active (Bright and inactive (Off expression modes. Furthermore, these switching dynamics may contribute to the establishment and maintenance of proviral latency, because after viral integration long delays in gene expression can occur before viral transactivation. The HIV-1 promoter contains cis-acting Sp1 and NF-kappaB elements that regulate gene expression via the recruitment of both activating and repressing complexes. We hypothesized that interplay in the recruitment of such positive and negative factors could modulate the stability of the Bright and Off modes and thereby alter the sensitivity of viral gene expression to stochastic fluctuations in the Tat feedback loop. Using model lentivirus variants with mutations introduced in the Sp1 and NF-kappaB elements, we employed flow cytometry, mRNA quantification, pharmacological perturbations, and chromatin immunoprecipitation to reveal significant functional differences in contributions of each site to viral gene regulation. Specifically, the Sp1 sites apparently stabilize both the Bright and the Off states, such that their mutation promotes noisy gene expression and reduction in the regulation of histone acetylation and deacetylation. Furthermore, the NF-kappaB sites exhibit distinct properties, with kappaB site I serving a

  12. Evaluating Transcription Factor Activity Changes by Scoring Unexplained Target Genes in Expression Data.

    Directory of Open Access Journals (Sweden)

    Evi Berchtold

    Full Text Available Several methods predict activity changes of transcription factors (TFs from a given regulatory network and measured expression data. But available gene regulatory networks are incomplete and contain many condition-dependent regulations that are not relevant for the specific expression measurement. It is not known which combination of active TFs is needed to cause a change in the expression of a target gene. A method to systematically evaluate the inferred activity changes is missing. We present such an evaluation strategy that indicates for how many target genes the observed expression changes can be explained by a given set of active TFs. To overcome the problem that the exact combination of active TFs needed to activate a gene is typically not known, we assume a gene to be explained if there exists any combination for which the predicted active TFs can possibly explain the observed change of the gene. We introduce the i-score (inconsistency score, which quantifies how many genes could not be explained by the set of activity changes of TFs. We observe that, even for these minimal requirements, published methods yield many unexplained target genes, i.e. large i-scores. This holds for all methods and all expression datasets we evaluated. We provide new optimization methods to calculate the best possible (minimal i-score given the network and measured expression data. The evaluation of this optimized i-score on a large data compendium yields many unexplained target genes for almost every case. This indicates that currently available regulatory networks are still far from being complete. Both the presented Act-SAT and Act-A* methods produce optimal sets of TF activity changes, which can be used to investigate the difficult interplay of expression and network data. A web server and a command line tool to calculate our i-score and to find the active TFs associated with the minimal i-score is available from https://services.bio.ifi.lmu.de/i-score.

  13. Influence of secondary water supply systems on microbial community structure and opportunistic pathogen gene markers.

    Science.gov (United States)

    Li, Huan; Li, Shang; Tang, Wei; Yang, Yang; Zhao, Jianfu; Xia, Siqing; Zhang, Weixian; Wang, Hong

    2018-06-01

    Secondary water supply systems (SWSSs) refer to the in-building infrastructures (e.g., water storage tanks) used to supply water pressure beyond the main distribution systems. The purpose of this study was to investigate the influence of SWSSs on microbial community structure and the occurrence of opportunistic pathogens, the latter of which are an emerging public health concern. Higher numbers of bacterial 16S rRNA genes, Legionella and mycobacterial gene markers were found in public building taps served by SWSSs relative to the mains, regardless of the flushing practice (P < 0.05). In residential buildings, genes of L. pneumomhila, Acanthamoeba and Vermamoeba vermiformis were primarily detected in tanks and taps compared to the mains. Long water retention time, warm temperature and loss of disinfectant residuals promoted microbial growth and colonization of potential pathogens in SWSSs. Varied levels of microbial community shifts were found in different types of SWSSs during water transportation from the distribution main to taps, highlighting the critical role of SWSSs in shaping the drinking water microbiota. Overall, the results provided insight to factors that might aid in controlling pathogen proliferation in real-world water systems using SWSSs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Characterisation of kisspeptin system genes in an ovoviviparous teleost: Sebastes schlegeli.

    Science.gov (United States)

    Song, Huayu; He, Yan; Ma, Liman; Zhou, Xiaosu; Liu, Xiumei; Qi, Jie; Zhang, Quanqi

    2015-04-01

    Kisspeptins are neuropeptides that play important roles in the reproduction and the onset of puberty in vertebrate by activating their receptor, Kissr. In the present study, we first isolated kiss1 and kissr4 genes from an ovoviviparous fish, the black rockfish (Sebastes schlegeli) by homologue cloning. Phylogenetic analysis indicated that the kiss and kissr of S. schlegeli belonged to kiss1 and kissr4 respectively. Quantitative real-time PCR analysis showed that the kissr4 was expressed mainly in the brain and testis, while the kiss1 was expressed predominantly in the heart of both sexes. As for the different gonadal maturation stages the kiss1 showed different expression patterns in different tissues. During the early development stage, expression levels of the ligand and receptor genes showed similar increasing trends. The promoter region of kissr4 contained several putative transcription factor (TF) binding sites which may have the function of regulating kisspeptin system gene expression, providing potential targets for future in-depth investigation. These results together confirmed that the kisspeptin system in S. schlegeli may be involved in reproduction and other activities. Furthermore, our study laid the groundwork for further learning about the evolution and function of kisspeptin system in fish even vertebrate. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Differential expression of anti-angiogenic factors and guidance genes in the developing macula.

    Science.gov (United States)

    Kozulin, Peter; Natoli, Riccardo; O'Brien, Keely M Bumsted; Madigan, Michele C; Provis, Jan M

    2009-01-01

    The primate retina contains a specialized, cone-rich macula, which mediates high acuity and color vision. The spatial resolution provided by the neural retina at the macula is optimized by stereotyped retinal blood vessel and ganglion cell axon patterning, which radiate away from the macula and reduce shadowing of macular photoreceptors. However, the genes that mediate these specializations, and the reasons for the vulnerability of the macula to degenerative disease, remain obscure. The aim of this study was to identify novel genes that may influence retinal vascular patterning and definition of the foveal avascular area. We used RNA from human fetal retinas at 19-20 weeks of gestation (WG; n=4) to measure differential gene expression in the macula, a region nasal to disc (nasal) and in the surrounding retina (surround) by hybridization to 12 GeneChip microarrays (HG-U133 Plus 2.0). The raw data was subjected to quality control assessment and preprocessing, using GC-RMA. We then used ANOVA analysis (Partek) Genomic Suite 6.3) and clustering (DAVID website) to identify the most highly represented genes clustered according to "biological process." The neural retina is fully differentiated at the macula at 19-20 WG, while neuronal progenitor cells are present throughout the rest of the retina. We therefore excluded genes associated with the cell cycle, and markers of differentiated neurons, from further analyses. Significantly regulated genes (pmacula versus surround" and "macula versus nasal." KEGG pathway clustering of the filtered gene lists identified 25 axon guidance-related genes that are differentially regulated in the macula. Furthermore, we found significant upregulation of three anti-angiogenic factors in the macula: pigment epithelium derived factor (PEDF), natriuretic peptide precurusor B (NPPB), and collagen type IValpha2. Differential expression of several members of the ephrin and semaphorin axon guidance gene families, PEDF, and NPPB was verified by

  16. Mutagenesis of RpoE-like sigma factor genes in Bdellovibrio reveals differential control of groEL and two groES genes

    Directory of Open Access Journals (Sweden)

    Lambert Carey

    2012-06-01

    Full Text Available Abstract Background Bdellovibrio bacteriovorus HD100 must regulate genes in response to a variety of environmental conditions as it enters, preys upon and leaves other bacteria, or grows axenically without prey. In addition to “housekeeping” sigma factors, its genome encodes several alternate sigma factors, including 2 Group IV-RpoE-like proteins, which may be involved in the complex regulation of its predatory lifestyle. Results We find that one sigma factor gene, bd3314, cannot be deleted from Bdellovibrio in either predatory or prey-independent growth states, and is therefore possibly essential, likely being an alternate sigma 70. Deletion of one of two Group IV-like sigma factor genes, bd0881, affects flagellar gene regulation and results in less efficient predation, although not due to motility changes; deletion of the second, bd0743, showed that it normally represses chaperone gene expression and intriguingly we find an alternative groES gene is expressed at timepoints in the predatory cycle where intensive protein synthesis at Bdellovibrio septation, prior to prey lysis, will be occurring. Conclusions We have taken the first step in understanding how alternate sigma factors regulate different processes in the predatory lifecycle of Bdellovibrio and discovered that alternate chaperones regulated by one of them are expressed at different stages of the lifecycle.

  17. Circadian System and Melatonin Hormone: Risk Factors for Complications during Pregnancy

    Directory of Open Access Journals (Sweden)

    F. J. Valenzuela

    2015-01-01

    Full Text Available Pregnancy is a complex and well-regulated temporal event in which several steps are finely orchestrated including implantation, decidualization, placentation, and partum and any temporary alteration has serious effects on fetal and maternal health. Interestingly, alterations of circadian rhythms (i.e., shiftwork have been correlated with increased risk of preterm delivery, intrauterine growth restriction, and preeclampsia. In the last few years evidence is accumulating that the placenta may have a functional circadian system and express the clock genes Bmal1, Per1-2, and Clock. On the other hand, there is evidence that the human placenta synthesizes melatonin, hormone involved in the regulation of the circadian system in other tissues. Moreover, is unknown the role of this local production of melatonin and whether this production have a circadian pattern. Available information indicates that melatonin induces in placenta the expression of antioxidant enzymes catalase and superoxide dismutase, prevents the injury produced by oxidative stress, and inhibits the expression of vascular endothelial growth factor (VEGF a gene that in other tissues is controlled by clock genes. In this review we aim to analyze available information regarding clock genes and clock genes controlled genes such as VEGF and the possible role of melatonin synthesis in the placenta.

  18. Lactogenic differentiation of HC11 cells is not accompanied by downregulation of AP-2 transcription factor genes

    Directory of Open Access Journals (Sweden)

    Schorle Hubert

    2008-06-01

    Full Text Available Abstract Background During pregnancy the mammary epithelium undergoes a complex developmental process which culminates in the generation of the milk-secreting epithelium. Secretory epithelial cells display lactogenic differentiation which is characterized by the expression of milk protein genes, such as beta-casein or whey acidic protein (WAP. Transcription factors AP-2alpha and AP-2gamma are downregulated during lactation, and their overexpression in transgenic mice impaired the secretory differentiation of the mammary epithelium, resulting in lactation failure. To explore whether the downregulation of AP-2alpha and AP-2gamma is of functional significance for lactogenic differentiation, we analyzed the expression of the AP-2 family members during the lactogenic differentiation of HC11 mammary epithelial cells in vitro. Differentiation of HC11 cells was induced following established protocols by applying the lactogenic hormones prolactin, dexamethasone and insulin. Findings HC11 cells express all AP-2 family members except AP-2delta. Using RT-PCR we could not detect a downregulation of any of these genes during the lactogenic differentiation of HC11 cells in vitro. This finding was confirmed for AP-2alpha and AP-2gamma using Northern analysis. Differentiating HC11 cells displayed lower expression levels of milk protein genes than mammary glands of mid-pregnant or lactating mice. Conclusion The extent of lactogenic differentiation of HC11 cells in vitro is limited compared to mammary epithelium undergoing secretory differentiation in vivo. Downregulation of AP-2 transcription factor genes is not required for lactogenic differentiation of HC11 cells but may functionally be involved in aspects of lactogenic differentiation in vivo that are not reflected by the HC11 system.

  19. The peripheral sensory nervous system in the vertebrate head: a gene regulatory perspective.

    Science.gov (United States)

    Grocott, Timothy; Tambalo, Monica; Streit, Andrea

    2012-10-01

    In the vertebrate head, crucial parts of the sense organs and sensory ganglia develop from special regions, the cranial placodes. Despite their cellular and functional diversity, they arise from a common field of multipotent progenitors and acquire distinct identity later under the influence of local signalling. Here we present the gene regulatory network that summarises our current understanding of how sensory cells are specified, how they become different from other ectodermal derivatives and how they begin to diversify to generate placodes with different identities. This analysis reveals how sequential activation of sets of transcription factors subdivides the ectoderm over time into smaller domains of progenitors for the central nervous system, neural crest, epidermis and sensory placodes. Within this hierarchy the timing of signalling and developmental history of each cell population is of critical importance to determine the ultimate outcome. A reoccurring theme is that local signals set up broad gene expression domains, which are further refined by mutual repression between different transcription factors. The Six and Eya network lies at the heart of sensory progenitor specification. In a positive feedback loop these factors perpetuate their own expression thus stabilising pre-placodal fate, while simultaneously repressing neural and neural crest specific factors. Downstream of the Six and Eya cassette, Pax genes in combination with other factors begin to impart regional identity to placode progenitors. While our review highlights the wealth of information available, it also points to the lack information on the cis-regulatory mechanisms that control placode specification and of how the repeated use of signalling input is integrated. Copyright © 2012. Published by Elsevier Inc.

  20. Dynamics of immune system gene expression upon bacterial challenge and wounding in a social insect (Bombus terrestris.

    Directory of Open Access Journals (Sweden)

    Silvio Erler

    2011-03-01

    Full Text Available The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT. There is a lack of immune genes in social insects (e.g. honeybees when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals. The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge.Antimicrobial peptides (AMP (abaecin, defensin 1, hymenoptaecin were strongly up-regulated by wounding and bacterial challenge, the latter showing a higher impact on the gene expression level. Sterile wounding down-regulated TEP A, an effector gene of the JAK/STAT pathway, and bacterial infection influenced genes of the Imd (relish and JNK pathway (basket. Relish was up-regulated within the first hour after bacterial challenge, but decreased strongly afterwards. AMP expression following wounding and bacterial challenge correlates with the expression pattern of relish whereas correlated expression with dorsal was absent. Although expression of AMPs was high, continuous bacterial growth was observed throughout the experiment.Here we demonstrate for the first time the temporal dynamics of immune system gene expression in a social insect. Wounding and bacterial challenge affected the innate immune system significantly. Induction of AMP expression due to wounding might comprise a pre-adaptation to accompanying bacterial infections. Compared with solitary species this social insect exhibits reduced immune system efficiency, as bacterial growth could not be inhibited. A negative feedback loop regulating the Imd-pathway is suggested. AMPs, the end product of the Imd-pathway, inhibited the up-regulation of the

  1. Underlying Factors for Practicality of the Production Control Systems

    DEFF Research Database (Denmark)

    Arica, Emrah; Strandhagen, Jan Ola; Hvolby, Hans-Henrik

    2012-01-01

    This paper gives indications to important factors that must be considered for effectiveness of the production control systems under uncertainty. Five key factors have been identified by the literature study. Production schedule generation and execution approach under uncertainty, information...... and communication technology, coordination and feedback, human factors and decision making, and measurement are the identified factors to be taken into account. Industrial interviews with three case companies, that are participating to the research program called The Norwegian Manufacturing Future (SFI NORMAN...

  2. Economic growth factors system: theoretical and methodological aspect

    OpenAIRE

    H.Ya. Hlukha

    2014-01-01

    The aim of the article. The main objective of the article is to create theoretical grounds to build the system of economic growth factors, to modernize their classification, to define exogenous and endogenous factors, to analyze them within the state economic policy structure. The results of the analysis. The article focuses on economic growth factors theoretical studies: - economic growth factors classification characteristics have been highlighted; - various approaches to determine...

  3. NOTCH4 gene polymorphisms as potential risk factors for brain arteriovenous malformation development and hemorrhagic presentation.

    Science.gov (United States)

    Delev, Daniel; Pavlova, Anna; Grote, Alexander; Boström, Azize; Höllig, Anke; Schramm, Johannes; Fimmers, Rolf; Oldenburg, Johannes; Simon, Matthias

    2017-05-01

    OBJECTIVE Arteriovenous malformations (AVMs) of the brain are a frequent and important cause of intracranial hemorrhage in young adults. Little is known about the molecular-genetic pathomechanisms underlying AVM development. Genes of the NOTCH family control the normal development of vessels and proper arteriovenous specification. Transgenic mice with constitutive expression of active NOTCH4 frequently develop AVMs. Here, the authors report a genetic association study investigating possible associations between NOTCH4 gene polymorphisms and formation and clinical presentation of AVMs. METHODS After PCR amplification and direct DNA sequencing or restriction digests, 10 single-nucleotide polymorphisms (SNPs) of the NOTCH4 gene were used for genotyping 153 AVM patients and 192 healthy controls (i.e., blood donors). Pertinent clinical data were available for 129 patients. Uni- and multivariate single-marker and explorative haplotype analyses were performed to identify potential genetic risk factors for AVM development and for hemorrhagic or epileptic presentation. RESULTS Eleven calculated haplotypes consisting of 3-4 SNPs (most of which were located in the epidermal growth factor-like domain of the NOTCH4 gene) were observed significantly more often among AVM patients than among controls. Univariate analysis indicated that rs443198_TT and rs915895_AA genotypes both were significantly associated with hemorrhage and that an rs1109771_GG genotype was associated with epilepsy. The association between rs443198_TT and AVM bleeding remained significant in the multivariate regression analysis. CONCLUSIONS The authors' results suggest NOTCH4 SNPs as possible genetic risk factors for the development and clinical presentation of AVMs and a role of NOTCH4 in the pathogenesis of this disease.

  4. Tumour necrosis factor gene complex polymorphisms in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Ruse, Charlotte E; Hill, Maureen C; Tobin, Martin; Neale, Natalie; Connolly, Martin J; Parker, Stuart G; Wardlaw, Andrew J

    2007-02-01

    We aimed to examine the role of tumour necrosis factor gene complex polymorphisms in subjects with chronic obstructive pulmonary disease (COPD). We hypothesized that individuals possessing polymorphic variants associated with higher tumour necrosis factor (TNF) secretion would be more susceptible to and/or have more severe disease. Patients with COPD and population controls underwent detailed clinical phenotyping. Genotyping for the tumour necrosis factor-308 and the lymphotoxin alpha NcoI (LTalpha polymorphisms was carried out by 'blinded' laboratory staff. Three hundred and sixty one individuals (220 cases and 141 controls) were recruited. We showed an association between the LTalphaNcol polymorphism and forced vital capacity (FVC) in a population of older adults with and without COPD. The LTalphaNcol*2 allele was associated with poorer lung function, under a codominant model, with a fall in FVC (expressed as a percentage of its predicted value) of 3.7% for each copy of the LTalphaNcol*2 allele possessed (for FVC, regression coefficient (95% CI)=-3.73(-7.01 to -0.44), P=0.026; for FEV(1) regression coefficient=-3.56(-7.80 to 0.70), P=0.101. However, there was no difference in genotype distribution between the case and control populations. This study adds weight to the suggestion that the TNF gene complex is involved in physiological alterations (FVC) that may affect the development and severity of COPD. The absence of a significant association between the TNF gene-complex polymorphisms in this study does not rule out a modest effect of these polymorphisms on the risk of COPD, as much larger studies are needed to detect modest gene effects on binary disease endpoints.

  5. Identification of transcription factor AML-1 binding site upstream of human cytomegalovirus UL111A gene.

    Directory of Open Access Journals (Sweden)

    Xiaoqun Zheng

    Full Text Available Human cytomegalovirus (HCMV interleukin-10 (hcmvIL-10, encoded by HCMV UL111A gene, is a homolog of human IL-10. It exerts immunomodulatory effects that allow HCMV to evade host defense mechanisms. However, the exact mechanism underlying the regulation of hcmvIL-10 expression is not well understood. The transcription factor acute myeloid leukemia 1 (AML-1 plays an important role in the regulation of various genes involved in the differentiation of hematopoietic lineages. A putative AML-1 binding site is present within the upstream regulatory region (URR of UL111A gene. To provide evidence that AML-1 is involved in regulating UL111A gene expression, we examined the interaction of AML-1 with the URR of UL111A in HCMV-infected human monocytic THP-1 cells using a chromatin immunoprecipitation assay. HcmvIL-10 transcription was detected in differentiated THP-1 cells, but not in undifferentiated ones. Furthermore, the URR of UL111A showed a higher intensity of AML-1 binding, a higher level of histone H3 acetyl-K9, but a lower level of histone H3 dimethyl-K9 in differentiated THP-1 cells than undifferentiated cells. Down-regulation of AML1 by RNA interference decreased the expression of the UL111A gene. Our results suggest that AML-1 may contribute to the epigenetic regulation of UL111A gene via histone modification in HCMV-infected differentiated THP-1 cells. This finding could be useful for the development of new anti-viral therapies.

  6. [Biological characteristics of cleft palate relevant gene thyroid transcription factor-2 transgenic mice].

    Science.gov (United States)

    Huang, Lei; Shi, Bing; Qian, Zheng; Meng, Tian; Wang, Yan

    2014-08-01

    The aim of this study is to establish a transgenic mouse model for cleft palate relevant gene thyroid transcription factor-2 (TTF-2), which can be used to study palatal shelf development when the expression pattern and regular activation of TTF-2 is altered. The C57BL/6J mouse TTF-2 gene was cloned through polymerase chain reaction (PCR) from the mouse genomic DNA. The TTF-2 gene was inserted into the expression vector pBROAD3-mcs to construct the recombinant expression vector pBROAD3-TTF-2. This expression vector was then microinjected into the male pronuclei of the fertilized mouse ovum. Thus, the TTF-2 transgenic mice model was established. The genotype of the transgenic mice was identified by PCR and Southern blot analysis. Immunohistochemistry identified the consistent expression of TTF-2 gene during its palatal shelf development. TTF-2 genes were microinjected into 982 fertilized ova. A total of 580 two-cell-stage embryos cultured and transplanted into the oviducts of 48 pseudopregnant female mice. Overall, 68 embryos were obtained for analysis. The genotype of the mice was determined through PCR and Southern blot analysis using genomic DNA extracted from tail biopsies of the transgenic fetus. A total of 13 TTF-2 transgenic mice were detected. The expression of TTF-2 gene during the palatal shelf development of the transgenic mice was consistently detected by immunohistochemistry. The recombinant expression vector pBROAD3-TTF-2 was integrated into mouse genome through microinjection. The transgenic mouse in the palatal shelf that consistently expressed TTF-2 was successfully established and displayed a cleft palate phenotype.

  7. The silkworm Bombyx mori cuticular protein CPR55 gene is regulated by the transcription factor βFTZ-F1

    Directory of Open Access Journals (Sweden)

    Md. Saheb Ali

    2016-01-01

    Full Text Available The insect cuticle is composed of various proteins and formed during the moult under a complex biological process that depends on the cross talk between hormone levels and gene expression. In the present study, we aimed to clarify the ecdysone-dependent temporal regulation mechanisms of cuticular proteins expression and the underlying control of Bombyx mori metamorphosis. The expression of CPR55 was observed from the W3 early stage and peaked at pupation when the ecdysteroid titre declined. CPR55 was induced by the ecdysone pulse, and their expression peaked at 24 h after transfer to a hormone free medium. Transcripts of CPR55 were neither observed after the 20E pulse treatment in the presence of cycloheximide nor after the addition of 20E in V4 wing discs. We analysed the upstream region of the CPR55 gene using a transient reporter assay with a gene gun system which identified only one βFTZ-F1 binding site important for cis-acting elements for the transcription activation of the luciferase reporter gene by an ecdysone pulse. Site-directed mutagenesis of this element in the context of the 589-bp promoter fragment drastically decreased the reporter activity. The nuclear protein bound to βFTZ-F1 sites was identified by an electrophoretic mobility shift assay suggesting that CPR55 expression was regulated by βFTZ-F1 through the ecdysone pulse. The results confirmed that transcription factor, BmβFTZ-F1, binds to the cis-regulatory elements in the promoter of the gene coding for cuticle protein, CPR55, and regulates its expression during B. mori metamorphosis.

  8. Factors influencing the profitability of optimizing control systems

    International Nuclear Information System (INIS)

    Broussaud, A.; Guyot, O.

    1999-01-01

    Optimizing control systems supplement conventional Distributed Control Systems and Programmable Logic Controllers. They continuously implement set points, which aim at maximizing the profitability of plant operation. They are becoming an integral part of modern mineral processing plants. This trend is justified by economic considerations, optimizing control being among the most cost-effective methods of improving metallurgical plant performance. The paper successively analyzes three sets of factors, which influence the profitability of optimizing control systems, and provides guidelines for analyzing the potential value of an optimizing control system at a given operation: external factors, such as economic factors and factors related to plant feed; features of the optimizing control system; and subsequent maintenance of the optimizing control system. It is shown that pay back times for optimization control projects are typically measured in days. The OCS software used by the authors for their applications is described briefly. (author)

  9. Factors influencing the profitability of optimizing control systems

    Energy Technology Data Exchange (ETDEWEB)

    Broussaud, A.; Guyot, O. [Svedala Cisa, Orleans Cedex 2 (France)

    1999-07-01

    Optimizing control systems supplement conventional Distributed Control Systems and Programmable Logic Controllers. They continuously implement set points, which aim at maximizing the profitability of plant operation. They are becoming an integral part of modern mineral processing plants. This trend is justified by economic considerations, optimizing control being among the most cost-effective methods of improving metallurgical plant performance. The paper successively analyzes three sets of factors, which influence the profitability of optimizing control systems, and provides guidelines for analyzing the potential value of an optimizing control system at a given operation: external factors, such as economic factors and factors related to plant feed; features of the optimizing control system; and subsequent maintenance of the optimizing control system. It is shown that pay back times for optimization control projects are typically measured in days. The OCS software used by the authors for their applications is described briefly. (author)

  10. Systemic gene delivery to the central nervous system using Adeno-associated virus

    Directory of Open Access Journals (Sweden)

    Mathieu eBOURDENX

    2014-06-01

    Full Text Available Adeno-associated virus (AAV-mediated gene delivery has emerged as an effective and safe tool for both preclinical and clinical studies of neurological disorders. The recent discovery that several serotypes are able to cross the blood-brain-barrier when administered systemically has been a real breakthrough in the field of neurodegenerative diseases. Widespread transgene expression after systemic injection could spark interest as a therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will review the recent results achieved through different systemic routes of injection generated in the last decade using systemic AAV-mediated delivery and propose a brief assessment of their values. In particular, we emphasize how the methods used for virus engineering could improve brain transduction after peripheral delivery.

  11. Anti-vascular agent Combretastatin A-4-P modulates Hypoxia Inducible Factor-1 and gene expression

    Directory of Open Access Journals (Sweden)

    Currie Margaret J

    2006-12-01

    Full Text Available Abstract Background A functional vascular network is essential for the survival, growth and spread of solid tumours, making blood vessels a key target for therapeutic strategies. Combretastatin A-4 phosphate (CA-4-P is a tubulin-depolymerising agent in Phase II clinical trials as a vascular disrupting agent. Not much is known of the molecular effect of CA-4-P under tumour conditions. The tumour microenvironment differs markedly from that in normal tissue, specifically with respect to oxygenation (hypoxia. Gene regulation under tumour conditions is governed by hypoxia inducible factor 1 (HIF-1, controlling angiogenic and metastatic pathways. Methods We investigated the effect of CA-4-P on factors of the upstream and downstream signalling pathway of HIF-1 in vitro. Results CA-4-P treatment under hypoxia tended to reduce HIF-1 accumulation in a concentration-dependent manner, an effect which was more prominent in endothelial cells than in cancer cell lines. Conversely, CA-4-P increased HIF-1 accumulation under aerobic conditions in vitro. At these concentrations of CA-4-P under aerobic conditions, nuclear factor κB was activated via the small GTPase RhoA, and expression of the HIF-1 downstream angiogenic effector gene, vascular endothelial growth factor (VEGF-A, was increased. Conclusion Our findings advance the understanding of signal transduction pathways involved in the actions of the anti-vascular agent CA-4-P.

  12. Beyond genes: A systematic review of environmental risk factors in specific reading disorder.

    Science.gov (United States)

    Mascheretti, Sara; Andreola, Chiara; Scaini, Simona; Sulpizio, Simone

    2018-03-19

    While an understanding of the genetic contributions to specific reading disorder (RD) is emerging, there is no agreement about which putative hazard factors are clearly involved in the aetiology of this disorder. A literature review looking at the impact of environmental risk variables implicated in RD either per se or when interacting with the genes. We performed a systematic literature review using the following keywords: dyslexia OR reading disability AND environmental risk factors OR environmental hazard factors, in the following electronic databases: PubMed, Scopus and PsycINFO, without any time restrictions. Gestational weeks and birth weight are among the pre- and peri-natal risk factors shown to reliably predict reading readiness and the odds of having RD. Inconclusive findings have been reported for maternal cigarette smoking, family history of psychiatric and medical diseases, and risk of miscarriage. A broad definition of familial socio-economic status and home literacy environment have been identified as good life-long risk predictors of reading skills. We highlighted the need to consider environmental hazards, their interactions and interactions with RD-candidate genes in the study of the aetiology of RD in order to provide much-needed insight into how these variables influence reading skills. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Natural language indicators of differential gene regulation in the human immune system.

    Science.gov (United States)

    Mehl, Matthias R; Raison, Charles L; Pace, Thaddeus W W; Arevalo, Jesusa M G; Cole, Steve W

    2017-11-21

    Adverse social conditions have been linked to a conserved transcriptional response to adversity (CTRA) in circulating leukocytes that may contribute to social gradients in disease. However, the CNS mechanisms involved remain obscure, in part because CTRA gene-expression profiles often track external social-environmental variables more closely than they do self-reported internal affective states such as stress, depression, or anxiety. This study examined the possibility that variations in patterns of natural language use might provide more sensitive indicators of the automatic threat-detection and -response systems that proximally regulate autonomic induction of the CTRA. In 22,627 audio samples of natural speech sampled from the daily interactions of 143 healthy adults, both total language output and patterns of function-word use covaried with CTRA gene expression. These language features predicted CTRA gene expression substantially better than did conventional self-report measures of stress, depression, and anxiety and did so independently of demographic and behavioral factors (age, sex, race, smoking, body mass index) and leukocyte subset distributions. This predictive relationship held when language and gene expression were sampled more than a week apart, suggesting that associations reflect stable individual differences or chronic life circumstances. Given the observed relationship between personal expression and gene expression, patterns of natural language use may provide a useful behavioral indicator of nonconsciously evaluated well-being (implicit safety vs. threat) that is distinct from conscious affective experience and more closely tracks the neurobiological processes involved in peripheral gene regulation. Copyright © 2017 the Author(s). Published by PNAS.

  14. Screening for key genes and transcription factors in ankylosing spondylitis by RNA-Seq.

    Science.gov (United States)

    Xu, Zhongyang; Wang, Xiuyu; Zheng, Yanping

    2018-02-01

    Ankylosing spondylitis (AS) is a chronic inflammatory arthritis and autoimmune disease, the etiology and pathogenesis of which remain largely unknown. In the present study, blood samples were harvested from patients with AS and from healthy volunteers as a normal control (NC) for RNA-sequencing. Differentially expressed genes (DEGs) in the AS group compared with the NC group were identified, and gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were subsequently performed. Protein-protein interaction (PPI) network and AS-specific transcriptional regulatory network construction was performed for the DEGs. A total of 503 DEGs, including 338 upregulated and 165 downregulated DEGs, were identified in patients with AS compared with the NC group. Three upregulated DEGs identified, interferon-induced protein with tetratricopeptide repeats (IFIT)1, IFIT3 and radical S-adenosyl methionine domain containing (RSAD)2, are interferon (IFN)-stimulated genes that serve a role in the IFN signaling pathway. The most significantly enriched GO term was response to other organisms. Osteoclast differentiation was a significantly enriched pathway for eight DEGs [High affinity immunoglobulin gamma Fc receptor (FCGR)1A, FCGR2B, four and a half LIM domains 2, integrin β3, signal transducer and activator of transcription 2 (STAT2), suppressor of cytokine signaling 3 (SOCS3), leukocyte immunoglobulin like receptor (LILR)A4 and LILRA6]. The six hub genes in the PPI network constructed were interferon-stimulated gene 15, heat shock protein β1, microtubule-associated proteins 1A/1B light chain 3A, IFIT1, IFIT3 and SOCS3. POU domain class 2 transcription factor 1 (1-Oct) and ecotropic virus integration site-1 (Evi-1) were identified as two important transcription factors (TFs) in AS according to the AS-specific transcriptional regulatory network constructed. In addition, IFIT1 and IFIT3 were identified as targets of 1-Oct. The results of the

  15. [Quantitative analysis of gene expression for vascular endothelial growth factor and its application].

    Science.gov (United States)

    Bai, Xia; Fu, Jian-Xin; Ding, Kai-Yang; Cen, Jian-Nong; Wang, Wei; Ruan, Chang-Geng

    2005-08-01

    Vascular endothelial growth factor (VEGF), a central mediator of angiogenesis, not only plays an important role in the pathogenesis of leukemia, but also is an independent prognostic factor in patients with hematologic malignancies, like those in solid tumors. However, the importance of VEGF during differentiation or apoptosis of leukemia cells remains to be elucidated. In order to assess the alternation of VEGF gene expression in the process of all-trans retinoic acid (ATRA)-induced differentiation of NB4 acute promyelocytic leukemia cell line, and a competitor DNA fragment, VEGF gene competative template (T-VEGFDelta) was constructed by using gene recombinant technologies, and a competitive quantitative reverse transcriptase-polymerase chain reaction (cQRT-PCR) method was developed. A standard curve was obtained by co-amplification of serial dilutions of the target nulecules with constant amount of competitive template and this curve was used to detect molecular number of target gene in measuring sample. The surface expression of CD11b antigen and nitroblue tetrazolium (NBT) reduction rate of NB4 cells were also assayed at different time points. The results showed that cQRT-PCR was a sensitive, reliable tool for analysis of VEGF gene expression with a detectable range from 1 x 10(4) to 2 x 10(5) molecules. The number of VEGF gene transcripts detected by means of cQRT-PCR assay was 42.3 x 10(5), 12.6 x 10(5), 3.6 x 10(5), and less than 1.0 x 10(5)/microg total RNA at 0, 12, 24 and 48 hours after ATRA treatment, respectively. This rapid down-regulation of VEGF gene expression, during ATRA-induced NB4 cell differentiation, was accompanied by the up-regulation of CD11b expression and an increased NBT reduction rate. In conclusion, cQRT-PCR method was successtully constructed, confirming that ATRA efficiently repressed VEGF, at the same time, the ATRA might exert an antileukemic effect, other than induction of differentiation via inhibition of angiogenesis.

  16. Association studies of serotonin system candidate genes in early-onset obsessive-compulsive disorder.

    Science.gov (United States)

    Dickel, Diane E; Veenstra-VanderWeele, Jeremy; Bivens, Nancy Chiu; Wu, Xiaolin; Fischer, Daniel J; Van Etten-Lee, Michelle; Himle, Joseph A; Leventhal, Bennett L; Cook, Edwin H; Hanna, Gregory L

    2007-02-01

    Family-based evidence for association at serotonin system genes SLC6A4, HTR1B, HTR2A, and brain-derived neurotrophic factor (BDNF) has been previously reported in obsessive-compulsive disorder (OCD). Early-onset OCD is a more familial form of the disorder. We used the transmission-disequilibrium test of association at common polymorphisms in each of these genes in 54 parent-child trios ascertained through probands with early-onset OCD. No evidence for association was detected at any of the polymorphisms in the entire set of subjects. Nominally significant association was found at the HTR2A rs6311 polymorphism in subjects with tic disorder and OCD (p = .05), replicating a previous finding in Tourette syndrome and OCD. Nominally significant association was also found for the SLC6A4 HT transporter gene-linked polymorphic region (5-HTTLPR) polymorphism for female subjects (p = .03). Neither association would remain significant after statistical correction for multiple testing. Despite no individual study reporting replication, a pooled analysis of five replication studies of the SLC6A4 5-HTTLPR polymorphism supports association (p = .02). Low power across individual association studies in OCD may lead to a false acceptance of the null hypothesis. Accumulation of evidence from multiple studies will be necessary to evaluate the potential role for these genes in contributing to susceptibility to OCD.

  17. Global characterization of interferon regulatory factor (IRF genes in vertebrates: Glimpse of the diversification in evolution

    Directory of Open Access Journals (Sweden)

    Xu Zhen

    2010-05-01

    Full Text Available Abstract Background Interferon regulatory factors (IRFs, which can be identified based on a unique helix-turn-helix DNA-binding domain (DBD are a large family of transcription factors involved in host immune response, haemotopoietic differentiation and immunomodulation. Despite the identification of ten IRF family members in mammals, and some recent effort to identify these members in fish, relatively little is known in the composition of these members in other classes of vertebrates, and the evolution and probably the origin of the IRF family have not been investigated in vertebrates. Results Genome data mining has been performed to identify any possible IRF family members in human, mouse, dog, chicken, anole lizard, frog, and some teleost fish, mainly zebrafish and stickleback, and also in non-vertebrate deuterostomes including the hemichordate, cephalochordate, urochordate and echinoderm. In vertebrates, all ten IRF family members, i.e. IRF-1 to IRF-10 were identified, with two genes of IRF-4 and IRF-6 identified in fish and frog, respectively, except that in zebrafish exist three IRF-4 genes. Surprisingly, an additional member in the IRF family, IRF-11 was found in teleost fish. A range of two to ten IRF-like genes were detected in the non-vertebrate deuterostomes, and they had little similarity to those IRF family members in vertebrates as revealed in genomic structure and in phylogenetic analysis. However, the ten IRF family members, IRF-1 to IRF-10 showed certain degrees of conservation in terms of genomic structure and gene synteny. In particular, IRF-1, IRF-2, IRF-6, IRF-8 are quite conserved in their genomic structure in all vertebrates, and to a less degree, some IRF family members, such as IRF-5 and IRF-9 are comparable in the structure. Synteny analysis revealed that the gene loci for the ten IRF family members in vertebrates were also quite conservative, but in zebrafish conserved genes were distributed in a much longer distance in

  18. Combined congenital dysfibrinogenemia and factor VII deficiency from mutations in the FGB and F7 genes.

    Science.gov (United States)

    Woo, Hye In; Park, In-Ae; Lee, Ki-O; Kim, Sun-Hee; Kim, Hee-Jin

    2012-07-01

    Dysfibrinogenemia and factor VII (FVII) deficiency are rare congenital coagulopathies. In this report, the authors describe a man with both defects confirmed by molecular genetic tests. The patient was a 51-year-old man referred for prolonged prothrombin time (PT) that had been accidentally detected on preoperative screening. He had no history of bleeding tendency even on occasions of surgery. Routine coagulation studies revealed prolonged PT (1.53 INR) and thrombin time (42.2 s), and decreased fibrinogen level (57 mg/dl) and FVII activity (44%). Direct sequencing analyses were performed on FGA, FGB, and FGG genes to confirm dysfibrinogenemia and on the F7 gene to confirm FVII deficiency. As a result, the patient was shown to be heterozygous for a point mutation in exon 8 of the FGB gene (c.1475A > G, p.*492Trpext*12; Fibrinogen Magdeburg II) and for a missense mutation in exon 6 of the F7 gene (c.466G  > A, p.Gly156Ser). To our knowledge, this is the first report on a case of combined dysfibrinogenemia and FVII deficiency confirmed by molecular genetic tests.

  19. Analysis of Relationship between Tumor Necrosis Factor Alpha Gene (G308A Polymorphism) with Preterm Labor.

    Science.gov (United States)

    Jafarzadeh, Lobat; Danesh, Azar; Sadeghi, Marzieh; Heybati, Fateme; Hashemzadeh, Morteza

    2013-08-01

    Increased concentrations of tumor necrosis factor alpha (TNF-α) in blood and amniotic fluid are observed in women with preterm delivery (PTD) and TNF-α mutations at -308 position are associated with higher expression of this gene. Therefore, we compared the frequency of G308A transition in the promoter region of TNF-α gene of women and neonates delivered preterm with the normal subjects. This cross-sectional study was performed on 135 mothers who were referred for delivery. According to the gestational age, mothers and their neonates were allocated to the case (preterm, 64 subjects) and control (term, 71 subjects) groups. Using the polymerase chain reaction, restrictive fragment length polymorphism (RFLP), genotyping was performed on both maternal peripheral blood and cord blood samples to determine single nucleotide polymorphism in the promoter region of TNF-α gene at -308. Two mothers in the case group, one mother in the control group and one neonate in the case group had genotyping assays (GA) mutation. All other subjects had normal GG genotype. Frequency of GA mutation was not significantly different between two groups (P = 0.47). There is no significant association between PTD and either maternal or fetal TNF-α -308 polymorphism and frequency ofGAmutation is not significantly increased in mothers and neonates delivered preterm. It means that the presence of this mutation by itself does not modify the overall risk of PTD. Investigations on the combination of various polymorphisms indifferent genes are recommended to achieve more accurate results.

  20. Effects of ultrasound on Transforming Growth Factor-beta genes in bone cells

    Directory of Open Access Journals (Sweden)

    J Harle

    2005-12-01

    Full Text Available Therapeutic ultrasound (US is a widely used form of biophysical stimulation that is increasingly applied to promote fracture healing. Transforming growth factor-beta (TGF-beta, which is encoded by three related but different genes, is known to play a major part in bone growth and repair. However, the effects of US on the expression of the TGF-beta genes and the physical acoustic mechanisms involved in initiating changes in gene expression in vitro, are not yet known. The present study demonstrates that US had a differential effect on these TGF-beta isoforms in a human osteoblast cell line, with the highest dose eliciting the most pronounced up-regulation of both TGF-beta1 and TGF-beta3 at 1 hour after treatment and thereafter declining. In contrast, US had no effect on TGF-beta2 expression. Fluid streaming rather than thermal effects or cavitation was found to be the most likely explanation for the gene responses observed in vitro.

  1. Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L.

    Science.gov (United States)

    Kakeshpour, Tayebeh; Nayebi, Shadi; Rashidi Monfared, Sajad; Moieni, Ahmad; Karimzadeh, Ghasem

    2015-10-01

    Papaver somniferum L. is an herbaceous, annual and diploid plant that is important from pharmacological and strategic point of view. The cDNA clones of two putative MYB and WRKY genes were isolated (GeneBank accession numbers KP411870 and KP203854, respectively) from this plant, via the nested-PCR method, and characterized. The MYB transcription factor (TF) comprises 342 amino acids, and exhibits the structural features of the R2R3MYB protein family. The WRKY TF, a 326 amino acid-long polypeptide, falls structurally into the group II of WRKY protein family. Quantitative real-time PCR (qRT-PCR) analyses indicate the presence of these TFs in all organs of P. somniferum L. and Papaver bracteatum L. Highest expression levels of these two TFs were observed in the leaf tissues of P. somniferum L. while in P. bracteatum L. the espression levels were highest in the root tissues. Promoter analysis of the 10 co-expressed gene clustered involved in noscapine biosynthesis pathway in P. somniferum L. suggested that not only these 10 genes are co-expressed, but also share common regulatory motifs and TFs including MYB and WRKY TFs, and that may explain their common regulation.

  2. Transcription-factor-dependent enhancer transcription defines a gene regulatory network for cardiac rhythm.

    Science.gov (United States)

    Yang, Xinan H; Nadadur, Rangarajan D; Hilvering, Catharina Re; Bianchi, Valerio; Werner, Michael; Mazurek, Stefan R; Gadek, Margaret; Shen, Kaitlyn M; Goldman, Joseph Aaron; Tyan, Leonid; Bekeny, Jenna; Hall, Johnathon M; Lee, Nutishia; Perez-Cervantes, Carlos; Burnicka-Turek, Ozanna; Poss, Kenneth D; Weber, Christopher R; de Laat, Wouter; Ruthenburg, Alexander J; Moskowitz, Ivan P

    2017-12-27

    The noncoding genome is pervasively transcribed. Noncoding RNAs (ncRNAs) generated from enhancers have been proposed as a general facet of enhancer function and some have been shown to be required for enhancer activity. Here we examine the transcription-factor-(TF)-dependence of ncRNA expression to define enhancers and enhancer-associated ncRNAs that are involved in a TF-dependent regulatory network. TBX5, a cardiac TF, regulates a network of cardiac channel genes to maintain cardiac rhythm. We deep sequenced wildtype and Tbx5 -mutant mouse atria, identifying ~2600 novel Tbx5 -dependent ncRNAs. Tbx5-dependent ncRNAs were enriched for tissue-specific marks of active enhancers genome-wide. Tbx5-dependent ncRNAs emanated from regions that are enriched for TBX5-binding and that demonstrated Tbx5-dependent enhancer activity. Tbx5 -dependent ncRNA transcription provided a quantitative metric of Tbx5 -dependent enhancer activity, correlating with target gene expression. We identified RACER , a novel Tbx5 -dependent long noncoding RNA (lncRNA) required for the expression of the calcium-handling gene Ryr2 . We illustrate that TF-dependent enhancer transcription can illuminate components of TF-dependent gene regulatory networks.

  3. Discovery and functional assessment of gene variants in the vascular endothelial growth factor pathway.

    Science.gov (United States)

    Paré-Brunet, Laia; Glubb, Dylan; Evans, Patrick; Berenguer-Llergo, Antoni; Etheridge, Amy S; Skol, Andrew D; Di Rienzo, Anna; Duan, Shiwei; Gamazon, Eric R; Innocenti, Federico

    2014-02-01

    Angiogenesis is a host-mediated mechanism in disease pathophysiology. The vascular endothelial growth factor (VEGF) pathway is a major determinant of angiogenesis, and a comprehensive annotation of the functional variation in this pathway is essential to understand the genetic basis of angiogenesis-related diseases. We assessed the allelic heterogeneity of gene expression, population specificity of cis expression quantitative trait loci (eQTLs), and eQTL function in luciferase assays in CEU and Yoruba people of Ibadan, Nigeria (YRI) HapMap lymphoblastoid cell lines in 23 resequenced genes. Among 356 cis-eQTLs, 155 and 174 were unique to CEU and YRI, respectively, and 27 were shared between CEU and YRI. Two cis-eQTLs provided mechanistic evidence for two genome-wide association study findings. Five eQTLs were tested for function in luciferase assays and the effect of two KRAS variants was concordant with the eQTL effect. Two eQTLs found in each of PRKCE, PIK3C2A, and MAP2K6 could predict 44%, 37%, and 45% of the variance in gene expression, respectively. This is the first analysis focusing on the pattern of functional genetic variation of the VEGF pathway genes in CEU and YRI populations and providing mechanistic evidence for genetic association studies of diseases for which angiogenesis plays a pathophysiologic role. © 2013 WILEY PERIODICALS, INC.

  4. Control of the renal renin system by local factors

    DEFF Research Database (Denmark)

    Wagner, C; Jensen, B L; Krämer, B K

    1998-01-01

    prostanoid, both stimulate renin secretion and renin gene expression by activating cAMP formation in JG cells. Although the direct effect of NO on JG cells is less clear, its overall effect in vivo seems to be to stimulate the renin system. Evidence is emerging that stimulation by NO is related to the c...... that both NO and PGs could be involved in the physiological regulatory mechanisms by which salt intake affects the renin system....

  5. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus

    Science.gov (United States)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus; Nielsen, Henrik Bjørn; Botanga, Christopher J; Thorgrimsen, Stephan; Palma, Kristoffer; Suarez-Rodriguez, Maria Cristina; Sandbech-Clausen, Signe; Lichota, Jacek; Brodersen, Peter; Grasser, Klaus D; Mattsson, Ole; Glazebrook, Jane; Mundy, John; Petersen, Morten

    2008-01-01

    Plant and animal perception of microbes through pathogen surveillance proteins leads to MAP kinase signalling and the expression of defence genes. However, little is known about how plant MAP kinases regulate specific gene expression. We report that, in the absence of pathogens, Arabidopsis MAP kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further supported by the suppression of PAD3 expression in mpk4–wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation. PMID:18650934

  6. Genomic organization of the mouse fibroblast growth factor receptor 3 (Fgfr3) gene

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Castro, A.V.; Wilson, J.; Altherr, M.R. [Los Alamos National Lab., NM (United States)

    1995-11-20

    The fibroblast growth factor receptor 3 (Fgfr3) protein is a tyrosine kinase receptor involved in the signal transduction of various fibroblast growth factors. Recent studies suggest its important role in normal development. In humans, mutation in Fgfr3 is responsible for growth disorders such as achondroplasia, hypoachondroplasia, and thanatophoric dysplasia. Here, we report the complete genomic organization of the mouse Fgfr3 gene. The murine gene spans approximately 15 kb and consists of 19 exons and 18 introns. One major and one minor transcription initiation site were identified. Position +1 is located 614 nucleotides upstream from the ATG initiation codon. The translation initiation and termination sites are located in exons 2 and 19, respectively. Five Sp1 sites, two AP2 sites, one Zeste site, and one Krox 24 site were observed in the 5{prime}-flanking region. The Fgfr3 promoter appears to be contained within a CpG island and, as is common in genes having multiple Sp1-binding sites, lacks a TATA box. 35 refs., 3 figs., 1 tab.

  7. Hypoxia-Inducible Factor Directs POMC Gene to Mediate Hypothalamic Glucose Sensing and Energy Balance Regulation

    Science.gov (United States)

    Zhang, Hai; Zhang, Guo; Gonzalez, Frank J.; Park, Sung-min; Cai, Dongsheng

    2011-01-01

    Hypoxia-inducible factor (HIF) is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance. PMID:21814490

  8. Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation.

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2011-07-01

    Full Text Available Hypoxia-inducible factor (HIF is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance.

  9. The Neurospora crassa colonial temperature-sensitive 3 (cot-3) gene encodes protein elongation factor 2.

    Science.gov (United States)

    Propheta, O; Vierula, J; Toporowski, P; Gorovits, R; Yarden, O

    2001-02-01

    At elevated temperatures, the Neurospora crassa mutant colonial, temperature-sensitive 3 (cot-3) forms compact, highly branched colonies. Growth of the cot-3 strain under these conditions also results in the loss of the lower molecular weight (LMW) isoform of the Ser/Thr protein kinase encoded by the unlinked cot-1 gene, whose function is also involved in hyphal elongation. The unique cot-3 gene has been cloned by complementation and shown to encode translation elongation factor 2 (EF-2). As expected for a gene with a general role in protein synthesis, cot-3 mRNA is abundantly expressed throughout all asexual phases of the N. crassa life cycle. The molecular basis of the cot-3 mutation was determined to be an ATT to AAT transversion, which causes an Ile to Asn substitution at residue 278. Treatment with fusidic acid (a specific inhibitor of EF-2) inhibits hyphal elongation and induces hyperbranching in a manner which mimics the cot-3 phenotype, and also leads to a decrease in the abundance of the LMW isoform of COT1. This supports our conclusion that the mutation in cot-3 which results in abnormal hyphal elongation/branching impairs EF-2 function and confirms that the abundance of a LMW isoform of COT1 kinase is dependent on the function of this general translation factor.

  10. The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor.

    Science.gov (United States)

    Valdez, Benigno C; Henning, Dale; So, Rolando B; Dixon, Jill; Dixon, Michael J

    2004-07-20

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder characterized by an abnormality of craniofacial development that arises during early embryogenesis. TCS is caused by mutations in the gene TCOF1, which encodes the nucleolar phosphoprotein treacle. Even though the genetic alterations causing TCS have been uncovered, the mechanism underlying its pathogenesis and the function of treacle remain unknown. Here, we show that treacle is involved in ribosomal DNA gene transcription by interacting with upstream binding factor (UBF). Immunofluorescence labeling shows treacle and UBF colocalize to specific nucleolar organizer regions and cosegregate within nucleolar caps of actinomycin d-treated HeLa cells. Biochemical analysis shows the association of treacle and UBF with chromatin. Immunoprecipitation and the yeast two-hybrid system both suggest physical interaction of the two nucleolar phosphoproteins. Down-regulation of treacle expression using specific short interfering RNA results in inhibition of ribosomal DNA transcription and cell growth. A similar correlation is observed in Tcof(+/-) mouse embryos that exhibit craniofacial defects and growth retardation. Thus, treacle haploinsufficiency in TCS patients might result in abnormal development caused by inadequate ribosomal RNA production in the prefusion neural folds during the early stages of embryogenesis. The elucidation of a physiological function of treacle provides important information of relevance to the molecular dissection of the biochemical pathology of TCS.

  11. Differential Expression of Myogenic Regulatory Factor Genes in the Skeletal Muscles of Tambaqui Colossoma macropomum (Cuvier 1818) from Amazonian Black and Clear Water

    OpenAIRE

    Alves-Costa, F. A.; Barbosa, C. M.; Aguiar, R. C. M.; Mareco, E. A.; Dal-Pai-Silva, M.

    2013-01-01

    Hypothesizing that the Amazonian water system differences would affect the expression of muscle growth-related genes in juvenile tambaqui Colossoma macropomum (Cuvier 1818), this study aimed to analyze the morphometric data and expression of myogenic regulatory factors (MRFs) in the white and red muscle from tambaqui obtained from clear and black Amazonian water systems. All of the MRF transcript levels (myod, myf5, myogenin, and mrf4) were significantly lower in the red muscle from black wat...

  12. Transcriptional regulation of the Drosophila catalase gene by the DRE/DREF system

    OpenAIRE

    Park, So Young; Kim, Young-Shin; Yang, Dong-Jin; Yoo, Mi-Ae

    2004-01-01

    Reactive oxygen species (ROS) cause oxidative stress and aging. The catalase gene is a key component of the cellular antioxidant defense network. However, the molecular mechanisms that regulate catalase gene expression are poorly understood. In this study, we have identified a DNA replication-related element (DRE; 5′-TATCGATA) in the 5′-flanking region of the Drosophila catalase gene. Gel mobility shift assays revealed that a previously identified factor called DREF (DRE- binding factor) bind...

  13. The Composition and Spatial Patterns of Bacterial Virulence Factors and Antibiotic Resistance Genes in 19 Wastewater Treatment Plants.

    Science.gov (United States)

    Zhang, Bing; Xia, Yu; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong; Zhang, Yu

    2016-01-01

    Bacterial pathogenicity and antibiotic resistance are of concern for environmental safety and public health. Accumulating evidence suggests that wastewater treatment plants (WWTPs) are as an important sink and source of pathogens and antibiotic resistance genes (ARGs). Virulence genes (encoding virulence factors) are good indicators for bacterial pathogenic potentials. To achieve a comprehensive understanding of bacterial pathogenic potentials and antibiotic resistance in WWTPs, bacterial virulence genes and ARGs in 19 WWTPs covering a majority of latitudinal zones of China were surveyed by using GeoChip 4.2. A total of 1610 genes covering 13 virulence factors and 1903 genes belonging to 11 ARG families were detected respectively. The bacterial virulence genes exhibited significant spatial distribution patterns of a latitudinal biodiversity gradient and a distance-decay relationship across China. Moreover, virulence genes tended to coexist with ARGs as shown by their strongly positive associations. In addition, key environmental factors shaping the overall virulence gene structure were identified. This study profiles the occurrence, composition and distribution of virulence genes and ARGs in current WWTPs in China, and uncovers spatial patterns and important environmental variables shaping their structure, which may provide the basis for further studies of bacterial virulence factors and antibiotic resistance in WWTPs.

  14. Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors.

    Science.gov (United States)

    Dupuy, Bruno; Raffestin, Stéphanie; Matamouros, Susana; Mani, Nagraj; Popoff, Michel R; Sonenshein, Abraham L

    2006-05-01

    The production of major extracellular toxins by pathogenic strains of Clostridium botulinum, Clostridium tetani and Clostridium difficile, and a bacteriocin by Clostridium perfringens is dependent on a related group of RNA polymerase sigma-factors. These sigma-factors (BotR, TetR, TcdR and UviA) were shown to be sufficiently similar that they could substitute for one another in in vitro DNA binding and run-off transcription experiments. In cells, however, the sigma-factors fell into two subclasses. BotR and TetR were able to direct transcription of their target genes in a fully reciprocal manner. Similarly, UviA and TcdR were fully interchangeable. Neither BotR nor TetR could substitute for UviA or TcdR, however, and neither UviA nor TcdR could direct transcription of the natural targets of BotR or TetR. The extent of functional interchangeability of the sigma-factors was attributed to the strong conservation of their subregion 4.2 sequences and the conserved -35 sequences of their target promoters, while restrictions on interchangeability were attributed to variations in their subregion 2.4 sequences and the target site -10 sequences. The four sigma-factors have been assigned to group 5 of the sigma(70) family and seem to have arisen from a common ancestral protein that may have co-evolved with the genes whose transcription they direct. A fifth Clostridiumsigma-factor, sigma(Y) of Clostridium acetobutylicum, resembles the TcdR family, but was not functionally interchangeable with members of this family.

  15. Factors Affecting Successful Implementation of Hospital Information Systems.

    Science.gov (United States)

    Farzandipur, Mehrdad; Jeddi, Fatemeh Rangraz; Azimi, Esmaeil

    2016-02-01

    Today, the use of information systems in health environments, like any other fields, is necessary and organizational managers are convinced to use these systems. However, managers' satisfaction is not the only factor in successfully implementing these systems and failed information technology projects (IT) are reported despite the consent of the directors. Therefore, this study aims to determine the factors affecting the successful implementation of a hospital information system. The study was carried out as a descriptive method in 20 clinical hospitals that the hospital information system (HIS) was conducted in them. The clinical and paraclinical users of mentioned hospitals are the study group. 400 people were chosen as samples in scientific method and the data was collected using a questionnaire consisted of three main human, managerial and organizational, and technological factors, by questionnaire and interview. Then the data was scored in Likert scale (score of 1 to 5) and were analyzed using the SPSS software. About 75 percent of the population were female, with average work experience of 10 years and the mean age was 30 years. The human factors affecting the success of hospital information system implementation achieved the mean score of 3.5, both organizational and managerial factors 2.9 and technological factors the mean of 3. Human factors including computer skills, perceiving usefulness and perceiving the ease of a hospital information system use are more effective on the acceptance and successful implementation of hospital information systems; then the technological factors play a greater role. It is recommended that for the successful implementation of hospital information systems, most of these factors to be considered.

  16. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity.

    Directory of Open Access Journals (Sweden)

    Julia P Brandt

    Full Text Available Many animals possess neurons specialized for the detection of carbon dioxide (CO(2, which acts as a cue to elicit behavioral responses and is also an internally generated product of respiration that regulates animal physiology. In many organisms how such neurons detect CO(2 is poorly understood. We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2. The ETS-5 transcription factor is necessary for the specification of CO(2-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient to bypass a requirement for ets-5 in CO(2-detection and transforms neurons into CO(2-sensing neurons. Because ETS-5 and GCY-9 are members of gene families that are conserved between nematodes and vertebrates, a similar mechanism might act in the specification of CO(2-sensing neurons in other phyla.

  17. Irrepressible, truncated auxin response factors: natural roles and applications in dissecting auxin gene regulation pathways.

    Science.gov (United States)

    Ckurshumova, Wenzislava; Krogan, Naden T; Marcos, Danielle; Caragea, Adriana E; Berleth, Thomas

    2012-08-01

    The molecularly well-characterized auxin signal transduction pathway involves two evolutionarily conserved families interacting through their C-terminal domains III and IV: the Auxin Response Factors (ARFs) and their repressors the Aux/IAAs, to control auxin-responsive genes, among them genes involved in auxin transport. ( 1) (,) ( 2) We have developed a new genetic tool to study ARF function. Using MONOPTEROS (MP)/ARF5, we have generated a truncated version of MP (MPΔ), ( 3) which has lost the target domains for repression by Aux/IAA proteins. Besides exploring genetic interactions between MP and Aux/IAAs, we used this construct to trace MP's role in vascular patterning, a previously characterized auxin dependent process. ( 4) (,) ( 5) Here we summarize examples of naturally occurring truncated ARFs and summarize potential applications of truncated ARFs as analytical tools.

  18. Gene-specific factors determine mitotic expression and bookmarking via alternate regulatory elements.

    Science.gov (United States)

    Arampatzi, Panagiota; Gialitakis, Manolis; Makatounakis, Takis; Papamatheakis, Joseph

    2013-02-01

    Transcriptional silencing during mitosis is caused by inactivation of critical transcriptional regulators and/or chromatin condensation. Inheritance of gene expression patterns through cell division involves various bookmarking mechanisms. In this report, we have examined the mitotic and post-mitotic expression of the DRA major histocompatibility class II (MHCII) gene in different cell types. During mitosis the constitutively MHCII-expressing B lymphoblastoid cells showed sustained occupancy of the proximal promoter by the cognate enhanceosome and general transcription factors. In contrast, although mitotic epithelial cells were depleted of these proteins irrespectively of their MHCII transcriptional activity, a distal enhancer selectively recruited the PP2A phosphatase via NFY and maintained chromatin accessibility. Based on our data, we propose a novel chromatin anti-condensation role for this element in mitotic bookmarking and timing of post-mitotic transcriptional reactivation.

  19. Surveying the critical success factors of BPM-systems implementation.

    NARCIS (Netherlands)

    Ravesteyn, P.; Batenburg, R.

    2010-01-01

    Purpose – The purpose of this paper is to explore if there is a common ground for the definition of business process management (BPM) and BPM-systems, as well as the critical success factors (CSFs) for BPM-system implementation. A BPM-system implementation framework is validated that classifies the

  20. [Polymorphism of 5,10-methylenetetrahydropholate reductase, prothrombin, and coagulation factor V genes in young patients with ischemic stroke].

    Science.gov (United States)

    Dobrynina, L A; Kalashnikova, L A; Patrusheva, N L; Kovalenko, T F; Patrushev, L I

    2012-01-01

    The study included 142 patients (87 women, 55 men) (mean age 36.2 +/- 8.3 yr) after ischemic stroke caused by dissection of cerebral arteries (D) (n = 37), anti-phospholipid syndrome (APS) (n = 55) or cardiogenic embolism (CE) (n = 11). Stroke of unknown origin (cryptogenic) was diagnosed in 39 patients. Mutations of 5,10-methylenetetrahydropholate reductase (MTGPR), prothrombin, and coagulation factor V genes were documented by PCR in 38, 0, 3% of D cases, 55.9, 9, 13% of APS cases, 73, 9, 0 CE cases, 57, 5, 0% of cases with cryptogenic stroke compared with 43, 0, 0% in controls. Mutations in MTGPR gene in CE cases, prothrombin gene in APS and CE cases, coagulation factor V gene in APS cases occurred more frequently than in control (p p p V genes may enhance the thrombogenic potential in APS and CE patients. The role of MTGPR gene mutation in pathogenesis of cardiogenic stroke needs clarification.

  1. Transcriptional regulation of mouse PXR gene: an interplay of transregulatory factors.

    Directory of Open Access Journals (Sweden)

    Sangeeta Kumari

    Full Text Available Pregnane X Receptor (PXR is an important ligand-activated nuclear receptor functioning as a 'master regulator' of expression of phase I, phase II drug metabolizing enzymes, and members of the drug transporters. PXR is primarily expressed in hepatic tissues and to lesser extent in other non-hepatic tissues both in human and in mice. Although its expression profile is well studied but little is known about the regulatory mechanisms that govern PXR gene expression in these cells. In the present study, we have cloned and characterized over 5 kb (-4963 to +54 region lying upstream of mouse PXR transcription start site. Promoter-reporter assays revealed that the proximal promoter region of up to 1 kb is sufficient to support the expression of PXR in the mouse liver cell lines. It was evident that the 500 bp proximal promoter region contains active binding sites for Ets, Tcf, Ikarose and nuclear factor families of transcription factors. Electrophoretic mobility shift assays demonstrated that the minimal region of 134 bp PXR promoter was able to bind Ets-1 and β-catenin proteins. This result was further confirmed by chromatin immunoprecipitation analysis. In summary, the present study identified a promoter region of mouse PXR gene and the transregulatory factors responsible for PXR promoter activity. The results presented herein are expected to provide important cues to gain further insight into the regulatory mechanisms of PXR function.

  2. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    International Nuclear Information System (INIS)

    Yasmin, Tania; Takahashi-Yanaga, Fumi; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-01-01

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of β-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3β (GSK-3β) and inhibition of GSK-3β attenuated the DIF-1-induced β-catenin degradation, indicating the involvement of GSK-3β in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/β-catenin signaling, resulting in the suppression of cyclin D1 promoter activity

  3. Glucose availability is a decisive factor for Nrf2-mediated gene expression

    Directory of Open Access Journals (Sweden)

    Elke H. Heiss

    2013-01-01

    Full Text Available Activation of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2 is one of the major cellular defense lines against oxidative and xenobiotic stress, but also influences genes involved in lipid and glucose metabolism. It is unresolved whether the cytoprotective and metabolic responses mediated by Nrf2 are connected or separable events in non-malignant cells. In this study we show that activation of Nrf2, either by the small molecule sulforaphane or knockout of the Nrf2 inhibitor Keap1, leads to increased cellular glucose uptake and increased glucose addiction in fibroblasts. Upon Nrf2 activation glucose is preferentially metabolized through the pentose phosphate pathway with increased production of NADPH. Interference with the supply of glucose or the pentose phosphate pathway and NADPH generation not only hampers Nrf2-mediated detoxification of reactive oxygen species on the enzyme level but also Nrf2-initiated expression of antioxidant defense proteins, such as glutathione reductase and heme-oxygenase1. We conclude that the Nrf2-dependent protection against oxidative stress relies on an intact pentose phosphate pathway and that there is crosstalk between metabolism and detoxification already at the level of gene expression in mammalian cells.

  4. Microarray and synchronization of neuronal differentiation with pathway changes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) databank in nerve growth factor-treated PC12 cells.

    Science.gov (United States)

    Lin, Chih-Ming; Feng, Wayne

    2012-08-01

    The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database creates networks from interrelations between molecular biology and underlying chemical elements. This allows for analysis of biologic networks, genomic information, and higher-order functional information at a systems level. We performed microarray experiments and used the KEGG database, systems biology analysis, and annotation of pathway function to study nerve growth factor (NGF)-induced differentiation of PC12 cells. Cells were cultured to 70%-80% confluence, treated with NGF for 1 or 3 hours (h), and RNA was extracted. Stage 1 data analysis involved analysis of variance (ANOVA), and stage 2 involved cluster analysis and heat map generation. We identified 2020 NGF-induced PC12 genes (1038 at 1 h and 1554 at 3 h). Results showed changes in gene expression over time. We compared these genes with 6035 genes from the KEGG database. Cross-matching resulted in 830 genes. Among these, we identified 395 altered genes (155 at 1 h and 301 at 3 h; 2-fold increase from 1 h to 3 h). We identified 191 biologic pathways in the KEGG database; the top 15 showed correlations with neuronal differentiation (mitogen-activated protein kinase [MAPK] pathway: 35 genes at 1 h, 54 genes at 3 h; genes associated with axonal guidance: 12 at 1 h, 26 at 3 h; Wnt pathway: 16 at 1 h, 25 at 3 h; neurotrophin pathway: 4 at 1 h, 14 at 3 h). Thus, we identified changes in neuronal differentiation pathways with the KEGG database, which were synchronized with NGF-induced differentiation.

  5. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    LENUS (Irish Health Repository)

    Pangilinan, Faith

    2012-08-02

    AbstractBackgroundNeural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T) and MTHFD1 rs2236225 (R653Q)) have been found to increase NTD risk. We hypothesized that variants in additional folate\\/B12 pathway genes contribute to NTD risk.MethodsA tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate\\/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents), including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects.ResultsNearly 70 SNPs in 30 genes were found to be associated with NTDs at the p < 0.01 level. The ten strongest association signals (p-value range: 0.0003–0.0023) were found in nine genes (MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury)) and included the known NTD risk factor MTHFD1 R653Q (rs2236225). The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele). Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing.ConclusionsTo our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the

  6. Identification of novel target genes of nerve growth factor (NGF) in human mastocytoma cell line (HMC-1 (V560G c-Kit)) by transcriptome analysis.

    Science.gov (United States)

    Dutta, Priyanka; Koch, Alexandra; Breyer, Bjoern; Schneider, Heike; Dittrich-Breiholz, Oliver; Kracht, Michael; Tamura, Teruko

    2011-04-18

    Nerve growth factor (NGF) is a potent growth factor that plays a key role in neuronal cell differentiation and may also play a role in hematopoietic differentiation. It has been shown that NGF induced synergistic action for the colony formation of CD34 positive hematopoietic progenitor cells treated with macrophage-colony stimulating factor (M-CSF or CSF-1), or stem cell factor (SCF). However, the exact role of NGF in hematopoietic system is unclear. It is also not clear whether NGF mediated signals in hematopoietic cells are identical to those in neuronal cells. To study the signal transduction pathways induced by NGF treatment in hematopoietic cells, we utilized the mastocytoma cell line HMC-1(V560G c-Kit) which expresses the NGF receptor, tropomyosin-receptor-kinase (Trk)A, as well as the constitutively activated SCF receptor, V560G c-Kit, which can be inhibited completely by treatment with the potent tyrosine kinase inhibitor imatinib mesylate (imatinib). NGF rescues HMC-1(V560G c-Kit) cells from imatinib mediated cell death and promotes proliferation. To examine the NGF mediated proliferation and survival in these cells, we compared the NGF mediated upregulated genes (30 and 120 min after stimulation) to the downregulated genes by imatinib treatment (downregulation of c-Kit activity for 4 h) by transcriptome analysis. The following conclusions can be drawn from the microarray data: Firstly, gene expression profiling reveals 50% overlap of genes induced by NGF-TrkA with genes expressed downstream of V560G c-Kit. Secondly, NGF treatment does not enhance expression of genes involved in immune related functions that were down regulated by imatinib treatment. Thirdly, more than 55% of common upregulated genes are involved in cell proliferation and survival. Fourthly, we found Kruppel-like factor (KLF) 2 and Smad family member 7 (SMAD7) as the NGF mediated novel downstream genes in hematopoietic cells. Finally, the downregulation of KLF2 gene enhanced imatinib

  7. Factors that influence the relative use of multiple memory systems.

    Science.gov (United States)

    Packard, Mark G; Goodman, Jarid

    2013-11-01

    Neurobehavioral evidence supports the existence of at least two anatomically distinct "memory systems" in the mammalian brain that mediate dissociable types of learning and memory; a "cognitive" memory system dependent upon the hippocampus and a "stimulus-response/habit" memory system dependent upon the dorsolateral striatum. Several findings indicate that despite their anatomical and functional distinctiveness, hippocampal- and dorsolateral striatal-dependent memory systems may potentially interact and that, depending on the learning situation, this interaction may be cooperative or competitive. One approach to examining the neural mechanisms underlying these interactions is to consider how various factors influence the relative use of multiple memory systems. The present review examines several such factors, including information compatibility, temporal sequence of training, the visual sensory environment, reinforcement parameters, emotional arousal, and memory modulatory systems. Altering these parameters can lead to selective enhancements of either hippocampal-dependent or dorsolateral striatal-dependent memory, and bias animals toward the use of either cognitive or habit memory in dual-solution tasks that may be solved adequately with either memory system. In many learning situations, the influence of such experimental factors on the relative use of memory systems likely reflects a competitive interaction between the systems. Research examining how various factors influence the relative use of multiple memory systems may be a useful method for investigating how these systems interact with one another. Copyright © 2013 Wiley Periodicals, Inc.

  8. Application Progress of CRISPR/Cas9 System for Gene Editing in Tumor Research

    Directory of Open Access Journals (Sweden)

    Chao LIU

    2015-09-01

    Full Text Available TCRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-associated nuclease 9 gene editing system is a new type of gene editing technology developed based on the immune mechanism of archaea resisting the invasion of exogenous nucleic acid. Compared with traditional gene editing system, CRISPR/Cas9 system is more efficient, easier operating, and less cytotoxic. Currently, CRISPR/Cas9 gene editing technology has been applied to many aspects of cancer research, including research on cancer genes, constructing animal tumor models, screening tumor resistance-associated and phenotypic-related genes and cancer gene therapy. In this review, the application of the CRISPR/Cas9 system in tumor research were introduced.

  9. Analysis of inversions in the factor VIII gene in Spanish hemophilia A patients and families

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, M.; Tizzano, E.; Baiget, M. [Hospital de Sant Pau, Barcelona (Spain); Altisent, C. [Hospital Vall d`Hebron, Barcelona (Spain)

    1994-09-01

    Intron 22 is the largest intron of the factor VIII gene and contains a CpG island from which two additional transcripts originate. One of these transcripts corresponds to the F8A gene which have telomeric extragenic copies in the X chromosome. An inversion involving homologous recombination between the intragenic and the distal or proximal copies of the F8A gene has been recently described as a common cause of severe hemophilia A (HA). We analyzed intron 22 rearrangements in 195 HA patients (123 familial and 72 sporadic cases). According to factor VIII levels, our sample was classified as severe in 114 cases, moderate in 29 cases and mild in 52 cases. An intron 22 (F8A) probe was hybridized to Southern blots of BcII digested DNA obtained from peripheral blood. A clear pattern of altered bands identifies distal or proximal inversions. We detected an abnormal pattern identifying an inversion in 49 (25%) of the analyzed cases. 43% of severe HA patients (49 cases) showed an inversion. As expected, no inversion was found in the moderate and mild group of patients. We found a high proportion (78%) of the distal rearrangement. From 49 identified inversions, 33 were found in familial cases (27%), while the remaining 15 were detected in sporadic patients (22%) in support that this mutational event occurs with a similar frequency in familial or sporadic cases. In addition, we detected a significant tendency of distal inversion to occur more frequently in familial cases than in sporadic cases. Inhibitor development to factor VIII was documented in approximately 1/3 of the patients with inversion. The identification of such a frequent molecular event in severe hemophilia A patients has been applied in our families to carrier and prenatal diagnosis, to determine the origin of the mutation in the sporadic cases and to detect the presence of germinal mosaicism.

  10. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    International Nuclear Information System (INIS)

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-01-01

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic β-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  11. Analysis of factor VIII gene inversions in 164 unrelated hemophilia A families

    Energy Technology Data Exchange (ETDEWEB)

    Vnencak-Jones, L.; Phillips, J.A. III; Janco, R.L. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States)] [and others

    1994-09-01

    Hemophilia A is an X-linked recessive disease with variable phenotype and both heterogeneous and wide spread mutations in the factor VIII (F8) gene. As a result, diagnostic carrier or prenatal testing often relies upon laborious DNA linkage analysis. Recently, inversion mutations resulting from an intrachromosomal recombination between DNA sequences in one of two A genes {approximately}500 kb upstream from the F8 gene and a homologous A gene in intron 22 of the F8 gene were identified and found in 45% of severe hemophiliacs. We have analyzed banked DNA collected since 1986 from affected males or obligate carrier females representing 164 unrelated hemophilia A families. The disease was sporadic in 37%, familial in 54% and in 10% of families incomplete information was given. A unique deletion was identified in 1/164, a normal pattern was observed in 110/164 (67%), and 53/164 (32%) families had inversion mutations with 43/53 (81%) involving the distal A gene (R3 pattern) and 10/53 (19%) involving the proximal A gene (R2 pattern). While 19% of all rearrangements were R2, in 35 families with severe disease (< 1% VIII:C activity) all 16 rearrangements seen were R3. In 18 families with the R3 pattern and known activities, 16 (89%) had levels < 1%, with the remaining 2 families having {le} 2.4% activity. Further, 18 referrals specifically noted the production of inhibitors and 8/18 (45%) had the R3 pattern. Our findings demonstrate that the R3 inversion mutation patterns is (1) only seen with VIII:C activity levels of {le} 2.4%, (2) seen in 46% of families with severe hemophilia, (3) seen in 45% of hemophiliacs known to have inhibitors, (4) not correlated with sporadic or familial disease and (5) not in disequilibrium with the Bcl I or Taq I intron 18 or ST14 polymorphisms. Finally, in families positive for an inversion mutation, direct testing offers a highly accurate and less expensive alternative to DNA linkage analysis.

  12. Genetic Transformation of Transcription Factor (35S-oshox4 Gene into Rice Genome and Transformant Analysis of hpt Gene by PCR and Hygromycin Resistance Test

    Directory of Open Access Journals (Sweden)

    INEZ HORTENZE SLAMET-LOEDIN

    2009-04-01

    Full Text Available Global warming, climate change and crop extensification in marginal dryland areas are related to long dry season and water deficit. The water availability is an important factor in improving plant production. Application of drought tolerant rice cultivars is one of several options that might be used. Genetic engineering at the level of transcription factors is particularly promising strategy to develop drought tolerant rice varieties. Transcription factors regulate a wide range of target genes in which of them contribute to stress tolerance. HD Zip genes are transcription factor that potential in the adaptation of plants to some environment stresses including water deficit. HD-ZIP oshox4 (oryza sativa homeobox gene controlled by 35S promotor is inserted into pCAMBIA 1300 vector with hpt (hygromycin gene as a selectable marker. The aim of this research is to obtain transgenic rice plant from transformation with 35S-oshox4 plasmid, segregation analysis of marker gene (hpt by PCR method at T0 and T1 generation, and hygromycin resistance analysis of seeds. Recombinant plasmid was transformed into rice genome of IRAT 112 and rojolele cultivars using Agrobacterium tumefaciens. The results showed that transformation efficiency of IRAT 112 is 5.7-13.6% and 26-66,7% for rojolele. While regeneration efficiency for IRAT 112 is 4.7-43.7% and 23-44.1% for rojolele. The result of hygromycin resistance test at T1 seeds were obtained 14 lines cv. rojolele segregation Mendelian for hpt gene. The PCR analysis using specific primers for hpt gene at the parent (T0 from 14 lines showed that 7 lines contain the gene. At the second generation (T1, PCR analysis using hpt primers showed that 3 from 4 lines were followed Mendelian segregation pattern by the presence of specific band.

  13. A systemic gene silencing method suitable for high throughput, reverse genetic analyses of gene function in fern gametophytes

    Directory of Open Access Journals (Sweden)

    Tanurdzic Milos

    2004-04-01

    Full Text Available Abstract Background Ceratopteris richardii is a useful experimental system for studying gametophyte development and sexual reproduction in plants. However, few tools for cloning mutant genes or disrupting gene function exist for this species. The feasibility of systemic gene silencing as a reverse genetics tool was examined in this study. Results Several DNA constructs targeting a Ceratopteris protoporphyrin IX magnesium chelatase (CrChlI gene that is required for chlorophyll biosynthesis were each introduced into young gametophytes by biolistic delivery. Their transient expression in individual cells resulted in a colorless cell phenotype that affected most cells of the mature gametophyte, including the meristem and gametangia. The colorless phenotype was associated with a 7-fold decrease in the abundance of the endogenous transcript. While a construct designed to promote the transient expression of a CrChlI double stranded, potentially hairpin-forming RNA was found to be the most efficient in systemically silencing the endogenous gene, a plasmid containing the CrChlI cDNA insert alone was sufficient to induce silencing. Bombarded, colorless hermaphroditic gametophytes produced colorless embryos following self-fertilization, demonstrating that the silencing signal could be transmitted through gametogenesis and fertilization. Bombardment of young gametophytes with constructs targeting the Ceratopteris filamentous temperature sensitive (CrFtsZ and uroporphyrin dehydrogenase (CrUrod genes also produced the expected mutant phenotypes. Conclusion A method that induces the systemic silencing of target genes in the Ceratopteris gametophyte is described. It provides a simple, inexpensive and rapid means to test the functions of genes involved in gametophyte development, especially those involved in cellular processes common to all plants.

  14. Factors affecting consumer acceptance and use of child restraint systems

    Science.gov (United States)

    1982-01-01

    The causes of consumer satisfaction or dissatisfaction with child restraint systems were studied, and factors contributing to non-use and misuse were identified. Thirty-two families used several different child restraint models for extended periods, ...

  15. Nutrition, Physical Activity, and Obesity - Behavioral Risk Factor Surveillance System

    Data.gov (United States)

    U.S. Department of Health & Human Services — This dataset includes data on adult's diet, physical activity, and weight status from Behavioral Risk Factor Surveillance System. This data is used for DNPAO's Data,...

  16. The Composition and Spatial Patterns of Bacterial Virulence Factors and Antibiotic Resistance Genes in 19 Wastewater Treatment Plants

    OpenAIRE

    Zhang, Bing; Xia, Yu; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong; Zhang, Yu

    2016-01-01

    Bacterial pathogenicity and antibiotic resistance are of concern for environmental safety and public health. Accumulating evidence suggests that wastewater treatment plants (WWTPs) are as an important sink and source of pathogens and antibiotic resistance genes (ARGs). Virulence genes (encoding virulence factors) are good indicators for bacterial pathogenic potentials. To achieve a comprehensive understanding of bacterial pathogenic potentials and antibiotic resistance in WWTPs, bacterial vir...

  17. Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits

    NARCIS (Netherlands)

    Carbone, F.; Preuss, A.; Vos, de C.H.; Amico, d' E.; Perrotta, G.; Bovy, A.G.; Martens, S.; Rosati, C.

    2009-01-01

    The influence of internal (genetic and developmental) and external (environmental) factors on levels of flavonoid gene transcripts, enzyme activity and metabolites was studied in fruit of six cultivated strawberry (Fragaria × ananassa Duch.) genotypes grown at two Italian locations. Gene expression

  18. Tagging target genes of the mat1-2-1 transcription factor in Fusarium verticillioides (Gibberella fujikuroi MP-A)

    NARCIS (Netherlands)

    Keszthelyi, A.; Jeney, A.; Kerenyi, Z.; Mendes, O.; Waalwijk, C.; Hornok, L.

    2007-01-01

    Mating type in filamentous ascomycetes is controlled by idiomorphic alleles, named MAT1-1 and MAT1-2, which contain 1-3 genes. Of these genes MAT1-1-1 and MAT1-2-1 encode putative transcription factors and are thus considered to be the major regulators of sexual communication and mating. Fungi with

  19. Porcine models for the study of local and systemic regulation of innate immune factors in obesity

    DEFF Research Database (Denmark)

    Højbøge, Tina Rødgaard

    state of low-grade inflammation in the adipose tissues, which involves several factors of the innate immune response having a range of systemic effects and which has been implicated in the development of the metabolic syndrome. To investigate the impact of obesity and obesity-related diseases good...... translational animal models are needed, and as such pigs have been proposed as relevant models for human obesity-induced inflammation as pigs share many genetic, anatomical and physiological features with humans. In this project the up- and downregulation of genes and proteins involved in the innate immune...... enzyme-linked immunosorbent assays (ELISAs) were used on the blood. In the clones, both cloning and obesity changed the response of the innate immune genes in the tissues and in the blood, as fewer genes were differentially regulated in the clones and in the obese, than in the controls and lean pigs...

  20. Factorization approach to superintegrable systems: Formalism and applications

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Á., E-mail: angelb@ubu.es; Herranz, F. J., E-mail: fjherranz@ubu.es [Universidad de Burgos, Departamento de Física (Spain); Kuru, Ş., E-mail: kuru@science.ankara.edu.tr [Ankara University, Department of Physics, Faculty of Science (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Universidad de Valladolid, Departamento de Física Teórica, Atómica y Óptica (Spain)

    2017-03-15

    The factorization technique for superintegrable Hamiltonian systems is revisited and applied in order to obtain additional (higher-order) constants of the motion. In particular, the factorization approach to the classical anisotropic oscillator on the Euclidean plane is reviewed, and new classical (super) integrable anisotropic oscillators on the sphere are constructed. The Tremblay–Turbiner–Winternitz system on the Euclidean plane is also studied from this viewpoint.

  1. Lipid peroxidation, oxidative stress genes and dietary factors in breast cancer protection: a hypothesis.

    Science.gov (United States)

    Gago-Dominguez, Manuela; Jiang, Xuejuan; Castelao, J Esteban

    2007-01-01

    We have recently proposed that lipid peroxidation may be a common mechanistic pathway by which obesity and hypertension lead to increased renal cell cancer risk. During this exercise, we noted a risk factor swap between breast and kidney cancer (oophorectomy and increased parity, detrimental for kidney, beneficial for breast; high blood pressure, detrimental for kidney, beneficial for breast when it occurs during pregnancy; alcohol, beneficial for kidney, detrimental for breast, and so on). We have subsequently proposed the hypothesis that lipid peroxidation represents a protective mechanism in breast cancer, and reviewed the evidence of the role of lipid peroxidation on established hormonal and non-hormonal factors for breast cancer. Here, we review the evidence in support of lipid peroxidation playing a role in the relationships between dietary factors and breast cancer. Available evidence implicates increased lipid peroxidation products in the anti-carcinogenic effect of suspected protective factors for breast cancer, including soy, marine n-3 fatty acids, green tea, isothiocyanates, and vitamin D and calcium. We also review the epidemiological evidence supporting a modifying effect of oxidative stress genes in dietary factor-breast cancer relationships.

  2. SNP analyses of growth factor genes EGF, TGFβ-1, and HGF reveal haplotypic association of EGF with autism

    International Nuclear Information System (INIS)

    Toyoda, Takao; Nakamura, Kazuhiko; Yamada, Kazuo; Thanseem, Ismail; Anitha, Ayyappan; Suda, Shiro; Tsujii, Masatsugu; Iwayama, Yoshimi; Hattori, Eiji; Toyota, Tomoko; Miyachi, Taishi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Kawai, Masayoshi; Sekine, Yoshimoto; Tsuchiya, Kenji; Sugihara, Gen-ichi; Ouchi, Yasuomi; Sugiyama, Toshiro; Takei, Nori; Yoshikawa, Takeo; Mori, Norio

    2007-01-01

    Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. Growth factors have been found to play a key role in the cellular differentiation and proliferation of the central and peripheral nervous systems. Epidermal growth factor (EGF) is detected in several regions of the developing and adult brain, where, it enhances the differentiation, maturation, and survival of a variety of neurons. Transforming growth factor-β (TGFβ) isoforms play an important role in neuronal survival, and the hepatocyte growth factor (HGF) has been shown to exhibit neurotrophic activity. We examined the association of EGF, TGFβ1, and HGF genes with autism, in a trio association study, using DNA samples from families recruited to the Autism Genetic Resource Exchange; 252 trios with a male offspring scored for autism were selected for the study. Transmission disequilibrium test revealed significant haplotypic association of EGF with autism. No significant SNP or haplotypic associations were observed for TGFβ1 or HGF. Given the role of EGF in brain and neuronal development, we suggest a possible role of EGF in the pathogenesis of autism

  3. Systems competing for mobile factors: decision making based on hard vs. soft locational factors

    Directory of Open Access Journals (Sweden)

    Clodnițchi Roxana

    2017-12-01

    Full Text Available The paper explores the links between capital relocation and soft locational factors addressing the quality of the business environment and the quality of life within the European Union. System competition is viewed as a competition between countries for the mobile factors capital and labour. The issue of systems competition is topical and insufficiently explored by contemporary literature. The scarcity of scientific papers describing the links between system competition theories and contemporary corporate geography theories, especially of the ones including the analysis of soft location factors, is a challenging aspect, which motivates the choice of this subject. This paper’s primary aim is to deliver an overview of the basic corporate geography conceptions, stressing the importance of soft location factors in today’s competition between systems for the mobile factors capital and labour. The paper further contains an analysis of the correlations between indicators regarding the institutional design of countries as developed by the World Bank (Ease of Doing Business, the Happiness Scale and the latest available data of FDI Stocks for the EU countries (2016. The relevance of such a study is based on the evidence that the contemporary business education relies on an extensive knowledge of the business environment. In the circumstance of similar infrastructural conditions, the main difference between locations is made by soft location factors. Since developed economies are characterised by a high degree of ubiquity of soft factors, the paper concludes that developing and emerging economies should foster the development of their soft location factors.

  4. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.

    Science.gov (United States)

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H

    2017-01-09

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Platelet-derived growth factor receptors (PDGFRs) fusion genes involvement in hematological malignancies.

    Science.gov (United States)

    Appiah-Kubi, Kwaku; Lan, Ting; Wang, Ying; Qian, Hai; Wu, Min; Yao, Xiaoyuan; Wu, Yan; Chen, Yongchang

    2017-01-01

    To investigate oncogenic platelet-derived growth factor receptor(PDGFR) fusion genes involvement in hematological malignancies, the advances in the PDGFR fusion genes diagnosis and development of PDGFR fusions inhibitors. Literature search was done using terms "PDGFR and Fusion" or "PDGFR and Myeloid neoplasm" or 'PDGFR and Lymphoid neoplasm' or "PDGFR Fusion Diagnosis" or "PDGFR Fusion Targets" in databases including PubMed, ASCO.org, and Medscape. Out of the 36 fusions detected, ETV6(TEL)-PDGFRB and FIP1L1-PDGFRA fusions were frequently detected, 33 are as a result of chromosomal translocation, FIP1L1-PDGFRA and EBF1-PDGFRB are the result of chromosomal deletion and CDK5RAP2- PDGFRΑ is the result of chromosomal insertion. Seven of the 34 rare fusions have detectable reciprocals. RNA aptamers are promising therapeutic target of PDGFRs and diagnostic tools of PDGFRs fusion genes. Also, PDGFRs have variable prospective therapeutic strategies including small molecules, RNA aptamers, and interference therapeutics as well as development of adaptor protein Lnk mimetic drugs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian

    2010-07-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  7. Association of transforming growth-factor alpha gene polymorphisms with nonsyndromic cleft palate only (CPO)

    Energy Technology Data Exchange (ETDEWEB)

    Shiang, R. (Univ. of California, Irvine, CA (United States)); Lidral, A.C.; Ardinger, H.H.; Murray, J.C.; Romitti, P.A.; Munger, R.G.; Buetow, K.H.

    1993-10-01

    Genetic analysis and tissue-specific expression studies support a role for transforming growth-factor alpha (TGFA) in craniofacial development. Previous studies have confirmed an association of alleles for TGFA with nonsyndromic cleft lip with or without cleft palate (CL/P) in humans. The authors carried out a retrospective association study to determine whether specific allelic variants of the TGFA gene are also associated with cleft palate only (CPO). The PCR products from 12 overlapping sets of primers to the TGFA cDNA were examined by using single-strand conformational polymorphism analysis. Four DNA polymorphic sites for TGFA were identified in the 3[prime] untranslated region of the TGFA gene. These variants, as well as previously identified RFLPs for TGFA, were characterized in case and control populations for CPO by using X[sup 2] analysis. A significant association between alleles of TGFA and CPO was identified which further supports a role for this gene as one of the genetic determinants of craniofacial development. Sequence analysis of the variants disclosed a cluster of three variable sites within 30 bp of each other in the 3[prime] untranslated region previously associated with an antisense transcript. These studies extend the role for TGFA in craniofacial morphogenesis and support an interrelated mechanism underlying nonsyndromic forms of CL/P. 46 refs., 3 figs., 3 tabs.

  8. Association of interleukin 10 and transforming growth factor β gene polymorphisms with chronic idiopathic urticaria.

    Science.gov (United States)

    Tavakol, Marzieh; Movahedi, Masoud; Amirzargar, Ali Akbar; Aryan, Zahra; Bidoki, Alireza Zare; Heidari, Kimia; Soltani, Samaneh; Gharagozlou, Mohammad; Aghamohammadi, Asghar; Nabavi, Mohammad; Nasiri, Rasoul; Ahmadvand, Alireza; Rezaei, Nima

    2014-01-01

    Transforming growth factor β (TGF-β) and interleukin 10 (IL-10) are two anti-inflammatory cytokines that are implicated in the pathogenesis of urticaria. The goal of this study was to examine the possible association of polymorphisms of TGF-β and IL-10 genes with susceptibility to chronic idiopathic urticaria (CIU). This study was conducted on 90 patients with CIU. Polymerase chain reaction (PCR) was done to determine the genotype at 5 polymorphic sites; TGF-β (codon10C/T and codon25G/C) and IL-10 (-1082G/A, -819C/T, and -592C/A). The C allele at codon 25 of TGF-β was more prevalent in CIU patients compared to controls (OR = 9.5, 95% CI = 5.4-16.8, P<0.001). Genotypes of CT and CG at 10 and 25 codons of TGF-β gene, respectively, and AG, CT, and CA for loci of -1082, -819, and -592 of IL-10 gene were significantly higher in CIU patients (P<0.001). In haplotype analysis, frequency of TGF-β haplotypes differed between patients with CIU and controls; CC haplotype was overrepresented, while CG and TG haplotypes were underrepresented (P<0.001). These results suggest that TGF-β and IL-10 genetic variability could contribute to susceptibility to CIU. Additionally, patients with CIU seem to have genotypes leading to high production of TGF-β and IL-10.

  9. Involvement of Fibroblast Growth Factor Receptor Genes in Benign Prostate Hyperplasia in a Korean Population

    Directory of Open Access Journals (Sweden)

    Hae Jeong Park

    2013-01-01

    Full Text Available Fibroblast growth factors (FGFs and their receptors (FGFRs have been implicated in prostate growth and are overexpressed in benign prostatic hyperplasia (BPH. In this study, we investigated whether single nucleotide polymorphisms (SNPs of the FGFR genes (FGFR1 and FGFR2 were associated with BPH and its clinical phenotypes in a population of Korean men. We genotyped four SNPs in the exons of FGFR1 and FGFR2 (rs13317 in FGFR1; rs755793, rs1047100, and rs3135831 in FGFR2 using direct sequencing in 218 BPH patients and 213 control subjects. No SNPs of FGFR1 or FGFR2 genes were associated with BPH. However, analysis according to clinical phenotypes showed that rs1047100 of FGFR2 was associated with prostate volume in BPH in the dominant model (GA/AA versus GG, P = 0.010. In addition, a significant association was observed between rs13317 of FGFR1 and international prostate symptom score (IPSS in the additive (TC versus CC versus TT, P = 0.0022 and dominant models (TC/CC versus TT, P = 0.005. Allele frequency analysis also showed significant association between rs13317 and IPSS (P = 0.005. These results suggested that FGFR genes could be related to progression of BPH.

  10. Association between leukaemia inhibitory factor gene polymorphism and pregnancy outcomes after assisted reproduction techniques.

    Science.gov (United States)

    Oliveira, Joao Batista A; Vagnini, Laura D; Petersen, Claudia G; Renzi, Adriana; Oliveira-Pelegrin, Gabriela R; Mauri, Ana L; Ricci, Juliana; Massaro, Fabiana C; Dieamant, Felipe; Cavagna, Mario; Baruffi, Ricardo L R; Franco, Jose G

    2016-01-01

    Certain gene polymorphisms are associated with implantation failure and pregnancy loss. Studies of leukaemia inhibitory factor (LIF) gene polymorphisms are scarce. The LIF single nucleotide polymorphism (SNP) thymine (T)/guanine (G) (rs929271) was studied in women to determine whether an association existed with pregnancy outcomes after intracytoplasmic sperm injection (ICSI); 411 women who underwent ICSI were recruited. DNA was extracted from the peripheral blood, and the LIF gene SNP T/G (rs929271) was genotyped using real-time polymerase chain reaction. Participants were divided into three groups according to their LIF genotype: T/T (n = 168), T/G (n = 202) and G/G (n = 41). All IVF and ICSI procedures were carried out under the same clinical and laboratory conditions. The ICSI cumulative results (from fresh plus frozen cycles) of each genotype group were analysed. The G/G genotype in women was associated with a higher implantation rate (T/T: 15.9%, T/G: 16.2%, G/G: 27.0%; P Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  11. Evidence of associations between brain-derived neurotrophic factor (BDNF serum levels and gene polymorphisms with tinnitus

    Directory of Open Access Journals (Sweden)

    Aysun Coskunoglu

    2017-01-01

    Full Text Available Background: Brain-derived neurotrophic factor (BDNF gene polymorphisms are associated with abnormalities in regulation of BDNF secretion. Studies also linked BDNF polymorphisms with changes in brainstem auditory-evoked response test results. Furthermore, BDNF levels are reduced in tinnitus, psychiatric disorders, depression, dysthymic disorder that may be associated with stress, conversion disorder, and suicide attempts due to crises of life. For this purpose, we investigated whether there is any role of BDNF changes in the pathophysiology of tinnitus. Materials and Methods: In this study, we examined the possible effects of BDNF variants in individuals diagnosed with tinnitus for more than 3 months. Fifty-two tinnitus subjects between the ages of 18 and 55, and 42 years healthy control subjects in the same age group, who were free of any otorhinolaryngology and systemic disease, were selected for examination. The intensity of tinnitus and depression was measured using the tinnitus handicap inventory, and the differential diagnosis of psychiatric diagnoses made using the Structured Clinical Interview for Fourth Edition of Mental Disorders. BDNF gene polymorphism was analyzed in the genomic deoxyribonucleic acid (DNA samples extracted from the venous blood, and the serum levels of BDNF were measured. One-way analysis of variance and Chi-squared tests were applied. Results: Serum BDNF level was found lower in the tinnitus patients than controls, and it appeared that there is no correlation between BDNF gene polymorphism and tinnitus. Conclusions: This study suggests neurotrophic factors such as BDNF may have a role in tinnitus etiology. Future studies with larger sample size may be required to further confirm our results.

  12. ICESag37, a Novel Integrative and Conjugative Element Carrying Antimicrobial Resistance Genes and Potential Virulence Factors in Streptococcus agalactiae

    Directory of Open Access Journals (Sweden)

    Kaixin Zhou

    2017-10-01

    Full Text Available ICESag37, a novel integrative and conjugative element carrying multidrug resistance and potential virulence factors, was characterized in a clinical isolate of Streptococcus agalactiae. Two clinical strains of S. agalactiae, Sag37 and Sag158, were isolated from blood samples of new-borns with bacteremia. Sag37 was highly resistant to erythromycin and tetracycline, and susceptible to levofloxacin and penicillin, while Sag158 was resistant to tetracycline and levofloxacin, and susceptible to erythromycin. Transfer experiments were performed and selection was carried out with suitable antibiotic concentrations. Through mating experiments, the erythromycin resistance gene was found to be transferable from Sag37 to Sag158. SmaI-PFGE revealed a new SmaI fragment, confirming the transfer of the fragment containing the erythromycin resistance gene. Whole genome sequencing and sequence analysis revealed a mobile element, ICESag37, which was characterized using several molecular methods and in silico analyses. ICESag37 was excised to generate a covalent circular intermediate, which was transferable to S. agalactiae. Inverse PCR was performed to detect the circular form. A serine family integrase mediated its chromosomal integration into rumA, which is a known hotspot for the integration of streptococcal ICEs. The integration site was confirmed using PCR. ICESag37 carried genes for resistance to multiple antibiotics, including erythromycin [erm(B], tetracycline [tet(O], and aminoglycosides [aadE, aphA, and ant(6]. Potential virulence factors, including a two-component signal transduction system (nisK/nisR, were also observed in ICESag37. S1-PFGE analysis ruled out the existence of plasmids. ICESag37 is the first ICESa2603 family-like element identified in S. agalactiae carrying both resistance and potential virulence determinants. It might act as a vehicle for the dissemination of multidrug resistance and pathogenicity among S. agalactiae.

  13. ICESag37, a Novel Integrative and Conjugative Element Carrying Antimicrobial Resistance Genes and Potential Virulence Factors in Streptococcus agalactiae

    Science.gov (United States)

    Zhou, Kaixin; Xie, Lianyan; Han, Lizhong; Guo, Xiaokui; Wang, Yong; Sun, Jingyong

    2017-01-01

    ICESag37, a novel integrative and conjugative element carrying multidrug resistance and potential virulence factors, was characterized in a clinical isolate of Streptococcus agalactiae. Two clinical strains of S. agalactiae, Sag37 and Sag158, were isolated from blood samples of new-borns with bacteremia. Sag37 was highly resistant to erythromycin and tetracycline, and susceptible to levofloxacin and penicillin, while Sag158 was resistant to tetracycline and levofloxacin, and susceptible to erythromycin. Transfer experiments were performed and selection was carried out with suitable antibiotic concentrations. Through mating experiments, the erythromycin resistance gene was found to be transferable from Sag37 to Sag158. SmaI-PFGE revealed a new SmaI fragment, confirming the transfer of the fragment containing the erythromycin resistance gene. Whole genome sequencing and sequence analysis revealed a mobile element, ICESag37, which was characterized using several molecular methods and in silico analyses. ICESag37 was excised to generate a covalent circular intermediate, which was transferable to S. agalactiae. Inverse PCR was performed to detect the circular form. A serine family integrase mediated its chromosomal integration into rumA, which is a known hotspot for the integration of streptococcal ICEs. The integration site was confirmed using PCR. ICESag37 carried genes for resistance to multiple antibiotics, including erythromycin [erm(B)], tetracycline [tet(O)], and aminoglycosides [aadE, aphA, and ant(6)]. Potential virulence factors, including a two-component signal transduction system (nisK/nisR), were also observed in ICESag37. S1-PFGE analysis ruled out the existence of plasmids. ICESag37 is the first ICESa2603 family-like element identified in S. agalactiae carrying both resistance and potential virulence determinants. It might act as a vehicle for the dissemination of multidrug resistance and pathogenicity among S. agalactiae. PMID:29051752

  14. Association of fat mass and obesity-associated gene variant with lifestyle factors and body fat in Indian Children

    Directory of Open Access Journals (Sweden)

    Lavanya S Parthasarthy

    2017-01-01

    Full Text Available Context: Common intronic variants of the fat mass and obesity-associated (FTO gene have been associated with obesity-related traits in humans. Aims: (1 The aim of this study is to study the distribution of FTO gene variants across different body mass index (BMI categories and (2 to explore the association between FTO gene variants and lifestyle factors in obese and normal weight Indian children. Subjects and Methods: Fifty-six children (26 boys, mean age 10.3 ± 2.2 years were studied. Height, weight, and waist and hip circumference were measured. Physical activity (questionnaire and food intake (food frequency questionnaire were assessed. Body fat percentage (%BF was measured by dual-energy X-ray absorptiometry. FTO allelic variants at rs9939609 site were detected by SYBR Green Amplification Refractory Mutation System real-time polymerase chain reaction using allele-specific primers. Generalized linear model was used to investigate the simultaneous influence of genetic and lifestyle factors on %BF. Results: Mean height, weight, and BMI of normal and obese children were 130.6 ± 7.1 versus 143.2 ± 15.6, 24.0 ± 5.2 versus 53.1 ± 15.8, and 13.9 ± 2.1 versus 25.3 ± 3.2, respectively. The frequency of AA allele was 57% among obese children and 35% in normal weight children. Children with the AA allele who were obese had least physical activity, whereas children with AT allele and obesity had the highest intake of calories when compared to children who had AT allele and were normal. %BF was positively associated with AA alleles and junk food intake and negatively with healthy food intake and moderate physical activity. Conclusions: Healthy lifestyle with high physical activity and diet low in calories and fat may help in modifying the risk imposed by FTO variants in children.

  15. The F7 gene and clotting factor VII levels: dissection of a human quantitative trait locus.

    Science.gov (United States)

    Soria, Jose Manuel; Almasy, Laura; Souto, Juan Carlos; Sabater-Lleal, Maria; Fontcuberta, Jordi; Blangero, John

    2005-10-01

    Localization of human quantitative trait loci (QTLs) is now routine. However, identifying their functional DNA variants is still a formidable challenge. We present a complete dissection of a human QTL using novel statistical techniques to infer the most likely functional polymorphisms of a QTL that influence plasma levels of clotting factor VII (FVII), a risk factor for cardiovascular disease. Resequencing of 15 kb in and around the F7 gene identified 49 polymorphisms, which were then genotyped in 398 people. Using a Bayesian quantitative trait nucleotide (BQTN) method, we identified four to seven functional variants that completely account for this QTL. These variants include both rare coding variants and more common, potentially regulatory polymorphisms in intronic and promoter regions.

  16. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF gene as a potent diagnostic biomarker in major depression.

    Directory of Open Access Journals (Sweden)

    Manabu Fuchikami

    Full Text Available Major depression, because of its recurring and life-threatening nature, is one of the top 10 diseases for global disease burden. Major depression is still diagnosed on the basis of clinical symptoms in patients. The search for specific biological markers is of great importance to advance the method of diagnosis for depression. We examined the methylation profile of 2 CpG islands (I and IV at the promoters of the brain-derived neurotrophic factor (BDNF gene, which is well known to be involved in the pathophysiology of depression. We analyzed genomic DNA from peripheral blood of 20 Japanese patients with major depression and 18 healthy controls to identify an appropriate epigenetic biomarker to aid in the establishment of an objective system for the diagnosis of depression. Methylation rates at each CpG unit was measured using a MassArray® system (SEQUENOM, and 2-dimensional hierarchical clustering analyses were undertaken to determine the validity of these methylation profiles as a diagnostic biomarker. Analyses of the dendrogram from methylation profiles of CpG I, but not IV, demonstrated that classification of healthy controls and patients at the first branch completely matched the clinical diagnosis. Despite the small number of subjects, our results indicate that classification based on the DNA methylation profiles of CpG I of the BDNF gene may be a valuable diagnostic biomarker for major depression.

  17. Insulin-Like Growth Factor-1 Inscribes a Gene Expression Profile for Angiogenic Factors and Cancer Progression in Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    J.S. Oh

    2002-01-01

    Full Text Available Activation of the insulin-like growth factor-1 receptor (IGF-11R by IGF-1 is associated with the risk and progression of many types of cancer, although despite this it remains unclear how activated IGF-1 R contributes to cancer progression. In this study, gene expression changes elicited by IGF-1 were profiled in breast epithelial cells. We noted that many genes are functionally linked to cancer progression and angiogenesis. To validate some of the changes observed, the RNA and/or protein was confirmed for c-fos, cytochrome P4501Al, cytochrome P450 1131, interleukin-1 beta, fas ligand, vascular endothelial growth factor, and urokinase plasminogen activator. Nuclear proteins were also temporally monitored to address how gene expression changes were regulated. We found that IGF-1 stimulated the nuclear translocation of phosphorylated AKT, hypoxic-inducible factor-1 alpha, and phosphorylated cAMP-responsive element-binding protein, which correlated with temporal changes in gene expression. Next, the promoter regions of IGF-1-regulated genes were searched in silico. The promoters of genes that clustered together had similar regulatory regions. In summary, IGF-1 inscribes a gene expression profile relevant to cancer progression, and this study provides insight into the mechanism(s whereby some of these changes occur.

  18. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gutiérrez Rodrigo A

    2008-09-01

    Full Text Available Abstract Background Microarray technology is a widely used approach for monitoring genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray hybridizations representing many different experimental conditions on Affymetrix™ ATH1 gene chips alone. This huge amount of data offers a unique opportunity to infer the principles that govern the regulation of gene expression in plants. Results We used bioinformatics methods to analyze publicly available data obtained using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were normalized and filtered to eliminate low-quality hybridizations. We classified and compared control and treatment hybridizations and determined differential gene expression. The largest differences in gene expression were observed when comparing samples obtained from different organs. On average, ten-fold more genes were differentially expressed between organs as compared to any other experimental variable. We defined "gene responsiveness" as the number of comparisons in which a gene changed its expression significantly. We defined genes with the highest and lowest responsiveness levels as hypervariable and housekeeping genes, respectively. Remarkably, housekeeping genes were best distinguished from hypervariable genes by differences in methylation status in their transcribed regions. Moreover, methylation in the transcribed region was inversely correlated (R2 = 0.8 with gene responsiveness on a genome-wide scale. We provide an example of this negative relationship using genes encoding TCA cycle enzymes, by contrasting their regulatory responsiveness to nitrate and methylation status in their transcribed regions. Conclusion Our results indicate that the Arabidopsis transcriptome is largely established during development and is comparatively stable when faced with external perturbations. We suggest a novel functional role for DNA methylation in the transcribed region as a key determinant

  19. Expression of the lysostaphin gene of Staphylococcus simulans in a eukaryotic system.

    OpenAIRE

    Williamson, C M; Bramley, A J; Lax, A J

    1994-01-01

    The lysostaphin gene of Staphylococcus simulans was cloned into Escherichia coli. The 5' end of the gene was modified to include a eukaryotic start codon, the Kozak expression start site consensus sequence, and an enzyme site to facilitate manipulation of the gene. Transcription of the modified gene in vitro yielded an RNA transcript which, when added to a rabbit reticulocyte cell-free translation system, directed the synthesis of several products. The largest product, migrating at approximat...

  20. Differential Expression of Myogenic Regulatory Factor Genes in the Skeletal Muscles of Tambaqui Colossoma macropomum (Cuvier 1818) from Amazonian Black and Clear Water.

    Science.gov (United States)

    Alves-Costa, F A; Barbosa, C M; Aguiar, R C M; Mareco, E A; Dal-Pai-Silva, M

    2013-01-01

    Hypothesizing that the Amazonian water system differences would affect the expression of muscle growth-related genes in juvenile tambaqui Colossoma macropomum (Cuvier 1818), this study aimed to analyze the morphometric data and expression of myogenic regulatory factors (MRFs) in the white and red muscle from tambaqui obtained from clear and black Amazonian water systems. All of the MRF transcript levels (myod, myf5, myogenin, and mrf4) were significantly lower in the red muscle from black water fish in comparison to clear water fish. However, in white muscle, only the myod transcript level was significantly decreased in the black water tambaqui. The changes in MRFs gene expression in muscle fibers of tambaqui from black water system provide relevant information about the environmental influence as that of water systems on gene expression of muscle growth related genes in the C. macropomum. Our results showed that the physical and chemical water characteristics change the expression of genes that promote muscle growth, and these results may be also widely applicable to future projects that aim to enhance muscle growth in fish that are of substantial interest to the aquaculture.

  1. Differential Expression of Myogenic Regulatory Factor Genes in the Skeletal Muscles of Tambaqui Colossoma macropomum (Cuvier 1818 from Amazonian Black and Clear Water

    Directory of Open Access Journals (Sweden)

    F. A. Alves-Costa

    2013-01-01

    Full Text Available Hypothesizing that the Amazonian water system differences would affect the expression of muscle growth-related genes in juvenile tambaqui Colossoma macropomum (Cuvier 1818, this study aimed to analyze the morphometric data and expression of myogenic regulatory factors (MRFs in the white and red muscle from tambaqui obtained from clear and black Amazonian water systems. All of the MRF transcript levels (myod, myf5, myogenin, and mrf4 were significantly lower in the red muscle from black water fish in comparison to clear water fish. However, in white muscle, only the myod transcript level was significantly decreased in the black water tambaqui. The changes in MRFs gene expression in muscle fibers of tambaqui from black water system provide relevant information about the environmental influence as that of water systems on gene expression of muscle growth related genes in the C. macropomum. Our results showed that the physical and chemical water characteristics change the expression of genes that promote muscle growth, and these results may be also widely applicable to future projects that aim to enhance muscle growth in fish that are of substantial interest to the aquaculture.

  2. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    Directory of Open Access Journals (Sweden)

    Feixiong Cheng

    2016-09-01

    Full Text Available Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase. Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline that may be potential for antiviral indication (e.g. anti-Ebola. In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  3. Elongation Factor-Tu (EF-Tu) proteins structural stability and bioinformatics in ancestral gene reconstruction

    Science.gov (United States)

    Dehipawala, Sunil; Nguyen, A.; Tremberger, G.; Cheung, E.; Schneider, P.; Lieberman, D.; Holden, T.; Cheung, T.

    2013-09-01

    A paleo-experimental evolution report on elongation factor EF-Tu structural stability results has provided an opportunity to rewind the tape of life using the ancestral protein sequence reconstruction modeling approach; consistent with the book of life dogma in current biology and being an important component in the astrobiology community. Fractal dimension via the Higuchi fractal method and Shannon entropy of the DNA sequence classification could be used in a diagram that serves as a simple summary. Results from biomedical gene research provide examples on the diagram methodology. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, DLG1 in cognitive skill, and HLA-C in mosquito bite immunology with EF Tu DNA sequences have accounted for the reported circular dichroism thermo-stability data systematically; the results also infer a relatively less volatility geologic time period from 2 to 3 Gyr from adaptation viewpoint. Comparison to Thermotoga maritima MSB8 and Psychrobacter shows that Thermus thermophilus HB8 EF-Tu calibration sequence could be an outlier, consistent with free energy calculation by NUPACK. Diagram methodology allows computer simulation studies and HAR1 shows about 0.5% probability from chimp to human in terms of diagram location, and SNP simulation results such as amoebic meningoencephalitis NAF1 suggest correlation. Extensions to the studies of the translation and transcription elongation factor sequences in Megavirus Chiliensis, Megavirus Lba and Pandoravirus show that the studied Pandoravirus sequence could be an outlier with the highest fractal dimension and lowest entropy, as compared to chicken as a deviant in the DNMT3A DNA methylation gene sequences from zebrafish to human and to the less than one percent probability in computer simulation using the HAR1 0.5% probability as reference. The diagram methodology would be useful in ancestral gene

  4. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    Directory of Open Access Journals (Sweden)

    Pangilinan Faith

    2012-08-01

    Full Text Available Abstract Background Neural tube defects (NTDs are common birth defects (~1 in 1000 pregnancies in the US and Europe that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T and MTHFD1 rs2236225 (R653Q have been found to increase NTD risk. We hypothesized that variants in additional folate/B12 pathway genes contribute to NTD risk. Methods A tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents, including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects. Results Nearly 70 SNPs in 30 genes were found to be associated with NTDs at the p MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury and included the known NTD risk factor MTHFD1 R653Q (rs2236225. The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele. Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing. Conclusions To our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the stringency of correction are likely to have contributed to real associations failing to survive

  5. Association of cytokine gene polymorphisms and risk factors with otitis media proneness in children.

    Science.gov (United States)

    Miljanović, Olivera; Cikota-Aleksić, Bojana; Likić, Dragan; Vojvodić, Danilo; Jovićević, Ognjen; Magić, Zvonko

    2016-06-01

    In order to assess the association between gene polymorphisms and otitis media (OM) proneness, tumor necrosis factor alpha (TNFA) -308, interleukin (IL) 10-1082 and -3575, IL6 -597, IL2 -330, and CD14 -159 genotyping was performed in 58 OM-prone children and 85 controls who were exposed to similar number and frequency of environmental and host risk factors. The frequencies of genotypes (wild type vs. genotypes containing at least one polymorphic allele) were not significantly different between groups, except for IL10 -1082. Polymorphic genotypes IL10 -1082 GA and GG were more frequent in OM-prone children than in control group (RR 1.145, 95 % CI 1.011-1.298; p = 0.047). However, logistic regression did not confirm IL10 -1082 polymorphic genotypes as an independent risk factor for OM proneness. The present study indicates that high-producing IL10 -1082 GA/GG genotypes may increase the risk for OM proneness in its carriers when exposed to other environmental/host risk factors (day care attendance, passive smoking, male sex, respiratory infections, and atopic manifestations). This study revealed no significant independent genetic association, but the lack of breastfeeding in infancy was found to be the only independent risk factor for development of OM-prone phenotype, implying that breastfeeding had a protective role in development of susceptibility to OM. • The pathogenesis of OM is of multifactorial nature, dependent on infection, environmental factors, and immune response of the child. • Cytokines and CD14 play an important role in the presentation and clinical course of otitis media, but a clear link with otitis media proneness was not established. What is new: • This is the first clinical and genetic study on Montenegrin children with the otitis media-prone phenotype. • The study revealed that high-producing IL10 -1082 genotypes may influence otitis media proneness in children exposed to other environmental/host risk factors.

  6. Exploration and Exploitation of Novel SSR Markers for Candidate Transcription Factor Genes in Lilium Species

    Directory of Open Access Journals (Sweden)

    Manosh Kumar Biswas

    2018-02-01

    Full Text Available Lilies (Lilium sp. are commercially important horticultural crops widely cultivated for their flowers and bulbs. Here, we conducted large-scale data mining of the lily transcriptome to develop transcription factor (TF-associated microsatellite markers (TFSSRs. Among 216,768 unigenes extracted from our sequence data, 6966 unigenes harbored simple sequence repeats (SSRs. Seventy-one SSRs were associated with TF genes, and these were used to design primers and validate their potential as markers. These 71 SSRs were accomplished with 31 transcription factor families; including bHLH, MYB, C2H2, ERF, C3H, NAC, bZIP, and so on. Fourteen highly polymorphic SSRs were selected based on Polymorphic Information Content (PIC values and used to study genetic diversity and population structure in lily accessions. Higher genetic diversity was observed in Longiflorum compared to Oriental and Asiatic populations. Lily accessions were divided into three sub-populations based in our structure analysis, and an un-rooted neighbor-joining tree effectively separated the accessions according to Asiatic, Oriental, and Longiflorum subgroups. Finally, we showed that 46 of the SSR-associated genes were differentially expressed in response to Botrytis elliptica infection. Thus, our newly developed TFSSR markers represent a powerful tool for large-scale genotyping, high-density and comparative mapping, marker-aided backcrossing, and molecular diversity analysis of Lilium sp.

  7. Codon 129 polymorphism of prion protein gene in is not a risk factor for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Jerusa Smid

    2013-07-01

    Full Text Available Interaction of prion protein and amyloid-b oligomers has been demonstrated recently. Homozygosity at prion protein gene (PRNP codon 129 is associated with higher risk for Creutzfeldt-Jakob disease. This polymorphism has been addressed as a possible risk factor in Alzheimer disease (AD. Objective To describe the association between codon 129 polymorphisms and AD. Methods We investigated the association of codon 129 polymorphism of PRNP in 99 AD patients and 111 controls, and the association between this polymorphism and cognitive performance. Other polymorphisms of PRNP and additive effect of apolipoprotein E gene (ApoE were evaluated. Results Codon 129 genotype distribution in AD 45.5% methionine (MM, 42.2% methionine valine (MV, 12.1% valine (VV; and 39.6% MM, 50.5% MV, 9.9% VV among controls (p>0.05. There were no differences of cognitive performance concerning codon 129. Stratification according to ApoE genotype did not reveal difference between groups. Conclusion Codon 129 polymorphism is not a risk factor for AD in Brazilian patients.

  8. PAX9 and MSX1 transcription factor genes in non-syndromic dental agenesis.

    Science.gov (United States)

    Paixão-Côrtes, Vanessa Rodrigues; Braga, Tatiana; Salzano, Francisco Mauro; Mundstock, Karina; Mundstock, Carlos Alberto; Bortolini, Maria Cátira

    2011-04-01

    The molecular variation of paired domain box gene 9 (PAX9) was previously investigated by our research group and a high degree of evolutionary conservation in coding and non-coding regions was observed except in exon 3. PAX9 is a transcription factor important in tooth development, and we wanted to verify its role in dental agenesis in detail. Since dental development is a complex trait we also decided to examine the influence of another transcription factor, muscle segment homeodomain-homeobox 1 (MSX1) on it. A total of 360 consecutively ascertained patients seeking orthodontic treatment were screened for tooth agenesis and 33% of them were found to have it. Thirty-five of those with agenesis and 15 controls had their DNA studied for PAX9 exons 2, 3, 4 and adjacent regions (total of 1476 base pairs, bp) as well as MSX1 exon 2 (698bp). A trio (a proband and her parents) was also studied. Six polymorphic sites were found, three in PAX9 exon 3 and three in MSX1 exon2. MSX1 rs1095 derived allele occurred in individuals with agenesis only, and two other mutations in this gene had been earlier associated with tooth agenesis. Homozygosity for the PAX9 Ala240Pro mutation was studied in a family (proband and her parents), suggesting recessive inheritance with variable expressivity for the dental agenesis found. Common variants located out of the DNA binding domain of the two PAX9 and MSX1 genes can also be related to tooth agenesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Identification of Heat Shock Transcription Factor Genes Involved in Thermotolerance of Octoploid Cultivated Strawberry.

    Science.gov (United States)

    Liao, Wan-Yu; Lin, Lee-Fong; Jheng, Jing-Lian; Wang, Chun-Chung; Yang, Jui-Hung; Chou, Ming-Lun

    2016-12-17

    Heat shock transcription factors (HSFs) are mainly involved in the activation of genes in response to heat stress as well as other abiotic and biotic stresses. The growth, development, reproduction, and yield of strawberry are strongly limited by extreme temperatures and droughts. In this study, we used Illumina sequencing and obtained transcriptome data set from Fragaria × ananassa Duchessne cv. Toyonoka. Six contigs and three unigenes were confirmed to encode HSF proteins (FaTHSFs). Subsequently, we characterized the biological functions of two particularly selected unigenes, FaTHSFA2a and FaTHSFB1a , which were classified into class A2 and B HSFs, respectively. Expression assays revealed that FaTHSFA2a and FaTHSFB1a expression was induced by heat shock and correlated well with elevated ambient temperatures. Overexpression of FaTHSFA2a and FaTHSFB1a resulted in the activation of their downstream stress-associated genes, and notably enhanced the thermotolerance of transgenic Arabidopsis plants. Besides, both FaTHSFA2a and FaTHSFB1a fusion proteins localized in the nucleus, indicating their similar subcellular distributions as transcription factors. Our yeast one-hybrid assay suggested that FaTHSFA2a has trans-activation activity, whereas FaTHSFB1a expresses trans-repression function. Altogether, our annotated transcriptome sequences provide a beneficial resource for identifying most genes expressed in octoploid strawberry. Furthermore, HSF studies revealed the possible insights into the molecular mechanisms of thermotolerance, thus rendering valuable molecular breeding to improve the tolerance of strawberry in response to high-temperature stress.

  10. Factor H Competitor Generated by Gene Conversion Events Associates with Atypical Hemolytic Uremic Syndrome.

    Science.gov (United States)

    Goicoechea de Jorge, Elena; Tortajada, Agustín; García, Sheila Pinto; Gastoldi, Sara; Merinero, Héctor Martín; García-Fernández, Jesús; Arjona, Emilia; Cao, Mercedes; Remuzzi, Giuseppe; Noris, Marina; Rodríguez de Córdoba, Santiago

    2018-01-01

    Atypical hemolytic uremic syndrome (aHUS), a rare form of thrombotic microangiopathy caused by complement pathogenic variants, mainly affects the kidney microvasculature. A retrospective genetic analysis in our aHUS cohort ( n =513) using multiple ligation probe amplification uncovered nine unrelated patients carrying a genetic abnormality in the complement factor H related 1 gene ( CFHR1 ) that originates by recurrent gene conversion events between the CFH and CFHR1 genes. The novel CFHR1 mutants encode an FHR-1 protein with two amino acid substitutions, L290S and A296V, converting the FHR-1 C terminus into that of factor H (FH). Next-generation massive-parallel DNA sequencing (NGS) analysis did not detect these genetic abnormalities. In addition to the CFHR1 mutant, six patients carried the previously uncharacterized CFH-411T variant. In functional analyses, the mutant FHR-1 protein strongly competed the binding of FH to cell surfaces, impairing complement regulation, whereas the CFH-411T polymorphism lacked functional consequences. Carriers of the CFHR1 mutation presented with severe aHUS during adulthood; 57% of affected women in this cohort presented during the postpartum period. Analyses in patients and unaffected carriers showed that FH plasma levels determined by the nonmutated chromosome modulate disease penetrance. Crucially, in the activated endothelial (HMEC-1) cell assay, reduced FH plasma levels produced by the nonmutated chromosome correlated inversely with impairment of complement regulation, measured as C5b-9 deposition. Our data advance understanding of the genetic complexities underlying aHUS, illustrate the importance of performing functional analysis, and support the use of complementary assays to disclose genetic abnormalities not revealed by current NGS analysis. Copyright © 2018 by the American Society of Nephrology.

  11. Responsiveness of genes to manipulation of transcription factors in ES cells is associated with histone modifications and tissue specificity

    Directory of Open Access Journals (Sweden)

    Thomas Marshall

    2011-02-01

    Full Text Available Abstract Background In addition to determining static states of gene expression (high vs. low, it is important to characterize their dynamic status. For example, genes with H3K27me3 chromatin marks are not only suppressed but also poised for activation. However, the responsiveness of genes to perturbations has never been studied systematically. To distinguish gene responses to specific factors from responsiveness in general, it is necessary to analyze gene expression profiles of cells responding to a large variety of disturbances, and such databases did not exist before. Results We estimated the responsiveness of all genes in mouse ES cells using our recently published database on expression change after controlled induction of 53 transcription factors (TFs and other genes. Responsive genes (N = 4746, which were readily upregulated or downregulated depending on the kind of perturbation, mostly have regulatory functions and a propensity to become tissue-specific upon differentiation. Tissue-specific expression was evaluated on the basis of published (GNF and our new data for 15 organs and tissues. Non-responsive genes (N = 9562, which did not change their expression much following any perturbation, were enriched in housekeeping functions. We found that TF-responsiveness in ES cells is the best predictor known for tissue-specificity in gene expression. Among genes with CpG islands, high responsiveness is associated with H3K27me3 chromatin marks, and low responsiveness is associated with H3K36me3 chromatin, stronger tri-methylation of H3K4, binding of E2F1, and GABP binding motifs in promoters. Conclusions We thus propose the responsiveness of expression to perturbations as a new way to define the dynamic status of genes, which brings new insights into mechanisms of regulation of gene expression and tissue specificity.

  12. Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella

    Directory of Open Access Journals (Sweden)

    Heffron Fred

    2011-06-01

    Full Text Available Abstract Background Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. Results In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two of these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Conclusions Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.

  13. Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyunjin; Ansong, Charles; McDermott, Jason E.; Gritsenko, Marina A.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.

    2011-06-28

    Background: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. Results: In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two of these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Conclusions: Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.

  14. Critical Success Factors of Suggestions Systems. | Marx | IFE ...

    African Journals Online (AJOL)

    A literature study approach is followed to establish which factors contribute to the success and failure of various suggestion systems. It was found ... The value of the paper firstly, shows the importance of creativity and innovation within the organisation's own culture and the framework of a formal suggestion system. Secondly ...

  15. Efficacy of Selenium Supplement on Gene Expression of Inflammatory Cytokines and Vascular Endothelial Growth Factor in Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Mehri Jamilian

    2018-01-01

    Full Text Available Abstract Background: Selenium supplement has multiple important effects, including anti-inflammatory effect. The aim of this study was to assess the effects of selenium supplement on gene expression of inflammatory cytokines and vascular endothelial growth factor in gestational diabetes. Materials and Methods: This randomized double blind placebo control trial was performed on 40 patients suffering from GDM aged 18–40 years old. Participants were randomly divided into interventional group receiving 200mg/day selenium supplements (n=20 and control group receiving placebo (n=20 for 6 weeks. Primary outcome was gene expression of inflammatory cytokines and VEGF which were assessed in lymphocyte of GDM patients by RT-PCR method. Results: After 6 weeks intervention, in comparison with the control group, interventional group showed down regulation of gene expression of tumor necrosis factor alpha (TNF–α (p=0.02 and transforming growth factor beta (TGF–β (p=0.01 and up-regulation of gene expression of vascular endothelial (VEGF (p = 0.03 in lymphocytes of GDM. There was not any significant change following intervention with selenium regarding gene expression of interleukin IL-1 β and IL-8 in lymphocytes of GDM patients. Conclusion: 6 weeks supplementation with selenium in patients with GDM can cause down regulated gene expression of TNF-α and TGF–β, and up regulated gene expression of VEGF. Selenium supplement had not any effect on gene expression of IL-1 β and IL-8.

  16. Comprehensive association analysis of 27 genes from the GABAergic system in Japanese individuals affected with schizophrenia.

    Science.gov (United States)

    Balan, Shabeesh; Yamada, Kazuo; Iwayama, Yoshimi; Hashimoto, Takanori; Toyota, Tomoko; Shimamoto, Chie; Maekawa, Motoko; Takagai, Shu; Wakuda, Tomoyasu; Kameno, Yosuke; Kurita, Daisuke; Yamada, Kohei; Kikuchi, Mitsuru; Hashimoto, Tasuku; Kanahara, Nobuhisa; Yoshikawa, Takeo

    2017-07-01

    Involvement of the gamma-aminobutyric acid (GABA)-ergic system in schizophrenia pathogenesis through disrupted neurodevelopment has been highlighted in numerous studies. However, the function of common genetic variants of this system in determining schizophrenia risk is unknown. We therefore tested the association of 375 tagged SNPs in genes derived from the GABAergic system, such as GABA A receptor subunit genes, and GABA related genes (glutamate decarboxylase genes, GABAergic-marker gene, genes involved in GABA receptor trafficking and scaffolding) in Japanese schizophrenia case-control samples (n=2926; 1415 cases and 1511 controls). We observed nominal association of SNPs in nine GABA A receptor subunit genes and the GPHN gene with schizophrenia, although none survived correction for study-wide multiple testing. Two SNPs located in the GABRA1 gene, rs4263535 (P allele =0.002; uncorrected) and rs1157122 (P allele =0.006; uncorrected) showed top hits, followed by rs723432 (P allele =0.007; uncorrected) in the GPHN gene. All three were significantly associated with schizophrenia and survived gene-wide multiple testing. Haplotypes containing associated variants in GABRA1 but not GPHN were significantly associated with schizophrenia. To conclude, we provided substantiating genetic evidence for the involvement of the GABAergic system in schizophrenia susceptibility. These results warrant further investigations to replicate the association of GABRA1 and GPHN with schizophrenia and to discern the precise mechanisms of disease pathophysiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Serum Response Factor (SRF mediated gene activity in physiological and pathological processes of neuronal motility

    Directory of Open Access Journals (Sweden)

    Bernd eKnoll

    2011-12-01

    Full Text Available In recent years, the transcription factor SRF (serum response factor was shown to contribute to various physiological processes linked to neuronal motility. The latter include cell migration, axon guidance and e.g. synapse function relying on cytoskeletal dynamics, neurite outgrowth, axonal and dendritic differentiation, growth cone motility and neurite branching. SRF teams up with MRTFs (myocardin related transcription factors and TCFs (ternary complex factors to mediate cellular actin cytoskeletal dynamics and the immediate-early gene (IEG response, a bona fide indicator of neuronal activation. Herein, I will discuss how SRF and cofactors might modulate physiological processes of neuronal motility. Further, potential mechanisms engaged by neurite growth promoting molecules and axon guidance cues to target SRF’s transcriptional machinery in physiological neuronal motility will be presented. Of note, altered cytoskeletal dynamics and rapid initiation of an IEG response are a hallmark of injured neurons in various neurological disorders. Thus, SRF and its MRTF and TCF cofactors might emerge as a novel trio modulating peripheral and central axon regeneration.

  18. Prothrombotic gene variants as risk factors of acute myocardial infarction in young women

    Directory of Open Access Journals (Sweden)

    Tomaiuolo Rossella

    2012-11-01

    Full Text Available Abstract Background Acute myocardial infarction (AMI in young women represent an extreme phenotype associated with a higher mortality compared with similarly aged men. Prothrombotic gene variants could play a role as risk factors for AMI at young age. Methods We studied Factor V Leiden, FII G20210A, MTHFR C677T and beta-fibrinogen -455G>A variants by real-time PCR in 955 young AMI (362 females and in 698 AMI (245 females patients. The data were compared to those obtained in 909 unrelated subjects (458 females from the general population of the same geographical area (southern Italy. Results In young AMI females, the allelic frequency of either FV Leiden and of FII G20210A was significantly higher versus the general population (O.R.: 3.67 for FV Leiden and O.R.: 3.84 for FII G20210A; p Discussion and conclusion Our data confirm that young AMI in females is a peculiar phenotype with specific risk factors as the increased plasma procoagulant activity of FV and FII. On the contrary, the homozygous state for the 677T MTHFR variant may cause increased levels of homocysteine and/or an altered folate status and thus an increased risk for AMI, particularly in males. The knowledge of such risk factors (that may be easily identified by molecular analysis may help to improve prevention strategies for acute coronary diseases in specific risk-group subjects.

  19. Complexity of CNC transcription factors as revealed by gene targeting of the Nrf3 locus.

    Science.gov (United States)

    Derjuga, Anna; Gourley, Tania S; Holm, Teresa M; Heng, Henry H Q; Shivdasani, Ramesh A; Ahmed, Rafi; Andrews, Nancy C; Blank, Volker

    2004-04-01

    Cap'n'collar (CNC) family basic leucine zipper transcription factors play crucial roles in the regulation of mammalian gene expression and development. To determine the in vivo function of the CNC protein Nrf3 (NF-E2-related factor 3), we generated mice deficient in this transcription factor. We performed targeted disruption of two Nrf3 exons coding for CNC homology, basic DNA-binding, and leucine zipper dimerization domains. Nrf3 null mice developed normally and revealed no obvious phenotypic differences compared to wild-type animals. Nrf3(-/-) mice were fertile, and gross anatomy as well as behavior appeared normal. The mice showed normal age progression and did not show any apparent additional phenotype during their life span. We observed no differences in various blood parameters and chemistry values. We infected wild-type and Nrf3(-/-) mice with acute lymphocytic choriomeningitis virus and found no differences in these animals with respect to their number of virus-specific CD8 and CD4 T cells as well as their B-lymphocyte response. To determine whether the mild phenotype of Nrf3 null animals is due to functional redundancy, we generated mice deficient in multiple CNC factors. Contrary to our expectations, an absence of Nrf3 does not seem to cause additional lethality in compound Nrf3(-/-)/Nrf2(-/-) and Nrf3(-/-)/p45(-/-) mice. We hypothesize that the role of Nrf3 in vivo may become apparent only after appropriate challenge to the mice.

  20. Negative elongation factor NELF controls transcription of immediate early genes in a stimulus-specific manner

    International Nuclear Information System (INIS)

    Fujita, Toshitsugu; Piuz, Isabelle; Schlegel, Werner

    2009-01-01

    The transcription rate of immediate early genes (IEGs) is controlled directly by transcription elongation factors at the transcription elongation step. Negative elongation factor (NELF) and 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) stall RNA polymerase II (pol II) soon after transcription initiation. Upon induction of IEG transcription, DSIF is converted into an accelerator for pol II elongation. To address whether and how NELF as well as DSIF controls overall IEG transcription, its expression was reduced using stable RNA interference in GH4C1 cells. NELF knock-down reduced thyrotropin-releasing hormone (TRH)-induced transcription of the IEGs c-fos, MKP-1, and junB. In contrast, epidermal growth factor (EGF)-induced transcription of these IEGs was unaltered or even slightly increased by NELF knock-down. Thus, stable knock-down of NELF affects IEG transcription stimulation-specifically. Conversely, DSIF knock-down reduced both TRH- and EGF-induced transcription of the three IEGs. Interestingly, TRH-induced activation of the MAP kinase pathway, a pathway essential for transcription of the three IEGs, was down-regulated by NELF knock-down. Thus, stable knock-down of NELF, by modulating intracellular signaling pathways, caused stimulation-specific loss of IEG transcription. These observations indicate that NELF controls overall IEG transcription via multiple mechanisms both directly and indirectly

  1. Rated power factor and excitation system of large turbine generator

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Watanabe, Takashi; Banjou, Minoru.

    1979-01-01

    As for the rated power factor of turbine generators for thermal power stations, 90% has been adopted since around 1960. On the other hand, power transmission system has entered 500 kV age, and 1,000 kV transmission is expected in the near future. As for the supply of reactive power from thermal and nuclear turbine generators, the necessity of supplying leading reactive power has rather increased. Now, the operating power factor of thermal and nuclear generators becomes 96 to 100% actually. As for the excess stability of turbine generators owing to the strengthening of transmission system and the adoption of super-high voltage, the demand of strict conditions can be dealt with by the adoption of super-fast response excitation system of thyristor shunt winding self exciting type. The adoption of the turbine generators with 90 to 95% power factor and the adoption of the thyristor shunt winding self exciting system were examined and evaluated. The rated power factor of generators, excitation system and economy of adopting these systems are explained. When the power factor of generators is increased from 0.9 to 0.95, about 6% of saving can be obtained in the installation cost. When the thyristor shunt winding self excitation is adopted, it is about 10% more economical than AC excitation. (Kako, I.)

  2. Neonatal manipulation of oxytocin prevents lipopolysaccharide-induced decrease in gene expression of growth factors in two developmental stages of the female rat.

    Science.gov (United States)

    Bakos, Jan; Lestanova, Zuzana; Strbak, Vladimir; Havranek, Tomas; Bacova, Zuzana

    2014-10-01

    Oxytocin production and secretion is important for early development of the brain. Long-term consequences of manipulation of oxytocin system might include changes in markers of brain plasticity - cytoskeletal proteins and neurotrophins. The aim of the present study was (1) to determine whether neonatal oxytocin administration affects gene expression of nestin, microtubule-associated protein-2 (MAP-2), brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brain of two developmental stages of rat and (2) to evaluate whether neonatal oxytocin administration protects against lipopolysaccharide (LPS) induced inflammation. Neonatal oxytocin did not prevent a decrease of body weight in the LPS treated animals. Oxytocin significantly increased gene expression of BDNF in the right hippocampus in 21-day and 2-month old rats of both sexes. Gene expression of NGF and MAP-2 significantly increased in males treated with oxytocin. Both, growth factors and intermediate filament-nestin mRNA levels, were reduced in females exposed to LPS. Oxytocin treatment prevented a decrease in the gene expression of only growth factors. In conclusion, neonatal manipulation of oxytocin has developmental and sex-dependent effect on markers of brain plasticity. These results also indicate, that oxytocin may be protective against inflammation particularly in females. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Factors influencing health information system adoption in American hospitals.

    Science.gov (United States)

    Wang, Bill B; Wan, Thomas T H; Burke, Darrell E; Bazzoli, Gloria J; Lin, Blossom Y J

    2005-01-01

    To study the number of health information systems (HISs), applicable to administrative, clinical, and executive decision support functionalities, adopted by acute care hospitals and to examine how hospital market, organizational, and financial factors influence HIS adoption. A cross-sectional analysis was performed with 1441 hospitals selected from metropolitan statistical areas in the United States. Multiple data sources were merged. Six hypotheses were empirically tested by multiple regression analysis. HIS adoption was influenced by the hospital market, organizational, and financial factors. Larger, system-affiliated, and for-profit hospitals with more preferred provider organization contracts are more likely to adopt managerial information systems than their counterparts. Operating revenue is positively associated with HIS adoption. The study concludes that hospital organizational and financial factors influence on hospitals' strategic adoption of clinical, administrative, and managerial information systems.

  4. Maturity of hospital information systems: Most important influencing factors.

    Science.gov (United States)

    Vidal Carvalho, João; Rocha, Álvaro; Abreu, António

    2017-07-01

    Maturity models facilitate organizational management, including information systems management, with hospital organizations no exception. This article puts forth a study carried out with a group of experts in the field of hospital information systems management with a view to identifying the main influencing factors to be included in an encompassing maturity model for hospital information systems management. This study is based on the results of a literature review, which identified maturity models in the health field and relevant influencing factors. The development of this model is justified to the extent that the available maturity models for the hospital information systems management field reveal multiple limitations, including lack of detail, absence of tools to determine their maturity and lack of characterization for stages of maturity structured by different influencing factors.

  5. Gene Expression Factor Analysis to Differentiate Pathways Linked to Fibromyalgia, Chronic Fatigue Syndrome, and Depression in a Diverse Patient Sample.

    Science.gov (United States)

    Iacob, Eli; Light, Alan R; Donaldson, Gary W; Okifuji, Akiko; Hughen, Ronald W; White, Andrea T; Light, Kathleen C

    2016-01-01

    To determine if independent candidate genes can be grouped into meaningful biologic factors, and whether these factors are associated with the diagnosis of chronic fatigue syndrome (CFS) and fibromyalgia syndrome (FMS), while controlling for comorbid depression, sex, and age. We included leukocyte messenger RNA gene expression from a total of 261 individuals, including healthy controls (n = 61), patients with FMS only (n = 15), with CFS only (n = 33), with comorbid CFS and FMS (n = 79), and with medication-resistant (n = 42) or medication-responsive (n = 31) depression. We used exploratory factor analysis (EFA) on 34 candidate genes to determine factor scores and regression analysis to examine whether these factors were associated with specific diagnoses. EFA resulted in 4 independent factors with minimal overlap of genes between factors, explaining 51% of the variance. We labeled these factors by function as 1) purinergic and cellular modulators, 2) neuronal growth and immune function, 3) nociception and stress mediators, and 4) energy and mitochondrial function. Regression analysis predicting these biologic factors using FMS, CFS, depression severity, age, and sex revealed that greater expression in factors 1 and 3 was positively associated with CFS and negatively associated with depression severity (Quick Inventory for Depression Symptomatology score), but not associated with FMS. Expression of candidate genes can be grouped into meaningful clusters, and CFS and depression are associated with the same 2 clusters, but in opposite directions, when controlling for comorbid FMS. Given high comorbid disease and interrelationships between biomarkers, EFA may help determine patient subgroups in this population based on gene expression. © 2016, American College of Rheumatology.

  6. Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down's syndrome: a gene expression study.

    Science.gov (United States)

    Bahn, Sabine; Mimmack, Michael; Ryan, Margaret; Caldwell, Maeve A; Jauniaux, Eric; Starkey, Michael; Svendsen, Clive N; Emson, Piers

    2002-01-26

    Identification of genes and characterisation of their function is an essential step towards understanding complex pathophysiological abnormalities in Down's syndrome. We did a study to investigate abnormalities in gene expression in human neuronal stem cells and progenitor cells from Down's syndrome and control post-mortem human fetal tissue. Indexing-based differential display PCR was done on neuronal precursor cells derived from the cortex of a fetus with Down's syndrome, and findings were compared with those of two control samples. Findings were validated against neurosphere preparations from three independent Down's syndrome fetuses and five independent controls by real-time quantitative PCR. Results of differential display PCR analysis showed that SCG10--a neuron--specific growth-associated protein regulated by the neuron-restrictive silencer factor REST-was almost undetectable in the Down's syndrome sample. This finding was validated by real-time PCR. We also found that other genes regulated by the REST transcription factor were selectively repressed, whereas non-REST-regulated genes with similar functions were unaffected. Changes in expression of several key developmental genes in the Down's syndrome stem-cell and progenitor-cell pool correlated with striking changes in neuron morphology after differentiation. Our findings suggest a link between dysregulation of the REST transcription factor and some of the neurological deficits seen in Down's syndrome. Experimental REST downregulation has been shown to trigger apoptosis, which could account for the striking and selective loss of neurons in the differentiated Down's syndrome cell preparations.

  7. The FOUR LIPS and MYB88 transcription factor genes are widely expressed in Arabidopsis thaliana during development.

    Science.gov (United States)

    Lei, Qin; Lee, EunKyoung; Keerthisinghe, Sandra; Lai, Lien; Li, Meng; Lucas, Jessica R; Wen, Xiaohong; Ren, Xiaolin; Sack, Fred D

    2015-09-01

    The FOUR LIPS (FLP) and MYB88 transcription factors, which are closely related in structure and function, control the development of stomata, as well as entry into megasporogenesis in Arabidopsis thaliana. However, other locations where these transcription factors are expressed are poorly described. Documenting additional locations where these genes are expressed might define new functions for these genes. Expression patterns were examined throughout vegetative and reproductive development. The expression from two transcriptional-reporter fusions were visualized with either β-glucuronidase (GUS) or green fluorescence protein (GFP). Both flp and myb88 genes were expressed in many, previously unreported locations, consistent with the possibility of additional functions for FLP and MYB88. Moreover, expression domains especially of FLP display sharp cutoffs or boundaries. In addition to stomatal and reproductive development, FLP and MYB88, which are R2R3 MYB transcription factor genes, are expressed in many locations in cells, tissues, and organs. © 2015 Botanical Society of America.

  8. Sequencing and transcriptional analysis of the Streptococcus thermophilus histamine biosynthesis gene cluster: factors that affect differential hdcA expression

    DEFF Research Database (Denmark)

    Calles-Enríquez, Marina; Hjort, Benjamin Benn; Andersen, Pia Skov

    2010-01-01

    to produce histamine. The hdc clusters of S. thermophilus CHCC1524 and CHCC6483 were sequenced, and the factors that affect histamine biosynthesis and histidine-decarboxylating gene (hdcA) expression were studied. The hdc cluster began with the hdcA gene, was followed by a transporter (hdcP), and ended...... with the hdcB gene, which is of unknown function. The three genes were orientated in the same direction. The genetic organization of the hdc cluster showed a unique organization among the lactic acid bacterial group and resembled those of Staphylococcus and Clostridium species, thus indicating possible...... acquisition through a horizontal transfer mechanism. Transcriptional analysis of the hdc cluster revealed the existence of a polycistronic mRNA covering the three genes. The histidine-decarboxylating gene (hdcA) of S. thermophilus demonstrated maximum expression during the stationary growth phase, with high...

  9. Inducible, tunable and multiplex human gene regulation using CRISPR-Cpf1-based transcription factors | Office of Cancer Genomics

    Science.gov (United States)

    Targeted and inducible regulation of mammalian gene expression is a broadly important research capability that may also enable development of novel therapeutics for treating human diseases. Here we demonstrate that a catalytically inactive RNA-guided CRISPR-Cpf1 nuclease fused to transcriptional activation domains can up-regulate endogenous human gene expression. We engineered drug-inducible Cpf1-based activators and show how this system can be used to tune the regulation of endogenous gene transcription in human cells.

  10. Retinal vein occlusion: genetic predisposition and systemic risk factors.

    Science.gov (United States)

    Giannaki, Kassiani; Politou, Marianna; Rouvas, Alexandros; Merkouri, Efrossyni; Travlou, Anthi; Theodosiadis, Panayiotis; Gialeraki, Argyri

    2013-04-01

    The role of systemic risk factors (age, smoking, diabetes, arterial hypertension) in the development of retinal vein occlusion (RVO) is well established. However, the association of RVO with genetic predisposition to thrombosis remains poorly understood. The aim of the study was to assess any possible additional effect of genetic predisposition to the already well known 'classical' risk factors of RVO in a cohort of elderly Greek patients. Fifty-one elderly patients with RVO and 51 healthy individuals matched for age and sex were evaluated for systemic risk factors (smoking, diabetes, dyslipidemia, arterial hypertension) and coagulation defects (lupus anticoagulant, natural inhibitors of coagulation). Additionally, genotyping was performed for mutations/polymorphisms involved in haemostasis such as: FV G1691A, FV G4070A, FIIG 20210A, MTHFR C677T and A1298C, PAI-1-675 4G/5G, F XIII exon 2G/T, EPCR A4600G and G4678C. We identified systemic risk factors in the majority of the patients Hypertension (P=0.001), dyslipidemia (P=0.029) and diabetes (P=0.01) are associated with RVO in the majority of the patients. The prevalence of prothrombotic risk factors was not significantly different in the patients with RVO compared to controls. Apart from systemic risk factors, genetic predisposition to thrombosis does not seem to have an important association with RVO in this group of elderly patients.

  11. Associations between diabetic retinopathy and systemic risk factors.

    Science.gov (United States)

    Wat, N; Wong, R Lm; Wong, I Yh

    2016-12-01

    Diabetes mellitus is a systemic disease with complications that include sight-threatening diabetic retinopathy. It is essential to understand the risk factors of diabetic retinopathy before effective prevention can be implemented. The aim of this review was to examine the association between diabetic retinopathy and systemic risk factors. A PubMed literature search was performed up to May 2016 to identify articles reporting associations between diabetic retinopathy and systemic risk factors; only publications written in English were included. Relevant articles were selected and analysed. Patients with diabetic retinopathy were more likely to have poor glycaemic control as reflected by a higher glycated haemoglobin, longer duration of diabetes, and use of insulin therapy for treatment. For other systemic risk factors, hypertension was positively associated with prevalence and progression of diabetic retinopathy. No clear association between obesity, hyperlipidaemia, gender, or smoking with diabetic retinopathy has been established as studies reported inconsistent findings. Myopia was a protective factor for the development of diabetic retinopathy. Several genetic polymorphisms were also found to be associated with an increased risk of development of diabetic retinopathy. Good glycaemic and blood pressure control remain the most important modifiable risk factors to reduce the risk of progression of diabetic retinopathy and vision loss.

  12. Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: environmental factors

    Directory of Open Access Journals (Sweden)

    Frank Emmert-Streib

    2013-02-01

    Full Text Available The inference of gene regulatory networks gained within recent years a considerable interest in the biology and biomedical community. The purpose of this paper is to investigate the influence that environmental conditions can exhibit on the inference performance of network inference algorithms. Specifically, we study five network inference methods, Aracne, BC3NET, CLR, C3NET and MRNET, and compare the results for three different conditions: (I observational gene expression data: normal environmental condition, (II interventional gene expression data: growth in rich media, (III interventional gene expression data: normal environmental condition interrupted by a positive spike-in stimulation. Overall, we find that different statistical inference methods lead to comparable, but condition-specific results. Further, our results suggest that non-steady-state data enhance the inferability of regulatory networks.

  13. Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors.

    Science.gov (United States)

    Grant, Gavin D; Brooks, Lionel; Zhang, Xiaoyang; Mahoney, J Matthew; Martyanov, Viktor; Wood, Tammara A; Sherlock, Gavin; Cheng, Chao; Whitfield, Michael L

    2013-12-01

    We identify the cell cycle-regulated mRNA transcripts genome-wide in the osteosarcoma-derived U2OS cell line. This results in 2140 transcripts mapping to 1871 unique cell cycle-regulated genes that show periodic oscillations across multiple synchronous cell cycles. We identify genomic loci bound by the G2/M transcription factor FOXM1 by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) and associate these with cell cycle-regulated genes. FOXM1 is bound to cell cycle-regulated genes with peak expression in both S phase and G2/M phases. We show that ChIP-seq genomic loci are responsive to FOXM1 using a real-time luciferase assay in live cells, showing that FOXM1 strongly activates promoters of G2/M phase genes and weakly activates those induced in S phase. Analysis of ChIP-seq data from a panel of cell cycle transcription factors (E2F1, E2F4, E2F6, and GABPA) from the Encyclopedia of DNA Elements and ChIP-seq data for the DREAM complex finds that a set of core cell cycle genes regulated in both U2OS and HeLa cells are bound by multiple cell cycle transcription factors. These data identify the cell cycle-regulated genes in a second cancer-derived cell line and provide a comprehensive picture of the transcriptional regulatory systems controlling periodic gene expression in the human cell division cycle.

  14. Keratinocyte Growth Factor Gene Electroporation into Skeletal Muscle as a Novel Gene Therapeutic Approach for Elastase-Induced Pulmonary Emphysema in Mice

    International Nuclear Information System (INIS)

    Tobinaga, Shuichi; Matsumoto, Keitaro; Nagayasu, Takeshi; Furukawa, Katsuro; Abo, Takafumi; Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Koji, Takehiko

    2015-01-01

    Pulmonary emphysema is a progressive disease with airspace destruction and an effective therapy is needed. Keratinocyte growth factor (KGF) promotes pulmonary epithelial proliferation and has the potential to induce lung regeneration. The aim of this study was to determine the possibility of using KGF gene therapy for treatment of a mouse emphysema model induced by porcine pancreatic elastase (PPE). Eight-week-old BALB/c male mice treated with intra-tracheal PPE administration were transfected with 80 μg of a recombinant human KGF (rhKGF)-expressing FLAG-CMV14 plasmid (pKGF-FLAG gene), or with the pFLAG gene expressing plasmid as a control, into the quadriceps muscle by electroporation. In the lung, the expression of proliferating cell nuclear antigen (PCNA) was augmented, and surfactant protein A (SP-A) and KGF receptor (KGFR) were co-expressed in PCNA-positive cells. Moreover, endogenous KGF and KGFR gene expression increased significantly by pKGF-FLAG gene transfection. Arterial blood gas analysis revealed that the PaO 2 level was not significantly reduced on day 14 after PPE instillation with pKGF-FLAG gene transfection compared to that of normal mice. These results indicated that KGF gene therapy with electroporation stimulated lung epithelial proliferation and protected depression of pulmonary function in a mouse emphysema model, suggesting a possible method of treating pulmonary emphysema

  15. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa.

    Science.gov (United States)

    Shi, Rui; Wang, Jack P; Lin, Ying-Chung; Li, Quanzi; Sun, Ying-Hsuan; Chen, Hao; Sederoff, Ronald R; Chiang, Vincent L

    2017-05-01

    Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.

  16. Systemic gene delivery transduces the enteric nervous system of guinea pigs and cynomolgus macaques.

    Science.gov (United States)

    Gombash, S E; Cowley, C J; Fitzgerald, J A; Lepak, C A; Neides, M G; Hook, K; Todd, L J; Wang, G-D; Mueller, C; Kaspar, B K; Bielefeld, E C; Fischer, A J; Wood, J D; Foust, K D

    2017-10-01

    Characterization of adeno-associated viral vector (AAV) mediated gene delivery to the enteric nervous system (ENS) was recently described in mice and rats. In these proof-of-concept experiments, we show that intravenous injections of clinically relevant AAVs can transduce the ENS in guinea pigs and non-human primates. Neonatal guinea pigs were given intravenous injections of either AAV8 or AAV9 vectors that contained a green fluorescent protein (GFP) expression cassette or phosphate-buffered saline. Piglets were euthanized three weeks post injection and tissues were harvested for immunofluorescent analysis. GFP expression was detected in myenteric and submucosal neurons along the length of the gastrointestinal tract in AAV8 injected guinea pigs. GFP-positive neurons were found in dorsal motor nucleus of the vagus and dorsal root ganglia. Less transduction occurred in AAV9-treated tissues. Gastrointestinal tissues were analyzed from young cynomolgus macaques that received systemic injection of AAV9 GFP. GFP expression was detected in myenteric neurons of the stomach, small and large intestine. These data demonstrate that ENS gene delivery translates to larger species. This work develops tools for the field of neurogastroenterology to explore gut physiology and anatomy using emerging technologies such as optogenetics and gene editing. It also provides a basis to develop novel therapies for chronic gut disorders.

  17. Expression of tumor necrosis factor-alpha-mediated genes predicts recurrence-free survival in lung cancer.

    Directory of Open Access Journals (Sweden)

    Baohua Wang

    Full Text Available In this study, we conducted a meta-analysis on high-throughput gene expression data to identify TNF-α-mediated genes implicated in lung cancer. We first investigated the gene expression profiles of two independent TNF-α/TNFR KO murine models. The EGF receptor signaling pathway was the top pathway associated with genes mediated by TNF-α. After matching the TNF-α-mediated mouse genes to their human orthologs, we compared the expression patterns of the TNF-α-mediated genes in normal and tumor lung tissues obtained from humans. Based on the TNF-α-mediated genes that were dysregulated in lung tumors, we developed a prognostic gene signature that effectively predicted recurrence-free survival in lung cancer in two validation cohorts. Resampling tests suggested that the prognostic power of the gene signature was not by chance, and multivariate analysis suggested that this gene signature was independent of the traditional clinical factors and enhanced the identification of lung cancer patients at greater risk for recurrence.

  18. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  19. Focusing on the human factor in future expert systems

    International Nuclear Information System (INIS)

    Gordon, S.E.

    1987-01-01

    Technological advances in the area of artificial intelligence have produced expert systems that hold much promise for the design, operation, and maintenance of complex systems such as nuclear power plants. Such systems have been designed and implemented in a wide variety of task settings. In spite of the gains that have been made in the application of expert systems, there are still several difficult problems which have yet to be resolved. One of these problems is a frequently noted lack of user acceptance of newly fielded intelligent systems. This lack of acceptance can be attributed to a variety of factors, including unfamiliarity with computer technology, difficulty in adjusting to interface mechanisms, fear that the system was designed to replace the human operator, and a feeling that the human can perform the job better than the system. Some of the problems may be related to the fact that expert system design is essentially in it's infancy

  20. Molecular Genetic and Gene Therapy Studies of the Musculoskeletal System

    National Research Council Canada - National Science Library

    Baylink, David

    2004-01-01

    The primary goal of the proposed work is to apply several state of the art molecular genetic and gene therapy technologies to address fundamental questions in bone biology with a particular emphasis on attempting: l...

  1. Bayesian inference of the number of factors in gene-expression analysis: application to human virus challenge studies

    Directory of Open Access Journals (Sweden)

    Hero Alfred

    2010-11-01

    Full Text Available Abstract Background Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP, the Indian Buffet Process (IBP, and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB analysis. Results Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV, Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD, closely related non-Bayesian approaches. Conclusions Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.

  2. Age-dependent role of pre- and perinatal factors in interaction with genes on ADHD symptoms across adolescence

    NARCIS (Netherlands)

    Brinksma, Djûke M.; Hoekstra, Pieter J.; van den Hoofdakker, Barbara; de Bildt, Annelies; Buitelaar, Jan K.; Hartman, Catharina A.; Dietrich, Andrea

    Little is known about the effects of risk factors on attention-deficit/hyperactivity disorder (ADHD) symptom over time. Here, we longitudinally studied the role of candidate genes, pre- and perinatal factors, and their interactions on ADHD symptoms between ages 10 and 18 years. Subjects were part of

  3. The zebrafish moonshine gene encodes transcriptional intermediary factor 1gamma, an essential regulator of hematopoiesis.

    Directory of Open Access Journals (Sweden)

    David G Ransom

    2004-08-01

    Full Text Available Hematopoiesis is precisely orchestrated by lineage-specific DNA-binding proteins that regulate transcription in concert with coactivators and corepressors. Mutations in the zebrafish moonshine (mon gene specifically disrupt both embryonic and adult hematopoiesis, resulting in severe red blood cell aplasia. We report that mon encodes the zebrafish ortholog of mammalian transcriptional intermediary factor 1gamma (TIF1gamma (or TRIM33, a member of the TIF1 family of coactivators and corepressors. During development, hematopoietic progenitor cells in mon mutants fail to express normal levels of hematopoietic transcription factors, including gata1, and undergo apoptosis. Three different mon mutant alleles each encode premature stop codons, and enforced expression of wild-type tif1gamma mRNA rescues embryonic hematopoiesis in homozygous mon mutants. Surprisingly, a high level of zygotic tif1gamma mRNA expression delineates ventral mesoderm during hematopoietic stem cell and progenitor formation prior to gata1 expression. Transplantation studies reveal that tif1gamma functions in a cell-autonomous manner during the differentiation of erythroid precursors. Studies in murine erythroid cell lines demonstrate that Tif1gamma protein is localized within novel nuclear foci, and expression decreases during erythroid cell maturation. Our results establish a major role for this transcriptional intermediary factor in the differentiation of hematopoietic cells in vertebrates.

  4. Genome-scale study of the importance of binding site context for transcription factor binding and gene regulation

    Directory of Open Access Journals (Sweden)

    Ronne Hans

    2008-11-01

    Full Text Available Abstract Background The rate of mRNA transcription is controlled by transcription factors that bind to specific DNA motifs in promoter regions upstream of protein coding genes. Recent results indicate that not only the presence of a motif but also motif context (for example the orientation of a motif or its location relative to the coding sequence is important for gene regulation. Results In this study we present ContextFinder, a tool that is specifically aimed at identifying cases where motif context is likely to affect gene regulation. We used ContextFinder to examine the role of motif context in S. cerevisiae both for DNA binding by transcription factors and for effects on gene expression. For DNA binding we found significant patterns of motif location bias, whereas motif orientations did not seem to matter. Motif context appears to affect gene expression even more than it affects DNA binding, as biases in both motif location and orientation were more frequent in promoters of co-expressed genes. We validated our results against data on nucleosome positioning, and found a negative correlation between preferred motif locations and nucleosome occupancy. Conclusion We conclude that the requirement for stable binding of transcription factors to DNA and their subsequent function in gene regulation can impose constraints on motif context.

  5. Vascular endothelial growth factor gene therapy improves nerve regeneration in a model of obstetric brachial plexus palsy.

    Science.gov (United States)

    Hillenbrand, Matthias; Holzbach, Thomas; Matiasek, Kaspar; Schlegel, Jürgen; Giunta, Riccardo E

    2015-03-01

    The treatment of obstetric brachial plexus palsy has been limited to conservative therapies and surgical reconstruction of peripheral nerves. In addition to the damage of the brachial plexus itself, it also leads to a loss of the corresponding motoneurons in the spinal cord, which raises the need for supportive strategies that take the participation of the central nervous system into account. Based on the protective and regenerative effects of VEGF on neural tissue, our aim was to analyse the effect on nerve regeneration by adenoviral gene transfer of vascular endothelial growth factor (VEGF) in postpartum nerve injury of the brachial plexus in rats. In the present study, we induced a selective crush injury to the left spinal roots C5 and C6 in 18 rats within 24 hours after birth and examined the effect of VEGF-gene therapy on nerve regeneration. For gene transduction an adenoviral vector encoding for VEGF165 (AdCMV.VEGF165) was used. In a period of 11 weeks, starting 3 weeks post-operatively, functional regeneration was assessed weekly by behavioural analysis and force measurement of the upper limb. Morphometric evaluation was carried out 8 months post-operatively and consisted of a histological examination of the deltoid muscle and the brachial plexus according to defined criteria of degeneration. In addition, atrophy of the deltoid muscle was evaluated by weight determination comparing the left with the right side. VEGF expression in the brachial plexus was quantified by an enzyme-linked immunosorbent assay (ELISA). Furthermore the motoneurons of the spinal cord segment C5 were counted comparing the left with the right side. On the functional level, VEGF-treated animals showed faster nerve regeneration. It was found less degeneration and smaller mass reduction of the deltoid muscle in VEGF-treated animals. We observed significantly less degeneration of the brachial plexus and a greater number of surviving motoneurons (P < 0·05) in the VEGF group. The results of

  6. Mutagenesis in sequence encoding of human factor VII for gene therapy of hemophilia

    Directory of Open Access Journals (Sweden)

    B Kazemi

    2009-12-01

    Full Text Available "nBackground: Current treatment of hemophilia which is one of the most common bleeding disorders, involves replacement therapy using concentrates of FVIII and FIX .However, these concentrates have been associated with viral infections and thromboembolic complications and development of antibodies. "nThe use of recombinant human factor VII (rhFVII is effective  for the treatment of patients with  hemophilia A or B, who develop antibodies ( referred as inhibitors against  replacement therapy , because it induces coagulation independent of FVIII and FIX. However, its short half-life and high cost have limited its use. One potential solution to this problem may be the use of FVIIa gene transfer, which would attain continuing therapeutic levels of expression from a single injection. The aim of this study was to engineer a novel hFVII (human FVII gene containing a cleavage site for the intracellular protease and furin, by PCR mutagenesis "nMethods: The sequence encoding light and heavy chains of hFVII, were amplified by using hFVII/pTZ57R and specific primers, separately. The PCR products were cloned in pTZ57R vector. "nResults and discussion: Cloning was confirmed by restriction analysis or PCR amplification using specific primers and plasmid universal primers. Mutagenesis of sequence encoding light and heavy chain was confirmed by restriction enzyme. "nConclusion: In the present study, it was provided recombinant plasmids based on mutant form of DNA encoding light and heavy chains.  Joining mutant form of DNA encoding light chain with mutant heavy chain led to a new variant of hFVII. This variant can be activated by furin and an increase in the proportion of activated form of FVII. This mutant form of hFVII may be used for gene therapy of hemophilia.

  7. ZBP-99 defines a conserved family of transcription factors and regulates ornithine decarboxylase gene expression.

    Science.gov (United States)

    Law, D J; Du, M; Law, G L; Merchant, J L

    1999-08-19

    Among transcription factors that regulate ornithine decarboxylase (ODC) gene expression are those that interact with GC-rich promoters, including Sp1 and ZBP-89. Sp1 functions as a transactivator and ZBP-89 as a transrepressor of both the ODC and gastrin promoters. This study reports the cloning and characterization of a second member of the ZBP family that also binds GC boxes. ZBP-99 contains four Krüppel-type zinc fingers that collectively share 91% amino acid sequence similarity and 79% sequence identity with those found in ZBP-89. In addition, there are highly conserved amino acid sequences in the carboxy-terminal segments of the two genes. In spite of their structural similarities, the two proteins are encoded at distinct loci, ZBP-89 on chromosome 3q21 and ZBP-99 on 1q32.1. The predicted open reading frame of ZBP-99 cDNA encodes a 99-kDa protein. Electrophoretic mobility shift assays showed that ZBP-99 protein specifically binds to the GC-rich promoter elements of gastrin and ODC genes. Northern blot analysis showed that a major ZBP-99 transcript of 5.6 kb is expressed ubiquitously at low levels, with elevated expression levels in placenta and in adult kidney, liver, and lymphocytes. Cotransfection of AGS gastric adenocarcinoma and HT-29 colon adenocarcinoma cells with a ZBP-99 expression construct and with an ODC reporter construct show that ZBP-99 repressed basal expression in the two cell lines by 80 and 60%, respectively. Collectively, the data suggest that ZBP-99 binds GC-rich promoters and may complement the activities mediated by ZBP-89. Copyright 1999 Academic Press.

  8. Transcriptional responses of metallothionein gene to different stress factors in Pacific abalone (Haliotis discus hannai).

    Science.gov (United States)

    Lee, Sang Yoon; Nam, Yoon Kwon

    2016-11-01

    A novel metallothionein (MT) gene from the Pacific abalone H. discus hannai was characterized and its mRNA expression patterns (tissue distribution, developmental expression and differential expression in responsive to various in vivo stimulatory treatments) were examined. Abalone MT shares conserved structural features with previously known gastropod orthologs at both genomic (i.e., tripartite organization) and amino acid (conserved Cys motifs) levels. The 5'-flanking regulatory region of abalone MT gene displayed various transcription factor binding motifs particularly including ones related with metal regulation and stress/immune responses. Tissue distribution and basal expression patterns of MT mRNAs indicated a potential association between ovarian MT expression and sexual maturation. Developmental expression pattern suggested the maternal contribution of MT mRNAs to embryonic and early larval developments. Abalone MT mRNAs could be significantly induced by various heavy metals in different tissues (gill, hepatopancreas, muscle and hemocyte) in a tissue- and/or metal-dependent fashion. In addition, the abalone MT gene was highly modulated in responsive to other non-metal, stimulatory treatments such as immune challenge (LPS, polyI:C and bacterial injections), hypoxia (decrease from normoxia 8 ppm-2 ppm), thermal elevation (increase from 20 °C to 30 °C), and xenobiotic exposure (250 ppb of 17α-ethynylestradiol and 0.25 ppb of 2,3,7,8-tetrachlorodibenzodioxin) where differential expression patterns were toward either up- or down-regulation depending on types of stimulations and tissues examined. Taken together, our results highlight that MT is a multifunctional effector playing in wide criteria of cellular pathways especially associated with development and stress responses in this abalone species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Fibroblast growth factor 23 inhibits osteoblastic gene expression and induces osteoprotegerin in vascular smooth muscle cells.

    Science.gov (United States)

    Nakahara, Takehiro; Kawai-Kowase, Keiko; Matsui, Hiroki; Sunaga, Hiroaki; Utsugi, Toshihiro; Iso, Tatsuya; Arai, Masashi; Tomono, Shouichi; Kurabayashi, Masahiko

    2016-10-01

    Elevated fibroblast growth factor 23 (FGF23) levels are associated with cardiovascular mortality in patients with chronic kidney disease. However, both clinical and basic research have demonstrated conflicting evidence regarding the pathophysiological role of FGF23 in vascular calcification. The aim of this study was to determine the role of FGF23 in the osteoblastic gene expression in vascular smooth muscle cells (SMCs). We transduce human aortic SMCs (HASMCs) expressing klotho and FGF receptors with the adenovirus expressing human FGF23 (Ad-FGF23). We observed significant decreases in the expression of osteoblast-marker genes including BMP2, BMP4, MSX2, RUNX2 and ALP, as well as reduced calcification. Notably, Ad-FGF23 increased mRNA and protein levels of osteoprotegerin (OPG), and human OPG promoter was activated by FGF23. Moreover, in HASMCs overexpressing klotho, FGF23 upregulated OPG expression, whereas depletion of klotho by siRNA attenuated FGF23-induced OPG expression. Furthermore, in 73 consecutive patients with type 2 diabetes mellitus undergoing cardiac computed tomography to determine coronary calcium scores (CCSs), serum FGF23 levels were positively correlated with OPG independent of phosphate and estimated glomerular filtration rate (eGFR, r = 0.65, p < 0.01). Serum FGF23 levels were significantly elevated in patients with high CCSs (≧100) compared to those with low CCSs (<100). Our in vitro results indicate that FGF23 suppresses osteoblastic gene expression and induces OPG expression in HASMCs. Together with our cross-sectional clinical assessment, the present study lends support to our hypothesis that FGF23 counteracts osteogenic conversion of vascular SMCs as a part of a compensatory mechanism to mitigate vascular calcification. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Association of Polymorphisms in the Hepatocyte Growth Factor Gene Promoter with Keratoconus

    Science.gov (United States)

    Macgregor, Stuart; Bykhovskaya, Yelena; Javadiyan, Sharhbanou; Li, Xiaohui; Laurie, Kate J.; Muszynska, Dorota; Lindsay, Richard; Lechner, Judith; Haritunians, Talin; Henders, Anjali K.; Dash, Durga; Siscovick, David; Anand, Seema; Aldave, Anthony; Coster, Douglas J.; Szczotka-Flynn, Loretta; Mills, Richard A.; Iyengar, Sudha K.; Taylor, Kent D.; Phillips, Tony; Montgomery, Grant W.; Rotter, Jerome I.; Hewitt, Alex W.; Sharma, Shiwani; Rabinowitz, Yaron S.; Willoughby, Colin; Craig, Jamie E.

    2011-01-01

    Purpose. Keratoconus is a progressive disorder of the cornea that can lead to severe visual impairment or blindness. Although several genomic regions have been linked to rare familial forms of keratoconus, no genes have yet been definitively identified for common forms of the disease. Methods. Two genome-wide association scans were undertaken in parallel. The first used pooled DNA from an Australian cohort, followed by typing of top-ranked single-nucleotide polymorphisms (SNPs) in individual DNA samples. The second was conducted in individually genotyped patients, and controls from the USA. Tag SNPs around the hepatocyte growth factor (HGF) gene were typed in three additional replication cohorts. Serum levels of HGF protein in normal individuals were assessed with ELISA and correlated with genotype. Results. The only SNP observed to be associated in both the pooled discovery and primary replication cohort was rs1014091, located upstream of the HGF gene. The nearby SNP rs3735520 was found to be associated in the individually typed discovery cohort (P = 6.1 × 10−7). Genotyping of tag SNPs around HGF revealed association at rs3735520 and rs17501108/rs1014091 in four of the five cohorts. Meta-analysis of all five datasets together yielded suggestive P values for rs3735520 (P = 9.9 × 10−7) and rs17501108 (P = 9.9 × 10−5). In addition, SNP rs3735520 was found to be associated with serum HGF level in normal individuals (P = 0.036). Conclusions. Taken together, these results implicate genetic variation at the HGF locus with keratoconus susceptibility. PMID:22003120

  11. Somatic cytogenetic and azoospermia factor gene microdeletion studies in infertile men

    Directory of Open Access Journals (Sweden)

    Pina-Neto J.M.

    2006-01-01

    Full Text Available The objective of the present study was to determine the frequency of somatic chromosomal anomalies and Y chromosomal microdeletions (azoospermia factor genes, AZF in infertile males who seek assisted reproduction. These studies are very important because the assisted reproduction techniques (mainly intracytoplasmic sperm injection bypass the natural selection process and some classical chromosomal abnormalities, microdeletions of AZF genes or some deleterious genic mutations could pass through generations. These genetic abnormalities can cause in the offspring of these patients male infertility, ambiguous external genitalia, mental retardation, and other birth defects. We studied 165 infertile men whose infertility was attributable to testicular problems (60 were azoospermic, 100 were oligospermic and 5 were asthenospermic. We studied 100 metaphases per patient with GTG banding obtained from temporary lymphocyte culture for chromosomal abnormality detection and performed a genomic DNA analysis using 28 Y chromosome-specific sequence-tagged sites for Y AZF microdeletion detection. Karyotyping revealed somatic anomalies in 16 subjects (16/165 = 9.6%. Of these 16, 12 were in the azoospermic group (12/60 = 20% and 4 were in the oligospermic group (4/100 = 4%. The most common chromosomal anomaly was Klinefelter syndrome (10/165 = 6%. Microdeletions of AZF genes were detected in 12 subjects (12/160 = 7.5%. The frequencies detected are similar to those described previously. These results show the importance of genetic evaluation of infertile males prior to assisted reproduction. Such evaluation can lead to genetic counseling and, consequently, to primary and secondary prevention of mental retardation and birth defects.

  12. Impact of CCL4 gene polymorphisms and environmental factors on oral cancer development and clinical characteristics.

    Science.gov (United States)

    Lien, Ming-Yu; Lin, Chiao-Wen; Tsai, Hsiao-Chi; Chen, Yng-Tay; Tsai, Ming-Hsui; Hua, Chun-Hung; Yang, Shun-Fa; Tang, Chih-Hsin

    2017-05-09

    In Taiwan, oral cancer has causally been associated with environmental carcinogens. CCL4 (C-C chemokine ligand 4), a macrophage inflammatory protein with a key role in inflammation and immune-regulation, was implicated in carcinogenesis by facilitating instability in the tumor environment. The purpose of this study was to identify gene polymorphisms of CCL4 specific to patients with oral squamous cell carcinoma (OSCC) susceptibility and clinicopathological characteristics. A total of 2,053 participants, including 1192 healthy people and 861 patients with oral cancer, were recruited for this study. Three single-nucleotide polymorphisms (SNPs) of the CCL4 gene were analyzed by a real-time PCR. We found that the T/T homozygotes of CCL4 rs1634507 G/T polymorphism and the GG haplotype of 2 CCL4 SNPs (rs1634507 and rs10491121) combined were associated with oral-cancer susceptibility. In addition, TA haplotype significantly decreased the risks for oral cancer by 0.118 fold. Among 1420 smokers, CCL4 polymorphisms carriers with the betel-nut chewing habit had a 15.476-20.247-fold greater risk of having oral cancer compared to CCL4 wild-type (WT) carriers without the betel-nut chewing habit. Finally, patients with oral cancer who had A/G heterozygotes of CCL4 rs10491121 A/G polymorphism showed a lower risk for an advanced tumor size (> T2) (p=0.046), compared to those patients with AA homozygotes. Our results suggest that the CCL4 rs1634507 SNP have potential predictive significance in oral carcinogenesis. Gene-environment interactions of CCL4 polymorphisms might influence oral-cancer susceptibility. CCL4 rs10491121 may be a factor to predict the tumor size in OSCC patients.

  13. Osteoblast-specific transcription factor Osterix increases vitamin D receptor gene expression in osteoblasts.

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    Full Text Available Osterix (Osx is an osteoblast-specific transcription factor required for osteoblast differentiation from mesenchymal stem cells. In Osx knock-out mice, no bone formation occurs. The vitamin D receptor (VDR is a member of the nuclear hormone receptor superfamily that regulates target gene transcription to ensure appropriate control of calcium homeostasis and bone development. Here, we provide several lines of evidence that show that the VDR gene is a target for transcriptional regulation by Osx in osteoblasts. For example, calvaria obtained from Osx-null embryos displayed dramatic reductions in VDR expression compared to wild-type calvaria. Stable overexpression of Osx stimulated VDR expression in C2C12 mesenchymal cells. Inhibition of Osx expression by siRNA led to downregulation of VDR. In contrast, Osx levels remained unchanged in osteoblasts in VDR-null mice. Mechanistic approaches using transient transfection assays showed that Osx directly activated a 1 kb fragment of the VDR promoter in a dose-dependent manner. To define the region of the VDR promoter that was responsive to Osx, a series of VDR promoter deletion mutants were examined and the minimal Osx-responsive region was refined to the proximal 120 bp of the VDR promoter. Additional point mutants were used to identify two GC-rich regions that were responsible for VDR promoter activation by Osx. Chromatin immunoprecipitation assays demonstrated that endogenous Osx was associated with the native VDR promoter in primary osteoblasts in vivo. Cumulatively, these data strongly support a direct regulatory role for Osx in VDR gene expression. They further provide new insight into potential mechanisms and pathways that Osx controls in osteoblasts and during the process of osteoblastic cell differentiation.

  14. [Correlation between epigenetic alterations in the insulin growth factor-II gene and hepatocellular carcinoma].

    Science.gov (United States)

    Dong, Zhi-zhen; Yao, Deng-fu; Wu, Wei; Qiu, Li-wei; Yao, Ning-hua; Yan, Xiao-di; Yu, Dan-dan; Chen, Jie

    2012-08-01

    To investigate whether epigenetic alterations in the insulin-like growth factor-II (IGF-II) gene that cause differential transcription or expression are correlated with onset and severity of hepatocellular carcinoma (HCC). Patient-matched specimens of HCC, paracancerous, and non-cancerous tissues were collected from 40 primary liver cancer patients. Epigenetic alterations in the promoter (P3) sequence of the IGF-II gene were analyzed by methylation-specific PCR (MSP) and IGF-II transcription was measured by RT-PCR. IGF-II protein expression and clinicopathological features were assessed by immunohistochemistry and microscopic observation. The rate of IGF-II P3 methylation was significantly lower in HCC tissues (0%) than in paracancerous tissues (vs. 47.5%; x2 = 24.918, P less than 0.001) and non-cancerous tissues (vs. 100%; x2 = 80.000, P less than 0.001). IGF-II mRNA expression was significantly higher in HCC tissues (100%) than in paracancerous tissues (vs. 52.5%; x2 = 24.918, P less than 0.001) and non-cancerous tissues (vs. 0%; x2 = 80.000, P less than 0.001). IGF-II protein expression was significantly higher in HCC tissues (82.5%) than in paracancerous tissues (vs. 45.0%; x2 = 12.170, P less than 0.001) and non-cancerous tissues (vs. 0%; x2 = 56.170, P less than 0.001). IGF-II overexpression in HCC was significantly associated with degree of differentiation, extent of infiltrated serosa, size of tumor, and HBV-positive infection status. Epigenetic alterations in the IGF-II gene regulate its transcription and expression and are closely associated with HCC development and progression.

  15. Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population.

    Science.gov (United States)

    Lin, Eugene; Kuo, Po-Hsiu; Liu, Yu-Li; Yang, Albert C; Kao, Chung-Feng; Tsai, Shih-Jen

    2017-04-11

    Previous animal studies have indicated associations between circadian clock genes and cognitive impairment . In this study, we assessed whether 11 circadian clockgenes are associated with cognitive aging independently and/or through complex interactions in an old Taiwanese population. We also analyzed the interactions between environmental factors and these genes in influencing cognitive aging. A total of 634 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examinations (MMSE) were administered to all subjects, and MMSE scores were used to evaluate cognitive function. Our data showed associations between cognitive aging and single nucleotide polymorphisms (SNPs) in 4 key circadian clock genes, CLOCK rs3749473 (p = 0.0017), NPAS2 rs17655330 (p = 0.0013), RORA rs13329238 (p = 0.0009), and RORB rs10781247 (p = 7.9 x 10-5). We also found that interactions between CLOCK rs3749473, NPAS2 rs17655330, RORA rs13329238, and RORB rs10781247 affected cognitive aging (p = 0.007). Finally, we investigated the influence of interactions between CLOCK rs3749473, RORA rs13329238, and RORB rs10781247 with environmental factors such as alcohol consumption, smoking status, physical activity, and social support on cognitive aging (p = 0.002 ~ 0.01). Our study indicates that circadian clock genes such as the CLOCK, NPAS2, RORA, and RORB genes may contribute to the risk of cognitive aging independently as well as through gene-gene and gene-environment interactions.

  16. Transcriptional regulation of defence genes and involvement of the WRKY transcription factor in arbuscular mycorrhizal potato root colonization.

    Science.gov (United States)

    Gallou, Adrien; Declerck, Stéphane; Cranenbrouck, Sylvie

    2012-03-01

    The establishment of arbuscular mycorrhizal associations causes major changes in plant roots and affects significantly the host in term of plant nutrition and resistance against biotic and abiotic stresses. As a consequence, major changes in root transcriptome, especially in plant genes related to biotic stresses, are expected. Potato microarray analysis, followed by real-time quantitative PCR, was performed to detect the wide transcriptome changes induced during the pre-, early and late stages of potato root colonization by Glomus sp. MUCL 41833. The microarray analysis revealed 526 up-regulated and 132 down-regulated genes during the pre-stage, 272 up-regulated and 109 down-regulated genes during the early stage and 734 up-regulated and 122 down-regulated genes during the late stage of root colonization. The most important class of regulated genes was associated to plant stress and in particular to the WRKY transcription factors genes during the pre-stage of root colonization. The expression profiling clearly demonstrated a wide transcriptional change during the pre-, early and late stages of root colonization. It further suggested that the WRKY transcription factor genes are involved in the mechanisms controlling the arbuscular mycorrhizal establishment by the regulation of plant defence genes.

  17. Frequency of Systemic Risk Factors in Central Serous Chorioretinopathy.

    Science.gov (United States)

    Islam, Qamar Ul; Hanif, Muhammad Kashif; Tareen, Sheraz

    2016-08-01

    To determine the frequency of various systemic risk factors associated with acute central serous chorioretinopathy (CSCR) in our setup. Descriptive case series. Armed Forces Institute of Ophthalmology (AFIO), Rawalpindi, from July 2011 to June 2014. All consecutive patients with acute CSCR who presented in the outpatient department during the study period were recruited. Clinical findings were endorsed on a pre-devised proforma with special emphasis on inquiring about known systemic risk factors for CSCR in detail from each patient. Patients were managed conservatively with control of modifiable risk factors and topical 0.1% Nepafenac eye drops. Analysis of data was done using SPSS version 13.0. Forty-four eyes of 42 patients were eligible for final analysis. The mean age of study population was 37.38 ±6.31 years with 38 (90.47%) male patients. Elevated serum cortisol and serum testosterone levels were found in 3 and 2 patients, respectively. Known systemic risk factors for CSCR were present in 36 (85.71%) patients with emotional stress/psychiatric disorder 15 (35.71%), Type Apersonality 11 (26.19%), smoking 10 (19.04%), hypertension 5 (11.90%), and acid peptic disease 4 (9.52%) were the most frequently found risk factors. Emotional stress/psychiatric illness, hypertension, acid peptic disease and use of exogenous steroids and other medicines are the established risk factors for CSCR that can be modified/withdrawn to reduce the morbidity related to CSCR.

  18. Genome-wide survey of the soybean GATA transcription factor gene family and expression analysis under low nitrogen stress.

    Directory of Open Access Journals (Sweden)

    Chanjuan Zhang

    Full Text Available GATA transcription factors are transcriptional regulatory proteins that contain a characteristic type-IV zinc finger DNA-binding domain and recognize the conserved GATA motif in the promoter sequence of target genes. Previous studies demonstrated that plant GATA factors possess critical functions in developmental control and responses to the environment. To date, the GATA factors in soybean (Glycine max have yet to be characterized. Thus, this study identified 64 putative GATA factors from the entire soybean genomic sequence. The chromosomal distributions, gene structures, duplication patterns, phylogenetic tree, tissue expression patterns, and response to low nitrogen stress of the 64 GATA factors in soybean were analyzed to further investigate the functions of these factors. Results indicated that segmental duplication predominantly contributed to the expansion of the GATA factor gene family in soybean. These GATA proteins were phylogenetically clustered into four distinct subfamilies, wherein their gene structure and motif compositions were considerably conserved. A comparative phylogenetic analysis of the GATA factor zinc finger domain sequences in soybean, Arabidopsis (Arabidopsis thaliana, and rice (Oryza sativa revealed four major classes. The GATA factors in soybean exhibited expression diversity among different tissues; some of these factors showed tissue-specific expression patterns. Numerous GATA factors displayed upregulation or downregulation in soybean leaf in response to low nitrogen stress, and two GATA factors GATA44 and GATA58 were likely to be involved in the regulation of nitrogen metabolism in soybean. Overexpression of GmGATA44 complemented the reduced chlorophyll phenotype of the Arabidopsis ortholog AtGATA21 mutant, implying that GmGATA44 played an important role in modulating chlorophyll biosynthesis. Overall, our study provides useful information for the further analysis of the biological functions of GATA factors in

  19. Effects of molecular size and chemical factor on plasma gene transfection

    Science.gov (United States)

    Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu; Jinno, Masafumi

    2016-07-01

    In order to clarify the mechanism of plasma gene transfection, the relationship between transfection efficiency and transferred molecular size was investigated. Molecules with low molecular mass (less than 50 kDa; dye or dye-labeled oligonucleotide) and high molecular mass (more than 1 MDa; plasmid DNA or fragment of plasmid DNA) were transferred to L-929 cells. It was found that the transfection efficiency decreases with increasing in transferred molecular size and also depends on the tertiary structure of transferred molecules. Moreover, it was suggested the transfection mechanism is different between the molecules with low (less than 50 kDa) and high molecular mass (higher than 1 MDa). For the amount of gene transfection after plasma irradiation, which is comparable to that during plasma irradiation, it is shown that H2O2 molecules are the main contributor. The transfection efficiency decreased to 0.40 ± 0.22 upon scavenging the H2O2 generated by plasma irradiation using the catalase. On the other hand, when the H2O2 solution is dropped into the cell suspension without plasma irradiation, the transfection efficiency is almost 0%. In these results, it is also suggested that there is a synergetic effect of H2O2 with electrical factors or other reactive species generated by plasma irradiation.

  20. Vascular endothelial growth factor gene polymorphisms in age-related macular degeneration in a Turkish population

    Directory of Open Access Journals (Sweden)

    Yunus Bulgu

    2014-10-01

    Full Text Available AIM:To assess the association between age-related macular degeneration (AMD and three single nucleotide polymorphisms (SNPs related to the vascular endothelial growth factor (VEGF gene.METHODS: The patients who were diagnosed with AMD were included in this prospective study. Three SNPs (rs1413711, rs2146323, and rs3025033 of the VEGF gene were genotyped by real-time polymerase chain reaction in the genomic DNA isolated from peripheral blood samples of the 82 patients and 80 controls.RESULTS: The genotype frequencies of rs1413711 and rs2146323 were not significantly different between the study group and the control group (P=0.072 and P=0.058. However, there was a significant difference in the genotype frequencies of these SNPs between the wet type AMD and dry type AMD (P=0.005 and P=0.010, respectively. One of the SNPs (rs1413711 was also found to be associated with the severity of AMD (P=0.001 with significant genotype distribution between early, intermediate, and advanced stages of the disease. The ancestral alleles were protective for both SNPs while the polymorphic alleles increased the risk for dry AMD.CONCLUSION: VEGF SNPs rs1413711 and rs2146323 polymorphisms are significantly associated with AMD subtypes in our population.

  1. Sequence-based identification of Japanese Armillaria species using the elongation factor-1 alpha gene.

    Science.gov (United States)

    Hasegawa, Eri; Ota, Yuko; Hattori, Tsutomu; Kikuchi, Taisei

    2010-01-01

    We analyzed the sequences of three DNA regions-the translation elongation factor-1 alpha (EF-1 alpha) gene and the internal transcribed spacer (ITS) and intergenic spacer (IGS) regions of ribosomal DNA-to compare their accuracy in identifying species of Japanese Armillaria. We studied 49 isolates of eight Armillaria species, A. mellea, A. ostoyae, A. nabsnona, A. cepistipes, A. gallica, A. sinapina, A. tabescens and the biological species Nagasawa E (Nag. E). Phylogenetic analyses of the ITS and IGS data helped in identifying A. mellea, A. ostoyae, A. nabsnona, A. tabescens and Nag. E but could not be used to identify A. gallica, A. cepistipes and A. sinapina. Nevertheless our analysis showed that the EF-1 alpha gene was clearly different in the eight examined species. Restriction fragment length polymorphisms (RFLP) of the IGS-1 region could be used to distinguish most species, but the RFLP profiles of some isolates of A. cepistipes and A. sinapina were the same even with four different restriction enzymes. In conclusion, among the techniques examined in this study, analyzing the EF-1 alpha sequence was found to be the most suitable method for identifying different species of Japanese Armillaria.

  2. Gene blaCTX-M Mutation as Risk Factor of Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Devinna Kang

    2017-06-01

    Full Text Available Currently there are more than half from all antibiotics used in the world which is belong to β lactam group, but clinical effectiveness of the antibiotics are limited by antibiotic resistance of microorganisms as causative agents from infectious diseases. Several resistance mechanisms for Enterobacteriaceae are mostly caused by enzymatic hydrolysis of antibiotics specific enzymes, called β lactamases. β lactamases represent a large group of enzyme which is genetically and functionally different as extended‑spectrum β-lactamase (ESBL and known as greatest threat of resistence. Plasmid localization from the encoded gene and enzyme distribution among the pathogen increases every year. Most widespread and clinically relevant ESBL are class A ESBL of Temoniera (TEM, Sulphydryl variable (SHV and Cefotaxime (CTX-M types. The purpose of this review was to analyze variant of blaCTX-M gene which cause the most increase incidence of antibiotic resistance. The methods of this review were data-based searching based on Pubmed, Scopus and Google Scholar, without limitation of index factor by using the keyword “blaCTX-M”, “Extended-spectrum β-lactamase”, and “antibiotic resistance”. The conclusion of the review is CTX-M type ESBL have replaced TEM and SHV type as dominant enzyme in last decade. ESBL produced by Klebsiella pneumoniae have emerged as one of major nosocomial pathogens. Nosocomial infection caused by CTX-M-15 in Klebsiella pneumoniae dramatically increased in recent years.

  3. Prognostic factors and scoring system for survival in colonic perforation.

    Science.gov (United States)

    Komatsu, Shuhei; Shimomatsuya, Takumi; Nakajima, Masayuki; Amaya, Hirokazu; Kobuchi, Taketsune; Shiraishi, Susumu; Konishi, Sayuri; Ono, Susumu; Maruhashi, Kazuhiro

    2005-01-01

    No ideal and generally accepted prognostic factors and scoring systems exist to determine the prognosis of peritonitis associated with colonic perforation. This study was designed to investigate prognostic factors and evaluate the various scoring systems to allow identification of high-risk patients. Between 1996 and 2003, excluding iatrogenic and trauma cases, 26 consecutive patients underwent emergency operations for colorectal perforation and were selected for this retrospective study. Several clinical factors were analyzed as possible predictive factors, and APACHE II, SOFA, MPI, and MOF scores were calculated. The overall mortality was 26.9%. Compared with the survivors, non-survivors were found more frequently in Hinchey's stage III-IV, a low preoperative marker of pH, base excess (BE), and a low postoperative marker of white blood cell count, PaO2/FiO2 ratio, and renal output (24h). According to the logistic regression model, BE was a significant independent variable. Concerning the prognostic scoring systems, an APACHE II score of 19, a SOFA score of 8, an MPI score of 30, and an MOF score of 7 or more were significantly related to poor prognosis. Preoperative BE and postoperative white blood cell count were reliable prognostic factors and early classification using prognostic scoring systems at specific points in the disease process are useful to improve our understanding of the problems involved.

  4. Status of human factors engineering system design in Europe

    International Nuclear Information System (INIS)

    Ives, G.

    1990-01-01

    A review of the European status of human factors engineering has been carried out covering a wide scope of activities which includes psychology, cognitive science, ergonomics, design, training, procedure writing, operating, artificial intelligence and expert systems. There is an increasing awareness of the part that human factors play in major nuclear power plant accidents. The emphasis of attention in human factors is changing. In some areas there are encouraging signs of progress and development, but in other areas there is still scope for improvement

  5. Zinc finger nuclease-expressing baculoviral vectors mediate targeted genome integration of reprogramming factor genes to facilitate the generation of human induced pluripotent stem cells.

    Science.gov (United States)

    Phang, Rui-Zhe; Tay, Felix Chang; Goh, Sal-Lee; Lau, Cia-Hin; Zhu, Haibao; Tan, Wee-Kiat; Liang, Qingle; Chen, Can; Du, Shouhui; Li, Zhendong; Tay, Johan Chin-Kang; Wu, Chunxiao; Zeng, Jieming; Fan, Weimin; Toh, Han Chong; Wang, Shu

    2013-12-01

    Integrative gene transfer using retroviruses to express reprogramming factors displays high efficiency in generating induced pluripotent stem cells (iPSCs), but the value of the method is limited because of the concern over mutagenesis associated with random insertion of transgenes. Site-specific integration into a preselected locus by engineered zinc-finger nuclease (ZFN) technology provides a potential way to overcome the problem. Here, we report the successful reprogramming of human fibroblasts into a state of pluripotency by baculoviral transduction-mediated, site-specific integration of OKSM (Oct3/4, Klf4, Sox2, and c-myc) transcription factor genes into the AAVS1 locus in human chromosome 19. Two nonintegrative baculoviral vectors were used for cotransduction, one expressing ZFNs and another as a donor vector encoding the four transcription factors. iPSC colonies were obtained at a high efficiency of 12% (the mean value of eight individual experiments). All characterized iPSC clones carried the transgenic cassette only at the ZFN-specified AAVS1 locus. We further demonstrated that when the donor cassette was flanked by heterospecific loxP sequences, the reprogramming genes in iPSCs could be replaced by another transgene using a baculoviral vector-based Cre recombinase-mediated cassette exchange system, thereby producing iPSCs free of exogenous reprogramming factors. Although the use of nonintegrating methods to generate iPSCs is rapidly becoming a standard approach, methods based on site-specific integration of reprogramming factor genes as reported here hold the potential for efficient generation of genetically amenable iPSCs suitable for future gene therapy applications.

  6. FACTORS FOR THE IMPLEMENTATION OF CHANGE IN MANAGEMENT ACCOUNTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Rodrigo Angonese

    2017-01-01

    Full Text Available This study aimed to analyze the motivating factors of the change process of the management accounting system, from the perspective of institutional theory. The research was classified as descriptive, qualitative, operationalized by explanatory case study. Data were collected through semi-structured interviews and analyzed using content analysis. The results show that in the analyzed case, the change in management accounting systems was motivated by a particular set of factors (improvisation and environmental social pressure, representative of internal and external pressures for organizations, each with its intensity.

  7. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  8. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Science.gov (United States)

    Guo, Yong; Qiu, Li-Juan

    2013-01-01

    The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max). In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs) were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  9. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    Energy Technology Data Exchange (ETDEWEB)

    Mohareer, Krishnaveni [Laboratory of Molecular and Cell Biology, Center for DNA Fingerprinting and Diagnostics, Hyderabad 500001 (India); Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046 (India); Sahdev, Sudhir [Laboratory of Molecular and Cell Biology, Center for DNA Fingerprinting and Diagnostics, Hyderabad 500001 (India); Ranbaxy Pharmaceuticals, Gurgaon, New Delhi (India); Hasnain, Seyed E., E-mail: seh@bioschool.iitd.ac.in [Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046 (India); Kusuma School of Biological Sciences, IIT Delhi, New Delhi 110016 (India); ILBS, Vasant Kunj, New Delhi (India); King Saud University, Riyadh, KSA (Saudi Arabia)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors, which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.

  10. Mammary alveolar cell as evaluation system for casein gene expression involved in glucose level

    Directory of Open Access Journals (Sweden)

    Young Tae Heo

    2017-06-01

    Full Text Available Objective Glucose is an essential fuel in the energy metabolism and synthesis pathways of all mammalian cells. In lactating animals, glucose is the major precursor for lactose and is a substrate for the synthesis of milk proteins and fat in mammary secretory (alveolar epithelial cells. However, clear utilization of glucose in mammary cells during lactogenesis is still unknown, due to the lack of in vitro analyzing models. Therefore, the objective of this study was to test the reliability of the mammary alveolar (MAC-T cell as an in vitro study model for glucose metabolism and lactating system. Methods Undifferentiated MAC-T cells were cultured in three types of Dulbecco’s modified Eagle’s medium with varying levels of glucose (no-glucose: 0 g/L, low-glucose: 1 g/L, and high-glucose: 4.5 g/L for 8 d, after which differentiation to casein secretion was induced. Cell proliferation and expression levels of apoptotic genes, Insulin like growth factor-1 (IGF1 receptor, oxytocin receptor, αS1, αS2, and β casein genes were analyzed at 1, 2, 4, and 8 d after differentiation. Results The proliferation of MAC-T cells with high-glucose treatment was seen to be significantly higher. Expression of apoptotic genes was not affected in any group. However, expression levels of the mammary development related gene (IGF1 receptor and lactation related gene (oxytocin receptor were significantly higher in the low-glucose group. Expressions of αS1-casein, αS2-casein, and β-casein were also higher in the low-glucose treated group as compared to that in the no-glucose and high-glucose groups. Conclusion The results demonstrated that although a high-glucose environment increases cell proliferation in MAC-T cells, a low-glucose treatment to MAC-T cells induces higher expression of casein genes. Our results suggest that the MAC-T cells may be used as an in vitro model to analyze mammary cell development and lactation connected with precise biological effects.

  11. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2017-10-01

    Full Text Available The basic region/leucine zipper motif (bZIP transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed (Brassica napus. In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B. napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B. napus and its parental lines and for molecular breeding studies of bZIP genes in B. napus.

  12. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus.

    Science.gov (United States)

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Lu, Kun; Xu, Xinfu; Wang, Rui; Li, Jiana; Qu, Cunmin

    2017-10-24

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed ( Brassica napus ). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B . napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B . napus and its parental lines and for molecular breeding studies of bZIP genes in B . napus .

  13. Phenylpropanoids accumulation in eggplant fruit: characterization of biosynthetic genes and regulation by a MYB transcription factor

    Directory of Open Access Journals (Sweden)

    Teresa eDocimo

    2016-01-01

    Full Text Available Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena fruits. Chlorogenic acid (CGA accounts for 70 to 90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena.Higher contents of CGA, Delphinidin 3-rutinoside and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group 6 MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties.In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation.Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9 resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of

  14. Exposure to Early Life Stress Results in Epigenetic Changes in Neurotrophic Factor Gene Expression in a Parkinsonian Rat Model

    Directory of Open Access Journals (Sweden)

    Thabisile Mpofana

    2016-01-01

    Full Text Available Early life adversity increases the risk of mental disorders later in life. Chronic early life stress may alter neurotrophic factor gene expression including those for brain derived neurotrophic factor (BDNF and glial cell derived neurotrophic factor (GDNF that are important in neuronal growth, survival, and maintenance. Maternal separation was used in this study to model early life stress. Following unilateral injection of a mild dose of 6-hydroxydopamine (6-OHDA, we measured corticosterone (CORT in the blood and striatum of stressed and nonstressed rats; we also measured DNA methylation and BDNF and GDNF gene expression in the striatum using real time PCR. In the presence of stress, we found that there was increased corticosterone concentration in both blood and striatal tissue. Further to this, we found higher DNA methylation and decreased neurotrophic factor gene expression. 6-OHDA lesion increased neurotrophic factor gene expression in both stressed and nonstressed rats but this increase was higher in the nonstressed rats. Our results suggest that exposure to early postnatal stress increases corticosterone concentration which leads to increased DNA methylation. This effect results in decreased BDNF and GDNF gene expression in the striatum leading to decreased protection against subsequent insults later in life.

  15. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous {beta}-TCP ceramic scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Kulbatski, Iris [Division of Cellular and Molecular Biology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario M5T 2S8 (Canada); Yuan Quan [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Yang Shuhua [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Shao Zengwu [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Wang Hong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Xiao Baojun [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Pan Zhengqi [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Tang Shuo [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China)

    2006-09-15

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous {beta} tricalcium phosphate ({beta}-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new

  16. Matrix metalloproteinase-3, vitamin D receptor gene polymorphisms, and occupational risk factors in lumbar disc degeneration.

    Science.gov (United States)

    Zawilla, N H; Darweesh, H; Mansour, N; Helal, S; Taha, F M; Awadallah, M; El Shazly, R

    2014-06-01

    Lumbar disc degeneration (LDD) is a process that begins early in life, contributing to the development of low back pain. LDD is a consequence of a variety of factors, and its etiology remains poorly understood. Objectives to investigate occupational and genetic risk factors inducing lumbar disc degeneration, and to evaluate the possible association of genetic polymorphisms of matrix metalloproteinase 3 (MMP-3) and vitamin D receptor (VDR) with the severity of LDD in an Egyptian population. A case control study involving 84 LDD and 60 controls was carried out. Five types of work related factors were investigated by questionnaire, complete neurological examination for all subjects and MRI for the cases. Polymerase chain reaction and restriction fragment length polymorphism methods were applied to detect polymorphisms in MMP-3 Promoter (-1,171 6A/5A) (rs 731236) and VDR-Apa (rs 35068180). We found that family history, back injury, smoking, high level of sitting, bending/twisting, physical workload, lifting, whole body vibration, mutant allele 5A of MMP-3 and mutant allele T of VDR were significantly associated with LDD (OR = 2.9, 3.1, 2.1, 11.1, 15.9, 11.7, 8.2, 12.6, 2.5 and 3.1 respectively, p < 0.05). Cases that carry allele 5A and/or allele T were associated with LDD severity. LDD is closely associated in occurrence and severity with occupational, environmental risk factors and susceptibility genes namely MMP-3, and VDR (ApaI). This study throws light on the importance of screening for early detection of susceptible individuals and disease prevention.

  17. Insertion of a nuclear factor kappa B DNA nuclear-targeting sequence potentiates suicide gene therapy efficacy in lung cancer cell lines

    DEFF Research Database (Denmark)

    Cramer, F; Christensen, C L; Poulsen, T T

    2012-01-01

    Lung cancer currently causes the majority of cancer-related deaths worldwide and new treatments are in high demand. Gene therapy could be a promising treatment but currently lacks sufficient efficiency for clinical use, primarily due to limited cellular and nuclear DNA delivery. In the present...... study, we investigated whether it was possible to exploit the endogenous nuclear-shuttling activity by the nuclear factor kappa B (NFκB) system, which is highly prominent in many cancers as well as lung cancer. We observed that insertion of a DNA nuclear-targeting sequence (DTS) recognized by NFκB could...... improve plasmid nuclear delivery and enhance the therapeutic effect of a validated transcriptionally cancer-targeted suicide gene therapy system. A clear correlation between the number of inserted NFκB-binding sites and the therapeutic effect of the suicide system was observed in both small cell lung...

  18. Systemic hypertension and associated factors in school adolescents

    OpenAIRE

    Salma B. Galal; Soheir A. Fahmy; Somia Lashine; Nahed Abdel-Fattah; Mohammed Omar Galal

    2011-01-01

    Background: Systemic hypertension is an endemic disease, which causes serious morbidities and mortality in all age groups. Hypertension of adults in Egypt is 26%. It can start in childhood and needs to be assessed in Egyptian children and adolescents.Aim and objectives: This study aims to investigate the prevalence of systemic hypertension in 12-14 year old school children and associated factors. Methods and study design: A cross sectional study was done in some preparatory public and private...

  19. Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1

    International Nuclear Information System (INIS)

    Nogueira, Leticia M; Lavigne, Jackie A; Chandramouli, Gadisetti V R; Lui, Huaitian; Barrett, J Carl; Hursting, Stephen D

    2012-01-01

    The prevalence of obesity, an established risk and progression factor for breast and many other cancer types, remains very high in the United States and throughout the world. Calorie restriction (CR), a reduced-calorie dietary regimen typically involving a 20–40% reduction in calorie consumption, prevents or reverses obesity, and inhibits mammary and other types of cancer in multiple tumor model systems. Unfortunately, the mechanisms underlying the tumor inhibitory effects of CR are poorly understood, and a better understanding of these mechanisms may lead to new intervention targets and strategies for preventing or controlling cancer. We have previously shown that the anticancer effects of CR are associated with decreased systemic levels of insulin-like growth factor-1 (IGF-1), the primary source of which is liver. We have also reported that CR strongly suppresses tumor development and growth in multiple mammary cancer models. To identify CR-responsive genes and pathways, and to further characterize the role of IGF-1 as a mediator of the anticancer effects of CR, we assessed hepatic and mammary gland gene expression, hormone levels and growth of orthotopically transplanted mammary tumors in control and CR mice with and without exogenous IGF-1. C57BL/6 mice were fed either control AIN-76A diet ad libitum (AL), subjected to 20%, 30%, or 40% CR plus placebo timed-release pellets, or subjected to 30% or 40% CR plus timed-release pellets delivering murine IGF-1 (mIGF-1, 20 μg/day). Compared with AL-fed controls, body weights were decreased 14.3% in the 20% CR group, 18.5% in the 30% CR group, and 38% in the 40% CR group; IGF-1 infusion had no effect on body weight. Hepatic transcriptome analyses indicated that compared with 20% CR, 30% CR significantly modulated more than twice the number of genes and 40% CR more than seven times the number of genes. Many of the genes specific to the 40% CR regimen were hepatic stress-related and/or DNA damage-related genes

  20. Critical factors in the implementation process of integrated management systems

    Directory of Open Access Journals (Sweden)

    Ademir Antonio Ferreira

    2015-09-01

    Full Text Available This study is the result of research whose purpose was to study the implementation process of integrated management systems, called ERP Enterprise Resource Planning in the business environment. This study, more specifically, tried to identify the variables in this process and that, somehow, made it easy or caused some type of difficulty implementing the system. Based on the mixed method approach (Creswell, 2003, the study was performed by means of the content analysis of technical and scientific publications about this theme and by means of a field research for data collection from primary sources. The content analysis was based on the per mile procedure by Bardin (1977, making it possible to identify critical factors that may be found in the implementation of ERP system projects. Primary data was collected from structured interviews with the managers in charge of the implementation of the system, in each of the 12 companies in different sectors of the economy and based in Brazil. Based on this information, it was possible to test the factors extracted from the content analysis and then develop a list of factors that may effectively influence the implementation process of the system. In order to recognize the possible relations between the selected factors, the Spearman (rsp correlation coefficient was applied and the multiple regression analysis was performed by means of the stepwise procedure. The purpose of the regression analysis was to determine the relation of the “Assessment of the Implementation” dependent variable with other dependent variables in the selected categories. The results of these analyses showed that the support of the top management, the communication process for the clear evidence of this support, the technical support of the ERP program provider together with the project team expertise, training and qualification processes of the team in the system operation are significantly correlated and relevant factors for a

  1. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium.

    Science.gov (United States)

    Tomoyasu, Yoshinori; Miller, Sherry C; Tomita, Shuichiro; Schoppmeier, Michael; Grossmann, Daniela; Bucher, Gregor

    2008-01-17

    RNA interference (RNAi) is a highly conserved cellular mechanism. In some organisms, such as Caenorhabditis elegans, the RNAi response can be transmitted systemically. Some insects also exhibit a systemic RNAi response. However, Drosophila, the leading insect model organism, does not show a robust systemic RNAi response, necessitating another model system to study the molecular mechanism of systemic RNAi in insects. We used Tribolium, which exhibits robust systemic RNAi, as an alternative model system. We have identified the core RNAi genes, as well as genes potentially involved in systemic RNAi, from the Tribolium genome. Both phylogenetic and functional analyses suggest that Tribolium has a somewhat larger inventory of core component genes than Drosophila, perhaps allowing a more sensitive response to double-stranded RNA (dsRNA). We also identified three Tribolium homologs of C. elegans sid-1, which encodes a possible dsRNA channel. However, detailed sequence analysis has revealed that these Tribolium homologs share more identity with another C. elegans gene, tag-130. We analyzed tag-130 mutants, and found that this gene does not have a function in systemic RNAi in C. elegans. Likewise, the Tribolium sid-like genes do not seem to be required for systemic RNAi. These results suggest that insect sid-1-like genes have a different function than dsRNA uptake. Moreover, Tribolium lacks homologs of several genes important for RNAi in C. elegans. Although both Tribolium and C. elegans show a robust systemic RNAi response, our genome-wide survey reveals significant differences between the RNAi mechanisms of these organisms. Thus, insects may use an alternative mechanism for the sys