Sample records for factor receptor specific

  1. Receptors for T cell-replacing factor/interleukin 5. Specificity, quantitation, and its implication



    T cell-replacing factor (TRF)/IL-5 is a glycosylated polypeptide that acts as a key factor for B cell growth and differentiation. Since IL-5 action is probably mediated by specific cell surface receptor(s), we have characterized the binding of IL-5 to cells using biosynthetically [35S]methionine-labeled IL-5 and 125I-IL-5 that had been prepared using Bolton-Hunter reagent. The radiolabeled IL-5 binds specifically to BCL1- B20 (in vitro line) (a murine chronic B cell leukemic cell line previou...

  2. Specific antibodies and sensitive immunoassays for the human epidermal growth factor receptors (HER2, HER3, and HER4). (United States)

    Broughton, Marianne Nordlund; Westgaard, Arne; Paus, Elisabeth; Øijordsbakken, Miriam; Henanger, Karoline J; Naume, Bjørn; Bjøro, Trine


    The use of trastuzumab in patients with breast cancer that overexpresses human epidermal growth factor receptor 2 has significantly improved treatment outcomes. However, a substantial proportion of this patient group still experiences progression of the disease after receiving the drug. Evaluation of the changes in expression of the human epidermal growth factor receptors could be of interest. Monoclonal antibodies against the extracellular domain of the human growth factor receptors, 2, 3, and 4, have been raised, and specific and sensitive immunoassays have been established. Sera from healthy individuals (Nordic Reference Interval Project and Database) were analyzed in the human epidermal growth factor receptor 2 assay (N = 805) and the human epidermal growth factor receptor 3 and 4 assays (N = 114), and reference limits were calculated. In addition, sera from 208 individual patients with breast cancer were tested in all three assays. Finally, the human epidermal growth factor receptor 2 assay was compared with a chemiluminescent immunoassay for serum human epidermal growth factor receptor 2/neu. Reference values were as follows: human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, human epidermal growth factor receptor 4, human epidermal growth factor receptor 2 and human epidermal growth factor receptor 3 serum levels between the patients with tissue human epidermal growth factor receptor 2-positive and tissue human epidermal growth factor receptor 2-negative ( p = 0.0026, p = 0.000011) tumors, but not in the serum levels of human epidermal growth factor receptor 4 ( p = 0.054). There was good agreement between the in-house human epidermal growth factor receptor 2 assay and the chemiluminescent immunoassay. Our new specific antibodies for all the three human epidermal growth factor receptors may prove valuable in the development of novel anti-human epidermal growth factor receptor targeted therapies with

  3. Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs (United States)

    Pihlajamaa, Päivi; Sahu, Biswajyoti; Lyly, Lauri; Aittomäki, Viljami; Hautaniemi, Sampsa; Jänne, Olli A


    Androgen receptor (AR) binds male sex steroids and mediates physiological androgen actions in target tissues. ChIP-seq analyses of AR-binding events in murine prostate, kidney and epididymis show that in vivo AR cistromes and their respective androgen-dependent transcription programs are highly tissue specific mediating distinct biological pathways. This high order of tissue specificity is achieved by the use of exclusive collaborating factors in the three androgen-responsive tissues. We find two novel collaborating factors for AR signaling in vivo—Hnf4α (hepatocyte nuclear factor 4α) in mouse kidney and AP-2α (activating enhancer binding protein 2α) in mouse epididymis—that define tissue-specific AR recruitment. In mouse prostate, FoxA1 serves for the same purpose. FoxA1, Hnf4α and AP-2α motifs are over-represented within unique AR-binding loci, and the cistromes of these factors show substantial overlap with AR-binding events distinct to each tissue type. These licensing or pioneering factors are constitutively bound to chromatin and guide AR to specific genomic loci upon hormone exposure. Collectively, liganded receptor and its DNA-response elements are required but not sufficient for establishment of tissue-specific transcription programs. PMID:24451200

  4. Structural basis by which alternative splicing confers specificity in fibroblast growth factor receptors. (United States)

    Yeh, Brian K; Igarashi, Makoto; Eliseenkova, Anna V; Plotnikov, Alexander N; Sher, Ifat; Ron, Dina; Aaronson, Stuart A; Mohammadi, Moosa


    Binding specificity between fibroblast growth factors (FGFs) and their receptors (FGFRs) is essential for mammalian development and is regulated primarily by two alternatively spliced exons, IIIb ("b") and IIIc ("c"), that encode the second half of Ig-like domain 3 (D3) of FGFRs. FGF7 and FGF10 activate only the b isoform of FGFR2 (FGFR2b). Here, we report the crystal structure of the ligand-binding portion of FGFR2b bound to FGF10. Unique contacts between divergent regions in FGF10 and two b-specific loops in D3 reveal the structural basis by which alternative splicing provides FGF10-FGFR2b specificity. Structure-based mutagenesis of FGF10 confirms the importance of the observed contacts for FGF10 biological activity. Interestingly, FGF10 binding induces a previously unobserved rotation of receptor Ig domain 2 (D2) to introduce specific contacts with FGF10. Hence, both D2 and D3 of FGFR2b contribute to the exceptional specificity between FGF10 and FGFR2b. We propose that ligand-induced conformational change in FGFRs may also play an important role in determining specificity for other FGF-FGFR complexes.

  5. Detection of isoform-specific fibroblast growth factor receptors by whole-mount in situ hybridization in early chick embryos. (United States)

    Nishita, Junko; Ohta, Sho; Bleyl, Steven B; Schoenwolf, Gary C


    We have developed "b" and "c" isoform-specific chicken fibroblast growth factor (FGF) receptor 1-3 probes for in situ hybridization. We rigorously demonstrate the specificity of these probes by using both dot blot hybridization and whole-mount in situ hybridization during neurulation and early postneurulation stages, and we compare expression patterns of each of the three isoform-specific probes to one another and to generic probes to each of the three (non-isoform-specific) FGF receptors. We show that the expression pattern of each receptor is represented by the collective expression of each of its two isoforms, with the expression of each FGF receptor being most similar to that of its "c" isoform at two of the three stages studied, and that tissue and stage differences exist in the patterns of expression of the six isoforms. We demonstrate the usefulness of these probes for defining the differential tissue expression of FGF receptor 1-3 isoforms.

  6. Brain-Specific Homeobox Factor as a Target Selector for Glucocorticoid Receptor in Energy Balance (United States)

    Lee, Bora; Kim, Sun-Gyun; Kim, Juhee; Choi, Kwan Yong; Lee, Soo-Kyung


    The molecular basis underlying the physiologically well-defined orexigenic function of glucocorticoid (Gc) is unclear. Brain-specific homeobox factor (Bsx) is a positive regulator of the orexigenic neuropeptide, agouti-related peptide (AgRP), in AgRP neurons of the hypothalamic arcuate nucleus. Here, we show that in response to fasting-elevated Gc levels, Gc receptor (GR) and Bsx synergize to direct activation of AgRP transcription. This synergy is dictated by unique sequence features in a novel Gc response element in AgRP (AgRP-GRE). In contrast to AgRP-GRE, Bsx suppresses transactivation directed by many conventional GREs, functioning as a gene context-dependent modulator of GR actions or a target selector for GR. Consistent with this finding, AgRP-GRE drives fasting-dependent activation of a target gene specifically in GR+ Bsx+ AgRP neurons. These results define AgRP as a common orexigenic target gene of GR and Bsx and provide an opportunity to identify their additional common targets, facilitating our understanding of the molecular basis underlying the orexigenic activity of Gc and Bsx. PMID:23671185

  7. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity. (United States)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi


    Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher's attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56±7.3nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  8. Brain-specific homeobox factor as a target selector for glucocorticoid receptor in energy balance. (United States)

    Lee, Bora; Kim, Sun-Gyun; Kim, Juhee; Choi, Kwan Yong; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W


    The molecular basis underlying the physiologically well-defined orexigenic function of glucocorticoid (Gc) is unclear. Brain-specific homeobox factor (Bsx) is a positive regulator of the orexigenic neuropeptide, agouti-related peptide (AgRP), in AgRP neurons of the hypothalamic arcuate nucleus. Here, we show that in response to fasting-elevated Gc levels, Gc receptor (GR) and Bsx synergize to direct activation of AgRP transcription. This synergy is dictated by unique sequence features in a novel Gc response element in AgRP (AgRP-GRE). In contrast to AgRP-GRE, Bsx suppresses transactivation directed by many conventional GREs, functioning as a gene context-dependent modulator of GR actions or a target selector for GR. Consistent with this finding, AgRP-GRE drives fasting-dependent activation of a target gene specifically in GR(+) Bsx(+) AgRP neurons. These results define AgRP as a common orexigenic target gene of GR and Bsx and provide an opportunity to identify their additional common targets, facilitating our understanding of the molecular basis underlying the orexigenic activity of Gc and Bsx.

  9. Specific epidermal growth factor receptor autophosphorylation sites promote mouse colon epithelial cell chemotaxis and restitution. (United States)

    Yamaoka, Toshimitsu; Frey, Mark R; Dise, Rebecca S; Bernard, Jessica K; Polk, D Brent


    Upon ligand binding, epidermal growth factor (EGF) receptor (R) autophosphorylates on COOH-terminal tyrosines, generating docking sites for signaling partners that stimulate proliferation, restitution, and chemotaxis. Specificity for individual EGFR tyrosines in cellular responses has been hypothesized but not well documented. Here we tested the requirement for particular tyrosines, and associated downstream pathways, in mouse colon epithelial cell chemotactic migration. We compared these requirements to those for the phenotypically distinct restitution (wound healing) migration. Wild-type, Y992/1173F, Y1045F, Y1068F, and Y1086F EGFR constructs were expressed in EGFR(-/-) cells; EGF-induced chemotaxis or restitution were determined by Boyden chamber or modified scratch wound assay, respectively. Pharmacological inhibitors of p38, phospholipase C (PLC), Src, MEK, JNK/SAPK, phosphatidylinositol 3-kinase (PI 3-kinase), and protein kinase C (PKC) were used to block EGF-stimulated signaling. Pathway activation was determined by immunoblot analysis. Unlike wild-type EGFR, Y992/1173F and Y1086F EGFR did not stimulate colon epithelial cell chemotaxis toward EGF; Y1045F and Y1068F EGFR partially stimulated chemotaxis. Only wild-type EGFR promoted colonocyte restitution. Inhibition of p38, PLC, and Src, or Grb2 knockdown, blocked chemotaxis; JNK, PI 3-kinase, and PKC inhibitors or c-Cbl knockdown blocked restitution but not chemotaxis. All four EGFR mutants stimulated downstream signaling in response to EGF, but Y992/1173F EGFR was partially defective in PLCγ activation whereas both Y1068F and Y1086F EGFR failed to activate Src. We conclude that specific EGFR tyrosines play key roles in determining cellular responses to ligand. Chemotaxis and restitution, which have different migration phenotypes and physiological consequences, have overlapping but not identical EGFR signaling requirements.

  10. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng-Liang [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang, Hai-Tao; Wang, Jiang-Jie [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yao, Pei-Sen [Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Pan, Ru-Jun [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yang, Chaoyong James, E-mail: [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Kang, De-Zhi, E-mail: [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)


    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  11. Analysis of the epidermal growth factor receptor specific transcriptome: effect of receptor expression level and an activating mutation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel W; Pedersen, Nina; Damstrup, Lars;


    moderately expressed or overexpressed at an in-itself transforming level. These changes were compared to those induced by the naturally occurring constitutively active variant EGFRvIII. This study provides novel insight on the activities and mechanisms of EGFRvIII and EGFR mediated transformation, as genes...... by interferons. Expression of this module was absent in the EGFRvIII-expressing cell line and the parental cell line. Treatment with the specific EGFR inhibitor AG1478 indicated that the regulations were primary, receptor-mediated events. Furthermore, activation of this module correlated with activation of STAT1...

  12. Stage-specific localization of transforming growth factor β1 and β3 and their receptors during spermatogenesis in men

    Institute of Scientific and Technical Information of China (English)

    Yuan-QiangZhang; Xiao-ZhouHe; Jin-ShanZhang; Rui-AnWang; JieZhou; Ruo-JunXu


    Aim: To investigate the stage-specific localization of transforming growth factor (TGF) β1 and β3 during spermatogenesis in adult human testis, Methods: The localization of TGFβ1 and β3 was investigated by immunohistochemical staining method employing specific polyclonal antibodies. Results: Both TGFβ1 and β3 and their receptors were preponderant in the Leydig cells. TGFβ1 could not be detected in the seminiferous tubules. TGFβ3 and TGFβ-Receptor (R) Ⅰ were mainly seen in the elongated spermatids, while TGFβ-RⅡ in the pachytene spermatocytes and weak in the spermatogonia, spermatids and Sertoli cells. Only TGFβ-RⅡ was detected in the Sertoli cells.TGFβ3, TGFβ-RⅠ and TGFβ-RⅡ showed a staining pattern dependent upon the stages of the seminiferous epithelium cycle. Conclusion: TGFβ isoforms and their receptors are present in the somatic and germ cells of the adult humantestis, suggesting their involvement in the regulation of spermatogenesis.

  13. Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3. (United States)

    Rauchenberger, Robert; Borges, Eric; Thomassen-Wolf, Elisabeth; Rom, Eran; Adar, Rivka; Yaniv, Yael; Malka, Michael; Chumakov, Irina; Kotzer, Sarit; Resnitzky, Dalia; Knappik, Achim; Reiffert, Silke; Prassler, Josef; Jury, Karin; Waldherr, Dirk; Bauer, Susanne; Kretzschmar, Titus; Yayon, Avner; Rothe, Christine


    The human combinatorial antibody library Fab 1 (HuCAL-Fab 1) was generated by transferring the heavy and light chain variable regions from the previously constructed single-chain Fv library (Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wölle, J., Plückthun, A., and Virnekäs, B. (2000) J. Mol. Biol. 296, 57-86), diversified in both complementarity-determining regions 3 into a novel Fab display vector, yielding 2.1 x 10(10) different antibody fragments. The modularity has been retained in the Fab display and screening plasmids, ensuring rapid conversion into various antibody formats as well as antibody optimization using prebuilt maturation cassettes. HuCAL-Fab 1 was challenged against the human fibroblast growth factor receptor 3, a potential therapeutic antibody target, against which, to the best of our knowledge, no functional antibodies could be generated so far. A unique screening mode was designed utilizing recombinant functional proteins and cell lines differentially expressing fibroblast growth factor receptor isoforms diversified in expression and receptor dependence. Specific Fab fragments with subnanomolar affinities were isolated by selection without any maturation steps as determined by fluorescence flow cytometry. Some of the selected Fab fragments completely inhibit target-mediated cell proliferation, rendering them the first monoclonal antibodies against fibroblast growth factor receptors having significant function blocking activity. This study validates HuCAL-Fab 1 as a valuable source for the generation of target-specific antibodies for therapeutic applications.

  14. The cytokines cardiotrophin-like cytokine/cytokine-like factor-1 (CLC/CLF) and ciliary neurotrophic factor (CNTF) differ in their receptor specificities. (United States)

    Tormo, Aurélie Jeanne; Letellier, Marie-Claude; Lissilaa, Rami; Batraville, Laurie-Anne; Sharma, Mukut; Ferlin, Walter; Elson, Greg; Crabé, Sandrine; Gauchat, Jean-François


    Ciliary neurotrophic factor (CNTF) and cardiotrophin-like cytokine (CLC) are two cytokines with neurotrophic and immunomodulatory activities. CNTF is a cytoplasmic factor believed to be released upon cellular damage, while CLC requires interaction with a soluble cytokine receptor, cytokine-like factor 1 (CLF), to be efficiently secreted. Both cytokines activate a receptor complex comprising the cytokine binding CNTF receptor α (CNTFRα) and two signaling chains namely, leukemia inhibitory factor receptor β (LIFRβ) and gp130. Human CNTF can recruit and activate an alternative receptor in which CNTFRα is substituted by IL-6Rα. As both CNTF and CLC have immune-regulatory activities in mice, we compared their ability to recruit mouse receptors comprising both gp130 and LIFRβ signaling chains and either IL-6Rα or IL-11Rα which, unlike CNTFRα, are expressed by immune cells. Our results indicate that 1) mouse CNTF, like its human homologue, can activate cells expressing gp130/LIFRβ with either CNTFRα or IL-6Rα and, 2) CLC/CLF is more restricted in its specificity in that it activates only the tripartite CNTFR. Several gp130 signaling cytokines influence T helper cell differentiation. We therefore investigated the effect of CNTF on CD4 T cell cytokine production. We observed that CNTF increased the number of IFN-γ producing CD4 T cells. As IFN-γ is considered a mediator of the therapeutic effect of IFN-β in multiple sclerosis, induction of IFN-γ by CNTF may contribute to the beneficial immunomodulatory effect of CNTF in mouse multiple sclerosis models. Together, our results indicate that CNTF activates the same tripartite receptors in mouse and human cells and further validate rodent models for pre-clinical investigation of CNTF and CNTF derivatives. Furthermore, CNTF and CLC/CLF differ in their receptor specificities. The receptor α chain involved in the immunomodulatory effects of CLC/CLF remains to be identified.

  15. The specificity protein factor Sp1 mediates transcriptional regulation of P2X7 receptors in the nervous system. (United States)

    García-Huerta, Paula; Díaz-Hernandez, Miguel; Delicado, Esmerilda G; Pimentel-Santillana, María; Miras-Portugal, M Teresa; Gómez-Villafuertes, Rosa


    P2X7 receptors are involved not only in physiological functions but also in pathological brain processes. Although an increasing number of findings indicate that altered receptor expression has a causative role in neurodegenerative diseases and cancer, little is known about how expression of P2rx7 gene is controlled. Here we reported the first molecular and functional evidence that Specificity protein 1 (Sp1) transcription factor plays a pivotal role in the transcriptional regulation of P2X7 receptor. We delimited a minimal region in the murine P2rx7 promoter containing four SP1 sites, two of them being highly conserved in mammals. The functionality of these SP1 sites was confirmed by site-directed mutagenesis and Sp1 overexpression/down-regulation in neuroblastoma cells. Inhibition of Sp1-mediated transcriptional activation by mithramycin A reduced endogenous P2X7 receptor levels in primary cultures of cortical neurons and astrocytes. Using P2rx7-EGFP transgenic mice that express enhanced green fluorescent protein under the control of P2rx7 promoter, we found a high correlation between reporter expression and Sp1 levels in the brain, demonstrating that Sp1 is a key element in the transcriptional regulation of P2X7 receptor in the nervous system. Finally, we found that Sp1 mediates P2X7 receptor up-regulation in neuroblastoma cells cultured in the absence of serum, a condition that enhances chromatin accessibility and facilitates the exposure of SP1 binding sites.

  16. Etk/Bmx as a tumor necrosis factor receptor type 2-specific kinase: role in endothelial cell migration and angiogenesis. (United States)

    Pan, Shi; An, Ping; Zhang, Rong; He, Xiangrong; Yin, Guoyong; Min, Wang


    Tumor necrosis factor (TNF) is a cytokine that mediates many pathophysiologial processes, including angiogenesis. However, the molecular signaling involved in TNF-induced angiogenesis has not been determined. In this study, we examined the role of Etk/Bmx, an endothelial/epithelial tyrosine kinase involved in cell adhesion, migration, and survival in TNF-induced angiogenesis. We show that TNF activates Etk specifically through TNF receptor type 2 (TNFR2) as demonstrated by studies using a specific agonist to TNFR2 and TNFR2-deficient cells. Etk forms a preexisting complex with TNFR2 in a ligand-independent manner, and the association is through multiple domains (pleckstrin homology domain, TEC homology domain, and SH2 domain) of Etk and the C-terminal domain of TNFR2. The C-terminal 16-amino-acid residues of TNFR2 are critical for Etk association and activation, and this Etk-binding and activating motif in TNFR2 is not overlapped with the TNFR-associated factor type 2 (TRAF2)-binding sequence. Thus, TRAF2 is not involved in TNF-induced Etk activation, suggesting a novel mechanism for Etk activation by cytokine receptors. Moreover, a constitutively active form of Etk enhanced, whereas a dominant-negative Etk blocked, TNF-induced endothelial cell migration and tube formation. While most TNF actions have been attributed to TNFR1, our studies demonstrate that Etk is a TNFR2-specific kinase involved in TNF-induced angiogenic events.

  17. Epidermal growth factor receptor-targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity (United States)

    Zhai, Jiali; Scoble, Judith A.; Li, Nan; Lovrecz, George; Waddington, Lynne J.; Tran, Nhiem; Muir, Benjamin W.; Coia, Gregory; Kirby, Nigel; Drummond, Calum J.; Mulet, Xavier


    Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles were demonstrated to have high affinity for an EGFR target in a ligand binding assay.Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles

  18. Peptides derived from specific interaction sites of the fibroblast growth factor 2 - FGF receptor complexes induce receptor activation and signaling

    DEFF Research Database (Denmark)

    Manfè, Valentina; Kochoyan, Artur; Bock, Elisabeth


    , promoting survival of cerebellar granule neurons induced to undergo apoptosis. Our results suggest that canofins mirror the effect of specific interaction sites in FGF2 for FGFR. Thus, canofins are valuable pharmacological tools to study the functional roles of specific molecular interactions of FGF2...... by canofins, indicating that canofins are partial FGFR agonists. Furthermore, canofins were demonstrated to induce neuronal differentiation determined by neurite outgrowth from cerebellar granule neurons, and this effect was dependent on FGFR activation. Additionally, canofins acted as neuroprotectants...

  19. Parathyroid-specific epidermal growth factor-receptor inactivation prevents uremia-induced parathyroid hyperplasia in mice. (United States)

    Arcidiacono, Maria Vittoria; Yang, Jing; Fernandez, Elvira; Dusso, Adriana


    In chronic kidney disease (CKD), parathyroid hyperplasia contributes to high serum parathyroid hormone (PTH) and also to an impaired suppression of secondary hyperparathyroidism by calcium, vitamin D and fibroblast growth factor 23 (FGF23). In rats, systemic inhibition of epidermal growth factor receptor (EGFR) activation markedly attenuated uremia-induced parathyroid hyperplasia and vitamin D receptor (VDR) loss, hence restoring the response to vitamin D. Therefore, we propose that parathyroid-specific EGFR inactivation should prevent CKD-induced parathyroid hyperplasia. A dominant-negative human EGFR mutant, which forms non-functional heterodimers with full-length endogenous EGFR, was successfully targeted to the parathyroid glands (PTGs) of FVB/N mice, using the 5' regulatory sequence of the PTH promoter. The parathyroid phenotype and serum chemistries of wild-type (WT) and transgenic mice were examined after 14 weeks of either sham operation or 75% renal mass reduction (NX). Both genotypes had similar morphology and body weight, and NX-induction enhanced similarly serum blood urea nitrogen compared with sham-operated controls. However, despite similar serum calcium, phosphate and FGF23 levels in NX mice of both genotypes, parathyroid EGFR inactivation sufficed to completely prevent the marked increases in PTG enlargement, serum PTH and in parathyroid levels of transforming growth factor-α, a powerful EGFR-activator, and the VDR reductions observed in WT mice. In CKD, parathyroid EGFR activation is essential for parathyroid hyperplasia and VDR loss, rendering this transgenic mouse a unique tool to scrutinize the pathogenesis of parathyroid and multiple organ dysfunction of CKD progression unrelated to parathyroid hyperplasia. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  20. Induction of Pro-Angiogenic Factors by Pregnancy-Specific Glycoproteins and Studies on Receptor Usage (United States)


    p. 904-14. 30. Graham, C.H. and P.K. Lala , Mechanism of control of trophoblast invasion in situ. J Cell Physiol, 1991. 148(2): p. 228-34. 31...Microbiol Immunol, 1992. 5(5-6): p. 289-308. 139. Irving, J.A. and P.K. Lala , Functional role of cell surface integrins on human trophoblast cell...differentiation. Biol Reprod, 1992. 46(4): p. 561-72. 159. Lala , P.K. and C. Chakraborty, Factors regulating trophoblast migration and invasiveness: possible

  1. A transcriptional repressive role for epithelial-specific ETS factor ELF3 on oestrogen receptor alpha in breast cancer cells. (United States)

    Gajulapalli, Vijaya Narasihma Reddy; Samanthapudi, Venkata Subramanyam Kumar; Pulaganti, Madhusudana; Khumukcham, Saratchandra Singh; Malisetty, Vijaya Lakhsmi; Guruprasad, Lalitha; Chitta, Suresh Kumar; Manavathi, Bramanandam


    Oestrogen receptor-α (ERα) is a ligand-dependent transcription factor that primarily mediates oestrogen (E2)-dependent gene transcription required for mammary gland development. Coregulators critically regulate ERα transcription functions by directly interacting with it. In the present study, we report that ELF3, an epithelial-specific ETS transcription factor, acts as a transcriptional repressor of ERα. Co-immunoprecipitation (Co-IP) analysis demonstrated that ELF3 strongly binds to ERα in the absence of E2, but ELF3 dissociation occurs upon E2 treatment in a dose- and time-dependent manner suggesting that E2 negatively influences such interaction. Domain mapping studies further revealed that the ETS (E-twenty six) domain of ELF3 interacts with the DNA binding domain of ERα. Accordingly, ELF3 inhibited ERα's DNA binding activity by preventing receptor dimerization, partly explaining the mechanism by which ELF3 represses ERα transcriptional activity. Ectopic expression of ELF3 decreases ERα transcriptional activity as demonstrated by oestrogen response elements (ERE)-luciferase reporter assay or by endogenous ERα target genes. Conversely ELF3 knockdown increases ERα transcriptional activity. Consistent with these results, ELF3 ectopic expression decreases E2-dependent MCF7 cell proliferation whereas ELF3 knockdown increases it. We also found that E2 induces ELF3 expression in MCF7 cells suggesting a negative feedback regulation of ERα signalling in breast cancer cells. A small peptide sequence of ELF3 derived through functional interaction between ERα and ELF3 could inhibit DNA binding activity of ERα and breast cancer cell growth. These findings demonstrate that ELF3 is a novel transcriptional repressor of ERα in breast cancer cells. Peptide interaction studies further represent a novel therapeutic option in breast cancer therapy. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Generation and characterization of a panel of monoclonal antibodies specific for human fibroblast growth factor receptor 4 (FGFR4). (United States)

    Chen, Chaoyuan; Patel, Sima; Corisdeo, Susanne; Liu, Xiangdong; Micolochick, Holly; Xue, Jiyang; Yang, Qifeng; Lei, Ying; Wang, Baiyang; Soltis, Daniel


    Fibroblast growth factor receptor 4 (FGFR4) is a member of the FGFR family of receptor tyrosine kinases, and plays important roles in a variety of biological functions such as cell proliferation, differentiation, migration, angiogenesis, tissue repair, and tumorigenesis. The human FGFRs share a high degree of sequence homology between themselves, as well as with their murine homologs. Consequently, it has been suggested that it may be difficult to prepare monoclonal antibodies (MAbs) that are specific for the individual receptor types. In this communication, we report on the development and characterization of a panel of anti-human FGFR4 MAbs that were generated in mice using a rapid immunization protocol. Using a modified rapid immunization at multiple sites (RIMMS) protocol with the soluble extracellular domain of human FGFR4 (FGFR4-ECD), the immunized mice developed high levels of polyclonal IgG to the immunogen within 13 days of the first immunization. The lymph node cells isolated from the immunized animals were then fused with mouse myeloma cells for hybridoma generation. Use of an efficient hybridoma cloning protocol in combination with an ELISA screening procedure allowed for early identification of stable hybridomas secreting antihuman FGFR4 IgG. Several identified MAbs specifically reacted with the FGFR4 protein without binding to the other human isoforms (FGFR1, FGFR2, and FGFR3). As evaluated by BIAcore analysis, most anti-FGFR4 MAbs displayed high affinities (8.6 x 10(8) approximately 3.9 x 10(10) M) to FGFR4. Furthermore, these MAbs were able to bind to FGFR4 expressed on human breast tumor cell lines MDA-MB-361 and MDA-MB-453. Taken together, the results demonstrate that the RIMMS strategy is an effective approach for generating class-switched, high-affinity MAbs in mice to evolutionarily conserved proteins such as human FGFR4. These MAbs may be useful tools for further investigation of the biological functions and pathological roles of human FGFR4.

  3. Isolation from Gluconacetobacter diazotrophicus cell walls of specific receptors for sugarcane glycoproteins, which act as recognition factors. (United States)

    Blanco, Y; Arroyo, M; Legaz, M E; Vicente, C


    Glycoproteins from sugarcane stalks have been isolated from plants field-grown by size-exclusion chromatography. Some of these glycoproteins, previously labelled with fluorescein isothiocyanate, are able to bind to the cell wall of the sugarcane endophyte, N2-fixing Gluconacetobacter diazotrophicus, and largely removed after washing the bacterial cells with sucrose. This implies that sugarcane glycoproteins use beta-(1-->2)-fructofuranosyl fructose domains in their glycosidic moiety to bind to specific receptors in the bacterial cell walls. These receptors have been isolated by affinity chromatography on a sugarcane glycoprotein-agarose matrix, desorbed with sucrose and characterized by sodium dodecyl sulfate polyacrylamide gel electrophresisand capillary electrophoresis (CE).

  4. The semaphorin receptor plexin-B1 signals through a direct interaction with the Rho-specific nucleotide exchange factor, LARG. (United States)

    Aurandt, Jennifer; Vikis, Haris G; Gutkind, J Silvio; Ahn, Natalie; Guan, Kun-Liang


    Semaphorins are axon guidance molecules that signal through the plexin family of receptors. Semaphorins also play a role in other processes such as immune regulation and tumorigenesis. However, the molecular signaling mechanisms downstream of plexin receptors have not been elucidated. Semaphorin 4D is the ligand for the plexin-B1 receptor and stimulation of the plexin-B1 receptor activates the small GTPase RhoA. Using the intracellular domain of plexin-B1 as an affinity ligand, two Rho-specific guanine nucleotide exchange factors, leukemia-associated Rho GEF (LARG; GEF, guanine nucleotide exchange factors) and PSD-95/Dlg/ZO-1 homology (PDZ)-RhoGEF, were isolated from mouse brain as plexin-B1-specific interacting proteins. LARG and PDZ-RhoGEF contain several functional domains, including a PDZ domain. Biochemical characterizations showed that the PDZ domain of LARG is directly involved in the interaction with the carboxy-terminal sequence of plexin-B1. Mutation of either the PDZ domain in LARG or the PDZ binding site in plexin-B1 eliminates the interaction. The interaction between plexin-B1 and LARG is specific for the PDZ domain of LARG and LARG does not interact with plexin-A1. A LARG-interaction defective mutant of the plexin-B1 receptor was created and was unable to stimulate RhoA activation. The data in this report suggest that LARG plays a critical role in plexin-B1 signaling to stimulate Rho activation and cytoskeletal reorganization.

  5. Human antibody fragments specific for the epidermal growth factor receptor selected from large non-immunised phage display libraries. (United States)

    Souriau, Christelle; Rothacker, Julie; Hoogenboom, Hennie R; Nice, Edouard


    Antibodies to EGFR have been shown to display anti-tumour effects mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. Humanised antibodies are preferred for clinical use to reduce complications with HAMA and HAHA responses frequently seen with murine and chimaeric antibodies. We have used depletion and subtractive selection strategies on cells expressing the EGFR to sample two large antibody fragment phage display libraries for the presence of human antibodies which are specific for the EGFR. Four Fab fragments and six scFv fragments were identified, with affinities of up to 2.2nM as determined by BIAcore analysis using global fitting of the binding curves to obtain the individual rate constants (ka and kd). This overall approach offers a generic screening method for the identification of growth factor specific antibodies and antibody fragments from large expression libraries and has potential for the rapid development of new therapeutic and diagnostic reagents.

  6. Development of EMab-51, a Sensitive and Specific Anti-Epidermal Growth Factor Receptor Monoclonal Antibody in Flow Cytometry, Western Blot, and Immunohistochemistry. (United States)

    Itai, Shunsuke; Kaneko, Mika K; Fujii, Yuki; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Handa, Saori; Chang, Yao-Wen; Suzuki, Hiroyoshi; Harada, Hiroyuki; Kato, Yukinari


    The epidermal growth factor receptor (EGFR) is a member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and is involved in cell growth and differentiation. EGFR homodimers or heterodimers with other HER members, such as HER2 and HER3, activate downstream signaling cascades in many cancers. In this study, we developed novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. First, we expressed the full-length or ectodomain of EGFR in LN229 glioblastoma cells and then immunized mice with LN229/EGFR or ectodomain of EGFR, and performed the first screening using enzyme-linked immunosorbent assays. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical (fourth screening) analyses. Among 100 mAbs, only one clone EMab-51 (IgG1, kappa) reacted with EGFR in Western blot analysis. Finally, immunohistochemical analyses with EMab-51 showed sensitive and specific reactions against oral cancer cells, warranting the use of EMab-51 to detect EGFR in pathological analyses of EGFR-expressing cancers.

  7. A stimulus-specific role for CREB-binding protein (CBP) in T cell receptor-activated tumor necrosis factor gene expression (United States)

    Falvo, James V.; Brinkman, Brigitta M. N.; Tsytsykova, Alla V.; Tsai, Eunice Y.; Yao, Tso-Pang; Kung, Andrew L.; Goldfeld, Anne E.


    The cAMP response element binding protein (CREB)-binding protein (CBP)/p300 family of coactivator proteins regulates gene transcription through the integration of multiple signal transduction pathways. Here, we show that induction of tumor necrosis factor (TNF-) gene expression in T cells stimulated by engagement of the T cell receptor (TCR) or by virus infection requires CBP/p300. Strikingly, in mice lacking one copy of the CBP gene, TNF- gene induction by TCR activation is inhibited, whereas virus induction of the TNF- gene is not affected. Consistent with these findings, the transcriptional activity of CBP is strongly potentiated by TCR activation but not by virus infection of T cells. Thus, CBP gene dosage and transcriptional activity are critical in TCR-dependent TNF-α gene expression, demonstrating a stimulus-specific requirement for CBP in the regulation of a specific gene.

  8. Simultaneous inhibition of epidermal growth factor receptor (EGFR) signaling and enhanced activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis induction by an scFv : sTRAIL fusion protein with specificity for human EGFR

    NARCIS (Netherlands)

    Bremer, E; Samplonius, DF; van Genne, L; Dijkstra, MH; Kroesen, BJ; de Leij, LFMH; Helfrich, W


    Epidermal growth factor receptor (EGFR) signaling inhibition by monoclonal antibodies and EGFR-specific tyrosine kinase inhibitors has shown clinical efficacy in cancer by restoring susceptibility of tumor cells to therapeutic apoptosis induction. Tumor necrosis factor-related apoptosis-inducing lig

  9. In Vivo Imaging of Xenograft Tumors Using an Epidermal Growth Factor Receptor-Specific Affibody Molecule Labeled with a Near-infrared Fluorophore

    Directory of Open Access Journals (Sweden)

    Haibiao Gong


    Full Text Available Overexpression of epidermal growth factor receptor (EGFR is associated with many types of cancers. It is of great interest to noninvasively image the EGFR expression in vivo. In this study, we labeled an EGFR-specific Affibody molecule (Eaff with a near-infrared (NIR dye IRDye800CW maleimide and tested the binding of this labeled molecule (Eaff800 in cell culture and xenograft mouse tumor models. Unlike EGF, Eaff did not activate the EGFR signaling pathway. Results showed that Eaff800 was bound and taken up specifically by EGFR-overexpressing A431 cells. When Eaff800 was intravenously injected into nude mice bearing A431 xenograft tumors, the tumor could be identified 1 hour after injection and it became most prominent after 1 day. Images of dissected tissue sections demonstrated that the accumulation of Eaff800 was highest in the liver, followed by the tumor and kidney. Moreover, in combination with a human EGFR type 2 (HER2-specific probe Haff682, Eaff800 could be used to distinguish between EGFR- and HER2-overexpressing tumors. Interestingly, the organ distribution pattern and the clearance rate of Eaff800 were different from those of Haff682. In conclusion, Eaff molecule labeled with a NIR fluorophore is a promising molecular imaging agent for EGFR-overexpressing tumors.

  10. In vitro effects of buyang huanwu decoction and its ingredients on inhibiting the specific binding of 3H-platelet activating factor to its receptor in rabbits

    Institute of Scientific and Technical Information of China (English)


    BACKGROUND: Pharmacologic action of traditional Chinese medicine compound is the comprehensive effect of various ingredients, and the interactions of various ingredients are closely correlated with the final effect. In order to reveal the compatibility mechanism of buyang huanwu decoction (BHD)'s prescription in treating and preventing ischemic cerebrovascular disease, we need to explore the effect and relation of ingredients in prescription except for considering the effect of each ingredient on the whole prescription.OBJECTIVE: To study the effect of BHD and its ingredients in the prescription on the specific binding of 3H-platelet activating factor (PAF) to its receptor (PAFR)in rabbits in vitro, and to analyze the action of each ingredient in the prescription.DESIGN: A decomposed recipe study based on orthogonal test.SETTING: Guangzhou University of Traditional Chinese Medicine.MATERIALS: Five healthy adult New Zealand rabbits of either gender were provided by the Experimental Animal Center of Guangzhou University of Traditional Chinese medicine. The prescription herbal pieces were purchased from Foshan Kangpu Pharmaceuticals Company and Jianmin Pharmaceuticals Company, and were appraised by Professor Yanchen Xu from College of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine. 3H-PAF was supplied by Amersham Co.,Ltd.(Specific activity:6.475 TBq/mmol;batch number:200402); PAF standard by Biomol Co., Ltd.(batch number: P1318V).METHODS: This experiment was carried out in the Laboratory of Nuclear Medicine, Guangzhou University of Traditional Chinese Medicine between September and December 2004. ① The seven influencing factors were selected: such as Shenghuangqi , Dangguiwei, Chishao, Dilong, Taoren, Honghua, Chuanxiong. Each factor was divided into two levels, selected or not selected. The tests were arranged according to L8 (27) orthogonal test table. ②The specific binding of 3H-PAF to its receptors in rabbits was measured by

  11. Feedback Induction of a Photoreceptor-specific Isoform of Retinoid-related Orphan Nuclear Receptor β by the Rod Transcription Factor NRL* (United States)

    Fu, Yulong; Liu, Hong; Ng, Lily; Kim, Jung-Woong; Hao, Hong; Swaroop, Anand; Forrest, Douglas


    Vision requires the generation of cone and rod photoreceptors that function in daylight and dim light, respectively. The neural retina leucine zipper factor (NRL) transcription factor critically controls photoreceptor fates as it stimulates rod differentiation and suppresses cone differentiation. However, the controls over NRL induction that balance rod and cone fates remain unclear. We have reported previously that the retinoid-related orphan receptor β gene (Rorb) is required for Nrl expression and other retinal functions. We show that Rorb differentially expresses two isoforms: RORβ2 in photoreceptors and RORβ1 in photoreceptors, progenitor cells, and other cell types. Deletion of RORβ2 or RORβ1 increased the cone:rod ratio ∼2-fold, whereas deletion of both isoforms in Rorb−/− mice produced almost exclusively cone-like cells at the expense of rods, suggesting that both isoforms induce Nrl. Electroporation of either RORβ isoform into retinal explants from Rorb−/− neonates reactivated Nrl and rod genes but, in Nrl−/− explants, failed to reactivate rod genes, indicating that NRL is the effector for both RORβ isoforms in rod differentiation. Unexpectedly, RORβ2 expression was lost in Nrl−/− mice. Moreover, NRL activated the RORβ2-specific promoter of Rorb, indicating that NRL activates Rorb, its own inducer gene. We suggest that feedback activation between Nrl and Rorb genes reinforces the commitment to rod differentiation. PMID:25296752

  12. Feedback induction of a photoreceptor-specific isoform of retinoid-related orphan nuclear receptor β by the rod transcription factor NRL. (United States)

    Fu, Yulong; Liu, Hong; Ng, Lily; Kim, Jung-Woong; Hao, Hong; Swaroop, Anand; Forrest, Douglas


    Vision requires the generation of cone and rod photoreceptors that function in daylight and dim light, respectively. The neural retina leucine zipper factor (NRL) transcription factor critically controls photoreceptor fates as it stimulates rod differentiation and suppresses cone differentiation. However, the controls over NRL induction that balance rod and cone fates remain unclear. We have reported previously that the retinoid-related orphan receptor β gene (Rorb) is required for Nrl expression and other retinal functions. We show that Rorb differentially expresses two isoforms: RORβ2 in photoreceptors and RORβ1 in photoreceptors, progenitor cells, and other cell types. Deletion of RORβ2 or RORβ1 increased the cone:rod ratio ∼2-fold, whereas deletion of both isoforms in Rorb(-/-) mice produced almost exclusively cone-like cells at the expense of rods, suggesting that both isoforms induce Nrl. Electroporation of either RORβ isoform into retinal explants from Rorb(-/-) neonates reactivated Nrl and rod genes but, in Nrl(-/-) explants, failed to reactivate rod genes, indicating that NRL is the effector for both RORβ isoforms in rod differentiation. Unexpectedly, RORβ2 expression was lost in Nrl(-/-) mice. Moreover, NRL activated the RORβ2-specific promoter of Rorb, indicating that NRL activates Rorb, its own inducer gene. We suggest that feedback activation between Nrl and Rorb genes reinforces the commitment to rod differentiation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Combined and individual tumor-specific expression of insulin-like growth factor-I receptor, insulin receptor and phospho-insulin-like growth factor-I receptor/insulin receptor in primary breast cancer: Implications for prognosis in different treatment groups. (United States)

    Björner, Sofie; Rosendahl, Ann H; Simonsson, Maria; Markkula, Andrea; Jirström, Karin; Borgquist, Signe; Rose, Carsten; Ingvar, Christian; Jernström, Helena


    Clinical trials examining insulin-like growth factor-I receptor (IGF1R)-targeting strategies have emphasized that better predictive biomarkers are required to improve patient selection.Immunohistochemical tumor-specific protein expression of IGF1R, insulin receptor (InsR), and phosphorylated IGF1R/InsR (pIGF1R/InsR) individually and combined in relation to breast cancer prognosis was evaluated in a population-based cohort of 1,026 primary invasive breast cancer patients without preoperative treatment diagnosed in Sweden. IGF1R (n = 923), InsR (n = 900), and pIGF1R/InsR (n = 904) combined cytoplasmic and membrane staining was dichotomized. IGF1Rstrong/InsRmod/strong/pIGF1R/InsRpos tumors were borderline associated with 2-fold risk for events, HRadj (2.00; 95%CI 0.96-4.18). Combined IGF1R and pIGF1R/InsR status only impacted prognosis in patients with InsRmod/strong expressing tumors (Pinteraction = 0.041). IGF1Rstrong expression impacted endocrine treatment response differently depending on patients' age and type of endocrine therapy. Phospho-IGF1R/InsRpos was associated with lower risk for events among non-endocrine-treated patients irrespective of ER status, HRadj (0.32; 95%CI 0.16-0.63), but not among endocrine-treated patients (Pinteraction = 0.024). In non-endocrine-treated patients, pIGF1R/InsRpos was associated with lower risk for events after radiotherapy, HRadj (0.31; 95%CI 0.12-0.80), and chemotherapy, HRadj (0.29; 95%CI 0.09-0.99). This study highlights the complexity of IGF hetero-and homodimer signaling network and its interplay with endocrine treatment, suggesting that combinations of involved factors may improve patient selection for IGF1R-targeted therapy.

  14. Cell-specific delivery of a transforming growth factor-beta type I receptor kinase inhibitor to proximal tubular cells for the treatment of renal fibrosis

    NARCIS (Netherlands)

    Prakash, Jai; de Borst, Martin H.; van Loenen - Weemaes, Annemiek M.; Lacombe, Marie; Opdam, Frank; van Goor, Harry; Meijer, Dirk K. F.; Moolenaar, Frits; Poelstra, Klaas; Kok, Robbert J.


    Purpose. Activation of tubular epithelial cells by transforming growth factor-beta (TGF-beta) plays an important role in the pathogenesis of renal tubulointerstitial fibrosis. We developed a renally accumulating conjugate of a TGF-beta type-I receptor kinase inhibitor (TKI) and evaluated its

  15. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. (United States)

    Kurosu, Hiroshi; Choi, Mihwa; Ogawa, Yasushi; Dickson, Addie S; Goetz, Regina; Eliseenkova, Anna V; Mohammadi, Moosa; Rosenblatt, Kevin P; Kliewer, Steven A; Kuro-o, Makoto


    The fibroblast growth factor (FGF) 19 subfamily of ligands, FGF19, FGF21, and FGF23, function as hormones that regulate bile acid, fatty acid, glucose, and phosphate metabolism in target organs through activating FGF receptors (FGFR1-4). We demonstrated that Klotho and betaKlotho, homologous single-pass transmembrane proteins that bind to FGFRs, are required for metabolic activity of FGF23 and FGF21, respectively. Here we show that, like FGF21, FGF19 also requires betaKlotho. Both FGF19 and FGF21 can signal through FGFR1-3 bound by betaKlotho and increase glucose uptake in adipocytes expressing FGFR1. Additionally, both FGF19 and FGF21 bind to the betaKlotho-FGFR4 complex; however, only FGF19 signals efficiently through FGFR4. Accordingly, FGF19, but not FGF21, activates FGF signaling in hepatocytes that primarily express FGFR4 and reduces transcription of CYP7A1 that encodes the rate-limiting enzyme for bile acid synthesis. We conclude that the expression of betaKlotho, in combination with particular FGFR isoforms, determines the tissue-specific metabolic activities of FGF19 and FGF21.

  16. T-helper I immunity, specific for the breast cancer antigen insulin-like growth factor-I receptor (IGF-IR), is associated with increased adiposity. (United States)

    Cecil, Denise L; Park, Kyong Hwa; Gad, Ekram; Childs, Jennifer S; Higgins, Doreen M; Plymate, Stephen R; Disis, Mary L


    Numerous lines of evidence demonstrate that breast cancer is immunogenic; yet, there are few biologically relevant immune targets under investigation restricting the exploration of vaccines to limited breast cancer subtypes. Insulin-like growth factor-I receptor (IGF-IR) is a promising vaccine candidate since it is overexpressed in most breast cancer subtypes, is part of a dominant cancer growth pathway, and has been validated as a therapeutic target. We questioned whether IGF-IR was immunogenic in cancer patients. IGF-IR-specific IgG antibodies were significantly elevated in early-stage breast cancer patients at the time of diagnosis as compared to volunteer donors (p = 0.04). Predicted T-helper epitopes, derived from the IGF-IR extracellular and transmembrane domains, elicited a significantly higher incidence of Th2 immunity in breast cancer patients as compared to controls (p = 0.01). Moreover, the magnitude of Th2 immunity was greater in breast cancer patients compared to controls (p = 0.02). In contrast, both breast cancer patients and volunteer donors demonstrated a similar incidence of Th1 immunity to IGF-IR domains with the predominant response directed against epitopes in the intracellular domain of the protein. As the incidence of IGF-IR type I immunity was not associated with a breast cancer diagnosis, we questioned whether other factors were contributing to the presence of IGF-IR-specific T-cells in both populations. While age was not associated with Th1 immunity, we observed a significantly greater magnitude of IGF-IR IFN-γ-secreting T-cells in obese subjects as compared to overweight (p cancer diagnosis. No significant difference was observed for Th2 incidence or magnitude when stratified by age (p = 0.174, p = 0.966, respectively) or body mass index (p = 0.137, p = 0.174, respectively). Our data demonstrate that IGF-IR is a tumor antigen and IGF-IR-specific Th1 immunity may be associated with obesity rather than malignancy.

  17. JAK3 inhibitor Ⅵ is a mutant specific inhibitor for epidermal growth factor receptor with the gatekeeper mutation T790M

    Institute of Scientific and Technical Information of China (English)

    Naoyuki; Nishiya; Yasumitsu; Sakamoto; Yusuke; Oku; Takamasa; Nonaka; Yoshimasa; Uehara


    AIM:To identify non-quinazoline kinase inhibitors effective against drug resistant mutants of epidermal growth factor receptor(EGFR).METHODS:A kinase inhibitor library was subjected to screening for specific inhibition pertaining to the in vitro kinase activation of EGFR with the gatekeeper mutation T790 M,which is resistant to small molecular weight tyrosine kinase inhibitors(TKIs) for EGFR in nonsmall cell lung cancers(NSCLCs). This inhibitory effect was confirmed by measuring autophosphorylation of EGFR T790M/L858 R in NCI-H1975 cells,an NSCLC cell line harboring the gatekeeper mutation. The effects of a candidate compound,Janus kinase 3(JAK3) inhibitor Ⅵ,on cell proliferation were evaluated using the MTT assay and were compared between T790M-positive and-negative lung cancer cell lines. JAK3 inhibitor Ⅵ was modeled into the ATP-binding pocket of EGFR T790M/L858 R. Potential physical interactions between the compound and kinase domains of wild-type(WT) or mutant EGFRs or JAK3 were estimated by calculating binding energy. The gatekeeper residues of EGFRs and JAKs were aligned to discuss the similarities among EGFR T790 M and JAKs. RESULTS:We found that JAK3 inhibitor Ⅵ,a known inhibitor for JAK3 tyrosine kinase,selectively inhibits EGFR T790M/L858 R,but has weaker inhibitory effects on the WT EGFR in vitro. JAK3 inhibitor Ⅵ also specifically reduced autophosphorylation of EGFR T790M/L858 R in NCI-H1975 cells upon EGF stimulation,but did not show the inhibitory effect on WT EGFR in A431 cells. Furthermore,JAK3 inhibitor Ⅵ suppressed the proliferationof NCI-H1975 cells,but showed limited inhibitory effects on the WT EGFR-expressing cell lines A431 and A549.A docking simulation between JAK3 inhibitor Ⅵ and the ATP-binding pocket of EGFR T790M/L858 R predicted a potential binding status with hydrogen bonds. Estimated binding energy of JAK3 inhibitor Ⅵ to EGFR T790M/L858 R was more stable than its binding energy to the WT EGFR. Amino acid sequence

  18. Tissue-specific Expression of βKlotho and Fibroblast Growth Factor (FGF) Receptor Isoforms Determines Metabolic Activity of FGF19 and FGF21*†


    Kurosu, Hiroshi; Choi, Mihwa; Ogawa, Yasushi; Dickson, Addie S.; Goetz, Regina; Eliseenkova, Anna V.; Mohammadi, Moosa; Rosenblatt, Kevin P.; Kliewer, Steven A.; Kuro-o, Makoto


    The fibroblast growth factor (FGF) 19 subfamily of ligands, FGF19, FGF21, and FGF23, function as hormones that regulate bile acid, fatty acid, glucose, and phosphate metabolism in target organs through activating FGF receptors (FGFR1–4). We demonstrated that Klotho and βKlotho, homologous single-pass transmembrane proteins that bind to FGFRs, are required for metabolic activity of FGF23 and FGF21, respectively. Here we show that, like FGF21, FGF19 also requires βKlotho. Both FGF19 and FGF21 c...

  19. Modular anti-EGFR and anti-Her2 targeting of SK-BR-3 and BT474 breast cancer cell lines in the presence of ErbB receptor-specific growth factors. (United States)

    Diermeier-Daucher, Simone; Breindl, Stefanie; Buchholz, Stefan; Ortmann, Olaf; Brockhoff, Gero


    Over the last decade, a number of monoclonal antibodies and small molecule inhibitors emerged as potent therapeutic agents in the treatment of Her2/neu overexpressing breast cancer. Numerous patients, however, do not adequately respond to anti-epidermal growth factor receptor (EGFR)/Her2 receptor targeting. Receptor- and, in turn, growth-stimulating effects, which potentially hamper antiproliferative cell treatment, have barely been investigated. BT474 and SK-BR-3 breast cancer cell lines were treated with Trastuzumab, Pertuzumab, and Lapatinib alone using different combinations and concentrations. Moreover, epidermal growth factor (EGF) or heregulin (HRG) was added to reveal potential growth factor-mediated compensatory effects. Receptor and intracellular signaling were analyzed as a function of cell treatment. Read-out parameters were cell proliferation and apoptosis. BT474 cells were efficiently driven into quiescence by Trastuzumab, but not by Pertuzumab treatment. Simultaneous EGF or HRG administration, however, restored the BT474 cell proliferation capacity. In contrast, neither therapeutic antibody treatment caused a profound inhibition of SK-BR-3 cell-cycle progress. Lapatinib turned out to be the most potent cell-cycle inhibitor in both cell lines even though its impact was significantly abrogated in the presence of EGF and HRG. The compensatory effect of EGF on Lapatinib-induced cell-cycle inhibition was reversed by Trastuzumab as well as by Pertuzumab treatment. Most importantly, HRG-caused compensation of Lapatinib-induced cell-cycle exit was reversed by Pertuzumab but not by Trastuzumab. Apparently, multiple anti-EGFR/Her2 targeting by using Trastuzumab, Pertuzumab, and Lapatinib more efficiently affects receptor function (interaction and activation) and consequently enhances their antiproliferative capacity. Growth inhibition by anticancer drugs targeted to Her/ErbB receptors, however, can be significantly undermined in the presence of EGF and in

  20. Soluble and cell surface receptors for tumor necrosis factor

    DEFF Research Database (Denmark)

    Wallach, D; Engelmann, H; Nophar, Y


    Tumor necrosis factor (TNF) initiates its multiple effects on cell function by binding at a high affinity to specific cell surface receptors. Two different molecular species of these receptors, which are expressed differentially in different cells, have been identified. The cDNAs of both receptor...... have recently been cloned. Antibodies to one of these receptor species (the p55, type I receptor) can trigger a variety of TNF like effects by cross-linking of the receptor molecules. Thus, it is not TNF itself but its receptors that provide the signal for the response to this cytokine...... in certain pathological situations. Release of the soluble receptors from the cells seems to occur by proteolytic cleavage of the cell surface forms and appears to be a way of down-regulating the cell response to TNF. Because of their ability to bind TNF, the soluble receptors exert an inhibitory effect...

  1. Cloning and expression of feline colony stimulating factor receptor (CSF-1R) and analysis of the species specificity of stimulation by colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-34) (United States)

    Gow, Deborah J.; Garceau, Valerie; Pridans, Clare; Gow, Adam G.; Simpson, Kerry E.; Gunn-Moore, Danielle; Hume, David A.


    Colony stimulating factor (CSF-1) and its receptor, CSF-1R, have been previously well studied in humans and rodents to dissect the role they play in development of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, IL-34 has been described in several species. In this study, we have cloned and expressed the feline CSF-1R and examined the responsiveness to CSF-1 and IL-34 from a range of species. The results indicate that pig and human CSF-1 and human IL-34 are equally effective in cats, where both mouse CSF-1 and IL-34 are significantly less active. Recombinant human CSF-1 can be used to generate populations of feline bone marrow and monocyte derived macrophages that can be used to further dissect macrophage-specific gene expression in this species, and to compare it to data derived from mouse, human and pig. These results set the scene for therapeutic use of CSF-1 and IL-34 in cats. PMID:23260168

  2. Cell-specific delivery of a transforming growth factor-beta type I receptor kinase inhibitor to proximal tubular cells for the treatment of renal fibrosis. (United States)

    Prakash, Jai; de Borst, Martin H; van Loenen-Weemaes, Annemiek M; Lacombe, Marie; Opdam, Frank; van Goor, Harry; Meijer, Dirk K F; Moolenaar, Frits; Poelstra, Klaas; Kok, Robbert J


    Activation of tubular epithelial cells by transforming growth factor-beta (TGF-beta) plays an important role in the pathogenesis of renal tubulointerstitial fibrosis. We developed a renally accumulating conjugate of a TGF-beta type-I receptor kinase inhibitor (TKI) and evaluated its efficacy in vitro and in vivo. TKI was conjugated to the protein Lysozyme (LZM) via a platinum-based linker. TKI-LZM was evaluated in human tubular cells (HK-2) for its anti-fibrotic activity. Plasma, kidney and urine drug levels after a single intravenous dose of TKI-LZM in rats were determined by HPLC or immunodetection. Anti-fibrotic effects of TKI-LZM were examined in the unilateral ureteral obstruction (UUO) model. TKI-LZM conjugate was successfully synthesized at an 1:1 drug/carrier ratio, and inhibited TGF-beta1-induced procollagen-1alpha1 gene expression in HK-2 cells. In vivo, TKI-LZM accumulated rapidly in tubular cells and provided a local depot for 3 days. Interestingly, a single dose of TKI-LZM inhibited the activation of tubular cells and fibroblasts in UUO rats and reduced renal inflammation. In contrast, free TKI at an equimolar (low) dosage exhibited little effects. Inhibition of TGF-beta signaling by local drug delivery is a promising antifibrotic strategy, and demonstrated the important role of tubular activation in renal fibrosis.

  3. Human epidermal growth factor receptor type 2 protein expression in Chinese metastatic prostate cancer patients correlates with cancer specific survival and increases after exposure to hormonal therapy

    Institute of Scientific and Technical Information of China (English)

    Bo Dai; Yun-Yi Kong; Ding-Wei Ye; Chun-Guang Ma; Xiao-Yan Zhou; Xu-Dong Yao


    Aim: To investigate human epidermal growth factor receptor type 2 (HER2) protein expression and gene amplification in Chinese metastatic prostate cancer patients and their potential value as prognostic factors. Methods: Immuno-histochemistry (IHC) was performed to investigate HER2 protein expression in prostate biopsy specimens from 104 Chinese metastatic prostate cancer patients. After 3-11 months of hormonal therapy, 12 patients underwent transure- thral resection of the prostate (TURP). HER2 protein expression of TURP specimens was compared with that of the original biopsy specimens. Of these, 10 biopsy and 4 TURP specimens with HER2 IHC staining scores ≥ 2+ were investigated for HER2 gene amplification status by fluorescent in situ hybridization (FISH). Results: Of the 104 prostate biopsy specimens, HER2 protein expression was 0, 1+, 2+ and 3+ in 49 (47.1%), 45 (43.3%), 8 (7.7%) and 2 (1.9%) cases, respectively. There was a significant association between HER2 expression and Gleason score (P = 0.026). HER2 protein expression of prostate cancer tissues increased in 33.3% of patients after hormonal therapy. None of the 14 specimens with HER2 IHC scores > 2+ showed HER2 gene amplification. Patients with HER2 scores ≥ 2+ had a significantly higher chance of dying from prostate cancer than those with HER2 scores of 0 (P = 0.004) and 1+ (P = 0.034). Multivariate Cox regression analysis showed that HER2 protein expression intensity was an independent predictor of cancer-related death (P = 0.039). Conclusion: An HER2 IHC score ≥ 2+ should be defined as HER2 protein overexpression in prostate cancer. Overexpression of HER2 protein in cancer tissue might suggest an increased risk of dying from prostate cancer. HER2 protein expression increases in some individual patients after hormonal therapy.

  4. Down regulation of epidermal growth factor receptors: direct demonstration of receptor degradation in human fibroblasts



    The metabolism of the receptor for epidermal growth factor (EGF) has been measured by labeling the receptor in vivo with radioactive amino acid precursors and then determining, by immunoprecipitation with specific anti-EGF receptor antisera, the rate of degradation of the receptor when the cells are placed in a nonradioactive medium. In human fibroblasts the rate of EGF receptor degradation (t1/2 = 10.1 h) was faster than the rate of degradation of total cell protein. When EGF was added to th...

  5. Isoforms of receptors of fibroblast growth factors. (United States)

    Gong, Siew-Ging


    The breadth and scope of Fibroblast Growth Factor signaling is immense, with documentation of its role in almost every organism and system studied so far. FGF ligands signal through a family of four distinct tyrosine kinase receptors, the FGF receptors (FGFRs). One contribution to the diversity of function and signaling of FGFs and their receptors arises from the numerous alternative splicing variants that have been documented in the FGFR literature. The present review discusses the types and roles of alternatively spliced variants of the FGFR family members and the significant impact of alternative splicing on the physiological functions of five broad classes of FGFR isoforms. Some characterized known regulatory mechanisms of alternative splicing and future directions in studies of FGFR alternative splicing are also discussed. Presence, absence, and/or the combination of specific exons within each FGFR protein impart upon each individual isoform its unique function and expression pattern during normal function and in diseased states (e.g., in cancers and birth defects). A better understanding of the diversity of FGF signaling in different developmental contexts and diseased states can be achieved through increased knowledge of the presence of specific FGFR isoforms and their impact on downstream signaling and functions. Modern high-throughput techniques afford an opportunity to explore the distribution and function of isoforms of FGFR during development and in diseases.

  6. Cellular signaling by fibroblast growth factor receptors. (United States)

    Eswarakumar, V P; Lax, I; Schlessinger, J


    The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. A variety of human skeletal dysplasias have been linked to specific point mutations in FGFR1, FGFR2 and FGFR3 leading to severe impairment in cranial, digital and skeletal development. Gain of function mutations in FGFRs were also identified in a variety of human cancers such as myeloproliferative syndromes, lymphomas, prostate and breast cancers as well as other malignant diseases. The binding of FGF and HSPG to the extracellular ligand domain of FGFR induces receptor dimerization, activation and autophosphorylation of multiple tyrosine residues in the cytoplasmic domain of the receptor molecule. A variety of signaling proteins are phosphorylated in response to FGF stimulation including Shc, phospholipase-Cgamma, STAT1, Gab1 and FRS2alpha leading to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape. The docking proteins FRS2alpha and FRS2beta are major mediators of the Ras/MAPK and PI-3 kinase/Akt signaling pathways as well as negative feedback mechanisms that fine-tune the signal that is initiated at the cell surface following FGFR stimulation.

  7. Evolution of minimal specificity and promiscuity in steroid hormone receptors.

    Directory of Open Access Journals (Sweden)

    Geeta N Eick

    Full Text Available Most proteins are regulated by physical interactions with other molecules; some are highly specific, but others interact with many partners. Despite much speculation, we know little about how and why specificity/promiscuity evolves in natural proteins. It is widely assumed that specific proteins evolved from more promiscuous ancient forms and that most proteins' specificity has been tuned to an optimal state by selection. Here we use ancestral protein reconstruction to trace the evolutionary history of ligand recognition in the steroid hormone receptors (SRs, a family of hormone-regulated animal transcription factors. We resurrected the deepest ancestral proteins in the SR family and characterized the structure-activity relationships by which they distinguished among ligands. We found that that the most ancient split in SR evolution involved a discrete switch from an ancient receptor for aromatized estrogens--including xenobiotics--to a derived receptor that recognized non-aromatized progestagens and corticosteroids. The family's history, viewed in relation to the evolution of their ligands, suggests that SRs evolved according to a principle of minimal specificity: at each point in time, receptors evolved ligand recognition criteria that were just specific enough to parse the set of endogenous substances to which they were exposed. By studying the atomic structures of resurrected SR proteins, we found that their promiscuity evolved because the ancestral binding cavity was larger than the primary ligand and contained excess hydrogen bonding capacity, allowing adventitious recognition of larger molecules with additional functional groups. Our findings provide an historical explanation for the sensitivity of modern SRs to natural and synthetic ligands--including endocrine-disrupting drugs and pollutants--and show that knowledge of history can contribute to ligand prediction. They suggest that SR promiscuity may reflect the limited power of

  8. Evolution of minimal specificity and promiscuity in steroid hormone receptors. (United States)

    Eick, Geeta N; Colucci, Jennifer K; Harms, Michael J; Ortlund, Eric A; Thornton, Joseph W


    Most proteins are regulated by physical interactions with other molecules; some are highly specific, but others interact with many partners. Despite much speculation, we know little about how and why specificity/promiscuity evolves in natural proteins. It is widely assumed that specific proteins evolved from more promiscuous ancient forms and that most proteins' specificity has been tuned to an optimal state by selection. Here we use ancestral protein reconstruction to trace the evolutionary history of ligand recognition in the steroid hormone receptors (SRs), a family of hormone-regulated animal transcription factors. We resurrected the deepest ancestral proteins in the SR family and characterized the structure-activity relationships by which they distinguished among ligands. We found that that the most ancient split in SR evolution involved a discrete switch from an ancient receptor for aromatized estrogens--including xenobiotics--to a derived receptor that recognized non-aromatized progestagens and corticosteroids. The family's history, viewed in relation to the evolution of their ligands, suggests that SRs evolved according to a principle of minimal specificity: at each point in time, receptors evolved ligand recognition criteria that were just specific enough to parse the set of endogenous substances to which they were exposed. By studying the atomic structures of resurrected SR proteins, we found that their promiscuity evolved because the ancestral binding cavity was larger than the primary ligand and contained excess hydrogen bonding capacity, allowing adventitious recognition of larger molecules with additional functional groups. Our findings provide an historical explanation for the sensitivity of modern SRs to natural and synthetic ligands--including endocrine-disrupting drugs and pollutants--and show that knowledge of history can contribute to ligand prediction. They suggest that SR promiscuity may reflect the limited power of selection within real

  9. Autoantibodies in SLE: Specificities, Isotypes and Receptors

    Directory of Open Access Journals (Sweden)

    Barbara Dema


    Full Text Available Systemic Lupus Erythematosus (SLE is characterized by a wide spectrum of auto-antibodies which recognize several cellular components. The production of these self-reactive antibodies fluctuates during the course of the disease and the involvement of different antibody-secreting cell populations are considered highly relevant for the disease pathogenesis. These cells are developed and stimulated through different ways leading to the secretion of a variety of isotypes, affinities and idiotypes. Each of them has a particular mechanism of action binding to a specific antigen and recognized by distinct receptors. The effector responses triggered lead to a chronic tissue inflammation. DsDNA autoantibodies are the most studied as well as the first in being characterized for its pathogenic role in Lupus nephritis. However, others are of growing interest since they have been associated with other organ-specific damage, such as anti-NMDAR antibodies in neuropsychiatric clinical manifestations or anti-β2GP1 antibodies in vascular symptomatology. In this review, we describe the different auto-antibodies reported to be involved in SLE. How autoantibody isotypes and affinity-binding to their antigen might result in different pathogenic responses is also discussed.

  10. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyungjun [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Song, Mi-Ryoung, E-mail: [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Bioimaging Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)


    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  11. Simplagrin, a platelet aggregation inhibitor from Simulium nigrimanum salivary glands specifically binds to the Von Willebrand factor receptor in collagen and inhibits carotid thrombus formation in vivo.

    Directory of Open Access Journals (Sweden)

    Andrezza C Chagas


    Full Text Available Among the several challenges faced by bloodsucking arthropods, the vertebrate hemostatic response against blood loss represents an important barrier to efficient blood feeding. Here we report the first inhibitor of collagen-induced platelet aggregation derived from the salivary glands of a black fly (Simulium nigrimanum, named Simplagrin.Simplagrin was expressed in mammalian cells and purified by affinity-and size-exclusion chromatography. Light-scattering studies showed that Simplagrin has an elongated monomeric form with a hydrodynamic radius of 5.6 nm. Simplagrin binds to collagen (type I-VI with high affinity (2-15 nM, and this interaction does not involve any significant conformational change as determined by circular dichroism spectroscopy. Simplagrin-collagen interaction is both entropically and enthalpically driven with a large negative ΔG, indicating that this interaction is favorable and occurs spontaneously. Simplagrin specifically inhibits von Willebrand factor interaction with collagen type III and completely blocks platelet adhesion to collagen under flow conditions at high shear rates; however, Simplagrin failed to block glycoprotein VI and Iα2β1 interaction to collagen. Simplagrin binds to RGQOGVMGF peptide with an affinity (K(D 11 nM similar to that of Simplagrin for collagen. Furthermore, Simplagrin prevents laser-induced carotid thrombus formation in vivo without significant bleeding in mice and could be useful as an antithrombotic agent in thrombosis related disease.Our results support the orthology of the Aegyptin clade in bloodsucking Nematocera and the hypothesis of a faster evolutionary rate of salivary function of proteins from blood feeding arthropods.

  12. Epidermal growth factor receptor and v-Ki-ras2 Kirsten rat sarcoma viral oncogen homologue-specific amino acid substitutions are associated with different histopathological prognostic factors in resected non-small-cell lung cancer. (United States)

    Seitlinger, Joseph; Renaud, Stéphane; Falcoz, Pierre-Emmanuel; Schaeffer, Mickaël; Olland, Anne; Reeb, Jérémie; Santelmo, Nicola; Legrain, Michèle; Voegeli, Anne-Claire; Weingertner, Noëlle; Chenard, Marie-Pierre; Beau-Faller, Michèle; Massard, Gilbert


    Epidermal growth factor receptor (mEGFR) and v-Ki-ras2 Kirsten rat sarcoma viral oncogen homologue (mKRAS) mutations are the two main oncogenic drivers in resected non-small-cell lung cancer (NSCLC). We aimed to evaluate the correlation between histopathological prognostic factors and these mutations in resected NSCLC. We retrospectively reviewed data from 841 patients who underwent a surgical resection with a curative intent for NSCLC between 2007 and 2012. KRAS mutations were observed in 255 patients (32%) and mEGFR in 103 patients (12%). A correlation was observed between mKRAS patients and lymph node involvement [Cramer's V: 0.451, P V: 0.235, P = 0.02, OR: 3.04 (95% CI: 1.5-6.3), P = 0.004]. High lymph node ratio and angioinvasion were also significantly more frequent in mKRAS [Cramer's V: 0.373, P V: 0.269, P V: 0.459, P V: 0.45, P < 0.001 OR: 21.14 (95% CI: 9.2-48.3), P < 0.001, respectively]. We observed a correlation between mKRAS and negative histopathological prognostic factors and between mEGFR and positive prognostic factors. One can wonder whether histopathological prognostic factors are only clinical reflections of molecular alterations. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  13. Molecular basis for gene-specific transactivation by nuclear receptors

    DEFF Research Database (Denmark)

    Jørgensen, Mads Aagaard; Siersbæk, Rasmus; Mandrup, Susanne


    most likely be accounted for by mechanisms involving receptor-specific interactions with DNA as well as receptor-specific interactions with protein complexes binding to adjacent and distant DNA sequences. Here, we review key molecular aspects of transactivation by NRs with special emphasis......Nuclear receptors (NRs) are key transcriptional regulators of metazoan physiology and metabolism. Different NRs bind to similar or even identical core response elements; however, they regulate transcription in a highly receptor- and gene-specific manner. These differences in gene activation can...... on the recent advances in the molecular mechanisms responsible for receptor- and gene-specific transcriptional activation. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease....

  14. Specific and sensitive hydrolysis probe-based real-time PCR detection of epidermal growth factor receptor variant III in oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    John B McIntyre

    Full Text Available BACKGROUND: The tumor-specific EGFR deletion mutant, EGFRvIII, is characterised by ligand-independent constitutive signalling. Tumors expressing EGFRvIII are resistant to current EGFR-targeted therapy. The frequency of EGFRvIII in head and neck squamous cell carcinoma (HNSCC is disputed and may vary by specific sub-site. The purpose of this study was to measure the occurrence of EGFRvIII mutations in a specific HNSCC subsite, oral squamous cell carcinoma (OSCC, using a novel real-time PCR assay. METHODOLOGY: Pre-treatment Formalin Fixed Paraffin Embedded (FFPE cancer specimens from 50 OSCC patients were evaluated for the presence of EGFRvIII using a novel hydrolysis probe-based real-time PCR assay. EGFR protein expression in tumor samples was quantified using fluorescent immunohistochemistry (IHC and AQUA® technology. PRINCIPAL FINDINGS: We detected EGFRvIII in a single OSCC patient in our cohort (2%. We confirmed the validity of our detection technique in an independent cohort of glioblastoma patients. We also compared the sensitivity and specificity of our novel real-time EGFRvIII detection assay to conventional RT-PCR and direct sequencing. Our assay can specifically detect EGFRvIII and can discriminate against wild-type EGFR in FFPE tumor samples. AQUAnalysis® revealed that the presence of EGFRvIII transcript is associated with very high EGFR protein expression (98(th percentile. Contrary to previous reports, only 44% of OSCC over-expressed EGFR in our study. CONCLUSION AND SIGNIFICANCE: Our results suggest that the EGFRvIII mutation is rare in OSCC and corroborate previous reports of EGFRvIII expression only in tumors with extreme over-expression of EGFR. We conclude that EGFRvIII-specific therapies may not be ideally suited as first-line treatment in OSCC. Furthermore, highly specific and sensitive methods, such as the real-time RT-PCR assay and AQUAnalysis® described here, will provide accurate assessment of EGFR mutation frequency and

  15. Dependence of Wilms tumor cells on signaling through insulin-like growth factor 1 in an orthotopic xenograft model targetable by specific receptor inhibition

    DEFF Research Database (Denmark)

    Bielen, Aleksandra; Box, Gary; Perryman, Lara


    pathway inactivation. By contrast, Wilms tumor cells established orthotopically within the kidney were histologically accurate and exhibited significantly elevated insulin-like growth factor-mediated signaling, and growth was significantly reduced on treatment with NVP-AEW541 in parallel with signaling...

  16. Epidermal growth factor receptor: Target for delivery and silencing

    NARCIS (Netherlands)

    Santos Oliveira, S.


    Epidermal growth factor receptor in cancer therapy Recently, cancer research has been able to identify molecular targets that are specific for (or highly expressed by) cancer cells. These molecular targets serve as models for the development of rationally designed anticancer drugs that target import

  17. Modulation of the NMDA Receptor Through Secreted Soluble Factors. (United States)

    Cerpa, Waldo; Ramos-Fernández, Eva; Inestrosa, Nibaldo C


    Synaptic activity is a critical determinant in the formation and development of excitatory synapses in the central nervous system (CNS). The excitatory current is produced and regulated by several ionotropic receptors, including those that respond to glutamate. These channels are in turn regulated through several secreted factors that function as synaptic organizers. Specifically, Wnt, brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF), and transforming growth factor (TGF) particularly regulate the N-methyl-D-aspartate receptor (NMDAR) glutamatergic channel. These factors likely regulate early embryonic development and directly control key proteins in the function of important glutamatergic channels. Here, we review the secreted molecules that participate in synaptic organization and discuss the cell signaling behind of this fine regulation. Additionally, we discuss how these factors are dysregulated in some neuropathologies associated with glutamatergic synaptic transmission in the CNS.

  18. IgE low affinity receptor (CD23) expression, Plasmodium falciparum specific IgE and tumor necrosis factor-alpha production in Thai uncomplicated and severe falciparum malaria patients. (United States)

    Kumsiri, Ratchanok; Troye-Blomberg, Marita; Pattanapanyasat, Kovit; Krudsood, Srivicha; Maneerat, Yaowapa


    Previous studies have suggested that Plasmodium falciparum (P. falciparum) specific IgE in the form of immune complexes crosslinking the low-affinity receptor (CD23) on monocyte results in tumor necrosis factor (TNF)-α and nitric oxide (NO) production. However, the roles of these parameters in severity and immune protection are still unclear. This study aimed to determine the association between CD23 expression on monocytes, plasma soluble CD23 (sCD23), total IgE, malaria-specific IgE and IgG, and TNF-α levels in P. falciparum infected patients. We evaluated 64 uncomplicated (UC) and 25 severe patients (S), admitted at the Hospital for Tropical Diseases, Mahidol University, and 34 healthy controls (C) enrolled in 2001. Flow cytometry and enzyme linked immunosorbent assays (ELISA) demonstrated that trends of the CD23 expression, levels of sCD23 and specific IgE were higher in the S group as compared to those in the UC and C groups. Plasma levels of P. falciparum specific IgE in the UC (p=0.011) and S groups (p=0.025) were significantly higher than those in C group. In contrast the TNF-α levels tended to be higher in the UC than those in the S (p=0.343) and significantly higher than those in C (p=0.004) groups. The specific IgG levels in UC were significantly higher than those in S and C (pIgE-IgG complexes (r=-0.715, p=0.002). Significant positive correlations between levels of specific IgE and TNF-α (r=0.575, p=0.010); and sCD23 (r=0.597, p=0.000) were also observed. In conclusion, our data suggest that CD23 expression and malaria-specific IgE levels may be involved in the severity of the disease while TNF-α and the malaria-specific IgG may correlate with protection against falciparum malaria.

  19. Receptor specificity of influenza A viruses from sea mammals correlates with lung sialyloligosaccharides in these animals. (United States)

    Ito, T; Kawaoka, Y; Nomura, A; Otsuki, K


    The distribution of specific receptors on target organs is a major factor in the host range restriction of influenza A viruses. To assess the correlation between host receptors and the receptor specificity of influenza A viruses from sea mammals, we examined the receptors for influenza A virus in seal and whale lungs. A binding assay using two sialyloligosaccharide (SAalpha2,3Gal and SAalpha2,6Gal)-specific lectins showed that SAalpha2,3Gal, but not SAalpha2,6Gal, was found in both seal and whale lungs. Correspondingly, seal and whale influenza viruses preferentially recognized SAalpha2,3Gal, but not SAalpha2,6Gal. These results indicate that sialyloligosaccharides present at the replication site of influenza A viruses correlate with the receptor recognition of the viruses isolated from sea mammals.

  20. Nfkb1 activation by the E26 transformation-specific transcription factors PU.1 and Spi-B promotes Toll-like receptor-mediated splenic B cell proliferation. (United States)

    Li, Stephen K H; Abbas, Ali K; Solomon, Lauren A; Groux, Gaëlle M N; DeKoter, Rodney P


    Generation of antibodies against T-independent and T-dependent antigens requires Toll-like receptor (TLR) engagement on B cells for efficient responses. However, the regulation of TLR expression and responses in B cells is not well understood. PU.1 and Spi-B (encoded by Sfpi1 and Spib, respectively) are transcription factors of the E26 transformation-specific (ETS) family and are important for B cell development and function. It was found that B cells from mice knocked out for Spi-B and heterozygous for PU.1 (Sfpi1(+/-) Spib(-/-) [PUB] mice) proliferated poorly in response to TLR ligands compared to wild-type (WT) B cells. The NF-κB family member p50 (encoded by Nfkb1) is required for lipopolysaccharide (LPS) responsiveness in mice. PUB B cells expressed reduced Nfkb1 mRNA transcripts and p50 protein. The Nfkb1 promoter was regulated directly by PU.1 and Spi-B, as shown by reporter assays and chromatin immunoprecipitation analysis. Occupancy of the Nfkb1 promoter by PU.1 was reduced in PUB B cells compared to that in WT B cells. Finally, infection of PUB B cells with a retroviral vector encoding p50 substantially restored proliferation in response to LPS. We conclude that Nfkb1 transcriptional activation by PU.1 and Spi-B promotes TLR-mediated B cell proliferation.

  1. Epidermal Growth Factor Receptor in Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira-Cunha, Melissa, E-mail: [Hepatobiliary Surgery Unit, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL (United Kingdom); Newman, William G. [Genetic Medicine, MAHSC, University of Manchester, St Mary' s Hospital, Oxford Road, Manchester, M13 9WL (United Kingdom); Siriwardena, Ajith K. [Hepatobiliary Surgery Unit, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL (United Kingdom)


    Pancreatic cancer is the fourth leading cause of cancer related death. The difficulty in detecting pancreatic cancer at an early stage, aggressiveness and the lack of effective therapy all contribute to the high mortality. Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which is expressed in normal human tissues. It is a member of the tyrosine kinase family of growth factors receptors and is encoded by proto-oncogenes. Several studies have demonstrated that EGFR is over-expressed in pancreatic cancer. Over-expression correlates with more advanced disease, poor survival and the presence of metastases. Therefore, inhibition of the EGFR signaling pathway is an attractive therapeutic target. Although several combinations of EGFR inhibitors with chemotherapy demonstrate inhibition of tumor-induced angiogenesis, tumor cell apoptosis and regression in xenograft models, these benefits remain to be confirmed. Multimodality treatment incorporating EGFR-inhibition is emerging as a novel strategy in the treatment of pancreatic cancer.

  2. Specificity of human anti-variable heavy (VH ) chain autoantibodies and impact on the design and clinical testing of a VH domain antibody antagonist of tumour necrosis factorreceptor 1. (United States)

    Cordy, J C; Morley, P J; Wright, T J; Birchler, M A; Lewis, A P; Emmins, R; Chen, Y Z; Powley, W M; Bareille, P J; Wilson, R; Tonkyn, J; Bayliffe, A I; Lazaar, A L


    During clinical trials of a tumour necrosis factor (TNF)-R1 domain antibody (dAb™) antagonist (GSK1995057), infusion reactions consistent with cytokine release were observed in healthy subjects with high levels of a novel, pre-existing human anti-VH (HAVH) autoantibody. In the presence of HAVH autoantibodies, GSK1995057 induced cytokine release in vitro due to binding of HAVH autoantibodies to a framework region of the dAb. The epitope on GSK1995057 was characterized and dAbs with reduced binding to HAVH autoantibodies were generated; pharmacological comparability was determined in human in-vitro systems and in-vivo animal experiments. A Phase I clinical trial was conducted to investigate the safety and tolerability of the modified dAb (GSK2862277). A significant reduction in HAVH binding was achieved by adding a single alanine residue at the C-terminus to create GSK2862277. Screening a pool of healthy donors demonstrated a reduced frequency of pre-existing autoantibodies from 51% to 7%; in all other respects, GSK2862277 and the parent dAb were comparable. In the Phase I trial, GSK2862277 was well tolerated by both the inhaled and intravenous routes. One subject experienced a mild infusion reaction with cytokine release following intravenous dosing. Subsequently, this subject was found to have high levels of a novel pre-existing antibody specific to the extended C-terminus of GSK2862277. Despite the reduced binding of GSK2862277 to pre-existing HAVH autoantibodies, adverse effects associated with the presence of a novel pre-existing antibody response specific to the modified dAb framework were identified and highlight the challenge of developing biological antagonists to this class of receptor.

  3. Nerve growth factor receptor molecules in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Taniuchi, M.; Schweitzer, J.B.; Johnson, E.M. Jr.


    The authors have developed a method to immunoprecipitate rat nerve growth factor (NGF) receptor proteins and have applied the method to detect NGF receptor molecules in the rat brain. Crosslinking /sup 125/I-labeled NGF to either PC12 cells or cultured rat sympathetic neurons yielded two radiolabeled molecules (90 kDa and 220 kDa) that were immunoprecipitated by monoclonal antibody 192-IgG. Further, 192-IgG precipitated two radiolabeled proteins, with the expected sizes (80 kDa and 210 kDa) of noncrosslinked NGF receptor components, from among numerous surface-iodinated PC12 cell proteins. These results demonstrate the specific immunoprecipitation of NGF receptor molecules by 192-IgG. They applied the /sup 125/I-NGF crosslinking and 192-IgG-mediated immunoprecipitation procedures to plasma membrane preparations of rat brain: NGF receptor molecules of the same molecular masses as the peripheral receptor components were consistently detected in all regions and in preparations from whole brains. Removal of the peripheral sympathetic innervation of the brain did not eliminate these NGF receptor proteins, indicating that the receptor is endogenous to central nervous system tissues. They also observed retrograde transport of /sup 125/I-labeled 192-IgG from the parietal cortex to the nucleus basalis and from the hippocampus to the nucleus of the diagonal band of Broca and the medial septal nucleus. These findings demonstrate the presence in brain of NGF receptor molecules indistinguishable from those of the peripheral nervous system.

  4. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection

    NARCIS (Netherlands)

    Limpens, E.H.M.; Franken, C.L.; Smit, P.E.J.; Willemse, J.J.; Bisseling, T.; Geurts, R.


    The rhizobial infection of legumes has the most stringent demand toward Nod factor structure of all host responses, and therefore a specific Nod factor entry receptor has been proposed. The SYM2 gene identfied in certain ecotypes of pea (Pisum sativum) is a good candidate for such an entry receptor.

  5. Epidermal growth factor receptor-targeted antibody therapy - Mechanisms of action and modulators of therapeutic efficacy

    NARCIS (Netherlands)

    Lammerts van Bueren, Jeroen Jilles


    Cancer is an increasing disease in the world population, and in recent years there has been substantial interest in the development of novel therapeutic agents specifically targeting growth factor receptors on tumor cells. The epidermal growth factor receptor (EGFR) represents a tyrosine kinase cell

  6. Fibroblast growth factor 23 and its receptors. (United States)

    Yu, Xijie; White, Kenneth E


    Fibroblast growth factor 23 (FGF23) is a circulating factor that plays critical roles in phosphate and vitamin D metabolism, as evidenced by the fact that FGF23 missense mutations cause autosomal dominant hypophosphatemic rickets (ADHR). Autosomal dominant hypophosphatemic rickets is characterized by hypophosphatemia with inappropriately normal 1,25-dihydroxyvitamin D concentrations, as well as bone pain, fracture and rickets. This phenotype parallels that of patients with tumor induced osteomalacia (TIO), X-linked hypophosphatemic rickets (XLH), and fibrous dysplasia (FD), in whom elevated serum FGF23 levels are often observed. The fibroblast growth factor receptors (FGFR1-4) play key roles in skeletal development, as well as in normal metabolic processes. Several FGFR isoforms that potentially mediate the activity of FGF23 have been implicated. In the short term, these findings will lead to further understanding of FGF23 function, and potentially in the long term, to targeted therapies in disorders of hypo- and hyperphosphatemia that involve FGF23.

  7. Differential infection of receptor-modified host cells by receptor-specific influenza viruses. (United States)

    Carroll, S M; Paulson, J C


    Influenza viruses of contrasting receptor specificity have been examined for their ability to infect receptor-modified MDCK cells containing sialyloligosaccharide receptor determinants of defined sequence. Cells were treated with sialidase to remove sialic acid and render them resistant to infection and were then incubated with sialyltransferase and CMP-sialic acid to restore sialic acid in the SA alpha 2,6Gal or SA alpha 2,3Gal linkages. The viruses A/RI/5 + /57 and A/duck/Ukraine/1/63, previously shown to exhibit preferential binding of SA alpha 2,6Gal and SA alpha 2,3Gal linkages, respectively, were found to exhibit differential infection of the receptor-modified cells in accord with their receptor specificity. Coinfection of SA alpha 2,3Gal derivatized cells with a mixture of the two viruses resulted in selective propagation of the SA alpha 2,3Gal-specific A/duck/Ukraine/1/63 virus. The results demonstrate the potential for cell surface receptors to mediate selection of receptor-specific variants of influenza virus.

  8. Identification of Androgen Receptor-Specific Enhancer RNAs (United States)


    AND SUBTITLE Identification of Androgen Receptor-Specific Enhancer RNAs 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0120 5c. PROGRAM ELEMENT ...interesting eRNAs and their sequences are shown below. AR-eRNA-#1 ( 117 bp

  9. Chemokine receptor specific antibodies in cancer immunotherapy: achievements and challenges

    Directory of Open Access Journals (Sweden)

    Maria eVela


    Full Text Available The 1990s brought a burst of information regarding the structure, expression pattern, and role in leukocyte migration and adhesion of chemokines and their receptors. At that time, the FDA approved the first therapeutic antibodies for cancer treatment. A few years later it was reported that the chemokine receptors CXCR4 and CCR7 were involved on directing metastases to liver, lung, bone marrow or lymph nodes, and the over-expression of CCR4, CCR6 and CCR9 by certain tumors. The possibility of inhibiting the interaction of chemokine receptors present on the surface of tumor cells with their ligands emerged as a new therapeutic approach. Therefore, many research groups and companies began to develop small-molecule antagonists and specific antibodies, aiming to neutralize signaling from these receptors. Despite great expectations, so far, only one anti-chemokine receptor antibody has been approved for its clinical use, mogamulizumab, an anti-CCR4 antibody, granted in Japan to treat refractory adult T cell leukemia and lymphoma. Here we review the main achievements obtained with anti-chemokine receptor antibodies for cancer immunotherapy, including discovery and clinical studies, proposed mechanisms of action and therapeutic applications.

  10. Evolution of ligand specificity in vertebrate corticosteroid receptors

    Directory of Open Access Journals (Sweden)

    Deitcher David L


    Full Text Available Abstract Background Corticosteroid receptors include mineralocorticoid (MR and glucocorticoid (GR receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear. Results We used up to seven steroids (including aldosterone, cortisol and 11-deoxycorticosterone [DOC] to compare the ligand specificity of the ligand binding domains of corticosteroid receptors between a mammal (Mus musculus and the midshipman fish (Porichthys notatus, a teleost model for steroid regulation of neural and behavioral plasticity. Variation in mineralocorticoid sensitivity was considered in a broader phylogenetic context by examining the aldosterone sensitivity of MR and GRs from the distantly related daffodil cichlid (Neolamprologus pulcher, another teleost model for neurobehavioral plasticity. Both teleost species had a single MR and duplicate GRs. All MRs were sensitive to DOC, consistent with the hypothesis that DOC was the initial ligand of the ancestral MR. Variation in GR steroid-specificity corresponds to nine identified amino acid residue substitutions rather than phylogenetic relationships based on receptor sequences. Conclusion The mineralocorticoid sensitivity of duplicate GRs in teleosts is highly labile in the context of their evolutionary phylogeny, a property that likely led to neo-functionalization and maintenance of two GRs.

  11. Classification of Na channel receptors specific for various scorpion toxins. (United States)

    Wheeler, K P; Watt, D D; Lazdunski, M


    1. The specific binding to rat brain synaptosomes of a radiolabelled derivative of toxin II from the scorpion Centruroides suffusus suffusus could be prevented by toxins III and IV, but not by toxin V or variants 1-3, from the venom of Centruroides sculpturatus. 2. The specific binding of a similar derivative of toxin II from Androctonus australis Hector was not affected by any of the toxins from Centruroides sculpturatus. 3. There is biochemical evidence for only two distinct classes of Na channel receptors specific for known scorpion toxins.

  12. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. (United States)

    Limpens, Erik; Franken, Carolien; Smit, Patrick; Willemse, Joost; Bisseling, Ton; Geurts, René


    The rhizobial infection of legumes has the most stringent demand toward Nod factor structure of all host responses, and therefore a specific Nod factor entry receptor has been proposed. The SYM2 gene identified in certain ecotypes of pea (Pisum sativum) is a good candidate for such an entry receptor. We exploited the close phylogenetic relationship of pea and the model legume Medicago truncatula to identify genes specifically involved in rhizobial infection. The SYM2 orthologous region of M. truncatula contains 15 putative receptor-like genes, of which 7 are LysM domain-containing receptor-like kinases (LYKs). Using reverse genetics in M. truncatula, we show that two LYK genes are specifically involved in infection thread formation. This, as well as the properties of the LysM domains, strongly suggests that they are Nod factor entry receptors.

  13. Quantity and accessibility for specific targeting of receptors in tumours (United States)

    Hussain, Sajid; Rodriguez-Fernandez, Maria; Braun, Gary B.; Doyle, Francis J.; Ruoslahti, Erkki


    Synaphic (ligand-directed) targeting of drugs is an important potential new approach to drug delivery, particularly in oncology. Considerable success with this approach has been achieved in the treatment of blood-borne cancers, but the advances with solid tumours have been modest. Here, we have studied the number and availability for ligand binding of the receptors for two targeting ligands. The results show that both paucity of total receptors and their poor availability are major bottlenecks in drug targeting. A tumour-penetrating peptide greatly increases the availability of receptors by promoting transport of the drug to the extravascular tumour tissue, but the number of available receptors still remains low, severely limiting the utility of the approach. Our results emphasize the importance of using drugs with high specific activity to avoid exceeding receptor capacity because any excess drug conjugate would lose the targeting advantage. The mathematical models we describe make it possible to focus on those aspects of the targeting mechanism that are most likely to have a substantial effect on the overall efficacy of the targeting.

  14. Nuclear transportation of exogenous epidermal growth factor receptor and androgen receptor via extracellular vesicles. (United States)

    Read, Jolene; Ingram, Alistair; Al Saleh, Hassan A; Platko, Khrystyna; Gabriel, Kathleen; Kapoor, Anil; Pinthus, Jehonathan; Majeed, Fadwa; Qureshi, Talha; Al-Nedawi, Khalid


    Epidermal growth factor receptor (EGFR) plays a central role in the progression of several human malignancies. Although EGFR is a membrane receptor, it undergoes nuclear translocation, where it has a distinct signalling pathway. Herein, we report a novel mechanism by which cancer cells can directly transport EGFR to the nucleus of other cells via extracellular vesicles (EVs). The transported receptor is active and stimulates the nuclear EGFR pathways. Interestingly, the translocation of EGFR via EVs occurs independently of the nuclear localisation sequence that is required for nuclear translocation of endogenous EGFR. Also, we found that the mutant receptor EGFRvIII could be transported to the nucleus of other cells via EVs. To assess the role of EVs in the regulation of an actual nuclear receptor, we studied the regulation of androgen receptor (AR). We found that full-length AR and mutant variant ARv7 are secreted in EVs derived from prostate cancer cell lines and could be transported to the nucleus of AR-null cells. The EV-derived AR was able to bind the androgen-responsive promoter region of prostate specific antigen, and recruit RNA Pol II, an indication of active transcription. The nuclear-translocated AR via EVs enhanced the proliferation of acceptor cells in the absence of androgen. Finally, we provide evidence that nuclear localisation of AR could occur in vivo via orthotopically-injected EVs in male SCID mice prostate glands. To our knowledge, this is the first study showing the nuclear translocation of nuclear receptors via EVs, which significantly extends the role of EVs as paracrine transcriptional regulators.

  15. Beclin 1 regulates growth factor receptor signaling in breast cancer. (United States)

    Rohatgi, R A; Janusis, J; Leonard, D; Bellvé, K D; Fogarty, K E; Baehrecke, E H; Corvera, S; Shaw, L M


    Beclin 1 is a haploinsufficient tumor suppressor that is decreased in many human tumors. The function of beclin 1 in cancer has been attributed primarily to its role in the degradative process of macroautophagy. However, beclin 1 is a core component of the vacuolar protein sorting 34 (Vps34)/class III phosphatidylinositoI-3 kinase (PI3KC3) and Vps15/p150 complex that regulates multiple membrane-trafficking events. In the current study, we describe an alternative mechanism of action for beclin 1 in breast cancer involving its control of growth factor receptor signaling. We identify a specific stage of early endosome maturation that is regulated by beclin 1, the transition of APPL1-containing phosphatidyIinositol 3-phosphate-negative (PI3P(-)) endosomes to PI3P(+) endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P(-)/APPL(+)-signaling-competent compartment. As a result, suppression of BECN1 sustains growth factor-stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Our data identify a novel role for beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of beclin 1 expression would enhance breast cancer progression.

  16. Cheiradone: a vascular endothelial cell growth factor receptor antagonist

    Directory of Open Access Journals (Sweden)

    Ahmed Nessar


    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with physiological (for example wound healing and pathological conditions (tumour development. Vascular endothelial growth factor (VEGF, fibroblast growth factor-2 (FGF-2 and epidermal growth factor (EGF are the major angiogenic regulators. We have identified a natural product (cheiradone isolated from a Euphorbia species which inhibited in vivo and in vitro VEGF- stimulated angiogenesis but had no effect on FGF-2 or EGF activity. Two primary cultures, bovine aortic and human dermal endothelial cells were used in in vitro (proliferation, wound healing, invasion in Matrigel and tube formation and in vivo (the chick chorioallantoic membrane models of angiogenesis in the presence of growth factors and cheiradone. In all cases, the concentration of cheiradone which caused 50% inhibition (IC50 was determined. The effect of cheiradone on the binding of growth factors to their receptors was also investigated. Results Cheiradone inhibited all stages of VEGF-induced angiogenesis with IC50 values in the range 5.20–7.50 μM but did not inhibit FGF-2 or EGF-induced angiogenesis. It also inhibited VEGF binding to VEGF receptor-1 and 2 with IC50 values of 2.9 and 0.61 μM respectively. Conclusion Cheiradone inhibited VEGF-induced angiogenesis by binding to VEGF receptors -1 and -2 and may be a useful investigative tool to study the specific contribution of VEGF to angiogenesis and may have therapeutic potential.

  17. Potent, selective inhibitors of fibroblast growth factor receptor define fibroblast growth factor dependence in preclinical cancer models. (United States)

    Squires, Matthew; Ward, George; Saxty, Gordan; Berdini, Valerio; Cleasby, Anne; King, Peter; Angibaud, Patrick; Perera, Tim; Fazal, Lynsey; Ross, Douglas; Jones, Charlotte Griffiths; Madin, Andrew; Benning, Rajdeep K; Vickerstaffe, Emma; O'Brien, Alistair; Frederickson, Martyn; Reader, Michael; Hamlett, Christopher; Batey, Michael A; Rich, Sharna; Carr, Maria; Miller, Darcey; Feltell, Ruth; Thiru, Abarna; Bethell, Susanne; Devine, Lindsay A; Graham, Brent L; Pike, Andrew; Cosme, Jose; Lewis, Edward J; Freyne, Eddy; Lyons, John; Irving, Julie; Murray, Christopher; Newell, David R; Thompson, Neil T


    We describe here the identification and characterization of 2 novel inhibitors of the fibroblast growth factor receptor (FGFR) family of receptor tyrosine kinases. The compounds exhibit selective inhibition of FGFR over the closely related VEGFR2 receptor in cell lines and in vivo. The pharmacologic profile of these inhibitors was defined using a panel of human tumor cell lines characterized for specific mutations, amplifications, or translocations known to activate one of the four FGFR receptor isoforms. This pharmacology defines a profile for inhibitors that are likely to be of use in clinical settings in disease types where FGFR is shown to play an important role.

  18. Fibroblast growth factor receptor-3 (FGFR-3) regulates expression of paneth cell lineage-specific genes in intestinal epithelial cells through both TCF4/beta-catenin-dependent and -independent signaling pathways. (United States)

    Brodrick, Brooks; Vidrich, Alda; Porter, Edith; Bradley, Leigh; Buzan, Jenny M; Cohn, Steven M


    Fibroblast growth factor receptor-3 (FGFR-3) expression in the developing intestine is restricted to the undifferentiated epithelial cells within the lower portion of the crypt. We previously showed that mice lacking functional FGFR-3 have a significant decrease in the number of Paneth cells in the small intestine. Here, we used Caco2 cells to investigate whether FGFR-3 signaling can directly modulate expression of Paneth cell differentiation markers through its effects on TCF4/β-catenin or through other signaling pathways downstream of this receptor. Caco2 cells treated with FGFR-3 ligands or expressing FGFR-3(K650E), a constitutively active mutant, resulted in a significantly increased expression of genes characteristic of mature Paneth cells, including human α-defensins 5 and 6 (HD5 and HD6) and Paneth cell lysozyme, whereas enterocytic differentiation markers were reduced. Activation of FGFR-3 signaling sustained high levels of β-catenin mRNA expression, leading to increased TCF4/β-catenin-regulated transcriptional activity in Caco2 cells. Sustained activity of the TCF4/β-catenin pathway was required for the induction of Paneth cell markers. Activation of the MAPK pathway by FGFR-3 is also required for the induction of Paneth cell markers in addition to and independent of the effect of FGFR-3 on TCF4/β-catenin activity. These studies suggest that coordinate activation of multiple independent signaling pathways downstream of FGFR-3 is involved in regulation of Paneth cell differentiation.

  19. Cardiovascular risk factors regulate the expression of vascular endothelin receptors

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Sun, Yang; Edvinsson, Lars


    , cigarette smoking and hypertension (both strongly related to arterial wall injury), inflammation and atherosclerosis. The vascular endothelin receptors are a protein family that belongs to the larger family of G-protein coupled receptors. They mediate vascular smooth muscle contraction, proliferation......-activated protein kinase pathways and downstream transcription factors such as nuclear factor-kappaB. Understanding the mechanisms involved in vascular endothelin receptor upregulation during cardiovascular disease may provide novel therapeutic approaches....

  20. Topography of human placental receptors for epidermal growth factor. (United States)

    Rao, C V; Ramani, N; Chegini, N; Stadig, B K; Carman, F R; Woost, P G; Schultz, G S; Cook, C L


    These studies were undertaken to determine whether term human placental microvillus plasma membranes, which are exposed to maternal blood, and basolateral plasma membranes, which are in close proximity to fetal blood capillaries, contain receptors for epidermal growth factor (EGF). These two highly purified membranes bound 125I-EGF with similar affinity (apparent dissociation constants, 0.07-0.12 nM, but the total number of available receptors was greater in microvillus (8.2 pmol/mg protein) compared to basolateral (4.9 pmol/mg protein) plasma membranes. Detailed characterization of 125I-EGF binding to these membranes revealed numerous similarities as well as differences. The two membranes contained two major (155 and 140 kDa) and at least three minor (115, 175, and 210 kDa) specific 125I-EGF binding proteins. The 115-kDa protein was only found in basolateral plasma membranes. The 155-kDa protein was predominantly labeled in microvillus, whereas the 140-kDa protein was labeled predominantly in basolateral plasma membranes. The addition of protease inhibitors did not alter the multiple 125I-EGF binding proteins pattern found in these membranes. EGF stimulated phosphorylation of 140- and 155-kDa proteins in both microvillus and basolateral plasma membranes. However, the 155-kDa protein was phosphorylated to a greater extent in microvillus, whereas both 140- and 155-kDa proteins were phosphorylated equally in basolateral plasma membranes. Light and electron microscope autoradiographic studies revealed that 125I-EGF preferentially associated with microvillus plasma membranes. The data demonstrates the presence of EGF receptors in outer cell membranes of syncytiotrophoblasts and suggests that maternal EGF may influence syncytiotrophoblast function by binding to receptors in microvillus plasma membranes, while fetal EGF may also influence syncytiotrophoblast function but via receptors in basolateral plasma membranes.

  1. Pattern of hormone receptors and human epidermal growth factor ...

    African Journals Online (AJOL)


    Feb 5, 2015 ... Key words: Breast cancer, human epidermal growth factor receptor 2/neu, immunohistochemistry, ... therapy.[6‑8] Of all these prognostic and predictive factors, ... one of the biggest private medical laboratories in Nigeria.

  2. Dynamic tracing for epidermal growth factor receptor mutations in urinary circulating DNA in gastric cancer patients. (United States)

    Shi, Xiu-Qin; Xue, Wen-Hua; Zhao, Song-Feng; Zhang, Xiao-Jian; Sun, Wukong


    The mutations of epidermal growth factor receptor are detected in gastric cancer, indicating its suitability as a target for receptor tyrosine kinase inhibitors, as well as a marker for clinical outcome of chemotherapeutic treatments. However, extraction of quality tumor tissue for molecular processes remains challenging. Here, we aimed to examine the clinical relevance of urinary cell-free DNA as an alternative tumor material source used specifically for monitoring epidermal growth factor receptor mutations. Therefore, 120 gastric cancer patients with epidermal growth factor receptor mutations and 100 healthy controls were recruited for the study. The gastric patients also received epidermal growth factor receptor inhibitor treatment for a serial monitoring study. Paired primary tumor specimens were obtained with blood and urine samples, which were taken at a 1-month interval for a duration of 12 months. We found that urinary cell-free DNA yielded a close agreement of 92% on epidermal growth factor receptor mutation status when compared to primary tissue at baseline, and of 99% epidermal growth factor receptor mutation status when compared to plasma samples at different time points. Thus, our data suggest that urinary cell-free DNA may be a reliable source for screening and monitoring epidermal growth factor receptor mutations in the primary gastric cancer.

  3. Gene specific actions of thyroid hormone receptor subtypes.

    Directory of Open Access Journals (Sweden)

    Jean Z Lin

    Full Text Available There are two homologous thyroid hormone (TH receptors (TRs α and β, which are members of the nuclear hormone receptor (NR family. While TRs regulate different processes in vivo and other highly related NRs regulate distinct gene sets, initial studies of TR action revealed near complete overlaps in their actions at the level of individual genes. Here, we assessed the extent that TRα and TRβ differ in target gene regulation by comparing effects of equal levels of stably expressed exogenous TRs +/- T(3 in two cell backgrounds (HepG2 and HeLa. We find that hundreds of genes respond to T(3 or to unliganded TRs in both cell types, but were not able to detect verifiable examples of completely TR subtype-specific gene regulation. TR actions are, however, far from identical and we detect TR subtype-specific effects on global T(3 response kinetics in HepG2 cells and many examples of TR subtype specificity at the level of individual genes, including effects on magnitude of response to TR +/- T(3, TR regulation patterns and T(3 dose response. Cycloheximide (CHX treatment confirms that at least some differential effects involve verifiable direct TR target genes. TR subtype/gene-specific effects emerge in the context of widespread variation in target gene response and we suggest that gene-selective effects on mechanism of TR action highlight differences in TR subtype function that emerge in the environment of specific genes. We propose that differential TR actions could influence physiologic and pharmacologic responses to THs and selective TR modulators (STRMs.

  4. Biotin-specific synthetic receptors prepared using molecular imprinting

    Energy Technology Data Exchange (ETDEWEB)

    Piletska, Elena; Piletsky, Sergey; Karim, Kal; Terpetschnig, Ewald; Turner, Anthony


    The composition of new molecularly imprinted polymers (MIPs) specific for biotin was optimised using molecular modelling software. Three functional monomers: methacrylic acid (MAA), 2-(trifluoromethyl)acrylic acid (TFAA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPSA), which demonstrated the highest binding scores with biotin, were tested on their ability to generate specific binding sites. The imprinted polymers were photografted to the surface of polystyrene microspheres in water. The affinity of the synthetic 'receptor' sites was evaluated in binding experiments using horseradish peroxidase-labelled biotin. Good correlation was found between the modelling results and the performance of the materials in the template re-binding study. The dissociation constants for all MIPs were 1.4-16.8 nM, which is sufficient for most analytical applications where biotin is used as a label.

  5. Receptor specificity and erythrocyte binding preferences of avian influenza viruses isolated from India

    Directory of Open Access Journals (Sweden)

    Pawar Shailesh D


    , two isolates of HPAI H5N1, H9N2 and H11N1 viruses showed receptor specificity preference to both avian and mammalian sialic acid (α-2, 3 and α-2, 6 receptors. Conclusions Use of different types of RBCs resulted in titer variations in HA and HI assays. This showed that RBCs giving optimum HA and HI titers would increase sensitivity of detection and would be more appropriate for identification and antigenic analysis of AI viruses. Analysis of 16 amino acids in the receptor-binding domain of the hemagglutinin of HPAI H5N1 viruses revealed that the only variation observed was in S221P amino acid position. Two H5N1 viruses showed S221P amino acid change, out of which only one H5N1 virus showed preference to α 2, 6 sialic acid receptor. One H5N1 virus isolate with amino acid S at 221 position, showed preference to α 2,3 as well as α 2,6 sialic acid receptors. This indicated that factor(s other than S221P mutation in the hemagglutinin are probably involved in determining receptor specificity of H5N1 viruses. This is the first report of receptor specificity and erythrocyte binding preferences of AI viruses from India.

  6. Identification of Bartonella Trw host-specific receptor on erythrocytes.

    Directory of Open Access Journals (Sweden)

    Hon Kuan Deng

    Full Text Available Each Bartonella species appears to be highly adapted to one or a limited number of reservoir hosts, in which it establishes long-lasting intraerythrocytic bacteremia as the hallmark of infection. Recently, we identified Trw as the bacterial system involved in recognition of erythrocytes according to their animal origin. The T4SS Trw is characterized by a multiprotein complex that spans the inner and outer bacterial membranes, and possesses a hypothetical pilus structure. TrwJ, I, H and trwL are present in variable copy numbers in different species and the multiple copies of trwL and trwJ in the Bartonella trw locus are considered to encode variant forms of surface-exposed pilus components. We therefore aimed to identify which of the candidate Trw pilus components were located on the bacterial surface and involved in adhesion to erythrocytes, together with their erythrocytic receptor. Using different technologies (electron microscopy, phage display, invasion inhibition assay, far western blot, we found that only TrwJ1 and TrwJ2 were expressed and localized at the cell surface of B. birtlesii and had the ability to bind to mouse erythrocytes, and that their receptor was band3, one of the major outer-membrane glycoproteins of erythrocytes, (anion exchanger. According to these results, we propose that the interaction between TrwJ1, TrwJ2 and band 3 leads to the critical host-specific adherence of Bartonella to its host cells, erythrocytes.

  7. Cell-specific expression of the glucocorticoid receptor within granular convoluted tubules of the rat submaxillary gland

    Energy Technology Data Exchange (ETDEWEB)

    Antakly, T.; Zhang, C.X.; Sarrieau, A.; Raquidan, D. (McGill Univ., Montreal, Quebec (Canada))


    The submaxillary gland, a heterogeneous tissue composed essentially of two functionally distinct cell types (tubular epithelial and acinar), offers an interesting system in which to study the mechanisms of steroid-dependent growth and differentiation. One cell type, the granular convoluted tubular (GCT) cell, secretes a large number of physiologically important polypeptides, including epidermal and nerve growth factors. Two steroids, androgens and glucocorticoids, greatly influence the growth, differentiation, and secretory activity of GCT cells. Because glucocorticoids can partially mimic or potentiate androgen effects, it has been thought that glucocorticoids act via androgen receptors. Since the presence of glucocorticoid receptors is a prerequisite for glucocorticoid action, we have investigated the presence and cellular distribution of glucocorticoid receptors within the rat submaxillary gland. Binding experiments using (3H)dexamethasone revealed the presence of high affinity binding sites in rat submaxillary tissue homogenates. Most of these sites were specifically competed by dexamethasone, corticosterone, and a pure glucocorticoid agonist RU 28362. Neither testosterone nor dihydrotestosterone competed for glucocorticoid binding. The cellular distribution of glucocorticoid receptors within the submaxillary gland was investigated by immunocytochemistry, using two highly specific glucocorticoid receptor antibodies. The receptor was localized in the GCT cells, but not in the acinar cells of rat and mouse submaxillary tissue sections. In GCT cells, the glucocorticoid receptor colocalized with several secretory polypeptides, including epidermal growth factor, nerve growth factor, alpha 2u-globulin, and atrial natriuretic factor.

  8. Fine specificity and molecular competition in SLAM family receptor signalling. (United States)

    Wilson, Timothy J; Garner, Lee I; Metcalfe, Clive; King, Elliott; Margraf, Stefanie; Brown, Marion H


    SLAM family receptors regulate activation and inhibition in immunity through recruitment of activating and inhibitory SH2 domain containing proteins to immunoreceptor tyrosine based switch motifs (ITSMs). Binding of the adaptors, SAP and EAT-2 to ITSMs in the cytoplasmic regions of SLAM family receptors is important for activation. We analysed the fine specificity of SLAM family receptor phosphorylated ITSMs and the conserved tyrosine motif in EAT-2 for SH2 domain containing signalling proteins. Consistent with the literature describing dependence of CRACC (SLAMF7) on EAT-2, CRACC bound EAT-2 (KD = 0.003 μM) with approximately 2 orders of magnitude greater affinity than SAP (KD = 0.44 μM). RNA interference in cytotoxicity assays in NK92 cells showed dependence of CRACC on SAP in addition to EAT-2, indicating selectivity of SAP and EAT-2 may depend on the relative concentrations of the two adaptors. The concentration of SAP was four fold higher than EAT-2 in NK92 cells. Compared with SAP, the significance of EAT-2 recruitment and its downstream effectors are not well characterised. We identified PLCγ1 and PLCγ2 as principal binding partners for the EAT-2 tail. Both PLCγ1 and PLCγ2 are functionally important for cytotoxicity in NK92 cells through CD244 (SLAMF4), NTB-A (SLAMF6) and CRACC. Comparison of the specificity of SH2 domains from activating and inhibitory signalling mediators revealed a hierarchy of affinities for CD244 (SLAMF4) ITSMs. While binding of phosphatase SH2 domains to individual ITSMs of CD244 was weak compared with SAP or EAT-2, binding of tandem SH2 domains of SHP-2 to longer peptides containing tandem phosphorylated ITSMs in human CD244 increased the affinity ten fold. The concentration of the tyrosine phosphatase, SHP-2 was in the order of a magnitude higher than the adaptors, SAP and EAT-2. These data demonstrate a mechanism for direct recruitment of phosphatases in inhibitory signalling by ITSMs, while explaining competitive

  9. Fine Specificity and Molecular Competition in SLAM Family Receptor Signalling (United States)

    Wilson, Timothy J.; Garner, Lee I.; Metcalfe, Clive; King, Elliott; Margraf, Stefanie; Brown, Marion H.


    SLAM family receptors regulate activation and inhibition in immunity through recruitment of activating and inhibitory SH2 domain containing proteins to immunoreceptor tyrosine based switch motifs (ITSMs). Binding of the adaptors, SAP and EAT-2 to ITSMs in the cytoplasmic regions of SLAM family receptors is important for activation. We analysed the fine specificity of SLAM family receptor phosphorylated ITSMs and the conserved tyrosine motif in EAT-2 for SH2 domain containing signalling proteins. Consistent with the literature describing dependence of CRACC (SLAMF7) on EAT-2, CRACC bound EAT-2 (KD = 0.003 μM) with approximately 2 orders of magnitude greater affinity than SAP (KD = 0.44 μM). RNA interference in cytotoxicity assays in NK92 cells showed dependence of CRACC on SAP in addition to EAT-2, indicating selectivity of SAP and EAT-2 may depend on the relative concentrations of the two adaptors. The concentration of SAP was four fold higher than EAT-2 in NK92 cells. Compared with SAP, the significance of EAT-2 recruitment and its downstream effectors are not well characterised. We identified PLCγ1 and PLCγ2 as principal binding partners for the EAT-2 tail. Both PLCγ1 and PLCγ2 are functionally important for cytotoxicity in NK92 cells through CD244 (SLAMF4), NTB-A (SLAMF6) and CRACC. Comparison of the specificity of SH2 domains from activating and inhibitory signalling mediators revealed a hierarchy of affinities for CD244 (SLAMF4) ITSMs. While binding of phosphatase SH2 domains to individual ITSMs of CD244 was weak compared with SAP or EAT-2, binding of tandem SH2 domains of SHP-2 to longer peptides containing tandem phosphorylated ITSMs in human CD244 increased the affinity ten fold. The concentration of the tyrosine phosphatase, SHP-2 was in the order of a magnitude higher than the adaptors, SAP and EAT-2. These data demonstrate a mechanism for direct recruitment of phosphatases in inhibitory signalling by ITSMs, while explaining competitive

  10. the significance of epidermal growth factor receptor and survivin ...

    African Journals Online (AJOL)


    Jan 1, 2013 ... SURVIVIN EXPRESSION IN BLADDER CANCER TISSUE AND URINE ... Objective: To assess whether epidermal growth factor receptor (EGFR) and survivin ..... lung cancer by the FDA in 2003 (28) and is currently.

  11. Factors influencing women's decisions to purchase specific ...

    African Journals Online (AJOL)

    Keywords: multi-nutrient supplements; survey; children; women's decisions. Factors influencing .... associations between level of education and various factors influencing women's ..... Social marketing improved the use of multivitamin and ...

  12. Engineering HIV-Specific Immunity with Chimeric Antigen Receptors. (United States)

    Kitchen, Scott G; Zack, Jerome A


    HIV remains a highly important public health and clinical issue despite many recent advances in attempting to develop a cure, which has remained elusive for most people infected with HIV. HIV disease can be controlled with pharmacologic therapies; however, these treatments are expensive, may have severe side effects, and are not curative. Consequently, an improved means to control or eliminate HIV replication is needed. Cytotoxic T lymphocytes (CTLs) play a critical role in controlling viral replication and are an important part in the ability of the immune response to eradicate most viral infections. There are considerable efforts to enhance CTL responses in HIV-infected individuals in hopes of providing the immune response with armaments to more effectively control viral replication. In this review, we discuss some of these efforts and focus on the development of a gene therapy-based approach to engineer hematopoietic stem cells with an HIV-1-specific chimeric antigen receptor, which seeks to provide an inexhaustible source of HIV-1-specific immune cells that are MHC unrestricted and superior to natural antiviral T cell responses. These efforts provide the basis for further development of T cell functional enhancement to target and treat chronic HIV infection in hopes of eradicating the virus from the body.

  13. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression. (United States)

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A


    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  14. Distinct Subunit Domains Govern Synaptic Stability and Specificity of the Kainate Receptor

    Directory of Open Access Journals (Sweden)

    Christoph Straub


    Full Text Available Synaptic communication between neurons requires the precise localization of neurotransmitter receptors to the correct synapse type. Kainate-type glutamate receptors restrict synaptic localization that is determined by the afferent presynaptic connection. The mechanisms that govern this input-specific synaptic localization remain unclear. Here, we examine how subunit composition and specific subunit domains contribute to synaptic localization of kainate receptors. The cytoplasmic domain of the GluK2 low-affinity subunit stabilizes kainate receptors at synapses. In contrast, the extracellular domain of the GluK4/5 high-affinity subunit synergistically controls the synaptic specificity of kainate receptors through interaction with C1q-like proteins. Thus, the input-specific synaptic localization of the native kainate receptor complex involves two mechanisms that underlie specificity and stabilization of the receptor at synapses.

  15. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain (United States)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.


    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  16. Pharmacologic specificity of alpha-2 adrenergic receptor subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Petrash, A.; Bylund, D.


    The authors have defined alpha-2 adrenergic receptor subtypes in human and rat tissues using prazosin as a subtype selective drug. Prazosin has a lower affinity (250 nM) at alpha-2A receptor and a higher affinity (5 nM) at alpha-2B receptors. In order to determine if other adrenergic drugs are selective for one or the other subtypes, the authors performed (/sup 3/H)yohimbine inhibition experiments with various adrenergic drugs in tissues containing alpha-2A, alpha-2B or both subtypes. Oxymetazoline, WB4101 and yohimbine were found to be 80-, 20- and 10-fold more potent at alpha-2A receptors than at alpha-2B receptors. Phentolamine, adazoxan, (+)- and (-)-mianserin, clonidine, (+)-butaclamol, (-)- and (+)-norepinephrine, epinephrine, dopamine and thioridazine were found to have equal affinities for the two subtypes. These results further validate the subdivision of alpha-2 adrenergic receptors into alpha-2A and alpha-2B subtypes.

  17. Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors



    The receptors for tumor necrosis factor (TNF) exist in cell-associated as well as soluble forms, both binding specifically to TNF. Since the soluble forms of TNF receptors (sTNF-Rs) can compete with the cell- associated TNF receptors for TNF, it was suggested that they function as inhibitors of TNF activity; at high concentrations, the sTNF-Rs indeed inhibit TNF effects. However, we report here that in the presence of low concentrations of the sTNF-Rs, effects of TNF whose induction depend on...

  18. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization (United States)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.


    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  19. Canine specific ELISA for coagulation factor VII

    DEFF Research Database (Denmark)

    Knudsen, Tom; Kjelgaard-Hansen, Mads; Tranholm, Mikael;


    available to date. In this study, a canine specific ELISA for measurement of FVII:Ag in plasma was developed and validated. The FVII:Ag ELISA correctly diagnosed homozygous and heterozygous hereditary FVII deficiency. Together with activity based assays, such as FVII:C, the FVII:Ag ELISA should be valuable...

  20. Placental growth factor and vascular endothelial growth factor receptor-2 in human lung development. (United States)

    Janér, Joakim; Andersson, Sture; Haglund, Caj; Karikoski, Riitta; Lassus, Patrik


    We examined the pulmonary expression of 2 proangiogenic factors, namely, placental growth factor and vascular endothelial growth factor receptor-2, during lung development and acute and chronic lung injury in newborn infants. Six groups were included in an immunohistochemical study of placental growth factor and vascular endothelial growth factor receptor-2, that is, 9 fetuses, 4 preterm and 8 term infants without lung injury who died soon after birth, 5 preterm infants with respiratory distress syndrome of 10 days, and 6 with bronchopulmonary dysplasia. Placental growth factor concentrations in tracheal aspirate fluid were measured in 70 samples from 20 preterm infants during the first postnatal week. In immunohistochemical analyses, placental growth factor staining was seen in bronchial epithelium and macrophages in all groups. Distal airway epithelium positivity was observed mostly in fetuses and in preterm infants who died soon after birth. Vascular endothelial growth factor receptor-2 staining was seen in vascular endothelium in all groups and also in lymphatic endothelium in fetuses. Vascular endothelial growth factor receptor-2 staining in arterial endothelium was associated with higher and staining in venous endothelium with lower gestational age. In capillaries, less vascular endothelial growth factor receptor-2 staining was seen in bronchopulmonary dysplasia. The mean placental growth factor protein concentration in tracheal aspirate fluid during the first postnatal week was 0.64 +/- 0.42 pg/mL per IgA-secretory component unit. Concentrations during the first postnatal week were stable. Lower placental growth factor concentrations correlated with chorioamnionitis and lactosyl ceramide positivity. The vascular endothelial growth factor receptor-2 staining pattern seems to reflect ongoing differentiation and activity of different endothelia. Lower vascular endothelial growth factor receptor-2 expression in capillary endothelium in bronchopulmonary dysplasia

  1. Cell and molecular biology of epidermal growth factor receptor. (United States)

    Ceresa, Brian P; Peterson, Joanne L


    The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.

  2. S-Nitrosothiols modulate G protein-coupled receptor signaling in a reversible and highly receptor-specific manner

    Directory of Open Access Journals (Sweden)

    Mönkkönen Kati S


    show for the first time in a broader general context that RSNOs are capable of modulating GPCR signaling in a reversible and highly receptor-specific manner. Given that the enzymatic machinery responsible for endogenous NO production is located in close proximity with the GPCR signaling complex, especially with that for several receptors whose signaling is shown here to be modulated by exogenous RSNOs, our data suggest that GPCR signaling in vivo is likely to be subject to substantial, and highly receptor-specific modulation by NO-derived RSNOs.

  3. The use of receptor-specific antibodies to study G-protein-coupled receptors. (United States)

    Gupta, Achla; Devi, Lakshmi A


    The identification of G-protein-coupled receptor (GPCR) cDNAs has facilitated a number of studies characterizing the biochemical properties of the receptor protein. Most of these studies have used antibodies directed against the epitope-tagged receptor expressed in heterologous cells, because of the lack of sensitive and selective antibodies capable of recognizing endogenous receptors in their native state. In order to facilitate studies with endogenous receptors, efforts have been made to generate receptor-type selective, sensitive antibodies that are able to recognize endogenous receptors. In this review, we discuss the strategies as well as the details of the techniques used for the generation of monoclonal and polyclonal antibodies with a focus on family A GPCRs.

  4. Advances in Variations of Estrogen Receptor, Progesterone Receptor and Human Epidermal Growth Factor Receptor-2 Status in Metastatic Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan; Zhang Lili


    Chemotherapy, endocrine therapy and molecular targeted therapy are vital means in the treatment of metastatic breast cancer (MBC), whose reasonable and standard applications are of great importance to prolong patients’ survival and improve the quality of life. The expressions of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER-2) present signiifcant differences between primary and metastatic breast cancer. However, these differences may affect the selection of MBC patients for therapeutic strategies and judgment on the prognosis. Hence, the relevant researches on variations of hormone receptors and HER-2 in primary and metastatic breast cancer, discordant causes of ER, PR and HER-2 expression in primary and metastatic lesions and clinical value of biopsy to the metastases are reviewed in the study.

  5. Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF receptors, preventing neuronal apoptosis.

    Directory of Open Access Journals (Sweden)

    Iakovos Lazaridis


    Full Text Available The neurosteroid dehydroepiandrosterone (DHEA, produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75(NTR membrane receptors of neurotrophin nerve growth factor (NGF, acting as a neurotrophic factor: (1 the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2 [(3H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75(NTR receptors (K(D: 7.4 ± 1.75 nM and 5.6 ± 0.55 nM, respectively; (3 immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75(NTR receptors; (4 DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75(NTR receptors; and (5 DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor.

  6. Signal transduction by growth factor receptors: signaling in an instant

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Blagoev, Blagoy;


    -out by mass spectrometry-based proteomics has allowed exciting views on the very early events in signal transduction. Activation profiles of regulated phosphorylation sites on epidermal growth factor receptor and downstream signal transducers showed different kinetics within the first ten seconds...

  7. The epidermal growth factor receptor pathway in chronic kidney diseases

    NARCIS (Netherlands)

    Harskamp, Laura R.; Gansevoort, Ron T.; Goor, van Harry; Meijer, Esther


    The epidermal growth factor receptor (EGFR) pathway has a critical role in renal development, tissue repair and electrolyte handling. Numerous studies have reported an association between dysregulation of this pathway and the initiation and progression of various chronic kidney diseases such as diab

  8. An Analysis of the Factors Impacting Employee's Specific Investment

    Institute of Scientific and Technical Information of China (English)

    WU Ai-hua; GE Wen-lei


    The amount of specific investment from employees is limited, and the reasons of the under-investment from employees are analyzed in this paper. Based on the relationship of the specific investment and the employee demission, an empirical study has been conducted focusing on the factors influencing the employee turnover and the specific investment. A theoretical model of the factors influencing employee's specific investment is given.

  9. Site-Specific N-Glycosylation of Endothelial Cell Receptor Tyrosine Kinase VEGFR-2. (United States)

    Chandler, Kevin Brown; Leon, Deborah R; Meyer, Rosana D; Rahimi, Nader; Costello, Catherine E


    Vascular endothelial growth factor receptor-2 (VEGFR-2) is an important receptor tyrosine kinase (RTK) that plays critical roles in both physiologic and pathologic angiogenesis. The extracellular domain of VEGFR-2 is composed of seven immunoglobulin-like domains, each with multiple potential N-glycosylation sites (sequons). N-glycosylation plays a central role in RTK ligand binding, trafficking, and stability. However, despite its importance, the functional role of N-glycosylation of VEGFR-2 remains poorly understood. The objectives of the present study were to characterize N-glycosylation sites in VEGFR-2 via enzymatic release of the glycans and concomitant incorporation of (18)O into formerly N-glycosylated sites followed by tandem mass spectrometry (MS/MS) analysis to determine N-glycosylation site occupancy and the site-specific N-glycan heterogeneity of VEGFR-2 glycopeptides. The data demonstrated that all seven VEGFR-2 immunoglobulin-like domains have at least one occupied N-glycosylation site. MS/MS analyses of glycopeptides and deamidated, deglycosylated (PNGase F-treated) peptides from ectopically expressed VEGFR-2 in porcine aortic endothelial (PAE) cells identified N-glycans at the majority of the 17 potential N-glycosylation sites on VEGFR-2 in a site-specific manner. The data presented here provide direct evidence for site-specific, heterogeneous N-glycosylation and N-glycosylation site occupancy on VEGFR-2. The study has important implications for the therapeutic targeting of VEGFR-2, ligand binding, trafficking, and signaling.

  10. Fibroblast growth factor receptors, developmental corruption and malignant disease. (United States)

    Kelleher, Fergal C; O'Sullivan, Hazel; Smyth, Elizabeth; McDermott, Ray; Viterbo, Antonella


    Fibroblast growth factors (FGF) are a family of ligands that bind to four different types of cell surface receptor entitled, FGFR1, FGFR2, FGFR3 and FGFR4. These receptors differ in their ligand binding affinity and tissue distribution. The prototypical receptor structure is that of an extracellular region comprising three immunoglobulin (Ig)-like domains, a hydrophobic transmembrane segment and a split intracellular tyrosine kinase domain. Alternative gene splicing affecting the extracellular third Ig loop also creates different receptor isoforms entitled FGFRIIIb and FGFRIIIc. Somatic fibroblast growth factor receptor (FGFR) mutations are implicated in different types of cancer and germline FGFR mutations occur in developmental syndromes particularly those in which craniosynostosis is a feature. The mutations found in both conditions are often identical. Many somatic FGFR mutations in cancer are gain-of-function mutations of established preclinical oncogenic potential. Gene amplification can also occur with 19-22% of squamous cell lung cancers for example having amplification of FGFR1. Ontologic comparators can be informative such as aberrant spermatogenesis being implicated in both spermatocytic seminomas and Apert syndrome. The former arises from somatic FGFR3 mutations and Apert syndrome arises from germline FGFR2 mutations. Finally, therapeutics directed at inhibiting the FGF/FGFR interaction are a promising subject for clinical trials.

  11. Dynamic changes in the expression of growth factor receptors in the myocardium microvascular endothelium after murine myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-hong; ZHANG Guo-ping; JIN Hui-ming; CHEN Si-feng


    Background After myocardial infarction, specific growth factors promote cardiac angiogenisis, leading to a therapeutic effect. Although this effect is mediated by specific receptors in the endothelium of the cardiac microvasculature, few studies have investigated dynamic changes in their expression. We explored this phenomenon in a murine model.Methods We observed the mRNA expression of receptors by specific angiogenesis gene microarray at day 3 and day 7after infarction. The vascular endothelial growth factor (VEGF) receptor Fik-1 was observed at the protein level at day 3and day 7 by immunohistochemistry. The dynamic expression of fibroblast growth factor receptor-1 (FGFR-1) mRNA in the border zone and the noninfarcted zone at day 3, day 7, day 14, and day 42 was investigated by real-time PCR.Statistical significance was analyzed with SPSS 10.0 software using one-way analysis of variance (ANOVA).Results Three days after infarction, 9 receptors in the border zone and 7 receptors in the noninfarcted zone were down-regulated. Two receptors in the infarct edge and 5 receptors in the distant myocardium were up-regulated. However,at day 7, 11 receptors in the border zone were up-regulated, and only one was down-regulated. In the border zone, Fik-1levels decreased at day 3 but increased significantly at day 7. Real-time PCR showed that FGFR-1 mRNA decreased markedly in the border zone at day 3 but increased afterward for at least 6 weeks. In the early stage (3 days) after infarction, the expression of receptors had decreased to some extent. However, at day 7, receptor expression was active and had moved from the distant noninfarcted zone to the border zone as a part of the acute repair process.Conclusion Selecting the proper growth factors to target receptors with protective activity, and determining appropriate therapeutic timing may be important to the success of therapeutic angiogenesis.

  12. Asymmetric Receptor Contact is Required for Tyrosine Autophosphorylation of Fibroblast Growth Factor Receptor in Living Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bae, J.; Boggon, T; Tomé, F; Mandiyan, V; Lax, I; Schlessinge, J


    Tyrosine autophosphorylation of receptor tyrosine kinases plays a critical role in regulation of kinase activity and in recruitment and activation of intracellular signaling pathways. Autophosphorylation is mediated by a sequential and precisely ordered intermolecular (trans) reaction. In this report we present structural and biochemical experiments demonstrating that formation of an asymmetric dimer between activated FGFR1 kinase domains is required for transphosphorylation of FGFR1 in FGF-stimulated cells. Transphosphorylation is mediated by specific asymmetric contacts between the N-lobe of one kinase molecule, which serves as an active enzyme, and specific docking sites on the C-lobe of a second kinase molecule, which serves a substrate. Pathological loss-of-function mutations or oncogenic activating mutations in this interface may hinder or facilitate asymmetric dimer formation and transphosphorylation, respectively. The experiments presented in this report provide the molecular basis underlying the control of transphosphorylation of FGF receptors and other receptor tyrosine kinases.

  13. Targeting the epidermal growth factor receptor in solid tumor malignancies

    DEFF Research Database (Denmark)

    Nedergaard, Mette K; Hedegaard, Chris J; Poulsen, Hans S


    The epidermal growth factor receptor (EGFR) is over-expressed, as well as mutated, in many types of cancers. In particular, the EGFR variant type III mutant (EGFRvIII) has attracted much attention as it is frequently and exclusively found on many tumor cells, and hence both EGFR and EGFRvIII have...... been proposed as valid targets in many cancer therapy settings. Different strategies have been developed in order to either inhibit EGFR/EGFRvIII activity or to ablate EGFR/EGFRvIII-positive tumor cells. Drugs that inhibit these receptors include monoclonal antibodies (mAbs) that bind...

  14. Effects of (-)-Epigallocatechin gallate on some protein factors involved in the epidermal growth factor receptor signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Yinjiu Huang; Ruiqing Xu; Baoan Song; Song Yang; Li Zhao; Shouwei Wua


    (-)-Epigallocatechin gallate (EGCG), a major polyphenolic constituent of green tea, can inhibit activity of specific receptor tyrosine kinases (RTKs) and related downstream signal transduction pathways, resulting in the control of unwanted cell proliferation. The epidermal growth factor receptor (EGFR) signaling pathway is one of the most important pathways that regulates growth, survival, proliferation and differentiation in mammalian cells. This review addresses the effects of EGCG on some protein factors involved in the EGFR signaling pathway in a direct or indirect manner. Based on our understanding of the interaction between EGCG and these factors, and based on their structures, EGCG could be used as a lead compound for designing and synthesizing novel drugs with significant biological activity.

  15. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells (United States)

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.


    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.

  16. Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning.


    Celli, G; LaRochelle, W J; Mackem, S; Sharp, R.; Merlino, G.


    Despite a wealth of experimental data implicating fibroblast growth factor (FGF) signaling in various developmental processes, genetic inactivation of individual genes encoding specific FGFs or their receptors (FGFRs) has generally failed to demonstrate their role in vertebrate organogenesis due to early embryonic lethality or functional redundancy. Here we show that broad mid-gestational expression of a novel secreted kinase-deficient receptor, specific for a defined subset of the FGF superf...

  17. Modified epidermal growth factor receptor (EGFR-bearing liposomes (MRBLs are sensitive to EGF in solution.

    Directory of Open Access Journals (Sweden)

    Albert Wong

    Full Text Available Cancers often overexpress EGF and other growth factors to promote cell replication and migration. Previous work has not produced targeted drug carriers sensitive to abnormal amounts of growth factors. This work demonstrates that liposomes bearing EGF receptors covalently crosslinked to p-toluic acid or methyl-PEO(4-NHS ester (or, in short, MRBLs exhibit an increased rate of release of encapsulated drug compounds when EGF is present in solution. Furthermore, the modified EGF receptors retain the abilities to form dimers in the presence of EGF and bind specifically to EGF. These results demonstrate that MRBLs are sensitive to EGF in solution and indicate that MRBL-reconstituted modified EGF receptors, in the presence of EGF in solution, form dimers which increase MRBL permeability to encapsulated compounds.

  18. Solubilization of nerve growth factor receptors of rabbit superior cervical ganglia. (United States)

    Banerjee, S P; Cuatrecasas, P; Snyder, S H


    Nerve growth factor (NGF) receptors of rabbit superior cervical ganglia can be solubilized by treatment with detergents and readily assayed in the soluble state. Triton X-100 and deoxycholate reduce specific binding of NGF to ganglia membranes. In membranes treated with Triton X-100 (0.5 to 2.0%) the reduction in NGF binding by membranes is accompanied by a corresponding increase in binding in the supernatant fluid. NGF binding in soluble preparations can be rapidly assayed by precipitating NGF bound to receptors with polyethylene glycol under conditions in which unbound NGF is not precipitated. NGF binding to soluble preparations is saturable whether evaluated by the binding of 125I-NGF or by diluting 125I-NGF with native NGF. Using both techniques, the dissociation constant for NGF binding to soluble receptors is about 0.2 nM, the same as its dissociation constant from receptor sites in intact membranes. NGF binding to soluble receptors displays a high degree of peptide specificity, similar to receptor sites in intact membranes of superior cervical ganglia. A method of labeling NGF with 125I-3(4-hydroxyphenyl) propionic acid N-hydroxysuccinimide ester is described which leads to binding properties that are superior to those obtained with previously described 125I-NGF preparations.

  19. Ric-8A, a Gα protein guanine nucleotide exchange factor potentiates taste receptor signaling

    Directory of Open Access Journals (Sweden)

    Claire J Fenech


    Full Text Available Taste receptors for sweet, bitter and umami tastants are G-protein coupled receptors (GPCRs. While much effort has been devoted to understanding G-protein-receptor interactions and identifying the components of the signalling cascade downstream of these receptors, at the level of the G-protein the modulation of receptor signal transduction remains relatively unexplored. In this regard a taste-specific regulator of G-protein signaling (RGS, RGS21, has recently been identified. To study whether guanine nucleotide exchange factors (GEFs are involved in the transduction of the signal downstream of the taste GPCRs we investigated the expression of Ric-8A and Ric-8B in mouse taste cells and their interaction with G-protein subunits found in taste buds. Mammalian Ric-8 proteins were initially identified as potent GEFs for a range of Gα subunits and Ric-8B has recently been shown to amplify olfactory signal transduction. We find that both Ric-8A and Ric-8B are expressed in a large portion of taste bud cells and that most of these cells contain IP3R-3 a marker for sweet, umami and bitter taste receptor cells. Ric-8A interacts with Gα-gustducin and Gαi2 through which it amplifies the signal transduction of hTas2R16, a receptor for bitter compounds. Overall, these findings are consistent with a role for Ric-8 in mammalian taste signal transduction.

  20. Tumor necrosis factor receptor-associated factor 3 is a positive regulator of pathological cardiac hypertrophy. (United States)

    Jiang, Xi; Deng, Ke-Qiong; Luo, Yuxuan; Jiang, Ding-Sheng; Gao, Lu; Zhang, Xiao-Fei; Zhang, Peng; Zhao, Guang-Nian; Zhu, Xueyong; Li, Hongliang


    Cardiac hypertrophy, a common early symptom of heart failure, is regulated by numerous signaling pathways. Here, we identified tumor necrosis factor receptor-associated factor 3 (TRAF3), an adaptor protein in tumor necrosis factor-related signaling cascades, as a key regulator of cardiac hypertrophy in response to pressure overload. TRAF3 expression was upregulated in hypertrophied mice hearts and failing human hearts. Four weeks after aortic banding, cardiac-specific conditional TRAF3-knockout mice exhibited significantly reduced cardiac hypertrophy, fibrosis, and dysfunction. Conversely, transgenic mice overexpressing TRAF3 in the heart developed exaggerated cardiac hypertrophy in response to pressure overload. TRAF3 also promoted an angiotensin II- or phenylephrine-induced hypertrophic response in isolated cardiomyocytes. Mechanistically, TRAF3 directly bound to TANK-binding kinase 1 (TBK1), causing increased TBK1 phosphorylation in response to hypertrophic stimuli. This interaction between TRAF3 and TBK1 further activated AKT signaling, which ultimately promoted the development of cardiac hypertrophy. Our findings not only reveal a key role of TRAF3 in regulating the hypertrophic response but also uncover TRAF3-TBK1-AKT as a novel signaling pathway in the development of cardiac hypertrophy and heart failure. This pathway may represent a potential therapeutic target for this pathological process.

  1. Ligand-specific allosteric regulation of coactivator functions of androgen receptor in prostate cancer cells


    Baek, Sung Hee; Ohgi, Kenneth A.; Nelson, Charles A.; Welsbie, Derek; Chen, Charlie; Charles L Sawyers; Rose, David W.; Rosenfeld, Michael G.


    The androgen receptor not only mediates prostate development but also serves as a key regulator of primary prostatic cancer growth. Although initially responsive to selective androgen receptor modulators (SARMs), which cause recruitment of the nuclear receptor–corepressor (N-CoR) complex, resistance invariably occurs, perhaps in response to inflammatory signals. Here we report that dismissal of nuclear receptor–corepressor complexes by specific signals or androgen receptor overexpression resu...

  2. Comparative VEGF receptor tyrosine kinase modeling for the development of highly specific inhibitors of tumor angiogenesis. (United States)

    Schmidt, Ulrike; Ahmed, Jessica; Michalsky, Elke; Hoepfner, Michael; Preissner, Robert


    The Vascular Endothelial Growth Factor receptors (VEGF-Rs) play a significant role in tumor development and tumor angiogenesis and are therefore interesting targets in cancer therapy. Targeting the VEGF-R is of special importance as the feed of the tumor has to be reduced. In general, this can be carried out by inhibiting the tyrosine kinase function of the VEGF-R. Nevertheless, there arise some problems with the specificity of known kinase inhibitors: they bind to the ATP-binding site and inhibit a number of kinases, moreover the so far most specific inhibitors act at least on these three major types of VEGF-Rs: Flt-1, Flk-1/KDR, Flt-4. The goal is a selective VEGF-R-2 (Flk-1/KDR) inhibitor, because this receptor triggers rather unspecific signals from VEGF-A, -C, -D and -E. Here, we describe a protocol starting from an established inhibitor (Vatalanib) with 2D-/3D-searching and property filtering of the in silico screening hits and the "negative docking approach". With this approach we were able to identify a compound, which shows a fourfold higher reduction of the proliferation rate of endothelial cells compared to the reduction effect of the lead structure.

  3. Epidermal growth factor receptor expression in urinary bladder cancer

    Directory of Open Access Journals (Sweden)

    Dayalu S.L. Naik


    Full Text Available Objective : To evaluate the expression pattern of epidermal growth factor receptor (EGFR in urinary bladder cancer and its association with human epidermal growth factor receptor 2 (HER2, epidermal growth factor (EGF, interleukin-6 (IL-6, and high risk human papilloma virus (HPV types 16 and 18. Materials and Methods : Thirty cases of urothelial carcinoma were analyzed. EGFR, HER2, EGF, and IL-6 expressions in the tissue were evaluated by immunohistochemical staining. For HPV, DNA from tissue samples was extracted and detection of HPV was done by PCR technique. Furthermore, evaluation of different intracellular molecules associated with EGFR signaling pathways was performed by the western blot method using lysates from various cells and tissues. Results : In this study, the frequencies of immunopositivity for EGFR, HER2, EGF, and IL-6 were 23%, 60%, 47%, and 80%, respectively. No cases were positive for HPV-18, whereas HPV-16 was detected in 10% cases. Overall, expression of EGFR did not show any statistically significant association with the studied parameters. However, among male patients, a significant association was found only between EGFR and HER2. Conclusions : Overexpression of EGFR and/or HER2, two important members of the same family of growth factor receptors, was observed in a considerable proportion of cases. Precise knowledge in this subject would be helpful to formulate a rational treatment strategy in patients with urinary bladder cancer.

  4. Ligand-specific allosteric regulation of coactivator functions of androgen receptor in prostate cancer cells (United States)

    Baek, Sung Hee; Ohgi, Kenneth A.; Nelson, Charles A.; Welsbie, Derek; Chen, Charlie; Sawyers, Charles L.; Rose, David W.; Rosenfeld, Michael G.


    The androgen receptor not only mediates prostate development but also serves as a key regulator of primary prostatic cancer growth. Although initially responsive to selective androgen receptor modulators (SARMs), which cause recruitment of the nuclear receptor–corepressor (N-CoR) complex, resistance invariably occurs, perhaps in response to inflammatory signals. Here we report that dismissal of nuclear receptor–corepressor complexes by specific signals or androgen receptor overexpression results in recruitment of many of the cohorts of coactivator complexes that permits SARMs and natural ligands to function as agonists. SARM-bound androgen receptors appear to exhibit failure to recruit specific components of the coactivators generally bound by liganded nuclear receptors, including cAMP response element-binding protein (CBP)/p300 or coactivator-associated arginine methyltransferase 1 (CARM1) to the SARM-bound androgen receptor, although still causing transcriptional activation of androgen receptor target genes. SARM-bound androgen receptors use distinct LXXLL (L, leucine; X, any amino acid) helices in the p160 nuclear receptor interaction domains that may impose selective allosteric effects, providing a component of the molecular basis of differential responses to different classes of ligands by androgen receptor. PMID:16492776

  5. Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells

    Directory of Open Access Journals (Sweden)

    Oksana Forostyak


    Full Text Available Adherent, fibroblastic cells from different tissues are thought to contain subsets of tissue-specific stem/progenitor cells (often called mesenchymal stem cells. These cells display similar cell surface characteristics based on their fibroblastic nature, but also exhibit differences in molecular phenotype, growth rate, and their ability to differentiate into various cell phenotypes. The mechanisms underlying these differences remain poorly understood. We analyzed Ca2+ signals and membrane properties in rat adipose-derived stromal cells (ADSCs and bone marrow stromal cells (BMSCs in basal conditions, and then following a switch into medium that contains factors known to modify their character. Modified ADSCs (mADSCs expressed L-type Ca2+ channels whereas both L- and P/Q- channels were operational in mBMSCs. Both mADSCs and mBMSCs possessed functional endoplasmic reticulum Ca2+ stores, expressed ryanodine receptor-1 and -3, and exhibited spontaneous [Ca2+]i oscillations. The mBMSCs expressed P2X7 purinoceptors; the mADSCs expressed both P2X (but not P2X7 and P2Y (but not P2Y1 receptors. Both types of stromal cells exhibited [Ca2+]i responses to vasopressin (AVP and expressed V1 type receptors. Functional oxytocin (OT receptors were, in contrast, expressed only in modified ADSCs and BMSCs. AVP and OT-induced [Ca2+]i responses were dose-dependent and were blocked by their respective specific receptor antagonists. Electrophysiological data revealed that passive ion currents dominated the membrane conductance in ADSCs and BMSCs. Medium modification led to a significant shift in the reversal potential of passive currents from −40 to −50 mV in cells in basal to −80 mV in modified cells. Hence membrane conductance was mediated by non-selective channels in cells in basal conditions, whereas in modified medium conditions, it was associated with K+-selective channels. Our results indicate that modification of ADSCs and BMSCs by alteration in medium

  6. Inhibition of epidermal growth factor receptor expression by RNA interference in A549 cells

    Institute of Scientific and Technical Information of China (English)

    MinZHANG; XinZHANG; Chun-xueBAI; JieCHEN; MinQWEI


    AIM: To investigate the biological features of A549 cells in which epidermal growth factor (EGF) receptors expression were suppressed by RNA interference (RNAi). METHODS: A549 cells were transfected using short small interfering RNAs (siRNAs) formulated with Lipofectamine 2000. The EGF receptor numbers were determined by Western blotting and flowcytometry. The antiproliferative effects of sequence specific double stranded RNA (dsRNA) were assessed using cell count, colony assay and scratch assay. The chemosensitivity of transfected cells to cisplatin was measured by MTT. RESULTS: Sequence specific dsRNA-EGFR down-regulated EGF receptor expression dramatically. Compared with the control group, dsRNA-EGFR reduced the cell number by 85.0 %, decreased the colonies by 63.3 %, inhibited the migration by 87.2 %, and increased the sensitivity of A549 to cisplatin by four-fold. CONCLUSION: Sequence specific dsRNA-EGFR were capable of suppressing EGF receptor expression, hence significantly inhibiting cellular proliferation and motility, and enhancing chemosensitivity of A549 cells to cisplatin. The successful application of dsRNA-EGFR for inhibition of proliferation in EGF receptor overexpressing cells can help extend the list of available therapeutic modalities in the treatment of non-small-cell lung carcinoma (NSCLC).

  7. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism. (United States)

    Chen, Wei; Zhang, Xiaoting; Birsoy, Kivanc; Roeder, Robert G


    As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet-induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1-nuclear receptor interactions.

  8. RhoA/phosphatidylinositol 3-kinase/protein kinase B/mitogen-activated protein kinase signaling after growth arrest-specific protein 6/mer receptor tyrosine kinase engagement promotes epithelial cell growth and wound repair via upregulation of hepatocyte growth factor in macrophages. (United States)

    Lee, Ye-Ji; Park, Hyun-Jung; Woo, So-Youn; Park, Eun-Mi; Kang, Jihee Lee


    Growth arrest-specific protein 6 (Gas6)/Mer receptor tyrosine kinase (Mer) signaling modulates cytokine secretion and helps to regulate the immune response and apoptotic cell clearance. Signaling pathways that activate an epithelial growth program in macrophages are still poorly defined. We report that Gas6/Mer/RhoA signaling can induce the production of epithelial growth factor hepatic growth factor (HGF) in macrophages, which ultimately promotes epithelial cell proliferation and wound repair. The RhoA/protein kinase B (Akt)/mitogen-activated protein (MAP) kinases, including p38 MAP kinase, extracellular signal-regulated protein kinase, and Jun NH2-terminal kinase axis in RAW 264.7 cells, was identified as Gas6/Mer downstream signaling pathway for the upregulation of HGF mRNA and protein. Conditioned medium from RAW 264.7 cells that had been exposed to Gas6 or apoptotic cells enhanced epithelial cell proliferation of the epithelial cell line LA-4 and wound closure. Cotreatment with an HGF receptor-blocking antibody or c-Met antagonist downregulated this enhancement. Inhibition of Mer with small interfering RNA (siRNA) or the RhoA/Rho kinase pathway by RhoA siRNA or Rho kinase pharmacologic inhibitor suppressed Gas6-induced HGF mRNA and protein expression in macrophages and blocked epithelial cell proliferation and wound closure induced by the conditioned medium. Our data provide evidence that macrophages can be reprogrammed by Gas6 to promote epithelial proliferation and wound repair via HGF, which is induced by the Mer/RhoA/Akt/MAP kinase pathway. Thus, defects in Gas6/Mer/RhoA signaling in macrophages may delay tissue repair after injury to the alveolar epithelium.

  9. Effect of glucocorticoid on epidermal growth factor receptor in human salivary gland adenocarcinoma cell line HSG. (United States)

    Kyakumoto, S; Kurokawa, R; Ota, M


    Human salivary gland adenocarcinoma (HSG) cells treated with 10(-6) M triamcinolone acetonide for 48 h exhibited a 1.7- to 2.0-fold increase in [125I]human epidermal growth factor (hEGF) binding capacity as compared with untreated HSG cells. Scatchard analysis of [125I]EGF binding data revealed that the number of binding sites was 83,700 (+/- 29,200) receptors/cell in untreated cells and 160,500 (+/- 35,500) receptors/cell in treated cells. No substantial change in receptor affinity was detected. The dissociation constant of the EGF receptor was 0.78 (+/- 0.26).10(-9) M for untreated cells, whereas it was 0.93 (+/- 0.31).10(-9)M for treated cells. The triamcinolone acetonide-induced increase in [125I]EGF binding capacity was dose-dependent between 10(-9) and 10(-6)M, and maximal binding was observed at 10(-6)M. EGF receptors on HSG cells were affinity-labeled with [125I]EGF by use of the cross-linking reagent disuccinimidyl suberate (DSS). The cross-linked [125I]EGF was 3-4% of the total [125I]EGF bound to HSG cells. The affinity-labeled EGF receptor was detected as a specific 170 kDa band in the autoradiograph after SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Densitometric analysis revealed that triamcinolone acetonide amplified the intensity of this band 2.0-fold over that of the band of untreated cells. EGF receptor synthesis was also measured by immunoprecipitation of [3H]leucine-labeled EGF receptor protein with anti-hEGF receptor monoclonal antibody. Receptor synthesis was increased 1.7- to 1.8-fold when HSG cells were treated with 10(-8)-10(-6)M triamcinolone acetonide for 48 h. When the immunoprecipitated, [35S]methionine-pulse-labeled EGF receptor was analyzed by SDS-PAGE and fluorography, the newly synthesized EGF receptor was detected at the position of 170 kDa; and treatment of HSG cells with triamcinolone acetonide resulted in a 2.0-fold amplification of this 170 kDa band. There was no significant difference in turnover rate of EGF receptor

  10. Pregnane X Receptor and Cancer: Context-Specificity is Key (United States)

    Pondugula, Satyanarayana R.; Pavek, Petr; Mani, Sridhar


    Pregnane X receptor (PXR) is an adopted orphan nuclear receptor that is activated by a wide-range of endobiotics and xenobiotics, including chemotherapy drugs. PXR plays a major role in the metabolism and clearance of xenobiotics and endobiotics in liver and intestine via induction of drug-metabolizing enzymes and drug-transporting proteins. However, PXR is expressed in several cancer tissues and the accumulating evidence strongly points to the differential role of PXR in cancer growth and progression as well as in chemotherapy outcome. In cancer cells, besides regulating the gene expression of enzymes and proteins involved in drug metabolism and transport, PXR also regulates other genes involved in proliferation, metastasis, apoptosis, anti-apoptosis, inflammation, and oxidative stress. In this review, we focus on the differential role of PXR in a variety of cancers, including prostate, breast, ovarian, endometrial, and colon. We also discuss the future directions to further understand the differential role of PXR in cancer, and conclude with the need to identify novel selective PXR modulators to target PXR in PXR-expressing cancers. PMID:27617265

  11. Pregnane X Receptor and Cancer: Context-Specificity is Key

    Directory of Open Access Journals (Sweden)

    Satyanarayana R. Pondugula


    Full Text Available Pregnane X receptor (PXR is an adopted orphan nuclear receptor that is activated by a wide-range of endobiotics and xenobiotics, including chemotherapy drugs. PXR plays a major role in the metabolism and clearance of xenobiotics and endobiotics in liver and intestine via induction of drug-metabolizing enzymes and drug-transporting proteins. However, PXR is expressed in several cancer tissues and the accumulating evidence strongly points to the differential role of PXR in cancer growth and progression as well as in chemotherapy outcome. In cancer cells, besides regulating the gene expression of enzymes and proteins involved in drug metabolism and transport, PXR also regulates other genes involved in proliferation, metastasis, apoptosis, anti-apoptosis, inflammation, and oxidative stress. In this review, we focus on the differential role of PXR in a variety of cancers, including prostate, breast, ovarian, endometrial, and colon. We also discuss the future directions to further understand the differential role of PXR in cancer, and conclude with the need to identify novel selective PXR modulators to target PXR in PXR-expressing cancers.

  12. Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants. (United States)

    Markwell, M A; Paulson, J C


    Purified sialyltransferases (CMP-N-acetyl-neuraminate:D-galactosyl-glycoprotein N-acetylneuraminyl-transferase, EC in conjunction with neuraminidase (acylneuraminyl hydrolase, EC were used to produce cell surface sialyloligosaccharides of defined sequence to investigate their role in paramyxovirus infection of host cells. Infection of Madin-Darby bovine kidney cells by Sendai virus was monitored by hemagglutination titer of the virus produced and by changes in morphological characteristics. By either criterion, treatment of the cells with Vibrio cholerae neuraminidase to remove cell surface sialic acids rendered them resistant to infection by Sendai virus. Endogenous replacement of receptors by the cell occurred slowly but supported maximal levels of infection within 6 hr. In contrast, sialylation during a 20-min incubation with CMP-sialic acid and beta-galactoside alpha 2,3-sialytransferase restored full susceptibility to infection. This enzyme elaborates the NeuAc alpha 2,3Gal beta 1,3GalNAc (NeuAc, N-acetylneuraminic acid) sequence on glycoproteins and glycolipids. No restoration of infectivity was observed when neuraminidase-treated cells were sialylated by using beta-galactoside alpha 2,6-sialytransferase, which elaborates the NeuAc-alpha 2,6Gal beta 1,4GlcNAc sequence. These results suggest that sialyloligosaccharide receptor determinants of defined sequence are required for Sendai virus infection of host cells.

  13. Type I insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy. (United States)

    Philippou, A; Halapas, A; Maridaki, M; Koutsilieris, M


    Skeletal muscle is able not only to increase its mass as an adaptation to mechanical loading generated by and imposed upon muscle but also to regenerate after damage, via its intrinsic regulation of gene transcription. Both cellular processes, muscle regeneration and hypertrophy, are mediated by the activation, proliferation and differentiation of muscle satellite cells and appear to be modulated by the mitotic and myogenic activity of locally produced insulin-like growth factor 1 (IGF-1), which functions in an autocrine/paracrine mode. Differentiation of satellite cells into myoblasts involves the regulation of skeletal muscle-specific proteins belonging to the family of myogenic regulatory factors (MRFs). The endocrine, autocrine and paracrine functions of IGF-1 are mediated through binding to the type I IGF receptor (IGF-1.R), which is a ligand-activated receptor tyrosine kinase. The binding of IGF-1 to IGF-1.R induces its autophosphorylation, which recruits specific cytoplasmic molecules containing the Insulin Receptor Substrate Proteins (IRS). The recruitment of IRS proteins by IGF-1/IGF-1.R binding is a critical level at which the proliferative and differentiative actions of IGF-1 diverge. Specific signaling pathways downstream of IGF-1, potentially involved in the mitogenic and myogenic responses and mediating skeletal muscle protein synthesis and hypertrophy following exercise-induced muscle overloading and damage, are discussed. A potential alternative activation of different signaling pathway(s) via a different receptor remains to be demonstrated.

  14. Recent Progress in Understanding Subtype Specific Regulation of NMDA Receptors by G Protein Coupled Receptors (GPCRs

    Directory of Open Access Journals (Sweden)

    Kai Yang


    Full Text Available G Protein Coupled Receptors (GPCRs are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs, which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity.

  15. Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity. (United States)

    Tremblay, Michel G; Herdman, Chelsea; Guillou, François; Mishra, Prakash K; Baril, Joëlle; Bellenfant, Sabrina; Moss, Tom


    We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.

  16. Effect of lycopene on androgen receptor and prostate-specific antigen velocity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin; WANG Qi; Barber Neil; CHEN Xiao


    Background There is increasing interest in the role of dietary factors in both the development and behaviour of prostate cancer.This study was carried out to evaluate the impact of the dietary factor lycopene on DNA synthesis,activity and expression of the androgen receptor gene element in prostate LnCaP cells and to report our pilot phase Ⅱ study investigating its effect on prostate-specific antigen velocity over one year.Methods LnCaP cells were grown with or without different concentrations of lycopene or tetrahydrofuran (THF solvent)added to the culture medium for 48 hours.DNA synthesis was measured by the incorporation of bromodeoxyuridine (Brdu) into DNA during a 4-hour pulse, followed by immunostaining and visualization of stained cells using fluorescence microscopy.A transient transfection of a plasmid DNA recombinant containing an androgen receptor element-luciferase (ARE-Luc) report gene into LnCaP cells was developed and the impact of different concentrations of lycopene on the androgen receptor element was reflected by quantitative analysis of the luciferase enzyme function.Expression of the androgen gene was also studied by Western blotting.The phase Ⅱ pilot study patients (n=41) previously diagnosed with prostate cancer were enrolled and given lycopene supplement, 10 mg per day, and response was measured by observing changes in the plasma prostate-specific antigen (PSA) levels.Results The addition of 0.5 μmol/L, 5 μmol/L, 10 μmol/L and 15 μmol/L of lycopene was shown to inhibit cell growth by 2.66%, 4.29%, 3.73% and 13.66%, respectively, compared with the THF solvent control samples (P=0.015).As compared with the RPMI1640 medium group, cell proliferation in the presence of 5 μmol/L, 10 μmol/L, and 15 μmol/L lycopene was inhibited by 8.12%, 6.33% and 12.00%, respectively (P=0.024).We showed for the first time that lycopene inhibited the activity of the androgen receptor gene element in a dose-related manner.Inhibition was seen in the

  17. The role of specific retinoid receptors in sebocyte growth and differentiation in culture. (United States)

    Kim, M J; Ciletti, N; Michel, S; Reichert, U; Rosenfield, R L


    Retinoic acid derivatives (retinoids) exert their pleiotropic effects on cell development through specific nuclear receptors, the retinoic acid receptors and retinoid X receptors. Despite recent progress in understanding the cellular and molecular mechanisms of retinoid activity, it is unknown which of the retinoid receptor pathways are involved in the specific processes of sebocyte growth and development. In this study, we investigated the roles of specific retinoid receptors in sebocyte growth and differentiation, by testing the effects of selective retinoic acid receptor and retinoid X receptor ligands at concentrations between 10-10 M and 10-6 M in a primary rat preputial cell monolayer culture system. Cell growth was determined by number of cells and colonies, and cell differentiation by analysis of lipid-forming colonies. All-trans retinoic acid and selective retinoic acid receptor agonists (CD271 = adapalene, an RAR-beta,gamma agonist; CD2043 = retinoic acid receptor pan-agonist; and CD336 = Am580, an RAR-alpha agonist) caused significant decreases in numbers of cells, colonies, and lipid-forming colonies, but with an exception at high doses of all-trans retinoic acid (10-6 M), with which only a small number of colonies grew but they became twice as differentiated as controls (42.2 +/- 4.0% vs 22.6 +/- 2.7%, mean +/- SEM, lipid-forming colonies, p < 0.01). Furthermore, the RAR-beta,gamma antagonist CD2665 antagonized the suppressive effects of all-trans retinoic acid, adapalene, and CD2043 on both cell growth and differentiation. In contrast, the retinoid X receptor agonist CD2809 increased cell growth slightly and lipid-forming colonies dramatically in a clear dose-related manner to a maximum of 73.7% +/- 6.7% at 10-6 M (p < 0. 001). Our data suggest that retinoic acid receptors and retinoid X receptors differ in their roles in sebocyte growth and differentiation: (i) retinoic acid receptors, especially the beta and/or gamma subtypes, mediate both the

  18. Decreased expression of serum and microvascular vascular endothelial growth factor receptor-2 in meningococcal sepsis*.

    NARCIS (Netherlands)

    Flier, M. van der; Baerveldt, E.M.; Miedema, A.; Hartwig, N.G.; Hazelzet, J.A.; Emonts, M.; Groot, R. de; Prens, E.P.; Vught, A.J. van; Jansen, N.J.


    OBJECTIVES: To determine the skin microvessel expression of vascular endothelial growth factor receptor 2 and serum-soluble vascular endothelial growth factor receptor 2 levels in children with meningococcal sepsis. DESIGN: Observational study. SETTING: Two tertiary academic children hospital PICUs.

  19. Targeting Extracellular Domains D4 and D7 of Vascular Endothelial Growth Factor Receptor 2 Reveals Allosteric Receptor Regulatory Sites


    Hyde, Caroline A. C.; Giese, Alexandra; Stuttfeld, Edward; Abram Saliba, Johan; Villemagne, Denis; Schleier, Thomas; Binz, H. Kaspar; Ballmer-Hofer, Kurt


    Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron...

  20. Asialoglycoprotein receptor (ASGPR): a peculiar target of liver-specific autoimmunity


    Roggenbuck, Dirk; Mytilinaiou, Maria G.; Lapin, Sergey V.; Reinhold, Dirk; Conrad, Karsten


    Asialoglycoprotein receptor (ASGPR) autoantibodies have been considered specific markers of autoimmune hepatitis (AIH). The exact mechanisms responsible for the development of these autoantibodies and leading to autoimmunity to this peculiar liver receptor remain elusive. Furthermore, loss of T cell tolerance to ASGPR has been demonstrated in patients with AIH, but it is poorly understood whether such liver-specific T cell responses bear a pathogenic potential and/or participate in the precip...

  1. Unique insecticide specificity of human homomeric rho 1 GABA(C) receptor. (United States)

    Ratra, Gurpreet S; Erkkila, Brian E; Weiss, David S; Casida, John E


    Several convulsants and major insecticides block the gamma-aminobutyric acid (GABA)-gated chloride channel in brain on binding to the GABA(A) receptor. The GABA(C) receptor, important in retina and present in brain, is also coupled to a chloride channel and is therefore a potential target for toxicant action examined here in radioligand binding and electrophysiological experiments. Human homomeric rho 1 GABA(C) receptor expressed in human embryonic kidney cells (HEK293) undergoes specific and saturable high-affinity binding of 4-n-[3H]propyl-4' -ethynylbicycloorthobenzoate ([3H]EBOB) using a cyano analog (CNBOB) to determine non-specific binding. This GABA(C) rho 1 receptor is very sensitive to CNBOB and lindane relative to alpha-endosulfan, tert-butylbicyclophosphorothionate, picrotoxinin and fipronil (IC(50) values of 23, 91, 800, 1080, 4000 and >10000 nM, respectively, in displacing [3H]EBOB). A similar potency sequence (except for picrotoxinin) is observed for inhibition of GABA-induced currents of rho 1 receptor expressed in Xenopus oocytes. The present study does not consider rho 2 homomeric and rho 1 rho 2 heteromeric GABA(C) receptors which are known to be more sensitive than rho 1 to picrotoxinin. The inhibitor sensitivity and specificity of this rho 1 GABA(C) receptor differ greatly from those of human homomeric beta 3 and native GABA(A) receptors.

  2. Identification of fibroblast growth factor receptor 3 (FGFR3 as a protein receptor for botulinum neurotoxin serotype A (BoNT/A.

    Directory of Open Access Journals (Sweden)

    Birgitte P S Jacky

    Full Text Available Botulinum neurotoxin serotype A (BoNT/A causes transient muscle paralysis by entering motor nerve terminals (MNTs where it cleaves the SNARE protein Synaptosomal-associated protein 25 (SNAP25206 to yield SNAP25197. Cleavage of SNAP25 results in blockage of synaptic vesicle fusion and inhibition of the release of acetylcholine. The specific uptake of BoNT/A into pre-synaptic nerve terminals is a tightly controlled multistep process, involving a combination of high and low affinity receptors. Interestingly, the C-terminal binding domain region of BoNT/A, HC/A, is homologous to fibroblast growth factors (FGFs, making it a possible ligand for Fibroblast Growth Factor Receptors (FGFRs. Here we present data supporting the identification of Fibroblast Growth Factor Receptor 3 (FGFR3 as a high affinity receptor for BoNT/A in neuronal cells. HC/A binds with high affinity to the two extra-cellular loops of FGFR3 and acts similar to an agonist ligand for FGFR3, resulting in phosphorylation of the receptor. Native ligands for FGFR3; FGF1, FGF2, and FGF9 compete for binding to FGFR3 and block BoNT/A cellular uptake. These findings show that FGFR3 plays a pivotal role in the specific uptake of BoNT/A across the cell membrane being part of a larger receptor complex involving ganglioside- and protein-protein interactions.

  3. Identification of fibroblast growth factor receptor 3 (FGFR3 as a protein receptor for botulinum neurotoxin serotype A (BoNT/A.

    Directory of Open Access Journals (Sweden)

    Birgitte P S Jacky

    Full Text Available Botulinum neurotoxin serotype A (BoNT/A causes transient muscle paralysis by entering motor nerve terminals (MNTs where it cleaves the SNARE protein Synaptosomal-associated protein 25 (SNAP25206 to yield SNAP25197. Cleavage of SNAP25 results in blockage of synaptic vesicle fusion and inhibition of the release of acetylcholine. The specific uptake of BoNT/A into pre-synaptic nerve terminals is a tightly controlled multistep process, involving a combination of high and low affinity receptors. Interestingly, the C-terminal binding domain region of BoNT/A, HC/A, is homologous to fibroblast growth factors (FGFs, making it a possible ligand for Fibroblast Growth Factor Receptors (FGFRs. Here we present data supporting the identification of Fibroblast Growth Factor Receptor 3 (FGFR3 as a high affinity receptor for BoNT/A in neuronal cells. HC/A binds with high affinity to the two extra-cellular loops of FGFR3 and acts similar to an agonist ligand for FGFR3, resulting in phosphorylation of the receptor. Native ligands for FGFR3; FGF1, FGF2, and FGF9 compete for binding to FGFR3 and block BoNT/A cellular uptake. These findings show that FGFR3 plays a pivotal role in the specific uptake of BoNT/A across the cell membrane being part of a larger receptor complex involving ganglioside- and protein-protein interactions.

  4. Globalization and Income Distribution: A Specific Factors Continuum Approach


    Anderson, James E.


    Does globalization widen inequality or increase income risk? In the specific factors continuum model of this paper, globalization widens inequality, amplifying the positive (negative) premia for export (import- competing) sectors. Globalization amplifies the risk from idiosyncratic relative productivity shocks but reduces risk from aggregate shocks to absolute advantage, relative endowments and transfers. Aggregate-shock-induced income risk bears most heavily on the poorest specific factors, ...

  5. Dual silencing of insulin-like growth factor-I receptor and epidermal growth factor receptor in colorectal cancer cells is associated with decreased proliferation and enhanced apoptosis. (United States)

    Kaulfuss, Silke; Burfeind, Peter; Gaedcke, Jochen; Scharf, Jens-Gerd


    Overexpression and activation of tyrosine kinase receptors are common features of colorectal cancer. Using the human colorectal cancer cell lines DLD-1 and Caco-2, we evaluated the role of the insulin-like growth factor-I (IGF-I) receptor (IGF-IR) and epidermal growth factor receptor (EGFR) in cellular functions of these cells. We used the small interfering RNA (siRNA) technology to specifically down-regulate IGF-IR and EGFR expression. Knockdown of IGF-IR and EGFR resulted in inhibition of cell proliferation of DLD-1 and Caco-2 cells. An increased rate of apoptosis was associated with siRNA-mediated silencing of IGF-IR and EGFR as assessed by activation of caspase-3/caspase-7. The combined knockdown of both EGFR and IGF-IR decreased cell proliferation and induced cell apoptosis more effectively than did silencing of either receptor alone. Comparable effects on cell proliferation and apoptosis were observed after single and combinational treatment of cells by the IGF-IR tyrosine kinase inhibitor NVP-AEW541 and/or the EGFR tyrosine kinase inhibitor erlotinib. Combined IGF-IR and EGFR silencing by either siRNAs or tyrosine kinase inhibitors diminished the phosphorylation of downstream signaling pathways AKT and extracellular signal-regulated kinase (ERK)-1/2 more effectively than did the single receptor knockdown. Single IGF-IR knockdown inhibited IGF-I-dependent phosphorylation of AKT but had no effect on IGF-I- or EGF-dependent phosphorylation of ERK1/2, indicating a role of EGFR in ligand-dependent ERK1/2 phosphorylation. The present data show that inhibition of the IGF-IR transduction cascade augments the antipoliferative and proapoptotic effects of EGFR inhibition in colorectal cancer cells. A clinical application of combination therapy targeting both EGFR and IGF-IR could be a promising therapeutic strategy.

  6. C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors. (United States)

    Wu, Xinle; Lemon, Bryan; Li, XiaoFan; Gupte, Jamila; Weiszmann, Jennifer; Stevens, Jennitte; Hawkins, Nessa; Shen, Wenyan; Lindberg, Richard; Chen, Jin-Long; Tian, Hui; Li, Yang


    FGF19 subfamily proteins (FGF19, FGF21, and FGF23) are unique members of fibroblast growth factors (FGFs) that regulate energy, bile acid, glucose, lipid, phosphate, and vitamin D homeostasis in an endocrine fashion. Their activities require the presence of alpha or betaKlotho, two related single-pass transmembrane proteins, as co-receptors in relevant target tissues. We previously showed that FGF19 can bind to both alpha and betaKlotho, whereas FGF21 and FGF23 can bind only to either betaKlotho or alphaKlotho, respectively in vitro. To determine the mechanism regulating the binding and specificity among FGF19 subfamily members to Klotho family proteins, chimeric proteins between FGF19 subfamily members or chimeric proteins between Klotho family members were constructed to probe the interaction between those two families. Our results showed that a chimera of FGF19 with the FGF21 C-terminal tail interacts only with betaKlotho and a chimera with the FGF23 C-terminal tail interacts only with alphaKlotho. FGF signaling assays also reflected the change of specificity we observed for the chimeras. These results identified the C-terminal tail of FGF19 as a region necessary for its recognition of Klotho family proteins. In addition, chimeras between alpha and betaKlotho were also generated to probe the regions in Klotho proteins that are important for signaling by this FGF subfamily. Both FGF23 and FGF21 require intact alpha or betaKlotho for signaling, respectively, whereas FGF19 can signal through a Klotho chimera consisting of the N terminus of alphaKlotho and the C terminus of betaKlotho. Our results provide the first glimpse of the regions that regulate the binding specificity between this unique family of FGFs and their co-receptors.

  7. Upregulation of epidermal growth factor receptor 4 in ora leukoplakia

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Kobayashi; Kenichi Kumagai; Akito Gotoh; Takanori Eguchi; Hiroyuki Yamada; Yoshiki Hamada; Satsuki Suzuki; Ryuji Suzuki


    In the present study, we investigate the expression profile of the epidermal growth factor receptor family, which comprises EGFR/ ErbB 1, HER2/ErbB2, HER3/ErbB3 and HER4/ErbB4 in oral leukoplakia (LP), The expression of four epidermal growth factor receptor (EGFR) family genes and their ligands were measured in LP tissues from 14 patients and compared with levels in 10 patients with oral lichen planus (OLP) and normal oral mucosa (NOM) from 14 healthy donors by real-time polymerase chain reaction (PCR) and immunohistochemistry. Synchronous mRNA coexpression of ErbB1, ErbB2, ErbB3 and ErbB4 was detected in LP lesions. Out of the receptors, only ErbB4 mRNA and protein was more highly expressed in LP compared with NOM tissues. These were strongly expressed by epithelial keratinocytes in LP lesions, as shown by immunohistochemistry. Regarding the ligands, the mRNA of Neuregulin2 and 4 were more highly expressed in OLP compared with NOM tissues. Therefore, enhanced ErbB4 on the keratinocytes and synchronous modulation of EGFR family genes may contribute to the pathogenesis and carcinogenesis of LP.

  8. Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor/interleukin-8

    Energy Technology Data Exchange (ETDEWEB)

    Grob, P.M.; David, E.; Warren, T.C.; DeLeon, R.P.; Farina, P.R.; Homon, C.A. (Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT (USA))


    Monocyte-derived neutrophil chemotactic factor/interleukin-8 (MDNCF/IL-8) is an 8,000-dalton protein produced by monocytes which exhibits activity as a chemoattractant for neutrophils with maximal activity achieved at a concentration of 50 ng/ml. This polypeptide has been iodinated by chloramine-T methodology (350 Ci/mM), and specific receptors for MDNCF/IL-8 have been detected on human neutrophils, U937 cells, THP-1 cells, and dimethyl sulfoxide-differentiated HL-60 cells. The binding of MDNCF/IL-8 to human neutrophils is not inhibited by interleukin-1 alpha, tumor necrosis factor-alpha, insulin, or epidermal growth factor. In addition, chemoattractants such as C5a, fMet-Leu-Phe, leukotriene B4, and platelet-activating factor fail to inhibit binding, suggesting that MDNCF/IL-8 utilizes a unique receptor. The receptor for MDNCF/IL-8 is apparently glycosylated since ligand binding is inhibited by the presence of wheat germ agglutinin, a lectin with a binding specificity for N-acetylglucosamine and neuraminic acid. Steady state binding experiments indicate Kd values of 4 and 0.5 nM and receptor numbers of 75,000 and 7,400 for human neutrophils and differentiated HL-60 cells, respectively. 125I-MDNCF/IL-8 bound to human neutrophils is rapidly internalized and subsequently released from cells as trichloroacetic acid-soluble radioactivity. Affinity labeling experiments suggest that the human neutrophil MDNCF/IL-8 receptor exhibits a mass of approximately 58,000 daltons.

  9. Growth Factor Receptors and Apoptosis Regulators: Signaling Pathways, Prognosis, Chemosensitivity and Treatment Outcomes of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Siddik Sarkar


    Full Text Available Biomarkers of breast cancer are necessary for prognosis and prediction to chemotherapy. Prognostic biomarkers provide information regarding outcome irrespective of therapy, while predictive biomarkers provide information regarding response to therapy. Candidate prognostic biomarkers for breast cancers are growth factor receptors, steroid receptors, Ki-67, cyclins, urokinase plasminogen activator, p53, p21, pro- and anti-apoptotic factors, BRCA1 and BRCA2. But currently, the predictive markers are Estrogen and Progesterone receptors responding to endocrine therapy, and HER-2 responding to herceptin. But there are numerous breast cancer cases, where tamoxifen is ineffective even after estrogen receptor positivity. This lead to search of new prognostic and predictive markers and the number of potential markers is constantly increasing due to proteomics and genomics studies. However, most biomarkers individually have poor sensitivity or specificity, or other clinical value. It can be resolved by studying various biomarkers simultaneously, which will help in better prognosis and increasing sensitivity for chemotherapeutic agents. This review is focusing on growth factor receptors, apoptosis markers, signaling cascades, and their correlation with other associated biomarkers in breast cancers. As our knowledge regarding molecular biomarkers for breast cancer increases, prognostic indices will be developed that combine the predictive power of individual molecular biomarkers with specific clinical and pathologic factors. Rigorous comparison of these existing as well as emerging markers with current treatment selection is likely to see an escalation in an era of personalized medicines to ensure the breast cancer patients receive optimal treatment. This will also solve the treatment modalities and complications related to chemotherapeutic regimens.

  10. Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization. Contrasting significance of tyrosine 992 in the native and truncated receptors

    DEFF Research Database (Denmark)

    Sorkin, A; Helin, K; Waters, C M


    The role of epidermal growth factor (EGF) receptor autophosphorylation sites in the regulation of receptor functions has been studied using cells transfected with mutant EGF receptors. Simultaneous point mutation of 4 tyrosines (Y1068, Y1086, Y1148, Y1173) to phenylalanine, as well as removal of ...

  11. Keratinocyte-specific deletion of the receptor RAGE modulates the kinetics of skin inflammation in vivo. (United States)

    Leibold, Julia S; Riehl, Astrid; Hettinger, Jan; Durben, Michael; Hess, Jochen; Angel, Peter


    The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor causally related to the pathogenesis of acute and chronic inflammation. In a mouse model of inflammation-driven skin carcinogenesis, RAGE deletion conferred protection from the development of skin tumors due to a severely impaired cutaneous inflammation. Although the impact of RAGE expression in immune cells was shown to be essential for the maintenance of a cutaneous inflammatory reaction, the role of RAGE in keratinocytes remained unsolved. Using mice harboring a keratinocyte-specific deletion of RAGE, we analyzed its role in the regulation of an acute inflammatory response that was induced by topical treatment of the back skin with the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA). We show that RAGE expression in cutaneous keratinocytes modulates the strength and kinetics of acute inflammation and supports the maintenance of epidermal keratinocyte activation. To address the underlying molecular mechanism, we isolated interfollicular epidermis by laser microdissection for gene expression analysis, and identified RAGE as a regulator in the temporal control of TPA-induced epidermal tumor necrosis factor alpha transcript levels. In summary, our data demonstrate that RAGE expression in keratinocytes is critically involved in the perpetuation of acute inflammation and support the central role of RAGE in paracrine communication between keratinocytes and stromal immune cells.

  12. Structural determinants of agonist-specific kinetics at the ionotropic glutamate receptor 2. (United States)

    Holm, Mai Marie; Lunn, Marie-Louise; Traynelis, Stephen F; Kastrup, Jette S; Egebjerg, Jan


    Glutamate receptors (GluRs) are the most abundant mediators of the fast excitatory neurotransmission in the human brain. Agonists will, after activation of the receptors, induce different degrees of desensitization. The efficacy of agonists strongly correlates with the agonist-induced closure of the ligand-binding domain. However, the differences in desensitization properties are less well understood. By using high-resolution x-ray structure of the GluR2 flop (GluR2o) ligand-binding core protein in complex with the partial glutamate receptor agonist (S)-2-amino-3-(3-hydroxy-5-tert-butyl-4-isothiazolyl)propionic acid [(S)-thio-ATPA], we show that (S)-thio-ATPA induces an 18 degrees closure of the binding core similar to another partial agonist, (S)-2-amino-3-(4-bromo-3-hydroxy-5-isoxazolyl)propionic acid [(S)-Br-HIBO]. Despite the similar closure of the ligand-binding domain, we find in electrophysiological studies that (S)-thio-ATPA induced a 6.4-fold larger steady-state current than (RS)-Br-HIBO, and rapid agonist applications show that (S)-thio-ATPA induces a 3.6-fold higher steady-state/peak ratio and a 2.2-fold slower desensitization time constant than (RS)-Br-HIBO. Structural comparisons reveal that (S)-Br-HIBO, but not (S)-thio-ATPA, induces a twist of the ligand-binding core compared with the apostructure, and the agonist-specific conformation of Leu-650 correlates with the different kinetic profiles pointing at a key role in defining the desensitization kinetics. We conclude that, especially for intermediate efficacious agonists, the desensitization properties are influenced by additional ligand-induced factors beyond domain closure.

  13. Structural requirements for inducible shedding of the p55 tumor necrosis factor receptor

    DEFF Research Database (Denmark)

    Brakebusch, C; Varfolomeev, E E; Batkin, M


    Induced shedding of the p55 tumor necrosis factor receptor (p55-R) was previously shown to be independent of the amino acid sequence properties of the intracellular domain of this receptor. We now find it also independent of the sequence properties of the transmembrane domain and of the cysteine......-rich region that constitutes most of the extracellular domain of the receptor. The shedding is shown to depend solely on the sequence properties of a small region within the spacer that links the cysteine-rich region in the extracellular domain to the transmembrane domain. Detailed tests of effects......, however, by some mutations that seem to change the conformation of the spacer region. These findings suggest that a short amino acid sequence in the p55-R is essential and sufficient for its shedding and that the shedding is mediated either by a protease with limited sequence specificity or by several...

  14. Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Berasain, Carmen, E-mail:; Latasa, María Ujue; Urtasun, Raquel; Goñi, Saioa; Elizalde, María; Garcia-Irigoyen, Oihane; Azcona, María [Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona 31008 (Spain); Prieto, Jesús [Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona 31008 (Spain); CIBERehd, University Clinic, University of Navarra, Pamplona 31080 (Spain); Ávila, Matías A. [Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona 31008 (Spain)


    Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a “signaling hub” where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment.

  15. Redox-dependent regulation of epidermal growth factor receptor signaling

    Directory of Open Access Journals (Sweden)

    David E. Heppner


    Full Text Available Tyrosine phosphorylation-dependent cell signaling represents a unique feature of multicellular organisms, and is important in regulation of cell differentiation and specialized cell functions. Multicellular organisms also contain a diverse family of NADPH oxidases (NOXs that have been closely linked with tyrosine kinase-based cell signaling and regulate tyrosine phosphorylation via reversible oxidation of cysteine residues that are highly conserved within many proteins involved in this signaling pathway. An example of redox-regulated tyrosine kinase signaling involves the epidermal growth factor receptor (EGFR, a widely studied receptor system with diverse functions in normal cell biology as well as pathologies associated with oxidative stress such as cancer. The purpose of this Graphical Redox Review is to highlight recently emerged concepts with respect to NOX-dependent regulation of this important signaling pathway.

  16. Validation of a P2Y12-receptor specific whole blood platelet aggregation assay. (United States)

    Amann, Michael; Ferenc, Miroslaw; Valina, Christian M; Bömicke, Timo; Stratz, Christian; Leggewie, Stefan; Trenk, Dietmar; Neumann, Franz-Josef; Hochholzer, Willibald


    Testing of P2Y12-receptor antagonist effects can support clinical decision-making. However, most platelet function assays use only ADP as agonist which is not P2Y12-receptor specific. For this reason P2Y12-receptor specific assays have been developed by adding prostaglandin E1 (PGE1) to reduce ADP-induced platelet activation via the P2Y1-receptor. The present study sought to evaluate a P2Y12-receptor specific assay for determination of pharmacodynamic and clinical outcomes. This study enrolled 400 patients undergoing coronary stenting after loading with clopidogrel or prasugrel. ADP-induced platelet reactivity was assessed by whole blood aggregometry at multiple time points with a standard ADP assay (ADPtest) and a P2Y12-receptor specific assay (ADPtest HS, both run on Multiplate Analyzer, Roche Diagnostics). Patients were clinically followed for 1 month and all events adjudicated by an independent committee. In total, 2084 pairs of test results of ADPtest and ADPtest HS were available showing a strong correlation between results of both assays (r = 0.96, p < 0.001). These findings prevailed in multiple prespecified subgroups (e.g., age; body mass index; diabetes). Calculated cutoffs for ADPtest HS and the established cutoffs of ADPtest showed a substantial agreement for prediction of ischemic and hemorrhagic events with a Cohen's κ of 0.66 and 0.66, respectively. The P2Y12-receptor specific ADPtest HS assay appears similarly predictive for pharmacodynamic and clinical outcomes as compared to the established ADPtest assay indicating its applicability for clinical use. Further evaluation in large cohorts is needed to determine if P2Y12-receptor specific testing offers any advantage for prediction of clinical outcome.

  17. Dopaminergic modulation of the striatal microcircuit: receptor-specific configuration of cell assemblies. (United States)

    Carrillo-Reid, Luis; Hernández-López, Salvador; Tapia, Dagoberto; Galarraga, Elvira; Bargas, José


    Selection and inhibition of motor behaviors are related to the coordinated activity and compositional capabilities of striatal cell assemblies. Striatal network activity represents a main step in basal ganglia processing. The dopaminergic system differentially regulates distinct populations of striatal medium spiny neurons (MSNs) through the activation of D(1)- or D(2)-type receptors. Although postsynaptic and presynaptic actions of these receptors are clearly different in MSNs during cell-focused studies, their activation during network activity has shown inconsistent responses. Therefore, using electrophysiological techniques, functional multicell calcium imaging, and neuronal population analysis in rat corticostriatal slices, we describe the effect of selective dopaminergic receptor activation in the striatal network by observing cell assembly configurations. At the microcircuit level, during striatal network activity, the selective activation of either D(1)- or D(2)-type receptors is reflected as overall increases in neuronal synchronization. However, graph theory techniques applied to the transitions between network states revealed receptor-specific configurations of striatal cell assemblies: D(1) receptor activation generated closed trajectories with high recurrence and few alternate routes favoring the selection of specific sequences, whereas D(2) receptor activation created trajectories with low recurrence and more alternate pathways while promoting diverse transitions among neuronal pools. At the single-cell level, the activation of dopaminergic receptors enhanced the negative-slope conductance region (NSCR) in D(1)-type-responsive cells, whereas in neurons expressing D(2)-type receptors, the NSCR was decreased. Consequently, receptor-specific network dynamics most probably result from the interplay of postsynaptic and presynaptic dopaminergic actions.

  18. Regulation of TNF-alpha secretion by a specific melanocortin-1 receptor peptide agonist. (United States)

    Ignar, Diane M; Andrews, John L; Jansen, Marilyn; Eilert, Michelle M; Pink, Heather M; Lin, Peiyuan; Sherrill, Ronald G; Szewczyk, Jerzy R; Conway, James G


    The lack of specific pharmacological tools has impeded the evaluation of the role of each melanocortin receptor (MCR) subtype in the myriad physiological effects of melanocortins. 154N-5 is an octapeptide (MFRdWFKPV-NH(2)) that was first identified as an MC1R antagonist in Xenopus melanophores [J. Biol. Chem. 269 (1994) 29846]. In this manuscript, we show that 154N-5 is a specific agonist for human and murine MC1R. The peptide has negligible activity at MC3R and MC4R and is 25-fold less potent and a weak agonist at MC5R. 154N-5 was tested in both a cellular and an animal model of tumor necrosis factor-alpha (TNF-alpha) secretion. The inhibitory efficacy of 154N-5 on TNF-alpha secretion in both models was similar to the nonselective agonist NDP-alpha-melanocyte stimulating hormone (NDP-alphaMSH), thus, we conclude that inhibition of TNF-alpha secretion by melanocortin peptides is mediated by MC1R. 154N-5 is a valuable new tool for the evaluation of specific contribution of MC1R agonism to physiological and pathological processes.

  19. Non-overlapping progesterone receptor cistromes contribute to cell-specific transcriptional outcomes.

    Directory of Open Access Journals (Sweden)

    Christine L Clarke

    Full Text Available The transcriptional effects of the ovarian hormone progesterone are pleiotropic, and binding to DNA of the nuclear progesterone receptor (PR, a ligand-activated transcription factor, results in diverse outcomes in a range of target tissues. To determine whether distinct patterns of genomic interaction of PR contribute to the cell specificity of the PR transcriptome, we have compared the genomic binding sites for PR in breast cancer cells and immortalized normal breast cells. PR binding was correlated with transcriptional outcome in both cell lines, with 60% of progestin-regulated genes associated with one or more PR binding regions. There was a remarkably low overlap between the PR cistromes of the two cell lines, and a similarly low overlap in transcriptional targets. A conserved PR binding element was identified in PR binding regions from both cell lines, but there were distinct patterns of enrichment of known cofactor binding motifs, with FOXA1 sites over-represented in breast cancer cell binding regions and NF1 and AP-1 motifs uniquely enriched in the immortalized normal line. Downstream analyses suggested that differential cofactor availability may generate these distinct PR cistromes, indicating that cofactor levels may modulate PR specificity. Taken together these data suggest that cell-specificity of PR binding is determined by the coordinated effects of key binding cofactors.

  20. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.; Mantyh, P.W. (Wadsworth VA Medical Center, Los Angeles, CA (USA))


    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific binding of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.

  1. Sensitive and direct detection of receptor binding specificity of highly pathogenic avian influenza A virus in clinical samples.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available Influenza A virus (IAV recognizes two types of N-acetylneuraminic acid (Neu5Ac by galactose (Gal linkages, Neu5Acα2,3Gal and Neu5Acα2,6Gal. Avian IAV preferentially binds to Neu5Acα2,3Gal linkage, while human IAV preferentially binds to Neu5Acα2,6Gal linkage, as a virus receptor. Shift in receptor binding specificity of avian IAV from Neu5Acα2,3Gal linkage to Neu5Acα2,6Gal linkage is generally believed to be a critical factor for its transmission ability among humans. Surveillance of this shift of highly pathogenic H5N1 avian IAV (HPAI is thought to be a very important for prediction and prevention of a catastrophic pandemic of HPAI among humans. In this study, we demonstrated that receptor binding specificity of IAV bound to sialo-glycoconjugates was sensitively detected by quantifying the HA gene with real-time reverse-transcription-PCR. The new assay enabled direct detection of receptor binding specificity of HPAIs in chicken clinical samples including trachea and cloaca swabs in only less than 4 h.

  2. TTP specifically regulates the internalization of the transferrin receptor

    DEFF Research Database (Denmark)

    Tosoni, Daniela; Puri, Claudia; Confalonieri, Stefano


    with endocytic proteins, including clathrin, dynamin, and the TfR, and localizes selectively to TfR-containing coated-pits (CCP) and -vesicles (CCV). Overexpression of TTP specifically inhibits TfR internalization, and causes the formation of morphologically aberrant CCP, which are probably fission impaired....... This effect is mediated by the SH3 of TTP, which can bind to dynamin, and it is rescued by overexpression of dynamin. Functional ablation of TTP causes a reduction in TfR internalization, and reduced cargo loading and size of TfR-CCV. Tyrosine phosphorylation of either TTP or dynamin prevents...

  3. Structural Characterization of the Hemagglutinin Receptor Specificity from the 2009 H1N1 Influenza Pandemic

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rui; McBride, Ryan; Nycholat, Corwin M.; Paulson, James C.; Wilson, Ian A. (Scripps)


    Influenza virus hemagglutinin (HA) is the viral envelope protein that mediates viral attachment to host cells and elicits membrane fusion. The HA receptor-binding specificity is a key determinant for the host range and transmissibility of influenza viruses. In human pandemics of the 20th century, the HA normally has acquired specificity for human-like receptors before widespread infection. Crystal structures of the H1 HA from the 2009 human pandemic (A/California/04/2009 [CA04]) in complex with human and avian receptor analogs reveal conserved recognition of the terminal sialic acid of the glycan ligands. However, favorable interactions beyond the sialic acid are found only for {alpha}2-6-linked glycans and are mediated by Asp190 and Asp225, which hydrogen bond with Gal-2 and GlcNAc-3. For {alpha}2-3-linked glycan receptors, no specific interactions beyond the terminal sialic acid are observed. Our structural and glycan microarray analyses, in the context of other high-resolution HA structures with {alpha}2-6- and {alpha}2-3-linked glycans, now elucidate the structural basis of receptor-binding specificity for H1 HAs in human and avian viruses and provide a structural explanation for the preference for {alpha}2-6 siaylated glycan receptors for the 2009 pandemic swine flu virus.

  4. Cross-talk between the calcium-sensing receptor and the epidermal growth factor receptor in Rat-1 fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Tomlins, Scott A.; Bollinger, Nikki; Creim, Jeffrey A.; Rodland, Karin D.


    The calcium-sensing receptor (CaR) is a G-protein coupled receptor that is activated by extracellular calcium (Ca2+o). Rat-1 fibroblasts have been shown to proliferate and increase ERK activity in response to elevation of [Ca2+]o, and these responses are dependent on functional CaR expression. In this report, we examined the role of cross-talk between the CaR and the epidermal growth factor receptor (EGFR) in mediating these responses in Rat-1 cells. This report shows that AG1478, a specific inhibitor of the EGFR kinase, significantly inhibits the increase in proliferation induced by elevated Ca2+o. Further, we show that AG1478 acts downstream or separately from G-protein subunit activation of phospholipase C. AG1478 significantly inhibits Ca2+o-stimulated ERK phosphorylation and in vitro kinase activity. A similar inhibition of ERK phosphorylation was observed in response to the inhibitor AG494. In addition, treatment with inhibitors of metalloproteases involved in shedding of membrane anchored EGF family ligands substantially inhibited the increase in ERK activation in response to elevated Ca2+o. This is consistent with the known expression of TGFa by Rat-1 cells. These results indicate that EGFR transactivation is an important component of the CaR mediated response to increased Ca2+o in Rat-1 fibroblasts, and most likely involves CaR-mediated induction of regulated proteolysis and ligand shedding.

  5. NPY receptor subtype specification for behavioral adaptive strategies during limited food access. (United States)

    Pjetri, E; Adan, R A; Herzog, H; de Haas, R; Oppelaar, H; Spierenburg, H A; Olivier, B; Kas, M J


    The neuropeptide Y (NPY) system in the brain regulates a wide variety of behavioral, metabolic and hormonal homeostatic processes required for energy balance control. During times of limited food availability, NPY promotes behavioral hyperactivity necessary to explore and prepare for novel food resources. As NPY can act via 5 different receptor subtypes, we investigated the path through which NPY affects different behavioral components relevant for adaptation to such conditions. We tested NPY Y1 and Y2 receptor knockout mice and their wild-type littermate controls in a daily scheduled limited food access paradigm with unlimited access to running wheel. Here we show that NPY Y1 receptor deficient mice lack the expression of appetitive behavior and that NPY Y2 receptors control the level of hyperactive behavior under these conditions. Thus, receptor specificity determines the differential expression of NPY-mediated behavioral adaptations to overcome a negative energy status.

  6. Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, Regula; Habann, Matthias; Eugster, Marcel R. [Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich (Switzerland); Lurz, Rudi [Max-Planck Institute for Molecular Genetics, 14195 Berlin (Germany); Calendar, Richard [Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202 (United States); Klumpp, Jochen, E-mail: [Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich (Switzerland); Loessner, Martin J. [Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich (Switzerland)


    Adsorption of a bacteriophage to the host requires recognition of a cell wall-associated receptor by a receptor binding protein (RBP). This recognition is specific, and high affinity binding is essential for efficient virus attachment. The molecular details of phage adsorption to the Gram-positive cell are poorly understood. We present the first description of receptor binding proteins and a tail tip structure for the siphovirus group infecting Listeria monocytogenes. The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. Two proteins were identified as RBPs in phage A118. Rhamnose residues in wall teichoic acids represent the binding ligands for both proteins. In phage P35, protein gp16 could be identified as RBP and the role of both rhamnose and N-acetylglucosamine in phage adsorption was confirmed. Immunogold-labeling and transmission electron microscopy allowed the creation of a topological model of the A118 phage tail. - Highlights: • We present the first description of receptor binding proteins and a tail tip structure for the Siphovirus group infecting Listeria monocytogenes. • The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. • Rhamnose residues in wall teichoic acids represent the binding ligands for both receptor binding proteins in phage A118. • Rhamnose and N-acetylglucosamine are required for adsorption of phage P35. • We preset a topological model of the A118 phage tail.

  7. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A


    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  8. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Pangburn Heather A


    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  9. Effect of liver regeneration after partial hepatectomy and ischemia-reperfusion on expression of growth factor receptors

    Institute of Scientific and Technical Information of China (English)

    P Baier; G Wolf-Vorbeck; S Hempel; UT Hopt; E von Dobschuetz


    AIM: To investigate the effects of experimental partial hepatectomy and normothermic ischemia-reperfusion damage on the time course of the expression of four different growth factor receptors in liver regeneration.This is relevant due to the potential therapeutic use of growth factors in stimulating liver regeneration.METHODS: For partial hepatectomy (PH) 80% of the liver mass was resected in Sprague Dawley rats.Ischemia and reperfusion (I/R) were induced by occlusion of the portal vein and the hepatic artery for 15 min. The epidermal growth factor receptor, hepatic growth factor receptor, fibroblast growth factor receptor and tumour necrosis factor receptor-1 were analysed by immunohistochemistry up to 72 h after injury.Quantitative RT-PCR was performed at the time point of minimal receptor expression (24 h).RESULTS: In immunohistochemistry, EGFR, HGFR,FGFR and TNFR1 showed biphasic kinetics after partial hepatectomy with a peak up to 12 h, a nadir after 24 h and another weak increase up to 72 h. During liver regeneration, after ischemia and reperfusion, the receptor expression was lower; the nadir at 24 h after reperfusion was the same. To evaluate whether this nadir was caused by a lack of mRNA transcription, or due to a posttranslational regulation, RT-PCR was performed at 24 h and compared to resting liver. In every probe there was specific mRNA for the receptors. EGFR, FGFR and TNFR1 mRNA expression was equal or lower than in resting liver, HGFR expression after I/R was stronger than in the control.CONCLUSION: At least partially due to a post-transcriptional process, there is a nadir in the expression of the analysed receptors 24 h after liver injury. Therefore,a therapeutic use of growth factors to stimulate liver regeneration 24 h after the damage might be not successful.

  10. Generation of antigen-specific T cell immunity through T cell receptor gene transfer

    NARCIS (Netherlands)

    Coccoris, Miriam


    Cancer cells often escape the attack of immune cells because they originate from self-tissue. Through T cell receptor gene transfer it is possible to equip peripheral T cells with a desired specificity, and this strategy may be useful to generate tumor-specific T cells for the treatment of cancer in

  11. Generation of antigen-specific T cell immunity through T cell receptor gene transfer

    NARCIS (Netherlands)

    Coccoris, Miriam


    Cancer cells often escape the attack of immune cells because they originate from self-tissue. Through T cell receptor gene transfer it is possible to equip peripheral T cells with a desired specificity, and this strategy may be useful to generate tumor-specific T cells for the treatment of cancer in

  12. [Studying specific effects of nootropic drugs on glutamate receptors in the rat brain]. (United States)

    Firstova, Iu Iu; Vasil'eva, E V; Kovalev, G I


    The influence of nootropic drugs of different groups (piracetam, phenotropil, nooglutil, noopept, semax, meclofenoxate, pantocalcine, and dimebon) on the binding of the corresponding ligands to AMPA, NMDA, and mGlu receptors of rat brain has been studied by the method of radio-ligand binding in vitro. It is established that nooglutil exhibits pharmacologically significant competition with a selective agonist of AMPA receptors ([G-3H]Ro 48-8587) for the receptor binding sites (with IC50 = 6.4 +/- 0.2 microM), while the competition of noopept for these receptor binding sites was lower by an order of magnitude (IC50 = 80 +/- 5.6 microM). The heptapeptide drug semax was moderately competitive with [G-3H]LY 354740 for mGlu receptor sites (IC50 = 33 +/- 2.4 microM). Dimebon moderately influenced the specific binding of the ligand of NMDA receptor channel ([G-3H]MK-801) at IC50 = 59 +/- 3.6 microM. Nootropic drugs of the pyrrolidone group (piracetam, phenotropil) as well as meclofenoxate, pantocalcine (pantogam) in a broad rage of concentrations (10(-4)-10(-10) M) did not affect the binding of the corresponding ligands to glutamate receptors (IC50 100 pM). Thus, the direct neurochemical investigation was used for the first time to qualitatively characterize the specific binding sites for nooglutil and (to a lower extent) noopept on AMPA receptors, for semax on metabotropic glutamate receptors, and for dimebon on the channel region of NMDA receptors. The results are indicative of a selective action of some nootropes on the glutamate family.

  13. Neither bovine somatotropin nor growth hormone-releasing factor alters expression of thyroid hormone receptors in liver and mammary tissues. (United States)

    Capuco, A V; Binelli, M; Tucker, H A


    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine to specific nuclear receptors. Organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, have been hypothesized to target the action of thyroid hormones on the mammary gland and play a role in mediating or augmenting a galactopoietic response to bovine somatotropin (bST). Additionally, tissue responsiveness to thyroid hormones may be altered by changes in the number or affinity of nuclear receptors for thyroid hormones. In the present study, effects of bST and bovine growth hormone-releasing factor (bGRF) on thyroid hormone receptors in liver and mammary gland were studied. Lactating Holstein cows received continuous infusions of bST or bGRF for 63 d or served as uninfused controls. Nuclei were isolated from harvested mammary and liver tissues and incubated with [(125)I]-triiodothyronine. Treatments did not alter the capacity or affinity of specific binding sites for triiodothyronine in liver or mammary nuclei. Evaluation of transcript abundance for thyroid hormone receptors showed that isoforms of thyroid hormone receptor or retinoid receptor (which may influence thyroid receptor action) expressed in the mammary gland were not altered by bST or bGRF treatment. Data do not support the hypothesis that administration of bST or bGRF alters sensitivity of mammary tissue by changing expression of thyroid hormone receptors.

  14. Insulin-like growth factor-I receptor in proliferation and motility of pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Minoru; Tomizawa; Fuminobu; Shinozaki; Takao; Sugiyama; Shigenori; Yamamoto; Makoto; Sueishi; Takanobu; Yoshida


    AIM:To develop a molecular therapy for pancreatic cancer, the insulin-like growth factor-I (IGF-I) signaling pathway was analyzed.METHODS: Pancreatic cancer cell lines (MIA-Paca2, NOR-P1, PANC-1, PK-45H, PK-1, PK-59 and KP-4) were cultured in media with 10 mL/L fetal bovine serum. Western blotting analysis was performed to clarify the expression of IGF-I receptor (IGF-IR). Picropodophyllin (PPP), a specific inhibitor of IGF-IR, LY294002, a specific inhibitor of phosphatidylinositol3 kinase (PI3K), and PD980...

  15. The structure and function of vertebrate fibroblast growth factor receptor 1. (United States)

    Groth, Casper; Lardelli, Michael


    The vertebrate fibroblast growth factor receptor 1 (FGFR1) is alternatively spliced generating multiple splice variants that are differentially expressed during embryo development and in the adult body. The restricted expression patterns of FGFR1 isoforms, together with differential expression and binding of specific ligands, leads to activation of common FGFR1 signal transduction pathways, but may result in distinctively different biological responses as a result of differences in cellular context. FGFR1 isoforms are also present in the nucleus in complex with various fibroblast growth factors where they function to regulate transcription of target genes.

  16. Surface proteome analysis identifies platelet derived growth factor receptor-alpha as a critical mediator of transforming growth factor-beta-induced collagen secretion. (United States)

    Heinzelmann, Katharina; Noskovičová, Nina; Merl-Pham, Juliane; Preissler, Gerhard; Winter, Hauke; Lindner, Michael; Hatz, Rudolf; Hauck, Stefanie M; Behr, Jürgen; Eickelberg, Oliver


    Fibroblasts are extracellular matrix-producing cells in the lung. Fibroblast activation by transforming growth factor-beta leads to myofibroblast-differentiation and increased extracellular matrix deposition, a hallmark of pulmonary fibrosis. While fibroblast function with respect to migration, invasion, and extracellular matrix deposition has been well-explored, little is known about the surface proteome of lung fibroblasts in general and its specific response to fibrogenic growth factors, in particular transforming growth factor-beta. We thus performed a cell-surface proteome analysis of primary human lung fibroblasts in presence/absence of transforming growth factor-beta, followed by characterization of our findings using FACS analysis, Western blot, and siRNA-mediated knockdown experiments. We identified 213 surface proteins significantly regulated by transforming growth factor-beta, platelet derived growth factor receptor-alpha being one of the top down-regulated proteins. Transforming growth factor beta-induced downregulation of platelet derived growth factor receptor-alpha induced upregulation of platelet derived growth factor receptor-beta expression and phosphorylation of Akt, a downstream target of platelet derived growth factor signaling. Importantly, collagen type V expression and secretion was strongly increased after forced knockdown of platelet derived growth factor receptor-alpha, an effect that was potentiated by transforming growth factor-beta. We therefore show previously underappreciated cross-talk of transforming growth factor-beta and platelet derived growth factor signaling in human lung fibroblasts, resulting in increased extracellular matrix deposition in a platelet derived growth factor receptor-alpha dependent manner. These findings are of particular importance for the treatment of lung fibrosis patients with high pulmonary transforming growth factor-beta activity.

  17. Functional specificity of sex pheromone receptors in the cotton bollworm Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available Male moths can accurately perceive the sex pheromone emitted from conspecific females by their highly accurate and specific olfactory sensory system. Pheromone receptors are of special importance in moth pheromone reception because of their central role in chemosensory signal transduction processes that occur in olfactory receptor neurons in the male antennae. There are a number of pheromone receptor genes have been cloned, however, only a few have been functionally characterized. Here we cloned six full-length pheromone receptor genes from Helicoverpa armigera male antennae. Real-time PCR showing all genes exhibited male-biased expression in adult antennae. Functional analyses of the six pheromone receptor genes were then conducted in the heterologous expression system of Xenopus oocytes. HarmOR13 was found to be a specific receptor for the major sex pheromone component Z11-16:Ald. HarmOR6 was equally tuned to both of Z9-16: Ald and Z9-14: Ald. HarmOR16 was sensitively tuned to Z11-16: OH. HarmOR11, HarmOR14 and HarmOR15 failed to respond to the tested candidate pheromone compounds. Our experiments elucidated the functions of some pheromone receptor genes of H. armigera. These advances may provide remarkable evidence for intraspecific mating choice and speciation extension in moths at molecular level.

  18. Oxidatively fragmented phosphatidylcholines activate human neutrophils through the receptor for platelet-activating factor. (United States)

    Smiley, P L; Stremler, K E; Prescott, S M; Zimmerman, G A; McIntyre, T M


    Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) activates neutrophils (polymorphonuclear leukocytes, PMN) through a receptor that specifically recognizes short sn-2 residues. We oxidized synthetic [2-arachidonoyl]phosphatidylcholine to fragment and shorten the sn-2 residue, and then examined the phospholipid products for the ability to stimulate PMN. 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine was fragmented by ozonolysis to 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine. This phospholipid activated human neutrophils at submicromolar concentrations, and is effects were inhibited by specific PAF receptor antagonists WEB2086, L659,989, and CV3988. 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine next was fragmented by an uncontrolled free radical-catalyzed reaction: it was treated with soybean lipoxygenase to form its sn-2 15-hydroperoxy derivative (which did not activate neutrophils) and then allowed to oxidize under air. The secondary oxidation resulted in the formation of numerous fragmented phospholipids (Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11095-11103), some of which activated PMN. Hydrolysis of sn-2 residues with phospholipase A2 destroyed biologic activity, as did hydrolysis with PAF acetylhydrolase. PAF acetylhydrolase is specific for short or intermediate length sn-2 residues and does not hydrolyze the starting material (Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11095-11103). Neutrophil activation was completely blocked by L659,989, a specific PAF receptor antagonist. We conclude that diacylphosphatidylcholines containing an sn-2 polyunsaturated fatty acyl residue can be oxidatively fragmented to species with sn-2 residues short enough to activate the PAF receptor of neutrophils. This suggests a new mechanism for the appearance of biologically active phospholipids, and shows


    NARCIS (Netherlands)

    van der Laan, B.F.A.M.; FREEMAN, JL; ASA, SL


    A number of growth factors have been implicated as stimuli of thyroid cell proliferation; overexpression of these growth factors and/or their receptors may play a role in the growth of thyroid tumors. To determine if immunohistochemical detection of growth factors and/or their receptors correlates w

  20. Receptor Signaling Directs Global Recruitment of Pre-existing Transcription Factors to Inducible Elements (United States)

    Cockerill, Peter N.


    Gene expression programs are largely regulated by the tissue-specific expression of lineage-defining transcription factors or by the inducible expression of transcription factors in response to specific stimuli. Here I will review our own work over the last 20 years to show how specific activation signals also lead to the wide-spread re-distribution of pre-existing constitutive transcription factors to sites undergoing chromatin reorganization. I will summarize studies showing that activation of kinase signaling pathways creates open chromatin regions that recruit pre-existing factors which were previously unable to bind to closed chromatin. As models I will draw upon genes activated or primed by receptor signaling in memory T cells, and genes activated by cytokine receptor mutations in acute myeloid leukemia. I also summarize a hit-and-run model of stable epigenetic reprograming in memory T cells, mediated by transient Activator Protein 1 (AP-1) binding, which enables the accelerated activation of inducible enhancers. PMID:28018147

  1. Augmentation of radiation response by motesanib, a multikinase inhibitor that targets vascular endothelial growth factor receptors.

    NARCIS (Netherlands)

    Kruser, T.J.; Wheeler, D.L.; Armstrong, E.A.; Iida, M.; Kozak, K.R.; Kogel, A.J. van der; Bussink, J.; Coxon, A.; Polverino, A.; Harari, P.M.


    BACKGROUND: Motesanib is a potent inhibitor of vascular endothelial growth factor receptors (VEGFR) 1, 2, and 3, platelet-derived growth factor receptor, and Kit receptors. In this report we examine the interaction between motesanib and radiation in vitro and in head and neck squamous cell carcinoma

  2. Regulation of growth factor receptor degradation by ADP-ribosylation factor domain protein (ARD) 1. (United States)

    Meza-Carmen, Victor; Pacheco-Rodriguez, Gustavo; Kang, Gi Soo; Kato, Jiro; Donati, Chiara; Zhang, Chun-Yi; Vichi, Alessandro; Payne, D Michael; El-Chemaly, Souheil; Stylianou, Mario; Moss, Joel; Vaughan, Martha


    ADP-ribosylation factor domain protein 1 (ARD1) is a 64-kDa protein containing a functional ADP-ribosylation factor (GTP hydrolase, GTPase), GTPase-activating protein, and E3 ubiquitin ligase domains. ARD1 activation by the guanine nucleotide-exchange factor cytohesin-1 was known. GTPase and E3 ligase activities of ARD1 suggest roles in protein transport and turnover. To explore this hypothesis, we used mouse embryo fibroblasts (MEFs) from ARD1-/- mice stably transfected with plasmids for inducible expression of wild-type ARD1 protein (KO-WT), or ARD1 protein with inactivating mutations in E3 ligase domain (KO-E3), or containing persistently active GTP-bound (KO-GTP), or inactive GDP-bound (KO-GDP) GTPase domains. Inhibition of proteasomal proteases in mifepristone-induced KO-WT, KO-GDP, or KO-GTP MEFs resulted in accumulation of these ARD1 proteins, whereas KO-E3 accumulated without inhibitors. All data were consistent with the conclusion that ARD1 regulates its own steady-state levels in cells by autoubiquitination. Based on reported growth factor receptor-cytohesin interactions, EGF receptor (EGFR) was investigated in induced MEFs. Amounts of cell-surface and total EGFR were higher in KO-GDP and lower in KO-GTP than in KO-WT MEFs, with levels in both mutants greater (p = 0.001) after proteasomal inhibition. Significant differences among MEF lines in content of TGF-β receptor III were similar to those in EGFR, albeit not as large. Differences in amounts of insulin receptor mirrored those in EGFR, but did not reach statistical significance. Overall, the capacity of ARD1 GTPase to cycle between active and inactive forms and its autoubiquitination both appear to be necessary for the appropriate turnover of EGFR and perhaps additional growth factor receptors.

  3. DNA-binding specificities of human transcription factors. (United States)

    Jolma, Arttu; Yan, Jian; Whitington, Thomas; Toivonen, Jarkko; Nitta, Kazuhiro R; Rastas, Pasi; Morgunova, Ekaterina; Enge, Martin; Taipale, Mikko; Wei, Gonghong; Palin, Kimmo; Vaquerizas, Juan M; Vincentelli, Renaud; Luscombe, Nicholas M; Hughes, Timothy R; Lemaire, Patrick; Ukkonen, Esko; Kivioja, Teemu; Taipale, Jussi


    Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly different binding specificities. The models represent the majority of human TFs, approximately doubling the coverage compared to existing systematic studies. Our results reveal additional specificity determinants for a large number of factors for which a partial specificity was known, including a commonly observed A- or T-rich stretch that flanks the core motifs. Global analysis of the data revealed that homodimer orientation and spacing preferences, and base-stacking interactions, have a larger role in TF-DNA binding than previously appreciated. We further describe a binding model incorporating these features that is required to understand binding of TFs to DNA.

  4. Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation. (United States)

    Okazaki, Makoto; Ferrandon, Sebastien; Vilardaga, Jean-Pierre; Bouxsein, Mary L; Potts, John T; Gardella, Thomas J


    The parathyroid hormone receptor (PTHR) is a class B G protein-coupled receptor that plays critical roles in bone and mineral ion metabolism. Ligand binding to the PTHR involves interactions to both the amino-terminal extracellular (N) domain, and transmembrane/extracellular loop, or juxtamembrane (J) regions of the receptor. Recently, we found that PTH(1-34), but not PTH-related protein, PTHrP(1-36), or M-PTH(1-14) (M = Ala/Aib(1),Aib(3),Gln(10),Har(11),Ala(12),Trp(14),Arg(19)), binds to the PTHR in a largely GTPgammaS-resistant fashion, suggesting selective binding to a novel, high-affinity conformation (R(0)), distinct from the GTPgammaS-sensitive conformation (RG). We examined the effects in vitro and in vivo of introducing the M substitutions, which enhance interaction to the J domain, into PTH analogs extended C-terminally to incorporate residues involved in the N domain interaction. As compared with PTH(1-34), M-PTH(1-28) and M-PTH(1-34) bound to R(0) with higher affinity, produced more sustained cAMP responses in cells, formed more stable complexes with the PTHR in FRET and subcellular localization assays, and induced more prolonged calcemic and phosphate responses in mice. Moreover, after 2 weeks of daily injection in mice, M-PTH(1-34) induced larger increases in trabecular bone volume and greater increases in cortical bone turnover, than did PTH(1-34). Thus, the putative R(0) PTHR conformation can form highly stable complexes with certain PTH ligand analogs and thereby mediate surprisingly prolonged signaling responses in bone and/or kidney PTH target cells. Controlling, via ligand analog design, the selectivity with which a PTH ligand binds to R(0), versus RG, may be a strategy for optimizing signaling duration time, and hence therapeutic efficacy, of PTHR agonist ligands.

  5. A loop of coagulation factor VIIa influencing macromolecular substrate specificity

    DEFF Research Database (Denmark)

    Bjelke, Jais R; Persson, Egon; Rasmussen, Hanne B;


    Coagulation factor VIIa (FVIIa) belongs to a family of proteases being part of the stepwise, self-amplifying blood coagulation cascade. To investigate the impact of the mutation Met(298{156})Lys in FVIIa, we replaced the Gly(283{140})-Met(298{156}) loop with the corresponding loop of factor Xa....../Met(298{156})Lys-FVIIa with almost the same activity and specificity profile. We conclude that a lysine residue in position 298{156} of FVIIa requires a hydrophilic environment to be fully accommodated. This position appears critical for substrate specificity among the proteases of the blood coagulation...

  6. Factors affecting the implementation of green specifications in construction. (United States)

    Lam, Patrick T I; Chan, Edwin H W; Poon, C S; Chau, C K; Chun, K P


    Green specifications constitute one of the important elements in green construction. New sustainability requirements and changing priorities in construction management have spurred the emerging green specifications to a faster pace of development. A cross-sectional survey has been conducted in Hong Kong in 2007 to identify principal factors leading to the success of preparing green specifications. Based on extensive construction management literature, 20 variables concerning sustainable construction were summarized. Using the Mann-Whitney U-test, the subtle differences between stakeholders in specifying construction work have been detected even with the high consistency of the responses among the groups. Moreover, five independent factors for successful specification of green construction have been categorized by factor analysis. They are related to (1) green technology and techniques, (2) reliability and quality of specification, (3) leadership and responsibility, (4) stakeholder involvement, and (5) guide and benchmarking systems. Whilst the first and fourth factors are generally more important, different stakeholder groups have different emphases. The results of the survey have been validated against established principles. 2009 Elsevier Ltd. All rights reserved.

  7. Polychlorinated Biphenyls Disrupt Hepatic Epidermal Growth Factor Receptor Signaling. (United States)

    Hardesty, Josiah E; Wahlang, Banrida; Falkner, K Cameron; Clair, Heather B; Clark, Barbara J; Ceresa, Brian P; Prough, Russell A; Cave, Matthew C


    1. Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that disrupt hepatic xenobiotic and intermediary metabolism, leading to metabolic syndrome and nonalcoholic steatohepatitis (NASH). 2. Since phenobarbital indirectly activates Constitutive Androstane Receptor (CAR) by antagonizing growth factor binding to the epidermal growth factor receptor (EGFR), we hypothesised that PCBs may also diminish EGFR signaling. 3. The effects of the PCB mixture Aroclor 1260 on the protein phosphorylation cascade triggered by EGFR activation were determined in murine (in vitro and in vivo) and human models (in vitro). EGFR tyrosine residue phosphorylation was decreased by PCBs in all models tested. 4. The IC50 values for Aroclor 1260 concentrations that decreased Y1173 phosphorylation of EGFR were similar in murine AML-12 and human HepG2 cells (∼2-4 μg/mL). Both dioxin and non-dioxin-like PCB congeners decreased EGFR phosphorylation in cell culture. 5. PCB treatment reduced phosphorylation of downstream EGFR effectors including Akt and mTOR, as well as other phosphoprotein targets including STAT3 and c-RAF in vivo. 6. PCBs diminish EGFR signaling in human and murine hepatocyte models and may dysregulate critical phosphoprotein regulators of energy metabolism and nutrition, providing a new mechanism of action in environmental diseases.

  8. Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor. (United States)

    So, Alex Yick-Lun; Chaivorapol, Christina; Bolton, Eric C; Li, Hao; Yamamoto, Keith R


    The glucocorticoid receptor (GR) associates with glucocorticoid response elements (GREs) and regulates selective gene transcription in a cell-specific manner. Native GREs are typically thought to be composite elements that recruit GR as well as other regulatory factors into functional complexes. We assessed whether GR occupancy is commonly a limiting determinant of GRE function as well as the extent to which core GR binding sequences and GRE architecture are conserved at functional loci. We surveyed 100-kb regions surrounding each of 548 known or potentially glucocorticoid-responsive genes in A549 human lung cells for GR-occupied GREs. We found that GR was bound in A549 cells predominately near genes responsive to glucocorticoids in those cells and not at genes regulated by GR in other cells. The GREs were positionally conserved at each responsive gene but across the set of responsive genes were distributed equally upstream and downstream of the transcription start sites, with 63% of them >10 kb from those sites. Strikingly, although the core GR binding sequences across the set of GREs varied extensively around a consensus, the precise sequence at an individual GRE was conserved across four mammalian species. Similarly, sequences flanking the core GR binding sites also varied among GREs but were conserved at individual GREs. We conclude that GR occupancy is a primary determinant of glucocorticoid responsiveness in A549 cells and that core GR binding sequences as well as GRE architecture likely harbor gene-specific regulatory information.

  9. Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor.

    Directory of Open Access Journals (Sweden)

    Alex Yick-Lun So


    Full Text Available The glucocorticoid receptor (GR associates with glucocorticoid response elements (GREs and regulates selective gene transcription in a cell-specific manner. Native GREs are typically thought to be composite elements that recruit GR as well as other regulatory factors into functional complexes. We assessed whether GR occupancy is commonly a limiting determinant of GRE function as well as the extent to which core GR binding sequences and GRE architecture are conserved at functional loci. We surveyed 100-kb regions surrounding each of 548 known or potentially glucocorticoid-responsive genes in A549 human lung cells for GR-occupied GREs. We found that GR was bound in A549 cells predominately near genes responsive to glucocorticoids in those cells and not at genes regulated by GR in other cells. The GREs were positionally conserved at each responsive gene but across the set of responsive genes were distributed equally upstream and downstream of the transcription start sites, with 63% of them >10 kb from those sites. Strikingly, although the core GR binding sequences across the set of GREs varied extensively around a consensus, the precise sequence at an individual GRE was conserved across four mammalian species. Similarly, sequences flanking the core GR binding sites also varied among GREs but were conserved at individual GREs. We conclude that GR occupancy is a primary determinant of glucocorticoid responsiveness in A549 cells and that core GR binding sequences as well as GRE architecture likely harbor gene-specific regulatory information.

  10. Combinatorial activation and repression by seven transcription factors specify Drosophila odorant receptor expression.

    Directory of Open Access Journals (Sweden)

    Shadi Jafari

    Full Text Available The mechanism that specifies olfactory sensory neurons to express only one odorant receptor (OR from a large repertoire is critical for odor discrimination but poorly understood. Here, we describe the first comprehensive analysis of OR expression regulation in Drosophila. A systematic, RNAi-mediated knock down of most of the predicted transcription factors identified an essential function of acj6, E93, Fer1, onecut, sim, xbp1, and zf30c in the regulation of more than 30 ORs. These regulatory factors are differentially expressed in antennal sensory neuron classes and specifically required for the adult expression of ORs. A systematic analysis reveals not only that combinations of these seven factors are necessary for receptor gene expression but also a prominent role for transcriptional repression in preventing ectopic receptor expression. Such regulation is supported by bioinformatics and OR promoter analyses, which uncovered a common promoter structure with distal repressive and proximal activating regions. Thus, our data provide insight into how combinatorial activation and repression can allow a small number of transcription factors to specify a large repertoire of neuron classes in the olfactory system.

  11. Treatment of gastrointestinal neuroendocrine tumors with inhibitors of growth factor receptors and their signaling pathways: Recent advances and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Michael H(o)pfner; Detlef Schuppan; Hans Scherübl


    The limited efficacy of conventional cytotoxic treatment regimes for advanced gastrointestinal neuroendocrine cancers emphasizes the need for novel and more effective medical treatment options.Recent findings on the specific biological features of this family of neoplasms has led to the development of new targeted therapies,which take into account the high vascularization and abundant expression of specific growth factors and cognate tyrosine kinase receptors.This review will briefly summarize the status and future perspectives of antiangiogenic, mTOR- or growth factor receptor-based pharmacological approaches for the innovative treatment of gastrointestinal neuroendocrine tumors.In view of the multitude of novel targeted approaches, the rationale for innovative combination therapies, i.e.combining growth factor (receptor)-targeting agents with chemoor biotherapeutics or with other novel anticancer drugs such as HDAC or proteasome inhibitors will be taken into account.

  12. Molecular Recognition of Corticotropin releasing Factor by Its G protein-coupled Receptor CRFR1

    Energy Technology Data Exchange (ETDEWEB)

    Pioszak, Augen A.; Parker, Naomi R.; Suino-Powell, Kelly; Xu, H. Eric (Van Andel)


    The bimolecular interaction between corticotropin-releasing factor (CRF), a neuropeptide, and its type 1 receptor (CRFR1), a class B G-protein-coupled receptor (GPCR), is crucial for activation of the hypothalamic-pituitary-adrenal axis in response to stress, and has been a target of intense drug design for the treatment of anxiety, depression, and related disorders. As a class B GPCR, CRFR1 contains an N-terminal extracellular domain (ECD) that provides the primary ligand binding determinants. Here we present three crystal structures of the human CRFR1 ECD, one in a ligand-free form and two in distinct CRF-bound states. The CRFR1 ECD adopts the alpha-beta-betaalpha fold observed for other class B GPCR ECDs, but the N-terminal alpha-helix is significantly shorter and does not contact CRF. CRF adopts a continuous alpha-helix that docks in a hydrophobic surface of the ECD that is distinct from the peptide-binding site of other class B GPCRs, thereby providing a basis for the specificity of ligand recognition between CRFR1 and other class B GPCRs. The binding of CRF is accompanied by clamp-like conformational changes of two loops of the receptor that anchor the CRF C terminus, including the C-terminal amide group. These structural studies provide a molecular framework for understanding peptide binding and specificity by the CRF receptors as well as a template for designing potent and selective CRFR1 antagonists for therapeutic applications.

  13. Structural analysis of the receptors for granulocyte colony-stimulating factor on neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Hanazono, Y.; Hosoi, T.; Kuwaki, T.; Matsuki, S.; Miyazono, K.; Miyagawa, K.; Takaku, F. (Univ. of Tokyo (Japan))


    We investigated granulocyte colony-stimulating factor (G-CSF) receptors on neutrophils from three patients with chronic myelogenous leukemia (CML) in the chronic phase, in comparison with four normal volunteers. Because we experienced some difficulties in radioiodinating intact recombinant human G-CSF, we developed a new derivative of human G-CSF termed YPY-G-CSF. It was easy to iodinate this protein using the lactoperoxidase method because of two additional tyrosine residues, and its radioactivity was higher than that previously reported. The biological activity of YPY-G-CSF as G-CSF was fully retained. Scatchard analysis demonstrated that CML neutrophils had a single class of binding sites (1400 +/- 685/cell) with a dissociation constant (Kd) of 245 +/- 66 pM. The number of sites and Kd value of CML neutrophils were not significantly different from those of normal neutrophils (p greater than 0.9). Cross-linking studies revealed two specifically labeled bands of (125I)YPY-G-CSF-receptor complexes with apparent molecular masses of 160 and 110 kd on both normal and CML neutrophils. This is the first report describing two receptor proteins on neutrophils. According to the analyses of the proteolytic process of these cross-linked complexes and proteolytic mapping, we assume that alternative splicing or processing from a single gene may generate two distinct receptor proteins that bind specifically to G-CSF but have different fates in intracellular metabolism.

  14. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy

    Directory of Open Access Journals (Sweden)

    Szlachcic A


    Full Text Available Anna Szlachcic, Malgorzata Zakrzewska, Michal Lobocki, Piotr Jakimowicz, Jacek Otlewski Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland Abstract: Fibroblast growth factor receptors (FGFRs are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V, was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE, and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. Keywords: fibroblast growth factor 1, FGF receptor, targeted cancer therapy, cytotoxic conjugates, FGFR-dependent cancer, MMAE, auristatin

  15. Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine: role of sigma-1 receptors, IP3 receptors and cellular signaling pathways.

    Directory of Open Access Journals (Sweden)

    Tomoko Nishimura

    Full Text Available BACKGROUND: Selective serotonin reuptake inhibitors (SSRIs have been widely used and are a major therapeutic advance in psychopharmacology. However, their pharmacology is quite heterogeneous. The SSRI fluvoxamine, with sigma-1 receptor agonism, is shown to potentiate nerve-growth factor (NGF-induced neurite outgrowth in PC 12 cells. However, the precise cellular and molecular mechanisms underlying potentiation by fluvoxamine are not fully understood. In this study, we examined the roles of cellular signaling pathways in the potentiation of NGF-induced neurite outgrowth by fluvoxamine and sigma-1 receptor agonists. METHODS AND FINDINGS: The effects of three SSRIs (fluvoxamine, sertraline, paroxetine and three sigma-1 receptor agonists (SA4503, 4-phenyl-1-(4-phenylbutyl piperidine (PPBP, and dehydroepiandrosterone (DHEA-sulfate on NGF-induced neurite outgrowth in PC12 cells were examined. Also examined were the effects of the sigma-1 receptor antagonist NE-100, inositol 1,4,5-triphosphate (IP(3 receptor antagonist, and specific inhibitors of signaling pathways in the potentiation of NGF-induced neurite outgrowth by selective sigma-1 receptor agonist SA4503. Fluvoxamine (but not sertraline or paroxetine and the sigma-1 receptor agonists SA4503, PPBP, and DHEA-sulfate significantly potentiated NGF-induced neurite outgrowth in PC12 cells in a concentration-dependent manner. The potentiation by fluvoxamine and the three sigma-1 receptor agonists was blocked by co-administration of the selective sigma-1 receptor antagonist NE-100, suggesting that sigma-1 receptors play a role in blocking the enhancement of NGF-induced neurite outgrowth. Moreover, the potentiation by SA4503 was blocked by co-administration of the IP(3 receptor antagonist xestospongin C. In addition, the specific inhibitors of phospholipase C (PLC-gamma, phosphatidylinositol 3-kinase (PI3K, p38MAPK, c-Jun N-terminal kinase (JNK, and the Ras/Raf/mitogen-activated protein kinase (MAPK

  16. Nuclear Factor-κB: Activation and Regulation during Toll-like Receptor Signaling

    Institute of Scientific and Technical Information of China (English)

    Ruaidhrí J. Carmody; Youhai H. Chen


    Toll-like receptors (TLRs) recognize distinct microbial components to initiate the innate and adaptive immune responses. TLR activation culminates in the expression of appropriate pro-inflammatory and immunomodulatory factors to meet pathogenic challenges. The transcription factor NF-κB is the master regulator of all TLR-induced responses and its activation is the pivotal event in TLR-mediated activation of the innate immune response. Many of the key molecular events required for TLR-induced NF-κB activation have been elucidated. However, much remain to be learned about the ability of TLRs to generate pathogen-specific responses using a limited number of transcription factors. This review will focus on our current understanding of NF-κB activation by TLRs and potential mechanisms for achieving a signal-specific response through NF-κB.

  17. Context-specific Factors and Contraceptive Use: A Mixed Method ...

    African Journals Online (AJOL)


    The study aimed to outline context-specific factors associated ... Male partner support can drive cultural sensitivities towards accepting use of ... Despite the increase in global contraceptive use, ... An assessment of barriers ... collection were simultaneously carried out: ...... decisions, perceptions and gender dynamics among.

  18. Organ-specific chemotactic factors present in lung extracellular matrix. (United States)

    Cerra, R F; Nathanson, S D


    The preferential colonization of a distant organ by a circulating tumor cell (organ specific metastasis) may be regulated by chemotactic factors present within the extracellular matrix of the host organ. Organ-specific extracellular matrix was prepared from murine kidney and lung by high salt extraction and DNAase/RNAase digestion. A soluble protein fraction (S2) from each of the matricies was obtained by 4 M guanidine extraction and was tested for organ-specific chemotactic activity in a modified Boyden chamber. The lung colonizing B16-F10 and B16-BL6 tumor cell lines demonstrated organ-specific motility only toward the lung extract. The low metastasizing B16 parental line and liver colonizing B16-L4b line showed no preference for either lung or kidney. The lung activity resolves into five fractions by gel filtration chromatography, with the highest activity eluting at Mr approximately 71,000. Chemotactic factors present in lung extracellular matrix may regulate the preferential colonization of an organ by stimulating the migration of tumor cells in a specific manner. These factors may be released during the degradation of the extracellular matrix.

  19. Diagnostic and prognostic potential of the macrophage specific receptor CD163 in inflammatory diseases. (United States)

    Buechler, Christa; Eisinger, Kristina; Krautbauer, Sabrina


    CD163 is a scavenger receptor for the endocytosis of hemoglobin and hemoglobin/haptoglobin complexes and is nearly exclusively expressed on monocytes and macrophages. CD163 is induced by IL-10 and glucocorticoids while proinflammatory cytokines like TNF reduce its expression. The cytokine IL-6 which exerts pro- and anti-inflammatory effects depending on the signaling pathway activated strongly upregulates CD163. Anti-inflammatory cells involved in the down-modulation of inflammation express high CD163 which controls immune response. Ligands of the toll-like receptors 2, 4 and 5 stimulate ectodomain shedding of CD163 thereby releasing soluble CD163 (sCD163) which mediates cellular uptake of free hemoglobin. Soluble CD163 circulates in blood and is increased in serum of critically ill patients, in chronic inflammatory and infectious diseases. Serum concentrations of sCD163 are related to disease severity and are suitable biomarkers for diagnosis, prognosis and therapeutic drug monitoring in several inflammatory disorders. Raised sCD163 even predicts comorbidity and mortality in some diseases. Relationship of CD163/sCD163 and disease severity demonstrates a fundamental role of monocytes/macrophages in various diseases. CD163 is a target to specifically deliver drugs to macrophages intending advanced therapeutic efficiency and minimization of adverse reactions. In this review article factors regulating CD163 expression and shedding, current knowledge on the function of CD163 and sCD163, and inflammatory diseases where CD163 and/or sCD163 are mostly increased are summarized.

  20. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors (United States)

    Farroni, Jeffrey S; McCool, Brian A


    Background Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. Results While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The β-amino acid taurine possessed 30–50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for β-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Conclusions Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In

  1. Thyroid hormones regulate fibroblast growth factor receptor signaling during chondrogenesis. (United States)

    Barnard, Joanna C; Williams, Allan J; Rabier, Bénédicte; Chassande, Olivier; Samarut, Jacques; Cheng, Sheue-Yann; Bassett, J H Duncan; Williams, Graham R


    Childhood hypothyroidism causes growth arrest with delayed ossification and growth-plate dysgenesis, whereas thyrotoxicosis accelerates ossification and growth. Thyroid hormone (T(3)) regulates chondrocyte proliferation and is essential for hypertrophic differentiation. Fibroblast growth factors (FGFs) are also important regulators of chondrocyte proliferation and differentiation, and activating mutations of FGF receptor-3 (FGFR3) cause achondroplasia. We investigated the hypothesis that T(3) regulates chondrogenesis via FGFR3 in ATDC5 cells, which undergo a defined program of chondrogenesis. ATDC5 cells expressed two FGFR1, four FGFR2, and one FGFR3 mRNA splice variants throughout chondrogenesis, and expression of each isoform was stimulated by T(3) during the first 6-12 d of culture, when T(3) inhibited proliferation by 50%. FGFR3 expression was also increased in cells treated with T(3) for 21 d, when T(3) induced an earlier onset of hypertrophic differentiation and collagen X expression. FGFR3 expression was reduced in growth plates from T(3) receptor alpha-null mice, which exhibit skeletal hypothyroidism, but was increased in T(3) receptor beta(PV/PV) mice, which display skeletal thyrotoxicosis. These findings indicate that FGFR3 is a T(3)-target gene in chondrocytes. In further experiments, T(3) enhanced FGF2 and FGF18 activation of the MAPK-signaling pathway but inhibited their activation of signal transducer and activator of transcription-1. FGF9 did not activate MAPK or signal transducer and activator of transcription-1 pathways in the absence or presence of T(3). Thus, T(3) exerted differing effects on FGFR activation during chondrogenesis depending on which FGF ligand stimulated the FGFR and which downstream signaling pathway was activated. These studies identify novel interactions between T(3) and FGFs that regulate chondrocyte proliferation and differentiation during chondrogenesis.

  2. Interaction of urokinase with specific receptors stimulates mobilization of bovine adrenal capillary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Fibbi, G.; Ziche, M.; Morbidelli, L. (Mario Aiazzi Mancini - Viale Morgagni, Firenze (Italy)); Magnelli, L.; Del Rosso, M. (Institute of General Pathology, Viale Morgagni, Firenze (Italy))


    On the basis of {sup 125}I-labeled plasminogen activator binding analysis the authors have found that bovine adrenal capillary endothelial cells have specific receptors for human urinary-type plasminogen activator on the cell membrane. Each cell exposes about 37,000 free receptors with a K{sub d} of 0.8958{times}10{sup {minus}12} M. A monoclonal antibody against the 17,500 proteolytic fragment of the A chain of the plasminogen activator, not containing the catalytic site of the enzyme, impaired the specific binding, thus suggesting the involvement of a sequence present on the A chain in the interaction with the receptor, as previously shown in other cell model systems. Both the native molecule and the A chain are able to stimulate endothelial cell motility in the Boyden chamber, when used at nanomolar concentrations. The use of the same monoclonal antibody that can inhibit ligand-receptor interaction can impair the plasminogen activator and A-chain-induced endothelial cell motility, suggesting that under the conditions used in this in vitro model system, the motility of bovine adrenal capillary endothelial cells depends on the specific interaction of the ligand with free receptors on the surface of endothelial cells.

  3. Epidermal Growth Factor Receptor Cell Survival Signaling Requires Phosphatidylcholine Biosynthesis

    Directory of Open Access Journals (Sweden)

    Matt Crook


    Full Text Available Identification of pro-cell survival signaling pathways has implications for cancer, cardiovascular, and neurodegenerative disease. We show that the Caenorhabditis elegans epidermal growth factor receptor LET-23 (LET-23 EGFR has a prosurvival function in counteracting excitotoxicity, and we identify novel molecular players required for this prosurvival signaling. uv1 sensory cells in the C. elegans uterus undergo excitotoxic death in response to activation of the OSM-9/OCR-4 TRPV channel by the endogenous agonist nicotinamide. Activation of LET-23 EGFR can effectively prevent this excitotoxic death. We investigate the roles of signaling pathways known to act downstream of LET-23 EGFR in C. elegans and find that the LET-60 Ras/MAPK pathway, but not the IP3 receptor pathway, is required for efficient LET-23 EGFR activity in its prosurvival function. However, activation of LET-60 Ras/MAPK pathway does not appear to be sufficient to fully mimic LET-23 EGFR activity. We screen for genes that are required for EGFR prosurvival function and uncover a role for phosphatidylcholine biosynthetic enzymes in EGFR prosurvival function. Finally, we show that exogenous application of phosphatidylcholine is sufficient to prevent some deaths in this excitotoxicity model. Our work implicates regulation of lipid synthesis downstream of EGFR in cell survival and death decisions.

  4. Epidermal Growth Factor Receptor in Prostate Cancer Derived Exosomes.

    Directory of Open Access Journals (Sweden)

    Geetanjali Kharmate

    Full Text Available Exosomes proteins and microRNAs have gained much attention as diagnostic tools and biomarker potential in various malignancies including prostate cancer (PCa. However, the role of exosomes and membrane-associated receptors, particularly epidermal growth factor receptor (EGFR as mediators of cell proliferation and invasion in PCa progression remains unexplored. EGFR is frequently overexpressed and has been associated with aggressive forms of PCa. While PCa cells and tissues express EGFR, it is unknown whether exosomes derived from PCa cells or PCa patient serum contains EGFR. The aim of this study was to detect and characterize EGFR in exosomes derived from PCa cells, LNCaP xenograft and PCa patient serum. Exosomes were isolated from conditioned media of different PCa cell lines; LNCaP xenograft serum as well as patient plasma/serum by differential centrifugation and ultracentrifugation on a sucrose density gradient. Exosomes were confirmed by electron microscopy, expression of exosomal markers and NanoSight™ analysis. EGFR expression was determined by western blot analysis and ELISA. This study demonstrates that exosomes may easily be derived from PCa cell lines, serum obtained from PCa xenograft bearing mice and clinical samples derived from PCa patients. Presence of exosomal EGFR in PCa patient exosomes may present a novel approach for measuring of the disease state. Our work will allow to build on this finding for future understanding of PCa exosomes and their potential role in PCa progression and as minimal invasive biomarkers for PCa.

  5. Glucocorticoids and atrial natriuretic factor receptors on vascular smooth muscle. (United States)

    Yasunari, K; Kohno, M; Murakawa, K; Yokokawa, K; Takeda, T


    The effect of glucocorticoids on the atrial natriuretic factor (ANF)-mediated formation of cyclic guanosine monophosphate (cGMP) by intact vascular smooth muscle cells (VSMC) was studied in rats. Cultured VSMC were obtained from the renal arteries of 14-week-old Wistar rats by the explant method. Micromolar concentrations of dexamethasone, given as pretreatment for 48 hours, suppressed the ANF-mediated response. The dexamethasone-induced suppression was detectable at 6 hours and reached a maximum 24 hours after administration in a dose-dependent manner. Inhibitors of protein synthesis blocked this effect of the glucocorticoid. The basal activity of guanylate cyclase in the dexamethasone-treated cells was lower than in the control cells. Other steroids having glucocorticoid action mimicked this suppression of the ANF-mediated response. This suppression was blocked by a glucocorticoid receptor antagonist. The results suggest that glucocorticoids suppress ANF-mediated cGMP formation by VSMC through glucocorticoid type II receptors and the induction of protein synthesis. Suppression of the ANF-mediated response may play a role in glucocorticoid-induced hypertension.

  6. Expression of epidermal growth factor receptors in human endometrial carcinoma

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Ottesen, B


    Little data exist on the expression of epidermal growth factor receptors (EGF-Rs) in human endometrial cancer. EGF-R status was studied in 65 patients with endometrial carcinomas and in 26 women with nonmalignant postmenopausal endometria, either inactive/atrophic endometrium or adenomatous...... hyperplasia. EGF-R was identified on frozen tissue sections by means of an indirect immunoperoxidase technique with a monoclonal antibody against the external domain of the EGF-R. Seventy-one percent of the carcinomas expressed positive EGF-R immunoreactivity. In general, staining was most prominent....../inactive endometria and seven of 13 (54%) endometria with adenomatous hyperplasia were EGF-R positive, with an immunostaining pattern rather similar to that of the carcinomas....

  7. Interferon gamma-dependent transactivation of epidermal growth factor receptor. (United States)

    Burova, Elena; Vassilenko, Konstantin; Dorosh, Victoria; Gonchar, Ilya; Nikolsky, Nikolai


    The present report provides evidence that, in A431 cells, interferon gamma (IFNgamma) induces the rapid (within 5 min), and reversible, tyrosine phosphorylation of the epidermal growth factor receptor (EGFR). IFNgamma-induced EGFR transactivation requires EGFR kinase activity, as well as activity of the Src-family tyrosine kinases and JAK2. Here, we show that IFNgamma-induced STAT1 activation in A431 and HeLa cells partially depends on the kinase activity of both EGFR and Src. Furthermore, in these cells, EGFR kinase activity is essential for IFNgamma-induced ERK1,2 activation. This study is the first to demonstrate that EGFR is implicated in IFNgamma-dependent signaling pathways.

  8. A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific alpha chain and a beta chain shared with the receptor for GM-CSF. (United States)

    Tavernier, J; Devos, R; Cornelis, S; Tuypens, T; Van der Heyden, J; Fiers, W; Plaetinck, G


    cDNA clones encoding two receptor proteins involved in the binding of human interleukin 5 (hIL5) have been isolated. A first class codes for an IL5-specific chain (hIL5R alpha). The major transcript of this receptor gene, as analyzed in both HL-60 eosinophilic cells and eosinophilic myelocytes grown from cord blood, encodes a secreted form of this receptor. This soluble hIL5R alpha has antagonistic properties. A second component of the hIL5R is found to be identical to the beta chain of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) high affinity receptor. The finding that IL5 and GM-CSF share a receptor subunit provides a molecular basis for the observation that these cytokines can partially interfere with each other's binding and have highly overlapping biological activities on eosinophils.

  9. Subcellular localization of frizzled receptors, mediated by their cytoplasmic tails, regulates signaling pathway specificity.

    Directory of Open Access Journals (Sweden)

    Jun Wu


    Full Text Available The Frizzled (Fz; called here Fz1 and Fz2 receptors have distinct signaling specificities activating either the canonical Wnt/beta-catenin pathway or Fz/planar cell polarity (PCP signaling in Drosophila. The regulation of signaling specificity remains largely obscure. We show that Fz1 and Fz2 have different subcellular localizations in imaginal disc epithelia, with Fz1 localizing preferentially to apical junctional complexes, and Fz2 being evenly distributed basolaterally. The subcellular localization difference directly contributes to the signaling specificity outcome. Whereas apical localization favors Fz/PCP signaling, it interferes with canonical Wnt/beta-catenin signaling. Receptor localization is mediated by sequences in the cytoplasmic tail of Fz2 that appear to block apical accumulation. Based on these data, we propose that subcellular Fz localization, through the association with other membrane proteins, is a critical aspect in regulating the signaling specificity within the Wnt/Fz signaling pathways.

  10. Nod factor receptors form heteromeric complexes and are essential for intracellular infection in Medicago nodules

    NARCIS (Netherlands)

    Moling, S.; Pietraszewska-Bogiel, A.; Postma, M.; Fedorova, E.E.; Hink, M.A.; Limpens, E.H.M.; Gadella, T.W.J.; Bisseling, T.


    Rhizobial Nod factors are the key signaling molecules in the legume-rhizobium nodule symbiosis. In this study, the role of the Nod factor receptors NOD FACTOR PERCEPTION (NFP) and LYSIN MOTIF RECEPTOR-LIKE KINASE3 (LYK3) in establishing the symbiotic interface in root nodules was investigated. It wa

  11. Nod factor receptors form heteromeric complexes and are essential for intracellular infection in medicago nodules

    NARCIS (Netherlands)

    Moling, S.; Pietraszewska-Bogiel, A.; Postma, M.; Fedorova, E.; Hink, M.A.; Limpens, E.; Gadella, T.W.J.; Bisseling, T.


    Rhizobial Nod factors are the key signaling molecules in the legume-rhizobium nodule symbiosis. In this study, the role of the Nod factor receptors NOD FACTOR PERCEPTION (NFP) and LYSIN MOTIF RECEPTOR-LIKE KINASE3 (LYK3) in establishing the symbiotic interface in root nodules was investigated. It wa

  12. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M


    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin to i...

  13. Tissue-specific Regulation of Porcine Prolactin Receptor Expression by Estrogen, Progesterone and Prolactin (United States)

    Prolactin (PRL) acts through its receptor (PRLR) via both endocrine and local paracrine/autocrine pathways to regulate biological processes including reproduction and lactation. We analyzed the tissue and stage of gestation-specific regulation of PRL and PRLR expression in various tissues of pigs. ...

  14. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    Energy Technology Data Exchange (ETDEWEB)

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa; Cavallaro, Ugo [IFOM-IEO Campus, Via Adamello 16, 20139 Milano (Italy); Marco, Ario de, E-mail: [IFOM-IEO Campus, Via Adamello 16, 20139 Milano (Italy); Dept. Environmental Sciences, University of Nova Gorica (UNG), Vipavska 13, P.O. Box 301-SI-5000, Rozna Dolina, Nova Gorica (Slovenia)


    Highlights: {yields} Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. {yields} These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. {yields} The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. These antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.

  15. Safety and therapeutic efficacy of adoptive p53-specific T cell antigen receptor (TCR) gene transfer



    Immunotherapy with T cells genetically modified by retroviral transfer of tumor-associated antigen (TAA)-specific T cell receptors (TCR) is a promising approach in targeting cancer. Therefore, using a universal TAA to target different tumor entities by only one therapeutic approach was the main criteria for our TAA-specific TCR. Here, an optimized (opt) αβ-chain p53(264-272)-specific and an opt single chain (sc) p53(264-272)-specific TCR were designed, to reduce mispairing reactions of endoge...

  16. Ramucirumab (IMC-1121B): Monoclonal antibody inhibition of vascular endothelial growth factor receptor-2. (United States)

    Spratlin, Jennifer


    Angiogenesis, a well-recognized characteristic of malignancy, has been exploited more than any other pathway targeted by biologic anti-neoplastic therapies. Vascular endothelial growth factor receptor-2 (VEGFR-2) is the critical receptor involved in malignant angiogenesis with its activation inducing a number of other cellular modifications resulting in tumor growth and metastases. Ramucirumab (IMC-1121B; ImClone Systems Corporation, Branchburg, NJ) is a fully human monoclonal antibody developed to specifically inhibit VEGFR-2. Ramucirumab is currently being investigated in multiple clinical trials across a variety of tumor types. Herein, angiogenesis inhibition in cancer is reviewed and up-to-date information on the clinical development of ramucirumab is presented.

  17. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail:


    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  18. The guanine nucleotide exchange factor Vav2 is a negative regulator of parathyroid hormone receptor/Gq signaling. (United States)

    Emami-Nemini, Alexander; Gohla, Antje; Urlaub, Henning; Lohse, Martin J; Klenk, Christoph


    The parathyroid hormone receptor (PTHR) is a class B G protein-coupled receptor (GPCR) that mediates the endocrine and paracrine effects of parathyroid hormone and related peptides through the activation of phospholipase Cβ-, adenylyl cyclase-, mitogen-activated protein kinase-, and β-arrestin-initiated signaling pathways. It is currently not clear how specificity among these downstream signaling pathways is achieved. A possible mechanism involves adaptor proteins that affect receptor/effector coupling. In a proteomic screen with the PTHR C terminus, we identified vav2, a guanine nucleotide exchange factor (GEF) for Rho GTPases, as a PTHR-interacting protein. The core domains of vav2 bound to the intracellular domains of the PTHR independent of receptor activation. In addition, vav2 specifically interacted with activated Gα(q) but not with Gα(s) subunits, and it competed with PTHR for coupling to Gα(q). Consistent with its specific interaction with Gα(q), vav2 impaired G(q)-mediated inositol phosphate generation but not G(s)-mediated cAMP generation. This inhibition of G(q) signaling was specific for PTHR signaling, compared with other G(q)-coupled GPCRs. Moreover, the benefit for PTHR-mediated inositol phosphate generation in the absence of vav2 required the ezrin binding domain of Na(+)/H(+)-exchanger regulatory factor 1. Our results show that a RhoA GEF can specifically interact with a GPCR and modulate its G protein signaling specificity.

  19. Chemokine receptor-specific antibodies in cancer immunotherapy: achievements and challenges. (United States)

    Vela, Maria; Aris, Mariana; Llorente, Mercedes; Garcia-Sanz, Jose A; Kremer, Leonor


    The 1990s brought a burst of information regarding the structure, expression pattern, and role in leukocyte migration and adhesion of chemokines and their receptors. At that time, the FDA approved the first therapeutic antibodies for cancer treatment. A few years later, it was reported that the chemokine receptors CXCR4 and CCR7 were involved on directing metastases to liver, lung, bone marrow, or lymph nodes, and the over-expression of CCR4, CCR6, and CCR9 by certain tumors. The possibility of inhibiting the interaction of chemokine receptors present on the surface of tumor cells with their ligands emerged as a new therapeutic approach. Therefore, many research groups and companies began to develop small molecule antagonists and specific antibodies, aiming to neutralize signaling from these receptors. Despite great expectations, so far, only one anti-chemokine receptor antibody has been approved for its clinical use, mogamulizumab, an anti-CCR4 antibody, granted in Japan to treat refractory adult T-cell leukemia and lymphoma. Here, we review the main achievements obtained with anti-chemokine receptor antibodies for cancer immunotherapy, including discovery and clinical studies, proposed mechanisms of action, and therapeutic applications.

  20. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway. (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei


    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  1. Context-specific Factors and Contraceptive Use: A Mixed Method ...

    African Journals Online (AJOL)


    Study among Women, Men and Health Providers in a Rural. Ghanaian ... Keywords: context-specific factors, contraceptive use, access on demand, future contraceptive use, rural Ghana ... préférences spécifiques au contexte de la femme, car l'utilisation secrète est très appréciée. ..... Signals unmet need for ... I don't want.

  2. Dual-specific Phosphatase-6 (Dusp6) and ERK Mediate AMPA Receptor-induced Oligodendrocyte Death* (United States)

    Domercq, Maria; Alberdi, Elena; Sánchez-Gómez, Maria Victoria; Ariz, Usue; Pérez-Samartín, Alberto; Matute, Carlos


    Oligodendrocytes, the myelinating cells of the CNS, are highly vulnerable to glutamate excitotoxicity, a mechanism involved in tissue damage in multiple sclerosis. Thus, understanding oligodendrocyte death at the molecular level is important to develop new therapeutic approaches to treat the disease. Here, using microarray analysis and quantitative PCR, we observed that dual-specific phosphatase-6 (Dusp6), an extracellular regulated kinase-specific phosphatase, is up-regulated in oligodendrocyte cultures as well as in optic nerves after AMPA receptor activation. In turn, Dusp6 is overexpressed in optic nerves from multiple sclerosis patients before the appearance of evident damage in this structure. We further analyzed the role of Dusp6 and ERK signaling in excitotoxic oligodendrocyte death and observed that AMPA receptor activation induces a rapid increase in ERK1/2 phosphorylation. Blocking Dusp6 expression, which enhances ERK1/2 phosphorylation, significantly diminished AMPA receptor-induced oligodendrocyte death. In contrast, MAPK/ERK pathway inhibition with UO126 significantly potentiates excitotoxic oligodendrocyte death and increases cytochrome c release, mitochondrial depolarization, and mitochondrial calcium overload produced by AMPA receptor stimulation. Upstream analysis demonstrated that MAPK/ERK signaling alters AMPA receptor properties. Indeed, Dusp6 overexpression as well as incubation with UO126 produced an increase in AMPA receptor-induced inward currents and cytosolic calcium overload. Together, these data suggest that levels of phosphorylated ERK, controlled by Dusp6 phosphatase, regulate glutamate receptor permeability and oligodendroglial excitotoxicity. Therefore, targeting Dusp6 may be a useful strategy to prevent oligodendrocyte death in multiple sclerosis and other diseases involving CNS white matter. PMID:21300799

  3. Degenerate specificity of PDZ domains from RhoA-specific nucleotide exchange factors PDZRhoGEF and LARG. (United States)

    Smietana, Katarzyna; Kasztura, Monika; Paduch, Marcin; Derewenda, Urszula; Derewenda, Zygmunt S; Otlewski, Jacek


    PDZ domains are ubiquitous protein-protein interaction modules which bind short, usually carboxyterminal fragments of receptors, other integral or membrane-associated proteins, and occasionally cytosolic proteins. Their role in organizing multiprotein complexes at the cellular membrane is crucial for many signaling pathways, but the rules defining their binding specificity are still poorly understood and do not readily explain the observed diversity of their known binding partners. Two homologous RhoA-specific, multidomain nucleotide exchange factors PDZRhoGEF and LARG contain PDZ domains which show a particularly broad recognition profile, as suggested by the identification of five diverse biological targets. To investigate the molecular roots of this phenomenon, we constructed a phage display library of random carboxyterminal hexapeptides. Peptide variants corresponding to the sequences identified in library selection were synthesized and their affinities for both PDZ domains were measured and compared with those of peptides derived from sequences of natural partners. Based on the analysis of the binding sequences identified for PDZRhoGEF, we propose a sequence for an 'optimal' binding partner. Our results support the hypothesis that PDZ-peptide interactions may be best understood when one considers the sum of entropic and dynamic effects for each peptide as a whole entity, rather than preferences for specific residues at a given position.

  4. Evaluation of methods for modeling transcription-factor sequence specificity (United States)

    Weirauch, Matthew T.; Cote, Atina; Norel, Raquel; Annala, Matti; Zhao, Yue; Riley, Todd R.; Saez-Rodriguez, Julio; Cokelaer, Thomas; Vedenko, Anastasia; Talukder, Shaheynoor; Bussemaker, Harmen J.; Morris, Quaid D.; Bulyk, Martha L.; Stolovitzky, Gustavo


    Genomic analyses often involve scanning for potential transcription-factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein’s binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For 9 TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro–derived motifs performed similarly to motifs derived from in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices learned by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10%). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences. PMID:23354101

  5. Directed evolution of estrogen receptor proteins with altered ligand-binding specificities. (United States)

    Islam, Kazi Mohammed Didarul; Dilcher, Meik; Thurow, Corinna; Vock, Carsten; Krimmelbein, Ilga Kristine; Tietze, Lutz Friedjan; Gonzalez, Victor; Zhao, Huimin; Gatz, Christiane


    Transcriptional activators that respond to ligands with no cellular targets are powerful tools that can confer regulated expression of a transgene in almost all biological systems. In this study, we altered the ligand-binding specificity of the human estrogen receptor alpha (hER alpha) so that it would recognize a non-steroidal synthetic compound with structural similarities to the phytoestrogen resveratrol. For this purpose, we performed iterative rounds of site-specific saturation mutagenesis of a fixed set of ligand-contacting residues and subsequent random mutagenesis of the entire ligand-binding domain. Selection of the receptor mutants and quantification of the interaction were carried out by exploiting a yeast two-hybrid system that reports the ligand-dependent interaction between hER alpha and steroid receptor coactivator-1 (SRC-1). The screen was performed with a synthetic ligand (CV3320) that promoted growth of the reporter yeast strain to half maximal levels at a concentration of 3.7 microM. The optimized receptor mutant (L384F/L387M/Y537S) showed a 67-fold increased activity to the synthetic ligand CV3320 (half maximal yeast growth at 0.055 microM) and a 10-fold decreased activity to 17beta-estradiol (E2; half maximal yeast growth at 4 nM). The novel receptor-ligand pair partially fulfills the requirements for a specific 'gene switch' as it responds to concentrations of the synthetic ligand which do not activate the wildtype receptor. Due to its residual responsiveness to E2 at concentrations (4 nM) that might occur in vivo, further improvements have to be performed to render the system applicable in organisms with endogenous E2 synthesis.

  6. Muscle-specific growth hormone receptor (GHR) overexpression induces hyperplasia but not hypertrophy in transgenic zebrafish. (United States)

    Figueiredo, Marcio Azevedo; Mareco, Edson A; Silva, Maeli Dal Pai; Marins, Luis Fernando


    Even though growth hormone (GH) transgenesis has demonstrated potential for improved growth of commercially important species, the hormone excess may result in undesired collateral effects. In this context, the aim of this work was to develop a new model of transgenic zebrafish (Danio rerio) characterized by a muscle-specific overexpression of the GH receptor (GHR) gene, evaluating the effect of transgenesis on growth, muscle structure and expression of growth-related genes. In on line of transgenic zebrafish overexpressing GHR in skeletal muscle, no significant difference in total weight in comparison to non-transgenics was observed. This can be explained by a significant reduction in expression of somatotrophic axis-related genes, in special insulin-like growth factor I (IGF-I). In the same sense, a significant increase in expression of the suppressors of cytokine signaling 1 and 3 (SOCS) was encountered in transgenics. Surprisingly, expression of genes coding for the main myogenic regulatory factors (MRFs) was higher in transgenic than non-transgenic zebrafish. Genes coding for muscle proteins did not follow the MRFs profile, showing a significant decrease in their expression. These results were corroborated by the histological analysis, where a hyperplasic muscle growth was observed in transgenics. In conclusion, our results demonstrated that GHR overexpression does not induce hypertrophic muscle growth in transgenic zebrafish probably because of SOCS impairment of the GHR/IGF-I pathway, culminating in IGF-I and muscle proteins decrease. Therefore, it seems that hypertrophy and hyperplasia follow two different routes for entire muscle growth, both of them triggered by GHR activation, but regulated by different mechanisms.

  7. Corynebacterium endocarditis species-specific risk factors and outcomes

    Directory of Open Access Journals (Sweden)

    Pak Janet B


    Full Text Available Abstract Background Corynebacterium species are recognized as uncommon agents of endocarditis, but little is known regarding species-specific risk factors and outcomes in Corynebacterium endocarditis. Methods Case report and Medline search of English language journals for cases of Corynebacterium endocarditis. Inclusion criteria required that cases be identified as endocarditis, having persistent Corynebacterium bacteremia, murmurs described by the authors as identifying the affected valve, or vegetations found by echocardiography or in surgical or autopsy specimens. Cases also required patient-specific information on risk factors and outcomes (age, gender, prior prosthetic valve, other prior nosocomial risk factors (infected valve, involvement of native versus prosthetic valve, need for valve replacement, and death to be included in the analysis. Publications of Corynebacterium endocarditis which reported aggregate data were excluded. Univariate analysis was conducted with chi-square and t-tests, as appropriate, with p = 0.05 considered significant. Results 129 cases of Corynebacterium endocarditis involving nine species met inclusion criteria. Corynebacterium endocarditis typically infects the left heart of adult males and nearly one third of patients have underlying valvular disease. One quarter of patients required valve replacement and one half of patients died. Toxigenic C. diphtheriae is associated with pediatric infections (p C. amycolatum has a predilection for women (p = 0.024, while C. pseudodiphtheriticum infections are most frequent in men (p = 0.023. C. striatum, C. jeikeium and C. hemolyticum are associated with nosocomial risk factors (p C. pseudodiphtheriticum is associated with a previous prosthetic valve replacement (p = 0.004. C. jeikeium infections are more likely to require valve replacement (p = 0.026. Infections involving toxigenic C. diphtheriae and C. pseudodiphtheriticum are associated with decreased survival (p = 0

  8. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. (United States)

    Bonardi, Vera; Tang, Saijun; Stallmann, Anna; Roberts, Melinda; Cherkis, Karen; Dangl, Jeffery L


    Plants and animals deploy intracellular immune receptors that perceive specific pathogen effector proteins and microbial products delivered into the host cell. We demonstrate that the ADR1 family of Arabidopsis nucleotide-binding leucine-rich repeat (NB-LRR) receptors regulates accumulation of the defense hormone salicylic acid during three different types of immune response: (i) ADRs are required as "helper NB-LRRs" to transduce signals downstream of specific NB-LRR receptor activation during effector-triggered immunity; (ii) ADRs are required for basal defense against virulent pathogens; and (iii) ADRs regulate microbial-associated molecular pattern-dependent salicylic acid accumulation induced by infection with a disarmed pathogen. Remarkably, these functions do not require an intact P-loop motif for at least one ADR1 family member. Our results suggest that some NB-LRR proteins can serve additional functions beyond canonical, P-loop-dependent activation by specific virulence effectors, extending analogies between intracellular innate immune receptor function from plants and animals.

  9. Neuropilin-1 mediates vascular permeability independently of vascular endothelial growth factor receptor-2 activation. (United States)

    Roth, Lise; Prahst, Claudia; Ruckdeschel, Tina; Savant, Soniya; Weström, Simone; Fantin, Alessandro; Riedel, Maria; Héroult, Mélanie; Ruhrberg, Christiana; Augustin, Hellmut G


    Neuropilin-1 (NRP1) regulates developmental and pathological angiogenesis, arteriogenesis, and vascular permeability, acting as a coreceptor for semaphorin 3A (Sema3A) and the 165-amino acid isoform of vascular endothelial growth factor A (VEGF-A165). NRP1 is also the receptor for the CendR peptides, a class of cell- and tissue-penetrating peptides with a specific R-x-x-R carboxyl-terminal motif. Because the cytoplasmic domain of NRP1 lacks catalytic activity, NRP1 is mainly thought to act through the recruitment and binding to other receptors. We report here that the NRP1 intracellular domain mediates vascular permeability. Stimulation with VEGF-A165, a ligand-blocking antibody, and a CendR peptide led to NRP1 accumulation at cell-cell contacts in endothelial cell monolayers, increased cellular permeability in vitro and vascular leakage in vivo. Biochemical analyses, VEGF receptor-2 (VEGFR-2) silencing, and the use of a specific VEGFR blocker established that the effects induced by the CendR peptide and the antibody were independent of VEGFR-2. Moreover, leakage assays in mice expressing a mutant NRP1 lacking the cytoplasmic domain revealed that this domain was required for NRP1-induced vascular permeability in vivo. Hence, these data define a vascular permeability pathway mediated by NRP1 but independent of VEGFR-2 activation.

  10. Germ cell nuclear factor directly represses the transcription of peroxisome proliferator-activated receptor delta gene

    Institute of Scientific and Technical Information of China (English)

    Chengqiang He; Naizheng Ding; Jie Kang


    Germ cell nuclear factor (GCNF) is a transcription factor that can repress gene transcription and plays an important role during spermatogenesis. Peroxisome proliferator-activated receptor delta (PPARδ) is a nuclear hormone receptor belonging to the steroid receptor superfamily.It can activate the expression of many genes,including those involved in lipid metabolism.In this report,we showed that GCNF specifically interacts with PPARδ promoter.Overexpression of GCNF in African green monkey SV40 transformed kidney fibroblast COS7 cells and mouse embryo fibroblast NIH 3T3 cells represses the activity of PPARδ promoter.The mutation of GCNF response element in PPARδ promoter relieves the repression in NIH 3T3 cells and mouse testis.Moreover,we showed that GCNF in nuclear extracts of mouse testis is able to bind to PPARδ promoter directly.We also found that GCNF and PPARδ mRNA were expressed with different patterns in mouse testis by in situ hybridization.These results suggested that GCNF might be a negative regulator of PPARδ gene expression through its direct interaction with PPARδ promoter in mouse testis.

  11. 'Specific' oligonucleotides often recognize more than one gene: the limits of in situ hybridization applied to GABA receptors. (United States)

    Mladinic, M; Didelon, F; Cherubini, E; Bradbury, A


    As exquisite probes for gene sequences, oligonucleotides are one of the most powerful tools of recombinant molecular biology. In studying the GABA receptor subunits in the neonatal hippocampus we have used oligonucleotide probes in in situ hybridization and cloning techniques. The oligonucleotides used and assumed to be specific for the target gene, actually recognized more than one gene, leading to surprising and contradictory results. In particular, we found that a GABA(A)-rho specific oligonucleotide recognized an abundant, previously unknown, transcription factor in both in situ and library screening, while oligos 'specific' for GABA(A) subunits were able to recognize 30 additional unrelated genes in library screening. This suggests that positive results obtained with oligonucleotides should be interpreted with caution unless confirmed by identical results with oligonucleotides from different parts of the same gene, or cDNA library screening excludes the presence of other hybridizing species.

  12. Asialoglycoprotein receptor (ASGPR): a peculiar target of liver-specific autoimmunity. (United States)

    Roggenbuck, Dirk; Mytilinaiou, Maria G; Lapin, Sergey V; Reinhold, Dirk; Conrad, Karsten


    Asialoglycoprotein receptor (ASGPR) autoantibodies have been considered specific markers of autoimmune hepatitis (AIH). The exact mechanisms responsible for the development of these autoantibodies and leading to autoimmunity to this peculiar liver receptor remain elusive. Furthermore, loss of T cell tolerance to ASGPR has been demonstrated in patients with AIH, but it is poorly understood whether such liver-specific T cell responses bear a pathogenic potential and/or participate in the precipitation of AIH. Newly developed enzyme-linked immunosorbent assays have led to the investigation of the sensitivity and specificity of anti-ASGPR antibodies for AIH. The present review provides an overview of the diagnostic and clinical relevance of anti-ASGPR antibodies. A thorough investigation of the autoreactivity against ASGPR may assist efforts to understand liver autoimmunity in susceptible individuals.

  13. Denatured G-protein coupled receptors as immunogens to generate highly specific antibodies. (United States)

    Talmont, Franck; Moulédous, Lionel; Boué, Jérôme; Mollereau, Catherine; Dietrich, Gilles


    G-protein coupled receptors (GPCRs) play a major role in a number of physiological and pathological processes. Thus, GPCRs have become the most frequent targets for development of new therapeutic drugs. In this context, the availability of highly specific antibodies may be decisive to obtain reliable findings on localization, function and medical relevance of GPCRs. However, the rapid and easy generation of highly selective anti-GPCR antibodies is still a challenge. Herein, we report that highly specific antibodies suitable for detection of GPCRs in native and unfolded forms can be elicited by immunizing animals against purified full length denatured recombinant GPCRs. Contrasting with the currently admitted postulate, our study shows that an active and well-folded GPCR is not required for the production of specific anti-GPCR antibodies. This new immunizing strategy validated with three different human GPCR (μ-opioid, κ-opioid, neuropeptide FF2 receptors) might be generalized to other members of the GPCR family.

  14. Immunocytochemical localization of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 of the human deciduous molar tooth germ development in the human fetus. (United States)

    Miwa, Yoko; Fujita, Toshiya; Sunohara, Masataka; Sato, Iwao


    Vascular endothelial growth factor (VEGF) is a key regulator of blood vessel endothelial development. We used immunohistochemical methods to demonstrate the localization of VEGF and its receptors, showing the specific expression pattern of VEGF and VEGF receptor in the human deciduous tooth from the cap to late bell stages in the human fetus. Immunoreactivity to VEGF and its receptor VEGF receptor-2 (VEGFR-2) was intensely positive in the inner enamel epithelium at the cap stage and ranged from negative to moderately positive in the bell stage. At the late bell stage, VEGF immunoreactivity was mainly positive but weak for VEGFR-2. The intensity of VEGF and VEGFR-2 in odontoblasts increases from cap stage to late bell stage. We postulate that the dissimilar expression of VEGF in inner enamel epithelium, ameloblast and odontoblast during each stage of human tooth development may affect tooth germ formation.

  15. The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking

    DEFF Research Database (Denmark)

    Francavilla, Chiara; Cattaneo, Paola; Berezin, Vladimir


    different from that elicited by FGF-2. In contrast to FGF-induced degradation of endocytic FGFR1, NCAM promotes the stabilization of the receptor, which is recycled to the cell surface in a Rab11- and Src-dependent manner. In turn, FGFR1 recycling is required for NCAM-induced sustained activation of various...... effectors. Furthermore, NCAM, but not FGF-2, promotes cell migration, and this response depends on FGFR1 recycling and sustained Src activation. Our results implicate NCAM as a nonconventional ligand for FGFR1 that exerts a peculiar control on the intracellular trafficking of the receptor, resulting...... in a specific cellular response. Besides introducing a further level of complexity in the regulation of FGFR1 function, our findings highlight the link of FGFR recycling with sustained signaling and cell migration and the critical role of these events in dictating the cellular response evoked by receptor...

  16. A urokinase receptor-associated protein with specific collagen binding properties

    DEFF Research Database (Denmark)

    Behrendt, N; Jensen, Ole Nørregaard; Engelholm, L H


    membrane-bound lectin with hitherto unknown function. The human cDNA was cloned and sequenced. The protein, designated uPARAP, is a member of the macrophage mannose receptor protein family and contains a putative collagen-binding (fibronectin type II) domain in addition to 8 C-type carbohydrate recognition......The plasminogen activation cascade system, directed by urokinase and the urokinase receptor, plays a key role in extracellular proteolysis during tissue remodeling. To identify molecular interaction partners of these trigger proteins on the cell, we combined covalent protein cross-linking with mass...... spectrometry based methods for peptide mapping and primary structure analysis of electrophoretically isolated protein conjugates. A specific tri-molecular complex was observed upon addition of pro-urokinase to human U937 cells. This complex included the urokinase receptor, pro-urokinase, and an unknown, high...

  17. GABAB receptor trafficking and interacting proteins: targets for the development of highly specific therapeutic strategies to treat neurological disorders? (United States)

    Benke, Dietmar


    GABAB receptors mediate slow inhibitory neurotransmission throughout the central nervous system thereby controlling the excitability of neurons. They have been implicated in numerous neurological disorders making them an attractive drug target. However, due to considerable side effects, the agonist baclofen is so far the only drug on the market targeting GABAB receptors, primarily for the treatment of spasticity. Because GABAB receptors are involved in a variety of brain functions it is rather unlikely to avoid unwanted effects with systemically administered drugs directly addressing ligand binding sites of the receptor. To minimize side effects, it would be desirable to target only those receptors involved in a given pathological state. This commentary discusses the idea that restoring impaired GABAB receptor function in diseased neurons by interfering with receptor-protein interactions may be an approach to specifically target only those receptors involved in the pathological state. Two recently discovered mechanisms that down-regulate the level of functional GABAB receptors most likely contribute to cerebral ischemia and neuropathic pain, respectively. In both mechanisms, small interfering peptides disrupting protein-protein interactions may offer a highly specific means to restore normal receptor function selectively at the site of malfunction. If restored functional GABAB receptor expression in these diseases has beneficial effects, this may serve as a starting point for the development of a highly specific therapeutic interventions. Such an approach is expected to minimize side effects because it promises to leave those GABAB receptors unaffected which are not involved in the dysfunction.

  18. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors. (United States)

    Mohammadiarani, Hossein; Vashisth, Harish


    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane-solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane-solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor.

  19. Epidermal growth factor-receptor interaction in rat pheochromocytoma (PC12) and human epidermoid A431 cells: Biochemical and ultrastructural studies

    NARCIS (Netherlands)

    Laat, S.W. de; Boonstra, J.; Mummery, C.L.; Defize, L.; Leunissen, J.; Verkleij, A.J.


    Pheochromocytoma cells (clone PC12) have specific plasmamembrane receptors for both epidermal growth factor (EGF) and nerve growth factor (NGF). These growth factors have however, opposite biological effects in PC12 cells; EGF acts mitogenically, while NGF induces differentiation and causes arrest o

  20. Agonist-Specific Recruitment of Arrestin Isoforms Differentially Modify Delta Opioid Receptor Function. (United States)

    Pradhan, Amynah A; Perroy, Julie; Walwyn, Wendy M; Smith, Monique L; Vicente-Sanchez, Ana; Segura, Laura; Bana, Alia; Kieffer, Brigitte L; Evans, Christopher J


    Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance. In contrast, the low-internalizing delta agonists (ARM390, JNJ20788560) preferentially recruited arrestin 3 with unaltered behavioral effects in arrestin 2 KOs. Surprisingly, arrestin 3 KO revealed an acute tolerance to these low-internalizing agonists, an effect never observed in wild-type animals. Furthermore, we examined delta opioid receptor-Ca(2+)channel coupling in dorsal root ganglia desensitized by ARM390 and the rate of resensitization was correspondingly decreased in arrestin 3 KOs. Live-cell imaging in HEK293 cells revealed that delta opioid receptors are in pre-engaged complexes with arrestin 3 at the cell membrane and that ARM390 strengthens this membrane interaction. The disruption of these complexes in arrestin 3 KOs likely accounts for the altered responses to low-internalizing agonists. Together, our results show agonist-selective recruitment of arrestin isoforms and reveal a novel endogenous role of arrestin 3 as a facilitator of resensitization and an inhibitor of tolerance mechanisms. Agonists that bind to the same receptor can produce highly distinct signaling events and arrestins are a major mediator of this ligand bias. Here, we demonstrate that delta opioid receptor agonists differentially recruit arrestin isoforms. We found that the high-internalizing agonist SNC80 preferentially recruits arrestin 2 and knock-out (KO) of this protein results in increased efficacy of SNC80. In contrast, low-internalizing agonists (ARM390 and JNJ20788560) preferentially recruit

  1. Brain angiotensin AT1 receptors as specific regulators of cardiovascular reactivity to acute psychoemotional stress. (United States)

    Mayorov, Dmitry N


    1. Cardiovascular reactivity, an abrupt rise in blood pressure (BP) and heart rate in response to psychoemotional stress, is a risk factor for heart disease. Pharmacological and molecular genetic studies suggest that brain angiotensin (Ang) II and AT(1) receptors are required for the normal expression of sympathetic cardiovascular responses to various psychological stressors. Moreover, overactivity of the brain AngII system may contribute to enhanced cardiovascular reactivity in hypertension. 2. Conversely, brain AT(1) receptors appear to be less important for the regulation of sympathetic cardiovascular responses to a range of stressors involving an immediate physiological threat (physical stressors) in animal models. 3. Apart from threatening events, appetitive stimuli can induce a distinct, central nervous system-mediated rise in BP. However, evidence indicates that brain AT(1) receptors are not essential for the regulation of cardiovascular arousal associated with positively motivated behaviour, such as anticipation and the consumption of palatable food. The role of central AT(1) receptors in regulating cardiovascular activation elicited by other types of appetitive stimuli remains to be determined. 4. Emerging evidence also indicates that brain AT(1) receptors play a limited role in the regulation of cardiovascular responses to non-emotional natural daily activities, sleep and exercise. 5. Collectively, these findings suggest that, with respect to cardiovascular arousal, central AT(1) receptors may be involved primarily in the regulation of the defence response. Therefore, these receptors could be a potential therapeutic target for selective attenuation of BP hyperreactivity to aversive stressors, without altering physiologically important cardiovascular adjustments to normal daily activities, sleep and exercise.

  2. Macrophage mannose receptor-specific gene delivery vehicle for macrophage engineering. (United States)

    Ruan, Gui-Xin; Chen, Yu-Zhe; Yao, Xing-Lei; Du, Anariwa; Tang, Gu-Ping; Shen, You-Qing; Tabata, Yasuhiko; Gao, Jian-Qing


    Macrophages are the most plastic cells in the hematopoietic system and they exhibit great functional diversity. They have been extensively applied in anti-inflammatory, anti-fibrotic and anti-cancer therapies. However, the application of macrophages is limited by the efficiency of their engineering. The macrophage mannose receptor (MMR, CD206), a C-type lectin receptor, is ubiquitously expressed on macrophages and has a high affinity for mannose oligosaccharides. In the present study, we developed a novel non-viral vehicle with specific affinity for MMR. Mannan was cationized with spermine at a grafted ratio of ∼12% to deliver DNA and was characterized as a stable system for delivery. This spermine-mannan (SM)-based delivery system was evaluated as a biocompatible vehicle with superior transfection efficiency on murine macrophages, up to 28.5-fold higher than spermine-pullulan, 11.5-fold higher than polyethylenimine and 3.0-fold higher than Lipofectamine™ 2000. We confirmed that the SM-based delivery system for macrophages transfection was MMR-specific and we described the intracellular transport of the delivery system. To our knowledge, this is the first study using SM to demonstrate a mannose receptor-specific gene delivery system, thereby highlighting the potential of a novel specific non-viral delivery vehicle for macrophage engineering.

  3. Specific amplification of iron receptor genes in Xylella fastidiosa strains from different hosts

    Directory of Open Access Journals (Sweden)

    Flávia Teresa Hansen Pacheco


    Full Text Available Bacterial production of siderophores may involve specific genes related to nonribosomal peptide and polyketide biosynthesis, which have not been fully identified in the genome of Xylella fastidiosa strain 9a5c. However, a search for siderophore-related genes in strain 9a5c indicated five membrane receptors, including siderophore, ferrichrome-iron and hemin receptors. All these biomolecules are thought to be associated with iron transport and utilization. Eighty isolates obtained from citrus orchards containing trees that developed citrus variegated chlorosis (CVC were screened for siderophore production. The results demonstrated that only 10 of the isolates did not produce siderophores. Additional strains obtained from coffee, almond, mulberry, elm, ragweed, periwinkle and grape also infected by X. fastidiosa were also shown by the chromeazurol bioassay to produce siderophores. In order to correlate siderophore production with the presence of siderophore-related genes, a polymerase chain reaction (PCR was developed using specific primers for the catechol-type ferric enterobactin receptor (pfeA and the hydroxamate-type ferrisiderophore receptor (fiuA genes of strain 9a5c. The PCR results confirmed our hypothesis by demonstrating that amplification products were detected in all strains except for those isolates that did not produce siderophores.

  4. Identification of Transcription Factors for Lineage-Specific ESC Differentiation (United States)

    Yamamizu, Kohei; Piao, Yulan; Sharov, Alexei A.; Zsiros, Veronika; Yu, Hong; Nakazawa, Kazu; Schlessinger, David; Ko, Minoru S.H.


    Summary A network of transcription factors (TFs) determines cell identity, but identity can be altered by overexpressing a combination of TFs. However, choosing and verifying combinations of TFs for specific cell differentiation have been daunting due to the large number of possible combinations of ∼2,000 TFs. Here, we report the identification of individual TFs for lineage-specific cell differentiation based on the correlation matrix of global gene expression profiles. The overexpression of identified TFs—Myod1, Mef2c, Esx1, Foxa1, Hnf4a, Gata2, Gata3, Myc, Elf5, Irf2, Elf1, Sfpi1, Ets1, Smad7, Nr2f1, Sox11, Dmrt1, Sox9, Foxg1, Sox2, or Ascl1—can direct efficient, specific, and rapid differentiation into myocytes, hepatocytes, blood cells, and neurons. Furthermore, transfection of synthetic mRNAs of TFs generates their appropriate target cells. These results demonstrate both the utility of this approach to identify potent TFs for cell differentiation, and the unanticipated capacity of single TFs directly guides differentiation to specific lineage fates. PMID:24371809

  5. Experimental strategies for studying transcription factor-DNA binding specificities. (United States)

    Geertz, Marcel; Maerkl, Sebastian J


    Specific binding of transcription factors (TFs) determines in a large part the connectivity of gene regulatory networks as well as the quantitative level of gene expression. A multiplicity of both experimental and computational methods is currently used to discover and characterize the underlying TF-DNA interactions. Experimental methods can be further subdivided into in vitro- and in vivo-based approaches, each accenting different aspects of TF-binding events. In this review we summarize the flexibility and performance of a selection of both types of experimental methods. In conclusion, we argue that a serial combination of methods with different throughput and data type constitutes an optimal experimental strategy.


    Directory of Open Access Journals (Sweden)

    Lacatus Viorel-Dorin


    Full Text Available The purpose of this paper is to analyze the existing theories for the capital structure of a corporation and to determine the factors that influence the financing decisions of Romanian corporations. The gearing ratios vary a lot among Romanian corporations pointing out the fact that the internal specific factors are the ones with a greater impact upon their capital structure, and not the external factors. Our empiric research evaluates the determining factors for the debt ratio (total debt/total assets of some Romanian corporations, focusing on its explanatory variables by including them within simple and multiple econometric models. The panel data indicators computed for the companies in the Cluj area listed on the Bucharest Stock Exchange were evaluated with the OLS and FEM techniques.The results have been interpreted, pointing out that company size and asset turnover seem to have a positive influence upon the debt ratio of selected companies, while profitability and liquidity seem to influence the debt ratio of selected companies negatively.

  7. Fibroblast growth factor receptor 3 protein is overexpressed in oral and oropharyngeal squamous cell carcinoma

    NARCIS (Netherlands)

    Koole, Koos; van Kempen, Pauline M W; Swartz, Justin E; Peeters, Ton; van Diest, Paul J; Koole, Ron; van Es, Robert J. J.; Willems, Stefan M

    Fibroblast growth factor receptor 3 (FGFR3) is a member of the fibroblast growth factor receptor tyrosine kinase family. It has been identified as a promising therapeutic target in multiple types of cancer. We have investigated FGFR3 protein expression and FGFR3 gene copy-numbers in a single

  8. First Principles Hierarchical Selection and Testing of Anion Receptors for High Specific Energy Lithium-Fluoride Batteries (United States)


    BF3 (in the form of the lithiated salt LiBF4 ) anion receptor. These cells showed comparable specific capacity to the tris pentafluorophenyl borane...cathode specific capacity vs. voltage for BF3 anion receptor (in the lithiated salt form LiBF4 ). From these data, and from previous and/or

  9. Fibroblast Growth Factor Receptor (FGFR): A New Target for Non-small Cell Lung Cancer Therapy. (United States)

    Biello, Federica; Burrafato, Giovanni; Rijavec, Erika; Genova, Carlo; Barletta, Giulia; Truini, Anna; Coco, Simona; Bello, Maria Giovanna Dal; Alama, Angela; Boccardo, Francesco; Grossi, Francesco


    Lung cancer is still the leading cause of cancer related death worldwide. Fibroblast growth factor receptor (FGFR) is a tirosine-kinase receptor that is seen to be amplified or mutated in non-small cell lung cancer (NSCLC) and it plays a crucial role in tumour development and maintenance. The authors analyzed the state of the art of FGFR by reviewing the current literature. Fibroblast growth factor (FGF)-FGFR pathway and their aberrations are described, with the evaluation of their possible prognostic role in NSCLC and in particular in squamous cell carcinomas, in which FGFR is more often amplified. New therapeutic agents targeting FGFR signaling have been developed and are now in clinical evaluation. Dysregulation of FGF signaling in tumour cells is related to FGFR gene amplification or mutation, although it is still uncertain which of these aberrations represents a real predictor of response to specific inhibitors. However, recent evidence has questioned whether FGFR is a real target in squamous cell histology. The effectiveness of FGFR inhibitors is also still unclear since there are no clinical data on selected patients. Moreover, the management of specific side effects related to inhibition of the physiological role of FGF should be more thorough.

  10. Production of neutralizing monoclonal antibody against human vascular endothelial growth factor receptor

    Institute of Scientific and Technical Information of China (English)

    Rong LI; Dong-sheng XIONG; Xiao-feng SHAO; Jia LIU; Yuan-fu XU; Yuan-sheng XU; Han-zhi LIU; Zhen-ping ZHU; Chun-zheng YANG


    AIM: To prepare neutralizing monoclonal antibody (mAb) against extracellular immunoglobulin (Ig)-like domainⅢ of vascular endothelial growth factor receptor KDR and study its biological activity. METHODS: Soluble KDR Ig domain Ⅲ (KDR-Ⅲ) fusion protein was expressed in E Coli and purified from the bacterial periplasmic extracts via an affinity chromatography. Monoclonal antibodies against KDR-Ⅲ were prepared by hybridoma technique. ELISA and FACS analysis were used to identify its specificity. Immunoprecipitation and [3H]-thymidine incorporation assay were also used to detect the activity of anti-KDR mAb blocking the phosphorylation of KDR tyrosine kinase receptor and the influence on vascular endothelial growth factor-induced mitogenesis of human endothelial ceils.RESULTS: A monoclonal antibody, Ycom1D3 (IgG1), was generated from a mouse immunized with the recombinant KDR-Ⅲ protein. Ycom1D3 bound specifically to both the soluble KDR-Ⅲ and the cell-surface expressed KDR. Ycom1D3 effectively blocked VEGF/KDR interaction and inhibited VEGF-stimulated KDR activation in human endothelial cells. Furthermore, the antibody efficiently neutralized VEGF-induced mitogenesis of human endothelial cells. CONCLUSION: Our results suggest that the anti-KDR mAb, Ycom1D3, has potential applications in the treatment of cancer and other diseases where pathological angiogenesis is involved.

  11. Sex, the brain and hypertension: brain oestrogen receptors and high blood pressure risk factors. (United States)

    Hay, Meredith


    Hypertension is a major contributor to worldwide morbidity and mortality rates related to cardiovascular disease. There are important sex differences in the onset and rate of hypertension in humans. Compared with age-matched men, premenopausal women are less likely to develop hypertension. However, after age 60, the incidence of hypertension increases in women and even surpasses that seen in older men. It is thought that changes in levels of circulating ovarian hormones as women age may be involved in the increase in hypertension in older women. One of the key mechanisms involved in the development of hypertension in both men and women is an increase in sympathetic nerve activity (SNA). Brain regions important for the regulation of SNA, such as the subfornical organ, the paraventricular nucleus and the rostral ventral lateral medulla, also express specific subtypes of oestrogen receptors. Each of these brain regions has also been implicated in mechanisms underlying risk factors for hypertension such as obesity, stress and inflammation. The present review brings together evidence that links actions of oestrogen at these receptors to modulate some of the common brain mechanisms involved in the ability of hypertensive risk factors to increase SNA and blood pressure. Understanding the mechanisms by which oestrogen acts at key sites in the brain for the regulation of SNA is important for the development of novel, sex-specific therapies for treating hypertension. © 2016 Authors; published by Portland Press Limited.

  12. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors

    DEFF Research Database (Denmark)

    Pandey, A; Podtelejnikov, A V; Blagoev, B;


    Oligomerization of receptor protein tyrosine kinases such as the epidermal growth factor receptor (EGFR) by their cognate ligands leads to activation of the receptor. Transphosphorylation of the receptor subunits is followed by the recruitment of signaling molecules containing src homology 2 (SH2...

  13. Expression of epidermal growth factor receptors in human brain tumors. (United States)

    Libermann, T A; Razon, N; Bartal, A D; Yarden, Y; Schlessinger, J; Soreq, H


    The expression of receptors for epidermal growth factor (EGF-R) was determined in 29 samples of brain tumors from 22 patients. Primary gliogenous tumors, of various degrees of cancer, five meningiomas, and two neuroblastomas were examined. Tissue samples were frozen in liquid nitrogen immediately after the operation and stored at -70 degrees until use. Cerebral tissue samples from 11 patients who died from diseases not related to the central nervous system served as controls. Immunoprecipitation of functional EGF-R-kinase complexes revealed high levels of EGF-R in all of the brain tumors of nonneuronal origin that were examined. The level of EGF-R varied between tumors from different patients and also between specimens prelevated from different areas of the same tumor. In contrast, the levels of EGF-R from control specimens were invariably low. The biochemical properties of EGF-R in brain tumor specimens were found to be indistinguishable from those of the well-characterized EGF-R from the A-431 cell line, derived from human epidermoid carcinomas. Human brain EGF-R displays a molecular weight of 170,000 by polyacrylamide-sodium dodecyl sulfate gel electrophoresis. It is phosphorylated mainly in tyrosine residues and shows a 2-dimensional phosphopeptide map similar to that obtained with the phosphorylated EGF-R from membranes of A-431 cells. Our observations suggest that induction of EGF-R expression may accompany the malignant transformation of human brain cells of nonneuronal origin.

  14. Indoxyl Sulfate Downregulates Mas Receptor via Aryl Hydrocarbon Receptor/Nuclear Factor-kappa B, and Induces Cell Proliferation and Tissue Factor Expression in Vascular Smooth Muscle Cells. (United States)

    Ng, Hwee-Yeong; Bolati, Wulaer; Lee, Chien-Te; Chien, Yu-Shu; Yisireyili, Maimaiti; Saito, Shinichi; Pei, Sung-Nan; Nishijima, Fuyuhiko; Niwa, Toshimitsu


    Angiotensin converting enzyme-related carboxypeptidase 2/angiotensin (Ang)-(1-7)/Mas receptor axis is protective in the development of chronic kidney disease and cardiovascular disease. This study is aimed at investigating whether indoxyl sulfate (IS) affects Mas receptor expression, cell proliferation and tissue factor expression in vascular smooth muscle cells, and if Ang-(1-7), an activator of Mas receptor, counteracts the IS-induced effects. IS was administered to normotensive and hypertensive rats. Human aortic smooth muscle cells (HASMCs) were cultured with IS. IS reduced the expression of Mas receptor in the aorta of normotensive and hypertensive rats. IS downregulated the Mas receptor expression in a time- and dose-dependent manner in HASMCs. Knockdown of aryl hydrocarbon receptor (AhR) and nuclear factor-kappa B (NF-x03BA;B) inhibited IS-induced downregulation of Mas receptor. Further, IS stimulated cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) attenuated IS-induced cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) suppressed phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and NF-x03BA;B in HASMCs. IS downregulated the expression of Mas receptor via AhR/NF-x03BA;B, and induced cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) inhibited IS-induced cell proliferation and tissue factor expression by suppressing the phosphorylation of ERK1/2 and NF-x03BA;B p65. © 2016 S. Karger AG, Basel.

  15. Featured Article: Nuclear export of opioid growth factor receptor is CRM1 dependent. (United States)

    Kren, Nancy P; Zagon, Ian S; McLaughlin, Patricia J


    Opioid growth factor receptor (OGFr) facilitates growth inhibition in the presence of its specific ligand opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin. The function of the OGF-OGFr axis requires the receptor to translocate to the nucleus. However, the mechanism of nuclear export of OGFr is unknown. In this study, endogenous OGFr, as well as exogenously expressed OGFr-EGFP, demonstrated significant nuclear accumulation in response to leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export, suggesting that OGFr is exported in a CRM1-dependent manner. One consensus sequence for a nuclear export signal (NES) was identified. Mutation of the associated leucines, L217 L220 L223 and L225, to alanine resulted in decreased nuclear accumulation. NES-EGFP responded to LMB, indicating that this sequence is capable of functioning as an export signal in isolation. To determine why the sequence functions differently in isolation than as a full length protein, the localization of subNES was evaluated in the presence and absence of MG132, a potent inhibitor of proteosomal degradation. MG132 had no effect of subNES localization. The role of tandem repeats located at the C-terminus of OGFr was examined for their role in nuclear trafficking. Six of seven tandem repeats were removed to form deltaTR. DeltaTR localized exclusively to the nucleus indicating that the tandem repeats may contribute to the localization of the receptor. Similar to the loss of cellular proliferation activity (i.e. inhibition) recorded with subNES, deltaTR also demonstrated a significant loss of inhibitory activity indicating that the repeats may be integral to receptor function. These experiments reveal that OGFr contains one functional NES, L217 L220 L223 and L225 and can be exported from the nucleus in a CRM1-dependent manner.

  16. Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis. (United States)

    Benito, Cristina; Romero, Juan Pablo; Tolón, Rosa María; Clemente, Diego; Docagne, Fabián; Hillard, Cecilia J; Guaza, Camen; Romero, Julián


    Increasing evidence supports the idea of a beneficial effect of cannabinoid compounds for the treatment of multiple sclerosis (MS). However, most experimental data come from animal models of MS. We investigated the status of cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase (FAAH) enzyme in brain tissue samples obtained from MS patients. Areas of demyelination were identified and classified as active, chronic, and inactive plaques. CB1 and CB2 receptors and FAAH densities and cellular sites of expression were examined using immunohistochemistry and immunofluorescence. In MS samples, cannabinoid CB1 receptors were expressed by cortical neurons, oligodendrocytes, and also oligodendrocyte precursor cells, demonstrated using double immunofluorescence with antibodies against the CB1 receptor with antibodies against type 2 microtubule-associated protein, myelin basic protein, and the platelet-derived growth factor receptor-alpha, respectively. CB1 receptors were also present in macrophages and infiltrated T-lymphocytes. Conversely, CB2 receptors were present in T-lymphocytes, astrocytes, and perivascular and reactive microglia (major histocompatibility complex class-II positive) in MS plaques. Specifically, CB2-positive microglial cells were evenly distributed within active plaques but were located in the periphery of chronic active plaques. FAAH expression was restricted to neurons and hypertrophic astrocytes. As seen for other neuroinflammatory conditions, selective glial expression of cannabinoid CB1 and CB2 receptors and FAAH enzyme is induced in MS, thus supporting a role for the endocannabinoid system in the pathogenesis and/or evolution of this disease.

  17. Binding characteristics of brain-derived neurotrophic factor to its receptors on neurons from the chick embryo

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Tebar, A.; Barde, Y.A.


    Brain-derived neurotrophic factor (BDNF), a protein known to support the survival of embryonic sensory neurons and retinal ganglion cells, was derivatized with 125I-Bolton-Hunter reagent and obtained in a biologically active, radioactive form (125I-BDNF). Using dorsal root ganglion neurons from chick embryos at 9 d of development, the basic physicochemical parameters of the binding of 125I-BDNF with its receptors were established. Two different classes of receptors were found, with dissociation constants of 1.7 x 10(-11) M (high-affinity receptors) and 1.3 x 10(-9) M (low-affinity receptors). Unlabeled BDNF competed with 125I-BDNF for binding to the high-affinity receptors with an inhibition constant essentially identical to the dissociation constant of the labeled protein: 1.2 x 10(-11) M. The association and dissociation rates from both types of receptors were also determined, and the dissociation constants calculated from these kinetic experiments were found to correspond to the results obtained from steady-state binding. The number of high-affinity receptors (a few hundred per cell soma) was 15 times lower than that of low-affinity receptors. No high-affinity receptors were found on sympathetic neurons, known not to respond to BDNF, although specific binding of 125I-BDNF to these cells was detected at a high concentration of the radioligand. These results are discussed and compared with those obtained with nerve growth factor on the same neuronal populations.

  18. Tumor necrosis factor receptor-associated protein 1 improves hypoxia-impaired energy production in cardiomyocytes through increasing activity of cytochrome c oxidase subunit II. (United States)

    Xiang, Fei; Ma, Si-Yuan; Zhang, Dong-Xia; Zhang, Qiong; Huang, Yue-Sheng


    Tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes against hypoxia, but the underlying mechanisms are not completely understood. In the present study, we used gain- and loss-of-function approaches to explore the effects of tumor necrosis factor receptor-associated protein 1 and cytochrome c oxidase subunit II on energy production in hypoxic cardiomyocytes. Hypoxia repressed ATP production in cultured cardiomyocytes, whereas overexpression of tumor necrosis factor receptor-associated protein 1 significantly improved ATP production. Conversely, knockdown of tumor necrosis factor receptor-associated protein 1 facilitated the hypoxia-induced decrease in ATP synthesis. Further investigation revealed that tumor necrosis factor receptor-associated protein 1 induced the expression and activity of cytochrome c oxidase subunit II, a component of cytochrome c oxidase that is important in mitochondrial respiratory chain function. Moreover, lentiviral-mediated overexpression of cytochrome c oxidase subunit II antagonized the decrease in ATP synthesis caused by knockdown of tumor necrosis factor receptor-associated protein 1, whereas knockdown of cytochrome c oxidase subunit II attenuated the increase in ATP synthesis caused by overexpression of tumor necrosis factor receptor-associated protein 1. In addition, inhibition of cytochrome c oxidase subunit II by a specific inhibitor sodium azide suppressed the ATP sy nthesis induced by overexpressed tumor necrosis factor receptor-associated protein 1. Hence, tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes from hypoxia at least partly via potentiation of energy generation, and cytochrome c oxidase subunit II is one of the downstream effectors that mediates the tumor necrosis factor receptor-associated protein 1-mediated energy generation program.

  19. The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse. (United States)

    Baixauli, Francesc; Martín-Cófreces, Noa B; Morlino, Giulia; Carrasco, Yolanda R; Calabia-Linares, Carmen; Veiga, Esteban; Serrador, Juan M; Sánchez-Madrid, Francisco


    During antigen-specific T-cell activation, mitochondria mobilize towards the vicinity of the immune synapse. We show here that the mitochondrial fission factor dynamin-related protein 1 (Drp1) docks at mitochondria, regulating their positioning and activity near the actin-rich ring of the peripheral supramolecular activation cluster (pSMAC) of the immune synapse. Mitochondrial redistribution in response to T-cell receptor engagement was abolished by Drp1 silencing, expression of the phosphomimetic mutant Drp1S637D and the Drp1-specific inhibitor mdivi-1. Moreover, Drp1 knockdown enhanced mitochondrial depolarization and T-cell receptor signal strength, but decreased myosin phosphorylation, ATP production and T-cell receptor assembly at the central supramolecular activation cluster (cSMAC). Our results indicate that Drp1-dependent mitochondrial positioning and activity controls T-cell activation by fuelling central supramolecular activation cluster assembly at the immune synapse.

  20. Validating Antibodies to the Cannabinoid CB2 Receptor: Antibody Sensitivity Is Not Evidence of Antibody Specificity. (United States)

    Marchalant, Yannick; Brownjohn, Philip W; Bonnet, Amandine; Kleffmann, Torsten; Ashton, John C


    Antibody-based methods for the detection and quantification of membrane integral proteins, in particular, the G protein-coupled receptors (GPCRs), have been plagued with issues of primary antibody specificity. In this report, we investigate one of the most commonly utilized commercial antibodies for the cannabinoid CB2 receptor, a GPCR, using immunoblotting in combination with mass spectrometry. In this way, we were able to develop powerful negative and novel positive controls. By doing this, we are able to demonstrate that it is possible for an antibody to be sensitive for a protein of interest-in this case CB2-but still cross-react with other proteins and therefore lack specificity. Specifically, we were able to use western blotting combined with mass spectrometry to unequivocally identify CB2 protein in over-expressing cell lines. This shows that a common practice of validating antibodies with positive controls only is insufficient to ensure antibody reliability. In addition, our work is the first to develop a label-free method of protein detection using mass spectrometry that, with further refinement, could provide unequivocal identification of CB2 receptor protein in native tissues.

  1. Rifaximin is a gut-specific human pregnane X receptor activator. (United States)

    Ma, Xiaochao; Shah, Yatrik M; Guo, Grace L; Wang, Ting; Krausz, Kristopher W; Idle, Jeffrey R; Gonzalez, Frank J


    Rifaximin, a rifamycin analog approved for the treatment of travelers' diarrhea, is also beneficial in the treatment of multiple chronic gastrointestinal disorders. However, the mechanisms contributing to the effects of rifaximin on chronic gastrointestinal disorders are not fully understood. In the current study, rifaximin was investigated for its role in activation of the pregnane X receptor (PXR), a nuclear receptor that regulates genes involved in xenobiotic and limited endobiotic deposition and detoxication. PXR-humanized (hPXR), Pxr-null, and wild-type mice were treated orally with rifaximin, and rifampicin, a well characterized human PXR ligand. Rifaximin was highly concentrated in the intestinal tract compared with rifampicin. Rifaximin treatment resulted in significant induction of PXR target genes in the intestine of hPXR mice, but not in wild-type and Pxr-null mice. However, rifaximin treatment demonstrated no significant effect on hepatic PXR target genes in wild-type, Pxr-null, and hPXR mice. Consistent with the in vivo data, cell-based reporter gene assay revealed rifaximin-mediated activation of human PXR, but not the other xenobiotic nuclear receptors constitutive androstane receptor, peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma, and farnesoid X receptor. Pretreatment with rifaximin did not affect the pharmacokinetics of the CYP3A substrate midazolam, but it increased the C(max) and decreased T(max) of 1'-hydroxymidazolam. Collectively, the current study identified rifaximin as a gut-specific human PXR ligand, and it provided further evidence for the utility of hPXR mice as a critical tool for the study of human PXR activators. Further human studies are suggested to assess the potential role of rifaximin-mediated gut PXR activation in therapeutics of chronic gastrointestinal disorders.

  2. Altered adrenergic response and specificity of the receptors in rat ascites hepatoma AH130. (United States)

    Sanae, F; Miyamoto, K; Koshiura, R


    Adenylate cyclase activation through adrenergic receptors in rat ascites hepatoma (AH) 130 cells in response to adrenergic drugs was studied, and receptor binding and displacement were compared with those of normal rat hepatocytes. Epinephrine (Epi) and norepinephrine (NE) activated AH130 adenylate cyclase about half as much as isoproterenol (IPN) but equaled IPN after treatment with the alpha-antagonist phentolamine or islet-activating protein (IAP). The three catecholamines in hepatocytes were similar regardless of phentolamine or IAP. These catecholamines activated adenylate cyclase in order of IPN greater than NE greater than Epi in AH130 cells but IPN greater than Epi greater than NE in hepatocytes. We then used the alpha 1-selective ligand [3H]prazosin, the alpha 2-selective ligand [3H]clonidine, and the beta-ligand [125I]iodocyanopindolol [( 125I]ICYP), and found that AH130 cells had few prazosin-binding sites, about eight times as many clonidine-binding sites with high affinity, and many more ICYP-binding sites than in hepatocytes. The dissociation constant (Ki) of the beta 1-selective drug metoprolol by Hofstee plots for AH130 cells was lower than that for hepatocytes. The inhibition of specific ICYP binding by the beta 2-selective agonist salbutamol for AH130 cells gave only one Ki value which was much higher than both high and low Ki values of the drug for hepatocytes. These findings indicate that the alpha- and beta-adrenergic receptors in hepatocytes are predominantly alpha 1-type and beta 2-type, but that those in AH130 cells are predominantly alpha 2-type and beta 1-type, and the low adrenergic response of AH130 cells is due to the dominant appearance of alpha 2-adrenergic receptors, linked with the inhibitory guanine-nucleotide binding regulatory protein, instead of alpha 1-adrenergic receptors, and beta 1-adrenergic receptors with low affinity for the hormone.

  3. Genomic organization and chromosomal localization of the human and mouse genes encoding the alpha receptor component for ciliary neurotrophic factor. (United States)

    Valenzuela, D M; Rojas, E; Le Beau, M M; Espinosa, R; Brannan, C I; McClain, J; Masiakowski, P; Ip, N Y; Copeland, N G; Jenkins, N A


    Ciliary neurotrophic factor (CNTF) has recently been found to share receptor components with, and to be structurally related to, a family of broadly acting cytokines, including interleukin-6, leukemia inhibitory factor, and oncostatin M. However, the CNTF receptor complex also includes a CNTF-specific component known as CNTF receptor alpha (CNTFR alpha). Here we describe the molecular cloning of the human and mouse genes encoding CNTFR. We report that the human and mouse genes have an identical intron-exon structure that correlates well with the domain structure of CNTFR alpha. That is, the signal peptide and the immunoglobulin-like domain are each encoded by single exons, the cytokine receptor-like domain is distributed among 4 exons, and the C-terminal glycosyl phosphatidylinositol recognition domain is encoded by the final coding exon. The position of the introns within the cytokine receptor-like domain corresponds to those found in other members of the cytokine receptor superfamily. Confirming a recent study using radiation hybrids, we have also mapped the human CNTFR gene to chromosome band 9p13 and the mouse gene to a syntenic region of chromosome 4.

  4. Expression of thyroid-specific transcription factors in thyroid carcinoma, contralateral thyroid lobe and healthy thyroid gland in dogs. (United States)

    Pessina, P; Castillo, V; Araújo, M; Carriquiry, M; Meikle, A


    Thyrotropin receptor (TSH-R), thyroglobulin (Tg), thyroperoxidase (TPO), thyroid specific transcription factor-1 (TTF-1), paired box 8 transcription factor (PAX-8), insulin like growth factor-1 (IGF-1) and estrogen receptor alpha (ERα) transcripts were determined by real-time PCR in follicular carcinoma and contralateral (CL) lobes, and healthy thyroid canine glands. Concentrations of TSH-R, PAX-8, and ERα mRNA were not different among groups; the carcinoma group had lower Tg and TPO mRNA than healthy and CL groups, while no differences were found between the two latter groups, suggesting that the carcinoma tissue presents an altered capacity to synthesize thyroid hormones. The transcription factor that promotes thyrocytes proliferation, TTF-1 as well as IGF-1, presented a greater mRNA expression in the CL group, suggesting that the CL lobe may function in a compensatory state. Copyright © 2011. Published by Elsevier India Pvt Ltd.

  5. Neural cell adhesion molecule differentially interacts with isoforms of the fibroblast growth factor receptor. (United States)

    Christensen, Claus; Berezin, Vladimir; Bock, Elisabeth


    The fibroblast growth factor receptor (FGFR) can be activated through direct interactions with various fibroblast growth factors or through a number of cell adhesion molecules, including the neural cell adhesion molecule (NCAM). We produced recombinant proteins comprising the ligand-binding immunoglobulin-like modules 2 and 3 of FGFR1b, FGFR1c, FGFR2b, FGFR2c, FGFR3b, FGFR3c, and FGFR4, and found that all FGFR isoforms, except for FGFR4, interacted with NCAM. The binding affinity of NCAM-FGFR interactions was considerably higher for splice variant 'b' than for splice variant 'c'. We suggest that the expression pattern of various FGFR isoforms determines the cell context-specific effects of NCAM signaling through FGFR.

  6. Decreased expression of fibroblast and keratinocyte growth factor isoforms and receptors during scarless repair. (United States)

    Dang, Catherine M; Beanes, Steven R; Soo, Chia; Ting, Kang; Benhaim, Prosper; Hedrick, Marc H; Lorenz, H Peter


    Fibroblast growth factors (FGFs) are a family of 21 cytokines with a broad spectrum of activities, including regulation of cell proliferation, differentiation, and migration. The various FGFs bind to one or more of four different tyrosine kinase receptor types. FGFs 1, 2, 5, 7, and 10 are up-regulated during adult cutaneous wound healing. However, the expression of FGFs during fetal skin development and scarless wound healing has not been characterized. It was hypothesized that differential expression of FGF isoforms and receptors occurs during fetal skin development and that this differential expression pattern may regulate the transition from scarless repair to healing with scar formation. Excisional wounds (2 mm) were created on fetal rats at gestational days 16.5 (scarless) (one wound per fetus, n = 36 fetuses) and 19.5 (scarring) (one wound per fetus, n = 36 fetuses). Wounds were harvested at 24, 48, and 72 hours. Survival until wound harvest ranged from 66 to 75 percent for the gestational day 16 fetuses, and from 83 to 92 percent for the gestational day 19 fetuses. Nonwounded fetal skin from littermates (n = 12 fetuses per wound harvest time point) was used as the control. Wounds/skins were pooled by harvest time point, and RNA was isolated from pooled wounds/skins. Reduced-cycle, specific-primer reverse transcriptase-polymerase chain reaction was performed to determine the expression of FGF isoforms 2, 5, 7, 9, and 10 and FGF receptors 1, 2, and 4 in wounds relative to unwounded skin.In unwounded fetal skin, FGF isoform 5 expression more than doubled at birth. FGF 10 expression doubled during the transition period. FGF 7 expression increased more than sevenfold at birth. Expression of FGF isoforms 2 and 9 did not change during late fetal skin development. The expression of FGF receptors 1, 2, and 4 increased at birth. After wounding, expression of FGF isoforms 7 and 10 was down-regulated in scarless wounds, whereas FGF receptor 2 expression decreased in

  7. Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors

    DEFF Research Database (Denmark)

    Aderka, D; Engelmann, H; Maor, Y;


    activity; at high concentrations, the sTNF-Rs indeed inhibit TNF effects. However, we report here that in the presence of low concentrations of the sTNF-Rs, effects of TNF whose induction depend on prolonged treatment with this cytokine are augmented, reflecting an attenuation by the sTNF-Rs of spontaneous......The receptors for tumor necrosis factor (TNF) exist in cell-associated as well as soluble forms, both binding specifically to TNF. Since the soluble forms of TNF receptors (sTNF-Rs) can compete with the cell-associated TNF receptors for TNF, it was suggested that they function as inhibitors of TNF...... TNF activity decay. Evidence that this stabilization of TNF activity by the sTNF-Rs follows from stabilization of TNF structure within the complexes that TNF forms with the sTNF-Rs is presented here, suggesting that the sTNF-Rs can affect TNF activity not only by interfering with its binding to cells...

  8. Immunotoxin Therapies for the Treatment of Epidermal Growth Factor Receptor-Dependent Cancers

    Directory of Open Access Journals (Sweden)

    Nathan Simon


    Full Text Available Many epithelial cancers rely on enhanced expression of the epidermal growth factor receptor (EGFR to drive proliferation and survival pathways. Development of therapeutics to target EGFR signaling has been of high importance, and multiple examples have been approved for human use. However, many of the current small molecule or antibody-based therapeutics are of limited effectiveness due to the inevitable development of resistance and toxicity to normal tissues. Recombinant immunotoxins are therapeutic molecules consisting of an antibody or receptor ligand joined to a protein cytotoxin, combining the specific targeting of a cancer-expressed receptor with the potent cell killing of cytotoxic enzymes. Over the decades, many bacterial- or plant-based immunotoxins have been developed with the goal of targeting the broad range of cancers reliant upon EGFR overexpression. Many examples demonstrate excellent anti-cancer properties in preclinical development, and several EGFR-targeted immunotoxins have progressed to human trials. This review summarizes much of the past and current work in the development of immunotoxins for targeting EGFR-driven cancers.

  9. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. (United States)

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio


    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  10. Radiotracer Methods for Targeted Imaging of the Epidermal Growth Factor Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kyung Ho; Lee, Kyung Han [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)


    While indirect targeting strategies using reporter-genes are taking center stage in current molecular imaging research, another vital strategy has long involved direct imaging of specific receptors using radiolabeled ligands. Recently, there is renewal of immense interest in this area with particular attention to the epidermal growth factor receptor (EGFR), a transmembrane glycoprotein critically involved in the regulation of many cellular functions and malignancies. Recently, two novel classes of EGFR-targeting anticancer drugs have entered clinical trials with great expectations. These are monoclonal antibodies such as cetuximab that target the extracellular domain, and small molecule tyrosine kinase inhibitors such as gefitinib (Iressa) and erlotinib (Tarceva) that target the catalytic domain of the receptor. However, early results have showed disappointing survival benefits, disclosing a major challenge for this therapeutic strategy; namely, the need to identify tumors that are most likely to respond to the agents. To address this important clinical issue, several noninvasive imaging techniques are under investigation including radiolabeled probes based on small molecule tyrosine kinase inhibitors, anti-EGFR antibodies, and EGF peptides. This review describes the current status, limitations, and future prospects in the development of radiotracer methods for EGFR imaging.

  11. Oncogenic fingerprint of epidermal growth factor receptor pathway and emerging epidermal growth factor receptor blockade resistance in colorectal cancer (United States)

    Sobani, Zain A; Sawant, Ashwin; Jafri, Mikram; Correa, Amit Keith; Sahin, Ibrahim Halil


    Epidermal growth factor receptor (EGFR) has been an attractive target for treatment of epithelial cancers, including colorectal cancer (CRC). Evidence from clinical trials indicates that cetuximab and panitumumab (anti-EGFR monoclonal antibodies) have clinical activity in patients with metastatic CRC. The discovery of intrinsic EGFR blockade resistance in Kirsten RAS (KRAS)-mutant patients led to the restriction of anti-EGFR antibodies to KRAS wild-type patients by Food and Drug Administration and European Medicine Agency. Studies have since focused on the evaluation of biomarkers to identify appropriate patient populations that may benefit from EGFR blockade. Accumulating evidence suggests that patients with mutations in EGFR downstream signaling pathways including KRAS, BRAF, PIK3CA and PTEN could be intrinsically resistant to EGFR blockade. Recent whole genome studies also suggest that dynamic alterations in signaling pathways downstream of EGFR leads to distinct oncogenic signatures and subclones which might have some impact on emerging resistance in KRAS wild-type patients. While anti-EGFR monoclonal antibodies have a clear potential in the management of a subset of patients with metastatic CRC, further studies are warranted to uncover exact mechanisms related to acquired resistance to EGFR blockade. PMID:27777877

  12. The ubiquitous transcription factor CTCF promotes lineage-specific epigenomic remodeling and establishment of transcriptional networks driving cell differentiation. (United States)

    Dubois-Chevalier, Julie; Staels, Bart; Lefebvre, Philippe; Eeckhoute, Jérôme


    Cell differentiation relies on tissue-specific transcription factors (TFs) that cooperate to establish unique transcriptomes and phenotypes. However, the role of ubiquitous TFs in these processes remains poorly defined. Recently, we have shown that the CCCTC-binding factor (CTCF) is required for adipocyte differentiation through epigenomic remodelling of adipose tissue-specific enhancers and transcriptional activation of Peroxisome proliferator-activated receptor gamma (PPARG), the main driver of the adipogenic program (PPARG), and its target genes. Here, we discuss how these findings, together with the recent literature, illuminate a functional role for ubiquitous TFs in lineage-determining transcriptional networks.

  13. Basic Fibroblast Growth Factor and Fibroblast Growth Factor Receptor-1in Human Meningiomas

    Institute of Scientific and Technical Information of China (English)

    YI Wei; CHEN Jian; Filimon H. Golwa; XUE Delin


    The expression of basic fibroblast growth factor (bFGF) and fibroblast growth factor receptor-1 (FGFR-1) in human meningiomas and the relationships between their expression and the tumors' histological features and angiogenesis were investigated by means of immunohistochemical technique. The expression of bFGF and FGFR-1 was detected by antibody of bFGF or FGFR-1.The tumors' angiogenesis was evaluated by microvascular density (MVD) and, which was observed by use of CD34-antibody immunohistochemically. The results showed that there were varied degrees of the expression of bFGF and FGFR-1 proteins in meningiomas. The expression was correlated with the tumors' histological characters and angiogenesis. It was concluded that bFGF and FGFR-1 might play important roles in meningiomas' angiogenesis and proliferation. The expression positive rate of bFGF and FGFR-1 may provide an indication of evaluating the histological and malignant degree of the tumor.

  14. Tumor subtype-specific associations of hormone-related reproductive factors on breast cancer survival.

    Directory of Open Access Journals (Sweden)

    Nan Song

    Full Text Available It is inconclusive whether reproductive factors, which are known as risk factors of breast cancer, also influence survival. We investigated overall and subtype-specific associations between reproductive factors and breast cancer survival.Among 3,430 incident breast cancer patients who enrolled in the Seoul Breast Cancer Study, 269 patients (7.8% died and 528 patients (15.4% recurred. The overall and subtype-specific associations of reproductive factors including age at menarche and menopause, duration of estrogen exposure, menstrual cycle, parity, age at first full-term pregnancy, number of children, age at last birth, time since the last birth, and duration of breastfeeding, on overall and disease-free survival (OS and DFS were estimated by hazard ratios (HRs and 95% confidence intervals (95% CIs using a multivariate Cox proportional hazard model.An older age at menarche (HR for OS=1.10, 95% CI=1.03-1.19, a greater number of children (≥ 4 vs. 2, HR for DFS=1.58, 95% CI=1.11-2.26, and a shorter time since last birth (<5 vs. ≥ 20 years, HR for DFS=1.67, 95% CI=1.07-2.62 were associated with worse survival while longer duration of estrogen exposure with better survival (HR for DFS=0.97, 95% CI=0.96-0.99. In the stratified analyses by subtypes, those associations were more pronounced among women with hormone receptor and human epidermal growth factor 2 positive (HR+ HER2+ tumors.It is suggested that reproductive factors, specifically age at menarche, number of children, time since last birth, and duration of estrogen exposure, could influence breast tumor progression, especially in the HR+ HER2+ subtype.

  15. Commercially available antibodies against human and murine histamine H₄-receptor lack specificity. (United States)

    Beermann, Silke; Seifert, Roland; Neumann, Detlef


    Antibodies are important tools to detect expression and localization of proteins within the living cell. However, for a series of commercially available antibodies which are supposed to recognize G-protein-coupled receptors (GPCR), lack of specificity has been described. In recent publications, antisera against the histamine H₄-receptor (H₄R), which is a member of the GPCR family, have been used to demonstrate receptor expression. However, a comprehensive characterization of these antisera has not been performed yet. Therefore, the purpose of our study was to evaluate the specificity of three commercially available H₄R antibodies. Sf9 insect cells and HEK293 cells expressing recombinant murine and human H₄R, spleen cells obtained from H₄⁻/⁻ and from wild-type mice, and human CD20⁺ and CD20⁻ peripheral blood cells were analyzed by flow cytometry and Western blot using three commercially available H₄R antibodies. Our results show that all tested H₄R antibodies bind to virtually all cells, independently of the expression of H₄R, thus in an unspecific fashion. Also in Western blot, the H₄R antibodies do not bind to the specified protein. Our data underscore the importance of stringent evaluation of antibodies using valid controls, such as cells of H₄R⁻/⁻ mice, to show true receptor expression and antigen specificity. Improved validation of commercially available antibodies prior to release to the market would avoid time-consuming and expensive validation assays by the user.

  16. Specific interaction of aurintricarboxylic acid with the human immunodeficiency virus/CD4 cell receptor

    Energy Technology Data Exchange (ETDEWEB)

    Schols, D.; Baba, M.; Pauwels, R.; Desmyter, J.; De Clercq, E. (Katholieke Universiteit Leuven (Belgium))


    The triphenylmethane derivative aurintricarboxylic acid (ATA), but not aurin, selectively prevented the binding of OKT4A/Leu-3a monoclonal antibody (mAb) and, to a lesser extent, OKT4 mAb to the CD4 cell receptor for human immunodeficiency virus type 1 (HIV-1). The effect was seen within 1 min at an ATA concentration of 10 {mu}M in various T4{sup +} cells (MT-4, U-937, peripheral blood lymphocytes, and monocytes). It was dose-dependent and reversible. ATA prevented the attachment of radiolabeled HIV-1 particles to MT-4 cells, which could be expected as the result of its specific binding to the HIV/CD4 receptor. Other HIV inhibitors such as suramin, fuchsin acid, azidothymidine, dextran sulfate, heparin, and pentosan polysulfate did not affect OKT4A/Leu-3a mAb binding to the CD4 receptor, although the sulfated polysaccharides suppressed HIV-1 adsorption to the cells at concentrations required for complete protection against HIV-1 cytopathogenicity. Thus, ATA is a selective marker molecule for the CD4 receptor. ATA also interfered with the staining of membrane-associated HIV-1 glycoprotein gp120 by a mAb against it. These unusual properties of a small molecule of nonimmunological origin may have important implications for the study of CD4/HIV/AIDS pathogenesis and possibly treatment.

  17. Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3

    Energy Technology Data Exchange (ETDEWEB)

    Keegan, K.; Hayman, M.J. (State Univ. of New York, Stony Brook (United States)); Johnson, D.E.; Williams, L.T. (Univ. of California, San Francisco (United States))


    The fibroblast growth factors are a family of polypeptide growth factors involved in a variety of activities including mitogenesis, angiogenesis, and wound healing. Fibroblast growth factor receptors (FGFRs) have previously been identified in chicken, mouse, and human and have been shown to contain an extracellular domain with either two or three immunoglobulin-like domains, a transmembrane domain, and a cytoplasmic tyrosine kinase domain. The authors have isolated a human cDNA for another tyrosine kinase receptor that is highly homologous to the previously described FGFR. Expression of this receptor cDNA in COS cells directs the expression of a 125-kDa glycoprotein. They demonstrate that this cDNA encodes a biologically active receptor by showing that human acidic and basic fibroblast growth factors activate this receptor as measured by {sup 45}Ca{sup 2+} efflux assays. These data establish the existence of an additional member of the FGFR family that they have named FGFR-3.

  18. Integration of G-Protein Coupled Receptor Signaling Pathways for Activation of a Transcription Factor (EGR-3)

    Institute of Scientific and Technical Information of China (English)

    Xuehai Tan; Pam Sanders; Jack Bolado Jr.; Mike Whitney


    We recently reported the use of a gene-trapping approach to isolate cell clones in which a reporter gene had integrated into genes modulated by T-cell activation. We have now tested a panel of clones from that report and identified the one that responds to a variety of G-protein coupled receptors (GPCR). The βlactamase tagged EGR-3 Jurkat cell was used to dissect specific GPCR signaling in vivo. Three GPCRs were studied, including the chemokine receptor CXCR4 (Gicoupled) that was endogenously expressed, the platelet activation factor (PAF) receptor (Gq-coupled), andβ2 adrenergic receptor (Gs-coupled) that was both stably transfected. Agonists for each receptor activated transcription of theβ-lactamase tagged EGR-3 gene. Induction of EGR-3 through CXCR4 was blocked by pertussis toxin and PD58059, a specific inhibitor of MEK (MAPK/ERK kinase). Neither of these inhibitors blocked isoproterenol or PAF-mediated activation of EGR-3. Conversely, β2- and PAF-mediated EGR-3 activation was blocked by the p38, specific inhibitor SB580. In addition, bothβ2- and PAF-mediated EGR-3 activation could be synergistically activated by CXCR4 activation. This combined result indicates that EGR-3 can be activated through distinct signal transduction pathways by different GPCRs and that signals can be integrated and amplified to efficiently tune the level of activation.

  19. Plasticity in Interactions of Fibroblast Growth Factor 1 (FGF1) N Terminus with FGF Receptors Underlies Promiscuity of FGF1*


    Beenken, Andrew; Eliseenkova, Anna V.; Ibrahimi, Omar A; Olsen, Shaun K.; Mohammadi, Moosa


    Tissue-specific alternative splicing in the second half of Ig-like domain 3 (D3) of fibroblast growth factor receptors 1–3 (FGFR1 to -3) generates epithelial FGFR1b-FGFR3b and mesenchymal FGFR1c-FGFR3c splice isoforms. This splicing event establishes a selectivity filter to restrict the ligand binding specificity of FGFRb and FGFRc isoforms to mesenchymally and epithelially derived fibroblast growth factors (FGFs), respectively. FGF1 is termed the “universal FGFR ligand” because it overrides ...

  20. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling. (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko


    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  1. Elf5 is an epithelium-specific, fibroblast growth factor-sensitive transcription factor in the embryonic lung. (United States)

    Metzger, David E; Xu, Yan; Shannon, John M


    Fibroblast growth factor (FGF) signaling has been shown to be essential for many aspects of normal lung development. To determine epithelial targets of FGF signaling, we cultured embryonic day (E) 11.5 mouse lungs for 24 hr in the presence or absence of the FGF receptor antagonist SU5402, which inhibited branching morphogenesis. Affymetrix gene chip analysis of treated and control epithelia identified several genes regulated by FGF signaling, including Elf5, a member of the Epithelial-specific Ets family of transcription factors. SU5402 reduced Elf5 expression in mesenchyme-free cultures of E12.5 epithelium, demonstrating that the inhibition was direct. In situ hybridization revealed that Elf5 had a dynamic pattern of expression during lung development. We found that expression of Elf5 was induced by FGF7 and FGF10, ligands that primarily bind FGFR2b. To further define the pathways by which FGFs activate Elf5 expression, we cultured E11.5 lung tips in the presence of compounds to inhibit FGF receptors (SU5402), PI3-Kinase/Akt-mediated signaling (LY294002), and MAP Kinase/Erk-mediated signaling (U0126). We found that SU5402 and LY294002 significantly reduced Elf5 expression, whereas U0126 had no effect. LY294002 also reduced Elf5 expression in cultures of purified epithelium. Finally, pAkt was coexpressed with Elf5 in the proximal epithelial airways of E17.5 lungs. These results demonstrate that Elf5 is an FGF-sensitive transcription factor in the lung with a dynamic pattern of expression and that FGF regulation of Elf5 by means of FGFR2b occurs through the PI3-Kinase/Akt pathway.

  2. Ecosystem specific dose conversion factors for Aberg, Beberg and Ceberg

    Energy Technology Data Exchange (ETDEWEB)

    Nordlinder, S.; Bergstroem, U.; Mathiasson, Lena [Studsvik Eco and Safety AB, Nykoeping (Sweden)


    The aim of this study was to calculate ecosystem specific dose conversion factors (EDFs) for three hypothetical sites, Aberg, Beberg and Ceberg, used in the safety analysis SR 97. The EDFs can, in combination with calculated releases of radionuclides from the geosphere, be used to illustrate relative differences in doses to the most exposed individual due to accidental leakage of radionuclides from a deep repository for spent nuclear fuel. Maps of the three sites were studied and subdivided into areas, which were characterised according to an earlier developed module system. For each of the identified modules, ecosystem transport and exposure model calculations were performed for release of 1 Bq per year during 10 000 years. 44 radionuclides contained within a deep repository for spent nuclear fuel were considered. A preliminary comparison of the EDFs for the three sites showed that the highest relative doses can be expected in Ceberg due to the high frequency of peat bog modules.

  3. Determination and inference of eukaryotic transcription factor sequence specificity. (United States)

    Weirauch, Matthew T; Yang, Ally; Albu, Mihai; Cote, Atina G; Montenegro-Montero, Alejandro; Drewe, Philipp; Najafabadi, Hamed S; Lambert, Samuel A; Mann, Ishminder; Cook, Kate; Zheng, Hong; Goity, Alejandra; van Bakel, Harm; Lozano, Jean-Claude; Galli, Mary; Lewsey, Mathew G; Huang, Eryong; Mukherjee, Tuhin; Chen, Xiaoting; Reece-Hoyes, John S; Govindarajan, Sridhar; Shaulsky, Gad; Walhout, Albertha J M; Bouget, François-Yves; Ratsch, Gunnar; Larrondo, Luis F; Ecker, Joseph R; Hughes, Timothy R


    Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ∼1% of eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 different DBD classes from 131 diverse eukaryotes. We find that closely related DBDs almost always have very similar DNA sequence preferences, enabling inference of motifs for ∼34% of the ∼170,000 known or predicted eukaryotic TFs. Sequences matching both measured and inferred motifs are enriched in chromatin immunoprecipitation sequencing (ChIP-seq) peaks and upstream of transcription start sites in diverse eukaryotic lineages. SNPs defining expression quantitative trait loci in Arabidopsis promoters are also enriched for predicted TF binding sites. Importantly, our motif "library" can be used to identify specific TFs whose binding may be altered by human disease risk alleles. These data present a powerful resource for mapping transcriptional networks across eukaryotes.

  4. [Are there specific factors in the psychotherapy of anorexia nervosa?]. (United States)

    Zipfel, Stephan; Resmark, Gaby


    The present literature review examines the question of how general and specific factors can be differentiated in the psychotherapy of anorexia nervosa. Over the past 10 years different research trends have appeared. On the one hand subclassifications of new therapy approaches from several schools of therapy have been propagated (e.g. CBT-E, FPT), on the other hand generic treatment manuals have been published that are rather adapted to patients needs (e.g. SSCM, TTM). On a third way, currently therapy manuals for special subgroups have been developed, e.g. for chronic patients with anorexia nervosa or family-based manuals for adolescents. A completely different direction follows those approaches that are based on neuropsychological models and deficits in anorexia nervosa. Overall, the results of current studies have been promising, however, there has not been a winner yet, the race is still open!

  5. Tumor necrosis factor downregulates granulocyte-colony-stimulating factor receptor expression on human acute myeloid leukemia cells and granulocytes.


    Elbaz, O; Budel, L M; Hoogerbrugge, H; Touw, I P; Delwel, R.; Mahmoud, L A; Löwenberg, B. (Bernward)


    Tumor necrosis factor (TNF) inhibits granulocyte-colony-stimulating factor (G-CSF)-induced human acute myeloid leukemia (AML) growth in vitro. Incubation of blasts from three patients with AML in serum-free medium with TNF (10(3) U/ml), and subsequent binding studies using 125I-G-CSF reveal that TNF downregulates the numbers of G-CSF receptors by approximately 70%. G-CSF receptor numbers on purified blood granulocytes are also downmodulated by TNF. Downregulation of G-CSF receptor expression ...


    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  7. Primate-specific Melanoma Antigen-A11 Regulates Isoform-specific Human Progesterone Receptor-B Transactivation* (United States)

    Su, Shifeng; Blackwelder, Amanda J.; Grossman, Gail; Minges, John T.; Yuan, Lingwen; Young, Steven L.; Wilson, Elizabeth M.


    Progesterone acting through the progesterone receptor (PR) and its coregulators prepares the human endometrium for receptivity to embryo implantation and maintains pregnancy. The menstrual cycle-dependent expression of melanoma antigen-A11 (MAGE-11) in the mid-secretory human endometrium suggested a novel function in human PR signaling. Here we show that MAGE-11 is an isoform-specific coregulator responsible for the greater transcriptional activity of human PR-B relative to PR-A. PR was recruited to progesterone response regions of progesterone-regulated FK506-binding protein 5 (FKBP5) immunophilin and small Ras family G protein cell growth inhibitor RASD1 genes. Expression of MAGE-11 lentivirus shRNA in human endometrial Ishikawa cells expressing PR-B showed that MAGE-11 is required for isoform-specific PR-B up-regulation of FKBP5. In contrast, MAGE-11 was not required for progesterone up-regulation of RASD1 in endometrial cells expressing the PR-A/B heterodimer. Target gene specificity of PR-B depended on the synergistic actions of MAGE-11 and p300 mediated by the unique PR-B NH2-terminal 110LLXXVLXXLL119 motif that interacts with the MAGE-11 F-box region in a phosphorylation- and ubiquitinylation-dependent manner. A progesterone-dependent mechanism is proposed in which MAGE-11 and p300 increase PR-B up-regulation of the FKBP5 gene. MAGE-11 down-regulates PR-B, similar to the effects of progesterone, and interacts with FKBP5 to stabilize a complex with PR-B. We conclude that the coregulator function of MAGE-11 extends to isoform-specific regulation of PR-B during the cyclic development of the human endometrium. PMID:22891251

  8. Application of receptor-specific risk distribution in the arsenic contaminated land management. (United States)

    Chen, I-chun; Ng, Shane; Wang, Gen-shuh; Ma, Hwong-wen


    Concerns over health risks and financial costs have caused difficulties in the management of arsenic contaminated land in Taiwan. Inflexible risk criteria and lack of economic support often result in failure of a brownfields regeneration project. To address the issue of flexible risk criteria, this study is aimed to develop maps with receptor-specific risk distribution to facilitate scenario analysis of contaminated land management. A contaminated site risk map model (ArcGIS for risk assessment and management, abbreviated as Arc-RAM) was constructed by combining the four major steps of risk assessment with Geographic Information Systems. Sampling of contaminated media, survey of exposure attributes, and modeling of multimedia transport were integrated to produce receptor group-specific maps that depicted the probabilistic spatial distribution of risks of various receptor groups. Flexible risk management schemes can then be developed and assessed. In this study, a risk management program that took into account the ratios of various land use types at specified risk levels was explored. A case study of arsenic contaminated land of 6.387 km(2) has found that for a risk value between 1.00E-05 and 1.00E-06, the proposed flexible risk management of agricultural land achieves improved utilization of land. Using this method, the investigated case can reduce costs related to compensation for farmland totaling approximately NTD 5.94 million annually.

  9. Neurotrophins and specific receptors in the oviduct tracts of Japanese quail (Coturnix coturnix japonica). (United States)

    Maruccio, L; Castaldo, L; D'Angelo, L; Gatta, C; Lucini, C; Cotea, C; Solcan, C; Nechita, E L


    Neurotrophins (NGF, BDNF and NT-3) and their specific receptors (TrkA, TrkB and TrkC) were studied in the oviduct of egg laying quails. Neurotrophins (NTs) are mainly involved in the development and maintenance of neuronal populations in the central and peripheral nervous system, but also in reproductive system. In this survey, we first studied the morphological organization of the quail oviduct, distinguished in infundibulum, magnum, isthmus, uterus and vagina, and then we analyzed the expression and localization of NTs and Trks receptors in the whole tracts. By western blotting we detected that the investigated NTs and Trks receptors are expressed in all oviductal tracts. By immunohistochemistry we were able to define the distribution of NTs and Trks. Specifically, NGF, BDNF and NT3 were localized in lining and ductal epithelial cells, and NGF was also detected in secretory cells of tubular glands and in nervous fibers of vessel wall. TrkA and TrkB were present in the lining and ductal epithelium; TrkA and TrkC were present in nervous fibers of vessel wall in all oviductal tracts. Furthermore, we also observed NGF and BDNF co-localized with TrkA and TrkB in cells of the lining and ductal epithelium, suggesting an autocrine mechanism of action.

  10. Structural insights into the nucleotide base specificity of P2X receptors (United States)

    Kasuya, Go; Fujiwara, Yuichiro; Tsukamoto, Hisao; Morinaga, Satoshi; Ryu, Satoshi; Touhara, Kazushige; Ishitani, Ryuichiro; Furutani, Yuji; Hattori, Motoyuki; Nureki, Osamu


    P2X receptors are trimeric ATP-gated cation channels involved in diverse physiological processes, ranging from muscle contraction to nociception. Despite the recent structure determination of the ATP-bound P2X receptors, the molecular mechanism of the nucleotide base specificity has remained elusive. Here, we present the crystal structure of zebrafish P2X4 in complex with a weak affinity agonist, CTP, together with structure-based electrophysiological and spectroscopic analyses. The CTP-bound structure revealed a hydrogen bond, between the cytosine base and the side chain of the basic residue in the agonist binding site, which mediates the weak but significant affinity for CTP. The cytosine base is further recognized by two main chain atoms, as in the ATP-bound structure, but their bond lengths seem to be extended in the CTP-bound structure, also possibly contributing to the weaker affinity for CTP over ATP. This work provides the structural insights for the nucleotide base specificity of P2X receptors. PMID:28332633

  11. Epidermal growth factor receptor transactivation by intracellular prostaglandin E2-activated prostaglandin E2 receptors. Role in retinoic acid receptor-β up-regulation. (United States)

    Fernández-Martínez, Ana B; Lucio Cazaña, Francisco J


    The pharmacological modulation of renoprotective factor vascular endothelial growth factor-A (VEGF-A) in the proximal tubule has therapeutic interest. In human proximal tubular HK-2 cells, treatment with all-trans retinoic acid or prostaglandin E2 (PGE2) triggers the production of VEGF-A. The pathway involves an initial increase in intracellular PGE2, followed by activation of EP receptors (PGE2 receptors, most likely an intracellular subset) and increase in retinoic acid receptor-β (RARβ) expression. RARβ then up-regulates transcription factor hypoxia-inducible factor-1α (HIF-1α), which increases the transcription and production of VEGF-A. Here we studied the role in this pathway of epidermal growth factor receptor (EGFR) transactivation by EP receptors. We found that EGFR inhibitor AG1478 prevented the increase in VEGF-A production induced by PGE2- and all-trans retinoic acid. This effect was due to the inhibition of the transcriptional up-regulation of RARβ, which resulted in loss of the RARβ-dependent transcriptional up-regulation of HIF-1α. PGE2 and all-trans retinoic acid also increased EGFR phosphorylation and this effect was sensitive to antagonists of EP receptors. The role of intracellular PGE2 was indicated by two facts; i) PGE2-induced EGFR phosphorylation was substantially prevented by inhibitor of prostaglandin uptake transporter bromocresol green and ii) all-trans retinoic acid treatment, which enhanced intracellular but not extracellular PGE2, had lower effect on EGFR phosphorylation upon pre-treatment with cyclooxygenase inhibitor diclofenac. Thus, EGFR transactivation by intracellular PGE2-activated EP receptors results in the sequential activation of RARβ and HIF-1α leading to increased production of VEGF-A and it may be a target for the therapeutic modulation of HIF-1α/VEGF-A. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The Host Specificities of Baculovirus per os Infectivity Factors.

    Directory of Open Access Journals (Sweden)

    Jingjiao Song

    Full Text Available Baculoviruses are insect-specific pathogens with a generally narrow host ranges. Successful primary infection is initiated by the proper interaction of at least 8 conserved per os infectivity factors (PIFs with the host's midgut cells, a process that remains largely a mystery. In this study, we investigated the host specificities of the four core components of the PIF complex, P74, PIF1, PIF2 and PIF3 by using Helicoverpa armigera nucleopolyhedrovirus (HearNPV backbone. The four pifs of HearNPV were replaced by their counterparts from a group I Autographa californica multiple nucleopolyhedrovirus (AcMNPV or a group II Spodoptera litura nucleopolyhedrovirus (SpltNPV. Transfection and infection assays showed that all the recombinant viruses were able to produce infectious budded viruses (BVs and were lethal to H. armigera larvae via intrahaemocoelic injection. However, feeding experiments using very high concentration of occlusion bodies demonstrated that all the recombinant viruses completely lost oral infectivity except SpltNPV pif3 substituted pif3-null HearNPV (vHaBacΔpif3-Sppif3-ph. Furthermore, bioassay result showed that the median lethal concentration (LC50 value of vHaBacΔpif3-Sppif3-ph was 23-fold higher than that of the control virus vHaBacΔpif3-Hapif3-ph, indicating that SpltNPV pif3 can only partially substitute the function of HearNPV pif3. These results suggested that most of PIFs tested have strict host specificities, which may account, at least in part, for the limited host ranges of baculoviruses.

  13. Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction. (United States)

    Wang, Jiaxing; Lu, Songhe; Zheng, Qijun; Hu, Nan; Yu, Wenjun; Li, Na; Liu, Min; Gao, Beilei; Zhang, Guoyong; Zhang, Yingmei; Wang, Haichang


    Paraquat (1,1'-dim ethyl-4-4'-bipyridinium dichloride), a highly toxic quaternary ammonium herbicide widely used in agriculture, exerts potent toxic prooxidant effects resulting in multi-organ failure including the lung and heart although the underlying mechanism remains elusive. Recent evidence suggests possible involvement of endothelin system in paraquat-induced acute lung injury. This study was designed to examine the role of endothelin receptor A (ETA) in paraquat-induced cardiac contractile and mitochondrial injury. Wild-type (WT) and cardiac-specific ETA receptor knockout mice were challenged to paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties, as well as apoptosis and mitochondrial damage. Levels of the mitochondrial proteins for biogenesis and oxidative phosphorylation including UCP2, HSP90 and PGC1α were evaluated. Our results revealed that paraquat elicited cardiac enlargement, mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic and end-diastolic diameters as well as reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, overt apoptosis and mitochondrial damage. ETA receptor knockout itself failed to affect myocardial function, apoptosis, mitochondrial integrity and mitochondrial protein expression. However, ETA receptor knockout ablated or significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) defect, apoptosis and mitochondrial damage. Taken together, these findings revealed that endothelin system in particular the ETA receptor may be involved in paraquat-induced toxic myocardial contractile anomalies possibly related to apoptosis and mitochondrial damage.

  14. Specificity of Staphyloferrin B recognition by the SirA receptor from Staphylococcus aureus. (United States)

    Grigg, Jason C; Cheung, Johnson; Heinrichs, David E; Murphy, Michael E P


    Many organisms use sophisticated systems to acquire growth-limiting iron. Iron limitation is especially apparent in bacterial pathogens of mammalian hosts where free iron concentrations are physiologically negligible. A common strategy is to secrete low molecular weight iron chelators, termed siderophores, and express high affinity receptors for the siderophore-iron complex. Staphylococcus aureus, a widespread pathogen, produces two siderophores, staphyloferrin A (SA) and staphyloferrin B (SB). We have determined the crystal structure of the staphyloferrin B receptor, SirA, at high resolution in both the apo and Fe(III)-SB (FeSB)-bound forms. SirA, a member of the class III binding protein family of metal receptors, has N- and C-terminal domains, each composed of mainly a β-stranded core and α-helical periphery. The domains are bridged by a single α-helix and together form the FeSB binding site. SB coordinates Fe(III) through five oxygen atoms and one nitrogen atom in distorted octahedral geometry. SirA undergoes conformational change upon siderophore binding, largely securing two loops from the C-terminal domain to enclose FeSB with a low nanomolar dissociation constant. The staphyloferrin A receptor, HtsA, homologous to SirA, also encloses its cognate siderophore (FeSA); however, the largest conformational rearrangements involve a different region of the C-terminal domain. FeSB is uniquely situated in the binding pocket of SirA with few of the contacting residues being conserved with those of HtsA interacting with FeSA. Although both SirA and HtsA bind siderophores from the same α-hydroxycarboxylate class, the unique structural features of each receptor provides an explanation for their distinct specificity.

  15. Prognostic model for brain metastases from lung adenocarcinoma identified with epidermal growth factor receptor mutation status. (United States)

    Li, Hongwei; Wang, Weili; Jia, Haixia; Lian, Jianhong; Cao, Jianzhong; Zhang, Xiaqin; Song, Xing; Jia, Sufang; Li, Zhengran; Cao, Xing; Zhou, Wei; Han, Songye; Yang, Weihua; Xi, Yanfen; Lian, Shenming


    Several indices have been developed to predict survival of brain metastases (BM) based on prognostic factors. However, such models were designed for general brain metastases from different kinds of cancers, and prognostic factors vary between cancers and histological subtypes. Recently, studies have indicated that epidermal growth factor receptor (EGFR) mutation status may be a potential prognostic biological factor in BM from lung adenocarcinoma. Thus, we sought to define the role of EGFR mutation in prognoses and introduce a prognostic model specific for BM from lung adenocarcinoma. Data of 256 patients with BM from lung adenocarcinoma identified with EGFR mutations were collected. Independent prognostic factors were confirmed using a Cox regression model. The new prognostic model was developed based on the results of multivariable analyses. The score of each factor was calculated by six-month survival. Prognostic groups were divided into low, medium, and high risk based on the total scores. The prediction ability of the new model was compared to the three existing models. EGFR mutation and Karnofsky performance status were independent prognostic factors and were thus integrated into the new prognostic model. The new model was superior to the three other scoring systems regarding the prediction of three, six, and 12-month survival by pairwise comparison of the area under the curve. Our proposed prognostic model specific for BM from lung adenocarcinoma incorporating EGFR mutation status was valid in predicting patient survival. Further verification is warranted, with prospective testing using large sample sizes. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  16. Platelet-derived growth factor receptor beta is critical for zebrafish intersegmental vessel formation.

    Directory of Open Access Journals (Sweden)

    Katie M Wiens

    Full Text Available BACKGROUND: Platelet-derived growth factor receptor beta (PDGFRbeta is a tyrosine kinase receptor known to affect vascular development. The zebrafish is an excellent model to study specific regulators of vascular development, yet the role of PDGF signaling has not been determined in early zebrafish embryos. Furthermore, vascular mural cells, in which PDGFRbeta functions cell autonomously in other systems, have not been identified in zebrafish embryos younger than 72 hours post fertilization. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate the role of PDGFRbeta in zebrafish vascular development, we cloned the highly conserved zebrafish homolog of PDGFRbeta. We found that pdgfrbeta is expressed in the hypochord, a developmental structure that is immediately dorsal to the dorsal aorta and potentially regulates blood vessel development in the zebrafish. Using a PDGFR tyrosine kinase inhibitor, a morpholino oligonucleotide specific to PDGFRbeta, and a dominant negative PDGFRbeta transgenic line, we found that PDGFRbeta is necessary for angiogenesis of the intersegmental vessels. SIGNIFICANCE/CONCLUSION: Our data provide the first evidence that PDGFRbeta signaling is required for zebrafish angiogenesis. We propose a novel mechanism for zebrafish PDGFRbeta signaling that regulates vascular angiogenesis in the absence of mural cells.

  17. The yeast mitochondrial RNA polymerase specificity factor, MTF1, is similar to bacterial sigma factors. (United States)

    Jang, S H; Jaehning, J A


    We have purified the protein that confers selective promoter recognition on the core subunit of the yeast mitochondrial RNA polymerase. The N-terminal sequence of the 43-kDa specificity factor identified it as the product of the MTF1 gene described by Lisowsky and Michaelis (1988). We confirmed that MTF1 encoded the specificity factor by analyzing extracts from a yeast strain bearing a disruption of the gene. The extracts contained normal levels of core RNA polymerase but lacked selective transcription activity; adding the purified 43-kDa protein restored selective transcription. Comparison of the MTF1 protein sequence to the family of bacterial sigma factors has revealed striking similarity to domains identified with--10 promoter recognition, promoter melting, and holoenzyme stability.

  18. Alternative Splicing of Fibroblast Growth Factor Receptor IgIII Loops in Cancer

    Directory of Open Access Journals (Sweden)

    Klaus Holzmann


    Full Text Available Alternative splicing of the IgIII loop of fibroblast growth factor receptors (FGFRs 1–3 produces b- and c-variants of the receptors with distinctly different biological impact based on their distinct ligand-binding spectrum. Tissue-specific expression of these splice variants regulates interactions in embryonic development, tissue maintenance and repair, and cancer. Alterations in FGFR2 splicing are involved in epithelial mesenchymal transition that produces invasive, metastatic features during tumor progression. Recent research has elucidated regulatory factors that determine the splice choice both on the level of exogenous signaling events and on the RNA-protein interaction level. Moreover, methodology has been developed that will enable the in depth analysis of splicing events during tumorigenesis and provide further insight on the role of FGFR 1–3 IIIb and IIIc in the pathophysiology of various malignancies. This paper aims to summarize expression patterns in various tumor types and outlines possibilities for further analysis and application.

  19. DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors. (United States)

    Bai, Huai; Forrester, John V; Zhao, Min


    Small direct current (DC) electric fields direct some important angiogenic responses of vascular endothelial cells. Those responses indicate promising use of electric fields to modulate angiogenesis. We sought to determine the regulation of electric fields on transcription and expression of a serial of import angiogenic factors by endothelial cells themselves. Using semi-quantitative PCR and ELISA we found that electric stimulation upregulates the levels of mRNAs and proteins of a number of angiogenic proteins, most importantly VEGF165, VEGF121 and IL-8 in human endothelial cells. The up-regulation of mRNA levels might be specific, as the mRNA encoding bFGF, TGF-beta and eNOS are not affected by DC electric stimulation at 24h time-point. Inhibition of VEGF receptor (VEGFR1 or VEGFR2) signaling significantly decreased VEGF production and completely abolished IL-8 production. DC electric stimulation selectively regulates production of some growth factors and cytokines important for angiogenesis through a feed-back loop mediated by VEGF receptors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Prophylaxis and treatment of dermatologic adverse events from epidermal growth factor receptor inhibitors. (United States)

    Wu, Peggy A; Balagula, Yevgeniy; Lacouture, Mario E; Anadkat, Milan J


    As the number and uses for targeted therapies such as epidermal growth factor receptor inhibitors (EGFRIs) increase, so does the need to recognize and treat the dermatologic side-effects of these agents. Although agents such as gefitinib, erlotinib, cetuximab, lapatinib, and panitumumab have less systemic side-effects than traditional cytotoxic chemotherapy, dermatologic adverse events from EGFRIs are significantly more common. These dermatologic toxicities have previously led to reduction or cessation of therapy and recently have been shown to decrease patients' quality of life. This review provides a symptom-based treatment approach to the common dermatologic adverse effects seen with the epidermal growth factor receptor antagonists: papulopustular rash, xerosis, pruritus as well as hair, nail, and mucosal changes. Each dermatologic toxicity is described; prophylaxis and treatment options, from topical to systemic, are presented based on a review of the current literature with emphasis on new clinical trials results. We also provide specific recommendations based on our practice in a specialty clinic. Although the field continues to evolve, this review presents the most up-to-date information on managing dermatologic adverse effects of EGFRIs. Practitioners should find this article to be a practical resource in approaching patients on EGFRIs with dermatologic toxicities. As we learn how to optimally manage the adverse effects of these agents, we practitioners have the opportunity to increase patients' quality of life and decrease reductions or cessations of life-prolonging therapy.

  1. Evidence that the modulator of the glucocorticoid-receptor complex is the endogenous molybdate factor.


    Bodine, P V; Litwack, G


    We have recently purified the modulator of the glucocorticoid-receptor complex from rat liver. Purified modulator inhibits glucocorticoid-receptor complex activation and stabilizes the steroid-binding ability of the unoccupied glucocorticoid receptor. Since these activities are shared by exogenous sodium molybdate, modulator appears to be the endogenous factor that sodium molybdate mimics. In this report, we present additional evidence for the mechanism of action of purified modulator. (i) Mo...

  2. Prostate-specific antigen and hormone receptor expression in male and female breast carcinoma

    Directory of Open Access Journals (Sweden)

    Cohen Cynthia


    Full Text Available Abstract Background Prostate carcinoma is among the most common solid tumors to secondarily involve the male breast. Prostate specific antigen (PSA and prostate-specific acid phosphatase (PSAP are expressed in benign and malignant prostatic tissue, and immunohistochemical staining for these markers is often used to confirm the prostatic origin of metastatic carcinoma. PSA expression has been reported in male and female breast carcinoma and in gynecomastia, raising concerns about the utility of PSA for differentiating prostate carcinoma metastasis to the male breast from primary breast carcinoma. This study examined the frequency of PSA, PSAP, and hormone receptor expression in male breast carcinoma (MBC, female breast carcinoma (FBC, and gynecomastia. Methods Immunohistochemical staining for PSA, PSAP, AR, ER, and PR was performed on tissue microarrays representing six cases of gynecomastia, thirty MBC, and fifty-six FBC. Results PSA was positive in two of fifty-six FBC (3.7%, focally positive in one of thirty MBC (3.3%, and negative in the five examined cases of gynecomastia. PSAP expression was absent in MBC, FBC, and gynecomastia. Hormone receptor expression was similar in males and females (AR 74.1% in MBC vs. 67.9% in FBC, p = 0.62; ER 85.2% vs. 68.5%, p = 0.18; and PR 51.9% vs. 48.2%, p = 0.82. Conclusions PSA and PSAP are useful markers to distinguish primary breast carcinoma from prostate carcinoma metastatic to the male breast. Although PSA expression appeared to correlate with hormone receptor expression, the incidence of PSA expression in our population was too low to draw significant conclusions about an association between PSA expression and hormone receptor status in breast lesions.

  3. μ-Opioid receptor antibody reveals tissue-dependent specific staining and increased neuronal μ-receptor immunoreactivity at the injured nerve trunk in mice.

    Directory of Open Access Journals (Sweden)

    Yvonne Schmidt

    Full Text Available Neuropathic pain is a debilitating chronic disease often resulting from damage to peripheral nerves. Activation of opioid receptors on peripheral sensory neurons can attenuate pain without central nervous system side effects. Here we aimed to analyze the distribution of neuronal μ-opioid receptors, the most relevant opioid receptors in the control of clinical pain, along the peripheral neuronal pathways in neuropathy. Hence, following a chronic constriction injury of the sciatic nerve in mice, we used immunohistochemistry to quantify the μ-receptor protein expression in the dorsal root ganglia (DRG, directly at the injured nerve trunk, and at its peripheral endings in the hind paw skin. We also thoroughly examined the μ-receptor antibody staining specificity. We found that the antibody specifically labeled μ-receptors in human embryonic kidney 293 cells as well as in neuronal processes of the sciatic nerve and hind paw skin dermis, but surprisingly not in the DRG, as judged by the use of μ/δ/κ-opioid receptor knockout mice. Therefore, a reliable quantitative analysis of μ-receptor expression in the DRG was not possible. However, we demonstrate that the μ-receptor immunoreactivity was strongly enhanced proximally to the injury at the nerve trunk, but was unaltered in paws, on days 2 and 14 following injury. Thus, μ-opioid receptors at the site of axonal damage might be a promising target for the control of painful neuropathies. Furthermore, our findings suggest a rigorous tissue-dependent characterization of antibodies' specificity, preferably using knockout animals.

  4. Depletion of endothelial or smooth muscle cell-specific angiotensin II type 1a receptors does not influence aortic aneurysms or atherosclerosis in LDL receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Debra L Rateri

    Full Text Available BACKGROUND: Whole body genetic deletion of AT1a receptors in mice uniformly reduces hypercholesterolemia and angiotensin II-(AngII induced atherosclerosis and abdominal aortic aneurysms (AAAs. However, the role of AT1a receptor stimulation of principal cell types resident in the arterial wall remains undefined. Therefore, the aim of this study was to determine whether deletion of AT1a receptors in either endothelial cells or smooth muscle cells influences the development of atherosclerosis and AAAs. METHODOLOGY/PRINCIPAL FINDINGS: AT1a receptor floxed mice were developed in an LDL receptor -/- background. To generate endothelial or smooth muscle cell specific deficiency, AT1a receptor floxed mice were bred with mice expressing Cre under the control of either Tie2 or SM22, respectively. Groups of males and females were fed a saturated fat-enriched diet for 3 months to determine effects on atherosclerosis. Deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effect on the size of atherosclerotic lesions. We also determined the effect of cell-specific AT1a receptor deficiency on atherosclerosis and AAAs using male mice fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min. Again, deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effects on either AngII-induced atherosclerotic lesions or AAAs. CONCLUSIONS: Although previous studies have demonstrated whole body AT1a receptor deficiency diminishes atherosclerosis and AAAs, depletion of AT1a receptors in either endothelial or smooth muscle cells did not affect either of these vascular pathologies.

  5. Regulation of ciliary neurotrophic factor receptor alpha in sciatic motor neurons following axotomy. (United States)

    MacLennan, A J; Devlin, B K; Neitzel, K L; McLaurin, D L; Anderson, K J; Lee, N


    Spinal motor neurons are one of the few classes of neurons capable of regenerating axons following axotomy. Injury-induced expression of neurotrophic factors and corresponding receptors may play an important role in this rare ability. A wide variety of indirect data suggests that ciliary neurotrophic factor receptor alpha may critically contribute to the regeneration of injured spinal motor neurons. We used immunohistochemistry, in situ hybridization and retrograde tracing techniques to study the regulation of ciliary neurotrophic factor receptor alpha in axotomized sciatic motor neurons. Ciliary neurotrophic factor receptor alpha immunoreactivity, detected with two independent antisera, is increased in a subpopulation of caudal sciatic motor neuron soma one, two and six weeks after sciatic nerve transection and reattachment, while no changes are detected at one day and 15 weeks post-lesion. Ciliary neurotrophic factor receptor alpha messenger RNA levels are augmented in the same classes of neurons following an identical lesion, suggesting that increased synthesis contributes, at least in part, to the additional ciliary neurotrophic factor receptor alpha protein. Separating the proximal and distal nerve stumps with a plastic barrier does not noticeably affect the injury-induced change in ciliary neurotrophic factor receptor alpha regulation, thereby indicating that this injury response is not dependent on signals distal to the lesion traveling retrogradely through the nerve or signals generated by axonal growth through the distal nerve. The prolonged increases in ciliary neurotrophic factor receptor alpha protein and messenger RNA found in regenerating sciatic motor neurons contrast with the responses of non-regenerating central neurons, which are reported to display, at most, a short-lived increase in ciliary neurotrophic factor receptor alpha messenger RNA expression following injury. The present data are the first to demonstrate, in vivo, neuronal regulation of

  6. Properties of a specific interleukin 1 (IL 1) receptor on human Epstein Barr virus-transformed B lymphocytes. Identity of receptor for IL 1-. cap alpha. and IL 1-. beta

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, K.; Akahoshi, T.; Yamada, M.; Furutani, Y.; Oppenheim, J.J.


    The properties of specific human interleukin 1 (IL 1) receptors on human Epstein Barr virus-transformed B lymphocytes (EBV-B) were studied. Purified human IL 1-..beta.. from a myelomonocytic cell line (THP-1) was labeled with /sup 125/I. Among four EBV-B cell lines tested, a pre-B cell type (VDS-O) specifically bound the highest amount of /sup 125/I-IL 1-..beta... The binding of /sup 125/I-IL 1-..beta.. to VDS-O cells was inhibited by F(ab)'/sub 2/ fragments of anti-human IL 1 and recombinant human IL 1-..cap alpha.., as well as by unlabeled human IL 1-..beta.. but not by recombinant lymphotoxin, recombinant tumor necrosis factor, or phorbol myristic acid, suggesting that IL 1-..cap alpha.. and IL 1-..beta.. bind specifically to the same receptor. The m.w. of IL 1 receptor on human EBV-B cells was estimated to be 60,000 by both the chemical cross-linking method and high pressure liquid chromatography (HPLC). The isoelectric point of solubilized human IL 1 receptor was 7.3 on HPLC chromatofocusing. The evidence of existence of IL 1 receptor on human EBV-B cells additionally supports the hypothesis that IL 1 may be an autocrine signal for these cells.

  7. Evolution of corticosteroid specificity for human, chicken, alligator and frog glucocorticoid receptors. (United States)

    Katsu, Yoshinao; Kohno, Satomi; Oka, Kaori; Baker, Michael E


    We investigated the evolution of the response of human, chicken, alligator and frog glucocorticoid receptors (GRs) to dexamethasone, cortisol, cortisone, corticosterone, 11-deoxycorticosterone, 11-deoxycortisol and aldosterone. We find significant differences among these vertebrates in the transcriptional activation of their full length GRs by these steroids, indicating that there were changes in the specificity of the GR for steroids during the evolution of terrestrial vertebrates. To begin to study the role of interactions between different domains on the GR in steroid sensitivity and specificity for terrestrial GRs, we investigated transcriptional activation of truncated GRs containing their hinge domain and ligand binding domain (LBD) fused to a GAL4 DNA binding domain (GAL4-DBD). Compared to corresponding full length GRs, transcriptional activation of GAL4-DBD_GR-hinge/LBD constructs required higher steroid concentrations and displayed altered steroid specificity, indicating that interactions between the hinge/LBD and other domains are important in glucocorticoid activation of these terrestrial GRs.

  8. Identification of Receptor and Heparin Binding Sites in Fibroblast Growth Factor 4 by Structure-Based Mutagenesis


    Bellosta, Paola; Iwahori, Akiyo; Plotnikov, Alexander N.; Eliseenkova, Anna V.; Basilico, Claudio; Mohammadi, Moosa


    Fibroblast growth factors (FGFs) comprise a large family of multifunctional, heparin-binding polypeptides that show diverse patterns of interaction with a family of receptors (FGFR1 to -4) that are subject to alternative splicing. FGFR binding specificity is an essential mechanism in the regulation of FGF signaling and is achieved through primary sequence differences among FGFs and FGFRs and through usage of two alternative exons, IIIc and IIIb, for the second half of immunoglobulin-like doma...

  9. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Kellermeier Silvia


    Full Text Available Abstract Background Cholangiocarcinoma (CC is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Methods Expression of EGFR (epithelial growth factor receptor, HGFR (hepatocyte growth factor receptor IGF1R (insulin-like growth factor 1 receptor, IGF2R (insulin-like growth factor 2 receptor and VEGFR1-3 (vascular endothelial growth factor receptor 1-3 were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1. The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. Results EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml, with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D. HuH28, OZ and TFK-1 lacked KRAS mutation. Conclusion CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab.


    NARCIS (Netherlands)



    Nerve growth factor (NGF) is important to the survival, development, and differentiation of neurons. Its action is mediated by a specific cell surface transmembrane glycoprotein, nerve growth factor receptor (NGFR). In this study, NGFR expression by human fetal and adult adrenal medullary tissue, pe

  11. Targeted cancer therapies based on antibodies directed against epidermal growth factor receptor: status and perspectives

    Institute of Scientific and Technical Information of China (English)

    Zhenping ZHU


    Compelling experimental and clinical evidence suggests that epidermal growth factor receptor (EGFR) plays an important role in the pathogenesis of a variety of human cancers; thus, providing a strong rationale for the development of receptor antagonists as effective and specific therapeutic strategies for the treatment of EGFR-expressing cancers. Monoclonal antibodies (mAb), owing to their high specificity towards a given target, represent a unique class of novel cancer therapeutics. A number of anti-EGFR mAb are currently being developed in our clinic, including two that have been approved by the United States Food and Drug Administration for the treatment of refractory metastatic colorectal cancer (mCRC) and squamous cell carcinomas of the head and neck (SCCHN). Cetuximab (Erbitux, IMC-C225), an IgG 1 mAb, has demonstrated significant antitumor activity,both as a single agent and in combination with chemotherapeutics and radiation,in patients with refractory mCRC and SCCHN, respectively. Panitumumab(Vectibix), an IgG2 mAb, has been approved as a single agent for the treatment of patients with refractory mCRC. These mAb, via blocking ligand/receptor interactions, exert their biological activity via multiple mechanisms, includinginhibition of cell cycle progression, potentiation of cell apoptosis, inhibition of DNA repair, inhibition of angiogenesis, tumor cell invasion and metastasis and,potentially, induction of immunological effector mechanisms. Anti-EGFR anti-bodies have demonstrated good safety profiles and potent anticancer activity in our clinic and may prove to be efficacious agents in the treatment of a variety of human malignancies.

  12. Characterization of ductal and lobular breast carcinomas using novel prolactin receptor isoform specific antibodies

    Directory of Open Access Journals (Sweden)

    Heger Christopher D


    Full Text Available Abstract Background Prolactin is a polypeptide hormone responsible for proliferation and differentiation of the mammary gland. More recently, prolactin's role in mammary carcinogenesis has been studied with greater interest. Studies from our laboratory and from others have demonstrated that three specific isoforms of the prolactin receptor (PRLR are expressed in both normal and cancerous breast cells and tissues. Until now, reliable isoform specific antibodies have been lacking. We have prepared and characterized polyclonal antibodies against each of the human PRLR isoforms that can effectively be used to characterize human breast cancers. Methods Rabbits were immunized with synthetic peptides of isoform unique regions and immune sera affinity purified prior to validation by Western blot and immunohistochemical analyses. Sections of ductal and lobular carcinomas were stained with each affinity purified isoform specific antibody to determine expression patterns in breast cancer subclasses. Results We show that the rabbit antibodies have high titer and could specifically recognize each isoform of PRLR. Differences in PRLR isoform expression levels were observed and quantified using histosections from xenografts of established human breast cancer cells lines, and ductal and lobular carcinoma human biopsy specimens. In addition, these results were verified by real-time PCR with isoform specific primers. While nearly all tumors contained LF and SF1b, the majority (76% of ductal carcinoma biopsies expressed SF1a while the majority of lobular carcinomas lacked SF1a staining (72% and 27% had only low levels of expression. Conclusions Differences in the receptor isoform expression profiles may be critical to understanding the role of PRL in mammary tumorigenesis. Since these antibodies are specifically directed against each PRLR isoform, they are valuable tools for the evaluation of breast cancer PRLR content and have potential clinical importance in

  13. Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers

    Directory of Open Access Journals (Sweden)

    McMillan Catherine R


    Full Text Available Abstract Background In order to optimize the potential benefits of neural stem cell (NSC transplantation for the treatment of neurodegenerative disorders, it is necessary to understand their biological characteristics. Although neurotrophin transduction strategies are promising, alternative approaches such as the modulation of intrinsic neurotrophin expression by NSCs, could also be beneficial. Therefore, utilizing the C17.2 neural stem cell line, we have examined the expression of selected neurotrophic factors under different in vitro conditions. In view of recent evidence suggesting a role for the pineal hormone melatonin in vertebrate development, it was also of interest to determine whether its G protein-coupled MT1 and MT2 receptors are expressed in NSCs. Results RT-PCR analysis revealed robust expression of glial cell-line derived neurotrophic factor (GDNF, brain-derived neurotrophic factor (BDNF and nerve growth factor (NGF in undifferentiated cells maintained for two days in culture. After one week, differentiating cells continued to exhibit high expression of BDNF and NGF, but GDNF expression was lower or absent, depending on the culture conditions utilized. Melatonin MT1 receptor mRNA was detected in NSCs maintained for two days in culture, but the MT2 receptor was not seen. An immature MT1 receptor of about 30 kDa was detected by western blotting in NSCs cultured for two days, whereas a mature receptor of about 40 – 45 kDa was present in cells maintained for longer periods. Immunocytochemical studies demonstrated that the MT1 receptor is expressed in both neural (β-tubulin III positive and glial (GFAP positive progenitor cells. An examination of the effects of melatonin on neurotrophin expression revealed that low physiological concentrations of this hormone caused a significant induction of GDNF mRNA expression in NSCs following treatment for 24 hours. Conclusions The phenotypic characteristics of C17.2 cells suggest that they are

  14. Expression and purification of Nod factor receptors - Initial characterization of ligand binding

    DEFF Research Database (Denmark)

    Broghammer, Angelique

    . Lipochitooligosaccharides also serve as signals in the mutually beneficial interactions between arbuscular mycorrhiza (AM) and most land plants. In the model legume Lotus japonicus the Nod factor receptors, LjNFR1 and LjNFR5, two LysM receptor like kinases (LysM-RLK), are responsible for perceiving the rhizobial...

  15. Targeting hepatocyte growth factor receptor (Met) positive tumor cells using internalizing nanobody-decorated albumin nanoparticles

    NARCIS (Netherlands)

    Heukers, Raimond|info:eu-repo/dai/nl/325788103; Altintas, Isil|info:eu-repo/dai/nl/341537160; Raghoenath, Smiriti; De Zan, Erica; Pepermans, Richard; Roovers, Rob C.|info:eu-repo/dai/nl/205435599; Haselberg, Rob|info:eu-repo/dai/nl/304822647; Hennink, Wim E.|info:eu-repo/dai/nl/070880409; Schiffelers, Raymond M.|info:eu-repo/dai/nl/212909509; Kok, Robbert J.|info:eu-repo/dai/nl/170678326; Van Bergen en Henegouwen, Paul M P|info:eu-repo/dai/nl/071919481


    The hepatocyte growth factor receptor (HGFR, c-Met or Met) is a receptor tyrosine kinase that is involved in embryogenesis, tissue regeneration and wound healing. Abnormal activation of this proto-oncogene product is implicated in the development, progression and metastasis of many cancers. Current

  16. Regulation of Epidermal Growth Factor Receptor Trafficking by Lysine Deacetylase HDAC6

    DEFF Research Database (Denmark)

    Lissanu Deribe, Yonathan; Wild, Philipp; Chandrashaker, Akhila;


    Binding of epidermal growth factor (EGF) to its receptor leads to receptor dimerization, assembly of protein complexes, and activation of signaling networks that control key cellular responses. Despite their fundamental role in cell biology, little is known about protein complexes associated...

  17. Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy

    NARCIS (Netherlands)

    Bremer, Edwin


    The tumor necrosis factor (TNF) ligand and cognate TNF receptor superfamilies constitute an important regulatory axis that is pivotal for immune homeostasis and correct execution of immune responses. TNF ligands and receptors are involved in diverse biological processes ranging from the selective in

  18. Hierarchical classification strategy for Phenotype extraction from epidermal growth factor receptor endocytosis screening

    NARCIS (Netherlands)

    L. Cao (Lu); M. Graauw (Marjo de); K. Yan (Kuan); L.C.J. Winkel (Leah C.J.); F.J. Verbeek (Fons)


    textabstractBackground: Endocytosis is regarded as a mechanism of attenuating the epidermal growth factor receptor (EGFR) signaling and of receptor degradation. There is increasing evidence becoming available showing that breast cancer progression is associated with a defect in EGFR endocytosis. In

  19. Mature brain-derived neurotrophic factor and its receptor TrkB are upregulated in human glioma tissues. (United States)

    Xiong, Jing; Zhou, L I; Lim, Yoon; Yang, Miao; Zhu, Yu-Hong; Li, Zhi-Wei; Fu, Deng-Li; Zhou, Xin-Fu


    There are two forms of brain-derived neurotrophic factor (BDNF), precursor of BDNF (proBDNF) and mature BDNF, which each exert opposing effects through two different transmembrane receptor signaling systems, consisting of p75 neurotrophin receptor (p75NTR) and tyrosine receptor kinase B (TrkB). Previous studies have demonstrated that proBDNF promotes cell death and inhibits the growth and migration of C6 glioma cells through p75NTR in vitro, while mature BDNF has opposite effects on C6 glioma cells. It is hypothesized that mature BDNF is essential in the development of malignancy in gliomas. However, histological data obtained in previous studies were unable distinguish mature BDNF from proBDNF due to the lack of specific antibodies. The present study investigated the expression of mature BDNF using a specific sheep monoclonal anti-mature BDNF antibody in 42 human glioma tissues of different grades and 10 control tissues. The correlation between mature BDNF and TrkB was analyzed. Mature BDNF expression was significantly increased in high-grade gliomas, and was positively correlated with the malignancy of the tumor and TrkB receptor expression. The present data have demonstrated that increased levels of mature BDNF contribute markedly to the development of malignancy of human gliomas through the primary BDNF receptor TrkB.

  20. Novel method demonstrates differential ligand activation and phosphatase-mediated deactivation of insulin receptor tyrosine-specific phosphorylation. (United States)

    Cieniewicz, Anne M; Cooper, Philip R; McGehee, Jennifer; Lingham, Russell B; Kihm, Anthony J


    Insulin receptor signaling is a complex cascade leading to a multitude of intracellular functional responses. Three natural ligands, insulin, IGF1 and IGF2, are each capable of binding with different affinities to the insulin receptor, and result in variable biological responses. However, it is likely these affinity differences alone cannot completely explain the myriad of diverse cellular outcomes. Ligand binding initiates activation of a signaling cascade resulting in phosphorylation of the IR itself and other intracellular proteins. The direct catalytic activity along with the temporally coordinated assembly of signaling proteins is critical for insulin receptor signaling. We hypothesized that determining differential phosphorylation among individual tyrosine sites activated by ligand binding or dephosphorylation by phosphatases could provide valuable insight into insulin receptor signaling. Here, we present a sensitive, novel immunoassay adapted from Meso Scale Discovery technology to quantitatively measure changes in site-specific phosphorylation levels on endogenous insulin receptors from HuH7 cells. We identified insulin receptor phosphorylation patterns generated upon differential ligand activation and phosphatase-mediated deactivation. The data demonstrate that insulin, IGF1 and IGF2 elicit different insulin receptor phosphorylation kinetics and potencies that translate to downstream signaling. Furthermore, we show that insulin receptor deactivation, regulated by tyrosine phosphatases, occurs distinctively across specific tyrosine residues. In summary, we present a novel, quantitative and high-throughput assay that has uncovered differential ligand activation and site-specific deactivation of the insulin receptor. These results may help elucidate some of the insulin signaling mechanisms, discriminate ligand activity and contribute to a better understanding of insulin receptor signaling. We propose this methodology as a powerful approach to characterize

  1. Structural analysis of the evolution of steroid specificity in the mineralocorticoid and glucocorticoid receptors

    Directory of Open Access Journals (Sweden)

    Ollikainen Noah


    Full Text Available Abstract Background The glucocorticoid receptor (GR and mineralocorticoid receptor (MR evolved from a common ancestor. Still not completely understood is how specificity for glucocorticoids (e.g. cortisol and mineralocorticoids (e.g. aldosterone evolved in these receptors. Results Our analysis of several vertebrate GRs and MRs in the context of 3D structures of human GR and MR indicates that with the exception of skate GR, a cartilaginous fish, there is a deletion in all GRs, at the position corresponding to Ser-949 in human MR. This deletion occurs in a loop before helix 12, which contains the activation function 2 (AF2 domain, which binds coactivator proteins and influences transcriptional activity of steroids. Unexpectedly, we find that His-950 in human MR, which is conserved in the MR in chimpanzee, orangutan and macaque, is glutamine in all teleost and land vertebrate MRs, including New World monkeys and prosimians. Conclusion Evolution of differences in the responses of the GR and MR to corticosteroids involved deletion in the GR of a residue corresponding to Ser-949 in human MR. A mutation corresponding to His-950 in human MR may have been important in physiological changes associated with emergence of Old World monkeys from prosimians.

  2. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.; Liu, Corey W.; Nygaard, Rie; Rosenbaum, Daniel M.; Fung, Juan José; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Puglisi, Joseph D.; Weis, William I.; Pardo, Leonardo; Prosser, R. Scott; Mueller, Luciano; Kobilka, Brian K. (Stanford-MED); (Toronto); (BMS); (UAB, Spain)


    G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.

  3. Regulator T cells: specific for antigen and/or antigen receptors? (United States)

    Rubin, B; de Durana, Y Diaz; Li, N; Sercarz, E E


    Adaptive immune responses are regulated by many different molecular and cellular effectors. Regulator T cells are coming to their rights again, and these T cells seem to have ordinary alpha/beta T-cell receptors (TCRs) and to develop in the thymus. Autoimmune responses are tightly regulated by such regulatory T cells, a phenomenon which is beneficial to the host in autoimmune situations. However, the regulation of autoimmune responses to tumour cells is harmful to the host, as this regulation delays the defence against the outgrowth of neoplastic cells. In the present review, we discuss whether regulatory T cells are specific for antigen and/or for antigen receptors. Our interest in these phenomena comes from the findings that T cells produce many more TCR-alpha and TCR-beta chains than are necessary for surface membrane expression of TCR-alphabeta heterodimers with CD3 complexes. Excess TCR chains are degraded by the proteasomes, and TCR peptides thus become available to the assembly pathway of major histocompatibility complex class I molecules. Consequently, do T cells express two different identification markers on the cell membrane, the TCR-alphabeta clonotype for recognition by B-cell receptors and clonotypic TCR-alphabeta peptides for recognition by T cells?

  4. Downstream Toll-like receptor signaling mediates adaptor-specific cytokine expression following focal cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Bolanle Famakin


    Full Text Available Abstract Background Deletion of some Toll-like receptors (TLRs affords protection against cerebral ischemia, but disruption of their known major downstream adaptors does not. To determine whether compensation in the production of downstream effectors by one pathway when the other is disrupted can explain these findings, we examined cytokine/chemokine expression and inflammatory infiltrates in wild-type (WT, MyD88−/− and TRIF-mutant mice following permanent middle cerebral artery occlusion (pMCAO. Methods Cytokine/chemokine expression was measured with a 25-plex bead array in the serum and brains of all three groups of mice at baseline (no surgery/naïve and at 3 hours and 24 hours following pMCAO. Brain inflammatory and neutrophil infiltrates were examined 24 hours following pMCAO. Results IL-6, keratinocyte chemoattractant (KC, granulocyte colony-stimulating factor (G-CSF and IL-10 were significantly decreased in MyD88−/− mice compared to WT mice following pMCAO. Significantly, decreased levels of the neutrophil chemoattractants KC and G-CSF corresponded with a trend toward fewer neutrophils in the brains of MyD88−/− mice. IP-10 was significantly decreased when either pathway was disrupted. MIP-1α was significantly decreased in TRIF-mutant mice, consistent with TRIF-dependent production. MyD88−/− mice showed elevations of a number of Th2 cytokines, such as IL-13, at baseline, which became significantly decreased following pMCAO. Conclusions Both MyD88 and TRIF mediate pathway-specific cytokine production following focal cerebral ischemia. Our results also suggest a compensatory Th2-type skew at baseline in MyD88−/− mice and a paradoxical switch to a Th1 phenotype following focal cerebral ischemia. The MyD88 pathway directs the expression of neutrophil chemoattractants following cerebral ischemia.

  5. Equine insulin receptor and insulin-like growth factor-1 receptor expression in digital lamellar tissue and insulin target tissues. (United States)

    Kullmann, A; Weber, P S; Bishop, J B; Roux, T M; Norby, B; Burns, T A; McCutcheon, L J; Belknap, J K; Geor, R J


    Hyperinsulinaemia is implicated in the pathogenesis of endocrinopathic laminitis. Insulin can bind to different receptors: two insulin receptor isoforms (InsR-A and InsR-B), insulin-like growth factor-1 receptor (IGF-1R) and InsR/IGF-1R hybrid receptor (Hybrid). Currently, mRNA expression of these receptors in equine tissues and the influence of body type and dietary carbohydrate intake on expression of these receptors is not known. The study objectives were to characterise InsR-A, InsR-B, IGF-1R and Hybrid expression in lamellar tissue (LT) and insulin responsive tissues from horses and examine the effect of dietary nonstructural carbohydrate (NSC) on mRNA expression of these receptors in LT, skeletal muscle, liver and two adipose tissue (AT) depots of lean and obese ponies. In vivo experiment. Lamellar tissue samples were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for receptor mRNA expression (n = 8) and immunoblotting for protein expression (n = 3). Archived LT, skeletal muscle, liver and AT from lean and obese mixed-breed ponies fed either a low (~7% NSC as dry matter; 5 lean, 5 obese) or high NSC diet (~42% NSC as dry matter; 6 lean, 6 obese) for 7 days were evaluated by RT-qPCR to determine the effect of body condition and diet on expression of the receptors in different tissues. Significance was set at P≤0.05. Lamellar tissue expresses both InsR isoforms, IGF-1R and Hybrid. LT IGF-1R gene expression was greater than either InsR isoform and InsR-A expression was greater than InsR-B (P≤0.05). Obesity significantly lowered IGF-1R, InsR-A and InsR-B mRNA expression in LT and InsR-A in tailhead AT. High NSC diet lowered expression of all three receptor types in liver; IGF-1R and InsR-A in LT and InsR-A in tailhead AT. Lamellar tissue expresses IGF-1R, InsR isoforms and Hybrids. The functional characteristics of these receptors and their role in endocrinopathic laminitis warrants further investigation. © 2015 EVJ

  6. Soluble Expression and Purification of the Catalytic Domain of Human Vascular Endothelial Growth Factor Receptor 2 in Escherichia coli. (United States)

    Wei, Jia; Cao, Xiaodan; Zhou, Shengmin; Chen, Chao; Yu, Haijun; Zhou, Yao; Wang, Ping


    Vascular endothelial growth factor (VEGF) plays a key role in angiogenesis through binding to its specific receptors, which mainly occurs to VEGF receptor 2 (VEGFR-2), a kinase insert domain-containing receptor. Therefore, the disruption of VEGFR-2 signaling provides a promising therapeutic approach for the treatment of cancer by inhibiting abnormal or tumorinduced angiogenesis. To explore this potential, we expressed the catalytic domain of VEGFR- 2 (VEGFR-2-CD) as a soluble active kinase in Escherichia coli. The recombinant protein was purified and the VEGFR-2-CD activity was investigated. The obtained VEGFR-2-CD showed autophosphorylation activity and phosphate transfer activity comparable to the commercial enzyme. Furthermore, the IC50 value of known VEGFR-2 inhibitor was determined using the purified VEGFR-2-CD. These results indicated a possibility for functional and economical VEGFR-2-CD expression in E. coli to use for inhibitor screening.


    Institute of Scientific and Technical Information of China (English)

    ZHANG; Long


    [1]LIU Xu-wen, FU Pei-yu, GAO Zhi-xian. Expression of epidermal growth factor receptors in human glioma [J]. Chin J Neurosurgery 1998; 14:71.[2]Wong AJ, Ruppert JM, Bigner SH, et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas [J]. Proc Natl Acad Sci USA 1992; 89:4309.[3]Webster J, Ham J, Bevan JS. Preliminary characterization of growth factors secreted by human pituitary tumors [J]. J Clin Endocrinol Metab 1991; 72:687.[4]Klibanski A. Nonsecreting pituitary tumors [J]. Endocrinol Metab Clin North Am 1987; 16:793.[5]LeRiche VK, Asa SL, Ezzat S. Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness [J]. J Clin Endocrinol Metab 1996; 81:656.

  8. Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics

    DEFF Research Database (Denmark)

    Akimov, Vyacheslav; Rigbolt, Kristoffer T G; Nielsen, Mogens M;


    ) for selectively decoding ubiquitination-driven processes involved in the regulation of cellular signaling networks. We applied this approach to characterize the temporal dynamics of ubiquitination events accompanying epidermal growth factor receptor (EGFR) signal transduction. We used recombinant UBDs derived...

  9. New factors influencing G protein coupled receptors’ system ...

    African Journals Online (AJOL)

    Abdelaziz Ghanemi


    Nov 24, 2012 ... system functions. Abdelaziz .... systems. Such factors will be added to those already known including ..... crossroad between cell biology and physics. Nat Cell ... classification of receptors for 5-hydroxytryptamine (Serotonin).

  10. Gene expression of growth factors and growth factor receptors for potential targeted therapy of canine hepatocellular carcinoma. (United States)

    Iida, Gentoku; Asano, Kazushi; Seki, Mamiko; Sakai, Manabu; Kutara, Kenji; Ishigaki, Kumiko; Kagawa, Yumiko; Yoshida, Orie; Teshima, Kenji; Edamura, Kazuya; Watari, Toshihiro


    The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-α, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC.

  11. Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block. (United States)

    Dravid, Shashank M; Erreger, Kevin; Yuan, Hongjie; Nicholson, Katherine; Le, Phuong; Lyuboslavsky, Polina; Almonte, Antoine; Murray, Ernest; Mosely, Cara; Barber, Jeremy; French, Adam; Balster, Robert; Murray, Thomas F; Traynelis, Stephen F


    We have compared the potencies of structurally distinct channel blockers at recombinant NR1/NR2A, NR1/NR2B, NR1/NR2C and NR1/NR2D receptors. The IC50 values varied with stereochemistry and subunit composition, suggesting that it may be possible to design subunit-selective channel blockers. For dizocilpine (MK-801), the differential potency of MK-801 stereoisomers determined at recombinant NMDA receptors was confirmed at native receptors in vitro and in vivo. Since the proton sensor is tightly linked both structurally and functionally to channel gating, we examined whether blocking molecules that interact in the channel pore with the gating machinery can differentially sense protonation of the receptor. Blockers capable of remaining trapped in the pore during agonist unbinding showed the strongest dependence on extracellular pH, appearing more potent at acidic pH values that promote channel closure. Determination of pK(a) values for channel blockers suggests that the ionization of ketamine but not of other blockers can influence its pH-dependent potency. Kinetic modelling and single channel studies suggest that the pH-dependent block of NR1/NR2A by (-)MK-801 but not (+)MK-801 reflects an increase in the MK-801 association rate even though protons reduce channel open probability and thus MK-801 access to its binding site. Allosteric modulators that alter pH sensitivity alter the potency of MK-801, supporting the interpretation that the pH sensitivity of MK-801 binding reflects the changes at the proton sensor rather than a secondary effect of pH. These data suggest a tight coupling between the proton sensor and the ion channel gate as well as unique subunit-specific mechanisms of channel block.

  12. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han


    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  13. Lack of the type III epidermal growth factor receptor mutation in colorectal cancer

    DEFF Research Database (Denmark)

    Spindler, Karen-Lise Garm; Olsen, Dorte Aalund; Nielsen, Jens Nederby;


    network are being investigated and mutations in the EGFR gene have been identified. The type III epidermal growth factor receptor, a tumour-specific, ligand independent, constitutively activated form of EGFR, might contribute to the malignant phenotype in CRC and may be a potential target for anticancer...... therapy. The aim of the present study was to investigate the presence of EGFRvIII in CRC by PCR and protein analysis. MATERIALS AND METHODS: The study included 79 colorectal cancer patients for PCR analysis and 50 patients for protein analysis by Western blots, in two different laboratories. RESULTS......: No type III mutations were detected in our material. CONCLUSION: The EGFRvIII mutations are rare in colorectal adenocarcinomas and overall probability does not appear to contribute to the malignant phenotype of this disease....

  14. Ligand-specific sequential regulation of transcription factors for differentiation of MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Toyoda Tetsuro


    Full Text Available Abstract Background Sharing a common ErbB/HER receptor signaling pathway, heregulin (HRG induces differentiation of MCF-7 human breast cancer cells while epidermal growth factor (EGF elicits proliferation. Although cell fates resulting from action of the aforementioned ligands completely different, the respective gene expression profiles in early transcription are qualitatively similar, suggesting that gene expression during late transcription, but not early transcription, may reflect ligand specificity. In this study, based on both the data from time-course quantitative real-time PCR on over 2,000 human transcription factors and microarray of all human genes, we identified a series of transcription factors which may control HRG-specific late transcription in MCF-7 cells. Results We predicted that four transcription factors including EGR4, FRA-1, FHL2, and DIPA should have responsibility of regulation in MCF-7 cell differentiation. Validation analysis suggested that one member of the activator protein 1 (AP-1 family, FOSL-1 (FRA-1 gene, appeared immediately following c-FOS expression, might be responsible for expression of transcription factor FHL2 through activation of the AP-1 complex. Furthermore, RNAi gene silencing of FOSL-1 and FHL2 resulted in increase of extracellular signal-regulated kinase (ERK phosphorylation of which duration was sustained by HRG stimulation. Conclusion Our analysis indicated that a time-dependent transcriptional regulatory network including c-FOS, FRA-1, and FHL2 is vital in controlling the ERK signaling pathway through a negative feedback loop for MCF-7 cell differentiation.

  15. Nerve growth factor and receptor expression in rheumatoid arthritis and spondyloarthritis

    NARCIS (Netherlands)

    Barthel, C.; Yeremenko, N.; Jacobs, R.; Schmidt, R.E.; Bernateck, M.; Zeidler, H.; Tak, P.P.; Baeten, D.; Rihl, M.


    Introduction We previously described the presence of nerve growth factor receptors in the inflamed synovial compartment. Here we investigated the presence of the corresponding nerve growth factors, with special focus on nerve growth factor (NGF). Methods mRNA expression levels of four ligands (NGF,

  16. Association of coatomer proteins with the beta-receptor for platelet-derived growth factor

    DEFF Research Database (Denmark)

    Hansen, Klaus; Rönnstrand, L; Rorsman, C


    of intracellular vesicle transport. In order to explore the functional significance of the interaction between alpha- and beta'-COP and the PDGF receptor, a receptor mutant was made in which the conserved histidine residue 928 was mutated to an alanine residue. The mutant receptor, which was unable to bind alpha......The nonreceptor tyrosine kinase Src binds to and is activated by the beta-receptor for platelet-derived growth factor (PDGF). The interaction leads to Src phosphorylation of Tyr934 in the kinase domain of the receptor. In the course of the functional characterization of this phosphorylation, we...... noticed that components of 136 and 97 kDa bound to a peptide from this region of the receptor in a phosphorylation-independent manner. These components have now been purified and identified as alpha- and beta'-coatomer proteins (COPs), respectively. COPs are a family of proteins involved in the regulation...

  17. Gender-specific decrease in NUDR and 5-HT1A receptor proteins in the prefrontal cortex of subjects with major depressive disorder. (United States)

    Szewczyk, Bernadeta; Albert, Paul R; Burns, Ariel M; Czesak, Margaret; Overholser, James C; Jurjus, George J; Meltzer, Herbert Y; Konick, Lisa C; Dieter, Lesa; Herbst, Nicole; May, Warren; Rajkowska, Grazyna; Stockmeier, Craig A; Austin, Mark C


    A variety of studies have documented alterations in 5-HT1A receptor binding sites in the brain of subjects with major depressive disorder (MDD). The recently identified transcription factor, nuclear deformed epidermal autoregulatory factor (NUDR/Deaf-1) has been shown to function as a transcriptional modulator of the human 5-HT1A receptor gene. The present study was undertaken to document the regional and cellular localization of NUDR in the human prefrontal cortex and to examine the levels of NUDR and 5-HT1A receptor protein in prefrontal cortex of female and male depressed and control subjects. NUDR immunoreactivity was present in neurons and glia across cortical layers and was co-localized with 5-HT1A receptor immunoreactive neurons. NUDR immunoreactivity as measured by Western blot was significantly decreased in the prefrontal cortex of female depressed subjects (42%, p=0.02) and unchanged in male depressed subjects relative to gender-matched control subjects. Similarly, 5-HT1A receptor protein level was significantly reduced in the prefrontal cortex of female depressed subjects (46%, p=0.03) and unchanged in male depressed subjects compared to gender-matched control subjects. Reduced protein expression of NUDR in the prefrontal cortex of female subjects with MDD may reflect a functional alteration in this transcription factor, which may contribute to the decrease in 5-HT1A receptors observed in the same female subjects with MDD. In addition, the gender-specific alterations in cortical NUDR and 5-HT1A receptor proteins could represent an underlying biological mechanism associated with the higher incidence of depression in women.

  18. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials

    DEFF Research Database (Denmark)

    Voldborg, B R; Damstrup, L; Spang-Thomsen, M;


    The epidermal growth factor receptor (EGFR) is a growth factor receptor that induces cell differentiation and proliferation upon activation through the binding of one of its ligands. The receptor is located at the cell surface, where the binding of a ligand activates a tyrosine kinase...... in the intracellular region of the receptor. This tyrosine kinase phosphorylates a number of intracellular substrates that activates pathways leading to cell growth, DNA synthesis and the expression of oncogenes such as fos and jun. EGFR is thought to be involved the development of cancer, as the EGFR gene is often...... amplified, and/or mutated in cancer cells. In this review we will focus on: (I) the structure and function of EGFR, (II) implications of receptor/ligand coexpression and EGFR mutations or overexpression, (III) its effect on cancer cells, (IV) the development of the malignant phenotype and (V) the clinical...

  19. Troglitazone inhibits cell proliferation by attenuation of epidermal growth factor receptor signaling independent of peroxisome proliferator-activated receptor γ

    Institute of Scientific and Technical Information of China (English)

    Xiaoqi Li; Xuanming Yang; Youli Xu; Xuejun Jiang; Xin Li; Fajun Nan; Hong Tang


    Peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor superfamily of ligand-dependent transcription factors. Recent results have shown that agonists of PPARy, such as troglitazone (TGZ), can inhibit cell proliferation and promote cell differentiation independent of PPARγ. In the present study, we provide evidence that TGZ may bind directly to EGFR and trigger its signaling and internalization independent of PPARγ. Detailed studies revealed that prolonged incubation with TGZ effectively attenuated EGFR signaling by target-ing the receptor to the endo-lysosomal degradation machinery. Although the extracellular signal-regulated kinase-signaling pathway was transiently activated by TGZ in EGFR overexpressing cancer cells, inhibition of EGF-induced Akt phosphorylation most likely accounted for the growth arrest of tumor cells caused by TGZ at pharmacologically achievable concentrations. Therefore, we have provided a new line of evidence indicating that TGZ inhibits cell pro-liferation by promoting EGFR degradation and attenuating Akt phosphorylation.

  20. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research

    Directory of Open Access Journals (Sweden)

    Zhixiang Wang


    Full Text Available Both G protein-coupled receptors (GPCRs and receptor-tyrosine kinases (RTKs regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR, a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges.

  1. The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs. (United States)

    Xue, Jing; Ray, Rashmi; Singer, David; Böhme, David; Burz, David S; Rai, Vivek; Hoffmann, Ralf; Shekhtman, Alexander


    Diabetes-induced hyperglycemia increases the extracellular concentration of methylglyoxal. Methylglyoxal-derived hydroimidazolones (MG-H) form advanced glycation end products (AGEs) that accumulate in the serum of diabetic patients. The binding of hydroimidozolones to the receptor for AGEs (RAGE) results in long-term complications of diabetes typified by vascular and neuronal injury. Here we show that binding of methylglyoxal-modified albumin to RAGE results in signal transduction. Chemically synthesized peptides containing hydroimidozolones bind specifically to the V domain of RAGE with nanomolar affinity. The solution structure of an MG-H1-V domain complex revealed that the hydroimidazolone moiety forms multiple contacts with a positively charged surface on the V domain. The high affinity and specificity of hydroimidozolones binding to the V domain of RAGE suggest that they are the primary AGE structures that give rise to AGEs-RAGE pathologies.

  2. Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells

    DEFF Research Database (Denmark)

    Jørgensen, Claus; Sherman, Andrew; Chen, Ginny I


    Cells have self-organizing properties that control their behavior in complex tissues. Contact between cells expressing either B-type Eph receptors or their transmembrane ephrin ligands initiates bidirectional signals that regulate cell positioning. However, simultaneously investigating how...... information is processed in two interacting cell types remains a challenge. We implemented a proteomic strategy to systematically determine cell-specific signaling networks underlying EphB2- and ephrin-B1-controlled cell sorting. Quantitative mass spectrometric analysis of mixed populations of EphB2......- and ephrin-B1-expressing cells that were labeled with different isotopes revealed cell-specific tyrosine phosphorylation events. Functional associations between these phosphotyrosine signaling networks and cell sorting were established with small interfering RNA screening. Data-driven network modeling...


    Institute of Scientific and Technical Information of China (English)

    RAO; Qing


    [1]Heaney MK, Golde DW. Soluble receptors in human disease [J]. J Leukoc Biol 1998; 61:135.[2]Fix P, Praloram V. M-CSF: Haematopoietic growth factor or inflammatory cytokine [J]? Cytokine 1998; 10:32.[3]Sherr C. Colony-stimulating factor ? 1 receptor [J]. Blood 1990; 75:1.[4]Downing JR, Roussel MF, Sherr CJ. Ligand and protein kinase C down modulate the colony-stimulating factor 1 receptor by independent mechanisms [J]. Mol Cell Biol 1989; 9:2890.[5]Baker AH, Cachia PG, Tennant GB, et al. A novel CSF-1 binding factor in a patient in complete remission following cytotoxic therapy for lymphoma [J]. Br J Haematol 1995; 89:219.[6]Wu KF, Zheng GG, Rao Q, et al. Cellular macrophage colony-stimulating factor and its role [J]. Hematologica 1999; 84:951.[7]Rao Q, Han JS, Geng YQ, et al. Antigen association of J6-1 cell membrane associated factor receptor with macrophage colony-stimulating factor receptor [J]. Chin J Cancer Res 1999; 11:235.[8]Rao Q, Han JS, Geng YQ, et al. Quantitation of human soluble macrophage colony stimulating factor receptor in human serum by ELISA assay [J]. Exp Hematol 1999; 27:105.[9]Luo SQ, Zheng DX, Liu YX, et al. Analysis of the ligand-binding domain of macrophage colony- stimulating factor receptor [J]. Chin Sci Bull 2000; 45:1191.[10]Wypych J, Bennett LG, Schwartz MG, et al. Soluble Kit receptor in human serum [J]. Blood 1995; 85:66.[11]Tiesman J, Hart CE. Identification of a soluble receptor for platelet-derived growth factor in cell-conditioned medium and human plasma [J]. J Biol Chem 1993; 269:9621.[12]Zhang Q, Xue YP, Song YH, et al. Expression of cellular M-CSF and M-CSFR in hematopoietic cells [J]. Chin J Hematol 1999; 20:249.[13]Tang SS, Liu HZ, Chen GB, et al. Internalization mediated by membrane-bound macrophage colony- stimulating factor and half-life of cell associated macrophage colony-stimulating factor and its receptor [J]. Chin Sci Bull 2000; 45:627.[14]Zeigler ZR

  4. Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. (United States)

    Jolly, Pawan; Tamboli, Vibha; Harniman, Robert L; Estrela, Pedro; Allender, Chris J; Bowen, Jenna L


    This study reports the design and evaluation of a new synthetic receptor sensor based on the amalgamation of biomolecular recognition elements and molecular imprinting to overcome some of the challenges faced by conventional protein imprinting. A thiolated DNA aptamer with established affinity for prostate specific antigen (PSA) was complexed with PSA prior to being immobilised on the surface of a gold electrode. Controlled electropolymerisation of dopamine around the complex served to both entrap the complex, holding the aptamer in, or near to, it's binding conformation, and to localise the PSA binding sites at the sensor surface. Following removal of PSA, it was proposed that the molecularly imprinted polymer (MIP) cavity would act synergistically with the embedded aptamer to form a hybrid receptor (apta-MIP), displaying recognition properties superior to that of aptamer alone. Electrochemical impedance spectroscopy (EIS) was used to evaluate subsequent rebinding of PSA to the apta-MIP surface. The apta-MIP sensor showed high sensitivity with a linear response from 100pg/ml to 100ng/ml of PSA and a limit of detection of 1pg/ml, which was three-fold higher than aptamer alone sensor for PSA. Furthermore, the sensor demonstrated low cross-reactivity with a homologous protein (human Kallikrein 2) and low response to human serum albumin (HSA), suggesting possible resilience to the non-specific binding of serum proteins.

  5. Alpha-1 adrenergic receptors gate rapid orientation-specific reduction in visual discrimination. (United States)

    Treviño, Mario; Frey, Sebastian; Köhr, Georg


    Prolonged imbalance in sensory experience leads to dramatic readjustments in cortical representation. Neuromodulatory systems play a critical role in habilitating experience-induced plasticity and regulate memory processes in vivo. Here, we show that a brief period of intense patterned visual stimulation combined with systemic activation of alpha-1 adrenergic neuromodulator receptors (α(1)-ARs) leads to a rapid, reversible, and NMDAR-dependent depression of AMPAR-mediated transmission from ascending inputs to layer II/III pyramidal cells in the visual cortex of young and adult mice. The magnitude of this form of α(1)-AR long-term depression (LTD), measured ex vivo with miniature EPSC recordings, is graded by the number of orientations used during visual experience. Moreover, behavioral tests of visual function following the induction of α(1)-AR LTD reveal that discrimination accuracy of sinusoidal drifting gratings is selectively reduced at high spatial frequencies in a reversible, orientation-specific, and NMDAR-dependent manner. Thus, α(1)-ARs enable rapid cortical synaptic depression which correlates with an orientation-specific decrease in visual discrimination. These findings contribute to our understanding of how adrenergic receptors interact with neuronal networks in response to changes in active sensory experience to produce adaptive behavior.

  6. Mineralocorticoid specificity of renal type I receptors: in vivo binding studies

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, K.; Funder, J.W.


    The authors have injected rats with (TH)aldosterone or (TH) corticosterone, plus 100-fold excess of the highly specific glucocorticoid RU 28362, with or without excess unlabeled aldosterone or corticosterone and compared type I receptor occupancy in kidney and hippocampus. Thirty minutes after subcutaneous injection (TH)aldosterone was well retained in renal papilla-inner medulla, renal cortex-outer medulla, and hippocampus; in contrast, (TH)corticosterone was well retained only in hippocampus. Competition studies for (TH)aldosterone binding sites showed corticosterone to be a poor competitor in the kidney compared with hippocampus. Time-course studies, with rats killed 10-180 min after tracer administration, showed very low uptake/retention of (TH)corticosterone by kidney; in hippocampus (TH)corticosterone retention was similar to that of (TH)aldosterone in kidney, and retention of (TH)aldosterone by hippocampus was much more prolonged than of either tracer in any other tissue. Studies in 10-day-old rats, with very low levels of corticosteroid binding globulin (CBG), showed a high degree of aldosterone selectivity in both zones of the kidney, whereas 9TH)aldosterone and (TH)corticosterone were equivalently bound in hippocampus. They interpret these data as evidenced for a mechanism unrelated to extravascular CBG conferring mineralocorticoid specificity on renal type I receptors and propose two models derived from their findings consistent with such differential selectivity.

  7. Can selective MHC downregulation explain the specificity and genetic diversity of NK cell receptors?

    Directory of Open Access Journals (Sweden)

    Paola eCarrillo-Bustamante


    Full Text Available Natural killer (NK cells express inhibiting receptors (iNKRs s which specifically bind MHC-I molecules on the surface of healthy cells. When the expression of MHC-I on the cell surface decreases, which might occur during certain viral infections and cancer, iNKRs s lose inhibiting signals and the infected cells become target for NK cell activation (missing-self detection. Although the detection of MHC-I deficient cells can be achieved by conserved receptor-ligand interactions, several iNKRs are encoded by gene families with a remarkable genetic diversity, containing many haplotypes varying in gene content and allelic polymorphism. So far, the biological function of this expansion within the NKR cluster has remained poorly understood. Here, we investigate whether the evolution of diverse iNKRs genes can be driven by a specific viral immunoevasive mechanism: selective MHC downregulation. Several viruses, including EBV, CMV, and HIV, decrease the expression of MHC-I to escape from T cell responses. This downregulation does not always affect all MHC loci in the same way, as viruses target particular MHC molecules. To study the selection pressure of selective MHC downregulation on iNKRs, we have developed an agent-based model simulating an evolutionary scenario of hosts infected with herpes-like viruses that are able to selectively downregulate the expression of MHC-I molecules on the cell surface. We show that iNKRs evolve specificity and, depending on the similarity of MHC alleles within each locus and the differences between the loci, they can specialize to a particular MHC-I locus. The easier it is to classify an MHC allele to its locus, the lower the required diversity of the NKRs. Thus, the diversification of the iNKR cluster depends on the locus specific MHC structure.

  8. The nerve growth factor and its receptors in airway inflammatory diseases. (United States)

    Freund-Michel, V; Frossard, N


    The nerve growth factor (NGF) belongs to the neurotrophin family and induces its effects through activation of 2 distinct receptor types: the tropomyosin-related kinase A (TrkA) receptor, carrying an intrinsic tyrosine kinase activity in its intracellular domain, and the receptor p75 for neurotrophins (p75NTR), belonging to the death receptor family. Through activation of its TrkA receptor, NGF activates signalling pathways, including phospholipase Cgamma (PLCgamma), phosphatidyl-inositol 3-kinase (PI3K), the small G protein Ras, and mitogen-activated protein kinases (MAPK). Through its p75NTR receptor, NGF activates proapoptotic signalling pathways including the MAPK c-Jun N-terminal kinase (JNK), ceramides, and the small G protein Rac, but also activates pathways promoting cell survival through the transcription factor nuclear factor-kappaB (NF-kappaB). NGF was first described by Rita Levi-Montalcini and collaborators as an important factor involved in nerve differentiation and survival. Another role for NGF has since been established in inflammation, in particular of the airways, with increased NGF levels in chronic inflammatory diseases. In this review, we will first describe NGF structure and synthesis and NGF receptors and their signalling pathways. We will then provide information about NGF in the airways, describing its expression and regulation, as well as pointing out its potential role in inflammation, hyperresponsiveness, and remodelling process observed in airway inflammatory diseases, in particular in asthma.

  9. Expression of tumor necrosis factor related apoptosis inducing ligand receptor in glioblastoma

    Institute of Scientific and Technical Information of China (English)

    Dongling Gao; Zhongwei Zhao; Hongxin Zhang; Lan Zhang; Kuisheng Chen; Yunhan Zhang


    BACKGROUND: Receptors for tumor necrosis factor related apoptosis inducing ligand (TRAIL) include death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2. Activation of death receptor 4 and 5 selectively kills tumor cells.OBJECTIVE: To detect TRAIL receptor expression in glioblastoma by immunohistochemistry and RT-PCR and to compare this expression to that in normal brain tissue.DESIGN: Observational analysis.SETTING: Department of Pathology, the First Affiliated Hospital of Zhengzhou University; Henan Tumor Pathology Key Laboratory.PARTICIPANTS: Twenty-five patients (17 males and 8 females) who received glioblastoma resection were selected from the Fifth Affiliated Hospital of Zhengzhou University, between September 2003 to June 2004. All glioblastoma samples were diagnosed pathologically. Twenty patients (12 males and 8 females) with craniocerebral injury who received normal brain tissue resection were selected in the same time period. There were no significant differences in sex and age between glioblastoma patients or between craniocerebral injury patients (P>0.05). All patients and appropriate relatives provided informed consent, and this study was approved by the local research ethics committee.METHODS: Polyclonal antibody against TRAIL receptors and an immunohistochemical kit (batch number: 200502) were purchased from Boster Company, Wuhan. Immunohistochemistry: Expression of death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2 were observed in both glioblastoma and normal brain tissue. The experiment was performed according to the kit instructions, and positive staining was brown-yellow. Assessment: There were no positive signals (-); weakly positive signals, positive cells75% (++++). Evaluation: Expression levels of TRAIL receptors were estimated in both normal brain tissue and glioblastoma. Expression of decoy receptor 1 and decoy receptor 2 mRNA in glioblastoma were detected by reverse transcription polymerase

  10. Epidermal growth factor receptor mutation enhances expression of vascular endothelial growth factor in lung cancer. (United States)

    Hung, Ming-Szu; Chen, I-Chuan; Lin, Paul-Yann; Lung, Jr-Hau; Li, Ya-Chin; Lin, Yu-Ching; Yang, Cheng-Ta; Tsai, Ying-Huang


    Epidermal growth factor receptor (EGFR) activation has been demonstrated to have a critical role in tumor angiogenesis. In the present study, the correlation between EGFR mutations and vascular endothelial growth factor (VEGF) was investigated in lung cancer cell lines and non-small-cell lung cancer (NSCLC) tumor tissues. VEGF levels were significantly increased in culture medium of lung cancer cells and NSCLC tissues with EGFR mutations (H1650 vs. A549, P=0.0399; H1975 vs. A549, Plung cancer cell lines expressing mutant (exon 19 deletion, E746-A750; exon 21 missense mutation, L858R) and wild-type EGFR genes were established. Significantly increased expression of VEGF and stronger inhibitory effects of gefitinib to VEGF expression were observed in exon 19 deletion stable lung cancer cells (exon 19 deletion vs. wild-type EGFR, P=0.0005). The results of the present study may provide an insight into the association of mutant EGFR and VEGF expression in lung cancer, and may assist with further development of targeted therapy for NSCLC in the future.

  11. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells. (United States)

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma


    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies.

  12. DMPD: CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multipleligand specificities and functions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 8485905 CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multipleligand specificities...) (.html) (.csml) Show CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multipleligand specificities...d NK cell membrane receptor with multipleligand specificities and functions. Authors Ross GD, Vetvicka V. Pu

  13. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival. (United States)

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn


    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  14. Increase of tumor necrosis factor receptor 1 expression in women with unexplained early spontaneous abortion

    Institute of Scientific and Technical Information of China (English)

    YAN Chun-fang; YU Xue-wen; JIN Hui; LI Xu


    To investigate membrane tumor necrosis factor receptor 1 protein expression level in decidua andconcentration of soluble tumor necrosis factor receptor 1 in serum in women with unexplained early spontaneous abortion,threatened abortion, and compare the levels with healthy pregnant women. Methods: Thirty-seven women with unexplainedearly spontaneous abortion, 27 women with threatened abortion, and 34 healthy pregnant women undergoing artificial abortionof pregnancy at 6 - 10 weeks of gestation were selected. Decidual samples were collected when women were undergoing arti-ficial abortion, and blood samples were collected at the same time. The level of membrane tumor necrosis factor receptor 1 indecidua was detected by flow cytometer, and the concentration of soluble tumor necrosis factor receptor 1 in sera was mea-sured with an enzyme-linked immunosorbent assay. Results: The ercentages of membrane tumor necrosis factor receptor 1positive decidual cells were 16.42 ± 7.10 Mean ± SD for women with unexplained early spontaneous abortion and 13.14 ±6.30 for healthy pregnant women ( P < 0.05). Serum oncentration of soluble tumor necrosis factor receptor 1 was signifi-cantly higher in women with unexplained early spontaneous abortion than in healthy pregnant women and in women withthreatened abortion, and no difference was found between healthy pregnant women and women with threatened abortion.Conclusion: Women with unexplained early spontaneous abortion present significantly higher expression of tumor necrosisfactor receptor 1 than healthy pregnant women, suggesting that over-expression of tumor necrosis factor receptor 1 may cont-ribute to the development of early spontaneous abortion.

  15. The oncogenic epidermal growth factor receptor variant Xiphophorus melanoma receptor kinase induces motility in melanocytes by modulation of focal adhesions. (United States)

    Meierjohann, Svenja; Wende, Elisabeth; Kraiss, Anita; Wellbrock, Claudia; Schartl, Manfred


    One of the most prominent features of malignant melanoma is the fast generation of metastasizing cells, resulting in the poor prognosis of patients with this tumor type. For this process, cells must gain the ability to migrate. The oncogenic receptor Xmrk (Xiphophorus melanoma receptor kinase) from the Xiphophorus melanoma system is a mutationally activated version of the epidermal growth factor receptor that induces the malignant transformation of pigment cells. Here, we show that the activation of Xmrk leads to a clear increase of pigment cell motility in a fyn-dependent manner. Stimulation of Xmrk induces its interaction with the focal adhesion kinase (FAK) and the interaction of active, receptor-bound fyn with FAK. This results in changes in FAK activity and induces the modulation of stress fibers and focal adhesions. Overexpression of dominant-negative FAK shows that the activity of innate FAK and a receptor-induced focal adhesion turnover are a prerequisite for pigment cell migration. Our findings show that in our system, Xmrk is sufficient for the induction of pigment cell motility and underlines a role of the src family protein tyrosine kinase fyn in melanoma development and progression.

  16. Peroxisome proliferator-activated receptor gamma B cell-specific deficient mice have an impaired antibody response1 (United States)

    Ramon, Sesquile; Bancos, Simona; Thatcher, Thomas H.; Murant, Thomas I.; Moshkani, Safiehkhatoon; Sahler, Julie M.; Bottaro, Andrea; Sime, Patricia J.; Phipps, Richard P.


    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily. PPARγ, a ligand activated transcription factor, has important anti-inflammatory and anti-proliferative functions and it has been associated with diseases including diabetes, scarring and atherosclerosis among others. PPARγ is expressed in most bone marrow derived cells and influences their function. PPARγ ligands can stimulate human B cell differentiation and promote antibody production. A knowledge gap is that the role of PPARγ in B cells under physiological conditions is not known. We developed a new B cell-specific PPARγ (B-PPARγ) knockout mouse and explored the role of PPARγ during both the primary and secondary immune response. Here, we show that PPARγ deficiency in B cells decreases germinal center B cells and plasma cell development as well as the levels of circulating antigen-specific antibodies during a primary challenge. Inability to generate germinal center B cells and plasma cells is correlated to decreased MHC class II expression and decreased Bcl-6 and Blimp-1 levels. Furthermore, B-PPARγ-deficient mice have an impaired memory response, characterized by low titers of antigen-specific antibodies and low numbers of antigen-experienced antibody-secreting cells. However, B-PPARγ-deficient mice have no differences in B cell population distribution within neither primary nor secondary lymphoid organs during development. This is the first report to show under physiological conditions that PPARγ expression in B cells is required for an efficient B cell-mediated immune response as it regulates B cell differentiation and antibody production. PMID:23041568

  17. Peroxisome proliferator-activated receptor γ B cell-specific-deficient mice have an impaired antibody response. (United States)

    Ramon, Sesquile; Bancos, Simona; Thatcher, Thomas H; Murant, Thomas I; Moshkani, Safiehkhatoon; Sahler, Julie M; Bottaro, Andrea; Sime, Patricia J; Phipps, Richard P


    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily. PPARγ, a ligand-activated transcription factor, has important anti-inflammatory and antiproliferative functions, and it has been associated with diseases including diabetes, scarring, and atherosclerosis, among others. PPARγ is expressed in most bone marrow-derived cells and influences their function. PPARγ ligands can stimulate human B cell differentiation and promote Ab production. A knowledge gap is that the role of PPARγ in B cells under physiological conditions is not known. We developed a new B cell-specific PPARγ (B-PPARγ) knockout mouse and explored the role of PPARγ during both the primary and secondary immune response. In this article, we show that PPARγ deficiency in B cells decreases germinal center B cells and plasma cell development, as well as the levels of circulating Ag-specific Abs during a primary challenge. Inability to generate germinal center B cells and plasma cells is correlated to decreased MHC class II expression and decreased Bcl-6 and Blimp-1 levels. Furthermore, B-PPARγ-deficient mice have an impaired memory response, characterized by low titers of Ag-specific Abs and low numbers of Ag-experienced, Ab-secreting cells. However, B-PPARγ-deficient mice have no differences in B cell population distribution within primary or secondary lymphoid organs during development. This is the first report, to our knowledge, to show that, under physiological conditions, PPARγ expression in B cells is required for an efficient B cell-mediated immune response as it regulates B cell differentiation and Ab production.

  18. Comparative analysis of species-specific ligand recognition in Toll-like receptor 8 signaling: a hypothesis.

    Directory of Open Access Journals (Sweden)

    Rajiv Gandhi Govindaraj

    Full Text Available Toll-like receptors (TLRs play a central role in the innate immune response by recognizing conserved structural patterns in a variety of microbes. TLRs are classified into six families, of which TLR7 family members include TLR7, 8, and 9, which are localized to endolysosomal compartments recognizing viral infection in the form of foreign nucleic acids. In our current study, we focused on TLR8, which has been shown to recognize different types of ligands such as viral or bacterial ssRNA as well as small synthetic molecules. The primary sequences of rodent and non-rodent TLR8s are similar, but the antiviral compound (R848 that activates the TLR8 pathway is species-specific. Moreover, the factors underlying the receptor's species-specificity remain unknown. To this end, comparative homology modeling, molecular dynamics simulations refinement, automated docking and computational mutagenesis studies were employed to probe the intermolecular interactions between this anti-viral compound and TLR8. Furthermore, comparative analyses of modeled TLR8 (rodent and non-rodent structures have shown that the variation mainly occurs at LRR14-15 (undefined region; hence, we hypothesized that this variation may be the primary reason for the exhibited species-specificity. Our hypothesis was further bolstered by our docking studies, which clearly showed that this undefined region was in close proximity to the ligand-binding site and thus may play a key role in ligand recognition. In addition, the interface between the ligand and TLR8s varied depending upon the amino acid charges, free energy of binding, and interaction surface. Therefore, our current work provides a hypothesis for previous in vivo studies in the context of TLR signaling.

  19. Fibroblast growth factor receptors as therapeutic targets in human melanoma: synergism with BRAF inhibition. (United States)

    Metzner, Thomas; Bedeir, Alexandra; Held, Gerlinde; Peter-Vörösmarty, Barbara; Ghassemi, Sara; Heinzle, Christine; Spiegl-Kreinecker, Sabine; Marian, Brigitte; Holzmann, Klaus; Grasl-Kraupp, Bettina; Pirker, Christine; Micksche, Michael; Berger, Walter; Heffeter, Petra; Grusch, Michael


    Cutaneous melanoma is a tumor with rising incidence and a very poor prognosis at the disseminated stage. Melanomas are characterized by frequent mutations in BRAF and also by overexpression of fibroblast growth factor 2 (FGF2), offering opportunities for therapeutic intervention. We investigated inhibition of FGF signaling and its combination with dacarbazine or BRAF inhibitors as an antitumor strategy in melanoma. The majority of melanoma cell lines displayed overexpression of FGF2 but also FGF5 and FGF18 together with different isoforms of FGF receptors (FGFRs) 1-4. Blockade of FGF signals with dominant-negative receptor constructs (dnFGFR1, 3, or 4) or small-molecule inhibitors (SU5402 and PD166866) reduced melanoma cell proliferation, colony formation, as well as anchorage-independent growth, and increased apoptosis. DnFGFR constructs also significantly inhibited tumor growth in vivo. Combination of FGF inhibitors with dacarbazine showed additive or antagonistic effects, whereas synergistic drug interaction was observed when combining FGFR inhibition with the multikinase/BRAF inhibitor sorafenib or the V600E mutant-specific BRAF inhibitor RG7204. In conclusion, FGFR inhibition has antitumor effects against melanoma cells in vitro and in vivo. Combination with BRAF inhibition offers a potential for synergistic antimelanoma effects and represents a promising therapeutic strategy against advanced melanoma.

  20. The Influence of Adnectin Binding on the Extracellular Domain of Epidermal Growth Factor Receptor (United States)

    Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.


    The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.

  1. Employment status in multiple sclerosis: impact of disease-specific and non-disease-specific factors. (United States)

    Krause, Ivonne; Kern, Simone; Horntrich, Antje; Ziemssen, Tjalf


    Multiple sclerosis (MS) is associated with high rates of early retirement (ER). A German cohort of MS patients and healthy control subjects (HCs) were compared cross-sectionally to investigate disease- and non-disease-specific factors that are associated with employment status (ES) in MS and to identify predictors of ES in MS. A total of 39 ER MS patients, 48 employed MS patients, and 37 HCs completed a brief neuropsychological battery and questionnaires related to depressive symptoms, fatigue, health-related quality of life (HrQoL) and health locus of control (HLC). Neurological disability was assessed by the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC). ER compared with employed MS patients scored significantly higher in neurological disability, depressive symptoms and fatigue and significantly lower in cognitive functioning and HrQoL. Further, both groups differed with regard to age, education, disease course and duration but not in HLC. Neurological disability, age and fatigue were identified as significant predictors of ES in MS. ES in MS was associated with demographic aspects, neurological and cognitive status, depressive symptoms, fatigue and HrQoL but was not associated with HLC. Findings confirm neurological disability, age and fatigue as independent predictors of ES in MS.

  2. Opioid growth factor receptor (OGFR expression is downregulated with progression of triple negative breast cancer

    Directory of Open Access Journals (Sweden)

    Beth Worley


    Full Text Available Purpose: Triple negative breast cancer (TNBC is an aggressive form of breast cancer that accounts for approximately 15% of the newly diagnosed cancers worldwide, and disproportionately affects younger women and women of color. Although many forms of breast cancer are successfully treated, new therapies are needed for TNBC. A novel regulatory system, the opioid growth factor (OGF – opioid growth factor receptor (OGFr axis, plays a determining role in neoplasia. OGF is an endogenous peptide that binds specifically to OGFr to inhibit cell replication. As some human cancers grow, OGFr expression is diminished, thus limiting the therapeutic efficacy of OGF. The OGF-OGFr axis is present in human TNBC cell line MDA-MB-231 and OGF  inhibits cell replication in a dosage-related, receptor-mediated manner. Methods: The present study investigated whether OGFr protein expression in human breast cancer cell lines grown in vitro or transplanted into nude mice, changed with the stage of proliferation or size of tumor using western blotting, semi-quantitative immunohistochemistry, and DNA synthesis techniques. Results: Comparison of log and confluent TNBC cultures revealed that OGF expression was significantly decreased in confluent cultures relative to levels in log-phase cells. Western blot analyses confirmed that OGFr was reduced in confluent TNBC and MCF-7 breast cancer cells in comparison to corresponding log-phase cells. Moreover, BrdU labeling was reduced in confluent cells. Small (<500 mm3 and large (>1000 mm3 TNBC tumors grown in nude mice were processed for semiquantitative   measurement of OGF and OGFr. The expression of both peptide and receptor in large tumors was downregulated relative to small tumors. Conclusion: The reduced expression of the inhibitory peptide and receptor diminishes the efficacy of the OGF-OGFr axis as a biotherapy. These data suggest that the OGF-OGFr pathway is altered with cancer progression and one or more elements of

  3. Biological sex influences learning strategy preference and muscarinic receptor binding in specific brain regions of prepubertal rats. (United States)

    Grissom, Elin M; Hawley, Wayne R; Hodges, Kelly S; Fawcett-Patel, Jessica M; Dohanich, Gary P


    According to the theory of multiple memory systems, specific brain regions interact to determine how the locations of goals are learned when rodents navigate a spatial environment. A number of factors influence the type of strategy used by rodents to remember the location of a given goal in space, including the biological sex of the learner. We recently found that prior to puberty male rats preferred a striatum-dependent stimulus-response strategy over a hippocampus-dependent place strategy when solving a dual-solution task, while age-matched females showed no strategy preference. Because the cholinergic system has been implicated in learning strategy and is known to be sexually dimorphic prior to puberty, we explored the relationship between learning strategy and muscarinic receptor binding in specific brain regions of prepubertal males and female rats. We confirmed our previous finding that at 28 days of age a significantly higher proportion of prepubertal males preferred a stimulus-response learning strategy than a place strategy to solve a dual-solution visible platform water maze task. Equal proportions of prepubertal females preferred stimulus-response or place strategies. Profiles of muscarinic receptor binding as assessed by autoradiography varied according to strategy preference. Regardless of biological sex, prepubertal rats that preferred stimulus-response strategy exhibited lower ratios of muscarinic receptor binding in the hippocampus relative to the dorsolateral striatum compared to rats that preferred place strategy. Importantly, much of the variance in this ratio was related to differences in the ventral hippocampus to a greater extent than the dorsal hippocampus. The ratios of muscarinic receptors in the hippocampus relative to the basolateral amygdala also were lower in rats that preferred stimulus-response strategy over place strategy. Results confirm that learning strategy preference varies with biological sex in prepubertal rats with males

  4. Phosphorylation and lipid raft association of fibroblast growth factor receptor-2 in oligodendrocytes. (United States)

    Bryant, M R; Marta, C B; Kim, F S; Bansal, R


    Fibroblast growth factors (FGFs) and their receptors (FGFRs) initiate diverse cellular responses that contribute to the regulation of oligodendrocyte (OL) function. To understand the mechanisms by which FGFRs elicit these cellular responses, we investigated the phosphorylation of signal transduction proteins and the role of cholesterol-glycosphingolipid-enriched "lipid raft" microdomains in differentiated OLs. Surprisingly, we found that the most abundant tyrosine-phosphorylated protein in OLs was the 120-kd isoform of FGFR2 and that it was phosphorylated even in the absence of FGF2, suggesting a potential ligand-independent function for this receptor. Furthermore, FGFR2, but not FGFR1, was associated with lipid raft microdomains in OLs and myelin (but not in astrocytes). This provides the first evidence for the association of FGFR with TX-100-insoluble lipid raft fractions. FGFR2 phosphorylated the key downstream target, FRS2 in OLs. Raft disruption resulted in loss of phosphorylated FRS2 from lipid rafts, coupled with the loss of Akt but not of Mek or Erk phosphorylation. This suggests that FGFR2-FRS2 signaling in lipid rafts operates via the PI3-Kinase/Akt pathway rather than the Ras/Mek/Erk pathway, emphasizing the importance of microenvironments within the cell membrane. Also present in lipid rafts in OLs and myelin, but not in astrocytes, was a novel 52-kd isoform of FGFR2 that lacked the extracellular ligand-binding region. These results demonstrate that FGFR2 in OLs and myelin possess unique characteristics that are specific both to receptor type and to OLs and provide a novel mechanism to elicit distinct cellular responses that mediate both FGF-dependent and -independent functions.

  5. Self-pathology, the five-factor model, and bloated specific factors: A cautionary tale. (United States)

    Oltmanns, Joshua R; Widiger, Thomas A


    The five-factor model (FFM) is widely regarded as a useful model for the structure of both normal and maladaptive personality traits. However, recent factor analytic studies have suggested that deficits in the sense of self fall outside the FFM. The current study replicates and extends these findings, illustrating that factors can be situated outside a higher-order domain by including a relatively large number of closely related scales, forming what is known as a bloated specific factor. A total of 1,553 participants (M age = 37.8 years, SD = 13.1) were recruited across 3 studies. One measure of self-pathology (including 15 scales) and 2 measures of the FFM were administered, along with 17 measures of anxiousness and 12 measures of social withdrawal/sociability. Across 2 independent samples and 2 different measures of the FFM, deficits in the sense of self separated from neuroticism when all 15 scales of self-pathology were included. However, self-pathology loaded with FFM neuroticism when only a subset of the self-pathology scales was included. This finding was replicated with measures of social withdrawal/sociability, although only partially replicated with measures of anxiousness. Implications of these findings for past and future factor analytic studies of the structure of psychopathology are discussed.

  6. SIRT1 is a Direct Coactivator of Thyroid Hormone Receptor β1 with Gene-Specific Actions (United States)

    Suh, Ji Ho; Sieglaff, Douglas H.; Zhang, Aijun; Xia, Xuefeng; Cvoro, Aleksandra; Winnier, Glenn E.; Webb, Paul


    Sirtuin 1 (SIRT1) NAD+-dependent deacetylase regulates energy metabolism by modulating expression of genes involved in gluconeogenesis and other liver fasting responses. While many effects of SIRT1 on gene expression are mediated by deacetylation and activation of peroxisome proliferator activated receptor coactivator α (PGC-1α), SIRT1 also binds directly to DNA bound transcription factors, including nuclear receptors (NRs), to modulate their activity. Since thyroid hormone receptor β1 (TRβ1) regulates several SIRT1 target genes in liver and interacts with PGC-1α, we hypothesized that SIRT1 may influence TRβ1. Here, we confirm that SIRT1 cooperates with PGC-1α to enhance response to triiodothyronine, T3. We also find, however, that SIRT1 stimulates TRβ1 activity in a manner that is independent of PGC-1α but requires SIRT1 deacetylase activity. SIRT1 interacts with TRβ1 in vitro, promotes TRβ1 deacetylation in the presence of T3 and enhances ubiquitin-dependent TRβ1 turnover; a common response of NRs to activating ligands. More surprisingly, SIRT1 knockdown only strongly inhibits T3 response of a subset of TRβ1 target genes, including glucose 6 phosphatase (G-6-Pc), and this is associated with blockade of TRβ1 binding to the G-6-Pc promoter. Drugs that target the SIRT1 pathway, resveratrol and nicotinamide, modulate T3 response at dual TRβ1/SIRT1 target genes. We propose that SIRT1 is a gene-specific TRβ1 co-regulator and TRβ1/SIRT1 interactions could play important roles in regulation of liver metabolic response. Our results open possibilities for modulation of subsets of TR target genes with drugs that influence the SIRT1 pathway. PMID:23922917

  7. [Dependence of EGF receptor and STAT factor activation on redox of A431 cells]. (United States)

    Gonchar, I V; Burova, E B; Dorosh, V N; Gamaleĭ, I A; Nikol'skiĭ, N N


    Reactive oxygen species (ROS) were established to play an important role in cellular signaling as second messengers by integrating different pathways. Recently, we showed that EGF initiated a rapid tyrosine phosphorylation of both EGF-receptor and STAT factors with simultaneous increase in the intracellular ROS level. Now, we have investigated the effect of intracellular red-ox state on EGF- and H2O2-induced activation of EGF receptor, STAT1 and STAT3. We demonstrated that the pretreatment of A431 cells with antioxidant N-acetyl-L-cysteine (NAC) partly reduced the level of EGF-induced phosphorylation of proteins under investigation. Besides, H2O2-induced activation of EGF receptor, and STAT factors was fully prevented by NAC pretreatment. The inhibition of ROS generation by DPI declined EGF-dependent activation of EGF receptor and STAT factors to basal level. Our results demonstrate the essential role of cellular red-ox status in the modulation of EGF-mediated activation of receptor and STAT factors. We have postulated that EGF-induced ROS generation is a very important initial event promoting physiological activation of EGF receptor and subsequent STAT factor activation.

  8. Identification of novel peptide ligands for the cancer-specific receptor mutation EFGRvIII using a mixture-based synthetic combinatorial library

    DEFF Research Database (Denmark)

    Denholt, Charlotte Lund; Hansen, Paul Robert; Pedersen, Nina


    We report here, the design and synthesis of a positional scanning synthetic combinatorial library for the identification of novel peptide ligands targeted against the cancer-specific epidermal growth factor tyrosine kinase receptor mutation variant III (EGFRvIII). This receptor is expressed...... in several kinds of cancer, in particular, ovarian, glioblastomas, and breast cancer, but not in normal tissue. The library consisted of six individual positional sublibraries in the format, H-O(1-6)XXXXX-NH(2), O being one of the 19 proteinogenic amino acids (cysteine omitted) and X an equimolar mixture...... of these. The library consisted of 114 mixtures in total. Using a biotin-streptavidin assay, the binding of each sublibrary to NR6M, NR6W-A, and NR6 cells was tested. These cells express EGFRvIII, EGFR, and neither of the receptors, respectively. The result from each sublibrary was examined to identify...

  9. Leptin-induced increase in leukemia inhibitory factor and its receptor by human endometrium is partially mediated by interleukin 1 receptor signaling. (United States)

    Gonzalez, R R; Rueda, B R; Ramos, M P; Littell, R D; Glasser, S; Leavis, P C


    Leptin and leukemia inhibitory factor (LIF) have been implicated as important mediators of implantation. The present study was designed to investigate whether leptin can directly regulate the expression of LIF and its receptor (LIF-R) in human endometrial cells and/or whether leptin-induced effects are linked to, or regulated in part by IL-1 signaling. Primary endometrial cells and endometrial epithelial cell lines (HES and Ishikawa cells) were cultured for 24-48 h in a medium containing insulin (5 microg/ml) and leptin (3, 10, and 62 nm) or IL-1beta (0.6, 3, and 10 nm) in the presence or absence of cytokines and/or receptor antagonists. The endpoints included phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the relative levels of LIF, LIF-R, IL-1beta, IL-1 receptor antagonist (IL-1Ra) and IL-1 receptor type I (IL-1R tI) as determined by ELISA or Western blotting techniques. Leptin treatment increases the level of phosphorylated STAT3, LIF-R, and LIF. Leptin also increases the levels of IL-1 ligand, receptor, and antagonist as was previously reported. Blockade of OB-R with antibodies or with a specific OB-R inhibitor (leptin peptide antagonist-2) abrogated leptin-induced effects, suggesting that leptin binding to its receptor activates Janus kinase 2/STAT3 signaling. Treatment of endometrial cells with IL-1beta also results in elevated levels of LIF-R. Interestingly, the inhibition of IL-1R tI with a specific antibody or with IL-1Ra negatively affects both leptin-induced and IL-1-induced effects on LIF-R levels. Abnormal endometrial LIF expression has been associated with human infertility and leptin has profound effects on the levels of LIF, IL-1, and their cognate receptors in vitro. Thus, it is tempting to speculate that leptin's role in vivo could include the regulation of other key cytokines to be fundamental to endometrial receptivity during implantation (i.e. LIF and IL-1).

  10. Splicing factors control C. elegans behavioural learning in a single neuron by producing DAF-2c receptor (United States)

    Tomioka, Masahiro; Naito, Yasuki; Kuroyanagi, Hidehito; Iino, Yuichi


    Alternative splicing generates protein diversity essential for neuronal properties. However, the precise mechanisms underlying this process and its relevance to physiological and behavioural functions are poorly understood. To address these issues, we focused on a cassette exon of the Caenorhabditis elegans insulin receptor gene daf-2, whose proper variant expression in the taste receptor neuron ASER is critical for taste-avoidance learning. We show that inclusion of daf-2 exon 11.5 is restricted to specific neuron types, including ASER, and is controlled by a combinatorial action of evolutionarily conserved alternative splicing factors, RBFOX, CELF and PTB families of proteins. Mutations of these factors cause a learning defect, and this defect is relieved by DAF-2c (exon 11.5+) isoform expression only in a single neuron ASER. Our results provide evidence that alternative splicing regulation of a single critical gene in a single critical neuron is essential for learning ability in an organism. PMID:27198602

  11. Transmembrane signalling at the epidermal growth factor receptor. Positive regulation by the C-terminal phosphotyrosine residues

    DEFF Research Database (Denmark)

    Magni, M; Pandiella, A; Helin, K


    in the double and the triple mutants. In the latter mutant, expression of the EGF-receptor-activated lipolytic enzyme phospholipase C gamma was unchanged, whereas its tyrosine phosphorylation induced by the growth factor was lowered to approx. 25% of that in the controls. In all of the cell clones employed...... mutants), intermediate in the dual mutants and almost complete in the triple mutants. Likewise, increases in intracellular Ca2+ concentrations [( Ca2+]i) induced by fibroblast growth factor were approximately the same in all of the clones, whereas those induced by EGF were decreased in the mutants, again...... a positive role in the regulation of transmembrane signalling at the EGF receptor. The stepwise decrease in signal generation observed in single, double and triple point mutants suggest that the role of phosphotyrosine residues is not in the participation in specific amino acid sequences, but rather...

  12. A single glycine-alanine exchange directs ligand specificity of the elephant progestin receptor.

    Directory of Open Access Journals (Sweden)

    Michael Wierer

    Full Text Available The primary gestagen of elephants is 5α-dihydroprogesterone (DHP, which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR. Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD, we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems.

  13. A single glycine-alanine exchange directs ligand specificity of the elephant progestin receptor. (United States)

    Wierer, Michael; Schrey, Anna K; Kühne, Ronald; Ulbrich, Susanne E; Meyer, Heinrich H D


    The primary gestagen of elephants is 5α-dihydroprogesterone (DHP), which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR). Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A) of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD), we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems.

  14. β-noradrenergic receptor activation specifically modulates the generation of sighs in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Jean-Charles eViemari


    Full Text Available The pre-Bötzinger complex (preBötC, an area that is critical for generating breathing (eupnea, gasps and sighs is continuously modulated by catecholamines. These amines and the generation of sighs have also been implicated in the regulation of arousal. Here we studied the catecholaminergic modulation of sighs not only in anesthetized freely breathing mice (in vivo, but also in medullary slice preparations that contain the preBötC and that generate fictive eupneic and sigh rhythms in vitro. We demonstrate that activating -noradrenergic receptors (B-NR specifically increases the frequency of sighs, while eupnea remains unaffected both in vitro and in vivo. B-NR activation specifically increased the frequency of intrinsically bursting pacemaker neurons that rely on persistent sodium current (INap. By contrast, all parameters of bursting pacemakers that rely on the non-specific cation current (ICAN remained unaffected. Moreover, riluzole, which blocks bursting in INap pacemakers abolished sighs altogether, while flufenamic acid which blocks the ICAN current did not alter the sigh-increasing effect caused by B-NR. Our results suggest that the selective B-NR action of sighs may result from the modulation of INap pacemaker activity and that disturbances in noradrenergic system may contribute to abnormal arousal response. The B-NR action on the preBötC may be an important mechanism in modulating behaviors that are specifically associated with sighs, such as the regulation of the early events leading to the arousal response.

  15. Macrophage-specific overexpression of interleukin-5 attenuates atherosclerosis in LDL receptor-deficient mice. (United States)

    Zhao, W; Lei, T; Li, H; Sun, D; Mo, X; Wang, Z; Zhang, K; Ou, H


    Interleukin-5 (IL-5) increases the secretion of natural T15/EO6 IgM antibodies that inhibit the uptake of oxidized low-density lipoprotein (LDL) by macrophages. This study aimed to determine whether macrophage-specific expression of IL-5 in LDL receptor-deficient mice (Ldlr(-/-)) could improve cholesterol metabolism and reduce atherosclerosis. To induce macrophage-specific IL-5 expression, the pLVCD68-IL5 lentivirus was delivered into Ldlr(-/-) mice via bone marrow transplantation. The recipient mice were fed a Western-type diet for 12 weeks to induce lesion formation. We found that IL-5 was efficiently and specifically overexpressed in macrophages in recipients of pLVCD68-IL5-transduced bone marrow cells (BMC). Plasma titers of T15/EO6 IgM antibodies were significantly elevated by 58% compared with control mice transplanted with pLVCD68 lacking the IL-5 coding sequence. Plaque areas of aortas in IL-5-overexpressing mice were reduced by 43% and associated with a 2.4-fold decrease in lesion size at the aortic roots when compared with mice receiving pLVCD68-transduced BMCs. The study showed that macrophage-specific overexpression of IL-5 inhibited the progression of atherosclerotic lesions. These findings suggest that modulation of IL-5 cytokine expression represents a potential strategy for intervention of familial hypercholesterolemia and other cardiovascular diseases.

  16. AMP-guided tumour-specific nanoparticle delivery via adenosine A1 receptor. (United States)

    Dai, Tongcheng; Li, Na; Han, Fajun; Zhang, Hua; Zhang, Yuanxing; Liu, Qin


    Active targeting-ligands have been increasingly used to functionalize nanoparticles for tumour-specific clinical applications. Here we utilize nucleotide adenosine 5'-monophosphate (AMP) as a novel ligand to functionalize polymer-based fluorescent nanoparticles (NPs) for tumour-targeted imaging. We demonstrate that AMP-conjugated NPs (NPs-AMP) efficiently bind to and are following internalized into colon cancer cell CW-2 and breast cancer cell MDA-MB-468 in vitro. RNA interference and inhibitor assays reveal that the targeting effects mainly rely on the specific binding of AMP to adenosine A1 receptor (A1R), which is greatly up-regulated in cancer cells than in matched normal cells. More importantly, NPs-AMP specifically accumulate in the tumour site of colon and breast tumour xenografts and are further internalized into the tumour cells in vivo via tail vein injection, confirming that the high in vitro specificity of AMP can be successfully translated into the in vivo efficacy. Furthermore, NPs-AMP exhibit an active tumour-targeting behaviour in various colon and breast cancer cells, which is positively related to the up-regulation level of A1R in cancer cells, suggesting that AMP potentially suits for more extensive A1R-overexpressing cancer models. This work establishes AMP to be a novel tumour-targeting ligand and provides a promising strategy for future diagnostic or therapeutic applications.

  17. Loss of Dlg-1 in the mouse lens impairs fibroblast growth factor receptor signaling.

    Directory of Open Access Journals (Sweden)

    SungKyoung Lee

    Full Text Available Coordination of cell proliferation, differentiation and survival is essential for normal development and maintenance of tissues in the adult organism. Growth factor receptor tyrosine kinase signaling pathways and planar cell polarity pathways are two regulators of many developmental processes. We have previously shown through analysis of mice conditionally null in the lens for the planar cell polarity gene (PCP, Dlg-1, that Dlg-1 is required for fiber differentiation. Herein, we asked if Dlg-1 is a regulator of the Fibroblast growth factor receptor (Fgfr signaling pathway, which is known to be required for fiber cell differentiation. Western blot analysis of whole fiber cell extracts from control and Dlg-1 deficient lenses showed that levels of the Fgfr signaling intermediates pErk, pAkt, and pFrs2α, the Fgfr target, Erm, and the fiber cell specific protein, Mip26, were reduced in the Dlg-1 deficient fiber cells. The levels of Fgfr2 were decreased in Dlg-1 deficient lenses compared to controls. Conversely, levels of Fgfr1 in Dlg-1 deficient lenses were increased compared to controls. The changes in Fgfr levels were found to be specifically in the triton insoluble, cytoskeletal associated fraction of Dlg-1 deficient lenses. Immunofluorescent staining of lenses from E13.5 embryos showed that expression levels of pErk were reduced in the transition zone, a region of the lens that exhibits PCP, in the Dlg-1 deficient lenses as compared to controls. In control lenses, immunofluorescent staining for Fgfr2 was observed in the epithelium, transition zone and fibers. By E13.5, the intensity of staining for Fgfr2 was reduced in these regions of the Dlg-1 deficient lenses. Thus, loss of Dlg-1 in the lens impairs Fgfr signaling and leads to altered levels of Fgfrs, suggesting that Dlg-1 is a modulator of Fgfr signaling pathway at the level of the receptors and that Dlg-1 regulates fiber cell differentiation through its role in PCP.

  18. DNA methylation of specific CpG sites in the promoter region regulates the transcription of the mouse oxytocin receptor.

    Directory of Open Access Journals (Sweden)

    Shimrat Mamrut

    Full Text Available Oxytocin is a peptide hormone, well known for its role in labor and suckling, and most recently for its involvement in mammalian social behavior. All central and peripheral actions of oxytocin are mediated through the oxytocin receptor, which is the product of a single gene. Transcription of the oxytocin receptor is subject to regulation by gonadal steroid hormones, and is profoundly elevated in the uterus and mammary glands during parturition. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression of the oxytocin receptor in individuals with autism. Here, we hypothesized that transcription of the mouse oxytocin receptor is regulated by DNA methylation of specific sites in its promoter, in a tissue-specific manner. Hypothalamus-derived GT1-7, and mammary-derived 4T1 murine cell lines displayed negative correlations between oxytocin receptor transcription and methylation of the gene promoter, and demethylation caused a significant enhancement of oxytocin receptor transcription in 4T1 cells. Using a reporter gene assay, we showed that methylation of specific sites in the gene promoter, including an estrogen response element, significantly inhibits transcription. Furthermore, methylation of the oxytocin receptor promoter was found to be differentially correlated with oxytocin receptor expression in mammary glands and the uterus of virgin and post-partum mice, suggesting that it plays a distinct role in oxytocin receptor transcription among tissues and under different physiological conditions. Together, these results support the hypothesis that the expression of the mouse oxytocin receptor gene is epigenetically regulated by DNA methylation of its promoter.

  19. Influence of specific and non-specific endothelin receptor antagonists on renal morphology in rats with surgical renal ablation. (United States)

    Nabokov, A; Amann, K; Wagner, J; Gehlen, F; Münter, K; Ritz, E


    Studies in experimental models of chronic renal failure suggest an important role for the endothelin system in the development of renal scarring. Endothelin receptor (ETR) anatagonists interfere with progression, but it has not been resolved (i) whether this is true for all models of renal damage, (ii) to what extent the effect is modulated by systemic blood pressure and (iii) whether the effect is similar for ETAR and ETA/ETBR antagonists. 5/6 subtotal nephrectomy (SNX) by surgical ablation in male Sprague-Dawley rats. Comparison of ACE inhibitor Trandolapril (0.1 mg/kg/day), ETAR antagonist BMS 182874 (30 mg/kg/day) and ETAR/ETBR antagonist Ro 46-2005 (30 mg/kg/day) by gavage. Duration of the experiment eight weeks. Systolic blood pressure by tail plethysmography. Perfusion fixation of kidneys and morphometric analysis ET-1 and ETA/ETBR by quantitative PCR. SNX caused a significant (P < 0.01) increase of systolic blood pressure (170 +/- 8.6 mmHg) compared to sham operated controls (131 +/- 5.3 mmHg). Blood pressure was significantly (P < 0.001) lower with Trandolapril (128 +/- 5.3 mmHg), but not with BMS 182874 (153 +/- 5.9 mmHg) or Ro 46-2005 (167 +/- 7.6 mmHg). Compared to sham operated rats (0.03 +/- 0.01) glomerulosclerosis index (GSI) was significantly (P < 0.01) higher in the untreated SNX group (0.9 +/- 0.15). Significantly lower GSI was found in Trandolapril treated (0.29 +/- 0.04), BMS 182874 treated (0.36 +/- 0.05), and Ro 46-2005 treated animals (0.45 +/- 0.11). The effect of BMS 182874 was accompanied by lower tubulointerstitial damage index. Mean glomerular volume was dramatically increased (P < 0.001) in SNX rats as compared to sham operated animals. This glomerular enlargement was partially prevented by Trandolapril (P < 0.05), but not by either ETR antagonist. ET-1 mRNA tended to be higher in SNX irrespective of treatment, while ETAR and ETBR mRNA were significantly lower. Both specific (ETAR) and non-specific (ETA/ETBR) endothelin antagonists

  20. Sp3 controls fibroblast growth factor receptor 4 gene activity during myogenic differentiation. (United States)

    Cavanaugh, Eric; DiMario, Joseph X


    Fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling is a critical component in the regulation of myoblast proliferation and differentiation. The transient FGFR4 gene expression during the transition from proliferating myoblasts to differentiated myotubes indicates that FGFR4 regulates this critical phase of myogenesis. The Specificity Protein (SP) family of transcription factors controls FGFR family member gene activity. We sought to determine if members of the Sp family regulate mouse FGFR4 gene activity during myogenic differentiation. RT-PCR and western blot analysis of FGFR4 mRNA and protein revealed transient expression over 72h, with peak expression between 24 and 36h after addition of differentiation medium to C2C12 myogenic cultures. Sp3 also displayed a transient expression pattern with peak expression occurring after 6h of differentiation. We cloned a 1527bp fragment of the mouse FGFR4 promoter into a luciferase reporter. This FGFR4 promoter contains eight putative Sp binding sites and directed luciferase gene activity comparable to native FGFR4 expression. Overexpression of Sp1 and Sp3 showed that Sp1 repressed FGFR4 gene activity, and Sp3 activated FGFR4 gene activity during myogenic differentiation. Mutational analyses of multiple Sp binding sites within the FGFR4 promoter revealed that three of these sites were transcriptionally active. Electromobility shift assays and chromatin immunoprecipitation of the area containing the activator sites showed that Sp3 bound to this promoter location.

  1. Birthweight-specific risk factors for necrotising enterocolitis.


    Palmer, S R; Thomas, S.J.; Cooke, R W; Low, D C; Fysh, W J; Murphy, J F; Gandy, G. M.; Gamsu, H R


    In a multicentre case-control study of necrotising enterocolitis risk factors were found to vary with birthweight of cases. In very low birthweight cases the risk factors identified were those associated with prolonged or recurrent hypoxia (recurrent apnoea, respiratory distress, assisted ventilation, and umbilical artery catheterisation). In heavier birthweight infants the risk factors were, in contrast, related to hypoxia at birth (low 1 minute Apgar score and endotracheal intubation at bir...

  2. Developmental aspects of adipose tissue in GH receptor and prolactin receptor gene disrupted mice: site-specific effects upon proliferation, differentiation and hormone sensitivity. (United States)

    Flint, David J; Binart, Nadine; Boumard, Stephanie; Kopchick, John J; Kelly, Paul


    Direct metabolic effects of GH on adipose tissue are well established, but effects of prolactin (PRL) have been more controversial. Recent studies have demonstrated PRL receptors on adipocytes and effects of PRL on adipose tissue in vitro. The role of GH in adipocyte proliferation and differentiation is also controversial, since GH stimulates adipocyte differentiation in cell lines, whereas it stimulates proliferation but inhibits differentiation of adipocytes in primary cell culture. Using female gene disrupted (ko) mice, we showed that absence of PRL receptors (PRLRko) impaired development of both internal and s.c. adipose tissue, due to reduced numbers of adipocytes, an effect differing from that of reduced food intake, where cell volume is decreased. In contrast, GHRko mice exhibited major decreases in the number of internal adipocytes, whereas s.c. adipocyte numbers were increased, even though body weight was decreased by 40-50%. The changes in adipose tissue in PRLRko mice appeared to be entirely due to extrinsic factors since preadipocytes proliferated and differentiated in similar fashion to wild-type animals in vitro and their response to insulin and isoproterenol was similar to wild-type animals. This contrasted with GHRko mice, where s.c. adipocytes proliferated, differentiated, and responded to hormones in identical fashion to controls, whereas parametrial adipocytes exhibited markedly depressed proliferation and differentiation potential and failed to respond to insulin or noradrenaline. Our results provide in vivo evidence that both GH and PRL stimulate differentiation of adipocytes but that the effects of GH are site specific and induce intrinsic changes in the precursor population, which are retained in vitro.

  3. Central nervous system-specific knockout of steroidogenic factor 1 results in increased anxiety-like behavior. (United States)

    Zhao, Liping; Kim, Ki Woo; Ikeda, Yayoi; Anderson, Kimberly K; Beck, Laurel; Chase, Stephanie; Tobet, Stuart A; Parker, Keith L


    Steroidogenic factor 1 (SF-1) plays key roles in adrenal and gonadal development, expression of pituitary gonadotropins, and development of the ventromedial hypothalamic nucleus (VMH). If kept alive by adrenal transplants, global knockout (KO) mice lacking SF-1 exhibit delayed-onset obesity and decreased locomotor activity. To define specific roles of SF-1 in the VMH, we used the Cre-loxP system to inactivate SF-1 in a central nervous system (CNS)-specific manner. These mice largely recapitulated the VMH structural defect seen in mice lacking SF-1 in all tissues. In multiple behavioral tests, mice with CNS-specific KO of SF-1 had significantly more anxiety-like behavior than wild-type littermates. The CNS-specific SF-1 KO mice had diminished expression or altered distribution in the mediobasal hypothalamus of several genes whose expression has been linked to stress and anxiety-like behavior, including brain-derived neurotrophic factor, the type 2 receptor for CRH (Crhr2), and Ucn 3. Moreover, transfection and EMSAs support a direct role of SF-1 in Crhr2 regulation. These findings reveal important roles of SF-1 in the hypothalamic expression of key regulators of anxiety-like behavior, providing a plausible molecular basis for the behavioral effect of CNS-specific KO of this nuclear receptor.

  4. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors

    Directory of Open Access Journals (Sweden)

    Jenkins Jeremy L


    Full Text Available Abstract Background To better understand the molecular interactions of Bt toxins with non-target insects, we have examined the real-time binding specificity and affinity of Cry1 toxins to native silkworm (Bombyx mori midgut receptors. Previous studies on B. mori receptors utilized brush border membrane vesicles or purifed receptors in blot-type assays. Results The Bombyx mori (silkworm aminopeptidase N (APN and cadherin-like receptors for Bacillus thuringiensis insecticidal Cry1Aa toxin were purified and their real-time binding affinities for Cry toxins were examined by surface plasmon resonance. Cry1Ab and Cry1Ac toxins did not bind to the immobilized native receptors, correlating with their low toxicities. Cry1Aa displayed moderate affinity for B. mori APN (75 nM, and unusually tight binding to the cadherin-like receptor (2.6 nM, which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac was identical to Cry1Aa. Conclusions These results indicate domain II of Cry1Aa is essential for binding to native B. mori receptors and for toxicity. Moreover, the high-affinity binding of Cry1Aa to native cadherin-like receptor emphasizes the importance of this receptor class for Bt toxin research.

  5. Trophic factor-induced excitatory synaptogenesis involves postsynaptic modulation of nicotinic acetylcholine receptors. (United States)

    Woodin, Melanie A; Munno, David W; Syed, Naweed I


    Neurotrophic factors have well established roles in neuronal development, although their precise involvement in synapse formation and plasticity is yet to be fully determined. Using soma-soma synapses between identified Lymnaea neurons, we have shown recently that trophic factors are required for excitatory but not inhibitory synapse formation. However, neither the precise site (presynaptic versus postsynaptic cell) nor the underlying mechanisms have yet been defined. In the present study, synapse formation between the presynaptic cell visceral dorsal 4 (VD4) and its postsynaptic partner right pedal dorsal 1 (RPeD1) was examined to define the cellular mechanisms mediating trophic factor-induced excitatory synaptogenesis in cell culture. When paired in a soma-soma configuration in the presence of defined media (DM, nonproteinacious), mutually inhibitory synapses were appropriately reconstructed between VD4 and RPeD1. However, when cells were paired in the presence of increasing concentrations of Lymnaea brain-conditioned medium (CM), a biphasic synapse (initial excitatory synaptic component followed by inhibition) developed. The CM-induced excitatory synapse formation required trophic factor-mediated activation of receptor tyrosine kinases in the postsynaptic cell, RPeD1, and a concomitant modulation of existing postsynaptic nicotinic acetylcholine receptors (nAChRs). Specifically, when RPeD1 was isolated in DM, exogenously applied ACh induced a hyperpolarizing response that was sensitive to the AChR antagonist methyllycaconitine (MLA). In contrast, a single RPeD1 isolated in CM exhibited a biphasic response to exogenously applied ACh. The initial depolarizing phase of the biphasic response was sensitive to both mecamylamine and hexamethonium chloride, whereas the hyperpolarizing phase was blocked by MLA. In soma-soma-paired neurons, the VD4-induced synaptic responses in RPeD1 were sensitive to the cholinergic antagonists in a concentration range similar to that

  6. Blocking transforming growth factor- receptor signaling down-regulates transforming growth factor-β1 autoproduction in keloid fibroblasts

    Institute of Scientific and Technical Information of China (English)

    刘伟; 蔡泽浩; 王丹茹; 武小莉; 崔磊; 商庆新; 钱云良; 曹谊林


    Objective: To study transforming growth factor-β1(TGF-β1) autoproduction in keloid fibroblasts and theregulation effect of blocking TGF-β intracellular signalingon rhTGF-β1 autoproduction.Methods: Keloid fibroblasts cultured in vitro weretreated with either rhTGF-β1 (5 ng/ml ) or recombinantadenovirus containing a truncated type II TGF-β receptorgene (50 pfu/cell ). Their effects of regulating geneexpression of TGF-β1 and its receptor I and II wereobserved with Northern blot.Results: rhTGF-β1 up-regulated the gene expressionof TGF-β1 and receptor I, but not receptor II. Over-expression of the truncated receptor II down-regulated thegene expression of TGF-β1 and its receptor I, but notreceptor II.Conclusions: TGF-β1 autoproduction was observed inkeloid fibroblasts. Over-expression of the truncated TGF-βreceptor H decreased TGF-β1 autoproduction via blockingTGF-β receptor signaling.

  7. Targeting c-kit receptor in neuroblastomas and colorectal cancers using stem cell factor (SCF)-based recombinant bacterial toxins. (United States)

    Choudhary, Swati; Pardo, Alessa; Rosinke, Reinhard; Batra, Janendra K; Barth, Stefan; Verma, Rama S


    Autocrine activation of c-kit (KIT receptor tyrosine kinase) has been postulated to be a potent oncogenic driver in small cell lung cancer, neuroblastoma (NB), and poorly differentiated colorectal carcinoma (CRC). Although targeted therapy involving tyrosine kinase inhibitors (TKIs) such as imatinib mesylate is highly effective for gastrointestinal stromal tumor carrying V560G c-kit mutation, it does not show much potential for targeting wild-type KIT (WT-KIT). Our study demonstrates the role of stem cell factor (SCF)-based toxin conjugates for targeting WT-KIT-overexpressing malignancies such as NBs and CRCs. We constructed SCF-based recombinant bacterial toxins by genetically fusing mutated form of natural ligand SCF to receptor binding deficient forms of Diphtheria toxin (DT) or Pseudomonas exotoxin A (ETA') and evaluated their efficacy in vitro. Efficient targeting was achieved in all receptor-positive neuroblastoma (IMR-32 and SHSY5Y) and colon cancer cell lines (COLO 320DM, HCT 116, and DLD-1) but not in receptor-negative breast carcinoma cell line (MCF-7) thereby proving specificity. While dose- and time-dependent cytotoxicity was observed in both neuroblastoma cell lines, COLO 320DM and HCT 116 cells, only an anti-proliferative effect was observed in DLD-1 cells. We prove that these novel targeting agents have promising potential as KIT receptor tyrosine kinase targeting system.

  8. Glycosaminoglycans in human retinoblastoma cells: Heparan sulfate, a modulator of the pigment epithelium-derived factor-receptor interactions (United States)

    Alberdi, Elena M; Weldon, John E; Becerra, S Patricia


    Background Pigment epithelium-derived factor (PEDF) has binding affinity for cell-surface receptors in retinoblastoma cells and for glycosaminoglycans. We investigated the effects of glycosaminoglycans on PEDF-receptor interactions. Results 125I-PEDF formed complexes with protease-resistant components of medium conditioned by human retinoblastoma Y-79 cells. Using specific glycosaminoglycan degrading enzymes in spectrophotometric assays and PEDF-affinity chromatography, we detected heparin and heparan sulfate-like glycosaminoglycans in the Y-79 conditioned media, which had binding affinity for PEDF. The Y-79 conditioned media significantly enhanced the binding of 125I-PEDF to Y-79 cell-surface receptors. However, enzymatic and chemical depletion of sulfated glycosaminoglycans from the Y-79 cell cultures by heparitinase and chlorate treatments decreased the degree of 125I-PEDF binding to cell-surface receptors. Conclusions These data indicate that retinoblastoma cells secrete heparin/heparan sulfate with binding affinity for PEDF, which may be important in efficient cell-surface receptor binding. PMID:12625842

  9. Activation of Adhesion G Protein-coupled Receptors: AGONIST SPECIFICITY OF STACHEL SEQUENCE-DERIVED PEPTIDES. (United States)

    Demberg, Lilian M; Winkler, Jana; Wilde, Caroline; Simon, Kay-Uwe; Schön, Julia; Rothemund, Sven; Schöneberg, Torsten; Prömel, Simone; Liebscher, Ines


    Members of the adhesion G protein-coupled receptor (aGPCR) family carry an agonistic sequence within their large ectodomains. Peptides derived from this region, called the Stachel sequence, can activate the respective receptor. As the conserved core region of the Stachel sequence is highly similar between aGPCRs, the agonist specificity of Stachel sequence-derived peptides was tested between family members using cell culture-based second messenger assays. Stachel peptides derived from aGPCRs of subfamily VI (GPR110/ADGRF1, GPR116/ADGRF5) and subfamily VIII (GPR64/ADGRG2, GPR126/ADGRG6) are able to activate more than one member of the respective subfamily supporting their evolutionary relationship and defining them as pharmacological receptor subtypes. Extended functional analyses of the Stachel sequences and derived peptides revealed agonist promiscuity, not only within, but also between aGPCR subfamilies. For example, the Stachel-derived peptide of GPR110 (subfamily VI) can activate GPR64 and GPR126 (both subfamily VIII). Our results indicate that key residues in the Stachel sequence are very similar between aGPCRs allowing for agonist promiscuity of several Stachel-derived peptides. Therefore, aGPCRs appear to be pharmacologically more closely related than previously thought. Our findings have direct implications for many aGPCR studies, as potential functional overlap has to be considered for in vitro and in vivo studies. However, it also offers the possibility of a broader use of more potent peptides when the original Stachel sequence is less effective. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Preparation and properties of the specific anti-influenza virus transfer factor. (United States)

    Li, Chongbi; Huang, Lihua; Wang, Yanping; Li, Xiangle; Liang, Shaowei; Zheng, Yingna


    Specific anti-influenza virus and normal transfer factors prepared in an experimental animal model, the pig, have been tested for their components, characteristics, and activity of known specificity. Two transfer factors are small molecular mixture which consist entirely or partly of polypeptides and polynucleosides. Moreover, the biological activity of transfer factors could be approved by Rosettes test and specific skin test. The study would lay a foundation for the research and development of other specific transfer factor.

  11. Structural basis for subtype-specific inhibition of the P2X7 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Karasawa, Akira; Kawate, Toshimitsu


    The P2X7 receptor is a non-selective cation channel activated by extracellular adenosine triphosphate (ATP). Chronic activation of P2X7 underlies many health problems such as pathologic pain, yet we lack effective antagonists due to poorly understood mechanisms of inhibition. Here we present crystal structures of a mammalian P2X7 receptor complexed with five structurally-unrelated antagonists. Unexpectedly, these drugs all bind to an allosteric site distinct from the ATP-binding pocket in a groove formed between two neighboring subunits. This novel drug-binding pocket accommodates a diversity of small molecules mainly through hydrophobic interactions. Functional assays propose that these compounds allosterically prevent narrowing of the drug-binding pocket and the turret-like architecture during channel opening, which is consistent with a site of action distal to the ATP-binding pocket. These novel mechanistic insights will facilitate the development of P2X7-specific drugs for treating human diseases.

  12. Modulation of auditory brainstem responses by serotonin and specific serotonin receptors. (United States)

    Papesh, Melissa A; Hurley, Laura M


    The neuromodulator serotonin is found throughout the auditory system from the cochlea to the cortex. Although effects of serotonin have been reported at the level of single neurons in many brainstem nuclei, how these effects correspond to more integrated measures of auditory processing has not been well-explored. In the present study, we aimed to characterize the effects of serotonin on far-field auditory brainstem responses (ABR) across a wide range of stimulus frequencies and intensities. Using a mouse model, we investigated the consequences of systemic serotonin depletion, as well as the selective stimulation and suppression of the 5-HT1 and 5-HT2 receptors, on ABR latency and amplitude. Stimuli included tone pips spanning four octaves presented over a forty dB range. Depletion of serotonin reduced the ABR latencies in Wave II and later waves, suggesting that serotonergic effects occur as early as the cochlear nucleus. Further, agonists and antagonists of specific serotonergic receptors had different profiles of effects on ABR latencies and amplitudes across waves and frequencies, suggestive of distinct effects of these agents on auditory processing. Finally, most serotonergic effects were more pronounced at lower ABR frequencies, suggesting larger or more directional modulation of low-frequency processing. This is the first study to describe the effects of serotonin on ABR responses across a wide range of stimulus frequencies and amplitudes, and it presents an important step in understanding how serotonergic modulation of auditory brainstem processing may contribute to modulation of auditory perception.

  13. Patient-specific dosimetry in peptide receptor radionuclide therapy: a clinical review. (United States)

    Chalkia, M T; Stefanoyiannis, A P; Chatziioannou, S N; Round, W H; Efstathopoulos, E P; Nikiforidis, G C


    Neuroendocrine tumours (NETs) belong to a relatively rare class of neoplasms. Nonetheless, their prevalence has increased significantly during the last decades. Peptide receptor radionuclide therapy (PRRT) is a relatively new treatment approach for inoperable or metastasised NETs. The therapeutic effect is based on the binding of radiolabelled somatostatin analogue peptides with NETs' somatostatin receptors, resulting in internal irradiation of tumours. Pre-therapeutic patient-specific dosimetry is essential to ensure that a treatment course has high levels of safety and efficacy. This paper reviews the methods applied for PRRT dosimetry, as well as the dosimetric results presented in the literature. Focus is given on data concerning the therapeutic somatostatin analogue radiopeptides (111)In-[DTPA(0),D-Phe(1)]-octreotide ((111)In-DTPA-octreotide), (90)Y-[DOTA(0),Tyr(3)]-octreotide ((90)Y-DOTATOC) and (177)Lu-[DOTA(0),Tyr(3),Thr(8)]-octreotide ((177)Lu-DOTATATE). Following the Medical Internal Radiation Dose (MIRD) Committee formalism, dosimetric analysis demonstrates large interpatient variability in tumour and organ uptake, with kidneys and bone marrow being the critical organs. The results are dependent on the image acquisition and processing protocol, as well as the dosimetric imaging radiopharmaceutical.

  14. Cholinergic excitation in mouse primary vs. associative cortex: region-specific magnitude and receptor balance. (United States)

    Tian, Michael K; Bailey, Craig D C; Lambe, Evelyn K


    Cholinergic stimulation of the cerebral cortex is essential for tasks requiring attention; however, there is still some debate over which cortical regions are required for such tasks. There is extensive cholinergic innervation of both primary and associative cortices, and transient release of acetylcholine (ACh) is detected in deep layers of the relevant primary and/or associative cortex, depending on the nature of the attention task. Here, we investigated the electrophysiological effects of ACh in layer VI, the deepest layer, of the primary somatosensory cortex, the primary motor cortex, and the associative medial prefrontal cortex. Layer VI pyramidal neurons are a major source of top-down modulation of attention, and we found that the strength and homogeneity of their direct cholinergic excitation was region-specific. On average, neurons in the primary cortical regions showed weaker responses to ACh, mediated by a balance of contributions from both nicotinic and muscarinic ACh receptors. Conversely, neurons in the associative medial prefrontal cortex showed significantly stronger excitation by ACh, mediated predominantly by nicotinic receptors. The greatest diversity of responses to ACh was found in the primary somatosensory cortex, with only a subset of neurons showing nicotinic excitation. In a mouse model with attention deficits only under demanding conditions, cholinergic excitation was preserved in primary cortical regions but not in the associative medial prefrontal cortex. These findings demonstrate that the effect of ACh is not uniform throughout the cortex, and suggest that its ability to enhance attention performance may involve different cellular mechanisms across cortical regions.

  15. A Cholecystokinin B Receptor-Specific DNA Aptamer for Targeting Pancreatic Ductal Adenocarcinoma (United States)

    Abraham, Thomas; Pan, Weihua; Tang, Xiaomeng; Linton, Samuel S.; McGovern, Christopher O.; Loc, Welley S.; Smith, Jill P.; Butler, Peter J.; Kester, Mark; Adair, James H.; Matters, Gail L.


    Pancreatic ductal adenocarcinomas (PDACs) constitutively express the G-protein-coupled cholecystokinin B receptor (CCKBR). In this study, we identified DNA aptamers (APs) that bind to the CCKBR and describe their characterization and targeting efficacy. Using dual SELEX selection against “exposed” CCKBR peptides and CCKBR-expressing PDAC cells, a pool of DNA APs was identified. Further downselection was based on predicted structures and properties, and we selected eight APs for initial characterizations. The APs bound specifically to the CCKBR, and we showed not only that they did not stimulate proliferation of PDAC cell lines but rather inhibited their proliferation. We chose one AP, termed AP1153, for further binding and localization studies. We found that AP1153 did not activate CCKBR signaling pathways, and three-dimensional Confocal microscopy showed that AP1153 was internalized by PDAC cells in a receptor-mediated manner. AP1153 showed a binding affinity of 15 pM. Bioconjugation of AP1153 to the surface of fluorescent NPs greatly facilitated delivery of NPs to PDAC tumors in vivo. The selectivity of this AP-targeted NP delivery system holds promise for enhanced early detection of PDAC lesions as well as improved chemotherapeutic treatments for PDAC patients. PMID:27754762

  16. Determinants governing ligand specificity of the Vibrio harveyi LuxN quorum-sensing receptor. (United States)

    Ke, Xiaobo; Miller, Laura C; Bassler, Bonnie L


    Quorum sensing is a process of bacterial cell-cell communication that relies on the production, release and receptor-driven detection of extracellular signal molecules called autoinducers. The quorum-sensing bacterium Vibrio harveyi exclusively detects the autoinducer N-((R)-3-hydroxybutanoyl)-L-homoserine lactone (3OH-C4 HSL) via the two-component receptor LuxN. To discover the principles underlying the exquisite selectivity LuxN has for its ligand, we identified LuxN mutants with altered specificity. LuxN uses three mechanisms to verify that the bound molecule is the correct ligand: in the context of the overall ligand-binding site, His210 validates the C3 modification, Leu166 surveys the chain-length and a strong steady-state kinase bias imposes an energetic hurdle for inappropriate ligands to elicit signal transduction. Affinities for the LuxN kinase on and kinase off states underpin whether a ligand will act as an antagonist or an agonist. Mutations that bias LuxN to the agonized, kinase off, state are clustered in a region adjacent to the ligand-binding site, suggesting that this region acts as the switch that triggers signal transduction. Together, our analyses illuminate how a histidine sensor kinase differentiates between ligands and exploits those differences to regulate its signaling activity.

  17. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

    Directory of Open Access Journals (Sweden)

    Lasse Henriksen

    Full Text Available The epidermal growth factor receptor (EGFR regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF and transforming growth factor-α (TGF-α. For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF or betacellulin (BTC was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.

  18. Insulin-like growth factor II: complexity of biosynthesis and receptor binding

    DEFF Research Database (Denmark)

    Gammeltoft, S; Christiansen, Jan; Nielsen, F C


    , Man-6-P induces cellular responses. We have studied rat brain neuronal precursor cells where Man-6-P acted as a mitogen suggesting that phosphomannosylated proteins may act as growth factors via the Man-6-P/IGF-II receptor. In conclusion, the gene expression and mechanism of action of IGF-II is very...... and the mannose-6-phosphate (Man-6-P)/IGF-II receptor. There is consensus that the cellular effects of IGF-II are mediated by the IGF-I receptor via activation of its intrinsic tyrosine kinase. The Man-6-P/IGF-II receptor is involved in endocytosis of lysosomal enzymes and IGF-II. In selected cell types, however...... complex suggesting that its biological actions can be regulated at different levels including the transcription, translation, posttranslational processing, receptor binding and intracellular signalling....

  19. Vascular endothelial growth factor receptor-3 directly interacts with phosphatidylinositol 3-kinase to regulate lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Sanja Coso

    Full Text Available BACKGROUND: Dysfunctional lymphatic vessel formation has been implicated in a number of pathological conditions including cancer metastasis, lymphedema, and impaired wound healing. The vascular endothelial growth factor (VEGF family is a major regulator of lymphatic endothelial cell (LEC function and lymphangiogenesis. Indeed, dissemination of malignant cells into the regional lymph nodes, a common occurrence in many cancers, is stimulated by VEGF family members. This effect is generally considered to be mediated via VEGFR-2 and VEGFR-3. However, the role of specific receptors and their downstream signaling pathways is not well understood. METHODS AND RESULTS: Here we delineate the VEGF-C/VEGF receptor (VEGFR-3 signaling pathway in LECs and show that VEGF-C induces activation of PI3K/Akt and MEK/Erk. Furthermore, activation of PI3K/Akt by VEGF-C/VEGFR-3 resulted in phosphorylation of P70S6K, eNOS, PLCγ1, and Erk1/2. Importantly, a direct interaction between PI3K and VEGFR-3 in LECs was demonstrated both in vitro and in clinical cancer specimens. This interaction was strongly associated with the presence of lymph node metastases in primary small cell carcinoma of the lung in clinical specimens. Blocking PI3K activity abolished VEGF-C-stimulated LEC tube formation and migration. CONCLUSIONS: Our findings demonstrate that specific VEGFR-3 signaling pathways are activated in LECs by VEGF-C. The importance of PI3K in VEGF-C/VEGFR-3-mediated lymphangiogenesis provides a potential therapeutic target for the inhibition of lymphatic metastasis.

  20. Vascular Endothelial Growth Factor Receptor-3 Directly Interacts with Phosphatidylinositol 3-Kinase to Regulate Lymphangiogenesis (United States)

    Coso, Sanja; Zeng, Yiping; Opeskin, Kenneth; Williams, Elizabeth D.


    Background Dysfunctional lymphatic vessel formation has been implicated in a number of pathological conditions including cancer metastasis, lymphedema, and impaired wound healing. The vascular endothelial growth factor (VEGF) family is a major regulator of lymphatic endothelial cell (LEC) function and lymphangiogenesis. Indeed, dissemination of malignant cells into the regional lymph nodes, a common occurrence in many cancers, is stimulated by VEGF family members. This effect is generally considered to be mediated via VEGFR-2 and VEGFR-3. However, the role of specific receptors and their downstream signaling pathways is not well understood. Methods and Results Here we delineate the VEGF-C/VEGF receptor (VEGFR)-3 signaling pathway in LECs and show that VEGF-C induces activation of PI3K/Akt and MEK/Erk. Furthermore, activation of PI3K/Akt by VEGF-C/VEGFR-3 resulted in phosphorylation of P70S6K, eNOS, PLCγ1, and Erk1/2. Importantly, a direct interaction between PI3K and VEGFR-3 in LECs was demonstrated both in vitro and in clinical cancer specimens. This interaction was strongly associated with the presence of lymph node metastases in primary small cell carcinoma of the lung in clinical specimens. Blocking PI3K activity abolished VEGF-C-stimulated LEC tube formation and migration. Conclusions Our findings demonstrate that specific VEGFR-3 signaling pathways are activated in LECs by VEGF-C. The importance of PI3K in VEGF-C/VEGFR-3-mediated lymphangiogenesis provides a potential therapeutic target for the inhibition of lymphatic metastasis. PMID:22745786

  1. Transient activation of specific neurons in mice by selective expression of the capsaicin receptor (United States)

    Güler, Ali D.; Rainwater, Aundrea; Parker, Jones G.; Jones, Graham L.; Argilli, Emanuela; Arenkiel, Benjamin R.; Ehlers, Michael D.; Bonci, Antonello; Zweifel, Larry s.; Palmiter, Richard D.


    The ability to control the electrical activity of a neuronal subtype is a valuable tool in deciphering the role of discreet cell populations in complex neural circuits. Recent techniques that allow remote control of neurons are either labor intensive and invasive or indirectly coupled to neural electrical potential with low temporal resolution. Here we show the rapid, reversible and direct activation of genetically identified neuronal subpopulations by generating two inducible transgenic mouse models. Confined expression of the capsaicin receptor, TRPV1, allows cell-specific activation after peripheral or oral delivery of ligand in freely moving mice. Capsaicin-induced activation of dopaminergic or serotonergic neurons reversibly alters both physiological and behavioural responses within minutes, and lasts ~10 min. These models showcase a robust and remotely controllable genetic tool that modulates a distinct cell population without the need for invasive and labour-intensive approaches. PMID:22434189

  2. Muscle-Specific Receptor Tyrosine Kinase (MuSK) Myasthenia Gravis. (United States)

    Hurst, Rebecca L; Gooch, Clifton L


    Autoimmune myasthenia gravis (MG) is the prototypic, antibody-mediated neuromuscular disease and is characterized by a decrease in the number of functional acetylcholine receptors (AChR) within the muscle end plate zone of the neuromuscular junction (NMJ). Although the pathophysiology of AChR-mediated myasthenia gravis has been extensively studied over the last 40 years since its original description by Patrick and Lindstrom (Science 180:871-872, 1973), less is known about the much more recently described muscle-specific kinase (MuSK) antibody-mediated MG. MuSK-MG has features clinically distinct from Ach-R MG, as well as a different pattern of response to treatment and a unique immunopathogenesis.

  3. Lipodystrophy and severe metabolic dysfunction in mice with adipose tissue-specific insulin receptor ablation. (United States)

    Qiang, Guifen; Whang Kong, Hyerim; Xu, Shanshan; Pham, Hoai An; Parlee, Sebastian D; Burr, Aaron A; Gil, Victoria; Pang, Jingbo; Hughes, Amy; Gu, Xuejiang; Fantuzzi, Giamila; MacDougald, Ormond A; Liew, Chong Wee


    Insulin signaling plays pivotal roles in the development and metabolism of many tissues and cell types. A previous study demonstrated that ablation of insulin receptor (IR) with aP2-Cre markedly reduced adipose tissues mass and protected mice from obesity. However, multiple studies have demonstrated widespread non-adipocyte recombination of floxed alleles in aP2-Cre mice. These findings underscore the need to re-evaluate the role of IR in adipocyte and systemic metabolism with a more adipose tissue-specific Cre mouse line. We generated and phenotyped a new adipose tissue-specific IR mouse model using the adipose tissue-specific Adipoq-Cre line. Here we show that the Adipoq-Cre-mediated IR KO in mice leads to lipodystrophy and metabolic dysfunction, which is in stark contrast to the previous study. In contrast to white adipocytes, absence of insulin signaling does not affect development of marrow and brown adipocytes, but instead is required for lipid accumulation particularly for the marrow adipocytes. Lipodystrophic IR KO mice have profound insulin resistance, hyperglycemia, organomegaly, and impaired adipokine secretion. Our results demonstrate differential roles for insulin signaling for white, brown, and marrow adipocyte development and metabolic regulation.

  4. Development and Characterization of Uterine Glandular Epithelium Specific Androgen Receptor Knockout Mouse Model. (United States)

    Choi, Jaesung Peter; Zheng, Yu; Skulte, Katherine A; Handelsman, David J; Simanainen, Ulla


    While estrogen action is the major driver of uterine development, androgens acting via the androgen receptor (AR) may also promote uterine growth as suggested by uterine phenotypes in global AR knockout (ARKO) female mice. Because AR is expressed in uterine endometrial glands, we generated (Cre/loxP) uterine gland epithelium-specific ARKO (ugeARKO) to determine the role of endometrial gland-specific androgen actions. However, AR in uterine gland epithelium may not be required for normal uterine development and function because ugeARKO females had normal uterine development and fertility. To determine if exogenous androgens acting via AR can fully support uterine growth in the absence of estrogens, the ARKO and ugeARKO females were ovariectomized and treated with supraphysiological doses of testosterone or dihydrotestosterone (nonaromatizable androgen). Both dihydrotestosterone and testosterone supported full uterine regrowth in wild-type females while ARKO females had no regrowth (comparable to ovariectomized only). These findings suggest that androgens acting via AR can promote full uterine regrowth in the absence of estrogens. The ugeARKO had 50% regrowth when compared to intact uterine glands, and histomorphologically, both the endometrial and myometrial areas were significantly (P glandular epithelial AR located in the endometrium may indirectly modify myometrial development. Additionally, to confirm Cre function in endometrial glands, we generated uge-specific PTEN knockout mouse model. The ugePTEN knockout females developed severe endometrial hyperplasia and therefore present a novel model for future research.

  5. Diversification of the antigen-specific T cell receptor repertoire after varicella zoster vaccination. (United States)

    Qi, Qian; Cavanagh, Mary M; Le Saux, Sabine; NamKoong, Hong; Kim, Chulwoo; Turgano, Emerson; Liu, Yi; Wang, Chen; Mackey, Sally; Swan, Gary E; Dekker, Cornelia L; Olshen, Richard A; Boyd, Scott D; Weyand, Cornelia M; Tian, Lu; Goronzy, Jörg J


    Diversity and size of the antigen-specific T cell receptor (TCR) repertoire are two critical determinants for successful control of chronic infection. Varicella zoster virus (VZV) that establishes latency during childhood can escape control mechanisms, in particular with increasing age. We examined the TCR diversity of VZV-reactive CD4 T cells in individuals older than 50 years by studying three identical twin pairs and three unrelated individuals before and after vaccination with live attenuated VZV. Although all individuals had a small number of dominant T cell clones, the breadth of the VZV-specific repertoire differed markedly. A genetic influence was seen for the sharing of individual TCR sequences from antigen-reactive cells but not for repertoire richness or the selection of dominant clones. VZV vaccination favored the expansion of infrequent VZV antigen-reactive TCRs, including those from naïve T cells with lesser boosting of dominant T cell clones. Thus, vaccination does not reinforce the in vivo selection that occurred during chronic infection but leads to a diversification of the VZV-reactive T cell repertoire. However, a single-booster immunization seems insufficient to establish new clonal dominance. Our results suggest that repertoire analysis of antigen-specific TCRs can be an important readout to assess whether a vaccination was able to generate memory cells in clonal sizes that are necessary for immune protection.

  6. Glucocorticoid receptor and nuclear factor kappa-b affect three-dimensional chromatin organization

    NARCIS (Netherlands)

    Kuznetsova, T.; Wang, S.Y.; Rao, N.A.; Mandoli, A.; Martens, J.H.; Rother, N; Aartse, A.; Groh, L.; Janssen-Megens, E.M.; Li, G.; Ruan, Y.; Logie, C.; Stunnenberg, H.G.


    BACKGROUND: The impact of signal-dependent transcription factors, such as glucocorticoid receptor and nuclear factor kappa-b, on the three-dimensional organization of chromatin remains a topic of discussion. The possible scenarios range from remodeling of higher order chromatin architecture by activ

  7. The transforming growth factor-beta receptor genes and the risk of intracranial aneurysms

    NARCIS (Netherlands)

    Ruigrok, Ynte M.; Baas, Annette F.; Medic, Jelena; Wijmenga, Cisca; Rinkel, Gabriel J. E.


    Background Mutations in the receptor genes of the transforming growth factor beta pathway, TGFBR1 and TGFBR2, cause syndromes with thoracic aortic aneurysms, while genetic variants in TGFBR1 and TGFBR2 are associated with abdominal aortic aneurysms. The transforming growth factor-beta pathway may be

  8. Glucocorticoid receptor and nuclear factor kappa-b affect three-dimensional chromatin organization

    NARCIS (Netherlands)

    Kuznetsova, T.; Wang, S.Y.; Rao, N.A.; Mandoli, A.; Martens, J.H.; Rother, N; Aartse, A.; Groh, L.; Janssen-Megens, E.M.; Li, G.; Ruan, Y.; Logie, C.; Stunnenberg, H.G.


    BACKGROUND: The impact of signal-dependent transcription factors, such as glucocorticoid receptor and nuclear factor kappa-b, on the three-dimensional organization of chromatin remains a topic of discussion. The possible scenarios range from remodeling of higher order chromatin architecture by

  9. Epidermal growth factor receptor signalling contributes to house dust mite-induced epithelial barrier dysfunction

    NARCIS (Netherlands)

    Heijink, I H; van Oosterhout, A; Kapus, A


    Impaired airway epithelial barrier function has emerged as a key factor in the pathogenesis of allergic asthma. We aimed to discern the involvement of the epidermal growth factor receptor (EGFR) in allergen-induced epithelial barrier impairment, as we previously observed that house dust mite (HDM) s

  10. Requirement for Tumor Necrosis Factor Receptor 2 Expression on Vascular Cells To Induce Experimental Cerebral Malaria


    Stoelcker, Benjamin; Hehlgans, Thomas; Weigl, Karin; Bluethmann, Horst; Grau, Georges E.; Männel, Daniela N


    Using tumor necrosis factor receptor type 2 (TNFR2)-deficient mice and generating bone marrow chimeras which express TNFR2 on either hematopoietic or nonhematopoietic cells, we demonstrated the requirement for TNFR2 expression on tissue cells to induce lethal cerebral malaria. Thus, TNFR2 on the brain vasculature mediates tumor necrosis factor-induced neurovascular lesions in experimental cerebral malaria.

  11. Pharmacological targeting of the KIT growth factor receptor: a therapeutic consideration for mast cell disorders

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Akin, C; Gilfillan, A M


    KIT is a member of the tyrosine kinase family of growth factor receptors which is expressed on a variety of haematopoietic cells including mast cells. Stem cell factor (SCF)-dependent activation of KIT is critical for mast cell homeostasis and function. However, when KIT is inappropriately activa...

  12. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells.

    NARCIS (Netherlands)

    Engering, A.J.; Geijtenbeek, T.B.; Vliet, S.J. van; Wijers-Rouw, M.J.P.; Liempt, E. van; Demaurex, N.; Lanzavecchia, A.; Fransen, J.A.M.; Figdor, C.G.; Piguet, V.; Kooyk, Y. van


    Dendritic cells (DCs) capture Ags or viruses in peripheral tissue to transport them to lymphoid organs to induce cellular T cell responses. Recently, a DC-specific C-type lectin was identified, DC-specific ICAM-grabbing non-integrin (DC-SIGN), that functions as cell adhesion receptor mediating both

  13. Insights into the Role of the Berry-Specific Ethylene Responsive Factor VviERF045 (United States)

    Leida, Carmen; Dal Rì, Antonio; Dalla Costa, Lorenza; Gómez, Maria D.; Pompili, Valerio; Sonego, Paolo; Engelen, Kristof; Masuero, Domenico; Ríos, Gabino; Moser, Claudio


    During grape ripening, numerous transcriptional and metabolic changes are required in order to obtain colored, sweet, and flavored berries. There is evidence that ethylene, together with other signals, plays an important role in triggering the onset of ripening. Here, we report the functional characterization of a berry-specific Ethylene Responsive Factor (ERF), VviERF045, which is induced just before véraison and peaks at ripening. Phylogenetic analysis revealed it is close to the SHINE clade of ERFs, factors involved in the regulation of wax biosynthesis and cuticle morphology. Transgenic grapevines lines overexpressing VviERF045 were obtained, in vitro propagated, phenotypically characterized, and analyzed for the content of specific classes of metabolites. The effect of VviERF045 was correlated with the level of transgene expression, with high-expressing lines showing stunted growth, discolored and smaller leaves, and a lower level of chlorophylls and carotenoids. One line with intermediate expression, L15, was characterized at the transcriptomic level and showed 573 differentially expressed genes compared to wild type plants. Microscopy and gene expression analyses point toward a major role of VviERF045 in epidermis patterning by acting on waxes and cuticle. They also indicate that VviERF045 affects phenolic secondary metabolism and induces a reaction resembling a plant immune response with modulation of receptor like-kinases and pathogen related genes. These results suggest also a possible role of this transcription factor in berry ripening, likely related to changes in epidermis and cuticle of the berry, cell expansion, a decrease in photosynthetic capacity, and the activation of several defense related genes as well as from the phenylpropanoid metabolism. All these processes occur in the berry during ripening. PMID:28018369

  14. Child-Specific Exposure Factors Handbook (Final Report) 2008 (United States)

    The National Center for Environmental Assessment Staff (NCEA) have prepared this handbook to provide information on various physiological and behavioral factors commonly used in assessing children’s exposure to environmental chemicals. Children have different exposure circumstanc...

  15. Structures of a platelet-derived growth factor/propeptide complex and a platelet-derived growth factor/receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Ann Hye-Ryong; Liu, Heli; Focia, Pamela J.; Chen, Xiaoyan; Lin, P. Charles; He, Xiaolin (Vanderbilt); (NWU)


    Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are prototypic growth factors and receptor tyrosine kinases which have critical functions in development. We show that PDGFs share a conserved region in their prodomain sequences which can remain noncovalently associated with the mature cystine-knot growth factor domain after processing. The structure of the PDGF-A/propeptide complex reveals this conserved, hydrophobic association mode. We also present the structure of the complex between PDGF-B and the first three Ig domains of PDGFR{beta}, showing that two PDGF-B protomers clamp PDGFR{beta} at their dimerization seam. The PDGF-B:PDGFR{beta} interface is predominantly hydrophobic, and PDGFRs and the PDGF propeptides occupy overlapping positions on mature PDGFs, rationalizing the need of propeptides by PDGFs to cover functionally important hydrophobic surfaces during secretion. A large-scale structural organization and rearrangement is observed for PDGF-B upon receptor binding, in which the PDGF-B L1 loop, disordered in the structure of the free form, adopts a highly specific conformation to form hydrophobic interactions with the third Ig domain of PDGFR{beta}. Calorimetric data also shows that the membrane-proximal homotypic PDGFR{alpha} interaction, albeit required for activation, contributes negatively to ligand binding. The structural and biochemical data together offer insights into PDGF-PDGFR signaling, as well as strategies for PDGF-antagonism.

  16. Nuclear trafficking of secreted factors and cell-surface receptors: new pathways to regulate cell proliferation and differentiation, and involvement in cancers

    Directory of Open Access Journals (Sweden)

    Planque Nathalie


    Full Text Available Abstract Secreted factors and cell surface receptors can be internalized by endocytosis and translocated to the cytoplasm. Instead of being recycled or proteolysed, they sometimes translocate to the nucleus. Nuclear import generally involves a nuclear localization signal contained either in the secreted factor or its transmembrane receptor, that is recognized by the importins machinery. In the nucleus, these molecules regulate transcription of specific target genes by direct binding to transcription factors or general coregulators. In addition to the transcription regulation, nuclear secreted proteins and receptors seem to be involved in other important processes for cell life and cellular integrity such as DNA replication, DNA repair and RNA metabolism. Nuclear secreted proteins and transmembrane receptors now appear to induce new signaling pathways to regulate cell proliferation and differentiation. Their nuclear localization is often transient, appearing only during certain phases of the cell cycle. Nuclear secreted and transmembrane molecules regulate the proliferation and differentiation of a large panel of cell types during embryogenesis and adulthood and are also potentially involved in wound healing. Secreted factors such as CCN proteins, EGF, FGFs and their receptors are often detected in the nucleus of cancer cells. Nuclear localization of these molecules has been correlated with tumor progression and poor prognosis for patient survival. Nuclear growth factors and receptors may be responsible for resistance to radiotherapy.

  17. Changes of expression of estrogen and progestrone receptors, human epithelial growth factor receptor 2 and Ki-67 after neoadjuvant chemotherapy in the treatment of breast cancer. (United States)

    Li, M L; Dong, Y; Luan, S L; Zhao, Z H; Ning, F L


    Recent studies suggest that the development and prognosis of breast cancer is in close correlation to molecular subtype of breast cancer. Neoadjuvant chemotherapy has been extensively applied in the treatment of local breast cancer in advanced stage. In order to verify the correlation between expression changes of estrogen receptor, progestrone receptor, human epithelial growth factor receptor 2 and Ki-67 after neoadjuvant chemotherapy and neoadjuvant chemotherapy, we studied 120 patients with stage IIAIIIC breast cancer who underwent neoadjuvant chemotherapy in Binzhou Medical University Hospital, Shandong, China from February 2011 to February 2015. Clinical characteristics were retrospectively analyzed. The expression of estrogen receptor, progesterone receptor, human epithelial growth factor receptor 2 and Ki-67 of patients were detected using the immunohistochemical method before and after neoadjuvant chemotherapy. The results suggest that the overall remission rate of neoadjuvant chemotherapy was 76.7% (92/120) of which 16.7% (20/120) of cases had complete remission, 60% (72/120) had partial remission and 23.3% (28/120) were stable. There were no cases of progressive disease. The property of estrogen receptor and the expression of Ki-67 of primary tumor were correlated to the remission rate of neoadjuvant chemotherapy (P less than 0.05). The expression of Ki-67 had a significant decline after neoadjuvant chemotherapy, and the difference had statistical significance (P less than 0.05). The difference in expression of estrogen receptor, progesterone receptor and human epithelial growth factor receptor 2 before and after neoadjuvant chemotherapy had statistical significance (P > 0.05). Hence, it can be concluded that breast cancer patients with negative estrogen receptor expression and high Ki-67 expression before neoadjuvant chemotherapy can achieve better curative effects. Neoadjuvant chemotherapy cannot change the expression states of estrogen receptor

  18. Diagnostic Values of Vascular Endothelial Growth Factor and Epidermal Growth Factor Receptor for Benign and Malignant Hydrothorax

    Institute of Scientific and Technical Information of China (English)

    Yan Gu; Min Zhang; Guo-Hua Li; Jun-Zhen Gao; Liping Guo; Xiao-Juan Qiao; Li-Hong Wang


    Background:Hydrothorax,as one of the common complications of malignant tumors,still cannot be sensitively detected in clinical practice,thus requiring a sensitive,specific method for diagnosis.The aim of this study was to analyze the correlation between levels of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) in patients with benign and malignant hydrothorax.Methods:The contents of VEGF in the pleural effusion and serum of the patients with malignant pleural effusion (n =35) and benign pleural effusion (n =30) were detected by double antibody sandwich enzyme linked immunosorbent assay.The gene copy number level of EGFR in pleural effusion was detected by fluorescence in situ hybridization (FISH).The points with the highest sensitivity and specificity were selected as the critical values to calculate the diagnostic value of the VEGF in pleural effusion and serum,and EGFR gene copy number in pleural effusion.Results:The contents of VEGF in pleural effusion and serum of patients with malignant hydrothorax were (384.91 ± 120.18),and (129.62 ± 46.35) ng/L,respectively,which were significantly higher than those of the patients with benign hydrothorax (207.97 ± 64.04),(63.49 ± 24.58) ng/L (P < 0.01).The sensitivity and specificity of detecting VEGF in pleural effusion were 80.0% and 96.7% (the boundary value was 297.06 ng/L),respectively for diagnosing benign and malignant hydrothorax.The sensitivity and specificity of serum were 74.3% and 96.7%,respectively (the boundary value was 99.21 ng/L) for diagnosing benign and malignant hydrothorax.The diagnostic efficiencies of EGFR and VEGF in hydrothorax were similar.There was a significant correlation between EGFR and VEGF in hydrothorax (P < 0.01).Conclusions:VEGF and EGFR play important roles in the formation of pleural effusion.VEGF differed significantly in benign and malignant pleural effusions,which contributed to differential diagnosis results of benign and

  19. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation


    Zhao, Haotian; Yang, Tianyu; Madakashira, Bhavani P.; Thiels, Cornelius A.; Bechtle, Chad A.; Garcia, Claudia M.; Zhang, Huiming; Yu, Kai; Ornitz, David M.; Beebe, David C.; Robinson, Michael L.


    The vertebrate lens provides an excellent model to study the mechanisms that regulate terminal differentiation. Although fibroblast growth factors (FGFs) are thought to be important for lens cell differentiation, it is unclear which FGF receptors mediate these processes during different stages of lens development. Deletion of three FGF receptors (Fgfr1-3) early in lens development demonstrated that expression of only a single allele of Fgfr2 or Fgfr3 was sufficient for grossly normal lens dev...

  20. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function.



    International audience; Over the past few decades, corticotropin-releasing factor (CRF) signaling pathways have been shown to be the main coordinators of the endocrine, behavioral, and immune responses to stress. Emerging evidence also links the activation of CRF receptors type 1 and type 2 with stress-related alterations of gut motor function. Here, we review the role of CRF receptors in both the brain and the gut as part of key mechanisms through which various stressors impact propulsive ac...

  1. A receptor model for urban aerosols based on oblique factor analysis

    DEFF Research Database (Denmark)

    Keiding, Kristian; Sørensen, Morten S.; Pind, Niels


    A procedure is outlined for the construction of receptor models of urban aerosols, based on factor analysis. The advantage of the procedure is that the covariation of source impacts is included in the construction of the models. The results are compared with results obtained by other receptor-modelling...... procedures. It was found that procedures based on correlating sources were physically sound as well as in mutual agreement. Procedures based on non-correlating sources were found to generate physically obscure models....

  2. Colony stimulating factor 1 receptor inhibition eliminates microglia and attenuates brain injury after intracerebral hemorrhage. (United States)

    Li, Minshu; Li, Zhiguo; Ren, Honglei; Jin, Wei-Na; Wood, Kristofer; Liu, Qiang; Sheth, Kevin N; Shi, Fu-Dong


    Microglia are the first responders to intracerebral hemorrhage, but their precise role in intracerebral hemorrhage remains to be defined. Microglia are the only type of brain cells expressing the colony-stimulating factor 1 receptor, a key regulator for myeloid lineage cells. Here, we determined the effects of a colony-stimulating factor 1 receptor inhibitor (PLX3397) on microglia and the outcome in the context of experimental mouse intracerebral hemorrhage. We show that PLX3397 effectively depleted microglia, and the depletion of microglia was sustained after intracerebral hemorrhage. Importantly, colony-stimulating factor 1 receptor inhibition attenuated neurodeficits and brain edema in two experimental models of intracerebral hemorrhage induced by injection of collagenase or autologous blood. The benefit of colony-stimulating factor 1 receptor inhibition was associated with reduced leukocyte infiltration in the brain and improved blood-brain barrier integrity after intracerebral hemorrhage, and each observation was independent of lesion size or hematoma volume. These results demonstrate that suppression of colony-stimulating factor 1 receptor signaling ablates microglia and confers protection after intracerebral hemorrhage.

  3. Receptor specificity of influenza A H3N2 viruses isolated in mammalian cells and embryonated chicken eggs. (United States)

    Stevens, James; Chen, Li-Mei; Carney, Paul J; Garten, Rebecca; Foust, Angie; Le, Jianhua; Pokorny, Barbara A; Manojkumar, Ramanunninair; Silverman, Jeanmarie; Devis, Rene; Rhea, Karen; Xu, Xiyan; Bucher, Doris J; Paulson, James C; Paulson, James; Cox, Nancy J; Klimov, Alexander; Donis, Ruben O


    Isolation of human subtype H3N2 influenza viruses in embryonated chicken eggs yields viruses with amino acid substitutions in the hemagglutinin (HA) that often affect binding to sialic acid receptors. We used a glycan array approach to analyze the repertoire of sialylated glycans recognized by viruses from the same clinical specimen isolated in eggs or cell cultures. The binding profiles of whole virions to 85 sialoglycans on the microarray allowed the categorization of cell isolates into two groups. Group 1 cell isolates displayed binding to a restricted set of alpha2-6 and alpha2-3 sialoglycans, whereas group 2 cell isolates revealed receptor specificity broader than that of their egg counterparts. Egg isolates from group 1 showed binding specificities similar to those of cell isolates, whereas group 2 egg isolates showed a significantly reduced binding to alpha2-6- and alpha2-3-type receptors but retained substantial binding to specific O- and N-linked alpha2-3 glycans, including alpha2-3GalNAc and fucosylated alpha2-3 glycans (including sialyl Lewis x), both of which may be important receptors for H3N2 virus replication in eggs. These results revealed an unexpected diversity in receptor binding specificities among recent H3N2 viruses, with distinct patterns of amino acid substitution in the HA occurring upon isolation and/or propagation in eggs. These findings also suggest that clinical specimens containing viruses with group 1-like receptor binding profiles would be less prone to undergoing receptor binding or antigenic changes upon isolation in eggs. Screening cell isolates for appropriate receptor binding properties might help focus efforts to isolate the most suitable viruses in eggs for production of antigenically well-matched influenza vaccines.

  4. Human antigen-specific regulatory T cells generated by T cell receptor gene transfer.

    Directory of Open Access Journals (Sweden)

    Todd M Brusko

    Full Text Available BACKGROUND: Therapies directed at augmenting regulatory T cell (Treg activities in vivo as a systemic treatment for autoimmune disorders and transplantation may be associated with significant off-target effects, including a generalized immunosuppression that may compromise beneficial immune responses to infections and cancer cells. Adoptive cellular therapies using purified expanded Tregs represents an attractive alternative to systemic treatments, with results from animal studies noting increased therapeutic potency of antigen-specific Tregs over polyclonal populations. However, current methodologies are limited in terms of the capacity to isolate and expand a sufficient quantity of endogenous antigen-specific Tregs for therapeutic intervention. Moreover, FOXP3+ Tregs fall largely within the CD4+ T cell subset and are thus routinely MHC class II-specific, whereas class I-specific Tregs may function optimally in vivo by facilitating direct tissue recognition. METHODOLOGY/PRINCIPAL FINDINGS: To overcome these limitations, we have developed a novel means for generating large numbers of antigen-specific Tregs involving lentiviral T cell receptor (TCR gene transfer into in vitro expanded polyclonal natural Treg populations. Tregs redirected with a high-avidity class I-specific TCR were capable of recognizing the melanoma antigen tyrosinase in the context of HLA-A*0201 and could be further enriched during the expansion process by antigen-specific reactivation with peptide loaded artificial antigen presenting cells. These in vitro expanded Tregs continued to express FOXP3 and functional TCRs, and maintained the capacity to suppress conventional T cell responses directed against tyrosinase, as well as bystander T cell responses. Using this methodology in a model tumor system, murine Tregs designed to express the tyrosinase TCR effectively blocked antigen-specific effector T cell (Teff activity as determined by tumor cell growth and luciferase reporter

  5. Sport-specific factors predicting player retention in junior cricket. (United States)

    Talpey, Scott; Croucher, Tom; Bani Mustafa, Ahmed; Finch, Caroline F


    Understanding factors that motivate young athletes to continue participation in sport can help key stakeholders cultivate an environment that fosters long-term participation. This investigation sought to determine the performance and participation factors that influenced continued participation in junior cricket. Administration-level data were collected each annual season across a seven-year period by a community-level junior cricket association in Australia and analysed to identify the performance and participation-based predictors of player retention. All players were males aged <16 years. Players were categorised according to whether they remained in (or departed from) the association at the end of each playing season. A multivariate logistic regression model with a stepwise variable selection was employed to identify significant independent predictors of player retention. The number of innings batted and overs bowled were significant participation-related contributors to junior cricket player retention. Performance factors such as the number of wickets taken and the number of runs scored also significantly influenced player retention. Finally, team age group, the number of previous seasons played and age were also significant factors in player retention. This demonstrates that sufficient opportunity for children to participate in the game and expression of skills competence are key factors for retention in cricket.

  6. Epidermal growth factor induces changes of interaction between epidermal growth factor receptor and actin in intact cells

    Institute of Scientific and Technical Information of China (English)

    Wei Song; Haixing Xuan; Qishui Lin


    The epidermal growth factor receptor (EGFR) is a cyto-skeleton-binding protein. Although purified EGFR can interact with actins in vitro and normally at least 10% of EGFR exist in the insoluble cytoskeleton fraction of A431 cells, interaction of cytosolic EGFR with actin can only be visualized by fluorescence resonance energy transfer when epidermal growth factor presents in the cell medium. Results indicate that the correct orientation between EGFR and actin is important in the signal transduction process.

  7. Aberrant expression of leukemia inhibitory factor receptor (LIFR) and leukemia inhibitory factor (LIF) is associated with tubal pregnancy occurrence


    Li, Yong; Sun, Lizhou; ZHAO, Denmei; Ouyang, Jun; Xiang, Mei


    Tubal pregnancy is a major cause of maternal death in the first trimester and exploration of its underlying molecular mechanism is of great importance. This study aimed to explore the association of tubal pregnancy with leukemia inhibitory factor (LIF) and leukemia inhibitory factor receptor (LIFR) expression in oviduct tissues. Materials and methods: Immunohistochemistry was performed to probe the differential expression of LIF and LIFR in oviduct tissues among a control group (including NP...

  8. The diminished expression of proangiogenic growth factors and their receptors in gastric ulcers of cirrhotic patients.

    Directory of Open Access Journals (Sweden)

    Jiing-Chyuan Luo

    Full Text Available OBJECTIVES: The pathogenesis of the higher occurrence of peptic ulcer disease in cirrhotic patients is complex. Platelets can stimulate angiogenesis and promote gastric ulcer healing. We compared the expressions of proangiogenic growth factors and their receptors in the gastric ulcer margin between cirrhotic patients with thrombocytopenia and those of non-cirrhotic patients to elucidate possible mechanisms. METHODS: Eligible cirrhotic patients (n = 55 and non-cirrhotic patients (n = 55 who had gastric ulcers were enrolled. Mucosa from the gastric ulcer margin and non-ulcer areas were sampled and the mRNA expressions of the proangiogenic growth factors (vascular endothelial growth factor [VEGF], platelet derived growth factor [PDGF], basic fibroblast growth factor [bFGF] and their receptors (VEGFR1, VEGFR2, PDGFRA, PDGFRB, FGFR1, FGFR2 were measured and compared. Platelet count and the expressions of these growth factors and their receptors were correlated with each other. RESULTS: The two groups were comparable in terms of gender, ulcer size and infection rate of Helicobacter pylori. However, the cirrhotic group were younger in age, had a lower platelet count than those in the non-cirrhotic group (p0.5, p<0.001. CONCLUSIONS: Our findings implied that diminished activity of proangiogenic factors and their receptors may contribute to the pathogenesis of gastric ulcers in cirrhotic patients.

  9. Modulation of DNA binding by gene-specific transcription factors. (United States)

    Schleif, Robert F


    The transcription of many genes, particularly in prokaryotes, is controlled by transcription factors whose activity can be modulated by controlling their DNA binding affinity. Understanding the molecular mechanisms by which DNA binding affinity is regulated is important, but because forming definitive conclusions usually requires detailed structural information in combination with data from extensive biophysical, biochemical, and sometimes genetic experiments, little is truly understood about this topic. This review describes the biological requirements placed upon DNA binding transcription factors and their consequent properties, particularly the ways that DNA binding affinity can be modulated and methods for its study. What is known and not known about the mechanisms modulating the DNA binding affinity of a number of prokaryotic transcription factors, including CAP and lac repressor, is provided.

  10. Neuropilin 1 binds platelet-derived growth factor (PDGF)-D and is a co-receptor in PDGF-D/PDGF receptor β signaling. (United States)

    Muhl, Lars; Folestad, Erika Bergsten; Gladh, Hanna; Wang, Yixin; Moessinger, Christine; Jakobsson, Lars; Eriksson, Ulf


    Platelet-derived growth factor (PDGF)-D is a PDGF receptor β (PDGFRβ) specific ligand implicated in a number of pathological conditions, such as cardiovascular disease and cancer, but its biological function remains incompletely understood.In this study, we demonstrate that PDGF-D binds directly to NRP1, with the requirement of the C-terminal Arg residue of PDGF-D. Stimulation with PDGF-D, but not PDGF-B, induced PDGFRβ/NRP1 complex formation in fibroblasts. Additionally, PDGF-D induced translocation of NRP1 to cell-cell junctions in endothelial cells, independent of PDGFRβ, altering the availability of NRP1 for VEGF-A/VEGF receptor 2 signaling. PDGF-D showed differential effects on pericyte behavior in ex vivo sprouting assays, compared to PDGF-B. Furthermore, PDGF-D induced PDGFRβ/NRP1 interaction in the trans-configuration between endothelial cells and pericytes.In summary, we show that NRP1 can act as a co-receptor for PDGF-D in PDGFRβ signaling, possibly implicated in intercellular communication in the vascular wall.

  11. Comprehensive analysis of fibroblast growth factor receptor expression patterns during chick forelimb development. (United States)

    Sheeba, Caroline J; Andrade, Raquel P; Duprez, Delphine; Palmeirim, Isabel


    Specific interactions between fibroblast growth factors (Fgf1-22) and their tyrosine kinase receptors (FgfR1-4) activate different signalling pathways that are responsible for the biological processes in which Fgf signalling is implicated during embryonic development. In the chick, several Fgf ligands (Fgf2, 4, 8, 9, 10, 12, 13 and 18) and the four FgfRs (FgfR 1, 2, 3 and 4) have been reported to be expressed in the developing limb. The precise spatial and temporal expression of these transcripts is important to guide the limb bud to develop into a wing/leg. In this paper, we present a detailed and systematic analysis of the expression patterns of FgfR1, 2, 3 and 4 throughout chick wing development, by in situ hybridisation on whole mounts and sections. Moreover, we characterize for the first time the different isoforms of FGFR1-3 by analysing their differential expression in limb ectoderm and mesodermal tissues, using RT-PCR and in situ hybridisation on sections. Finally, isoform-specific sequences for FgfR1IIIb, FgfR1IIIc, FgfR3IIIb and FgfR3IIIc were determined and deposited in GenBank with the following accession numbers: GU053725, GU065444, GU053726, GU065445, respectively.

  12. Expression of Intracellular Domain of Epidermal Growth Factor Receptor and Generation of Its Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)

    Ying Lin; Zhiduo Liu; Jianmin Jiang; Ziqing Jiang; Yongyong Ji; Bing Sun


    To prepare monoclonal antibody specific to epidermal growth factor receptor (EGFR) intracellular domain, its gene was amplified from total RNA of A431 cell by RT-PCR. Then the gene was cloned into prokaryotic vector pET30a(+). The recombinant plasmid was transformed into E. Coli BL21 (DE3) strain for protein expression.Recombinant protein was induced with IPTG and purified using Ni2+-NTA agarose. Then the anti-EGFR monoclonal antibody (nAb) was prepared with classical hybridoma technique. Positive clones were selected using indirect enzyme-linked inmunoabsorbent assay (ELISA). Totally 4 hybridoma clones were obtained and these mAbs were IgG1 (3 clones) and IgG2a (1 clone), respectively. Their light chains were all kappa chains.Western blotting analysis and confocal immunofluorescence assays demonstrated that mAbs could specifically recognize EGFR expressing on A431 carcinoma cell line. The mAbs will be useful in the study of EGFR-mediated signal transduction.

  13. Expression of Intracellular Domain of Epidermal Growth Factor Receptor and Generation of Its Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)

    YingLin; ZhiduoLiu; JianminJiang; ZiqingJiang; Yongyongji; BingSun


    To prepare monoclonal antibody specific to epidermal growth factor receptor (EGFR) intracellular domain, its gene was amplified from total RNA of A431 cell by RT-PCR. Then the gene was cloned into prokaryotic vector pET30a(+). The recombinant plasmid was transformed into E. coli BL21 (DE3) strain for protein expression. Recombinant protein was induced with IPTG and purified using Nie2+-NTA agarose. Then the anti-EGFR monoclonal antibody (mAb) was prepared with classical hybridoma technique. Positive clones were selected using indirect enzyme-linked immunoabsorbent assay (ELISA). Totally 4 hybridoma clones were obtained and these mAbs were IgG1 (3 clones) and IgG2a (1 clone), respectively. Their light chains were all kappa chains. Western blotting analysis and confocal immunofluorescence assays demonstrated that mAbs could specifically recognize EGFR expressing on A431 carcinoma cell line. The mAbs will be useful in the study of EGFR-mediated signal transduction. Cellular & Molecular Immunology. 2004;1(2):137-141.

  14. Plasticity in interactions of fibroblast growth factor 1 (FGF1) N terminus with FGF receptors underlies promiscuity of FGF1. (United States)

    Beenken, Andrew; Eliseenkova, Anna V; Ibrahimi, Omar A; Olsen, Shaun K; Mohammadi, Moosa


    Tissue-specific alternative splicing in the second half of Ig-like domain 3 (D3) of fibroblast growth factor receptors 1-3 (FGFR1 to -3) generates epithelial FGFR1b-FGFR3b and mesenchymal FGFR1c-FGFR3c splice isoforms. This splicing event establishes a selectivity filter to restrict the ligand binding specificity of FGFRb and FGFRc isoforms to mesenchymally and epithelially derived fibroblast growth factors (FGFs), respectively. FGF1 is termed the "universal FGFR ligand" because it overrides this specificity barrier. To elucidate the molecular basis for FGF1 cross-reactivity with the "b" and "c" splice isoforms of FGFRs, we determined the first crystal structure of FGF1 in complex with an FGFRb isoform, FGFR2b, at 2.1 Å resolution. Comparison of the FGF1-FGFR2b structure with the three previously published FGF1-FGFRc structures reveals that plasticity in the interactions of the N-terminal region of FGF1 with FGFR D3 is the main determinant of FGF1 cross-reactivity with both isoforms of FGFRs. In support of our structural data, we demonstrate that substitution of three N-terminal residues (Gly-19, His-25, and Phe-26) of FGF2 (a ligand that does not bind FGFR2b) for the corresponding residues of FGF1 (Phe-16, Asn-22, and Tyr-23) enables the FGF2 triple mutant to bind and activate FGFR2b. These findings taken together with our previous structural data on receptor binding specificity of FGF2, FGF8, and FGF10 conclusively show that sequence divergence at the N termini of FGFs is the primary regulator of the receptor binding specificity and promiscuity of FGFs.

  15. Vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 expression in non-small cell lung cancer patients: relation to prognosis

    DEFF Research Database (Denmark)

    Bonnesen, Barbara; Pappot, Helle; Holmstav, Julie;


    elements in neoplastic cells and their microenvironment have recently been and are continuously developed including drugs inhibiting the angiogenic system. Angiogenic factor vascular endothelial growth factor (VEGF) and its receptor vascular endothelial growth factor receptor 2 (VEGFR2) seem to play key...

  16. Transcriptional regulation by triiodothyronine requires synergistic action of the thyroid receptor with another trans-acting factor. (United States)

    Voz, M L; Peers, B; Wiedig, M J; Jacquemin, P; Belayew, A; Martial, J A


    Human placental lactogen B (hCS-B) promoter activity is strongly stimulated by triiodothyronine (T3) in pituitary GC cells through interaction between the thyroid receptor and a thyroid receptor-binding element (TBE) spanning coordinates -67 to -41. This TBE is adjacent to the binding site for pituitary factor GHF1 (-95 to -68) which seems necessary for T3 stimulation of hCS-B promoter activity (M. L. Voz, B. Peers, A. Belayew, and J. A. Martial, J. Biol. Chem. 266:13397-13404, 1991). We here demonstrate actual synergy between the thyroid receptor and GHF1. Indeed, in placental JEG-3 cells devoid of factor GHF1, hCS promoter activity is barely stimulated by T3, while a strong response is observed in pituitary GC cells. In the latter, furthermore, neither the TBE nor the GHF1-binding site alone is sufficient to render the thymidine kinase promoter responsive to T3, while in combination they promote strong T3 stimulation. Close proximity between these sites is required for optimal synergy: T3 stimulation globally decreases with increased spacing. Furthermore, synergy occurs not only with a GHF1-binding site but also with all other factor recognition sequences tested (Sp1, NF1, CP1, Oct1, and CACCC boxes) and even with two other copies of the TBE. Nor is it specific to hCS TBE, since the palindromic sequence TCAGGTCA TGACCTGA (TREpal) also exhibits cooperativity.

  17. Deregulation of Flk-1/vascular endothelial growth factor receptor-2 in fibroblast growth factor receptor-1-deficient vascular stem cell development. (United States)

    Magnusson, Peetra; Rolny, Charlotte; Jakobsson, Lars; Wikner, Charlotte; Wu, Yan; Hicklin, Daniel J; Claesson-Welsh, Lena


    We have employed embryoid bodies derived from murine embryonal stem cells to study effects on vascular development induced by fibroblast growth factor (FGF)-2 and FGF receptor-1, in comparison to the established angiogenic factor vascular endothelial growth factor (VEGF)-A and its receptor VEGF receptor-2. Exogenous FGF-2 promoted formation of morphologically distinct, long slender vessels in the embryoid bodies, whereas VEGF-A-treated bodies displayed a compact plexus of capillaries. FGF-2 stimulation of embryonal stem cells under conditions where VEGF-A/VEGFR-2 function was blocked, led to formation of endothelial cell clusters, which failed to develop into vessels. FGFR-1(-/-) embryoid bodies responded to VEGF-A by establishment of the characteristic vascular plexus, but FGF-2 had no effect on vascular development in the absence of FGFR-1. The FGFR-1(-/-) embryoid bodies displayed considerably increased basal level of vessel formation, detected by immunohistochemical staining for platelet-endothelial cell adhesion molecule (PECAM)/CD31. This basal vascularization was blocked by neutralizing antibodies against VEGFR-2 or VEGF-A and biochemical analyses indicated changes in regulation of VEGFR-2 in the absence of FGFR-1 expression. We conclude that VEGF-A/VEGFR-2-dependent vessel formation occurs in the absence of FGF-2/FGFR-1, which, however, serve to modulate vascular development.

  18. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila

    Directory of Open Access Journals (Sweden)

    Mili Jeon


    The respiratory (tracheal system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs, Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr tyrosine kinase (TK. Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways.

  19. Modulation of mouse Leydig cell steroidogenesis through a specific arginine-vasopressin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Tahri-Joutei, A.; Pointis, G.


    Characterization of specific vasopressin binding sites was investigated in purified mouse Leydig cells using tritiated arginine-vasopressin. Binding of radioligand was saturable, time- and temperature-dependent and reversible. (/sup 3/H)-AVP was found to bind to a single class of sites with high affinity and low capacity. Binding displacements with specific selection analogs of AVP indicated the presence of V/sub 1/ subtype receptors on Leydig cells. The ability of AVP to displace (/sup 3/H)-AVP binding was greater than LVP and oxytocin. The unrelated peptides, somatostatin and substance P, were less potent, while neurotensin and LHRH did not displace (/sup 3/H)-AVP binding. The time-course effects of AVP-pretreatment on basal and hCG-stimulated testosterone and cAMP accumulations were studied in primary culture of Leydig cells. Basal testosterone accumulation was significantly increased by a 24 h AVP-pretreatment of Leydig cells. This effect was potentiated by the phosphodiesterase inhibitor (MIX) and was concomitantly accompanied by a slight but significant increase in cAMP accumulation. AVP-pretreatment of the cells for 72 h had no effect on basal testosterone accumulation, but exerted a marked inhibitory effect on the hCG-stimulated testosterone accumulation. This reduction of testosterone accumulation occurred even in the presence of MIX and was not accompanied by any significant change of cAMP levels.

  20. Characterization of putative receptors specific for quercetin on bovine aortic smooth-muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.C.; Becker, C.G.


    The authors have reported that tobacco glycoprotein (TGP), rutin-bovine serum albumin conjugates (R-BSA), quercetin, and chlorogenic acid are mitogenic for bovine aortic smooth-muscle cells (SMC). To investigate whether there are binding sites or receptors for these polyphenol-containing molecules on SMC, the authors have synthesized /sup 125/I-labeled rutin-bovine serum albumin ((/sup 125/I)R-BSA) of high specific activity (20 Ci/mmol). SMC were isolated from a bovine thoracic aorta and maintained in Eagle's minimum essential medium with 10% calf serum in culture. These SMC at early subpassages were suspended (3-5 x 10/sup 7/ cells/ml) in phosphate-buffered saline and incubated with (/sup 125/I)R-BSA (10 pmol) in the presence or absence of 200-fold unlabeled R-BSA, TGP, BSA, rutin, quercetin or related polyphenols, and catecholamines. Binding of (/sup 125/I)R-BSA to SMC was found to be reproducible and the radioligand was displaced by R-BSA, and also by TGP, rutin, quercetin, and chlorogenic acid, but not by BSA, ellagic acid, naringin, hesperetin, dopamine, epinephrine, or isoproterenol. The binding was saturable, reversible, and pH-dependent. These results demonstrate the presence of specific binding sites for quercetinon arterial SMC.

  1. Nucleotide specificity of DNA binding of the aryl hydrocarbon receptor:ARNT complex is unaffected by ligand structure. (United States)

    DeGroot, Danica E; Denison, Michael S


    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the toxic and biological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and a wide variety of structurally diverse ligands through its ability to translocate into the nucleus and bind to a specific DNA recognition site (the dioxin-responsive element [DRE]) adjacent to responsive genes. Although the sequence of the DRE is well defined, several reports suggested that the nucleotide specificity of AhR DNA binding may vary depending on the structure of its bound ligand. Given the potential toxicological significance of this hypothesis, an unbiased DNA-selection-and-PCR-amplification approach was utilized to directly determine whether binding and activation of the AhR by structurally diverse agonists alter its nucleotide specificity of DNA binding. Guinea pig hepatic cytosolic AhR activated in vitro by equipotent concentrations of TCDD, 3-methylcholanthrene, β-naphthoflavone, indirubin, L-kynurenine, or YH439 was incubated with a pool of DNA oligonucleotides containing a 15-base pair variable region consisting of all possible nucleotides. The AhR-bound oligonucleotides isolated by immunoprecipitation were PCR amplified and used in subsequent rounds of selection. Sequence analysis of a total of 196 isolated oligonucleotides revealed that each ligand-activated AhR:ARNT complex only bound to DRE-containing DNA oligonucleotides; no non-DRE-containing DNA oligonucleotides were identified. These results demonstrate that the binding and activation of the AhR by structurally diverse agonists do not appear to alter its nucleotide specificity of DNA binding and suggest that stimulation of gene expression mediated by direct DNA binding of ligand-activated AhR:ARNT complexes is DRE dependent.

  2. Human epidermal growth factor receptor 2 (HER2) immunoreactivity

    DEFF Research Database (Denmark)

    Rasmussen, Anne-Sofie Schrohl; Pedersen, Hans Christian; Jensen, Sussie Steen


    The availability of specific antibody-based test systems is essential to testing of HER2 protein expression. Here, we mapped epitopes recognized by three pharmacodiagnostic HER2 antibodies and investigated their specificity towards peptides and fusion proteins homologous to the intracellular doma...... domains of HER1, HER2, HER3 and HER4. The investigated antibodies were PATHWAY(®) HER2 (clone 4B5; Ventana Medical Systems Inc., Tucson, AZ, USA), HercepTest™ (Dako Denmark A/S, Glostrup, Denmark), and Oracle(®) HER2 (clone CB11; Leica Microsystems GmbH, Wetzlar, Germany)....

  3. Inhibitory NK receptor recognition of HLA-G: regulation by contact residues and by cell specific expression at the fetal-maternal interface.

    Directory of Open Access Journals (Sweden)

    Tsufit Gonen-Gross

    Full Text Available The non-classical HLA-G protein is distinguished from the classical MHC class I molecules by its expression pattern, low polymorphism and its ability to form complexes on the cell surface. The special role of HLA-G in the maternal-fetal interface has been attributed to its ability to interact with specific receptors found on maternal immune cells. However this interaction is restricted to a limited number of receptors. In this study we elucidate the reason for this phenomenon by comparing the specific contact residues responsible for MHC-KIR interactions. This alignment revealed a marked difference between the HLA-G molecule and other MHC class I molecules. By mutating these residues to the equivalent classical MHC residues, the HLA-G molecule regained an ability of interacting with KIR inhibitory receptors found on NK cells derived either from peripheral blood or from the decidua. Functional NK killing assays further substantiated the binding results. Furthermore, double immunofluorescent staining of placental sections revealed that while the conformed form of HLA-G was expressed in all extravillous trophoblasts, the free heavy chain form of HLA-G was expressed in more distal cells of the column, the invasion front. Overall we suggest that HLA-G protein evolved to interact with only some of the NK inhibitory receptors thus allowing a control of inhibition, while permitting appropriate NK cell cytokine and growth factor production necessary for a viable maternal fetal interface.

  4. An Integrated Model of Epidermal Growth Factor Receptor Trafficking and Signal Transduction

    Energy Technology Data Exchange (ETDEWEB)

    Resat, Haluk; Ewald, Jonathan A.; Dixon, David A.; Wiley, H. S.


    Endocytic trafficking of many types of receptors can have profound effects on subsequent signaling events. Quantitative models of these processes, however, have usually considered trafficking and signaling independently. Here, we present an integrated model of both the trafficking and signaling pathway of the epidermal growth factor receptor (EGFR) using a probability weighted-dynamic Monte Carlo simulation. Our model consists of hundreds of distinct endocytic compartments and about 13,000 reactions/events that occur over a broad spatio-temporal range. By using a realistic multi-compartment model, we can investigate the distribution of the receptors among cellular compartments as well as their potential signal transduction characteristics. Our new model also allows the incorporation of physio-chemical aspects of ligand-receptor interactions, such as pH-dependent binding in different endosomal compartments. To determine the utility of this approach, we simulated the differential activation of the EGFR by two of its ligands, epidermal growth factor (EGF) and transforming growth factor- alpha (TGF-a). Our simulations predict that when EGFR is activated with TGF-a, receptor activation is biased toward the cell surface whereas EGF produces a signaling bias towards the endosomal compartment. Experiments confirm these predictions from our model and simulations. Our model accurately predicts the kinetics and extent of receptor down-regulation induced by either EGF or TGF-a. Our results suggest that receptor trafficking controls the compartmental bias of signal transduction, rather than simply modulating signal magnitude. Our model provides a new approach to evaluating the complex effect of receptor trafficking on signal transduction. Importantly, the stochastic and compartmental nature of the simulation allows these models to be directly tested by high-throughput approaches, such as quantitative image analysis.

  5. NPY neuron-specific Y2 receptors regulate adipose tissue and trabecular bone but not cortical bone homeostasis in mice.

    Directory of Open Access Journals (Sweden)

    Yan-Chuan Shi

    Full Text Available BACKGROUND: Y2 receptor signalling is known to be important in neuropeptide Y (NPY-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. METHODOLOGY/PRINCIPAL FINDINGS: We thus generated two conditional knockout mouse models, Y2(lox/lox and NPYCre/+;Y2(lox/lox, in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver carnitine palmitoyltransferase (CPT1 and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC. While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons. CONCLUSIONS/SIGNIFICANCE: Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of

  6. Growth factor receptors and related signalling pathways as targets for novel treatment strategies of hepatocellular cancer

    Institute of Scientific and Technical Information of China (English)

    Michael Hopfner; Detlef Schuppan; Hans Scherübl


    Growth factors and their corresponding receptors are commonly overexpressed and/or dysregulated in many cancers including hepatocellular cancer (HCC). Clinical trials indicate that growth factor receptors and their related signalling pathways play important roles in HCC cancer etiology and progression, thus providing rational targets for innovative cancer therapies. A number of strategies including monoclonal antibodies, tyrosine kinase inhibitors ("small molecule inhibitors") and antisense oligonucleotides have already been evaluated for their potency to inhibit the activity and downstream signalling cascades of these receptors in HCC. First clinical trials have also shown that multi-kinase inhibition is an effective novel treatment strategy in HCC. In this respect sorafenib, an inhibitor of Raf-, VEGF- and PDGF-signalling, is the first multi-kinase inhibitor that has been approved by the FDA for the treatment of advanced HCC. Moreover, the serine-threonine kinase of mammalian target of rapamycin (mTOR) upon which the signalling of several growth factor receptors converge plays a central role in cancer cell proliferation, mTOR inhibition of HCC is currently also being studied in preclinical trials. As HCCs represent hypervascularized neoplasms, inhibition of tumour vessel formation via interfering with the VEGF/VEGFR system is another promising approach in HCC treatment. This review will summarize the current status of the various growth factor receptor-based treatment strategies and in view of the multitude of novel targeted approaches, the rationale for combination therapies for advanced HCC treatment will also be taken into account.

  7. GATA Factor-G-Protein-Coupled Receptor Circuit Suppresses Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Xin Gao


    Full Text Available Hematopoietic stem cells (HSCs originate from hemogenic endothelium within the aorta-gonad-mesonephros (AGM region of the mammalian embryo. The relationship between genetic circuits controlling stem cell genesis and multi-potency is not understood. A Gata2 cis element (+9.5 enhances Gata2 expression in the AGM and induces the endothelial to HSC transition. We demonstrated that GATA-2 rescued hematopoiesis in +9.5−/− AGMs. As G-protein-coupled receptors (GPCRs are the most common targets for FDA-approved drugs, we analyzed the GPCR gene ensemble to identify GATA-2-regulated GPCRs. Of the 20 GATA-2-activated GPCR genes, four were GATA-1-activated, and only Gpr65 expression resembled Gata2. Contrasting with the paradigm in which GATA-2-activated genes promote hematopoietic stem and progenitor cell genesis/function, our mouse and zebrafish studies indicated that GPR65 suppressed hematopoiesis. GPR65 established repressive chromatin at the +9.5 site, restricted occupancy by the activator Scl/TAL1, and repressed Gata2 transcription. Thus, a Gata2 cis element creates a GATA-2-GPCR circuit that limits positive regulators that promote hematopoiesis.

  8. Pathophysiology of myasthenia gravis with antibodies to the acetylcholine receptor, muscle-specific kinase and low-density lipoprotein receptor-related protein 4. (United States)

    Verschuuren, Jan J G M; Huijbers, Maartje G; Plomp, Jaap J; Niks, Erik H; Molenaar, Peter C; Martinez-Martinez, Pilar; Gomez, Alejandro M; De Baets, Marc H; Losen, Mario


    Myasthenia gravis is caused by antibodies to the acetylcholine receptor, muscle-specific kinase, low-density lipoprotein receptor-related protein 4, or possibly yet unidentified antibodies. The mechanisms by which these antibodies interfere with the function of postsynaptic proteins include complement activation, antigenic modulation by crosslinking of the target proteins, competition with ligand binding sites, or steric hindrance which inhibits conformational changes or binding to associated proteins. Screening for auto-antibodies to different postsynaptic targets, and also for low-affinity antibodies, is contributing to a more accurate diagnosis of MG patients. Further studies into the specific pathophysiological pathways of the several MG subforms might help to develop new, more antigen specific, therapies. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Transcription Factor Zbtb20 Controls Regional Specification of Mammalian Archicortex

    DEFF Research Database (Denmark)

    Rosenthal, Eva Helga


    Combinatorial expression of sets of transcription factors (TFs) along the mammalian cortex controls its subdivision into functional areas. Unlike neocortex, only few recent data suggest genetic mechanisms controlling the regionalization of the archicortex. TF Emx2 plays a crucial role in patterning...... later on becoming restricted exclusively to postmitotic neurons of hippocampus (Hi) proper, dentate gyrus (DG), and two transitory zones, subiculum (S) and retrosplenial cortex (Rsp). Analysis of Zbtb20-/- mice revealed altered cortical patterning at the border between neocortex and archicortex...

  10. Urocortin 1, urocortin 3/stresscopin, and corticotropin-releasing factor receptors in human adrenal and its disorders. (United States)

    Fukuda, Tsuyoshi; Takahashi, Kazuhiro; Suzuki, Takashi; Saruta, Masayuki; Watanabe, Mika; Nakata, Taisuke; Sasano, Hironobu


    Urocortin 1 (Ucn1) and urocortin 3 (Ucn3)/stresscopin are new members of the corticotropin-releasing factor (CRF) neuropeptide family. Ucn1 binds to both CRF type 1 (CRF1) and type 2 receptors (CRF2), whereas Ucn3 is a specific agonist for CRF2. Recently, direct involvement of the locally synthesized CRF family in adrenocortical function has been proposed. We examined in situ expression of Ucn and CRF receptors in nonpathological human adrenal gland and its disorders using immunohistochemistry and mRNA in situ hybridization. Ucn immunoreactivity was localized in the cortex and medulla of nonpathological adrenal glands. Ucn1 immunoreactivity was marked in the medulla, whereas Ucn3 was immunostained mostly in the cortex. Both CRF type 1 and CRF2 were expressed in the cortex, particularly in the zonae fasciculata and reticularis but very weakly or undetectably in the medulla. Immunohistochemistry in serial tissue sections with mirror images revealed that both Ucn3 and CRF2 were colocalized in more than 85% of the adrenocortical cells. mRNA in situ hybridization confirmed these findings above. In fetal adrenals, Ucn and CRF receptors were expressed in both fetal and definitive zones of the cortex. Ucn and CRF receptors were all expressed in the tumor cells of pheochromocytomas, adrenocortical adenomas, and carcinomas, but its positivity was less than that in nonpathological adrenal glands, suggesting that Ucn1, Ucn3, and CRF receptors were down-regulated in these adrenal neoplasms. Ucn1, Ucn3, and CRF receptors are all expressed in human adrenal cortex and medulla and may play important roles in physiological adrenal functions.

  11. Improved pan-specific prediction of MHC class I peptide binding using a novel receptor clustering data partitioning strategy

    DEFF Research Database (Denmark)

    Mattsson, Andreas Holm; Kringelum, Jens Vindahl; Garde, C.


    Pan-specific prediction of receptor-ligand interaction is conventionally done using machine-learning methods that integrates information about both receptor and ligand primary sequences. To achieve optimal performance using machine learning, dealing with overfitting and data redundancy is critical...... motifs, to others with no or very limited experimental characterization. The success of this approach has however proven to depend strongly on the similarity of the query molecule to the molecules with characterized specificity using in the machine-learning process. Here, we outline an alternative...

  12. ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.; (UPENN-MED)


    The orphan receptor tyrosine kinase ErbB2 (also known as HER2 or Neu) transforms cells when overexpressed, and it is an important therapeutic target in human cancer. Structural studies have suggested that the oncogenic (and ligand-independent) signalling properties of ErbB2 result from the absence of a key intramolecular 'tether' in the extracellular region that autoinhibits other human ErbB receptors, including the epidermal growth factor (EGF) receptor. Although ErbB2 is unique among the four human ErbB receptors, here we show that it is the closest structural relative of the single EGF receptor family member in Drosophila melanogaster (dEGFR). Genetic and biochemical data show that dEGFR is tightly regulated by growth factor ligands, yet a crystal structure shows that it, too, lacks the intramolecular tether seen in human EGFR, ErbB3 and ErbB4. Instead, a distinct set of autoinhibitory interdomain interactions hold unliganded dEGFR in an inactive state. All of these interactions are maintained (and even extended) in ErbB2, arguing against the suggestion that ErbB2 lacks autoinhibition. We therefore suggest that normal and pathogenic ErbB2 signalling may be regulated by ligands in the same way as dEGFR. Our findings have important implications for ErbB2 regulation in human cancer, and for developing therapeutic approaches that target novel aspects of this orphan receptor.

  13. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)


    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  14. Presenilin 1 regulates epidermal growth factor receptor turnover and signaling in the endosomal-lysosomal pathway. (United States)

    Repetto, Emanuela; Yoon, Il-Sang; Zheng, Hui; Kang, David E


    Mutations in the gene encoding presenilin 1 (PS1) cause the most aggressive form of early-onset familial Alzheimer disease. In addition to its well established role in Abeta production and Notch proteolysis, PS1 has been shown to mediate other physiological activities, such as regulation of the Wnt/beta-catenin signaling pathway, modulation of phosphatidylinositol 3-kinase/Akt and MEK/ERK signaling, and trafficking of select membrane proteins and/or intracellular vesicles. In this study, we present evidence that PS1 is a critical regulator of a key signaling receptor tyrosine kinase, epidermal growth factor receptor (EGFR). Specifically, EGFR levels were robustly increased in fibroblasts deficient in both PS1 and PS2 (PS(-/-)) due to delayed turnover of EGFR protein. Stable transfection of wild-type PS1 but not PS2 corrected EGFR to levels comparable to PS(+/+) cells, while FAD PS1 mutations showed partial loss of activity. The C-terminal fragment of PS1 was sufficient to fully reduce EGFR levels. In addition, the rapid ligand-induced degradation of EGFR was markedly delayed in PS(-/-) cells, resulting in prolonged signal activation. Despite the defective turnover of EGFR, ligand-induced autophosphorylation, ubiquitination, and endocytosis of EGFR were not affected by the lack of PS1. Instead, the trafficking of EGFR from early endosomes to lysosomes was severely delayed by PS1 deficiency. Elevation of EGFR was also seen in brains of adult mice conditionally ablated in PS1 and in skin tumors associated with the loss of PS1. These findings demonstrate a critical role of PS1 in the trafficking and turnover of EGFR and suggest potential pathogenic effects of elevated EGFR as well as perturbed endosomal-lysosomal trafficking in cell cycle control and Alzheimer disease.

  15. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M;


    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...... of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell...

  16. Expression and functional characterization of membrane-integrated mammalian corticotropin releasing factor receptors 1 and 2 in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Roberto Jappelli

    Full Text Available Corticotropin-Releasing Factor Receptors (CRFRs are class B1 G-protein-coupled receptors, which bind peptides of the corticotropin releasing factor family and are key mediators in the stress response. In order to dissect the receptors' binding specificity and enable structural studies, full-length human CRFR1α and mouse CRFR2β as well as fragments lacking the N-terminal extracellular domain, were overproduced in E. coli. The characteristics of different CRFR2β-PhoA gene fusion products expressed in bacteria were found to be in agreement with the predicted ones in the hepta-helical membrane topology model. Recombinant histidine-tagged CRFR1α and CRFR2β expression levels and bacterial subcellular localization were evaluated by cell fractionation and Western blot analysis. Protein expression parameters were assessed, including the influence of E. coli bacterial hosts, culture media and the impact of either PelB or DsbA signal peptide. In general, the large majority of receptor proteins became inserted in the bacterial membrane. Across all experimental conditions significantly more CRFR2β product was obtained in comparison to CRFR1α. Following a detergent screen analysis, bacterial membranes containing CRFR1α and CRFR2β were best solubilized with the zwitterionic detergent FC-14. Binding of different peptide ligands to CRFR1α and CRFR2β membrane fractions were similar, in part, to the complex pharmacology observed in eukaryotic cells. We suggest that our E. coli expression system producing functional CRFRs will be useful for large-scale expression of these receptors for structural studies.

  17. Affinity labeling of the galactose/N-acetylgalactosamine-specific receptor of rat hepatocytes: preferential labeling of one of the subunits

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.T.; Lee, Y.C.


    The galactose/N-acetylgalactosamine-specific receptor (also known as asialoglycoprotein receptor) of rat hepatocytes consists of three subunits, one of which (43 kilodalton (kDa)) exists in a greater abundance (up to 70% of total protein) over the two minor species (52 and 60 kDa). When the receptor on the hepatocyte membranes was photoaffinity labeled with an /sup 125/I-labeled high-affinity reagent the labeling occurred mainly (51-80%) on one of the minor bands (52 kDa). Similarly, affinity-bound, N-acetylgalactosamine-modified lactoperoxidase radioiodinated the same 52-kDa band preferentially. In contrast, both the photoaffinity labeling and lactoperoxidase-catalyzed iodination of the purified, detergent-solubilized receptor resulted in a distribution of the label that is comparable to the Coomassie blue staining pattern of the three bands; i.e., the 43-kDa band was the major band labeled. These and other experimental results suggest that the preferential labeling of the minor band and inefficient labeling of the major band on the hepatocyte membrane resulted from a specific topological arrangement of these subunits on the membranes. The authors postulate that in the native, membrane-bound state of the receptor, the 52-kDa minor band is topologically prominent, while the major (43 kDa) band is partially masked. This partial masking may result from a tight packing of the receptor subunits on the membranes to form a lattice work.

  18. Legionella pneumophila pangenome reveals strain-specific virulence factors

    Directory of Open Access Journals (Sweden)

    Peris-Bondia Francesc


    Full Text Available Abstract Background Legionella pneumophila subsp. pneumophila is a gram-negative γ-Proteobacterium and the causative agent of Legionnaires' disease, a form of epidemic pneumonia. It has a water-related life cycle. In industrialized cities L. pneumophila is commonly encountered in refrigeration towers and water pipes. Infection is always via infected aerosols to humans. Although many efforts have been made to eradicate Legionella from buildings, it still contaminates the water systems. The town of Alcoy (Valencian Region, Spain has had recurrent outbreaks since 1999. The strain "Alcoy 2300/99" is a particularly persistent and recurrent strain that was isolated during one of the most significant outbreaks between the years 1999-2000. Results We have sequenced the genome of the particularly persistent L. pneumophila strain Alcoy 2300/99 and have compared it with four previously sequenced strains known as Philadelphia (USA, Lens (France, Paris (France and Corby (England. Pangenome analysis facilitated the identification of strain-specific features, as well as some that are shared by two or more strains. We identified: (1 three islands related to anti-drug resistance systems; (2 a system for transport and secretion of heavy metals; (3 three systems related to DNA transfer; (4 two CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats systems, known to provide resistance against phage infections, one similar in the Lens and Alcoy strains, and another specific to the Paris strain; and (5 seven islands of phage-related proteins, five of which seem to be strain-specific and two shared. Conclusions The dispensable genome disclosed by the pangenomic analysis seems to be a reservoir of new traits that have mainly been acquired by horizontal gene transfer and could confer evolutionary advantages over strains lacking them.

  19. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    Directory of Open Access Journals (Sweden)

    John G Koland


    Full Text Available Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR, the intrinsic protein tyrosine kinase (PTK activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites in either of the two C-terminal (CT domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in

  20. Determination of specificity influencing residues for key transcription factor families

    DEFF Research Database (Denmark)

    Patel, Ronak Y.; Garde, Christian; Stormo, Gary D.


    -dimensional structure of protein. Structural restraints on the evolution of the amino-acid sequence lead to identification of false SIRs. In this manuscript we extended three methods (direct information, PSICOVand adjusted mutual information) that have been used to disentangle spurious indirect protein residue......-residue contacts from direct contacts, to identify SIRs from joint alignments of amino-acids and specificity. We predicted SIRs for homeodomain (HD), helix-loop-helix, LacI and GntR families of TFs using these methods and compared to MI. Using various measures, we show that the performance of these three methods...

  1. General and specific factors in the intersensory transfer of form. (United States)

    Clark, J. L.; Warm, J. S.; Schumsky, D. A.


    This study assessed the relative contributions of specific and nonspecific components to intersensory transfer between vision and touch. A paired-associate paradigm was used in which visual metric figures and their tactual analogs served as stimuli, and familiar adjectives were the responses. Positive intersensory transfer, characterized by symmetry across modalities was obtained. The contribution of nonspecific learning to this effect was negligible. Intersensory transfer was found to be less efficient than the empirically determined maximum level of intrasensory transfer possible in this task.

  2. Expression of vascular endothelial growth factor and its two receptors in normal human endometrium

    Institute of Scientific and Technical Information of China (English)

    王海燕; 陈贵安


    Objectives: We try to demonstrate the expression of vascular endothelial growthfactor (VEGF) and its receptors, flt-1 and KDR, in normal human emdometrium duringthe menstrual cycle.Methods: Immunohistochemical method was used to observe the expression ofVEGF and its two receptors in emdometrium throughout the normal menstrual cyclemeanwhile the isoforms of VEGF were also detected by Western blot analysis. The en-dothelial cells of micro-vessels were marked with Ⅷ factor antibody.Results: VEGF and its receptors existed in endometrial glandular, stromal and vas-cular endothelial cells of human endometrium. Their expressions were higher in the mid-secretory phase of menstrual cycle and highest at menstruation. VEGF121 and VEGF165were the predominant isoforms in normal human endometrium.Conclusion: The expression of VEGF and its two receptors showed cycle-dependentin human endometrium, probably involved in embryonic implantation and endometrialproliferation and differentiation.

  3. Enhanced latent inhibition in dopamine receptor-deficient mice is sex-specific for the D1 but not D2 receptor subtype: implications for antipsychotic drug action. (United States)

    Bay-Richter, Cecilie; O'Tuathaigh, Colm M P; O'Sullivan, Gerard; Heery, David M; Waddington, John L; Moran, Paula M


    Latent inhibition (LI) is reduced learning to a stimulus that has previously been experienced without consequence. It is an important model of abnormal allocation of salience to irrelevant information in patients with schizophrenia. In rodents LI is abolished by psychotomimetic drugs and in experimental conditions where LI is low in controls, its expression is enhanced by antipsychotic drugs with activity at dopamine (DA) receptors. It is however unclear what the independent contributions of DA receptor subtypes are to these effects. This study therefore examined LI in congenic DA D1 and D2 receptor knockout (D1 KO and D2 KO) mice. Conditioned suppression of drinking was used as the measure of learning in the LI procedure. Both male and female DA D2 KO mice showed clear enhancement of LI reproducing antipsychotic drug effects in the model. Unexpectedly, enhancement was also seen in D1 KO female mice but not in D1 KO male mice. This sex-specific pattern was not replicated in locomotor or motor coordination tasks nor in the effect of DA KOs on baseline learning in control groups indicating some specificity of the effect to LI. These data suggest that the dopaminergic mechanism underlying LI potentiation and possibly antipsychotic action may differ between the sexes, being mediated by D2 receptors in males but by both D1 and D2 receptors in females. These data suggest that the DA D1 receptor may prove an important target for understanding sex differences in the mechanisms of action of antipsychotic drugs and in the aetiology of aberrant salience allocation in schizophrenia.

  4. Sensitivity of wild type and mutant ras alleles to Ras specific exchange factors: Identification of factor specific requirements. (United States)

    Nielsen, K H; Gredsted, L; Broach, J R; Willumsen, B M


    We have investigated the productive interaction between the four mammalian Ras proteins (H-, N-, KA- and