WorldWideScience

Sample records for factor receptor mutation

  1. Epidermal growth factor receptor mutation in gastric cancer.

    Science.gov (United States)

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  2. Napsin A and Thyroid Transcription Factor-1-Positive Cerebellar Tumor with Epidermal Growth Factor Receptor Mutation

    Directory of Open Access Journals (Sweden)

    Taiji Kuwata

    2011-12-01

    Full Text Available We present a very rare case of cerebellar metastasis of unknown origin, in which a primary lung adenocarcinoma was diagnosed by pathological examination of a cerebellar metastatic tumor, using immunohistochemical markers and epidermal growth factor receptor (EGFR mutation of primary lung cancer. A 69-year-old woman was admitted to our hospital because of a hemorrhagic cerebellar tumor and multiple small brain tumors. She underwent cerebellar tumor resection. On pathological examination, the tumor was diagnosed as adenocarcinoma. However, the primary tumor site was unidentifiable even with several imaging inspections. On immunohistochemical analysis, the resected tumor was positive for napsin A and thyroid transcription factor-1. In addition, an EGFR mutation was detected in the tumor. Therefore, primary lung cancer was diagnosed and the patient was started on gefitinib (250 mg/day therapy.

  3. Epidermal growth factor receptor mutations in lung adenocarcinoma in Malaysian patients.

    Science.gov (United States)

    Liam, Chong-Kin; Wahid, Mohamed Ibrahim A; Rajadurai, Pathmanathan; Cheah, Yoke-Kqueen; Ng, Tiffany Shi-Yeen

    2013-06-01

    Despite available data from other Asian countries, the prevalence of epidermal growth factor receptor (EGFR) mutations among lung adenocarcinoma patients has not been reported in Malaysia. This study sought to determine the frequency of EGFR mutations among multiethnic Malaysian patients diagnosed with lung adenocarcinoma. Demographic and clinical information of patients whose lung adenocarcinoma biopsy specimens were submitted for EGFR mutation testing at Sime Darby Medical Center from 2009 to 2011 were analyzed. EGFR mutations at exons 18, 19, 20, and 21 were detected either through bidirectional sequencing or real-time polymerase chain reaction. Among 812 patients in the study, 49% were female, 63.7% were ethnic Chinese, 29.4% Malay, 4.8% Indian, and 2.1% other ethnic groups. Mutations were present in the tumors of 321 patients (39.5%), with mutations at exons 19 (23.5%) and 21 (14.9%) being the most common. Mutations were significantly more frequent among women than in men (52.5% versus 27.8%, p < 0.001). Although mutations were more common among Chinese (40.8%) compared with Malay (37.2%) or Indian (33.3%) patients, the difference was not statistically significant (p = 0.591). Of 211 patients with smoking history records, never-smokers had a higher mutation rate compared with ever-smokers (54.8% versus 20.7%, p < 0.001). EGFR mutations were present in 39.5% of patients. Mutations were more common in women and never-smokers with no differences in mutation frequency between different ethnicities. Because of the high mutation rates, reflex testing for EGFR mutation should be a routine practice for advanced lung adenocarcinoma patients in Malaysia.

  4. Radiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: Imaging features and histological subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Su Jin [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Hanyang University, Department of Radiology, School of Medicine, Seoul (Korea, Republic of); Kim, Tae Jung [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Samsung Medical Center, Department of Radiology, Seoul (Korea, Republic of); Choi, Yo Won [Hanyang University, Department of Radiology, School of Medicine, Seoul (Korea, Republic of); Park, Jeong-Soo [Dankook Universicity, Department of Biochemistry, College of Medicine, Cheonan (Korea, Republic of); Chung, Jin-Haeng [Seoul National University Bundang Hospital, Department of Pathology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Lee, Kyung Won [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of)

    2016-10-15

    To correlate imaging features of resected lung adenocarcinoma with epidermal growth factor receptor (EGFR) mutation and the IASLC/ATS/ERS classification histological subtypes. In 250 consecutive patients with resected lung adenocarcinoma, EGFR mutation status was correlated with demographics, imaging features including ground-glass opacity (GGO) proportion and the IASLC/ATS/ERS classification histological subtypes. EGFR mutations were significantly more frequent in women (54.5 % vs. 38.1 %, p = 0.011) and in never-smokers (54.7 % vs. 35.3 %, p = 0.003). GGO proportion was significantly higher in tumours with EGFR mutation than in those without (30.3 ± 33.8 % vs. 19.0 ± 29.3 %, p = 0.005). EGFR mutation was significantly more frequent in tumours with GGO ≥ 50 % and tumours with any GGO (p = 0.026 and 0.008, respectively). Adenocarcinomas with exon 19 or 21 mutation showed significantly higher GGO proportion than that in EGFR wild-type tumours (p = 0.009 and 0.029, respectively). Absence of GGO was an independent predictor of negative EGFR mutation (odds ratio, 1.81; 95 % confidence interval, 1.16-3.04; p = 0.018). GGO proportion in adenocarcinomas with EGFR mutation was significantly higher than that in EGFR wild-type tumours, and the absence of GGO on CT was an independent predictor of negative EGFR mutation. (orig.)

  5. Epidermal Growth Factor Receptor Activating Mutations in Squamous Histology of Lung Cancer Patients of Southern Bulgaria

    Directory of Open Access Journals (Sweden)

    Genova Silvia N.

    2015-12-01

    Full Text Available There is only limited data on the prevalence of epidermal growth factor receptor (EGFR activating mutations in squamous cell carcinomas and adenosquamous carcinomas of the lung in patients of the Southern Bulgarian region and the efficacy of EGFR tyrosine kinase inhibitors. AIM: Previous reports for Bulgarian population showed high incidence of EGFR mutations in the squamous cell carcinomas, so we set the goal to investigate their frequency in Southern Bulgaria, after precise immunohistochemical verification of lung cancers. MATERIALS AND METHODS: Two hundred and thirty-six lung carcinomas were included in this prospective study. All biopsies were initially analysed with p63, TTF1, Napsin A, CK7, CK34βE12, synaptophysin, CK20 and CDX2. Two hundred and twenty-five non-small cell lung carcinomas were studied with real-time PCR technology to assess the status of the EGFR gene. RESULTS: We detected 132 adenocarcinomas (58.7%, 89 squamous cell carcinomas (39.2%, 4 adenosquamous carcinomas (1.8%, 9 large cell neuroendocrine carcinomas (3.8% and 2 metastatic colorectal adenocarcinomas (0.8%. Activating mutations in the EGF receptor had 3 out of 89 squamous cell carcinomas (3.37%. We have established mutations in L858R, deletion in exon 19 and rare mutation in S7681. One out of four adenosquamous carcinomas had a point mutation in the L858R (25%. CONCLUSIONS: The frequency of EGFR mutations we found in lung squamous cell carcinomas in a Southern Bulgarian region is lower than that in European countries. Ethnic diversity in the region does not play role of an independent predictive factor in terms of mutation frequency.

  6. Correlation between 18F Fluorodeoxyglucose uptake and epidermal growth factor receptor mutations in advanced lung cancer

    International Nuclear Information System (INIS)

    Choi, Yun Jung; Cho, Byoung Chul; Jeong, Youg Hyu; Seo, Hyo Jung; Kim, Hyun Jeong; Cho, Arthur; Lee, Jae Hoon; Yun, Mi Jin; Jeon, Tae Joo; Lee, Jong Doo; Kang, Won Jun

    2012-01-01

    Mutations in the epidermal growth factor receptor (EGFR)gene have been identified as potential targets for the treatment and prognostic factors for non small cell lung cancer (NSCLC). We assessed the correlation between fluorodeoxyglucose (FDG) uptake and EGFR mutations, as well as their prognostic implications. A total of 163 patients with pathologically confirmed NSCLC were enrolled (99 males and 64 females; median age, 60 years). All patients underwent FDG positron emission tomography before treatment, and genetic studies of EGFR mutations were performed. The maximum standardized uptake value (SUVmax)of the primary lung cancer was measured and normalized with regard to liver uptake. The SUVmax between the wild type and EGFR mutant groups was compared. Survival was evaluated according to SUVmax and EGFR mutation status. EGFR mutations were found in 57 patients (60.8%). The SUVmax tended to be higher in wild type than mutant tumors, but was not significantly different (11.1±5.7 vs. 9.8±4.4, P=0.103). The SUVmax was significantly lower in patients with an exon 19 mutation than in those with either an exon 21 mutation or wild type (P=0.003 and 0.009, respectively). The EGFR mutation showed prolonged overall survival (OS) compared to wild type tumors (P=0.004). There was no significant difference in survival according to SUVmax. Both OS and progression free survival of patients with a mutation in exon 19 were significant longer than in patients with wild type tumors. In patients with NSCLC, a mutation in exon 19 was associated with a lower SUVmax and is a reliable predictor for good survival

  7. Optimal Therapeutic Strategy for Non-small Cell Lung Cancer with Mutated Epidermal Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Zhong SHI

    2015-02-01

    Full Text Available Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs have been widely used in non-small cell lung cancer (NSCLC patients, it is still controversial about how to combine EGFR-TKI with chemotherapy and other targeted drugs. We have made a summary on the current therapeutic models of EGFR-TKI combined with chemotherapy/bevacizumab in this review and aimed to find the optimal therapeutic strategy for NSCLC patients with EGFR mutation.

  8. Divergent epidermal growth factor receptor mutation patterns between smokers and non-smokers with lung adenocarcinoma.

    Science.gov (United States)

    Tseng, Jeng-Sen; Wang, Chih-Liang; Yang, Tsung-Ying; Chen, Chih-Yi; Yang, Cheng-Ta; Chen, Kun-Chieh; Hsu, Kuo-Hsuan; Tsai, Chi-Ren; Chang, Gee-Chen

    2015-12-01

    Smoking status is an important determinant of the prevalence of epidermal growth factor receptor (EGFR) mutations in lung cancer patients. However, it is unclear whether smoking status could also influence the spectrum of EGFR mutations. We enrolled patients with lung adenocarcinoma from three medical centers in Taiwan. EGFR mutations were assessed by Sanger direct sequencing. The objective of this study was to evaluate the influence of smoking status on both the frequency and patterns of EGFR mutations. From 2001 to 2013, a total of 1175 patients with lung adenocarcinoma were enrolled for EGFR mutation analysis. The overall EGFR mutation rate was 59.6%, which was significantly higher in females than males (69.1% vs. 49.8%) and in non-smokers than current/former smokers (73.8% vs. 29.8%) (both Psmokers expressed L858R mutation less frequently (35.2% vs. 50.2%, P=0.005) and exon 19 deletions more frequently (52.8% vs 38.8%, P=0.008) than non-smokers. Smokers and non-smokers also had divergent exon 19 deletions subtypes (Del E746-A750 82.5% vs. 57.6%, respectively, Psmokers were associated with a higher rate of complex mutations than non-smokers (34.2% vs. 8.4%, P<0.001). Our results suggested that smoking status could influence not only the frequency but also the spectrum of EGFR mutations. These findings provide a clue for further investigation of EGFR mutagenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B. [Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology/Oncology, Boston, MA (United States)

    2014-09-05

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC.

  10. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    International Nuclear Information System (INIS)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B.

    2014-01-01

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC

  11. Frequency of Epidermal Growth Factor Receptor Mutation in Smokers with Lung Cancer Without Pulmonary Emphysema.

    Science.gov (United States)

    Takeda, Kenichi; Yamasaki, Akira; Igishi, Tadashi; Kawasaki, Yuji; Ito-Nishii, Shizuka; Izumi, Hiroki; Sakamoto, Tomohiro; Touge, Hirokazu; Kodani, Masahiro; Makino, Haruhiko; Yanai, Masaaki; Tanaka, Natsumi; Matsumoto, Shingo; Araki, Kunio; Nakamura, Hiroshige; Shimizu, Eiji

    2017-02-01

    Chronic obstructive pulmonary disease is a smoking-related disease, and is categorized into the emphysema and airway dominant phenotypes. We examined the relationship between emphysematous changes and epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma. The medical records for 250 patients with lung adenocarcinoma were retrospectively reviewed. All patients were categorized into the emphysema or non-emphysema group. Wild-type EGFR was detected in 136 (54%) and mutant EGFR in 48 (19%). Emphysematous changes were observed in 87 (36%) patients. EGFR mutation was highly frequent in the non-emphysema group (p=0.0014). Multivariate logistic regression analysis showed that emphysema was an independent risk factor for reduced frequency of EGFR mutation (Odds Ratio=3.47, p=0.005). Our data showed a relationship between emphysematous changes and EGFR mutation status. There might be mutually exclusive genetic risk factors for carcinogenesis and development of emphysematous changes. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Lee

    2006-12-01

    Full Text Available Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy.Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132 of glioblastomas and 12.5% (1/8 of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors.Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

  13. Retrospective study of adjuvant icotinib in postoperative lung cancer patients harboring epidermal growth factor receptor mutations.

    Science.gov (United States)

    Yao, Shuyang; Zhi, Xiuyi; Wang, Ruotian; Qian, Kun; Hu, Mu; Zhang, Yi

    2016-09-01

    Epidermal growth factor receptor (EGFR) mutations occur in about 50% of Asian patients with non-small cell lung cancer (NSCLC). Patients with advanced NSCLC and EGFR mutations derive clinical benefit from treatment with EGFR-tyrosine kinase inhibitors (TKIs). This study assessed the efficacy and safety of adjuvant icotinib without chemotherapy in EGFR-mutated NSCLC patients undergoing resection of stage IB-IIIA. Our retrospective study enrolled 20 patients treated with icotinib as adjuvant therapy. Survival factors were evaluated by univariate and Cox regression analysis. The median follow-up time was 30 months (range 24-41). At the data cut-off, five patients (25%) had recurrence or metastasis and one patient had died of the disease. The two-year disease-free survival (DFS) rate was 85%. No recurrence occurred in the high-risk stage IB subgroup during the follow-up period. In univariate analysis, the micropapillary pattern had a statistically significant effect on DFS ( P = 0.040). Multivariate logistic regression analysis showed that there was no independent predictor. Drug related adverse events (AEs) occurred in nine patients (45.0%). The most common AEs were skin-related events and diarrhea, but were relatively mild. No grade 3 AEs or occurrences of intolerable toxicity were observed. Icotinib as adjuvant therapy is effective in patients harboring EGFR mutations after complete resection, with an acceptable AE profile. Further trials with larger sample sizes might confirm the efficiency of adjuvant TKI in selected patients. © 2016 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  14. Common mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene account for achondroplasia, hypochondroplasia, and thanatophoric dwarfism

    Energy Technology Data Exchange (ETDEWEB)

    Bonaventure, J.; Rousseau, F.; Legeai-Mallet, L.; LeMerrer, M.; Munnich, A.; Maroteaux, P. [INSERM, Paris (France)

    1996-05-03

    The mapping of the achondroplasia locus to the short arm of chromosome 4 and the subsequent identification of a recurrent missense mutation (G380R) in the fibroblast growth factor receptor 3 (FGFR-3) gene has been followed by the detection of common FGFR-3 mutations in two clinically related disorders: thanatophoric dwarfism (types I and II) and hypochondroplasia. The relative clinical homogeneity of achondroplasia was substantiated by demonstration of its genetic homogeneity as more than 98% of all patients hitherto reported exhibit mutations in the transmembrane receptor domain. Although most hypochondroplasia cases were accounted for by a recurrent missense substitution (N540K) in the first tyrosine kinase (TK 1) domain of the receptor, a significant proportion (40%) of our patients did not harbor the N540K mutation and three hypochondroplasia families were not linked to the FGFR-3 locus, thus supporting clinical heterogeneity of this condition. In thanatophoric dwarfism (TD), a recurrent FGFR-3 mutation located in the second tyrosine kinase (TK 2) domain of the receptor was originally detected in 100% of TD II cases; in our series, seven distinct mutations in three different protein domains were identified in 25 of 26 TD I patients, suggesting that TD, like achondroplasia, is a genetically homogenous skeletal disorder. 31 refs., 4 figs., 2 tabs.

  15. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials

    DEFF Research Database (Denmark)

    Voldborg, B R; Damstrup, L; Spang-Thomsen, M

    1997-01-01

    The epidermal growth factor receptor (EGFR) is a growth factor receptor that induces cell differentiation and proliferation upon activation through the binding of one of its ligands. The receptor is located at the cell surface, where the binding of a ligand activates a tyrosine kinase in the intr...... aspects of therapeutic targeting of EGFR....

  16. Detection of epidermal growth factor receptor mutation in lung cancer by droplet digital polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Xu Q

    2015-06-01

    Full Text Available Qing Xu,1,* Yazhen Zhu,2,* Yali Bai,1 Xiumin Wei,1 Xirun Zheng,2 Mao Mao,1 Guangjuan Zheng21Translational Bioscience and Diagnostics, WuXi AppTec, Shanghai, 2Department of Pathology, Guangdong Provincial Hospital of TCM, Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, People’s Republic of China*These authors contributed equally to this workBackground: Two types of epidermal growth factor receptor (EGFR mutations in exon 19 and exon 21 (ex19del and L858R are prevalent in lung cancer patients and sensitive to targeted EGFR inhibition. A resistance mutation in exon 20 (T790M has been found to accompany drug treatment when patients relapse. These three mutations are valuable companion diagnostic biomarkers for guiding personalized treatment. Quantitative polymerase chain reaction (qPCR-based methods have been widely used in the clinic by physicians to guide treatment decisions. The aim of this study was to evaluate the technical and clinical sensitivity and specificity of the droplet digital polymerase chain reaction (ddPCR method in detecting the three EGFR mutations in patients with lung cancer.Methods: Genomic DNA from H1975 and PC-9 cells, as well as 92 normal human blood specimens, was used to determine the technical sensitivity and specificity of the ddPCR assays. Genomic DNA of formalin-fixed, paraffin-embedded specimens from 78 Chinese patients with lung adenocarcinoma were assayed using both qPCR and ddPCR.Results: The three ddPCR assays had a limit of detection of 0.02% and a wide dynamic range from 1 to 20,000 copies measurement. The L858R and ex19del assays had a 0% background level in the technical and clinical settings. The T790M assay appeared to have a 0.03% technical background. The ddPCR assays were robust for correct determination of EGFR mutation status in patients, and the dynamic range appeared to be better than qPCR methods. The ddPCR assay for T790M could detect

  17. Occurrence of mutations in the epidermal growth factor receptor gene in X-ray-induced rat lung tumors

    International Nuclear Information System (INIS)

    Kitahashi, Tsukasa; Takahashi, Mami; Yamada, Yutaka

    2008-01-01

    Epidermal growth factor receptor (EGFR) gene alterations have been found in human lung cancers. However, there is no information on the factors inducing EGFR mutations. In rodents, K-ras mutations are frequently found in many lung carcinogenesis models, but hitherto, Egfr mutations have not been reported. Their presence was therefore investigated in representative lung carcinogenesis models with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosobis(2-hydroxypropyl)amine (BHP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MelQx) and ethyl carbamate (urethane), as well as X-ray irradiation. With the chemical carcinogenesis models, no mutations were detected in Egfr, which is in clear contrast to the high rates observed in either codon 12 or 61 of K-ras (21/23 of the lung tumors induced with NNK, 4/5 with MelQx, 1/4 with urethane and 7/18 with BHP). However, in the X-ray-induced lung tumors, Egfr mutations with amino acid substitution were observed in exons 18 and 21 (4/12, 33%), but no activating mutation of K-ras was detected. In addition, one and four silent mutations were identified in K-ras (exon 1) and Egfr (exons 18, 20 and 21), respectively. Most mutations in both Egfr and K-ras were G/C→A/T transitions (7/8, 88% and 31/34, 91%, respectively). Although, the mutational patterns in equivalent human lesions were not completely coincident, this first report of Egfr mutations in an experimental lung tumor model suggests that X-rays or other factors producing oxygen radicals could cause EGFR mutations in some proportion of lung cancers in humans. (author)

  18. Epidermal growth factor receptor (EGFR) mutations and expression in squamous cell carcinoma of the esophagus in central Asia

    International Nuclear Information System (INIS)

    Abedi-Ardekani, Behnoush; Malekzadeh, Reza; Hainaut, Pierre; Dar, Nazir Ahmad; Mir, Mohammad Muzaffar; Zargar, Showkat Ahmad; Lone, M Muqbool; Martel-Planche, Ghyslaine; Villar, Stéphanie; Mounawar, Mounia; Saidi, Farrokh

    2012-01-01

    Esophageal squamous cell carcinoma (ESCC) shows geographic variations in incidence, with high incidences (>50/10 5 person-years) in central Asia, including North Eastern Iran (Golestan) and Northern India (Kashmir). In contrast to Western countries, smoking does not appear to be a significant risk factor for ESCC in central Asia. In lung adenocarcinoma, activating mutations in the gene encoding epidermal growth factor receptor (EGFR) are frequent in tumors of never smokers of Asian origin, predicting therapeutic sensitivity to Egfr-targeting drugs. In this study 152 cases of histologically confirmed ESCC from Iran (Tehran and Golestan Province) and North India (Kashmir Valley) have been analyzed for EGFR mutation by direct sequencing of exons 18–21. Egfr protein expression was evaluated by immunohistochemistry in 34 samples from Tehran and HER2 mutations were analyzed in 54 cases from Kashmir. A total of 14 (9.2%) EGFR variations were detected, including seven variations in exons. Among those, four (2.6%) were already documented in lung cancers, two were reported as polymorphisms and one was a potentially new activating mutation. All but one variation in introns were previously identified as polymorphisms. Over-expression of Egfr was detected in 22/34 (65%) of tested cases whereas no HER2 mutation was found in 54 cases from Kashmir. Overall, EGFR mutations appear to be a rare event in ESCC in high incidence areas of central Asia, although a very small proportion of cases may harbor mutations predicting sensitivity to anti-Egfr drugs

  19. Correlation between {sup 18}F Fluorodeoxyglucose uptake and epidermal growth factor receptor mutations in advanced lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Jung; Cho, Byoung Chul; Jeong, Youg Hyu; Seo, Hyo Jung; Kim, Hyun Jeong; Cho, Arthur; Lee, Jae Hoon; Yun, Mi Jin; Jeon, Tae Joo; Lee, Jong Doo; Kang, Won Jun [Yonsei Univ., Health System, Seoul (Korea, Republic of)

    2012-09-15

    Mutations in the epidermal growth factor receptor (EGFR)gene have been identified as potential targets for the treatment and prognostic factors for non small cell lung cancer (NSCLC). We assessed the correlation between fluorodeoxyglucose (FDG) uptake and EGFR mutations, as well as their prognostic implications. A total of 163 patients with pathologically confirmed NSCLC were enrolled (99 males and 64 females; median age, 60 years). All patients underwent FDG positron emission tomography before treatment, and genetic studies of EGFR mutations were performed. The maximum standardized uptake value (SUVmax)of the primary lung cancer was measured and normalized with regard to liver uptake. The SUVmax between the wild type and EGFR mutant groups was compared. Survival was evaluated according to SUVmax and EGFR mutation status. EGFR mutations were found in 57 patients (60.8%). The SUVmax tended to be higher in wild type than mutant tumors, but was not significantly different (11.1{+-}5.7 vs. 9.8{+-}4.4, P=0.103). The SUVmax was significantly lower in patients with an exon 19 mutation than in those with either an exon 21 mutation or wild type (P=0.003 and 0.009, respectively). The EGFR mutation showed prolonged overall survival (OS) compared to wild type tumors (P=0.004). There was no significant difference in survival according to SUVmax. Both OS and progression free survival of patients with a mutation in exon 19 were significant longer than in patients with wild type tumors. In patients with NSCLC, a mutation in exon 19 was associated with a lower SUVmax and is a reliable predictor for good survival.

  20. Not all epidermal growth factor receptor mutations in lung cancer are created equal: Perspectives for individualized treatment strategy.

    Science.gov (United States)

    Kobayashi, Yoshihisa; Mitsudomi, Tetsuya

    2016-09-01

    Somatic mutations in the epidermal growth factor receptor (EGFR) gene are present in approximately 20% (in Caucasians) to 40% (in East Asians) of adenocarcinomas of the lung. Targeted therapy for these lung cancers has been established based on evidence regarding mainly common mutations; that is, exon 19 deletions (Del19) and L858R. EGFR-tyrosine kinase inhibitors (TKI), gefitinib, erlotinib or afatinib showed high objective response rates (ORR) of approximately 60%. Several studies suggested that Del19 might be more sensitive to EGFR-TKI than L858R. On the other hand, it has been difficult to establish evidence for other less common mutations, accounting for 12% of all EGFR mutations, because there are many variants and many studies have excluded patients with these uncommon mutations. However, recent studies revealed that these rare genotypes could be targetable if appropriate TKI are selected. For example, G719X (X denotes A, S, C and so on), Del18, E709K, insertions in exon 19 (Ins19), S768I or L861Q showed moderate sensitivities to gefitinib or erlotinb with ORR of 30%-50%. However, afatinib appeared to be especially effective for these tumors. Although Ins20s (except for insFQEA) have been regarded as resistant mutations, osimertinib may be effective for rare subtypes of them and nazartinib (EGF816) is promising for the majority of them. For the further development of targeted therapy in all EGFR mutations, it is important to precisely detect targetable mutations, to select the most appropriate TKI for each mutation, and to continue investigating in vitro studies and collecting clinical data on even rare mutations. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  1. Mutations in fibroblast growth-factor receptor 3 in sporadic cases of achondroplasia occur exclusively on the paternally derived chromosome.

    Science.gov (United States)

    Wilkin, D J; Szabo, J K; Cameron, R; Henderson, S; Bellus, G A; Mack, M L; Kaitila, I; Loughlin, J; Munnich, A; Sykes, B; Bonaventure, J; Francomano, C A

    1998-01-01

    More than 97% of achondroplasia cases are caused by one of two mutations (G1138A and G1138C) in the fibroblast growth factor receptor 3 (FGFR3) gene, which results in a specific amino acid substitution, G380R. Sporadic cases of achondroplasia have been associated with advanced paternal age, suggesting that these mutations occur preferentially during spermatogenesis. We have determined the parental origin of the achondroplasia mutation in 40 sporadic cases. Three distinct 1-bp polymorphisms were identified in the FGFR3 gene, within close proximity to the achondroplasia mutation site. Ninety-nine families, each with a sporadic case of achondroplasia in a child, were analyzed in this study. In this population, the achondroplasia mutation occurred on the paternal chromosome in all 40 cases in which parental origin was unambiguous. This observation is consistent with the clinical observation of advanced paternal age resulting in new cases of achondroplasia and suggests that factors influencing DNA replication or repair during spermatogenesis, but not during oogenesis, may predispose to the occurrence of the G1138 FGFR3 mutations. PMID:9718331

  2. Epidermal growth factor receptor (EGFR mutations and expression in squamous cell carcinoma of the esophagus in central Asia

    Directory of Open Access Journals (Sweden)

    Abedi-Ardekani Behnoush

    2012-12-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC shows geographic variations in incidence, with high incidences (>50/105 person-years in central Asia, including North Eastern Iran (Golestan and Northern India (Kashmir. In contrast to Western countries, smoking does not appear to be a significant risk factor for ESCC in central Asia. In lung adenocarcinoma, activating mutations in the gene encoding epidermal growth factor receptor (EGFR are frequent in tumors of never smokers of Asian origin, predicting therapeutic sensitivity to Egfr-targeting drugs. Methods In this study 152 cases of histologically confirmed ESCC from Iran (Tehran and Golestan Province and North India (Kashmir Valley have been analyzed for EGFR mutation by direct sequencing of exons 18–21. Egfr protein expression was evaluated by immunohistochemistry in 34 samples from Tehran and HER2 mutations were analyzed in 54 cases from Kashmir. Results A total of 14 (9.2% EGFR variations were detected, including seven variations in exons. Among those, four (2.6% were already documented in lung cancers, two were reported as polymorphisms and one was a potentially new activating mutation. All but one variation in introns were previously identified as polymorphisms. Over-expression of Egfr was detected in 22/34 (65% of tested cases whereas no HER2 mutation was found in 54 cases from Kashmir. Conclusion Overall, EGFR mutations appear to be a rare event in ESCC in high incidence areas of central Asia, although a very small proportion of cases may harbor mutations predicting sensitivity to anti-Egfr drugs.

  3. Chemokine Receptor-5Δ32 Mutation is No Risk Factor for Ischemic-Type Biliary Lesion in Liver Transplantation

    Directory of Open Access Journals (Sweden)

    Christoph Heidenhain

    2009-01-01

    Full Text Available It has been shown that certain chemokine receptor polymorphisms may correspond to certain complications after organ transplantation. Ischemic-type biliary lesion (ITBL encounters for major morbidity and mortality in liver transplant recipients. So far, the exact cause for ITBL remains unclear. Certain risk factors for the development of ITBL like donor age and cold ischemic time are well described. In a previous study, a 32-nucleotide deletion of the chemokine receptor-5Δ32 (CCR-5Δ32 was strongly associated with the incidence of ITBL in adult liver transplantation. This study re-evaluates the association of CCR-5Δ32 gene polymorphism and the incidence of ITBL. 169 patients were included into this retrospective analysis. 134 patients were homozygous for wild-type CCR-5, 33 patients heterozygous, and 2 patients were homozygous for CCR-5Δ32 mutation. There were no major differences in donor or recipients demographics. No association was found between CCR-5Δ32 mutation and the development of ITBL. We conclude that CCR-5Δ32 is no risk factor for the development of ITBL in our patient cohort.

  4. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR mutation

    Directory of Open Access Journals (Sweden)

    Bulent Erdogan

    2016-11-01

    Full Text Available Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01, however, smoking status had no impact on the response rate (p = 0.1. The EGFR-mutant active smokers progressed earlier than the non-smokers (p < 0.01. The overall survival (OS of the non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively. Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49 but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01.The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03. Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively. Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  5. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR) mutation.

    Science.gov (United States)

    Erdogan, Bulent; Kodaz, Hilmi; Karabulut, Senem; Cinkaya, Ahmet; Tozkir, Hilmi; Tanriverdi, Ozgur; Cabuk, Devrim; Hacioglu, Muhammed Bekir; Turkmen, Esma; Hacibekiroglu, Ilhan; Uzunoglu, Sernaz; Cicin, Irfan

    2016-11-10

    Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR) function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01), however, smoking status had no impact on the response rate (p = 0.1). The EGFR-mutant active smokers progressed earlier than the non-smokers (p non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively). Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49) but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01).The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03). Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively). Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  6. Fixation effect of SurePath preservative fluids using epidermal growth factor receptor mutation-specific antibodies for immunocytochemistry.

    Science.gov (United States)

    Kawahara, Akihiko; Taira, Tomoki; Abe, Hideyuki; Watari, Kosuke; Murakami, Yuichi; Fukumitsu, Chihiro; Takase, Yorihiko; Yamaguchi, Tomohiko; Azuma, Koichi; Akiba, Jun; Ono, Mayumi; Kage, Masayoshi

    2014-02-01

    Cytological diagnosis of respiratory disease has become important, not only for histological typing using immunocytochemistry (ICC) but also for molecular DNA analysis of cytological material. The aim of this study was to investigate the fixation effect of SurePath preservative fluids. Human lung cancer PC9 and 11-18 cell lines, and lung adenocarcinoma cells in pleural effusion, were fixed in CytoRich Blue, CytoRich Red, 15% neutral-buffered formalin, and 95% ethanol, respectively. PC9 and 11-18 cell lines were examined by ICC with epidermal growth factor receptor (EGFR) mutation-specific antibodies, the EGFR mutation DNA assay, and fluorescence in situ hybridization. The effect of antigenic storage time was investigated in lung adenocarcinoma cells in pleural effusion by ICC using the lung cancer detection markers. PC9 and 11-18 cell lines in formalin-based fixatives showed strong staining of EGFR mutation-specific antibodies and lung cancer detection markers by ICC as compared with ethanol-based fixatives. DNA preservation with CytoRich Blue and CytoRich Red was superior to that achieved with 95% ethanol and 15% neutral-buffered formalin fixatives, whereas EGFR mutations by DNA assay and EGFR gene amplification by fluorescence in situ hybridization were successfully identified in all fixative samples. Although cytoplasmic antigens maintained high expression levels, expression levels in nuclear antigens fell as storage time increased. These results indicate that CytoRich Red is not only suitable for ICC with EGFR mutation-specific antibodies, but also for DNA analysis of cytological material, and is useful in molecular testing of lung cancer, for which various types of analyses will be needed in future. © 2013 American Cancer Society.

  7. Novel mutation identified in severe early-onset tumor necrosis factor receptor-associated periodic syndrome: a case report.

    Science.gov (United States)

    Radhakrishna, Suhas M; Grimm, Amy; Broderick, Lori

    2017-04-20

    Tumor Necrosis Factor Receptor-Associated Periodic Syndrome (TRAPS) is the second most common heritable autoinflammatory disease, typically presenting in pre-school aged children with fever episodes lasting 1-3 weeks. Systemic symptoms can include rash, myalgia, ocular inflammation, and serositis. Here we report an unusual presentation of TRAPS in a 7 month old girl who presented with only persistent fever. She was initially diagnosed with incomplete Kawasaki Disease and received IVIG and infliximab; however, her fevers quickly recurred. Subsequent testing revealed a urinary tract infection, but she did not improve despite appropriate therapy. As fever continued, she developed significant abdominal distension with imaging concerning for appendicitis, followed by hyperthermia and hemodynamic instability. Given her protracted clinical course and maternal history of a poorly defined inflammatory condition, an autoinflammatory disease was considered. Therapy with anakinra was initiated, resulting in rapid resolution of fever and normalization of inflammatory markers. She was found to have a previously unreported mutation, Thr90Pro, in the TNFRSF1A gene associated with TRAPS. This novel mutation was also confirmed in the patient's mother and maternal uncle. This report reviews a severe case of TRAPS in infancy associated with a novel mutation, Thr90Pro, in the TNFRSF1A gene, and emphasizes that autoinflammatory disease should be considered in the differential of infants with fever of unknown origin.

  8. Increased expression of pro-angiogenic factors and vascularization in thyroid hyperfunctioning adenomas with and without TSH receptor activating mutations.

    Science.gov (United States)

    Celano, Marilena; Sponziello, Marialuisa; Tallini, Giovanni; Maggisano, Valentina; Bruno, Rocco; Dima, Mariavittoria; Di Oto, Enrico; Redler, Adriano; Durante, Cosimo; Sacco, Rosario; Filetti, Sebastiano; Russo, Diego

    2013-02-01

    Autonomously functioning thyroid nodules (AFTN) are known to receive an increased blood influx necessary to sustain their high rate of growth and hormone production. Here, we investigated the expression of hematic and lymphatic vases in a series of 20 AFTN compared with the contralateral non-tumor tissues of the same patients, and the transcript levels of proteins involved in the control of vascular proliferation, including the vascular endothelial growth factor (VEGF) and platelet-derived growth factors (PDGF) and their receptors and the endothelial nitric oxide synthase (eNOS). In parallel, the expression of the differentiation markers sodium/iodide symporter (NIS), thyroperoxidase (TPO), thyroglobulin (Tg), and TSH receptor (TSHR) was also investigated. The data were further analyzed comparing subgroups of tumors with or without mutations in the TSHR gene. Analysis by means of CD31 and D2-40 immunostaining showed in AFTN an increased number of hematic, but not lymphatic, vessels in parallel with an enhanced proliferation rate shown by increased Ki67 staining. Quantitative RT-PCR analysis revealed an increase of VEGF, VEGFR1 and 2, PDGF-A, PDGF-B, and eNOS expression in tumor versus normal tissues. Also, higher transcript levels of NIS, TPO, and Tg were detected. Comparison of the two subgroups of samples revealed only few differences in the expression of the genes examined. In conclusion, these data demonstrate an increased expression of angiogenesis-related factors associated with an enhanced proliferation of hematic, but not lymphatic, vessels in AFTNs. In this context, the presence of TSHR mutations may only slightly influence the expression of pro-angiogenic growth factors.

  9. Matched-pair analysis of a multi-institutional cohort reveals that epidermal growth factor receptor mutation is not a risk factor for postoperative recurrence of lung adenocarcinoma.

    Science.gov (United States)

    Matsumura, Yuki; Suzuki, Hiroyuki; Ohira, Tetsuya; Shiono, Satoshi; Abe, Jiro; Sagawa, Motoyasu; Sakurada, Akira; Katahira, Masato; Machida, Yuichiro; Takahashi, Satomi; Okada, Yoshinori

    2017-12-01

    It is unclear whether epidermal growth factor receptor (EGFR) mutation status is a risk factor for postoperative recurrence of surgically resected lung adenocarcinoma (ADC). Therefore, we conducted a multi-institutional study employing matched-pair analysis to compare recurrence-free survival (RFS) and overall survival (OS) of patients with lung ADC according to EGFR mutation status. We collected the records of 909 patients who underwent surgical resection for lung ADC between 2005 and 2012 at five participating institutions and were also examined their EGFR mutation status. For each patient with an EGFR mutation, we selected one with the wild-type EGFR sequence and matched them according to institution, age, gender, smoking history, pathological stage (pStage), and adjuvant treatment. We compared RFS and OS of the matched cohort. The patients were allocated into groups (n=181 each) with mutated or wild-type EGFR sequences. Both cohorts had identical characteristics as follows: institution, median age (68 years), men (85, 47%), ever smokers (77, 43%), and pStage (IA, 108, 60%; IB, 48, 27%; II, 14, 8%; III, 11, 6%). The 3- and 5-year RFS rates of patients with mutated or wild-type EGFR sequence were 79%, 68% and 77%, 68%, respectively (p=0.557). The respective OS rates were 92%, 81%, and 89%, 79% (p=0.574). Matched-pair and multi-institutional analysis reveals that an EGFR mutation was not a significant risk factor for recurrence of patients with surgically resected lung adenocarcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Rapid and Simple Detection of Hot Spot Point Mutations of Epidermal Growth Factor Receptor, BRAF, and NRAS in Cancers Using the Loop-Hybrid Mobility Shift Assay

    Science.gov (United States)

    Matsukuma, Shoichi; Yoshihara, Mitsuyo; Kasai, Fumio; Kato, Akinori; Yoshida, Akira; Akaike, Makoto; Kobayashi, Osamu; Nakayama, Haruhiko; Sakuma, Yuji; Yoshida, Tsutomu; Kameda, Yoichi; Tsuchiya, Eiju; Miyagi, Yohei

    2006-01-01

    A simple and rapid method to detect the epidermal growth factor receptor hot spot mutation L858R in lung adenocarcinoma was developed based on principles similar to the universal heteroduplex generator technology. A single-stranded oligonucleotide with an internal deletion was used to generate heteroduplexes (loop-hybrids) bearing a loop in the complementary strand derived from the polymerase chain reaction product of the normal or mutant allele. By placing deletion in the oligonucleotide adjacent to the mutational site, difference in electrophoretic mobility between loop-hybrids with normal and mutated DNA was distinguishable in a native polyacrylamide gel. The method was also modified to detect in-frame deletion mutations of epidermal growth factor receptor in lung adenocarcinomas. In addition, the method was adapted to detect hot spot mutations in the B-type Raf kinase (BRAF) at V600 and in a Ras-oncogene (NRAS) at Q61, the mutations commonly found in thyroid carcinomas. Our mutation detection system, designated the loop-hybrid mobility shift assay was sensitive enough to detect mutant DNA comprising 7.5% of the total DNA. As a simple and straightforward mutation detection technique, loop-hybrid mobility shift assay may be useful for the molecular diagnosis of certain types of clinical cancers. Other applications are also discussed. PMID:16931592

  11. An Immunohistochemical Study of Anaplastic Lymphoma Kinase and Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Carcinoma.

    Science.gov (United States)

    Verma, Sonal; Kumar, Madhu; Kumari, Malti; Mehrotra, Raj; Kushwaha, R A S; Goel, Madhumati; Kumar, Ashutosh; Kant, Surya

    2017-07-01

    Lung cancer is one of the leading causes of cancer related death. Targeted treatment for specific markers may help in reducing the cancer related morbidity and mortality. To study expression of Anaplastic Lymphoma Kinase (ALK)and Epidermal Growth Factor Receptor (EGFR) mutations in patients of Non-Small Cell Lung Cancer NSCLC, that are the targets for specific ALK inhibitors and EGFR tyrosine kinase inhibitors. Total 69 cases of histologically diagnosed NSCLC were examined retrospectively for immunohistochemical expression of EGFR and ALK, along with positive control of normal placental tissue and anaplastic large cell lymphoma respectively. Of the NSCLC, Squamous Cell Carcinoma (SCC) accounted for 71.0% and adenocarcinoma was 26.1%. ALK expression was seen in single case of 60-year-old female, non-smoker with adenocarcinoma histology. EGFR expression was seen in both SCC (59.18%) and adenocarcinoma in (77.78%) accounting for 63.77% of all cases. Both ALK and EGFR mutation were mutually exclusive. EGFR expression was seen in 63.77% of cases, highlighting the importance of its use in routine analysis, for targeted therapy and better treatment results. Although, ALK expression was seen in 1.45% of all cases, it is an important biomarker in targeted cancer therapy. Also, the mutually exclusive expression of these two markers need further studies to develop a diagnostic algorithm for NSCLC patients.

  12. Frequency of epidermal growth factor receptor mutations in Jordanian lung adenocarcinoma patients at diagnosis

    Directory of Open Access Journals (Sweden)

    Natheir Obeidat

    2016-01-01

    Conclusion: The present study revealed that the EGFR mutations rate in Jordanian patients with adenocarcinoma of the lung was higher than in African-American, and some white Caucasian patients, and was lower than in patients in East Asia, and other countries of South Asia.

  13. Use of CT-guided fine needle aspiration biopsy in epidermal growth factor receptor mutation analysis in patients with advanced lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Yi-Ping; Wang, Hai-Yan; Zhang, Jin; Feng, Yong (Dept. of Radiology, Jiangsu Cancer Inst. and Hospital, Nanjing, Jiangsu (China)), email: yipingzhuang2010@sina.com; Shi, Mei-Qi (Dept. of Chemotherapy, Jiangsu Cancer Inst. and Hospital, Nanjing, Jiangsu (China))

    2011-12-15

    Background. The safety of using a cutting needle when performing a core-needle biopsy is of major concern, in particular for small lung tumors or tumors near the hilum. Purpose. To investigate the usefulness of CT-guided fine needle aspiration biopsy (FNAB) of the lung in obtaining tumor tissue for epidermal growth factor receptor (EGFR) mutation analysis in advanced lung cancer patients. Material and Methods. Forty-three patients with stage IIIB-IV lung cancer were enrolled. In all patients, CT-guided FNAB was performed using an 18-gauge or 20-gauge Chiba aspiration needle for histology diagnosis and EGFR mutation analysis. Complications associated with CT-guided FNAB were observed, and the specimen mutational assessments were recorded. Results. The obtained tumor samples ranged from 0.5-1.5 cm in length and were adequate for histological and DNA analyses in all patients. No patient had a pneumothorax or hemoptysis. Minor needle tract bleeding appeared in eight patients. Mutation analysis was satisfactorily demonstrated in 23 mutations and 20 non-mutations. Ten and 13 mutations were identified by 18-gauge and 20-gauge needle biopsies, respectively. EFGR mutations, including 12 cases of EGFR exon 19 deletion and 11 cases of exon 21 point mutation, were present in 21 patients with adenocarcinomas, one with squamous cell carcinoma, and one with undifferentiated carcinoma. Conclusion. CT-guided FNAB is a feasible and safe technique for obtaining lung tumor tissues for EGFR gene mutation analysis

  14. Effects of icotinib, a novel epidermal growth factor receptor tyrosine kinase inhibitor, in EGFR-mutated non-small cell lung cancer.

    Science.gov (United States)

    Yang, Guangdie; Yao, Yinan; Zhou, Jianya; Zhao, Qiong

    2012-06-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small cell lung cancer (NSCLC). Our study demonstrated the antitumor effects of icotinib hydrochloride, a highly selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in two EGFR-mutated lung cancer cell lines compared to A549, a cell line without EGFR mutations. We incubated PC-9 and HCC827 human lung cancer cell lines both with (E746-A750) mutations with various concentrations of icotinib and gefitinib for 48 h. Cell proliferation and migration were determined using a real-time cell invasion and migration assay and cytotoxicity assay. Apoptosis was assessed by measuring Annexin V staining using flow cytometry. The antitumor effects of icotinib compared to gefitinib were similar and were most effective in reducing the proliferation of EGFR-mutated cells compared to non-mutated controls. Our results suggest the possibility of icotinib as a new therapeutic agent of EGFR-mutated cancer cells, which has the potential to be used in the first-line treatment of EGFR-mutated NSCLC.

  15. Preserved fertility in a non-mosaic Klinefelter patient with a mutation in the fibroblast growth factor receptor 3 gene

    DEFF Research Database (Denmark)

    Juul, A; Aksglaede, L; Lund, A M

    2007-01-01

    receptor 3 (FGFR3) gene, which is a gain-of-function mutation resulting in achondroplasia. The patient had phenotypic characteristics of achondroplasia (e.g. short limbed dwarfism and frontal bossing). Testicular volume was 8 ml at 27 years of age and repeated semen samples showed sperm concentrations of 0...

  16. Comparison of the efficacy of icotinib in patients with non-small-cell lung cancer according to the type of epidermal growth factor receptor mutation.

    Science.gov (United States)

    Xue, Zhang Xiao; Wen, Wang Xiu; Zhuang, Yu; Hua, Zang Jian; Xia, Yang Ni

    2016-09-01

    Icotinib hydrochloride is a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with preclinical and clinical activity in non-small-cell lung cancer (NSCLC). Exon 19 deletion and L858R point mutation are the most commonly encountered EGFR mutations in NSCLC, and they predict improved clinical outcomes following treatment with icotinib. The objective of this study was to evaluate the differential clinical efficacy of icotinib in patients with exon 19 deletion or L858R point mutation of the EGFR gene. A total of 104 patients with advanced NSCLC, who harbored exon 19 deletion or L858R point mutation of EGFR and were treated with icotinib, were enrolled in this study. The tumor response and progression-free survival were evaluated. There were no significant differences between patients with EGFR exon 19 deletion and those with L858R point mutation who received treatment with icotinib.

  17. Discordance of Mutation Statuses of Epidermal Growth Factor Receptor and K-ras between Primary Adenocarcinoma of Lung and Brain Metastasis

    Directory of Open Access Journals (Sweden)

    Kun-Ming Rau

    2016-04-01

    Full Text Available Mutations on epidermal growth factor receptor (EGFR of adenocarcinomas of lung have been found to be associated with increased sensitivity to EGFR tyrosine kinase inhibitors and K-ras mutations may correlate with primary resistance. We aimed to explore the discordant mutation statuses of EGFR and K-ras between primary tumors and matched brain metastases in adenocarcinomas of lung. We used a sensitive Scorpion ARMS method to analyze EGFR mutation, and Sanger sequencing followed by allele-specific real-time polymerase chain reaction to analyze K-ras mutation. Forty-nine paired tissues with both primary adenocarcinoma of lung and matched brain metastasis were collected. Thirteen patients (26.5% were discordant for the status of EGFR between primary and metastatic sites. K-ras gene could be checked in paired specimens from 33 patients, thirteen patients (39.6% were discordant for the status of K-ras. In primary lung adenocarcinoma, there were 14 patients of mutant EGFR had mutant K-ras synchronously. This study revealed that the status of EGFR mutation in lung adenocarcinomas is relatively consistent between primary and metastatic sites compared to K-ras mutation. However, there are still a few cases of adenocarcinoma of lung showing discordance for the status of EGFR mutation. Repeated analysis of EGFR mutation is highly recommended if tissue from metastatic or recurrent site is available for the evaluation of target therapy.

  18. Analysis of the epidermal growth factor receptor specific transcriptome: effect of receptor expression level and an activating mutation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel W; Pedersen, Nina; Damstrup, Lars

    2005-01-01

    moderately expressed or overexpressed at an in-itself transforming level. These changes were compared to those induced by the naturally occurring constitutively active variant EGFRvIII. This study provides novel insight on the activities and mechanisms of EGFRvIII and EGFR mediated transformation, as genes...... by interferons. Expression of this module was absent in the EGFRvIII-expressing cell line and the parental cell line. Treatment with the specific EGFR inhibitor AG1478 indicated that the regulations were primary, receptor-mediated events. Furthermore, activation of this module correlated with activation of STAT1...

  19. Icotinib combined whole brain radiotherapy for patients with brain metastasis from lung adenocarcinoma harboring epidermal growth factor receptor mutation.

    Science.gov (United States)

    Li, Jin-Rui; Zhang, Ye; Zheng, Jia-Lian

    2016-07-01

    The brain is a metastatic organ that is most prone to lung adenocarcinoma (LAC). However, the prognosis of patients with brain metastasis remains very poor. In this study, we evaluated the efficacy of icotinib plus whole brain radiation therapy (WBRT) for treating patients with brain metastasis from epidermal growth factor receptor (EGFR)-mutated LAC. All patients received standard WBRT administered to the whole brain in 30 Gy in 10 daily fractions. Each patient was also instructed to take 125 mg icotinib thrice per day beginning from the first day of the WBRT. After completing the WBRT, maintenance icotinib was administered until the disease progressed or intolerable adverse effects were observed. Cranial progression-free survival (CPFS) and overall survival (OS) times were the primary endpoints. A total of 43 patients were enrolled in this study. Two patients (4.7%) presented a complete response (CR), whereas 20 patients (46.5%) presented a partial response (PR). The median CPFS and OS times were 11.0 and 15.0 months, respectively. The one-year CPFS rate was 40.0% for the patients harboring EGFR exon 19 deletion and 16.7% for the patients with EGFR exon 21 L858R (P=0.027). The concurrent administration of icotinib and WBRT exhibited favorable effects on the patients with brain metastasis. EGFR exon 19 deletion was predictive of a long CPFS following icotinib plus WBRT.

  20. Utility of bronchial lavage fluids for epithelial growth factor receptor mutation assay in lung cancer patients: Comparison between cell pellets, cell blocks and matching tissue specimens

    Science.gov (United States)

    Asaka, Shiho; Yoshizawa, Akihiko; Nakata, Rie; Negishi, Tatsuya; Yamamoto, Hiroshi; Shiina, Takayuki; Shigeto, Shohei; Matsuda, Kazuyuki; Kobayashi, Yukihiro; Honda, Takayuki

    2018-01-01

    The detection of epidermal growth factor receptor (EGFR) mutations is necessary for the selection of suitable patients with non-small cell lung cancer (NSCLC) for treatment with EGFR tyrosine kinase inhibitors. Cytology specimens are known to be suitable for EGFR mutation detection, although tissue specimens should be prioritized; however, there are limited studies that examine the utility of bronchial lavage fluid (BLF) in mutation detection. The purpose of the present study was to investigate the utility of BLF specimens for the detection of EGFR mutations using a conventional quantitative EGFR polymerase chain reaction (PCR) assay. Initially, quantification cycle (Cq) values of cell pellets, cell-free supernatants and cell blocks obtained from three series of 1% EGFR mutation-positive lung cancer cell line samples were compared for mutation detection. In addition, PCR analysis of BLF specimens obtained from 77 consecutive NSCLC patients, detecting EGFR mutations was validated, and these results were compared with those for the corresponding formalin-fixed paraffin-embedded (FFPE) tissue specimens obtained by surgical resection or biopsy of 49 of these patients. The Cq values for mutation detection were significantly lower in the cell pellet group (average, 29.58) compared with the other groups, followed by those in cell-free supernatants (average, 34.15) and in cell blocks (average, 37.12) for all three series (P<0.05). Mutational status was successfully analyzed in 77 BLF specimens, and the results obtained were concordant with those of the 49 matching FFPE tissue specimens. Notably, EGFR mutations were even detected in 10 cytological specimens that contained insufficient tumor cells. EGFR mutation testing with BLF specimens is therefore a useful and reliable method, particularly when sufficient cancer cells are not obtained. PMID:29399190

  1. Value of {sup 18}F-FDG uptake on PET/CT and CEA level to predict epidermal growth factor receptor mutations in pulmonary adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kai-Hsiung; Hsu, Hsian-He; Chang, Wei-Chou; Hsu, Yi-Chih; Chang, Tsun-Hou [Tri-Service General Hospital and National Defense Medical Center, Department of Radiology, Taipei 114 (China); Huang, Tsai-Wang; Chang, Hung [Tri-Service General Hospital and National Defense Medical Center, Department of Thoracic Surgery, Taipei (China); Gao, Hong-Wei [Tri-Service General Hospital and National Defense Medical Center, Department of Pathology, Taipei (China); Shen, Daniel H.Y. [Tri-Service General Hospital and National Defense Medical Center, Department of Nuclear medicine, Taipei (China); Chu, Chi-Ming [Institute of Public Health, National Defense Medical Center and University, Section of Health Informatics, Taipei (China); Ho, Ching-Liang [Tri-Service General Hospital and National Defense Medical Center, Division of Hematology-Oncology, Department of Internal Medicine, Taipei (China)

    2014-10-15

    The identification of the mutation status of the epidermal growth factor receptor (EGFR) is important for the optimization of treatment in patients with pulmonary adenocarcinoma. The acquisition of adequate tissues for EGFR mutational analysis is sometimes not feasible, especially in advanced-stage patients. The aim of this study was to predict EGFR mutation status in patients with pulmonary adenocarcinoma based on {sup 18}F-fluorodeoxyglucose (FDG) uptake and imaging features in positron emission tomography/computed tomography (PET/CT), as well as on the serum carcinoembryonic antigen (CEA) level. We retrospectively reviewed 132 pulmonary adenocarcinoma patients who underwent EGFR mutation testing, pretreatment FDG PET/CT and serum CEA analysis. The associations between EGFR mutations and patient characteristics, maximal standard uptake value (SUVmax) of primary tumors, serum CEA level and CT imaging features were analyzed. Receiver-operating characteristic (ROC) curve analysis was performed to quantify the predictive value of these factors. EGFR mutations were identified in 69 patients (52.2 %). Patients with SUVmax ≥6 (p = 0.002) and CEA level ≥5 (p = 0.013) were more likely to have EGFR mutations. The CT characteristics of larger tumors (≥3 cm) (p = 0.023) and tumors with a nonspiculated margin (p = 0.026) were also associated with EGFR mutations. Multivariate analysis showed that higher SUVmax and CEA level, never smoking and a nonspiculated tumor margin were the most significant predictors of EGFR mutation. The combined use of these four criteria yielded a higher area under the ROC curve (0.82), suggesting a good discrimination. The combined evaluation of FDG uptake, CEA level, smoking status and tumor margins may be helpful in predicting EGFR mutation status in patients with pulmonary adenocarcinoma, especially when the tumor sample is inadequate for genetic analysis or genetic testing is not available. Further large-scale prospective studies are

  2. Recurrent LDL-receptor mutation causes familial ...

    African Journals Online (AJOL)

    1995-05-05

    May 5, 1995 ... 3. eaudet . New. Recurrent LDL-receptor mutation causes familial hypercholesterolaemia in ... amplification refractory mutation system (ARMS)" and single- strand conformation .... Location. Afrikaner. Mixed race. ApaLl.

  3. Relationship between serum carcinoembryonic antigen level and epidermal growth factor receptor mutations with the influence on the prognosis of non-small-cell lung cancer patients

    Directory of Open Access Journals (Sweden)

    Cai ZX

    2016-06-01

    Full Text Available Zuxun Cai Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou City, People’s Republic of China Objective: To investigate the relationship between serum carcinoembryonic antigen (CEA level and epidermal growth factor receptor (EGFR gene mutations in non-small-cell lung cancer (NSCLC patients and to analyze the influence of CEA level on postoperative survival time in lung cancer patients. Methods: A total of 296 patients who were treated in Thoracic Surgery Department of Henan Provincial Chest Hospital from September 2011 to September 2013 were recruited. The level of tumor markers, such as CEA, was determined before the surgery, and EGFR gene mutations were detected after surgery. Thereby, the relationship between tumor makers, including CEA, and EGFR mutation and its influence on prognosis could be investigated. Results: Among 296 patients, the positive rate of EGFR gene mutation was 37.84% (112/296; the mutation occurred more frequently in nonsmokers, adenocarcinoma patients, women, and patients aged <60 years (P<0.05. Both tumor markers and chemosensitivity indicators were related to the profile of EGFR mutations. Elevated squamous cell carcinoma and Cyfra21-1 as well as positively expressed ERCC1 were more common in patients with wild-type EGFR (P<0.05, whereas increased CEA level was observed more frequently in patients with EGFR gene mutation (P=0.012. The positive rate of EGFR gene mutations was higher as the serum CEA level increased, that is, the positive rate in patients with serum CEA level <5, 5–20, and >20 µg/L was 39.81%, 45.32%, and 65.47%, respectively (P=0.004. Logistic regression analysis showed that CEA level was an independent factor in predicting EGFR gene mutations, and serum CEA level was also an independent factor in affecting the prognosis of NSCLC patients, as the overall 2-year survival rate was 73.86% in elevated CEA group and 86.43% in normal group (P<0.01. Conclusion: The prognosis of

  4. Customized chemotherapy based on epidermal growth factor receptor mutation status for elderly patients with advanced non-small-cell lung cancer: a phase II trial

    International Nuclear Information System (INIS)

    Fujita, Shiro; Mio, Tadashi; Katakami, Nobuyuki; Masago, Katsuhiro; Yoshioka, Hiroshige; Tomii, Keisuke; Kaneda, Toshihiko; Hirabayashi, Masataka; Kunimasa, Kei; Morizane, Toshio

    2012-01-01

    Elderly patients are more vulnerable to toxicity from chemotherapy. Activating epidermal growth factor receptor (EGFR) mutations in non-small-cell lung cancer (NSCLC) are associated with enhanced response to EGFR tyrosine-kinase inhibitors. We studied patients with advanced NSCLC for whom treatment was customized based on EGFR mutation status. We screened 57 chemotherapy-naïve patients with histologically or cytologically confirmed NSCLC, stage IIIB or IV, aged 70 years or older, and with an Eastern Cooperative Oncology Group performance status 0 or 1, for EGFR exon 19 codon 746–750 deletion and exon 21 L858R mutation. Twenty-two patients with EGFR mutations received gefitinib; 32 patients without mutations received vinorelbine or gemcitabine. The primary endpoint was the response rate. The response rate was 45.5% (95% confidence interval [CI]: 24.4%, 67.8%) in patients with EGFR mutations and 18.8% (95% CI: 7.2%, 36.4%) in patients without EGFR mutations. The median overall survival was 27.9 months (95%CI: 24.4 months, undeterminable months) in patients with EGFR mutations and 14.9 months (95%CI: 11.0 months, 22.4 months) in patients without EGFR mutations. In the gefitinib group, grade 3/4 hepatic dysfunction and dermatitis occurred in 23% and 5% of patients, respectively. In patients treated with vinorelbine or gemcitabine, the most common grade 3 or 4 adverse events were neutropenia (47%; four had febrile neutropenia), anemia (13%), and anorexia (9%). No treatment-related deaths occurred. Treatment customization based on EGFR mutation status deserves consideration, particularly for elderly patients who often cannot receive second-line chemotherapy due to poor organ function or comorbidities. This trial is registered at University hospital Medical Information Network-clinical trial registration (http://www.umin.ac.jp/ctr/index/htm) with the registration identification number C000000436

  5. Fibroblast Growth Factor Receptor 3 (FGFR3–Analyses of the S249C Mutation and Protein Expression in Primary Cervical Carcinomas

    Directory of Open Access Journals (Sweden)

    Haiyan Dai

    2001-01-01

    Full Text Available Fibroblast growth factor receptor 3 (FGFR3 seems to play an inhibitory role in bone development, as activating mutations in the gene underlie disorders such as achondroplasia and thanatophoric dysplasia. Findings from multiple myeloma (MM indicate that FGFR3 also can act as an oncogene, and mutation of codon 249 in the fibroblast growth factor receptor 3 (FGFR3 gene was recently detected in 3/12 primary cervical carcinomas. We have analysed 91 cervical carcinomas for this specific S249C mutation using amplification created restriction site methodology (ACRS, and detected no mutations. Immunohistochemistry was performed on 73 of the tumours. Reduced protein staining was seen in 43 (58.8% samples. Six of the tumours (8.2% revealed increased protein staining compared with normal cervical tissue. These patients had a better prognosis than those with reduced or normal levels, although not statistically significant. This report weakens the hypothesis of FGFR3 as an oncogene of importance in cervical carcinomas.

  6. Preserved fertility in a non-mosaic Klinefelter patient with a mutation in the fibroblast growth factor receptor 3 gene

    DEFF Research Database (Denmark)

    Juul, A; Aksglaede, L; Lund, A M

    2007-01-01

    Patients with Klinefelter syndrome (47,XXY) are characterized by eunuchoid body proportions, gynaecomastia, small firm testes and azoospermia. We describe a Klinefelter patient (non-mosaic 47,XXY karyotype) who was heterozygous for the classical 1138G>A mutation in the fibroblast growth factor...

  7. Acquired resistance L747S mutation in an epidermal growth factor receptor-tyrosine kinase inhibitor-naïve patient: A report of three cases.

    Science.gov (United States)

    Yamaguchi, Fumihiro; Fukuchi, Kunihiko; Yamazaki, Yohei; Takayasu, Hiromi; Tazawa, Sakiko; Tateno, Hidetsugu; Kato, Eisuke; Wakabayashi, Aya; Fujimori, Mami; Iwasaki, Takuya; Hayashi, Makoto; Tsuchiya, Yutaka; Yamashita, Jun; Takeda, Norikazu; Kokubu, Fumio

    2014-02-01

    The purpose of the present study was to report cases of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-naïve patients carrying a mutation associated with acquired resistance to the drug. Gene alterations in 77 lung carcinoma patients were analyzed by collecting and studying curette lavage fluid at the time of diagnosis. PCRs were performed to amplify mutation hotspot regions in EGFR genes. The PCR products were direct-sequenced and the mutations confirmed by resequencing using different primers. Case 1 was a 78-year-old Japanese male diagnosed with stage IB lung adenocarcinoma who was found to have two EGFR mutations, G719S and L747S. Case 2 was a 73-year-old Japanese male diagnosed with stage IV squamous cell lung carcinoma and bone metastasis who had the EGFR mutation, L747S. Case 3 was an 82-year-old Japanese male diagnosed with hyponatremia due to inappropriate secretion of antidiuretic hormone and stage IIIB small cell lung carcinoma (SCLC) who had the EGFR mutation, L747S. Thus, the EGFR mutation L747S associated with acquired EGFR-TKI resistance was detected in two non-small cell lung carcinoma (NSCLC) patients and one SCLC patient, none of whom had ever received EGFR-TKI. The patients were current smokers with stages at diagnosis ranging from IB to IV, and their initial tumors contained resistant clones carrying L747S. L747S may be associated with primary resistance. To the best of our knowledge, this study is the first report of an EGFR mutation associated with resistance to EGFR-TKI in SCLC patients. The early detection of EGFR-TKI resistance mutations may be beneficial in making treatment decisions for lung carcinoma patients, including those with SCLC.

  8. Tumor heterogeneity of fibroblast growth factor receptor 3 (FGFR3) mutations in invasive bladder cancer: implications for perioperative anti-FGFR3 treatment.

    Science.gov (United States)

    Pouessel, D; Neuzillet, Y; Mertens, L S; van der Heijden, M S; de Jong, J; Sanders, J; Peters, D; Leroy, K; Manceau, A; Maille, P; Soyeux, P; Moktefi, A; Semprez, F; Vordos, D; de la Taille, A; Hurst, C D; Tomlinson, D C; Harnden, P; Bostrom, P J; Mirtti, T; Horenblas, S; Loriot, Y; Houédé, N; Chevreau, C; Beuzeboc, P; Shariat, S F; Sagalowsky, A I; Ashfaq, R; Burger, M; Jewett, M A S; Zlotta, A R; Broeks, A; Bapat, B; Knowles, M A; Lotan, Y; van der Kwast, T H; Culine, S; Allory, Y; van Rhijn, B W G

    2016-07-01

    Fibroblast growth factor receptor 3 (FGFR3) is an actionable target in bladder cancer. Preclinical studies show that anti-FGFR3 treatment slows down tumor growth, suggesting that this tyrosine kinase receptor is a candidate for personalized bladder cancer treatment, particularly in patients with mutated FGFR3. We addressed tumor heterogeneity in a large multicenter, multi-laboratory study, as this may have significant impact on therapeutic response. We evaluated possible FGFR3 heterogeneity by the PCR-SNaPshot method in the superficial and deep compartments of tumors obtained by transurethral resection (TUR, n = 61) and in radical cystectomy (RC, n = 614) specimens and corresponding cancer-positive lymph nodes (LN+, n = 201). We found FGFR3 mutations in 13/34 (38%) T1 and 8/27 (30%) ≥T2-TUR samples, with 100% concordance between superficial and deeper parts in T1-TUR samples. Of eight FGFR3 mutant ≥T2-TUR samples, only 4 (50%) displayed the mutation in the deeper part. We found 67/614 (11%) FGFR3 mutations in RC specimens. FGFR3 mutation was associated with pN0 (P < 0.001) at RC. In 10/201 (5%) LN+, an FGFR3 mutation was found, all concordant with the corresponding RC specimen. In the remaining 191 cases, RC and LN+ were both wild type. FGFR3 mutation status seems promising to guide decision-making on adjuvant anti-FGFR3 therapy as it appeared homogeneous in RC and LN+. Based on the results of TUR, the deep part of the tumor needs to be assessed if neoadjuvant anti-FGFR3 treatment is considered. We conclude that studies on the heterogeneity of actionable molecular targets should precede clinical trials with these drugs in the perioperative setting. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Nutritional status in the era of target therapy: poor nutrition is a prognostic factor in non-small cell lung cancer with activating epidermal growth factor receptor mutations.

    Science.gov (United States)

    Park, Sehhoon; Park, Seongyeol; Lee, Se-Hoon; Suh, Beomseok; Keam, Bhumsuk; Kim, Tae Min; Kim, Dong-Wan; Kim, Young Whan; Heo, Dae Seog

    2016-11-01

    Pretreatment nutritional status is an important prognostic factor in patients treated with conventional cytotoxic chemotherapy. In the era of target therapies, its value is overlooked and has not been investigated. The aim of our study is to evaluate the value of nutritional status in targeted therapy. A total of 2012 patients with non-small cell lung cancer (NSCLC) were reviewed and 630 patients with activating epidermal growth factor receptor (EGFR) mutation treated with EGFR tyrosine kinase inhibitor (TKI) were enrolled for the final analysis. Anemia, body mass index (BMI), and prognostic nutritional index (PNI) were considered as nutritional factors. Hazard ratio (HR), progression-free survival (PFS) and overall survival (OS) for each group were calculated by Cox proportional analysis. In addition, scores were applied for each category and the sum of scores was used for survival analysis. In univariable analysis, anemia (HR, 1.29; p = 0.015), BMI lower than 18.5 (HR, 1.98; p = 0.002), and PNI lower than 45 (HR, 1.57; p nutritional status is a prognostic marker in NSCLC patients treated with EGFR TKI. Hence, baseline nutritional status should be more carefully evaluated and adequate nutrition should be supplied to these patients.

  10. Clinical features and treatment outcome of non-small cell lung cancer (NSCLC) patients with uncommon or complex epidermal growth factor receptor (EGFR) mutations

    Science.gov (United States)

    Fassan, Matteo; Indraccolo, Stefano; Calabrese, Fiorella; Favaretto, Adolfo; Bonanno, Laura; Polo, Valentina; Zago, Giulia; Lunardi, Francesca; Attili, Ilaria; Pavan, Alberto; Rugge, Massimo; Guarneri, Valentina; Conte, PierFranco; Pasello, Giulia

    2017-01-01

    Introduction Tyrosine-kinase inhibitors (TKIs) represent the best treatment for advanced non-small cell lung cancer (NSCLC) with common exon 19 deletion or exon 21 epidermal growth factor receptor mutation (EGFRm). This is an observational study investigating epidemiology, clinical features and treatment outcome of NSCLC cases harbouring rare/complex EGFRm. Results Among 764 non-squamous NSCLC cases with known EGFRm status, 26(3.4%) harboured rare/complex EGFRm. Patients receiving first-line TKIs (N = 17) achieved median Progression Free Survival (PFS) and Overall Survival (OS) of 53 (IC 95%, 2–105) and 84 (CI 95%, 27–141) weeks respectively, without significant covariate impact. Response Rate and Disease Control Rate (DCR) were 47% and 65%, respectively. Uncommon exon 19 mutations achieved longer OS and PFS and higher DCR compared with exon 18 and 20 mutations. No additional gene mutation was discovered by MassARRAY analysis. TKIs were globally well tolerated. Materials and methods A retrospective review of advanced non-squamous NSCLC harbouring rare/complex EGFRm referred to our Center between 2010 and 2015 was performed. Additional molecular pathways disregulation was explored in selected cases, through MassARRAY analysis. Conclusions Peculiar clinical features and lower TKIs sensitivity of uncommon/complex compared with common EGFRm were shown. Exon 19 EGFRm achieved the best TKIs treatment outcome, while the optimal treatment of exon 18 and 20 mutations should be further clarified. PMID:28427238

  11. Correlation between familial cancer history and epidermal growth factor receptor mutations in Taiwanese never smokers with non-small cell lung cancer: a case-control study.

    Science.gov (United States)

    Cheng, Po-Chung; Cheng, Yun-Chung

    2015-03-01

    Lung cancer is a leading cause of cancer deaths in the world. Cigarette smoking remains a prominent risk factor, but lung cancer incidence has been increasing in never smokers. Genetic abnormalities including epidermal growth factor receptor (EGFR) mutations predominate in never smoking lung cancer patients. Furthermore, familial aggregations of patients with these mutations reflect heritable susceptibility to lung cancer. The correlation between familial cancer history and EGFR mutations in never smokers with lung cancer requires investigation. This was a retrospective case-control study that evaluated the prevalence of EGFR mutations in lung cancer patients with familial cancer history. Never smokers with lung cancer treated at a hospital in Taiwan between April 2012 and May 2014 were evaluated. Inclusion criteria were never smokers with non-small cell lung cancer (NSCLC). Exclusion criteria involved patients without records of familial cancer history or tumor genotype. This study included 246 never smokers with lung cancer. The study population mainly involved never smoking women with a mean age of 60 years, and the predominant tumor histology was adenocarcinoma. Lung cancer patients with familial cancer history had an increased prevalence of EGFR mutations compared to patients without family history [odds ratio (OR): 5.9; 95% confidence interval (CI): 3.3-10.6; Pnon-pulmonary cancers (OR: 5.0; 95% CI: 2.5-10.0; Pnever smoking lung cancer patients with familial cancer history. Moreover, a sizable proportion of never smoking cancer patients harbored these mutations. These observations have implications for the treatment of lung cancer in never smokers.

  12. Identification of a point mutation in growth factor repeat C of the low density lipoprotein-receptor gene in a patient with homozygous familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Soutar, A.K.; Knight, B.L.; Patel, D.D.

    1989-01-01

    The coding region of the low density lipoprotein (LDL)-receptor gene from a patient (MM) with homozygous familial hypercholesterolemia (FH) has been sequenced from six overlapping 500-base-pair amplified fragments of the cDNA from cultured skin fibroblasts. Two separate single nucleotide base changes from the normal sequence were detected. The first involved substitution of guanine for adenine in the third position of the codon for amino acid residue Cys-27 and did not affect the protein sequence. The second mutation was substitution of thymine for cytosine in the DNA for the codon for amino acid residue 664, changing the codon from CCG (proline) to CTG (leucine) and introducing a new site for the restriction enzyme PstI. MM is a true homozygote with two identical genes, and the mutation cosegregated with clinically diagnosed FH in his family in which first cousin marriages occurred frequently. LDL receptors in MM's skin fibroblasts bind less LDL than normal and with reduced affinity. Thus this naturally occurring single point mutation affects both intracellular transport of the protein and ligand binding and occurs in growth factor-like repeat C, a region that has not previously been found to influence LDL binding

  13. Molecular dynamics simulation analysis of the effect of T790M mutation on epidermal growth factor receptor protein architecture in non-small cell lung carcinoma.

    Science.gov (United States)

    Peng, Xiao-Nu; Wang, Jing; Zhang, Wei

    2017-08-01

    Non-small cell lung cancer etiology and its treatment failure are due to epidermal growth factor receptor (EGFR) kinase domain mutations at amino acid position 790. The mutational change from threonine to methionine at position 790 (T790M) is responsible for tyrosine kinase inhibition failure. Using molecular dynamic simulation, the present study investigated the architectural changes occurring at the atomic scale. The 50-nsec runs using a GROMOS force field for wild-type and mutant EGFR's kinase domains were investigated for contrasting variations using Gromacs inbuilt tools. The adenosine triphosphate binding domain and the active site of EGFR were studied extensively in order to understand the structural changes. All the parameters investigated in the present study revealed considerable changes in the studied structures, and the knowledge gained from this may be used to develop novel kinase inhibitors that will be effective irrespective of the structural alterations in kinase domain.

  14. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer: A systematic review and cost-effectiveness analysis

    OpenAIRE

    Westwood, Marie; Joore, Manuela; Whiting, Penny; Asselt, Thea; Ramaekers, Bram; Armstrong, Nigel; Misso, Kate; Severens, Hans; Kleijnen, Jos

    2014-01-01

    markdownabstract__Abstract__ Background: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment with standard chemotherapy. Patients with NSCLC are therefore tested for EGFR-TK tumour gene mutations to inform treatment decisions. There are a variety of tests available to detect these mutations. T...

  15. Computed Tomography-Guided Core-Needle Biopsy Specimens Demonstrate Epidermal Growth Factor Receptor Mutations in Patients with Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Chen, C.M.; Chang, J.W.C.; Cheung, Y.C.; Lin, G.; Hsieh, J.J.; Hsu, T.; Huang, S.F.

    2008-01-01

    Background: Target therapy with a new class of epidermal growth factor receptor (EGFR) inhibitors shows improved clinical response in EGFR gene-mutated lung cancers. Purpose: To evaluate the use of computed tomography (CT)-guided core-needle biopsy specimens for the assessment of EGFR gene mutation in non-small-cell lung cancer (NSCLC). Material and Methods: Seventeen (nine males, eight females) patients with advanced NSCLC were enrolled in this study. All patients underwent CT-guided core-needle biopsy of the lung tumor prior to treatment with the EGFR inhibitor gefitinib. There were no life-threatening complications of biopsy. The specimens were sent fresh-frozen for EGFR mutation analysis and histopathological study. Results: There were 12 (70.6%) EGFR gene mutants and five (29.4%) nonmutants. The objective response rate to gefitinib therapy was 73.3% (11 of 15 patients), with 91.7% (11 of 12 mutants) for the mutant group and 0% for the nonmutant group. Conclusion: CT-guided core-needle biopsy of advanced NSCLC enables the acquisition of sufficient tissue for EGFR gene mutation analysis

  16. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    Science.gov (United States)

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder.

  17. Complete remission through icotinib treatment in Non-small cell lung cancer epidermal growth factor receptor mutation patient with brain metastasis: A case report

    Directory of Open Access Journals (Sweden)

    Wang Tao

    2016-01-01

    Full Text Available Brain metastasis (BM has been universally recognized as a poor prognostic factor in non-small cell lung cancer (NSCLC. Epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs have shown efficacy in treating BM with an EGFR mutation. This paper reports a case of BM patient with EGFR-mutated NSCLC. According to the findings, a complete remission (CR of the BM was achieved by icotinib treatment without conducting a radiotherapy, which was followed by a resection of the primary lung cancer lesion and lymph nodes. After one-year follow-up, the disease progressed to liver metastasis and liver lesion biopsy showed a T790M mutation. The patient responded well to the combination treatment of AZD9291 and icotinib after the failure of transcatheter arterial chemoembolization (TACE. This case report suggests that icotinib has a sustainable anticancer response to BM and the combination with icotinib and AZD9291 is effective for liver metastasis with T790M.

  18. Complete response in gallbladder cancer to erlotinib plus gemcitabine does not require mutation of the epidermal growth factor receptor gene: a case report

    Directory of Open Access Journals (Sweden)

    Lincer Robert

    2010-10-01

    Full Text Available Abstract Background Gallbladder cancer typically follows an aggressive course, with chemotherapy the standard of care for advanced disease; complete remissions are rarely encountered. The epidermal growth factor receptor (EGFR is a promising therapeutic target but the activity of single agent oral EGFR tyrosine kinase inhibitors is low. There have been no previous reports of chemotherapy plus an EGFR-tyrosine kinase inhibitor (TKI to treat gallbladder cancer or correlations of response with the mutation status of the tyrosine kinase domain of the EGFR gene. Case presentation A 67 year old man with metastatic gallbladder cancer involving the liver and abdominal lymph nodes was treated with gemcitabine (1000 mg/m2 on day 1 and 8 every 21 days as well as daily erlotinib (100 mg. After four cycles of therapy, the CA 19-9 normalized and a PET/CT showed a complete remission; this response was maintained by the end of 12 cycles of therapy. Gemcitabine was then discontinued and single agent erlotinib was continued as maintenance therapy. The disease remains in good control 18 months after initiation of therapy, including 6 months on maintenance erlotinib. The only grade 3 toxicity was a typical EGFR-related skin rash. Because of the remarkable response to erlotinib plus gemcitabine, we performed tumor genotyping of the EGFR gene for response predicting mutations in exons 18, 19 and 21. This disclosed the wild-type genotype with no mutations found. Conclusion This case report demonstrates a patient with stage IV gallbladder cancer who experienced a rarely encountered complete, prolonged response after treatment with an oral EGFR-TKI plus chemotherapy. This response occurred in the absence of an EGFR gene mutation. These observations should inform the design of clinical trials using EGFR-TKIs to treat gallbladder and other biliary tract cancers; such trials should not select patients based on EGFR mutation status.

  19. Complete response in gallbladder cancer to erlotinib plus gemcitabine does not require mutation of the epidermal growth factor receptor gene: a case report

    International Nuclear Information System (INIS)

    Mody, Kabir; Strauss, Edward; Lincer, Robert; Frank, Richard C

    2010-01-01

    Gallbladder cancer typically follows an aggressive course, with chemotherapy the standard of care for advanced disease; complete remissions are rarely encountered. The epidermal growth factor receptor (EGFR) is a promising therapeutic target but the activity of single agent oral EGFR tyrosine kinase inhibitors is low. There have been no previous reports of chemotherapy plus an EGFR-tyrosine kinase inhibitor (TKI) to treat gallbladder cancer or correlations of response with the mutation status of the tyrosine kinase domain of the EGFR gene. A 67 year old man with metastatic gallbladder cancer involving the liver and abdominal lymph nodes was treated with gemcitabine (1000 mg/m2) on day 1 and 8 every 21 days as well as daily erlotinib (100 mg). After four cycles of therapy, the CA 19-9 normalized and a PET/CT showed a complete remission; this response was maintained by the end of 12 cycles of therapy. Gemcitabine was then discontinued and single agent erlotinib was continued as maintenance therapy. The disease remains in good control 18 months after initiation of therapy, including 6 months on maintenance erlotinib. The only grade 3 toxicity was a typical EGFR-related skin rash. Because of the remarkable response to erlotinib plus gemcitabine, we performed tumor genotyping of the EGFR gene for response predicting mutations in exons 18, 19 and 21. This disclosed the wild-type genotype with no mutations found. This case report demonstrates a patient with stage IV gallbladder cancer who experienced a rarely encountered complete, prolonged response after treatment with an oral EGFR-TKI plus chemotherapy. This response occurred in the absence of an EGFR gene mutation. These observations should inform the design of clinical trials using EGFR-TKIs to treat gallbladder and other biliary tract cancers; such trials should not select patients based on EGFR mutation status

  20. Complete response in gallbladder cancer to erlotinib plus gemcitabine does not require mutation of the epidermal growth factor receptor gene: a case report.

    Science.gov (United States)

    Mody, Kabir; Strauss, Edward; Lincer, Robert; Frank, Richard C

    2010-10-20

    Gallbladder cancer typically follows an aggressive course, with chemotherapy the standard of care for advanced disease; complete remissions are rarely encountered. The epidermal growth factor receptor (EGFR) is a promising therapeutic target but the activity of single agent oral EGFR tyrosine kinase inhibitors is low. There have been no previous reports of chemotherapy plus an EGFR-tyrosine kinase inhibitor (TKI) to treat gallbladder cancer or correlations of response with the mutation status of the tyrosine kinase domain of the EGFR gene. A 67 year old man with metastatic gallbladder cancer involving the liver and abdominal lymph nodes was treated with gemcitabine (1000 mg/m2) on day 1 and 8 every 21 days as well as daily erlotinib (100 mg). After four cycles of therapy, the CA 19-9 normalized and a PET/CT showed a complete remission; this response was maintained by the end of 12 cycles of therapy. Gemcitabine was then discontinued and single agent erlotinib was continued as maintenance therapy. The disease remains in good control 18 months after initiation of therapy, including 6 months on maintenance erlotinib. The only grade 3 toxicity was a typical EGFR-related skin rash. Because of the remarkable response to erlotinib plus gemcitabine, we performed tumor genotyping of the EGFR gene for response predicting mutations in exons 18, 19 and 21. This disclosed the wild-type genotype with no mutations found. This case report demonstrates a patient with stage IV gallbladder cancer who experienced a rarely encountered complete, prolonged response after treatment with an oral EGFR-TKI plus chemotherapy. This response occurred in the absence of an EGFR gene mutation. These observations should inform the design of clinical trials using EGFR-TKIs to treat gallbladder and other biliary tract cancers; such trials should not select patients based on EGFR mutation status.

  1. Computational Analysis of Epidermal Growth Factor Receptor Mutations Predicts Differential Drug Sensitivity Profiles toward Kinase Inhibitors.

    Science.gov (United States)

    Akula, Sravani; Kamasani, Swapna; Sivan, Sree Kanth; Manga, Vijjulatha; Vudem, Dashavantha Reddy; Kancha, Rama Krishna

    2018-05-01

    A significant proportion of patients with lung cancer carry mutations in the EGFR kinase domain. The presence of a deletion mutation in exon 19 or L858R point mutation in the EGFR kinase domain has been shown to cause enhanced efficacy of inhibitor treatment in patients with NSCLC. Several less frequent (uncommon) mutations in the EGFR kinase domain with potential implications in treatment response have also been reported. The role of a limited number of uncommon mutations in drug sensitivity was experimentally verified. However, a huge number of these mutations remain uncharacterized for inhibitor sensitivity or resistance. A large-scale computational analysis of clinically reported 298 point mutants of EGFR kinase domain has been performed, and drug sensitivity profiles for each mutant toward seven kinase inhibitors has been determined by molecular docking. In addition, the relative inhibitor binding affinity toward each drug as compared with that of adenosine triphosphate was calculated for each mutant. The inhibitor sensitivity profiles predicted in this study for a set of previously characterized mutants correlated well with the published clinical, experimental, and computational data. Both the single and compound mutations displayed differential inhibitor sensitivity toward first- and next-generation kinase inhibitors. The present study provides predicted drug sensitivity profiles for a large panel of uncommon EGFR mutations toward multiple inhibitors, which may help clinicians in deciding mutant-specific treatment strategies. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  2. Rapid point-of-care testing for epidermal growth factor receptor gene mutations in patients with lung cancer using cell-free DNA from cytology specimen supernatants.

    Science.gov (United States)

    Asaka, Shiho; Yoshizawa, Akihiko; Saito, Kazusa; Kobayashi, Yukihiro; Yamamoto, Hiroshi; Negishi, Tatsuya; Nakata, Rie; Matsuda, Kazuyuki; Yamaguchi, Akemi; Honda, Takayuki

    2018-06-01

    Epidermal growth factor receptor (EGFR) mutations are associated with responses to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small-cell lung cancer (NSCLC). Our previous study revealed a rapid point-of-care system for detecting EGFR mutations. This system analyzes cell pellets from cytology specimens using droplet-polymerase chain reaction (d-PCR), and has a reaction time of 10 min. The present study aimed to validate the performance of the EGFR d-PCR assay using cell-free DNA (cfDNA) from supernatants obtained from cytology specimens. Assay results from cfDNA supernatant analyses were compared with those from cell pellets for 90 patients who were clinically diagnosed with, or suspected of having, lung cancer (80 bronchial lavage fluid samples, nine pleural effusion samples and one spinal fluid sample). EGFR mutations were identified in 12 and 15 cases using cfDNA supernatants and cell pellets, respectively. The concordance rates between cfDNA-supernatant and cell‑pellet assay results were 96.7% [kappa coefficient (K)=0.87], 98.9% (K=0.94), 98.9% (K=0.79) and 98.9% (K=0.79) for total EGFR mutations, L858R, E746_A750del and T790M, respectively. All 15 patients with EGFR mutation-positive results, as determined by EGFR d-PCR assay using cfDNA supernatants or cell pellets, also displayed positive results by conventional EGFR assays using tumor tissue or cytology specimens. Notably, EGFR mutations were even detected in five cfDNA supernatants for which the cytological diagnoses of the corresponding cell pellets were 'suspicious for malignancy', 'atypical' or 'negative for malignancy.' In conclusion, this rapid point-of-care system may be considered a promising novel screening method that may enable patients with NSCLC to receive EGFR-TKI therapy more rapidly, whilst also reserving cell pellets for additional morphological and molecular analyses.

  3. Flipped script for gefitinib: A reapproved tyrosine kinase inhibitor for first-line treatment of epidermal growth factor receptor mutation positive metastatic nonsmall cell lung cancer.

    Science.gov (United States)

    Bogdanowicz, Brian S; Hoch, Matthew A; Hartranft, Megan E

    2017-04-01

    Purpose The approval history, pharmacology, pharmacokinetics, clinical trials, efficacy, dosing recommendations, drug interactions, safety, place in therapy, and economic considerations of gefitinib are reviewed. Summary Lung cancer is one of the most commonly diagnosed cancers and is the leading cause of cancer death. Platinum-based chemotherapy and tyrosine kinase inhibitors, such as erlotinib and afatinib, are recommended therapies for nonsmall cell lung cancer. The European Medicines Association based their approval of gefitinib on the randomized, multicenter Iressa Pan-Asia Study (IPASS, NCT00322452) and a single-arm study showing effectiveness in Caucasians (IFUM, NCT01203917). Both studies were recently referenced by the United States Food & Drug Administration to reapprove gefitinib for the first-line treatment of advanced nonsmall cell lung cancer with epidermal growth factor receptor exon 19 deletions or exon 21 substitution. Diarrhea, acneiform rash, and interstitial lung disease are known side effects of gefitinib. Conclusion Use of gefitinib for the first-line therapy of metastatic nonsmall cell lung cancer with epidermal growth factor receptor exon 19 deletions (residues 747-750) or exon 21 substitution mutation (L858R) is well-documented and supported.

  4. The association of TP53 mutations with the resistance of colorectal carcinoma to the insulin-like growth factor-1 receptor inhibitor picropodophyllin

    International Nuclear Information System (INIS)

    Wang, Quan; Wei, Feng; Lv, Guoyue; Li, Chunsheng; Liu, Tongjun; Hadjipanayis, Costas G; Zhang, Guikai; Hao, Chunhai; Bellail, Anita C

    2013-01-01

    There is growing evidence indicating the insulin-like growth factor 1 receptor (IGF-1R) plays a critical role in the progression of human colorectal carcinomas. IGF-1R is an attractive drug target for the treatment of colon cancer. Picropodophyllin (PPP), of the cyclolignan family, has recently been identified as an IGF-1R inhibitor. The aim of this study is to determine the therapeutic response and mechanism after colorectal carcinoma treatment with PPP. Seven colorectal carcinoma cell lines were treated with PPP. Following treatment, cells were analyzed for growth by a cell viability assay, sub-G1 apoptosis by flow cytometry, caspase cleavage and activation of AKT and extracellular signal-regulated kinase (ERK) by western blot analysis. To examine the in vivo therapeutic efficacy of PPP, mice implanted with human colorectal carcinoma xenografts underwent PPP treatment. PPP treatment blocked the phosphorylation of IGF-1R, AKT and ERK and inhibited the growth of TP53 wild-type but not mutated colorectal carcinoma cell lines. The treatment of PPP also induced apoptosis in TP53 wild-type cells as evident by the presence of sub-G1 cells and the cleavage of caspase-9, caspase-3, DNA fragmentation factor-45 (DFF45), poly (ADP-ribose) polymerase (PARP), and X-linked inhibitor of apoptosis protein (XIAP). The loss of BAD phosphorylation in the PPP-treated TP53 wild type cells further suggested that the treatment induced apoptosis through the BAD-mediated mitochondrial pathway. In contrast, PPP treatment failed to induce the phosphorylation of AKT and ERK and caspase cleavage in TP53 mutated colorectal carcinoma cell lines. Finally, PPP treatment suppressed the growth of xenografts derived from TP53 wild type but not mutated colorectal carcinoma cells. We report the association of TP53 mutations with the resistance of treatment of colorectal carcinoma cells in culture and in a xenograft mouse model with the IGF-1R inhibitor PPP. TP53 mutations often occur in colorectal

  5. Profile of differentially expressed genes mediated by the type III epidermal growth factor receptor mutation expressed in a small-cell lung cancer cell line

    DEFF Research Database (Denmark)

    Pedersen, M.W.; Andersen, Thomas Thykjær; Ørntoft, Torben Falck

    2001-01-01

    Previous studies have shown a correlation between expression of the EGF receptor type III mutation (EGFRvIII) and a more malignant phenotype of various cancers including: non-small-cell lung cancer, glioblastoma multiforme, prostate cancer and breast cancer. Thus, a detailed molecular genetic...... understanding of how the EGFRvIII contributes to the malignant phenotype is of major importance for future therapy. The GeneChip Hu6800Set developed by Affymetrix was used to identify changes in gene expression caused by the expression of EGFRvIII. The cell line selected for the study was an EGF receptor...... negative small-cell-lung cancer cell line, GLC3, stably transfected with the EGFRvIII gene in a Tet-On system. By comparison of mRNA levels in EGFRvIII-GLC3 with those of Tet-On-GLC3, it was found that the levels of mRNAs encoding several transcription factors (ATF-3, JunD, and c-Myb), cell adhesion...

  6. Synergistic effect of pacritinib with erlotinib on JAK2-mediated resistance in epidermal gowth factor receptor mutation-positive non-small cell lung Cancer.

    Science.gov (United States)

    Ochi, Nobuaki; Isozaki, Hideko; Takeyama, Masami; Singer, Jack W; Yamane, Hiromichi; Honda, Yoshihiro; Kiura, Katsuyuki; Takigawa, Nagio

    2016-06-10

    The combination effect of pacritinib, a novel JAK2/FLT3 inhibitor, with erlotinib, the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), on non-small cell lung cancer cells with EGFR activating mutations was investigated. The combination showed synergistic effects on JAK2-mediated EGFR TKI-resistant PC-9/ER3 cells in some cases. The combination markedly suppressed pAKT and pERK although pSTAT3 expression was similar regardless of treatment with the pacritinib, pacritinib + erlotinib, or control in PC-9/ER3 cells. Receptor tyrosine kinase array profiling demonstrated that pacritinib suppressed MET in the PC-9/ER3 cells. The combined treatment of pacritinib and erlotinib in PC-9/ER3 xenografts showed more tumor shrinkage compared with each drug as monotherapy. Western blotting revealed that pMET in tumor samples was inhibited. These results suggest MET suppression by pacritinib may play a role in overcoming the EGFR-TKI resistance mediated by JAK2 in the PC-9/ER3 cells. In conclusion, pacritinib combined with EGFR-TKI might be a potent strategy against JAK2-mediated EGFR-TKI resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer : a systematic review and cost-effectiveness analysis

    NARCIS (Netherlands)

    Westwood, Marie; Joore, Manuela; Whiting, Penny; van Asselt, Thea; Ramaekers, Bram; Armstrong, Nigel; Misso, Kate; Severens, Johan; Kleijnen, Jos

    BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment with standard chemotherapy.

  8. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer: A systematic review and cost-effectiveness analysis

    NARCIS (Netherlands)

    M. Westwood (Marie); M.A. Joore (Manuela); P. Whiting (Penny); T. van Asselt (Thea); B.L.T. Ramaekers (Bram); N. Armstrong (Nigel); K. Misso (Kate); J.L. Severens (Hans); J. Kleijnen (Jos)

    2014-01-01

    markdownabstract__Abstract__ Background: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment

  9. Epidermal Growth Factor Receptor Mutation Is Associated With Longer Local Control After Definitive Chemoradiotherapy in Patients With Stage III Nonsquamous Non–Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Yagishita, Shigehiro; Horinouchi, Hidehito; Katsui Taniyama, Tomoko; Nakamichi, Shinji; Kitazono, Satoru; Mizugaki, Hidenori; Kanda, Shintaro; Fujiwara, Yutaka; Nokihara, Hiroshi; Yamamoto, Noboru; Sumi, Minako; Shiraishi, Kouya; Kohno, Takashi; Furuta, Koh; Tsuta, Koji; Tamura, Tomohide

    2015-01-01

    Purpose: To determine the frequency and clinical significance of epidermal growth factor receptor (EGFR) mutations in patients with potentially curable stage III non–small-cell lung cancer (NSCLC) who are eligible for definitive chemoradiotherapy (CRT). Patients and Methods: Between January 2001 and December 2010, we analyzed the EGFR mutational status in consecutive NSCLC patients who were treated by CRT. The response rate, relapse-free survival, 2-year relapse-free rate, initial relapse sites, and overall survival of the patients were investigated. Results: A total of 528 patients received CRT at our hospital during the study period. Of these, 274 were diagnosed as having nonsquamous NSCLC. Sufficient specimens for mutational analyses could be obtained from 198 of these patients. The proportion of patients with EGFR activating mutations was 17%. In addition to the well-known characteristics of patients carrying EGFR mutations (female, adenocarcinoma, and never/light smoker), the proportion of cases with smaller primary lesions (T1/2) was found to be higher in patients with EGFR mutations than in those with wild-type EGFR. Patients with EGFR mutations showed similar response rate, relapse-free survival, and 2-year relapse-free rates as compared to patients with wild-type EGFR. Local relapses as the site of initial relapse occurred significantly less frequently in patients with EGFR mutation (4% vs 21%; P=.045). Patients with EGFR mutations showed longer local control (adjusted hazard ratio 0.49; P=.043). After disease progression, a majority of the patients with EGFR mutations received EGFR tyrosine kinase inhibitors (62%), and these patients showed longer postprogression survival than those with wild-type EGFR. Conclusions: Our study is the first to show radiosensitive biology of EGFR-mutated tumors in definitive CRT with curative intent. This finding could serve as a credible baseline estimate of EGFR-mutated population in stage III nonsquamous NSCLC

  10. Epidermal Growth Factor Receptor Mutation Is Associated With Longer Local Control After Definitive Chemoradiotherapy in Patients With Stage III Nonsquamous Non–Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yagishita, Shigehiro [Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan); Horinouchi, Hidehito, E-mail: hhorinou@ncc.go.jp [Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan); Katsui Taniyama, Tomoko; Nakamichi, Shinji; Kitazono, Satoru; Mizugaki, Hidenori; Kanda, Shintaro; Fujiwara, Yutaka; Nokihara, Hiroshi; Yamamoto, Noboru [Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan); Sumi, Minako [Department of Radiation Oncology, National Cancer Center Hospital, Tokyo (Japan); Shiraishi, Kouya; Kohno, Takashi [Division of Genome Biology, National Cancer Center Research Institute, Tokyo (Japan); Furuta, Koh [Department of Clinical Laboratories, National Cancer Center Hospital, Tokyo (Japan); Tsuta, Koji [Department of Pathology, National Cancer Center Hospital, Tokyo (Japan); Tamura, Tomohide [Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan)

    2015-01-01

    Purpose: To determine the frequency and clinical significance of epidermal growth factor receptor (EGFR) mutations in patients with potentially curable stage III non–small-cell lung cancer (NSCLC) who are eligible for definitive chemoradiotherapy (CRT). Patients and Methods: Between January 2001 and December 2010, we analyzed the EGFR mutational status in consecutive NSCLC patients who were treated by CRT. The response rate, relapse-free survival, 2-year relapse-free rate, initial relapse sites, and overall survival of the patients were investigated. Results: A total of 528 patients received CRT at our hospital during the study period. Of these, 274 were diagnosed as having nonsquamous NSCLC. Sufficient specimens for mutational analyses could be obtained from 198 of these patients. The proportion of patients with EGFR activating mutations was 17%. In addition to the well-known characteristics of patients carrying EGFR mutations (female, adenocarcinoma, and never/light smoker), the proportion of cases with smaller primary lesions (T1/2) was found to be higher in patients with EGFR mutations than in those with wild-type EGFR. Patients with EGFR mutations showed similar response rate, relapse-free survival, and 2-year relapse-free rates as compared to patients with wild-type EGFR. Local relapses as the site of initial relapse occurred significantly less frequently in patients with EGFR mutation (4% vs 21%; P=.045). Patients with EGFR mutations showed longer local control (adjusted hazard ratio 0.49; P=.043). After disease progression, a majority of the patients with EGFR mutations received EGFR tyrosine kinase inhibitors (62%), and these patients showed longer postprogression survival than those with wild-type EGFR. Conclusions: Our study is the first to show radiosensitive biology of EGFR-mutated tumors in definitive CRT with curative intent. This finding could serve as a credible baseline estimate of EGFR-mutated population in stage III nonsquamous NSCLC.

  11. The Androgen Receptor Gene Mutations Database.

    Science.gov (United States)

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  12. Clinical impact of minocycline on afatinib-related rash in patients with non-small cell lung cancer harboring epidermal growth factor receptor mutations.

    Science.gov (United States)

    Goto, Ayano; Ozawa, Yuichi; Koda, Keigo; Akahori, Daisuke; Koyauchi, Takashi; Amano, Yusuke; Kakutani, Takuya; Sato, Yoshiko; Hasegawa, Hirotsugu; Matsui, Takashi; Yokomura, Koshi; Suda, Takafumi

    2018-03-01

    The management of skin toxicity is crucial for efficient afatinib treatment, but the role of tetracycline class antibiotics (TCs) in managing these rashes is relatively unknown. We reviewed the clinical records of patients who were administered afatinib for the treatment of non-small cell lung cancer harboring epidermal growth factor receptor mutations between October 2014 and November 2016. Twenty-five patients, who received TCs for the management of afatinib-related skin disorders, were enrolled. Minocycline was administered orally to participants. Afatinib-related toxic effects, such as rash, diarrhea, and paronychia, were observed in 92%, 92%, and 40% of cases, respectively. Although 24% of diarrhea and 4% of paronychia cases were rated grade 3 or higher, no severe cases of rash were observed during afatinib treatment. Of the 18 afatinib dose reductions, 14 (78%), three (17%), and one (6%) resulted from diarrhea, paronychia, and stomatitis, respectively; no patients required a dose reduction because of rash. When minocycline treatment started, 21 patients (84%) had a rash of grade 1 or less, and three patients had a grade 2 rash. A response to afatinib was observed in 18 patients (72%) and the median duration of afatinib administration was 501 days. An adverse event related to minocycline (grade 1 nausea) was observed in one patient. A large proportion of the study patients started minocycline before grade 2 rash development and the severity of afatinib-related rash was lower than that previously reported. Oral TCs may be beneficial, especially if started early. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  13. Growth Hormone Receptor Mutations Related to Individual Dwarfism

    Science.gov (United States)

    Li, Charles; Zhang, Xiquan

    2018-01-01

    Growth hormone (GH) promotes body growth by binding with two GH receptors (GHRs) at the cell surface. GHRs interact with Janus kinase, signal transducers, and transcription activators to stimulate metabolic effects and insulin-like growth factor (IGF) synthesis. However, process dysfunctions in the GH–GHR–IGF-1 axis cause animal dwarfism. If, during the GH process, GHR is not successfully recognized and/or bound, or GHR fails to transmit the GH signal to IGF-1, the GH dysfunction occurs. The goal of this review was to focus on the GHR mutations that lead to failures in the GH–GHR–IGF-1 signal transaction process in the dwarf phenotype. Until now, more than 90 GHR mutations relevant to human short stature (Laron syndrome and idiopathic short stature), including deletions, missense, nonsense, frameshift, and splice site mutations, and four GHR defects associated with chicken dwarfism, have been described. Among the 93 identified mutations of human GHR, 68 occur extracellularly, 13 occur in GHR introns, 10 occur intracellularly, and two occur in the transmembrane. These mutations interfere with the interaction between GH and GHRs, GHR dimerization, downstream signaling, and the expression of GHR. These mutations cause aberrant functioning in the GH-GHR-IGF-1 axis, resulting in defects in the number and diameter of muscle fibers as well as bone development. PMID:29748515

  14. Growth Hormone Receptor Mutations Related to Individual Dwarfism

    Directory of Open Access Journals (Sweden)

    Shudai Lin

    2018-05-01

    Full Text Available Growth hormone (GH promotes body growth by binding with two GH receptors (GHRs at the cell surface. GHRs interact with Janus kinase, signal transducers, and transcription activators to stimulate metabolic effects and insulin‐like growth factor (IGF synthesis. However, process dysfunctions in the GH–GHR–IGF-1 axis cause animal dwarfism. If, during the GH process, GHR is not successfully recognized and/or bound, or GHR fails to transmit the GH signal to IGF-1, the GH dysfunction occurs. The goal of this review was to focus on the GHR mutations that lead to failures in the GH–GHR–IGF-1 signal transaction process in the dwarf phenotype. Until now, more than 90 GHR mutations relevant to human short stature (Laron syndrome and idiopathic short stature, including deletions, missense, nonsense, frameshift, and splice site mutations, and four GHR defects associated with chicken dwarfism, have been described. Among the 93 identified mutations of human GHR, 68 occur extracellularly, 13 occur in GHR introns, 10 occur intracellularly, and two occur in the transmembrane. These mutations interfere with the interaction between GH and GHRs, GHR dimerization, downstream signaling, and the expression of GHR. These mutations cause aberrant functioning in the GH-GHR-IGF-1 axis, resulting in defects in the number and diameter of muscle fibers as well as bone development.

  15. Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2

    DEFF Research Database (Denmark)

    Seemann, Petra; Schwappacher, Raphaela; Kjær, Klaus Wilbrandt

    2005-01-01

    Here we describe 2 mutations in growth and differentiation factor 5 (GDF5) that alter receptor-binding affinities. They cause brachydactyly type A2 (L441P) and symphalangism (R438L), conditions previously associated with mutations in the GDF5 receptor bone morphogenetic protein receptor type 1b...

  16. Melanocortin 4 receptor mutations in obese Czech children

    DEFF Research Database (Denmark)

    Hainerová, Irena; Larsen, Lesli H; Holst, Birgitte

    2007-01-01

    Mutations in the melanocortin 4 receptor gene (MC4R) represent the most common known cause of monogenic human obesity.......Mutations in the melanocortin 4 receptor gene (MC4R) represent the most common known cause of monogenic human obesity....

  17. Three novel and two known androgen receptor gene mutations ...

    Indian Academy of Sciences (India)

    gene mutations associated with androgen insensitivity syndrome in sex-reversed XY female patients. J. Genet. ... signal and a C-terminal. Keywords. androgen insensitivity syndrome; androgen receptor; truncation mutation; N-terminal domain; XY sex reversal. .... and an increased risk of gonadal tumour. Mutations in SRY.

  18. Converting Insulin-like Growth Factors 1 and 2 into High-Affinity Ligands for Insulin Receptor Isoform A by the Introduction of an Evolutionarily Divergent Mutation

    Czech Academy of Sciences Publication Activity Database

    Macháčková, Kateřina; Chrudinová, Martina; Radosavljević, Jelena; Potalitsyn, Pavlo; Křížková, Květoslava; Fábry, Milan; Selicharová, Irena; Collinsová, Michaela; Brzozowski, A. M.; Žáková, Lenka; Jiráček, Jiří

    2018-01-01

    Roč. 57, č. 16 (2018), s. 2373-2382 ISSN 0006-2960 R&D Projects: GA ČR GA15-19018S Institutional support: RVO:61388963 ; RVO:68378050 Keywords : insulin-like growth factor * insulin * receptor * analog Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 2.938, year: 2016 https://pubs.acs.org/doi/10.1021/acs.biochem.7b01260

  19. Analytic performance studies and clinical reproducibility of a real-time PCR assay for the detection of epidermal growth factor receptor gene mutations in formalin-fixed paraffin-embedded tissue specimens of non-small cell lung cancer

    International Nuclear Information System (INIS)

    O’Donnell, Patrick; Shieh, Felice; Wei, Wen; Lawrence, H Jeffrey; Wu, Lin; Schilling, Robert; Bloom, Kenneth; Maltzman, Warren; Anderson, Steven; Soviero, Stephen; Ferguson, Jane; Shyu, Johnny; Current, Robert; Rehage, Taraneh; Tsai, Julie; Christensen, Mari; Tran, Ha Bich; Chien, Sean Shih-Chang

    2013-01-01

    Epidermal growth factor receptor (EGFR) gene mutations identify patients with non-small cell lung cancer (NSCLC) who have a high likelihood of benefiting from treatment with anti-EGFR tyrosine kinase inhibitors. Sanger sequencing is widely used for mutation detection but can be technically challenging, resulting in longer turn-around-time, with limited sensitivity for low levels of mutations. This manuscript details the technical performance verification studies and external clinical reproducibility studies of the cobas EGFR Mutation Test, a rapid multiplex real-time PCR assay designed to detect 41 mutations in exons 18, 19, 20 and 21. The assay’s limit of detection was determined using 25 formalin-fixed paraffin-embedded tissue (FFPET)-derived and plasmid DNA blends. Assay performance for a panel of 201 specimens was compared against Sanger sequencing with resolution of discordant specimens by quantitative massively parallel pyrosequencing (MPP). Internal and external reproducibility was assessed using specimens tested in duplicate by different operators, using different reagent lots, instruments and at different sites. The effects on the performance of the cobas EGFR test of endogenous substances and nine therapeutic drugs were evaluated in ten FFPET specimens. Other tests included an evaluation of the effects of necrosis, micro-organisms and homologous DNA sequences on assay performance, and the inclusivity of the assay for less frequent mutations. A >95% hit rate was obtained in blends with >5% mutant alleles, as determined by MPP analysis, at a total DNA input of 150 ng. The overall percent agreement between Sanger sequencing and the cobas test was 96.7% (negative percent agreement 97.5%; positive percent agreement 95.8%). Assay repeatability was 98% when tested with two operators, instruments, and reagent lots. In the external reproducibility study, the agreement was > 99% across all sites, all operators and all reagent lots for 11/12 tumors tested. Test

  20. Reliability of using circulating tumor cells for detecting epidermal growth factor receptor mutation status in advanced non-small-cell lung cancer patients: a meta-analysis and systematic review

    Directory of Open Access Journals (Sweden)

    Hu F

    2018-03-01

    Full Text Available Fang Hu,* Xiaowei Mao,* Yujun Zhang, Xiaoxuan Zheng, Ping Gu, Huimin Wang, Xueyan ZhangDepartment of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this workPurpose: To evaluate the clinical value of circulating tumor cells as a surrogate to detect epidermal growth factor receptor mutation in advanced non-small-cell lung cancer (NSCLC patients.Methods: We searched the electronic databases, and all articles meeting predetermined selection criteria were included in this study. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were calculated. The evaluation indexes of the diagnostic performance were the summary receiver operating characteristic curve and area under the summary receiver operating characteristic curve.Results: Eight eligible publications with 255 advanced NSCLC patients were included in this meta-analysis. Taking tumor tissues as reference, the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio of circulating tumor cells for detecting the epidermal growth factor receptor mutation status were found to be 0.82 (95% confidence interval [CI]: 0.50–0.95, 0.95 (95% CI: 0.24–1.00, 16.81 (95% CI: 0.33–848.62, 0.19 (95% CI: 0.06–0.64, and 86.81 (95% CI: 1.22–6,154.15, respectively. The area under the summary receiver operating characteristic curve was 0.92 (95% CI: 0.89–0.94. The subgroup analysis showed that the factors of blood volume, histological type, EGFR-tyrosine kinase inhibitor therapy, and circulating tumor cell and tissue test methods for EGFR accounted for the significant difference of the pooled specificity. No significant difference was found between the pooled sensitivity of the subgroup.Conclusion: Our meta-analysis confirmed that circulating tumor cells are a good surrogate for

  1. G protein-coupled receptor mutations and human genetic disease.

    Science.gov (United States)

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  2. Efficacy of icotinib versus traditional chemotherapy as first-line treatment for preventing brain metastasis from advanced lung adenocarcinoma in patients with epidermal growth factor receptor-sensitive mutation.

    Science.gov (United States)

    Zhao, Xiao; Zhu, Guangqin; Chen, Huoming; Yang, Ping; Li, Fang; Du, Nan

    2016-01-01

    This study aimed to investigate the potential use of icotinib as first-line treatment to prevent brain metastasis from advanced lung adenocarcinoma. This investigation was designed as a retrospective nonrandomized controlled study. Enrolled patients received either icotinib or traditional chemotherapy as their first-line treatment. The therapeutic efficacy was compared among patients with advanced. (stages IIIB and IV) lung adenocarcinoma with epidermal growth factor receptor (EGFR)-sensitive mutation. The primary endpoint was the cumulative incidence of brain metastasis, whereas, the secondary endpoint was overall survival(OS). Death without brain metastasis was considered a competitive risk to calculate the cumulative risk of brain metastasis. Survival analysis was conducted using the Kaplan-Meier method and statistical significance was determined using the log-rank test. The present study included 396 patients with 131 in the icotinib group and 265 in the chemotherapy group. Among those with EGFR-sensitive mutation, the cumulative risk of brain metastasis was lower in the icotinib group than in the chemotherapy group. However, no significant difference in OS was observed between the two groups. Icotinib can effectively reduce the incidence of brain metastasis and therefore improve prognosis in advanced lung adenocarcinoma patients with EGFR.sensitive mutation.

  3. Efficacy of icotinib versus traditional chemotherapy as first-line treatment for preventing brain metastasis from advanced lung adenocarcinoma in patients with epidermal growth factor receptor-sensitive mutation

    Directory of Open Access Journals (Sweden)

    Xiao Zhao

    2014-01-01

    Full Text Available Objective: This study aimed to investigate the potential use of icotinib as first-line treatment to prevent brain metastasis from advanced lung adenocarcinoma. Patients and Methods: This investigation was designed as a retrospective nonrandomized controlled study. Enrolled patients received either icotinib or traditional chemotherapy as their first-line treatment. The therapeutic efficacy was compared among patients with advanced (stages IIIB and IV lung adenocarcinoma with epidermal growth factor receptor (EGFR-sensitive mutation. The primary endpoint was the cumulative incidence of brain metastasis, whereas the secondary endpoint was overall survival (OS. Death without brain metastasis was considered a competitive risk to calculate the cumulative risk of brain metastasis. Survival analysis was conducted using the Kaplan-Meier method and statistical significance were determined using the log-rank test. Results: The present study included 396 patients with 131 in the icotinib group and 265 in the chemotherapy group. Among those with EGFR-sensitive mutation, the cumulative risk of brain metastasis was lower in the icotinib group than in the chemotherapy group. However, no significant difference in OS was observed between the two groups. Conclusion: Icotinib can effectively reduce the incidence of brain metastasis and therefore improve prognosis in advanced lung adenocarcinoma patients with EGFR-sensitive mutation.

  4. Structural Mapping of Adenosine Receptor Mutations

    DEFF Research Database (Denmark)

    Jespers, Willem; Schiedel, Anke C; Heitman, Laura H

    2018-01-01

    The four adenosine receptors (ARs), A1, A2A, A2B, and A3, constitute a subfamily of G protein-coupled receptors (GPCRs) with exceptional foundations for structure-based ligand design. The vast amount of mutagenesis data, accumulated in the literature since the 1990s, has been recently supplemente...

  5. Factor V Leiden mutation in pregnancy.

    Science.gov (United States)

    Cohen, Susan Murphy

    2004-01-01

    Normal maternal adaptation to pregnancy significantly increases the risk for thrombus formation. Inherited thrombophilias further increase risk for deep venous thrombosis and adverse outcome in pregnancy. Factor V Leiden mutation is the most common inherited thrombophilia, occurring in approximately 5% of the White and 1% of the Black populations. Nurses should be knowledgeable about screening for and diagnosis of factor V Leiden mutation, risk reduction counseling, recommended care of the affected patient, and implications of anticoagulant therapy during the perinatal period.

  6. Diseases associated with growth hormone-releasing hormone receptor (GHRHR) mutations.

    Science.gov (United States)

    Martari, Marco; Salvatori, Roberto

    2009-01-01

    The growth hormone (GH)-releasing hormone (GHRH) receptor (GHRHR) belongs to the G protein-coupled receptors family. It is expressed almost exclusively in the anterior pituitary, where it is necessary for somatotroph cells proliferation and for GH synthesis and secretion. Mutations in the human GHRHR gene (GHRHR) can impair ligand binding and signal transduction, and have been estimated to cause about 10% of autosomal recessive familial isolated growth hormone deficiency (IGHD). Mutations reported to date include five splice donor site mutations, two microdeletions, two nonsense mutations, seven missense mutations, and one mutation in the promoter. These mutations have an autosomal recessive mode of inheritance, and heterozygous individuals do not show signs of IGHD, although the presence of an intermediate phenotype has been hypothesized. Conversely, patients with biallelic mutations have low serum insulin-like growth factor-1 and GH levels (with absent or reduced GH response to exogenous stimuli), resulting--if not treated--in proportionate dwarfism. This chapter reviews the biology of the GHRHR, the mutations that affect its gene and their effects in homozygous and heterozygous individuals. Copyright © 2009 Elsevier Inc. All rights reserved.

  7. Sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in males, smokers, and non-adenocarcinoma lung cancer in patients with EGFR mutations.

    Science.gov (United States)

    Zeng, Zhu; Chen, Hua-Jun; Yan, Hong-Hong; Yang, Jin-Ji; Zhang, Xu-Chao; Wu, Yi-Long

    2013-09-27

    The demographical/clinical characteristics of being Asian, having an adenocarcinoma, being female, and being a "never-smoker" are regarded as favorable predictors for epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) efficacy in non-small cell lung cancer (NSCLC) with unknown EGFR gene status. In this study, we examined the effects of the supposedly unfavorable clinical variables in EGFR-mutant patients. In total, 159 EGFR-mutant NSCLC patients' clinical features were correlated with progression-free survival (PFS), response rate (RR), and overall survival (OS). Multivariate analysis of clinical characteristics was performed using the Cox and logistic regression methods. There were 90 females (56.6%), 112 never-smokers (70.4%), and 153 patients with adenocarcinomas (96.2%). All patients were treated with EGFR-TKI, and 52.8% received TKI in a first-line setting. The median PFS of patients receiving first-line TKI was similar, regardless of gender (males vs females: 9.1 vs 9.7 months, p=0.793), smoking status (never-smokers vs smokers: 9.9 vs 9.1 months, p=0.570), or histology (adenocarcinoma vs non-adenocarcinoma: 9.7 vs 9.2 months, p=0.644). OS curves of first-line TKI-treated patients were also not associated with gender (p=0.722), smoking status (p=0.579), or histology (p=0.480). Similar results of PFS and OS were obtained for patients who received TKI beyond first-line. Multivariate analysis indicated that none of these clinical factors was an independent predictor of survival. The supposedly 'favorable' clinical factors of female gender, non-smoking status, and adenocarcinoma were not independent predictive factors for PFS or OS in this population of EGFR-mutant NSCLC patients.

  8. Diverse growth hormone receptor gene mutations in Laron syndrome.

    Science.gov (United States)

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  9. Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: An Evidence-Based Analysis.

    Science.gov (United States)

    2010-01-01

    In February 2010, the Medical Advisory Secretariat (MAS) began work on evidence-based reviews of the literature surrounding three pharmacogenomic tests. This project came about when Cancer Care Ontario (CCO) asked MAS to provide evidence-based analyses on the effectiveness and cost-effectiveness of three oncology pharmacogenomic tests currently in use in Ontario.Evidence-based analyses have been prepared for each of these technologies. These have been completed in conjunction with internal and external stakeholders, including a Provincial Expert Panel on Pharmacogenetics (PEPP). Within the PEPP, subgroup committees were developed for each disease area. For each technology, an economic analysis was also completed by the Toronto Health Economics and Technology Assessment Collaborative (THETA) and is summarized within the reports.THE FOLLOWING REPORTS CAN BE PUBLICLY ACCESSED AT THE MAS WEBSITE AT: http://www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlGENE EXPRESSION PROFILING FOR GUIDING ADJUVANT CHEMOTHERAPY DECISIONS IN WOMEN WITH EARLY BREAST CANCER: An Evidence-Based AnalysisEpidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: an Evidence-Based AnalysisK-RAS testing in Treatment Decisions for Advanced Colorectal Cancer: an Evidence-Based Analysis The Medical Advisory Secretariat undertook a systematic review of the evidence on the clinical effectiveness and cost-effectiveness of epidermal growth factor receptor (EGFR) mutation testing compared with no EGFR mutation testing to predict response to tyrosine kinase inhibitors (TKIs), gefitinib (Iressa(®)) or erlotinib (Tarceva(®)) in patients with advanced non-small cell lung cancer (NSCLC). TARGET POPULATION AND CONDITION With an estimated 7,800 new cases and 7,000 deaths last year, lung cancer is the leading cause of cancer

  10. Novel growth hormone receptor gene mutation in a patient with Laron syndrome.

    Science.gov (United States)

    Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal

    2010-04-01

    Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.

  11. Platelet-derived growth factor receptor-β, carrying the activating mutation D849N, accelerates the establishment of B16 melanoma

    International Nuclear Information System (INIS)

    Suzuki, Shioto; Heldin, Carl-Henrik; Heuchel, Rainer Lothar

    2007-01-01

    Platelet-derived growth factor (PDGF)-BB and PDGF receptor (PDGFR)-β are mainly expressed in the developing vasculature, where PDGF-BB is produced by endothelial cells and PDGFR-β is expressed by mural cells, including pericytes. PDGF-BB is produced by most types of solid tumors, and PDGF receptor signaling participates in various processes, including autocrine stimulation of tumor cell growth, recruitment of tumor stroma fibroblasts, and stimulation of tumor angiogenesis. Furthermore, PDGF-BB-producing tumors are characterized by increased pericyte abundance and accelerated tumor growth. Thus, there is a growing interest in the development of tumor treatment strategies by blocking PDGF/PDGFR function. We have recently generated a mouse model carrying an activated PDGFR-β by replacing the highly conserved aspartic acid residue (D) 849 in the activating loop with asparagine (N). This allowed us to investigate, in an orthotopic tumor model, the role of increased stromal PDGFR-β signaling in tumor-stroma interactions. B16 melanoma cells lacking PDGFR-β expression and either mock-transfected or engineered to express PDGF-BB, were injected alone or in combination with matrigel into mice carrying the activated PDGFR-β (D849N) and into wild type mice. The tumor growth rate was followed and the vessel status of tumors, i.e. total vessel area/tumor, average vessel surface and pericyte density of vessels, was analyzed after resection. Tumors grown in mice carrying an activated PDGFR-β were established earlier than those in wild-type mice. In this early phase, the total vessel area and the average vessel surface were higher in tumors grown in mice carrying the activated PDGFR-β (D849N) compared to wild-type mice, whereas we did not find a significant difference in the number of tumor vessels and the pericyte abundance around tumor vessels between wild type and mutant mice. At later phases of tumor progression, no significant difference in tumor growth rate was

  12. Epithelial growth factor receptor (EGFR) mutation status and the treatment of non-small cell lung cancer (NSCLC): A population based quality assurance analysis

    DEFF Research Database (Denmark)

    Hansen, Niels-Chr. G.; Laursen, Christian B.; Hansen, Karin H.

    2015-01-01

    of adenocarcinoma or NSCLC not otherwise specified - diagnosed from July 2010 to June 2014. Chart review was updated in February 2015. The median age was 68 years (range 31 – 96 years), 6.4% were never-smokers and 37.5% ex-smokers. EGFR-mutation status has been determined for 683 patients (73.6%), but has not been...... possible from the available samples in 89 cases. For 156 patients the analysis has not been requested. The prevalence of EGFR-mutation has been 10.4% in women, 5.4% in men, and 39.2% in never-smokers (no gender difference). The EGFR mutations were proven in cytology samples in 75% of the 56 positive cases...

  13. Chronic Lymphocytic Leukemia with Mutated IGHV4-34 Receptors

    DEFF Research Database (Denmark)

    Xochelli, Aliki; Baliakas, Panagiotis; Kavakiotis, Ioannis

    2017-01-01

    Purpose: We sought to investigate whether B cell receptor immunoglobulin (BcR IG) stereotypy is associated with particular clinicobiological features among chronic lymphocytic leukemia (CLL) patients expressing mutated BcR IG (M-CLL) encoded by the IGHV4-34 gene, and also ascertain whether...

  14. Clinical and functional characterization of a patient carrying a compound heterozygous pericentrin mutation and a heterozygous IGF1 receptor mutation.

    Directory of Open Access Journals (Sweden)

    Eva Müller

    Full Text Available Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X] were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration.

  15. Clinical and functional characterization of a patient carrying a compound heterozygous pericentrin mutation and a heterozygous IGF1 receptor mutation.

    Science.gov (United States)

    Müller, Eva; Dunstheimer, Desiree; Klammt, Jürgen; Friebe, Daniela; Kiess, Wieland; Kratzsch, Jürgen; Kruis, Tassilo; Laue, Sandy; Pfäffle, Roland; Wallborn, Tillmann; Heidemann, Peter H

    2012-01-01

    Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration.

  16. Relationship of epidermal growth factor receptor activating mutations with histologic subtyping according to International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society 2011 adenocarcinoma classification and their impact on overall survival

    Directory of Open Access Journals (Sweden)

    Venkata Nagarjuna Maturu

    2016-01-01

    Full Text Available Background: There is limited Indian data on epidermal growth factor receptor (EGFR gene activating mutations (AMs prevalence and their clinicopathologic associations. The current study aimed to assess the relationship between EGFR AM and histologic subtypes and their impact on overall survival (OS in a North Indian cohort. Patients and Methods: Retrospective analysis of nonsmall cell lung cancer patients who underwent EGFR mutation testing (n = 186 over 3 years period (2012-2014. EGFR mutations were tested using polymerase chain reaction amplification and direct sequencing. Patients were classified as EGFR AM, EGFR wild type (WT or EGFR unknown (UKN. Histologically adenocarcinomas (ADC were further categorized as per the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society-2011 classification. Results: Overall EGFR AM prevalence was 16.6%. The ratio of exon 19 deletions to exon 21 L858R mutations was 3.17:1. Female sex (P = 0.002, never smoking status (P = 0.002, metastatic disease (P = 0.032, and nonsolid subtype of ADC (P = 0.001 were associated with EGFR AM on univariate logistic regression analysis (LRA. On multivariate LRA, solid ADC was negatively associated with EGFR AM. Median OS was higher in patients with EGFR AM (750 days as compared to EGFR-WT (459 days or EGFR-UKN (291 days for the overall population and in patients with Stage IV disease (750 days vs. 278 days for EGFR-WT, P = 0.024. On univariate Cox proportional hazard (CPH analysis, smoking, poor performance status (Eastern Cooperative Oncology Group ≥ 2, EGFR-UKN status, and solid ADC were associated with worse OS while female sex and lepidic ADC had better OS. On multivariate CPH analysis, lepidic ADC (hazard ratio [HR] =0.12 and EGFR-WT/EGFR-UKN (HR = 2.39 and HR = 3.30 respectively were independently associated with OS in separate analyses. Conclusions: Histologic subtyping of ADC performed on small biopsies is

  17. Hybrid Capture-Based Comprehensive Genomic Profiling Identifies Lung Cancer Patients with Well-Characterized Sensitizing Epidermal Growth Factor Receptor Point Mutations That Were Not Detected by Standard of Care Testing.

    Science.gov (United States)

    Suh, James H; Schrock, Alexa B; Johnson, Adrienne; Lipson, Doron; Gay, Laurie M; Ramkissoon, Shakti; Vergilio, Jo-Anne; Elvin, Julia A; Shakir, Abdur; Ruehlman, Peter; Reckamp, Karen L; Ou, Sai-Hong Ignatius; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M

    2018-03-14

    In our recent study, of cases positive for epidermal growth factor receptor ( EGFR ) exon 19 deletions using comprehensive genomic profiling (CGP), 17/77 (22%) patients with prior standard of care (SOC) EGFR testing results available were previously negative for exon 19 deletion. Our aim was to compare the detection rates of CGP versus SOC testing for well-characterized sensitizing EGFR point mutations (pm) in our 6,832-patient cohort. DNA was extracted from 40 microns of formalin-fixed paraffin-embedded sections from 6,832 consecutive cases of non-small cell lung cancer (NSCLC) of various histologies (2012-2015). CGP was performed using a hybrid capture, adaptor ligation-based next-generation sequencing assay to a mean coverage depth of 576×. Genomic alterations (pm, small indels, copy number changes and rearrangements) involving EGFR were recorded for each case and compared with prior testing results if available. Overall, there were 482 instances of EGFR exon 21 L858R (359) and L861Q (20), exon 18 G719X (73) and exon 20 S768I (30) pm, of which 103 unique cases had prior EGFR testing results that were available for review. Of these 103 cases, CGP identified 22 patients (21%) with sensitizing EGFR pm that were not detected by SOC testing, including 9/75 (12%) patients with L858R, 4/7 (57%) patients with L861Q, 8/20 (40%) patients with G719X, and 4/7 (57%) patients with S768I pm (some patients had multiple EGFR pm). In cases with available clinical data, benefit from small molecule inhibitor therapy was observed. CGP, even when applied to low tumor purity clinical-grade specimens, can detect well-known EGFR pm in NSCLC patients that would otherwise not be detected by SOC testing. Taken together with EGFR exon 19 deletions, over 20% of patients who are positive for EGFR -activating mutations using CGP are previously negative by SOC EGFR mutation testing, suggesting that thousands of such patients per year in the U.S. alone could experience improved clinical

  18. Thyroid hyperfunctioning adenomas with and without Gsp/TSH receptor mutations show similar clinical features.

    Science.gov (United States)

    Arturi, F; Capula, C; Chiefari, E; Filetti, S; Russo, D

    1998-01-01

    Activating mutations of Gs alpha protein (gsp) and TSH receptor (TSH-R) identified in autonomously hyperfunctioning thyroid adenomas have been proposed as the primary event responsible for this disease. Since mutations have not been detected in 100% (ranging from less than 10% to 90%) of the patients, we evaluated whether the presence of gsp and TSH-R mutations cause differences in the clinical and biochemical parameters of the affected patients. Fifteen consecutive patients (11 women and 4 men) with autonomously hyperfunctioning thyroid adenomas who underwent thyroidectomy, previously examined for the presence of gsp or TSH-R mutations, were investigated. In all of the patients we examined plasma free T3, free T4, TSH levels and ultrasound volume of the nodules. The patients with mutations in gsp or TSH-R were similar to the patients without mutations for clinical presentation, sex distribution and mean age. Furthermore, basal serum FT3, TSH and tumor volume in the patients with mutations were not significantly different from the group without mutations. Our preliminary data demonstrate that no significant differences are present in the two groups of patients examined, suggesting that factors other than gsp or TSH-R mutations play a role in the clinical presentation of the disease.

  19. Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization. Contrasting significance of tyrosine 992 in the native and truncated receptors

    DEFF Research Database (Denmark)

    Sorkin, A; Helin, K; Waters, C M

    1992-01-01

    The role of epidermal growth factor (EGF) receptor autophosphorylation sites in the regulation of receptor functions has been studied using cells transfected with mutant EGF receptors. Simultaneous point mutation of 4 tyrosines (Y1068, Y1086, Y1148, Y1173) to phenylalanine, as well as removal of ...

  20. Fibroblast growth factor receptors in breast cancer.

    Science.gov (United States)

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  1. A novel splicing mutation in the V2 vasopressin receptor

    DEFF Research Database (Denmark)

    Kamperis, Konstantinos; Siggaard, C; Herlin, Troels

    2000-01-01

    as clinical investigations comprising a fluid deprivation test and a 1-deamino-8-D-arginine-vasopressin (dDAVP) infusion test in the study subject and his mother. We found a highly unusual, novel, de novo 1447A-->C point mutation (gDNA), involving the invariable splice acceptor of the second intron...... of the gene in both the affected male (hemizygous) and his mother (heterozygous). This mutation is likely to cause aberrant splicing of the terminal intron of the gene, leading to a non-functional AVP receptor. The clinical studies were consistent with such a hypothesis, as the affected subject had a severe...

  2. Presence of pleural effusion is associated with a poor prognosis in patients with epidermal growth factor receptor-mutated lung cancer receiving tyrosine kinase inhibitors as first-line treatment.

    Science.gov (United States)

    Wang, Tso-Fu; Chu, Sung-Chao; Lee, Jen-Jyh; Yang, Gee-Gwo; Huang, Wei-Han; Chang, En-Ting; Low, Tissot; Wu, Yi-Feng; Kao, Ruey-Ho; Lin, Chih-Bin

    2017-08-01

    This study was conducted to evaluate the effect of clinical factors on the treatment outcomes of lung cancer patients with active epidermal growth factor receptor (EGFR) mutations treated by first-line tyrosine kinase inhibitors (TKIs). Patients of stage IIIb or IV lung adenocarcinoma harboring mutated EGFR were enrolled between March 2010 and June 2014 and followed up until December 2015. The effects of various clinical features, such as age, sex, smoking history, EGFR mutation types, TKIs used, presence of pleural effusion, metastatic sites on progression-free survival (PFS) and overall survival (OS), were analyzed retrospectively. A total of 104 patients were included in this study. Patients with pleural effusion at initial diagnosis had significantly shorter PFS and OS than those without pleural effusion (median PFS: 8.2 months vs 15.3 months, P = 0.0004; median OS: 16.3 months vs 28.2 months, P = 0.0003). Univariate analysis revealed that being male or a smoker was associated with short PFS, whereas smoking history, bony metastasis and malignant pleural effusion were associated with poor OS. Stepwise multivariate Cox regression analysis showed that the presence of pleural effusion and different TKI use were independent prognostic factors for PFS [hazard ratio [HR] = 2.50 (95% confidence interval [CI], 1.53-4.10), P = 0.0003 and HR = 0.55 (95% CI, 0.31-0.97), P = 0.0396, respectively], whereas the presence of pleural effusion and liver metastasis were associated with poor OS [HR = 2.79 (95% CI: 1.46-5.30), P = 0.0018 and HR = 2.12 (95% CI, 1.02-4.40), P = 0.0440, respectively]. The presence of pleural effusion predicts poor PFS and OS in lung adenocarcinoma patients receiving TKIs as the first-line treatment. Additional studies are warranted to elucidate the underlying mechanisms and determine novel strategies for improving the outcome of these patients. © 2017 John Wiley & Sons Australia, Ltd.

  3. Comparative functional analysis of two fibroblast growth factor receptor 1 (FGFR1) mutations affecting the same residue (R254W and R254Q) in isolated hypogonadotropic hypogonadism (IHH).

    Science.gov (United States)

    Koika, Vasiliki; Varnavas, Petros; Valavani, Helen; Sidis, Yisrael; Plummer, Lacey; Dwyer, Andrew; Quinton, Richard; Kanaka-Gantenbein, Christine; Pitteloud, Nelly; Sertedaki, Amalia; Dacou-Voutetakis, Catherine; Georgopoulos, Neoklis A

    2013-03-01

    FGFR1 mutations have been identified in both Kallmann syndrome and normosmic HH (nIHH). To date, few mutations in the FGFR1 gene have been structurally or functionally characterized in vitro to identify molecular mechanisms that contribute to the disease pathogenesis. We attempted to define the in vitro functionality of two FGFR1 mutants (R254W and R254Q), resulting from two different amino acid substitutions of the same residue, and to correlate the in vitro findings to the patient phenotypes. Two unrelated GnRH deficient probands were found to harbor mutations in FGFR1 (R254W and R254Q). Mutant signaling activity and expression levels were evaluated in vitro and compared to a wild type (WT) receptor. Signaling activity was determined by a FGF2/FGFR1 dependent transcription reporter assay. Receptor total expression levels were assessed by Western blot and cell surface expression was measured by a radiolabeled antibody binding assay. The R254W maximal receptor signaling capacity was reduced by 45% (p<0.01) while R254Q activity was not different from WT. However, both mutants displayed diminished total protein expression levels (40 and 30% reduction relative to WT, respectively), while protein maturation was unaffected. Accordingly, cell surface expression levels of the mutant receptors were also significantly reduced (35% p<0.01 and 15% p<0.05, respectively). The p.R254W and p.R254Q are both loss-of-function mutations as demonstrated by their reduced overall and cell surface expression levels suggesting a deleterious effect on receptor folding and stability. It appears that a tryptophan substitution at R254 is more disruptive to receptor structure than the more conserved glutamine substitution. No clear correlation between the severity of in vitro loss-of-function and phenotypic presentation could be assigned. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Epidermal growth factor receptor (EGFR mutation status and Rad51 determine the response of glioblastoma (GBM to multimodality therapy with cetuximab, temozolomide and radiation

    Directory of Open Access Journals (Sweden)

    Phyllis Rachelle Wachsberger

    2013-02-01

    Full Text Available Purpose: EGFR amplification and mutation (i.e., EGFRvIII are found in 40% of primary GBM tumors and are believed to contribute to tumor development and therapeutic resistance. This study was designed to investigate how EGFR mutational status modulates response to multimodality treatment with cetuximab, an anti-EGFR inhibitor, the chemotherapeutic agent, temozolamide (TMZ and radiation therapy (RT Methods and Materials: In vitro and in vivo experiments were performed on two isogenic U87 GBM cell lines: one overexpressing wildtype EGFR (U87wtEGFR and the other overexpressing EGFRvIII (U87EGFRvIII. Results: Xenografts harboring EGFRvIII were more sensitive to TMZ alone and TMZ in combination with RT and/or cetuximab than xenografts expressing wtEGFR. In vitro experiments demonstrated that U87EGFRvIII-expressing tumors appear to harbor defective DNA homologous recombination repair in the form of Rad51 processing, Conclusions: The difference in sensitivity between EGFR-expressing and EGFRvIII-expressing tumors to combined modality treatment may help in the future tailoring of GBM therapy to subsets of patients expressing more or less of the EGFR mutant.

  5. Update of the androgen receptor gene mutations database.

    Science.gov (United States)

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). Copyright 1999 Wiley-Liss, Inc.

  6. Mu Opioid Receptor Gene: New Point Mutations in Opioid Addicts

    Directory of Open Access Journals (Sweden)

    Amin Dinarvand

    2014-02-01

    Full Text Available Introduction: Association between single-nucleotide polymorphisms (SNPs in mu opioid receptor gene and drug addiction has been shown in various studies. Here, we have evaluated the existence of polymorphisms in exon 3 of this gene in Iranian population and investigated the possible association between these mutations and opioid addiction.  Methods: 79 opioid-dependent subjects (55 males, 24 females and 134 non-addict or control individuals (74 males, 60 females participated in the study. Genomic DNA was extracted from volunteers’ peripheral blood and exon 3 of the mu opioid receptor gene was amplified by polymerase chain reaction (PCR whose products were then sequenced.  Results: Three different heterozygote polymorphisms were observed in 3 male individuals: 759T>C and 877G>A mutations were found in 2 control volunteers and 1043G>C substitution was observed in an opioid-addicted subject. Association between genotype and opioid addiction for each mutation was not statistically significant.  Discussion: It seems that the sample size used in our study is not enough to confirm or reject any association between 759T>C, 877G>A and 1043G>C substitutions in exon 3 of the mu opioid receptor gene and opioid addiction susceptibility in Iranian population.

  7. TRAIL receptor upregulation and the implication of KRAS/BRAF mutations in human colon cancer tumours

    Czech Academy of Sciences Publication Activity Database

    Oikonomou, E.; Kosmidou, V.; Katseli, A.; Kothonidis, K.; Mourtzoukou, D.; Kontogeorgos, G.; Anděra, Ladislav; Zografos, G.; Pintzas, A.

    2009-01-01

    Roč. 125, č. 9 (2009), s. 2127-2135 ISSN 0020-7136 R&D Projects: GA MŠk 1M0506 Grant - others:EC(XE) LSHC-CT-2006-037278 Institutional research plan: CEZ:AV0Z50520514 Keywords : colorectal tumours * TRAIL receptors expression * KRAS/ BRAF oncogenic mutations Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.722, year: 2009

  8. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    DEFF Research Database (Denmark)

    Klein, H H; Müller, R; Vestergaard, H

    1999-01-01

    We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in sit...

  9. Factor V Leiden Mutation and PT 20210 Mutation Test

    Science.gov (United States)

    ... Disorders Fibromyalgia Food and Waterborne Illness Fungal Infections Gout Graves Disease Guillain-Barré Syndrome Hashimoto Thyroiditis Heart ... Tested? To determine whether you have an inherited gene mutation that increases your risk of developing a ...

  10. Evaluation of 4-[{sup 18}F]fluorobenzoyl-FALGEA-NH{sub 2} as a positron emission tomography tracer for epidermal growth factor receptor mutation variant III imaging in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lund Denholt, Charlotte, E-mail: charlotte.lund.denholt@rh.regionh.d [Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen O (Denmark); Binderup, Tina [Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen O (Denmark); Cluster for Molecular Imaging, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N (Denmark); Stockhausen, Marie-Therese; Skovgaard Poulsen, Hans [Department of Radiation Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen O (Denmark); Spang-Thomsen, Mogens [Institute of Molecular Pathology, University of Copenhagen, 2200 Copenhagen N (Denmark); Hansen, Paul Robert [IGM-Bioorganic Chemistry, Faculty of Life Science, University of Copenhagen, 1871 Frederiksberg C (Denmark); Gillings, Nic [Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen O (Denmark); Kjaer, Andreas [Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen O (Denmark); Cluster for Molecular Imaging, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N (Denmark)

    2011-05-15

    Introduction: This study describes the radiosynthesis, in vitro and in vivo evaluation of the novel small peptide radioligand, 4-[{sup 18}F]fluorobenzoyl-Phe-Ala-Leu-Gly-Glu-Ala-NH{sub 2,} ([{sup 18}F]FBA-FALGEA-NH{sub 2}) as a positron emission tomography (PET) tracer for imaging of the cancer specific epidermal growth factor receptor (EGFR) variant III mutation, EGFRvIII. Methods: For affinity, stability and PET measurements, H-FALGEA-NH{sub 2} was radiolabelled using 4-[{sup 18}F]fluorobenzoic acid ([{sup 18}F]FBA). The binding affinity of ([{sup 18}F]FBA)-FALGEA-NH{sub 2} was measured on EGFRvIII expressing cells, NR6M. Stability studies in vitro and in vivo were carried out in blood plasma from nude mice. PET investigations of [{sup 18}F]FBA-FALGEA-NH{sub 2} were performed on a MicroPET scanner, using seven nude mice xenografted subcutaneously with human glioblastoma multiforme (GBM) tumours, expressing the EGFRvIII in its native form, and five nude mice xenografted subcutaneously with GBM tumours lacking EGFRvIII expression. Images of [{sup 18}F]FDG were also obtained for comparison. The mice were injected with 5-10 MBq of the radiolabelled peptide or [{sup 18}F]FDG. Furthermore, the gene expression of EGFRvIII in the tumours was determined using quantitative real-time PCR. Results: Radiolabelling and purification was achieved within 180 min, with overall radiochemical yields of 2.6-9.8% (decay-corrected) and an average specific radioactivity of 6.4 GBq/{mu}mol. The binding affinity (K{sub d}) of [{sup 18}F]FBA-FALGEA-NH{sub 2} to EGFRvIII expressing cells was determined to be 23 nM. The radiolabelled peptide was moderately stable in the plasma from nude mice where 53% of the peptide was intact after 60 min of incubation in plasma but rapidly degraded in vivo, where no intact peptide was observed in plasma 5 min post-injection. The PET imaging showed that [{sup 18}F]FBA-FALGEA-NH{sub 2} accumulated preferentially in the human GBM xenografts which expressed

  11. Budget Impact Analysis of Afatinib for First-Line Treatment of Patients with Metastatic Non-Small Cell Lung Cancer with Epidermal Growth Factor Receptor Exon 19 Deletions or Exon 21 Substitution Mutations in a U.S. Health Plan.

    Science.gov (United States)

    Graham, Jonathan; Earnshaw, Stephanie; Burslem, Kate; Lim, Jonathan

    2018-06-01

    Afatinib is 1 of 3 tyrosine kinase inhibitors approved in the United States for the first-line treatment of patients with metastatic non-small cell lung cancer (NSCLC) whose tumors have epidermal growth factor receptor (EGFR) exon 19 deletions (del19) or exon 21 (L858R) substitution mutations. In clinical trials, afatinib has demonstrated improvement in progression-free survival versus standard chemotherapy and gefitinib. To analyze the impact of increases in afatinib treatment share on the cost and health outcomes in a commercial health plan in the United States. A decision model was developed to evaluate the budget impact of increases in afatinib share for the first-line treatment of patients with metastatic NSCLC with EGFR del19 or L858R substitution mutations over a 5-year time horizon. The model compared the total annual costs for a health plan with 1 million covered lives in a scenario in which afatinib share increased 5 percentage points annually to one in which all treatment shares remained constant over time. The number of patients eligible for treatment was estimated using published incidence data. Therapies included in the model were afatinib, erlotinib, gefitinib, and the chemotherapy doublet, pemetrexed in combination with cisplatin. The mean time spent by patients in progression-free and progressive disease states was based on survival data from clinical trials and a network meta-analysis. Therapy-related costs included monthly drug acquisition and administration costs and costs of managing adverse reactions. Disease management costs were also assessed in the model. Scenario analyses were performed to assess alternative scenarios of afatinib treatment share. Additionally, a one-way sensitivity analysis was performed to test the robustness of the model, given parameter uncertainty. Using the base-case parameter assumptions and a 5-percentage-point annual increase in afatinib treatment share, we estimated the total budget increases in years 1 through 5

  12. Toll-like receptors and cancer: MYD88 mutation and inflammation

    Directory of Open Access Journals (Sweden)

    James Q Wang

    2014-07-01

    Full Text Available Pattern recognition receptors (PRRs expressed on immune cells are crucial for the early detection of invading pathogens, in initiating early innate immune response and in orchestrating the adaptive immune response. PRRs are activated by specific pathogen-associated molecular patterns (PAMPs that are present in pathogenic microbes or nucleic acids of viruses or bacteria. However, inappropriate activation of these PRRs, such as the Toll-like receptors (TLRs, due to genetic lesions or chronic inflammation has been demonstrated to be a major cause of many haematological malignancies. Gain-of-function mutations in the TLR adaptor protein MYD88 found in 39% of the activated B cell type of diffuse large B cell lymphomas (ABC-DLBCL and almost 100% of Waldenström’s macroglobulinemia (WM further highlight the involvement of TLRs in these malignancies. MYD88 mutations result in the chronic activation of TLR signalling pathways, thus the constitutive activation of the transcription factor NFκB to promote cell survival and proliferation. These recent insights into TLR pathway driven malignancies warrant the need for a better understanding of TLRs in cancers and the development of novel anti-cancer therapies targeting TLRs. This review focuses on Toll-like receptors function and signalling in normal or inflammatory conditions, and how mutations can also hijack the TLR signalling pathways to give rise to cancer. Lastly, we discuss how potential therapeutic agents could be used to restore normal responses to TLRs and have long lasting anti-tumour effects.

  13. Frequency of factor V Leiden mutation

    International Nuclear Information System (INIS)

    Nasiruddin; Ali, W.; Rehman, Z.; Anwar, M.; Ayyub, M.; Ali, W.; Ahmed, S.

    2005-01-01

    Objective: To determine the frequency of factor V Leiden mutation. Design: Observational study. Patients and Methods: Two hundred subjects each of apparently healthy and unrelated Punjabi and Pathan origins were included in the study. Peripheral blood samples were collected in EDTA and DNA extracted by phenol- chloroform extraction method. DNA analysis was done by PCR for restriction fragment length polymorphism. The product was digested overnight with Mn/1 and electrophoresed on acrylamide gel to detect 67 and 153 base pair fragments of factor V Leiden against 37, 67 and 116 base pair fragments of normal factor V. Results: In the 400 subjects studied, only 5 cases of heterozygotes for factor V Leiden were detected. The overall carrier rate was 1.3% (95% CI 0.2-2.2%). The carrier rate in Punjabis and Pathans was 1 % and 1.5% respectively. Conclusion: This study confirms that the prevalence of factor V Leiden is low in Asians and Africans as compared to the European population. (author)

  14. Dietary factors and Truncating APC Mutations in Sporadic Colorectal Adenomas

    NARCIS (Netherlands)

    Diergaarde, B.; Tiemersma, E.W.; Braam, H.; Muijen, van G.N.P.; Nagengast, F.M.; Kok, F.J.; Kampman, E.

    2005-01-01

    Inactivating mutations in APC are thought to be early, initiating events in colorectal carcinogenesis. To gain insight into the relationship between diet and inactivating APC mutations, we evaluated associations between dietary factors and the occurrence of these mutations in a Dutch case-control

  15. Dietary factors and truncating APC mutations in sporadic colorectal adenomas.

    NARCIS (Netherlands)

    Diergaarde, B.; Tiemersma, E.W.; Braam, H.; Muijen, G.N.P. van; Nagengast, F.M.; Kok, F.J.; Kampman, E.

    2005-01-01

    Inactivating mutations in APC are thought to be early, initiating events in colorectal carcinogenesis. To gain insight into the relationship between diet and inactivating APC mutations, we evaluated associations between dietary factors and the occurrence of these mutations in a Dutch case-control

  16. Parametric Method Performance for Dynamic 3'-Deoxy-3'-18F-Fluorothymidine PET/CT in Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Carcinoma Patients Before and During Therapy.

    Science.gov (United States)

    Kramer, Gerbrand Maria; Frings, Virginie; Heijtel, Dennis; Smit, E F; Hoekstra, Otto S; Boellaard, Ronald

    2017-06-01

    The objective of this study was to validate several parametric methods for quantification of 3'-deoxy-3'- 18 F-fluorothymidine ( 18 F-FLT) PET in advanced-stage non-small cell lung carcinoma (NSCLC) patients with an activating epidermal growth factor receptor mutation who were treated with gefitinib or erlotinib. Furthermore, we evaluated the impact of noise on accuracy and precision of the parametric analyses of dynamic 18 F-FLT PET/CT to assess the robustness of these methods. Methods : Ten NSCLC patients underwent dynamic 18 F-FLT PET/CT at baseline and 7 and 28 d after the start of treatment. Parametric images were generated using plasma input Logan graphic analysis and 2 basis functions-based methods: a 2-tissue-compartment basis function model (BFM) and spectral analysis (SA). Whole-tumor-averaged parametric pharmacokinetic parameters were compared with those obtained by nonlinear regression of the tumor time-activity curve using a reversible 2-tissue-compartment model with blood volume fraction. In addition, 2 statistically equivalent datasets were generated by countwise splitting the original list-mode data, each containing 50% of the total counts. Both new datasets were reconstructed, and parametric pharmacokinetic parameters were compared between the 2 replicates and the original data. Results: After the settings of each parametric method were optimized, distribution volumes (V T ) obtained with Logan graphic analysis, BFM, and SA all correlated well with those derived using nonlinear regression at baseline and during therapy ( R 2 ≥ 0.94; intraclass correlation coefficient > 0.97). SA-based V T images were most robust to increased noise on a voxel-level (repeatability coefficient, 16% vs. >26%). Yet BFM generated the most accurate K 1 values ( R 2 = 0.94; intraclass correlation coefficient, 0.96). Parametric K 1 data showed a larger variability in general; however, no differences were found in robustness between methods (repeatability coefficient, 80

  17. Differential effects of CSF-1R D802V and KIT D816V homologous mutations on receptor tertiary structure and allosteric communication.

    Directory of Open Access Journals (Sweden)

    Priscila Da Silva Figueiredo Celestino Gomes

    Full Text Available The colony stimulating factor-1 receptor (CSF-1R and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs, are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR and facilitated its departure from the kinase domain (KD. In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind.

  18. Differential Effects of CSF-1R D802V and KIT D816V Homologous Mutations on Receptor Tertiary Structure and Allosteric Communication

    Science.gov (United States)

    Da Silva Figueiredo Celestino Gomes, Priscila; Panel, Nicolas; Laine, Elodie; Pascutti, Pedro Geraldo; Solary, Eric; Tchertanov, Luba

    2014-01-01

    The colony stimulating factor-1 receptor (CSF-1R) and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs), are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR) and facilitated its departure from the kinase domain (KD). In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind. PMID:24828813

  19. Identification of novel peptide ligands for the cancer-specific receptor mutation EFGRvIII using a mixture-based synthetic combinatorial library

    DEFF Research Database (Denmark)

    Denholt, Charlotte Lund; Hansen, Paul Robert; Pedersen, Nina

    2009-01-01

    We report here, the design and synthesis of a positional scanning synthetic combinatorial library for the identification of novel peptide ligands targeted against the cancer-specific epidermal growth factor tyrosine kinase receptor mutation variant III (EGFRvIII). This receptor is expressed in se...

  20. Hyperfunctioning thyroid nodules in toxic multinodular goiter share activating thyrotropin receptor mutations with solitary toxic adenoma.

    Science.gov (United States)

    Tonacchera, M; Chiovato, L; Pinchera, A; Agretti, P; Fiore, E; Cetani, F; Rocchi, R; Viacava, P; Miccoli, P; Vitti, P

    1998-02-01

    Toxic multinodular goiter is a cause of nonautoimmune hyperthyroidism and is believed to differ in its nature and pathogenesis from toxic adenoma. Gain-of-function mutations of the TSH receptor gene have been identified as a cause of toxic adenoma. The pathogenesis at the molecular level of hyperfunctioning nodules in toxic multinodular goiter has yet not been reported. Six patients with a single hot nodule within a multinodular goiter and 11 patients with toxic thyroid adenoma were enrolled in our study. At histology five hyperfunctioning nodules in multinodular goiters showed the features of adenomas, and one was identified as a hyperplastic nodule. The entire exon 10 of the TSH receptor gene was directly sequenced after PCR amplification from genomic DNA obtained from surgical specimens. Functional studies of mutated receptors were performed in COS-7 cells. Five out of 6 (83%) hyperfunctioning nodules within toxic multinodular goiters harbored a TSH receptor mutation. A TSH receptor mutation was also evident in the hyperfunctioning nodule that at histology had the features of noncapsulated hyperplastic nodule. Among toxic adenomas, 8 out of 11 (72%) nodules harbored a TSH receptor mutation. All the mutations were heterozygotic and somatic. Nonfunctioning nodules, whether adenomas or hyperplastic nodules present in association with hyperfunctioning nodules in the same multinodular goiters, had no TSH receptor mutation. All the mutations identified had constitutive activity as assessed by cAMP production after expression in COS-7 cells. Hyperfunctioning thyroid nodules in multinodular goiters recognize the same pathogenetic event (TSH receptor mutation) as toxic adenoma. Other mechanisms are implicated in the growth of nonfunctioning thyroid nodules coexistent in the same gland.

  1. Novel splice site mutation in the growth hormone receptor gene in Turkish patients with Laron-type dwarfism.

    Science.gov (United States)

    Arman, Ahmet; Ozon, Alev; Isguven, Pinar S; Coker, Ajda; Peker, Ismail; Yordam, Nursen

    2008-01-01

    Growth hormone (GH) is involved in growth, and fat and carbohydrate metabolism. Interaction of GH with the GH receptor (GHR) is necessary for systemic and local production of insulin-like growth factor-I (IGF-I) which mediates GH actions. Mutations in the GHR cause severe postnatal growth failure; the disorder is an autosomal recessive genetic disease resulting in GH insensitivity, called Laron syndrome. It is characterized by dwarfism with elevated serum GH and low levels of IGF-I. We analyzed the GHR gene for mutations and polymorphisms in eight patients with Laron-type dwarfism from six families. We found three missense mutations (S40L, V125A, I526L), one nonsense mutation (W157X), and one splice site mutation in the extracellular domain of GHR. Furthermore, G168G and exon 3 deletion polymorphisms were detected in patients with Laron syndrome. The splice site mutation, which is a novel mutation, was located at the donor splice site of exon 2/ intron 2 within GHR. Although this mutation changed the highly conserved donor splice site consensus sequence GT to GGT by insertion of a G residue, the intron splicing between exon 2 and exon 3 was detected in the patient. These results imply that the splicing occurs arthe GT site in intron 2, leaving the extra inserted G residue at the end of exon 2, thus changing the open reading frame of GHR resulting in a premature termination codon in exon 3.

  2. Association of coatomer proteins with the beta-receptor for platelet-derived growth factor

    DEFF Research Database (Denmark)

    Hansen, Klaus; Rönnstrand, L; Rorsman, C

    1997-01-01

    The nonreceptor tyrosine kinase Src binds to and is activated by the beta-receptor for platelet-derived growth factor (PDGF). The interaction leads to Src phosphorylation of Tyr934 in the kinase domain of the receptor. In the course of the functional characterization of this phosphorylation, we...... of intracellular vesicle transport. In order to explore the functional significance of the interaction between alpha- and beta'-COP and the PDGF receptor, a receptor mutant was made in which the conserved histidine residue 928 was mutated to an alanine residue. The mutant receptor, which was unable to bind alpha...

  3. Novel mutations in scavenger receptor BI associated with high HDL cholesterol in humans

    NARCIS (Netherlands)

    Brunham, Liam R.; Tietjen, Ian; Bochem, Andrea E.; Singaraja, Roshni R.; Franchini, Patrick L.; Radomski, Chris; Mattice, Maryanne; Legendre, Annick; Hovingh, G. Kees; Kastelein, John J. P.; Hayden, Michael R.

    2011-01-01

    The scavenger receptor class B, member 1 (SR-BI), is a key cellular receptor for high-density lipoprotein (HDL) in mice, but its relevance to human physiology has not been well established. Recently a family was reported with a mutation in the gene encoding SR-BI and high HDL cholesterol (HDL-C).

  4. Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutella xylostella (L.)

    Science.gov (United States)

    Guo, Lei; Liang, Pei; Zhou, Xuguo; Gao, Xiwu

    2014-01-01

    A previous study documented a glycine to glutamic acid mutation (G4946E) in ryanodine receptor (RyR) was highly correlated to diamide insecticide resistance in field populations of Plutella xylostella (Lepidoptera: Plutellidae). In this study, a field population collected in Yunnan province, China, exhibited a 2128-fold resistance to chlorantraniliprole. Sequence comparison between resistant and susceptible P. xylostella revealed three novel mutations including a glutamic acid to valine substitution (E1338D), a glutamine to leucine substitution (Q4594L) and an isoleucine to methionine substitution (I4790M) in highly conserved regions of RyR. Frequency analysis of all four mutations in this field population showed that the three new mutations showed a high frequency of 100%, while the G4946E had a frequency of 20%. Furthermore, the florescent ligand binding assay revealed that the RyR containing multiple mutations displayed a significantly lower affinity to the chlorantraniliprole. The combined results suggested that the co-existence of different combinations of the four mutations was involved in the chlorantraniliprole resistance. An allele-specific PCR based method was developed for the diagnosis of the four mutations in the field populations of P. xylostella. PMID:25377064

  5. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients.

    Science.gov (United States)

    Cabagnols, Xénia; Favale, Fabrizia; Pasquier, Florence; Messaoudi, Kahia; Defour, Jean Philippe; Ianotto, Jean Christophe; Marzac, Christophe; Le Couédic, Jean Pierre; Droin, Nathalie; Chachoua, Ilyas; Favier, Remi; Diop, M'boyba Khadija; Ugo, Valérie; Casadevall, Nicole; Debili, Najet; Raslova, Hana; Bellanné-Chantelot, Christine; Constantinescu, Stefan N; Bluteau, Olivier; Plo, Isabelle; Vainchenker, William

    2016-01-21

    Mutations in signaling molecules of the cytokine receptor axis play a central role in myeloproliferative neoplasm (MPN) pathogenesis. Polycythemia vera is mainly related to JAK2 mutations, whereas a wider mutational spectrum is detected in essential thrombocythemia (ET) with mutations in JAK2, the thrombopoietin (TPO) receptor (MPL), and the calreticulin (CALR) genes. Here, we studied the mutational profile of 17 ET patients negative for JAK2V617F, MPLW515K/L, and CALR mutations, using whole-exome sequencing and next-generation sequencing (NGS) targeted on JAK2 and MPL. We found several signaling mutations including JAK2V617F at very low allele frequency, 1 homozygous SH2B3 mutation, 1 MPLS505N, 1 MPLW515R, and 2 MPLS204P mutations. In the remaining patients, 4 presented a clonal and 7 a polyclonal hematopoiesis, suggesting that certain triple-negative ETs are not MPNs. NGS on 26 additional triple-negative ETs detected only 1 MPLY591N mutation. Functional studies on MPLS204P and MPLY591N revealed that they are weak gain-of-function mutants increasing MPL signaling and conferring either TPO hypersensitivity or independence to expressing cells, but with a low efficiency. Further studies should be performed to precisely determine the frequency of MPLS204 and MPLY591 mutants in a bigger cohort of MPN. © 2016 by The American Society of Hematology.

  6. Mutations and binding sites of human transcription factors

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-06-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, insertions are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways. 2012 Kamanu, Medvedeva, Schaefer, Jankovic, Archer and Bajic.

  7. Three novel and two known androgen receptor gene mutations ...

    Indian Academy of Sciences (India)

    with androgen insensitivity syndrome in sex-reversed XY female patients. BALACHANDRAN .... Three novel AR gene mutations associated with AIS in XY sex-reversed females. Ta b le. 1 . ( contd. ) ..... disease, 1st edition. Springer Science + ...

  8. Ghrelin receptor mutations--too little height and too much hunger

    DEFF Research Database (Denmark)

    Holst, Birgitte; Schwartz, Thue W

    2006-01-01

    The ghrelin receptor is known from in vitro studies to signal in the absence of the hormone ghrelin at almost 50% of its maximal capacity. But, as for many other 7-transmembrane receptors, the in vivo importance of this ligand-independent signaling has remained unclear. In this issue of the JCI......, Pantel et al. find that a natural mutation in the ghrelin receptor, Ala204Glu, which is associated with a selective loss of constitutive activity without affecting ghrelin affinity, potency, or efficacy, segregates in 2 families with the development of short stature (see the related article beginning...... on page 760). By combination of the observations from this study with those related to the phenotype of subjects carrying another natural ghrelin receptor mutation, Phe279Leu, having identical molecular-pharmacological properties, it is proposed that selective lack of ghrelin receptor constitutive...

  9. Evolution of a G protein-coupled receptor response by mutations in regulatory network interactions

    DEFF Research Database (Denmark)

    Di Roberto, Raphaël B; Chang, Belinda; Trusina, Ala

    2016-01-01

    All cellular functions depend on the concerted action of multiple proteins organized in complex networks. To understand how selection acts on protein networks, we used the yeast mating receptor Ste2, a pheromone-activated G protein-coupled receptor, as a model system. In Saccharomyces cerevisiae......, Ste2 is a hub in a network of interactions controlling both signal transduction and signal suppression. Through laboratory evolution, we obtained 21 mutant receptors sensitive to the pheromone of a related yeast species and investigated the molecular mechanisms behind this newfound sensitivity. While...... demonstrate that a new receptor-ligand pair can evolve through network-altering mutations independently of receptor-ligand binding, and suggest a potential role for such mutations in disease....

  10. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    International Nuclear Information System (INIS)

    Xu, Ling; Hausmann, Martin; Dietmaier, Wolfgang; Kellermeier, Silvia; Pesch, Theresa; Stieber-Gunckel, Manuela; Lippert, Elisabeth; Klebl, Frank; Rogler, Gerhard

    2010-01-01

    Cholangiocarcinoma (CC) is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Expression of EGFR (epithelial growth factor receptor), HGFR (hepatocyte growth factor receptor) IGF1R (insulin-like growth factor 1 receptor), IGF2R (insulin-like growth factor 2 receptor) and VEGFR1-3 (vascular endothelial growth factor receptor 1-3) were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1). The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml), with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D). HuH28, OZ and TFK-1 lacked KRAS mutation. CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab

  11. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Kellermeier Silvia

    2010-06-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Methods Expression of EGFR (epithelial growth factor receptor, HGFR (hepatocyte growth factor receptor IGF1R (insulin-like growth factor 1 receptor, IGF2R (insulin-like growth factor 2 receptor and VEGFR1-3 (vascular endothelial growth factor receptor 1-3 were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1. The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. Results EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml, with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D. HuH28, OZ and TFK-1 lacked KRAS mutation. Conclusion CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab.

  12. Founder effect in the Horn of Africa for an insulin receptor mutation that may impair receptor recycling

    DEFF Research Database (Denmark)

    Raffan, E; Soos, M A; Rocha, N

    2011-01-01

    Genetic insulin receptoropathies are a rare cause of severe insulin resistance. We identified the Ile119Met missense mutation in the insulin receptor INSR gene, previously reported in a Yemeni kindred, in four unrelated patients with Somali ancestry. We aimed to investigate a possible genetic...

  13. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways.

    Science.gov (United States)

    Fantl, W J; Escobedo, J A; Martin, G A; Turck, C W; del Rosario, M; McCormick, F; Williams, L T

    1992-05-01

    The receptor for platelet-derived growth factor (PDGF) binds two proteins containing SH2 domains, GTPase activating protein (GAP) and phosphatidylinositol 3-kinase (PI3-kinase). The sites on the receptor that mediate this interaction were identified by using phosphotyrosine-containing peptides representing receptor sequences to block specifically binding of either PI3-kinase or GAP. These results suggested that PI3-kinase binds two phosphotyrosine residues, each located in a 5 aa motif with an essential methionine at the fourth position C-terminal to the tyrosine. Point mutations at these sites caused a selective elimination of PI3-kinase binding and loss of PDGF-stimulated DNA synthesis. Mutation of the binding site for GAP prevented the receptor from associating with or phosphorylating GAP, but had no effect on PI3-kinase binding and little effect on DNA synthesis. Therefore, GAP and PI3-kinase interact with the receptor by binding to different phosphotyrosine-containing sequence motifs.

  14. Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin

    Science.gov (United States)

    McDonell, Laura M.; Kernohan, Kristin D.; Boycott, Kym M.; Sawyer, Sarah L.

    2015-01-01

    Receptor tyrosine kinases (RTKs) are a family of ligand-binding cell surface receptors that regulate a wide range of essential cellular activities, including proliferation, differentiation, cell-cycle progression, survival and apoptosis. As such, these proteins play an important role during development and throughout life; germline mutations in genes encoding RTKs cause several developmental syndromes, while somatic alterations contribute to the pathogenesis of many aggressive cancers. This creates an interesting paradigm in which mutation timing, type and location in a gene leads to different cell signaling and biological responses, and ultimately phenotypic outcomes. In this review, we highlight the roles of RTKs in developmental disorders and cancer. The multifaceted roles of these receptors, their genetic signatures and their signaling during developmental morphogenesis and oncogenesis are discussed. Additionally, we propose that comparative analysis of RTK mutations responsible for developmental syndromes may shed light on those driving tumorigenesis. PMID:26152202

  15. Progranulin mutations as risk factors for Alzheimer disease.

    Science.gov (United States)

    Perry, David C; Lehmann, Manja; Yokoyama, Jennifer S; Karydas, Anna; Lee, Jason Jiyong; Coppola, Giovanni; Grinberg, Lea T; Geschwind, Dan; Seeley, William W; Miller, Bruce L; Rosen, Howard; Rabinovici, Gil

    2013-06-01

    Mutations in the progranulin gene are known to cause diverse clinical syndromes, all attributed to frontotemporal lobar degeneration. We describe 2 patients with progranulin gene mutations and evidence of Alzheimer disease (AD) pathology. We also conducted a literature review. This study focused on case reports of 2 unrelated patients with progranulin mutations at the University of California, San Francisco, Memory and Aging Center. One patient presented at age 65 years with a clinical syndrome suggestive of AD and showed evidence of amyloid aggregation on positron emission tomography. Another patient presented at age 54 years with logopenic progressive aphasia and, at autopsy, showed both frontotemporal lobar degeneration with TDP-43 inclusions and AD. In addition to autosomal-dominant frontotemporal lobar degeneration, mutations in the progranulin gene may be a risk factor for AD clinical phenotypes and neuropathology.

  16. Disease-associated extracellular loop mutations in the adhesion G protein-coupled receptor G1 (ADGRG1; GPR56) differentially regulate downstream signaling.

    Science.gov (United States)

    Kishore, Ayush; Hall, Randy A

    2017-06-09

    Mutations to the adhesion G protein-coupled receptor ADGRG1 (G1; also known as GPR56) underlie the neurological disorder bilateral frontoparietal polymicrogyria. Disease-associated mutations in G1 studied to date are believed to induce complete loss of receptor function through disruption of either receptor trafficking or signaling activity. Given that N-terminal truncation of G1 and other adhesion G protein-coupled receptors has been shown to significantly increase the receptors' constitutive signaling, we examined two different bilateral frontoparietal polymicrogyria-inducing extracellular loop mutations (R565W and L640R) in the context of both full-length and N-terminally truncated (ΔNT) G1. Interestingly, we found that these mutations reduced surface expression of full-length G1 but not G1-ΔNT in HEK-293 cells. Moreover, the mutations ablated receptor-mediated activation of serum response factor luciferase, a classic measure of Gα 12/13 -mediated signaling, but had no effect on G1-mediated signaling to nuclear factor of activated T cells (NFAT) luciferase. Given these differential signaling results, we sought to further elucidate the pathway by which G1 can activate NFAT luciferase. We found no evidence that ΔNT activation of NFAT is dependent on Gα q/11 -mediated or β-arrestin-mediated signaling but rather involves liberation of Gβγ subunits and activation of calcium channels. These findings reveal that disease-associated mutations to the extracellular loops of G1 differentially alter receptor trafficking, depending on the presence of the N terminus, and differentially alter signaling to distinct downstream pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Comprehensive mutational profiling of core binding factor acute myeloid leukemia.

    Science.gov (United States)

    Duployez, Nicolas; Marceau-Renaut, Alice; Boissel, Nicolas; Petit, Arnaud; Bucci, Maxime; Geffroy, Sandrine; Lapillonne, Hélène; Renneville, Aline; Ragu, Christine; Figeac, Martin; Celli-Lebras, Karine; Lacombe, Catherine; Micol, Jean-Baptiste; Abdel-Wahab, Omar; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude

    2016-05-19

    Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML. © 2016 by The American Society of Hematology.

  18. 4-Chloropropofol enhances chloride currents in human hyperekplexic and artificial mutated glycine receptors

    Directory of Open Access Journals (Sweden)

    de la Roche Jeanne

    2012-09-01

    Full Text Available Abstract Background The mammalian neurological disorder hereditary hyperekplexia can be attributed to various mutations of strychnine sensitive glycine receptors. The clinical symptoms of “startle disease” predominantly occur in the newborn leading to convulsive hypertonia and an exaggerated startle response to unexpected mild stimuli. Amongst others, point mutations R271Q and R271L in the α1-subunit of strychnine sensitive glycine receptors show reduced glycine sensitivity and cause the clinical symptoms of hyperekplexia. Halogenation has been shown to be a crucial structural determinant for the potency of a phenolic compound to positively modulate glycine receptor function. The aim of this in vitro study was to characterize the effects of 4-chloropropofol (4-chloro-2,6-dimethylphenol at four glycine receptor mutations. Methods Glycine receptor subunits were expressed in HEK 293 cells and experiments were performed using the whole-cell patch-clamp technique. Results 4-chloropropofol exerted a positive allosteric modulatory effect in a low sub-nanomolar concentration range at the wild type receptor (EC50 value of 0.08 ± 0.02 nM and in a micromolar concentration range at the mutations (1.3 ± 0.6 μM, 0.1 ± 0.2 μM, 6.0 ± 2.3 μM and 55 ± 28 μM for R271Q, L, K and S267I, respectively. Conclusions 4-chloropropofol might be an effective compound for the activation of mutated glycine receptors in experimental models of startle disease.

  19. Semiotic Selection of Mutated or Misfolded Receptor Proteins

    DEFF Research Database (Denmark)

    Giorgi, Franco; Bruni, Luis Emilio; Maggio, Roberto

    2013-01-01

    contention that the plasma membrane acts as the locus where several contextual cues may be integrated. As such it allows the semiotic selection of those receptor configurations that provide cells with the minimum essential requirements for agency. The occurrence of protein misfolding makes it impossible...... focused on the significance and semiotic nature of the interplay between membrane receptors and the epigenetic control of gene expression, as mediated by the control of mismatched repairing and protein folding mechanisms....

  20. Factors affecting the spontaneous mutational spectra in somatic mammalian cells

    Directory of Open Access Journals (Sweden)

    О.А. Ковальова

    2006-04-01

    Full Text Available  In our survey of references we are discussed the influence of factors biological origin on the spontaneous mutation specters in mammalian. Seasonal and age components influence on the frequence of cytogenetic anomalies. The immune and endocrinous systems are take part in control of the alteration of the spontaneous mutation specters. Genetical difference of sensibility in animal and human at the alteration of factors enviroment as and  genetical differences of repair systems activity are may influence on individual variation of spontaneous destabilization characters of chromosomal apparatus.

  1. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    Science.gov (United States)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  2. Subclinical hyperthyroidism due to a thyrotropin receptor (TSHR) gene mutation (S505R).

    Science.gov (United States)

    Pohlenz, Joachim; Pfarr, Nicole; Krüger, Silvia; Hesse, Volker

    2006-12-01

    To identify the molecular defect by which non-autoimmune subclinical hyperthyroidism was caused in a 6-mo-old infant who presented with weight loss. Congenital non-autoimmune hyperthyroidism is caused by activating germline mutations in the thyrotropin receptor (TSHR) gene. Therefore, the TSHR gene was sequenced directly from the patient's genomic DNA. Molecular analysis revealed a heterozygous point mutation (S505R) in the TSHR gene as the underlying defect. A constitutively activating mutation in the TSHR gene has to be considered not only in patients with severe congenital non-autoimmune hyperthyroidism, but also in children with subclinical non-autoimmune hyperthyroidism.

  3. [From gene to disease; achondroplasia and other skeletal dysplasias due to an activating mutation in the fibroblast growth factor

    NARCIS (Netherlands)

    Ravenswaaij-Arts, C.M.A. van; Losekoot, M.

    2001-01-01

    Achondroplasia, the most common and best known skeletal dysplasia, is inherited in an autosomal dominant fashion. Like a number of other skeletal dysplasias, among which hypochondroplasia and thanatophoric dysplasia, achondroplasia is caused by mutations in the fibroblast growth factor receptor 3

  4. Cancer risk and clinicopathological characteristics of thyroid nodules harboring thyroid-stimulating hormone receptor gene mutations.

    Science.gov (United States)

    Mon, Sann Y; Riedlinger, Gregory; Abbott, Collette E; Seethala, Raja; Ohori, N Paul; Nikiforova, Marina N; Nikiforov, Yuri E; Hodak, Steven P

    2018-05-01

    Thyroid-stimulating hormone receptor (TSHR) gene mutations play a critical role in thyroid cell proliferation and function. They are found in 20%-82% of hyperfunctioning nodules, hyperfunctioning follicular thyroid cancers (FTC), and papillary thyroid cancers (PTC). The diagnostic importance of TSHR mutation testing in fine needle aspiration (FNA) specimens remains unstudied. To examine the association of TSHR mutations with the functional status and surgical outcomes of thyroid nodules, we evaluated 703 consecutive thyroid FNA samples with indeterminate cytology for TSHR mutations using next-generation sequencing. Testing for EZH1 mutations was performed in selected cases. The molecular diagnostic testing was done as part of standard of care treatment, and did not require informed consent. TSHR mutations were detected in 31 (4.4%) nodules and were located in exons 281-640, with codon 486 being the most common. Allelic frequency ranged from 3% to 45%. Of 16 cases (12 benign, 3 FTC, 1 PTC) with surgical correlation, 15 had solitary TSHR mutations and 1 PTC had comutation with BRAF V600E. Hyperthyroidism was confirmed in all 3 FTC (2 overt, 1 subclinical). Of 5 nodules with solitary TSHR mutations detected at high allelic frequency, 3 (60%) were FTC. Those at low allelic frequency (3%-22%) were benign. EZH1 mutations were detected in 2 of 4 TSHR-mutant malignant nodules and neither of 2 benign nodules. We report that TSHR mutations occur in ∼5% thyroid nodules in a large consecutive series with indeterminate cytology. TSHR mutations may be associated with an increased cancer risk when present at high allelic frequency, even when the nodule is hyperfunctioning. Benign nodules were however most strongly correlated with TSHR mutations at low allelic frequency. © 2018 Wiley Periodicals, Inc.

  5. Frequency of the allelic variant c.1150T > C in exon 10 of the fibroblast growth factor receptor 3 (FGFR3 gene is not increased in patients with pathogenic mutations and related chondrodysplasia phenotypes

    Directory of Open Access Journals (Sweden)

    Thatiane Yoshie Kanazawa

    2014-12-01

    Full Text Available Mutations in the FGFR3 gene cause the phenotypic spectrum of FGFR3 chondrodysplasias ranging from lethal forms to the milder phenotype seen in hypochondroplasia (Hch. The p.N540K mutation in the FGFR3 gene occurs in ~70% of individuals with Hch, and nearly 30% of individuals with the Hch phenotype have no mutations in the FGFR3, which suggests genetic heterogeneity. The identification of a severe case of Hch associated with the typical mutation c.1620C > A and the occurrence of a c.1150T > C change that resulted in a p.F384L in exon 10, together with the suspicion that this second change could be a modulator of the phenotype, prompted us to investigate this hypothesis in a cohort of patients. An analysis of 48 patients with FGFR3 chondrodysplasia phenotypes and 330 healthy (control individuals revealed no significant difference in the frequency of the C allele at the c.1150 position (p = 0.34. One patient carrying the combination `pathogenic mutation plus the allelic variant c.1150T > C' had a typical achondroplasia (Ach phenotype. In addition, three other patients with atypical phenotypes showed no association with the allelic variant. Together, these results do not support the hypothesis of a modulatory role for the c.1150T > C change in the FGFR3 gene.

  6. Three mutations switch H7N9 influenza to human-type receptor specificity

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, Robert P.; Peng, Wenjie; Grant, Oliver C.; Thompson, Andrew J.; Zhu, Xueyong; Bouwman, Kim M.; de la Pena, Alba T. Torrents; van Breemen, Marielle J.; Ambepitiya Wickramasinghe, Iresha N.; de Haan, Cornelis A. M.; Yu, Wenli; McBride, Ryan; Sanders, Rogier W.; Woods, Robert J.; Verheije, Monique H.; Wilson, Ian A.; Paulson, James C.; Fernandez-Sesma, Ana

    2017-06-15

    The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.

  7. Mutation screening of the Ectodysplasin-A receptor gene EDAR in hypohidrotic ectodermal dysplasia

    NARCIS (Netherlands)

    van der Hout, Annemarie H.; Oudesluijs, Gretel G.; Venema, Andrea; Verheij, Joke B. G. M.; Mol, Bart G. J.; Rump, Patrick; Brunner, Han G.; Vos, Yvonne J.; van Essen, Anthonie J.

    Hypohidrotic ectodermal dysplasia (HED) can be caused by mutations in the X-linked ectodysplasin A (ED1) gene or the autosomal ectodysplasin A-receptor (EDAR) and EDAR-associated death domain (EDARADD) genes. X-linked and autosomal forms are sometimes clinically indistinguishable. For genetic

  8. Three mutations switch H7N9 influenza to human-type receptor specificity.

    Directory of Open Access Journals (Sweden)

    Robert P de Vries

    2017-06-01

    Full Text Available The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA mutation (Q226L that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal to human-type (NeuAcα2-6Gal, as documented for the avian progenitors of the 1957 (H2N2 and 1968 (H3N2 human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.

  9. Epidermal Growth Factor Receptor in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Oliveira-Cunha, Melissa; Newman, William G.; Siriwardena, Ajith K.

    2011-01-01

    Pancreatic cancer is the fourth leading cause of cancer related death. The difficulty in detecting pancreatic cancer at an early stage, aggressiveness and the lack of effective therapy all contribute to the high mortality. Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which is expressed in normal human tissues. It is a member of the tyrosine kinase family of growth factors receptors and is encoded by proto-oncogenes. Several studies have demonstrated that EGFR is over-expressed in pancreatic cancer. Over-expression correlates with more advanced disease, poor survival and the presence of metastases. Therefore, inhibition of the EGFR signaling pathway is an attractive therapeutic target. Although several combinations of EGFR inhibitors with chemotherapy demonstrate inhibition of tumor-induced angiogenesis, tumor cell apoptosis and regression in xenograft models, these benefits remain to be confirmed. Multimodality treatment incorporating EGFR-inhibition is emerging as a novel strategy in the treatment of pancreatic cancer

  10. Recurrent nonsense mutations in the growth hormone receptor from patients with Laron dwarfism.

    Science.gov (United States)

    Amselem, S; Sobrier, M L; Duquesnoy, P; Rappaport, R; Postel-Vinay, M C; Gourmelen, M; Dallapiccola, B; Goossens, M

    1991-01-01

    In addition to its classical effects on growth, growth hormone (GH) has been shown to have a number of other actions, all of which are initiated by an interaction with specific high affinity receptors present in a variety of tissues. Purification of a rabbit liver protein via its ability to bind GH has allowed the isolation of a cDNA encoding a putative human growth hormone receptor that belongs to a new class of transmembrane receptors. We have previously shown that this putative growth hormone receptor gene is genetically linked to Laron dwarfism, a rare autosomal recessive syndrome caused by target resistance to GH. Nevertheless, the inability to express the corresponding full-length coding sequence and the lack of a test for growth-promoting function have hampered a direct confirmation of its role in growth. We have now identified three nonsense mutations within this growth hormone receptor gene, lying at positions corresponding to the amino terminal extremity and causing a truncation of the molecule, thereby deleting a large portion of both the GH binding domain and the full transmembrane and intracellular domains. Three independent patients with Laron dwarfism born of consanguineous parents were homozygous for these defects. Two defects were identical and consisted of a CG to TG transition. Not only do these results confirm the growth-promoting activity of this receptor but they also suggest that CpG doublets may represent hot spots for mutations in the growth hormone receptor gene that are responsible for hereditary dwarfism. Images PMID:1999489

  11. The development of epidermal growth factor receptor molecular imaging in cancer

    International Nuclear Information System (INIS)

    Zhou Xiaoliang; Wang Hao; Shi Peiji; Liu Jianfeng; Meng Aimin

    2013-01-01

    In vivo epidermal growth factor receptor (EGFR) targeted therapy has great potential for cancer diagnosis and the evaluation of curative effects. Enhancement of EGFR-targeted therapy needs a reliable quantitative molecular imaging method which could enable monitoring of receptor drug binding and receptor occupancy in vivo, and identification of the mutation in EGFR. PET or SPECT is the most advanced molecular imaging technology of non-invasively selecting responders, predicting therapeutic outcome and monitoring EGFR-targeted treatment. This review analyzed the present situation and research progress of molecular imaging agents. (authors)

  12. Novel mutation detection of fibroblast growth factor receptor 1 (FGFR1) gene, FGFR2IIIa, FGFR2IIIb, FGFR2IIIc, FGFR3, FGFR4 gene for craniosynostosis: A prospective study in Asian Indian patient.

    Science.gov (United States)

    Barik, Mayadhar; Bajpai, Minu; Malhotra, Arun; Samantaray, Jyotish Chandra; Dwivedi, Sadananda; Das, Sambhunath

    2015-01-01

    Craniosynostosis (CS) syndrome is an autosomal dominant condition classically combining craniosynostosis and non-syndromic craniosynostosis with digital anomalies of the hands and feet. The majority of cases are caused by heterozygous mutations in the third immunoglobulin-like domain (IgIII) of FGFR2, whilst a larger number of cases can be attributed to mutations outside this region of the protein. To find out the FGFR1, FGFR2, FGFR3 and FGFR4 gene in craniosynostosis syndrome. A hospital based prospective study. Prospective analysis of clinical records of patients registered in CS clinic from December 2007 to January 2015 was done in patients between 4 months to 13 years of age. We have performed genetic findings in a three generation Indian family with Craniosynostosis syndrome. We report for the first time the clinical and genetic findings in a three generation Indian family with Craniosynostosis syndrome caused by a heterozygous missense mutation, Thr 392 Thr and ser 311 try, located in the IgII domain of FGFR2. FGFR 3 and 4 gene basis syndrome was eponymously named. Genetic analysis demonstrated that 51/56 families to be unrelated. In FGFR3 gene 10/TM location of 1172 the nucleotide changes C>A, Ala 391 Glu 19/56 and Exon-19, 5q35.2 at conserved linker region the changes occurred pro 246 Arg in 25/56 families. Independent genetic origins, but phenotypic similarities in the 51 families add to the evidence supporting the theory of selfish spermatogonial selective advantage for this rare gain-of-function FGFR2 mutation.

  13. Phase I/II trial of vorinostat (SAHA) and erlotinib for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations after erlotinib progression.

    Science.gov (United States)

    Reguart, Noemi; Rosell, Rafael; Cardenal, Felipe; Cardona, Andres F; Isla, Dolores; Palmero, Ramon; Moran, Teresa; Rolfo, Christian; Pallarès, M Cinta; Insa, Amelia; Carcereny, Enric; Majem, Margarita; De Castro, Javier; Queralt, Cristina; Molina, Miguel A; Taron, Miquel

    2014-05-01

    Vorinostat or suberoylanilide hydroxamic acid (SAHA) is a novel histone deacetylase inhibitor with demonstrated antiproliferative effects due to drug-induced accumulation of acetylated proteins, including the heat shock protein 90. We prospectively studied the activity of vorinostat plus erlotinib in EGFR-mutated NSCLC patients with progression to tyrosine kinase inhibitors. We conducted this prospective, non-randomized, multicenter, phase I/II trial to evaluate the maximum tolerated dose, toxicity profile and efficacy of erlotinib and vorinostat. Patients with advanced NSCLC harboring EGFR mutations and progressive disease after a minimum of 12 weeks on erlotinib were included. The maximum tolerated dose of vorinostat plus erlotinib was used as recommended dose for the phase II (RDP2) to assess the efficacy of the combination. The primary end point was progression-free-survival rate at 12 weeks (PFSR12w). Pre-treatment plasma samples were required to assess T790M resistant mutation. A total of 33 patients were enrolled in the phase I-II trial. The maximum tolerated dose was erlotinib 150 mg p.o., QD, and 400mg p.o., QD, on days 1-7 and 15-21 in a 28-day cycle. Among the 25 patients treated at the RDP2, the most common toxicities included anemia, fatigue and diarrhea. No responses were observed. PFSR12w was 28% (IC 95%: 18.0-37.2); median progression-free survival (PFS) was 8 weeks (IC 95%: 7.43-8.45) and overall survival (OS) 10.3 months (95% CI: 2.4-18.1). Full dose of continuous erlotinib with vorinostat 400mg p.o., QD on alternative weeks can be safely administered. Still, the combination has no meaningful activity in EGFR-mutated NSCLC patients after TKI progression. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. A hotspot in the glucocorticoid receptor DNA-binding domain susceptible to loss of function mutation

    Science.gov (United States)

    Banuelos, Jesus; Shin, Soon Cheon; Lu, Nick Z.

    2015-01-01

    Glucocorticoids (GCs) are used to treat a variety of inflammatory disorders and certain cancers. However, GC resistance occurs in subsets of patients. We found that EL4 cells, a GC-resistant mouse thymoma cell line, harbored a point mutation in their GC receptor (GR) gene, resulting in the substitution of arginine 493 by a cysteine in the second zinc finger of the DNA-binding domain. Allelic discrimination analyses revealed that the R493C mutation occurred on both alleles. In the absence of GCs, the GR in EL4 cells localized predominantly in the cytoplasm and upon dexamethasone treatment underwent nuclear translocation, suggesting the ligand binding ability of the GR in EL4 cells was intact. In transient transfection assays, the R493C mutant could not transactivate the MMTV-luciferase reporter. Site-directed mutagenesis to revert the R493C mutation restored the transactivation activity. Cotransfection experiments showed that the R493C mutant did not inhibit the transcriptional activities of the wild-type GR. In addition, the R493C mutant did not repress either the AP-1 or NF-κB reporters as effectively as WT GR. Furthermore, stable expression of the WT GR in the EL4 cells enabled GC-mediated gene regulation, specifically upregulation of IκBα and downregulation of interferon γ and interleukin 17A. Arginine 493 is conserved among multiple species and all human nuclear receptors and its mutation has also been found in the human GR, androgen receptor, and mineralocorticoid receptor. Thus, R493 is necessary for the transcriptional activity of the GR and a hotspot for mutations that result in GC resistance. PMID:25676786

  15. Expression of G(alpha)(s) proteins and TSH receptor signalling in hyperfunctioning thyroid nodules with TSH receptor mutations.

    Science.gov (United States)

    Holzapfel, Hans-Peter; Bergner, Beate; Wonerow, Peter; Paschke, Ralf

    2002-07-01

    Constitutively activating mutations of the thyrotrophin receptor (TSHR) are the main molecular cause of hyperfunctioning thyroid nodules (HTNs). The G protein coupling is an important and critical step in the TSHR signalling which mainly includes G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins. We investigated the in vitro consequences of overexpressing G(alpha) proteins on signalling of the wild-type (WT) or mutated TSHR. Moreover, we investigated whether changes in G(alpha) protein expression are pathophysiologically relevant in HTNs or cold thyroid nodules (CTNs). Wild-type TSH receptor and mutated TSH receptors were coexpressed with G(alpha)(s), G(alpha)(i) or G(alpha)(q)/11, and cAMP and inositol phosphate (IP) production was measured after stimulation with TSH. The expression of G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins was examined by Western blotting in 28 HTNs and 14 CTNs. Coexpression of G(alpha)(s) with the WT TSH receptor in COS 7 cells significantly increased the basal and TSH-stimulated cAMP accumulation while coexpression of the G(alpha)(q) or G(alpha)11 protein significantly increased the production of cAMP and inositol triphosphate (IP(3)). The coexpression of the TSH receptor mutants (I486F, DEL613-621), known to couple constitutively to G(alpha)(s) and G(alpha)(q) with G(alpha)(s) and G(alpha)(q)/11, significantly increased the basal and stimulated cAMP and IP(3) accumulation. Coexpression of the TSH receptor mutant V556F with G(alpha)(s) only increased the basal and stimulated cAMP production while its coexpression with G(alpha)(q)/11 increased the basal and stimulated IP(3) signalling. The expression of G(alpha)(s) protein subunits determined by Western blotting was significantly decreased in 14 HTNs with a constitutively activating TSH receptor mutation in comparison with the corresponding surrounding tissue, while in 14 HTNs without TSH receptor or G(alpha)(s) protein mutation and in 14 CTNs the expression of G

  16. Novel growth hormone receptor mutation in a Chinese patient with Laron syndrome.

    Science.gov (United States)

    Hui, Hamilton N T; Metherell, Louise A; Ng, K L; Savage, Martin O; Camacho-Hübner, Cecilia; Clark, Adrian J L

    2005-02-01

    Laron syndrome, growth hormone (GH) insensitivity syndrome, caused by a mutation of the GH receptor (GHR) gene, is extremely rare in the Chinese population. We report a Chinese girl diagnosed with Laron syndrome at age 1.9 years with height -4.9 SDS, basal GH 344 mIU/ml, IGF-I <12 ng/ml, IGFBP-3 <0.2 mg/ml, and undetectable GHBP. A novel mutation of the GHR, not previously described, was identified at the donor splice site of intron 6.

  17. Impact of mutations in Toll-like receptor pathway genes on esophageal carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Daffolyn Rachael Fels Elliott

    2017-05-01

    Full Text Available Esophageal adenocarcinoma (EAC develops in an inflammatory microenvironment with reduced microbial diversity, but mechanisms for these influences remain poorly characterized. We hypothesized that mutations targeting the Toll-like receptor (TLR pathway could disrupt innate immune signaling and promote a microenvironment that favors tumorigenesis. Through interrogating whole genome sequencing data from 171 EAC patients, we showed that non-synonymous mutations collectively affect the TLR pathway in 25/171 (14.6%, PathScan p = 8.7x10-5 tumors. TLR mutant cases were associated with more proximal tumors and metastatic disease, indicating possible clinical significance of these mutations. Only rare mutations were identified in adjacent Barrett's esophagus samples. We validated our findings in an external EAC dataset with non-synonymous TLR pathway mutations in 33/149 (22.1%, PathScan p = 0.05 tumors, and in other solid tumor types exposed to microbiomes in the COSMIC database (10,318 samples, including uterine endometrioid carcinoma (188/320, 58.8%, cutaneous melanoma (377/988, 38.2%, colorectal adenocarcinoma (402/1519, 26.5%, and stomach adenocarcinoma (151/579, 26.1%. TLR4 was the most frequently mutated gene with eleven mutations in 10/171 (5.8% of EAC tumors. The TLR4 mutants E439G, S570I, F703C and R787H were confirmed to have impaired reactivity to bacterial lipopolysaccharide with marked reductions in signaling by luciferase reporter assays. Overall, our findings show that TLR pathway genes are recurrently mutated in EAC, and TLR4 mutations have decreased responsiveness to bacterial lipopolysaccharide and may play a role in disease pathogenesis in a subset of patients.

  18. Thyroid Hormone Receptor Mutations in Cancer and Resistance to Thyroid Hormone: Perspective and Prognosis

    Directory of Open Access Journals (Sweden)

    Meghan D. Rosen

    2011-01-01

    Full Text Available Thyroid hormone, operating through its receptors, plays crucial roles in the control of normal human physiology and development; deviations from the norm can give rise to disease. Clinical endocrinologists often must confront and correct the consequences of inappropriately high or low thyroid hormone synthesis. Although more rare, disruptions in thyroid hormone endocrinology due to aberrations in the receptor also have severe medical consequences. This review will focus on the afflictions that are caused by, or are closely associated with, mutated thyroid hormone receptors. These include Resistance to Thyroid Hormone Syndrome, erythroleukemia, hepatocellular carcinoma, renal clear cell carcinoma, and thyroid cancer. We will describe current views on the molecular bases of these diseases, and what distinguishes the neoplastic from the non-neoplastic. We will also touch on studies that implicate alterations in receptor expression, and thyroid hormone levels, in certain oncogenic processes.

  19. Influence of the factor V Leiden mutation on infectious disease susceptibility and outcome

    DEFF Research Database (Denmark)

    Benfield, Thomas L; Dahl, Mortens; Nordestgaard, Borge G

    2005-01-01

    The effect of the coagulation factor V Leiden mutation on infectious disease susceptibility and outcome is controversial.......The effect of the coagulation factor V Leiden mutation on infectious disease susceptibility and outcome is controversial....

  20. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    Science.gov (United States)

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-11-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.

  1. Activating thyrotropin receptor mutations are present in nonadenomatous hyperfunctioning nodules of toxic or autonomous multinodular goiter.

    Science.gov (United States)

    Tonacchera, M; Agretti, P; Chiovato, L; Rosellini, V; Ceccarini, G; Perri, A; Viacava, P; Naccarato, A G; Miccoli, P; Pinchera, A; Vitti, P

    2000-06-01

    Toxic multinodular goiter, a heterogeneous disease producing hyperthyroidism, is frequently found in iodine-deficient areas. The pathogenesis of this common clinical entity is still unclear. The aim of the present study was to search for activating TSH receptor (TSHr) or Gs alpha mutations in areas of toxic or functionally autonomous multinodular goiters that appeared hyperfunctioning at thyroid scintiscan but did not clearly correspond to definite nodules at physical or ultrasonographic examination. Surgical tissue specimens from nine patients were carefully dissected, matching thyroid scintiscan and thyroid ultrasonography, to isolate hyperfunctioning and nonfunctioning areas even if they did not correspond to well-defined nodules. TSHr and Gs alpha mutations were searched for by direct sequencing after PCR amplification of genomic DNA. Only 2 adenomas were identified at microscopic examination, whereas the remaining 18 hyperfunctioning areas corresponded to hyperplastic nodules containing multiple aggregates of micromacrofollicules not surrounded by a capsule. Activating TSHr mutations were detected in 14 of these 20 hyperfunctioning areas, whereas no mutation was identified in nonfunctioning nodules or areas contained in the same gland. No Gs alpha mutation was found. In conclusion, activating TSHr mutations are present in the majority of nonadenomatous hyperfunctioning nodules scattered throughout the gland in patients with toxic or functionally autonomous multinodular goiter.

  2. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    Science.gov (United States)

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  3. Clinical features and growth hormone receptor gene mutations of patients with Laron syndrome from a Chinese family.

    Science.gov (United States)

    Ying, Yan-Qin; Wei, Hong; Cao, Li-Zhi; Lu, Juan-Juan; Luo, Xiao-Ping

    2007-08-01

    Laron syndrome is an autosomal recessive disorder caused by defects of growth hormone receptor (GHR) gene. It is characterized by severe postnatal growth retardation and characteristic facial features as well as high circulating levels of growth hormone (GH) and low levels of insulin-like growth factor I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3). This report described the clinical features and GHR gene mutations in 2 siblings with Laron syndrome in a Chinese family. Their heights and weights were in the normal range at birth, but the growth was retarded after birth. When they presented to the clinic, the heights of the boy (8 years old) and his sister (11 years old) were 80.0 cm (-8.2 SDS) and 96.6 cm (-6.8 SDS) respectively. They had typical appearance features of Laron syndrome such as short stature and obesity, with protruding forehead, saddle nose, large eyes, sparse and thin silky hair and high-pitched voice. They had higher basal serum GH levels and lower serum levels of IGF-I, IGFBP-3 and growth hormone binding protein (GHBP) than normal controls. The peak serum GH level after colonidine and insulin stimulations in the boy was over 350 ng/mL. After one-year rhGH treatment, the boy's height increased from 80.0 cm to 83.3 cm. The gene mutation analysis revealed that two patients had same homozygous mutation of S65H (TCA -->CCA) in exon 4, which is a novel gene mutation. It was concluded that a definite diagnosis of Laron syndrome can be made based on characteristic appearance features and serum levels of GH, IGF-I, IGFBP-3 and GHBP. The S65H mutation might be the cause of Laron syndrome in the two patients.

  4. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis

    Science.gov (United States)

    Gomez-Ospina, Natalia; Potter, Carol J.; Xiao, Rui; Manickam, Kandamurugu; Kim, Mi-Sun; Kim, Kang Ho; Shneider, Benjamin L.; Picarsic, Jennifer L.; Jacobson, Theodora A.; Zhang, Jing; He, Weimin; Liu, Pengfei; Knisely, A. S.; Finegold, Milton J.; Muzny, Donna M.; Boerwinkle, Eric; Lupski, James R.; Plon, Sharon E.; Gibbs, Richard A.; Eng, Christine M.; Yang, Yaping; Washington, Gabriel C.; Porteus, Matthew H.; Berquist, William E.; Kambham, Neeraja; Singh, Ravinder J.; Xia, Fan; Enns, Gregory M.; Moore, David D.

    2016-01-01

    Neonatal cholestasis is a potentially life-threatening condition requiring prompt diagnosis. Mutations in several different genes can cause progressive familial intrahepatic cholestasis, but known genes cannot account for all familial cases. Here we report four individuals from two unrelated families with neonatal cholestasis and mutations in NR1H4, which encodes the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor that regulates bile acid metabolism. Clinical features of severe, persistent NR1H4-related cholestasis include neonatal onset with rapid progression to end-stage liver disease, vitamin K-independent coagulopathy, low-to-normal serum gamma-glutamyl transferase activity, elevated serum alpha-fetoprotein and undetectable liver bile salt export pump (ABCB11) expression. Our findings demonstrate a pivotal function for FXR in bile acid homeostasis and liver protection. PMID:26888176

  5. Expression of estrogen receptor beta in the breast carcinoma of BRCA1 mutation carriers

    International Nuclear Information System (INIS)

    Litwiniuk, Maria M; Rożnowski, Krzysztof; Filas, Violetta; Godlewski, Dariusz D; Stawicka, Małgorzata; Kaleta, Remigiusz; Bręborowicz, Jan

    2008-01-01

    Breast cancers (BC) in women carrying mutations in BRCA1 gene are more frequently estrogen receptor negative than the nonhereditary BC. Nevertheless, tamoxifen has been found to have a protective effect in preventing contralateral tumors in BRCA1 mutation carriers. The identification of the second human estrogen receptor, ERβ, raised a question of its role in hereditary breast cancer. The aim of this study was to assess the frequency of ERα, ERβ, PgR (progesterone receptor) and HER-2 expression in breast cancer patients with mutated BRCA1 gene and in the control group. The study group consisted of 48 women with BRCA1 gene mutations confirmed by multiplex PCR assay. The patients were tested for three most common mutations of BRCA1 affecting the Polish population (5382insC, C61G, 4153delA). Immunostaining for ERα, ERβ and PgR (progesterone receptor) was performed using monoclonal antibodies against ERα, PgR (DakoCytomation), and polyclonal antibody against ERβ (Chemicon). The EnVision detection system was applied. The study population comprised a control group of 120 BC operated successively during the years 1998–99. The results of our investigation showed that BRCA1 mutation carriers were more likely to have ERα-negative breast cancer than those in the control group. Only 14.5% of BRCA1-related cancers were ERα-positive compared with 57.5% in the control group (P < 0.0001). On the contrary, the expression of ERβ protein was observed in 42% of BRCA1-related tumors and in 55% of the control group. An interesting finding was that most hereditary cancers (75% of the whole group) were triple-negative: ERα(-)/PgR(-)/HER-2(-) but almost half of this group (44.4%) showed the expression of ERβ. In the case of BRCA1-associated tumors the expression of ERβ was significantly higher than the expression of ERα. This may explain the effectiveness of tamoxifen in preventing contralateral breast cancer development in BRCA1 mutation carriers

  6. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  7. A Novel Missense Mutation in Oncostatin M Receptor Beta Causing Primary Localized Cutaneous Amyloidosis

    Directory of Open Access Journals (Sweden)

    Marjan Saeedi

    2014-01-01

    Full Text Available Primary localized cutaneous amyloidosis (PLCA is a chronic skin disorder, caused by amyloid material deposition in the upper dermis. Autosomal dominant PLCA has been mapped earlier to pathogenic missense mutations in the OSMR gene, which encodes the oncostatin M receptor ß subunit (OSMRß. OSMRß is interleukin-6 family cytokine receptors and possesses two ligands, oncostatin M and interleukin-31, which both have biologic roles in inflammation and keratinocyte cell proliferation, differentiation, and apoptosis. Here, we identified a new OSMR mutation in a Kurdish family for the first time. Blood samples were taken from all the affected individuals in the family. DNA extraction was performed using salting out technique. Primers were designed for intron flanking individual exons of OSMR gene which were subjected to direct sequencing after PCR amplification for each sample. Sequencing showed a C/T substitution at position 613 in the proband. This mutation results in an L613S (leucine 613 to serine amino acid change. The identified mutation was observed in all affected family members but not in 100 ethnically matched healthy controls. Elucidating the molecular basis of familial PLCA provides new insight into mechanisms of itch in human skin and may lead to new therapeutic targets for pruritus.

  8. The origin of the p.E180 growth hormone receptor gene mutation.

    Science.gov (United States)

    Ostrer, Harry

    2016-06-01

    Laron syndrome, an autosomal recessive condition of extreme short stature, is caused by the absence or dysfunction of the growth hormone receptor. A recurrent mutation in the GHR gene, p.E180, did not alter the encoded amino acid, but activated a cryptic splice acceptor resulting in a receptor protein with an 8-amino acid deletion in the extracellular domain. This mutation has been observed among Sephardic Jews and among individuals in Ecuador, Brazil and Chile, most notably in a large genetic isolate in Loja, Ecuador. A common origin has been postulated based on a shared genetic background of markers flanking this mutation, suggesting that the Lojanos (and others) may have Sephardic (Converso) Jewish ancestry. Analysis of the population structure of Lojanos based on genome-wide analysis demonstrated European, Sephardic Jewish and Native American ancestry in this group. X-autosomal comparison and monoallelic Y chromosomal and mitochondrial genetic analysis demonstrated gender-biased admixture between Native American women and European and Sephardic Jewish men. These findings are compatible with the co-occurrence of the Inquisition and the colonization of the Americas, including Converso Jews escaping the Inquisition in the Iberian Peninsula. Although not found among Lojanos, Converso Jews also brought founder mutations to contemporary Hispanic and Latino populations in the BRCA1 (c.68_69delAG) and BLM (c.2207_2212delATCTGAinsTAGATTC) genes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Growth hormone receptor gene mutations in two Italian patients with Laron Syndrome.

    Science.gov (United States)

    Fassone, L; Corneli, G; Bellone, S; Camacho-Hübner, C; Aimaretti, G; Cappa, M; Ubertini, G; Bona, G

    2007-05-01

    Laron Syndrome (LS) represents a condition characterized by GH insensitivity caused by molecular defects in the GH receptor (GHR) gene or in the post-receptor signalling pathway. We report the molecular characterization of two unrelated Italian girls from Sicily diagnosed with LS. The DNA sequencing of the GHR gene revealed the presence of different nonsense mutations, occurring in the same background haplotype. The molecular defects occurred in the extracellular domain of the GHR leading to a premature termination signal and to a truncated non-functional receptor. In one patient, a homozygous G to T transversion, in exon 6, led to the mutation GAA to TAA at codon 180 (E180X), while in the second patient a homozygous C to T transition in exon 7 was detected, causing the CGA to TAA substitution at codon 217 (R217X). Both probands presented the polymorphisms Gly168Gly and Ile544Leu in a homozygous state in exons 6 and 10, respectively. The E180X represents a novel defect of the GHR gene, while the R217X mutation has been previously reported in several patients from different ethnic backgrounds but all from countries located in the Mediterranean and Middle Eastern region.

  10. Activating thyrotropin receptor mutations in histologically heterogeneous hyperfunctioning nodules of multinodular goiter.

    Science.gov (United States)

    Tonacchera, M; Vitti, P; Agretti, P; Giulianetti, B; Mazzi, B; Cavaliere, R; Ceccarini, G; Fiore, E; Viacava, P; Naccarato, A; Pinchera, A; Chiovato, L

    1998-07-01

    Activating thyrotropin (TSH) receptor mutations have been found in toxic adenomas and in hot nodules contained in toxic multinodular goiter. The typical feature of multinodular goiter is the heterogeneity in morphology and function of different follicles within the same enlarged gland. In this report we describe a patient with a huge multinodular goiter, normal free triiodothyronine (FT3) and free thyroxine (FT4) serum values, and subnormal TSH serum concentration. Thyroid scintiscan showed two hot areas corresponding to the basal and apical nodules of the left lobe. The right lobe was poorly visualized by the radioisotope. The patient underwent thyroidectomy, and histological examination of the tissue was performed. Genomic DNA was extracted from the tissue specimen and direct sequencing of the TSH receptor and Gs alpha genes was done. At histology, one hyperfunctioning nodule had the typical microscopic structure of thyroid adenomas, and the other contained multiple macrofollicular areas not confined by a capsule. In spite of this histological difference, both hyperfunctioning nodules harbored a mutation of the thyrotropin receptor (TSHr) gene: an isoleucine instead of a threonine in position 632 (T632I) in the first nodule and a methionine instead of an isoleucine in position 486 (I486M) in the second nodule. In conclusion, our findings show for the first time that gain-of-function TSHr mutations are not only present in hyperfunctioning thyroid nodules with the histological features of the true thyroid adenomas, but also in hyperfunctioning hyperplastic nodules contained in the same multinodular goiter.

  11. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors

    DEFF Research Database (Denmark)

    Sutton, Lesley-Ann; Young, Emma; Baliakas, Panagiotis

    2016-01-01

    We report on markedly different frequencies of genetic lesions within subsets of chronic lymphocytic leukemia patients carrying mutated or unmutated stereotyped B-cell receptor immunoglobulins in the largest cohort (n=565) studied for this purpose. By combining data on recurrent gene mutations...... subsets implies that the mechanisms underlying clinical aggressiveness are not uniform, but rather support the existence of distinct genetic pathways of clonal evolution governed by a particular stereotyped B-cell receptor selecting a certain molecular lesion(s)....

  12. Pancreatic α-cell hyperplasia and hyperglucagonemia due to a glucagon receptor splice mutation

    Directory of Open Access Journals (Sweden)

    Etienne Larger

    2016-11-01

    Full Text Available Glucagon stimulates hepatic glucose production by activating specific glucagon receptors in the liver, which in turn increase hepatic glycogenolysis as well as gluconeogenesis and ureagenesis from amino acids. Conversely, glucagon secretion is regulated by concentrations of glucose and amino acids. Disruption of glucagon signaling in rodents results in grossly elevated circulating glucagon levels but no hypoglycemia. Here, we describe a patient carrying a homozygous G to A substitution in the invariant AG dinucleotide found in a 3′ mRNA splice junction of the glucagon receptor gene. Loss of the splice site acceptor consensus sequence results in the deletion of 70 nucleotides encoded by exon 9, which introduces a frame shift and an early termination signal in the receptor mRNA sequence. The mutated receptor neither bound 125I-labeled glucagon nor induced cAMP production upon stimulation with up to 1 μM glucagon. Despite the mutation, the only obvious pathophysiological trait was hyperglucagonemia, hyperaminoacidemia and massive hyperplasia of the pancreatic α-cells assessed by histology. Our case supports the notion of a hepato–pancreatic feedback system, which upon disruption leads to hyperglucagonemia and α-cell hyperplasia, as well as elevated plasma amino acid levels. Together with the glucagon-induced hypoaminoacidemia in glucagonoma patients, our case supports recent suggestions that amino acids may provide the feedback link between the liver and the pancreatic α-cells.

  13. Whole-exome sequencing reveals a rare interferon gamma receptor 1 mutation associated with myasthenia gravis.

    Science.gov (United States)

    Qi, Guoyan; Liu, Peng; Gu, Shanshan; Yang, Hongxia; Dong, Huimin; Xue, Yinping

    2018-04-01

    Our study is aimed to explore the underlying genetic basis of myasthenia gravis. We collected a Chinese pedigree with myasthenia gravis, and whole-exome sequencing was performed on the two affected siblings and their parents. The candidate pathogenic gene was identified by bioinformatics filtering, which was further verified by Sanger sequencing. The homozygous mutation c.G40A (p.V14M) in interferon gamma receptor 1was identified. Moreover, the mutation was also detected in 3 cases of 44 sporadic myasthenia gravis patients. The p.V14M substitution in interferon gamma receptor 1 may affect the signal peptide function and the translocation on cell membrane, which could disrupt the binding of the ligand of interferon gamma and antibody production, contributing to myasthenia gravis susceptibility. We discovered that a rare variant c.G40A in interferon gamma receptor 1 potentially contributes to the myasthenia gravis pathogenesis. Further functional studies are needed to confirm the effect of the interferon gamma receptor 1 on the myasthenia gravis phenotype.

  14. Molecular analysis of the androgen-receptor gene in a family with receptor-positive partial androgen insensitivity: an unusual type of intronic mutation

    NARCIS (Netherlands)

    H.T. Brüggenwirth (Hennie); A.L.M. Boehmer (Annemie); S. Ramnarain; M.C. Verleun-Mooijman; D.P.E. Satijn (David); J. Trapman (Jan); J.A. Grootegoed (Anton); A.O. Brinkmann (Albert)

    1997-01-01

    textabstractIn the coding part and the intron-exon boundaries of the androgen-receptor gene of a patient with partial androgen insensitivity, no mutation was found. The androgen receptor of this patient displayed normal ligand-binding parameters and migrated as a

  15. Prevalence of mutations and functional analyses of melanocortin 4 receptor variants identified among 750 men with juvenile-onset obesity

    DEFF Research Database (Denmark)

    Larsen, Lesli H; Echwald, Søren Morgenthaler; Sørensen, Thorkild I A

    2005-01-01

    )) for mutations in MC4R. A total of 14 different mutations were identified of which two, Ala219Val and Leu325Phe, were novel variants. The variant receptor, Leu325Phe, was unable to bind [Nle4,d-Phe7]-alphaMSH, whereas the Ala219Val variant showed a significantly impaired melanotan II induction of cAMP, compared...

  16. Mutations and polymorphisms in FSH receptor: functional implications in human reproduction.

    Science.gov (United States)

    Desai, Swapna S; Roy, Binita Sur; Mahale, Smita D

    2013-12-01

    FSH brings about its physiological actions by activating a specific receptor located on target cells. Normal functioning of the FSH receptor (FSHR) is crucial for follicular development and estradiol production in females and for the regulation of Sertoli cell function and spermatogenesis in males. In the last two decades, the number of inactivating and activating mutations, single nucleotide polymorphisms, and spliced variants of FSHR gene has been identified in selected infertile cases. Information on genotype-phenotype correlation and in vitro functional characterization of the mutants has helped in understanding the possible genetic cause for female infertility in affected individuals. The information is also being used to dissect various extracellular and intracellular events involved in hormone-receptor interaction by studying the differences in the properties of the mutant receptor when compared with WT receptor. Studies on polymorphisms in the FSHR gene have shown variability in clinical outcome among women treated with FSH. These observations are being explored to develop molecular markers to predict the optimum dose of FSH required for controlled ovarian hyperstimulation. Pharmacogenetics is an emerging field in this area that aims at designing individual treatment protocols for reproductive abnormalities based on FSHR gene polymorphisms. The present review discusses the current knowledge of various genetic alterations in FSHR and their impact on receptor function in the female reproductive system.

  17. Pattern of hormone receptors and human epidermal growth factor ...

    African Journals Online (AJOL)

    Introduction: Breast cancer is the most common cancer among women globally. With immunohistochemistry (IHC), breast cancer is classified into four groups based on IHC profile of estrogen receptor (ER)/progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2/neu) expression, positive (+) and/or ...

  18. Molecular analysis of the nerve growth factor receptor

    International Nuclear Information System (INIS)

    Hempstead, B.; Patil, N.; Olson, K.; Chao, M.

    1988-01-01

    An essential molecule in the translocation of information by nerve growth factor (NGF) to responsive cells is the cell-surface receptor for NGF. This paper presents information on the genomic structure of the NGF receptor gene, NGF receptor models, and transfection of NGF receptors. Equilibrium binding of [ 125 I]NGF to cells reveals two distinct affinity states for the NGF receptor. The human NGF receptor gene is a single-copy gene, consisting of six exons that span 23 kb. The receptor gene is capable of being transferred to fibroblast cells from human genomic DNA and expressed at high levels. The constitutive nature of the receptor promoter sequence is a partial explanation of why this tissue-specific gene is expressed efficiently in a variety of nonneuronal cells after genomic gene transfer. The two kinetic forms of the NGF receptor appear to be encoded by the same protein, which is the product of a single gene

  19. Identification of a novel mutation in the human growth hormone receptor gene (GHR) in a patient with Laron syndrome.

    Science.gov (United States)

    Gennero, Isabelle; Edouard, Thomas; Rashad, Mona; Bieth, Eric; Conte-Aurio, Françoise; Marin, Françoise; Tauber, Maithé; Salles, Jean Pierre; El Kholy, Mohamed

    2007-07-01

    Deletions and mutations in the growth hormone receptor (GHR) gene are the underlying etiology of Laron syndrome (LS) or growth hormone (GH) insensitivity syndrome (GHIS), an autosomal recessive disease. Most patients are distributed in or originate from Mediterranean and Middle-Eastern countries. Sixty mutations have been described so far. We report a novel mutation in the GHR gene in a patient with LS. Genomic DNA sequencing of exon 5 revealed a TT insertion at nucleotide 422 after codon 122. The insertion resulted in a frameshift introducing a premature termination codon that led to a truncated receptor. We present clinical, biochemical and molecular evidence of LS as the result of this homozygous insertion.

  20. Lack of hormone binding in COS-7 cells expressing a mutated growth hormone receptor found in Laron dwarfism.

    Science.gov (United States)

    Edery, M; Rozakis-Adcock, M; Goujon, L; Finidori, J; Lévi-Meyrueis, C; Paly, J; Djiane, J; Postel-Vinay, M C; Kelly, P A

    1993-01-01

    A single point mutation in the growth hormone (GH) receptor gene generating a Phe-->Ser substitution in the extracellular binding domain of the receptor has been identified in one family with Laron type dwarfism. The mutation was introduced by site-directed mutagenesis into cDNAs encoding the full-length rabbit GH receptor and the extracellular domain or binding protein (BP) of the human and rabbit GH receptor, and also in cDNAs encoding the full length and the extracellular domain of the related rabbit prolactin (PRL) receptor. All constructs were transiently expressed in COS-7 cells. Both wild type and mutant full-length rabbit GH and PRL receptors, as well as GH and prolactin BPs (wild type and mutant), were detected by Western blot in cell membranes and concentrated culture media, respectively. Immunofluorescence studies showed that wild type and mutant full-length GH receptors had the same cell surface and intracellular distribution and were expressed with comparable intensities. In contrast, all mutant forms (full-length receptors or BPs), completely lost their modify the synthesis ligand. These results clearly demonstrate that this point mutation (patients with Laron syndrome) does not modify the synthesis or the intracellular pathway of receptor proteins, but rather abolishes ability of the receptor or BP to bind GH and is thus responsible for the extreme GH resistance in these patients. Images PMID:8450064

  1. Lipoprotein profiles in human heterozygote carriers of a functional mutation P297S in scavenger receptor class B1

    NARCIS (Netherlands)

    Ljunggren, Stefan A.; Levels, Johannes H. M.; Hovingh, Kees; Holleboom, Adriaan G.; Vergeer, Menno; Argyri, Letta; Gkolfinopoulou, Christina; Chroni, Angeliki; Sierts, Jeroen A.; Kastelein, John J.; Kuivenhoven, Jan Albert; Lindahl, Mats; Karlsson, Helen

    2015-01-01

    The scavenger receptor class B type 1 (SR-B1) is an important HDL receptor involved in cholesterol uptake and efflux, but its physiological role in human lipoprotein metabolism is not fully understood. Heterozygous carriers of the SR-B1(P297S) mutation are characterized by increased HDL cholesterol

  2. Interaction of epidermal growth factor receptors with the cytoskeleton is related to receptor clustering

    NARCIS (Netherlands)

    van Belzen, N.; Spaargaren, M.; Verkleij, A. J.; Boonstra, J.

    1990-01-01

    Recently it has been established that cytoskeleton-associated epidermal growth factor (EGF) receptors are predominantly of the high-affinity class and that EGF induces a recruitment of low-affinity receptors to the cytoskeleton. The nature of this EGF-induced receptor-cytoskeleton interaction,

  3. [Clinical relevance of ESR1 circulating mutations detection in hormone receptor positive metastatic breast cancer].

    Science.gov (United States)

    Clatot, Florian; Perdrix, Anne; Sefrioui, David; Sarafan-Vasseur, Nasrin; Di Fiore, Frédéric

    2018-01-01

    If hormone therapy is a key treatment for hormone receptor positive advanced breast cancers, secondary resistance occurs as a rule. Recently, acquired alterations of the ESR1 gene have been identified as a mechanism of resistance on aromatase inhibitor (AI) treatment. The selective pressure by AI exposure during the metastatic setting triggers the emergence of ESR1 activating mutations. In that context, the "liquid biopsy" concept has been used to detect this molecular resistance before progression. Thus, the ESR1 circulating mutation detection will soon be used in daily practice to help monitoring patients on AI treatment and provide an early change for specific therapies that still have to be determined in prospective clinical trials. This review will present the acquired ESR1 mutations, as well as the methods used for their detection in blood and the potential clinical impact of this approach for hormone receptor positive breast cancer management. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  4. Convergent Evolution of Slick Coat in Cattle through Truncation Mutations in the Prolactin Receptor

    Directory of Open Access Journals (Sweden)

    Laercio R. Porto-Neto

    2018-02-01

    Full Text Available Evolutionary adaptations are occasionally convergent solutions to the same problem. A mutation contributing to a heat tolerance adaptation in Senepol cattle, a New World breed of mostly European descent, results in the distinct phenotype known as slick, where an animal has shorter hair and lower follicle density across its coat than wild type animals. The causal variant, located in the 11th exon of prolactin receptor, produces a frameshift that results in a truncated protein. However, this mutation does not explain all cases of slick coats found in criollo breeds. Here, we obtained genome sequences from slick cattle of a geographically distinct criollo breed, namely Limonero, whose ancestors were originally brought to the Americas by the Spanish. These data were used to identify new causal alleles in the 11th exon of the prolactin receptor, two of which also encode shortened proteins that remove a highly conserved tyrosine residue. These new mutations explained almost 90% of investigated cases of animals that had slick coats, but which also did not carry the Senepol slick allele. These results demonstrate convergent evolution at the molecular level in a trait important to the adaptation of an animal to its environment.

  5. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis.

    Science.gov (United States)

    Mohammadi, M; Dionne, C A; Li, W; Li, N; Spivak, T; Honegger, A M; Jaye, M; Schlessinger, J

    1992-08-20

    Stimulation of growth factor receptors with tyrosine kinase activity is followed by rapid receptor dimerization, tyrosine autophosphorylation and phosphorylation of signalling molecules such as phospholipase C gamma (PLC gamma) and the ras GTPase-activating protein. PLC gamma and GTPase-activating protein bind to specific tyrosine-phosphorylated regions in growth factor receptors through their src-homologous SH2 domains. Growth factor-induced tyrosine phosphorylation of PLC gamma is essential for stimulation of phosphatidylinositol hydrolysis in vitro and in vivo. We have shown that a short phosphorylated peptide containing tyrosine at position 766 from a conserved region of the fibroblast growth factor (FGF) receptor is a binding site for the SH2 domain of PLC gamma (ref. 8). Here we show that an FGF receptor point mutant in which Tyr 766 is replaced by a phenylalanine residue (Y766F) is unable to associate with and tyrosine-phosphorylate PLC gamma or to stimulate hydrolysis of phosphatidylinositol. Nevertheless, the Y766F FGF receptor mutant can be autophosphorylated, and can phosphorylate several cellular proteins and stimulate DNA synthesis. Our data show that phosphorylation of the conserved Tyr 766 of the FGF receptor is essential for phosphorylation of PLC gamma and for hydrolysis of phosphatidylinositol, but that elimination of this hydrolysis does not affect FGF-induced mitogenesis.

  6. Case Reports1. A Late Presentation of Loeys-Dietz Syndrome: Beware of TGFβ Receptor Mutations in Benign Joint Hypermobility

    OpenAIRE

    Mehta, Puja; Holder, Susan; Fisher, Benjamin; Vincent, Tonia; Nadesalingam, Kavitha; Maciver, Helen; Shingler, Wendy; Bakshi, Jyoti; Hassan, Sadon; D'Cruz, David; Chan, Antoni; Litwic, Anna E.; McCrae, Fiona; Seth, Rakhi; McCrae, Fiona

    2017-01-01

    Background: Thoracic aortic aneurysms (TAA) and dissections are not uncommon causes of sudden death in young adults. Loeys-Dietz syndrome (LDS) is a rare, recently described, autosomal dominant, connective tissue disease characterized by aggressive arterial aneurysms, resulting from mutations in the transforming growth factor beta (TGFβ) receptor genes TGFBR1 and TGFBR2. Mean age at death is 26.1 years, most often due to aortic dissection. We report an unusually late presentation of LDS, diag...

  7. Mutational analysis of the antagonist-binding site of the histamine H(1) receptor.

    Science.gov (United States)

    Wieland, K; Laak, A M; Smit, M J; Kühne, R; Timmerman, H; Leurs, R

    1999-10-15

    We combined in a previously derived three-dimensional model of the histamine H(1) receptor (Ter Laak, A. M., Timmerman, H., Leurs, H., Nederkoorn, P. H. J., Smit, M. J., and Donne-Op den Kelder, G. M. (1995) J. Comp. Aid. Mol. Design. 9, 319-330) a pharmacophore for the H(1) antagonist binding site (Ter Laak, A. M., Venhorst, J., Timmerman, H., and Donné-Op de Kelder, G. M. (1994) J. Med. Chem. 38, 3351-3360) with the known interacting amino acid residue Asp(116) (in transmembrane domain III) of the H(1) receptor and verified the predicted receptor-ligand interactions by site-directed mutagenesis. This resulted in the identification of the aromatic amino acids Trp(167), Phe(433), and Phe(436) in transmembrane domains IV and VI of the H(1) receptor as probable interaction points for the trans-aromatic ring of the H(1) antagonists. Subsequently, a specific interaction of carboxylate moieties of two therapeutically important, zwitterionic H(1) antagonists with Lys(200) in transmembrane domain V was predicted. A Lys(200) --> Ala mutation results in a 50- (acrivastine) to 8-fold (d-cetirizine) loss of affinity of these zwitterionic antagonists. In contrast, the affinities of structural analogs of acrivastine and cetirizine lacking the carboxylate group, triprolidine and meclozine, respectively, are unaffected by the Lys(200) --> Ala mutation. These data strongly suggest that Lys(200), unique for the H(1) receptor, acts as a specific anchor point for these "second generation" H(1) antagonists.

  8. Structural and energetic effects of A2A adenosine receptor mutations on agonist and antagonist binding.

    Directory of Open Access Journals (Sweden)

    Henrik Keränen

    Full Text Available To predict structural and energetic effects of point mutations on ligand binding is of considerable interest in biochemistry and pharmacology. This is not only useful in connection with site-directed mutagenesis experiments, but could also allow interpretation and prediction of individual responses to drug treatment. For G-protein coupled receptors systematic mutagenesis has provided the major part of functional data as structural information until recently has been very limited. For the pharmacologically important A(2A adenosine receptor, extensive site-directed mutagenesis data on agonist and antagonist binding is available and crystal structures of both types of complexes have been determined. Here, we employ a computational strategy, based on molecular dynamics free energy simulations, to rationalize and interpret available alanine-scanning experiments for both agonist and antagonist binding to this receptor. These computer simulations show excellent agreement with the experimental data and, most importantly, reveal the molecular details behind the observed effects which are often not immediately evident from the crystal structures. The work further provides a distinct validation of the computational strategy used to assess effects of point-mutations on ligand binding. It also highlights the importance of considering not only protein-ligand interactions but also those mediated by solvent water molecules, in ligand design projects.

  9. New hyperekplexia mutations provide insight into glycine receptor assembly, trafficking, and activation mechanisms

    DEFF Research Database (Denmark)

    Bode, Anna; Wood, Sian-Elin; Mullins, Jonathan G L

    2013-01-01

    Hyperekplexia is a syndrome of readily provoked startle responses, alongside episodic and generalized hypertonia, that presents within the first month of life. Inhibitory glycine receptors are pentameric ligand-gated ion channels with a definitive and clinically well stratified linkage...... a structural mechanism for channel activation. Receptors incorporating p.P230S (which is heterozygous with p.R65W) desensitized much faster than wild type receptors and represent a new TM1 site capable of modulating desensitization. The recessive mutations p.R72C, p.R218W, p.L291P, p.D388A, and p.E375X...... precluded cell surface expression unless co-expressed with α1 wild type subunits. The recessive p.E375X mutation resulted in subunit truncation upstream of the TM4 domain. Surprisingly, on the basis of three independent assays, we were able to infer that p.E375X truncated subunits are incorporated...

  10. Thyrotropin receptor mutations and thyroid hyperfunctioning adenomas ten years after their first discovery: unresolved questions.

    Science.gov (United States)

    Arturi, F; Scarpelli, D; Coco, A; Sacco, R; Bruno, R; Filetti, S; Russo, D

    2003-04-01

    Ten years after the first description of activating mutations in the thyroid stimulating hormone receptor (TSHR) gene in sporadic autonomous hyperfunctioning thyroid adenomas, there is general agreement in assigning a major pathogenic role of this genetic abnormality, acting via the constitutive activation of the cAMP pathway, in both the growth and functional characteristic of these tumours. From the beginning, however, the pathophysiological and clinical relevance of somatic TSHR mutations has been debated and some arguments still exist against a fully causative role of these mutations and the practical value of detecting these mutations for the diagnosis, treatment and prognosis of thyroid hot nodules. Some major issues will be examined herein, including (a) the frequency of TSHR alterations in various reports showing that the genetic abnormality underlying the pathogenesis of a substantial subset of thyroid tumours has yet to be identified; (b) the limitations of the present experimental models, which suggest greater caution in the interpretation of in vitro results; (c) the still unresolved question of absence of genotype-phenotype correlation. Clarification of these issues may hopefully provide new and useful tools for improving the clinical management of this disease.

  11. Novel skeletal muscle ryanodine receptor mutation in a large Brazilian family with malignant hyperthermia.

    Science.gov (United States)

    McWilliams, S; Nelson, T; Sudo, R T; Zapata-Sudo, G; Batti, M; Sambuughin, N

    2002-07-01

    Malignant hyperthermia (MH) is an autosomal dominant disorder that predisposes susceptible individuals to a potentially life-threatening crisis when exposed to commonly used anesthetics. Mutations in the skeletal muscle calcium release channel, ryanodine receptor (RYR1) are associated with MH in over 50% of affected families. Linkage analysis of the RYR1 gene region at 19q13 was performed in a large Brazilian family and a distinct disease co-segregating haplotype was revealed in the majority of members with diagnosis of MH. Subsequent sequencing of RYR1 mutational hot spots revealed a nucleotide substitution of C to T at position 7062, causing a novel amino acid change from Arg2355 to Cys associated with MH in the family. Haplotype analysis of the RYR1 gene area at 19q13 in the family with multiple MH members is an important tool in identification of genetic cause underlying this disease.

  12. Mutations in the coding regions of the hepatocyte nuclear factor 4 alpha in Iranian families with maturity onset diabetes of the young

    Directory of Open Access Journals (Sweden)

    Tavakolafshari Jalil

    2009-12-01

    Full Text Available Abstract Hepatocyte nuclear factor 4α (HNF4α is a nuclear receptor involved in glucose homeostasis and is required for normal β cell function. Mutations in the HNF4α gene are associated with maturity onset diabetes of the young type 1 (MODY1. The aim of the present study was to determine the prevalence and nature of mutations in HNF4α gene in Iranian patients with a clinical diagnosis of MODY and their family members. Twelve families including 30 patients with clinically MODY diagnosis and 21 members of their family were examined using PCR-RFLP method and in case of mutation confirmed by sequencing techniques. Fifty age and sex matched subjects with normal fasting blood sugar (FBS and Glucose tolerance test (GTT were constituted the control group and investigated in the similar pattern. Single mutation of V255M in the HNF4α gene was detected. This known mutation was found in 8 of 30 patients and 3 of 21 individuals in relatives. Fifty healthy control subjects did not show any mutation. Here, it is indicated that the prevalence of HNF4α mutation among Iranian patients with clinical MODY is considerable. This mutation was present in 26.6% of our patients, but nothing was found in control group. In the family members, 3 subjects with the age of ≤25 years old carried this mutation. Therefore, holding this mutation in this range of age could be a predisposing factor for developing diabetes in future.

  13. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors.

    Directory of Open Access Journals (Sweden)

    Miguel Aste-Amézaga

    2010-02-01

    Full Text Available Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target.Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD, and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR. The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC(50 values as low as 5+/-3 nM and 0.13+/-0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR "class I" point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL. In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare "class II" or "class III" mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell

  14. An activating mutation of interferon regulatory factor 4 (IRF4) in adult T cell leukemia.

    Science.gov (United States)

    Cherian, Mathew A; Olson, Sydney; Sundaramoorthi, Hemalatha; Cates, Kitra; Cheng, Xiaogang; Harding, John; Martens, Andrew; Challen, Grant A; Tyagi, Manoj; Ratner, Lee; Rauch, Daniel

    2018-03-14

    The human T cell leukemia virus-1 (HTLV-1) oncoprotein Tax drives cell proliferation and resistance to apoptosis early in the pathogenesis of adult T-cell leukemia (ATL). Subsequently, likely as a result of specific immuno-editing, Tax expression is downregulated and functionally replaced by somatic driver mutations of the host genome. Both amplification and point mutations of interferon regulatory factor 4 (IRF4) have been previously detected in ATL, and the K59R mutation is the most common single-nucleotide variation in IRF4 and is found exclusively in ATL. Here high throughput whole-exome sequencing revealed recurrent activating genetic alterations in the T cell receptor, CD28, and NF-kB pathways. Moreover, we found that IRF4, which is transcriptionally activated downstream of these pathways, is frequently mutated in ATL. IRF4 RNA, protein, and IRF4 transcriptional targets are uniformly elevated in HTLV transformed cells and ATL cell lines, and IRF4 was bound to genomic regulatory DNA of many of these transcriptional targets in HTLV-1 transformed cell lines. We further noted that the K59R IRF4 mutant is expressed at higher levels in the nucleus than is wild-type IRF4, and is transcriptionally more active. Expression of both wild-type and the K59R mutant of IRF4 from a constitutive promoter in retrovirally transduced murine bone marrow cells increased the abundance of T lymphocytes but not myeloid cells or B lymphocytes in mice. IRF4 may represent a therapeutic target in ATL since ATL cells select for a mutant of IRF4 with higher nuclear expression and transcriptional activity, and over-expression of IRF4 induces the expansion of T lymphocytes in vivo. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Importance of sigma factor mutations in increased triclosan resistance in Salmonella Typhimurium

    DEFF Research Database (Denmark)

    Gantzhorn, Mette Rørbæk; Olsen, John Elmerdahl; Thomsen, Line Elnif

    2015-01-01

    towards the antibiotics enrofloxacin and sulphamethoxazole/trimethoprim. CONCLUSIONS: Medium level triclosan resistance could be obtained by fabI mutations in S. Typhimurium, however, high level resistance was found to require sigma factor mutations in addition to a fabI mutation. Reduced antibiotic...

  16. Screening for mutations in the androgen receptor gene (AR) causing infertility in Syrian men using real-time PCR

    International Nuclear Information System (INIS)

    Madania, A.; Ghouri, I.; Abou-Alshamat, Gh.; Issa, M.; Al-Halabi, M.

    2012-01-01

    14 known point mutations in the androgen receptor gene (AR) causing male infertility were screened by real time PCR and by DNA sequencing, in order to identify point mutations in the AR gene causing infertility in azoospermic men. We screened 110 Syrian patients suffering from non-obstructive azoospermia with no chromosomal aberrations or AZF micro deletions. We discovered a new AR mutation, del 57Leu, described for the first time as a possible cause of male infertility. Furthermore, we found two patients with the Ala474Val mutation and one patient bearing the Pro390Ser mutation. Our results indicate that these mutations are significant markers for idiopathic male infertility in the Syrian society and in Mediterranean populations in general. (author)

  17. A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans.

    Science.gov (United States)

    Miyakawa, Hitoshi; Toyota, Kenji; Hirakawa, Ikumi; Ogino, Yukiko; Miyagawa, Shinichi; Oda, Shigeto; Tatarazako, Norihisa; Miura, Toru; Colbourne, John K; Iguchi, Taisen

    2013-01-01

    Juvenile hormone is an essential regulator of major developmental and life history events in arthropods. Most of the insects use juvenile hormone III as the innate juvenile hormone ligand. By contrast, crustaceans use methyl farnesoate. Despite this difference that is tied to their deep evolutionary divergence, the process of this ligand transition is unknown. Here we show that a single amino-acid substitution in the receptor Methoprene-tolerant has an important role during evolution of the arthropod juvenile hormone pathway. Microcrustacea Daphnia pulex and D. magna share a juvenile hormone signal transduction pathway with insects, involving Methoprene-tolerant and steroid receptor coactivator proteins that form a heterodimer in response to various juvenoids. Juvenile hormone-binding pockets of the orthologous genes differ by only two amino acids, yet a single substitution within Daphnia Met enhances the receptor's responsiveness to juvenile hormone III. These results indicate that this mutation within an ancestral insect lineage contributed to the evolution of a juvenile hormone III receptor system.

  18. Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR)

    DEFF Research Database (Denmark)

    Christensen, Anders; Kiss, Katalin; Lelkaitis, Giedrius

    2017-01-01

    Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhib...... with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer....

  19. Radiotherapy and receptor of epidermal growth factor

    International Nuclear Information System (INIS)

    Deberne, M.

    2009-01-01

    The expression level of the receptor of the epidermal growth factor is in correlation with the tumor cells radiosensitivity. An overexpression of the E.G.F.R. is often present in the bronchi cancer, epidermoid carcinomas of the O.R.L. sphere, esophagus, uterine cervix, and anal duct but also in the rectum cancers and glioblastomas. At the clinical level, the E.G.F.R. expression is in correlation with an unfavourable prognosis after radiotherapy in numerous tumoral localizations. In the rectum cancers it is an independent prognosis factor found in multifactorial analysis: increase of the rate of nodes and local recurrence when the E.G.F.R. is over expressed. In the uterine cervix cancers, the survival is is negatively affected in multifactorial analysis by the E.G.F.R. membranes expression level. At the therapy level, the development of anti E.G.F.R. targeted therapies (tyrosine kinase inhibitors and monoclonal antibodies) opens a new therapy field at radio-sensitivity potentiality. The irradiation makes an activation of the E.G.F.R. way that would be partially responsible of the post irradiation tumoral repopulation. This activation leads the phosphorylation of the PI3 kinase ways and M.A.P. kinase ones, then the Akt protein one that acts an apoptotic modulator part. It has been shown that blocking the E.G.F.R. way acts on three levels: accumulation of ells in phase G1, reduction of the cell repair and increasing of apoptosis. he inhibition of post irradiation action of the E.G.F.R. signal way is a factor explaining the ionizing radiation - anti E.G.F.R. synergy. The preclinical data suggest that the E.G.F.R. blocking by the monoclonal antibodies is more important than the use of tyrosine kinase inhibitors. A first positive randomized study with the cetuximab, published in 2006 in the epidermoid carcinomas of the O.R.L. sphere lead to its authorization on the market with the radiotherapy for this localization. The use of cetuximab in other indication with or in

  20. Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation.

    Science.gov (United States)

    Peng, Wenjie; Bouwman, Kim M; McBride, Ryan; Grant, Oliver C; Woods, Robert J; Verheije, Monique H; Paulson, James C; de Vries, Robert P

    2018-05-15

    All human influenza pandemics have originated from avian influenza viruses. Although multiple changes are needed for an avian virus to be able to transmit between humans, binding to human-type receptors is essential. Several research groups have reported mutations in H5N1 viruses that exhibit specificity for human-type receptors and promote respiratory droplet transmission between ferrets. Upon detailed analysis, we have found that these mutants exhibit significant differences in fine receptor specificity compared to human H1N1 and H3N2 and retain avian-type receptor binding. We have recently shown that human influenza viruses preferentially bind to α2-6-sialylated branched N-linked glycans, where the sialic acids on each branch can bind to receptor sites on two protomers of the same hemagglutinin (HA) trimer. In this binding mode, the glycan projects over the 190 helix at the top of the receptor-binding pocket, which in H5N1 would create a stearic clash with lysine at position 193. Thus, we hypothesized that a K193T mutation would improve binding to branched N-linked receptors. Indeed, the addition of the K193T mutation to the H5 HA of a respiratory-droplet-transmissible virus dramatically improves both binding to human trachea epithelial cells and specificity for extended α2-6-sialylated N-linked glycans recognized by human influenza viruses. IMPORTANCE Infections by avian H5N1 viruses are associated with a high mortality rate in several species, including humans. Fortunately, H5N1 viruses do not transmit between humans because they do not bind to human-type receptors. In 2012, three seminal papers have shown how these viruses can be engineered to transmit between ferrets, the human model for influenza virus infection. Receptor binding, among others, was changed, and the viruses now bind to human-type receptors. Receptor specificity was still markedly different compared to that of human influenza viruses. Here we report an additional mutation in ferret

  1. Interleukin-7 receptor-α gene mutations are not detected in adult T-cell acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Rozovski, Uri; Li, Ping; Harris, David; Ohanian, Maro; Kantarjian, Hagop; Estrov, Zeev

    2014-01-01

    Somatic mutations in cancer cell genes are classified according to their functional significance. Those that provide the malignant cells with significant advantage are collectively referred to as driver mutations and those that do not, are the passenger mutations. Accordingly, analytical criteria to distinguish driver mutations from passenger mutations have been recently suggested. Recent studies revealed mutations in interleukin-7 receptor-α (IL7R) gene in 10% of pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients and in only a few cases of pediatric B-ALL. IL7R mutations are also frequently found in patients with lung cancer, but whereas in pediatric T-ALL IL7R mutations are “drivers” (consisting of gain-of-function mutations within a narrow 50-base pair interval at exon 6 that confer cytokine-independent cell growth and promote tumor transformation), in lung cancer, mutations are substitution mutations randomly distributed across the gene and are probably only “passenger” events. Because the treatment response of adult T-ALL is significantly poorer than that of childhood T-ALL and because exon 6 IL7R mutations play a role in the pathogenesis of childhood T-ALL, we sought to determine how the pattern of IL7R mutations varies between adult and childhood T-ALL. To that end, we sequenced the 50-base pair interval in exon 6 of the IL7R of DNA obtained from bone marrow samples of 35 randomly selected adult patients with T-ALL. Our analysis revealed that none of these 35 samples carried an IL7R mutation in exon 6. Whether differences in the genetic makeup of adult and childhood T-ALL explain the differential response to therapy remains to be determined

  2. A case of pseudohypoaldosteronism type 1 with a mutation in the mineralocorticoid receptor gene

    Directory of Open Access Journals (Sweden)

    Se Eun Lee

    2011-02-01

    Full Text Available Pseudohypoaldosteronism type 1 (PHA1 is a rare form of mineralocorticoid resistance characterized in newborns by salt wasting with dehydration, hyperkalemia and failure to thrive. This disease is heterogeneous in etiology and includes autosomal dominant PHA1 owing to mutations of the NR3C2 gene encoding the mineralocorticoid receptor, autosomal recessive PHA1 due to mutations of the epithelial sodium channel (ENaC gene, and secondary PHA1 associated with urinary tract diseases. Amongst these diseases, autosomal dominant PHA1 shows has manifestations restricted to renal tubules including a mild salt loss during infancy and that shows a gradual improvement with advancing age. Here, we report a neonatal case of PHA1 with a NR3C2 gene mutation (a heterozygous c.2146_2147insG in exon 5, in which the patient showed failure to thrive, hyponatremia, hyperkalemia, and elevated plasma renin and aldosterone levels. This is the first case of pseudohypoaldosteronism type 1 confirmed by genetic analysis in Korea.

  3. A Molecular Modeling Study of the Hydroxyflutamide Resistance Mechanism Induced by Androgen Receptor Mutations

    Directory of Open Access Journals (Sweden)

    Hong-Li Liu

    2017-08-01

    Full Text Available Hydroxyflutamide (HF, an active metabolite of the first generation antiandrogen flutamide, was used in clinic to treat prostate cancer targeting androgen receptor (AR. However, a drug resistance problem appears after about one year’s treatment. AR T877A is the first mutation that was found to cause a resistance problem. Then W741C_T877A and F876L_T877A mutations were also reported to cause resistance to HF, while W741C and F876L single mutations cannot. In this study, molecular dynamics (MD simulations combined with the molecular mechanics generalized Born surface area (MM-GBSA method have been carried out to analyze the interaction mechanism between HF and wild-type (WT/mutant ARs. The obtained results indicate that AR helix 12 (H12 plays a pivotal role in the resistance of HF. It can affect the coactivator binding site at the activation function 2 domain (AF2, surrounded by H3, H4, and H12. When H12 closes to the AR ligand-binding domain (LBD like a lid, the coactivator binding site can be formed to promote transcription. However, once H12 is opened to expose LBD, the coactivator binding site will be distorted, leading to invalid transcription. Moreover, per-residue free energy decomposition analyses indicate that N705, T877, and M895 are vital residues in the agonist/antagonist mechanism of HF.

  4. Two novel mutations in the sixth transmembrane segment of the thyrotropin receptor gene causing hyperfunctioning thyroid nodules.

    Science.gov (United States)

    Gozu, Hulya; Avsar, Melike; Bircan, Rifat; Claus, Maren; Sahin, Serap; Sezgin, Ozlem; Deyneli, Oguzhan; Paschke, Ralf; Cirakoglu, Beyazit; Akalin, Sema

    2005-04-01

    Autonomously functioning thyroid nodules (AFTNs) can present as hyperfunctioning adenomas or toxic multinodular goiters. In the last decade, a large number of activating mutations have been identified in the thyrotropin receptor (TSHR) gene in autonomously functioning thyroid nodules. Most have been situated close to, or within the sixth transmembrane segment and third intracellular loop of the TSHR where the receptor interacts with the Gs protein. In this study we describe two novel mutations in the sixth transmembrane segment of the TSHR causing hyperfunctioning thyroid nodules. Genomic DNAs were isolated from four hyperfunctioning thyroid nodules, normal tissues and peripheral leukocytes of two patients with toxic multinodular goiter. After amplifying the related regions, TSHR and G(s)alpha genes were analyzed by single-strand conformation polymorphism (SSCP) analysis. The precise localization of the mutations was identified by automatic DNA sequence analysis. Functional studies were done by site-directed mutagenesis and transfection of a mutant construct into COS-7 cells. We identified two novel TSHR mutations in two hyperfunctioning thyroid nodules: Phe631Val in the first patient and Iso630Met in the second patient. Both mutant receptors display an increase in constitutive stimulation of basal cyclic adenosine monophosphate (cAMP) levels compared to the wild-type receptor. This confirms that these mutant receptors cause hyperfunctioning thyroid nodules.

  5. Mutation in the factor VII hepatocyte nuclear factor 4α-binding site contributes to factor VII deficiency.

    Science.gov (United States)

    Zheng, Xing-Wu; Kudaravalli, Rama; Russell, Theresa T; DiMichele, Donna M; Gibb, Constance; Russell, J Eric; Margaritis, Paris; Pollak, Eleanor S

    2011-10-01

    Severe coagulant factor VII (FVII) deficiency in postpubertal dizygotic twin males results from two point mutations in the FVII gene, a promoter region T→C transition at -60 and a His-to-Arg substitution at amino acid 348; both mutations prevent persistence of plasma functional FVII. This report documents longitudinal laboratory measurements from infancy to adulthood of FVII coagulant activity (FVII:C) in the twin FVII-deficient patients; it also details specific biochemical analyses of the -60 T→C mutation. The results revealed FVII:C levels of less than 1% in infancy that remain severely decreased through puberty and into adulthood. In-vitro analyses utilizing hepatocyte nuclear factor 4α (HNF4α) co-transfection and a chromatin immunoprecipitation assay indicate that the -60 T→C mutation severely diminishes functional interaction between the FVII promoter and transcription factor HNF4α. The importance of interaction between the FVII gene and HNF4α in normal FVII expression provides an in-vivo illustration of the regulated expression of an autosomal gene encoding a coagulation protein. The constancy of FVII:C and peripubertal patient symptomatology reported here illustrates androgen-independent expression in contrast to expression with an analogous mutation in the promoter region of the gene encoding coagulation FIX.

  6. Mody-3: novel HNF1A mutation and the utility of glucagon-like peptide (GLP)-1 receptor agonist therapy.

    Science.gov (United States)

    Docena, Maricor K; Faiman, Charles; Stanley, Christine M; Pantalone, Kevin M

    2014-02-01

    An estimated 1 to 2% of cases of diabetes mellitus have a monogenic basis; however, delayed diagnosis and misdiagnosis as type 1 and 2 diabetes are common. Correctly identifying the molecular basis of an individual's diabetes may significantly alter the management approach to both the patient and his or her relatives. We describe a case of mature onset diabetes of the young (MODY) with sufficient evidence to support the classification of a novel HNF1A (hepatocyte nuclear factor-1-α) mutation as a cause of MODY-3. A 21-year-old Caucasian female presented to our office with a diagnosis of noninsulin-dependent diabetes mellitus (NIDDM) at age 10; glycemia was initially managed with oral antidiabetic (OAD) agents and insulin detemir. The patient reported a strong family history of early-onset NIDDM in both her mother and maternal grandmother, both of whom eventually required insulin therapy to control glycemia. The patient's medical and family history were highly suggestive of maturity-onset diabetes of the young (MODY), and genetic testing was performed. Genetic screening detected a mutation p. Arg200Trp in the HNF1A gene in the patient, her mother, and maternal grandmother, suggesting a diagnosis of MODY-3. This finding resulted in a change of antidiabetic therapy in all 3 patients, including the addition of once-daily liraglutide therapy, which helped improve their glycemic control. Our case report supports the classification of the p. Arg200Trp mutation as a cause of MODY-3. The findings also suggest that glucagon-like peptide-1 (GLP-1) receptor agonist therapy may be of value in managing glycemia in patients with MODY-3.

  7. LDL receptor-GFP fusion proteins: new tools for the characterization of disease-causing mutations in the LDL receptor gene

    DEFF Research Database (Denmark)

    Holst, Henrik Uffe; Dagnæs-Hansen, Frederik; Corydon, Thomas Juhl

    2001-01-01

    . In cultured liver cells this mutation was found to inhibit the transport of LDL receptor GFP fusion protein to the cell surface, thus leading to impaired internalisation of fluorescent labelled LDL. Co-locallisation studies confirmed the retention of the mutant protein in the endoplasmic reticulum....

  8. Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types

    Directory of Open Access Journals (Sweden)

    Michael Seiler

    2018-04-01

    Full Text Available Summary: Hotspot mutations in splicing factor genes have been recently reported at high frequency in hematological malignancies, suggesting the importance of RNA splicing in cancer. We analyzed whole-exome sequencing data across 33 tumor types in The Cancer Genome Atlas (TCGA, and we identified 119 splicing factor genes with significant non-silent mutation patterns, including mutation over-representation, recurrent loss of function (tumor suppressor-like, or hotspot mutation profile (oncogene-like. Furthermore, RNA sequencing analysis revealed altered splicing events associated with selected splicing factor mutations. In addition, we were able to identify common gene pathway profiles associated with the presence of these mutations. Our analysis suggests that somatic alteration of genes involved in the RNA-splicing process is common in cancer and may represent an underappreciated hallmark of tumorigenesis. : Seiler et al. report that 119 splicing factor genes carry putative driver mutations over 33 tumor types in TCGA. The most common mutations appear to be mutually exclusive and are associated with lineage-independent altered splicing. Samples with these mutations show deregulation of cell-autonomous pathways and immune infiltration. Keywords: splicing, SF3B1, U2AF1, SRSF2, RBM10, FUBP1, cancer, mutation

  9. Characterization of a disease-causing Glu119-Lys mutation in the low-density lipoprotein receptor gene in two Danish families with heterozygous familial hypercholesterolemia

    DEFF Research Database (Denmark)

    Jensen, H K; Jensen, T G; Jensen, L G

    1994-01-01

    acid residue 119 in the third repeat of the cysteine-rich ligand binding domain of the mature LDL receptor. Disruption of LDL receptor function by the Glu119-Lys mutation was confirmed by site-directed mutagenesis and expression in COS-7 cells. By Western blotting the mutation was found to affect...

  10. Steroid hormone and epidermal growth factor receptors in meningiomas.

    Science.gov (United States)

    Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R

    1989-11-01

    A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.

  11. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells

    Science.gov (United States)

    Tan, Y; Chiow, KH; Huang, D; Wong, SH

    2010-01-01

    Background and purpose: Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. Experimental approach: We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. Key results: Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. Conclusion and implications: This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death. PMID:20233216

  12. Mutation in Parkinson disease-associated, G-protein-coupled receptor 37 (GPR37/PaelR is related to autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Eriko Fujita-Jimbo

    Full Text Available Little is known about the molecular pathogenesis of Autism spectrum disorder (ASD, a neurodevelopmental disorder. Here we identified two mutations in the G-protein-coupled receptor 37 gene (GPR37 localized on chromosome 7q31-33, called the AUTS1 region, of ASD patients; 1585-1587 ttc del (Del312F in one Japanese patient and G2324A (R558Q in one Caucasian patient. The Del312F was located in the conserved transmembrane domain, and the R558Q was located in a conserved region just distal to the last transmembrane domain. In addition, a potential ASD-related GPR37 variant, T589M, was found in 7 affected Caucasian men from five different families. Our results suggested that some alleles in GPR37 were related to the deleterious effect of ASD. GPR37 is associated with the dopamine transporter to modulate dopamine uptake, and regulates behavioral responses to dopaminergic drugs. Thus, dopaminergic neurons may be involved in the ASD. However, we also detected the Del321F mutation in the patient's unaffected father and R558Q in not only an affected brother but also an unaffected mother. The identification of unaffected parents that carried the mutated alleles suggested that the manifestation of ASD was also influenced by factors other than these mutations, including endoplasmic reticulum stress of the mutated proteins or gender. Our study will provide the new insight into the molecular pathogenesis of ASD.

  13. AZD9291 in epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer.

    Science.gov (United States)

    Stinchcombe, Thomas E

    2016-02-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in advanced EGFR mutant non-small cell lung cancer have an objective response rate (ORR) of approximately 60-70% and a median progression free-survival (PFS) of approximately 10-13 months. Studies of tumor biopsies performed after progression on EGFR TKI revealed that 50-60% of EGFR mutant NSCLC developed an EGFR exon 20 T790M mutation as a mechanism of acquired resistance. AZD9291 is a third generation irreversible EGFR TKI with activity against the activating EGFR mutation, the T790M acquired resistance mutation, and relative sparing of the wild-type EGFR. AZD9291 was investigated in a phase I trial with expansion cohorts in patients with disease progression after EGFR TKI. Patients with and without detectable T790M mutations were enrolled in the trial. The ORR in patients with centrally confirmed and without detectable T790M mutations was 61% (95% CI, 52-70%) and 21% (95% CI, 12-34%), respectively. The PFS observed in patients with centrally confirmed and without detectable T790M mutations was 9.6 months (95% CI, 8.3 to not reached) and 2.8 months (95% CI, 2.1-4.3 months), respectively. At the dose for further investigation, 80 mg daily, the rate of all grade 3-5 drug related adverse events was 11%, and the rates of grade 3 diarrhea and rash were 1% and 0%, respectively. The identification of the T790M resistance mutation and the subsequent development of an agent against the mechanism of resistance provide a template for future drug development for acquired resistance to targeted therapy.

  14. Differential effects of genistein on prostate cancer cells depend on mutational status of the androgen receptor.

    Directory of Open Access Journals (Sweden)

    Abeer M Mahmoud

    Full Text Available Blocking the androgen receptor (AR activity is the main goal of therapies for advanced prostate cancer (PCa. However, relapse with a more aggressive, hormone refractory PCa arises, which harbors restored AR activity. One mechanism of such reactivation occurs through acquisition of AR mutations that enable its activation by various steroidal and non-steroidal structures. Thus, natural and chemical compounds that contribute to inappropriate (androgen-independent activation of the AR become an area of intensive research. Here, we demonstrate that genistein, a soy phytoestrogen binds to both the wild and the Thr877Ala (T877A mutant types of AR competitively with androgen, nevertheless, it exerts a pleiotropic effect on PCa cell proliferation and AR activity depending on the mutational status of the AR. Genistein inhibited, in a dose-dependent way, cell proliferation and AR nuclear localization and expression in LAPC-4 cells that have wild AR. However, in LNCaP cells that express the T877A mutant AR, genistein induced a biphasic effect where physiological doses (0.5-5 µmol/L stimulated cell growth and increased AR expression and transcriptional activity, and higher doses induced inhibitory effects. Similar biphasic results were achieved in PC-3 cells transfected with AR mutants; T877A, W741C and H874Y. These findings suggest that genistein, at physiological concentrations, potentially act as an agonist and activate the mutant AR that can be present in advanced PCa after androgen ablation therapy.

  15. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas.

    Science.gov (United States)

    Ma, Huihui; Wang, Zhen; Hu, Lei; Zhang, Shangrong; Zhao, Chenggang; Yang, Haoran; Wang, Hongzhi; Fang, Zhiyou; Wu, Lijun; Chen, Xueran

    2018-02-19

    More than 40% of glioma patients have tumors that harbor PTEN (phosphatase and tensin homologue deleted on chromosome ten) mutations; this disease is associated with poor therapeutic resistance and outcome. Such mutations are linked to increased cell survival and growth, decreased apoptosis, and drug resistance; thus, new therapeutic strategies focusing on inhibiting glioma tumorigenesis and progression are urgently needed. Melatonin, an indolamine produced and secreted predominantly by the pineal gland, mediates a variety of physiological functions and possesses antioxidant and antitumor properties. Here, we analyzed the relationship between PTEN and the inhibitory effect of melatonin in primary human glioma cells and cultured glioma cell lines. The results showed that melatonin can inhibit glioma cell growth both in culture and in vivo. This inhibition was associated with PTEN levels, which significantly correlated with the expression level of MT1 in patients. In fact, c-fos-mediated MT1 was shown to be a key modulator of the effect of melatonin on gliomas that harbor wild type PTEN. Taken together, these data suggest that melatonin-MT1 receptor complexes represent a potential target for the treatment of glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. A novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia linked to a mutation in the human insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, Kurt; Hansen, Torben; Lajer, Maria

    2004-01-01

    a missense mutation (Arg1174Gln) in the tyrosine kinase domain of the insulin receptor gene that cosegregated with the disease phenotype (logarithm of odds [LOD] score 3.21). In conclusion, we report a novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia. The findings demonstrate...

  17. The long-term outcome of boys with partial androgen insensitivity syndrome and a mutation in the androgen receptor gene

    NARCIS (Netherlands)

    Lucas-Herald, A.; S. Bertelloni (Silvano); A. Juul (Anders); J. Bryce (Jillian); Jiang, J.; M. Rodie (Martina); R. Sinnott (Richard); Boroujerdi, M.; Lindhardt Johansen, M.; O. Hiort (Olaf); P-M. Holterhus (Paul-Martin); M.L. Cools (Martine); Guaragna-Filho, G.; Guerra-Junior, G.; N. Weintrob (Naomi); S.E. Hannema (Sabine); S.L.S. Drop (Stenvert); T. Guran (Tulay); F. Darendeliler (Feyza); A. Nordenström (Anna); I.A. Hughes (Ieuan A.); Acerini, C.; Tadokoro-Cuccaro, R.; S.F. Ahmed (Faisal)

    2016-01-01

    textabstractBackground: In boys with suspected partial androgen insensitivity syndrome (PAIS), systematic evidence that supports the long-term prognostic value of identifying a mutation in the androgen receptor gene (AR) is lacking. Objective: To assess the clinical characteristics and long-term

  18. Quantification of mutation-derived bias for alternate mating functionalities of the Saccharomyces cerevisiae Ste2p pheromone receptor.

    Science.gov (United States)

    Choudhary, Pooja; Loewen, Michele C

    2016-01-01

    Although well documented for mammalian G-protein-coupled receptors, alternate functionalities and associated alternate signalling remain to be unequivocally established for the Saccharomyces cerevisiae pheromone Ste2p receptor. Here, evidence supporting alternate functionalities for Ste2p is re-evaluated, extended and quantified. In particular, strong mating and constitutive signalling mutations, focusing on residues S254, P258 and S259 in TM6 of Ste2p, are stacked and investigated in terms of their effects on classical G-protein-mediated signal transduction associated with cell cycle arrest, and alternatively, their impact on downstream mating projection and zygote formation events. In relative dose response experiments, accounting for systemic and observational bias, mutational-derived functional differences were observed, validating the S254L-derived bias for downstream mating responses and highlighting complex relationships between TM6-mutation derived constitutive signalling and ligand-induced functionalities. Mechanistically, localization studies suggest that alterations to receptor trafficking may contribute to mutational bias, in addition to expected receptor conformational stabilization effects. Overall, these results extend previous observations and quantify the contributions of Ste2p variants to mediating cell cycle arrest versus downstream mating functionalities. © Crown copyright 2015.

  19. Mutations and binding sites of human transcription factors

    KAUST Repository

    Kamanu, Frederick Kinyua; Medvedeva, Yulia A.; Schaefer, Ulf; Jankovic, Boris R.; Archer, John A.C.; Bajic, Vladimir B.

    2012-01-01

    signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way

  20. Novel germline mutation (Leu512Met) in the thyrotropin receptor gene (TSHR) leading to sporadic non-autoimmune hyperthyroidism.

    Science.gov (United States)

    Roberts, Stephanie A; Moon, Jennifer E; Dauber, Andrew; Smith, Jessica R

    2017-03-01

    Primary nonautoimmune hyperthyroidism is a rare cause of neonatal hyperthyroidism. This results from an activating mutation in the thyrotropin-receptor (TSHR). It can be inherited in an autosomal dominant manner or occur sporadically as a de novo mutation. Affected individuals display a wide phenotype from severe neonatal to mild subclinical hyperthyroidism. We describe a 6-month-old boy with a de novo mutation in the TSHR gene who presented with accelerated growth, enlarging head circumference, tremor and thyrotoxicosis. Genomic DNA from the patient's and parents' peripheral blood leukocytes was extracted. Exons 9 and 10 of the TSHR gene were amplified by PCR and sequenced. Sequencing exon 10 of the TSHR gene revealed a novel heterozygous missense mutation substituting cytosine to adenine at nucleotide position 1534 in the patient's peripheral blood leukocytes. This leads to a substitution of leucine to methionine at amino acid position 512. The mutation was absent in the parents. In silico modeling by PolyPhen-2 and SIFT predicted the mutation to be deleterious. The p.Leu512Met mutation (c.1534C>A) of the TSHR gene has not been previously described in germline or somatic mutations. This case presentation highlights the possibility of mild thyrotoxicosis in affected individuals and contributes to the understanding of sporadic non-autoimmune primary hyperthyroidism.

  1. Novel germline mutation (Leu512Met) in the thyrotropin receptor gene (TSHR) leading to sporadic non-autoimmune hyperthyroidism

    Science.gov (United States)

    Roberts, Stephanie A.; Moon, Jennifer E.; Dauber, Andrew; Smith, Jessica R.

    2018-01-01

    Background Primary nonautoimmune hyperthyroidism is a rare cause of neonatal hyperthyroidism. This results from an activating mutation in the thyrotropin-receptor (TSHR). It can be inherited in an autosomal dominant manner or occur sporadically as a de novo mutation. Affected individuals display a wide phenotype from severe neonatal to mild subclinical hyperthyroidism. We describe a 6-month-old boy with a de novo mutation in the TSHR gene who presented with accelerated growth, enlarging head circumference, tremor and thyrotoxicosis. Methods Genomic DNA from the patient’s and parents’ peripheral blood leukocytes was extracted. Exons 9 and 10 of the TSHR gene were amplified by PCR and sequenced. Results Sequencing exon 10 of the TSHR gene revealed a novel heterozygous missense mutation substituting cytosine to adenine at nucleotide position 1534 in the patient’s peripheral blood leukocytes. This leads to a substitution of leucine to methionine at amino acid position 512. The mutation was absent in the parents. In silico modeling by PolyPhen-2 and SIFT predicted the mutation to be deleterious. Conclusions The p.Leu512Met mutation (c.l534C>A) of the TSHR gene has not been previously described in germline or somatic mutations. This case presentation highlights the possibility of mild thyrotoxicosis in affected individuals and contributes to the understanding of sporadic non-autoimmune primary hyperthyroidism. PMID:28195550

  2. Signal transduction by the platelet-derived growth factor receptor

    International Nuclear Information System (INIS)

    Williams, L.T.; Escobedo, J.A.; Keating, M.T.; Coughlin, S.R.

    1988-01-01

    The mitogenic effects of platelet-derived growth factor (PDGF) are mediated by the PDGF receptor. The mouse PDGF receptor was recently purified on the basis of its ability to become tyrosine phosphorylated in response to the A-B human platelet form of PDGF, and the receptor amino acid sequence was determined from a full-length cDNA clone. Both the human and mouse receptor cDNA sequences have been expressed in Chinese hamster ovary fibroblast (CHO) cells that normally lack PDGF receptors. This paper summarizes recent results using this system to study signal transduction by the PDGF receptor. Some of the findings show that the KI domain of the PDGF receptor plays an important role in the stimulation of DNA synthesis by PDGF. Surprisingly, the kinase insert region is not essential for PDGF stimulation of PtdIns turnover, pH change, increase in cellular calcium, and receptor autophosphorylation. In addition, PDGF stimulates a conformational change in the receptor

  3. Oncogenic role of fibroblast growth factor receptor 3 in tumorigenesis of urinary bladder cancer.

    Science.gov (United States)

    Pandith, Arshad A; Shah, Zafar A; Siddiqi, Mushtaq A

    2013-05-01

    Bladder cancer is the second most common genitourinary tumor and constitutes a very heterogeneous disease. Molecular and pathologic studies suggest that low-grade noninvasive and high-grade invasive urothelial cell carcinoma (UCC) arise via distinct pathways. Low-grade noninvasive UCC represent the majority of tumors at presentation. A high proportion of patients with low-grade UCC develop recurrences but usually with no progression to invasive disease. At presentation, a majority of the bladder tumors (70%-80%) are low-grade noninvasive (pTa). Several genetic changes may occur in bladder cancer, but activating mutations in the fibroblast growth factor receptor 3 (FGFR3) genes are the most common and most specific genetic abnormality in bladder cancer. Interestingly, these mutations are associated with bladder tumors of low stage and grade, which makes the FGFR3 mutation the first marker that can be used for diagnosis of noninvasive bladder tumors. Since the first report of FGFR3 involvement in bladder tumors, numerous studies have been conducted to understand its function and thereby confirm the oncogenic role of this receptor particularly in noninvasive groups. Efforts are on to exploit this receptor as a therapeutic target, which holds much promise in the treatment of bladder cancer, particularly low-grade noninvasive tumors. Further studies need to explore the potential use of FGFR3 mutations in bladder cancer diagnosis, prognosis, and in surveillance of patients with bladder cancer. This review focuses on the role of FGFR3 in bladder tumors in the backdrop of various studies published. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Hotspot mutations in KIT receptor differentially modulate its allosterically coupled conformational dynamics: impact on activation and drug sensitivity.

    Directory of Open Access Journals (Sweden)

    Isaure Chauvot de Beauchêne

    2014-07-01

    Full Text Available Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D localized in crucial regulatory segments, the juxtamembrane region (JMR and the activation (A- loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts.

  5. Novel nonsense mutation of the endothelin-B receptor gene in a family with Waardenburg-Hirschsprung disease.

    Science.gov (United States)

    Syrris, P; Carter, N D; Patton, M A

    1999-11-05

    Waardenburg syndrome (WS) comprises sensorineural hearing loss, hypopigmentation of skin and hair, and pigmentary disturbances of the irides. Four types of WS have been classified to date; in WS type IV (WS4), patients additionally have colonic aganglionosis (Hirschsprung disease, HSCR). Mutations in the endothelin-3 (EDN3), endothelin-B receptor (EDNRB), and Sox10 genes have been identified as causative for WS type IV. We screened a family with a combined WS-HSCR phenotype for mutations in the EDNRB locus using standard DNA mutation analysis and sequencing techniques. We have identified a novel nonsense mutation at codon 253 (CGA-->TGA, Arg-->STOP). This mutation leads to a premature end of the translation of EDNRB at exon 3, and it is predicted to produce a truncated and nonfunctional endothelin-B receptor. All affected relatives were heterozygous for the Arg(253)-->STOP mutation, whereas it was not observed in over 50 unrelated individuals used as controls. These data confirm the role of EDNRB in the cause of the Waardenburg-Hirschsprung syndrome and demonstrate that in WS-HSCR there is a lack of correlation between phenotype and genotype and a variable expression of disease even within the same family. Copyright 1999 Wiley-Liss, Inc.

  6. Prothrombin 20210 G: a mutation and Factor V Leiden mutation in women with a history of severe preeclampsia and (H)ELLP syndrome

    NARCIS (Netherlands)

    van Pampus, M. G.; Wolf, H.; Koopman, M. M.; van den Ende, A.; Buller, H. R.; Reitsma, P. H.

    2001-01-01

    The 20210 G-A prothrombin gene variant and the Factor V Leiden mutation are mutations associated with venous thrombotic risk. The aim of our study was to assess the prevalence of these specific mutations in women with a history of preeclampsia or hemolysis elevated liver enzymes, and low platelet

  7. A missense mutation in melanocortin 1 receptor is associated with the red coat colour in donkeys.

    Science.gov (United States)

    Abitbol, M; Legrand, R; Tiret, L

    2014-12-01

    The seven donkey breeds recognised by the French studbook are characterised by few coat colours: black, bay and grey. Normand bay donkeys seldom give birth to red foals, a colour more commonly seen and recognised in American miniature donkeys. Red resembles the equine chestnut colour, previously attributed to a mutation in the melanocortin 1 receptor gene (MC1R). We used a panel of 124 donkeys to identify a recessive missense c.629T>C variant in MC1R that showed a perfect association with the red coat colour. This variant leads to a methionine to threonine substitution at position 210 in the protein. We showed that methionine 210 is highly conserved among vertebrate melanocortin receptors. Previous in silico and in vitro analyses predicted this residue to lie within a functional site. Our in vivo results emphasised the pivotal role played by this residue, the alteration of which yielded a phenotype fully compatible with a loss of function of MC1R. We thus propose to name the c.629T>C allele in donkeys the e allele, which further enlarges the panel of recessive MC1R loss-of-function alleles described in animals and humans. © 2014 Stichting International Foundation for Animal Genetics.

  8. Screening of the transcriptional regulatory regions of vascular endothelial growth factor receptor 2 (VEGFR2 in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Hartley Judith

    2007-04-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF has neurotrophic activity which is mediated by its main agonist receptor, VEGFR2. Dysregulation of VEGF causes motor neurone degeneration in a mouse model of amyotrophic lateral sclerosis (ALS, and expression of VEGFR2 is reduced in motor neurones and spinal cord of patients with ALS. Methods We have screened the promoter region and 4 exonic regions of functional significance of the VEGFR2 gene in a UK population of patients with ALS, for mutations and polymorphisms that may affect expression or function of this VEGF receptor. Results No mutations were identified in the VEGFR2 gene. We found no association between polymorphisms in the regulatory regions of the VEGFR2 gene and ALS. Conclusion Mechanisms other than genetic variation may downregulate expression or function of the VEGFR2 receptor in patients with ALS.

  9. Constitutive activation of the thyroid-stimulating hormone receptor (TSHR by mutating Ile691 in the cytoplasmic tail segment.

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    Full Text Available BACKGROUND: Autosomal dominant non-autoimmune hyperthyroidism (ADNAH is a rare genetic disorder of the endocrine system. Molecular genetic studies in ADNAH have revealed heterozygous germline mutations in the TSHR. To data, mutations leading to an increase in the constitutive activation of the TSHR have been described in the transmembrane segments, exoloops and cytoplasmic loop of TSHR. These mutations result in constitutive activation of the G(αs/cAMP or G(αq/11/inositol phosphate (IP pathways, which stimulate thyroid hormone production and thyroid proliferation. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study, we reported a new TSHR mutation located in the C-terminal domain of TSHR, which results in a substitution of the conserved Ile(691 for Phe. In this study, to address the question of whether the I691F mutated receptor could be responsible for G(αs/cAMP or G(αq/11/IP constitutive activity, wild-type and TSHR mutants were expressed in COS-7 cells to determine cAMP constitutive activity and IP formation. Compared to the cell surface with expression of the A623V mutated receptor as positive control, the I691F mutated receptor showed a slight increase of cAMP accumulation. Furthermore, I691F resulted in constitutive activation of the G(αq/11/IP signaling pathway. CONCLUSIONS/SIGNIFICANCE: Our results indicate that Ile(691 not only contributes to keeping TSHR inactive in the G(αs/cAMP pathways but also in the G(αq/11/IP cascade.

  10. Muscarinic Acetylcholine Receptor M3 Mutation Causes Urinary Bladder Disease and a Prune-Belly-like Syndrome.

    Science.gov (United States)

    Weber, Stefanie; Thiele, Holger; Mir, Sevgi; Toliat, Mohammad Reza; Sozeri, Betül; Reutter, Heiko; Draaken, Markus; Ludwig, Michael; Altmüller, Janine; Frommolt, Peter; Stuart, Helen M; Ranjzad, Parisa; Hanley, Neil A; Jennings, Rachel; Newman, William G; Wilcox, Duncan T; Thiel, Uwe; Schlingmann, Karl Peter; Beetz, Rolf; Hoyer, Peter F; Konrad, Martin; Schaefer, Franz; Nürnberg, Peter; Woolf, Adrian S

    2011-11-11

    Urinary bladder malformations associated with bladder outlet obstruction are a frequent cause of progressive renal failure in children. We here describe a muscarinic acetylcholine receptor M3 (CHRM3) (1q41-q44) homozygous frameshift mutation in familial congenital bladder malformation associated with a prune-belly-like syndrome, defining an isolated gene defect underlying this sometimes devastating disease. CHRM3 encodes the M3 muscarinic acetylcholine receptor, which we show is present in developing renal epithelia and bladder muscle. These observations may imply that M3 has a role beyond its known contribution to detrusor contractions. This Mendelian disease caused by a muscarinic acetylcholine receptor mutation strikingly phenocopies Chrm3 null mutant mice. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Novel homozygous nonsense mutations in the luteinizing hormone receptor (LHCGR) gene associated with 46,XY primary amenorrhea.

    Science.gov (United States)

    Ben Hadj Hmida, Imen; Mougou-Zerelli, Soumaya; Hadded, Anis; Dimassi, Sarra; Kammoun, Molka; Bignon-Topalovic, Joelle; Bibi, Mohamed; Saad, Ali; Bashamboo, Anu; McElreavey, Ken

    2016-07-01

    To determine the genetic cause of 46,XY primary amenorrhea in three 46,XY girls. Whole exome sequencing. University cytogenetics center. Three patients with unexplained 46,XY primary amenorrhea were included in the study. Potentially pathogenic variants were confirmed by Sanger sequencing, and familial segregation was determined where parents' DNA was available. Exome sequencing was performed in the three patients, and the data were analyzed for potentially pathogenic mutations. The functional consequences of mutations were predicted. Three novel homozygous nonsense mutations in the luteinizing hormone receptor (LHCGR) gene were identified:c.1573 C→T, p.Gln525Ter, c.1435 C→T p.Arg479Ter, and c.508 C→T, p.Gln170Ter. Inactivating mutations of the LHCGR gene may be a more common cause of 46,XY primary amenorrhea than previously considered. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Novel Drosophila receptor that binds multiple growth factors

    International Nuclear Information System (INIS)

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-01-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10 -6 to 10 -8 M. The 100 kDa protein can be affinity-labeled with these 125 I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by 125 I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors

  13. Assembly and activation of neurotrophic factor receptor complexes.

    Science.gov (United States)

    Simi, Anastasia; Ibáñez, Carlos F

    2010-04-01

    Neurotrophic factors play important roles in the development and function of both neuronal and glial elements of the central and peripheral nervous systems. Their functional diversity is in part based on their ability to interact with alternative complexes of receptor molecules. This review focuses on our current understanding of the mechanisms that govern the assembly and activation of neurotrophic factor receptor complexes. The realization that many, if not the majority, of these complexes exist in a preassembled form at the plasma membrane has forced the revision of classical ligand-mediated oligomerization models, and led to the discovery of novel mechanisms of receptor activation and generation of signaling diversity which are likely to be shared by many different classes of receptors.

  14. The phosphatidylinositol-3 kinase pathway is not essential for insulin-like growth factor I receptor-mediated clonogenic radioresistance

    International Nuclear Information System (INIS)

    Yu, Dong; Watanabe, Hiroshi; Shibuya, Hitoshi; Miura, Masahiko

    2002-01-01

    The insulin-like growth factor I receptor (IGF-IR) is known to induce clonogenic radioresistance in cells following ionizing irradiation. To explore the downstream signaling pathways, we focused on the phosphatidylinositol-3 kinase (PI3-K) pathway, which is thought to be the primary cell survival signal originating from the receptor. For this purpose, R- cells deficient in the endogenous IGF-IR were used as a recipient of the human IGF-IR with or without mutations at potential PI3-K activation sites: NPXY 950 and Y 1316 XXM. Mutats with double mutation at Y950/Y1316 exhibited not abrogated, but reduced activation of insulin receptor substance-1 (IRS-1), PI3-K, and Akt upon IGF-I stimulation. However, the mutants had the same clonogenic radioresistance as cells with wild type (WT) receptors. Neither wortmannin nor LY294002, specific inhibitors of PI3-K, affected the radioresistance of cells with WT receptors at concentrations specific for PI3-K. Collectively, these results indicate that the PI3-K pathway is not essential for IGF-IR-mediated clonogenic radioresistance. (author)

  15. Rapid characterization of disease-causing mutations in the low density lipoprotein receptor (LDL-R) gene by overexpression in COS cells

    DEFF Research Database (Denmark)

    Jensen, T G; Andresen, B S; Jensen, H K

    1996-01-01

    To characterize disease-causing mutations in the low density lipoprotein receptor (LDL-R) gene, COS cells are transfected with the mutant gene in an EBV-based expression vector and characterized by flow cytometry. Using antibodies against the LDL-receptor the amount of receptor protein on the cel...

  16. Aging Effects of Caenorhabditis elegans Ryanodine Receptor Variants Corresponding to Human Myopathic Mutations

    Directory of Open Access Journals (Sweden)

    Katie Nicoll Baines

    2017-05-01

    Full Text Available Delaying the decline in skeletal muscle function will be critical to better maintenance of an active lifestyle in old age. The skeletal muscle ryanodine receptor, the major intracellular membrane channel through which calcium ions pass to elicit muscle contraction, is central to calcium ion balance and is hypothesized to be a significant factor for age-related decline in muscle function. The nematode Caenorhabditis elegans is a key model system for the study of human aging, and strains were generated with modified C. elegans ryanodine receptors corresponding to human myopathic variants linked with malignant hyperthermia and related conditions. The altered response of these strains to pharmacological agents reflected results of human diagnostic tests for individuals with these pathogenic variants. Involvement of nerve cells in the C. elegans responses may relate to rare medical symptoms concerning the central nervous system that have been associated with ryanodine receptor variants. These single amino acid modifications in C. elegans also conferred a reduction in lifespan and an accelerated decline in muscle integrity with age, supporting the significance of ryanodine receptor function for human aging.

  17. Parvovirus Capsid Structures Required for Infection: Mutations Controlling Receptor Recognition and Protease Cleavages.

    Science.gov (United States)

    Callaway, Heather M; Feng, Kurtis H; Lee, Donald W; Allison, Andrew B; Pinard, Melissa; McKenna, Robert; Agbandje-McKenna, Mavis; Hafenstein, Susan; Parrish, Colin R

    2017-01-15

    Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in infection or transduction

  18. Parvovirus Capsid Structures Required for Infection: Mutations Controlling Receptor Recognition and Protease Cleavages

    Science.gov (United States)

    Callaway, Heather M.; Feng, Kurtis H.; Lee, Donald W.; Pinard, Melissa; McKenna, Robert; Agbandje-McKenna, Mavis; Hafenstein, Susan

    2016-01-01

    ABSTRACT Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. IMPORTANCE Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in

  19. Topical administration of adrenergic receptor pharmaceutics and nerve growth factor

    Directory of Open Access Journals (Sweden)

    Jena J Steinle

    2010-06-01

    Full Text Available Jena J SteinleDepartments of Ophthalmology and Anatomy and Neurobiology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USAAbstract: Topical application of nerve growth factor (NGF and adrenergic receptor pharmaceutics are currently in use for corneal ulcers and glaucoma. A recent interest in the neuroprotective abilities of NGF has led to a renewed interest in NGF as a therapeutic for retinal and choroidal diseases. NGF can promote cell proliferation through actions of the TrkA receptor or promote apoptosis through receptor p75NTR. This understanding has led to novel interest in the role of NGF for diseases of the posterior eye. The role of β-adrenergic receptor agonists and antagonists for treatments of glaucoma, diabetic retinopathy, and their potential mechanisms of action, are still under investigation. This review discusses the current knowledge and applications of topical NGF and adrenergic receptor drugs for ocular disease.Keywords: NGF, β-adrenergic receptor agents, α-adrenergic receptor agents, retina, cornea, glaucoma

  20. Aberrant Receptor Internalization and Enhanced FRS2-dependent Signaling Contribute to the Transforming Activity of the Fibroblast Growth Factor Receptor 2 IIIb C3 Isoform*

    Science.gov (United States)

    Cha, Jiyoung Y.; Maddileti, Savitri; Mitin, Natalia; Harden, T. Kendall; Der, Channing J.

    2009-01-01

    Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine residues present in C1, and we determined that the loss of Tyr-770 alone enhanced FGFR2 IIIb C1 transforming activity. Because Tyr-770 may compose a putative YXXL sorting motif, we hypothesized that loss of Tyr-770 in the 770YXXL motif may cause disruption of FGFR2 IIIb C1 internalization and enhance transforming activity. Surprisingly, we found that mutation of Leu-773 but not Tyr-770 impaired receptor internalization and increased receptor stability and activation. Interestingly, concurrent mutations of Tyr-770 and Leu-773 caused 2-fold higher transforming activity than caused by the Y770F or L773A single mutations, suggesting loss of Tyr and Leu residues of the 770YXXL773 motif enhances FGFR2 IIIb transforming activity by distinct mechanisms. We also determined that loss of Tyr-770 caused persistent activation of FRS2 by enhancing FRS2 binding to FGFR2 IIIb. Furthermore, we found that FRS2 binding to FGFR2 IIIb is required for increased FRS2 tyrosine phosphorylation and enhanced transforming activity by Y770F mutation. Our data support a dual mechanism where deletion of the 770YXXL773 motif promotes FGFR2 IIIb C3 transforming activity by causing aberrant receptor recycling and stability and persistent FRS2-dependent signaling. PMID:19103595

  1. Patients with Obesity Caused by Melanocortin-4 Receptor Mutations Can Be Treated with a Glucagon-like Peptide-1 Receptor Agonist

    DEFF Research Database (Denmark)

    Iepsen, Eva W; Zhang, Jinyi; Thomsen, Henrik S

    2018-01-01

    Pathogenic mutations in the appetite-regulating melanocortin-4 receptor (MC4R) represent the most common cause of monogenic obesity with limited treatment options. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) cause weight loss by reducing appetite. We assessed the effect of the GLP-1 RA...... liraglutide 3.0 mg for 16 weeks in 14 obese individuals with pathogenic MC4R mutations (BMI 37.5 ± 6.8) and 28 matched control participants without MC4R mutation (BMI 36.8 ± 4.8). Liraglutide decreased body weight by 6.8 kg ± 1.8 kg in individuals with pathogenic MC4R mutations and by 6.1 kg ± 1.2 kg...... in control participants. Total body fat, waist circumference, and fasting and postprandial glucose concentrations similarly decreased in both groups. Thus, liraglutide induced an equal, clinically significant weight loss of 6% in both groups, indicating that the appetite-reducing effect of liraglutide...

  2. Cubilin P1297L mutation associated with hereditary megaloblastic anemia 1 causes impaired recognition of intrinsic factor-vitamin B(12) by cubilin

    DEFF Research Database (Denmark)

    Kristiansen, M; Aminoff, M; Jacobsen, Christian

    2000-01-01

    Megaloblastic anemia 1 (MGA1) is an autosomal recessive disorder caused by the selective intestinal malabsorption of intrinsic factor (IF) and vitamin B(12)/cobalamin (Cbl) in complex. Most Finnish patients with MGA1 carry the disease-specific P1297L mutation (FM1) in the IF-B(12) receptor, cubilin......-IF-Cbl in cubilin-expressing epithelial cells. In conclusion, the data presented show a substantial loss in affinity of the FM1 mutant form of the IF-Cbl binding region of cubilin. This now explains the malabsorption of Cbl and Cbl-dependent anemia in MGA1 patients with the FM1 mutation. (Blood. 2000...

  3. Association of a bitter taste receptor mutation with Balkan Endemic Nephropathy (BEN

    Directory of Open Access Journals (Sweden)

    Wooding Stephen P

    2012-10-01

    Full Text Available Abstract Background Balkan Endemic Nephropathy (BEN is late-onset kidney disease thought to arise from chronic exposure to aristolochic acid, a phytotoxin that contaminates wheat supplies in rural areas of Eastern Europe. It has recently been demonstrated that humans are capable of perceiving aristolochic acid at concentrations below 40 nM as the result of high-affinity interactions with the TAS2R43 bitter taste receptor. Further, TAS2R43 harbors high-frequency loss-of-function mutations resulting in 50-fold variability in perception. This suggests that genetic variation in TAS2R43 might affect susceptibility to BEN, with individuals carrying functional forms of the receptor being protected by an ability to detect tainted foods. Methods To determine whether genetic variation in TAS2R43 predicts BEN susceptibility, we examined genotype-phenotype associations in a case–control study. A cohort of 88 affected and 99 control subjects from western Bulgaria were genotyped with respect to two key missense variants and a polymorphic whole-gene deletion of TAS2R43 (W35S, H212R, and wt/Δ, which are known to affect taste sensitivity to aristolochic acid. Tests for association between haplotypes and BEN status were then performed. Results Three major TAS2R43 haplotypes observed in previous studies (TAS2R43-W35/H212, -S35/R212 and –Δ were present at high frequencies (0.17, 0.36, and 0.47 respectively in our sample, and a significant association between genotype and BEN status was present (P = 0.020; odds ratio 1.18. However, contrary to expectation, BEN was positively associated with TAS2R43-W35/H212, a highly responsive allele previously shown to confer elevated bitter sensitivity to aristolochic acid, which should drive aversion but might also affect absorption, altering toxin activation. Conclusions Our findings are at strong odds with the prediction that carriers of functional alleles of TAS2R43 are protected from BEN by an ability to detect and

  4. Transmembrane signalling at the epidermal growth factor receptor. Positive regulation by the C-terminal phosphotyrosine residues

    DEFF Research Database (Denmark)

    Magni, M; Pandiella, A; Helin, K

    1991-01-01

    a positive role in the regulation of transmembrane signalling at the EGF receptor. The stepwise decrease in signal generation observed in single, double and triple point mutants suggest that the role of phosphotyrosine residues is not in the participation in specific amino acid sequences, but rather...... in the double and the triple mutants. In the latter mutant, expression of the EGF-receptor-activated lipolytic enzyme phospholipase C gamma was unchanged, whereas its tyrosine phosphorylation induced by the growth factor was lowered to approx. 25% of that in the controls. In all of the cell clones employed......, the accumulation of inositol phosphates induced by treatment with fetal calf serum varied only slightly, whereas the same effect induced by EGF was consistently lowered in those lines expressing mutated receptors. This decrease was moderate for those receptors missing only the distal tyrosine (point and deletion...

  5. The Dwarfs of Sindh: severe growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene.

    Science.gov (United States)

    Baumann, G; Maheshwari, H

    1997-11-01

    We report the discovery of a cluster of severe familial dwarfism in two villages in the Province of Sindh in Pakistan. Dwarfism is proportionate and occurs in members of a kindred with a high degree of consanguinity. Only the last generation is affected, with the oldest dwarf being 28 years old. The mode of inheritance is autosomal recessive. Phenotype analysis and endocrine testing revealed isolated growth hormone deficiency (GHD) as the reason for growth failure. Linkage analysis for the loci of several candidate genes yielded a high lod score for the growth hormone-releasing hormone receptor (GHRH-R) locus on chromosome 7. Amplification and sequencing of the GHRH-R gene in affected subjects demonstrated an amber nonsense mutation (GAG-->TAG; Glu50-->Stop) in exon 3. The mutation, in its homozygous form, segregated 100% with the dwarf phenotype. It predicts a truncation of the GHRH-R in its extracellular domain, which is likely to result in a severely disabled or non-existent receptor protein. Subjects who are heterozygous for the mutation show mild biochemical abnormalities in the growth hormone-releasing hormone (GHRH)--growth hormone--insulin-like growth factor axis, but have only minimal or no growth retardation. The occurrence of an offspring of two dwarfed parents indicates that the GHRH-R is not necessary for fertility in either sex. We conclude that Sindh dwarfism is caused by an inactivating mutation in the GHRH-R gene, resulting in the inability to transmit a GHRH signal and consequent severe isolated GHD.

  6. Congenital Neonatal Hyperthyroidism Caused by Germline Mutations in the TSH Receptor Gene: Case Report and Review of the Literature

    Science.gov (United States)

    Chester, Jeremy; Rotenstein, Deborah; Ringkananont, Usanee; Steuer, Guy; Carlin, Beatrice; Stewart, Lindsay; Grasberger, Helmut; Refetoff, Samuel

    2018-01-01

    Neonatal hyperthyroidism, a rare and serious disorder occurs in two forms. An autoimmune form associated with maternal Graves’ disease, resulting from transplacental passage of maternal thyroid-stimulating antibodies, and a nonautoimmune form, resulting from mutations in the stimulatory G protein or the thyrotropin receptor (TSHR) causing constitutive activation of intracellular signaling cascades. To date, 29 separate cases of thyrotoxicosis caused by germline mutations of the TSHR have been documented. These cases have expressed themselves in a range of clinical consequences. This report describes a new case of a newborn with nonautoimmune hyperthyroidism secondary to a constitutively active TSHR mutation (S281N) whose clinical course was complicated by severe respiratory compromise. Typical clinical findings in this disorder are discussed by a review of all previously published cases. PMID:18655531

  7. De novo activating epidermal growth factor mutations (EGFR) in small-cell lung cancer.

    Science.gov (United States)

    Thai, Alesha; Chia, Puey L; Russell, Prudence A; Do, Hongdo; Dobrovic, Alex; Mitchell, Paul; John, Thomas

    2017-09-01

    In Australia, mutations in epidermal growth factor mutations (EGFR) occur in 15% of patients diagnosed with non-small-cell lung cancer and are found with higher frequency in female, non-smokers of Asian ethnicity. Activating mutations in the EGFR gene are rarely described in SCLC. We present two cases of de novo EGFR mutations in patients with SCLC detected in tissue and in plasma cell free DNA, both of whom were of Asian ethnicity and never-smokers. These two cases add to the growing body of evidence suggesting that screening for EGFR mutations in SCLC should be considered in patients with specific clinical features. © 2017 Royal Australasian College of Physicians.

  8. A novel mutation in the P2Y12 receptor and a function-reducing polymorphism in protease-activated receptor 1 in a patient with chronic bleeding.

    Science.gov (United States)

    Patel, Y M; Lordkipanidzé, M; Lowe, G C; Nisar, S P; Garner, K; Stockley, J; Daly, M E; Mitchell, M; Watson, S P; Austin, S K; Mundell, S J

    2014-05-01

    The study of patients with bleeding problems is a powerful approach in determining the function and regulation of important proteins in human platelets. We have identified a patient with a chronic bleeding disorder expressing a homozygous P2RY(12) mutation, predicting an arginine to cysteine (R122C) substitution in the G-protein-coupled P2Y(12) receptor. This mutation is found within the DRY motif, which is a highly conserved region in G-protein-coupled receptors (GPCRs) that is speculated to play a critical role in regulating receptor conformational states. To determine the functional consequences of the R122C substitution for P2Y(12) function. We performed a detailed phenotypic analysis of an index case and affected family members. An analysis of the variant R122C P2Y(12) stably expressed in cells was also performed. ADP-stimulated platelet aggregation was reduced as a result of a significant impairment of P2Y(12) activity in the patient and family members. Cell surface R122C P2Y(12) expression was reduced both in cell lines and in platelets; in cell lines, this was as a consequence of agonist-independent internalization followed by subsequent receptor trafficking to lysosomes. Strikingly, members of this family also showed reduced thrombin-induced platelet activation, owing to an intronic polymorphism in the F2R gene, which encodes protease-activated receptor 1 (PAR-1), that has been shown to be associated with reduced PAR-1 receptor activity. Our study is the first to demonstrate a patient with deficits in two stimulatory GPCR pathways that regulate platelet activity, further indicating that bleeding disorders constitute a complex trait. © 2014 International Society on Thrombosis and Haemostasis.

  9. Alterations in epidermal growth factor receptors 1 and 2 in esophageal squamous cell carcinomas

    International Nuclear Information System (INIS)

    Gonzaga, Isabela Martins; Andreollo, Nelson Adami; Simão, Tatiana Almeida de; Pinto, Luis Felipe Ribeiro; Soares-Lima, Sheila Coelho; Santos, Paulo Thiago Souza de; Blanco, Tania Cristina Moita; Reis, Bruno Souza Bianchi de; Quintella, Danielle Carvalho; Oliveira, Ivanir Martins de; Faria, Paulo Antonio Silvestre de; Kruel, Cleber Dario Pinto

    2012-01-01

    Esophageal squamous cell carcinoma (ESCC) shows a 5-year survival rate below 10%, demonstrating the urgency in improving its treatment. Alterations in epidermal growth factor receptors are closely related to malignancy transformation in a number of tumors and recent successful targeted therapies have been directed to these molecules. Therefore, in this study, we analyzed the expression of EGFR and HER2 and evaluated EGFR mutation profile as well as the presence of mutations in hotspots of KRAS and BRAF in ESCC patients. We performed RT-qPCR, immunohistochemistry and Fluorescent in situ hybridization to determine EGFR and HER2 expression in ESCC patients, and direct sequencing and PCR-RFLP for mutations and polymorphism analysis. Our results showed an increased EGFR mRNA expression in tumors compared to surrounding tissue (p <0.05), with 11% of the cases presenting at least a four-fold difference between tumor and paired adjacent mucosa. EGFR protein overexpression was present only in 4% of the cases. The median expression of HER2 mRNA was not different between tumors and adjacent mucosa. Still, 7% of the tumors presented at least a 25-fold higher expression of this gene when compared to its paired counterpart. Immunohistochemical analysis revealed that 21% of the tumors were positive for HER2 (scores 2+ and 3+), although only 3+ tumors presented amplification of this gene. Mutation analysis for EGFR (exons 18-21), KRAS (codons 12 and 13) and BRAF (V600E) showed no mutations in any of the hotspots of these genes in almost 100 patients analyzed. EGFR presented synonymous polymorphisms at codon 836 (C>T) in 2.1% of the patients, and at codon 787 (G>A) in 79.2% of the cases. This last polymorphism was also evaluated in 304 healthy controls, which presented a similar frequency (73.7%) in comparison with ESCC patients. The absence of mutations of EGFR, KRAS and BRAF as well as the overexpression of EGFR and HER2 in less than 10% of the patients suggest that this

  10. Steroidogenic factor-1 (SF-1 gene mutation as a frequent cause of primary amenorrhea in 46,XY female adolescents with low testosterone concentration

    Directory of Open Access Journals (Sweden)

    Servant Nadège

    2010-03-01

    Full Text Available Abstract Background Primary amenorrhea due to 46,XY disorders of sex differentiation (DSD is a frequent reason for consultation in endocrine and gynecology clinics. Among the genetic causes of low-testosterone primary amenorrhea due to 46,XY DSD, SRY gene is reported to be frequently involved, but other genes, such as SF1 and WT1, have never been studied for their prevalence. Methods We directly sequenced SRY, SF1 and WT1 genes in 15 adolescent girls with primary amenorrhea, low testosterone concentration, and XY karyotype, to determine the prevalence of mutations. We also analyzed the LH receptor gene in patients with high LH and normal FSH concentrations. Results Among the 15 adolescents with primary amenorrhea and low testosterone concentration, we identified two new SRY mutations, five new SF1 mutations and one new LH receptor gene mutation. Our study confirms the 10-15% prevalence of SRY mutations and shows the high prevalence (33% of SF1 abnormalities in primary amenorrhea due to 46,XY DSD with low plasma testosterone concentration. Conclusions The genetic analysis of low-testosterone primary amenorrhea is complex as several factors may be involved. This work underlines the need to systematically analyze the SF1 sequence in girls with primary amenorrhea due to 46,XY DSD and low testosterone, as well as in newborns with 46,XY DSD.

  11. Analysis of mutations in the entire coding sequence of the factor VIII gene

    Energy Technology Data Exchange (ETDEWEB)

    Bidichadani, S.I.; Lanyon, W.G.; Connor, J.M. [Glascow Univ. (United Kingdom)] [and others

    1994-09-01

    Hemophilia A is a common X-linked recessive disorder of bleeding caused by deleterious mutations in the gene for clotting factor VIII. The large size of the factor VIII gene, the high frequency of de novo mutations and its tissue-specific expression complicate the detection of mutations. We have used a combination of RT-PCR of ectopic factor VIII transcripts and genomic DNA-PCRs to amplify the entire essential sequence of the factor VIII gene. This is followed by chemical mismatch cleavage analysis and direct sequencing in order to facilitate a comprehensive search for mutations. We describe the characterization of nine potentially pathogenic mutations, six of which are novel. In each case, a correlation of the genotype with the observed phenotype is presented. In order to evaluate the pathogenicity of the five missense mutations detected, we have analyzed them for evolutionary sequence conservation and for their involvement of sequence motifs catalogued in the PROSITE database of protein sites and patterns.

  12. The Association of Factor V Leiden Mutation with Recurrent Pregnancy Loss

    International Nuclear Information System (INIS)

    Kashif, M.; Saeed, A.

    2015-01-01

    Objective: To determine the association of factor V Leiden mutation with recurrent pregnancy loss. Methods: The case-control study was conducted at the Department of Haematology, Armed Forces Institute of Pathology, Rawalpindi, Pakistan, from January to June 2012, and comprised women of 18 to 45 years of age who had a history of recurrent pregnancy loss, and controls with no history of pregnancy loss. All the subjects belonged to Punjabi ethnic group. Three ml blood was taken from cases and controls and deoxyribonucleic acid was extracted. In order to identify Factor V Leiden mutation, polymerase chain reaction method was utilised combined with the amplification refractory mutation system. Data was analysed using SPSS 17. Results: Of the 112 subjects, 56(50 percent) were in each of the two groups. The presence of factor V Leiden mutation among the cases was 3(5.4 percent) while it was absent among the controls. The mutation was significantly associated with recurrent pregnancy loss (p=0.017).Recurrent pregnancy loss was higher in cases than controls (p=0.001). Conclusion: Factor V Leiden mutation was significantly associated with recurrent pregnancy loss. It should be considered one of the causes of recurrent pregnancy loss. (author)

  13. Missense and nonsense mutations in melanocortin 1 receptor (MC1R gene of different goat breeds: association with red and black coat colour phenotypes but with unexpected evidences

    Directory of Open Access Journals (Sweden)

    Davoli Roberta

    2009-08-01

    Full Text Available Abstract Background Agouti and Extension loci control the relative amount of eumelanin and pheomelanin production in melanocytes that, in turn, affects pigmentation of skin and hair. The Extension locus encodes the melanocortin 1 receptor (MC1R whose permanent activation, caused by functional mutations, results in black coat colour, whereas other inactivating mutations cause red coat colour in different mammals. Results The whole coding region of the MC1R gene was sequenced in goats of six different breeds showing different coat colours (Girgentana, white cream with usually small red spots in the face; Maltese, white with black cheeks and ears; Derivata di Siria, solid red; Murciano-Granadina, solid black or solid brown; Camosciata delle Alpi, brown with black stripes; Saanen, white; F1 goats and the parental animals. Five single nucleotide polymorphisms (SNPs were identified: one nonsense mutation (p.Q225X, three missense mutations (p.A81V, p.F250V, and p.C267W, and one silent mutation. The stop codon at position 225 should cause the production of a shorter MC1R protein whose functionality may be altered. These SNPs were investigated in a larger sample of animals belonging to the six breeds. The Girgentana breed was almost fixed for the p.225X allele. However, there was not complete association between the presence of red spots in the face and the presence of this allele in homozygous condition. The same allele was identified in the Derivata di Siria breed. However, its frequency was only 33%, despite the fact that these animals are completely red. The p.267W allele was present in all Murciano-Granadina black goats, whereas it was never identified in the brown ones. Moreover, the same substitution was present in almost all Maltese goats providing evidence of association between this mutation and black coat colour. Conclusion According to the results obtained in the investigated goat breeds, MC1R mutations may determine eumelanic and pheomelanic

  14. Epidermal Growth Factor Receptor targeting in non-small cell lung cancer: revisiting different strategies against the same target.

    Science.gov (United States)

    Castañón, Eduardo; Martín, Patricia; Rolfo, Christian; Fusco, Juan P; Ceniceros, Lucía; Legaspi, Jairo; Santisteban, Marta; Gil-Bazo, Ignacio

    2014-01-01

    Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the paradigm of treatment in non-small cell lung cancer (NSCLC). The molecular biology study of EGFR has led to clinical trials that select patients more accurately, regarding the presence of EGFR activating mutations. Nonetheless, a lack of response or a temporary condition of the response has been detected in patients on EGFR TKIs. This has urged to study potential resistance mechanisms underneath. The most important ones are the presence of secondary mutations in EGFR, such as T790M, or the overexpression of mesenchymal-epithelial transition factor (MET) that may explain why patients who initially respond to EGFR TKIs, may ultimately become refractory. Several approaches have been taken and new drugs both targeting EGFR resistance-mutation or MET are currently being developed. Here we review and update the EGFR biological pathway as well as the clinical data leading to approval of the EGFR TKIs currently in the market. New compounds under investigation targeting resistance mutations or dually targeting EGFR and other relevant receptors are also reviewed and discussed.

  15. Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.

    Science.gov (United States)

    Roskoski, Robert

    2005-11-11

    Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of

  16. A novel germline mutation in the aryl hydrocarbon receptor-interacting protein (AIP) gene in an Italian family with gigantism.

    Science.gov (United States)

    Urbani, C; Russo, D; Raggi, F; Lombardi, M; Sardella, C; Scattina, I; Lupi, I; Manetti, L; Tomisti, L; Marcocci, C; Martino, E; Bogazzi, F

    2014-10-01

    Acromegaly usually occurs as a sporadic disease, but it may be a part of familial pituitary tumor syndromes in rare cases. Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have been associated with a predisposition to familial isolated pituitary adenoma. The aim of the present study was to evaluate the AIP gene in a patient with gigantism and in her relatives. Direct sequencing of AIP gene was performed in fourteen members of the family, spanning among three generations. The index case was an 18-year-old woman with gigantism due to an invasive GH-secreting pituitary adenoma and a concomitant tall-cell variant of papillary thyroid carcinoma. A novel germline mutation in the AIP gene (c.685C>T, p.Q229X) was identified in the proband and in two members of her family, who did not present clinical features of acromegaly or other pituitary disorders. Eleven subjects had no mutation in the AIP gene. Two members of the family with clinical features of acromegaly refused either the genetic or the biochemical evaluation. The Q229X mutation was predicted to generate a truncated AIP protein, lacking the last two tetratricopeptide repeat domains and the final C-terminal α-7 helix. We identified a new AIP germline mutation predicted to produce a truncated AIP protein, lacking its biological properties due to the disruption of the C-terminus binding sites for both the chaperones and the client proteins of AIP.

  17. HPRT gene mutation frequency and the factor of influence in adult peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Zhao Jingyong; Zheng Siying; Cui Fengmei; Wang Liuyi; Lao Qinhua; Wu Hongliang

    2002-01-01

    Objective: To study the HPRT gene loci mutation frequencies and the factor of influence in peripheral blood lymphocytes of adult with ages ranging from 21-50. Methods: HPRT gene mutation frequency (GMf) were examined by the technique of multinuclear cell assay. Relation between GMf and years were fitted with a computer. Results: Relation could be described by the following equation: y = 0.7555 + 0.0440x, r = 0.9829. Smoking has influence on GMf and sex hasn't. Conclusion: HPRT gene mutation frequency increases with increasing of age. Increasing rate is 0.00440% per year

  18. Molecular genetic analysis of the calcium sensing receptor gene in patients clinically suspected to have familial hypocalciuric hypercalcemia: phenotypic variation and mutation spectrum in a Danish population

    DEFF Research Database (Denmark)

    Nissen, Peter H; Christensen, Signe E; Heickendorff, Lene

    2007-01-01

    CONTEXT: The autosomal dominantly inherited condition familial hypocalciuric hypercalcemia (FHH) is characterized by elevated plasma calcium levels, relative or absolute hypocalciuria, and normal to moderately elevated plasma PTH. The condition is difficult to distinguish clinically from primary...... hyperparathyroidism and is caused by inactivating mutations in the calcium sensing receptor (CASR) gene. OBJECTIVE: We sought to define the mutation spectrum of the CASR gene in a Danish FHH population and to establish genotype-phenotype relationships regarding the different mutations. DESIGN AND PARTICIPANTS...

  19. Identification of eight novel coagulation factor XIII subunit A mutations: implied consequences for structure and function.

    Science.gov (United States)

    Ivaskevicius, Vytautas; Biswas, Arijit; Bevans, Carville; Schroeder, Verena; Kohler, Hans Peter; Rott, Hannelore; Halimeh, Susan; Petrides, Petro E; Lenk, Harald; Krause, Manuele; Miterski, Bruno; Harbrecht, Ursula; Oldenburg, Johannes

    2010-06-01

    Severe hereditary coagulation factor XIII deficiency is a rare homozygous bleeding disorder affecting one person in every two million individuals. In contrast, heterozygous factor XIII deficiency is more common, but usually not associated with severe hemorrhage such as intracranial bleeding or hemarthrosis. In most cases, the disease is caused by F13A gene mutations. Causative mutations associated with the F13B gene are rarer. We analyzed ten index patients and three relatives for factor XIII activity using a photometric assay and sequenced their F13A and F13B genes. Additionally, structural analysis of the wild-type protein structure from a previously reported X-ray crystallographic model identified potential structural and functional effects of the missense mutations. All individuals except one were heterozygous for factor XIIIA mutations (average factor XIII activity 51%), while the remaining homozygous individual was found to have severe factor XIII deficiency (<5% of normal factor XIII activity). Eight of the 12 heterozygous patients exhibited a bleeding tendency upon provocation. The identified missense (Pro289Arg, Arg611His, Asp668Gly) and nonsense (Gly390X, Trp664X) mutations are causative for factor XIII deficiency. A Gly592Ser variant identified in three unrelated index patients, as well as in 200 healthy controls (minor allele frequency 0.005), and two further Tyr167Cys and Arg540Gln variants, represent possible candidates for rare F13A gene polymorphisms since they apparently do not have a significant influence on the structure of the factor XIIIA protein. Future in vitro expression studies of the factor XIII mutations are required to confirm their pathological mechanisms.

  20. Insulin and insulin-like growth factor receptors and responses

    International Nuclear Information System (INIS)

    Roth, R.A.; Steele-Perkins, G.; Hari, J.; Stover, C.; Pierce, S.; Turner, J.; Edman, J.C.; Rutter, W.J.

    1988-01-01

    Insulin is a member of a family of structurally related hormones with diverse physiological functions. In humans, the best-characterized members of this family include insulin, insulin-like growth factor (IGF)-I, and IGF-II. Each of these three polypeptide hormones has its own distinct receptor. The structures of each of these receptors have now been deduced from analyses of isolated cDNA clones. To study further the responses mediated through these three different receptors, the authors have been studying cells expressing the proteins encoded by these three cDNAs. The isolated cDNAs have been transfected into Chinese hamster ovary (CHO) cells, and the resulting transfected cell lines have been characterized as to the ligand-binding activities and signal-transducing activities of the expressed proteins

  1. A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, Robert P.; Tzarum, Netanel; Peng, Wenjie; Thompson, Andrew J.; Ambepitiya Wickramasinghe, Iresha N.; de la Pena, Alba T. Torrents; van Breemen, Marielle J.; Bouwman, Kim M.; Zhu, Xueyong; McBride, Ryan; Yu, Wenli; Sanders, Rogier W.; Verheije, Monique H.; Wilson, Ian A.; Paulson, James C.

    2017-07-10

    In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non-fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human-type receptor specificity could enable transmission in the human population. Despite mutations in the receptor-binding pocket of the human H6N1 isolate, it has retained avian-type (NeuAcα2-3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completely switches specificity to human-type (NeuAcα2-6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human-type receptor, stabilizing human receptor binding.

  2. A novel growth hormone receptor gene deletion mutation in a patient with primary growth hormone insensitivity syndrome (Laron syndrome).

    Science.gov (United States)

    Yamamoto, Hiroyasu; Kouhara, Haruhiko; Iida, Keiji; Chihara, Kazuo; Kasayama, Soji

    2008-04-01

    Growth hormone (GH) insensitivity syndrome (Laron syndrome) is known to be caused by genetic disorders of the GH-IGF-1 axis. Although many mutations in the GH receptor have been identified, there have been only a few reports of deletions of the GH receptor gene. A Japanese adult female patient with Laron syndrome was subjected to chromosome analysis with basic G-banding and also with a high accuracy technique. Each exon of the GH receptor gene was amplified by means of PCR. Since this patient was diagnosed with osteoporosis, the effects of alendronate on bone mineral density (BMD) were also examined. The chromosome analysis with the high accuracy technique demonstrated a large deletion of the short arm in one allele of chromosome 5 from p11 to p13.1 [46, XX, del (5) (p11-p13.1)]. PCR amplification of exons of the GH receptor gene showed that only exons 2 and 3 were amplified. Low-dose IGF-1 administration (30microg/kg body weight) failed to increase her BMD, whereas alendronate administration resulted in an increase associated with a decrease in urinary deoxypyridinoline (DPD) and serum osteocalcin concentrations. The GH receptor gene of the patient was shown to lack exons 4-10. To the best of our knowledge, this is the third case report of Laron syndrome with large GH receptor deletion. Alendronate was effective for the enhancement of BMD.

  3. Functional characteristics of three new germline mutations of the thyrotropin receptor gene causing autosomal dominant toxic thyroid hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Tonacchera, M.; Van Sande, J.; Cetani, F. [Universite Libre de Bruxelles, Brussels (Belgium)] [and others

    1996-02-01

    We report three unrelated families in which hyperthyroidism associated with thyroid hyperplasia was transmitted in an autosomal dominant fashion, in the absence of signs of autoimmunity. Exon 10 of the TSH receptor gene was directly sequenced after PCR amplification from DNA of peripheral leukocytes. In one family, a C to A transversion resulted in an S505R substitution in the third transmembrane segment; in the second, an A to T transversion caused an N650Y substitution in the sixth transmembrane segment; and in the third family, an A to G transition resulted in an N670S substitution in the seventh transmembrane segment. When expressed by transfection in COS-7 cells, each mutated receptor displayed an increase in constitutive stimulation of cAMP production; no effect on basal accumulation of inositol phosphates (IP) could be detected. In binding studies, cells transfected with wild-type of mutated receptors showed similar levels of expression, with the mutated receptors displaying similar or slightly increased affinity for bovine TSH (bTSH) binding. Cells transfected with S505R and N650Y mutants showed a similar cAMP maximal TSH-stimulated accumulation over the cells transfected with the wild type, whereas N670S transfectants showed a blunted response with an increase in EC{sub 50}. A higher IP response to 100 mU/mL bTSH over that obtained with the wild-type receptor was obtained in cells transfected with N650Y; in contrast, cells transfected with S505R showed a blunted IP production (50% less), and the N670S mutant completely lost the ability to stimulate IP accumulation in response to bTSH. The differential effects of individual mutations on stimulation by bTSH of cAMP or IP accumulation suggest that individual mutant receptors may achieve different active conformations with selective abilities to couple to G{sub s}{alpha} and to G{sub q}{alpha}. 17 refs., 8 figs.

  4. Distribution of corticotropin-releasing factor receptors in primate brain

    International Nuclear Information System (INIS)

    Millan, M.A.; Jacobowitz, D.M.; Hauger, R.L.; Catt, K.J.; Aguilera, G.

    1986-01-01

    The distribution and properties of receptors for corticotropin-releasing factor (CRF) were analyzed in the brain of cynomolgus monkeys. Binding of [ 125 I]tyrosine-labeled ovine CRF to frontal cortex and amygdala membrane-rich fractions was saturable, specific, and time- and temperature-dependent, reaching equilibrium in 30 min at 23 0 C. Scatchard analysis of the binding data indicated one class of high-affinity sites with a K/sub d/ of 1 nM and a concentration of 125 fmol/mg. As in the rat pituitary and brain, CRF receptors in monkey cerebral cortex and amygdala were coupled to adenylate cyclase. Autoradiographic analysis of specific CRF binding in brain sections revealed that the receptors were widely distributed in the cerebral cortex and limbic system. Receptor density was highest in the pars tuberalis of the pituitary and throughout the cerebral cortex, specifically in the prefrontal, frontal, orbital, cingulate, insular, and temporal areas, and in the cerebellar cortex. A low binding density was present in the superior colliculus, locus coeruleus, substantia gelatinosa, preoptic area, septal area, and bed nucleus of the stria terminalis. These data demonstrate that receptors for CRF are present within the primate brain at areas related to the central control of visceral function and behavior, suggesting that brain CRF may serve as a neurotransmitter in the coordination of endocrine and neural mechanisms involved in the response to stress

  5. HFE gene mutation is a risk factor for tissue iron accumulation in hemodialysis patients.

    Science.gov (United States)

    Turkmen, Ercan; Yildirim, Tolga; Yilmaz, Rahmi; Hazirolan, Tuncay; Eldem, Gonca; Yilmaz, Engin; Aybal Kutlugun, Aysun; Altindal, Mahmut; Altun, Bulent

    2017-07-01

    HFE gene mutations are responsible from iron overload in general population. Studies in hemodialysis patients investigated the effect of presence of HFE gene mutations on serum ferritin and transferrin saturation (TSAT) with conflicting results. However effect of HFE mutations on iron overload in hemodialysis patients was not previously extensively studied. 36 hemodialysis patients (age 51.3 ± 15.6, (18/18) male/female) and 44 healthy control subjects included in this cross sectional study. Hemoglobin, ferritin, TSAT in the preceding 2 years were recorded. Iron and erythropoietin (EPO) administered during this period were calculated. Iron accumulation in heart and liver was detected by MRI. Relationship between HFE gene mutation, hemoglobin, iron parameters and EPO doses, and tissue iron accumulation were determined. Iron overload was detected in nine (25%) patients. Hemoglobin, iron parameters, weekly EPO doses, and monthly iron doses of patients with and without iron overload were similar. There was no difference between control group and hemodialysis patients with respect to the prevalence of HFE gene mutations. Iron overload was detected in five of eight patients who had HFE gene mutations, but iron overload was present in 4 of 28 patients who had no mutations (P = 0.01). Hemoglobin, iron parameters, erythropoietin, and iron doses were similar in patients with and without gene mutations. HFE gene mutations remained the main determinant of iron overload after multivariate logistic regression analysis (P = 0.02; OR, 11.6). Serum iron parameters were not adequate to detect iron overload and HFE gene mutation was found to be an important risk factor for iron accumulation. © 2017 International Society for Hemodialysis.

  6. Platelet-derived growth factor receptors in the human central nervous system : autoradiographic distribution and receptor densities in multiple sclerosis

    NARCIS (Netherlands)

    De Keyser, J; Wilczak, N

    1997-01-01

    Platelet derived growth factor (PDGF) receptors were studied in postmortem adult human brain and cervical spinal cord using autoradiography with human recombinant I-125-PDGF-BB. PDGF-BB binds to the three different dimers of PDGF receptors (alpha alpha, alpha beta and beta beta) PDGF receptors were

  7. Characterization of the factor VIII defect in 147 patients with sporadic hemophilia A: Family studies indicate a mutation type-dependent sex ratio of mutation frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J.; Schmidt, W.; Olek, K. [Univ. of Bonn (Germany)] [and others

    1996-04-01

    The clinical manifestation of hemophilia A is caused by a wide range of different mutations. In this study the factor VIII genes of 147 severe hemophilia A patients-all exclusively from sporadic families-were screened for mutations by use of the complete panel of modern DNA techniques. The pathogenous defect could be characterized in 126 patients (85.7%). Fifty-five patients (37.4%) showed a F8A-gene inversion, 47 (32.0%) a point mutation, 14 (9.5%) a small deletion, 8 (5.4%) a large deletion, and 2 (1.4%) a small insertion. Further, four (2.7%) mutations were localized but could not be sequenced yet. No mutation could be identified in 17 patients (11.6%). Sixteen (10.9%) of the P identified mutations occurred in the B domain. Four of these were located in an adenosine nucleotide stretch at codon 1192, indicating a mutation hotspot. Somatic mosaicisms were detected in 3 (3.9%) of 76 patients` mothers, comprising 3 of 16 de novo mutations in the patients` mothers. Investigation of family relatives allowed detection of a de novo mutation in 16 of 76 two-generation and 28 of 34 three-generation families. On the basis of these data, the male:female ratio of mutation frequencies (k) was estimated as k = 3.6. By use of the quotients of mutation origin in maternal grandfather to patient`s mother or to maternal grandmother, k was directly estimated as k = 15 and k = 7.5, respectively. Considering each mutation type separately, we revealed a mutation type-specific sex ratio of mutation frequencies. Point mutations showed a 5-to-10-fold-higher and inversions a >10-fold- higher mutation rate in male germ cells, whereas deletions showed a >5-fold-higher mutation rate in female germ cells. Consequently, and in accordance with the data of other diseases like Duchenne muscular dystrophy, our results indicate that at least for X-chromosomal disorders the male:female mutation rate of a disease is determined by its proportion of the different mutation types. 68 refs., 1 fig., 5 tabs.

  8. Epidermal growth factor receptor expression in urinary bladder cancer

    Directory of Open Access Journals (Sweden)

    Dayalu S.L. Naik

    2011-01-01

    Full Text Available Objective : To evaluate the expression pattern of epidermal growth factor receptor (EGFR in urinary bladder cancer and its association with human epidermal growth factor receptor 2 (HER2, epidermal growth factor (EGF, interleukin-6 (IL-6, and high risk human papilloma virus (HPV types 16 and 18. Materials and Methods : Thirty cases of urothelial carcinoma were analyzed. EGFR, HER2, EGF, and IL-6 expressions in the tissue were evaluated by immunohistochemical staining. For HPV, DNA from tissue samples was extracted and detection of HPV was done by PCR technique. Furthermore, evaluation of different intracellular molecules associated with EGFR signaling pathways was performed by the western blot method using lysates from various cells and tissues. Results : In this study, the frequencies of immunopositivity for EGFR, HER2, EGF, and IL-6 were 23%, 60%, 47%, and 80%, respectively. No cases were positive for HPV-18, whereas HPV-16 was detected in 10% cases. Overall, expression of EGFR did not show any statistically significant association with the studied parameters. However, among male patients, a significant association was found only between EGFR and HER2. Conclusions : Overexpression of EGFR and/or HER2, two important members of the same family of growth factor receptors, was observed in a considerable proportion of cases. Precise knowledge in this subject would be helpful to formulate a rational treatment strategy in patients with urinary bladder cancer.

  9. No evidence of somatic aryl hydrocarbon receptor interacting protein mutations in sporadic endocrine neoplasia

    DEFF Research Database (Denmark)

    Raitila, A; Georgitsi, M; Karhu, A

    2007-01-01

    . Here, we have analyzed 32 pituitary adenomas and 79 other tumors of the endocrine system for somatic AIP mutations by direct sequencing. No somatic mutations were identified. However, two out of nine patients with prolactin-producing adenoma were shown to harbor a Finnish founder mutation (Q14X...... as non-secreting pituitary adenomas have been reported, most mutation-positive patients have had growth hormone-producing adenomas diagnosed at relatively young age. Pituitary adenomas are also component tumors of some familial endocrine neoplasia syndromes such as multiple endocrine neoplasia type 1...... (MEN1) and Carney complex (CNC). Genes underlying MEN1 and CNC are rarely mutated in sporadic pituitary adenomas, but more often in other lesions contributing to these two syndromes. Thus far, the occurrence of somatic AIP mutations has not been studied in endocrine tumors other than pituitary adenomas...

  10. An Alzheimer Disease-linked Rare Mutation Potentiates Netrin Receptor Uncoordinated-5C-induced Signaling That Merges with Amyloid β Precursor Protein Signaling.

    Science.gov (United States)

    Hashimoto, Yuichi; Toyama, Yuka; Kusakari, Shinya; Nawa, Mikiro; Matsuoka, Masaaki

    2016-06-03

    A missense mutation (T835M) in the uncoordinated-5C (UNC5C) netrin receptor gene increases the risk of late-onset Alzheimer disease (AD) and also the vulnerability of neurons harboring the mutation to various insults. The molecular mechanisms underlying T835M-UNC5C-induced death remain to be elucidated. In this study, we show that overexpression of wild-type UNC5C causes low-grade death, which is intensified by an AD-linked mutation T835M. An AD-linked survival factor, calmodulin-like skin protein (CLSP), and a natural ligand of UNC5C, netrin1, inhibit this death. T835M-UNC5C-induced neuronal cell death is mediated by an intracellular death-signaling cascade, consisting of death-associated protein kinase 1/protein kinase D/apoptosis signal-regulating kinase 1 (ASK1)/JNK/NADPH oxidase/caspases, which merges at ASK1 with a death-signaling cascade, mediated by amyloid β precursor protein (APP). Notably, netrin1 also binds to APP and partially inhibits the death-signaling cascade, induced by APP. These results may provide new insight into the amyloid β-independent pathomechanism of AD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Combination of hypomorphic mutations of the Drosophila homologues of aryl hydrocarbon receptor and nucleosome assembly protein family genes disrupts morphogenesis, memory and detoxification.

    Science.gov (United States)

    Kuzin, Boris A; Nikitina, Ekaterina A; Cherezov, Roman O; Vorontsova, Julia E; Slezinger, Mikhail S; Zatsepina, Olga G; Simonova, Olga B; Enikolopov, Grigori N; Savvateeva-Popova, Elena V

    2014-01-01

    Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response and long-term memory formation in Drosophila melanogaster. Oxidative stress was induced by low doses of X-ray irradiation of flies carrying hypomorphic mutation of spineless, mutation of CG5017, and their combination. To determine the sensitivity of these mutants to pharmacological modifiers of the irradiation effect, we irradiated flies growing on standard medium supplemented by radiosensitizer furazidin and radioprotector serotonin. The effects of irradiation were investigated by analyzing leg and antenna morphological structures and by using real-time PCR to measure mRNA expression levels for spineless, Cyp6g1 and Gst-theta genes. We also examined long-term memory in these mutants using conditioned courtship suppression paradigm. Our results show that the interaction of spineless and CG5017 is important for regulation of morphogenesis, long-term memory formation, and detoxification during oxidative stress. Since spineless and CG5017 are evolutionary conserved, these results must be considered when evaluating the risk of combining similar mutations in other organisms, including humans.

  12. Combination of hypomorphic mutations of the Drosophila homologues of aryl hydrocarbon receptor and nucleosome assembly protein family genes disrupts morphogenesis, memory and detoxification.

    Directory of Open Access Journals (Sweden)

    Boris A Kuzin

    Full Text Available Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response and long-term memory formation in Drosophila melanogaster. Oxidative stress was induced by low doses of X-ray irradiation of flies carrying hypomorphic mutation of spineless, mutation of CG5017, and their combination. To determine the sensitivity of these mutants to pharmacological modifiers of the irradiation effect, we irradiated flies growing on standard medium supplemented by radiosensitizer furazidin and radioprotector serotonin. The effects of irradiation were investigated by analyzing leg and antenna morphological structures and by using real-time PCR to measure mRNA expression levels for spineless, Cyp6g1 and Gst-theta genes. We also examined long-term memory in these mutants using conditioned courtship suppression paradigm. Our results show that the interaction of spineless and CG5017 is important for regulation of morphogenesis, long-term memory formation, and detoxification during oxidative stress. Since spineless and CG5017 are evolutionary conserved, these results must be considered when evaluating the risk of combining similar mutations in other organisms, including humans.

  13. Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation.

    Science.gov (United States)

    Diaz, M; Velez, J; Singh, M; Cerny, J; Flajnik, M F

    1999-05-01

    The pattern of somatic mutations of shark and frog Ig is distinct from somatic hypermutation of Ig in mammals in that there is a bias to mutate GC base pairs and a low frequency of mutations. Previous analysis of the new antigen receptor gene in nurse sharks (NAR), however, revealed no bias to mutate GC base pairs and the frequency of mutation was comparable to that of mammalian IgG. Here, we analyzed 1023 mutations in NAR and found no targeting of the mechanism to any particular nucleotide but did obtain strong evidence for a transition bias and for strand polarity. As seen for all species studied to date, the serine codon AGC/T in NAR was a mutational hotspot. The NAR mutational pattern is most similar to that of mammalian IgG and furthermore both are strikingly akin to mutations acquired during the neutral evolution of nuclear pseudogenes, suggesting that a similar mechanism is at work for both processes. In yeast, most spontaneous mutations are introduced by the translesion synthesis DNA polymerase zeta (REV3) and in various DNA repair-deficient backgrounds transitions were more often REV3-dependent than were transversions. Therefore, we propose a model of somatic hypermutation where DNA polymerase zeta is recruited to the Ig locus. An excess of DNA glycosylases in germinal center reactions may further enhance the mutation frequency by a REV3-dependent mutagenic process known as imbalanced base excision repair.

  14. Impaired peroxisome proliferator-activated receptor γ function through mutation of a conserved salt bridge (R425C) in familial partial lipodystrophy

    NARCIS (Netherlands)

    Jeninga, E.H.; van Beekum, P.O; van Dijk, A.D.J.; Hamers, N.; Bonvin, A.M.J.J.; Berger, R.; Kalkhoven, E.

    2007-01-01

    The nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ plays a key role in the regulation of glucose and lipid metabolism in adipocytes by regulating their differentiation, maintenance, and function. A heterozygous mutation in the PPARG gene, which changes an arginine residue at

  15. Somatic loss of function mutations in neurofibromin 1 and MYC associated factor X genes identified by exome-wide sequencing in a wild-type GIST case

    International Nuclear Information System (INIS)

    Belinsky, Martin G.; Rink, Lori; Cai, Kathy Q.; Capuzzi, Stephen J.; Hoang, Yen; Chien, Jeremy; Godwin, Andrew K.; Mehren, Margaret von

    2015-01-01

    Approximately 10–15 % of gastrointestinal stromal tumors (GISTs) lack gain of function mutations in the KIT and platelet-derived growth factor receptor alpha (PDGFRA) genes. An alternate mechanism of oncogenesis through loss of function of the succinate-dehydrogenase (SDH) enzyme complex has been identified for a subset of these “wild type” GISTs. Paired tumor and normal DNA from an SDH-intact wild-type GIST case was subjected to whole exome sequencing to identify the pathogenic mechanism(s) in this tumor. Selected findings were further investigated in panels of GIST tumors through Sanger DNA sequencing, quantitative real-time PCR, and immunohistochemical approaches. A hemizygous frameshift mutation (p.His2261Leufs*4), in the neurofibromin 1 (NF1) gene was identified in the patient’s GIST; however, no germline NF1 mutation was found. A somatic frameshift mutation (p.Lys54Argfs*31) in the MYC associated factor X (MAX) gene was also identified. Immunohistochemical analysis for MAX on a large panel of GISTs identified loss of MAX expression in the MAX-mutated GIST and in a subset of mainly KIT-mutated tumors. This study suggests that inactivating NF1 mutations outside the context of neurofibromatosis may be the oncogenic mechanism for a subset of sporadic GIST. In addition, loss of function mutation of the MAX gene was identified for the first time in GIST, and a broader role for MAX in GIST progression was suggested. The online version of this article (doi:10.1186/s12885-015-1872-y) contains supplementary material, which is available to authorized users

  16. Incidence and Outcome of BRCA Mutations in Unselected Patients with Triple Receptor-Negative Breast Cancer.

    LENUS (Irish Health Repository)

    Gonzalez-Angulo, Ana M

    2011-03-01

    To investigate the incidence of germline and somatic BRCA1\\/2 mutations in unselected patients with triple-negative breast cancer (TNBC) and determine the prognostic significance of carrying a mutation. Methods: DNA was obtained from 77 TNBC and normal tissues. BRCA1\\/2 exons\\/flanking regions were sequenced from tumor and patients classified as mutant or wild type (WT). Sequencing was repeated from normal tissue to identify germline and somatic mutations. Patient characteristics were compared with chi-square. Survival was estimated by Kaplan-Meier method and compared with log-rank. Cox proportional hazards models were fit to determine the independent association of mutation status with outcome.

  17. Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies.

    Science.gov (United States)

    Lee, Jin Hee; Lee, Yoonji; Ryu, HyungChul; Kang, Dong Wook; Lee, Jeewoo; Lazar, Jozsef; Pearce, Larry V; Pavlyukovets, Vladimir A; Blumberg, Peter M; Choi, Sun

    2011-04-01

    The transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel composed of four monomers with six transmembrane helices (TM1-TM6). TRPV1 is found in the central and peripheral nervous system, and it is an important therapeutic target for pain relief. We describe here the construction of a tetrameric homology model of rat TRPV1 (rTRPV1). We experimentally evaluated by mutational analysis the contribution of residues of rTRPV1 contributing to ligand binding by the prototypical TRPV1 agonists, capsaicin and resiniferatoxin (RTX). We then performed docking analysis using our homology model. The docking results with capsaicin and RTX showed that our homology model was reliable, affording good agreement with our mutation data. Additionally, the binding mode of a simplified RTX (sRTX) ligand as predicted by the modeling agreed well with those of capsaicin and RTX, accounting for the high binding affinity of the sRTX ligand for TRPV1. Through the homology modeling, docking and mutational studies, we obtained important insights into the ligand-receptor interactions at the molecular level which should prove of value in the design of novel TRPV1 ligands.

  18. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    Science.gov (United States)

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    Aberrant activation of the epidermal growth factor receptor is frequently observed in neoplasia, notably in tumors of epithelial origin. Attempts to treat such tumors with epidermal growth factor receptor antagonists resulted in remarkable success in recent studies. Little is known, however, about the efficacy of this therapy in biliary tract cancer. Protein expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 was assessed in seven human biliary tract cancer cell lines by immunoblotting. In addition, histological sections from 19 patients with extrahepatic cholangiocarcinoma were analyzed for epidermal growth factor receptor, ErbB-2 and vascular endothelial growth factor receptor-2 expression by immunohistochemistry. Moreover, we sequenced the cDNA products representing the entire epidermal growth factor receptor coding region of the seven cell lines, and searched for genomic epidermal growth factor receptor amplifications and polysomy by fluorescence in-situ hybridization. Cell growth inhibition by gefitinib erlotinib and NVP-AEE788 was studied in vitro by automated cell counting. In addition, the anti-tumoral effect of erlotinib and NVP-AEE788 was studied in a chimeric mouse model. The anti-tumoral drug mechanism in this model was assessed by MIB-1 antibody staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labelling assay, von Willebrand factor staining, and immunoblotting for p-p42/44 (p-Erk1/2, p-MAPK) and p-AKT. Immunoblotting revealed expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 in all biliary tract cancer cell lines. EGFR was detectable in six of 19 (32%) extrahepatic human cholangiocarcinoma tissue samples, ErbB-2 in 16 of 19 (84%), and vascular endothelial growth factor receptor-2 in nine of 19 (47%). Neither epidermal growth factor receptor mutations nor amplifications or polysomy were found in the seven biliary tract cancer

  19. Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B

    DEFF Research Database (Denmark)

    Stofega, M R; Herrington, J; Billestrup, Nils

    2000-01-01

    phosphorylation. Consistent with the effects on STAT5B phosphorylation, tyrosine-to-phenylalanine mutation of tyrosine 595 prolongs the duration of tyrosyl phosphorylation of GHR and JAK2. These data suggest that tyrosine 595 is a major site of interaction of GHR with SHP-2, and that GHR-bound SHP-2 negatively......Binding of GH to GH receptor (GHR) rapidly and transiently activates multiple signal transduction pathways that contribute to the growth-promoting and metabolic effects of GH. While the events that initiate GH signal transduction, such as activation of the Janus tyrosine kinase JAK2, are beginning...

  20. Topical administration of adrenergic receptor pharmaceutics and nerve growth factor

    OpenAIRE

    Steinle, Jena

    2010-01-01

    Jena J SteinleDepartments of Ophthalmology and Anatomy and Neurobiology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USAAbstract: Topical application of nerve growth factor (NGF) and adrenergic receptor pharmaceutics are currently in use for corneal ulcers and glaucoma. A recent interest in the neuroprotective abilities of NGF has led to a renewed interest in NGF as a therapeutic for retinal and choroidal diseases. NGF can promote cell proliferati...

  1. A novel missense mutation close to the charge-stabilizing system in a patient with congenital factor VII deficiency.

    Science.gov (United States)

    Jiang, Minghua; Wang, Zhaoyue; Yu, Ziqiang; Bai, Xia; Su, Jian; Cao, Lijuan; Zhang, Wei; Ruan, Changgeng

    2011-06-01

    Congenital factor VII (FVII) deficiency is a rare autosomal recessive bleeding disorder. Its clinical manifestation and mutational spectrum are highly variable. The purpose of this study was to identify and characterize the mutation causing the FVII deficiency in a Chinese patient and his family. The FVII gene was analyzed by genomic DNA sequencing, and the FVII levels in patient's plasma were measured with an enzyme-linked immunoabsorbent assay (ELISA) and one-stage prothrombin time based method. In addition, the FVII-Phe190 mutant identified in the pedigree was expressed in the HEK293 cells, and the subcellular localization experiments in the Chinese hamster ovary (CHO) cells were performed. The patient had a prolonged prothrombin time and low levels of both FVII antigen and activity, and two heterozygous mutations were identified in F7 gene (NG-009262.1): a g.15975 G>A in the splice receptor site of intron 6 and a novel g.16750 C>T in exon 8 resulting in Ser190 to Phe190 replacement. In expression experiments, the reduced antigen and activity levels of FVII-Phe190 in the culture medium were found, whereas an ELISA and Western blotting analysis of FVII revealed that mutant FVII-Phe190 was synthesized in the cells as the wild-type FVII-Ser190. And FVII-Phe190 was found in endoplasmic reticulum and Golgi apparatus. Compound heterozygous mutations in F7 gene should be responsible for the FVII deficiency in this patient. The FVII-Phe190 can normally be synthesized and transported from endoplasmic reticulum to Golgi apparatus, but degraded or inefficiently secreted.

  2. Calcium Sensing Receptor Mutations Implicated in Pancreatitis and Idiopathic Epilepsy Syndrome Disrupt an Arginine-rich Retention Motif

    Science.gov (United States)

    Stepanchick, Ann; McKenna, Jennifer; McGovern, Olivia; Huang, Ying; Breitwieser, Gerda E.

    2010-01-01

    Calcium sensing receptor (CaSR) mutations implicated in familial hypocalciuric hypercalcemia, pancreatitis and idiopathic epilepsy syndrome map to an extended arginine-rich region in the proximal carboxyl terminus. Arginine-rich motifs mediate endoplasmic reticulum retention and/or retrieval of multisubunit proteins so we asked whether these mutations, R886P, R896H or R898Q, altered CaSR targeting to the plasma membrane. Targeting was enhanced by all three mutations, and Ca2+-stimulated ERK1/2 phosphorylation was increased for R896H and R898Q. To define the role of the extended arginine-rich region in CaSR trafficking, we independently determined the contributions of R890/R891 and/or R896/K897/R898 motifs by mutation to alanine. Disruption of the motif(s) significantly increased surface expression and function relative to wt CaSR. The arginine-rich region is flanked by phosphorylation sites at S892 (protein kinase C) and S899 (protein kinase A). The phosphorylation state of S899 regulated recognition of the arginine-rich region; S899D showed increased surface localization. CaSR assembles in the endoplasmic reticulum as a covalent disulfide-linked dimer and we determined whether retention requires the presence of arginine-rich regions in both subunits. A single arginine-rich region within the dimer was sufficient to confer intracellular retention comparable to wt CaSR. We have identified an extended arginine-rich region in the proximal carboxyl terminus of CaSR (residues R890 - R898) which fosters intracellular retention of CaSR and is regulated by phosphorylation. Mutation(s) identified in chronic pancreatitis and idiopathic epilepsy syndrome therefore increase plasma membrane targeting of CaSR, likely contributing to the altered Ca2+ signaling characteristic of these diseases. PMID:20798521

  3. A genomic point mutation in the extracellular domain of the thyrotropin receptor in patients with Graves` ophthalmopathy

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, R.S.; Dutton, C.M.; Heufelder, A.E.; Sarkar, G. [Mayo Clinic/Foundation, Rochester, MN (United States)]|[Ludwig-Maximilians-Universitat, Munich (Germany)

    1994-02-01

    Orbital and pretibial fibroblasts are targets of autoimmune attack in Graves` ophthalmopathy (GO) and pretibial dermopathy (PTD). The fibroblast autoantigen involved in these peripheral manifestations of Graves` disease and the reason for the association of GO and PTD with hyperthyroidism are unknown. RNA encoding the full-length extracellular domain of the TSH receptor has been demonstrated in orbital and dermal fibroblasts from patients with GO and normal subjects, suggesting a possible antigenic link between fibroblasts and thyrocytes. RNA was isolated from cultured orbital, pretibial, and abdominal fibroblasts obtained from patients with severe GO (n = 22) and normal subjects (n = 5). RNA was reverse transcribed, and the resulting cDNA was amplified by the polymerase chain reaction, using primers spanning overlapping regions of the entire extracellular domain of the TSH receptor. Nucleotide sequence analysis showed an A for C substitution in the first position of codon 52 in 2 of the patients, both of whom had GO, PTD, and acropachy. Genomic DNA isolated from the 2 affected patients, and not from an additional 12 normal subjects, revealed the codon 52 mutation by direct sequencing and AciI restriction enzyme digestions. In conclusion, the authors have demonstrated the presence of a genomic point mutation, leading to a threonine for proline amino acid shift in the predicted peptide, in the extracellular domain of the TSH receptor in two patients with severe GO, PTD, acropachy, and high thyroid-stimulating immunoglobulin levels. RNA encoding this mutant product was demonstrated in the fibroblasts of these patients. They suggest that the TSH receptor may be an important fibroblast autoantigen in GO and PTD, and that this mutant form of the receptor may have unique immunogenic properties. 28 refs., 3 figs., 2 tabs.

  4. Enhancement of B-cell receptor signaling by a point mutation of adaptor protein 3BP2 identified in human inherited disease cherubism.

    Science.gov (United States)

    Ogi, Kazuhiro; Nakashima, Kenji; Chihara, Kazuyasu; Takeuchi, Kenji; Horiguchi, Tomoko; Fujieda, Shigeharu; Sada, Kiyonao

    2011-09-01

    Tyrosine phosphorylation of adaptor protein c-Abl-Src homology 3 (SH3) domain-binding protein-2 (3BP2, also referred to SH3BP2) positively regulates the B-cell antigen receptor (BCR)-mediated signal transduction, leading to the activation of nuclear factor of activated T cells (NFAT). Here we showed the effect of the proline to arginine substitution of 3BP2 in which is the most common mutation in patients with cherubism (P418R) on B-cell receptor signaling. Comparing to the wild type, overexpression of the mutant form of 3BP2 (3BP2-P416R, corresponding to P418R in human protein) enhanced BCR-mediated activation of NFAT. 3BP2-P416R increased the signaling complex formation with Syk, phospholipase C-γ2 (PLC-γ2), and Vav1. In contrast, 3BP2-P416R could not change the association with the negative regulator 14-3-3. Loss of the association mutant that was incapable to associate with 14-3-3 could not mimic BCR-mediated NFAT activation in Syk-deficient cells. Moreover, BCR-mediated phosphorylation of extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was not affected by P416R mutation. These results showed that P416R mutation of 3BP2 causes the gain of function in B cells by increasing the interaction with specific signaling molecules. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  5. Decreased expression of serum and microvascular vascular endothelial growth factor receptor-2 in meningococcal sepsis*.

    NARCIS (Netherlands)

    Flier, M. van der; Baerveldt, E.M.; Miedema, A.; Hartwig, N.G.; Hazelzet, J.A.; Emonts, M.; Groot, R. de; Prens, E.P.; Vught, A.J. van; Jansen, N.J.

    2013-01-01

    OBJECTIVES: To determine the skin microvessel expression of vascular endothelial growth factor receptor 2 and serum-soluble vascular endothelial growth factor receptor 2 levels in children with meningococcal sepsis. DESIGN: Observational study. SETTING: Two tertiary academic children hospital PICUs.

  6. Novel mutations of endothelin-B receptor gene in Pakistani patients with Waardenburg syndrome.

    Science.gov (United States)

    Jabeen, Raheela; Babar, Masroor Ellahi; Ahmad, Jamil; Awan, Ali Raza

    2012-01-01

    Mutations in EDNRB gene have been reported to cause Waardenburg-Shah syndrome (WS4) in humans. We investigated 17 patients with WS4 for identification of mutations in EDNRB gene using PCR and direct sequencing technique. Four genomic mutations were detected in four patients; a G to C transversion in codon 335 (S335C) in exon 5 and a transition of T to C in codon (S361L) in exon 5, a transition of A to G in codon 277 (L277L) in exon 4, a non coding transversion of T to A at -30 nucleotide position of exon 5. None of these mutations were found in controls. One of the patients harbored two novel mutations (S335C, S361L) in exon 5 and one in Intronic region (-30exon5 A>G). All of the mutations were homozygous and novel except the mutation observed in exon 4. In this study, we have identified 3 novel mutations in EDNRB gene associated with WS4 in Pakistani patients.

  7. Functional analysis of a point mutation in the ryanodine receptor of Plutella xylostella (L.) associated with resistance to chlorantraniliprole.

    Science.gov (United States)

    Guo, Lei; Wang, Yi; Zhou, Xuguo; Li, Zhenyu; Liu, Shangzhong; Pei, Liang; Gao, Xiwu

    2014-07-01

    The diamondback moth, Plutella xylostella (L.) has developed extremely high resistance to chlorantraniliprole and other diamide insecticides in the field. A glycine to glutamic acid substitution (G4946E) in the P. xylostella ryanodine receptor (PxRyR) has been found in two resistant populations collected in Thailand and Philippines and was considered associated with the diamide insecticides resistance but no experimental evidence was provided. The present study aimed to clarify the function of the reported mutation in chlorantraniliprole resistance in P. xylostella. We identified the same mutation (G4946E) in PxRyR from four field collected chlorantraniliprole resistant populations of Plutella xylostella in China. Most importantly, we found that the frequency of the G4946E mutation is significantly correlated to the chlorantraniliprole resistance ratios in P. xylostella (R(2)  = 0.82, P = 0.0003). Ligand binding assays showed that the binding affinities of the PxRyR to the chlorantraniliprole in three field resistant populations were 2.41-, 2.54- and 2.60-times lower than that in the susceptible one. For the first time we experimentally proved that the G4946E mutation in PxRyR confers resistance to chlorantraniliprole in Plutella xylostella. These findings pave the way for the complete understanding of the mechanisms of diamide insecticides resistance in insects. © 2013 Society of Chemical Industry.

  8. Thyroid Hormone Receptor α Mutation Causes a Severe and Thyroxine-Resistant Skeletal Dysplasia in Female Mice

    Science.gov (United States)

    Bassett, J. H. Duncan; Boyde, Alan; Zikmund, Tomas; Evans, Holly; Croucher, Peter I.; Zhu, Xuguang; Park, Jeong Won

    2014-01-01

    A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1PV/+ mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1PV/+ mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1PV/+ mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation. PMID:24914936

  9. An Activin Receptor IA/Activin-Like Kinase-2 (R206H Mutation in Fibrodysplasia Ossificans Progressiva

    Directory of Open Access Journals (Sweden)

    Rafael Herrera-Esparza

    2013-01-01

    Full Text Available Fibrodysplasia ossificans progressiva (FOP is an exceptionally rare genetic disease that is characterised by congenital malformations of the great toes and progressive heterotopic ossification (HO in specific anatomical areas. This disease is caused by a mutation in activin receptor IA/activin-like kinase-2 (ACVR1/ALK2. A Mexican family with one member affected by FOP was studied. The patient is a 19-year-old female who first presented with symptoms of FOP at 8 years old; she developed spontaneous and painful swelling of the right scapular area accompanied by functional limitation of movement. Mutation analysis was performed in which genomic DNA as PCR amplified using primers flanking exons 4 and 6, and PCR products were digested with Cac8I and HphI restriction enzymes. The most informative results were obtained with the exon 4 flanking primers and the Cac8I restriction enzyme, which generated a 253 bp product that carries the ACVR1 617G>A mutation, which causes an amino acid substitution of histidine for arginine at position 206 of the glycine-serine (GS domain, and its mutation results in the dysregulation of bone morphogenetic protein (BMP signalling that causes FOP.

  10. Complete remission of liver metastasis in a lung cancer patient with epidermal growth factor mutation achieved with Icotinib.

    Science.gov (United States)

    Zhu, Zhouyu; Chai, Ying

    2016-11-01

    A 65-year-old Chinese male was referred to our hospital for epidermal growth factor receptor (EGFR)-mutated advanced non-small cell lung cancer (NSCLC). Aggressive combined therapy with surgical resection of the right upper lung lesion and chemotherapy was performed. One month later, continued Icotinib treatment was used as magnetic resonance imaging revealed liver metastasis (LM). Interestingly, complete remission of the patient's LM lesions was achieved in six months. To our knowledge, this is the first report documenting a successful case of an NSCLC patient with LM treated with Icotinib after receiving a radical resection for pulmonary carcinoma. Our experience could provide a treatment strategy for patients with similar disease. © 2016 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  11. Somatic mutation load of estrogen receptor-positive breast tumors predicts overall survival: an analysis of genome sequence data.

    Science.gov (United States)

    Haricharan, Svasti; Bainbridge, Matthew N; Scheet, Paul; Brown, Powel H

    2014-07-01

    Breast cancer is one of the most commonly diagnosed cancers in women. While there are several effective therapies for breast cancer and important single gene prognostic/predictive markers, more than 40,000 women die from this disease every year. The increasing availability of large-scale genomic datasets provides opportunities for identifying factors that influence breast cancer survival in smaller, well-defined subsets. The purpose of this study was to investigate the genomic landscape of various breast cancer subtypes and its potential associations with clinical outcomes. We used statistical analysis of sequence data generated by the Cancer Genome Atlas initiative including somatic mutation load (SML) analysis, Kaplan-Meier survival curves, gene mutational frequency, and mutational enrichment evaluation to study the genomic landscape of breast cancer. We show that ER(+), but not ER(-), tumors with high SML associate with poor overall survival (HR = 2.02). Further, these high mutation load tumors are enriched for coincident mutations in both DNA damage repair and ER signature genes. While it is known that somatic mutations in specific genes affect breast cancer survival, this study is the first to identify that SML may constitute an important global signature for a subset of ER(+) tumors prone to high mortality. Moreover, although somatic mutations in individual DNA damage genes affect clinical outcome, our results indicate that coincident mutations in DNA damage response and signature ER genes may prove more informative for ER(+) breast cancer survival. Next generation sequencing may prove an essential tool for identifying pathways underlying poor outcomes and for tailoring therapeutic strategies.

  12. Novel calcium-sensing receptor cytoplasmic tail deletion mutation causing autosomal dominant hypocalcemia: molecular and clinical study.

    Science.gov (United States)

    Obermannova, Barbora; Sumnik, Zdenek; Dusatkova, Petra; Cinek, Ondrej; Grant, Michael; Lebl, Jan; Hendy, Geoffrey N

    2016-04-01

    Autosomal dominant hypocalcemia (ADH) is a rare disorder caused by activating mutations of the calcium-sensing receptor (CASR). The treatment of ADH patients with 1α-hydroxylated vitamin D derivatives can cause hypercalciuria leading to nephrocalcinosis. We studied a girl who presented with hypoparathyroidism and asymptomatic hypocalcemia at age 2.5 years. Mutations of CASR were investigated by DNA sequencing. Functional analyses of mutant and WT CASRs were done in transiently transfected human embryonic kidney (HEK293) cells. The proband and her father are heterozygous for an eight-nucleotide deletion c.2703_2710delCCTTGGAG in the CASR encoding the intracellular domain of the protein. Transient expression of CASR constructs in kidney cells in vitro suggested greater cell surface expression of the mutant receptor with a left-shifted extracellular calcium dose-response curve relative to that of the WT receptor consistent with gain of function. Initial treatment of the patient with calcitriol led to increased urinary calcium excretion. Evaluation for mosaicism in the paternal grandparents of the proband was negative. We describe a novel naturally occurring deletion mutation within the CASR that apparently arose de novo in the father of the ADH proband. Functional analysis suggests that the cytoplasmic tail of the CASR contains determinants that regulate the attenuation of signal transduction. Early molecular analysis of the CASR gene in patients with isolated idiopathic hypoparathyroidism is recommended because of its relevance to clinical outcome and treatment choice. In ADH patients, calcium supplementation and low-dose cholecalciferol avoids hypocalcemic symptoms without compromising renal function. © 2016 European Society of Endocrinology.

  13. THYROID HORMONE RECEPTOR BETA GENE MUTATION (P453A) IN A TURKISH FAMILY PRODUCING RESISTANCE TO THYROID HORMONE

    Science.gov (United States)

    Bayraktaroglu, Taner; Noel, Janet; Mukaddes, Nahit Motavalli; Refetoff, Samuel

    2018-01-01

    Two members of a Turkish family, a mother and son, had thyroid function tests suggestive of resistance to thyroid hormone (RTH). The clinical presentation was, however, different. The mother (proposita) had palpitation, weakness, tiredness, nervousness, dry mouth and was misdiagnosed as having multinodular toxic goiter which was treated with antithyroid drugs and partial thyroidectomy. Her younger son had attention deficit hyperactivity disorder and primary encopresis, but normal intellectual quotient. Both had elevated serum iodothyronine levels with nonsuppressed thyrotropin. A mutation in one allele of the thyroid hormone receptor beta gene (P453A) was identified, providing a genetic confirmation for the diagnosis of RTH. PMID:18561095

  14. DETECTION OF RECESSIVE MUTATIONS (CVM, BLAD AND RED FACTOR INHOLSTEIN BULLS IN SLOVENIA

    Directory of Open Access Journals (Sweden)

    Betka LOGAR

    2008-07-01

    Full Text Available Detection of recessive mutations that causes complex vertebral malformation (CVM and bovine leukocyte adhesion defi ciency (BLAD in Holstein cattle is especially required for bulls, which are used for artifi cial insemination (A.I.; these enable elimination of carriers from the A.I. programs and therefore prevent transmission of unwanted mutations to a large number of offspring. Some breeders are also interested in the identifi cation of carriers of recessive allele for red and white coat colour (Red factor. Here, we performed genetic tests for detection of mutations associated with CVM, BLAD and Red factor using methods previously reported or modifi ed methods. Analysis of Holstein bulls, which were recommended for A.I in Slovenia in the years 2007 and 2008, revealed four (10 % carriers of CVM, and two (5.4 % carriers of red gene, while all bulls were non-carriers of BLAD.

  15. Analysis of factors affecting the development of food crop varieties bred by mutation method in China

    International Nuclear Information System (INIS)

    Wang Zhidong; Hu Ruifa

    2002-01-01

    The research developed a production function on crop varieties developed by mutation method in order to explore factors affecting the development of new varieties. It is found that the research investment, human capital and radiation facilities were the most important factors that affected the development and cultivation area of new varieties through the mutation method. It is concluded that not all institutions involved in the breeding activities using mutation method must have radiation facilities and the national government only needed to invest in those key research institutes, which had strong research capacities. The saved research budgets can be used in the entrusting the institutes that have stronger research capacities with irradiating more breeding materials developed by the institutes that have weak research capacities, by which more opportunities to breed better varieties can be created

  16. Mutations in the thyrotropin receptor signal transduction pathway in the hyperfunctioning thyroid nodules from multinodular goiters: a study in the Turkish population.

    Science.gov (United States)

    Gozu, Hulya; Avsar, Melike; Bircan, Rifat; Sahin, Serap; Deyneli, Oguzhan; Cirakoglu, Beyazit; Akalin, Sema

    2005-10-01

    Many studies have been carried out to determine G(s) alpha and TSHR mutations in autonomously functioning thyroid nodules. Variable prevalences for somatic constitutively activating TSHR mutations in hot nodules have been reported. Moreover, the increased prevalence of toxic multinodular goiters in iodine-deficient regions is well known. In Turkey, a country with high incidence rates of goiter due to iodine deficiency, the frequency of mutations in the thyrotropin receptor signal transduction pathway has not been evaluated up to now. In the present study, a part of the genes of the TSHR, G(s)alpha and the catalytic subunit of the PKA were checked for activating mutations. Thirty-five patients who underwent thyroidectomy for multinodular goiters were examined. Genomic DNAs were extracted from 58 hyperactive nodular specimens and surrounding normal thyroid tissues. Mutation screening was done by single-strand conformational polymorphism (SSCP) analysis. In those cases where a mutation was detected, the localization of the mutation was determined by automatic DNA sequencing. No G(s)alpha or PKA mutations were detected, whereas ten mutations (17%) were identified in the TSHR gene. All mutations were somatic and heterozygotic. In conclusion, the frequency of mutations in the cAMP signal transduction pathway was found to be lower than expected in the Turkish population most likely because of the use of SSCP as a screening method and sequencing only a part of TSHR exon 10.

  17. The Effect of Reproductive Factors on Breast Cancer Presentation in Women Who Are BRCA Mutation Carrier.

    Science.gov (United States)

    Kim, Ju-Yeon; Moon, Hyeong-Gon; Kang, Young-Joon; Han, Wonshik; Noh, Woo-Chul; Jung, Yongsik; Moon, Byung-In; Kang, Eunyoung; Park, Sung-Shin; Lee, Min Hyuk; Park, Bo Young; Lee, Jong Won; Noh, Dong-Young

    2017-09-01

    Germline mutations in the BRCA1 and BRCA2 genes confer increased risks for breast cancers. However, the clinical presentation of breast cancer among women who are carriers of the BRCA1 or BRCA2 ( BRCA1/2 carriers) mutations is heterogenous. We aimed to identify the effects of the reproductive histories of women with the BRCA1/2 mutations on the clinical presentation of breast cancer. We retrospectively analyzed clinical data on women with proven BRCA1 and BRCA2 mutations who were recruited to the Korean Hereditary Breast Cancer study, from 2007 to 2014. Among the 736 women who were BRCA1/2 mutation carriers, a total of 483 women had breast cancers. Breast cancer diagnosis occurred at significantly younger ages in women who experienced menarche at ≤14 years of age, compared to those who experienced menarche at >14 years of age (37.38±7.60 and 43.30±10.11, respectively, p women with the BRCA2 mutation. The prevalence of advanced stages (stage II or III vs. stage I) of disease in parous women was higher than in nulliparous women (68.5% vs. 55.2%, p =0.043). This association was more pronounced in women with the BRCA2 mutation (hazard ratio, 2.67; p =0.014). Our results suggest that reproductive factors, such as the age of onset of menarche and the presence of parity, are associated with the clinical presentation patterns of breast cancer in BRCA1/2 mutation carriers.

  18. Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer

    International Nuclear Information System (INIS)

    Berasain, Carmen; Latasa, María Ujue; Urtasun, Raquel; Goñi, Saioa; Elizalde, María; Garcia-Irigoyen, Oihane; Azcona, María; Prieto, Jesús; Ávila, Matías A.

    2011-01-01

    Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a “signaling hub” where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment

  19. Epidermal growth factor receptor in primary human lung cancer

    International Nuclear Information System (INIS)

    Yu Xueyan; Hu Guoqiang; Tian Keli; Wang Mingyun

    1996-01-01

    Cell membranes were prepared from 12 human lung cancers for the study of the expression of epidermal growth factor receptors (EGFR). EGFR concentration was estimated by ligand binding studies using 125 I-radiolabeled EGF. The dissociation constants of the high affinity sites were identical, 1.48 nmol and 1.1 nmol in cancer and normal lung tissues, the EGFR contents were higher in lung cancer tissues (range: 2.25 to 19.39 pmol·g -1 membrane protein) than that in normal tissues from the same patients (range: 0.72 to 7.43 pmol·g -1 membrane protein). These results suggest that EGF and its receptor may play a role in the regulatory mechanisms in the control of lung cellular growth and tumor promotion

  20. Three generations of epidermal growth factor receptor tyrosine kinase inhibitors developed to revolutionize the therapy of lung cancer

    Directory of Open Access Journals (Sweden)

    Zhang H

    2016-11-01

    Full Text Available Haijun Zhang Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People’s Republic of China Abstract: Lung cancer, ~80%–85% of which is non-small-cell lung cancer (NSCLC, is the leading cause of cancer-related mortality worldwide. Sensitizing mutations in epidermal growth factor receptor (EGFR gene (EGFRm+, such as exon 19 deletions and exon 21 L858R point mutations, are the most important drivers in NSCLC patients. In this respect, small-molecule EGFR tyrosine kinase inhibitors (TKIs have been designed and developed, which launched the era of targeted, personalized and precise medicine for lung cancer. Patients with EGFRm+ could achieve good responses to the treatment with the first-generation EGFR TKIs, such as erlotinib and gefitinib. However, most patients develop acquired drug resistance mostly driven by the T790M mutation occurring within exon 20. Although the second-generation EGFR TKIs, such as afatinib, dacomitinib and neratinib, demonstrated promising activity against T790M in preclinical models, they have failed to overcome resistance in patients due to dose-limiting toxicity. Recently, the third-generation EGFR TKIs have shown to be effective against cell lines and murine models harboring T790M mutations while sparing wild-type EGFR, which represents a promising breakthrough approach in overcoming T790M-mediated resistance in NSCLC patients. This article provides a comprehensive review of the therapy revolution for NSCLC with three generations of EGFR TKIs. Keywords: lung cancer, epidermal growth factor receptor, tyrosine kinase inhibitors, T790M mutation

  1. Complement factor H deficiency and endocapillary glomerulonephritis due to paternal isodisomy and a novel factor H mutation

    DEFF Research Database (Denmark)

    Schejbel, L; Schmidt, I M; Kirchhoff, Eva Maria

    2011-01-01

    Complement factor H (CFH) is a regulator of the alternative complement activation pathway. Mutations in the CFH gene are associated with atypical hemolytic uremic syndrome, membranoproliferative glomerulonephritis type II and C3 glomerulonephritis. Here, we report a 6-month-old CFH-deficient child...

  2. Tyrosine 769 of the keratinocyte growth factor receptor is required for receptor signaling but not endocytosis

    International Nuclear Information System (INIS)

    Ceridono, Mara; Belleudi, Francesca; Ceccarelli, Simona; Torrisi, Maria Rosaria

    2005-01-01

    Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase expressed on epithelial cells which belongs to the family of fibroblast growth factor receptors (FGFRs). Following ligand binding, KGFR is rapidly autophosphorylated on specific tyrosine residues in the intracellular domain, recruits substrate proteins, and is rapidly internalized by clathrin-mediated endocytosis. The role of different autophosphorylation sites in FGFRs, and in particular the role of the tyrosine 766 in FGFR1, first identified as PLCγ binding site, has been extensively studied. We analyzed here the possible role of the tyrosine 769 in KGFR, corresponding to tyrosine 766 in FGFR1, in the regulation of KGFR signal transduction and MAPK activation as well as in the control of the endocytic process of KGFR. A mutant KGFR in which tyrosine 769 was substituted by phenylalanine was generated and transfected in NIH3T3 and HeLa cells. Our results indicate that tyrosine 769 is required for the binding to KGFR and tyrosine phosphorylation of PLCγ as well as for the full activation of MAPKs and for cell proliferation through the regulation of FRS2 tyrosine phosphorylation, suggesting that this residue represents a key regulator of KGFR signal transduction. Our data also show that tyrosine 769 is not involved in the regulation of the endocytic process of KGFR

  3. Hyperthyroidism caused by a germline activating mutation of the thyrotropin receptor gene: difficulties in diagnosis and therapy.

    Science.gov (United States)

    Bertalan, Rita; Sallai, Agnes; Sólyom, János; Lotz, Gábor; Szabó, István; Kovács, Balázs; Szabó, Eva; Patócs, Attila; Rácz, Károly

    2010-03-01

    Germline activating mutations of the thyrotropin receptor (TSHR) gene have been considered as the only known cause of sporadic nonautoimmune hyperthyroidism in the pediatric population. Here we describe the long-term follow-up and evaluation of a patient with sporadic nonautoimmune primary hyperthyroidism who was found to have a de novo germline activating mutation of the TSHR gene. The patient was an infant who presented at the age of 10 months in an unconscious state with exsiccation, wet skin, fever, and tachycardia. Nonautoimmune primary hyperthyroidism was diagnosed, and brain magnetic resonance imaging and computed tomography showed also Arnold-Chiari malformation type I. Continuous propylthiouracil treatment resulted in a prolonged clinical cure lasting for 10 years. At the age of 11 years and 5 months the patient underwent subtotal thyroidectomy because of symptoms of trachea compression caused by a progressive multinodular goiter. However, 2 months after surgery, hormonal evaluation indicated recurrent hyperthyroidism and the patient was treated with propylthiouracil during the next 4 years. At the age of 15 years the patient again developed symptoms of trachea compression. Radioiodine treatment resulted in a regression of the recurrent goiter and a permanent cure of hyperthyroidism without relapse during the last 3 years of his follow-up. Sequencing of exon 10 of the TSHR gene showed a de novo heterozygous germline I630L mutation, which has been previously described as activating mutation at somatic level in toxic thyroid nodules. The I630L mutation of the TSHR gene occurs not only at somatic level in toxic thyroid nodules, but also its presence in germline is associated with nonautoimmune primary hyperthyroidism. Our case report demonstrates that in this disorder a continuous growth of the thyroid occurs without any evidence of elevated TSH due to antithyroid drug overdosing. This may justify previous recommendations for early treatment of affected

  4. Therapies based on inhibitors of the epidermal growth factor receptor: enclosing the future

    International Nuclear Information System (INIS)

    Diaz, Arlhee; Lage, Agustin

    2007-01-01

    The Epidermal Growth Factor Receptor (EGFR) is considered an important target for rational drug design due to its key role in numerous tumors. Potential contribution of EGFR-related signaling pathways to promote tumorigenic processes, including cell proliferation, angiogenesis, and resistance to apoptosis has been well established. Two classes of anti-EGFR agents in late-stage clinical testing include monoclonal antibodies against extracellular EGFR domain (Cetuximab, Nimotuzumab) and small molecules tyrosine kinase inhibitors, which inhibit the receptor enzyme activity (Gefitinib, Erlotinib). A considerable body of evidence has emerged since its introduction in the treatment of cancer patients. However, important questions such as reliable surrogate markers to predict response to the treatment, or optimal sequence and combination of these agents with conventional therapies remain to be addressed. Identify and validate predictive factors to select patients likely to respond to EGFR inhibitors, such as mutations that confer resistance versus those associated with sensitivity is required. A better understanding of molecular mechanisms associated with antitumor activity will useful to predict the interaction of these agents with other therapies in order to avoid antagonisms or overlapping effects resulting in no adding effects. Finally, the benefits derived from EGFR inhibitors as first-line therapy in selected populations, and the optimal doses and ways to delivery to the tumor site resulting in optimal target modulation should be established by the ongoing investigation. (Author)

  5. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    Directory of Open Access Journals (Sweden)

    Yongjun Yin

    2016-05-01

    Full Text Available Activating mutations in fibroblast growth factor receptor 3 (FGFR3 have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9, a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11 with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3.

  6. Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses

    DEFF Research Database (Denmark)

    Maines, Taronna R; Chen, Li-Mei; Van Hoeven, Neal

    2011-01-01

    Although H5N1 influenza viruses have been responsible for hundreds of human infections, these avian influenza viruses have not fully adapted to the human host. The lack of sustained transmission in humans may be due, in part, to their avian-like receptor preference. Here, we have introduced recep...

  7. A7DB: a relational database for mutational, physiological and pharmacological data related to the α7 nicotinic acetylcholine receptor

    Directory of Open Access Journals (Sweden)

    Sansom Mark SP

    2005-01-01

    Full Text Available Abstract Background Nicotinic acetylcholine receptors (nAChRs are pentameric proteins that are important drug targets for a variety of diseases including Alzheimer's, schizophrenia and various forms of epilepsy. One of the most intensively studied nAChR subunits in recent years has been α7. This subunit can form functional homomeric pentamers (α75, which can make interpretation of physiological and structural data much simpler. The growing amount of structural, pharmacological and physiological data for these receptors indicates the need for a dedicated and accurate database to provide a means to access this information in a coherent manner. Description A7DB http://www.lgics.org/a7db/ is a new relational database of manually curated experimental physiological data associated with the α7 nAChR. It aims to store as much of the pharmacology, physiology and structural data pertaining to the α7 nAChR. The data is accessed via web interface that allows a user to search the data in multiple ways: 1 a simple text query 2 an incremental query builder 3 an interactive query builder and 4 a file-based uploadable query. It currently holds more than 460 separately reported experiments on over 85 mutations. Conclusions A7DB will be a useful tool to molecular biologists and bioinformaticians not only working on the α7 receptor family of proteins but also in the more general context of nicotinic receptor modelling. Furthermore it sets a precedent for expansion with the inclusion of all nicotinic receptor families and eventually all cys-loop receptor families.

  8. Subacute Budd-Chiari syndrome associated with polycythemia vera and factor V Leiden mutation

    NARCIS (Netherlands)

    Simsek, S; Verheesen, RV; Haagsma, EB; Lourens, J

    We describe a 48-year-old caucasian woman with a subacute Budd-Chiari syndrome attributed to the presence of polycythaemia vera, heterozygosity for the factor V Leiden mutation and the use of an oral contraceptive pill. Two diagnostic pitfalls were encountered. First, on CT scanning of the abdomen

  9. Mutation G805R in the transmembrane domain of the LDL receptor gene causes familial hypercholesterolemia by inducing ectodomain cleavage of the LDL receptor in the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Thea Bismo Strøm

    2014-01-01

    Full Text Available More than 1700 mutations in the low density lipoprotein receptor (LDLR gene have been found to cause familial hypercholesterolemia (FH. These are commonly divided into five classes based upon their effects on the structure and function of the LDLR. However, little is known about the mechanism by which mutations in the transmembrane domain of the LDLR gene cause FH. We have studied how the transmembrane mutation G805R affects the function of the LDLR. Based upon Western blot analyses of transfected HepG2 cells, mutation G805R reduced the amounts of the 120 kDa precursor LDLR in the endoplasmic reticulum. This led to reduced amounts of the mature 160 kDa LDLR at the cell surface. However, significant amounts of a secreted 140 kDa G805R-LDLR ectodomain fragment was observed in the culture media. Treatment of the cells with the metalloproteinase inhibitor batimastat largely restored the amounts of the 120 and 160 kDa forms in cell lysates, and prevented secretion of the 140 kDa ectodomain fragment. Together, these data indicate that a metalloproteinase cleaved the ectodomain of the 120 kDa precursor G805R-LDLR in the endoplasmic reticulum. It was the presence of the polar Arg805 and not the lack of Gly805 which led to ectodomain cleavage. Arg805 also prevented γ-secretase cleavage within the transmembrane domain. It is conceivable that introducing a charged residue within the hydrophobic membrane lipid bilayer, results in less efficient incorporation of the 120 kDa G805R-LDLR in the endoplasmic reticulum membrane and makes it a substrate for metalloproteinase cleavage.

  10. Late manifestation of subclinical hyperthyroidism after goitrogenesis in an index patient with a N670S TSH receptor germline mutation masquerading as TSH receptor antibody negative Graves' disease.

    Science.gov (United States)

    Schaarschmidt, J; Paschke, S; Özerden, M; Jäschke, H; Huth, S; Eszlinger, M; Meller, J; Paschke, R

    2012-12-01

    In 27 families with familial non-autoimmune hyperthyroidism (FNAH) reported up to date, the onset of hyperthyroidism varies from 18 months to 60 years. Also the manifestation of goitres is variable in these families. A 74-year-old woman first presented at the age of 69 years with tachyarrhythmia and hypertension. After initial treatment of her hypertension and oral anticoagulation for her intermittent atrial fibrillation, a thyroid workup revealed a suppressed TSH and normal fT3 and fT4. TPO, TSH receptor (TSHR), and thyroglobulin antibodies were negative. Thyroid ultrasound revealed a thyroid volume of 102 ml with several nodules with diameters of up to 2.6 cm right and up to 1.8 cm left. Scintigraphy showed a homogeneous Technetium-99 m ((99 m)Tc) uptake of 1.27%. She was subsequently treated with 1 GBq radioiodine ((131)I). At the age of 74, her thyroid function was normal and her thyroid volume decreased to 90 ml. Because of the diffuse (99 m)Tc uptake and the negative TPO, TSHR, and thyroglobulin antibodies, genetic analysis of her TSHR gene was performed, in spite of her negative family history for hyperthyroidism. Sequencing revealed a N670S TSHR germline mutation. Previous in vitro characterisation of this TSHR mutation suggests a weak constitutive activity, yet the experimental data are ambiguous. This case illustrates the necessity to analyse patients with hyperthyroidism accompanied by diffuse (99 m)Tc uptake and negative TPO, TSHR, and thyroglobulin antibodies for TSHR germline mutations. Moreover, it demonstrates that TSHR germline mutations may first lead to longstanding nodular goitrogenesis before the late manifestation of subclinical hyperthyroidism. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Efficient detection of factor IX mutations by denaturing high-performance liquid chromatography in Taiwanese hemophilia B patients, and the identification of two novel mutations

    Directory of Open Access Journals (Sweden)

    Pei-Chin Lin

    2014-04-01

    Full Text Available Hemophilia B (HB is an X-linked recessive disorder characterized by mutations in the clotting factor IX (FIX gene that result in FIX deficiency. Previous studies have shown a wide variation of FIX gene mutations in HB. Although the quality of life in HB has greatly improved mainly because of prophylactic replacement therapy with FIX concentrates, there exists a significant burden on affected families and the medical care system. Accurate detection of FIX gene mutations is critical for genetic counseling and disease prevention in HB. In this study, we used denaturing high-performance liquid chromatography (DHPLC, which has proved to be a highly informative and practical means of detecting mutations, for the molecular diagnosis of our patients with HB. Ten Taiwanese families affected by HB were enrolled. We used the DHPLC technique followed by direct sequencing of suspected segments to detect FIX gene mutations. In all, 11 FIX gene mutations (8 point mutations, 2 small deletions/insertions, and 1 large deletion, including two novel mutations (exon6 c.687–695, del 9 mer and c.460–461, ins T were found. According to the HB pedigrees, 25% and 75% of our patients were defined as familial and sporadic HB cases, respectively. We show that DHPLC is a highly sensitive and cost-effective method for FIX gene analysis and can be used as a convenient system for disease prevention.

  12. Epidermal growth factor and its receptors in human pancreatic carcinoma

    International Nuclear Information System (INIS)

    Chen, Y.F.; Pan, G.Z.; Hou, X.; Liu, T.H.; Chen, J.; Yanaihara, C.; Yanaihara, N.

    1990-01-01

    The role of epidermal growth factor (EGF) in oncogenesis and progression of malignant tumors is a subject of vast interest. In this study, radioimmunoassay and radioreceptor assay of EGF were established. EGF contents in malignant and benign pancreatic tumors, in normal pancreas tissue, and in culture media of a human pancreatic carcinoma cell line were determined. EGF receptor binding studies were performed. It was shown that EGF contents in pancreatic carcinomas were significantly higher than those in normal pancreas or benign pancreatic tumors. EGF was also detected in the culture medium of a pancreatic carcinoma cell line. The binding of 125I-EGF to the pancreatic carcinoma cells was time and temperature dependent, reversible, competitive, and specific. Scatchard analysis showed that the dissociation constant of EGF receptor was 2.1 X 10(-9) M, number of binding sites was 1.3 X 10(5) cell. These results indicate that there is an over-expression of EGF/EGF receptors in pancreatic carcinomas, and that an autocrine regulatory mechanism may exist in the growth-promoting effect of EGF on tumor cells

  13. Agonist-dependent effects of mutations in the sphingosine-1-phosphate type 1 receptor

    NARCIS (Netherlands)

    van Loenen, Pieter B.; de Graaf, Chris; Verzijl, Dennis; Leurs, Rob; Rognan, Didier; Peters, Stephan L. M.; Alewijnse, Astrid E.

    2011-01-01

    The sphingosine-1-phosphate type 1 (S1P(1)) receptor is a new target in the treatment of auto-immune diseases as evidenced by the recent approval of FTY720 (Fingolimod). The ligand-binding pocket of the S1P(1) receptor has been generally characterised but detailed insight into ligand-specific

  14. A Single Base Pair Mutation Encoding a Premature Stop Codon in the MIS type II receptor is Responsible for Canine Persistent Müllerian Duct Syndrome

    Science.gov (United States)

    Wu, Xiufeng; Wan, Shengqin; Pujar, Shashikant; Haskins, Mark E.; Schlafer, Donald H.; Lee, Mary M.; Meyers-Wallen, Vicki N.

    2008-01-01

    Müllerian Inhibiting Substance (MIS), a secreted glycoprotein in the Transforming Growth Factor-beta (TGF-beta) family of growth factors, mediates regression of the Müllerian ducts during embryonic sex differentiation in males. In Persistent Müllerian Duct Syndrome (PMDS), rather than undergoing involution, the Müllerian ducts persist in males, giving rise to the uterus, Fallopian tubes, and upper vagina. Genetic defects in MIS or its receptor (MISRII) have been identified in patients with PMDS. The phenotype in the canine model of PMDS derived from the miniature schnauzer breed is strikingly similar to that of human patients. In this model, PMDS is inherited as a sex-limited autosomal recessive trait. Previous studies indicated that a defect in the MIS receptor or its downstream signaling pathway was likely to be causative of the canine syndrome. In this study the canine PMDS phenotype and clinical sequelae are described in detail. Affected and unaffected members of this pedigree are genotyped, identifying a single base pair substitution in MISRII that introduces a stop codon in exon 3. The homozygous mutation terminates translation at 80 amino acids, eliminating much of the extracellular domain and the entire transmembrane and intracellular signaling domains. Findings in this model may enable insights to be garnered from correlation of detailed clinical descriptions with molecular defects, which are not otherwise possible in the human syndrome. PMID:18723470

  15. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.

    Science.gov (United States)

    Taniguchi, Hirokazu; Takeuchi, Shinji; Fukuda, Koji; Nakagawa, Takayuki; Arai, Sachiko; Nanjo, Shigeki; Yamada, Tadaaki; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-01-01

    Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  16. HELLP Syndrome and Cerebral Venous Sinus Thrombosis Associated with Factor V Leiden Mutation during Pregnancy

    Directory of Open Access Journals (Sweden)

    Zeynep Ozcan Dag

    2014-01-01

    Full Text Available Preeclampsia is a leading cause of maternal mortality and morbidity worldwide. The neurological complications of preeclampsia and eclampsia are responsible for a major proportion of the morbidity and mortality for women and their infants alike. Hormonal changes during pregnancy and the puerperium carry an increased risk of venous thromboembolism including cerebral venous sinus thrombosis (CVST. Factor 5 leiden (FVL is a procoagulant mutation associated primarily with venous thrombosis and pregnancy complications. We report a patient with FVL mutation who presented with CVST at 24th week of pregnancy and was diagnosed as HELLP syndrome at 34th week of pregnancy.

  17. Expression of epidermal growth factor receptors in human endometrial carcinoma

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Ottesen, B

    1993-01-01

    Little data exist on the expression of epidermal growth factor receptors (EGF-Rs) in human endometrial cancer. EGF-R status was studied in 65 patients with endometrial carcinomas and in 26 women with nonmalignant postmenopausal endometria, either inactive/atrophic endometrium or adenomatous...... hyperplasia. EGF-R was identified on frozen tissue sections by means of an indirect immunoperoxidase technique with a monoclonal antibody against the external domain of the EGF-R. Seventy-one percent of the carcinomas expressed positive EGF-R immunoreactivity. In general, staining was most prominent...

  18. CRISPR Correction of a Homozygous Low-Density Lipoprotein Receptor Mutation in Familial Hypercholesterolemia Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Omer, Linda; Hudson, Elizabeth A; Zheng, Shirong; Hoying, James B; Shan, Yuan; Boyd, Nolan L

    2017-11-01

    Familial hypercholesterolemia (FH) is a hereditary disease primarily due to mutations in the low-density lipoprotein receptor (LDLR) that lead to elevated cholesterol and premature development of cardiovascular disease. Homozygous FH patients (HoFH) with two dysfunctional LDLR alleles are not as successfully treated with standard hypercholesterol therapies, and more aggressive therapeutic approaches to control cholesterol levels must be considered. Liver transplant can resolve HoFH, and hepatocyte transplantation has shown promising results in animals and humans. However, demand for donated livers and high-quality hepatocytes overwhelm the supply. Human pluripotent stem cells can differentiate to hepatocyte-like cells (HLCs) with the potential for experimental and clinical use. To be of future clinical use as autologous cells, LDLR genetic mutations in derived FH-HLCs need to be corrected. Genome editing technology clustered-regularly-interspaced-short-palindromic-repeats/CRISPR-associated 9 (CRISPR/Cas9) can repair pathologic genetic mutations in human induced pluripotent stem cells. We used CRISPR/Cas9 genome editing to permanently correct a 3-base pair homozygous deletion in LDLR exon 4 of patient-derived HoFH induced pluripotent stem cells. The genetic correction restored LDLR-mediated endocytosis in FH-HLCs and demonstrates the proof-of-principle that CRISPR-mediated genetic modification can be successfully used to normalize HoFH cholesterol metabolism deficiency at the cellular level.

  19. The study on mutations of the gene of extracellular domain of human thyrotropin receptor in the patients with thyroid diseases

    International Nuclear Information System (INIS)

    Zhang Zuncheng; Fang Peihua; Tan Jian; Lu Mei

    2002-01-01

    Objective: To define the sequence of the gene of extracellular domain of normal human thyrotropin receptor (hTSHR) and to investigate the mutations of the gene in the patients with thyroid diseases. Methods: Total RNAs were extracted from the thyroid tissue of four normal controls, twelve Graves' disease, four Hashimoto's thyroiditis and eleven nodular goiter patients. The extracellular domain of hTSHR genes were amplified by reverse transcription-polymerase chain reaction (RT-PCR) and sequenced with CEQ 2000 Genetic Analyzer. Results: The normal controls and the patients with thyroid disease had the same gene sequences of the extracellular domain of hTSHR. No mutation was found, except a silent base exchange in exon 7 (Asn187) at 661 base, in which 20 samples were 'T', 11 samples were 'C', without changes of amino acid of the TSHR. Conclusions: This study has not revealed mutations in the gene of extracellular domain of hTSHR. Other molecular pathogenetic mechanisms may be involved and more research is demanded

  20. The F309S mutation increases factor VIII secretion in human cell line

    Directory of Open Access Journals (Sweden)

    Daianne Maciely Carvalho Fantacini

    2016-06-01

    Full Text Available ABSTRACT OBJECTIVES: The capacity of a human cell line to secrete recombinant factor VIII with a F309S point mutation was investigated, as was the effect of the addition of chemical chaperones (betaine and sodium-4-phenylbutyrate on the secretion of factor VIII. METHODS: This work used a vector with a F309S mutation in the A1 domain to investigate FVIII production in the HEK 293 human cell line. Factor VIII activity was measured by chromogenic assay. Furthermore, the effects of chemical drugs on the culture were evaluated. RESULTS: The addition of the F309S mutation to a previously described FVIII variant increased FVIII secretion by 4.5 fold. Moreover, the addition of betaine or sodium-4-phenylbutyrate increased the secretion rate of FVIIIΔB proteins in HEK 293 cells, but the same effect was not seen for FVIIIΔB-F309S indicating that all the recombinant protein produced had been efficiently secreted. CONCLUSION: Bioengineering factor VIII expressed in human cells may lead to an efficient production of recombinant factor VIII and contribute toward low-cost coagulation factor replacement therapy for hemophilia A. FVIII-F309S produced in human cells can be effective in vivo.

  1. Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection.

    NARCIS (Netherlands)

    Pearson, E.R.; Pruhova, S.; Tack, C.J.J.; Johansen, A.; Castleden, H.A.; Lumb, P.J.; Wierzbicki, A.S.; Clark, P.M.; Lebl, J.; Pedersen, O.; Ellard, S.; Hansen, T.; Hattersley, A.T.

    2005-01-01

    AIMS/HYPOTHESIS: Heterozygous mutations in the gene of the transcription factor hepatocyte nuclear factor 4alpha (HNF-4alpha) are considered a rare cause of MODY with only 14 mutations reported to date. The description of the phenotype is limited to single families. We investigated the genetics and

  2. Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases

    DEFF Research Database (Denmark)

    Xanthoulea, Sofia; Pasparakis, Manolis; Kousteni, Stavroula

    2004-01-01

    Tumor necrosis factor (TNF) is a potent cytokine exerting critical functions in the activation and regulation of immune and inflammatory responses. Due to its pleiotropic activities, the amplitude and duration of TNF function must be tightly regulated. One of the mechanisms that may have evolved...... to modulate TNF function is the proteolytic cleavage of its cell surface receptors. In humans, mutations affecting shedding of the p55TNF receptor (R) have been linked with the development of the TNFR-associated periodic syndromes, disorders characterized by recurrent fever attacks and localized inflammation....... Here we show that knock-in mice expressing a mutated nonsheddable p55TNFR develop Toll-like receptor-dependent innate immune hyperreactivity, which renders their immune system more efficient at controlling intracellular bacterial infections. Notably, gain of function for antibacterial host defenses...

  3. SAHA (Vorinostat Corrects Inhibitory Synaptic Deficits Caused by Missense Epilepsy Mutations to the GABAA Receptor γ2 Subunit

    Directory of Open Access Journals (Sweden)

    Nela Durisic

    2018-03-01

    Full Text Available The GABAA receptor (GABAAR α1 subunit A295D epilepsy mutation reduces the surface expression of α1A295Dβ2γ2 GABAARs via ER-associated protein degradation. Suberanilohydroxamic acid (SAHA, also known as Vorinostat was recently shown to correct the misfolding of α1A295D subunits and thereby enhance the functional surface expression of α1A295Dβ2γ2 GABAARs. Here we investigated whether SAHA can also restore the surface expression of γ2 GABAAR subunits that incorporate epilepsy mutations (N40S, R43Q, P44S, R138G known to reduce surface expression via ER-associated protein degradation. As a control, we also investigated the γ2K289M epilepsy mutation that impairs gating without reducing surface expression. Effects of mutations were evaluated on inhibitory postsynaptic currents (IPSCs mediated by the major synaptic α1β2γ2 GABAAR isoform. Recordings were performed in neuron-HEK293 cell artificial synapses to minimise contamination by GABAARs of undefined subunit composition. Transfection with α1β2γ2N40S, α1β2γ2R43Q, α1β2γ2P44S and α1β2γ2R138G subunits produced IPSCs with decay times slower than those of unmutated α1β2γ2 GABAARs due to the low expression of mutant γ2 subunits and the correspondingly high expression of slow-decaying α1β2 GABAARs. SAHA pre-treatment significantly accelerated the decay time constants of IPSCs consistent with the upregulation of mutant γ2 subunit expression. This increase in surface expression was confirmed by immunohistochemistry. SAHA had no effect on either the IPSC kinetics or surface expression levels of α1β2γ2K289M GABAARs, confirming its specificity for ER-retained mutant γ2 subunits. We also found that α1β2γ2K289M GABAARs and SAHA-treated α1β2γ2R43Q, α1β2γ2P44S and α1β2γ2R138G GABAARs all mediated IPSCs that decayed at significantly faster rates than wild type receptors as temperature was increased from 22 to 40°C. This may help explain why these mutations cause febrile

  4. Mutation of I696 and W697 in the TRP box of vanilloid receptor subtype I modulates allosteric channel activation.

    Science.gov (United States)

    Gregorio-Teruel, Lucia; Valente, Pierluigi; González-Ros, José Manuel; Fernández-Ballester, Gregorio; Ferrer-Montiel, Antonio

    2014-03-01

    The transient receptor potential vanilloid receptor subtype I (TRPV1) channel acts as a polymodal sensory receptor gated by chemical and physical stimuli. Like other TRP channels, TRPV1 contains in its C terminus a short, conserved domain called the TRP box, which is necessary for channel gating. Substitution of two TRP box residues-I696 and W697-with Ala markedly affects TRPV1's response to all activating stimuli, which indicates that these two residues play a crucial role in channel gating. We systematically replaced I696 and W697 with 18 native l-amino acids (excluding cysteine) and evaluated the effect on voltage- and capsaicin-dependent gating. Mutation of I696 decreased channel activation by either voltage or capsaicin; furthermore, gating was only observed with substitution of hydrophobic amino acids. Substitution of W697 with any of the 18 amino acids abolished gating in response to depolarization alone, shifting the threshold to unreachable voltages, but not capsaicin-mediated gating. Moreover, vanilloid-activated responses of W697X mutants showed voltage-dependent gating along with a strong voltage-independent component. Analysis of the data using an allosteric model of activation indicates that mutation of I696 and W697 primarily affects the allosteric coupling constants of the ligand and voltage sensors to the channel pore. Together, our findings substantiate the notion that inter- and/or intrasubunit interactions at the level of the TRP box are critical for efficient coupling of stimulus sensing and gate opening. Perturbation of these interactions markedly reduces the efficacy and potency of the activating stimuli. Furthermore, our results identify these interactions as potential sites for pharmacological intervention.

  5. Loss-of-function mutations in the thyrotropin receptor gene as a major determinant of hyperthyrotropinemia in a consanguineous community.

    Science.gov (United States)

    Tenenbaum-Rakover, Yardena; Grasberger, Helmut; Mamanasiri, Sunee; Ringkananont, Usanee; Montanelli, Lucia; Barkoff, Marla S; Dahood, Ahmad Mahameed-Hag; Refetoff, Samuel

    2009-05-01

    Resistance to TSH (RTSH) is a condition of impaired responsiveness of the thyroid gland to TSH, characterized by elevated serum TSH, low or normal thyroid hormone levels, and hypoplastic or normal-sized thyroid gland. The aim of the study was to evaluate the clinical course and the genotype-phenotype relationship of RTSH caused by two different TSH receptor (TSHR) gene mutations in a consanguineous population. We conducted a clinical and genetic investigation of 46 members of an extended family and 163 individuals living in the same town. In vitro functional studies of the mutant TSHRs were also performed. Two TSHR gene mutations (P68S and L653V) were identified in 33 subjects occurring as homozygous L653V (five subjects), heterozygous L653V (20 subjects), heterozygous P68S (four subjects), and compound heterozygous L653V/P68S (four subjects). With the exception of one individual with concomitant autoimmune thyroid disease, all homozygotes and compound heterozygotes presented with compensated RTSH (high TSH with free T(4) and T(3) in the normal range). Only nine of 24 heterozygotes had mild hyperthyrotropinemia. The L653V mutation resulted in a higher serum TSH concentration and showed a more severe in vitro abnormality than P68S. Haplotype analysis predicted a founder of the L653V six to seven generations earlier, whereas the P68S is older. Cross-sectional and prospective longitudinal studies indicate that TSH and T(4) concentrations remain stable over time. High frequency hyperthyrotropinemia in an Israeli Arab-Muslim consanguineous community is attributed to two inactivating TSHR gene mutations. Concordant genotype-phenotype was demonstrated clinically and by in vitro functional analysis. Retrospective and prospective studies indicate that in the absence of concomitant autoimmune thyroid disease, elevated TSH levels reflect stable compensated RTSH.

  6. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Bayne, M.L.; Applebaum, J.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Cascieri, M.A.

    1988-01-01

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe -1 , Val 1 , Asn 2 , Gln 3 , His 4 , Ser 8 , His 9 , Glu 12 , Tyr 15 , Leu 16 ]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln 3 , Ala 4 ] IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr 15 , Leu 16 ] IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, [Gln 3 , Ala 4 , Tyr 15 ,Leu 16 ]IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I

  7. Haemophilia B caused by mutation of a potential thrombin cleavage site in factor IX

    Energy Technology Data Exchange (ETDEWEB)

    Winship, P.R. (Univ. of Oxford (England))

    1990-03-11

    Haemophilia B is a blood coagulation disorder caused by mutations in the factor IX gene giving functionally defective or reduced levels of factor IX protein circulating in the plasma. The mutation in the Caucasian patient under investigation, Haemophilia B Oxford h5 (Oxh5), was characterized at the DNA level by constructing a genomic library using leucocyte-derived DNA from the patient. Overlapping recombinant clones spanning the entire factor IX locus were isolated which then allowed the generation of a series of sub-clones across all eight exons (a-h) plus the 5{prime} and 3{prime} flanking sequences known to be important in regulation of the gene and polyadenylation of the mRNA species.

  8. Targeting Epidermal Growth Factor Receptor-Related Signaling Pathways in Pancreatic Cancer.

    Science.gov (United States)

    Philip, Philip A; Lutz, Manfred P

    2015-10-01

    Pancreatic cancer is aggressive, chemoresistant, and characterized by complex and poorly understood molecular biology. The epidermal growth factor receptor (EGFR) pathway is frequently activated in pancreatic cancer; therefore, it is a rational target for new treatments. However, the EGFR tyrosine kinase inhibitor erlotinib is currently the only targeted therapy to demonstrate a very modest survival benefit when added to gemcitabine in the treatment of patients with advanced pancreatic cancer. There is no molecular biomarker to predict the outcome of erlotinib treatment, although rash may be predictive of improved survival; EGFR expression does not predict the biologic activity of anti-EGFR drugs in pancreatic cancer, and no EGFR mutations are identified as enabling the selection of patients likely to benefit from treatment. Here, we review clinical studies of EGFR-targeted therapies in combination with conventional cytotoxic regimens or multitargeted strategies in advanced pancreatic cancer, as well as research directed at molecules downstream of EGFR as alternatives or adjuncts to receptor targeting. Limitations of preclinical models, patient selection, and trial design, as well as the complex mechanisms underlying resistance to EGFR-targeted agents, are discussed. Future clinical trials must incorporate translational research end points to aid patient selection and circumvent resistance to EGFR inhibitors.

  9. Mutation of Drosophila dopamine receptor DopR leads to male-male courtship behavior.

    Science.gov (United States)

    Chen, Bin; Liu, He; Ren, Jing; Guo, Aike

    2012-07-06

    In Drosophila, dopamine plays important roles in many biological processes as a neuromodulator. Previous studies showed that dopamine level could affect fly courtship behaviors. Disturbed dopamine level leads to abnormal courtship behavior in two different ways. Dopamine up-regulation induces male-male courtship behavior, while down-regulation of dopamine level results in increased sexual attractiveness of males towards other male flies. Until now, the identity of the dopamine receptor involved in this abnormal male-male courtship behavior remains unknown. Here we used genetic approaches to investigate the role of dopamine receptors in fly courtship behavior. We found that a dopamine D1-like receptor, DopR, was involved in fly courtship behavior. DopR mutant male flies display male-male courtship behavior. This behavior is mainly due to the male's increased propensity to court other males. Expression of functional DopR successfully rescued this mutant phenotype. Knock-down of D2-like receptor D2R and another D1-like receptor, DAMB, did not induce male-male courtship behavior, indicating the receptor-type specificity of this phenomenon. Our findings provide insight into a possible link between dopamine level disturbance and the induced male-male courtship behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. AP1S3 Mutations Are Associated with Pustular Psoriasis and Impaired Toll-like Receptor 3 Trafficking

    Science.gov (United States)

    Setta-Kaffetzi, Niovi; Simpson, Michael A.; Navarini, Alexander A.; Patel, Varsha M.; Lu, Hui-Chun; Allen, Michael H.; Duckworth, Michael; Bachelez, Hervé; Burden, A. David; Choon, Siew-Eng; Griffiths, Christopher E.M.; Kirby, Brian; Kolios, Antonios; Seyger, Marieke M.B.; Prins, Christa; Smahi, Asma; Trembath, Richard C.; Fraternali, Franca; Smith, Catherine H.; Barker, Jonathan N.; Capon, Francesca

    2014-01-01

    Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has the unique potential to deliver insights into gene function. Here, we report two founder mutations (c.11T>G [p.Phe4Cys] and c.97C>T [p.Arg33Trp]) in AP1S3, the gene encoding AP-1 complex subunit σ1C, in 15 unrelated individuals with a severe autoinflammatory skin disorder known as pustular psoriasis. Because the variants are predicted to destabilize the 3D structure of the AP-1 complex, we generated AP1S3-knockdown cell lines to investigate the consequences of AP-1 deficiency in skin keratinocytes. We found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling. These findings identify pustular psoriasis as an autoinflammatory phenotype caused by defects in vesicular trafficking and demonstrate a requirement of AP-1 for Toll-like receptor homeostasis. PMID:24791904

  11. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity

    International Nuclear Information System (INIS)

    Andersen, A.S.; Kjeldsen, T.; Wiberg, F.C.; Christensen, P.M.; Rasmussen, J.S.; Norris, K.; Moeller, K.B.; Moeller, N.P.H.

    1990-01-01

    To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, the authors prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the α-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor

  12. Retroviral host range extension is coupled with Env-activating mutations resulting in receptor-independent entry

    Czech Academy of Sciences Publication Activity Database

    Lounková, Anna; Kosla, Jan; Přikryl, David; Štafl, Kryštof; Kučerová, Dana; Svoboda, Jan

    2017-01-01

    Roč. 114, č. 26 (2017), E5148-E5157 ISSN 0027-8424 R&D Projects: GA ČR GA15-22207S Institutional support: RVO:68378050 Keywords : Rous sarcoma virus * retrovirus * virus entry * envelope glycoprotein * receptor-independent entry Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Virology Impact factor: 9.661, year: 2016

  13. Epidermal growth factor receptor signaling pathway is frequently altered in ampullary carcinoma at protein and genetic levels.

    Science.gov (United States)

    Mikhitarian, Kaidi; Pollen, Maressa; Zhao, Zhiguo; Shyr, Yu; Merchant, Nipun B; Parikh, Alexander; Revetta, Frank; Washington, M Kay; Vnencak-Jones, Cindy; Shi, Chanjuan

    2014-05-01

    Our objective was to explore alteration of the epidermal growth factor receptor (EGFR) signaling pathway in ampullary carcinoma. Immunohistochemical studies were employed to evaluate expression of amphiregulin as well as expression and activation of EGFR. A lab-developed assay was used to identify mutations in the EGFR pathway genes, including KRAS, BRAF, PIK3CA, PTEN, and AKT1. A total of 52 ampullary carcinomas were identified, including 25 intestinal-type and 24 pancreatobiliary-type tumors, with the intestinal type being associated with a younger age at diagnosis (P=0.03) and a better prognosis (PSMAD4 and BRAF. KRAS mutations at codons 12 and 13 did not adversely affect overall survival. In conclusion, EGFR expression and activation were different between intestinal- and pancreatobiliary-type ampullary carcinoma. KRAS mutation was common in both histologic types; however, the incidence appeared to be lower in the pancreatobiliary type compared with its pancreatic counterpart, pancreatic ductal adenocarcinoma. Mutational analysis of the EGFR pathway genes may provide important insights into personalized treatment for patients with ampullary carcinoma.

  14. Novel splice mutation in microthalmia-associated transcription factor in Waardenburg Syndrome.

    Science.gov (United States)

    Brenner, Laura; Burke, Kelly; Leduc, Charles A; Guha, Saurav; Guo, Jiancheng; Chung, Wendy K

    2011-01-01

    Waardenburg Syndrome (WS) is a syndromic form of hearing loss associated with mutations in six different genes. We identified a large family with WS that had previously undergone clinical testing, with no reported pathogenic mutation. Using linkage analysis, a region on 3p14.1 with an LOD score of 6.6 was identified. Microthalmia-Associated Transcription Factor, a gene known to cause WS, is located within this region of linkage. Sequencing of Microthalmia-Associated Transcription Factor demonstrated a c.1212 G>A synonymous variant that segregated with the WS in the family and was predicted to cause a novel splicing site that was confirmed with expression analysis of the mRNA. This case illustrates the need to computationally analyze novel synonymous sequence variants for possible effects on splicing to maximize the clinical sensitivity of sequence-based genetic testing.

  15. Functional consequences of an arginine180 to glutamine mutation in factor IX Hilo.

    Science.gov (United States)

    Monroe, D M; McCord, D M; Huang, M N; High, K A; Lundblad, R L; Kasper, C K; Roberts, H R

    1989-05-01

    Factor IX Hilo is a variant factor IX molecule that has no detectable coagulant activity. The defect in factor IX Hilo arises from a point mutation in the gene such that in the protein Arg180 is converted to a Gln. Activation of factor IX Hilo by factor Xla was monitored using the fluorescent active site probe p-aminobenzamidine. Normal factor IX showed complete activation in one hour as determined by measuring the increase in fluorescence when p-aminobenzamidine bound to activated factor IX. Factor IX Hilo showed no increase in fluorescence even after 24 hours, indicating that the active site was not exposed. Polyacrylamide gel electrophoresis showed that factor IX Hilo was cleaved to a light chain plus a larger peptide with a molecular weight equivalent to a heavy chain covalently linked to an activation peptide. Amino terminal amino acid sequencing of factor IX Hilo cleaved by factor Xla showed cleavage only at Arg145-Ala146, indicating that the Gln180-Val181 bond was not cleaved and that the active site was thus not exposed. The presence of factor IX Hilo in patient plasma was responsible for the patient having a very long ox brain prothrombin time characteristic of severe hemophilia Bm. Patient plasma had an ox brain prothrombin time of 100 seconds using a Thrombotest kit, significantly prolonged over the normal control value of 45 seconds. When factor IX Hilo was depleted from patient plasma using an immunoaffinity column, the ox brain prothrombin time decreased to 41 seconds. When factor IX Hilo was added back to depleted patient plasma, to normal plasma depleted of factor IX by the same affinity column, or to plasma from a CRM- hemophilia B patient, the ox brain prothrombin time was significantly prolonged. We conclude that the Arg180 to Gln mutation in factor IX Hilo results in a molecule that cannot be activated by factor Xla. Further, our data suggest that the mutation results in a molecule that interacts with components of the extrinsic pathway to give

  16. Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild

    2004-01-01

    Background and purpose: Inhibition of the epidermal growth factor receptor (EGFR) is a fastly developing field in preclinical and clinical cancer research. This review presents the current status of knowledge and discusses radiobiological mechanisms which may underly the efficacy of EGFR inhibitors combined with irradiation. Materials and methods: Preclinical and clinical results on combined targeting of the EGFR and irradiation from the literature and from this laboratory are reviewed. Focus is given to the radiobiological rationale of this approach and to endpoints of experimental radiotherapy. Results: Overexpression of the EGFR is associated with decreased local tumour control after radiotherapy, especially when the overall treatment time is long. Inhibition of the EGFR either alone or in combination with irradiation decreases the growth rate of tumours expressing this receptor. Preclinical data provide proof-of-principle that local tumour control may be improved by combining irradiation with C225 mAb. In a randomised phase III clinical trial, simultaneous irradiation and treatment with the EGFR antibody Cetuximab (Erbitux[reg]; C225) in head and neck cancer patients resulted in significantly improved locoregional tumour control and survival compared to curative irradiation alone. Acute skin reactions increased in the experimental arm. The underlying mechanisms of enhanced radiation effects of combined EGFR inhibition with irradiation and of the partly conflicting results in different studies are poorly understood. There is increasing evidence, that important intertumoral heterogeneity in the response to EGFR inhibition alone and combined with irradiation exists, which appears to be at least partly dependent on specific mutations of the receptor as well as of molecules that are involved in the intracellular signal transduction pathway. Conclusions and outlook: Further investigations at all levels of the translational research chain exploring the mechanisms of

  17. The biological activity of the human epidermal growth factor receptor is positively regulated by its C-terminal tyrosines

    DEFF Research Database (Denmark)

    Helin, K; Velu, T; Martin, P

    1991-01-01

    mutants in the full length receptor. EGF-dependent transforming ability of the single point mutants is similar to that of the wild type, while that of double mutants is decreased and an even lower activity is present in the triple mutant. In each bioassay, including EGF-dependent focal transformation...... biologically. The EGF-R kinase activity is affected by tyrosine substitution since in vitro phosphorylation of exogenous substrates is reduced in the double and triple mutants. Autophosphorylation, in vivo and in vitro, is also reduced, but not totally abolished in the triple point mutant and Dc123 indicating......The epidermal growth factor receptor (EGF-R) C-terminus contains three conserved tyrosines (Y-1068, Y-1148, Y-1173) which are phosphorylated upon EGF activation. To clarify the functional role of these tyrosines, each has been mutated to phenylalanine and studied as single, double and triple...

  18. Research progress in mutational effects of aerospace on crop and ground simulation on aerospace environment factors

    International Nuclear Information System (INIS)

    Liu Luxiang; Wang Jing; Zhao Linshu; Guo Huijun; Zhao Shirong; Zheng Qicheng; Yang Juncheng

    2004-01-01

    In this paper, the current status of aerospace botany research in aboard was briefly introduced. The research progress of mutational effects of aerospace on crop seed and its application in germplasm enhancement and new variety development by using recoverable satellite techniques in China has been reviewed. The approaches and its experimental advances of ground simulation on aerospace environmental factors were analyzed at different angles of particle biology, physical field biology and gravity biology

  19. De novo frameshift mutation in fibroblast growth factor 8 in a male patient with gonadotropin deficiency.

    Science.gov (United States)

    Suzuki, Erina; Yatsuga, Shuichi; Igarashi, Maki; Miyado, Mami; Nakabayashi, Kazuhiko; Hayashi, Keiko; Hata, Kenichirou; Umezawa, Akihiro; Yamada, Gen; Ogata, Tsutomu; Fukami, Maki

    2014-01-01

    Missense, nonsense, and splice mutations in the Fibroblast Growth Factor 8(FGF8) have recently been identified in patients with hypothalamo-pituitary dysfunction and craniofacial anomalies. Here, we report a male patient with a frameshift mutation in FGF8. The patient exhibited micropenis, craniofacial anomalies, and ventricular septal defect at birth. Clinical evaluation at 16 years and 8 months of age revealed delayed puberty, hyposmia, borderline mental retardation, and mild hearing difficulty. Endocrine findings included gonadotropin deficiency and primary hypothyroidism. Molecular analysis identified a de novo heterozygous p.S192fsX204 mutation in the last exon of FGF8. RT-PCR analysis of normal human tissues detected FGF8 expression in the genital skin, and whole-mount in situ hybridization analysis of mouse embryos revealed Fgf8 expression in the anlage of the penis. The results indicate that frameshift mutations in FGF8 account for a part of the etiology of hypothalamo-pituitary dysfunction. Micropenis in patients with FGF8 abnormalities appears to be caused by gonadotropin deficiency and defective outgrowth of the anlage of the penis.

  20. Characterization of an apparently synonymous F5 mutation causing aberrant splicing and factor V deficiency.

    Science.gov (United States)

    Nuzzo, F; Bulato, C; Nielsen, B I; Lee, K; Wielders, S J; Simioni, P; Key, N S; Castoldi, E

    2015-03-01

    Coagulation factor V (FV) deficiency is a rare autosomal recessive bleeding disorder. We investigated a patient with severe FV deficiency (FV:C mutation in exon 4 (c.578G>C, p.Cys193Ser), predicting the abolition of a conserved disulphide bridge, and an apparently synonymous variant in exon 8 (c.1281C>G). The observation that half of the patient's F5 mRNA lacked the last 18 nucleotides of exon 8 prompted us to re-evaluate the c.1281C>G variant for its possible effects on splicing. Bioinformatics sequence analysis predicted that this transversion would activate a cryptic donor splice site and abolish an exonic splicing enhancer. Characterization in a F5 minigene model confirmed that the c.1281C>G variant was responsible for the patient's splicing defect, which could be partially corrected by a mutation-specific morpholino antisense oligonucleotide. The aberrantly spliced F5 mRNA, whose stability was similar to that of the normal mRNA, encoded a putative FV mutant lacking amino acids 427-432. Expression in COS-1 cells indicated that the mutant protein is poorly secreted and not functional. In conclusion, the c.1281C>G mutation, which was predicted to be translationally silent and hence neutral, causes FV deficiency by impairing pre-mRNA splicing. This finding underscores the importance of cDNA analysis for the correct assessment of exonic mutations. © 2014 John Wiley & Sons Ltd.

  1. Mutations that silence constitutive signaling activity in the allosteric ligand-binding site of the thyrotropin receptor.

    Science.gov (United States)

    Haas, Ann-Karin; Kleinau, Gunnar; Hoyer, Inna; Neumann, Susanne; Furkert, Jens; Rutz, Claudia; Schülein, Ralf; Gershengorn, Marvin C; Krause, Gerd

    2011-01-01

    The thyrotropin receptor (TSHR) exhibits elevated cAMP signaling in the basal state and becomes fully activated by thyrotropin. Previously we presented evidence that small-molecule ligands act allosterically within the transmembrane region in contrast to the orthosteric extracellular hormone-binding sites. Our goal in this study was to identify positions that surround the allosteric pocket and that are sensitive for inactivation of TSHR. Homology modeling combined with site-directed mutagenesis and functional characterization revealed seven mutants located in the allosteric binding site that led to a decrease of basal cAMP signaling activity. The majority of these silencing mutations, which constrain the TSHR in an inactive conformation, are found in two clusters when mapped onto the 3D structural model. We suggest that the amino acid positions identified herein are indicating locations where small-molecule antagonists, both neutral antagonists and inverse agonists, might interfere with active TSHR conformations.

  2. Effects of Asn318 and Asp87Asn318 mutations on signal transduction by the gonadotropin-releasing hormone receptor and receptor regulation.

    Science.gov (United States)

    Awara, W M; Guo, C H; Conn, P M

    1996-02-01

    GnRH receptor (GnRH-R) contains Asn87 and Asp318 instead of the more frequently observed Asp87 and Asn318 found in other G protein-coupled receptors. In the present study, site-directed mutagenesis was used to introduce Asn318 and Asp87Asn318 into GnRH-R. The effect on coupling and regulation of GnRH-R was studied by stable expression of wild and mutant mouse GnRH-R in the lactotropic GH3 cells; these normally release PRL in response to TRH stimulation. The responses to Buserelin (a metabolically stable GnRH analog) in three different cell lines, M1, N8, and ND1 (expressing wild-type, Asn318 mutant, and Asp87Asn318 mutant mouse GnRH-R, respectively) were compared with that observed in the previously characterized GGH3-1' cells, which stably express rat GnRH-R. The Asn318 and Asp87Asn318 mutations had no measurable effect on ligand binding, but abolished the initial down-regulation of receptor that was observed in M1 and GGH3-1' cells, suggesting that the normal location of Asn87 and Asp318 in GnRH-R is involved in the regulation of GnRH-R. In N8 and ND1 cells, Buserelin-stimulated inositol phosphate (IP) production was attenuated, but the release of both cAMP and PRL was stimulated in a dose- and time-dependent manner. These mutations apparently impaired the coupling between GnRH-R and G proteins involved in IP production, but not those involved in cAMP release. In M1 cells, Buserelin stimulation produced a significant increase in IP production, but neither cAMP nor PRL release was significantly stimulated. These findings are consistent with the previous suggestion that GnRH-stimulated PRL release is mediated by a cAMP second messenger system in transfected GGH3 cells.

  3. F104S c-Mpl responds to a transmembrane domain-binding thrombopoietin receptor agonist: proof of concept that selected receptor mutations in congenital amegakaryocytic thrombocytopenia can be stimulated with alternative thrombopoietic agents.

    Science.gov (United States)

    Fox, Norma E; Lim, Jihyang; Chen, Rose; Geddis, Amy E

    2010-05-01

    To determine whether specific c-Mpl mutations might respond to thrombopoietin receptor agonists. We created cell line models of type II c-Mpl mutations identified in congenital amegakaryocytic thrombocytopenia. We selected F104S c-Mpl for further study because it exhibited surface expression of the receptor. We measured proliferation of cell lines expressing wild-type or F104S c-Mpl in response to thrombopoietin receptor agonists targeting the extracellular (m-AMP4) or transmembrane (LGD-4665) domains of the receptor by 1-methyltetrazole-5-thiol assay. We measured thrombopoietin binding to the mutant receptor using an in vitro thrombopoietin uptake assay and identified F104 as a potentially critical residue for the interaction between the receptor and its ligand by aligning thrombopoietin and erythropoietin receptors from multiple species. Cells expressing F104S c-Mpl proliferated in response to LGD-4665, but not thrombopoietin or m-AMP4. Compared to thrombopoietin, LGD-4665 stimulates signaling with delayed kinetics in both wild-type and F104S c-Mpl-expressing cells. Although F104S c-Mpl is expressed on the cell surface in our BaF3 cell line model, the mutant receptor does not bind thrombopoietin. Comparison to the erythropoietin receptor suggests that F104 engages in hydrogen-bonding interactions that are critical for binding to thrombopoietin. These findings suggest that a small subset of patients with congenital amegakaryocytic thrombocytopenia might respond to treatment with thrombopoietin receptor agonists, but that responsiveness will depend on the type of mutation and agonist used. We postulate that F104 is critical for thrombopoietin binding. The kinetics of signaling in response to a transmembrane domain-binding agonist are delayed in comparison to thrombopoietin. 2010 ISEH Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  4. Expression of nerve growth factor and its receptor, tyrosine kinase receptor A, in rooster testes.

    Science.gov (United States)

    Ma, Wei; Wang, Chunqiang; Su, Yuhong; Tian, Yumin; Zhu, Hongyan

    2015-10-01

    Nerve growth factor (NGF), which is required for the survival and differentiation of the nervous system, is also thought to play an important role in the development of mammalian reproductive tissues. To explore the function of NGF in the male reproductive system of non-mammalian animals, we determined the presence of NGF and its receptor, tyrosine kinase receptor A (TrkA), in rooster testes and investigated the regulation of NGF and TrkA expression by follicle-stimulating hormone (FSH). The mRNA and protein levels of NGF and TrkA in 6-week-old rooster testes were lower than those in 12-, 16- or 20-week age groups; levels were highest in the 16-week group. Immunohistochemistry showed that NGF and TrkA were both detected in spermatogonia, spermatocytes and spermatids. NGF immunoreactivity was observed in Leydig cells and strong TrkA signals were present in Sertoli cells. Meanwhile, FSH increased TrkA transcript levels in rooster testes in a dose-dependent manner. We present novel evidence for the developmental and FSH-regulated expression of the NGF/TrkA system, and our findings suggest that the NGF/TrkA system may play a prominent role in chicken spermatogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Personalized Radiation Oncology: Epidermal Growth Factor Receptor and Other Receptor Tyrosine Kinase Inhibitors.

    Science.gov (United States)

    Higgins, Geoff S; Krause, Mechthild; McKenna, W Gillies; Baumann, Michael

    Molecular biomarkers are currently evaluated in preclinical and clinical studies in order to establish predictors for treatment decisions in radiation oncology. The receptor tyrosine kinases (RTK) are described in the following text. Among them, the most data are available for the epidermal growth factor receptor (EGFR) that plays a major role for prognosis of patients after radiotherapy, but seems also to be involved in mechanisms of radioresistance, specifically in repopulation of tumour cells between radiotherapy fractions. Monoclonal antibodies against the EGFR improve locoregional tumour control and survival when applied during radiotherapy, however, the effects are heterogeneous and biomarkers for patient selection are warranted. Also other RTK´s such as c-Met and IGF-1R seem to play important roles in tumour radioresistance. Beside the potential to select patients for molecular targeting approaches combined with radiotherapy, studies are also needed to evluate radiotherapy adaptation approaches for selected patients, i.e. adaptation of radiation dose, or, more sophisticated, of target volumes.

  6. Nerve growth factor receptor immunostaining suggests an extrinsic origin for hypertrophic nerves in Hirschsprung's disease.

    OpenAIRE

    Kobayashi, H; O'Briain, D S; Puri, P

    1994-01-01

    The expression of nerve growth factor receptor in colon from 20 patients with Hirshsprung's disease and 10 controls was studied immunohistochemically. The myenteric and submucous plexuses in the ganglionic bowel and hypertrophic nerve trunks in the aganglionic bowel displayed strong expression of nerve growth factor receptor. The most important finding was the identical localisation of nerve growth factor receptor immunoreactivity on the perineurium of both hypertrophic nerve trunks in Hirshs...

  7. Autosomal dominant hypocalcemia with Bartter syndrome due to a novel activating mutation of calcium sensing receptor, Y829C.

    Science.gov (United States)

    Choi, Keun Hee; Shin, Choong Ho; Yang, Sei Won; Cheong, Hae Il

    2015-04-01

    The calcium sensing receptor (CaSR) plays an important role in calcium homeostasis. Activating mutations of CaSR cause autosomal dominant hypocalcemia by affecting parathyroid hormone secretion in parathyroid gland and calcium resorption in kidney. They can also cause a type 5 Bartter syndrome by inhibiting the apical potassium channel in the thick ascending limb of the loop of Henle in the kidney. This study presents a patient who had autosomal dominant hypocalcemia with Bartter syndrome due to an activating mutation Y829C in the transmembrane domain of the CaSR. Symptoms of hypocalcemia occurred 12 days after birth and medication was started immediately. Medullary nephrocalcinosis and basal ganglia calcification were found at 7 years old and at 17 years old. Three hypercalcemic episodes occurred, one at 14 years old and two at 17 years old. The Bartter syndrome was not severe while the serum calcium concentration was controlled, but during hypercalcemic periods, the symptoms of Bartter syndrome were aggravated.

  8. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper).

    Science.gov (United States)

    Liu, Zewen; Williamson, Martin S; Lansdell, Stuart J; Denholm, Ian; Han, Zhaojun; Millar, Neil S

    2005-06-14

    Neonicotinoids, such as imidacloprid, are nicotinic acetylcholine receptor (nAChR) agonists with potent insecticidal activity. Since its introduction in the early 1990s, imidacloprid has become one of the most extensively used insecticides for both crop protection and animal health applications. As with other classes of insecticides, resistance to neonicotinoids is a significant threat and has been identified in several pest species, including the brown planthopper, Nilaparvata lugens, a major rice pest in many parts of Asia. In this study, radioligand binding experiments have been conducted with whole-body membranes prepared from imidacloprid-susceptible and imidacloprid-resistant strains of N. lugens. The results reveal a much higher level of [3H]imidacloprid-specific binding to the susceptible strain than to the resistant strain (16.7 +/- 1.0 and 0.34 +/- 0.21 fmol/mg of protein, respectively). With the aim of understanding the molecular basis of imidacloprid resistance, five nAChR subunits (Nlalpha1-Nlalpha4 and Nlbeta1) have been cloned from N. lugens.A comparison of nAChR subunit genes from imidacloprid-sensitive and imidacloprid-resistant populations has identified a single point mutation at a conserved position (Y151S) in two nAChR subunits, Nlalpha1 and Nlalpha3. A strong correlation between the frequency of the Y151S point mutation and the level of resistance to imidacloprid has been demonstrated by allele-specific PCR. By expression of hybrid nAChRs containing N. lugens alpha and rat beta2 subunits, evidence was obtained that demonstrates that mutation Y151S is responsible for a substantial reduction in specific [3H]imidacloprid binding. This study provides direct evidence for the occurrence of target-site resistance to a neonicotinoid insecticide.

  9. Zebrafish bandoneon mutants display behavioral defects due to a mutation in the glycine receptor β-subunit

    Science.gov (United States)

    Hirata, Hiromi; Saint-Amant, Louis; Downes, Gerald B.; Cui, Wilson W.; Zhou, Weibin; Granato, Michael; Kuwada, John Y.

    2005-01-01

    Bilateral alternation of muscle contractions requires reciprocal inhibition between the two sides of the hindbrain and spinal cord, and disruption of this inhibition should lead to simultaneous activation of bilateral muscles. At 1 day after fertilization, wild-type zebrafish respond to mechanosensory stimulation with multiple fast alternating trunk contractions, whereas bandoneon (beo) mutants contract trunk muscles on both sides simultaneously. Similar simultaneous contractions are observed in wild-type embryos treated with strychnine, a blocker of the inhibitory glycine receptor (GlyR). This result suggests that glycinergic synaptic transmission is defective in beo mutants. Muscle voltage recordings confirmed that muscles on both sides of the trunk in beo are likely to receive simultaneous synaptic input from the CNS. Recordings from motor neurons revealed that glycinergic synaptic transmission was missing in beo mutants. Furthermore, immunostaining with an antibody against GlyR showed clusters in wild-type neurons but not in beo neurons. These data suggest that the failure of GlyRs to aggregate at synaptic sites causes impairment of glycinergic transmission and abnormal behavior in beo mutants. Indeed, mutations in the GlyR β-subunit, which are thought to be required for proper localization of GlyRs, were identified as the basis for the beo mutation. These data demonstrate that GlyRβ is essential for physiologically relevant clustering of GlyRs in vivo. Because GlyR mutations in humans lead to hyperekplexia, a motor disorder characterized by startle responses, the zebrafish beo mutant should be a useful animal model for this condition. PMID:15928085

  10. Antibody-induced dimerization activates the epidermal growth factor receptor tyrosine kinase

    NARCIS (Netherlands)

    Spaargaren, M.; Defize, L. H.; Boonstra, J.; de Laat, S. W.

    1991-01-01

    The relationship between epidermal growth factor receptor (EGF-R) protein tyrosine kinase activation and ligand-induced receptor dimerization was investigated using several bivalent anti-EGF-R antibodies directed against various receptor epitopes. In A431 membrane preparations and permeabilized

  11. A novel mutation in the calcium-sensing receptor gene in an Irish pedigree showing familial hypocalciuric hypercalcemia: a case report.

    LENUS (Irish Health Repository)

    Elamin, Wael F

    2010-01-01

    Familial hypocalciuric hypercalcemia is a rare autosomal dominant disorder characterized by asymptomatic and non-progressive hypercalcemia due to mutations of the calcium-sensing receptor gene. Disorders of calcium metabolism are very common in the elderly, and they can coexist with familial hypocalciuric hypercalcemia in affected families.

  12. Familial partial lipodystrophy phenotype resulting from a single-base mutation in deoxyribonucleic acid-binding domain of peroxisome proliferator-activated receptor-gamma

    NARCIS (Netherlands)

    Monajemi, Houshang; Zhang, Lin; Li, Gang; Jeninga, Ellen H.; Cao, Henian; Maas, Mario; Brouwer, C. B.; Kalkhoven, Eric; Stroes, Erik; Hegele, Robert A.; Leff, Todd

    2007-01-01

    CONTEXT: Familial partial lipodystrophy (FPLD) results from coding sequence mutations either in LMNA, encoding nuclear lamin A/C, or in PPARG, encoding peroxisome proliferator-activated receptor-gamma (PPARgamma). The LMNA form is called FPLD2 (MIM 151660) and the PPARG form is called FPLD3 (MIM

  13. Regulation of glucose transport and c-fos and egr-1 expression in cells with mutated or endogenous growth hormone receptors

    DEFF Research Database (Denmark)

    Gong, T W; Meyer, D J; Liao, J

    1998-01-01

    To identify mechanisms by which GH receptors (GHR) mediate downstream events representative of growth and metabolic responses to GH, stimulation by GH of c-fos and egr-1 expression and glucose transport activity were examined in Chinese hamster ovary (CHO) cells expressing mutated GHR. In CHO cel...

  14. A new LH receptor splice mutation responsible for male hypogonadism with subnormal sperm production in the propositus, and infertility with regular cycles in an affected sister

    NARCIS (Netherlands)

    M.W.P. Bruysters (Martijn); S. Christin-Maitre (Sophie); M. Verhoef-Post (Miriam); C. Sultan; J. Auger; I. Faugeron; L. Larue; S. Lumbroso; A.P.N. Themmen (Axel); P. Bouchard (Philippe)

    2008-01-01

    textabstractBACKGROUND: Inactivating LH receptor (LHR) mutations have been described so far in men as well as in women. Phenotypes in men have been variable with in nearly all cases impairment of sex differentiation or azoospermia. We report a milder reproductive phenotype both in a male patient and

  15. Frequency and Clinical Implication of the R450H Mutation in the Thyrotropin Receptor Gene in the Japanese Population Detected by Smart Amplification Process 2

    Science.gov (United States)

    Yanagawa, Yoshimaro; Aoki, Tomoyuki; Morimura, Tadashi; Araki, Osamu; Kimura, Takao; Ogiwara, Takayuki; Kotajima, Nobuo; Yanagawa, Masumi; Murakami, Masami

    2014-01-01

    In Japanese pediatric patients with thyrotropin (TSH) resistance, the R450H mutation in TSH receptor gene (TSHR) is occasionally observed. We studied the frequency and clinical implication of the R450H mutation in TSHR in the general population of Japanese adults using smart amplification process 2 (SmartAmp2). We designed SmartAmp2 primer sets to detect this mutation using a drop of whole blood. We analyzed thyroid function, antithyroid antibodies, and this mutation in 429 Japanese participants who had not been found to have thyroid disease. Two cases without antithyroid antibodies were heterozygous for the R450H mutation in TSHR. Thus, the prevalence of this mutation was 0.47% in the general population and 0.63% among those without antithyroid antibodies. Their serum TSH concentrations were higher than the average TSH concentration not only in subjects without antithyroid antibodies but also in those with antithyroid antibodies. The R450H mutation in TSHR is relatively common in the Japanese population and potentially affects thyroid function. The present study demonstrates that the SmartAmp2 method is useful to detect the R450H mutation in TSHR, which is one of the common causes of TSH resistance in the Japanese population. PMID:24895636

  16. [Novel nonsense mutation (p.Y113X) in the human growth hormone receptor gene in a Brazilian patient with Laron syndrome].

    Science.gov (United States)

    Diniz, Erik Trovão; Jorge, Alexander A L; Arnhold, Ivo J P; Rosenbloom, Arlan L; Bandeira, Francisco

    2008-11-01

    To date, about sixty different mutations within GH receptor (GHR) gene have been described in patients with GH insensitivity syndrome (GHI). In this report, we described a novel nonsense mutation of GHR. The patient was evaluated at the age of 6 yr, for short stature associated to clinical phenotype of GHI. GH, IGF-1, and GHBP levels were determined. The PCR products from exons 2-10 were sequenced. The patient had high GH (26 microg/L), low IGF-1 (22.5 ng/ml) and undetectable GHBP levels. The sequencing of GHR exon 5 disclosed adenine duplication at nucleotide 338 of GHR coding sequence (c.338dupA) in homozygous state. We described a novel mutation that causes a truncated GHR and a loss of receptor function due to the lack of amino acids comprising the transmembrane and intracellular regions of GHR protein, leading to GHI.

  17. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  18. Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development.

    Directory of Open Access Journals (Sweden)

    Chen Qian

    Full Text Available Platelet-derived growth factor receptor alpha (PDGFRα is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures.To address the temporal requirement of Pdgfra in embryonic development.We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies.Current study showed that (i conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5 resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives.Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b if mutations / sequence variations of these regulatory elements cause these anomalies.

  19. Pregnancy-associated osteoporosis with a heterozygous deactivating LDL receptor-related protein 5 (LRP5) mutation and a homozygous methylenetetrahydrofolate reductase (MTHFR) polymorphism.

    Science.gov (United States)

    Cook, Fiona J; Mumm, Steven; Whyte, Michael P; Wenkert, Deborah

    2014-04-01

    Pregnancy-associated osteoporosis (PAO) is a rare, idiopathic disorder that usually presents with vertebral compression fractures (VCFs) within 6 months of a first pregnancy and delivery. Spontaneous improvement is typical. There is no known genetic basis for PAO. A 26-year-old primagravida with a neonatal history of unilateral blindness attributable to hyperplastic primary vitreous sustained postpartum VCFs consistent with PAO. Her low bone mineral density (BMD) seemed to respond to vitamin D and calcium therapy, with no fractures after her next successful pregnancy. Investigation of subsequent fetal losses revealed homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism associated both with fetal loss and with osteoporosis (OP). Because her neonatal unilateral blindness and OP were suggestive of loss-of-function mutation(s) in the gene that encodes LDL receptor-related protein 5 (LRP5), LRP5 exon and splice site sequencing was also performed. This revealed a unique heterozygous 12-bp deletion in exon 21 (c.4454_4465del, p.1485_1488del SSSS) in the patient, her mother and sons, but not her father or brother. Her mother had a normal BMD, no history of fractures, PAO, ophthalmopathy, or fetal loss. Her two sons had no ophthalmopathy and no skeletal issues. Her osteoporotic father (with a family history of blindness) and brother had low BMDs first documented at ages ∼40 and 32 years, respectively. Serum biochemical and bone turnover studies were unremarkable in all subjects. We postulate that our patient's heterozygous LRP5 mutation together with her homozygous MTHFR polymorphism likely predisposed her to low peak BMD. However, OP did not cosegregate in her family with the LRP5 mutation, the homozygous MTHFR polymorphism, or even the combination of the two, implicating additional genetic or nongenetic factors in her PAO. Nevertheless, exploration for potential genetic contributions to PAO may explain part of the pathogenesis of this

  20. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families

    Science.gov (United States)

    Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy

    2017-01-01

    Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular

  1. Developmental regulation of human truncated nerve growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R. (Abbott Laboratories, Abbott Park, IL (USA))

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system.

  2. Developmental regulation of human truncated nerve growth factor receptor

    International Nuclear Information System (INIS)

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R.

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system

  3. Risk scaling factors from inactivation to chromosome aberrations, mutations and oncogenic transformations in mammalian cells

    International Nuclear Information System (INIS)

    Alkaharam, A.S.; Watt, D.E.

    1997-01-01

    Analyses of bio-effect mechanisms of damage to mammalian cells in terms of the quality parameter 'mean free path for primary ionisation', for heavy charged particles, strongly suggests that there is a common mechanism for the biological endpoints of chromosome aberrations, mutations and oncogenic transformation. The lethal lesions are identified as unrepaired double-strand breaks in the intracellular DNA. As data for the various endpoints studied can be represented in a unified scheme, for any radiation type, it follows that radiation risk factors can be determined on the basis of simple ratios to the inactivation cross sections. There are intrinsic physical reasons why neutrons can never reach the saturation level of heavier particles for equal fluences. The probabilities of risk with respect to inactivation, for chromosome dicentrics, mutation of the HPRT gene and of oncogenic transformation are respectively 0.24, 5.8 x 10 -5 , and 4.1 x 10 -3 . (author)

  4. TBECH, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane, alters androgen receptor regulation in response to mutations associated with prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kharlyngdoh, Joubert Banjop; Asnake, Solomon; Pradhan, Ajay; Olsson, Per-Erik, E-mail: per-erik.olsson@oru.se

    2016-09-15

    Point mutations in the AR ligand-binding domain (LBD) can result in altered AR structures leading to changes of ligand specificity and functions. AR mutations associated to prostate cancer (PCa) have been shown to result in receptor activation by non-androgenic substances and anti-androgenic drugs. Two AR mutations known to alter the function of anti-androgens are the AR{sub T877A} mutation, which is frequently detected mutation in PCa tumors and the AR{sub W741C} that is rare and has been derived in vitro following exposure of cells to the anti-androgen bicalutamide. AR activation by non-androgenic environmental substances has been suggested to affect PCa progression. In the present study we investigated the effect of AR mutations (AR{sub W741C} and AR{sub T877A}) on the transcriptional activation following exposure of cells to an androgenic brominated flame retardant, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH, also named DBE-DBCH). The AR mutations resulted in higher interaction energies and increased transcriptional activation in response to TBECH diastereomer exposures. The AR{sub T877A} mutation rendered AR highly responsive to low levels of DHT and TBECH and led to increased AR nuclear translocation. Gene expression analysis showed a stronger induction of AR target genes in LNCaP cells (AR{sub T877A}) compared to T-47D cells (AR{sub WT}) following TBECH exposure. Furthermore, AR knockdown experiments confirmed the AR dependency of these responses. The higher sensitivity of AR{sub T877A} and AR{sub W741C} to low levels of TBECH suggests that cells with these AR mutations are more susceptible to androgenic endocrine disrupters. - Highlights: • TBECH, is an endocrine disrupting compound that differ in activity depending on AR structure and sequence. • TBECH interaction with the human AR-LBD containing the mutations W741C and T877A is increased compared to the wild type receptor • The mutations, W741C and T877A, are more potent than the wild type

  5. A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection.

    Directory of Open Access Journals (Sweden)

    Julian Taranda

    2009-01-01

    Full Text Available The transduction of sound in the auditory periphery, the cochlea, is inhibited by efferent cholinergic neurons projecting from the brainstem and synapsing directly on mechanosensory hair cells. One fundamental question in auditory neuroscience is what role(s this feedback plays in our ability to hear. In the present study, we have engineered a genetically modified mouse model in which the magnitude and duration of efferent cholinergic effects are increased, and we assess the consequences of this manipulation on cochlear function. We generated the Chrna9L9'T line of knockin mice with a threonine for leucine change (L9'T at position 9' of the second transmembrane domain of the alpha9 nicotinic cholinergic subunit, rendering alpha9-containing receptors that were hypersensitive to acetylcholine and had slower desensitization kinetics. The Chrna9L9'T allele produced a 3-fold prolongation of efferent synaptic currents in vitro. In vivo, Chrna9L9'T mice had baseline elevation of cochlear thresholds and efferent-mediated inhibition of cochlear responses was dramatically enhanced and lengthened: both effects were reversed by strychnine blockade of the alpha9alpha10 hair cell nicotinic receptor. Importantly, relative to their wild-type littermates, Chrna9(L9'T/L9'T mice showed less permanent hearing loss following exposure to intense noise. Thus, a point mutation designed to alter alpha9alpha10 receptor gating has provided an animal model in which not only is efferent inhibition more powerful, but also one in which sound-induced hearing loss can be restrained, indicating the ability of efferent feedback to ameliorate sound trauma.

  6. Acquired RhD mosaicism identifies fibrotic transformation of thrombopoietin receptor-mutated essential thrombocythemia.

    Science.gov (United States)

    Montemayor-Garcia, Celina; Coward, Rebecca; Albitar, Maher; Udani, Rupa; Jain, Prachi; Koklanaris, Eleftheria; Battiwalla, Minoo; Keel, Siobán; Klein, Harvey G; Barrett, A John; Ito, Sawa

    2017-09-01

    Acquired copy-neutral loss of heterozygosity has been described in myeloid malignant progression with an otherwise normal karyotype. A 65-year-old woman with MPL-mutated essential thrombocythemia and progression to myelofibrosis was noted upon routine pretransplant testing to have mixed field reactivity with anti-D and an historic discrepancy in RhD type. The patient had never received transfusions or transplantation. Gel immunoagglutination revealed group A red blood cells and a mixed-field reaction for the D phenotype, with a predominant D-negative population and a small subset of circulating red blood cells carrying the D antigen. Subsequent genomic microarray single nucleotide polymorphism profiling revealed copy-neutral loss of heterozygosity of chromosome 1 p36.33-p34.2, a known molecular mechanism underlying fibrotic progression of MPL-mutated essential thrombocythemia. The chromosomal region affected by this copy-neutral loss of heterozygosity encompassed the RHD, RHCE, and MPL genes. We propose a model of chronological molecular events that is supported by RHD zygosity assays in peripheral lymphoid and myeloid-derived cells. Copy-neutral loss of heterozygosity events that lead to clonal selection and myeloid malignant progression may also affect the expression of adjacent unrelated genes, including those encoding for blood group antigens. Detection of mixed-field reactions and investigation of discrepant blood typing results are important for proper transfusion support of these patients and can provide useful surrogate markers of myeloproliferative disease progression. © 2017 AABB.

  7. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors

    DEFF Research Database (Denmark)

    Pandey, A; Podtelejnikov, A V; Blagoev, B

    2000-01-01

    Oligomerization of receptor protein tyrosine kinases such as the epidermal growth factor receptor (EGFR) by their cognate ligands leads to activation of the receptor. Transphosphorylation of the receptor subunits is followed by the recruitment of signaling molecules containing src homology 2 (SH2...

  8. Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor receptor and insulin receptor expression in equine tissue

    Directory of Open Access Journals (Sweden)

    Stephen B. Hughes

    2013-08-01

    Full Text Available The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-like growth factor-binding proteins and insulin are essential to muscle metabolism and most aspects of male and female reproduction. Insulin-like growth factor and insulin play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. In order to better understand the local factors that regulate equine physiology, such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation, real-time reverse transcription polymerase chain reaction assays for quantification of equine insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were developed. The assays were sensitive: 192 copies/µLand 891 copies/µL for insulin-like growth factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95%limit of detection, and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-like growth factor 1 receptor and six logs for insulin receptor. This allowed for analysis of very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in endometrium, lung and spleen samples, whilst high concentrations were detected in heart, muscle and kidney samples, this was most likely due to the high level of glucose metabolism and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid expression have been shown to work on equine tissue and will contribute to the understanding of insulin and insulin-like growth factor 1

  9. Hemophilia B with mutations at glycine-48 of factor IX exhibited delayed activation by the factor VIIa-tissue factor complex.

    Science.gov (United States)

    Wu, P C; Hamaguchi, N; Yu, Y S; Shen, M C; Lin, S W

    2000-10-01

    Gly-48 is in the conserved DGDQC sequence (residues 47-51 of human factor IX) of the first EGF (EGF-1)-like domain of factor IX. The importance of the Gly-48 is manifested by two hemophilia B patients; factor IXTainan and factor IXMalmo27, with Gly-48 replaced by arginine (designated IXG48R) and valine (IXG48V), respectively. Both patients were CRM+ exhibiting mild hemophilic episodes with 25% (former) and 19% (latter) normal clotting activities. We characterize both factor IX variants to show the roles of Gly-48 and the conservation of the DGDQC sequence in factor IX. Purified plasma and recombinant factor IX variants exhibited approximately 26%-27% normal factor IX's clotting activities with G48R or G48V mutation. Both variants depicted normal quenching of the intrinsic fluorescence by increasing concentrations of calcium ions and Tb3+, indicating that arginine and valine substitution for Gly-48 did not perturb the calcium site in the EGF-1 domain. Activation of both mutants by factor XIa appeared normal. The reduced clotting activity of factors IXG48R and IXG48V was attributed to the failure of both mutants to cleavage factor X: in the presence of only phospholipids and calcium ions, both mutants showed a 4 to approximately 7-fold elevation in Km, and by adding factor VIIIa to the system, although factor VIIIa potentiated the activation of factor X by the mutants factor IXaG48R and factor IXaG48V, a 2 to approximately 3-fold decrease in the catalytic function was observed with the mutant factor IXa's, despite that they bound factor VIIIa on the phospholipid vesicles with only slightly reduced affinity when compared to wild-type factor IXa. The apparent Kd for factor VIIIa binding was 0.83 nM for normal factor IXa, 1.74 nM for IXaG48R and 1.4 nM for IXaG48V. Strikingly, when interaction with the factor VIIa-TF complex was examined, both mutations were barely activated by the VIIa-TF complex and they also showed abnormal interaction with VIIa-TF in bovine

  10. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling

    Directory of Open Access Journals (Sweden)

    Inês Gomes Ferreira

    2018-02-01

    Full Text Available Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1 by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2 through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3 by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.

  11. Mutations in the Primary Sigma Factor σA and Termination Factor Rho That Reduce Susceptibility to Cell Wall Antibiotics

    Science.gov (United States)

    Lee, Yong Heon

    2014-01-01

    Combinations of glycopeptides and β-lactams exert synergistic antibacterial activity, but the evolutionary mechanisms driving resistance to both antibiotics remain largely unexplored. By repeated subculturing with increasing vancomycin (VAN) and cefuroxime (CEF) concentrations, we isolated an evolved strain of the model bacterium Bacillus subtilis with reduced susceptibility to both antibiotics. Whole-genome sequencing revealed point mutations in genes encoding the major σ factor of RNA polymerase (sigA), a cell shape-determining protein (mreB), and the ρ termination factor (rho). Genetic-reconstruction experiments demonstrated that the G-to-C substitution at position 336 encoded by sigA (sigAG336C), in the domain that recognizes the −35 promoter region, is sufficient to reduce susceptibility to VAN and works cooperatively with the rhoG56C substitution to increase CEF resistance. Transcriptome analyses revealed that the sigAG336C substitution has wide-ranging effects, including elevated expression of the general stress σ factor (σB) regulon, which is required for CEF resistance, and decreased expression of the glpTQ genes, which leads to fosfomycin (FOS) resistance. Our findings suggest that mutations in the core transcriptional machinery may facilitate the evolution of resistance to multiple cell wall antibiotics. PMID:25112476

  12. Association of Exon 10A and 10B inactivating mutation of follicle stimulating hormone receptor gene (FSHR) and Polycystic Ovarian Syndrome in Vellore cohort

    Science.gov (United States)

    Sekar, Nishu; Kulkarni, Rucha; Ozalkar, Sharvari; Prabhu, Yogamaya D.; Renu, Kaviyarasi; Ramgir, Shalaka S.; Abilash, V. G.

    2017-11-01

    Polycystic ovarian syndrome is the most common heterogenous endocrine disorder in women. Follicle stimulating hormone receptor is associated with normal development as well as maturation of follicles and triggers estrogen production in granulosa cells of the ovary. Inactivating mutation in FSHR gene correlated with reduction of ovarian function in women is due to damage to receptor function. This study aims to investigate whether inactivating mutations, in follicle stimulating hormone receptor gene is related to polycystic ovarian morphology in women with PCOS. Genomic DNA isolated from 15 subjects from Sandhya Hospital, Vellore (10 patients with PCOS and 5 healthy controls) was taken for this study. Patient data included a clinical report, hormonal levels, and ovarian morphological details. DNA isolation was followed by DNA amplification by polymerase chain reaction using Exon 10 A and Exon 10 B primers. The PCR-RFLP analysis was performed using Dde1 restriction enzyme. Here we discuss inactivating mutation found in Exon 10 of FSHR gene in patients with PCOS.The absence of inactivating mutation was observed through PCR-RFLP study on Exon 10A and Exon 10B.

  13. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study.

    Directory of Open Access Journals (Sweden)

    Yunlei Li

    2016-12-01

    Full Text Available Pediatric acute lymphoblastic leukemia (ALL is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment.We performed whole genome sequencing on paired pre-treatment (diagnostic and post-treatment (remission samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146 of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX. Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we expressed wild

  14. Heterogeneous Pulmonary Phenotypes Associated With Mutations in the Thyroid Transcription Factor Gene NKX2-1

    Science.gov (United States)

    Deterding, Robin R.; Wert, Susan E.; White, Frances V.; Dishop, Megan K.; Alfano, Danielle N.; Halbower, Ann C.; Planer, Benjamin; Stephan, Mark J.; Uchida, Derek A.; Williames, Lee D.; Rosenfeld, Jill A.; Lebel, Robert Roger; Young, Lisa R.; Cole, F. Sessions; Nogee, Lawrence M.

    2013-01-01

    Background: Mutations in the gene encoding thyroid transcription factor, NKX2-1, result in neurologic abnormalities, hypothyroidism, and neonatal respiratory distress syndrome (RDS) that together are known as the brain-thyroid-lung syndrome. To characterize the spectrum of associated pulmonary phenotypes, we identified individuals with mutations in NKX2-1 whose primary manifestation was respiratory disease. Methods: Retrospective and prospective approaches identified infants and children with unexplained diffuse lung disease for NKX2-1 sequencing. Histopathologic results and electron micrographs were assessed, and immunohistochemical analysis for surfactant-associated proteins was performed in a subset of 10 children for whom lung tissue was available. Results: We identified 16 individuals with heterozygous missense, nonsense, and frameshift mutations and five individuals with heterozygous, whole-gene deletions of NKX2-1. Neonatal RDS was the presenting pulmonary phenotype in 16 individuals (76%), interstitial lung disease in four (19%), and pulmonary fibrosis in one adult family member. Altogether, 12 individuals (57%) had the full triad of neurologic, thyroid, and respiratory manifestations, but five (24%) had only pulmonary symptoms at the time of presentation. Recurrent respiratory infections were a prominent feature in nine subjects. Lung histopathology demonstrated evidence of disrupted surfactant homeostasis in the majority of cases, and at least five cases had evidence of disrupted lung growth. Conclusions: Patients with mutations in NKX2-1 may present with pulmonary manifestations in the newborn period or during childhood when thyroid or neurologic abnormalities are not apparent. Surfactant dysfunction and, in more severe cases, disrupted lung development are likely mechanisms for the respiratory disease. PMID:23430038

  15. Comparative proteomic analysis to dissect differences in signal transduction in activating TSH receptor mutations in the thyroid.

    Science.gov (United States)

    Krause, Kerstin; Boisnard, Alexandra; Ihling, Christian; Ludgate, Marian; Eszlinger, Markus; Krohn, Knut; Sinz, Andrea; Fuhrer, Dagmar

    2012-02-01

    In the thyroid, cAMP controls both thyroid growth and function. Gain-of-function mutations in the thyroid-stimulating hormone receptor (TSHR) lead to constitutive cAMP formation and are a major cause of autonomous thyroid adenomas. The impact of activating TSHR mutations on the signal transduction network of the thyrocyte is not fully understood. To gain more insights into constitutive TSHR signaling, rat thyrocytes (FRTL-5 cells) with stable expression of three activating TSHR mutants (mutTSHR: A623I, L629F and Del613-621), which differ in their functional characteristics in vitro, were analyzed by a quantitative proteomic approach and compared to the wild-type TSHR (WT-TSHR). This study revealed (1) differences in the expression of Rab proteins suggesting an increased TSHR internalization in mutTSHR but not in the WT-TSHR; (2) differential stimulation of PI3K/Akt signaling in mutTSHR vs. WT-TSHR cells, (3) activation of Epac, impairing short-time Akt phosphorylation in both, mutTSHR and WT-TSHR cells. Based on the analysis of global changes in protein expression patterns, our findings underline the complexity of gain-of-function TSHR signaling in thyrocytes, which extends beyond pure cAMP and/or IP formation. Moreover, evidence for augmented endocytosis in the mutTSHR, adds to a new concept of TSHR signaling in thyroid autonomy. Further studies are required to clarify whether the observed differences in Rab, PI3K and Epac signaling may contribute to differences in the phenotypic presentation, i.e. stimulation of function and growth of thyroid autonomy in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Usefulness of BCOR gene mutation as a prognostic factor in acute myeloid leukemia with intermediate cytogenetic prognosis.

    Science.gov (United States)

    Terada, Kazuki; Yamaguchi, Hiroki; Ueki, Toshimitsu; Usuki, Kensuke; Kobayashi, Yutaka; Tajika, Kenji; Gomi, Seiji; Kurosawa, Saiko; Saito, Riho; Furuta, Yutaka; Miyadera, Keiki; Tokura, Taichiro; Marumo, Atushi; Omori, Ikuko; Sakaguchi, Masahiro; Fujiwara, Yusuke; Yui, Shunsuke; Ryotokuji, Takeshi; Arai, Kunihito; Kitano, Tomoaki; Wakita, Satoshi; Fukuda, Takahiro; Inokuchi, Koiti

    2018-04-16

    BCOR gene is a transcription regulatory factor that plays an essential role in normal hematopoiesis. The wider introduction of next-generation sequencing technology has led to reports in recent years of mutations in the BCOR gene in acute myeloid leukemia (AML), but the related clinical characteristics and prognosis are not sufficiently understood. We investigated the clinical characteristics and prognosis of 377 de novo AML cases with BCOR or BCORL1 mutation. BCOR or BCORL1 gene mutations were found in 28 cases (7.4%). Among cases aged 65 years or below that were also FLT3-ITD-negative and in the intermediate cytogenetic prognosis group, BCOR or BCORL1 gene mutations were observed in 11% of cases (12 of 111 cases), and this group had significantly lower 5-year overall survival (OS) (13.6% vs. 55.0%, P=0.0021) and relapse-free survival (RFS) (14.3% vs. 44.5%, P=0.0168) compared to cases without BCOR or BCORL1 gene mutations. Multivariate analysis demonstrated that BCOR mutations were an independent unfavorable prognostic factor (P=0.0038, P=0.0463) for both OS and RFS. In cases of AML that are FLT3-ITD-negative, aged 65 years or below, and in the intermediate cytogenetic prognosis group, which are considered to have relatively favorable prognosis, BCOR gene mutations appear to be an important prognostic factor. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  17. Resistance to thyroid hormone associated with a novel mutation of the thyroid β receptor gene in a four-year-old female

    Directory of Open Access Journals (Sweden)

    Breuer Christopher K

    2011-06-01

    Full Text Available Abstract Resistance to thyroid hormone (RTH is a rare syndrome of reduced responsiveness of target tissues to thyroid hormone and is caused mutation in the thyroid β receptor gene. We report a novel mutation, E445X, causing RTH in a 4-year old girl. The patient exhibited extreme signs and symptoms of RTH at an early age, and had a large compressive goiter. Following total extracapsular thyroidectomy, upper airway compression was relieved and symptoms of hyperthyroidism improved. This case appears to be the youngest child recorded to have undergone total thyroidectomy for RTH. Post-operative TSH elevations were managed with every-other-day triiodothyronine therapy.

  18. The Pseudo signal peptide of the corticotropin-releasing factor receptor type 2A prevents receptor oligomerization.

    Science.gov (United States)

    Teichmann, Anke; Rutz, Claudia; Kreuchwig, Annika; Krause, Gerd; Wiesner, Burkhard; Schülein, Ralf

    2012-08-03

    N-terminal signal peptides mediate the interaction of native proteins with the translocon complex of the endoplasmic reticulum membrane and are cleaved off during early protein biogenesis. The corticotropin-releasing factor receptor type 2a (CRF(2(a))R) possesses an N-terminal pseudo signal peptide, which represents a so far unique domain within the large protein family of G protein-coupled receptors (GPCRs). In contrast to a conventional signal peptide, the pseudo signal peptide remains uncleaved and consequently forms a hydrophobic extension at the N terminus of the receptor. The functional consequence of the presence of the pseudo signal peptide is not understood. Here, we have analyzed the significance of this domain for receptor dimerization/oligomerization in detail. To this end, we took the CRF(2(a))R and the homologous corticotropin-releasing factor receptor type 1 (CRF(1)R) possessing a conventional cleaved signal peptide and conducted signal peptide exchange experiments. Using single cell and single molecule imaging methods (fluorescence resonance energy transfer and fluorescence cross-correlation spectroscopy, respectively) as well as biochemical experiments, we obtained two novel findings; we could show that (i) the CRF(2(a))R is expressed exclusively as a monomer, and (ii) the presence of the pseudo signal peptide prevents its oligomerization. Thus, we have identified a novel functional domain within the GPCR protein family, which plays a role in receptor oligomerization and which may be useful to study the functional significance of this process in general.

  19. Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae

    Directory of Open Access Journals (Sweden)

    Field Linda M

    2011-05-01

    Full Text Available Abstract Background Myzus persicae is a globally important aphid pest with a history of developing resistance to insecticides. Unusually, neonicotinoids have remained highly effective as control agents despite nearly two decades of steadily increasing use. In this study, a clone of M. persicae collected from southern France was found, for the first time, to exhibit sufficiently strong resistance to result in loss of the field effectiveness of neonicotinoids. Results Bioassays, metabolism and gene expression studies implied the presence of two resistance mechanisms in the resistant clone, one based on enhanced detoxification by cytochrome P450 monooxygenases, and another unaffected by a synergist that inhibits detoxifying enzymes. Binding of radiolabeled imidacloprid (a neonicotinoid to whole body membrane preparations showed that the high affinity [3H]-imidacloprid binding site present in susceptible M. persicae is lost in the resistant clone and the remaining lower affinity site is altered compared to susceptible clones. This confers a significant overall reduction in binding affinity to the neonicotinoid target: the nicotinic acetylcholine receptor (nAChR. Comparison of the nucleotide sequence of six nAChR subunit (Mpα1-5 and Mpβ1 genes from resistant and susceptible aphid clones revealed a single point mutation in the loop D region of the nAChR β1 subunit of the resistant clone, causing an arginine to threonine substitution (R81T. Conclusion Previous studies have shown that the amino acid at this position within loop D is a key determinant of neonicotinoid binding to nAChRs and this amino acid change confers a vertebrate-like character to the insect nAChR receptor and results in reduced sensitivity to neonicotinoids. The discovery of the mutation at this position and its association with the reduced affinity of the nAChR for imidacloprid is the first example of field-evolved target-site resistance to neonicotinoid insecticides and also

  20. The tyrosine kinase receptor Tyro3 enhances lifespan and neuropeptide Y (Npy neuron survival in the mouse anorexia (anx mutation

    Directory of Open Access Journals (Sweden)

    Dennis Y. Kim

    2017-05-01

    Full Text Available Severe appetite and weight loss define the eating disorder anorexia nervosa, and can also accompany the progression of some neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS. Although acute loss of hypothalamic neurons that produce appetite-stimulating neuropeptide Y (Npy and agouti-related peptide (Agrp in adult mice or in mice homozygous for the anorexia (anx mutation causes aphagia, our understanding of the factors that help maintain appetite regulatory circuitry is limited. Here we identify a mutation (C19T that converts an arginine to a tryptophan (R7W in the TYRO3 protein tyrosine kinase 3 (Tyro3 gene, which resides within the anx critical interval, as contributing to the severity of anx phenotypes. Our observation that, like Tyro3−/− mice, anx/anx mice exhibit abnormal secondary platelet aggregation suggested that the C19T Tyro3 variant might have functional consequences. Tyro3 is expressed in the hypothalamus and other brain regions affected by the anx mutation, and its mRNA localization appeared abnormal in anx/anx brains by postnatal day 19 (P19. The presence of wild-type Tyro3 transgenes, but not an R7W-Tyro3 transgene, doubled the weight and lifespans of anx/anx mice and near-normal numbers of hypothalamic Npy-expressing neurons were present in Tyro3-transgenic anx/anx mice at P19. Although no differences in R7W-Tyro3 signal sequence function or protein localization were discernible in vitro, distribution of R7W-Tyro3 protein differed from that of Tyro3 protein in the cerebellum of transgenic wild-type mice. Thus, R7W-Tyro3 protein localization deficits are only detectable in vivo. Further analyses revealed that the C19T Tyro3 mutation is present in a few other mouse strains, and hence is not the causative anx mutation, but rather an anx modifier. Our work shows that Tyro3 has prosurvival roles in the appetite regulatory circuitry and could also provide useful insights towards the development of interventions

  1. A transcription factor active on the epidermal growth factor receptor gene

    International Nuclear Information System (INIS)

    Kageyama, R.; Merlino, G.T.; Pastan, I.

    1988-01-01

    The authors have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. They found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO 4 /polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I footprinting and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR

  2. Evolutionary pattern of mutation in the factor IX genes of great apes: How does it compare to the pattern of recent germline mutation in patients with hemophilia B?

    Energy Technology Data Exchange (ETDEWEB)

    Grouse, L.H.; Ketterling, R.P.; Sommer, S.S. [Mayo Clinic/Foundation, Rochester, MN (United States)

    1994-09-01

    Most mutations causing hemophilia B have arisen within the past 150 years. By correcting for multiple biases, the underlying rates of spontaneous germline mutation have been estimated in the factor IX gene. From these rates, an underlying pattern of mutation has emerged. To determine if this pattern compares to a underlying pattern found in the great apes, sequence changes were determined in intronic regions of the factor IX gene. The following species were studied: Gorilla gorilla, Pan troglodytes (chimpanzee), Pongo pygmacus (orangutan) and Homo sapiens. Intronic sequences at least 200 bp from a splice junction were randomly chosen, amplified by cross-species PCR, and sequenced. These regions are expected to be subject to little if any selective pressure. Early diverged species of Old World monkeys were also studied to help determine the direction of mutational changes. A total of 62 sequence changes were observed. Initial data suggest that the average pattern since evolution of the great apes has a paucity of transitions at CpG dinucleotides and an excess of microinsertions to microdeletions when compared to the pattern observed in humans during the past 150 years (p<.05). A larger study is in progress to confirm these results.

  3. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  4. Host factors that modify Plasmodium falciparum adhesion to endothelial receptors.

    Science.gov (United States)

    Mahamar, Almahamoudou; Attaher, Oumar; Swihart, Bruce; Barry, Amadou; Diarra, Bacary S; Kanoute, Moussa B; Cisse, Kadidia B; Dembele, Adama B; Keita, Sekouba; Gamain, Benoît; Gaoussou, Santara; Issiaka, Djibrilla; Dicko, Alassane; Duffy, Patrick E; Fried, Michal

    2017-10-24

    P. falciparum virulence is related to adhesion and sequestration of infected erythrocytes (IE) in deep vascular beds, but the endothelial receptors involved in severe malaria remain unclear. In the largest ever study of clinical isolates, we surveyed adhesion of freshly collected IE from children under 5 years of age in Mali to identify novel vascular receptors, and examined the effects of host age, hemoglobin type, blood group and severe malaria on levels of IE adhesion to a panel of endothelial receptors. Several novel molecules, including integrin α3β1, VE-cadherin, ICAM-2, junctional adhesion molecule-B (JAM-B), laminin, and cellular fibronectin, supported binding of IE from children. Severe malaria was not significantly associated with levels of IE adhesion to any of the 19 receptors. Hemoglobin AC, which reduces severe malaria risk, reduced IE binding to the receptors CD36 and integrin α5β1, while hemoglobin AS did not modify IE adhesion to any receptors. Blood groups A, AB and B significantly reduced IE binding to ICAM-1. Severe malaria risk varies with age, but age significantly impacted the level of IE binding to only a few receptors: IE binding to JAM-B decreased with age, while binding to CD36 and integrin α5β1 significantly increased with age.

  5. Identification and Functional Characterization of a Novel Mutation in the Human Calcium-Sensing Receptor That Co-Segregates With Autosomal-Dominant Hypocalcemia

    Directory of Open Access Journals (Sweden)

    Anne Qvist Rasmussen

    2018-04-01

    Full Text Available The human calcium-sensing receptor (CASR is the key controller of extracellular Cao2+ homeostasis, and different mutations in the CASR gene have been linked to different calcium diseases, such as familial hypocalciuric hypercalcemia, severe hyperparathyroidism, autosomal-dominant hypocalcemia (ADH, and Bartter’s syndrome type V. In this study, two generations of a family with biochemically and clinically confirmed ADH who suffered severe muscle pain, arthralgia, tetany, abdominal pain, and fatigue were evaluated for mutations in the CASR gene. The study comprises genotyping of all family members, functional characterization of a potential mutant receptor by in vitro analysis related to the wild-type receptor to reveal an association between the genotype and phenotype in the affected family members. The in vitro analysis of functional characteristics includes measurements of inositol trisphosphate accumulation, Ca2+ mobilization in response to [Ca2+]o-stimulation and receptor expression. The results reveal a significant leftward shift of inositol trisphosphate accumulation as a result of the “gain-of-function” mutant receptor and surprisingly a normalization of the response in (Ca2+i release in the downstream pathway and additionally the maximal response of (Ca2+i release was significantly decreased compared to the wild type. However, no gross differences were seen in D126V and the D126V/WT CASR dimeric >250 kDa band expression compared to the WT receptor, however, the D126V and D126V/WT CASR immature ~140 kDa species appear to have reduced expression compared to the WT receptor. In conclusion, in this study, a family with a clinical diagnosis of ADH in two generations was evaluated to identify a mutation in the CASR gene and reveal an association between genotype and phenotype in the affected family members. The clinical condition was caused by a novel, activating, missense mutation (D126V in the CASR gene and the in vitro functional

  6. Gating at the mouth of the acetylcholine receptor channel: energetic consequences of mutations in the alphaM2-cap.

    Directory of Open Access Journals (Sweden)

    Pallavi A Bafna

    2008-06-01

    Full Text Available Gating of nicotinic acetylcholine receptors from a C(losed to an O(pen conformation is the initial event in the postsynaptic signaling cascade at the vertebrate nerve-muscle junction. Studies of receptor structure and function show that many residues in this large, five-subunit membrane protein contribute to the energy difference between C and O. Of special interest are amino acids located at the two transmitter binding sites and in the narrow region of the channel, where CO gating motions generate a lowhigh change in the affinity for agonists and in the ionic conductance, respectively. We have measured the energy changes and relative timing of gating movements for residues that lie between these two locations, in the C-terminus of the pore-lining M2 helix of the alpha subunit ('alphaM2-cap'. This region contains a binding site for non-competitive inhibitors and a charged ring that influences the conductance of the open pore. alphaM2-cap mutations have large effects on gating but much smaller effects on agonist binding, channel conductance, channel block and desensitization. Three alphaM2-cap residues (alphaI260, alphaP265 and alphaS268 appear to move at the outset of channel-opening, about at the same time as those at the transmitter binding site. The results suggest that the alphaM2-cap changes its secondary structure to link gating motions in the extracellular domain with those in the channel that regulate ionic conductance.

  7. Two mutations in the same low-density lipoprotein receptor allele act in synergy to reduce receptor function in heterozygous familial hypercholesterolemia

    DEFF Research Database (Denmark)

    Jensen, H K; Jensen, T G; Faergeman, O

    1997-01-01

    Mutations in genes are not necessarily pathogenic. Expression of mutant genes in cells can therefore be required to demonstrate that mutations in fact disturb protein function. This applies especially to missense mutations, which cause an amino acid to be replaced by another amino acid. In the pr...

  8. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    Science.gov (United States)

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  9. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    Science.gov (United States)

    Sharkhuu, Altanbadralt; Narasimhan, Meena L; Merzaban, Jasmeen S; Bressan, Ray A; Weller, Steve; Gehring, Chris

    2014-01-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide. PMID:24654847

  10. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    KAUST Repository

    Sharkhuu, Altanbadralt

    2014-06-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.

  11. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    KAUST Repository

    Sharkhuu, Altanbadralt; Narasimhan, Meena L.; Merzaban, Jasmeen; Bressan, Ray A.; Weller, Steve; Gehring, Christoph A

    2014-01-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.

  12. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study

    Science.gov (United States)

    Stubbs, Andrew P.; Vroegindeweij, Eric M.; Smits, Willem K.; van Marion, Ronald; Dinjens, Winand N. M.; Horstmann, Martin; Kuiper, Roland P.; Zaman, Guido J. R.; van der Spek, Peter J.; Pieters, Rob; Meijerink, Jules P. P.

    2016-01-01

    Background Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL) represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment. Methods and Findings We performed whole genome sequencing on paired pre-treatment (diagnostic) and post-treatment (remission) samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R) signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146) of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX). Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we

  13. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    International Nuclear Information System (INIS)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-01-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol 125 I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function

  14. Tumorigenesis of K-ras mutation in human endometrial carcinoma via upregulation of estrogen receptor.

    Science.gov (United States)

    Tu, Zheng; Gui, Liming; Wang, Jianliu; Li, Xiaoping; Sun, Pengming; Wei, Lihui

    2006-05-01

    To investigate the tumorigenesis of mutant [12Asp]-K-ras in endometrial carcinoma and its relationship with ER. We constructed pcDI-[12Asp]K-ras4B by inserting full-length [12Asp]K-ras4B from human endometrial carcinoma Hec-1A cells, into pcDI vector. Cell proliferation of NIH3T3 after transfection with pcDI-[12Asp]K-ras4B was measured by MTT assay. The cell transformation was determined by colony formation and tumor nodule development. [12Asp]-K-ras4B-NIH3T3 cells were transfected with constitutively active pCMV-RafCAAX and dominant-negative pCMV-RafS621A. Cell growth was measured by MTT assay and [3H]thymidine incorporation. After transfected with pcDI-[12Asp]K-ras4B or pCMV-RafS621A, the cells were harvested for Western blot and reporter assay to determine the expression and transcriptional activity of ERalpha and ERbeta, respectively. [12Asp]-K-ras4B enhanced NIH3T3 cells proliferation after 48 h post-transfection (P ras4B-NIH3T3 cells (13.48%) than pcDI-NIH3T3 (4.26%) or untreated NIH3T3 (2.33%). The pcDI-[12Asp]-K-ras4B-NIH3T3 cells injected to the nude mice Balb/C developed tumor nodules with poor-differentiated cells after 12 days. An increase of ERalpha and ERbeta was observed in pcDI-[12Asp]-K-ras4B-NIH3T3 cells. RafS621A downregulated ERalpha and ERbeta expression. Estrogen induced the ER transcriptional activity by 5-fold in pcDI-NIH3T3 cells, 13-fold in pcDI-[12Asp]K-ras4B-NIH3T3 and 19-fold in HEC-1A. RafS621A suppressed the ER transcriptional activity. K-ras mutation induces tumorigenesis in endometrium, and this malignant transformation involves Raf signaling pathway and ER.

  15. Crystal structure of type I ryanodine receptor amino-terminal [beta]-trefoil domain reveals a disease-associated mutation 'hot spot' loop

    Energy Technology Data Exchange (ETDEWEB)

    Amador, Fernando J.; Liu, Shuang; Ishiyama, Noboru; Plevin, Michael J.; Wilson, Aaron; MacLennan, David H.; Ikura, Mitsuhiko; (Toronto)

    2009-12-01

    Muscle contraction and relaxation is regulated by transient elevations of myoplasmic Ca{sup 2+}. Ca{sup 2+} is released from stores in the lumen of the sarco(endo)plasmic reticulum (SER) to initiate formation of the Ca{sup 2+} transient by activation of a class of Ca{sup 2+} release channels referred to as ryanodine receptors (RyRs) and is pumped back into the SER lumen by Ca{sup 2+}-ATPases (SERCAs) to terminate the Ca{sup 2+} transient. Mutations in the type 1 ryanodine receptor gene, RYR1, are associated with 2 skeletal muscle disorders, malignant hyperthermia (MH), and central core disease (CCD). The evaluation of proposed mechanisms by which RyR1 mutations cause MH and CCD is hindered by the lack of high-resolution structural information. Here, we report the crystal structure of the N-terminal 210 residues of RyR1 (RyR{sub NTD}) at 2.5 {angstrom}. The RyR{sub NTD} structure is similar to that of the suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor (IP3Rsup), but lacks most of the long helix-turn-helix segment of the 'arm' domain in IP3Rsup. The N-terminal {beta}-trefoil fold, found in both RyR and IP{sub 3}R, is likely to play a critical role in regulatory mechanisms in this channel family. A disease-associated mutation 'hot spot' loop was identified between strands 8 and 9 in a highly basic region of RyR1. Biophysical studies showed that 3 MH-associated mutations (C36R, R164C, and R178C) do not adversely affect the global stability or fold of RyRNTD, supporting previously described mechanisms whereby mutations perturb protein-protein interactions.

  16. Systemic mastocytosis uncommon in KIT D816V mutation positive core-binding factor acute myeloid leukemia

    DEFF Research Database (Denmark)

    Kristensen, Thomas; Preiss, Birgitte; Broesby-Olsen, Sigurd

    2012-01-01

    Abstract The KIT D816V mutation is detected in the vast majority of adult cases of systemic mastocytosis (SM). The mutation is also frequently detected in core-binding factor acute myeloid leukemia (CBF-AML) defined by the presence of t(8;21)(q22;q22); RUNX1-RUNX1T1 or inv(16)(p13.1;q22)/t(16;16)(p...

  17. Mutations in the third extracellular loop of M3 muscarinic receptor induce positive cooperativity between N-Methylscopolamine and Wieland-Gumlich aldehyde

    Czech Academy of Sciences Publication Activity Database

    Jakubík, Jan; Doležal, Vladimír

    2005-01-01

    Roč. 272, č. S1 (2005), s. 221-221 ISSN 1474-3833. [FEBS Congress /30./ and IUBMB Conference /9./. 02.07.2005-07.07.2005, Budapest] R&D Projects: GA AV ČR(CZ) IAA5011306; GA ČR(CZ) GP305/02/D090 Institutional research plan: CEZ:AV0Z5011922 Keywords : muscarinic receptors * allosteric interaction * strychnine -like modulators * mutations * extracellular loop Subject RIV: ED - Physiology

  18. Radiotherapy of non-small-cell lung cancer in the era of EGFR gene mutations and EGF receptor tyrosine kinase inhibitors.

    Science.gov (United States)

    Moschini, Ilaria; Dell'Anna, Cristina; Losardo, Pier Luigi; Bordi, Paola; D'Abbiero, Nunziata; Tiseo, Marcello

    2015-01-01

    Non-small-cell lung cancer (NSCLC) occurs, approximately, in 80-85% of all cases of lung cancer. The majority of patients present locally advanced or metastatic disease when diagnosed, with poor prognosis. The discovery of activating mutations in the EGFR gene has started a new era of personalized treatment for NSCLC patients. To improve the treatment outcome in patients with unresectable NSCLC and, in particular, EGFR mutated, a combined strategy of radiotherapy and medical treatment can be undertaken. In this review we will discuss preclinical data regarding EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) and radiotherapy, available clinical trials investigating efficacy and toxicity of combined treatment (thoracic or whole brain radiotherapy and EGFR-TKIs) and, also, the role of local radiation in mutated EGFR patients who developed EGFR-TKI resistance.

  19. In vivo evidence for a functional role of both tumor necrosis factor (TNF) receptors and transmembrane TNF in experimental hepatitis.

    Science.gov (United States)

    Küsters, S; Tiegs, G; Alexopoulou, L; Pasparakis, M; Douni, E; Künstle, G; Bluethmann, H; Wendel, A; Pfizenmaier, K; Kollias, G; Grell, M

    1997-11-01

    The significance of tumor necrosis factor receptor 1 (TNFR1) for TNF function in vivo is well documented, whereas the role of TNFR2 so far remains obscure. In a model of concanavalin A (Con A)-induced, CD4+ T cell-dependent experimental hepatitis in mice, in which TNF is a central mediator of apoptotic and necrotic liver damage, we now provide evidence for an essential in vivo function of TNFR2 in this pathophysiological process. We demonstrate that a cooperation of TNFR1 and TNFR2 is required for hepatotoxicity as mice deficient of either receptor were resistant against Con A. A significant role of TNFR2 for Con A-induced hepatitis is also shown by the enhanced sensitivity of transgenic mice overexpressing the human TNFR2. The ligand for cytotoxic signaling via both TNF receptors is the precursor of soluble TNF, i.e. transmembrane TNF. Indeed, transmembrane TNF is sufficient to mediate hepatic damage, as transgenic mice deficient in wild-type soluble TNF but expressing a mutated nonsecretable form of TNF developed inflammatory liver disease.

  20. Fibroblast growth factor receptor (FGFR) alterations in squamous differentiated bladder cancer: a putative therapeutic target for a small subgroup.

    Science.gov (United States)

    Baldia, Philipp H; Maurer, Angela; Heide, Timon; Rose, Michael; Stoehr, Robert; Hartmann, Arndt; Williams, Sarah V; Knowles, Margaret A; Knuechel, Ruth; Gaisa, Nadine T

    2016-11-01

    Although drugable fibroblast growth factor receptor (FGFR) alterations in squamous cell carcinomas (SCC) of various entities are well known, little is known about FGFR modifications in squamous differentiated bladder cancer. Therefore, our study evaluated FGFR1-3 alterations as a putative therapeutic target in this subgroup. We analyzed 73 squamous differentiated bladder cancers (n = 10 pT2, n = 55 pT3, n = 8 pT4) for FGFR1-3 protein expression, FGFR1-3 copy number variations, FGFR3 chromosomal rearrangements (fluorescence in situ hybridization (FISH)) and FGFR3 mutations (SNapShot analysis). Only single cases displayed enhanced protein expression, most frequently FGFR3 overexpression (9.4% (6/64)). FISH showed no amplifications of FGFR1, 2 or 3. Break apart events were only slightly above the cut off in 12.1% (8/66) of cases and no FGFR3-TACC3 rearrangements could be proven by qPCR. FGFR3 mutations (p.S249C) were found in 8.5% (6/71) of tumors and were significantly associated with FGFR3 protein overexpression (p bladder cancer (n = 85), which revealed reduced overall expression of FGFR1 and FGFR2 in tumors compared to normal tissue, while expression of FGFR3 remained high. In the TCGA "squamous-like" subtype FGFR3 mutations were found in 4.9% and correlated with high FGFR3 RNA expression. Mutations of FGFR1 and FGFR2 were less frequent (2.4% and 1.2%). Hence, our comprehensive study provides novel insights into a subgroup of squamous differentiated bladder tumors that hold clues for novel therapeutic regimens and may benefit from FGFR3-targeted therapies.

  1. Mutations in the estrogen receptor alpha hormone binding domain promote stem cell phenotype through notch activation in breast cancer cell lines.

    Science.gov (United States)

    Gelsomino, L; Panza, S; Giordano, C; Barone, I; Gu, G; Spina, E; Catalano, S; Fuqua, S; Andò, S

    2018-04-24

    The detection of recurrent mutations affecting the hormone binding domain (HBD) of estrogen receptor alpha (ERα/ESR1) in endocrine therapy-resistant and metastatic breast cancers has prompted interest in functional characterization of these genetic alterations. Here, we explored the role of HBD-ESR1 mutations in influencing the behavior of breast cancer stem cells (BCSCs), using various BC cell lines stably expressing wild-type or mutant (Y537 N, Y537S, D538G) ERα. Compared to WT-ERα clones, mutant cells showed increased CD44 + /CD24 - ratio, mRNA levels of stemness genes, Mammosphere Forming Efficiency (MFE), Self-Renewal and migratory capabilities. Mutant clones exhibited high expression of NOTCH receptors/ligands/target genes and blockade of NOTCH signaling reduced MFE and migratory potential. Mutant BCSC activity was dependent on ERα phosphorylation at serine 118, since its inhibition decreased MFE and NOTCH4 activation only in mutant cells. Collectively, we demonstrate that the expression of HBD-ESR1 mutations may drive BC cells to acquire stem cell traits through ER/NOTCH4 interplay. We propose the early detection of HBD-ESR1 mutations as a challenge in precision medicine strategy, suggesting the development of tailored-approaches (i.e. NOTCH inhibitors) to prevent disease development and metastatic spread in BC mutant-positive patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Transcriptional regulation of the human Liver X Receptor α gene by Hepatocyte Nuclear Factor

    Energy Technology Data Exchange (ETDEWEB)

    Theofilatos, Dimitris; Anestis, Aristomenis [University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, 71003, Crete (Greece); Hashimoto, Koshi [Department of Preemptive Medicine and Metabolism, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-city, Tokyo, 113-8510 (Japan); Kardassis, Dimitris, E-mail: kardasis@imbb.forth.gr [University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, 71003, Crete (Greece)

    2016-01-15

    Liver X Receptors (LXRs) are sterol-activated transcription factors that play major roles in cellular cholesterol homeostasis, HDL biogenesis and reverse cholesterol transport. The aim of the present study was to investigate the mechanisms that control the expression of the human LXRα gene in hepatic cells. A series of reporter plasmids containing consecutive 5′ deletions of the hLXRα promoter upstream of the luciferase gene were constructed and the activity of each construct was measured in HepG2 cells. This analysis showed that the activity of the human LXRα promoter was significantly reduced by deleting the −111 to −42 region suggesting the presence of positive regulatory elements in this short proximal fragment. Bioinformatics data including motif search and ChIP-Seq revealed the presence of a potential binding motif for Hepatocyte Nuclear Factor 4 α (HNF-4α) in this area. Overexpression of HNF-4α in HEK 293T cells increased the expression of all LXRα promoter constructs except −42/+384. In line, silencing the expression of endogenous HNF-4α in HepG2 cells was associated with reduced LXRα protein levels and reduced activity of the −111/+384 LXRα promoter but not of the −42/+384 promoter. Using ChiP assays in HepG2 cells combined with DNAP assays we mapped the novel HNF-4α specific binding motif (H4-SBM) in the −50 to −40 region of the human LXRα promoter. A triple mutation in this H4-SBM abolished HNF-4α binding and reduced the activity of the promoter to 65% relative to the wild type. Furthermore, the mutant promoter could not be transactivated by HNF-4α. In conclusion, our data indicate that HNF-4α may have a wider role in cell and plasma cholesterol homeostasis by controlling the expression of LXRα in hepatic cells. - Highlights: • The human LXRα promoter contains a HNF-4α specific binding motif in the proximal −50/−40 region. • Mutations in this motif abolished HNF4α binding and transactivation of the h

  3. Transcriptional regulation of the human Liver X Receptor α gene by Hepatocyte Nuclear Factor

    International Nuclear Information System (INIS)

    Theofilatos, Dimitris; Anestis, Aristomenis; Hashimoto, Koshi; Kardassis, Dimitris

    2016-01-01

    Liver X Receptors (LXRs) are sterol-activated transcription factors that play major roles in cellular cholesterol homeostasis, HDL biogenesis and reverse cholesterol transport. The aim of the present study was to investigate the mechanisms that control the expression of the human LXRα gene in hepatic cells. A series of reporter plasmids containing consecutive 5′ deletions of the hLXRα promoter upstream of the luciferase gene were constructed and the activity of each construct was measured in HepG2 cells. This analysis showed that the activity of the human LXRα promoter was significantly reduced by deleting the −111 to −42 region suggesting the presence of positive regulatory elements in this short proximal fragment. Bioinformatics data including motif search and ChIP-Seq revealed the presence of a potential binding motif for Hepatocyte Nuclear Factor 4 α (HNF-4α) in this area. Overexpression of HNF-4α in HEK 293T cells increased the expression of all LXRα promoter constructs except −42/+384. In line, silencing the expression of endogenous HNF-4α in HepG2 cells was associated with reduced LXRα protein levels and reduced activity of the −111/+384 LXRα promoter but not of the −42/+384 promoter. Using ChiP assays in HepG2 cells combined with DNAP assays we mapped the novel HNF-4α specific binding motif (H4-SBM) in the −50 to −40 region of the human LXRα promoter. A triple mutation in this H4-SBM abolished HNF-4α binding and reduced the activity of the promoter to 65% relative to the wild type. Furthermore, the mutant promoter could not be transactivated by HNF-4α. In conclusion, our data indicate that HNF-4α may have a wider role in cell and plasma cholesterol homeostasis by controlling the expression of LXRα in hepatic cells. - Highlights: • The human LXRα promoter contains a HNF-4α specific binding motif in the proximal −50/−40 region. • Mutations in this motif abolished HNF4α binding and transactivation of the h

  4. Oxygen dependency of epidermal growth factor receptor binding and DNA synthesis of rat hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Tetsuro; Terajima, Hiroaki; Yamauchi, Akira

    1997-01-01

    Background/Aims: Changes in oxygen availability modulate replicative responses in several cell types, but the effects on hepatocyte replication remain unclear. We have studied the effects of transient nonlethal hypoxia on epidermal growth factor receptor binding and epidermal growth factor-induced DNA synthesis of rat hepatocytes. Methods: Lactate dehydrogenase activity in culture supernatant, intracellular adenosine triphosphate content, 125 I-epidermal growth factor specific binding, epidermal growth factor receptor protein expression, and 3 H-thymidine incorporation were compared between hepatocytes cultured in hypoxia and normoxia. Results: Hypoxia up to 3 h caused no significant increase in lactate dehydrogenase activity in the culture supernatant, while intracellular adenosine triphosphate content decreased time-dependently and was restored to normoxic levels by reoxygenation (nonlethal hypoxia). Concomitantly, 125 I-epidermal growth factor specific binding to hepatocytes decreased time-dependently (to 54.1% of normoxia) and was restored to control levels by reoxygenation, although 125 I-insulin specific binding was not affected. The decrease in 125 I-epidermal growth factor specific binding was explained by the decrease in the number or available epidermal growth factor receptors (21.37±3.08 to 12.16±1.42 fmol/10 5 cells), while the dissociation constant of the receptor was not affected. The change in the number of available receptors was not considered to be due to receptor degradation-resynthesis, since immuno-detection of the epidermal growth factor receptor revealed that the receptor protein expression did not change during hypoxia and reoxygenation, and since neither actinomycin D nor cycloheximide affected the recovery of 125 I-epidermal growth factor binding by reoxygenation. Inhibition of epidermal growth factor-induced DNA synthesis after hypoxia (to 75.4% of normoxia by 3 h hypoxia) paralleled the decrease in 125 I-epidermal growth factor binding

  5. Hepatocyte and keratinocyte growth factors and their receptors in human lung emphysema

    Directory of Open Access Journals (Sweden)

    Marchal Joëlle

    2005-10-01

    Full Text Available Abstract Background Hepatocyte and keratinocyte growth factors are key growth factors in the process of alveolar repair. We hypothesized that excessive alveolar destruction observed in lung emphysema involves impaired expression of hepatocyte and keratinocyte growth factors or their respective receptors, c-met and keratinocyte growth factor receptor. The aim of our study was to compare the expression of hepatocyte and keratinocyte growth factors and their receptors in lung samples from 3 groups of patients: emphysema; smokers without emphysema and non-smokers without emphysema. Methods Hepatocyte and keratinocyte growth factor proteins were analysed by immunoassay and western blot; mRNA expression was measured by real time quantitative polymerase chain reaction. Results Hepatocyte and keratinocyte growth factors, c-met and keratinocyte growth factor receptor mRNA levels were similar in emphysema and non-emphysema patients. Hepatocyte growth factor mRNA correlated negatively with FEV1 and the FEV1/FVC ratio both in emphysema patients and in smokers with or without emphysema. Hepatocyte and keratinocyte growth factor protein concentrations were similar in all patients' groups. Conclusion The expression of hepatocyte and keratinocyte growth factors and their receptors is preserved in patients with lung emphysema as compared to patients without emphysema. Hepatocyte growth factor mRNA correlates with the severity of airflow obstruction in smokers.

  6. Receptores do factor estimulante de colónias de macrófagos do robalo

    OpenAIRE

    Oliveira, Márcio Adriano Guiomar de

    2010-01-01

    O receptor do factor estimulante de colónias de macrófagos, também conhecido como receptor do factor estimulante de colónias-1 (CSF1R), é um receptor de um factor de crescimento hematopoiético que é especificamente expresso em células do sistema fagocítico-mononuclear e desempenha um papel essencial no desenvolvimento e regulação destas células. O CSF1R já foi descrito em vários mamíferos e a sua biologia tem sido exaustivamente caracterizada nestes vertebrados mas o conheci...

  7. The Long-Term Outcome of Boys With Partial Androgen Insensitivity Syndrome and a Mutation in the Androgen Receptor Gene

    DEFF Research Database (Denmark)

    Lucas-herald, A.; Bertelloni, S.; Juul, A.

    2016-01-01

    = .004). All cases with an AR mutation had gynecomastia, compared to 9% of those without an AR mutation. Of the six men who had a mastectomy, five (83%) had an AR mutation. CONCLUSIONS: Boys with genetically confirmed PAIS are likely to have a poorer clinical outcome than those with XY DSD, with normal T...

  8. Multistep change in epidermal growth factor receptors during spontaneous neoplastic progression in Chinese hamster embryo fibroblasts

    International Nuclear Information System (INIS)

    Wakshull, E.; Kraemer, P.M.; Wharton, W.

    1985-01-01

    Whole Chinese hamster embryo lineages have been shown to undergo multistep spontaneous neoplastic progression during serial passage in culture. The authors have studied the binding, internalization, and degradation of 125 I-labeled epidermal growth factor at four different stages of transformation. The whole Chinese hamster embryo cells lost cell surface epidermal growth factor receptors gradually during the course of neoplastic progression until only 10% of the receptor number present in the early-passage cells (precrisis) were retained in the late-passage cells (tumorigenic). No differences in internalization rates, chloroquine sensitivity, or ability to degrade hormone between the various passage levels were seen. No evidence for the presence in conditioned medium of transforming growth factors which might mask or down-regulate epidermal growth factor receptor was obtained. These results suggest that a reduction in cell surface epidermal growth factor receptor might be an early event during spontaneous transformation in whole Chinese hamster embryo cells

  9. Epidermal Growth Factor Recetor mutation study for 5 years, in a population of patients with non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    A.S. Castro

    2013-01-01

    Full Text Available Introduction: In 2006, the Vila Nova de Gaia/Espinho Hospital Centre Pulmonary Oncology Unit started performing EGFR (Epidermal Growth Factor Receptor mutation sequencing in selected patients with NSCLC and systematically in all patients since 2010, regardless of histology, smoking habits, age or sex. The aim of this study was to characterize the group of patients that carried out the sequencing between 2006-2010, to determine EGFR mutation frequency, to evaluate the overall survival and the survival after the use of tyrosine kinase inhibitors (TKI, in patients who performed this therapy in second and third line, knowing the EGFR mutation status. Methods: Descriptive statistical analysis of patients who did EGFR sequencing in 2006-2010 and of overall survival in patients treated with TKI as 2nd and 3rd line therapy. Record of the material available for analysis and average delay of exam results, according to the material submitted. Results: The sequencing was performed in 374 patients, 71,1% males, 67,1% non/ex-smokers, 32,9% smokers, 57,8% adenocarcinoma and 23,5% squamous cell carcinoma (SCC. The mutation was detected in 49 patients (13,1%. In all studied patients, the mutation rate was 9% in males and 23% in females. Median overall survival after erlotinib use of was 14 months for patients with positive EGFR mutation versus 6 months in not mutated patients (p = 0.003. Conclusion: Our group had an overall mutation rate of 13.1% with female, non-smokers, adenocarcinoma histology predominance. In selected patients (2006/2009, the mutation rate was 16%, in not selected patients (2010 the mutation rate was 10.4%. This study has permitted a better understanding of the EGFR mutation rate in the Portuguese population as welll as an evaluation of the patients survival after the use of of tyrosine kinase inhibitors, in second and third line therapy with previous knowledge of the EGFR mutational status. Statistical significant differences in survival

  10. Hierarchical classification strategy for Phenotype extraction from epidermal growth factor receptor endocytosis screening

    NARCIS (Netherlands)

    L. Cao (Lu); M. Graauw (Marjo de); K. Yan (Kuan); L.C.J. Winkel (Leah C.J.); F.J. Verbeek (Fons)

    2016-01-01

    textabstractBackground: Endocytosis is regarded as a mechanism of attenuating the epidermal growth factor receptor (EGFR) signaling and of receptor degradation. There is increasing evidence becoming available showing that breast cancer progression is associated with a defect in EGFR endocytosis. In

  11. Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy

    NARCIS (Netherlands)

    Bremer, Edwin

    2013-01-01

    The tumor necrosis factor (TNF) ligand and cognate TNF receptor superfamilies constitute an important regulatory axis that is pivotal for immune homeostasis and correct execution of immune responses. TNF ligands and receptors are involved in diverse biological processes ranging from the selective

  12. Precipitating factors of porphyria cutanea tarda in Brazil with emphasis on hemochromatosis gene (HFE) mutations. Study of 60 patients.

    Science.gov (United States)

    Vieira, Fatima Mendonça Jorge; Nakhle, Maria Cristina; Abrantes-Lemos, Clarice Pires; Cançado, Eduardo Luiz Rachid; Reis, Vitor Manoel Silva dos

    2013-01-01

    Porphyria cutanea tarda is the most common form of porphyria, characterized by the decreased activity of the uroporphyrinogen decarboxylase enzyme. Several reports associated HFE gene mutations of hereditary hemochromatosis with porphyria cutanea tarda worldwide, although up to date only one study has been conducted in Brazil. Investigation of porphyria cutanea tarda association with C282Y and H63D mutations in the HFE gene. Identification of precipitating factors (hepatitis C, HIV, alcoholism and estrogen) and their link with HFE mutations. An ambispective study of 60 patients with PCT was conducted during the period from 2003 to 2012. Serological tests for hepatitis C and HIV were performed and histories of alcohol abuse and estrogen intake were investigated. HFE mutations were identified with real-time PCR. Porphyria cutanea tarda predominated in males and alcohol abuse was the main precipitating factor. Estrogen intake was the sole precipitating factor present in 25% of female patients. Hepatitis C was present in 41.7%. All HIV-positive patients (15.3%) had a history of alcohol abuse. Allele frequency for HFE mutations, i.e., C282Y (p = 0.0001) and H63D (p = 0.0004), were significantly higher in porphyria cutanea tarda patients, compared to control group. HFE mutations had no association with the other precipitating factors. Alcohol abuse, hepatitis C and estrogen intake are prevalent precipitating factors in our porphyria cutanea tarda population; however, hemochromatosis in itself can also contribute to the outbreak of porphyria cutanea tarda, which makes the research for HFE mutations necessary in these patients.

  13. Novel CFI mutation in a patient with leukocytoclastic vasculitis may redefine the clinical spectrum of Complement Factor I deficiency

    DEFF Research Database (Denmark)

    Bay, Jakob Thaning; Katzenstein, Terese Lea; Kofoed, Kristian

    2015-01-01

    presentation of Factor I deficiency varies and includes severe recurrent bacterial infections, glomerulonephritis and autoimmune diseases. The patient, a 28-years old woman with consanguineous parents, presented with recurrent leukocytoclastic vasculitis in the lower extremities with no associated systemic...... mutations vary among patients sole association with leukocytoclastic vasculitis redefines the clinical spectrum of complete Factor I deficiency....

  14. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Ahnen Dennis

    2005-01-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  15. A nonsense mutation causing decreased levels of insulin receptor mRNA: Detection by a simplified technique for direct sequencing of genomic DNA amplified by the polymerase chain reaction

    International Nuclear Information System (INIS)

    Kadowaki, T.; Kadowaki, H.; Taylor, S.I.

    1990-01-01

    Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. The authors have studied a patient with leprechaunism (leprechaun/Minn-1), a genetic syndrome associated with intrauterine growth retardation and extreme insulin resistance. Genomic DNA from the patient was amplified by the polymerase chain reaction catalyzed by Thermus aquaticus (Taq) DNA polymerase, and the amplified DNA was directly sequenced. A nonsense mutations was identified at codon 897 in exon 14 in the paternal allele of the patient's insulin receptor gene. Levels of insulin receptor mRNA are decreased to <10% of normal in Epstein-Barr virus-transformed lymphoblasts and cultured skin fibroblasts from this patient. Thus, this nonsense mutation appears to cause a decrease in the levels of insulin receptor mRNA. In addition, they have obtained indirect evidence that the patient's maternal allele of the insulin receptor gene contains a cis-acting dominant mutation that also decreases the level of mRNA, but by a different mechanism. The nucleotide sequence of the entire protein-coding domain and the sequences of the intron-exon boundaries for all 22 exons of the maternal allele were normal. Presumably, the mutation in the maternal allele maps elsewhere in the insulin receptor gene. Thus, they conclude that the patient is a compound heterozygote for two cis-acting dominant mutations in the insulin receptor gene: (i) a nonsense mutation in the paternal allel that reduces the level of insulin receptor mRNA and (ii) an as yet unidentified mutation in the maternal allele that either decreases the rate of transcription or decreases the stability of the mRNA

  16. Fibroblast Growth Factor Receptor-4 and Prostate Cancer Progression

    Science.gov (United States)

    2007-10-01

    difference between the two FGFR-4 variants? Achondroplasia ( dwarfism ) is caused by a similar mutation in FGFR-3 (Gly380 to Arg380). Increased FGFR-3...US men, with approximately 230,000 new cases and 29,000 deaths in 2004 [1]. Prostate cancer deaths are a result of metastatic disease and treatment of...such metastatic disease is one of the major therapeutic challenges in prostate cancer treatment . Many studies have been focused on identification of

  17. Harnessing Integrative Omics to Facilitate Molecular Imaging of the Human Epidermal Growth Factor Receptor Family for Precision Medicine.

    Science.gov (United States)

    Pool, Martin; de Boer, H Rudolf; Hooge, Marjolijn N Lub-de; van Vugt, Marcel A T M; de Vries, Elisabeth G E

    2017-01-01

    Cancer is a growing problem worldwide. The cause of death in cancer patients is often due to treatment-resistant metastatic disease. Many molecularly targeted anticancer drugs have been developed against 'oncogenic driver' pathways. However, these treatments are usually only effective in properly selected patients. Resistance to molecularly targeted drugs through selective pressure on acquired mutations or molecular rewiring can hinder their effectiveness. This review summarizes how molecular imaging techniques can potentially facilitate the optimal implementation of targeted agents. Using the human epidermal growth factor receptor (HER) family as a model in (pre)clinical studies, we illustrate how molecular imaging may be employed to characterize whole body target expression as well as monitor drug effectiveness and the emergence of tumor resistance. We further discuss how an integrative omics discovery platform could guide the selection of 'effect sensors' - new molecular imaging targets - which are dynamic markers that indicate treatment effectiveness or resistance.

  18. Epidermal growth factor receptor structural alterations in gastric cancer

    International Nuclear Information System (INIS)

    Moutinho, Cátia; Mateus, Ana R; Milanezi, Fernanda; Carneiro, Fátima; Seruca, Raquel; Suriano, Gianpaolo

    2008-01-01

    EGFR overexpression has been described in many human tumours including gastric cancer. In NSCLC patients somatic EGFR mutations, within the kinase domain of the protein, as well as gene amplification were associated with a good clinical response to EGFR inhibitors. In gastric tumours data concerning structural alterations of EGFR remains controversial. Given its possible therapeutic relevance, we aimed to determine the frequency and type of structural alterations of the EGFR gene in a series of primary gastric carcinomas. Direct sequencing of the kinase domain of the EGFR gene was performed in a series of 77 primary gastric carcinomas. FISH analysis was performed in 30 cases. Association studies between EGFR alterations and the clinical pathological features of the tumours were performed. Within the 77 primary gastric carcinomas we found two EGFR somatic mutations and several EGFR polymorphisms in exon 20. Six different intronic sequence variants of EGFR were also found. Four gastric carcinomas showed balanced polysomy or EGFR gene amplification. We verified that gastric carcinoma with alterations of EGFR (somatic mutations or copy number variation) showed a significant increase of tumour size (p = 0.0094) in comparison to wild-type EGFR carcinomas. We demonstrate that EGFR structural alterations are rare in gastric carcinoma, but whenever present, it leads to tumour growth. We considered that searching for EGFR alterations in gastric cancer is likely to be clinically important in order to identify patients susceptible to respond to tyrosine kinase inhibitors

  19. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    Science.gov (United States)

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  20. Non-hyperfunctioning nodules from multinodular goiters: a minor role in pathogenesis for somatic activating mutations in the TSH-receptor and Gsalpha subunit genes.

    Science.gov (United States)

    Derrien, C; Sonnet, E; Gicquel, I; Le Gall, J Y; Poirier, J Y; David, V; Maugendre, D

    2001-05-01

    Constitutive activation of the cAMP pathway stimulates thyrocyte proliferation. Gain-of-function mutations in Gsalpha protein have already been identified in thyroid nodules which have lost the ability to trap iodine. In contrast, most of the studies failed to detect somatic activating mutations in the thyrotropin receptor (TSH-R) in non-hyperfunctioning thyroid tumors. The aim of this study was to screen for mutations TSH-R exon 10, encoding the whole intracytoplasmic area involved in signal transduction, and Gsalpha exons 8 and 9, containing the two hot-spot codons 201 and 227, in a subset of non-hyperfunctioning nodules from multinodular goiter. Identified by matching ultrasonography and scintiscan, 22 eufunctioning (normal 99Tc uptake) and 15 nonfunctioning (decreased 99Tc uptake) nodules from 27 non-toxic multinodular goiters were isolated. After DNA extraction, TSH-R exon 10 was analyzed by direct sequencing of the PCR products and Gsalpha exons 8 and 9 by Denaturing Gradient Gel Electrophoresis. No mutation of TSH-R or Gsalpha was detected in the 37 nodules analyzed. This absence of mutation, despite the use of two sensitive screening methods associated with the analysis of the TSH-R whole intracytoplasmic area and Gsalpha two hot-spot codons, suggests that TSH-R and Gsalpha play a minor role in the pathogenesis of non-toxic nodules from multinodular goiters.

  1. EphA2 is a functional receptor for the growth factor progranulin.

    Science.gov (United States)

    Neill, Thomas; Buraschi, Simone; Goyal, Atul; Sharpe, Catherine; Natkanski, Elizabeth; Schaefer, Liliana; Morrione, Andrea; Iozzo, Renato V

    2016-12-05

    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases. © 2016 Neill et al.

  2. Signal transduction by growth factor receptors: signaling in an instant

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Blagoev, Blagoy

    2007-01-01

    Phosphorylation-based signaling events happening within the first minute of receptor stimulation have so far only been analyzed by classical cell biological approaches like live-cell microscopy. The development of a quench flow system with a time resolution of one second coupled to a read...

  3. Two families with normosmic congenital hypogonadotropic hypogonadism and biallelic mutations in KISS1R (KISS1 receptor: clinical evaluation and molecular characterization of a novel mutation.

    Directory of Open Access Journals (Sweden)

    Frédéric Brioude

    Full Text Available CONTEXT: KISS1R mutations have been reported in few patients with normosmic congenital hypogonadotropic hypogonadism (nCHH (OMIM #146110. OBJECTIVE: To describe in detail nCHH patients with biallelic KISS1R mutations belonging to 2 unrelated families, and to functionally characterize a novel KISS1R mutation. RESULTS: An original mutant, p.Tyr313His, was found in the homozygous state in 3 affected kindred (2 females and 1 male from a consanguineous Portuguese family. This mutation, located in the seventh transmembrane domain, affects a highly conserved amino acid, perturbs the conformation of the transmembrane segment, and impairs MAP kinase signaling and intracellular calcium release. In the second family, a French Caucasian male patient with nCHH was found to carry two recurrent mutations in the compound heterozygous state (p.Leu102Pro/Stop399Arg. In this man, pulsatile GnRH (Gonadotropin Releasing Hormone administration restored pulsatile LH (Luteinizing Hormone secretion and testicular hormone secretion. Later, long-term combined gonadotropin therapy induced spermatogenesis, enabling 3 successive pregnancies that resulted in 2 miscarriages and the birth of a healthy boy. CONCLUSION: We show that a novel loss-of-function mutation (p.Tyr313His in the KISS1R gene can cause familial nCHH, revealing the crucial role of this amino acid in KISS1R function. The observed restoration of gonadotropin secretion by exogenous GnRH administration further supports, in humans, the hypothalamic origin of the gonadotropin deficiency in this genetic form of nCHH.

  4. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system.

    Science.gov (United States)

    Walsh, Matthew C; Lee, JangEun; Choi, Yongwon

    2015-07-01

    Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is an adapter protein that mediates a wide array of protein-protein interactions via its TRAF domain and a RING finger domain that possesses non-conventional E3 ubiquitin ligase activity. First identified nearly two decades ago as a mediator of interleukin-1 receptor (IL-1R)-mediated activation of NFκB, TRAF6 has since been identified as an actor downstream of multiple receptor families with immunoregulatory functions, including members of the TNFR superfamily, the Toll-like receptor (TLR) family, tumor growth factorreceptors (TGFβR), and T-cell receptor (TCR). In addition to NFκB, TRAF6 may also direct activation of mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and interferon regulatory factor pathways. In the context of the immune system, TRAF6-mediated signals have proven critical for the development, homeostasis, and/or activation of B cells, T cells, and myeloid cells, including macrophages, dendritic cells, and osteoclasts, as well as for organogenesis of thymic and secondary lymphoid tissues. In multiple cellular contexts, TRAF6 function is essential not only for proper activation of the immune system but also for maintaining immune tolerance, and more recent work has begun to identify mechanisms of contextual specificity for TRAF6, involving both regulatory protein interactions, and messenger RNA regulation by microRNAs. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Tumor necrosis factor receptor associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system

    Science.gov (United States)

    Walsh, Matthew C.; Lee, JangEun; Choi, Yongwon

    2016-01-01

    Summary Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is an adaptor protein that mediates a wide array of protein-protein interactions via its TRAF domain and a RING finger domain that possesses non-conventional E3 ubiquitin ligase activity. First identified nearly two decades ago as a mediator of IL-1 receptor (IL-1R)-mediated activation of NFκB, TRAF6 has since been identified as an actor downstream of multiple receptor families with immunoregulatory functions, including members of the TNFR superfamily, the toll-like receptor (TLR) family, tumor growth factorreceptors (TGFβR), and T cell receptor (TCR). In addition to NFκB, TRAF6 may also direct activation of mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and interferon regulatory factor (IRF) pathways. In the context of the immune system, TRAF6-mediated signals have proven critical for the development, homeostasis, and/or activation of B cells, T cells, and myeloid cells, including macrophages, dendritic cells, and osteoclasts, as well as for organogenesis of thymic and secondary lymphoid tissues. In multiple cellular contexts, TRAF6 function is essential not only for proper activation of the immune system, but also for maintaining immune tolerance, and more recent works have begun to identify mechanisms of contextual specificity for TRAF6, involving both regulatory protein interactions, and messenger RNA regulation by microRNAs. PMID:26085208

  6. Naturally Occurring Frameshift Mutations in the tvb Receptor Gene Are Responsible for Decreased Susceptibility of Chicken to Infection with Avian Leukosis Virus Subgroups B, D, and E.

    Science.gov (United States)

    Li, Xinjian; Chen, Weiguo; Zhang, Huanmin; Li, Aijun; Shu, Dingming; Li, Hongxing; Dai, Zhenkai; Yan, Yiming; Zhang, Xinheng; Lin, Wencheng; Ma, Jingyun; Xie, Qingmei

    2018-04-15

    The group of highly related avian leukosis viruses (ALVs) in chickens are thought to have evolved from a common retroviral ancestor into six subgroups, A to E and J. These ALV subgroups use diverse cellular proteins encoded by four genetic loci in chickens as receptors to gain entry into host cells. Hosts exposed to ALVs might be under selective pressure to develop resistance to ALV infection. Indeed, resistance alleles have previously been identified in all four receptor loci in chickens. The tvb gene encodes a receptor, which determines the susceptibility of host cells to ALV subgroup B (ALV-B), ALV-D, and ALV-E. Here we describe the identification of two novel alleles of the tvb receptor gene, which possess independent insertions each within exon 4. The insertions resulted in frameshift mutations that reveal a premature stop codon that causes nonsense-mediated decay of the mutant mRNA and the production of truncated Tvb protein. As a result, we observed that the frameshift mutations in the tvb gene significantly lower the binding affinity of the truncated Tvb receptors for the ALV-B, ALV-D, and ALV-E envelope glycoproteins and significantly reduce susceptibility to infection by ALV-B, ALV-D and ALV-E in vitro and in vivo Taken together, these findings suggest that frameshift mutation can be a molecular mechanism of reducing susceptibility to ALV and enhance our understanding of virus-host coevolution. IMPORTANCE Avian leukosis virus (ALV) once caused devastating economic loss to the U.S. poultry industry prior the current eradication schemes in place, and it continues to cause severe calamity to the poultry industry in China and Southeast Asia, where deployment of a complete eradication scheme remains a challenge. The tvb gene encodes the cellular receptor necessary for subgroup B, D, and E ALV infection. Two tvb allelic variants that resulted from frameshift mutations have been identified in this study, which have been shown to have significantly reduced

  7. EGFR mutation frequency and effectiveness of erlotinib

    DEFF Research Database (Denmark)

    Weber, Britta; Hager, Henrik; Sorensen, Boe S

    2014-01-01

    mutation (S768I), and two complex mutations. Seven percent of the patients were never smokers. The differences in median progression-free survival and overall survival between the mutated group and the wild-type group were 8.0 vs. 2.5 months, p...-1 vs. 2-3) and line of treatment (1st vs. 2nd and 3rd) had no influence on outcome in EGFR-mutated patients. CONCLUSION: We found a higher frequency of EGFR mutations than expected in a cohort with less than 10% never smokers. The outcome after treatment with erlotinib was much better in patients......OBJECTIVES: In 2008, we initiated a prospective study to explore the frequency and predictive value of epidermal growth factor receptor (EGFR) mutations in an unselected population of Danish patients with non-small cell lung cancer offered treatment with erlotinib, mainly in second-line. MATERIALS...

  8. Evaluation the frequency of factor V Leiden mutation in pregnant women with preeclampsia syndrome in an Iranian population

    Directory of Open Access Journals (Sweden)

    Azadeh Azinfar

    2012-01-01

    Full Text Available Background: Role of genetic factors in etiology of preeclampsia is not confirmed yet.Objective: Gene defect frequency varies in different geographic areas as well as ethnic groups. In this study, the role of factor V Leiden mutation in the pathogenesis of preeclampsia syndrome among the pregnant population of northern shore of Persian Gulf in Iran, were considered.Materials and Methods: Between Jan. 2008 and Dec. 2009, in a nested case control study, pregnant women with preeclampsia (N=198 as cases and healthy (N=201 as controls were enrolled in the study. DNA were extracted from 10 CC peripheral blood and analyzed for presence of factor V Leiden mutation in these subjects. The maternal and neonatal outcomes of pregnancy according to the distribution of factor V Leiden were also compared among cases.Results: In total, 17(8.6% of cases and 2(1% of controls showed the factor V Leiden mutation. The incidence of factor V Leiden was typically higher in preeclamptic women than control group (OR: 9.34 %95 CI: 2.12-41.01. There was no difference in incidence rate of preterm delivery< 37 weeks (OR: 1.23 %95 CI: 0.38-4.02, very early preterm delivery<32 weeks (OR: 1.00 %95 CI: 0.12-8.46, intra uterine fetal growth restriction (IUGR (OR: 1.32 %95 CI: 0.15-11.30 ,and the rate of cesarean section (OR: 0.88 %95 CI: 0.29-2.62 among cases based on the prevalence of factor V Leiden mutation.Conclusion: The pregnant women with factor V Leiden mutation are prone for preeclampsia syndrome during pregnancy, but this risk factor was not correlated to pregnancy complications in the studied women

  9. Identification of novel driver mutations of the discoidin domain receptor 2 (DDR2) gene in squamous cell lung cancer of Chinese patients

    International Nuclear Information System (INIS)

    Miao, Liyun; Zhang, Deping; Liu, Hongbing; Song, Yong; Wang, Yongsheng; Zhu, Suhua; Shi, Minke; Li, Yan; Ding, Jingjing; Yang, Jun; Ye, Qing; Cai, Hourong

    2014-01-01

    Although many of the recently approved genomically targeted therapies have improved outcomes for patients in non–small-cell lung cancer (NSCLC) with lung adenocarcinoma, little is known about the genomic alterations that drive lung squamous cell cancer (SCC) and development of effective targeted therapies in lung SCC is a promising area to be further investigated. Discoidin domain receptor 2 (DDR2), is a novel receptor tyrosine kinases that respond to several collagens and involved in tissue repair, primary and metastatic cancer progression. Expression of DDR2 mRNA was analyzed in 54 lung SCC tissues by qRT-PCR. Over-expression approaches were used to investigate the biological functions of DDR2 and its’ mutations in lung SCC cells. Conventional Sanger sequencing was used to investigate the mutations of DDR2 gene in 86 samples. The effect of DDR2 and its’ mutations on proliferation was evaluated by MTT and colony formation assays; cell migration and invasion was evaluated by trasnwell assays. Lung SCC cells stably transfected with pEGFP-DDR2 WT, pEGFP-DDR2-S131C or empty vector were injection into nude mice to study the effect of DDR2 and its’ mutation on tumorigenesis in vivo. Protein and mRNA expression levels of E-cadherin and MMP2 were determined by qRT-PCR and western blot analysis. Differences between groups were tested for significance using Student’s t-test (two-tailed). In this study, we found that DDR2 mRNA levels were significantly decreased in 54 lung SCC tissues compared with normal lung tissues. Moreover, there were 3 novel DDR2 mutations (G531V, S131C, T681I) in 4 patients and provide the mutation rate of 4.6% in the 86 patients with lung SCC. The mutation of S131C in DDR2 could promote lung SCC cells proliferation, migration and invasion via inducing MMP-2, but reducing E-cadherin expression. These data indicated that the novel DDR2 mutation may contribute to the development and progression of lung SCC and this effect may be associated

  10. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors.

    Science.gov (United States)

    Heimberger, Amy B; Crotty, Laura E; Archer, Gary E; Hess, Kenneth R; Wikstrand, Carol J; Friedman, Allan H; Friedman, Henry S; Bigner, Darell D; Sampson, John H

    2003-09-15

    The epidermal growth factor receptor (EGFR) is often amplified and structurally rearranged in malignant gliomas and other tumors such as breast and lung, with the most common mutation being EGFRvIII. In the study described here, we tested in mouse models a vaccine consisting of a peptide encompassing the tumor-specific mutated segment of EGFRvIII (PEP-3) conjugated to keyhole limpet hemocyanin [KLH (PEP-3-KLH)]. C57BL/6J or C3H mice were vaccinated with PEP-3-KLH and subsequently challenged either s.c. or intracerebrally with a syngeneic melanoma cell line stably transfected with a murine homologue of EGFRvIII. Control mice were vaccinated with KLH. To test its effect on established tumors, C3H mice were also challenged intracerebrally and subsequently vaccinated with PEP-3-KLH. S.c. tumors developed in all of the C57BL/6J mice vaccinated with KLH in Freund's adjuvant, and there were no long-term survivors. Palpable tumors never developed in 70% of the PEP-3-KLH-vaccinated mice. In the C57BL/6J mice receiving the PEP-3-KLH vaccine, the tumors that did develop were significantly smaller than those in the control group (P PEP-3-KLH vaccination did not result in significant cytotoxic responses in standard cytotoxicity assays; however, antibody titers against PEP-3 were enhanced. The passive transfer of sera from the immunized mice to nonimmunized mice protected 31% of the mice from tumor development (P PEP-3-KLH-vaccinated mice. Peptide vaccination was also sufficiently potent to have marked efficacy against intracerebral tumors, resulting in a >173% increase in median survival time, with 80% of the C3H mice achieving long-term survival (P = 0.014). In addition, C3H mice with established intracerebral tumor that received a single treatment of PEP-3-KLH showed a 26% increase in median survival time, with 40% long-term survival (P = 0.007). Vaccination with an EGFRvIII-specific peptide is efficacious against both s.c. and established intracerebral tumors. The

  11. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    OpenAIRE

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A

    1997-01-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, delet...

  12. A novel inherited mutation of the transcription factor RUNX1 causes thrombocytopenia and may predispose to acute myeloid leukaemia.

    Science.gov (United States)

    Walker, Logan C; Stevens, Jane; Campbell, Hamish; Corbett, Rob; Spearing, Ruth; Heaton, David; Macdonald, Donald H; Morris, Christine M; Ganly, Peter

    2002-06-01

    The RUNX1 (AML1, CBFA2) gene is a member of the runt transcription factor family, responsible for DNA binding and heterodimerization of other non-DNA binding transcription factors. RUNX1 plays an important part in regulating haematopoiesis and it is frequently disrupted by illegitimate somatic recombination in both acute myeloid and lymphoblastic leukaemia. Germline mutations of RUNX1 have also recently been described and are dominantly associated with inherited leukaemic conditions. We have identified a unique point mutation of the RUNX1 gene (A107P) in members of a family with autosomal dominant inheritance of thrombocytopenia. One member has developed acute myeloid leukaemia (AML).

  13. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    Science.gov (United States)

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  14. Increase of tumor necrosis factor receptor 1 expression in women with unexplained early spontaneous abortion

    Institute of Scientific and Technical Information of China (English)

    YAN Chun-fang; YU Xue-wen; JIN Hui; LI Xu

    2004-01-01

    To investigate membrane tumor necrosis factor receptor 1 protein expression level in decidua andconcentration of soluble tumor necrosis factor receptor 1 in serum in women with unexplained early spontaneous abortion,threatened abortion, and compare the levels with healthy pregnant women. Methods: Thirty-seven women with unexplainedearly spontaneous abortion, 27 women with threatened abortion, and 34 healthy pregnant women undergoing artificial abortionof pregnancy at 6 - 10 weeks of gestation were selected. Decidual samples were collected when women were undergoing arti-ficial abortion, and blood samples were collected at the same time. The level of membrane tumor necrosis factor receptor 1 indecidua was detected by flow cytometer, and the concentration of soluble tumor necrosis factor receptor 1 in sera was mea-sured with an enzyme-linked immunosorbent assay. Results: The ercentages of membrane tumor necrosis factor receptor 1positive decidual cells were 16.42 ± 7.10 Mean ± SD for women with unexplained early spontaneous abortion and 13.14 ±6.30 for healthy pregnant women ( P < 0.05). Serum oncentration of soluble tumor necrosis factor receptor 1 was signifi-cantly higher in women with unexplained early spontaneous abortion than in healthy pregnant women and in women withthreatened abortion, and no difference was found between healthy pregnant women and women with threatened abortion.Conclusion: Women with unexplained early spontaneous abortion present significantly higher expression of tumor necrosisfactor receptor 1 than healthy pregnant women, suggesting that over-expression of tumor necrosis factor receptor 1 may cont-ribute to the development of early spontaneous abortion.

  15. Congenital syndactyly in cattle: four novel mutations in the low density lipoprotein receptor-related protein 4 gene (LRP4

    Directory of Open Access Journals (Sweden)

    Höltershinken Martin

    2007-02-01

    Full Text Available Abstract Background Isolated syndactyly in cattle, also known as mulefoot, is inherited as an autosomal recessive trait with variable penetrance in different cattle breeds. Recently, two independent mutations in the bovine LRP4 gene have been reported as the primary cause of syndactyly in the Holstein and Angus cattle breeds. Results We confirmed the previously described LRP4 exon 33 two nucleotide substitution in most of the affected Holstein calves and revealed additional evidence for allelic heterogeneity by the identification of four new LRP4 non-synonymous point mutations co-segregating in Holstein, German Simmental and Simmental-Charolais families. Conclusion We confirmed a significant role of LRP4 mutations in the pathogenesis of congenital syndactyly in cattle. The newly detected missense mutations in the LRP4 gene represent independent mutations affecting different conserved protein domains. However, the four newly described LRP4 mutations do still not explain all analyzed cases of syndactyly.

  16. Immunoautoradiographic analysis of epidermal growth factor receptors: a sensitive method for the in situ identification of receptor proteins and for studying receptor specificity

    International Nuclear Information System (INIS)

    Fernandez-Pol, J.A.

    1982-01-01

    The use of an immunoautoradiographic system for the detection and analysis of epidermal growth factor (EGF) receptors in human epidermoid carcinoma A-431 cells is reported. By utilizing this technique, the interaction between EGF and its membrane receptor in A-431 cells can be rapidly visualized. The procedure is simple, rapid, and very sensitive, and it provides conclusive evidence that the 150K dalton protein is the receptor fo EGF in A-431 cells. In summary, the immunoautoradiographic procedure brings to the analysis of hormone rceptor proteins the power that the radioimmunoassay technique has brought to the analysis of hormones. Thus, this assay system is potentially applicable in a wide spectrum in many fields of nuclear medicine and biology

  17. Altered [125I]epidermal growth factor binding and receptor distribution in psoriasis

    International Nuclear Information System (INIS)

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-01-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that [ 125 I]EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers

  18. Hormonal receptors and vascular endothelial growth factor in juvenile nasopharyngeal angiofibroma: immunohistochemical and tissue microarray analysis.

    Science.gov (United States)

    Liu, Zhuofu; Wang, Jingjing; Wang, Huan; Wang, Dehui; Hu, Li; Liu, Quan; Sun, Xicai

    2015-01-01

    This work demonstrated that juvenile nasopharyngeal angiofibromas (JNAs) express high levels of hormone receptors and vascular endothelial growth factor (VEGF) compared with normal nasal mucosa. The interaction between hormone receptors and VEGF may be involved in the initiation and growth of JNA. JNA is a rare benign tumor that occurs almost exclusively in male adolescents. Although generally regarded as a hormone-dependent tumor, this has not been proven in previous studies. The aim of this study was to investigate the role of hormone receptors in JNA and the relationship with clinical characteristics. Standard immunohistochemical microarray analysis was performed on 70 JNA samples and 10 turbinate tissue samples. Specific antibodies for androgen receptor (AR), estrogen receptor-α (ER-α), estrogen receptor-β (ER-β), progesterone receptor (PR), and VEGF were examined, and the relationships of receptor expression with age, tumor stage, and bleeding were evaluated. RESULTS showed that JNA expressed ER-α (92.9%), ER-β (91.4%), AR (65.7%), PR (12.8%), and VEGF (95.7%) at different levels. High level of VEGF was linked to elevated ER-α and ER-β. There was no significant relationship between hormonal receptors and age at diagnosis, tumor stage or bleeding. However, overexpression of ER-α was found to be an indicator of poor prognosis (p = 0.031).

  19. Mutations increasing exposure of a receptor binding site epitope in the soluble and oligomeric forms of the caprine arthritis-encephalitis lentivirus envelope glycoprotein

    International Nuclear Information System (INIS)

    Hoetzel, Isidro; Cheevers, William P.

    2005-01-01

    The caprine arthritis-encephalitis (CAEV) and ovine maedi-visna (MVV) viruses are resistant to antibody neutralization, a feature shared with all other lentiviruses. Whether the CAEV gp135 receptor binding site(s) (RBS) in the functional surface envelope glycoprotein (Env) is protected from antibody binding, allowing the virus to resist neutralization, is not known. Two CAEV gp135 regions were identified by extrapolating a gp135 structural model that could affect binding of antibodies to the RBS: the V1 region and a short sequence analogous in position to the human immunodeficiency virus type 1 gp120 loop B postulated to be located between two major domains of CAEV gp135. Mutation of isoleucine-166 to alanine in the putative loop B of gp135 increased the affinity of soluble gp135 for the CAEV receptor(s) and goat monoclonal antibody (Mab) F7-299 which recognizes an epitope overlapping the gp135 RBS. The I166A mutation also stabilized or exposed the F7-299 epitope in anionic detergent buffers, indicating that the I166A mutation induces conformational changes and stabilizes the RBS of soluble gp135 and enhances Mab F7-299 binding. In contrast, the affinity of a V1 deletion mutant of gp135 for the receptor and Mab F7-299 and its structural stability did not differ from that of the wild-type gp135. However, both the I166A mutation and the V1 deletion of gp135 increased cell-to-cell fusion activity and binding of Mab F7-299 to the oligomeric Env. Therefore, the CAEV gp135 RBS is protected from antibody binding by mechanisms both dependent and independent of Env oligomerization which are disrupted by the V1 deletion and the I166A mutation, respectively. In addition, we found a correlation between side-chain β-branching at amino acid position 166 and binding of Mab F7-299 to oligomeric Env and cell-to-cell fusion, suggesting local secondary structure constraints in the region around isoleucine-166 as one determinant of gp135 RBS exposure and antibody binding

  20. Insulin-like growth factor-II receptors in cultured rat hepatocytes: regulation by cell density

    International Nuclear Information System (INIS)

    Scott, C.D.; Baxter, R.C.

    1987-01-01

    Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [ 125 I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density

  1. Molecular and functional characterization of pigeon (Columba livia) tumor necrosis factor receptor-associated factor 3.

    Science.gov (United States)

    Zhou, Yingying; Kang, Xilong; Xiong, Dan; Zhu, Shanshan; Zheng, Huijuan; Xu, Ying; Guo, Yaxin; Pan, Zhiming; Jiao, Xinan

    2017-04-01

    Tumor necrosis factor receptor-associated factor 3 (TRAF3) plays a key antiviral role by promoting type I interferon production. We cloned the pigeon TRAF3 gene (PiTRAF3) according to its predicted mRNA sequence to investigate its function. The 1704-bp full-length open reading frame encodes a 567-amino acid protein. One Ring finger, two TRAF-type Zinc fingers, one Coiled coil, and one MATH domain were inferred. RT-PCR showed that PiTRAF3 was expressed in all tissues, with relatively weak expression in the heart and liver. In HEK293T cells, over-expression of wild-type, △Ring, △Zinc finger, and △Coiled coil PiTRAF3, but not a △MATH form, significantly increased IFN-β promoter activity. Zinc finger and Coiled coil domains were essential for NF-κB activation. In chicken HD11 cells, PiTRAF3 increased IFN-β promoter activity and four domains were all contributing. R848 stimulation of pigeon peripheral blood mononuclear cells and splenocytes significantly increased expression of PiTRAF3 and the inflammatory cytokine genes CCL5, IL-8, and IL-10. These data demonstrate TRAF3's innate immune function and improve understanding of its involvement in poultry antiviral defense. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Hereditary 1,25-dihydroxyvitamin D-resistant rickets with alopecia resulting from a novel missense mutation in the DNA-binding domain of the vitamin D receptor

    Science.gov (United States)

    Malloy, Peter J.; Wang, Jining; Srivastava, Tarak; Feldman, David

    2009-01-01

    The rare genetic recessive disease, hereditary vitamin D resistant rickets (HVDRR), is caused by mutations in the vitamin D receptor (VDR) that result in resistance to the active hormone 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3 or calcitriol). In this study, we examined the VDR from a young boy with clinical features of HVDRR including severe rickets, hypocalcemia, hypophosphatemia and partial alopecia. The pattern of alopecia was very unusual with areas of total baldness, adjacent to normal hair and regions of scant hair. The child failed to improve on oral calcium and vitamin D therapy but his abnormal chemistries and his bone x-rays normalized with intravenous calcium therapy. We found that the child was homozygous for a unique missense mutation in the VDR gene that converted valine to methionine at amino acid 26 (V26M) in the VDR DNA-binding domain (DBD). The mutant VDR was studied in the patient’s cultured skin fibroblasts and found to exhibit normal [3H]1,25-(OH)2D3 binding and protein expression. However, the fibroblasts were unresponsive to treatment with high concentrations of 1,25(OH)2D3 as demonstrated by their failure to induce CYP24A1 gene expression, a marker of 1,25(OH)2D3 responsiveness. We recreated the V26M mutation in the WT VDR and showed that in transfected COS-7 cells the mutation abolished 1,25(OH)2D3-mediated transactivation. The mutant VDR exhibited normal ligand-induced binding to RXRα and to the coactivator DRIP205. However, the V26M mutation inhibited VDR binding to a consensus vitamin D response element (VDRE). In summary, we have identified a novel V26M mutation in the VDR DBD as the molecular defect in a patient with HVDRR and an unusual pattern of alopecia. PMID:19815438

  3. Androgen receptor activation integrates complex transcriptional effects in osteoblasts, involving the growth factors TGF-β and IGF-I, and transcription factor C/EBPδ.

    Science.gov (United States)

    McCarthy, Thomas L; Centrella, Michael

    2015-11-15

    Osteoblasts respond to many growth factors including IGF-I and TGF-β, which themselves are sensitive to other bone growth regulators. Here we show that IGF-I gene promoter activity in prostaglandin E2 (PGE2) induced osteoblasts is suppressed by dihydrotestosterone (DHT) through an essential C/EBP response element (RE) in exon 1 of the igf1 gene. Inhibition by DHT fails to occur when the androgen receptor (AR) gene is mutated within its DNA binding domain. Correspondingly, DHT activated AR inhibits gene transactivation by C/EBPδ, and transgenic C/EBPδ expression inhibits AR activity. Inhibition by DHT persists when upstream Smad and Runx REs in the IGF-I gene promoter are mutated. TGF-β also enhances IGF-I gene promoter activity, although modestly relative to PGE2, and independently of the C/EBP, Smad, or Runx REs. Still, DHT suppresses TGF-β induced IGF-I promoter activity, but not its effects on DNA or collagen synthesis. Notably, DHT suppresses plasminogen activator inhibitor gene promoter activity, but synergistically increases Smad dependent gene promoter activity in TGF-β induced cells, which are differentially sensitive to AR mutations and the AR co-regulator ARA55. Finally, although the PGE2 sensitive C/EBP RE in the igf1 gene is not essential for basal TGF-β induction, C/EBPδ activity through this site is potently enhanced by TGF-β. Thus DHT suppresses the PGE2 and TGF-β induced IGF-I gene promoter and differentiates other aspects of TGF-β activity in osteoblasts. Our results extend the complex interactions among local and systemic bone growth regulators to DHT, and predict complications from anabolic steroid use in other DHT sensitive tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Factors affecting the loss of MED12-mutated leiomyoma cells during in vitro growth

    OpenAIRE

    Bloch, Jeannine; Holzmann, Carsten; Koczan, Dirk; Helmke, Burkhard Maria; Bullerdiek, J?rn

    2017-01-01

    Uterine leiomyomas (UL) are the most prevalent symptomatic human tumors at all and somatic mutations of the gene encoding mediator subcomplex 12 (MED12) constitute the most frequent driver mutations in UL. Recently, a rapid loss of mutated cells during in vitro growth of UL-derived cell cultures was reported, resulting in doubts about the benefits of UL-derived cell cultures. To evaluate if the rapid loss of MED12-mutated cells in UL cell cultures depends on in vitro passaging, we set up cell...

  5. An ochre mutation in the vitamin D receptor gene causes hereditary 1,25-dihydroxyvitamin D3-resistant rickets in three families

    International Nuclear Information System (INIS)

    Ritchie, H.H.; Hughes, M.R.; Thompson, E.T.; Pike, J.W.; O'Malley, B.W.; Malloy, P.J.; Feldman, D.; Hochberg, Z.

    1989-01-01

    Hereditary 1,25-dihydroxyvitamin D 3 -resistant rickets is a rare autosomal-recessive disease resulting from target-organ resistance to the action of the active hormonal form of vitamin D. Four affected children from three related families with the classical syndrome of hereditary 1,25-dihydroxyvitamin D 3 -resistant rickets and the absence of detectable binding to the vitamin D receptor (VDR) in cultured fibroblasts or lymphoblasts were examined for genetic abnormalities in the VDR gene. Genomic DNA from Epstein-Barr virus-transformed lymphoblasts of eight family members was isolated and amplified by polymerase chain reaction techniques. Amplified fragments containing the eight structural exons encoding the VDR protein were sequenced. The DNA from all affected children exhibited a single C → A base substitution within exon 7 at nucleotide 970. Although the affected children were all homozygotic for the mutation, the four parents tested all exhibited both wild-type and mutant alleles, indicating a heterozygous state. Recreated mutant receptor exhibited no specific 1,25-[ 3 H]dihydroxyvitamin D 3 binding and failed to activate a cotransfected VDR promoter-reporter gene construct. Thus these findings identify an ochre mutation in a human steroid hormone receptor in patients with hereditary 1,25-dihydroxyvitamin D 3 -resistant rickets

  6. An ochre mutation in the vitamin D receptor gene causes hereditary 1,25-dihydroxyvitamin D sub 3 -resistant rickets in three families

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, H.H.; Hughes, M.R.; Thompson, E.T.; Pike, J.W.; O' Malley, B.W. (Baylor College of Medicine, Houston, TX (USA)); Malloy, P.J.; Feldman, D. (Stanford Univ. School of Medicine, CA (USA)); Hochberg, Z. (Rambam Medical Center, Haifa (Israel))

    1989-12-01

    Hereditary 1,25-dihydroxyvitamin D{sub 3}-resistant rickets is a rare autosomal-recessive disease resulting from target-organ resistance to the action of the active hormonal form of vitamin D. Four affected children from three related families with the classical syndrome of hereditary 1,25-dihydroxyvitamin D{sub 3}-resistant rickets and the absence of detectable binding to the vitamin D receptor (VDR) in cultured fibroblasts or lymphoblasts were examined for genetic abnormalities in the VDR gene. Genomic DNA from Epstein-Barr virus-transformed lymphoblasts of eight family members was isolated and amplified by polymerase chain reaction techniques. Amplified fragments containing the eight structural exons encoding the VDR protein were sequenced. The DNA from all affected children exhibited a single C {yields} A base substitution within exon 7 at nucleotide 970. Although the affected children were all homozygotic for the mutation, the four parents tested all exhibited both wild-type and mutant alleles, indicating a heterozygous state. Recreated mutant receptor exhibited no specific 1,25-({sup 3}H)dihydroxyvitamin D{sub 3} binding and failed to activate a cotransfected VDR promoter-reporter gene construct. Thus these findings identify an ochre mutation in a human steroid hormone receptor in patients with hereditary 1,25-dihydroxyvitamin D{sub 3}-resistant rickets.

  7. A role for the epidermal growth factor receptor signaling in development of intestinal serrated polyps in mice and humans.

    Science.gov (United States)

    Bongers, Gerold; Muniz, Luciana R; Pacer, Michelle E; Iuga, Alina C; Thirunarayanan, Nanthakumar; Slinger, Erik; Smit, Martine J; Reddy, E Premkumar; Mayer, Lloyd; Furtado, Glaucia C; Harpaz, Noam; Lira, Sergio A

    2012-09-01

    Epithelial cancers can be initiated by activating mutations in components of the mitogen-activated protein kinase signaling pathway such as v-raf murine sarcoma viral oncogene homolog B1 (BRAF), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), or epidermal growth factor receptor (EGFR). Human intestinal serrated polyps are a heterogeneous group of benign lesions, but some progress to colorectal cancer. Tumors that arise from these polyps frequently contain activating mutations in BRAF or KRAS, but little is known about the role of EGFR activation in their development. Polyp samples were obtained from adults during screening colonoscopies at Mount Sinai Hospital in New York. We measured levels of EGFR protein and phosphorylation in human serrated polyps by immunohistochemical and immunoblot analyses. We generated transgenic mice that express the ligand for EGFR, Heparin-binding EGF-like growth factor (HB-EGF), in the intestine. EGFR and the extracellular-regulated kinases (ERK)1/2 were phosphorylated in serrated areas of human hyperplastic polyps (HPPs), sessile serrated adenomas, and traditional serrated adenomas. EGFR and ERK1/2 were phosphorylated in the absence of KRAS or BRAF activating mutations in a subset of HPP. Transgenic expression of the EGFR ligand HB-EGF in the intestines of mice promoted development of small cecal serrated polyps. Mice that expressed a combination of HB-EGF and US28 (a constitutively active, G-protein-coupled receptor that increases processing of HB-EGF from the membrane) rapidly developed large cecal serrated polyps. These polyps were similar to HPPs and had increased phosphorylation of EGFR and ERK1/2 within the serrated epithelium. Administration of pharmacologic inhibitors of EGFR or MAPK to these transgenic mice significantly reduced polyp development. Activation of EGFR signaling in the intestine of mice promotes development of serrated polyps. EGFR signaling also is activated in human HPPs, sessile serrated adenomas

  8. Association of the leukemia inhibitory factor gene mutation and the antiphospholipid antibodies in the peripheral blood of infertile women

    Czech Academy of Sciences Publication Activity Database

    Králíčková, M.; Ulčová-Gallová, Z.; Šíma, R.; Vaněček, T.; Šíma, Petr; Křižan, Jiří; Suchá, J.; Uher, P.; Hes, O.; Novotný, Z.; Rokyta, Z.; Větvička, E.

    2007-01-01

    Roč. 52, č. 5 (2007), s. 543-548 ISSN 0015-5632 R&D Projects: GA ČR GA301/05/0078 Institutional research plan: CEZ:AV0Z50200510 Keywords : leukemia inhibitory faktor * lif gene mutation * antiphospholipid antibodies Subject RIV: EE - Microbiology, Virology Impact factor: 0.989, year: 2007

  9. Risk of venous thromboembolism and myocardial infarction associated with factor V Leiden and prothrombin mutations and blood type

    DEFF Research Database (Denmark)

    Sode, Birgitte F; Allin, Kristine H; Dahl, Morten

    2013-01-01

    ABO blood type locus has been reported to be an important genetic determinant of venous and arterial thrombosis in genome-wide association studies. We tested the hypothesis that ABO blood type alone and in combination with mutations in factor V Leiden R506Q and prothrombin G20210A is associated...

  10. A novel phenotype of a hepatocyte nuclear factor homeobox A (HNF1A) gene mutation, presenting with neonatal cholestasis

    NARCIS (Netherlands)

    de Vries, Aleida G. M.; Bakker-van Waarde, Willie M.; Dassel, Anne C. M.; Losekoot, Monique; Duiker, Evelien W.; Gouw, Annette S. H.; Bodewes, Frank A. J. A.

    We report a novel phenotype of a hepatocyte nuclear factor homeobox A (HNF1A) mutation (heterozygote c.130dup, p.Leu44fs) presenting with transient neonatal cholestasis, subsequently followed by persistent elevation of transaminases, maturity-onset diabetes of the young (MODY) type 3 and

  11. Impact of the factor V Leiden mutation on the outcome of pneumococcal pneumonia: a controlled laboratory study

    NARCIS (Netherlands)

    Schouten, Marcel; van 't Veer, Cornelis; Roelofs, Joris Jth; Levi, Marcel; van der Poll, Tom

    2010-01-01

    Introduction: Streptococcus (S.) pneumoniae is the most common cause of community-acquired pneumonia. The factor V Leiden (FVL) mutation results in resistance of activated FV to inactivation by activated protein C and thereby in a prothrombotic phenotype. Human heterozygous FVL carriers have been

  12. Factor V Leiden mutation, prothrombin gene mutation, and deficiencies in coagulation inhibitors associated with Budd-Chiari syndrome and portal vein thrombosis: results of a case-control study

    NARCIS (Netherlands)

    Janssen, H. L.; Meinardi, J. R.; Vleggaar, F. P.; van Uum, S. H.; Haagsma, E. B.; van der Meer, F. J.; van Hattum, J.; Chamuleau, R. A.; Adang, R. P.; Vandenbroucke, J. P.; van Hoek, B.; Rosendaal, F. R.

    2000-01-01

    In a collaborative multicenter case-control study, we investigated the effect of factor V Leiden mutation, prothrombin gene mutation, and inherited deficiencies of protein C, protein S, and antithrombin on the risk of Budd-Chiari syndrome (BCS) and portal vein thrombosis (PVT). We compared 43 BCS

  13. Factor V Leiden mutation, prothrombin gene mutation, and deficiencies in coagulation inhibitors associated with Budd-Chiari syndrome and portal vein thrombosis : results of a case-control study

    NARCIS (Netherlands)

    Janssen, HLA; Meinardi, [No Value; Vleggaar, FP; van Uum, SHM; Haagsma, EB; van der Meer, FJM; van Hattum, J; Chamuleau, RAFM; Adang, RP; Vandenbroucke, JP; van Hoek, B; Rosendaal, FR

    2000-01-01

    In a collaborative multicenter case-control study, we investigated the effect of factor V Leiden mutation, prothrombin gene mutation, and inherited deficiencies of protein C, protein S, and antithrombin on the risk of Budd-Chiari syndrome (BCS) and portal vein thrombosis (PVT), We compared 43 BCS

  14. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

    Directory of Open Access Journals (Sweden)

    Lasse Henriksen

    Full Text Available The epidermal growth factor receptor (EGFR regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF and transforming growth factor-α (TGF-α. For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF or betacellulin (BTC was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.

  15. Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands

    Science.gov (United States)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148

  16. Growth factor receptors as molecular targets for cancer diagnosis and therapy

    International Nuclear Information System (INIS)

    Zalutsky, M. R.

    1997-01-01

    Growth factor receptors are of great interest as molecular targets for the diagnosis and treatment of cancer. Growth factor receptors are frequently over expressed on malignant cell populations since many cellular oncogenes encode either growth factors of their receptors. The wild-type epidermal growth factor receptor has a molecular weight of 170 kD and is over expressed on gliomas, bladder tumors, squamous cells carcinomas and breast carcinomas. Another growth factor oncogene, c-erb B-2, encodes a 185-kD glycoprotein found on the surface of gliomas, breast and ovarian cancers as well as other carcinomas of epithelial origin. In addition to causing over expression, oncogenic transformation also can result in genomic re-arrangements. An important example from the perspective of targeting is EGFRvIII, a deletion mutant which lacks amino acids 6-273 in the extracellular domain of the epiderma growth factor receptor. The EGFRvIII molecule (145 kD) may be of great value for targeting because it appears to be tumor-specific. Antibodies have been developed with specific reactivity with these growth factor receptors. Since these antibodies are internalized into the cell after receptor binding, it is necessary to use radiolabeling methods which residualize the radioactivity in the tumor cell after intracellular catabolism. To investigate this problem they have evaluated the effect of radioiodination method on the in vitro an in vivo properties of an anti-EGFRvIII antibody. Methods studied were Iodogen, tyramine-cellobiose, and N-succinimidyl 5-iodo-3-pyridine-carboxylate with the last offering optimal localization in a human xenograft model

  17. Epidermal growth factor receptor: an independent predictor of survival in astrocytic tumors given definitive irradiation