WorldWideScience

Sample records for factor mechanistic implications

  1. Physiologically induced color-pattern changes in butterfly wings: mechanistic and evolutionary implications.

    Science.gov (United States)

    Otaki, Joji M

    2008-07-01

    A mechanistic understanding of the butterfly wing color-pattern determination can be facilitated by experimental pattern changes. Here I review physiologically induced color-pattern changes in nymphalid butterflies and their mechanistic and evolutionary implications. A type of color-pattern change can be elicited by elemental changes in size and position throughout the wing, as suggested by the nymphalid groundplan. These changes of pattern elements are bi-directional and bi-sided dislocation toward or away from eyespot foci and in both proximal and distal sides of the foci. The peripheral elements are dislocated even in the eyespot-less compartments. Anterior spots are more severely modified, suggesting the existence of an anterior-posterior gradient. In one species, eyespots are transformed into white spots with remnant-like orange scales, and such patterns emerge even at the eyespot-less "imaginary" foci. A series of these color-pattern modifications probably reveal "snap-shots" of a dynamic morphogenic signal due to heterochronic uncoupling between the signaling and reception steps. The conventional gradient model can be revised to account for these observed color-pattern changes.

  2. Outer Mitochondrial Membrane Localization of Apoptosis-Inducing Factor: Mechanistic Implications for Release

    Directory of Open Access Journals (Sweden)

    Seong-Woon Yu

    2009-10-01

    Full Text Available Poly(ADP-ribose polymerase-1-dependent cell death (known as parthanatos plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor, but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders.

  3. Mechanistic model for microbial growth on hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mallee, F M; Blanch, H W

    1977-12-01

    Based on available information describing the transport and consumption of insoluble alkanes, a mechanistic model is proposed for microbial growth on hydrocarbons. The model describes the atypical growth kinetics observed, and has implications in the design of large scale equipment for single cell protein (SCP) manufacture from hydrocarbons. The model presents a framework for comparison of the previously published experimental kinetic data.

  4. Managing mechanistic and organic structure in health care organizations.

    Science.gov (United States)

    Olden, Peter C

    2012-01-01

    Managers at all levels in a health care organization must organize work to achieve the organization's mission and goals. This requires managers to decide the organization structure, which involves dividing the work among jobs and departments and then coordinating them all toward the common purpose. Organization structure, which is reflected in an organization chart, may range on a continuum from very mechanistic to very organic. Managers must decide how mechanistic versus how organic to make the entire organization and each of its departments. To do this, managers should carefully consider 5 factors for the organization and for each individual department: external environment, goals, work production, size, and culture. Some factors may push toward more mechanistic structure, whereas others may push in the opposite direction toward more organic structure. Practical advice can help managers at all levels design appropriate structure for their departments and organization.

  5. The New Unified Theory of ATP Synthesis/Hydrolysis and Muscle Contraction, Its Manifold Fundamental Consequences and Mechanistic Implications and Its Applications in Health and Disease

    Directory of Open Access Journals (Sweden)

    Sunil Nath

    2008-09-01

    Full Text Available Complete details of the thermodynamics and molecular mechanisms of ATP synthesis/hydrolysis and muscle contraction are offered from the standpoint of the torsional mechanism of energy transduction and ATP synthesis and the rotation-uncoiling-tilt (RUT energy storage mechanism of muscle contraction. The manifold fundamental consequences and mechanistic implications of the unified theory for oxidative phosphorylation and muscle contraction are explained. The consistency of current mechanisms of ATP synthesis and muscle contraction with experiment is assessed, and the novel insights of the unified theory are shown to take us beyond the binding change mechanism, the chemiosmotic theory and the lever arm model. It is shown from first principles how previous theories of ATP synthesis and muscle contraction violate both the first and second laws of thermodynamics, necessitating their revision. It is concluded that the new paradigm, ten years after making its first appearance, is now perfectly poised to replace the older theories. Finally, applications of the unified theory in cell life and cell death are outlined and prospects for future research are explored. While it is impossible to cover each and every specific aspect of the above, an attempt has been made here to address all the pertinent details and what is presented should be sufficient to convince the reader of the novelty, originality, breakthrough nature and power of the unified theory, its manifold fundamental consequences and mechanistic implications, and its applications in health and disease.

  6. Mechanistic Indicators of Childhood Asthma (MICA) Study

    Science.gov (United States)

    The Mechanistic Indicators of Childhood Asthma (MICA) Study has been designed to incorporate state-of-the-art technologies to examine the physiological and environmental factors that interact to increase the risk of asthmatic responses. MICA is primarily a clinically-bases obser...

  7. World-View Entrapment: Moral-Ethical Implications for Gifted Education.

    Science.gov (United States)

    Ambrose, Don

    2000-01-01

    This article explores the moral-ethical implications of the mechanistic world view and related issues such as technological determinism, social Darwinism, and androcentrism. It finds that educational approaches reinforced by the mechanistic world view include positivistic approaches to curriculum, instruction, and research. Recommendations for…

  8. Prediction of warfarin maintenance dose in Han Chinese patients using a mechanistic model based on genetic and non-genetic factors.

    Science.gov (United States)

    Lu, Yuan; Yang, Jinbo; Zhang, Haiyan; Yang, Jin

    2013-07-01

    Many attempts have been made to predict the warfarin maintenance dose in patients beginning warfarin therapy using a descriptive model based on multiple linear regression. Here we report the first attempt to develop a comprehensive mechanistic model integrating in vitro-in vivo extrapolation (IVIVE) with a pharmacokinetic-pharmacodynamic model to predict the warfarin maintenance dose in Han Chinese patients. The model incorporates demographic factors [sex, age, body weight (BW)] and the genetic polymorphisms of cytochrome P450 (CYP) 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1). Information on the various factors, mean warfarin daily dose and International Normalized Ratio (INR) was available for a cohort of 197 Han Chinese patients. Based on in vitro enzyme kinetic parameters for S-warfarin metabolism, demographic data for Han Chinese and some scaling factors, the S-warfarin clearance (CL) was predicted for patients in the cohort with different CYP2C9 genotypes using IVIVE. The plasma concentration of S-warfarin after a single oral dose was simulated using a one-compartment pharmacokinetic model with first-order absorption and a lag time and was combined with a mechanistic coagulation model to simulate the INR response. The warfarin maintenance dose was then predicted based on the demographic data and genotypes of CYP2C9 and VKORC1 for each patient and using the observed steady-state INR (INRss) as a target value. Finally, sensitivity analysis was carried out to determine which factor(s) affect the warfarin maintenance dose most strongly. The predictive performance of this mechanistic model is not inferior to that of our previous descriptive model. There were significant differences in the mean warfarin daily dose in patients with different CYP2C9 and VKORC1 genotypes. Using IVIVE, the predicted mean CL of S-warfarin for patients with CYP2C9*1/*3 (0.092 l/h, n = 11) was 57 % less than for those with wild-type *1/*1 (0.215 l/h, n

  9. Mechanistic species distribution modelling as a link between physiology and conservation.

    Science.gov (United States)

    Evans, Tyler G; Diamond, Sarah E; Kelly, Morgan W

    2015-01-01

    Climate change conservation planning relies heavily on correlative species distribution models that estimate future areas of occupancy based on environmental conditions encountered in present-day ranges. The approach benefits from rapid assessment of vulnerability over a large number of organisms, but can have poor predictive power when transposed to novel environments and reveals little in the way of causal mechanisms that define changes in species distribution or abundance. Having conservation planning rely largely on this single approach also increases the risk of policy failure. Mechanistic models that are parameterized with physiological information are expected to be more robust when extrapolating distributions to future environmental conditions and can identify physiological processes that set range boundaries. Implementation of mechanistic species distribution models requires knowledge of how environmental change influences physiological performance, and because this information is currently restricted to a comparatively small number of well-studied organisms, use of mechanistic modelling in the context of climate change conservation is limited. In this review, we propose that the need to develop mechanistic models that incorporate physiological data presents an opportunity for physiologists to contribute more directly to climate change conservation and advance the field of conservation physiology. We begin by describing the prevalence of species distribution modelling in climate change conservation, highlighting the benefits and drawbacks of both mechanistic and correlative approaches. Next, we emphasize the need to expand mechanistic models and discuss potential metrics of physiological performance suitable for integration into mechanistic models. We conclude by summarizing other factors, such as the need to consider demography, limiting broader application of mechanistic models in climate change conservation. Ideally, modellers, physiologists and

  10. Supporting Mechanistic Reasoning in Domain-Specific Contexts

    Science.gov (United States)

    Weinberg, Paul J.

    2017-01-01

    Mechanistic reasoning is an epistemic practice central within science, technology, engineering, and mathematics disciplines. Although there has been some work on mechanistic reasoning in the research literature and standards documents, much of this work targets domain-general characterizations of mechanistic reasoning; this study provides…

  11. A preliminary study of mechanistic approach in pavement design to accommodate climate change effects

    Science.gov (United States)

    Harnaeni, S. R.; Pramesti, F. P.; Budiarto, A.; Setyawan, A.

    2018-03-01

    Road damage is caused by some factors, including climate changes, overload, and inappropriate procedure for material and development process. Meanwhile, climate change is a phenomenon which cannot be avoided. The effects observed include air temperature rise, sea level rise, rainfall changes, and the intensity of extreme weather phenomena. Previous studies had shown the impacts of climate changes on road damage. Therefore, several measures to anticipate the damage should be considered during the planning and construction in order to reduce the cost of road maintenance. There are three approaches generally applied in the design of flexible pavement thickness, namely mechanistic approach, mechanistic-empirical (ME) approach and empirical approach. The advantages of applying mechanistic approach or mechanistic-empirical (ME) approaches are its efficiency and reliability in the design of flexible pavement thickness as well as its capacity to accommodate climate changes in compared to empirical approach. However, generally, the design of flexible pavement thickness in Indonesia still applies empirical approach. This preliminary study aimed to emphasize the importance of the shifting towards a mechanistic approach in the design of flexible pavement thickness.

  12. A Physics-Inspired Mechanistic Model of Migratory Movement Patterns in Birds.

    Science.gov (United States)

    Revell, Christopher; Somveille, Marius

    2017-08-29

    In this paper, we introduce a mechanistic model of migratory movement patterns in birds, inspired by ideas and methods from physics. Previous studies have shed light on the factors influencing bird migration but have mainly relied on statistical correlative analysis of tracking data. Our novel method offers a bottom up explanation of population-level migratory movement patterns. It differs from previous mechanistic models of animal migration and enables predictions of pathways and destinations from a given starting location. We define an environmental potential landscape from environmental data and simulate bird movement within this landscape based on simple decision rules drawn from statistical mechanics. We explore the capacity of the model by qualitatively comparing simulation results to the non-breeding migration patterns of a seabird species, the Black-browed Albatross (Thalassarche melanophris). This minimal, two-parameter model was able to capture remarkably well the previously documented migration patterns of the Black-browed Albatross, with the best combination of parameter values conserved across multiple geographically separate populations. Our physics-inspired mechanistic model could be applied to other bird and highly-mobile species, improving our understanding of the relative importance of various factors driving migration and making predictions that could be useful for conservation.

  13. Mechanistic target of rapamycin (MTOR) protein expression in the tumor and its microenvironment correlates with more aggressive pathology at cystectomy

    NARCIS (Netherlands)

    Winters, B.R. (Brian R.); Vakar-Lopez, F. (Funda); Brown, L. (Lisha); Montgomery, B. (Bruce); Seiler, R. (Roland); P.C. Black (Peter C.); J.L. Boormans (Joost); Dall′Era, M. (Marc); Davincioni, E. (Elai); Douglas, J. (James); Gibb, E.A. (Ewan A.); B.W. van Rhijn (Bas); M.S. van der Heijden (Michiel); Hsieh, A.C. (Andrew C.); Wright, J.L. (Jonathan L.); Lam, H.-M. (Hung-Ming)

    2018-01-01

    textabstractBackground: The mechanistic target of rapamycin (mTOR) has been implicated in driving tumor biology in multiple malignancies, including urothelial carcinoma (UC). We investigate how mTOR and phosphorylated mTOR (pmTOR) protein expression correlate with chemoresponsiveness in the tumor

  14. Assessing uncertainty in mechanistic models

    Science.gov (United States)

    Edwin J. Green; David W. MacFarlane; Harry T. Valentine

    2000-01-01

    Concern over potential global change has led to increased interest in the use of mechanistic models for predicting forest growth. The rationale for this interest is that empirical models may be of limited usefulness if environmental conditions change. Intuitively, we expect that mechanistic models, grounded as far as possible in an understanding of the biology of tree...

  15. Detailed Mechanistic Studies on Palladium-Catalyzed Selective C-H Olefination with Aliphatic Alkenes: A Significant Influence of Proton Shuttling.

    Science.gov (United States)

    Deb, Arghya; Hazra, Avijit; Peng, Qian; Paton, Robert S; Maiti, Debabrata

    2017-01-18

    Directing group-assisted regioselective C-H olefination with electronically biased olefins is well studied. However, the incorporation of unactivated olefins has remained largely unsuccessful. A proper mechanistic understanding of olefination involving unactivated alkenes is therefore essential for enhancing their usage in future. In this Article, detailed experimental and computational mechanistic studies on palladium catalyzed C-H olefination with unactivated, aliphatic alkenes are described. The isolation of Pd(II) intermediates is shown to be effective for elucidating the elementary steps involved in catalytic olefination. Reaction rate and order determination, control experiments, isotopic labeling studies, and Hammett analysis have been used to understand the reaction mechanism. The results from these experimental studies implicate β-hydride elimination as the rate-determining step and that a mechanistic switch occurs between cationic and neutral pathway. Computational studies support this interpretation of the experimental evidence and are used to uncover the origins of selectivity.

  16. Appropriateness of mechanistic and non-mechanistic models for the application of ultrafiltration to mixed waste

    International Nuclear Information System (INIS)

    Foust, Henry; Ghosehajra, Malay

    2007-01-01

    This study asks two questions: (1) How appropriate is the use of a basic filtration equation to the application of ultrafiltration of mixed waste, and (2) How appropriate are non-parametric models for permeate rates (volumes)? To answer these questions, mechanistic and non-mechanistic approaches are developed for permeate rates and volumes associated with an ultrafiltration/mixed waste system in dia-filtration mode. The mechanistic approach is based on a filtration equation which states that t/V vs. V is a linear relationship. The coefficients associated with this linear regression are composed of physical/chemical parameters of the system and based the mass balance equation associated with the membrane and associated developing cake layer. For several sets of data, a high correlation is shown that supports the assertion that t/V vs. V is a linear relationship. It is also shown that non-mechanistic approaches, i.e., the use of regression models to are not appropriate. One models considered is Q(p) = a*ln(Cb)+b. Regression models are inappropriate because the scale-up from a bench scale (pilot scale) study to full-scale for permeate rates (volumes) is not simply the ratio of the two membrane surface areas. (authors)

  17. A mechanistic overview of herbal medicine and botanical compounds to target transcriptional factors in Breast cancer.

    Science.gov (United States)

    Zhao, Yingke; Liu, Yue

    2018-04-01

    The abnormalities of transcription factors, such as NF-κB, STAT, estrogen receptor, play a critical role in the initiation and progression of breast cancer. Due to the limitation of current treatment, transcription factors could be promising therapeutic targets, which have received close attention. In this review, we introduced herbal medicines, as well as botanical compounds that had been verified with anti-tumor properties via regulating transcription factors. Herbs, compounds, as well as formulae reported with various transcriptional targets, were summarized thoroughly, to provide implication for the future research on basic experiment and clinical application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mechanistic Implications for the Ni(I-Catalyzed Kumada Cross-Coupling Reaction

    Directory of Open Access Journals (Sweden)

    Linda Iffland

    2017-11-01

    Full Text Available Herein we report on the cross-coupling reaction of phenylmagnesium bromide with aryl halides using the well-defined tetrahedral Ni(I complex, [(TriphosNiICl] (Triphos = 1,1,1-tris(diphenylphosphinomethylethane. In the presence of 0.5 mol % [(TriphosNiICl], good to excellent yields (75–97% of the respective coupling products within a reaction time of only 2.5 h at room temperature were achieved. Likewise, the tripodal Ni(IIcomplexes [(κ2-TriphosNiIICl2] and [(κ3-TriphosNiIICl](X (X = ClO4, BF4 were tested as potential pre-catalysts for the Kumada cross-coupling reaction. While the Ni(II complexes also afford the coupling products in comparable yields, mechanistic investigations by UV/Vis and electron paramagnetic resonance (EPR spectroscopy indicate a Ni(I intermediate as the catalytically active species in the Kumada cross-coupling reaction. Based on experimental findings and density functional theory (DFT calculations, a plausible Ni(I-catalyzed reaction mechanism for the Kumada cross-coupling reaction is presented.

  19. Numerical simulation in steam injection process by a mechanistic approach

    Energy Technology Data Exchange (ETDEWEB)

    De Souza, J.C.Jr.; Campos, W.; Lopes, D.; Moura, L.S.S. [Petrobras, Rio de Janeiro (Brazil)

    2008-10-15

    Steam injection is a common thermal recovery method used in very viscous oil reservoirs. The method involves the injection of heat to reduce viscosity and mobilize oil. A steam generation and injection system consists primarily of a steam source, distribution lines, injection wells and a discarding tank. In order to optimize injection and improve the oil recovery factor, one must determine the parameters of steam flow such as pressure, temperature and steam quality. This study focused on developing a unified mathematical model by means of a mechanistic approach for two-phase steam flow in pipelines and wells. The hydrodynamic and heat transfer mechanistic model was implemented in a computer simulator to model the parameters of steam injection while trying to avoid the use of empirical correlations. A marching algorithm was used to determine the distribution of pressure and temperature along the pipelines and wellbores. The mathematical model for steam flow in injection systems, developed by a mechanistic approach (VapMec) performed well when the simulated values of pressures and temperatures were compared with the values measured during field tests. The newly developed VapMec model was incorporated in the LinVap-3 simulator that constitutes an engineering supporting tool for steam injection wells operated by Petrobras. 23 refs., 7 tabs., 6 figs.

  20. Atomization of bismuthane in a dielectric barrier discharge: A mechanistic study

    Czech Academy of Sciences Publication Activity Database

    Kratzer, Jan; Zelina, Ondřej; Svoboda, Milan; Sturgeon, R. E.; Mester, Z.; Dědina, Jiří

    2016-01-01

    Roč. 88, č. 3 (2016), s. 1804-1811 ISSN 0003-2700 R&D Projects: GA ČR GA14-23532S Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation * mechanistic study Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 6.320, year: 2016

  1. Atomization of bismuthane in a dielectric barrier discharge: A mechanistic study

    Czech Academy of Sciences Publication Activity Database

    Kratzer, Jan; Zelina, Ondřej; Svoboda, Milan; Sturgeon, R. E.; Mester, Z.; Dědina, Jiří

    2016-01-01

    Roč. 88, č. 3 (2016), s. 1804-1811 ISSN 0003-2700 R&D Projects: GA ČR GA14-23532S Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation * mechanistic study Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 6.320, year: 2016

  2. Rational and Mechanistic Perspectives on Reinforcement Learning

    Science.gov (United States)

    Chater, Nick

    2009-01-01

    This special issue describes important recent developments in applying reinforcement learning models to capture neural and cognitive function. But reinforcement learning, as a theoretical framework, can apply at two very different levels of description: "mechanistic" and "rational." Reinforcement learning is often viewed in mechanistic terms--as…

  3. Mechanistic modeling of reactive soil nitrogen emissions across agricultural management practices

    Science.gov (United States)

    Rasool, Q. Z.; Miller, D. J.; Bash, J. O.; Venterea, R. T.; Cooter, E. J.; Hastings, M. G.; Cohan, D. S.

    2017-12-01

    The global reactive nitrogen (N) budget has increased by a factor of 2-3 from pre-industrial levels. This increase is especially pronounced in highly N fertilized agricultural regions in summer. The reactive N emissions from soil to atmosphere can be in reduced (NH3) or oxidized (NO, HONO, N2O) forms, depending on complex biogeochemical transformations of soil N reservoirs. Air quality models like CMAQ typically neglect soil emissions of HONO and N2O. Previously, soil NO emissions estimated by models like CMAQ remained parametric and inconsistent with soil NH3 emissions. Thus, there is a need to more mechanistically and consistently represent the soil N processes that lead to reactive N emissions to the atmosphere. Our updated approach estimates soil NO, HONO and N2O emissions by incorporating detailed agricultural fertilizer inputs from EPIC, and CMAQ-modeled N deposition, into the soil N pool. EPIC addresses the nitrification, denitrification and volatilization rates along with soil N pools for agricultural soils. Suitable updates to account for factors like nitrite (NO2-) accumulation not addressed in EPIC, will also be made. The NO and N2O emissions from nitrification and denitrification are computed mechanistically using the N sub-model of DAYCENT. These mechanistic definitions use soil water content, temperature, NH4+ and NO3- concentrations, gas diffusivity and labile C availability as dependent parameters at various soil layers. Soil HONO emissions found to be most probable under high NO2- availability will be based on observed ratios of HONO to NO emissions under different soil moistures, pH and soil types. The updated scheme will utilize field-specific soil properties and N inputs across differing manure management practices such as tillage. Comparison of the modeled soil NO emission rates from the new mechanistic and existing schemes against field measurements will be discussed. Our updated framework will help to predict the diurnal and daily variability

  4. Modeling Bird Migration under Climate Change: A Mechanistic Approach

    Science.gov (United States)

    Smith, James A.

    2009-01-01

    How will migrating birds respond to changes in the environment under climate change? What are the implications for migratory success under the various accelerated climate change scenarios as forecast by the Intergovernmental Panel on Climate Change? How will reductions or increased variability in the number or quality of wetland stop-over sites affect migratory bird species? The answers to these questions have important ramifications for conservation biology and wildlife management. Here, we describe the use of continental scale simulation modeling to explore how spatio-temporal changes along migratory flyways affect en-route migration success. We use an individually based, biophysical, mechanistic, bird migration model to simulate the movement of shorebirds in North America as a tool to study how such factors as drought and wetland loss may impact migratory success and modify migration patterns. Our model is driven by remote sensing and climate data and incorporates important landscape variables. The energy budget components of the model include resting, foraging, and flight, but presently predation is ignored. Results/Conclusions We illustrate our model by studying the spring migration of sandpipers through the Great Plains to their Arctic breeding grounds. Why many species of shorebirds have shown significant declines remains a puzzle. Shorebirds are sensitive to stop-over quality and spacing because of their need for frequent refueling stops and their opportunistic feeding patterns. We predict bird "hydrographs that is, stop-over frequency with latitude, that are in agreement with the literature. Mean stop-over durations predicted from our model for nominal cases also are consistent with the limited, but available data. For the shorebird species simulated, our model predicts that shorebirds exhibit significant plasticity and are able to shift their migration patterns in response to changing drought conditions. However, the question remains as to whether this

  5. Mechanistic curiosity will not kill the Bayesian cat

    NARCIS (Netherlands)

    Borsboom, D.; Wagenmakers, E.-J.; Romeijn, J.-W.

    2011-01-01

    Jones & Love (J&L) suggest that Bayesian approaches to the explanation of human behavior should be constrained by mechanistic theories. We argue that their proposal misconstrues the relation between process models, such as the Bayesian model, and mechanisms. While mechanistic theories can answer

  6. Mechanistic curiosity will not kill the Bayesian cat

    NARCIS (Netherlands)

    Borsboom, Denny; Wagenmakers, Eric-Jan; Romeijn, Jan-Willem

    Jones & Love (J&L) suggest that Bayesian approaches to the explanation of human behavior should be constrained by mechanistic theories. We argue that their proposal misconstrues the relation between process models, such as the Bayesian model, and mechanisms. While mechanistic theories can answer

  7. Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research.

    Science.gov (United States)

    Ainsbury, Elizabeth A; Barnard, Stephen; Bright, Scott; Dalke, Claudia; Jarrin, Miguel; Kunze, Sarah; Tanner, Rick; Dynlacht, Joseph R; Quinlan, Roy A; Graw, Jochen; Kadhim, Munira; Hamada, Nobuyuki

    The lens of the eye has long been considered as a radiosensitive tissue, but recent research has suggested that the radiosensitivity is even greater than previously thought. The 2012 recommendation of the International Commission on Radiological Protection (ICRP) to substantially reduce the annual occupational equivalent dose limit for the ocular lens has now been adopted in the European Union and is under consideration around the rest of the world. However, ICRP clearly states that the recommendations are chiefly based on epidemiological evidence because there are a very small number of studies that provide explicit biological, mechanistic evidence at doses <2Gy. This paper aims to present a review of recently published information on the biological and mechanistic aspects of cataracts induced by exposure to ionizing radiation (IR). The data were compiled by assessing the pertinent literature in several distinct areas which contribute to the understanding of IR induced cataracts, information regarding lens biology and general processes of cataractogenesis. Results from cellular and tissue level studies and animal models, and relevant human studies, were examined. The main focus was the biological effects of low linear energy transfer IR, but dosimetry issues and a number of other confounding factors were also considered. The results of this review clearly highlight a number of gaps in current knowledge. Overall, while there have been a number of recent advances in understanding, it remains unknown exactly how IR exposure contributes to opacification. A fuller understanding of how exposure to relatively low doses of IR promotes induction and/or progression of IR-induced cataracts will have important implications for prevention and treatment of this disease, as well as for the field of radiation protection. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  8. An improved mechanistic critical heat flux model for subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    Based on the bubble coalescence adjacent to the heated wall as a flow structure for CHF condition, Chang and Lee developed a mechanistic critical heat flux (CHF) model for subcooled flow boiling. In this paper, improvements of Chang-Lee model are implemented with more solid theoretical bases for subcooled and low-quality flow boiling in tubes. Nedderman-Shearer`s equations for the skin friction factor and universal velocity profile models are employed. Slip effect of movable bubbly layer is implemented to improve the predictability of low mass flow. Also, mechanistic subcooled flow boiling model is used to predict the flow quality and void fraction. The performance of the present model is verified using the KAIST CHF database of water in uniformly heated tubes. It is found that the present model can give a satisfactory agreement with experimental data within less than 9% RMS error. 9 refs., 5 figs. (Author)

  9. An improved mechanistic critical heat flux model for subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    Based on the bubble coalescence adjacent to the heated wall as a flow structure for CHF condition, Chang and Lee developed a mechanistic critical heat flux (CHF) model for subcooled flow boiling. In this paper, improvements of Chang-Lee model are implemented with more solid theoretical bases for subcooled and low-quality flow boiling in tubes. Nedderman-Shearer`s equations for the skin friction factor and universal velocity profile models are employed. Slip effect of movable bubbly layer is implemented to improve the predictability of low mass flow. Also, mechanistic subcooled flow boiling model is used to predict the flow quality and void fraction. The performance of the present model is verified using the KAIST CHF database of water in uniformly heated tubes. It is found that the present model can give a satisfactory agreement with experimental data within less than 9% RMS error. 9 refs., 5 figs. (Author)

  10. Fuel swelling importance in PCI mechanistic modelling

    International Nuclear Information System (INIS)

    Arimescu, V.I.

    2005-01-01

    Under certain conditions, fuel pellet swelling is the most important factor in determining the intensity of the pellet-to-cladding mechanical interaction (PCMI). This is especially true during power ramps, which lead to a temperature increase to a higher terminal plateau that is maintained for hours. The time-dependent gaseous swelling is proportional to temperature and is also enhanced by the increased gas atom migration to the grain boundary during the power ramp. On the other hand, gaseous swelling is inhibited by a compressive hydrostatic stress in the pellet. Therefore, PCMI is the net result of combining gaseous swelling and pellet thermal expansion with the opposing feedback from the cladding mechanical reaction. The coupling of the thermal and mechanical processes, mentioned above, with various feedback loops is best simulated by a mechanistic fuel code. This paper discusses a mechanistic swelling model that is coupled with a fission gas release model as well as a mechanical model of the fuel pellet. The role of fuel swelling is demonstrated for typical power ramps at different burn-ups. Also, fuel swelling plays a significant role in avoiding the thermal instability for larger gap fuel rods, by limiting the potentially exponentially increasing gap due to the positive feedback loop effect of increasing fission gas release and the associated over-pressure inside the cladding. (author)

  11. Testing mechanistic models of growth in insects.

    Science.gov (United States)

    Maino, James L; Kearney, Michael R

    2015-11-22

    Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg(-1)) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes. © 2015 The Author(s).

  12. Development of a mechanistic model for release of radionuclides from spent fuel in brines: Salt Repository Project

    International Nuclear Information System (INIS)

    Reimus, P.W.; Windisch, C.F.

    1988-03-01

    At present there are no comprehensive mechanistic models describing the release of radionuclides from spent fuel in brine environments. This report provides a comprehensive review of the various factors that can affect radionuclide release from spent fuel, suggests a modeling approach, and discusses proposed experiments for obtaining a better mechanistic understanding of the radionuclide release processes. Factors affecting radionuclide release include the amount, location, and disposition of radionuclides in the fuel and environmental factors such as redox potential, pH, the presence of complexing anions, temperature, and radiolysis. It is concluded that a model describing the release of radionuclides from spent fuel should contain separate terms for release from the gap, grain boundaries, and grains of the fuel. Possible functional forms for these terms are discussed in the report. Experiments for assessing their validity and obtaining key model parameters are proposed. 71 refs., 4 figs., 6 tabs

  13. The ecological impacts of nighttime light pollution: a mechanistic appraisal.

    Science.gov (United States)

    Gaston, Kevin J; Bennie, Jonathan; Davies, Thomas W; Hopkins, John

    2013-11-01

    The ecological impacts of nighttime light pollution have been a longstanding source of concern, accentuated by realized and projected growth in electrical lighting. As human communities and lighting technologies develop, artificial light increasingly modifies natural light regimes by encroaching on dark refuges in space, in time, and across wavelengths. A wide variety of ecological implications of artificial light have been identified. However, the primary research to date is largely focused on the disruptive influence of nighttime light on higher vertebrates, and while comprehensive reviews have been compiled along taxonomic lines and within specific research domains, the subject is in need of synthesis within a common mechanistic framework. Here we propose such a framework that focuses on the cross-factoring of the ways in which artificial lighting alters natural light regimes (spatially, temporally, and spectrally), and the ways in which light influences biological systems, particularly the distinction between light as a resource and light as an information source. We review the evidence for each of the combinations of this cross-factoring. As artificial lighting alters natural patterns of light in space, time and across wavelengths, natural patterns of resource use and information flows may be disrupted, with downstream effects to the structure and function of ecosystems. This review highlights: (i) the potential influence of nighttime lighting at all levels of biological organisation (from cell to ecosystem); (ii) the significant impact that even low levels of nighttime light pollution can have; and (iii) the existence of major research gaps, particularly in terms of the impacts of light at population and ecosystem levels, identification of intensity thresholds, and the spatial extent of impacts in the vicinity of artificial lights. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  14. Causation at Different Levels: Tracking the Commitments of Mechanistic Explanations

    DEFF Research Database (Denmark)

    Fazekas, Peter; Kertész, Gergely

    2011-01-01

    connections transparent. These general commitments get confronted with two claims made by certain proponents of the mechanistic approach: William Bechtel often argues that within the mechanistic framework it is possible to balance between reducing higher levels and maintaining their autonomy at the same time...... their autonomy at the same time than standard reductive accounts are, and that what mechanistic explanations are able to do at best is showing that downward causation does not exist....

  15. Factors implicated to radioresistance of breast cancer and their possible roles

    International Nuclear Information System (INIS)

    Yan Weili; Huang Gang

    2006-01-01

    Radiotherapy plays an important role in the management of breast cancer. The recurrence of breast cancer after radiotherapy is considered to be related with radioresistance in breast cancer cells. Various factors, extranuclear and intranuclear, such as insulin-like growth factor-1 receptor, phosphatidylinositol 3-kinase pathway, epidermal growth factor, human epidermal growth factor receptors, p53, c-erb B2, Bcl-2, BRCA1, BRCA2, telomeres and gene expression signature, that have been implicated to influence the radiation response. (authors)

  16. Factors having implications on re-retinal detachments after silicone oil removal

    Directory of Open Access Journals (Sweden)

    Manish P Nagpal

    2012-01-01

    Full Text Available Aim: To investigate factors having implications on re-retinal detachments (reRD after silicone oil removal (SOR. Materials and Methods: A retroprospective study of 412 eyes (with attached retina after vitrectomy with silicone oil for rhegmatogenous RD which underwent SOR was conducted and were followed up for six months after SOR. They were studied for various factors like encirclage, 360° retinopexy, oil emulsification at the time of SOR, duration of oil tamponade and previous retinal surgeries prior to SOR with their implications on reRD after SOR. Results: Encirclage, 360 laser barrage, both, emulsification of oil (P=0.021, P=0.001, P=0.001, P=0.001, respectively were associated with lower risks of reRD after SOR whereas duration of tamponade (P=0.980 was not. Conclusion: Factors like encirclage, 360 retinopexy, their combination, oil emulsification reduced the incidence of re RD after SOR whereas duration of tamponade does not have statistical significant correlation with re RD after SOR.

  17. MECHANISTIC STUDY OF COLCHICINE’s ELECTROCHEMICAL OXIDATION

    International Nuclear Information System (INIS)

    Bodoki, Ede; Chira, Ruxandra; Zaharia, Valentin; Săndulescu, Robert

    2015-01-01

    Colchicine, as one of the most ancient drugs of human kind, is still in the focal point of the current research due to its multimodal mechanism of action. The elucidation of colchicine’s still unknown redox properties may play an important role in deciphering its beneficial and harmful implications over the human body. Therefore, a systematic mechanistic study of colchicine’s oxidation has been undertaken by electrochemistry coupled to mass spectrometry using two different types of electrolytic cells, in order to clarify the existing inconsistencies with respect to this topic. At around 1 V vs. Pd/H 2 , initiated by a one-electron transfer, the oxidation of colchicine sets off leading to a cation radical, whose further oxidation may evolve on several different pathways. The main product of the anodic electrochemical reaction, regardless of the carrier solution’s pH is represented by a 7-hydroxy derivative of colchicine. At more anodic potentials (above 1.4 V vs. Pd/H 2 ) compounds arising from epoxidation and/or multiple hydroxylation occur. No di- or tridemethylated quinone structures, as previously suggested in the literature for the electrolytic oxidation of colchicine, has been detected in the mass spectra.

  18. Mechanistic Approach to Understanding the Toxicity of the Azole Fungicide Triadimefon to a Nontarget Aquatic Insect and Implications for Exposure Assessment

    Science.gov (United States)

    We utilized mechanistic and stereoselective based in vitro metabolism assays and sublethal exposures of triadimefon to gain insight into the extent of carbonyl reduction and the toxic mode of action of triadimefon with black fly (Diptera: Simuliidae) larvae.

  19. Application of mechanistic models to fermentation and biocatalysis for next-generation processes

    DEFF Research Database (Denmark)

    Gernaey, Krist; Eliasson Lantz, Anna; Tufvesson, Pär

    2010-01-01

    of variables required for measurement, control and process design. In the near future, mechanistic models with a higher degree of detail will play key roles in the development of efficient next-generation fermentation and biocatalytic processes. Moreover, mechanistic models will be used increasingly......Mechanistic models are based on deterministic principles, and recently, interest in them has grown substantially. Herein we present an overview of mechanistic models and their applications in biotechnology, including future perspectives. Model utility is highlighted with respect to selection...

  20. Transcription factors as readers and effectors of DNA methylation.

    Science.gov (United States)

    Zhu, Heng; Wang, Guohua; Qian, Jiang

    2016-08-01

    Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease.

  1. A holistic approach to anesthesia-induced neurotoxicity and its implications for future mechanistic studies.

    Science.gov (United States)

    Zanghi, Christine N; Jevtovic-Todorovic, Vesna

    The year 2016 marked the 15th anniversary since anesthesia-induced developmental neurotoxicity and its resulting cognitive dysfunction were first described. Since that time, multiple scientific studies have supported these original findings and investigated possible mechanisms behind anesthesia-induced neurotoxicity. This paper reviews the existing mechanistic literature on anesthesia-induced neurotoxicity in the context of a holistic approach that emphasizes the importance of both neuronal and non-neuronal cells during early postnatal development. Sections are divided into key stages in early neural development; apoptosis, neurogenesis, migration, differentiation, synaptogenesis, gliogenesis, myelination and blood brain barrier/cerebrovasculature. In addition, the authors combine the established literature in the field of anesthesia-induced neurotoxicity with literature from other related scientific fields to speculate on the potential role of non-neuronal cells and to generate new future hypotheses for understanding anesthetic toxicity and its application to the practice of pediatric anesthesia. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Environmental Factors, Toxicants and Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Anselm Mak

    2014-09-01

    Full Text Available Systemic lupus erythematosus (SLE is an immune-complex-mediated multi-systemic autoimmune condition of multifactorial etiology, which mainly affects young women. It is currently believed that the onset of SLE and lupus flares are triggered by various environmental factors in genetically susceptible individuals. Various environmental agents and toxicants, such as cigarette smoke, alcohol, occupationally- and non-occupationally-related chemicals, ultraviolet light, infections, sex hormones and certain medications and vaccines, have been implicated to induce SLE onset or flares in a number case series, case-control and population-based cohort studies and very few randomized controlled trials. Here, we will describe some of these recognized environmental lupus triggering and perpetuating factors and explain how these factors potentially bias the immune system towards autoimmunity through their interactions with genetic and epigenetic alterations. Further in-depth exploration of how potentially important environmental factors mechanistically interact with the immune system and the genome, which trigger the onset of SLE and lupus flares, will certainly be one of the plausible steps to prevent the onset and to decelerate the progress of the disease.

  3. Generative mechanistic explanation building in undergraduate molecular and cellular biology

    Science.gov (United States)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-09-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among scientists, we created and applied a theoretical framework to explore the strategies students use to construct explanations for 'novel' biological phenomena. Specifically, we explored how students navigated the multi-level nature of complex biological systems using generative mechanistic reasoning. Interviews were conducted with introductory and upper-division biology students at a large public university in the United States. Results of qualitative coding revealed key features of students' explanation building. Students used modular thinking to consider the functional subdivisions of the system, which they 'filled in' to varying degrees with mechanistic elements. They also hypothesised the involvement of mechanistic entities and instantiated abstract schema to adapt their explanations to unfamiliar biological contexts. Finally, we explored the flexible thinking that students used to hypothesise the impact of mutations on multi-leveled biological systems. Results revealed a number of ways that students drew mechanistic connections between molecules, functional modules (sets of molecules with an emergent function), cells, tissues, organisms and populations.

  4. Mechanistic modeling of aberrant energy metabolism in human disease

    Directory of Open Access Journals (Sweden)

    Vineet eSangar

    2012-10-01

    Full Text Available Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.

  5. Mechanistic studies related to the safety of Li/SOCl2 cells

    Science.gov (United States)

    Carter, B. J.; Williams, R. M.; Tsay, F. D.; Rodriguez, A.; Kim, S.; Evans, M. M.; Frank, H.

    1985-01-01

    Mechanistic studies of the reactions in Li-SOCl2 cells have been undertaken to improve understanding of the safety problems of these cells. The electrochemical reduction of 1.5M LiAlCl4/SOCl2 has been investigated using gas chromatography, electron spin resonance spectroscopy, and infrared spectroscopy. Cl2 and S2Cl2 have been identified as intermediates in the reduction of SOCl2, along with a radical species (g/xx/ = 2.004, g/yy/ = 2.016, g/zz/ = 2.008) and the proposed triplet ground-state dimer of this radical. SO2 and sulfur have been identified as products. Based upon these findings, a mechanism for the electrochemical reduction of 1.5M LiAlCl4/SOCl2 has been proposed, and its implications for safety of Li-SOCl2 cells during discharge to +0.5V at 25-30 C are discussed.

  6. Antimicrobial peptides as a possible interlink between periodontal diseases and its risk factors: A systematic review.

    Science.gov (United States)

    Li, S; Schmalz, G; Schmidt, J; Krause, F; Haak, R; Ziebolz, D

    2018-04-01

    Antimicrobial peptides (AMPs) play a critical role in controlling innate and acquired immune responses. Local dysregulation of AMP is implicated in the pathogenesis of periodontal diseases as a response to periodontal pathogen challenge. Changes in AMP expression also characterize tobacco smoking, diabetes mellitus, obesity and rheumatoid arthritis, which are established risk factors of periodontal diseases, suggesting AMP may act as putative mechanistic links between these. The aim was to evaluate and summarize critically the current evidence pertaining to interrelationships between AMPs, periodontal diseases and selected periodontal disease risk factors. General and theme specific keywords were used to search the PUBMED database for studies relevant to AMP, periodontal diseases, smoking, diabetes mellitus, obesity and rheumatoid arthritis and critically reviewed. A total of 131 abstracts and 119 full text articles were screened for relevance; 13 studies were selected for inclusion after critical review. Local AMP dysregulation characteristic to periodontal diseases appears to occur within a broader landscape of complex systemic immune perturbations independently induced by smoking, metabolic and rheumatoid disease. The nature of these interactions and mechanistic pathways involved are inadequately understood. AMPs could be possible mechanistic interlinks between periodontal diseases and its risk factors. However, such evidence is very limited and more in vivo and in vitro studies are necessary to clarify the nature of such relationships. A greater understanding of AMPs as shared mediators is essential for unraveling their value as therapeutic or biomarker candidates. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Exposure factors for marine eutrophication impacts assessment based on a mechanistic biological model

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    2015-01-01

    marine ecosystem (LME), five climate zones, and site-generic. The XFs obtained range from 0.45 (Central Arctic Ocean) to 15.9kgO2kgN-1 (Baltic Sea). While LME resolution is recommended, aggregated PE or XF per climate zone can be adopted, but not global aggregation due to high variability. The XF......Emissions of nitrogen (N) from anthropogenic sources enrich marine waters and promote planktonic growth. This newly synthesised organic carbon is eventually exported to benthic waters where aerobic respiration by heterotrophic bacteria results in the consumption of dissolved oxygen (DO......). This pathway is typical of marine eutrophication. A model is proposed to mechanistically estimate the response of coastal marine ecosystems to N inputs. It addresses the biological processes of nutrient-limited primary production (PP), metazoan consumption, and bacterial degradation, in four distinct sinking...

  8. New web-based applications for mechanistic case diagramming

    Directory of Open Access Journals (Sweden)

    Fred R. Dee

    2014-07-01

    Full Text Available The goal of mechanistic case diagraming (MCD is to provide students with more in-depth understanding of cause and effect relationships and basic mechanistic pathways in medicine. This will enable them to better explain how observed clinical findings develop from preceding pathogenic and pathophysiological events. The pedagogic function of MCD is in relating risk factors, disease entities and morphology, signs and symptoms, and test and procedure findings in a specific case scenario with etiologic pathogenic and pathophysiological sequences within a flow diagram. In this paper, we describe the addition of automation and predetermined lists to further develop the original concept of MCD as described by Engelberg in 1992 and Guerrero in 2001. We demonstrate that with these modifications, MCD is effective and efficient in small group case-based teaching for second-year medical students (ratings of ~3.4 on a 4.0 scale. There was also a significant correlation with other measures of competency, with a ‘true’ score correlation of 0.54. A traditional calculation of reliability showed promising results (α =0.47 within a low stakes, ungraded environment. Further, we have demonstrated MCD's potential for use in independent learning and TBL. Future studies are needed to evaluate MCD's potential for use in medium stakes assessment or self-paced independent learning and assessment. MCD may be especially relevant in returning students to the application of basic medical science mechanisms in the clinical years.

  9. "Ratio via Machina": Three Standards of Mechanistic Explanation in Sociology

    Science.gov (United States)

    Aviles, Natalie B.; Reed, Isaac Ariail

    2017-01-01

    Recently, sociologists have expended much effort in attempts to define social mechanisms. We intervene in these debates by proposing that sociologists in fact have a choice to make between three standards of what constitutes a good mechanistic explanation: substantial, formal, and metaphorical mechanistic explanation. All three standards are…

  10. Toward mechanistic classification of enzyme functions.

    Science.gov (United States)

    Almonacid, Daniel E; Babbitt, Patricia C

    2011-06-01

    Classification of enzyme function should be quantitative, computationally accessible, and informed by sequences and structures to enable use of genomic information for functional inference and other applications. Large-scale studies have established that divergently evolved enzymes share conserved elements of structure and common mechanistic steps and that convergently evolved enzymes often converge to similar mechanisms too, suggesting that reaction mechanisms could be used to develop finer-grained functional descriptions than provided by the Enzyme Commission (EC) system currently in use. Here we describe how evolution informs these structure-function mappings and review the databases that store mechanisms of enzyme reactions along with recent developments to measure ligand and mechanistic similarities. Together, these provide a foundation for new classifications of enzyme function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Improving the International Agency for Research on Cancer's consideration of mechanistic evidence

    International Nuclear Information System (INIS)

    Goodman, Julie; Lynch, Heather

    2017-01-01

    Background: The International Agency for Research on Cancer (IARC) recently developed a framework for evaluating mechanistic evidence that includes a list of 10 key characteristics of carcinogens. This framework is useful for identifying and organizing large bodies of literature on carcinogenic mechanisms, but it lacks sufficient guidance for conducting evaluations that fully integrate mechanistic evidence into hazard assessments. Objectives: We summarize the framework, and suggest approaches to strengthen the evaluation of mechanistic evidence using this framework. Discussion: While the framework is useful for organizing mechanistic evidence, its lack of guidance for implementation limits its utility for understanding human carcinogenic potential. Specifically, it does not include explicit guidance for evaluating the biological significance of mechanistic endpoints, inter- and intra-individual variability, or study quality and relevance. It also does not explicitly address how mechanistic evidence should be integrated with other realms of evidence. Because mechanistic evidence is critical to understanding human cancer hazards, we recommend that IARC develop transparent and systematic guidelines for the use of this framework so that mechanistic evidence will be evaluated and integrated in a robust manner, and concurrently with other realms of evidence, to reach a final human cancer hazard conclusion. Conclusions: IARC does not currently provide a standardized approach to evaluating mechanistic evidence. Incorporating the recommendations discussed here will make IARC analyses of mechanistic evidence more transparent, and lead to assessments of cancer hazards that reflect the weight of the scientific evidence and allow for scientifically defensible decision-making. - Highlights: • IARC has a revised framework for evaluating literature on carcinogenic mechanisms. • The framework is based on 10 key characteristics of carcinogens. • IARC should develop transparent

  12. Improving the International Agency for Research on Cancer's consideration of mechanistic evidence

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Julie, E-mail: jgoodman@gradientcorp.com; Lynch, Heather

    2017-03-15

    Background: The International Agency for Research on Cancer (IARC) recently developed a framework for evaluating mechanistic evidence that includes a list of 10 key characteristics of carcinogens. This framework is useful for identifying and organizing large bodies of literature on carcinogenic mechanisms, but it lacks sufficient guidance for conducting evaluations that fully integrate mechanistic evidence into hazard assessments. Objectives: We summarize the framework, and suggest approaches to strengthen the evaluation of mechanistic evidence using this framework. Discussion: While the framework is useful for organizing mechanistic evidence, its lack of guidance for implementation limits its utility for understanding human carcinogenic potential. Specifically, it does not include explicit guidance for evaluating the biological significance of mechanistic endpoints, inter- and intra-individual variability, or study quality and relevance. It also does not explicitly address how mechanistic evidence should be integrated with other realms of evidence. Because mechanistic evidence is critical to understanding human cancer hazards, we recommend that IARC develop transparent and systematic guidelines for the use of this framework so that mechanistic evidence will be evaluated and integrated in a robust manner, and concurrently with other realms of evidence, to reach a final human cancer hazard conclusion. Conclusions: IARC does not currently provide a standardized approach to evaluating mechanistic evidence. Incorporating the recommendations discussed here will make IARC analyses of mechanistic evidence more transparent, and lead to assessments of cancer hazards that reflect the weight of the scientific evidence and allow for scientifically defensible decision-making. - Highlights: • IARC has a revised framework for evaluating literature on carcinogenic mechanisms. • The framework is based on 10 key characteristics of carcinogens. • IARC should develop transparent

  13. The physicochemical process of bacterial attachment to abiotic surfaces: Challenges for mechanistic studies, predictability and the development of control strategies.

    Science.gov (United States)

    Wang, Yi; Lee, Sui Mae; Dykes, Gary

    2015-01-01

    Bacterial attachment to abiotic surfaces can be explained as a physicochemical process. Mechanisms of the process have been widely studied but are not yet well understood due to their complexity. Physicochemical processes can be influenced by various interactions and factors in attachment systems, including, but not limited to, hydrophobic interactions, electrostatic interactions and substratum surface roughness. Mechanistic models and control strategies for bacterial attachment to abiotic surfaces have been established based on the current understanding of the attachment process and the interactions involved. Due to a lack of process control and standardization in the methodologies used to study the mechanisms of bacterial attachment, however, various challenges are apparent in the development of models and control strategies. In this review, the physicochemical mechanisms, interactions and factors affecting the process of bacterial attachment to abiotic surfaces are described. Mechanistic models established based on these parameters are discussed in terms of their limitations. Currently employed methods to study these parameters and bacterial attachment are critically compared. The roles of these parameters in the development of control strategies for bacterial attachment are reviewed, and the challenges that arise in developing mechanistic models and control strategies are assessed.

  14. Predicting interactions from mechanistic information: Can omic data validate theories?

    International Nuclear Information System (INIS)

    Borgert, Christopher J.

    2007-01-01

    To address the most pressing and relevant issues for improving mixture risk assessment, researchers must first recognize that risk assessment is driven by both regulatory requirements and scientific research, and that regulatory concerns may expand beyond the purely scientific interests of researchers. Concepts of 'mode of action' and 'mechanism of action' are used in particular ways within the regulatory arena, depending on the specific assessment goals. The data requirements for delineating a mode of action and predicting interactive toxicity in mixtures are not well defined from a scientific standpoint due largely to inherent difficulties in testing certain underlying assumptions. Understanding the regulatory perspective on mechanistic concepts will be important for designing experiments that can be interpreted clearly and applied in risk assessments without undue reliance on extrapolation and assumption. In like fashion, regulators and risk assessors can be better equipped to apply mechanistic data if the concepts underlying mechanistic research and the limitations that must be placed on interpretation of mechanistic data are understood. This will be critically important for applying new technologies to risk assessment, such as functional genomics, proteomics, and metabolomics. It will be essential not only for risk assessors to become conversant with the language and concepts of mechanistic research, including new omic technologies, but also, for researchers to become more intimately familiar with the challenges and needs of risk assessment

  15. Explanation and inference: Mechanistic and functional explanations guide property generalization

    Directory of Open Access Journals (Sweden)

    Tania eLombrozo

    2014-09-01

    Full Text Available The ability to generalize from the known to the unknown is central to learning and inference. Two experiments explore the relationship between how a property is explained and how that property is generalized to novel species and artifacts. The experiments contrast the consequences of explaining a property mechanistically, by appeal to parts and processes, with the consequences of explaining the property functionally, by appeal to functions and goals. The findings suggest that properties that are explained functionally are more likely to be generalized on the basis of shared functions, with a weaker relationship between mechanistic explanations and generalization on the basis of shared parts and processes. The influence of explanation type on generalization holds even though all participants are provided with the same mechanistic and functional information, and whether an explanation type is freely generated (Experiment 1, experimentally provided (Experiment 2, or experimentally induced (Experiment 2. The experiments also demonstrate that explanations and generalizations of a particular type (mechanistic or functional can be experimentally induced by providing sample explanations of that type, with a comparable effect when the sample explanations come from the same domain or from a different domains. These results suggest that explanations serve as a guide to generalization, and contribute to a growing body of work supporting the value of distinguishing mechanistic and functional explanations.

  16. Explanation and inference: mechanistic and functional explanations guide property generalization.

    Science.gov (United States)

    Lombrozo, Tania; Gwynne, Nicholas Z

    2014-01-01

    The ability to generalize from the known to the unknown is central to learning and inference. Two experiments explore the relationship between how a property is explained and how that property is generalized to novel species and artifacts. The experiments contrast the consequences of explaining a property mechanistically, by appeal to parts and processes, with the consequences of explaining the property functionally, by appeal to functions and goals. The findings suggest that properties that are explained functionally are more likely to be generalized on the basis of shared functions, with a weaker relationship between mechanistic explanations and generalization on the basis of shared parts and processes. The influence of explanation type on generalization holds even though all participants are provided with the same mechanistic and functional information, and whether an explanation type is freely generated (Experiment 1), experimentally provided (Experiment 2), or experimentally induced (Experiment 2). The experiments also demonstrate that explanations and generalizations of a particular type (mechanistic or functional) can be experimentally induced by providing sample explanations of that type, with a comparable effect when the sample explanations come from the same domain or from a different domains. These results suggest that explanations serve as a guide to generalization, and contribute to a growing body of work supporting the value of distinguishing mechanistic and functional explanations.

  17. Comparative ecophysiology of two sympatric lizards. Laying the groundwork for mechanistic distribution models

    Directory of Open Access Journals (Sweden)

    Enrique García-Muñoz

    2013-12-01

    Full Text Available Distribution modelling usually makes inferences correlating species presence and environmental variables but does not take biotic relations into account. Alternative approaches based on a mechanistic understanding of biological processes are now being applied. Regarding lacertid lizards, physiological traits such as preferred body temperature (Tp are well known to correlate with several physiological optima. Much less is known about their water ecology although body temperature and evaporative water loss (Wl may trade-off. Two saxicolous lacertids, Algyroides marchi and Podarcis hispanica ss are sympatric in the Subbetic Mountains (SE Spain were they can be found in syntopy. Previous distribution modelling indicates the first species is associated with mountains, low temperatures; high precipitation and forest cover whereas the second one is more generalistic. Here, we perform two ecophysiological tests with both species: a Tp experiment in thermal gradient and a Wl experiment in sealed chambers. Although both species attained similar body temperatures, A. marchi lost more water and more uniformly in time than P. hispanica ss that displayed an apparent response to dehydration. These results suggest that water loss rather temperature is crucial to explain the distribution patterns of A. marchi in relation to P. hispanica ss, the former risking dehydration in dry areas no matter what temperature is. Ecophysiological traits represent a promising tool to build future mechanistic models for (lacertid lizards. Additionally, the implications for their biogeography and conservation are discussed.

  18. Cognitive science as an interface between rational and mechanistic explanation.

    Science.gov (United States)

    Chater, Nick

    2014-04-01

    Cognitive science views thought as computation; and computation, by its very nature, can be understood in both rational and mechanistic terms. In rational terms, a computation solves some information processing problem (e.g., mapping sensory information into a description of the external world; parsing a sentence; selecting among a set of possible actions). In mechanistic terms, a computation corresponds to causal chain of events in a physical device (in engineering context, a silicon chip; in biological context, the nervous system). The discipline is thus at the interface between two very different styles of explanation--as the papers in the current special issue well illustrate, it explores the interplay of rational and mechanistic forces. Copyright © 2014 Cognitive Science Society, Inc.

  19. Bridging Mechanistic and Phenomenological Models of Complex Biological Systems.

    Science.gov (United States)

    Transtrum, Mark K; Qiu, Peng

    2016-05-01

    The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM) as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior.

  20. Network-based discovery through mechanistic systems biology. Implications for applications--SMEs and drug discovery: where the action is.

    Science.gov (United States)

    Benson, Neil

    2015-08-01

    Phase II attrition remains the most important challenge for drug discovery. Tackling the problem requires improved understanding of the complexity of disease biology. Systems biology approaches to this problem can, in principle, deliver this. This article reviews the reports of the application of mechanistic systems models to drug discovery questions and discusses the added value. Although we are on the journey to the virtual human, the length, path and rate of learning from this remain an open question. Success will be dependent on the will to invest and make the most of the insight generated along the way. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Mechanistic Links Between PARP, NAD, and Brain Inflammation After TBI

    Science.gov (United States)

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-2-0091 TITLE: Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI PRINCIPAL INVESTIGATOR...COVERED 25 Sep 2014 - 24 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI 5b. GRANT...efficacy of veliparib and NAD as agents for suppressing inflammation and improving outcomes after traumatic brain injury. The animal models include

  2. Enhanced/Synthetic Vision Systems - Human factors research and implications for future systems

    Science.gov (United States)

    Foyle, David C.; Ahumada, Albert J.; Larimer, James; Sweet, Barbara T.

    1992-01-01

    This paper reviews recent human factors research studies conducted in the Aerospace Human Factors Research Division at NASA Ames Research Center related to the development and usage of Enhanced or Synthetic Vision Systems. Research discussed includes studies of field of view (FOV), representational differences of infrared (IR) imagery, head-up display (HUD) symbology, HUD advanced concept designs, sensor fusion, and sensor/database fusion and evaluation. Implications for the design and usage of Enhanced or Synthetic Vision Systems are discussed.

  3. Calibrating mechanistic-empirical pavement performance models with an expert matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tighe, S.; AlAssar, R.; Haas, R. [Waterloo Univ., ON (Canada). Dept. of Civil Engineering; Zhiwei, H. [Stantec Consulting Ltd., Cambridge, ON (Canada)

    2001-07-01

    Proper management of pavement infrastructure requires pavement performance modelling. For the past 20 years, the Ontario Ministry of Transportation has used the Ontario Pavement Analysis of Costs (OPAC) system for pavement design. Pavement needs, however, have changed substantially during that time. To address this need, a new research contract is underway to enhance the model and verify the predictions, particularly at extreme points such as low and high traffic volume pavement design. This initiative included a complete evaluation of the existing OPAC pavement design method, the construction of a new set of pavement performance prediction models, and the development of the flexible pavement design procedure that incorporates reliability analysis. The design was also expanded to include rigid pavement designs and modification of the existing life cycle cost analysis procedure which includes both the agency cost and road user cost. Performance prediction and life-cycle costs were developed based on several factors, including material properties, traffic loads and climate. Construction and maintenance schedules were also considered. The methodology for the calibration and validation of a mechanistic-empirical flexible pavement performance model was described. Mechanistic-empirical design methods combine theory based design such as calculated stresses, strains or deflections with empirical methods, where a measured response is associated with thickness and pavement performance. Elastic layer analysis was used to determine pavement response to determine the most effective design using cumulative Equivalent Single Axle Loads (ESALs), below grade type and layer thickness.The new mechanistic-empirical model separates the environment and traffic effects on performance. This makes it possible to quantify regional differences between Southern and Northern Ontario. In addition, roughness can be calculated in terms of the International Roughness Index or Riding comfort Index

  4. Proceedings of the international workshop on mechanistic understanding of radionuclide migration in compacted/intact systems

    International Nuclear Information System (INIS)

    Tachi, Yukio; Yui, Mikazu

    2010-03-01

    The international workshop on mechanistic understanding of radionuclide migration in compacted / intact systems was held at ENTRY, JAEA, Tokai on 21st - 23rd January, 2009. This workshop was hosted by Japan Atomic Energy Agency (JAEA) as part of the project on the mechanistic model/database development for radionuclide sorption and diffusion behavior in compacted / intact systems. The overall goal of the project is to develop the mechanistic model / database for a consistent understanding and prediction of migration parameters and its uncertainties for performance assessment of geological disposal of radioactive waste. The objective of the workshop is to integrate the state-of-the-art of mechanistic sorption and diffusion model in compacted / intact systems, especially in bentonite / clay systems, and discuss the JAEA's mechanistic approaches and future challenges, especially the following discussions points; 1) What's the status and difficulties for mechanistic model/database development? 2) What's the status and difficulties for applicability of mechanistic model to the compacted/intact system? 3) What's the status and difficulties for obtaining evidences for mechanistic model? 4) What's the status and difficulties for standardization of experimental methodology for batch sorption and diffusion? 5) What's the uncertainties of transport parameters in radionuclides migration analysis due to a lack of understanding/experimental methodologies, and how do we derive them? This report includes workshop program, overview and materials of each presentation, summary of discussions. (author)

  5. Mechanistic Indicators of Childhood Asthma (MICA): piloting ...

    Science.gov (United States)

    Background: Modem methods in molecular biology and advanced computational tools show promise in elucidating complex interactions that occur between genes and environmental factors in diseases such as asthma; however appropriately designed studies are critical for these methods to reach their full potential. Objective: We used a case-control study to investigate whether genomic data (blood gene expression), viewed together with a spectrum of exposure effects and susceptibility markers (blood, urine and nail), can provide a mechanistic explanation for the increased susceptibility of asthmatics to ambient air pollutants. Methods: We studied 205 non-asthmatic and asthmatic children, (9-12 years of age) who participated in a clinical study in Detroit, Michigan. The study combines a traditional epidemiological design with an integrative approach to investigate the environmental exposure of children to indoor-outdoor air. The study includes measurements of internal dose (metals, allergen specific IgE, PAH and VOC metabolites) and clinical measures of health outcome (immunological, cardiovascular and respiratory). Results: Expected immunological indications of asthma have been obtained. In addition, initial results from our analyses point to the complex nature of childhood health and risk factors linked to metabolic syndrome (obesity, blood pressure and dyslipidemia). For example, 31% and 34% of the asthmatic MICA subjects were either overweight (BMI > 25) o

  6. Use of mechanistic simulations as a quantitative risk-ranking tool within the quality by design framework.

    Science.gov (United States)

    Stocker, Elena; Toschkoff, Gregor; Sacher, Stephan; Khinast, Johannes G

    2014-11-20

    The purpose of this study is to evaluate the use of computer simulations for generating quantitative knowledge as a basis for risk ranking and mechanistic process understanding, as required by ICH Q9 on quality risk management systems. In this specific publication, the main focus is the demonstration of a risk assessment workflow, including a computer simulation for the generation of mechanistic understanding of active tablet coating in a pan coater. Process parameter screening studies are statistically planned under consideration of impacts on a potentially critical quality attribute, i.e., coating mass uniformity. Based on computer simulation data the process failure mode and effects analysis of the risk factors is performed. This results in a quantitative criticality assessment of process parameters and the risk priority evaluation of failure modes. The factor for a quantitative reassessment of the criticality and risk priority is the coefficient of variation, which represents the coating mass uniformity. The major conclusion drawn from this work is a successful demonstration of the integration of computer simulation in the risk management workflow leading to an objective and quantitative risk assessment. Copyright © 2014. Published by Elsevier B.V.

  7. Specialists without spirit: limitations of the mechanistic biomedical model.

    Science.gov (United States)

    Hewa, S; Hetherington, R W

    1995-06-01

    This paper examines the origin and the development of the mechanistic model of the human body and health in terms of Max Weber's theory of rationalization. It is argued that the development of Western scientific medicine is a part of the broad process of rationalization that began in sixteenth century Europe as a result of the Reformation. The development of the mechanistic view of the human body in Western medicine is consistent with the ideas of calculability, predictability, and control-the major tenets of the process of rationalization as described by Weber. In recent years, however, the limitations of the mechanistic model have been the topic of many discussions. George Engel, a leading advocate of general systems theory, is one of the leading proponents of a new medical model which includes the general quality of life, clean environment, and psychological, or spiritual stability of life. The paper concludes with consideration of the potential of Engel's proposed new model in the context of the current state of rationalization in modern industrialized society.

  8. Conceptual models for waste tank mechanistic analysis

    International Nuclear Information System (INIS)

    Allemann, R.T.; Antoniak, Z.I.; Eyler, L.L.; Liljegren, L.M.; Roberts, J.S.

    1992-02-01

    Pacific Northwest Laboratory (PNL) is conducting a study for Westinghouse Hanford Company (Westinghouse Hanford), a contractor for the US Department of Energy (DOE). The purpose of the work is to study possible mechanisms and fluid dynamics contributing to the periodic release of gases from double-shell waste storage tanks at the Hanford Site in Richland, Washington. This interim report emphasizing the modeling work follows two other interim reports, Mechanistic Analysis of Double-Shell Tank Gas Release Progress Report -- November 1990 and Collection and Analysis of Existing Data for Waste Tank Mechanistic Analysis Progress Report -- December 1990, that emphasized data correlation and mechanisms. The approach in this study has been to assemble and compile data that are pertinent to the mechanisms, analyze the data, evaluate physical properties and parameters, evaluate hypothetical mechanisms, and develop mathematical models of mechanisms

  9. Why did Jacques Monod make the choice of mechanistic determinism?

    Science.gov (United States)

    Loison, Laurent

    2015-06-01

    The development of molecular biology placed in the foreground a mechanistic and deterministic conception of the functioning of macromolecules. In this article, I show that this conception was neither obvious, nor necessary. Taking Jacques Monod as a case study, I detail the way he gradually came loose from a statistical understanding of determinism to finally support a mechanistic understanding. The reasons of the choice made by Monod at the beginning of the 1950s can be understood only in the light of the general theoretical schema supported by the concept of mechanistic determinism. This schema articulates three fundamental notions for Monod, namely that of the rigidity of the sequence of the genetic program, that of the intrinsic stability of macromolecules (DNA and proteins), and that of the specificity of molecular interactions. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  10. Stress fracture risk factors in female football players and their clinical implications.

    Science.gov (United States)

    Warden, Stuart J; Creaby, Mark W; Bryant, Adam L; Crossley, Kay M

    2007-08-01

    A stress fracture represents the inability of the skeleton to withstand repetitive bouts of mechanical loading, which results in structural fatigue, and resultant signs and symptoms of localised pain and tenderness. Reports of stress fractures in female football players are not prevalent; however, they are probably under-reported and their importance lies in the morbidity that they cause in terms of time lost from participation. By considering risk factors for stress fractures in female football players it may be possible to reduce the impact of these troublesome injuries. Risk factors for stress fractures in female football players include intrinsic risk factors such as gender, endocrine, nutritional, physical fitness and neuromusculoskeletal factors, as well as extrinsic risk factors such as training programme, equipment and environmental factors. This paper discusses these risk factors and their implications in terms of developing prevention and management strategies for stress fractures in female football players.

  11. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated...

  12. LASSIM-A network inference toolbox for genome-wide mechanistic modeling.

    Directory of Open Access Journals (Sweden)

    Rasmus Magnusson

    2017-06-01

    Full Text Available Recent technological advancements have made time-resolved, quantitative, multi-omics data available for many model systems, which could be integrated for systems pharmacokinetic use. Here, we present large-scale simulation modeling (LASSIM, which is a novel mathematical tool for performing large-scale inference using mechanistically defined ordinary differential equations (ODE for gene regulatory networks (GRNs. LASSIM integrates structural knowledge about regulatory interactions and non-linear equations with multiple steady state and dynamic response expression datasets. The rationale behind LASSIM is that biological GRNs can be simplified using a limited subset of core genes that are assumed to regulate all other gene transcription events in the network. The LASSIM method is implemented as a general-purpose toolbox using the PyGMO Python package to make the most of multicore computers and high performance clusters, and is available at https://gitlab.com/Gustafsson-lab/lassim. As a method, LASSIM works in two steps, where it first infers a non-linear ODE system of the pre-specified core gene expression. Second, LASSIM in parallel optimizes the parameters that model the regulation of peripheral genes by core system genes. We showed the usefulness of this method by applying LASSIM to infer a large-scale non-linear model of naïve Th2 cell differentiation, made possible by integrating Th2 specific bindings, time-series together with six public and six novel siRNA-mediated knock-down experiments. ChIP-seq showed significant overlap for all tested transcription factors. Next, we performed novel time-series measurements of total T-cells during differentiation towards Th2 and verified that our LASSIM model could monitor those data significantly better than comparable models that used the same Th2 bindings. In summary, the LASSIM toolbox opens the door to a new type of model-based data analysis that combines the strengths of reliable mechanistic models

  13. Bird Migration Under Climate Change - A Mechanistic Approach Using Remote Sensing

    Science.gov (United States)

    Smith, James A.; Blattner, Tim; Messmer, Peter

    2010-01-01

    migratory shorebirds in the central fly ways of North America. We demonstrated the phenotypic plasticity of a migratory population of Pectoral sandpipers consisting of an ensemble of 10,000 individual birds in response to changes in stopover locations using an individual based migration model driven by remotely sensed land surface data, climate data and biological field data. With the advent of new computing capabilities enabled hy recent GPU-GP computing paradigms and commodity hardware, it now is possible to simulate both larger ensemble populations and to incorporate more realistic mechanistic factors into migration models. Here, we take our first steps use these tools to study the impact of long-term drought variability on shorebird survival.

  14. Generation Y Student-Teachers' Motivational Factors: Retention Implications for K-12 Educational Leaders

    Science.gov (United States)

    Bontempo, Brian

    2010-01-01

    Generation Y represents a growing number of student-teachers who will impact the future of educational practice, yet little research has been conducted for this demographic group. The purpose of this mixed-method study was to identify motivational factors of neophyte teachers and the retention implications these findings had on Kindergarten…

  15. Infection control implications of heterogeneous resistance mechanisms in carbapenem-resistant Enterobacteriaceae (CRE).

    Science.gov (United States)

    Goodman, K E; Simner, P J; Tamma, P D; Milstone, A M

    2016-01-01

    The Centers for Disease Control and Prevention (CDC) defines carbapenem-resistant Enterobacteriaceae (CRE) based upon a phenotypic demonstration of carbapenem resistance. However, considerable heterogeneity exists within this definitional umbrella. CRE may mechanistically differ by whether they do or do not produce carbapenemases. Moreover, patients can acquire CRE through multiple pathways: endogenously through antibiotic selective pressure on intestinal microbiota, exogenously through horizontal transmission or through a combination of these factors. Some evidence suggests that non-carbapenemase-producing CRE may be more frequently acquired by antibiotic exposure and carbapenemase-producing CRE via horizontal transmission, but definitive data are lacking. This review examines types of CRE resistance mechanisms, antibiotic exposure and horizontal transmission pathways of CRE acquisition, and the implications of these heterogeneities to the development of evidence-based CRE healthcare epidemiology policies. In our Expert Commentary & Five-Year View, we outline specific nosocomial CRE knowledge gaps and potential methodological approaches for their resolution.

  16. Evaluation of mechanistic DNB models using HCLWR CHF data

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Watanabe, Hironori; Okubo, Tsutomu; Araya, Fumimasa; Murao, Yoshio.

    1992-03-01

    An onset of departure from nucleate boiling (DNB) in light water reactor (LWR) has been generally predicted with empirical correlations. Since these correlations have less physical bases and contain adjustable empirical constants determined by best fitting of test data, applicable geometries and flow conditions are limited within the original experiment ranges. In order to obtain more universal prediction method, several mechanistic DNB models based on physical approaches have been proposed in recent years. However, the predictive capabilities of mechanistic DNB models have not been verified successfully especially for advanced LWR design purposes. In this report, typical DNB mechanistic models are reviewed and compared with critical heat flux (CHF) data for high conversion light water reactor (HCLWR). The experiments were performed using triangular 7-rods array with non-uniform axial heat flux distribution. Test pressure was 16 MPa, mass velocities ranged from 800 t0 3100 kg/s·m 2 and exit qualities from -0.07 to 0.19. The evaluated models are: 1) Wisman-Pei, 2) Chang-Lee, 3) Lee-Mudawwar, 4) Lin-Lee-Pei, and 5) Katto. The first two models are based on near-wall bubble crowding model and the other three models on sublayer dryout model. The comparison with experimental data indicated that the Weisman-Pei model agreed relatively well with the CHF data. Effects of empirical constants in each model on CHF calculation were clarified by sensitivity studies. It was also found that the magnitudes of physical quantities obtained in the course of calculation were significantly different for each model. Therefore, microscopic observation of the onset of DNB on heated surface is essential to clarify the DNB mechanism and establish a general DNB mechanistic model based on physical phenomenon. (author)

  17. Toward a Mechanistic Understanding of Deuterium Excess as a Tracer for Evapotranspiration

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chun-Ta [Department of Biology, San Diego State University, San Diego, CA (United States)

    2013-07-15

    An understanding of atmospheric water vapour and its isotopic composition is useful for modelling effects of terrestrial evapotranspiration on regional hydrologic cycles. Previous studies showed diurnal and vertical patterns of water vapour isotope ratios ({delta}{sup 2}H{sub v} and {delta}{sup 18}O{sub v}) consistently observed in an old growth coniferous forest. Using a box model and a mass balance approach to simulate 'isoflux of d-excess', the effect of evapotranspiration on the d-excess in atmospheric water vapour is quantitatively demonstrated. The results suggest that d-excess can be mechanistically utilized to identify processes that contribute to the diurnal variation in atmospheric moisture. These new findings have implications for larger-scale predictions of precipitation across the terrestrial landscape. In this paper, I report the initial results of the {delta}{sup 2}H{sub v} and {delta}{sup 18}O{sub v} measurements using a cavity enhanced spectroscopy instrument. These recent data are consistent with the pattern observed by the conventional sampling method, providing new opportunities for studying d-excess as a tracer for evapotranspiration. (author)

  18. Mechanistic Fermentation Models for Process Design, Monitoring, and Control

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albæk, Mads Orla

    2017-01-01

    Mechanistic models require a significant investment of time and resources, but their application to multiple stages of fermentation process development and operation can make this investment highly valuable. This Opinion article discusses how an established fermentation model may be adapted...... for application to different stages of fermentation process development: planning, process design, monitoring, and control. Although a longer development time is required for such modeling methods in comparison to purely data-based model techniques, the wide range of applications makes them a highly valuable tool...... for fermentation research and development. In addition, in a research environment, where collaboration is important, developing mechanistic models provides a platform for knowledge sharing and consolidation of existing process understanding....

  19. Regulatory Technology Development Plan - Sodium Fast Reactor: Mechanistic Source Term - Trial Calculation

    International Nuclear Information System (INIS)

    Grabaskas, David

    2016-01-01

    The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is not without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.

  20. Implications of microbiota and bile acid in liver injury and regeneration.

    Science.gov (United States)

    Liu, Hui-Xin; Keane, Ryan; Sheng, Lili; Wan, Yu-Jui Yvonne

    2015-12-01

    Studies examining the mechanisms by which the liver incurs injury and then regenerates usually focus on factors and pathways directly within the liver, neglecting the signaling derived from the gut-liver axis. The intestinal content is rich in microorganisms as well as metabolites generated from both the host and colonizing bacteria. Through the gut-liver axis, this complex "soup" exerts an immense impact on liver integrity and function. This review article summarizes data published in the past 30 years demonstrating the signaling derived from the gut-liver axis in relation to liver injury and regeneration. Due to the intricate networks of implicated pathways as well as scarcity of available mechanistic data, it seems that nutrigenomic, metabolomics, and microbiota profiling approaches are warranted to provide a better understanding regarding the interplay and impact between nutrition, bacteria, and host response in influencing liver function and healing. Therefore elucidating the possible molecular mechanisms that link microbiota alteration to host physiological response and vice versa. Published by Elsevier B.V.

  1. A dynamic and mechanistic model of PCB bioaccumulation in the European hake ( Merluccius merluccius)

    Science.gov (United States)

    Bodiguel, Xavier; Maury, Olivier; Mellon-Duval, Capucine; Roupsard, François; Le Guellec, Anne-Marie; Loizeau, Véronique

    2009-08-01

    Bioaccumulation is difficult to document because responses differ among chemical compounds, with environmental conditions, and physiological processes characteristic of each species. We use a mechanistic model, based on the Dynamic Energy Budget (DEB) theory, to take into account this complexity and study factors impacting accumulation of organic pollutants in fish through ontogeny. The bioaccumulation model proposed is a comprehensive approach that relates evolution of hake PCB contamination to physiological information about the fish, such as diet, metabolism, reserve and reproduction status. The species studied is the European hake ( Merluccius merluccius, L. 1758). The model is applied to study the total concentration and the lipid normalised concentration of 4 PCB congeners in male and female hakes from the Gulf of Lions (NW Mediterranean sea) and the Bay of Biscay (NE Atlantic ocean). Outputs of the model compare consistently to measurements over the life span of fish. Simulation results clearly demonstrate the relative effects of food contamination, growth and reproduction on the PCB bioaccumulation in hake. The same species living in different habitats and exposed to different PCB prey concentrations exhibit marked difference in the body accumulation of PCBs. At the adult stage, female hakes have a lower PCB concentration compared to males for a given length. We successfully simulated these sex-specific PCB concentrations by considering two mechanisms: a higher energy allocation to growth for females and a transfer of PCBs from the female to its eggs when allocating lipids from reserve to eggs. Finally, by its mechanistic description of physiological processes, the model is relevant for other species and sets the stage for a mechanistic understanding of toxicity and ecological effects of organic contaminants in marine organisms.

  2. Descriptive and mechanistic models of crop–weed competition

    NARCIS (Netherlands)

    Bastiaans, L.; Storkey, J.

    2017-01-01

    Crop-weed competitive relations are an important element of agroecosystems. Quantifying and understanding them helps to design appropriate weed management at operational, tactical and strategic level. This chapter presents and discusses simple descriptive and more mechanistic models for crop-weed

  3. Mechanistic modeling for mammography screening risks

    International Nuclear Information System (INIS)

    Bijwaard, Harmen

    2008-01-01

    Full text: Western populations show a very high incidence of breast cancer and in many countries mammography screening programs have been set up for the early detection of these cancers. Through these programs large numbers of women (in the Netherlands, 700.000 per year) are exposed to low but not insignificant X-ray doses. ICRP based risk estimates indicate that the number of breast cancer casualties due to mammography screening can be as high as 50 in the Netherlands per year. The number of lives saved is estimated to be much higher, but for an accurate calculation of the benefits of screening a better estimate of these risks is indispensable. Here it is attempted to better quantify the radiological risks of mammography screening through the application of a biologically based model for breast tumor induction by X-rays. The model is applied to data obtained from the National Institutes of Health in the U.S. These concern epidemiological data of female TB patients who received high X-ray breast doses in the period 1930-1950 through frequent fluoroscopy of their lungs. The mechanistic model that is used to describe the increased breast cancer incidence is based on an earlier study by Moolgavkar et al. (1980), in which the natural background incidence of breast cancer was modeled. The model allows for a more sophisticated extrapolation of risks to the low dose X-ray exposures that are common in mammography screening and to the higher ages that are usually involved. Furthermore, it allows for risk transfer to other (non-western) populations. The results have implications for decisions on the frequency of screening, the number of mammograms taken at each screening, minimum and maximum ages for screening and the transfer to digital equipment. (author)

  4. Mechanistic Framework for Establishment, Maintenance, and Alteration of Cell Polarity in Plants

    Directory of Open Access Journals (Sweden)

    Pankaj Dhonukshe

    2012-01-01

    Full Text Available Cell polarity establishment, maintenance, and alteration are central to the developmental and response programs of nearly all organisms and are often implicated in abnormalities ranging from patterning defects to cancer. By residing at the distinct plasma membrane domains polar cargoes mark the identities of those domains, and execute localized functions. Polar cargoes are recruited to the specialized membrane domains by directional secretion and/or directional endocytic recycling. In plants, auxin efflux carrier PIN proteins display polar localizations in various cell types and play major roles in directional cell-to-cell transport of signaling molecule auxin that is vital for plant patterning and response programs. Recent advanced microscopy studies applied to single cells in intact plants reveal subcellular PIN dynamics. They uncover the PIN polarity generation mechanism and identified important roles of AGC kinases for polar PIN localization. AGC kinase family members PINOID, WAG1, and WAG2, belonging to the AGC-3 subclass predominantly influence the polar localization of PINs. The emerging mechanism for AGC-3 kinases action suggests that kinases phosphorylate PINs mainly at the plasma membrane after initial symmetric PIN secretion for eventual PIN internalization and PIN sorting into distinct ARF-GEF-regulated polar recycling pathways. Thus phosphorylation status directs PIN translocation to different cell sides. Based on these findings a mechanistic framework evolves that suggests existence of cell side-specific recycling pathways in plants and implicates AGC3 kinases for differential PIN recruitment among them for eventual PIN polarity establishment, maintenance, and alteration.

  5. Precision and accuracy of mechanistic-empirical pavement design

    CSIR Research Space (South Africa)

    Theyse, HL

    2006-09-01

    Full Text Available are discussed in general. The effects of variability and error on the design accuracy and design risk are lastly illustrated at the hand of a simple mechanistic-empirical design problem, showing that the engineering models alone determine the accuracy...

  6. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century

    International Nuclear Information System (INIS)

    Mortensen, Holly M.; Euling, Susan Y.

    2013-01-01

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment

  7. Mechanistic Models for Process Development and Optimization of Fed-batch Fermentation Systems

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albæk, Mads O.

    2016-01-01

    This work discusses the application of mechanistic models to pilot scale filamentous fungal fermentation systems operated at Novozymes A/S. For on-line applications, a state estimator model is developed based on a stoichiometric balance in order to predict the biomass and product concentration....... This is based on on-line gas measurements and ammonia addition flow rate measurements. Additionally, a mechanistic model is applied offline as a tool for batch planning, based on definition of the process back pressure, aeration rate and stirrer speed. This allows the batch starting fill to be planned, taking...... into account the oxygen transfer conditions, as well as the evaporation rates of the system. Mechanistic models are valuable tools which are applicable for both process development and optimization. The state estimator described will be a valuable tool for future work as part of control strategy development...

  8. CF3CH(ONO)CF3: Synthesis, IR spectrum, and use as OH radical source for kinetic and mechanistic studies

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Hurley, MD; Ball, JC

    2003-01-01

    The synthesis, IR spectrum, and first-principles characterization of CF3CH(ONO)CF3 as well as its use as an OH radical source in kinetic and mechanistic studies are reported. CF3CH(ONO)CF3 exists in two conformers corresponding to rotation about the RCO-NO bond. The more prevalent trans conformer......C(O)CF3 and, by implication, OH radicals in 100% yield. CF3CH(ONO)CF3 photolysis is a convenient source of OH radicals in the studies of the yields of CO, CO2, HCHO, and HC(O)OH products which can be difficult to measure using more conventional OH radical sources (e.g., CH3ONO photolysis). CF3CH...

  9. Advanced REACH Tool : Development and application of the substance emission potential modifying factor

    NARCIS (Netherlands)

    Tongeren, M. van; Fransman, W.; Spankie, S.; Tischer, M.; Brouwer, D.; Schinkel, J.; Cherrie, J.W.; Tielemans, E.

    2011-01-01

    The Advanced REACH Tool (ART) is an exposure assessment tool that combines mechanistically modelled inhalation exposure estimates with available exposure data using a Bayesian approach. The mechanistic model is based on nine independent principal modifying factors (MF). One of these MF is the

  10. Requirements on mechanistic NPP models used in CSS for diagnostics and predictions

    International Nuclear Information System (INIS)

    Juslin, K.

    1996-01-01

    Mechanistic models have for several years with good experience been used for operators' support in electric power dispatching centres. Some models of limited scope have already been in use at nuclear power plants. It is considered that also advanced mechanistic models in combination with present computer technology with preference could be used in Computerized Support Systems (CSS) for the assistance of Nuclear Power Plant (NPP) operators. Requirements with respect to accuracy, validity range, speed flexibility and level of detail on the models used for such purposes are discussed. Quality Assurance, Verification and Validation efforts are considered. A long term commitment in the field of mechanistic modelling and real time simulation is considered as the key to successful implementations. The Advanced PROcess Simulation (APROS) code system and simulation environment developed at the Technical Research Centre of Finland (VTT) is intended also for CSS applications in NPP control rooms. (author). 4 refs

  11. Regulatory Technology Development Plan - Sodium Fast Reactor: Mechanistic Source Term – Trial Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Brunett, Acacia J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Denman, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Engineering Division; Clark, Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Engineering Division; Denning, Richard S. [Consultant, Columbus, OH (United States)

    2016-10-01

    The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is not without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.

  12. An examination of human factors in external beam radiation therapy: Findings and implications

    International Nuclear Information System (INIS)

    Henriksen, K.; Kaye, R.D.; Jones, R.E. Jr.; Morisseau, D.S.; Persensky, J.J.

    1994-01-01

    To better understand the contributing factors to human error in external beam radiation therapy, the US Nuclear Regulatory Commission has undertaken a series of human factors evaluations. A team of human factors specialists, assisted by a panel of radiation oncologists, medical physicists, and radiation technologists, conducted visits to 24 radiation oncology departments at community hospitals, university centers, and free-standing clinics. A function and task analysis was initially performed to guide subsequent evaluations in the areas of human-system interfaces, procedures, training and qualifications, and organizational policies and practices. Representative findings and implications for improvement are discussed within the context of a dynamic model which holds that misadministration likely results from the unanticipated interaction of several necessary but singly insufficient conditions

  13. Blood-brain barrier disruption: mechanistic links between Western diet consumption and dementia

    Directory of Open Access Journals (Sweden)

    Ted Menghsiung Hsu

    2014-05-01

    Full Text Available Both obesity and Alzheimer’s disease are major health burdens in Western societies. While commonly viewed as having separate etiologies, this review highlights data suggesting that intake of Western diets, diets high in saturated fatty acids and simple carbohydrates, may pose a common environmental risk factor contributing to the development of both of these adverse pathologies. We discuss the effects of Western Diet intake on learning and memory processes that are dependent on the hippocampus, as well as the importance of this brain region in both obesity development and the onset of Alzheimer’s and other dementias. A putative mechanism is discussed that mechanistically links Western diet consumption, blood brain barrier degradation, and subsequent hippocampal damage and dementia pathology.

  14. The mechanistic bases of the power-time relationship

    DEFF Research Database (Denmark)

    Vanhatalo, Anni; Black, Matthew I; DiMenna, Fred J

    2016-01-01

    .025) and inversely correlated with muscle type IIx fibre proportion (r = -0.76, P = 0.01). There was no relationship between W' (19.4 ± 6.3 kJ) and muscle fibre type. These data indicate a mechanistic link between the bioenergetic characteristics of different muscle fibre types and the power-duration relationship...

  15. Hyperirisinemia is independently associated with subclinical hypothyroidism: correlations with cardiometabolic biomarkers and risk factors.

    Science.gov (United States)

    Stratigou, Theodora; Dalamaga, Maria; Antonakos, Georgios; Marinou, Ioanna; Vogiatzakis, Evaggelos; Christodoulatos, Gerasimos Socrates; Karampela, Irene; Papavassiliou, Athanasios G

    2018-02-17

    Irisin, a newly discovered adipo-myokine, is implicated in the modulation of the adipose phenotype, increasing energy expenditure and ameliorating systemic metabolism. Our aim was to investigate circulating irisin in subclinical hypothyroidism (SH) and study its associations with cardiometabolic risk factors. In a large case-control study, serum irisin, insulin resistance and lipid parameters, classic adipokines, inflammatory and hepatic biomarkers, and cardiovascular risk factors were determined in 120 consecutive patients with SH and 120 healthy controls matched on age, gender, and date of blood draw. Sixteen patients with SH received L-T4 treatment and, after 6 months, serum irisin and other biomarkers were assessed. SH cases exhibited significantly higher circulating irisin than controls (p counterbalancing a potential, gradual deterioration of lipid metabolism and insulin sensitivity in SH as well as reflecting a protective compensatory mechanism against oxidative muscle and thyroid cell stress. More mechanistic and prospective studies shedding light on the pathogenetic role of irisin in SH are needed to confirm and extend these data.

  16. Mechanistic studies of carbon monoxide reduction

    Energy Technology Data Exchange (ETDEWEB)

    Geoffroy, G.L.

    1990-06-12

    The progress made during the current grant period (1 January 1988--1 April 1990) in three different areas of research is summarized. The research areas are: (1) oxidatively-induced double carbonylation reactions to form {alpha}-ketoacyl complexes and studies of the reactivity of the resulting compounds, (2) mechanistic studies of the carbonylation of nitroaromatics to form isocyanates, carbamates, and ureas, and (3) studies of the formation and reactivity of unusual metallacycles and alkylidene ligands supported on binuclear iron carbonyl fragments. 18 refs., 5 figs., 1 tab.

  17. Advanced reach tool (ART) : Development of the mechanistic model

    NARCIS (Netherlands)

    Fransman, W.; Tongeren, M. van; Cherrie, J.W.; Tischer, M.; Schneider, T.; Schinkel, J.; Kromhout, H.; Warren, N.; Goede, H.; Tielemans, E.

    2011-01-01

    This paper describes the development of the mechanistic model within a collaborative project, referred to as the Advanced REACH Tool (ART) project, to develop a tool to model inhalation exposure for workers sharing similar operational conditions across different industries and locations in Europe.

  18. Recombinant nematode anticoagulant protein c2, an inhibitor of tissue factor/factor VIIa, attenuates coagulation and the interleukin-10 response in human endotoxemia

    NARCIS (Netherlands)

    de Pont, A. C. J. M.; Moons, A. H. M.; de Jonge, E.; Meijers, J. C. M.; Vlasuk, G. P.; Rote, W. E.; Büller, H. R.; van der Poll, T.; Levi, M. [=Marcel M.

    2004-01-01

    The tissue factor-factor (F)VIIa complex (TF/FVIIa) is responsible for the initiation of blood coagulation under both physiological and pathological conditions. Recombinant nematode anticoagulant protein c2 (rNAPc2) is a potent inhibitor of TF/FVIIa. mechanistically distinct from tissue factor

  19. Modeling systems-level dynamics: Understanding without mechanistic explanation in integrative systems biology.

    Science.gov (United States)

    MacLeod, Miles; Nersessian, Nancy J

    2015-02-01

    In this paper we draw upon rich ethnographic data of two systems biology labs to explore the roles of explanation and understanding in large-scale systems modeling. We illustrate practices that depart from the goal of dynamic mechanistic explanation for the sake of more limited modeling goals. These processes use abstract mathematical formulations of bio-molecular interactions and data fitting techniques which we call top-down abstraction to trade away accurate mechanistic accounts of large-scale systems for specific information about aspects of those systems. We characterize these practices as pragmatic responses to the constraints many modelers of large-scale systems face, which in turn generate more limited pragmatic non-mechanistic forms of understanding of systems. These forms aim at knowledge of how to predict system responses in order to manipulate and control some aspects of them. We propose that this analysis of understanding provides a way to interpret what many systems biologists are aiming for in practice when they talk about the objective of a "systems-level understanding." Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Four Mechanistic Models of Peer Influence on Adolescent Cannabis Use.

    Science.gov (United States)

    Caouette, Justin D; Feldstein Ewing, Sarah W

    2017-06-01

    Most adolescents begin exploring cannabis in peer contexts, but the neural mechanisms that underlie peer influence on adolescent cannabis use are still unknown. This theoretical overview elucidates the intersecting roles of neural function and peer factors in cannabis use in adolescents. Novel paradigms using functional magnetic resonance imaging (fMRI) in adolescents have identified distinct neural mechanisms of risk decision-making and incentive processing in peer contexts, centered on reward-motivation and affect regulatory neural networks; these findings inform a theoretical model of peer-driven cannabis use decisions in adolescents. We propose four "mechanistic profiles" of social facilitation of cannabis use in adolescents: (1) peer influence as the primary driver of use; (2) cannabis exploration as the primary driver, which may be enhanced in peer contexts; (3) social anxiety; and (4) negative peer experiences. Identification of "neural targets" involved in motivating cannabis use may inform clinicians about which treatment strategies work best in adolescents with cannabis use problems, and via which social and neurocognitive processes.

  1. Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules

    Science.gov (United States)

    Huang, Weiguo; Diallo, Abdou Karim; Dailey, Jennifer L.; Besar, Kalpana

    2017-01-01

    Electronic biosensing is a leading technology for determining concentrations of biomolecules. In some cases, the presence of an analyte molecule induces a measured change in current flow, while in other cases, a new potential difference is established. In the particular case of a field effect biosensor, the potential difference is monitored as a change in conductance elsewhere in the device, such as across a film of an underlying semiconductor. Often, the mechanisms that lead to these responses are not specifically determined. Because improved understanding of these mechanisms will lead to improved performance, it is important to highlight those studies where various mechanistic possibilities are investigated. This review explores a range of possible mechanistic contributions to field-effect biosensor signals. First, we define the field-effect biosensor and the chemical interactions that lead to the field effect, followed by a section on theoretical and mechanistic background. We then discuss materials used in field-effect biosensors and approaches to improving signals from field-effect biosensors. We specifically cover the biomolecule interactions that produce local electric fields, structures and processes at interfaces between bioanalyte solutions and electronic materials, semiconductors used in biochemical sensors, dielectric layers used in top-gated sensors, and mechanisms for converting the surface voltage change to higher signal/noise outputs in circuits. PMID:29238595

  2. Metabolite Signatures of Metabolic Risk Factors and their Longitudinal Changes

    NARCIS (Netherlands)

    Yin, X.; Subramanian, S.; Willinger, C.M.; Chen, G.; Juhasz, P.; Courchesne, P.; Chen, B.H.; Li, X.; Hwang, S.J.; Fox, C.S.; O'Donnell, C.J.; Muntendam, P.; Fuster, V.; Bobeldijk-Pastorova, I.; Sookoian, S.C.; Pirola, C.J.; Gordon, N.; Adourian, A.; Larson, M.G.; Levy, D.

    2016-01-01

    Context: Metabolic dysregulation underlies key metabolic risk factors—obesity, dyslipidemia, and dysglycemia. Objective: To uncover mechanistic links between metabolomic dysregulation and metabolic risk by testing metabolite associations with risk factors cross-sectionally and with risk factor

  3. Overview of the South African mechanistic pavement design analysis method

    CSIR Research Space (South Africa)

    Theyse, HL

    1996-01-01

    Full Text Available A historical overview of the South African mechanistic pavement design method, from its development in the early 1970s to the present, is presented. Material characterization, structural analysis, and pavement life prediction are discussed...

  4. Mechanistic applicability domain classification of a local lymph node assay dataset for skin sensitization.

    Science.gov (United States)

    Roberts, David W; Patlewicz, Grace; Kern, Petra S; Gerberick, Frank; Kimber, Ian; Dearman, Rebecca J; Ryan, Cindy A; Basketter, David A; Aptula, Aynur O

    2007-07-01

    The goal of eliminating animal testing in the predictive identification of chemicals with the intrinsic ability to cause skin sensitization is an important target, the attainment of which has recently been brought into even sharper relief by the EU Cosmetics Directive and the requirements of the REACH legislation. Development of alternative methods requires that the chemicals used to evaluate and validate novel approaches comprise not only confirmed skin sensitizers and non-sensitizers but also substances that span the full chemical mechanistic spectrum associated with skin sensitization. To this end, a recently published database of more than 200 chemicals tested in the mouse local lymph node assay (LLNA) has been examined in relation to various chemical reaction mechanistic domains known to be associated with sensitization. It is demonstrated here that the dataset does cover the main reaction mechanistic domains. In addition, it is shown that assignment to a reaction mechanistic domain is a critical first step in a strategic approach to understanding, ultimately on a quantitative basis, how chemical properties influence the potency of skin sensitizing chemicals. This understanding is necessary if reliable non-animal approaches, including (quantitative) structure-activity relationships (Q)SARs, read-across, and experimental chemistry based models, are to be developed.

  5. Organophotocatalysis: Insights into the Mechanistic Aspects of Thiourea-Mediated Intermolecular [2+2] Photocycloadditions.

    Science.gov (United States)

    Vallavoju, Nandini; Selvakumar, Sermadurai; Pemberton, Barry C; Jockusch, Steffen; Sibi, Mukund P; Sivaguru, Jayaraman

    2016-04-25

    Mechanistic investigations of the intermolecular [2+2] photocycloaddition of coumarin with tetramethylethylene mediated by thiourea catalysts reveal that the reaction is enabled by a combination of minimized aggregation, enhanced intersystem crossing, and altered excited-state lifetime(s). These results clarify how the excited-state reactivity can be manipulated through catalyst-substrate interactions and reveal a third mechanistic pathway for thiourea-mediated organo-photocatalysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mechanistic and Economical Characteristics of Asphalt Rubber Mixtures

    Directory of Open Access Journals (Sweden)

    Mena I. Souliman

    2016-01-01

    Full Text Available Load associated fatigue cracking is one of the major distress types occurring in flexible pavement systems. Flexural bending beam fatigue laboratory test has been used for several decades and is considered to be an integral part of the new superpave advanced characterization procedure. One of the most significant solutions to prolong the fatigue life for an asphaltic mixture is to utilize flexible materials as rubber. A laboratory testing program was performed on a conventional and Asphalt Rubber- (AR- gap-graded mixtures to investigate the impact of added rubber on the mechanical, mechanistic, and economical attributes of asphaltic mixtures. Strain controlled fatigue tests were conducted according to American Association of State Highway and Transportation Officials (AASHTO procedures. The results from the beam fatigue tests indicated that the AR-gap-graded mixtures would have much longer fatigue life compared with the reference (conventional mixtures. In addition, a mechanistic analysis using 3D-Move software coupled with a cost analysis study based on the fatigue performance on the two mixtures was performed. Overall, analysis showed that AR modified asphalt mixtures exhibited significantly lower cost of pavement per 1000 cycles of fatigue life per mile compared to conventional HMA mixture.

  7. Behavioral implications of mechanistic ecology II: the African rainbow lizard, Agama agama

    Energy Technology Data Exchange (ETDEWEB)

    Porter, W.P.; James, F.C.

    1979-01-01

    The daily and seasonal activity of the African rainbow lizard, Agama agama is predicted in terms of heat transfer models for the microenvironment and the lizard. The models, originally developed for the temperate Mohave Desert and for the desert iguana, Dipsosaurus dorsalis, have been refined and are applicable to a tropical area and a tropical species. Field microclimate measurements and observations of lizard activity and food consumption by different sizes of lizards are consistent with these models. Environmental constraints on activity times, sun vs shade locations, height above the ground and postures are described. The sensitivity of the metabolic predictions to different maximum temperature preferences and behavioral options are discussed. The balance between maintenance energy savings via lower thermoregulatory temperatures and time available in different parts of the microenvironment are examined. A simple predator-prey interaction illustrates the substantial effect of climate in modifying amount of time both prey and predator would be expected to be active simultaneously in the tropics vs a temperate desert. Comparisons are made between A. agama and the desert iguana, D. dorsalis for daily and seasonal maintenance requirements and their implications for seasonal changes in growth and reproductive potential.

  8. A semi-mechanistic approach to calculate the probability of fuel defects

    International Nuclear Information System (INIS)

    Tayal, M.; Millen, E.; Sejnoha, R.

    1992-10-01

    In this paper the authors describe the status of a semi-mechanistic approach to the calculation of the probability of fuel defects. This approach expresses the defect probability in terms of fundamental parameters such as local stresses, local strains, and fission product concentration. The calculations of defect probability continue to reflect the influences of the conventional parameters like power ramp, burnup and CANLUB. In addition, the new approach provides a mechanism to account for the impacts of additional factors involving detailed fuel design and reactor operation, for example pellet density, pellet shape and size, sheath diameter and thickness, pellet/sheath clearance, and coolant temperature and pressure. The approach has been validated against a previous empirical correlation. AN illustrative example shows how the defect thresholds are influenced by changes in the internal design of the element and in the coolant pressure. (Author) (7 figs., tab., 12 refs.)

  9. Does Mechanistic Thinking Improve Student Success in Organic Chemistry?

    Science.gov (United States)

    Grove, Nathaniel P.; Cooper, Melanie M.; Cox, Elizabeth L.

    2012-01-01

    The use of the curved-arrow notation to depict electron flow during mechanistic processes is one of the most important representational conventions in the organic chemistry curriculum. Our previous research documented a disturbing trend: when asked to predict the products of a series of reactions, many students do not spontaneously engage in…

  10. Existing pavement input information for the mechanistic-empirical pavement design guide.

    Science.gov (United States)

    2009-02-01

    The objective of this study is to systematically evaluate the Iowa Department of Transportations (DOTs) existing Pavement Management Information System (PMIS) with respect to the input information required for Mechanistic-Empirical Pavement Des...

  11. Definitive radiotherapy for early glottic carcinoma: prognostic factors and implications for treatment

    International Nuclear Information System (INIS)

    Burke, Lisa S.; Greven, Kathryn M.; McGuirt, Wyman T.; Case, Douglas; Hoen, Helena M.; Raben, Milton

    1997-01-01

    Purpose: Treatment and disease-related factors were analyzed for their influence on the outcome of patients treated definitively with irradiation (RT) for early glottic carcinoma. Methods and Materials: One hundred two patients with stage T1 or T2 glottic carcinomas were treated definitively with RT from December 1983 through September 1993. Median follow-up time was 63 months. Factors analyzed for each patient included age, sex, stage, anterior commissure involvement, surgical alternative, histologic differentiation, field size, total dose, fraction size, and total treatment time. Survival analysis methods were employed to assess the effects of these factors on local control and complication rates. Results: The 5-year local control rates by stage were as follows: T1a, 92%; T1b, 80%; T2a, 94%; and T2b, 23%. By univariate analysis, factors found to have a significant impact on local control were stage, surgical alternative, fraction size, anterior commissure involvement, and overall treatment time. By multivariate analysis, stage, field size, and fraction size were the only significant factors that independently influenced local control. Conclusion: The inferior control rate for stage T2b lesions has implications for treatment. Our study supports the conclusion of reports in the literature showing that low fraction size negatively influences outcome in patients with early glottic cancer

  12. Definitive radiotherapy for early glottic carcinoma: prognostic factors and implications for treatment

    International Nuclear Information System (INIS)

    Burke, Lisa S.; Greven, Kathryn M.; McGuirt, Wyman T.; Case, Douglas; Hoen, Helena M.; Raben, Milton

    1997-01-01

    Purpose: Treatment and disease-related factors were analyzed for their influence on the outcome of patients treated definitively with irradiation (RT) for early glottic carcinoma. Methods and Materials: One hundred two patients with stage T1 or T2 glottic carcinomas were treated definitively with RT from December 1983 through September 1993. Median follow-up time was 63 months. Factors analyzed for each patient included age, sex, stage, anterior commissure involvement, surgical alternative, histologic differentiation, field size, total dose, fraction size, and total treatment time. Survival analysis methods were employed to assess the effects of these factors on local control and complication rates. Results: The 5-year local control rates by stage were as follows: T1a, 92%; T1b, 80%; T2a, 94%; and T2b, 23%. By univariate analysis, factors found to have a significant impact on local control were stage, surgical alternative, fraction size, anterior commissure involvement, and overall treatment time. By multivariate analysis, stage, field size, and fraction size were the only significant factors that independently influenced local control. Conclusions: The inferior control rate for stage T2b lesions has implications for treatment. Our study supports the conclusions of reports in the literature showing that low fraction size negatively influences outcome in patients with early glottic cancer

  13. Profiling the biological activity of oxide nanomaterials with mechanistic models

    NARCIS (Netherlands)

    Burello, E.

    2013-01-01

    In this study we present three mechanistic models for profiling the potential biological and toxicological effects of oxide nanomaterials. The models attempt to describe the reactivity, protein adsorption and membrane adhesion processes of a large range of oxide materials and are based on properties

  14. Generative Mechanistic Explanation Building in Undergraduate Molecular and Cellular Biology

    Science.gov (United States)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-01-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among…

  15. Melanie Klein's metapsychology: phenomenological and mechanistic perspective.

    Science.gov (United States)

    Mackay, N

    1981-01-01

    Freud's metapsychology is the subject of an important debate. This is over whether psychoanalysis is best construed as a science of the natural science type or as a special human science. The same debate applies to Melanie Klein's work. In Klein's metapsychology are two different and incompatible models of explanation. One is taken over from Freud's structural theory and appears to be similarly mechanistic. The other is clinically based and phenomenological. These two are discussed with special reference to the concepts of "phantasy" and "internal object".

  16. Quantitative assessment of biological impact using transcriptomic data and mechanistic network models

    International Nuclear Information System (INIS)

    Thomson, Ty M.; Sewer, Alain; Martin, Florian; Belcastro, Vincenzo; Frushour, Brian P.; Gebel, Stephan; Park, Jennifer; Schlage, Walter K.; Talikka, Marja; Vasilyev, Dmitry M.; Westra, Jurjen W.; Hoeng, Julia; Peitsch, Manuel C.

    2013-01-01

    Exposure to biologically active substances such as therapeutic drugs or environmental toxicants can impact biological systems at various levels, affecting individual molecules, signaling pathways, and overall cellular processes. The ability to derive mechanistic insights from the resulting system responses requires the integration of experimental measures with a priori knowledge about the system and the interacting molecules therein. We developed a novel systems biology-based methodology that leverages mechanistic network models and transcriptomic data to quantitatively assess the biological impact of exposures to active substances. Hierarchically organized network models were first constructed to provide a coherent framework for investigating the impact of exposures at the molecular, pathway and process levels. We then validated our methodology using novel and previously published experiments. For both in vitro systems with simple exposure and in vivo systems with complex exposures, our methodology was able to recapitulate known biological responses matching expected or measured phenotypes. In addition, the quantitative results were in agreement with experimental endpoint data for many of the mechanistic effects that were assessed, providing further objective confirmation of the approach. We conclude that our methodology evaluates the biological impact of exposures in an objective, systematic, and quantifiable manner, enabling the computation of a systems-wide and pan-mechanistic biological impact measure for a given active substance or mixture. Our results suggest that various fields of human disease research, from drug development to consumer product testing and environmental impact analysis, could benefit from using this methodology. - Highlights: • The impact of biologically active substances is quantified at multiple levels. • The systems-level impact integrates the perturbations of individual networks. • The networks capture the relationships between

  17. Mechanistic Perspectives of Maslinic Acid in Targeting Inflammation

    Directory of Open Access Journals (Sweden)

    Wei Hsum Yap

    2015-01-01

    Full Text Available Chronic inflammation drives the development of various pathological diseases such as rheumatoid arthritis, atherosclerosis, multiple sclerosis, and cancer. The arachidonic acid pathway represents one of the major mechanisms for inflammation. Prostaglandins (PGs are lipid products generated from arachidonic acid by the action of cyclooxygenase (COX enzymes and their activity is blocked by nonsteroidal anti-inflammatory drugs (NSAIDS. The use of natural compounds in regulation of COX activity/prostaglandins production is receiving increasing attention. In Mediterranean diet, olive oil and table olives contain significant dietary sources of maslinic acid. Maslinic acid is arising as a safe and novel natural pentacyclic triterpene which has protective effects against chronic inflammatory diseases in various in vivo and in vitro experimental models. Understanding the anti-inflammatory mechanism of maslinic acid is crucial for its development as a potential dietary nutraceutical. This review focuses on the mechanistic action of maslinic acid in regulating the inflammation pathways through modulation of the arachidonic acid metabolism including the nuclear factor-kappa B (NF-κB/COX-2 expression, upstream protein kinase signaling, and phospholipase A2 enzyme activity. Further investigations may provide insight into the mechanism of maslinic acid in regulating the molecular targets and their associated pathways in response to specific inflammatory stimuli.

  18. Redox-based epigenetic status in drug addiction: a potential contributor to gene priming and a mechanistic rationale for metabolic intervention.

    Science.gov (United States)

    Trivedi, Malav S; Deth, Richard

    2014-01-01

    Alcohol and other drugs of abuse, including psychostimulants and opioids, can induce epigenetic changes: a contributing factor for drug addiction, tolerance, and associated withdrawal symptoms. DNA methylation is a major epigenetic mechanism and it is one of more than 200 methylation reactions supported by methyl donor S-adenosylmethionine (SAM). Levels of SAM are controlled by cellular redox status via the folate and vitamin B12-dependent enzyme methionine synthase (MS). For example, under oxidative conditions MS is inhibited, diverting its substrate homocysteine (HCY) to the trans sulfuration pathway. Alcohol, dopamine, and morphine, can alter intracellular levels of glutathione (GSH)-based cellular redox status, subsequently affecting SAM levels and DNA methylation status. Here, existing evidence is presented in a coherent manner to propose a novel hypothesis implicating the involvement of redox-based epigenetic changes in drug addiction. Further, we discuss how a "gene priming" phenomenon can contribute to the maintenance of redox and methylation status homeostasis under various stimuli including drugs of abuse. Additionally, a new mechanistic rationale for the use of metabolic interventions/redox-replenishers as symptomatic treatment of alcohol and other drug addiction and associated withdrawal symptoms is also provided. Hence, the current review article strengthens the hypothesis that neuronal metabolism has a critical bidirectional coupling with epigenetic changes in drug addiction exemplified by the link between redox-based metabolic changes and resultant epigenetic consequences under the effect of drugs of abuse.

  19. A mechanistic model on methane oxidation in the rice rhizosphere

    NARCIS (Netherlands)

    Bodegom, van P.M.; Leffelaar, P.A.; Goudriaan, J.

    2001-01-01

    A mechanistic model is presented on the processes leading to methane oxidation in rice rhizosphere. The model is driven by oxygen release from a rice root into anaerobic rice soil. Oxygen is consumed by heterotrophic and methanotrophic respiration, described by double Monod kinetics, and by iron

  20. Mechanistic effect modeling for ecological risk assessment: where to go from here?

    Science.gov (United States)

    Grimm, Volker; Martin, Benjamin T

    2013-07-01

    Mechanistic effect models (MEMs) consider the mechanisms of how chemicals affect individuals and ecological systems such as populations and communities. There is an increasing awareness that MEMs have high potential to make risk assessment of chemicals more ecologically relevant than current standard practice. Here we discuss what kinds of MEMs are needed to improve scientific and regulatory aspects of risk assessment. To make valid predictions for a wide range of environmental conditions, MEMs need to include a sufficient amount of emergence, for example, population dynamics emerging from what individual organisms do. We present 1 example where the life cycle of individuals is described using Dynamic Energy Budget theory. The resulting individual-based population model is thus parameterized at the individual level but correctly predicts multiple patterns at the population level. This is the case for both control and treated populations. We conclude that the state-of-the-art in mechanistic effect modeling has reached a level where MEMs are robust and predictive enough to be used in regulatory risk assessment. Mechanistic effect models will thus be used to advance the scientific basis of current standard practice and will, if their development follows Good Modeling Practice, be included in a standardized way in future regulatory risk assessments. Copyright © 2013 SETAC.

  1. Verification of a mechanistic model for the strain rate of zircaloy-4 fuel sheaths during transient heating

    International Nuclear Information System (INIS)

    Hunt, C.E.L.

    1980-10-01

    A mechanistic strain rate model for Zircaloy-4, named NIRVANA, was tested against experiments where pressurized fuel sheaths were strained during complex temperature-stress-time histories. The same histories were then examined to determine the spread in calculated strain which may be expected because of variations in dimensions, chemical content and mechanical properties which are allowed in the fuel sheath specifications. It was found that the variations allowed by the specifications could result in a probable spread in the predicted strain of plus or minus a factor of two from the mean value. The experimental results were well within this range. (auth)

  2. A Perspective on Reagent Diversity and Non-covalent Binding of Reactive Carbonyl Species (RCS and Effector Reagents in Non-enzymatic Glycation (NEG: Mechanistic Considerations and Implications for Future Research

    Directory of Open Access Journals (Sweden)

    Kenneth J. Rodnick

    2017-06-01

    Full Text Available This perspective focuses on illustrating the underappreciated connections between reactive carbonyl species (RCS, initial binding in the nonenzymatic glycation (NEG process, and nonenzymatic covalent protein modification (here termed NECPM. While glucose is the central species involved in NEG, recent studies indicate that the initially-bound glucose species in the NEG of human hemoglobin (HbA and human serum albumin (HSA are non-RCS ring-closed isomers. The ring-opened glucose, an RCS structure that reacts in the NEG process, is most likely generated from previously-bound ring-closed isomers undergoing concerted acid/base reactions while bound to protein. The generation of the glucose RCS can involve concomitantly-bound physiological species (e.g., inorganic phosphate, water, etc.; here termed effector reagents. Extant NEG schemes do not account for these recent findings. In addition, effector reagent reactions with glucose in the serum and erythrocyte cytosol can generate RCS (e.g., glyoxal, glyceraldehyde, etc.. Recent research has shown that these RCS covalently modify proteins in vivo via NECPM mechanisms. A general scheme that reflects both the reagent and mechanistic diversity that can lead to NEG and NECPM is presented here. A perspective that accounts for the relationships between RCS, NEG, and NECPM can facilitate the understanding of site selectivity, may help explain overall glycation rates, and may have implications for the clinical assessment/control of diabetes mellitus. In view of this perspective, concentrations of ribose, fructose, Pi, bicarbonate, counter ions, and the resulting RCS generated within intracellular and extracellular compartments may be of importance and of clinical relevance. Future research is also proposed.

  3. Mathematical Description and Mechanistic Reasoning: A Pathway toward STEM Integration

    Science.gov (United States)

    Weinberg, Paul J.

    2017-01-01

    Because reasoning about mechanism is critical to disciplined inquiry in science, technology, engineering, and mathematics (STEM) domains, this study focuses on ways to support the development of this form of reasoning. This study attends to how mechanistic reasoning is constituted through mathematical description. This study draws upon Smith's…

  4. INCORPORATION OF MECHANISTIC INFORMATION IN THE ARSENIC PBPK MODEL DEVELOPMENT PROCESS

    Science.gov (United States)

    INCORPORATING MECHANISTIC INSIGHTS IN A PBPK MODEL FOR ARSENICElaina M. Kenyon, Michael F. Hughes, Marina V. Evans, David J. Thomas, U.S. EPA; Miroslav Styblo, University of North Carolina; Michael Easterling, Analytical Sciences, Inc.A physiologically based phar...

  5. A metabonomic approach for mechanistic exploration of pre-clinical toxicology.

    Science.gov (United States)

    Coen, Muireann

    2010-12-30

    Metabonomics involves the application of advanced analytical tools to profile the diverse metabolic complement of a given biofluid or tissue. Subsequent statistical modelling of the complex multivariate spectral profiles enables discrimination between phenotypes of interest and identifies panels of discriminatory metabolites that represent candidate biomarkers. This review article presents an overview of recent developments in the field of metabonomics with a focus on application to pre-clinical toxicology studies. Recent research investigations carried out as part of the international COMET 2 consortium project on the hepatotoxic action of the aminosugar, galactosamine (galN) are presented. The application of advanced, high-field NMR spectroscopy is demonstrated, together with complementary application of a targeted mass spectrometry platform coupled with ultra-performance liquid chromatography. Much novel mechanistic information has been gleaned on both the mechanism of galN hepatotoxicity in multiple biofluids and tissues, and on the protection afforded by co-administration of glycine and uridine. The simultaneous identification of both the metabolic fate of galN and its associated endogenous consequences in spectral profiles is demonstrated. Furthermore, metabonomic assessment of inter-animal variability in response to galN presents enhanced mechanistic insight on variable response phentoypes and is relevant to understanding wider aspects of individual variability in drug response. This exemplar highlights the analytical and statistical tools commonly applied in metabonomic studies and notably, the approach is applicable to the study of any toxin/drug or intervention of interest. The metabonomic approach holds considerable promise and potential to significantly advance our understanding of the mechanistic bases for adverse drug reactions. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Conceptual models for waste tank mechanistic analysis. Status report, January 1991

    Energy Technology Data Exchange (ETDEWEB)

    Allemann, R. T.; Antoniak, Z. I.; Eyler, L. L.; Liljegren, L. M.; Roberts, J. S.

    1992-02-01

    Pacific Northwest Laboratory (PNL) is conducting a study for Westinghouse Hanford Company (Westinghouse Hanford), a contractor for the US Department of Energy (DOE). The purpose of the work is to study possible mechanisms and fluid dynamics contributing to the periodic release of gases from double-shell waste storage tanks at the Hanford Site in Richland, Washington. This interim report emphasizing the modeling work follows two other interim reports, Mechanistic Analysis of Double-Shell Tank Gas Release Progress Report -- November 1990 and Collection and Analysis of Existing Data for Waste Tank Mechanistic Analysis Progress Report -- December 1990, that emphasized data correlation and mechanisms. The approach in this study has been to assemble and compile data that are pertinent to the mechanisms, analyze the data, evaluate physical properties and parameters, evaluate hypothetical mechanisms, and develop mathematical models of mechanisms.

  7. Ruthenium-Catalyzed Transformations of Alcohols: Mechanistic Investigations and Methodology Development

    DEFF Research Database (Denmark)

    Makarov, Ilya; Madsen, Robert; Fristrup, Peter

    with dimethoxyisopropylidene and pyridilidene ligands could be more active than RuCl2(IiPr)(p-cymene) used in the mechanistic investigation. Two analogs of the calculated complexes were synthesized but were not isolated in a pure form. The amidation reaction catalyzed by a mixture containing the N-ethyl pyridilidene...

  8. Mechanistic investigation on the oxidation of kinetin by Ag(III)

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 6. Mechanistic investigation on the oxidation of kinetin by Ag(III) periodate complex in aqueous alkaline media: A kinetic approach. S D Lamani A M Tatagar S T Nandibewoor. Full Papers Volume 122 Issue 6 November 2010 pp 891-900 ...

  9. RNA-Seq-based toxicogenomic assessment of fresh frozen and formalin-fixed tissues yields similar mechanistic insights.

    Science.gov (United States)

    Auerbach, Scott S; Phadke, Dhiral P; Mav, Deepak; Holmgren, Stephanie; Gao, Yuan; Xie, Bin; Shin, Joo Heon; Shah, Ruchir R; Merrick, B Alex; Tice, Raymond R

    2015-07-01

    Formalin-fixed, paraffin-embedded (FFPE) pathology specimens represent a potentially vast resource for transcriptomic-based biomarker discovery. We present here a comparison of results from a whole transcriptome RNA-Seq analysis of RNA extracted from fresh frozen and FFPE livers. The samples were derived from rats exposed to aflatoxin B1 (AFB1 ) and a corresponding set of control animals. Principal components analysis indicated that samples were separated in the two groups representing presence or absence of chemical exposure, both in fresh frozen and FFPE sample types. Sixty-five percent of the differentially expressed transcripts (AFB1 vs. controls) in fresh frozen samples were also differentially expressed in FFPE samples (overlap significance: P < 0.0001). Genomic signature and gene set analysis of AFB1 differentially expressed transcript lists indicated highly similar results between fresh frozen and FFPE at the level of chemogenomic signatures (i.e., single chemical/dose/duration elicited transcriptomic signatures), mechanistic and pathology signatures, biological processes, canonical pathways and transcription factor networks. Overall, our results suggest that similar hypotheses about the biological mechanism of toxicity would be formulated from fresh frozen and FFPE samples. These results indicate that phenotypically anchored archival specimens represent a potentially informative resource for signature-based biomarker discovery and mechanistic characterization of toxicity. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Iterative Systems Biology for Medicine – time for advancing from network signature to mechanistic equations

    KAUST Repository

    Gomez-Cabrero, David

    2017-05-09

    The rise and growth of Systems Biology following the sequencing of the human genome has been astounding. Early on, an iterative wet-dry methodology was formulated which turned out as a successful approach in deciphering biological complexity. Such type of analysis effectively identified and associated molecular network signatures operative in biological processes across different systems. Yet, it has proven difficult to distinguish between causes and consequences, thus making it challenging to attack medical questions where we require precise causative drug targets and disease mechanisms beyond a web of associated markers. Here we review principal advances with regard to identification of structure, dynamics, control, and design of biological systems, following the structure in the visionary review from 2002 by Dr. Kitano. Yet, here we find that the underlying challenge of finding the governing mechanistic system equations enabling precision medicine remains open thus rendering clinical translation of systems biology arduous. However, stunning advances in raw computational power, generation of high-precision multi-faceted biological data, combined with powerful algorithms hold promise to set the stage for data-driven identification of equations implicating a fundamental understanding of living systems during health and disease.

  11. INTEGRATION OF QSAR AND SAR METHODS FOR THE MECHANISTIC INTERPRETATION OF PREDICTIVE MODELS FOR CARCINOGENICITY

    Directory of Open Access Journals (Sweden)

    Natalja Fjodorova

    2012-07-01

    Full Text Available The knowledge-based Toxtree expert system (SAR approach was integrated with the statistically based counter propagation artificial neural network (CP ANN model (QSAR approach to contribute to a better mechanistic understanding of a carcinogenicity model for non-congeneric chemicals using Dragon descriptors and carcinogenic potency for rats as a response. The transparency of the CP ANN algorithm was demonstrated using intrinsic mapping technique specifically Kohonen maps. Chemical structures were represented by Dragon descriptors that express the structural and electronic features of molecules such as their shape and electronic surrounding related to reactivity of molecules. It was illustrated how the descriptors are correlated with particular structural alerts (SAs for carcinogenicity with recognized mechanistic link to carcinogenic activity. Moreover, the Kohonen mapping technique enables one to examine the separation of carcinogens and non-carcinogens (for rats within a family of chemicals with a particular SA for carcinogenicity. The mechanistic interpretation of models is important for the evaluation of safety of chemicals.

  12. Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation: Report of an FDA Public Workshop.

    Science.gov (United States)

    Zhang, X; Duan, J; Kesisoglou, F; Novakovic, J; Amidon, G L; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R

    2017-08-01

    On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled "Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation." The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole-body framework. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  13. Mechanistic facility safety and source term analysis

    International Nuclear Information System (INIS)

    PLYS, M.G.

    1999-01-01

    A PC-based computer program was created for facility safety and source term analysis at Hanford The program has been successfully applied to mechanistic prediction of source terms from chemical reactions in underground storage tanks, hydrogen combustion in double contained receiver tanks, and proccss evaluation including the potential for runaway reactions in spent nuclear fuel processing. Model features include user-defined facility room, flow path geometry, and heat conductors, user-defined non-ideal vapor and aerosol species, pressure- and density-driven gas flows, aerosol transport and deposition, and structure to accommodate facility-specific source terms. Example applications are presented here

  14. Ethanol potentiates the genotoxicity of the food-derived mammary carcinogen PhIP in human estrogen receptor-positive mammary cells: mechanistic support for lifestyle factors (cooked red meat and ethanol) associated with mammary cancer.

    Science.gov (United States)

    Malik, Durr-E-Shahwar; David, Rhiannon M; Gooderham, Nigel J

    2018-04-01

    Consumption of cooked/processed meat and ethanol are lifestyle risk factors in the aetiology of breast cancer. Cooking meat generates heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Epidemiology, mechanistic and animal studies indicate that PhIP is a mammary carcinogen that could be causally linked to breast cancer incidence; PhIP is DNA damaging, mutagenic and oestrogenic. PhIP toxicity involves cytochrome P450 (CYP1 family)-mediated metabolic activation to DNA-damaging species, and transcriptional responses through Aryl hydrocarbon receptor (AhR) and estrogen-receptor-α (ER-α). Ethanol consumption is a modifiable lifestyle factor strongly associated with breast cancer risk. Ethanol toxicity involves alcohol dehydrogenase metabolism to reactive acetaldehyde, and is also a substrate for CYP2E1, which when uncoupled generates reactive oxygen species (ROS) and DNA damage. Here, using human mammary cells that differ in estrogen-receptor status, we explore genotoxicity of PhIP and ethanol and mechanisms behind this toxicity. Treatment with PhIP (10 -7 -10 -4 M) significantly induced genotoxicity (micronuclei formation) preferentially in ER-α positive human mammary cell lines (MCF-7, ER-α+) compared to MDA-MB-231 (ER-α-) cells. PhIP-induced CYP1A2 in both cell lines but CYP1B1 was selectively induced in ER-α(+) cells. ER-α inhibition in MCF-7 cells attenuated PhIP-mediated micronuclei formation and CYP1B1 induction. PhIP-induced CYP2E1 and ROS via ER-α-STAT-3 pathway, but only in ER-α (+) MCF-7 cells. Importantly, simultaneous treatments of physiological concentrations ethanol (10 -3 -10 -1 M) with PhIP (10 -7 -10 -4 M) increased oxidative stress and genotoxicity in MCF-7 cells, compared to the individual chemicals. Collectively, these data offer a mechanistic basis for the increased risk of breast cancer associated with dietary cooked meat and ethanol lifestyle choices.

  15. Mechanistic species distribution modeling reveals a niche shift during invasion.

    Science.gov (United States)

    Chapman, Daniel S; Scalone, Romain; Štefanić, Edita; Bullock, James M

    2017-06-01

    Niche shifts of nonnative plants can occur when they colonize novel climatic conditions. However, the mechanistic basis for niche shifts during invasion is poorly understood and has rarely been captured within species distribution models. We quantified the consequence of between-population variation in phenology for invasion of common ragweed (Ambrosia artemisiifolia L.) across Europe. Ragweed is of serious concern because of its harmful effects as a crop weed and because of its impact on public health as a major aeroallergen. We developed a forward mechanistic species distribution model based on responses of ragweed development rates to temperature and photoperiod. The model was parameterized and validated from the literature and by reanalyzing data from a reciprocal common garden experiment in which native and invasive populations were grown within and beyond the current invaded range. It could therefore accommodate between-population variation in the physiological requirements for flowering, and predict the potentially invaded ranges of individual populations. Northern-origin populations that were established outside the generally accepted climate envelope of the species had lower thermal requirements for bud development, suggesting local adaptation of phenology had occurred during the invasion. The model predicts that this will extend the potentially invaded range northward and increase the average suitability across Europe by 90% in the current climate and 20% in the future climate. Therefore, trait variation observed at the population scale can trigger a climatic niche shift at the biogeographic scale. For ragweed, earlier flowering phenology in established northern populations could allow the species to spread beyond its current invasive range, substantially increasing its risk to agriculture and public health. Mechanistic species distribution models offer the possibility to represent niche shifts by varying the traits and niche responses of individual

  16. Lipids, adiposity and tendinopathy : is there a mechanistic link? Critical review

    NARCIS (Netherlands)

    Scott, Alex; Zwerver, Johannes; Grewal, Navi; de Sa, Agnetha; Alktebi, Thuraya; Granville, David J.; Hart, David A.

    Being overweight or obese is associated with an elevated risk of tendon pathology. However, for sportspeople the epidemiological data linking weight or adiposity on one hand, and risk of tendon pathology on the other, are less consistent. Indeed, the mechanistic links between diet, adiposity and

  17. Mechanistic insight into neurotoxicity induced by developmental insults

    International Nuclear Information System (INIS)

    Tamm, Christoffer; Ceccatelli, Sandra

    2017-01-01

    Epidemiological and/or experimental studies have shown that unfavorable prenatal environmental factors, such as stress or exposure to certain neurotoxic environmental contaminants, may have adverse consequences for neurodevelopment. Alterations in neurogenesis can have harmful effects not only for the developing nervous system, but also for the adult brain where neurogenesis is believed to play a role in learning, memory, and even in depression. Many recent advances in the understanding of the complex process of nervous system development can be integrated into the field of neurotoxicology. In the past 15 years we have been using cultured neural stem or progenitor cells to investigate the effects of neurotoxic stimuli on cell survival, proliferation and differentiation, with special focus on heritable effects. This is an overview of the work performed by our group in the attempt to elucidate the mechanisms of developmental neurotoxicity and possibly provide relevant information for the understanding of the etiopathogenesis of complex brain disorders. - Highlights: • The developing nervous system is highly sensitive to toxic insults. • Neural stem cells are relevant models for mechanistic studies as well as for identifying heritable effects due to epigenetic changes. • Depending on the dose, the outcome of exposure to neurotoxicants ranges from altered proliferation and differentiation to cell death. • The elucidation of neurotoxicity mechanisms is relevant for understanding the etiopathogenesis of developmental and adult nervous system disorders.

  18. Mechanistic and "natural" body metaphors and their effects on attitudes to hormonal contraception.

    Science.gov (United States)

    Walker, Susan

    2012-01-01

    A small, self-selected convenience sample of male and female contraceptive users in the United Kingdom (n = 34) were interviewed between 2006 and 2008 concerning their feelings about the body and their contraceptive attitudes and experiences. The interviewees were a sub-sample of respondents (n = 188) who completed a paper-based questionnaire on similar topics, who were recruited through a poster placed in a family planning clinic, web-based advertisements on workplace and university websites, and through direct approaches to social groups. The bodily metaphors used when discussing contraception were analyzed using an interpretative phenomenological analytical approach facilitated by Atlas.ti software. The dominant bodily metaphor was mechanistic (i.e.,"body as machine"). A subordinate but influential bodily metaphor was the "natural" body, which had connotations of connection to nature and a quasi-sacred bodily order. Interviewees drew upon this "natural" metaphorical image in the context of discussing their anxieties about hormonal contraception. Drawing upon a "natural," non-mechanistic body image in the context of contraceptive decision-making contributed to reluctance to use a hormonal form of contraception. This research suggests that clinicians could improve communication and advice about contraception by recognizing that some users may draw upon non-mechanistic body imagery.

  19. The upper and lower limits of the mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Stoichiometry of oxidative phosphorylation.

    Science.gov (United States)

    Beavis, A D; Lehninger, A L

    1986-07-15

    Determination of the intrinsic or mechanistic P/O ratio of oxidative phosphorylation is difficult because of the unknown magnitude of leak fluxes. Applying a new approach developed to overcome this problem (see our preceding paper in this journal), the relationships between the rate of O2 uptake [( Jo)3], the net rate of phosphorylation (Jp), the P/O ratio, and the respiratory control ratio (RCR) have been determined in rat liver mitochondria when the rate of phosphorylation was systematically varied by three specific means. (a) When phosphorylation is titrated with carboxyatractyloside, linear relationships are observed between Jp and (Jo)3. These data indicate that the upper limit of the mechanistic P/O ratio is 1.80 for succinate and 2.90 for 3-hydroxybutyrate oxidation. (b) Titration with malonate or antimycin yields linear relationships between Jp and (Jo)3. These data give the lower limit of the mechanistic P/O ratio of 1.63 for succinate and 2.66 for 3-hydroxybutyrate oxidation. (c) Titration with a protonophore yields linear relationships between Jp, (Jo)3, and (Jo)4 and between P/O and 1/RCR. Extrapolation of the P/O ratio to 1/RCR = 0 yields P/O ratios of 1.75 for succinate and 2.73 for 3-hydroxybutyrate oxidation which must be equal to or greater than the mechanistic stoichiometry. When published values for the H+/O and H+/ATP ejection ratios are taken into consideration, these measurements suggest that the mechanistic P/O ratio is 1.75 for succinate oxidation and 2.75 for NADH oxidation.

  20. Incidence, Risk Factors, and Clinical Implications of Pneumonia Following Total Hip and Knee Arthroplasty.

    Science.gov (United States)

    Bohl, Daniel D; Saltzman, Bryan M; Sershon, Robert A; Darrith, Brian; Okroj, Kamil T; Della Valle, Craig J

    2017-06-01

    The purpose of this study is to determine the incidence, risk factors, and clinical implications of pneumonia following total joint arthroplasty (TJA). The American College of Surgeons National Surgical Quality Improvement Program was used to conduct a retrospective cohort study of patients undergoing TJA. Independent risk factors for the development of pneumonia within 30 days of TJA were identified using multivariate regression. Mortality and readmission rates were compared between patients who did and did not develop pneumonia. Multivariate regression was used to adjust for all demographic, comorbidity, and procedural characteristics. In total, 171,200 patients met inclusion criteria, of whom 66,493 (38.8%) underwent THA and 104,707 (61.2%) underwent TKA. Of the 171,200 patients, 590 developed pneumonia, yielding a rate of 0.34% (95% confidence interval = 0.32%-0.37%). Independent risk factors for pneumonia were chronic obstructive pulmonary disease, diabetes mellitus, greater age (most notably ≥80 years), dyspnea on exertion, dependent functional status, lower body mass index, hypertension, current smoker status, and male sex. The subset of patients who developed pneumonia following discharge had a higher readmission rate (82.1% vs 3.4%, adjusted relative risk [RR] = 16.6, P pneumonia. Pneumonia is a serious complication following TJA that occurs in approximately 1 in 300 patients. Approximately 4 in 5 patients who develop pneumonia are subsequently readmitted, and approximately 1 in 25 die. Given the serious implications of this complication, evidence-based pneumonia prevention programs including oral hygiene with chlorhexidine, sitting upright for meals, elevation of the head of the bed to at least 30°, aggressive incentive spirometry, and early ambulation should be considered for patients at greatest risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Mechanistic-empirical subgrade design model based on heavy vehicle simulator test results

    CSIR Research Space (South Africa)

    Theyse, HL

    2006-06-01

    Full Text Available Although Accelerated Pavement Testing (APT) is often done with specific objectives, valuable pavement performance data is generated over the long-term that may be used to investigate pavement behaviour in general and calibrate mechanistic...

  2. Proposed key characteristics of male reproductive toxicants as a method for organizing and screening mechanistic evidence for non-cancer outcomes.

    Science.gov (United States)

    The adoption of systematic review practices for risk assessment includes integration of evidence obtained from experimental, epidemiological, and mechanistic studies. Although mechanistic evidence plays an important role in mode of action analysis, the process of sorting and anal...

  3. Homing of mesenchymal stem cells: mechanistic or stochastic? Implications for targeted delivery in arthritis.

    Science.gov (United States)

    Eseonu, Onyedikachi I; De Bari, Cosimo

    2015-02-01

    Mesenchymal stem cells (MSCs) are multipotent cells with the capacity to undergo chondrogenic differentiation. Systemically administered MSCs have been shown to preferentially accumulate at sites of tissue damage and inflammation, thus MSC-based therapy holds great promise for the treatment of inflammatory diseases such as RA. Modulation of MSC homing may allow targeted delivery of systemically administered MSCs to damaged articular cartilage, where they can suppress immune-mediated cartilage destruction and contribute to cartilage repair via a combination of chondrogenic differentiation and paracrine stimulation of intrinsic residual repair. To harness the potential of MSC homing, a thorough understanding of the mechanism is key. This review discusses current knowledge of the mechanism of MSC homing to injured/inflamed tissue and its implications for targeted MSC-based therapy in arthritis. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. The Combined Use of Correlative and Mechanistic Species Distribution Models Benefits Low Conservation Status Species.

    Directory of Open Access Journals (Sweden)

    Thibaud Rougier

    Full Text Available Species can respond to climate change by tracking appropriate environmental conditions in space, resulting in a range shift. Species Distribution Models (SDMs can help forecast such range shift responses. For few species, both correlative and mechanistic SDMs were built, but allis shad (Alosa alosa, an endangered anadromous fish species, is one of them. The main purpose of this study was to provide a framework for joint analyses of correlative and mechanistic SDMs projections in order to strengthen conservation measures for species of conservation concern. Guidelines for joint representation and subsequent interpretation of models outputs were defined and applied. The present joint analysis was based on the novel mechanistic model GR3D (Global Repositioning Dynamics of Diadromous fish Distribution which was parameterized on allis shad and then used to predict its future distribution along the European Atlantic coast under different climate change scenarios (RCP 4.5 and RCP 8.5. We then used a correlative SDM for this species to forecast its distribution across the same geographic area and under the same climate change scenarios. First, projections from correlative and mechanistic models provided congruent trends in probability of habitat suitability and population dynamics. This agreement was preferentially interpreted as referring to the species vulnerability to climate change. Climate change could not be accordingly listed as a major threat for allis shad. The congruence in predicted range limits between SDMs projections was the next point of interest. The difference, when noticed, required to deepen our understanding of the niche modelled by each approach. In this respect, the relative position of the northern range limit between the two methods strongly suggested here that a key biological process related to intraspecific variability was potentially lacking in the mechanistic SDM. Based on our knowledge, we hypothesized that local

  5. In SilicoModel-driven Assessment of the Effects of Brain-derived Neurotrophic Factor Deficiency on Glutamate and Gamma-Aminobutyric Acid: Implications for Understanding Schizophrenia Pathophysiology.

    Science.gov (United States)

    Agrawal, Rimjhim; Kalmady, Sunil Vasu; Venkatasubramanian, Ganesan

    2017-05-31

    Deficient brain-derived neurotrophic factor (BDNF) is one of the important mechanisms underlying the neuroplasticity abnormalities in schizophrenia. Aberration in BDNF signaling pathways directly or circuitously influences neurotransmitters like glutamate and gamma-aminobutyric acid (GABA). For the first time, this study attempts to construct and simulate the BDNF-neurotransmitter network in order to assess the effects of BDNF deficiency on glutamate and GABA. Using CellDesigner, we modeled BDNF interactions with calcium influx via N-methyl-D-aspartate receptor (NMDAR)- Calmodulin activation; synthesis of GABA via cell cycle regulators protein kinase B, glycogen synthase kinase and β-catenin; transportation of glutamate and GABA. Steady state stability, perturbation time-course simulation and sensitivity analysis were performed in COPASI after assigning the kinetic functions, optimizing the unknown parameters using random search and genetic algorithm. Study observations suggest that increased glutamate in hippocampus, similar to that seen in schizophrenia, could potentially be contributed by indirect pathway originated from BDNF. Deficient BDNF could suppress Glutamate decarboxylase 67-mediated GABA synthesis. Further, deficient BDNF corresponded to impaired transport via vesicular glutamate transporter, thereby further increasing the intracellular glutamate in GABAergic and glutamatergic cells. BDNF also altered calcium dependent neuroplasticity via NMDAR modulation. Sensitivity analysis showed that Calmodulin, cAMP response element-binding protein (CREB) and CREB regulated transcription coactivator-1 played significant role in this network. The study presents in silico quantitative model of biochemical network constituting the key signaling molecules implicated in schizophrenia pathogenesis. It provides mechanistic insights into putative contribution of deficient BNDF towards alterations in neurotransmitters and neuroplasticity that are consistent with current

  6. Labor Inhibits Placental Mechanistic Target of Rapamycin Complex 1 Signaling

    Science.gov (United States)

    LAGER, Susanne; AYE, Irving L.M.H.; GACCIOLI, Francesca; RAMIREZ, Vanessa I.; JANSSON, Thomas; POWELL, Theresa L.

    2014-01-01

    Introduction Labor induces a myriad of changes in placental gene expression. These changes may represent a physiological adaptation inhibiting placental cellular processes associated with a high demand for oxygen and energy (e.g., protein synthesis and active transport) thereby promoting oxygen and glucose transfer to the fetus. We hypothesized that mechanistic target of rapamycin complex 1 (mTORC1) signaling, a positive regulator of trophoblast protein synthesis and amino acid transport, is inhibited by labor. Methods Placental tissue was collected from healthy, term pregnancies (n=15 no-labor; n=12 labor). Activation of Caspase-1, IRS1/Akt, STAT, mTOR, and inflammatory signaling pathways was determined by Western blot. NFκB p65 and PPARγ DNA binding activity was measured in isolated nuclei. Results Labor increased Caspase-1 activation and mTOR complex 2 signaling, as measured by phosphorylation of Akt (S473). However, mTORC1 signaling was inhibited in response to labor as evidenced by decreased phosphorylation of mTOR (S2448) and 4EBP1 (T37/46 and T70). Labor also decreased NFκB and PPARγ DNA binding activity, while having no effect on IRS1 or STAT signaling pathway. Discussion and conclusion Several placental signaling pathways are affected by labor, which has implications for experimental design in studies of placental signaling. Inhibition of placental mTORC1 signaling in response to labor may serve to down-regulate protein synthesis and amino acid transport, processes that account for a large share of placental oxygen and glucose consumption. We speculate that this response preserves glucose and oxygen for transfer to the fetus during the stressful events of labor. PMID:25454472

  7. Photocatalytic reactions: Mechanistic and kinetic implications

    OpenAIRE

    Montoya Arango, Juan Felipe

    2014-01-01

    La Fotocatálisis Heterogénea con Dióxido de Titanio (TiO2) ha sido ampliamente estudiada en los últimos 30 años. Como resultado de este esfuerzo de investigación se han obtenido grandes avances en la comprensión de los fenómenos fundamentales involucrados en el proceso y se ha logrado la aplicación exitosa de varios dispositivos con tecnología fotocatalítica en áreas como la remediación medioambiental, la producción de energía renovable, y el diseño de materiales con propiedades de "autolimpi...

  8. Factors Influencing Mini-CEX Rater Judgments and Their Practical Implications: A Systematic Literature Review.

    Science.gov (United States)

    Lee, Victor; Brain, Keira; Martin, Jenepher

    2017-06-01

    At present, little is known about how mini-clinical evaluation exercise (mini-CEX) raters translate their observations into judgments and ratings. The authors of this systematic literature review aim both to identify the factors influencing mini-CEX rater judgments in the medical education setting and to translate these findings into practical implications for clinician assessors. The authors searched for internal and external factors influencing mini-CEX rater judgments in the medical education setting from 1980 to 2015 using the Ovid MEDLINE, PsycINFO, ERIC, PubMed, and Scopus databases. They extracted the following information from each study: country of origin, educational level, study design and setting, type of observation, occurrence of rater training, provision of feedback to the trainee, research question, and identified factors influencing rater judgments. The authors also conducted a quality assessment for each study. Seventeen articles met the inclusion criteria. The authors identified both internal and external factors that influence mini-CEX rater judgments. They subcategorized the internal factors into intrinsic rater factors, judgment-making factors (conceptualization, interpretation, attention, and impressions), and scoring factors (scoring integration and domain differentiation). The current theories of rater-based judgment have not helped clinicians resolve the issues of rater idiosyncrasy, bias, gestalt, and conflicting contextual factors; therefore, the authors believe the most important solution is to increase the justification of rater judgments through the use of specific narrative and contextual comments, which are more informative for trainees. Finally, more real-world research is required to bridge the gap between the theory and practice of rater cognition.

  9. Permanent deformation testing for a new South African mechanistic pavement design method

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2012-01-01

    Full Text Available The South Africa National Road Agency Limited together with the CSIR are undertaking a research and development project to support the revision of the South African mechanistic-empirical pavement design method. An important part of this project...

  10. Study of n-Butyl Acrylate Self-Initiation Reaction Experimentally and via Macroscopic Mechanistic Modeling

    Directory of Open Access Journals (Sweden)

    Ahmad Arabi Shamsabadi

    2016-04-01

    Full Text Available This paper presents an experimental study of the self-initiation reaction of n-butyl acrylate (n-BA in free-radical polymerization. For the first time, the frequency factor and activation energy of the monomer self-initiation reaction are estimated from measurements of n-BA conversion in free-radical homo-polymerization initiated only by the monomer. The estimation was carried out using a macroscopic mechanistic mathematical model of the reactor. In addition to already-known reactions that contribute to the polymerization, the model considers a n-BA self-initiation reaction mechanism that is based on our previous electronic-level first-principles theoretical study of the self-initiation reaction. Reaction rate equations are derived using the method of moments. The reaction-rate parameter estimates obtained from conversion measurements agree well with estimates obtained via our purely-theoretical quantum chemical calculations.

  11. The use of mechanistic descriptions of algal growth and zooplankton grazing in an estuarine eutrophication model

    Science.gov (United States)

    Baird, M. E.; Walker, S. J.; Wallace, B. B.; Webster, I. T.; Parslow, J. S.

    2003-03-01

    A simple model of estuarine eutrophication is built on biomechanical (or mechanistic) descriptions of a number of the key ecological processes in estuaries. Mechanistically described processes include the nutrient uptake and light capture of planktonic and benthic autotrophs, and the encounter rates of planktonic predators and prey. Other more complex processes, such as sediment biogeochemistry, detrital processes and phosphate dynamics, are modelled using empirical descriptions from the Port Phillip Bay Environmental Study (PPBES) ecological model. A comparison is made between the mechanistically determined rates of ecological processes and the analogous empirically determined rates in the PPBES ecological model. The rates generally agree, with a few significant exceptions. Model simulations were run at a range of estuarine depths and nutrient loads, with outputs presented as the annually averaged biomass of autotrophs. The simulations followed a simple conceptual model of eutrophication, suggesting a simple biomechanical understanding of estuarine processes can provide a predictive tool for ecological processes in a wide range of estuarine ecosystems.

  12. Report of the Nuclear Energy Agency expert group on gut transfer factors: implications for dose per unit intake

    International Nuclear Information System (INIS)

    1988-01-01

    This note describes the gut transfer factors recommended by an Expert Group of the Nuclear Energy Agency for intakes of certain important elements in food and drinking water. The evidence behind the recommendations is discussed and their implications for dose per unit intake is investigated. It is found that in many cases the dose per unit intake calculated using the gut uptake factor recommended by the Expert Group is similar to that calculated using the recommendations of ICRP Publication 30. However, in some cases there are substantial increases in dose per unit intake. The largest increases are by a factor of fifty for intakes of certain thorium isotopes by infants. (author)

  13. Mechanistic model of mass-specific basal metabolic rate: evaluation in healthy young adults.

    Science.gov (United States)

    Wang, Z; Bosy-Westphal, A; Schautz, B; Müller, M

    2011-12-01

    Mass-specific basal metabolic rate (mass-specific BMR), defined as the resting energy expenditure per unit body mass per day, is an important parameter in energy metabolism research. However, a mechanistic explanation for magnitude of mass-specific BMR remains lacking. The objective of the present study was to validate the applicability of a proposed mass-specific BMR model in healthy adults. A mechanistic model was developed at the organ-tissue level, mass-specific BMR = Σ( K i × F i ), where Fi is the fraction of body mass as individual organs and tissues, and K i is the specific resting metabolic rate of major organs and tissues. The Fi values were measured by multiple MRI scans and the K i values were suggested by Elia in 1992. A database of healthy non-elderly non-obese adults (age 20 - 49 yrs, BMI BMR of all subjects was 21.6 ± 1.9 (mean ± SD) and 21.7 ± 1.6 kcal/kg per day, respectively. The measured mass-specific BMR was correlated with the predicted mass-specific BMR (r = 0.82, P BMR, versus the average of measured and predicted mass-specific BMR. In conclusion, the proposed mechanistic model was validated in non-elderly non-obese adults and can help to understand the inherent relationship between mass-specific BMR and body composition.

  14. The coefficient of restitution of pressurized balls: a mechanistic model

    Science.gov (United States)

    Georgallas, Alex; Landry, Gaëtan

    2016-01-01

    Pressurized, inflated balls used in professional sports are regulated so that their behaviour upon impact can be anticipated and allow the game to have its distinctive character. However, the dynamics governing the impacts of such balls, even on stationary hard surfaces, can be extremely complex. The energy transformations, which arise from the compression of the gas within the ball and from the shear forces associated with the deformation of the wall, are examined in this paper. We develop a simple mechanistic model of the dependence of the coefficient of restitution, e, upon both the gauge pressure, P_G, of the gas and the shear modulus, G, of the wall. The model is validated using the results from a simple series of experiments using three different sports balls. The fits to the data are extremely good for P_G > 25 kPa and consistent values are obtained for the value of G for the wall material. As far as the authors can tell, this simple, mechanistic model of the pressure dependence of the coefficient of restitution is the first in the literature. *%K Coefficient of Restitution, Dynamics, Inflated Balls, Pressure, Impact Model

  15. Students' Interpretations of Mechanistic Language in Organic Chemistry before Learning Reactions

    Science.gov (United States)

    Galloway, Kelli R.; Stoyanovich, Carlee; Flynn, Alison B.

    2017-01-01

    Research on mechanistic thinking in organic chemistry has shown that students attribute little meaning to the electron-pushing (i.e., curved arrow) formalism. At the University of Ottawa, a new curriculum has been developed in which students are taught the electron-pushing formalism prior to instruction on specific reactions--this formalism is…

  16. Female labour force participation in MENA's manufacturing sector: The implications of firm-related and national factors

    OpenAIRE

    Fakih, Ali; Ghazalian, Pascal L.

    2013-01-01

    The Middle East and North Africa (MENA) region falls behind several other geo-economic regions in terms of women's participation rates in the labour market. This paper examines the implications of firm-related and national factors for Female Labour Force Participation (FLFP) rates in manufacturing firms located in the MENA region. The empirical investigation uses data derived from the World Bank's Enterprise Surveys database and applies fractional logit models to carry out the estimations. Th...

  17. Mechanistic phenotypes: an aggregative phenotyping strategy to identify disease mechanisms using GWAS data.

    Directory of Open Access Journals (Sweden)

    Jonathan D Mosley

    Full Text Available A single mutation can alter cellular and global homeostatic mechanisms and give rise to multiple clinical diseases. We hypothesized that these disease mechanisms could be identified using low minor allele frequency (MAF<0.1 non-synonymous SNPs (nsSNPs associated with "mechanistic phenotypes", comprised of collections of related diagnoses. We studied two mechanistic phenotypes: (1 thrombosis, evaluated in a population of 1,655 African Americans; and (2 four groupings of cancer diagnoses, evaluated in 3,009 white European Americans. We tested associations between nsSNPs represented on GWAS platforms and mechanistic phenotypes ascertained from electronic medical records (EMRs, and sought enrichment in functional ontologies across the top-ranked associations. We used a two-step analytic approach whereby nsSNPs were first sorted by the strength of their association with a phenotype. We tested associations using two reverse genetic models and standard additive and recessive models. In the second step, we employed a hypothesis-free ontological enrichment analysis using the sorted nsSNPs to identify functional mechanisms underlying the diagnoses comprising the mechanistic phenotypes. The thrombosis phenotype was solely associated with ontologies related to blood coagulation (Fisher's p = 0.0001, FDR p = 0.03, driven by the F5, P2RY12 and F2RL2 genes. For the cancer phenotypes, the reverse genetics models were enriched in DNA repair functions (p = 2×10-5, FDR p = 0.03 (POLG/FANCI, SLX4/FANCP, XRCC1, BRCA1, FANCA, CHD1L while the additive model showed enrichment related to chromatid segregation (p = 4×10-6, FDR p = 0.005 (KIF25, PINX1. We were able to replicate nsSNP associations for POLG/FANCI, BRCA1, FANCA and CHD1L in independent data sets. Mechanism-oriented phenotyping using collections of EMR-derived diagnoses can elucidate fundamental disease mechanisms.

  18. Mechanistic models for the evaluation of biocatalytic reaction conditions and biosensor design optimization

    DEFF Research Database (Denmark)

    Semenova, Daria

    . In the first case study a mechanistic model was developed to describe the enzymatic reaction of glucose oxidase and glucose in the presence of catalase inside a commercial microfluidic platform with integrated oxygen sensor spots. The simplicity of the proposed model allowed an easy calibration of the reaction...... the microfluidic device. In the second case study the flexible microfluidic platform with integrated amperometric glucose biosensors was developed for continuous monitoring of glucose consumption rates. The integration of the mixing chamber inside the platform allowed performing sample dilutions which subsequently......BRs. In the third case study the mechanistic model of the cyclic voltammetry response of the first generation glucose biosensors was developed and applied for the biosensor design optimization. Furthermore the obtained qualitative and quantitative dependencies between the model output and experimental results were...

  19. Combating Pathogenic Microorganisms Using Plant-Derived Antimicrobials: A Minireview of the Mechanistic Basis

    Directory of Open Access Journals (Sweden)

    Abhinav Upadhyay

    2014-01-01

    Full Text Available The emergence of antibiotic resistance in pathogenic bacteria has led to renewed interest in exploring the potential of plant-derived antimicrobials (PDAs as an alternative therapeutic strategy to combat microbial infections. Historically, plant extracts have been used as a safe, effective, and natural remedy for ailments and diseases in traditional medicine. Extensive research in the last two decades has identified a plethora of PDAs with a wide spectrum of activity against a variety of fungal and bacterial pathogens causing infections in humans and animals. Active components of many plant extracts have been characterized and are commercially available; however, research delineating the mechanistic basis of their antimicrobial action is scanty. This review highlights the potential of various plant-derived compounds to control pathogenic bacteria, especially the diverse effects exerted by plant compounds on various virulence factors that are critical for pathogenicity inside the host. In addition, the potential effect of PDAs on gut microbiota is discussed.

  20. From Source to Sink: Mechanistic Reasoning Using the Electron-Pushing Formalism

    Science.gov (United States)

    Bhattacharyya, Gautam

    2013-01-01

    Since the introduction of Morrison and Boyd's textbook in organic chemistry over 50 years ago, reaction mechanisms and mechanistic reasoning using the electron-pushing formalism (EPF) have become a mainstay of organic chemistry courses. In recent years there have even been several papers in this Journal and others detailing research on how…

  1. Dynamic and accurate assessment of acetaminophen-induced hepatotoxicity by integrated photoacoustic imaging and mechanistic biomarkers in vivo.

    Science.gov (United States)

    Brillant, Nathalie; Elmasry, Mohamed; Burton, Neal C; Rodriguez, Josep Monne; Sharkey, Jack W; Fenwick, Stephen; Poptani, Harish; Kitteringham, Neil R; Goldring, Christopher E; Kipar, Anja; Park, B Kevin; Antoine, Daniel J

    2017-10-01

    The prediction and understanding of acetaminophen (APAP)-induced liver injury (APAP-ILI) and the response to therapeutic interventions is complex. This is due in part to sensitivity and specificity limitations of currently used assessment techniques. Here we sought to determine the utility of integrating translational non-invasive photoacoustic imaging of liver function with mechanistic circulating biomarkers of hepatotoxicity with histological assessment to facilitate the more accurate and precise characterization of APAP-ILI and the efficacy of therapeutic intervention. Perturbation of liver function and cellular viability was assessed in C57BL/6J male mice by Indocyanine green (ICG) clearance (Multispectral Optoacoustic Tomography (MSOT)) and by measurement of mechanistic (miR-122, HMGB1) and established (ALT, bilirubin) circulating biomarkers in response to the acetaminophen and its treatment with acetylcysteine (NAC) in vivo. We utilised a 60% partial hepatectomy model as a situation of defined hepatic functional mass loss to compared acetaminophen-induced changes to. Integration of these mechanistic markers correlated with histological features of APAP hepatotoxicity in a time-dependent manner. They accurately reflected the onset and recovery from hepatotoxicity compared to traditional biomarkers and also reported the efficacy of NAC with high sensitivity. ICG clearance kinetics correlated with histological scores for acute liver damage for APAP (i.e. 3h timepoint; r=0.90, P<0.0001) and elevations in both of the mechanistic biomarkers, miR-122 (e.g. 6h timepoint; r=0.70, P=0.005) and HMGB1 (e.g. 6h timepoint; r=0.56, P=0.04). For the first time we report the utility of this non-invasive longitudinal imaging approach to provide direct visualisation of the liver function coupled with mechanistic biomarkers, in the same animal, allowing the investigation of the toxicological and pharmacological aspects of APAP-ILI and hepatic regeneration. Copyright © 2017

  2. Mechanistic Insight into the Dehydro-Diels-Alder Reaction of Styrene-Ynes.

    Science.gov (United States)

    Kocsis, Laura S; Kagalwala, Husain N; Mutto, Sharlene; Godugu, Bhaskar; Bernhard, Stefan; Tantillo, Dean J; Brummond, Kay M

    2015-12-04

    The Diels-Alder reaction represents one of the most thoroughly studied and well-understood synthetic transformations for the assembly of six-membered rings. Although intramolecular dehydro-Diels-Alder (IMDDA) reactions have previously been employed for the preparation of naphthalene and dihydronaphthalene substrates, low yields and product mixtures have reduced the impact and scope of this reaction. Through the mechanistic studies described within, we have confirmed that the thermal IMDDA reaction of styrene-ynes produces a naphthalene product via loss of hydrogen gas from the initially formed cycloadduct, a tetraenyl intermediate. Alternatively, the dihydronaphthalene product is afforded from the same tetraenyl intermediate via a radical isomerization process. Moreover, we have identified conditions that can be used to achieve efficient, high-yielding, and selective IMDDA reactions of styrene-ynes to form either naphthalene or dihydronaphthalene products. The operational simplicity and retrosynthetic orthogonality of this method for the preparation of naphthalenes and dihydronaphthalenes makes this transformation appealing for the synthesis of medicinal and material targets. The mechanistic studies within may impact the development of other thermal transformations.

  3. Polymer Film Dewetting by Water/Surfactant/Good-Solvent Mixtures: A Mechanistic Insight and Its Implications for the Conservation of Cultural Heritage.

    Science.gov (United States)

    Baglioni, Michele; Montis, Costanza; Chelazzi, David; Giorgi, Rodorico; Berti, Debora; Baglioni, Piero

    2018-06-18

    Aqueous nanostructured fluids (NSFs) have been proposed to remove polymer coatings from the surface of works of art; this process usually involves film dewetting. The NSF cleaning mechanism was studied using several techniques that were employed to obtain mechanistic insight on the interaction of a methacrylic/acrylic copolymer (Paraloid B72) film laid on glass surfaces and several NSFs, based on two solvents and two surfactants. The experimental results provide a detailed picture of the dewetting process. The gyration radius and the reduction of the T g of Paraloid B72 fully swollen in the two solvents is larger for propylene carbonate than for methyl ethyl ketone, suggesting higher mobility of polymer chains for the former, while a nonionic alcohol ethoxylate surfactant was more effective than sodium dodecylsulfate in favoring the dewetting process. FTIR 2D imaging showed that the dewetting patterns observed on model samples are also present on polymer-coated mortar tiles when exposed to NSFs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mechanistic-Empirical (M-E) Design Implementation & Monitoring for Flexible Pavements : 2018 PROJECT SUMMARY

    Science.gov (United States)

    2018-06-01

    This document is a summary of the tasks performed for Project ICT-R27-149-1. Mechanistic-empirical (M-E)based flexible pavement design concepts and procedures were previously developed in Illinois Cooperative Highway Research Program projects IHR-...

  5. Mechanistic modelling of cancer: some reflections from software engineering and philosophy of science.

    Science.gov (United States)

    Cañete-Valdeón, José M; Wieringa, Roel; Smallbone, Kieran

    2012-12-01

    There is a growing interest in mathematical mechanistic modelling as a promising strategy for understanding tumour progression. This approach is accompanied by a methodological change of making research, in which models help to actively generate hypotheses instead of waiting for general principles to become apparent once sufficient data are accumulated. This paper applies recent research from philosophy of science to uncover three important problems of mechanistic modelling which may compromise its mainstream application, namely: the dilemma of formal and informal descriptions, the need to express degrees of confidence and the need of an argumentation framework. We report experience and research on similar problems from software engineering and provide evidence that the solutions adopted there can be transferred to the biological domain. We hope this paper can provoke new opportunities for further and profitable interdisciplinary research in the field.

  6. Mechanistic modeling of heat transfer process governing pressure tube-to-calandria tube contact and fuel channel failure

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2002-01-01

    Heat transfer behaviour and phenomena associated with ballooning deformation of a pressure tube into contact with a calandria tube have been analyzed and mechanistic models have been developed to describe the heat transfer and thermal-mechanical processes. These mechanistic models are applied to analyze experiments performed in various COG funded Contact Boiling Test series. Particular attention is given in the modeling to characterization of the conditions for which fuel channel failure may occur. Mechanistic models describing the governing heat transfer and thermal-mechanical processes are presented. The technical basis for characterizing parameters of the models from the general heat transfer literature is described. The validity of the models is demonstrated by comparison with experimental data. Fuel channel integrity criteria are proposed which are based upon three necessary and sequential mechanisms: Onset of CHF and local drypatch formation at contact; sustained film boiling in the post-contact period; and creep strain to failure of the calandria tube while in sustained film boiling. (author)

  7. Mechanistic study of fuel freezing, channel plugging, and continued coolability during fast reactor overpower excursions

    International Nuclear Information System (INIS)

    Wong, K.W.; Catton, I.; Kastenberg, W.E.

    1977-07-01

    A mechanistic model is presented which describes events following fuel pin failure which may lead to in-channel fuel plate-out. The thermal and hydraulic effects of the plate-out fuel are also evaluated. Given the amount and particle size of the fuel injected into the coolant channel during fuel pin failure, and the initial conditions of the interaction zone, the physical states of the fuel particles and the coolant in the interaction zone can be determined. The trajectories of the fuel particles in the coolant channel are determined by assuming a slip factor between the local tangential velocities of the coolant and the fuel particles. The time and distance after which a fuel particle hits a wire wrap are then determined and the impact stresses induced in the thin solid fuel crust can be evaluated

  8. DNA damage and radical reactions: Mechanistic aspects, formation in cells and repair studies

    International Nuclear Information System (INIS)

    Cadet, J.; Ravanat, J.L.; Carell, T.; Cellai, L.; Chatgilialoglu, Ch.; Gimisis, Th.; Miranda, M.; O'Neill, P.; Robert, M.

    2008-01-01

    Several examples of oxidative and reductive reactions of DNA components that lead to single and tandem modifications are discussed in this review. These include nucleophilic addition reactions of the one-electron oxidation-mediated guanine radical cation and the one-electron reduced intermediate of 8-bromo-purine 2'-de-oxy-ribo-nucleosides that give rise to either an oxidizing guanine radical or related 5',8-cyclo-purine nucleosides. In addition, mechanistic insights into the reductive pathways involved in the photolyase induced reversal of cyclo-buta-cli-pyrimidine and pyrimidine (6-4) pyrimidone photoproducts are provided. Evidence for the occurrence and validation in cellular DNA of (OH) · radical degradation pathways of guanine that have been established in model systems has been gained from the accurate measurement of degradation products. Relevant information on biochemical aspects of the repair of single and clustered oxidatively generated damage to DNA has been gained from detailed investigations that rely on the synthesis of suitable modified probes. Thus the preparation of stable carbocyclic derivatives of purine nucleoside containing defined sequence oligonucleotides has allowed detailed crystallographic studies of the recognition step of the base damage by enzymes implicated in the base excision repair (BER) pathway. Detailed insights are provided on the BER processing of non-double strand break bi-stranded clustered damage that may consist of base lesions, a single strand break or abasic sites and represent one of the main deleterious classes of radiation-induced DNA damage. (authors)

  9. Sociocultural factors and breast cancer in sub-Saharan Africa: implications for diagnosis and management.

    Science.gov (United States)

    Tetteh, Dinah A; Faulkner, Sandra L

    2016-01-01

    The incidence of breast cancer is on the rise in sub-Saharan Africa (SSA) and efforts at early diagnosis have not been very successful because the public has scant knowledge about the disease, a large percentage of breast cancer cases are diagnosed late and mainly rural SSA women's practice of breast self-examination is poor. In this paper, we argue that an examination of the social and cultural contexts of SSA that influence breast cancer diagnosis and management in the region is needed. We discuss the implications of sociocultural factors, such as gender roles and spirituality, on breast cancer diagnosis and management in SSA.

  10. Implications of the new Food and Drug Administration draft guidance on human factors engineering for diabetes device manufacturers.

    Science.gov (United States)

    Wilcox, Stephen B; Drucker, Daniel

    2012-03-01

    This article discusses the implications of the new Food and Drug Administration's draft guidance on human factors and usability engineering for the development of diabetes-related devices. Important considerations include the challenge of identifying users, when the user population is so dramatically broad, and the challenge of identifying use environments when the same can be said for use environments. Another important consideration is that diabetes-related devices, unlike many other medical devices, are used constantly as part of the user's lifestyle--adding complexity to the focus on human factors and ease of use emphasized by the draft guidance. © 2012 Diabetes Technology Society.

  11. Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Charles P

    2012-11-14

    Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis Charles P. Casey, Principal Investigator Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706 Phone 608-262-0584 FAX: 608-262-7144 Email: casey@chem.wisc.edu http://www.chem.wisc.edu/main/people/faculty/casey.html Executive Summary. Our goal was to learn the intimate mechanistic details of reactions involved in homogeneous catalysis and to use the insight we gain to develop new and improved catalysts. Our work centered on the hydrogenation of polar functional groups such as aldehydes and ketones and on hydroformylation. Specifically, we concentrated on catalysts capable of simultaneously transferring hydride from a metal center and a proton from an acidic oxygen or nitrogen center to an aldehyde or ketone. An economical iron based catalyst was developed and patented. Better understanding of fundamental organometallic reactions and catalytic processes enabled design of energy and material efficient chemical processes. Our work contributed to the development of catalysts for the selective and mild hydrogenation of ketones and aldehydes; this will provide a modern green alternative to reductions by LiAlH4 and NaBH4, which require extensive work-up procedures and produce waste streams. (C5R4OH)Ru(CO)2H Hydrogenation Catalysts. Youval Shvo described a remarkable catalytic system in which the key intermediate (C5R4OH)Ru(CO)2H (1) has an electronically coupled acidic OH unit and a hydridic RuH unit. Our efforts centered on understanding and improving upon this important catalyst for reduction of aldehydes and ketones. Our mechanistic studies established that the reduction of aldehydes by 1 to produce alcohols and a diruthenium bridging hydride species occurs much more rapidly than regeneration of the ruthenium hydride from the diruthenium bridging hydride species. Our mechanistic studies require simultaneous transfer of hydride from ruthenium to

  12. Mechanistic modeling of CHF in forced-convection subcooled boiling

    International Nuclear Information System (INIS)

    Podowski, M.Z.; Alajbegovic, A.; Kurul, N.; Drew, D.A.; Lahey, R.T. Jr.

    1997-05-01

    Because of the complexity of phenomena governing boiling heat transfer, the approach to solve practical problems has traditionally been based on experimental correlations rather than mechanistic models. The recent progress in computational fluid dynamics (CFD), combined with improved experimental techniques in two-phase flow and heat transfer, makes the use of rigorous physically-based models a realistic alternative to the current simplistic phenomenological approach. The objective of this paper is to present a new CFD model for critical heat flux (CHF) in low quality (in particular, in subcooled boiling) forced-convection flows in heated channels

  13. Development of Improved Mechanistic Deterioration Models for Flexible Pavements

    DEFF Research Database (Denmark)

    Ullidtz, Per; Ertman, Hans Larsen

    1998-01-01

    The paper describes a pilot study in Denmark with the main objective of developing improved mechanistic deterioration models for flexible pavements based on an accelerated full scale test on an instrumented pavement in the Danish Road Tessting Machine. The study was the first in "International...... Pavement Subgrade Performance Study" sponsored by the Federal Highway Administration (FHWA), USA. The paper describes in detail the data analysis and the resulting models for rutting, roughness, and a model for the plastic strain in the subgrade.The reader will get an understanding of the work needed...

  14. Comparison of Two Mechanistic Microbial Growth Models to Estimate Shelf Life of Perishable Food Package under Dynamic Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Dong Sun Lee

    2014-01-01

    Full Text Available Two mechanistic microbial growth models (Huang’s model and model of Baranyi and Roberts given in differential and integrated equation forms were compared in predicting the microbial growth and shelf life under dynamic temperature storage and distribution conditions. Literatures consistently reporting the microbial growth data under constant and changing temperature conditions were selected to obtain the primary model parameters, set up the secondary models, and apply them to predict the microbial growth and shelf life under fluctuating temperatures. When evaluated by general estimation behavior, bias factor, accuracy factor, and root-mean-square error, Huang’s model was comparable to Baranyi and Roberts’ model in the capability to estimate microbial growth under dynamic temperature conditions. Its simple form of single differential equation incorporating directly the growth rate and lag time may work as an advantage to be used in online shelf life estimation by using the electronic device.

  15. Localization and roles of Ski8p protein in Sordaria meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition.

    Science.gov (United States)

    Tessé, Sophie; Storlazzi, Aurora; Kleckner, Nancy; Gargano, Silvana; Zickler, Denise

    2003-10-28

    Ski8p is implicated in degradation of non-poly(A) and double-stranded RNA, and in meiotic DNA recombination. We have identified the Sordaria macrospora SKI8 gene. Ski8p is cytoplasmically localized in all vegetative and sexual cycle cells, and is nuclear localized, specifically in early-mid-meiotic prophase, in temporal correlation with Spo11p, the meiotic double-strand break (DSB) transesterase. Localizations of Ski8p and Spo11p are mutually interdependent. ski8 mutants exhibit defects in vegetative growth, entry into the sexual program, and sporulation. Diverse meiotic defects, also seen in spo11 mutants, are diagnostic of DSB absence, and they are restored by exogenous DSBs. These results suggest that Ski8p promotes meiotic DSB formation by acting directly within meiotic prophase chromosomes. Mutant phenotypes also divide meiotic homolog juxtaposition into three successive, mechanistically distinct steps; recognition, presynaptic alignment, and synapsis, which are distinguished by their differential dependence on DSBs.

  16. A new mechanistic and engineering fission gas release model for a uranium dioxide fuel

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Yang, Yong Sik; Kim, Dae Ho; Kim, Sun Ki; Bang, Je Geun

    2008-01-01

    A mechanistic and engineering fission gas release model (MEGA) for uranium dioxide (UO 2 ) fuel was developed. It was based upon the diffusional release of fission gases from inside the grain to the grain boundary and the release of fission gases from the grain boundary to the external surface by the interconnection of the fission gas bubbles in the grain boundary. The capability of the MEGA model was validated by a comparison with the fission gas release data base and the sensitivity analyses of the parameters. It was found that the MEGA model correctly predicts the fission gas release in the broad range of fuel burnups up to 98 MWd/kgU. Especially, the enhancement of fission gas release in a high-burnup fuel, and the reduction of fission gas release at a high burnup by increasing the UO 2 grain size were found to be correctly predicted by the MEGA model without using any artificial factor. (author)

  17. Corrigendum: Free Will and Punishment: A Mechanistic View of Human Nature Reduces Retribution.

    Science.gov (United States)

    2018-02-01

    Original article: Shariff, A. F., Greene, J. D., Karremans, J. C., Luguri, J. B., Clark, C. J., Schooler, J. W., . . . Vohs, K. D. (2014). Free will and punishment: A mechanistic view of human nature reduces retribution. Psychological Science, 25, 1563-1570. doi:10.1177/0956797614534693.

  18. Corrigendum: Free will and punishment: A mechanistic view of human nature reduces retribution

    NARCIS (Netherlands)

    Shariff, A.F.; Greene, J.D.; Karremans, J.C.T.M.; Luguri, J.B.; Clark, C.J.; Schooler, J.W.; Baumeister, R.F.; Vohs, K.D.

    2018-01-01

    Original article: Shariff, A. F., Greene, J. D., Karremans, J. C., Luguri, J. B., Clark, C. J., Schooler, J. W., . . . Vohs, K. D. (2014). Free will and punishment: A mechanistic view of human nature reduces retribution. Psychological Science, 25, 1563-1570. doi:10.1177/0956797614534693

  19. A mechanistic model for electricity consumption on dairy farms: Definition, validation, and demonstration

    NARCIS (Netherlands)

    Upton, J.R.; Murphy, M.; Shallo, L.; Groot Koerkamp, P.W.G.; Boer, de I.J.M.

    2014-01-01

    Our objective was to define and demonstrate a mechanistic model that enables dairy farmers to explore the impact of a technical or managerial innovation on electricity consumption, associated CO2 emissions, and electricity costs. We, therefore, (1) defined a model for electricity consumption on

  20. A Mechanistically Informed User-Friendly Model to Predict Greenhouse Gas (GHG) Fluxes and Carbon Storage from Coastal Wetlands

    Science.gov (United States)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2015-12-01

    We present a user-friendly modeling tool on MS Excel to predict the greenhouse gas (GHG) fluxes and estimate potential carbon sequestration from the coastal wetlands. The dominant controls of wetland GHG fluxes and their relative mechanistic linkages with various hydro-climatic, sea level, biogeochemical and ecological drivers were first determined by employing a systematic data-analytics method, including Pearson correlation matrix, principal component and factor analyses, and exploratory partial least squares regressions. The mechanistic knowledge and understanding was then utilized to develop parsimonious non-linear (power-law) models to predict wetland carbon dioxide (CO2) and methane (CH4) fluxes based on a sub-set of climatic, hydrologic and environmental drivers such as the photosynthetically active radiation, soil temperature, water depth, and soil salinity. The models were tested with field data for multiple sites and seasons (2012-13) collected from the Waquoit Bay, MA. The model estimated the annual wetland carbon storage by up-scaling the instantaneous predicted fluxes to an extended growing season (e.g., May-October) and by accounting for the net annual lateral carbon fluxes between the wetlands and estuary. The Excel Spreadsheet model is a simple ecological engineering tool for coastal carbon management and their incorporation into a potential carbon market under a changing climate, sea level and environment. Specifically, the model can help to determine appropriate GHG offset protocols and monitoring plans for projects that focus on tidal wetland restoration and maintenance.

  1. Numerical simulation in steam injection wellbores by mechanistic approach; Simulacao numerica do escoamento de vapor em pocos por uma abordagem mecanicista

    Energy Technology Data Exchange (ETDEWEB)

    Souza Junior, J.C. de; Campos, W.; Lopes, D.; Moura, L.S.S. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Thomas, A. Clecio F. [Universidade Estadual do Ceara (UECE), CE (Brazil)

    2008-07-01

    This work addresses to the development of a hydrodynamic and heat transfer mechanistic model for steam flow in injection wellbores. The problem of two-phase steam flow in wellbores has been solved recently by using available empirical correlations from petroleum industry (Lopes, 1986) and nuclear industry (Moura, 1991).The good performance achieved by mechanistic models developed by Ansari (1994), Hasan (1995), Gomez (2000) and Kaya (2001) supports the importance of the mechanistic approach for the steam flow problem in injection wellbores. In this study, the methodology to solve the problem consists in the application of a numerical method to the governing equations of steam flow and a marching algorithm to determine the distribution of the pressure and temperature along the wellbore. So, a computer code has been formulated to get numerical results, which provides a comparative study to the main models found in the literature. Finally, when compared to available field data, the mechanistic model for downward vertical steam flow in wellbores gave better results than the empirical correlations. (author)

  2. Membrane Trafficking of Death Receptors: Implications on Signalling

    Directory of Open Access Journals (Sweden)

    Wulf Schneider-Brachert

    2013-07-01

    Full Text Available Death receptors were initially recognised as potent inducers of apoptotic cell death and soon ambitious attempts were made to exploit selective ignition of controlled cellular suicide as therapeutic strategy in malignant diseases. However, the complexity of death receptor signalling has increased substantially during recent years. Beyond activation of the apoptotic cascade, involvement in a variety of cellular processes including inflammation, proliferation and immune response was recognised. Mechanistically, these findings raised the question how multipurpose receptors can ensure selective activation of a particular pathway. A growing body of evidence points to an elegant spatiotemporal regulation of composition and assembly of the receptor-associated signalling complex. Upon ligand binding, receptor recruitment in specialized membrane compartments, formation of receptor-ligand clusters and internalisation processes constitute key regulatory elements. In this review, we will summarise the current concepts of death receptor trafficking and its implications on receptor-associated signalling events.

  3. A Mechanistic Study of Arsenic (III) Rejection by Reverse Osmosis and Nanofiltration Membranes

    Science.gov (United States)

    Suzuki, Tasuma

    2009-01-01

    Reverse osmosis/nanofiltration (RO/NF) membranes are capable to provide an effective barrier for a wide range of contaminants (including disinfection by-products precursors) in a single treatment step. However, solute rejection mechanisms by RO/NF membranes are not well understood. The lack of mechanistic information arises from experimental…

  4. Mechanistic Systems Modeling to Improve Understanding and Prediction of Cardiotoxicity Caused by Targeted Cancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Jaehee V. Shim

    2017-09-01

    Full Text Available Tyrosine kinase inhibitors (TKIs are highly potent cancer therapeutics that have been linked with serious cardiotoxicity, including left ventricular dysfunction, heart failure, and QT prolongation. TKI-induced cardiotoxicity is thought to result from interference with tyrosine kinase activity in cardiomyocytes, where these signaling pathways help to control critical processes such as survival signaling, energy homeostasis, and excitation–contraction coupling. However, mechanistic understanding is limited at present due to the complexities of tyrosine kinase signaling, and the wide range of targets inhibited by TKIs. Here, we review the use of TKIs in cancer and the cardiotoxicities that have been reported, discuss potential mechanisms underlying cardiotoxicity, and describe recent progress in achieving a more systematic understanding of cardiotoxicity via the use of mechanistic models. In particular, we argue that future advances are likely to be enabled by studies that combine large-scale experimental measurements with Quantitative Systems Pharmacology (QSP models describing biological mechanisms and dynamics. As such approaches have proven extremely valuable for understanding and predicting other drug toxicities, it is likely that QSP modeling can be successfully applied to cardiotoxicity induced by TKIs. We conclude by discussing a potential strategy for integrating genome-wide expression measurements with models, illustrate initial advances in applying this approach to cardiotoxicity, and describe challenges that must be overcome to truly develop a mechanistic and systematic understanding of cardiotoxicity caused by TKIs.

  5. Evolutionary and mechanistic drivers of laterality: A review and new synthesis.

    Science.gov (United States)

    Wiper, Mallory L

    2017-11-01

    Laterality, best understood as asymmetries of bilateral structures or biases in behaviour, has been demonstrated in species from all major vertebrate classes, and in many invertebrates, showing a large degree of evolutionary conservation across vertebrate groups. Despite the establishment of this phenomenon in so many species, however, the evolutionary and mechanistic study of laterality is uneven with numerous areas in this field requiring greater attention. Here, I present a partial review of how far the study of laterality has come, outlining previous pioneering work, I discuss the hypothesized costs and benefits of a lateralized brain and the suggested path of the evolution of laterality for populations and individuals. I propose an expansion of laterality research into areas that have been touched upon in the past but require stronger evidence from which the field will greatly benefit. Namely, I suggest a continuation of the phylogenetic approach to investigating laterality to better understand its evolutionary path; and a further focus on mechanistic drivers, with special attention to genetic and environmental effects. Putting together the puzzle of laterality using as many pieces as possible will provide a stronger understanding of this field, allowing us to continue to expand the field in novel ways.

  6. Promiscuous behaviour of the bacterial metallohydrolase DapE : an evolutionary and mechanistic perspective

    OpenAIRE

    Uda, Narasimha Rao

    2015-01-01

    Enzyme promiscuity, defined as functional properties other than those for which they are evolved, is considered a key factor in the evolution of new enzyme functions. Many metalloproteins can be alternatively metallated, which may lead to metal-dependent promiscuity. The mechanisms and evolutionary implications of metal-mediated promiscuity appear to be underexplored, especially considering that approximately one-third of structurally characterized proteins are thought to be metalloproteins. ...

  7. Mechanistic variables can enhance predictive models of endotherm distributions: The American pika under current, past, and future climates

    Science.gov (United States)

    Mathewson, Paul; Moyer-Horner, Lucas; Beever, Erik; Briscoe, Natalie; Kearney, Michael T.; Yahn, Jeremiah; Porter, Warren P.

    2017-01-01

    How climate constrains species’ distributions through time and space is an important question in the context of conservation planning for climate change. Despite increasing awareness of the need to incorporate mechanism into species distribution models (SDMs), mechanistic modeling of endotherm distributions remains limited in this literature. Using the American pika (Ochotona princeps) as an example, we present a framework whereby mechanism can be incorporated into endotherm SDMs. Pika distribution has repeatedly been found to be constrained by warm temperatures, so we used Niche Mapper, a mechanistic heat-balance model, to convert macroclimate data to pika-specific surface activity time in summer across the western United States. We then explored the difference between using a macroclimate predictor (summer temperature) and using a mechanistic predictor (predicted surface activity time) in SDMs. Both approaches accurately predicted pika presences in current and past climate regimes. However, the activity models predicted 8–19% less habitat loss in response to annual temperature increases of ~3–5 °C predicted in the region by 2070, suggesting that pikas may be able to buffer some climate change effects through behavioral thermoregulation that can be captured by mechanistic modeling. Incorporating mechanism added value to the modeling by providing increased confidence in areas where different modeling approaches agreed and providing a range of outcomes in areas of disagreement. It also provided a more proximate variable relating animal distribution to climate, allowing investigations into how unique habitat characteristics and intraspecific phenotypic variation may allow pikas to exist in areas outside those predicted by generic SDMs. Only a small number of easily obtainable data are required to parameterize this mechanistic model for any endotherm, and its use can improve SDM predictions by explicitly modeling a widely applicable direct physiological effect

  8. Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates.

    Science.gov (United States)

    Mathewson, Paul D; Moyer-Horner, Lucas; Beever, Erik A; Briscoe, Natalie J; Kearney, Michael; Yahn, Jeremiah M; Porter, Warren P

    2017-03-01

    How climate constrains species' distributions through time and space is an important question in the context of conservation planning for climate change. Despite increasing awareness of the need to incorporate mechanism into species distribution models (SDMs), mechanistic modeling of endotherm distributions remains limited in this literature. Using the American pika (Ochotona princeps) as an example, we present a framework whereby mechanism can be incorporated into endotherm SDMs. Pika distribution has repeatedly been found to be constrained by warm temperatures, so we used Niche Mapper, a mechanistic heat-balance model, to convert macroclimate data to pika-specific surface activity time in summer across the western United States. We then explored the difference between using a macroclimate predictor (summer temperature) and using a mechanistic predictor (predicted surface activity time) in SDMs. Both approaches accurately predicted pika presences in current and past climate regimes. However, the activity models predicted 8-19% less habitat loss in response to annual temperature increases of ~3-5 °C predicted in the region by 2070, suggesting that pikas may be able to buffer some climate change effects through behavioral thermoregulation that can be captured by mechanistic modeling. Incorporating mechanism added value to the modeling by providing increased confidence in areas where different modeling approaches agreed and providing a range of outcomes in areas of disagreement. It also provided a more proximate variable relating animal distribution to climate, allowing investigations into how unique habitat characteristics and intraspecific phenotypic variation may allow pikas to exist in areas outside those predicted by generic SDMs. Only a small number of easily obtainable data are required to parameterize this mechanistic model for any endotherm, and its use can improve SDM predictions by explicitly modeling a widely applicable direct physiological effect

  9. Mechanistic modelling of the drying behaviour of single pharmaceutical granules

    DEFF Research Database (Denmark)

    Thérèse F.C. Mortier, Séverine; Beer, Thomas De; Gernaey, Krist

    2012-01-01

    The trend to move towards continuous production processes in pharmaceutical applications enhances the necessity to develop mechanistic models to understand and control these processes. This work focuses on the drying behaviour of a single wet granule before tabletting, using a six...... phase (submodel 2), the water inside the granule evaporates. The second submodel contains an empirical power coefficient, b. A sensitivity analysis was performed to study the influence of parameters on the moisture content of single pharmaceutical granules, which clearly points towards the importance...

  10. Assessing Metal Levels in Children from the Mechanistic Indicators of Childhood Asthma(MICA) study

    Science.gov (United States)

    Toxic and essential metals levels can be used as health indicators. Here, we quantitatively compare and contrast toxic and essential metals levels in vacuum dust, urine, and fingernail samples of 109 children in Detroit, Michigan as part of The Mechanistic Indicators of Childhood...

  11. A MECHANISTIC STUDY OF RHODIUM TRI(ORTHO-TERT-BUTYLPHENYL)PHOSPHITE COMPLEXES AS HYDROFORMYLATION CATALYSTS

    NARCIS (Netherlands)

    JONGSMA, T; CHALLA, G; VANLEEUWEN, PWNM

    1991-01-01

    A mechanistic study of the hydroformylation cycle with a rhodium tri(o-t-butylphenyl)phosphite complex as catalyst is presented. Spectroscopic experiments prove that under hydroformylation conditions this complex is coordinated by only one phosphite. The complex has a high activity in the

  12. Expression of receptors for putative anabolic growth factors in human intervertebral disc: implications for repair and regeneration of the disc.

    Science.gov (United States)

    Le Maitre, Christine L; Richardson, Stephen M A; Baird, Pauline; Freemont, Anthony J; Hoyland, Judith A

    2005-12-01

    Low back pain (LBP) is a common, debilitating and economically important disorder. Current evidence implicates loss of intervertebral disc (IVD) matrix consequent upon 'degeneration' as a major cause of LBP. Degeneration of the IVD involves increases in degradative enzymes and decreases in the extracellular matrix (ECM) component in a process that is controlled by a range of cytokines and growth factors. Studies have suggested using anabolic growth factors to regenerate the normal matrix of the IVD, hence restoring disc height and reversing degenerative disc disease. However, for such therapies to be successful it is vital that the target cells (i.e. the disc cells) express the appropriate receptors. This immunohistochemical study has for the first time investigated the expression and localization of four potentially beneficial growth factor receptors (i.e. TGFbetaRII, BMPRII, FGFR3 and IGFRI) in non-degenerate and degenerate human IVDs. Receptor expression was quantified across regions of the normal and degenerate disc and showed that cells of the nucleus pulposus (NP) and inner annulus fibrosus (IAF) expressed significantly higher levels of the four growth factor receptors investigated. There were no significant differences between the four growth factor expression in non-degenerate and degenerate biopsies. However, expression of TGFbetaRII, FGFR3 and IGFRI, but not BMP RII, were observed in the ingrowing blood vessels that characterize part of the disease aetiology. In conclusion, this study has demonstrated the expression of the four growth factor receptors at similar levels in the chondrocyte-like cells of the NP and IAF in both non-degenerate and degenerate discs, implicating a role in normal disc homeostasis and suggesting that the application of these growth factors to the degenerate human IVD would stimulate matrix production. However, the expression of some of the growth factor receptors on ingrowing blood vessels might be problematic in a therapeutic

  13. Prediction of net hepatic release of glucose using a “hybrid” mechanistic model in ruminants applied to positive energy balance

    OpenAIRE

    Bahloul, Lahlou; Ortigues, Isabelle; Vernet, Jean; Lapierre, Helène; Noziere, Pierre; Sauvant, Daniel

    2013-01-01

    Ruminants depend on hepatic gluconeogenesis to meet most of their metabolic demand for glucose which relies on availability of precursors from diet supply and animal requirements (Loncke et al., 2010). Several mechanistic models of the metabolic fate of nutrients across the liver exist that have been parameterized for dairy cows. They cannot be directly used to predict hepatic gluconeogenesis in all types of ruminants in different physiological status. A hybrid mechanistic model of nutrient f...

  14. Trichloroethylene: Mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard.

    Science.gov (United States)

    Rusyn, Ivan; Chiu, Weihsueh A; Lash, Lawrence H; Kromhout, Hans; Hansen, Johnni; Guyton, Kathryn Z

    2014-01-01

    The chlorinated solvent trichloroethylene (TCE) is a ubiquitous environmental pollutant. The carcinogenic hazard of TCE was the subject of a 2012 evaluation by a Working Group of the International Agency for Research on Cancer (IARC). Information on exposures, relevant data from epidemiologic studies, bioassays in experimental animals, and toxicity and mechanism of action studies was used to conclude that TCE is carcinogenic to humans (Group 1). This article summarizes the key evidence forming the scientific bases for the IARC classification. Exposure to TCE from environmental sources (including hazardous waste sites and contaminated water) is common throughout the world. While workplace use of TCE has been declining, occupational exposures remain of concern, especially in developing countries. The strongest human evidence is from studies of occupational TCE exposure and kidney cancer. Positive, although less consistent, associations were reported for liver cancer and non-Hodgkin lymphoma. TCE is carcinogenic at multiple sites in multiple species and strains of experimental animals. The mechanistic evidence includes extensive data on the toxicokinetics and genotoxicity of TCE and its metabolites. Together, available evidence provided a cohesive database supporting the human cancer hazard of TCE, particularly in the kidney. For other target sites of carcinogenicity, mechanistic and other data were found to be more limited. Important sources of susceptibility to TCE toxicity and carcinogenicity were also reviewed by the Working Group. In all, consideration of the multiple evidence streams presented herein informed the IARC conclusions regarding the carcinogenicity of TCE. © 2013.

  15. Unification and mechanistic detail as drivers of model construction: models of networks in economics and sociology.

    Science.gov (United States)

    Kuorikoski, Jaakko; Marchionni, Caterina

    2014-12-01

    We examine the diversity of strategies of modelling networks in (micro) economics and (analytical) sociology. Field-specific conceptions of what explaining (with) networks amounts to or systematic preference for certain kinds of explanatory factors are not sufficient to account for differences in modelling methodologies. We argue that network models in both sociology and economics are abstract models of network mechanisms and that differences in their modelling strategies derive to a large extent from field-specific conceptions of the way in which a good model should be a general one. Whereas the economics models aim at unification, the sociological models aim at a set of mechanism schemas that are extrapolatable to the extent that the underlying psychological mechanisms are general. These conceptions of generality induce specific biases in mechanistic explanation and are related to different views of when knowledge from different fields should be seen as relevant.

  16. Toxic neuropathies: Mechanistic insights based on a chemical perspective.

    Science.gov (United States)

    LoPachin, Richard M; Gavin, Terrence

    2015-06-02

    2,5-Hexanedione (HD) and acrylamide (ACR) are considered to be prototypical among chemical toxicants that cause central-peripheral axonopathies characterized by distal axon swelling and degeneration. Because the demise of distal regions was assumed to be causally related to the onset of neurotoxicity, substantial effort was devoted to deciphering the respective mechanisms. Continued research, however, revealed that expression of the presumed hallmark morphological features was dependent upon the daily rate of toxicant exposure. Indeed, many studies reported that the corresponding axonopathic changes were late developing effects that occurred independent of behavioral and/or functional neurotoxicity. This suggested that the toxic axonopathy classification might be based on epiphenomena related to dose-rate. Therefore, the goal of this mini-review is to discuss how quantitative morphometric analyses and the establishment of dose-dependent relationships helped distinguish primary, mechanistically relevant toxicant effects from non-specific consequences. Perhaps more importantly, we will discuss how knowledge of neurotoxicant chemical nature can guide molecular-level research toward a better, more rational understanding of mechanism. Our discussion will focus on HD, the neurotoxic γ-diketone metabolite of the industrial solvents n-hexane and methyl-n-butyl ketone. Early investigations suggested that HD caused giant neurofilamentous axonal swellings and eventual degeneration in CNS and PNS. However, as our review will point out, this interpretation underwent several iterations as the understanding of γ-diketone chemistry improved and more quantitative experimental approaches were implemented. The chemical concepts and design strategies discussed in this mini-review are broadly applicable to the mechanistic studies of other chemicals (e.g., n-propyl bromine, methyl methacrylate) that cause toxic neuropathies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modelling approaches

    International Nuclear Information System (INIS)

    Devau, Nicolas; Cadre, Edith Le; Hinsinger, Philippe; Jaillard, Benoit; Gerard, Frederic

    2009-01-01

    Inorganic P is the least mobile major nutrient in most soils and is frequently the prime limiting factor for plant growth in terrestrial ecosystems. In this study, the extraction of soil inorganic P with CaCl 2 (P-CaCl 2 ) and geochemical modelling were combined in order to unravel the processes controlling the environmentally available P (EAP) of a soil over a range of pH values (pH ∼ 4-10). Mechanistic descriptions of the adsorption of cations and anions by the soil constituents were used (1-pK Triple Plane, ion-exchange and NICA-Donnan models). These models are implemented into the geochemical code Visual MINTEQ. An additive approach was used for their application to the surface horizon of a Cambisol. The geochemical code accurately reproduced the concentration of extracted P at the different soil pH values (R 2 = 0.9, RMSE = 0.03 mg kg -1 ). Model parameters were either directly found in the literature or estimated by fitting published experimental results in single mineral systems. The strong agreement between measurements and modelling results demonstrated that adsorption processes exerted a major control on the EAP of the soil over a large range of pH values. An influence of the precipitation of P-containing mineral is discounted based on thermodynamic calculations. Modelling results indicated that the variations in P-CaCl 2 with soil pH were controlled by the deprotonation/protonation of the surface hydroxyl groups, the distribution of P surface complexes, and the adsorption of Ca and Cl from the electrolyte background. Iron-oxides and gibbsite were found to be the major P-adsorbing soil constituents at acidic and alkaline pHs, whereas P was mainly adsorbed by clay minerals at intermediate pH values. This study demonstrates the efficacy of geochemical modelling to understand soil processes, and the applicability of mechanistic adsorption models to a 'real' soil, with its mineralogical complexity and the additional contribution of soil organic matter.

  18. Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modelling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Devau, Nicolas [INRA, UMR 1222 Eco and Sols - Ecologie Fonctionnelle et Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France); Cadre, Edith Le [Supagro, UMR 1222 Eco and Sols - Ecologie Fonctionnelle et Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France); Hinsinger, Philippe; Jaillard, Benoit [INRA, UMR 1222 Eco and Sols - Ecologie Fonctionnelle et Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France); Gerard, Frederic, E-mail: gerard@supagro.inra.fr [INRA, UMR 1222 Eco and Sols - Ecologie Fonctionnelle et Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France)

    2009-11-15

    Inorganic P is the least mobile major nutrient in most soils and is frequently the prime limiting factor for plant growth in terrestrial ecosystems. In this study, the extraction of soil inorganic P with CaCl{sub 2} (P-CaCl{sub 2}) and geochemical modelling were combined in order to unravel the processes controlling the environmentally available P (EAP) of a soil over a range of pH values (pH {approx} 4-10). Mechanistic descriptions of the adsorption of cations and anions by the soil constituents were used (1-pK Triple Plane, ion-exchange and NICA-Donnan models). These models are implemented into the geochemical code Visual MINTEQ. An additive approach was used for their application to the surface horizon of a Cambisol. The geochemical code accurately reproduced the concentration of extracted P at the different soil pH values (R{sup 2} = 0.9, RMSE = 0.03 mg kg{sup -1}). Model parameters were either directly found in the literature or estimated by fitting published experimental results in single mineral systems. The strong agreement between measurements and modelling results demonstrated that adsorption processes exerted a major control on the EAP of the soil over a large range of pH values. An influence of the precipitation of P-containing mineral is discounted based on thermodynamic calculations. Modelling results indicated that the variations in P-CaCl{sub 2} with soil pH were controlled by the deprotonation/protonation of the surface hydroxyl groups, the distribution of P surface complexes, and the adsorption of Ca and Cl from the electrolyte background. Iron-oxides and gibbsite were found to be the major P-adsorbing soil constituents at acidic and alkaline pHs, whereas P was mainly adsorbed by clay minerals at intermediate pH values. This study demonstrates the efficacy of geochemical modelling to understand soil processes, and the applicability of mechanistic adsorption models to a 'real' soil, with its mineralogical complexity and the additional

  19. Protection by caffeine against oxic radiation damage and chemical carcinogens : mechanistic considerations

    International Nuclear Information System (INIS)

    Kesavan, P.C.

    1992-01-01

    There is little doubt that caffeine administered after exposure to UV light enhances the damage to cells and organisms by inhibiting photoreactivation, excision and/or recombinational repair. However, when already present in the system, it affords remarkable protection not only against O 2 -dependent component of radiation damage, but also against chemical carcinogens that require metabolic activation. Possible mechanistic aspects are discussed briefly. (author). 81 refs

  20. Mechanistic kinetic models of enzymatic cellulose hydrolysis-A review.

    Science.gov (United States)

    Jeoh, Tina; Cardona, Maria J; Karuna, Nardrapee; Mudinoor, Akshata R; Nill, Jennifer

    2017-07-01

    Bioconversion of lignocellulose forms the basis for renewable, advanced biofuels, and bioproducts. Mechanisms of hydrolysis of cellulose by cellulases have been actively studied for nearly 70 years with significant gains in understanding of the cellulolytic enzymes. Yet, a full mechanistic understanding of the hydrolysis reaction has been elusive. We present a review to highlight new insights gained since the most recent comprehensive review of cellulose hydrolysis kinetic models by Bansal et al. (2009) Biotechnol Adv 27:833-848. Recent models have taken a two-pronged approach to tackle the challenge of modeling the complex heterogeneous reaction-an enzyme-centric modeling approach centered on the molecularity of the cellulase-cellulose interactions to examine rate limiting elementary steps and a substrate-centric modeling approach aimed at capturing the limiting property of the insoluble cellulose substrate. Collectively, modeling results suggest that at the molecular-scale, how rapidly cellulases can bind productively (complexation) and release from cellulose (decomplexation) is limiting, while the overall hydrolysis rate is largely insensitive to the catalytic rate constant. The surface area of the insoluble substrate and the degrees of polymerization of the cellulose molecules in the reaction both limit initial hydrolysis rates only. Neither enzyme-centric models nor substrate-centric models can consistently capture hydrolysis time course at extended reaction times. Thus, questions of the true reaction limiting factors at extended reaction times and the role of complexation and decomplexation in rate limitation remain unresolved. Biotechnol. Bioeng. 2017;114: 1369-1385. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Mechanistic aspects of the metal catalyzed alternating copolymerization of epoxides and carbon monoxide.

    Science.gov (United States)

    Allmendinger, Markus; Molnar, Ferenc; Zintl, Manuela; Luinstra, Gerrit A; Preishuber-Pflügl, Peter; Rieger, Bernhard

    2005-09-05

    The cobalt-catalyzed alternating copolymerization of epoxides and CO is a novel, direct approach to aliphatic polyesters, such as poly(hydroxybutyrate) (PHB). This reaction was found to be catalyzed by Ph3Si[Co(CO)4] (4) and pyridine affording in a first step the stable mono-insertion product Ph3Si-O-CH(CH3)-CH2-CO-Co(CO)4 (5). However, a profound mechanistic understanding, especially of the role of pyridine as the key component for the polymerization reaction was missing. ATR-IR online monitoring under catalytic conditions and DFT calculations were used to show that an acylpyridinium cation is formed by cleavage of the cobalt-acyl bond of 5 in the presence of pyridine. The Lewis acid thus generated activates the next incoming epoxide monomer for ring opening through [Co(CO)4]-. The catalytic cycle is completed by a subsequent CO insertion in the new cobalt-alkyl bond. The calculations are used to explore the energetic hypersurface of the polymerization reaction and are complemented by extended experimental investigations that also support the mechanistic hypotheses.

  2. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model

    Science.gov (United States)

    Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.

    2016-03-01

    Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.

  3. Factors affecting the Adoption of Online Banking in Ghana: Implications for Bank Managers

    Directory of Open Access Journals (Sweden)

    Perkins Ed-Zilla Daniel

    2013-07-01

    Full Text Available Internet usage in Ghana is on the increase and all indications points to the direction of the possibility of its application on online banking to be successful. However, online banking adoption that will lead to a cashless economy is facing doubts. This paper aimed at critically examining the factors that influence the adoption of online banking in Ghana. The study was based on TAM (Technology Acceptance Model, which has been used expansively in similar studies, a descriptive cross-sectional mixed-methodology approach was used. To generalize the findings the researchers used a multi case study approach to help find out the factors that influence online banking adoption. Data was analysed by using multiple Regression Analysis in SPSS to generate ANOVA results. The results showed that the original constructs of TAM i.e. Perceived Usefulness (PU, Perceived Ease of Use (PEOU as well as the extensions of government support, trust and security were all significant to customers’ intensions to adopt online banking. An implication for bank Managers is that they should concentrate on the promotion and advancement of the priceless paybacks that are gained from ‘Intended and Unintended Benefits’ such as lower transaction fees, high deposit rates among others which are realized from the usage online of banking linked to Perceived Usefulness

  4. The Role of Parathyroid Hormone-Related Protein (PTHrP in Osteoblast Response to Microgravity: Mechanistic Implications for Osteoporosis Development.

    Directory of Open Access Journals (Sweden)

    Anne Camirand

    Full Text Available Prolonged skeletal unloading through bedrest results in bone loss similar to that observed in elderly osteoporotic patients, but with an accelerated timeframe. This rapid effect on weight-bearing bones is also observed in astronauts who can lose up to 2% of their bone mass per month spent in Space. Despite the important implications for Spaceflight travelers and bedridden patients, the exact mechanisms involved in disuse osteoporosis have not been elucidated. Parathyroid hormone-related protein (PTHrP regulates many physiological processes including skeletal development, and has been proposed as a mechanosensor. To investigate the role of PTHrP in microgravity-induced bone loss, trabecular and calvarial osteoblasts (TOs and COs from Pthrp +/+ and -/- mice were subjected to actual Spaceflight for 6 days (Foton M3 satellite. Pthrp +/+, +/- and -/- osteoblasts were also exposed to simulated microgravity for periods varying from 6 days to 6 weeks. While COs displayed little change in viability in 0g, viability of all TOs rapidly decreased in inverse proportion to PTHrP expression levels. Furthermore, Pthrp+/+ TOs displayed a sharp viability decline after 2 weeks at 0g. Microarray analysis of Pthrp+/+ TOs after 6 days in simulated 0g revealed expression changes in genes encoding prolactins, apoptosis/survival molecules, bone metabolism and extra-cellular matrix composition proteins, chemokines, insulin-like growth factor family members and Wnt-related signalling molecules. 88% of 0g-induced expression changes in Pthrp+/+ cells overlapped those caused by Pthrp ablation in normal gravity, and pulsatile treatment with PTHrP1-36 not only reversed a large proportion of 0g-induced effects in Pthrp+/+ TOs but maintained viability over 6-week exposure to microgravity. Our results confirm PTHrP efficacy as an anabolic agent to prevent microgravity-induced cell death in TOs.

  5. Mechanistic study of aerosol dry deposition on vegetated canopies

    International Nuclear Information System (INIS)

    Petroff, A.

    2005-04-01

    The dry deposition of aerosols onto vegetated canopies is modelled through a mechanistic approach. The interaction between aerosols and vegetation is first formulated by using a set of parameters, which are defined at the local scale of one surface. The overall deposition is then deduced at the canopy scale through an up-scaling procedure based on the statistic distribution parameters. This model takes into account the canopy structural and morphological properties, and the main characteristics of the turbulent flow. Deposition mechanisms considered are Brownian diffusion, interception, initial and turbulent impaction, initially with coniferous branches and then with entire canopies of different roughness, such as grass, crop field and forest. (author)

  6. Mechanistic CHF modeling for natural circulation applications in SMR

    Energy Technology Data Exchange (ETDEWEB)

    Luitjens, Jeffrey [Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, 3451 SW Jefferson Way, Corvallis, OR 97331 (United States); Wu, Qiao, E-mail: qiao.wu@oregonstate.edu [Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, 3451 SW Jefferson Way, Corvallis, OR 97331 (United States); Greenwood, Scott; Corradini, Michael [Department of Engineering Physics, University of Wisconsin, 1415 Engineering Drive, Madison, WI 53706 (United States)

    2016-12-15

    A mechanistic critical heat flux correlation has been developed for a wide range of operating conditions which include low mass fluxes of 540–890 kg/m{sup 2}-s, high pressures of 12–13 MPa, and critical heat fluxes of 835–1100 kW/m{sup 2}. Eleven experimental data points have been collected over these conditions to inform the development of the model using bundle geometry. Errors of within 15% have been obtained with the proposed model for predicting the critical heat flux value, location, and critical pin power for a non-uniform heat flux applied to a 2 × 2 bundle configuration.

  7. Collective cell migration: Implications for wound healing and cancer invasion

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  8. Clinical implications for Vascular Endothelial Growth Factor in the lung: friend or foe?

    Directory of Open Access Journals (Sweden)

    Gourgoulianis Konstantinos I

    2006-10-01

    Full Text Available Abstract Vascular endothelial growth factor (VEGF is a potent mediator of angiogenesis which has multiple effects in lung development and physiology. VEGF is expressed in several parts of the lung and the pleura while it has been shown that changes in its expression play a significant role in the pathophysiology of some of the most common respiratory disorders, such as acute lung injury, asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, idiopathic pulmonary fibrosis, pulmonary hypertension, pleural disease, and lung cancer. However, the exact role of VEGF in the lung is not clear yet, as there is contradictory evidence that suggests either a protective or a harmful role. VEGF seems to interfere in a different manner, depending on its amount, the location, and the underlying pathologic process in lung tissue. The lack of VEGF in some disease entities may provide implications for its substitution, whereas its overexpression in other lung disorders has led to interventions for the attenuation of its action. Many efforts have been made in order to regulate the expression of VEGF and anti-VEGF antibodies are already in use for the management of lung cancer. Further research is still needed for the complete understanding of the exact role of VEGF in health and disease, in order to take advantage of its benefits and avoid its adverse effects. The scope of the present review is to summarize from a clinical point of view the changes in VEGF expression in several disorders of the respiratory system and focus on its diagnostic and therapeutic implications.

  9. Mechanistic modeling analysis of micro-evolutive responses from a Caenorhabditis elegans population exposed to a radioactive metallic stress

    International Nuclear Information System (INIS)

    Goussen, Benoit

    2013-01-01

    The evolution of toxic effects at a relevant scale is an important challenge for the ecosystem protection. Indeed, pollutants may impact populations over long-term and represent a new evolutionary force which can be adding itself to the natural selection forces. Thereby, it is necessary to acquire knowledge on the phenotypics and genetics changes that may appear in populations submitted to stress over several generations. Usually statistical analyses are performed to analyse such multi-generational studies. The use of a mechanistic mathematical model may provide a way to fully understand the impact of pollutants on the populations' dynamics. Such kind of model allows the integration of biological and toxic processes into the analysis of eco-toxicological data and the assessment of interactions between these processes. The aim of this Ph.D. project was to assess the contributions of the mechanistic modelling to the analysis of evolutionary experiment assessing long-term exposure. To do so, a three step strategy has been developed. Foremost, a multi-generational study was performed to assess the evolution of two populations of the ubiquitous nematode Caenorhabditis elegans in control conditions or exposed to 1.1 mM of uranium. Several generations were selected to assess growth, reproduction, and dose-responses relationships, through exposure to a range of concentrations (from 0 to 1.2 mM U) with all endpoints measured daily. A first statistical analysis was then performed. In a second step, a bio-energetic model adapted to the assessment of eco-toxicological data (DEBtox) was developed on C. elegans. Its numerical behaviour was analysed. Finally, this model was applied to all the selected generations in order to infer parameters values for the two populations and to assess their evolutions. Results highlighted an impact of the uranium starting from 0.4 mM U on both C. elegans' growth and reproduction. Results from the mechanistic analysis indicate this effect is due

  10. Mechanistic evidence for a ring-opening pathway in the Pd-catalyzed direct arylation of benzoxazoles

    DEFF Research Database (Denmark)

    Sanchez, R.S.; Zhuravlev, Fedor

    2007-01-01

    The direct Pd-catalyzed arylation of 5-substituted benzoxazoles, used as a mechanistic model for 1,3-azoles, was investigated experimentally and computationally. The results of the primary deuterium kinetic isotope effect, Hammett studies, and H/D exchange were shown to be inconsistent with the r......The direct Pd-catalyzed arylation of 5-substituted benzoxazoles, used as a mechanistic model for 1,3-azoles, was investigated experimentally and computationally. The results of the primary deuterium kinetic isotope effect, Hammett studies, and H/D exchange were shown to be inconsistent...... with the rate-limiting electrophilic or concerted palladation. A mechanism, proposed on the basis of kinetic and computational studies, includes generation of isocyanophenolate as the key step. The DFT calculations suggest that the overall catalytic cycle is facile and is largely controlled by the C-H acidity...

  11. FOAM3D: A numerical simulator for mechanistic prediciton of foam displacement in multidimensions

    Energy Technology Data Exchange (ETDEWEB)

    Kovscek, A.R.; Patzek, T.W. [Lawrence Berkeley Laboratory, Berkeley, CA (United States); Radke, C.J. [Univ. of California, Berkeley, CA (United States)

    1995-03-01

    Field application of foam is a technically viable enhanced oil recovery process (EOR) as demonstrated by recent steam-foam field studies. Traditional gas-displacement processes, such as steam drive, are improved substantially by controlling gas mobility and thereby improving volumetric displacement efficiency. For instance, Patzek and Koinis showed major oil-recovery response after about two years of foam injection in two different pilot studies at the Kern River field. They report increased production of 5.5 to 14% of the original oil in place over a five year period. Because reservoir-scale simulation is a vital component of the engineering and economic evaluation of any EOR project, efficient application of foam as a displacement fluid requires a predictive numerical model of foam displacement. A mechanistic model would also expedite scale-up of the process from the laboratory to the field scale. No general, mechanistic, field-scale model for foam displacement is currently in use.

  12. Application of response surface methodology and semi-mechanistic model to optimize fluoride removal using crushed concrete in a fixed-bed column.

    Science.gov (United States)

    Gu, Bon-Wun; Lee, Chang-Gu; Park, Seong-Jik

    2018-03-01

    The aim of this study was to investigate the removal of fluoride from aqueous solutions by using crushed concrete fines as a filter medium under varying conditions of pH 3-7, flow rate of 0.3-0.7 mL/min, and filter depth of 10-20 cm. The performance of fixed-bed columns was evaluated on the basis of the removal ratio (Re), uptake capacity (qe), degree of sorbent used (DoSU), and sorbent usage rate (SUR) obtained from breakthrough curves (BTCs). Three widely used semi-mechanistic models, that is, Bohart-Adams, Thomas, and Yoon-Nelson models, were applied to simulate the BTCs and to derive the design parameters. The Box-Behnken design of response surface methodology (RSM) was used to elucidate the individual and interactive effects of the three operational parameters on the column performance and to optimize these parameters. The results demonstrated that pH is the most important factor in the performance of fluoride removal by a fixed-bed column. The flow rate had a significant negative influence on Re and DoSU, and the effect of filter depth was observed only in the regression model for DoSU. Statistical analysis indicated that the model attained from the RSM study is suitable for describing the semi-mechanistic model parameters.

  13. Implication of Information and Communication Technologies for the Internationalisation of Services

    DEFF Research Database (Denmark)

    Henten, Anders; Skouby, Knud Erik

    1997-01-01

    Paper on the implications of ICTs on the internationalisation of services - with an emphasis on factors affecting this development.......Paper on the implications of ICTs on the internationalisation of services - with an emphasis on factors affecting this development....

  14. Calcium Regulation of Hemorrhagic Fever Virus Budding: Mechanistic Implications for Host-Oriented Therapeutic Intervention.

    Directory of Open Access Journals (Sweden)

    Ziying Han

    2015-10-01

    Full Text Available Hemorrhagic fever viruses, including the filoviruses (Ebola and Marburg and arenaviruses (Lassa and Junín viruses, are serious human pathogens for which there are currently no FDA approved therapeutics or vaccines. Importantly, transmission of these viruses, and specifically late steps of budding, critically depend upon host cell machinery. Consequently, strategies which target these mechanisms represent potential targets for broad spectrum host oriented therapeutics. An important cellular signal implicated previously in EBOV budding is calcium. Indeed, host cell calcium signals are increasingly being recognized to play a role in steps of entry, replication, and transmission for a range of viruses, but if and how filoviruses and arenaviruses mobilize calcium and the precise stage of virus transmission regulated by calcium have not been defined. Here we demonstrate that expression of matrix proteins from both filoviruses and arenaviruses triggers an increase in host cytoplasmic Ca2+ concentration by a mechanism that requires host Orai1 channels. Furthermore, we demonstrate that Orai1 regulates both VLP and infectious filovirus and arenavirus production and spread. Notably, suppression of the protein that triggers Orai activation (Stromal Interaction Molecule 1, STIM1 and genetic inactivation or pharmacological blockade of Orai1 channels inhibits VLP and infectious virus egress. These findings are highly significant as they expand our understanding of host mechanisms that may broadly control enveloped RNA virus budding, and they establish Orai and STIM1 as novel targets for broad-spectrum host-oriented therapeutics to combat these emerging BSL-4 pathogens and potentially other enveloped RNA viruses that bud via similar mechanisms.

  15. Recent Advances in Developing Inhibitors for Hypoxia-Inducible Factor Prolyl Hydroxylases and Their Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    So Yeon Kim

    2015-11-01

    Full Text Available Hypoxia-inducible factor (HIF prolyl hydroxylases (PHDs are members of the 2-oxoglutarate dependent non-heme iron dioxygenases. Due to their physiological roles in regulation of HIF-1α stability, many efforts have been focused on searching for selective PHD inhibitors to control HIF-1α levels for therapeutic applications. In this review, we first describe the structure of PHD2 as a molecular basis for structure-based drug design (SBDD and various experimental methods developed for measuring PHD activity. We further discuss the current status of the development of PHD inhibitors enabled by combining SBDD approaches with high-throughput screening. Finally, we highlight the clinical implications of small molecule PHD inhibitors.

  16. Individual, employment and psychosocial factors influencing walking to work: Implications for intervention design.

    Science.gov (United States)

    Adams, Emma J; Esliger, Dale W; Taylor, Ian M; Sherar, Lauren B

    2017-01-01

    Promoting walking for the journey to and from work (commuter walking) is a potential strategy for increasing physical activity. Understanding the factors influencing commuter walking is important for identifying target groups and designing effective interventions. This study aimed to examine individual, employment-related and psychosocial factors associated with commuter walking and to discuss the implications for targeting and future design of interventions. 1,544 employees completed a baseline survey as part of the 'Walking Works' intervention project (33.4% male; 36.3% aged employment-related (distance lived from work, free car parking at work, working hours, working pattern and occupation) and psychosocial factors (perceived behavioural control, intention, social norms and social support from work colleagues) with commuter walking. Almost half of respondents (n = 587, 49%) were classified as commuter walkers. Those who were aged work, were confident of including some walking or intended to walk to or from work on a regular basis, and had support from colleagues for walking were more likely to be commuter walkers. Those who perceived they lived too far away from work to walk, thought walking was less convenient than using a car for commuting, did not have time to walk, needed a car for work or had always travelled the same way were less likely to be commuter walkers. A number of individual, employment-related and psychosocial factors were associated with commuter walking. Target groups for interventions to promote walking to and from work may include those in older age groups and those who own or have access to a car. Multi-level interventions targeting individual level behaviour change, social support within the workplace and organisational level travel policies may be required in order to promote commuter walking.

  17. Use of Gene Expression Changes in Blood to Elucidate Mechanistic Indicators of Childhood Asthma (MICA)

    Science.gov (United States)

    Risk assessment increasingly relies more heavily on mode of action, thus the identification of human bioindicators of disease becomes all the more important. Genomic methods represent a tool for both mode of action determination and bioindicator identification. The Mechanistic In...

  18. A review of factors that affect contact angle and implications for flotation practice.

    Science.gov (United States)

    Chau, T T; Bruckard, W J; Koh, P T L; Nguyen, A V

    2009-09-30

    Contact angle and the wetting behaviour of solid particles are influenced by many physical and chemical factors such as surface roughness and heterogeneity as well as particle shape and size. A significant amount of effort has been invested in order to probe the correlation between these factors and surface wettability. Some of the key investigations reported in the literature are reviewed here. It is clear from the papers reviewed that, depending on many experimental conditions such as the size of the surface heterogeneities and asperities, surface cleanliness, and the resolution of measuring equipment and data interpretation, obtaining meaningful contact angle values is extremely difficult and such values are reliant on careful experimental control. Surface wetting behaviour depends on not only surface texture (roughness and particle shape), and surface chemistry (heterogeneity) but also on hydrodynamic conditions in the preparation route. The inability to distinguish the effects of each factor may be due to the interplay and/or overlap of two or more factors in each system. From this review, it was concluded that: Surface geometry (and surface roughness of different scales) can be used to tune the contact angle; with increasing surface roughness the apparent contact angle decreases for hydrophilic materials and increases for hydrophobic materials. For non-ideal surfaces, such as mineral surfaces in the flotation process, kinetics plays a more important role than thermodynamics in dictating wettability. Particle size encountered in flotation (10-200 microm) showed no significant effect on contact angle but has a strong effect on flotation rate constant. There is a lack of a rigid quantitative correlation between factors affecting wetting, wetting behaviour and contact angle on minerals; and hence their implication for flotation process. Specifically, universal correlation of contact angle to flotation recovery is still difficult to predict from first principles

  19. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti

  20. A 3-D CFD approach to the mechanistic prediction of forced convective critical heat flux at low quality

    International Nuclear Information System (INIS)

    Jean-Marie Le Corre; Cristina H Amon; Shi-Chune Yao

    2005-01-01

    Full text of publication follows: The prediction of the Critical Heat Flux (CHF) in a heat flux controlled boiling heat exchanger is important to assess the maximal thermal capability of the system. In the case of a nuclear reactor, CHF margin gain (using improved mixing vane grid design, for instance) can allow power up-rate and enhanced operating flexibility. In general, current nuclear core design procedures use quasi-1D approach to model the coolant thermal-hydraulic conditions within the fuel bundles coupled with fully empirical CHF prediction methods. In addition, several CHF mechanistic models have been developed in the past and coupled with 1D and quasi-1D thermal-hydraulic codes. These mechanistic models have demonstrated reasonable CHF prediction characteristics and, more remarkably, correct parametric trends over wide range of fluid conditions. However, since the phenomena leading to CHF are localized near the heater, models are needed to relate local quantities of interest to area-averaged quantities. As a consequence, large CHF prediction uncertainties may be introduced and 3D fluid characteristics (such as swirling flow) cannot be accounted properly. Therefore, a fully mechanistic approach to CHF prediction is, in general, not possible using the current approach. The development of CHF-enhanced fuel assembly designs requires the use of more advanced 3D coolant properties computations coupled with a CHF mechanistic modeling. In the present work, the commercial CFD code CFX-5 is used to compute 3D coolant conditions in a vertical heated tube with upward flow. Several CHF mechanistic models at low quality available in the literature are coupled with the CFD code by developing adequate models between local coolant properties and local parameters of interest to predict CHF. The prediction performances of these models are assessed using CHF databases available in the open literature and the 1995 CHF look-up table. Since CFD can reasonably capture 3D fluid

  1. Incorporation of lysosomal sequestration in the mechanistic model for prediction of tissue distribution of basic drugs.

    Science.gov (United States)

    Assmus, Frauke; Houston, J Brian; Galetin, Aleksandra

    2017-11-15

    The prediction of tissue-to-plasma water partition coefficients (Kpu) from in vitro and in silico data using the tissue-composition based model (Rodgers & Rowland, J Pharm Sci. 2005, 94(6):1237-48.) is well established. However, distribution of basic drugs, in particular into lysosome-rich lung tissue, tends to be under-predicted by this approach. The aim of this study was to develop an extended mechanistic model for the prediction of Kpu which accounts for lysosomal sequestration and the contribution of different cell types in the tissue of interest. The extended model is based on compound-specific physicochemical properties and tissue composition data to describe drug ionization, distribution into tissue water and drug binding to neutral lipids, neutral phospholipids and acidic phospholipids in tissues, including lysosomes. Physiological data on the types of cells contributing to lung, kidney and liver, their lysosomal content and lysosomal pH were collated from the literature. The predictive power of the extended mechanistic model was evaluated using a dataset of 28 basic drugs (pK a ≥7.8, 17 β-blockers, 11 structurally diverse drugs) for which experimentally determined Kpu data in rat tissue have been reported. Accounting for the lysosomal sequestration in the extended mechanistic model improved the accuracy of Kpu predictions in lung compared to the original Rodgers model (56% drugs within 2-fold or 88% within 3-fold of observed values). Reduction in the extent of Kpu under-prediction was also evident in liver and kidney. However, consideration of lysosomal sequestration increased the occurrence of over-predictions, yielding overall comparable model performances for kidney and liver, with 68% and 54% of Kpu values within 2-fold error, respectively. High lysosomal concentration ratios relative to cytosol (>1000-fold) were predicted for the drugs investigated; the extent differed depending on the lysosomal pH and concentration of acidic phospholipids among

  2. Combining Solvent Isotope Effects with Substrate Isotope Effects in Mechanistic Studies of Alcohol and Amine Oxidation by Enzymes*

    Science.gov (United States)

    Fitzpatrick, Paul F.

    2014-01-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin-and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. PMID:25448013

  3. Intracellular Calcium Dynamics and Autonomic Stimulation in Atrial Fibrillation: Mechanisms and Implications

    Directory of Open Access Journals (Sweden)

    Chung-Chuan Chou, MD

    2008-01-01

    Full Text Available While atrial fibrillation is characterized by the co-existence of multiple activation waves within the atria, rapid activations in the pulmonary veins play an important role for the initiation and maintenance of atrial fibrillation. In addition to reentry, non-reentrant mechanisms resulting from abnormal intracellular calcium handling and intracellular calcium overload can also be responsible for these rapid activations in the pulmonary veins. Meanwhile, alterations of autonomic tone, involving both the sympathetic and parasympathetic nervous system, have been implicated in initiating paroxysmal atrial fibrillation. But the effectiveness of autonomic modulation as an adjunctive therapeutic strategy to catheter ablation of atrial fibrillation has been inconsistent. The interactions between the autonomic nervous system and atrial fibrillation are more complex than currently understood and further mechanistic and clinical studies are warranted.

  4. An Emphasis on Perception: Teaching Image Formation Using a Mechanistic Model of Vision.

    Science.gov (United States)

    Allen, Sue; And Others

    An effective way to teach the concept of image is to give students a model of human vision which incorporates a simple mechanism of depth perception. In this study two almost identical versions of a curriculum in geometrical optics were created. One used a mechanistic, interpretive eye model, and in the other the eye was modeled as a passive,…

  5. Effects of Asphalt Mix Design Properties on Pavement Performance: A Mechanistic Approach

    Directory of Open Access Journals (Sweden)

    Ahmad M. Abu Abdo

    2016-01-01

    Full Text Available The main objective of this study was to investigate the effects of hot mix asphalt material properties on the performance of flexible pavements via mechanistic approach. 3D Move Analysis software was utilized to determine rutting and cracking distresses in an asphalt concrete (AC layer. Fourteen different Superpave mixes were evaluated by utilizing results of the Dynamic Modulus (|E⁎| Test and the Dynamic Shear Modulus (|G⁎| Test. Results showed that with the increase of binder content, the tendency of rutting in AC layer increased. However, with the increase of binder content, the cracking of AC layer lessened. Furthermore, when different binder grades were evaluated, results showed that with the increase of the upper binder grade number, rutting decreased, and with the increase of the lower binder grade number, rutting increased. Furthermore, analysis showed that with the increase of the lower binder grade number, higher percent of bottom up cracks would result. As a result of the analysis, binder grade should not be solely considered for cracking in AC layer; binder content and aggregate structure play a big role. Finally, results illustrated that the mechanistic approach is a better tool to determine the performance of asphalt pavement than commonly used methods.

  6. From patterns to emerging processes in mechanistic urban ecology.

    Science.gov (United States)

    Shochat, Eyal; Warren, Paige S; Faeth, Stanley H; McIntyre, Nancy E; Hope, Diane

    2006-04-01

    Rapid urbanization has become an area of crucial concern in conservation owing to the radical changes in habitat structure and loss of species engendered by urban and suburban development. Here, we draw on recent mechanistic ecological studies to argue that, in addition to altered habitat structure, three major processes contribute to the patterns of reduced species diversity and elevated abundance of many species in urban environments. These activities, in turn, lead to changes in animal behavior, morphology and genetics, as well as in selection pressures on animals and plants. Thus, the key to understanding urban patterns is to balance studying processes at the individual level with an integrated examination of environmental forces at the ecosystem scale.

  7. Mechanistic systems modeling to guide drug discovery and development.

    Science.gov (United States)

    Schmidt, Brian J; Papin, Jason A; Musante, Cynthia J

    2013-02-01

    A crucial question that must be addressed in the drug development process is whether the proposed therapeutic target will yield the desired effect in the clinical population. Pharmaceutical and biotechnology companies place a large investment on research and development, long before confirmatory data are available from human trials. Basic science has greatly expanded the computable knowledge of disease processes, both through the generation of large omics data sets and a compendium of studies assessing cellular and systemic responses to physiologic and pathophysiologic stimuli. Given inherent uncertainties in drug development, mechanistic systems models can better inform target selection and the decision process for advancing compounds through preclinical and clinical research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Growth and lipid production of Umbelopsis isabellina on a solid substrate - Mechanistic modeling and validation

    NARCIS (Netherlands)

    Meeuwse, P.; Klok, A.J.; Haemers, S.; Tramper, J.; Rinzema, A.

    2012-01-01

    Microbial lipids are an interesting feedstock for biodiesel. Their production from agricultural waste streams by fungi cultivated in solid-state fermentation may be attractive, but the yield of this process is still quite low. In this article, a mechanistic model is presented that describes growth,

  9. Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis

    NARCIS (Netherlands)

    Danon, B.; Marcotullio, G.; De Jong, W.

    2013-01-01

    In this paper both the mechanistic and kinetic aspects of furfural formation from pentoses in aqueous acidic media have been reviewed. Based on the reviewed literature, a comprehensive reaction mechanism has been proposed consisting of more than one route, all starting from acyclic xylose, and

  10. Arsenic Exposure and Type 2 Diabetes: MicroRNAs as Mechanistic Links?

    OpenAIRE

    Beck, Rowan; Styblo, Miroslav; Sethupathy, Praveen

    2017-01-01

    Purpose of Review The goal of this review is to delineate the following: (1) the primary means of inorganic arsenic (iAs) exposure for human populations, (2) the adverse public health outcomes associated with chronic iAs exposure, (3) the pathophysiological connection between arsenic and type 2 diabetes (T2D), and (4) the incipient evidence for microRNAs as candidate mechanistic links between iAs exposure and T2D. Recent Findings Exposure to iAs in animal models has been associated with the d...

  11. Beneficial nutritional properties of olive oil: implications for postprandial lipoproteins and factor VII.

    Science.gov (United States)

    Williams, C M

    2001-08-01

    Previous research concerning protective cardiovascular properties of olive oil has focussed on the beneficial consequences on blood cholesterol levels of substituting dietary saturated fatty acids with oleic acid. Despite evidence implicating raised circulating triglycerides in the postprandial state in the pathogenesis of atherosclerosis and thrombosis, little research had been conducted to investigate effects of monounsaturated fatty acids on postprandial events. In a case control study of southern (n = 30) versus northern European (n = 30) men, significant differences in postprandial triglyceride and apolipoprotein (apo) B-48 response were observed, with evidence of attenuated and potentially beneficial responses in the Southern Europeans. In a randomised controlled study manufactured foods typical of the Northern European food culture, were used to deliver diets rich in either saturated or monounsaturated fatty acids (from olive oil). During the period of the olive oil enriched diet, LDL-cholesterol levels were 15% lower (p factor VII, as well as the production of factor VII antigen, was reduced on the olive oil diet. The study demonstrated significant improvements in biomarkers for cardiovascular disease in subjects osed to high olive oil diets (Southern Europeans) or transferred to such diets in the short term (Northern European volunteers). The study produced novel findings with respect to potential mechanisms by which diets high in monounsaturated fatty acids (MUFA) can reduce population risk of cardiovascular disease.

  12. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model

    International Nuclear Information System (INIS)

    Shuard, Adrian M; Mahmud, Hisham B; King, Andrew J

    2016-01-01

    Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ω turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model. (paper)

  13. Biomeasures and mechanistic modeling highlight PK/PD risks for a monoclonal antibody targeting Fn14 in kidney disease.

    Science.gov (United States)

    Chen, Xiaoying; Farrokhi, Vahid; Singh, Pratap; Ocana, Mireia Fernandez; Patel, Jenil; Lin, Lih-Ling; Neubert, Hendrik; Brodfuehrer, Joanne

    2018-01-01

    Discovery of the upregulation of fibroblast growth factor-inducible-14 (Fn14) receptor following tissue injury has prompted investigation into biotherapeutic targeting of the Fn14 receptor for the treatment of conditions such as chronic kidney diseases. In the development of monoclonal antibody (mAb) therapeutics, there is an increasing trend to use biomeasures combined with mechanistic pharmacokinetic/pharmacodynamic (PK/PD) modeling to enable decision making in early discovery. With the aim of guiding preclinical efforts on designing an antibody with optimized properties, we developed a mechanistic site-of-action (SoA) PK/PD model for human application. This model incorporates experimental biomeasures, including concentration of soluble Fn14 (sFn14) in human plasma and membrane Fn14 (mFn14) in human kidney tissue, and turnover rate of human sFn14. Pulse-chase studies using stable isotope-labeled amino acids and mass spectrometry indicated the sFn14 half-life to be approximately 5 hours in healthy volunteers. The biomeasures (concentration, turnover) of sFn14 in plasma reveals a significant hurdle in designing an antibody against Fn14 with desired characteristics. The projected dose (>1 mg/kg/wk for 90% target coverage) derived from the human PK/PD model revealed potential high and frequent dosing requirements under certain conditions. The PK/PD model suggested a unique bell-shaped relationship between target coverage and antibody affinity for anti-Fn14 mAb, which could be applied to direct the antibody engineering towards an optimized affinity. This investigation highlighted potential applications, including assessment of PK/PD risks during early target validation, human dose prediction and drug candidate optimization.

  14. Mechanistic insights on the cycloisomerization of polyunsaturated precursors catalyzed by platinum and gold complexes.

    Science.gov (United States)

    Soriano, Elena; Marco-Contelles, José

    2009-08-18

    Organometallic chemistry provides powerful tools for the stereocontrolled synthesis of heterocycles and carbocycles. The electrophilic transition metals Pt(II) and Au(I, III) are efficient catalysts in these transitions and promote a variety of organic transformations of unsaturated precursors. These reactions produce functionalized cyclic and acyclic scaffolds for the synthesis of natural and non-natural products efficiently, under mild conditions, and with excellent chemoselectivity. Because these transformations are strongly substrate-dependent, they are versatile and may yield diverse molecular scaffolds. Therefore, synthetic chemists need a mechanistic interpretation to optimize this reaction process and design a new generation of catalysts. However, so far, no intermediate species has been isolated or characterized, so the formulated mechanistic hypotheses have been primarily based on labeling studies or trapping reactions. Recently, theoretical DFT studies have become a useful tool in our research, giving us insights into the key intermediates and into a variety of plausible reaction pathways. In this Account, we present a comprehensive mechanistic overview of transformations promoted by Pt and Au in a non-nucleophilic medium based on quantum-mechanical studies. The calculations are consistent with the experimental observations and provide fundamental insights into the versatility of these reaction processes. The reactivity of these metals results from their peculiar Lewis acid properties: the alkynophilic character of these soft metals and the pi-acid activation of unsaturated groups promotes the intra- or intermolecular attack of a nucleophile. 1,n-Enynes (n = 3-8) are particularly important precursors, and their transformation may yield a variety of cycloadducts depending on the molecular structure. However, the calculations suggest that these different cyclizations would have closely related reaction mechanisms, and we propose a unified mechanistic

  15. Connective tissue growth factor and bone morphogenetic protein 2 are induced following myocardial ischemia in mice and humans.

    Science.gov (United States)

    Rutkovskiy, Arkady; Sagave, Julia; Czibik, Gabor; Baysa, Anton; Zihlavnikova Enayati, Katarina; Hillestad, Vigdis; Dahl, Christen Peder; Fiane, Arnt; Gullestad, Lars; Gravning, Jørgen; Ahmed, Shakil; Attramadal, Håvard; Valen, Guro; Vaage, Jarle

    2017-09-01

    We aimed to study the cardiac expression of bone morphogenetic protein 2, its receptor 1 b, and connective tissue growth factor, factors implicated in cardiac embryogenesis, following ischemia/hypoxia, heart failure, and in remodeling hearts from humans and mice. Biopsies from the left ventricle of patients with end-stage heart failure due to dilated cardiomyopathy or coronary artery disease were compared with donor hearts and biopsies from patients with normal heart function undergoing coronary artery bypass grafting. Mouse model of post-infarction remodeling was made by permanent ligation of the left coronary artery. Hearts were analyzed by real-time polymerase chain reaction and Western blotting after 24 hours and after 2 and 4 weeks. Patients with dilated cardiomyopathy and mice post-infarction had increased cardiac expression of connective tissue growth factor. Bone morphogenetic protein 2 was increased in human hearts failing due to coronary artery disease and in mice post-infarction. Gene expression of bone morphogenetic protein receptor 1 beta was reduced in hearts of patients with failure, but increased two weeks following permanent ligation of the left coronary artery in mice. In conclusion, connective tissue growth factor is upregulated in hearts of humans with dilated cardiomyopathy, bone morphogenetic protein 2 is upregulated in remodeling due to myocardial infarction while its receptor 1 b in human failing hearts is downregulated. A potential explanation might be an attempt to engage regenerative processes, which should be addressed by further, mechanistic studies.

  16. SITE-94. Adaptation of mechanistic sorption models for performance assessment calculations

    International Nuclear Information System (INIS)

    Arthur, R.C.

    1996-10-01

    Sorption is considered in most predictive models of radionuclide transport in geologic systems. Most models simulate the effects of sorption in terms of empirical parameters, which however can be criticized because the data are only strictly valid under the experimental conditions at which they were measured. An alternative is to adopt a more mechanistic modeling framework based on recent advances in understanding the electrical properties of oxide mineral-water interfaces. It has recently been proposed that these 'surface-complexation' models may be directly applicable to natural systems. A possible approach for adapting mechanistic sorption models for use in performance assessments, using this 'surface-film' concept, is described in this report. Surface-acidity parameters in the Generalized Two-Layer surface complexation model are combined with surface-complexation constants for Np(V) sorption ob hydrous ferric oxide to derive an analytical model enabling direct calculation of corresponding intrinsic distribution coefficients as a function of pH, and Ca 2+ , Cl - , and HCO 3 - concentrations. The surface film concept is then used to calculate whole-rock distribution coefficients for Np(V) sorption by altered granitic rocks coexisting with a hypothetical, oxidized Aespoe groundwater. The calculated results suggest that the distribution coefficients for Np adsorption on these rocks could range from 10 to 100 ml/g. Independent estimates of K d for Np sorption in similar systems, based on an extensive review of experimental data, are consistent, though slightly conservative, with respect to the calculated values. 31 refs

  17. Progressive transfusion and growth factor independence with adjuvant sertraline in low risk myelodysplastic syndrome treated with an erythropoiesis stimulating agent and granulocyte-colony stimulating factor

    Directory of Open Access Journals (Sweden)

    Kirtan Nautiyal

    2015-01-01

    Full Text Available Refractoriness to growth factor therapy is commonly associated with inferior outcome in patients with low-risk myelodysplastic syndrome (LR-MDS who require treatment for cytopenias. However, the mechanisms leading to refractoriness are unknown. Here we describe a clinically depressed 74-year-old male with refractory cytopenia with multilineage dysplasia (RCMD and documented growth factor refractory anemia after erythropoeisis stimulating agent (ESA therapy, who attained transfusion and growth factor independence after the addition of sertraline to his medication regimen. Our case demonstrates hematological improvement-erythroid (HI-E in growth factor refractory, low risk MDS and highlights a potential mechanistic link between common inflammatory diseases and LR-MDS.

  18. Behavioural Procedural Models – a multipurpose mechanistic account

    Directory of Open Access Journals (Sweden)

    Leonardo Ivarola

    2012-05-01

    Full Text Available In this paper we outline an epistemological defence of what wecall Behavioural Procedural Models (BPMs, which represent the processes of individual decisions that lead to relevant economic patterns as psychologically (rather than rationally driven. Their general structure, and the way in which they may be incorporated to a multipurpose view of models, where the representational and interventionist goals are combined, is shown. It is argued that BPMs may provide “mechanistic-based explanations” in the sense defended by Hedström and Ylikoski (2010, which involve invariant regularities in Woodward’s sense. Such mechanisms provide a causal sort of explanation of anomalous economic patterns, which allow for extra marketintervention and manipulability in order to correct and improve some key individual decisions. This capability sets the basis for the so called libertarian paternalism (Sunstein and Thaler 2003.

  19. The Cycloaddition of the Benzimidazolium Ylides with Alkynes: New Mechanistic Insights.

    Directory of Open Access Journals (Sweden)

    Costel Moldoveanu

    Full Text Available New insights concerning the reaction mechanism in the cycloaddition reaction of benzimidazolium ylides to activated alkynes are presented. The proposed pathway leading both to 2-(1H-pyrrol-1-ylanilines and to pyrrolo[1,2-a]quinoxalin-4(5H-ones involves an opening of the imidazole ring from the cycloaddition product, followed by a nucleophilic attack of the aminic nitrogen to a proximal carbonyl group and the elimination of a leaving group. The mechanistic considerations are fully supported by experimental data, including the XRD resolved structure of the key reaction intermediate.

  20. The Cycloaddition of the Benzimidazolium Ylides with Alkynes: New Mechanistic Insights.

    Science.gov (United States)

    Moldoveanu, Costel; Zbancioc, Gheorghita; Mantu, Dorina; Maftei, Dan; Mangalagiu, Ionel

    2016-01-01

    New insights concerning the reaction mechanism in the cycloaddition reaction of benzimidazolium ylides to activated alkynes are presented. The proposed pathway leading both to 2-(1H-pyrrol-1-yl)anilines and to pyrrolo[1,2-a]quinoxalin-4(5H)-ones involves an opening of the imidazole ring from the cycloaddition product, followed by a nucleophilic attack of the aminic nitrogen to a proximal carbonyl group and the elimination of a leaving group. The mechanistic considerations are fully supported by experimental data, including the XRD resolved structure of the key reaction intermediate.

  1. Sensitivity of traffic input parameters on rutting performance of a flexible pavement using Mechanistic Empirical Pavement Design Guide

    Directory of Open Access Journals (Sweden)

    Nur Hossain

    2016-11-01

    Full Text Available The traffic input parameters in the Mechanistic Empirical Pavement Design Guide (MEPDG are: (a general traffic inputs, (b traffic volume adjustment factors, and (c axle load spectra (ALS. Of these three traffic inputs, the traffic volume adjustment factors specifically monthly adjustment factor (MAF and the ALS are widely considered to be important and sensitive factors, which can significantly affect design of and prediction of distress in flexible pavements. Therefore, the present study was undertaken to assess the sensitivity of ALS and MAF traffic inputs on rutting distress of a flexible pavement. The traffic data of four years (from 2008 to 2012 were collected from an instrumented test section on I-35 in Oklahoma. Site specific traffic input parameters were developed. It was observed that significant differences exist between the MEPDG default and developed site-specific traffic input values. However, the differences in the yearly ALS and MAF data, developed for these four years, were not found to be as significant when compared to one another. In addition, quarterly field rut data were measured on the test section and compared with the MEPDG predicted rut values using the default and developed traffic input values for different years. It was found that significant differences exist between the measured rut and the MEPDG (AASHTOWare-ME predicted rut when default values were used. Keywords: MEPDG, Rut, Level 1 inputs, Axle load spectra, Traffic input parameters, Sensitivity

  2. Tethering factors as organizers of intracellular vesicular traffic.

    Science.gov (United States)

    Yu, I-Mei; Hughson, Frederick M

    2010-01-01

    Intracellular trafficking entails the budding, transport, tethering, and fusion of transport vesicles and other membrane carriers. Here we review recent progress toward a mechanistic understanding of vesicle tethering. The known tethering factors are large complexes important for one or more intracellular trafficking pathways and are capable of interacting directly with many of the other principal components of the cellular trafficking machinery. Our review emphasizes recent developments in the in vitro reconstitution of vesicle tethering and the structural characterization of multisubunit tethering factors. The combination of these and other approaches has led to exciting progress toward understanding how these essential nanomachines work.

  3. Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints

    Science.gov (United States)

    Mukherjee, S.; Chauhan, P.; Osterman, M.; Dasgupta, A.; Pecht, M.

    2016-07-01

    Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24-1000) h at (25-100)°C (~0.6-0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of

  4. The E. coli pET expression system revisited-mechanistic correlation between glucose and lactose uptake.

    Science.gov (United States)

    Wurm, David Johannes; Veiter, Lukas; Ulonska, Sophia; Eggenreich, Britta; Herwig, Christoph; Spadiut, Oliver

    2016-10-01

    Therapeutic monoclonal antibodies are mainly produced in mammalian cells to date. However, unglycosylated antibody fragments can also be produced in the bacterium Escherichia coli which brings several advantages, like growth on cheap media and high productivity. One of the most popular E. coli strains for recombinant protein production is E. coli BL21(DE3) which is usually used in combination with the pET expression system. However, it is well known that induction by isopropyl β-D-1-thiogalactopyranoside (IPTG) stresses the cells and can lead to the formation of insoluble inclusion bodies. In this study, we revisited the pET expression system for the production of a novel antibody single-chain variable fragment (scFv) with the goal of maximizing the amount of soluble product. Thus, we (1) investigated whether lactose favors the recombinant production of soluble scFv compared to IPTG, (2) investigated whether the formation of soluble product can be influenced by the specific glucose uptake rate (q s,glu) during lactose induction, and (3) determined the mechanistic correlation between the specific lactose uptake rate (q s,lac) and q s,glu. We found that lactose induction gave a much greater amount of soluble scFv compared to IPTG, even when the growth rate was increased. Furthermore, we showed that the production of soluble protein could be tuned by varying q s,glu during lactose induction. Finally, we established a simple model describing the mechanistic correlation between q s,lac and q s,glu allowing tailored feeding and prevention of sugar accumulation. We believe that this mechanistic model might serve as platform knowledge for E. coli.

  5. Individual, employment and psychosocial factors influencing walking to work: Implications for intervention design.

    Directory of Open Access Journals (Sweden)

    Emma J Adams

    Full Text Available Promoting walking for the journey to and from work (commuter walking is a potential strategy for increasing physical activity. Understanding the factors influencing commuter walking is important for identifying target groups and designing effective interventions. This study aimed to examine individual, employment-related and psychosocial factors associated with commuter walking and to discuss the implications for targeting and future design of interventions.1,544 employees completed a baseline survey as part of the 'Walking Works' intervention project (33.4% male; 36.3% aged <30 years. Multivariate logistic regression was used to examine the associations of individual (age, ethnic group, educational qualifications, number of children <16 and car ownership, employment-related (distance lived from work, free car parking at work, working hours, working pattern and occupation and psychosocial factors (perceived behavioural control, intention, social norms and social support from work colleagues with commuter walking.Almost half of respondents (n = 587, 49% were classified as commuter walkers. Those who were aged <30 years, did not have a car, had no free car parking at work, were confident of including some walking or intended to walk to or from work on a regular basis, and had support from colleagues for walking were more likely to be commuter walkers. Those who perceived they lived too far away from work to walk, thought walking was less convenient than using a car for commuting, did not have time to walk, needed a car for work or had always travelled the same way were less likely to be commuter walkers.A number of individual, employment-related and psychosocial factors were associated with commuter walking. Target groups for interventions to promote walking to and from work may include those in older age groups and those who own or have access to a car. Multi-level interventions targeting individual level behaviour change, social support within

  6. Structural and mechanistic analysis of a β-glycoside phosphorylase identified by screening a metagenomic library.

    Science.gov (United States)

    Macdonald, Spencer S; Patel, Ankoor; Larmour, Veronica L C; Morgan-Lang, Connor; Hallam, Steven J; Mark, Brian L; Withers, Stephen G

    2018-03-02

    Glycoside phosphorylases have considerable potential as catalysts for the assembly of useful glycans for products ranging from functional foods and prebiotics to novel materials. However, the substrate diversity of currently identified phosphorylases is relatively small, limiting their practical applications. To address this limitation, we developed a high-throughput screening approach using the activated substrate 2,4-dinitrophenyl β-d-glucoside (DNPGlc) and inorganic phosphate for identifying glycoside phosphorylase activity and used it to screen a large insert metagenomic library. The initial screen, based on release of 2,4-dinitrophenyl from DNPGlc in the presence of phosphate, identified the gene bglP, encoding a retaining β-glycoside phosphorylase from the CAZy GH3 family. Kinetic and mechanistic analysis of the gene product, BglP, confirmed a double displacement ping-pong mechanism involving a covalent glycosyl-enzyme intermediate. X-ray crystallographic analysis provided insights into the phosphate-binding mode and identified a key glutamine residue in the active site important for substrate recognition. Substituting this glutamine for a serine swapped the substrate specificity from glucoside to N -acetylglucosaminide. In summary, we present a high-throughput screening approach for identifying β-glycoside phosphorylases, which was robust, simple to implement, and useful in identifying active clones within a metagenomics library. Implementation of this screen enabled discovery of a new glycoside phosphorylase class and has paved the way to devising simple ways in which enzyme specificity can be encoded and swapped, which has implications for biotechnological applications. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Mechanistic assessment of hillslope transpiration controls of diel subsurface flow: a steady-state irrigation approach

    Science.gov (United States)

    H.R. Barnard; C.B. Graham; W.J. van Verseveld; J.R. Brooks; B.J. Bond; J.J. McDonnell

    2010-01-01

    Mechanistic assessment of how transpiration influences subsurface flow is necessary to advance understanding of catchment hydrology. We conducted a 24-day, steady-state irrigation experiment to quantify the relationships among soil moisture, transpiration and hillslope subsurface flow. Our objectives were to: (1) examine the time lag between maximum transpiration and...

  8. How phenyl makes a difference: mechanistic insights into the ruthenium( ii )-catalysed isomerisation of allylic alcohols

    KAUST Repository

    Manzini, Simone

    2013-10-16

    [RuCl(η5-3-phenylindenyl)(PPh3)2] (1) has been shown to be a highly active catalyst for the isomerisation of allylic alcohols to the corresponding ketones. A variety of substrates undergo the transformation, typically with 0.25-0.5 mol% of catalyst at room temperature, outperforming commonly-used complexes such as [RuCl(Cp)(PPh3) 2] and [RuCl(η5-indenyl)(PPh3) 2]. Mechanistic experiments and density functional theory have been employed to investigate the mechanism and understand the effect of catalyst structure on reactivity. These investigations suggest a oxo-π-allyl mechanism is in operation, avoiding intermediate ruthenium hydride complexes and leading to a characteristic 1,3-deuterium shift. Important mechanistic insights from DFT and experiments also allowed for the design of a protocol that expands the scope of the transformation to include primary allylic alcohols. © 2013 The Royal Society of Chemistry.

  9. How phenyl makes a difference: mechanistic insights into the ruthenium( ii )-catalysed isomerisation of allylic alcohols

    KAUST Repository

    Manzini, Simone; Poater, Albert; Nelson, David J.; Cavallo, Luigi; Nolan, Steven P.

    2013-01-01

    [RuCl(η5-3-phenylindenyl)(PPh3)2] (1) has been shown to be a highly active catalyst for the isomerisation of allylic alcohols to the corresponding ketones. A variety of substrates undergo the transformation, typically with 0.25-0.5 mol% of catalyst at room temperature, outperforming commonly-used complexes such as [RuCl(Cp)(PPh3) 2] and [RuCl(η5-indenyl)(PPh3) 2]. Mechanistic experiments and density functional theory have been employed to investigate the mechanism and understand the effect of catalyst structure on reactivity. These investigations suggest a oxo-π-allyl mechanism is in operation, avoiding intermediate ruthenium hydride complexes and leading to a characteristic 1,3-deuterium shift. Important mechanistic insights from DFT and experiments also allowed for the design of a protocol that expands the scope of the transformation to include primary allylic alcohols. © 2013 The Royal Society of Chemistry.

  10. A mechanistic model to study the thermal ecology of a southeastern pacific dominant intertidal mussel and implications for climate change.

    Science.gov (United States)

    Finke, G R; Bozinovic, F; Navarrete, S A

    2009-01-01

    Developing mechanistic models to predict an organism's body temperature facilitates the study of physiological stresses caused by extreme climatic conditions the species might have faced in the past or making predictions about changes to come in the near future. Because the models combine empirical observation of different climatic variables with essential morphological attributes of the species, it is possible to examine specific aspects of predicted climatic changes. Here, we develop a model for the competitively dominant intertidal mussel Perumytilus purpuratus that estimates body temperature on the basis of meteorological and tidal data with an average difference (+/-SE) of 0.410 degrees +/- 0.0315 degrees C in comparison with a field-deployed temperature logger. Modeled body temperatures of P. purpuratus in central Chile regularly exceeded 30 degrees C in summer months, and values as high as 38 degrees C were found. These results suggest that the temperatures reached by mussels in the intertidal zone in central Chile are not sufficiently high to induce significant mortality on adults of this species; however, because body temperatures >40 degrees C can be lethal for this species, sublethal effects on physiological performance warrant further investigation. Body temperatures of mussels increased sigmoidally with increasing tidal height. Body temperatures of individuals from approximately 70% of the tidal range leveled off and did not increase any further with increasing tidal height. Finally, body size played an important role in determining body temperature. A hypothetical 5-cm-long mussel (only 1 cm longer than mussels found in nature) did reach potentially lethal body temperatures, suggesting that the biophysical environment may play a role in limiting the size of this small species.

  11. Integrity: A semi-mechanistic model for stress corrosion cracking of fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, M; Hallgrimson, K; Macquarrie, J; Alavi, P [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Sato, S; Kinoshita, Y; Nishimura, T [Electric Power Development Co. Ltd., Tokyo (Japan)

    1997-08-01

    In this paper we describe the features, validation, and illustrative applications of a semi-mechanistic model, INTEGRITY, which calculates the probability of fuel defects due to stress corrosion cracking. The model expresses the defect probability in terms of fundamental parameters such as local stresses, local strains, and fission product concentration. The assessments of defect probability continue to reflect the influence of conventional parameters like ramped power, power-ramp, burnup and Canlub coating. In addition, the INTEGRITY model provides a mechanism to account for the impacts of additional factors involving detailed fuel design and reactor operation. Some examples of the latter include pellet density, pellet shape and size, sheath diameter and thickness, pellet/sheath clearance, coolant temperature and pressure, etc. The model has been fitted to a database of 554 power-ramp irradiations of CANDU fuel with and without Canlub. For this database the INTEGRITY model calculates 75 defects vs 75 actual defects. Similarly good agreements were noted in the different sub-groups of the data involving non-Canlub, thin-Canlub, and thick-Canlub fuel. Moreover, the shapes and the locations of the defect thresholds were consistent with all the above defects as well as with additional 14 ripple defects that were not in the above database. Two illustrative examples demonstrate how the defect thresholds are influenced by changes in the internal design of the fuel element and by extended burnup. (author). 19 refs, 7 figs.

  12. Integrity: A semi-mechanistic model for stress corrosion cracking of fuel

    International Nuclear Information System (INIS)

    Tayal, M.; Hallgrimson, K.; Macquarrie, J.; Alavi, P.; Sato, S.; Kinoshita, Y.; Nishimura, T.

    1997-01-01

    In this paper we describe the features, validation, and illustrative applications of a semi-mechanistic model, INTEGRITY, which calculates the probability of fuel defects due to stress corrosion cracking. The model expresses the defect probability in terms of fundamental parameters such as local stresses, local strains, and fission product concentration. The assessments of defect probability continue to reflect the influence of conventional parameters like ramped power, power-ramp, burnup and Canlub coating. In addition, the INTEGRITY model provides a mechanism to account for the impacts of additional factors involving detailed fuel design and reactor operation. Some examples of the latter include pellet density, pellet shape and size, sheath diameter and thickness, pellet/sheath clearance, coolant temperature and pressure, etc. The model has been fitted to a database of 554 power-ramp irradiations of CANDU fuel with and without Canlub. For this database the INTEGRITY model calculates 75 defects vs 75 actual defects. Similarly good agreements were noted in the different sub-groups of the data involving non-Canlub, thin-Canlub, and thick-Canlub fuel. Moreover, the shapes and the locations of the defect thresholds were consistent with all the above defects as well as with additional 14 ripple defects that were not in the above database. Two illustrative examples demonstrate how the defect thresholds are influenced by changes in the internal design of the fuel element and by extended burnup. (author). 19 refs, 7 figs

  13. Establishing appropriate inputs when using the mechanistic-empirical pavement design guide to design rigid pavements in Pennsylvania.

    Science.gov (United States)

    2011-03-01

    Each design input in the Mechanistic-Empirical Design Guide (MEPDG) required for the design of Jointed Plain Concrete : Pavements (JPCPs) is introduced and discussed in this report. Best values for Pennsylvania conditions were established and : recom...

  14. A mechanistic model for the evolution of multicellularity

    Science.gov (United States)

    Amado, André; Batista, Carlos; Campos, Paulo R. A.

    2018-02-01

    Through a mechanistic approach we investigate the formation of aggregates of variable sizes, accounting mechanisms of aggregation, dissociation, death and reproduction. In our model, cells can produce two metabolites, but the simultaneous production of both metabolites is costly in terms of fitness. Thus, the formation of larger groups can favor the aggregates to evolve to a configuration where division of labor arises. It is assumed that the states of the cells in a group are those that maximize organismal fitness. In the model it is considered that the groups can grow linearly, forming a chain, or compactly keeping a roughly spherical shape. Starting from a population consisting of single-celled organisms, we observe the formation of groups with variable sizes and usually much larger than two-cell aggregates. Natural selection can favor the formation of large groups, which allows the system to achieve new and larger fitness maxima.

  15. Transforming growth factor β recruits persistent MAPK signaling to regulate long-term memory consolidation in Aplysia californica.

    Science.gov (United States)

    Shobe, Justin; Philips, Gary T; Carew, Thomas J

    2016-05-01

    In this study, we explore the mechanistic relationship between growth factor signaling and kinase activity that supports the protein synthesis-dependent phase of long-term memory (LTM) consolidation for sensitization ofAplysia Specifically, we examine LTM for tail shock-induced sensitization of the tail-elicited siphon withdrawal (T-SW) reflex, a form of memory that requires both (i) extracellular signal-regulated kinase (ERK1/2; MAPK) activity within identified sensory neurons (SNs) that mediate the T-SW and (ii) the activation of transforming growth factor β (TGFβ) signaling. We now report that repeated tail shocks that induce intermediate-term (ITM) and LTM for sensitization, also induce a sustained post-training phase of MAPK activity in SNs (lasting at least 1 h). We identified two mechanistically distinct phases of post-training MAPK: (i) an immediate phase that does not require ongoing protein synthesis or TGFβ signaling, and (ii) a sustained phase that requires both protein synthesis and extracellular TGFβ signaling. We find that LTM consolidation requires sustained MAPK, and is disrupted by inhibitors of protein synthesis and TGFβ signaling during the consolidation window. These results provide strong evidence that TGFβ signaling sustains MAPK activity as an essential mechanistic step for LTM consolidation. © 2016 Shobe et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Risk factors analysis and implications for public health of bovine ...

    African Journals Online (AJOL)

    Bovine tuberculosis (TB) is a neglected zoonosis of cattle that is prevalent but under-investigated in Cameroon. Based on epidemiological data of the disease, this study was designed to assess the risks and public health implications for zoonotic M. bovis infection in cattle and humans in the highlands of Cameroon.

  17. Simulating the Risk of Liver Fluke Infection using a Mechanistic Hydro-epidemiological Model

    Science.gov (United States)

    Beltrame, Ludovica; Dunne, Toby; Rose, Hannah; Walker, Josephine; Morgan, Eric; Vickerman, Peter; Wagener, Thorsten

    2016-04-01

    Liver Fluke (Fasciola hepatica) is a common parasite found in livestock and responsible for considerable economic losses throughout the world. Risk of infection is strongly influenced by climatic and hydrological conditions, which characterise the host environment for parasite development and transmission. Despite on-going control efforts, increases in fluke outbreaks have been reported in recent years in the UK, and have been often attributed to climate change. Currently used fluke risk models are based on empirical relationships derived between historical climate and incidence data. However, hydro-climate conditions are becoming increasingly non-stationary due to climate change and direct anthropogenic impacts such as land use change, making empirical models unsuitable for simulating future risk. In this study we introduce a mechanistic hydro-epidemiological model for Liver Fluke, which explicitly simulates habitat suitability for disease development in space and time, representing the parasite life cycle in connection with key environmental conditions. The model is used to assess patterns of Liver Fluke risk for two catchments in the UK under current and potential future climate conditions. Comparisons are made with a widely used empirical model employing different datasets, including data from regional veterinary laboratories. Results suggest that mechanistic models can achieve adequate predictive ability and support adaptive fluke control strategies under climate change scenarios.

  18. Mechanistic study of manganese-substituted glycerol dehydrogenase using a kinetic and thermodynamic analysis.

    Science.gov (United States)

    Fang, Baishan; Niu, Jin; Ren, Hong; Guo, Yingxia; Wang, Shizhen

    2014-01-01

    Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH) from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA) and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated.

  19. Mechanistic study of manganese-substituted glycerol dehydrogenase using a kinetic and thermodynamic analysis.

    Directory of Open Access Journals (Sweden)

    Baishan Fang

    Full Text Available Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated.

  20. Application of mechanistic empirical approach to predict rutting of superpave mixtures in Iraq

    Directory of Open Access Journals (Sweden)

    Qasim Zaynab

    2018-01-01

    Full Text Available In Iraq rutting is considered as a real distress in flexible pavements as a result of high summer temperature, and increased axle loads. This distress majorly affects asphalt pavement performance, lessens the pavement useful service life and makes serious hazards for highway users. Performance of HMA mixtures against rutting using Mechanistic- Empirical approach is predicted by considering Wheel-Tracking test and employing the Superpave mix design requirements. Roller Wheel Compactor has been locally manufactured to prepare slab specimens. In view of study laboratory outcomes that are judged to be simulative of field loading conditions, models are developed for predicting permanent strain of compacted samples of local asphalt concrete mixtures after considering the stress level, properties of local material and environmental impacts variables. All in all, laboratory results were produced utilizing statistical analysis with the aid of SPSS software. Permanent strain models for asphalt concrete mixtures were developed as a function of: number of passes, temperature, asphalt content, viscosity, air voids and additive content. Mechanistic Empirical design approach through the MnPAVE software was applied to characterize rutting in HMA and to predict allowable number of loading repetitions of mixtures as a function of expected traffic loads, material properties, and environmental temperature.

  1. A tissue-engineered gastric cancer model for mechanistic study of anti-tumor drugs

    International Nuclear Information System (INIS)

    Gao, Ming; Cai, Yiting; Wu, Wei; Shi, Yazhou; Fei, Zhewei

    2013-01-01

    The use of the traditional xenograft subcutaneous tumor model has been contested because of its limitations, such as a slow tumorigenesis, inconsistent chemotherapeutic results, etc. In light of these challenges, we aim to revamp the traditional model by employing an electrospun scaffold composed of polydioxanone, gelatin and elastin to boost the tumorigenesis. The scaffold featured a highly porous microstructure and successfully supported the growth of tumor cells in vitro without provoking apoptosis. In vivo studies showed that in the scaffold model the tumor volume increased by 43.27% and the weight by 75.58%, respectively, within a 12-week period. In addition, the scaffold model saw an increase of CD24 + and CD44 + cells in the tumor mass by 42% and 313%, respectively. The scaffolding materials did not lead to phenotypic changes during the tumorigenesis. Thereafter, in the scaffold model, we found that the chemotherapeutic regimen of docetaxel, cisplatin and fluorouracil unleashed a stronger capability than the regimen comprising cisplatin and fluorouracil to deplete the CD44 + subpopulation. This discovery sheds mechanistic lights on the role of docetaxel for its future chemotherapeutic applications. This revamped model affords cancer scientists a convenient and reliable platform to mechanistically investigate the chemotherapeutic drugs on gastric cancer stem cells. (paper)

  2. A Mechanistic Beta-Binomial Probability Model for mRNA Sequencing Data.

    Science.gov (United States)

    Smith, Gregory R; Birtwistle, Marc R

    2016-01-01

    A main application for mRNA sequencing (mRNAseq) is determining lists of differentially-expressed genes (DEGs) between two or more conditions. Several software packages exist to produce DEGs from mRNAseq data, but they typically yield different DEGs, sometimes markedly so. The underlying probability model used to describe mRNAseq data is central to deriving DEGs, and not surprisingly most softwares use different models and assumptions to analyze mRNAseq data. Here, we propose a mechanistic justification to model mRNAseq as a binomial process, with data from technical replicates given by a binomial distribution, and data from biological replicates well-described by a beta-binomial distribution. We demonstrate good agreement of this model with two large datasets. We show that an emergent feature of the beta-binomial distribution, given parameter regimes typical for mRNAseq experiments, is the well-known quadratic polynomial scaling of variance with the mean. The so-called dispersion parameter controls this scaling, and our analysis suggests that the dispersion parameter is a continually decreasing function of the mean, as opposed to current approaches that impose an asymptotic value to the dispersion parameter at moderate mean read counts. We show how this leads to current approaches overestimating variance for moderately to highly expressed genes, which inflates false negative rates. Describing mRNAseq data with a beta-binomial distribution thus may be preferred since its parameters are relatable to the mechanistic underpinnings of the technique and may improve the consistency of DEG analysis across softwares, particularly for moderately to highly expressed genes.

  3. On the antibacterial effects of manuka honey: mechanistic insights

    Directory of Open Access Journals (Sweden)

    Roberts AEL

    2015-10-01

    Full Text Available Aled Edward Lloyd Roberts,* Helen Louise Brown,* Rowena Eleri Jenkins Department of Biomedical Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK *These authors contributed equally to this work Abstract: Antimicrobial resistance (AMR is an increasing clinical problem precipitated by the inappropriate use of antibiotics in the later parts of the 20th Century. This problem, coupled with the lack of novel therapeutics in the development pipeline, means AMR is reaching crisis point, with an expected annual death rate of ten million people worldwide by 2050. To reduce, and to potentially remedy this problem, many researchers are looking into natural compounds with antimicrobial and/or antivirulence activity. Manuka honey is an ancient antimicrobial remedy with a good track record against a wide range of nosocomial pathogens that have increased AMR. Its inhibitory effects are the result of its constituent components, which add varying degrees of antimicrobial efficacy to the overall activity of manuka honey. The antimicrobial efficacy of manuka honey and some of its constituent components (such as methylglyoxal and leptosperin are known to bestow some degree of antimicrobial efficacy to manuka honey. Despite growing in vitro evidence of its antimicrobial efficacy, the in vivo use of manuka honey (especially in a clinical environment has been unexpectedly slow, partly due to the lack of mechanistic data. The mechanism by which manuka honey achieves its inhibitory efficacy has recently been identified against Staphylococcus aureus and Pseudomonas aeruginosa, with both of these contrasting organisms being inhibited through different mechanisms. Manuka honey inhibits S. aureus by interfering with the cell division process, whereas P. aeruginosa cells lyse in its presence due to the reduction of a key structural protein. In addition to these inhibitory effects, manuka honey is known to reduce virulence, motility, and biofilm formation. With this

  4. Non-specific effects of vaccines: plausible and potentially important, but implications uncertain.

    Science.gov (United States)

    Pollard, Andrew J; Finn, Adam; Curtis, Nigel

    2017-11-01

    Non-specific effects (NSE) or heterologous effects of vaccines are proposed to explain observations in some studies that certain vaccines have an impact beyond the direct protection against infection with the specific pathogen for which the vaccines were designed. The importance and implications of such effects remain controversial. There are several known immunological mechanisms which could lead to NSE, since it is widely recognised that the generation of specific immunity is initiated by non-specific innate immune mechanisms that may also have wider effects on adaptive immune function. However, there are no published studies that demonstrate a mechanistic link between such immunological phenomena and clinically relevant NSE in humans. While it is highly plausible that some vaccines do have NSE, their magnitude and duration, and thus importance, remain uncertain. Although the WHO recently concluded that current evidence does not justify changes to immunisation policy, further studies of sufficient size and quality are needed to assess the importance of NSE for all-cause mortality. This could provide insights into vaccine immunobiology with important implications for infant health and survival. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Problems in mechanistic theoretical models for cell transformation by ionizing radiation

    International Nuclear Information System (INIS)

    Chatterjee, Aloke; Holley, W.R.

    1992-01-01

    A mechanistic model based on yields of double strand breaks has been developed to determine the dose response curves for cell transformation frequencies. At its present stage the model is applicable to immortal cell lines and to various qualities (X-rays, Neon and Iron) of ionizing radiation. Presently, we have considered four types of processes which can lead to activation phenomena: (i) point mutation events on a regulatory segment of selected oncogenes, (ii) inactivation of suppressor genes, through point mutation, (iii) deletion of a suppressor gene by a single track, and (iv) deletion of a suppressor gene by two tracks. (author)

  6. Hydration Effects on Skin Microstructure as Probed by High-Resolution Cryo-Scanning Electron Microscopy and Mechanistic Implications to Enhanced Transcutaneous Delivery of Biomacromolecules

    Science.gov (United States)

    Tan, Grace; Xu, Peng; Lawson, Louise B.; He, Jibao; Freytag, Lucia C.; Clements, John D.; John, Vijay T.

    2010-01-01

    Although hydration is long known to improve the permeability of skin, penetration of macromolecules such as proteins is limited and the understanding of enhanced transport is based on empirical observations. This study uses high-resolution cryo-scanning electron microscopy to visualize microstructural changes in the stratum corneum (SC) and enable a mechanistic interpretation of biomacromolecule penetration through highly hydrated porcine skin. Swollen corneocytes, separation of lipid bilayers in the SC intercellular space to form cisternae, and networks of spherical particulates are observed in porcine skin tissue hydrated for a period of 4–10 h. This is explained through compaction of skin lipids when hydrated, a reversal in the conformational transition from unilamellar liposomes in lamellar granules to lamellae between keratinocytes when the SC skin barrier is initially established. Confocal microscopy studies show distinct enhancement in penetration of fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) through skin hydrated for 4–10 h, and limited penetration of FITC-BSA once skin is restored to its natively hydrated structure when exposed to the environment for 2–3 h. These results demonstrate the effectiveness of a 4–10 h hydration period to enhance transcutaneous penetration of large biomacromolecules without permanently damaging the skin. PMID:19582754

  7. Productivity of "collisions generate heat" for reconciling an energy model with mechanistic reasoning: A case study

    Science.gov (United States)

    Scherr, Rachel E.; Robertson, Amy D.

    2015-06-01

    We observe teachers in professional development courses about energy constructing mechanistic accounts of energy transformations. We analyze a case in which teachers investigating adiabatic compression develop a model of the transformation of kinetic energy to thermal energy. Among their ideas is the idea that thermal energy is generated as a byproduct of individual particle collisions, which is represented in science education research literature as an obstacle to learning. We demonstrate that in this instructional context, the idea that individual particle collisions generate thermal energy is not an obstacle to learning, but instead is productive: it initiates intellectual progress. Specifically, this idea initiates the reconciliation of the teachers' energy model with mechanistic reasoning about adiabatic compression, and leads to a canonically correct model of the transformation of kinetic energy into thermal energy. We claim that the idea's productivity is influenced by features of our particular instructional context, including the instructional goals of the course, the culture of collaborative sense making, and the use of certain representations of energy.

  8. Mechanistic studies of copper(I)-catalyzed 1,3-halogen migration.

    Science.gov (United States)

    Van Hoveln, Ryan; Hudson, Brandi M; Wedler, Henry B; Bates, Desiree M; Le Gros, Gabriel; Tantillo, Dean J; Schomaker, Jennifer M

    2015-04-29

    An ongoing challenge in modern catalysis is to identify and understand new modes of reactivity promoted by earth-abundant and inexpensive first-row transition metals. Herein, we report a mechanistic study of an unusual copper(I)-catalyzed 1,3-migration of 2-bromostyrenes that reincorporates the bromine activating group into the final product with concomitant borylation of the aryl halide bond. A combination of experimental and computational studies indicated this reaction does not involve any oxidation state changes at copper; rather, migration occurs through a series of formal sigmatropic shifts. Insight provided from these studies will be used to expand the utility of aryl copper species in synthesis and develop new ligands for enantioselective copper-catalyzed halogenation.

  9. A mechanistic Eulerian-Lagrangian model for dispersed flow film boiling

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.

    1991-01-01

    In this paper a new mechanistic model of heat transfer in the dispersed flow regime is presented. The usual assumptions that render most of the available models unsuitable for the analysis of the reflooding phase of the LOCA are discussed, and a two-dimensional time-independent numerical model is developed. The gas temperature field is solved in a fixed-grid (Eulerian) mesh, with the droplets behaving as mass and energy sources. The histories of a large number of computational droplets are followed in a Lagrangian frame, considering evaporation, break-up and interactions with the vapor and with the wall. comparisons of calculated wall and vapor temperatures with experimental data are shown for two reflooding tests

  10. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Tansey Malú G

    2008-10-01

    Full Text Available Abstract The role of tumor necrosis factor (TNF as an immune mediator has long been appreciated but its function in the brain is still unclear. TNF receptor 1 (TNFR1 is expressed in most cell types, and can be activated by binding of either soluble TNF (solTNF or transmembrane TNF (tmTNF, with a preference for solTNF; whereas TNFR2 is expressed primarily by microglia and endothelial cells and is preferentially activated by tmTNF. Elevation of solTNF is a hallmark of acute and chronic neuroinflammation as well as a number of neurodegenerative conditions including ischemic stroke, Alzheimer's (AD, Parkinson's (PD, amyotrophic lateral sclerosis (ALS, and multiple sclerosis (MS. The presence of this potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage and disease pathogenesis, making TNF an attractive target for therapeutic development to treat acute and chronic neurodegenerative conditions. However, new and old observations from animal models and clinical trials reviewed here suggest solTNF and tmTNF exert different functions under normal and pathological conditions in the CNS. A potential role for TNF in synaptic scaling and hippocampal neurogenesis demonstrated by recent studies suggest additional in-depth mechanistic studies are warranted to delineate the distinct functions of the two TNF ligands in different parts of the brain prior to large-scale development of anti-TNF therapies in the CNS. If inactivation of TNF-dependent inflammation in the brain is warranted by additional pre-clinical studies, selective targeting of TNFR1-mediated signaling while sparing TNFR2 activation may lessen adverse effects of anti-TNF therapies in the CNS.

  11. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration

    Science.gov (United States)

    Marei, Hadir; Carpy, Alejandro; Woroniuk, Anna; Vennin, Claire; White, Gavin; Timpson, Paul; Macek, Boris; Malliri, Angeliki

    2016-01-01

    The small GTPase Rac1 has been implicated in the formation and dissemination of tumours. Upon activation by guanine nucleotide exchange factors (GEFs), Rac1 associates with a variety of proteins in the cell thereby regulating various functions, including cell migration. However, activation of Rac1 can lead to opposing migratory phenotypes raising the possibility of exacerbating tumour progression when targeting Rac1 in a clinical setting. This calls for the identification of factors that influence Rac1-driven cell motility. Here we show that Tiam1 and P-Rex1, two Rac GEFs, promote Rac1 anti- and pro-migratory signalling cascades, respectively, through regulating the Rac1 interactome. In particular, we demonstrate that P-Rex1 stimulates migration through enhancing the interaction between Rac1 and the actin-remodelling protein flightless-1 homologue, to modulate cell contraction in a RhoA-ROCK-independent manner. PMID:26887924

  12. Mechanistic rationalization of unusual sigmoidal kinetic profiles in the Machetti-De Sarlo cycloaddition reaction.

    Science.gov (United States)

    Mower, Matthew P; Blackmond, Donna G

    2015-02-18

    Unusual sigmoidal kinetic profiles in the Machetti-De Sarlo base-catalyzed 1,3-dipolar cycloaddition of acrylamide to N-methylnitroacetamide are rationalized by detailed in situ kinetic analysis. A dual role is uncovered in which a substrate acts as a precursor to catalyze its own reaction. Such kinetic studies provide a general protocol for distinguishing among different mechanistic origins of induction periods in complex organic reactions.

  13. Risk Factor Knowledge, Perceived Threat, and Protective Health Behaviors: Implications for Type 2 Diabetes Control in Rural Communities.

    Science.gov (United States)

    Paige, Samantha R; Bonnar, Kelly K; Black, David R; Coster, Daniel C

    2018-02-01

    Purpose The purpose of this study was to explore how perceived threat of type 2 diabetes (T2D) is shaped by risk factor knowledge and promotes the engagement of protective health behaviors among rural adults. Methods Participants (N = 252) completed a cross-sectional mixed-mode survey. Chi-squared analyses were computed to examine differences in perceived threat by demographic factors and knowledge of T2D risk factors. Logistic regressions were conducted to examine the relationship between T2D perceived threat and engagement in physical activity and health screenings. Results Perceived threat and knowledge of T2D risk factors were high. Perceived susceptibility was significantly higher among women, whites, and respondents with high body mass index (BMI). Respondents reporting physical activity most/almost every day had low perceived susceptibility to T2D. Perceived severity was significantly higher among respondents with high BMI. Blood cholesterol and glucose screenings were associated with greater T2D perceived susceptibility and severity. Higher BMI was associated with receiving a blood glucose screening. Conclusion Health education specialists and researchers should further explore the implications of using audience segmented fear appeal messages to promote T2D control through protective health behaviors.

  14. Linking spring phenology with mechanistic models of host movement to predict disease transmission risk

    Science.gov (United States)

    Merkle, Jerod A.; Cross, Paul C.; Scurlock, Brandon M.; Cole, Eric K.; Courtemanch, Alyson B.; Dewey, Sarah R.; Kauffman, Matthew J.

    2018-01-01

    Disease models typically focus on temporal dynamics of infection, while often neglecting environmental processes that determine host movement. In many systems, however, temporal disease dynamics may be slow compared to the scale at which environmental conditions alter host space-use and accelerate disease transmission.Using a mechanistic movement modelling approach, we made space-use predictions of a mobile host (elk [Cervus Canadensis] carrying the bacterial disease brucellosis) under environmental conditions that change daily and annually (e.g., plant phenology, snow depth), and we used these predictions to infer how spring phenology influences the risk of brucellosis transmission from elk (through aborted foetuses) to livestock in the Greater Yellowstone Ecosystem.Using data from 288 female elk monitored with GPS collars, we fit step selection functions (SSFs) during the spring abortion season and then implemented a master equation approach to translate SSFs into predictions of daily elk distribution for five plausible winter weather scenarios (from a heavy snow, to an extreme winter drought year). We predicted abortion events by combining elk distributions with empirical estimates of daily abortion rates, spatially varying elk seroprevelance and elk population counts.Our results reveal strong spatial variation in disease transmission risk at daily and annual scales that is strongly governed by variation in host movement in response to spring phenology. For example, in comparison with an average snow year, years with early snowmelt are predicted to have 64% of the abortions occurring on feedgrounds shift to occurring on mainly public lands, and to a lesser extent on private lands.Synthesis and applications. Linking mechanistic models of host movement with disease dynamics leads to a novel bridge between movement and disease ecology. Our analysis framework offers new avenues for predicting disease spread, while providing managers tools to proactively mitigate

  15. ReactionPredictor: prediction of complex chemical reactions at the mechanistic level using machine learning.

    Science.gov (United States)

    Kayala, Matthew A; Baldi, Pierre

    2012-10-22

    Proposing reasonable mechanisms and predicting the course of chemical reactions is important to the practice of organic chemistry. Approaches to reaction prediction have historically used obfuscating representations and manually encoded patterns or rules. Here we present ReactionPredictor, a machine learning approach to reaction prediction that models elementary, mechanistic reactions as interactions between approximate molecular orbitals (MOs). A training data set of productive reactions known to occur at reasonable rates and yields and verified by inclusion in the literature or textbooks is derived from an existing rule-based system and expanded upon with manual curation from graduate level textbooks. Using this training data set of complex polar, hypervalent, radical, and pericyclic reactions, a two-stage machine learning prediction framework is trained and validated. In the first stage, filtering models trained at the level of individual MOs are used to reduce the space of possible reactions to consider. In the second stage, ranking models over the filtered space of possible reactions are used to order the reactions such that the productive reactions are the top ranked. The resulting model, ReactionPredictor, perfectly ranks polar reactions 78.1% of the time and recovers all productive reactions 95.7% of the time when allowing for small numbers of errors. Pericyclic and radical reactions are perfectly ranked 85.8% and 77.0% of the time, respectively, rising to >93% recovery for both reaction types with a small number of allowed errors. Decisions about which of the polar, pericyclic, or radical reaction type ranking models to use can be made with >99% accuracy. Finally, for multistep reaction pathways, we implement the first mechanistic pathway predictor using constrained tree-search to discover a set of reasonable mechanistic steps from given reactants to given products. Webserver implementations of both the single step and pathway versions of Reaction

  16. Mechanistic model for void distribution in flashing flow

    International Nuclear Information System (INIS)

    Riznic, J.; Ishii, M.; Afgan, N.

    1987-01-01

    A problem of discharging of an initially subcooled liquid from a high pressure condition into a low pressure environment is quite important in several industrial systems such as nuclear reactors and chemical reactors. A new model for the flashing process is proposed here based on the wall nucleation theory, bubble growth model and drift-flux bubble transport model. In order to calculate the bubble number density, the bubble number transport equation with a distributed source from the wall nucleation sites is used. The model predictions in terms of the void fraction are compared to Moby Dick and BNL experimental data. It shows that satisfactory agreements could be obtained from the present model without any floating parameter to be adjusted with data. This result indicates that, at least for the experimental conditions considered here, the mechanistic prediction of the flashing phenomenon is possible based on the present wall nucleation based model. 43 refs., 4 figs

  17. A Mechanistic Reliability Assessment of RVACS and Metal Fuel Inherent Reactivity Feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David; Brunett, Acacia J.; Passerini, Stefano; Grelle, Austin

    2017-09-24

    GE Hitachi Nuclear Energy (GEH) and Argonne National Laboratory (Argonne) participated in a two year collaboration to modernize and update the probabilistic risk assessment (PRA) for the PRISM sodium fast reactor. At a high level, the primary outcome of the project was the development of a next-generation PRA that is intended to enable risk-informed prioritization of safety- and reliability-focused research and development. A central Argonne task during this project was a reliability assessment of passive safety systems, which included the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedbacks of the metal fuel core. Both systems were examined utilizing a methodology derived from the Reliability Method for Passive Safety Functions (RMPS), with an emphasis on developing success criteria based on mechanistic system modeling while also maintaining consistency with the Fuel Damage Categories (FDCs) of the mechanistic source term assessment. This paper provides an overview of the reliability analyses of both systems, including highlights of the FMEAs, the construction of best-estimate models, uncertain parameter screening and propagation, and the quantification of system failure probability. In particular, special focus is given to the methodologies to perform the analysis of uncertainty propagation and the determination of the likelihood of violating FDC limits. Additionally, important lessons learned are also reviewed, such as optimal sampling methodologies for the discovery of low likelihood failure events and strategies for the combined treatment of aleatory and epistemic uncertainties.

  18. A Meta-Analysis of Factors Influencing the Development of Trust in Automation: Implications for Understanding Autonomy in Future Systems.

    Science.gov (United States)

    Schaefer, Kristin E; Chen, Jessie Y C; Szalma, James L; Hancock, P A

    2016-05-01

    We used meta-analysis to assess research concerning human trust in automation to understand the foundation upon which future autonomous systems can be built. Trust is increasingly important in the growing need for synergistic human-machine teaming. Thus, we expand on our previous meta-analytic foundation in the field of human-robot interaction to include all of automation interaction. We used meta-analysis to assess trust in automation. Thirty studies provided 164 pairwise effect sizes, and 16 studies provided 63 correlational effect sizes. The overall effect size of all factors on trust development was ḡ = +0.48, and the correlational effect was [Formula: see text]  = +0.34, each of which represented medium effects. Moderator effects were observed for the human-related (ḡ  = +0.49; [Formula: see text] = +0.16) and automation-related (ḡ = +0.53; [Formula: see text] = +0.41) factors. Moderator effects specific to environmental factors proved insufficient in number to calculate at this time. Findings provide a quantitative representation of factors influencing the development of trust in automation as well as identify additional areas of needed empirical research. This work has important implications to the enhancement of current and future human-automation interaction, especially in high-risk or extreme performance environments. © 2016, Human Factors and Ergonomics Society.

  19. Vascular endothelial growth factor is upregulated by l-dopa in the parkinsonian brain: implications for the development of dyskinesia

    Science.gov (United States)

    Francardo, Veronica; Lindgren, Hanna S.; Sillivan, Stephanie E.; O’Sullivan, Sean S.; Luksik, Andrew S.; Vassoler, Fair M.; Lees, Andrew J.; Konradi, Christine

    2011-01-01

    Angiogenesis and increased permeability of the blood–brain barrier have been reported to occur in animal models of Parkinson’s disease and l-dopa-induced dyskinesia, but the significance of these phenomena has remained unclear. Using a validated rat model of l-dopa-induced dyskinesia, this study demonstrates that chronic treatment with l-dopa dose dependently induces the expression of vascular endothelial growth factor in the basal ganglia nuclei. Vascular endothelial growth factor was abundantly expressed in astrocytes and astrocytic processes in the proximity of blood vessels. When co-administered with l-dopa, a small molecule inhibitor of vascular endothelial growth factor signalling significantly attenuated the development of dyskinesia and completely blocked the angiogenic response and associated increase in blood–brain barrier permeability induced by the treatment. The occurrence of angiogenesis and vascular endothelial growth factor upregulation was verified in post-mortem basal ganglia tissue from patients with Parkinson’s disease with a history of dyskinesia, who exhibited increased microvascular density, microvascular nestin expression and an upregulation of vascular endothelial growth factor messenger ribonucleic acid. These congruent findings in the rat model and human patients indicate that vascular endothelial growth factor is implicated in the pathophysiology of l-dopa-induced dyskinesia and emphasize an involvement of the microvascular compartment in the adverse effects of l-dopa pharmacotherapy in Parkinson’s disease. PMID:21771855

  20. A mechanistic model for electricity consumption on dairy farms: Definition, validation, and demonstration

    OpenAIRE

    Upton, J.R.; Murphy, M.; Shallo, L.; Groot Koerkamp, P.W.G.; Boer, de, I.J.M.

    2014-01-01

    Our objective was to define and demonstrate a mechanistic model that enables dairy farmers to explore the impact of a technical or managerial innovation on electricity consumption, associated CO2 emissions, and electricity costs. We, therefore, (1) defined a model for electricity consumption on dairy farms (MECD) capable of simulating total electricity consumption along with related CO2 emissions and electricity costs on dairy farms on a monthly basis; (2) validated the MECD using empirical d...

  1. In vitro evidence of a tissue factor-independent mode of action of recombinant factor VIIa in hemophilia.

    Science.gov (United States)

    Augustsson, Cecilia; Persson, Egon

    2014-11-13

    Successful competition of activated factor VII (FVIIa) with zymogen factor VII (FVII) for tissue factor (TF) and loading of the platelet surface with FVIIa are plausible driving forces behind the pharmacological effect of recombinant FVIIa (rFVIIa) in hemophilia patients. Thrombin generation measurements in platelet-rich hemophilia A plasma revealed competition for TF, which potentially could reduce the effective (r)FVIIa:TF complex concentration and thereby attenuate factor Xa production. However, (auto)activation of FVII apparently counteracted the negative effect of zymogen binding; a small impact was observed at endogenous concentrations of FVII and FVIIa but was virtually absent at pharmacological amounts of rFVIIa. Moreover, corrections of the propagation phase in hemophilia A required rFVIIa concentrations above the range where a physiological level of FVII was capable to downregulate thrombin generation. These data strongly suggest that rFVIIa acts independently of TF in hemophilia therapy and that FVII displacement by rFVIIa is a negligible mechanistic component. © 2014 by The American Society of Hematology.

  2. Productivity of "Collisions Generate Heat" for Reconciling an Energy Model with Mechanistic Reasoning: A Case Study

    Science.gov (United States)

    Scherr, Rachel E.; Robertson, Amy D.

    2015-01-01

    We observe teachers in professional development courses about energy constructing mechanistic accounts of energy transformations. We analyze a case in which teachers investigating adiabatic compression develop a model of the transformation of kinetic energy to thermal energy. Among their ideas is the idea that thermal energy is generated as a…

  3. Unified superresolution experiments and stochastic theory provide mechanistic insight into protein ion-exchange adsorptive separations.

    Science.gov (United States)

    Kisley, Lydia; Chen, Jixin; Mansur, Andrea P; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Chen, Wen-Hsiang; Dhamane, Sagar; Willson, Richard C; Landes, Christy F

    2014-02-11

    Chromatographic protein separations, immunoassays, and biosensing all typically involve the adsorption of proteins to surfaces decorated with charged, hydrophobic, or affinity ligands. Despite increasingly widespread use throughout the pharmaceutical industry, mechanistic detail about the interactions of proteins with individual chromatographic adsorbent sites is available only via inference from ensemble measurements such as binding isotherms, calorimetry, and chromatography. In this work, we present the direct superresolution mapping and kinetic characterization of functional sites on ion-exchange ligands based on agarose, a support matrix routinely used in protein chromatography. By quantifying the interactions of single proteins with individual charged ligands, we demonstrate that clusters of charges are necessary to create detectable adsorption sites and that even chemically identical ligands create adsorption sites of varying kinetic properties that depend on steric availability at the interface. Additionally, we relate experimental results to the stochastic theory of chromatography. Simulated elution profiles calculated from the molecular-scale data suggest that, if it were possible to engineer uniform optimal interactions into ion-exchange systems, separation efficiencies could be improved by as much as a factor of five by deliberately exploiting clustered interactions that currently dominate the ion-exchange process only accidentally.

  4. Crystal Structure of Human Factor VIII: Implications for the Formation of the Factor IXa-Factor VIIIa Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, J.C.; Huang, M.; Roth, D.A.; Furie, B.C.; Furie, B. (Wyeth); (MBL)

    2008-06-03

    Factor VIII is a procofactor that plays a critical role in blood coagulation, and is missing or defective in hemophilia A. We determined the X-ray crystal structure of B domain-deleted human factor VIII. This protein is composed of five globular domains and contains one Ca{sup 2+} and two Cu{sup 2+} ions. The three homologous A domains form a triangular heterotrimer where the A1 and A3 domains serve as the base and interact with the C2 and C1 domains, respectively. The structurally homologous C1 and C2 domains reveal membrane binding features. Based on biochemical studies, a model of the factor IXa-factor VIIIa complex was constructed by in silico docking. Factor IXa wraps across the side of factor VIII, and an extended interface spans the factor VIII heavy and light chains. This model provides insight into the activation of factor VIII and the interaction of factor VIIIa with factor IXa on the membrane surface.

  5. Crystal Structure of Human Factor VIII: Implications for the Formation of the Factor IXa-Factor VIIIa Complex

    Energy Technology Data Exchange (ETDEWEB)

    Chi Ki Ngo,J.; Huang, M.; Roth, D.; Furie, B.; Furie, B.

    2008-01-01

    Factor VIII is a procofactor that plays a critical role in blood coagulation, and is missing or defective in hemophilia A. We determined the X-ray crystal structure of B domain-deleted human factor VIII. This protein is composed of five globular domains and contains one Ca(2+) and two Cu(2+) ions. The three homologous A domains form a triangular heterotrimer where the A1 and A3 domains serve as the base and interact with the C2 and C1 domains, respectively. The structurally homologous C1 and C2 domains reveal membrane binding features. Based on biochemical studies, a model of the factor IXa-factor VIIIa complex was constructed by in silico docking. Factor IXa wraps across the side of factor VIII, and an extended interface spans the factor VIII heavy and light chains. This model provides insight into the activation of factor VIII and the interaction of factor VIIIa with factor IXa on the membrane surface.

  6. Synthetic and mechanistic aspects of titanium-mediated carbonyl olefinations

    Energy Technology Data Exchange (ETDEWEB)

    Petasis, N.A.; Staszewski, J.P.; Hu, Yong-Han; Lu, Shao-Po [Univ. of Southern California, Los Angeles, CA (United States)

    1995-12-31

    A new method for the olefination of carbonyl compounds with dimethyl titanocene, and other related bishydrocarbyl titanocene derivatives has been recently developed in the author`s laboratories. This process is experimentally convenient and works with various types of carbonyl compounds, including aldehydes, ketones, esters, lactones, carbonates, anhydrides, amides, imides, lactams, thioesters, selenoesters, and acylsilanes. More recent studies have focused on the scope and utility of this reaction, including mechanistic studies and synthetic applications. In addition to varying the reaction conditions, the authors have examined several mixed titanocene derivatives and have found ways for carrying out this type of olefination at room temperature, such as the use of tris(trimethylsilyl) titanacyclobutene. The authors have also employed this reaction in the modification of carbohydrates and cyclobutenediones. This olefination was also followed-up with subsequent transformations to produce carbocycles and heterocycles, including tetrahydrofurans and tetrahydropyrans.

  7. Factors that affect general practice as a choice of medical speciality: implications for policy development.

    Science.gov (United States)

    Vohra, Amit; Ladyshewsky, Richard; Trumble, Stephen

    2017-11-28

    Objective This article critically appraises the range of personal, professional and social factors that affect the choice of speciality across medical students, prevocational doctors, general practice registrars and general practitioners. Methods This qualitative study applied constructs from the fields of decision theory and career theory to better understand the complex nature of choosing a speciality. In all, 47 in-depth interviews were conducted with participants at different stages of their career cycle. The data was codified and analysed using NVivo to identify key factors that influenced speciality choice. Results The research identified 77 individual findings influencing general practice as a choice of medical speciality. These were distilled into a matrix to show that factors such as money, prestige and peer interaction did not have a compelling effect, whereas clinical and academic role models, flexibility, work-life balance, scope of practice, connection with patients, training environment and practical opportunities did. Conclusion The findings indicate that the decision in relation to the choice of medical speciality is a complex cognitive process that is undertaken within a personal, social and professional context particular to each individual. What is known about the topic? Current literature aims to quantify changes in attitudes towards choice of speciality or the effect of particular variables in isolation while ignoring the complexity of this decision process and how the numerous variables compare with each other. What does this paper add? The present study is the first intergenerational research on this topic in the Australian context and the paper dismisses the role of prestige and remuneration as key drivers of choice in picking general practice as a speciality, noting that money is merely a 'hygiene factor'. What are the implications for policy makers? A policy framework outlining 10 key principles is presented to assist policy makers seeking

  8. Recent advances in mathematical modeling of developmental abnormalities using mechanistic information.

    Science.gov (United States)

    Kavlock, R J

    1997-01-01

    During the last several years, significant changes in the risk assessment process for developmental toxicity of environmental contaminants have begun to emerge. The first of these changes is the development and beginning use of statistically based dose-response models [the benchmark dose (BMD) approach] that better utilize data derived from existing testing approaches. Accompanying this change is the greater emphasis placed on understanding and using mechanistic information to yield more accurate, reliable, and less uncertain risk assessments. The next stage in the evolution of risk assessment will be the use of biologically based dose-response (BBDR) models that begin to build into the statistically based models factors related to the underlying kinetic, biochemical, and/or physiologic processes perturbed by a toxicant. Such models are now emerging from several research laboratories. The introduction of quantitative models and the incorporation of biologic information into them has pointed to the need for even more sophisticated modifications for which we offer the term embryologically based dose-response (EBDR) models. Because these models would be based upon the understanding of normal morphogenesis, they represent a quantum leap in our thinking, but their complexity presents daunting challenges both to the developmental biologist and the developmental toxicologist. Implementation of these models will require extensive communication between developmental toxicologists, molecular embryologists, and biomathematicians. The remarkable progress in the understanding of mammalian embryonic development at the molecular level that has occurred over the last decade combined with advances in computing power and computational models should eventually enable these as yet hypothetical models to be brought into use.

  9. Alternative models of DSM-5 PTSD: Examining diagnostic implications.

    Science.gov (United States)

    Murphy, Siobhan; Hansen, Maj; Elklit, Ask; Yong Chen, Yoke; Raudzah Ghazali, Siti; Shevlin, Mark

    2018-04-01

    The factor structure of DSM-5 posttraumatic stress disorder (PTSD) has been extensively debated with evidence supporting the recently proposed seven-factor Hybrid model. However, despite myriad studies examining PTSD symptom structure few have assessed the diagnostic implications of these proposed models. This study aimed to generate PTSD prevalence estimates derived from the 7 alternative factor models and assess whether pre-established risk factors associated with PTSD (e.g., transportation accidents and sexual victimisation) produce consistent risk estimates. Seven alternative models were estimated within a confirmatory factor analytic framework using the PTSD Checklist for DSM-5 (PCL-5). Data were analysed from a Malaysian adolescent community sample (n = 481) of which 61.7% were female, with a mean age of 17.03 years. The results indicated that all models provided satisfactory model fit with statistical superiority for the Externalising Behaviours and seven-factor Hybrid models. The PTSD prevalence estimates varied substantially ranging from 21.8% for the DSM-5 model to 10.0% for the Hybrid model. Estimates of risk associated with PTSD were inconsistent across the alternative models, with substantial variation emerging for sexual victimisation. These findings have important implications for research and practice and highlight that more research attention is needed to examine the diagnostic implications emerging from the alternative models of PTSD. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mechanistic modelling of genetic and epigenetic events in radiation carcinogenesis

    International Nuclear Information System (INIS)

    Andreev, S. G.; Eidelman, Y. A.; Salnikov, I. V.; Khvostunov, I. K.

    2006-01-01

    Methodological problems arise on the way of radiation carcinogenesis modelling with the incorporation of radiobiological and cancer biology mechanistic data. The results of biophysical modelling of different endpoints [DNA DSB induction, repair, chromosome aberrations (CA) and cell proliferation] are presented and applied to the analysis of RBE-LET relationships for radiation-induced neoplastic transformation (RINT) of C3H/10T1/2 cells in culture. Predicted values for some endpoints correlate well with the data. It is concluded that slowly repaired DSB clusters, as well as some kind of CA, may be initiating events for RINT. As an alternative interpretation, it is possible that DNA damage can induce RINT indirectly via epigenetic process. A hypothetical epigenetic pathway for RINT is discussed. (authors)

  11. Mechanistic Studies on the Copper-Catalyzed N-Arylation of Amides

    Science.gov (United States)

    Strieter, Eric R.; Bhayana, Brijesh; Buchwald, Stephen L.

    2009-01-01

    The copper-catalyzed N-arylation of amides, i.e., the Goldberg reaction, is an efficient method for the construction of products relevant to both industry and academic settings. Herein, we present mechanistic details concerning the catalytic and stoichiometric N-arylation of amides. In the context of the catalytic reaction, our findings reveal the importance of chelating diamine ligands in controlling the concentration of the active catalytic species. The consistency between the catalytic and stoichiometric results suggest that the activation of aryl halides occurs through a 1,2-diamine-ligated copper(I) amidate complex. Kinetic studies on the stoichiometric N-arylation of aryl iodides using 1,2-diamine ligated Cu(I) amidates also provide insights into the mechanism of aryl halide activation. PMID:19072233

  12. Mechanistic Basis of Cocrystal Dissolution Advantage.

    Science.gov (United States)

    Cao, Fengjuan; Amidon, Gordon L; Rodríguez-Hornedo, Naír; Amidon, Gregory E

    2018-01-01

    Current interest in cocrystal development resides in the advantages that the cocrystal may have in solubility and dissolution compared with the parent drug. This work provides a mechanistic analysis and comparison of the dissolution behavior of carbamazepine (CBZ) and its 2 cocrystals, carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) under the influence of pH and micellar solubilization. A simple mathematical equation is derived based on the mass transport analyses to describe the dissolution advantage of cocrystals. The dissolution advantage is the ratio of the cocrystal flux to drug flux and is defined as the solubility advantage (cocrystal to drug solubility ratio) times the diffusivity advantage (cocrystal to drug diffusivity ratio). In this work, the effective diffusivity of CBZ in the presence of surfactant was determined to be different and less than those of the cocrystals. The higher effective diffusivity of drug from the dissolved cocrystals, the diffusivity advantage, can impart a dissolution advantage to cocrystals with lower solubility than the parent drug while still maintaining thermodynamic stability. Dissolution conditions where cocrystals can display both thermodynamic stability and a dissolution advantage can be obtained from the mass transport models, and this information is useful for both cocrystal selection and formulation development. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Mechanistic Bases of Neurotoxicity Provoked by Fatty Acids Accumulating in MCAD and LCHAD Deficiencies

    Directory of Open Access Journals (Sweden)

    Alexandre U. Amaral PhD

    2017-03-01

    Full Text Available Fatty acid oxidation defects (FAODs are inherited metabolic disorders caused by deficiency of specific enzyme activities or transport proteins involved in the mitochondrial catabolism of fatty acids. Medium-chain fatty acyl-CoA dehydrogenase (MCAD and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD deficiencies are relatively common FAOD biochemically characterized by tissue accumulation of medium-chain fatty acids and long-chain 3-hydroxy fatty acids and their carnitine derivatives, respectively. Patients with MCAD deficiency usually have episodic encephalopathic crises and liver biochemical alterations especially during crises of metabolic decompensation, whereas patients with LCHAD deficiency present severe hepatopathy, cardiomyopathy, and acute and/or progressive encephalopathy. Although neurological symptoms are common features, the underlying mechanisms responsible for the brain damage in these disorders are still under debate. In this context, energy deficiency due to defective fatty acid catabolism and hypoglycemia/hypoketonemia has been postulated to contribute to the pathophysiology of MCAD and LCHAD deficiencies. However, since energetic substrate supplementation is not able to reverse or prevent symptomatology in some patients, it is presumed that other pathogenetic mechanisms are implicated. Since worsening of clinical symptoms during crises is accompanied by significant increases in the concentrations of the accumulating fatty acids, it is conceivable that these compounds may be potentially neurotoxic. We will briefly summarize the current knowledge obtained from patients with these disorders, as well as from animal studies demonstrating deleterious effects of the major fatty acids accumulating in MCAD and LCHAD deficiencies, indicating that disruption of mitochondrial energy, redox, and calcium homeostasis is involved in the pathophysiology of the cerebral damage in these diseases. It is presumed that these findings based on the

  14. Towards the development of mechanistically based design rules for corrosion fatigue in ductile steels

    International Nuclear Information System (INIS)

    Johnson, R.; McMinn, A.; Tomkins, B.

    1980-08-01

    Design curves for nuclear pressure vessels and off-shore structures are based on air endurance curves that have had a safety factor applied to account for effects such as corrosive environments, frequency and mean stress. These are supported by a limited number of endurance tests on actual pressure vessels, and on welded joints under service conditions. These data-based rules are limited in their ability to cope with environmental effects and as the time dependencies of fatigue and corrosion processes are so different, no sound basis exists for the extrapolation of data to long component lifetimes. The crack-growth behaviour of materials used in nuclear pressure vessels and off-shore structures is examined with a view to determining how it may be used to re-assess the design curves. Even simple integration of crack-growth laws can be seen to be within reasonable agreement with present design curves; with improved methods of stress analysis, etc. this approach could potentially improve these curves. Mechanistic studies are also seen to offer a means of examining and assessing time-dependent process interactions and so, potentially, to form the basis of new guidelines. Finally the areas where further work would be needed to substantiate any changes in design curves are indicated. (author)

  15. Recognizing Mechanistic Reasoning in Student Scientific Inquiry: A Framework for Discourse Analysis Developed from Philosophy of Science

    Science.gov (United States)

    Russ, Rosemary S.; Scherr, Rachel E.; Hammer, David; Mikeska, Jamie

    2008-01-01

    Science education reform has long focused on assessing student inquiry, and there has been progress in developing tools specifically with respect to experimentation and argumentation. We suggest the need for attention to another aspect of inquiry, namely "mechanistic reasoning." Scientific inquiry focuses largely on understanding causal…

  16. This Mechanistic Step Is ''Productive'': Organic Chemistry Students' Backward-Oriented Reasoning

    Science.gov (United States)

    Caspari, I.; Weinrich, M. L.; Sevian, H.; Graulich, N.

    2018-01-01

    If an organic chemistry student explains that she represents a mechanistic step because ''it's a productive part of the mechanism,'' what meaning could the professor teaching the class attribute to this statement, what is actually communicated, and what does it mean for the student? The professor might think that the explanation is based on…

  17. Explaining the Rapid Increase in Nigeria's Sex Ratio at Birth: Factors and Implications.

    Science.gov (United States)

    Kaba, Amadu J

    2015-06-01

    This paper examines the rapid increase in Nigeria's sex ratio at birth from 1.03 boys born for every 1 girl born in each year from 1996-2008 to 1.06 in each year from 2009-2014, second only to Tunisia in Africa at 1.07. The average sex ratio at birth in the world in 2014 was 1.07. In most Black African nations or Black majority nations, it is 1.03 or less. Among the factors presented for this development are: historical fluctuations of sex ratio at birth; geography and ethnicity; male preference/chasing a son; Age of parents; high death rates of male infants and males in general; and wealth/socioeconomic status. Among the potential implications are: young and poor men in Nigeria may not be able to find brides and form families due to a potential shortage of females; emigration of young and poor Nigerian men to West (Africa) and elsewhere to seek brides and form families; immigration of marriage age women from West (Africa) and around the world to Nigeria to seek husbands; and low contraceptive use and high fertility rates in Nigeria.

  18. Fetal programming of CVD and renal disease: animal models and mechanistic considerations.

    Science.gov (United States)

    Langley-Evans, Simon C

    2013-08-01

    The developmental origins of health and disease hypothesis postulates that exposure to a less than optimal maternal environment during fetal development programmes physiological function, and determines risk of disease in adult life. Much evidence of such programming comes from retrospective epidemiological cohorts, which demonstrate associations between birth anthropometry and non-communicable diseases of adulthood. The assertion that variation in maternal nutrition drives these associations is supported by studies using animal models, which demonstrate that maternal under- or over-nutrition during pregnancy can programme offspring development. Typically, the offspring of animals that are undernourished in pregnancy exhibit a relatively narrow range of physiological phenotypes that includes higher blood pressure, glucose intolerance, renal insufficiency and increased adiposity. The observation that common phenotypes arise from very diverse maternal nutritional insults has led to the proposal that programming is driven by a small number of mechanistic processes. The remodelling of tissues during development as a consequence of maternal nutritional status being signalled by endocrine imbalance or key nutrients limiting processes in the fetus may lead to organs having irreversibly altered structures that may limit their function with ageing. It has been proposed that the maternal diet may impact upon epigenetic marks that determine gene expression in fetal tissues, and this may be an important mechanism connecting maternal nutrient intakes to long-term programming of offspring phenotype. The objective for this review is to provide an overview of the mechanistic basis of fetal programming, demonstrating the critical role of animal models as tools for the investigation of programming phenomena.

  19. Tomato (Lycopersicon esculentum) or lycopene supplementation attenuates ventricular remodeling after myocardial infarction through different mechanistic pathways.

    Science.gov (United States)

    Pereira, Bruna L B; Reis, Patrícia P; Severino, Fábio E; Felix, Tainara F; Braz, Mariana G; Nogueira, Flávia R; Silva, Renata A C; Cardoso, Ana C; Lourenço, Maria A M; Figueiredo, Amanda M; Chiuso-Minicucci, Fernanda; Azevedo, Paula S; Polegato, Bertha F; Okoshi, Katashi; Fernandes, Ana A H; Paiva, Sergio A R; Zornoff, Leonardo A M; Minicucci, Marcos F

    2017-08-01

    The objective of this study was to evaluate the influence of tomato or lycopene supplementation on cardiac remodeling after myocardial infarction (MI). Male Wistar rats were assigned to four groups: the sham group (animals that underwent simulated surgery) that received a standard chow (S; n=18), the infarcted group that received a standard chow (MI; n=13), the infarcted group supplemented with lycopene (1 mg of lycopene/kg body weight/day) (MIL; n=16) and the infarcted group supplemented with tomato (MIT; n=16). After 3 months, morphological, functional and biochemical analyses were performed. The groups MIL and MIT showed decreased interstitial fibrosis induced by infarction. Tomato supplementation attenuated the hypertrophy induced by MI. In addition, tomato and lycopene improved diastolic dysfunction evaluated by echocardiographic and isolated heart studies, respectively. The MI group showed higher levels of cardiac TNF-α compared to the MIL and MIT groups. Decreased nuclear factor E2-related factor 2 was measured in the MIL group. Lipid hydroperoxide levels were higher in the infarcted groups; however, the MIT group had a lower concentration than did the MI group [S=223±20.8, MI=298±19.5, MIL=277±26.6, MIT=261±28.8 (nmol/g); n=8; Ptomato or lycopene supplementation attenuated the cardiac remodeling process and improved diastolic function after MI. However, the effect of lycopene and tomato supplementation occurred through different mechanistic pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Germline deletion of Krüppel-like factor 14 does not increase risk of diet induced metabolic syndrome in male C57BL/6 mice

    NARCIS (Netherlands)

    Argmann, Carmen A.; Violante, Sara; Dodatko, Tetyana; Amaro, Mariana P.; Hagen, Jacob; Gillespie, Virginia L.; Buettner, Christoph; Schadt, Eric E.; Houten, Sander M.

    2017-01-01

    The transcription factor Krüppel-like factor 14 (KLF14) has been associated with type 2 diabetes and high-density lipoprotein-cholesterol (HDL-C) through genome-wide association studies. The mechanistic underpinnings of KLF14's control of metabolic processes remain largely unknown. We studied the

  1. Homologous Recombination DNA Repair Genes Play a Critical Role in Reprogramming to a Pluripotent State

    Directory of Open Access Journals (Sweden)

    Federico González

    2013-03-01

    Full Text Available Induced pluripotent stem cells (iPSCs hold great promise for personalized regenerative medicine. However, recent studies show that iPSC lines carry genetic abnormalities, suggesting that reprogramming may be mutagenic. Here, we show that the ectopic expression of reprogramming factors increases the level of phosphorylated histone H2AX, one of the earliest cellular responses to DNA double-strand breaks (DSBs. Additional mechanistic studies uncover a direct role of the homologous recombination (HR pathway, a pathway essential for error-free repair of DNA DSBs, in reprogramming. This role is independent of the use of integrative or nonintegrative methods in introducing reprogramming factors, despite the latter being considered a safer approach that circumvents genetic modifications. Finally, deletion of the tumor suppressor p53 rescues the reprogramming phenotype in HR-deficient cells primarily through the restoration of reprogramming-dependent defects in cell proliferation and apoptosis. These mechanistic insights have important implications for the design of safer approaches to creating iPSCs.

  2. Transforming Growth Factor ß Recruits Persistent MAPK Signaling to Regulate Long-Term Memory Consolidation in "Aplysia Californica"

    Science.gov (United States)

    Shobe, Justin; Philips, Gary T.; Carew, Thomas J.

    2016-01-01

    In this study, we explore the mechanistic relationship between growth factor signaling and kinase activity that supports the protein synthesis-dependent phase of long-term memory (LTM) consolidation for sensitization of "Aplysia." Specifically, we examine LTM for tail shock-induced sensitization of the tail-elicited siphon withdrawal…

  3. Enzyme 15-lipoxygenase 1 promotes hypoxia-inducible factor 1α turnover and reduces vascular endothelial growth factor expression: implications for angiogenesis

    International Nuclear Information System (INIS)

    Zhong, Hua; Wang, Ruoxiang; Kelavkar, Uddhav; Wang, Christopher Y; Simons, Jonathan

    2014-01-01

    Hypoxia-inducible factor 1α (HIF-1α) is the regulatory subunit of the heterodimeric HIF-1 that plays a critical role in transcriptional regulation of genes in angiogenesis and hypoxic adaptation, while fatty acid metabolism mediated by lipoxygenases has been implicated in a variety of pathogeneses, including cancers. In this study, we report that 15-lipoxygenase 1 (15-LO1), a key member of the lipoxygenase family, promotes HIF-1α ubiquitination and degradation. Altering the level of 15-LO1 yields inverse changes in HIF-1α and HIF-1 transcriptional activity, under both normoxia and hypoxia, and even in CoCl 2 -treated cells where HIF-1α has been artificially elevated. The antagonistic effect of 15-LO1 is mediated by the Pro 564 /hydroxylation/26S proteasome system, while both the enzymatic activity and the intracellular membrane-binding function of 15-LO1 appear to contribute to HIF-1α suppression. Our findings provide a novel mechanism for HIF-1α regulation, in which oxygen-dependent HIF-1 activity is modulated by an oxygen-insensitive lipid metabolic enzyme

  4. Ventricular arrhythmias and sudden cardiac arrest in Takotsubo cardiomyopathy: Incidence, predictive factors, and clinical implications.

    Science.gov (United States)

    Jesel, Laurence; Berthon, Charlotte; Messas, Nathan; Lim, Han S; Girardey, Mélanie; Marzak, Halim; Marchandot, Benjamin; Trinh, Annie; Ohlmann, Patrick; Morel, Olivier

    2018-04-06

    Takotsubo cardiomyopathy (TTC) is a stress-related transient cardiomyopathy. Life-threatening arrhythmias (LTA) can occur and worsen prognosis. The purpose of this study was to assess the incidence and outcome of LTA in TTC, as well as its predictive factors and clinical implications. We studied 214 consecutive cases of TTC over 8 years. The study cohort was divided into 2 groups: those with LTA (LTA group) and those without (non-LTA group). LTA was defined as ventricular tachycardia, ventricular fibrillation, or cardiac arrest. LTA occurred in 10.7% of patients mainly in the first 24 hours of hospitalization: ventricular tachycardia (n = 2), ventricular fibrillation (n = 11), cardiac arrest (n = 10: 5 asystole, 3 complete heart block, and 2 sinoatrial block). LTA were associated with lower left ventricular ejection fraction (LVEF) and a high rate of conduction disturbances. In-hospital (39.1% vs 8.9%; P 105 ms were independent predictors of LTA. In cases where a device was implanted, conduction disturbances persisted after the index event despite complete recovery of LVEF. There was no ventricular arrhythmia recurrence during follow-up. LTA occur early in patients presenting with TTC and is associated with significantly worse short- and long-term prognosis. Left ventricular impairment and QRS duration >105 ms are independent predictors of LTA. Ventricular arrhythmias occurred in the acute phase without further recurrence recorded in hospital survivors, whereas severe conduction disorders persisted during long-term follow-up. These findings may have implications on the choice of device therapy for this specific patient subgroup. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  5. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease.

    Science.gov (United States)

    Klosinski, Lauren P; Yao, Jia; Yin, Fei; Fonteh, Alfred N; Harrington, Michael G; Christensen, Trace A; Trushina, Eugenia; Brinton, Roberta Diaz

    2015-12-01

    White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical.

  6. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Lauren P. Klosinski

    2015-12-01

    Full Text Available White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical.

  7. Factors affecting the job stress and job satisfaction of Australian nurses: implications for recruitment and retention.

    Science.gov (United States)

    Bartram, Timothy; Joiner, Therese A; Stanton, Pauline

    2004-10-01

    Against a background of nurse shortages in Australian hospitals, a significant challenge facing the healthcare sector is the recruitment and retention of nurses. The job stress and job satisfaction of nurses have been associated with recruitment and retention. The aim of this study is to consider two factors that may contribute to the job satisfaction and job stress of nurses: social support and empowerment. Using a sample of 157 registered nurses in a private hospital in Melbourne, Australia, we found that social support derived from the nurse's supervisor and work colleagues lowered job stress and at the same time increased job satisfaction. The presence of nurse empowerment, meaning, impact, competence and self-determination, also lowered job stress and increased job satisfaction. Finally, we discuss contributions of this study and implications for recruitment and retention of nurses in the health sector.

  8. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...... implications for improving the survival of chromaffin cell implants in diseased human brain....

  9. Mechanistic understanding of monosaccharide-air flow battery electrochemistry

    Science.gov (United States)

    Scott, Daniel M.; Tsang, Tsz Ho; Chetty, Leticia; Aloi, Sekotilani; Liaw, Bor Yann

    Recently, an inexpensive monosaccharide-air flow battery configuration has been demonstrated to utilize a strong base and a mediator redox dye to harness electrical power from the partial oxidation of glucose. Here the mechanistic understanding of glucose oxidation in this unique glucose-air power source is further explored by acid-base titration experiments, 13C NMR, and comparison of results from chemically different redox mediators (indigo carmine vs. methyl viologen) and sugars (fructose vs. glucose) via studies using electrochemical techniques. Titration results indicate that gluconic acid is the main product of the cell reaction, as supported by evidence in the 13C NMR spectra. Using indigo carmine as the mediator dye and fructose as the energy source, an abiotic cell configuration generates a power density of 1.66 mW cm -2, which is greater than that produced from glucose under similar conditions (ca. 1.28 mW cm -2). A faster transition from fructose into the ene-diol intermediate than from glucose likely contributed to this difference in power density.

  10. Flow-mediated dilation: can new approaches provide greater mechanistic insight into vascular dysfunction in preeclampsia and other diseases?

    Science.gov (United States)

    Weissgerber, Tracey L

    2014-11-01

    Endothelial dysfunction is a key feature of preeclampsia and may contribute to increased cardiovascular disease risk years after pregnancy. Flow-mediated dilation (FMD) is a non-invasive endothelial function test that predicts cardiovascular event risk. New protocols allow researchers to measure three components of the FMD response: FMD, low flow-mediated constriction, and shear stimulus. This review encourages researchers to think beyond "low FMD" by examining how these three components may provide additional insights into the mechanisms and location of vascular dysfunction. The review then examines what FMD studies reveal about vascular dysfunction in preeclampsia while highlighting opportunities to gain greater mechanistic insight from new protocols. Studies using traditional protocols show that FMD is low in mid-pregnancy prior to preeclampsia, at diagnosis, and for 3 years post-partum. However, FMD returns to normal by 10 years post-partum. Studies using new protocols are needed to gain more mechanistic insight.

  11. Mechanistic failure mode investigation and resolution of parvovirus retentive filters.

    Science.gov (United States)

    LaCasse, Daniel; Lute, Scott; Fiadeiro, Marcus; Basha, Jonida; Stork, Matthew; Brorson, Kurt; Godavarti, Ranga; Gallo, Chris

    2016-07-08

    Virus retentive filters are a key product safety measure for biopharmaceuticals. A simplistic perception is that they function solely based on a size-based particle removal mechanism of mechanical sieving and retention of particles based on their hydrodynamic size. Recent observations have revealed a more nuanced picture, indicating that changes in viral particle retention can result from process pressure and/or flow interruptions. In this study, a mechanistic investigation was performed to help identify a potential mechanism leading to the reported reduced particle retention in small virus filters. Permeate flow rate or permeate driving force were varied and analyzed for their impact on particle retention in three commercially available small virus retentive filters. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:959-970, 2016. © 2016 American Institute of Chemical Engineers.

  12. Genetic dissection of acute ethanol responsive gene networks in prefrontal cortex: functional and mechanistic implications.

    Directory of Open Access Journals (Sweden)

    Aaron R Wolen

    response of gene networks could have important implications for future studies regarding the mechanisms and treatment of alcohol use disorders.

  13. Final Report for the DOE-BES Program Mechanistic Studies of Activated Hydrogen Release from Amine-Boranes

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Sneddon; R. Thomas Baker

    2013-01-13

    Effective storage of hydrogen presents one of the most significant technical gaps to successful implementation of the hydrogen economy, particularly for transportation applications. Amine boranes, such as ammonia borane H3NBH3 and ammonia triborane H3NB3H7, have been identified as promising, high-capacity chemical hydrogen storage media containing potentially readily released protic (N-H) and hydridic (B-H) hydrogens. At the outset of our studies, dehydrogenation of ammonia borane had been studied primarily in the solid state, but our DOE sponsored work clearly demonstrated that ionic liquids, base-initiators and/or metal-catalysts can each significantly increase both the rate and extent of hydrogen release from amine boranes under moderate conditions. Our studies also showed that depending upon the activation method, hydrogen release from amine boranes can occur by very different mechanistic steps and yield different types of spent-fuel materials. The fundamental understanding that was developed during this grant of the pathways and controlling factors for each of these hydrogen-release mechanisms is now enabling continuing discovery and optimization of new chemical-hydride based hydrogen storage systems.

  14. On the Science of Consciousness: Epistemological Reflections and Clinical Implications.

    Science.gov (United States)

    Facco, Enrico; Lucangeli, Daniela; Tressoldi, Patrizio

    Consciousness has been one of the most important and tantalizing issues ever since the origin of philosophy and medicine. The concept of consciousness and the so-called "hard problem" (i.e., the mind-brain relationship) are highly complex topics that have yet to be elucidated, involving the realms of both science and philosophy with profound epistemological implications. In the lively debate on the foundations of the science of consciousness there are several potential biases of an essentially philosophical nature, such as those related to the paradigm and axioms adopted, and the ostensible logical contradiction between monism and dualism. Their origin dates back largely to Descartes' thinking and the birth of the new sciences as a compromise with the Inquisition, but they have been handed down through the Enlightenment and Positivism. A proper investigation of consciousness and the world of subjectivity demands a careful reflection on the paradigm of scientific medicine to identify possible flaws and overcome the limits of the mechanistic-reductionist approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Factors affecting computer mouse use for young children: implications for AAC.

    Science.gov (United States)

    Costigan, F Aileen; Light, Janice C; Newell, Karl M

    2012-06-01

    More than 12% of preschoolers receiving special education services have complex communication needs, including increasing numbers of children who do not have significant motor impairments (e.g., children with autism spectrum disorders, Down syndrome, etc.). In order to meet their diverse communication needs (e.g., face-to-face, written, Internet, telecommunication), these children may use mainstream technologies accessed via the mouse, yet little is known about factors that affect the mouse performance of young children. This study used a mixed factorial design to investigate the effects of age, target size, and angle of approach on accuracy and time required for accurate target selection with a mouse for 20 3-year-old and 20 4-year-old children. The 4-year-olds were generally more accurate and faster than the 3-year-olds. Target size and angle mediated differences in performance within age groups. The 3-year-olds were more accurate and faster in selecting the medium and large targets relative to the small target, were faster in selecting the large relative to the medium target, and were faster in selecting targets along the vertical relative to the diagonal angle. The 4-year-olds were faster in selecting the medium and large targets relative to the small target. Implications for improving access to AAC include the preliminary suggestion of age-related threshold target sizes that support sufficient accuracy, the possibility of efficiency benefits when target size is increased up to an age-related threshold, and identification of the potential utility of the vertical angle as a context for training navigational input device use.

  16. Phenomenological and mechanistic modeling of melt-structure-water interactions in a light water reactor severe accident

    International Nuclear Information System (INIS)

    Bui, V.A.

    1998-01-01

    The objective of this work is to address the modeling of the thermal hydrodynamic phenomena and interactions occurring during the progression of reactor severe accidents. Integrated phenomenological models are developed to describe the accident scenarios, which consist of many processes, while mechanistic modeling, including direct numerical simulation, is carried out to describe separate effects and selected physical phenomena of particular importance

  17. Applicability of one-dimensional mechanistic post-dryout prediction model

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; No Hee Cheon

    1996-01-01

    Through the analysis of many experimental post-dryout data, it is shown that the most probable flow regime near dryout or quench front is not annular flow but churn-turbulent flow when the mass flux is low. A correlation describing the initial droplet size just after the CHF position at low mass flux is low. A correlation describing the initial droplet size just after the CHF position at low mass flux is suggested through regression analysis. In the post-dryout region at low pressure and low flow, it is found that the suggested one-dimensional mechanistic model is not applicable when the vapor superficial velocity is very low, i. e., when the flow is bubbly or slug flow regime. This is explained by the change of main entrainment mechanism with the change of flow regime. Therefore, the suggested correlation is valid only in the churn-turbulent flow regime (j * g = 0.5 ∼ 4.5)

  18. Toward a Rational and Mechanistic Account of Mental Effort.

    Science.gov (United States)

    Shenhav, Amitai; Musslick, Sebastian; Lieder, Falk; Kool, Wouter; Griffiths, Thomas L; Cohen, Jonathan D; Botvinick, Matthew M

    2017-07-25

    In spite of its familiar phenomenology, the mechanistic basis for mental effort remains poorly understood. Although most researchers agree that mental effort is aversive and stems from limitations in our capacity to exercise cognitive control, it is unclear what gives rise to those limitations and why they result in an experience of control as costly. The presence of these control costs also raises further questions regarding how best to allocate mental effort to minimize those costs and maximize the attendant benefits. This review explores recent advances in computational modeling and empirical research aimed at addressing these questions at the level of psychological process and neural mechanism, examining both the limitations to mental effort exertion and how we manage those limited cognitive resources. We conclude by identifying remaining challenges for theoretical accounts of mental effort as well as possible applications of the available findings to understanding the causes of and potential solutions for apparent failures to exert the mental effort required of us.

  19. Rapid Discrimination Among Putative Mechanistic Models of Biochemical Systems.

    Science.gov (United States)

    Lomnitz, Jason G; Savageau, Michael A

    2016-08-31

    An overarching goal in molecular biology is to gain an understanding of the mechanistic basis underlying biochemical systems. Success is critical if we are to predict effectively the outcome of drug treatments and the development of abnormal phenotypes. However, data from most experimental studies is typically noisy and sparse. This allows multiple potential mechanisms to account for experimental observations, and often devising experiments to test each is not feasible. Here, we introduce a novel strategy that discriminates among putative models based on their repertoire of qualitatively distinct phenotypes, without relying on knowledge of specific values for rate constants and binding constants. As an illustration, we apply this strategy to two synthetic gene circuits exhibiting anomalous behaviors. Our results show that the conventional models, based on their well-characterized components, cannot account for the experimental observations. We examine a total of 40 alternative hypotheses and show that only 5 have the potential to reproduce the experimental data, and one can do so with biologically relevant parameter values.

  20. Utilizing Mechanistic Cross-Linking Technology to Study Protein-Protein Interactions: An Experiment Designed for an Undergraduate Biochemistry Lab

    Science.gov (United States)

    Finzel, Kara; Beld, Joris; Burkart, Michael D.; Charkoudian, Louise K.

    2017-01-01

    Over the past decade, mechanistic cross-linking probes have been used to study protein-protein interactions in natural product biosynthetic pathways. This approach is highly interdisciplinary, combining elements of protein biochemistry, organic chemistry, and computational docking. Herein, we described the development of an experiment to engage…

  1. SENSITIVITY ANALYSIS IN FLEXIBLE PAVEMENT PERFORMANCE USING MECHANISTIC EMPIRICAL METHOD (CASE STUDY: CIREBON–LOSARI ROAD SEGMENT, WEST JAVA

    Directory of Open Access Journals (Sweden)

    E. Samad

    2012-02-01

    Full Text Available Cirebon – Losari flexible pavement which is located on the North Coast of Java, Indonesia, is in the severe damage condition caused by overloading vehicles passing the road. The need for developing improved pavement design and analysis methods is very necessary. The increment of loads and quality of material properties can be evaluated through Mechanistic-Empirical (M-E method. M-E software like KENLAYER has been developed to facilitate the transition from empirical to mechanistic design methods. From the KENLAYER analysis, it can be concluded that the effect of overloading to the pavement structure performance is difficult to minimize even though the first two layers have relatively high modulus of elasticity. The occurrence of 150%, 200%, and 250% overloading have a very significant effect in reducing 84%, 95%, and 98% of the pavement design life, respectively. For the purpose of increasing the pavement service life, it is more effective to manage the allowable load.

  2. Mechanistic approach for the kinetics of the decomposition of nitrous oxide over calcined hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Dandl, H.; Emig, G. [Lehrstuhl fuer Technische Chemie I, Erlangen (Germany)

    1998-03-27

    A highly active catalyst for the decomposition of N{sub 2}O was prepared by the thermal treatment of CoLaAl-hydrotalcite. For this catalyst the reaction rate was determined at various partial pressures of N{sub 2}O, O{sub 2} and H{sub 2}O in a temperature range from 573K to 823K. The kinetic simulation resulted in a mechanistic model. The energies of activation and rate coefficients are estimated for the main steps of the reaction

  3. Factors influencing the seasonal patterns of infectious diseases

    Directory of Open Access Journals (Sweden)

    Auda Fares

    2013-01-01

    Full Text Available The recognition of seasonal patterns in infectious disease occurrence dates back at least as far as the hippocratic era, but the mechanisms underlying these fluctuations remain poorly understood. Many classes of mechanistic hypotheses have been proposed to explain seasonality of various directly transmitted diseases, including at least the following; human activity, seasonal variability in human immune system function, seasonal variations in vitamin D levels, seasonality of melatonin, and pathogen infectivity. In this short paper will briefly discuss the role of these factors in the seasonal patterns of infectious diseases.

  4. Mechanistic and kinetic insights into the thermally induced rearrangement of alpha-pinene.

    Science.gov (United States)

    Stolle, Achim; Ondruschka, Bernd; Findeisen, Matthias

    2008-11-07

    The thermal rearrangement of alpha-pinene (1) is interesting from mechanistic as well as kinetic point of view. Carrier gas pyrolyses with 1 and its acyclic isomers ocimene (2) and alloocimene (3) were performed to investigate the thermal network of these hydrocarbons. Kinetic analysis of the major reaction steps allows for a deeper insight in the reaction mechanism. Thus it was possible to explain the racemization of 1, the formation of racemic limonene (4), and the absence of the primary pyrolysis product 2 in the reaction mixture resulting from thermal rearrangement of 1. Results supported the conclusion that the reactions starting with 1 involve biradical transition states.

  5. Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging

    Science.gov (United States)

    Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.

    2016-07-01

    One of the major issues hampering the acceptance of electric vehicles (EVs) is the anxiety associated with long charging time. Hence, the ability to fast charging lithium-ion battery (LIB) systems is gaining notable interest. However, fast charging is not tolerated by all LIB chemistries because it affects battery functionality and accelerates its aging processes. Here, we investigate the long-term effects of multistage fast charging on a commercial high power LiFePO4-based cell and compare it to another cell tested under standard charging. Coupling incremental capacity (IC) and IC peak area analysis together with mechanistic model simulations ('Alawa' toolbox with harvested half-cell data), we quantify the degradation modes that cause aging of the tested cells. The results show that the proposed fast charging technique caused similar aging effects as standard charging. The degradation is caused by a linear loss of lithium inventory, coupled with a less degree of linear loss of active material on the negative electrode. This study validates fast charging as a feasible mean of operation for this particular LIB chemistry and cell architecture. It also illustrates the benefits of a mechanistic approach to understand cell degradation on commercial cells.

  6. In Vitro–In Vivo Correlation for Gliclazide Immediate-Release Tablets Based on Mechanistic Absorption Simulation

    OpenAIRE

    Grbic, Sandra; Parojcic, Jelena; Ibric, Svetlana; Djuric, Zorica

    2010-01-01

    The aim of this study was to develop a drug-specific absorption model for gliclazide (GLK) using mechanistic gastrointestinal simulation technology (GIST) implemented in GastroPlusTM software package. A range of experimentally determined, in silico predicted or literature data were used as input parameters. Experimentally determined pH-solubility profile was used for all simulations. The human jejunum effective permeability (Peff) value was estimated on the basis of in vitro measured Caco-2 p...

  7. Redefining the WISC-R: Implications for Professional Practice and Public Policy.

    Science.gov (United States)

    Macmann, Gregg M.; Barnett, David W.

    1992-01-01

    The factor structure of the Wechsler Intelligence Scale for Children (Revised) was examined in the standardization sample using new methods of factor analysis. The substantial overlap across factors was most parsimoniously represented by a single general factor. Implications for public policy regarding the purposes and outcomes of special…

  8. The kinetic and mechanistic aspects of the oxidative dehydrogenation of ethane over Li/Na/MgO catalysts

    NARCIS (Netherlands)

    Swaan, H.M.; Swaan, H.M.; Toebes, A.; Toebes, A.; van Ommen, J.G.; Seshan, Kulathuiyer; Ross, J.R.H.; Ross, J.R.H.

    1992-01-01

    Kinetic and mechanistic aspects of the oxidative dehydrogenation of ethane catalysed by Li/MgO and Li/Na/MgO have been investigated. Initial rate measurements at 600°C; revealed that the Li/MgO catalyst produced C2H4, CO2, CO and H2 by parallel reactions whereas the sodium-promoted catalyst produced

  9. Phenomenological and mechanistic modeling of melt-structure-water interactions in a light water reactor severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Bui, V.A

    1998-10-01

    The objective of this work is to address the modeling of the thermal hydrodynamic phenomena and interactions occurring during the progression of reactor severe accidents. Integrated phenomenological models are developed to describe the accident scenarios, which consist of many processes, while mechanistic modeling, including direct numerical simulation, is carried out to describe separate effects and selected physical phenomena of particular importance 88 refs, 54 figs, 7 tabs

  10. Pharmacogenomics and migraine: possible implications

    DEFF Research Database (Denmark)

    Tfelt-Hansen, P.; Brosen, K.

    2008-01-01

    Pharmacogenomics is the science about how inherited factors influence the effects of drugs. Drug response is always a result of mutually interacting genes with important modifications from environmental and constitutional factors. Based on the genetic variability of pharmacokinetic and in some...... cases pharmacodynamic variability we mention possible implications for the acute and preventive treatment of migraine. Pharmacogenomics will most likely in the future be one part of our therapeutic armamentarium and will provide a stronger scientific basis for optimizing drug therapy on the basis...

  11. Mutual Dependence Between Sedimentary Organic Carbon and Infaunal Macrobenthos Resolved by Mechanistic Modeling

    Science.gov (United States)

    Zhang, Wenyan; Wirtz, Kai

    2017-10-01

    The mutual dependence between sedimentary total organic carbon (TOC) and infaunal macrobenthos is here quantified by a mechanistic model. The model describes (i) the vertical distribution of infaunal macrobenthic biomass resulting from a trade-off between nutritional benefit (quantity and quality of TOC) and the costs of burial (respiration) and mortality, and (ii) the variable vertical distribution of TOC being in turn shaped by bioturbation of local macrobenthos. In contrast to conventional approaches, our model emphasizes variations of bioturbation both spatially and temporally depending on local food resources and macrobenthic biomass. Our implementation of the dynamic interaction between TOC and infaunal macrobenthos is able to capture a temporal benthic response to both depositional and erosional environments and provides improved estimates of the material exchange flux at the sediment-water interface. Applications to literature data for the North Sea demonstrate the robustness and accuracy of the model and its potential as an analysis tool for the status of TOC and macrobenthos in marine sediments. Results indicate that the vertical distribution of infaunal biomass is shaped by both the quantity and the quality of OC, while the community structure is determined only by the quality of OC. Bioturbation intensity may differ by 1 order of magnitude over different seasons owing to variations in the OC input, resulting in a significant modulation on the distribution of OC. Our relatively simple implementation may further improve models of early diagenesis and marine food web dynamics by mechanistically connecting the vertical distribution of both TOC and macrobenthic biomass.

  12. Exploring the pros and cons of mechanistic case diagrams for problem-based learning

    Directory of Open Access Journals (Sweden)

    Minjeong Kim

    2017-09-01

    Full Text Available Purpose Mechanistic case diagram (MCD was recommended for increasing the depth of understanding of disease, but with few articles on its specific methods. We address the experience of making MCD in the fullest depth to identify the pros and cons of using MCDs in such ways. Methods During problem-based learning, we gave guidelines of MCD for its mechanistic exploration from subcellular processes to clinical features, being laid out in as much detail as possible. To understand the students’ attitudes and depth of study using MCDs, we analyzed the results of a questionnaire in an open format about experiencing MCDs and examined the resulting products. Results Through the responses to questionnaire, we found several favorable outcomes, major of which was deeper insight and comprehensive understanding of disease facilitated by the process of making well-organized diagram. The main disadvantages of these guidelines were the feeling of too much workload and difficulty of finding mechanisms. Students gave suggestions to overcome these problems: cautious reading of comprehensive texts, additional guidance from staff about depth and focus of mechanisms, and cooperative group work. From the analysis of maps, we recognized there should be allowance of diversities in the appearance of maps and many hypothetical connections, which could be related to an insufficient understanding of mechanisms in nature. Conclusion The more detailed an MCD task is, the better students can become acquainted with deep knowledges. However, this advantage should be balanced by the results that there are many ensuing difficulties for the work and deliberate help plans should be prepared.

  13. Implication of novel thiazolo-thiophene derivative (MCD-KV-10) for management of asthma.

    Science.gov (United States)

    Patil, Dhiraj; Dash, Ranjeet Prasad; Thakur, Sandeep Kumar; Pandya, Amit N; Venkatesh, P; Vasu, Kamala K; Nivsarkar, Manish

    2015-04-01

    Asthma is multifaceted disease where many targets contribute towards its development and progression. Among these, adenosine receptor subtypes play a major role. MCD-KV-10, a novel thiazolo-thiophene was designed and evaluated pre-clinically for its implication in management of asthma. This compound showed good affinity and selectivity towards A(2A)/A3 adenosine receptor (AR) subtypes. Furthermore, MCD-KV-10 was evaluated for in vitro lipoxygenase inhibition activity; in vivo mast cell stabilization potential and in vivo anti-asthmatic activity was done in ovalbumin-induced airway inflammation model in guinea pigs. The compound showed good (>57%) inhibition of lipoxygenase enzyme and also effectively protected mast cell degranulation (>63%). The compound showed good anti-asthmatic activity as inferred from the in vivo studies. These results indicate that MCD-KV-10 has an inhibitory effect on airway inflammation. Though, we have identified a potential candidate for management of asthma, further mechanistic studies are needed.

  14. Identifying mechanistic similarities in drug responses

    KAUST Repository

    Zhao, C.

    2012-05-15

    Motivation: In early drug development, it would be beneficial to be able to identify those dynamic patterns of gene response that indicate that drugs targeting a particular gene will be likely or not to elicit the desired response. One approach would be to quantitate the degree of similarity between the responses that cells show when exposed to drugs, so that consistencies in the regulation of cellular response processes that produce success or failure can be more readily identified.Results: We track drug response using fluorescent proteins as transcription activity reporters. Our basic assumption is that drugs inducing very similar alteration in transcriptional regulation will produce similar temporal trajectories on many of the reporter proteins and hence be identified as having similarities in their mechanisms of action (MOA). The main body of this work is devoted to characterizing similarity in temporal trajectories/signals. To do so, we must first identify the key points that determine mechanistic similarity between two drug responses. Directly comparing points on the two signals is unrealistic, as it cannot handle delays and speed variations on the time axis. Hence, to capture the similarities between reporter responses, we develop an alignment algorithm that is robust to noise, time delays and is able to find all the contiguous parts of signals centered about a core alignment (reflecting a core mechanism in drug response). Applying the proposed algorithm to a range of real drug experiments shows that the result agrees well with the prior drug MOA knowledge. © The Author 2012. Published by Oxford University Press. All rights reserved.

  15. Confinement effects and mechanistic aspects for montmorillonite nanopores.

    Science.gov (United States)

    Li, Xiong; Zhu, Chang; Jia, Zengqiang; Yang, Gang

    2018-08-01

    Owing to the ubiquity, critical importance and special properties, confined microenvironments have recently triggered overwhelming interest. In this work, all-atom molecular dynamics simulations have been conducted to address the confinement effects and ion-specific effects for electrolyte solutions within montmorillonite nanopores, where the pore widths vary with a wide range. The adsorption number, structure, dynamics and stability of inner- and outer-sphere metal ions are affected by the change of pore widths (confinement effects), while the extents are significantly dependent on the type of adsorbed species. The type of adsorbed species is, however, not altered by the magnitude of confinement effects, and confinement effects are similar for different electrolyte concentrations. Ion-specific effects are pronounced for all magnitudes of confinement effects (from non- to strong confined conditions), and Hofmeister sequences of outer-sphere species are closely associated with the magnitude of confinement effects while those of inner-sphere species remain consistent. In addition, mechanistic aspects of confinement have been posed using the electrical double layer theories, and the results can be generalized to other confined systems that are ubiquitous in biology, chemistry, geology and nanotechnology. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Wear-dependent specific coefficients in a mechanistic model for turning of nickel-based superalloy with ceramic tools

    Science.gov (United States)

    López de Lacalle, Luis Norberto; Urbicain Pelayo, Gorka; Fernández-Valdivielso, Asier; Alvarez, Alvaro; González, Haizea

    2017-09-01

    Difficult to cut materials such as nickel and titanium alloys are used in the aeronautical industry, the former alloys due to its heat-resistant behavior and the latter for the low weight - high strength ratio. Ceramic tools made out alumina with reinforce SiC whiskers are a choice in turning for roughing and semifinishing workpiece stages. Wear rate is high in the machining of these alloys, and consequently cutting forces tends to increase along one operation. This paper establishes the cutting force relation between work-piece and tool in the turning of such difficult-to-cut alloys by means of a mechanistic cutting force model that considers the tool wear effect. The cutting force model demonstrates the force sensitivity to the cutting engagement parameters (ap, f) when using ceramic inserts and wear is considered. Wear is introduced through a cutting time factor, being useful in real conditions taking into account that wear quickly appears in alloys machining. A good accuracy in the cutting force model coefficients is the key issue for an accurate prediction of turning forces, which could be used as criteria for tool replacement or as input for chatter or other models.

  17. Exogenous factors in panic disorder: clinical and research implications.

    Science.gov (United States)

    Roy-Byrne, P P; Uhde, T W

    1988-02-01

    Because panic disorder has an underlying biologic and probably genetic basis, the role of factors outside the organism in initiating and sustaining panic is often overlooked. The authors review certain exogenous factors that seem capable of triggering attacks and/or increasing their frequency and intensity: self-administered pharmacologic agents (caffeine, alcohol, nicotine, over-the-counter cold preparations, cannabis, cocaine); habits (sleep deprivation, diet, exercise, relaxation, hyperventilation); and aspects of the environment (fluorescent lighting, life stressors). There may be a specificity to the action of some of these factors, because certain factors previously thought to trigger panic attacks (e.g., pain, hypoglycemia) have been proved not to have this effect. Although the clinical significance of many of the exogenous factors discussed still awaits empirical confirmation, attention to such factors during the initial evaluation of a patient with panic disorder may be helpful in formulating a successful treatment plan.

  18. Implications of the Fukushima Nuclear Disaster: Man-Made Hazards, Vulnerability Factors, and Risk to Environmental Health.

    Science.gov (United States)

    Eddy, Christopher; Sase, Eriko

    2015-01-01

    The objective of this article was to examine the environmental health implications of the 2011 Fukushima nuclear disaster from an all-hazards perspective. The authors performed a literature review that included Japanese and international nuclear guidance and policy, scientific papers, and reports on the Chernobyl and Three Mile Island disasters while also considering all-hazards preparedness rubrics in the U.S. The examination of the literature resulted in the following: a) the authors' "All-Hazards Planning Reference Model" that distinguishes three planning categories-Disaster Trigger Event, Man-Made Hazards, and Vulnerability Factors; b) the generalization of their model to other countries; and c) advocacy for environmental health end fate to be considered in planning phases to minimize risk to environmental health. This article discusses inconsistencies in disaster planning and nomenclature existing in the studied materials and international guidance and proposes new opportunity for developing predisaster risk assessment, risk communication, and prevention capacity building.

  19. Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models

    Science.gov (United States)

    Hooten, Mevin B.; Leeds, William B.; Fiechter, Jerome; Wikle, Christopher K.

    2011-01-01

    We present an approach for estimating physical parameters in nonlinear models that relies on an approximation to the mechanistic model itself for computational efficiency. The proposed methodology is validated and applied in two different modeling scenarios: (a) Simulation and (b) lower trophic level ocean ecosystem model. The approach we develop relies on the ability to predict right singular vectors (resulting from a decomposition of computer model experimental output) based on the computer model input and an experimental set of parameters. Critically, we model the right singular vectors in terms of the model parameters via a nonlinear statistical model. Specifically, we focus our attention on first-order models of these right singular vectors rather than the second-order (covariance) structure.

  20. Cas9 versus Cas12a/Cpf1: Structure-function comparisons and implications for genome editing.

    Science.gov (United States)

    Swarts, Daan C; Jinek, Martin

    2018-05-22

    Cas9 and Cas12a are multidomain CRISPR-associated nucleases that can be programmed with a guide RNA to bind and cleave complementary DNA targets. The guide RNA sequence can be varied, making these effector enzymes versatile tools for genome editing and gene regulation applications. While Cas9 is currently the best-characterized and most widely used nuclease for such purposes, Cas12a (previously named Cpf1) has recently emerged as an alternative for Cas9. Cas9 and Cas12a have distinct evolutionary origins and exhibit different structural architectures, resulting in distinct molecular mechanisms. Here we compare the structural and mechanistic features that distinguish Cas9 and Cas12a, and describe how these features modulate their activity. We discuss implications for genome editing, and how they may influence the choice of Cas9 or Cas12a for specific applications. Finally, we review recent studies in which Cas12a has been utilized as a genome editing tool. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes. © 2018 Wiley Periodicals, Inc.

  1. Improving the prediction of methane production and representation of rumen fermentation for finishing beef cattle within a mechanistic model

    NARCIS (Netherlands)

    Ellis, J.L.; Dijkstra, J.; Bannink, A.; Kebreab, E.; Archibeque, S.; Benchaar, C.; Beauchemin, K.; Nkrumah, D.J.; France, J.

    2014-01-01

    The purpose of this study was to evaluate prediction of methane emissions from finishing beef cattle using an extant mechanistic model with pH-independent or pH-dependent VFA stoichiometries, a recent stoichiometry adjustment for the use of monensin, and adaptation of the underlying model structure,

  2. Tumorigenic and Antiproliferative Properties of the TALE-Transcription Factors MEIS2D and MEIS2A in Neuroblastoma.

    Science.gov (United States)

    Groß, Anja; Schulz, Catrine; Kolb, Jasmine; Koster, Jan; Wehner, Sibylle; Czaplinski, Sebastian; Khilan, Abdulghani; Rohrer, Hermann; Harter, Patrick N; Klingebiel, Thomas; Langer, Julian D; Geerts, Dirk; Schulte, Dorothea

    2018-04-15

    Neuroblastoma is one of only a few human cancers that can spontaneously regress even after extensive dissemination, a poorly understood phenomenon that occurs in as many as 10% of patients. In this study, we identify the TALE-homeodomain transcription factor MEIS2 as a key contributor to this phenomenon. We identified MEIS2 as a MYCN-independent factor in neuroblastoma and showed that in this setting the alternatively spliced isoforms MEIS2A and MEIS2D exert antagonistic functions. Specifically, expression of MEIS2A was low in aggressive stage 4 neuroblastoma but high in spontaneously regressing stage 4S neuroblastoma. Moderate elevation of MEIS2A expression reduced proliferation of MYCN -amplified human neuroblastoma cells, induced neuronal differentiation and impaired the ability of these cells to form tumors in mice. In contrast, MEIS2A silencing or MEIS2D upregulation enhanced the aggressiveness of the tumor phenotype. Mechanistically, MEIS2A uncoupled a negative feedback loop that restricts accumulation of cellular retinoic acid, an effective agent in neuroblastoma treatment. Overall, our results illuminate the basis for spontaneous regression in neuroblastoma and identify an MEIS2A-specific signaling network as a potential therapeutic target in this common pediatric malignancy. Significance: This study illuminates the basis for spontaneous regressions that can occur in a common pediatric tumor, with implications for the development of new treatment strategies. Cancer Res; 78(8); 1935-47. ©2018 AACR . ©2018 American Association for Cancer Research.

  3. "implicate Order" and the Good Life: Applying David Bohm's Ontology in Human World

    Science.gov (United States)

    Ravn, Ib.

    In an attempt to formulate a coherent view of quantum reality, the theoretical physicist David Bohm has proposed a new concept of order to supplement the mechanistic Cartesian order of traditional physics. The "implicate" order is a subtler and deeper order that emphasizes "unbroken wholeness in flowing movement," in contrast to the coarser and more superficial, "explicate" Cartesian order of distinct phenomena. This dissertation attempts to develop a meaning for the idea of implicate order in the world of human experience. First is offered an account of some evolutionary episodes in terms of implicate and explicate order which draws on compatible work in cosmology, embryogenesis, visual perception, brain memory, decision making and phenomenology. Two important characteristics of the implicate order are then identified: in an implicate order, the whole is enfolded (or represented) in its parts; and all parts render different perspectives of the whole. Using arguments from decision making, the study of "flow" in human consciousness, and a model of skill acquisition, it is suggested that these characteristics manifest themselves in the human world as the "unity experience" and the "diversity experience," respectively. The former is the experience that a given part of one's life reveals a larger wholeness or unity; the subject-object distinction is transcended and one becomes absorbed in the flow of whatever activity is pursued. The latter is a deep appreciation of the diversity of ways in which people may seek the unity experience. These experiences are proposed as general values: social and psychological conditions ought to be such that these experiences are enhanced in all people. A two-by-two matrix of the two experiences demonstrates the danger of pursuing one to the exclusion of the other. The experience of unity without diversity turns into absolutism, the insistence that one's chosen activities or beliefs are the only right ones. The experience of diversity

  4. Life at the Common Denominator: Mechanistic and Quantitative Biology for the Earth and Space Sciences

    Science.gov (United States)

    Hoehler, Tori M.

    2010-01-01

    The remarkable challenges and possibilities of the coming few decades will compel the biogeochemical and astrobiological sciences to characterize the interactions between biology and its environment in a fundamental, mechanistic, and quantitative fashion. The clear need for integrative and scalable biology-environment models is exemplified in the Earth sciences by the challenge of effectively addressing anthropogenic global change, and in the space sciences by the challenge of mounting a well-constrained yet sufficiently adaptive and inclusive search for life beyond Earth. Our understanding of the life-planet interaction is still, however, largely empirical. A variety of approaches seek to move from empirical to mechanistic descriptions. One approach focuses on the relationship between biology and energy, which is at once universal (all life requires energy), unique (life manages energy flow in a fashion not seen in abiotic systems), and amenable to characterization and quantification in thermodynamic terms. Simultaneously, a focus on energy flow addresses a critical point of interface between life and its geological, chemical, and physical environment. Characterizing and quantifying this relationship for life on Earth will support the development of integrative and predictive models for biology-environment dynamics. Understanding this relationship at its most fundamental level holds potential for developing concepts of habitability and biosignatures that can optimize astrobiological exploration strategies and are extensible to all life.

  5. A mechanistic approach to postirradiation spoilage kinetics of fish

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: In order to simulate postirradiation spoilage of fish, the mechanistic aspects of the growth of surviving microorganisms during chill storage and their product formation in irradiated fish were analyzed. Anchovy (Engraulis encrasicholus) samples those unirradiated and irradiated at 1, 2 and 3 kGy doses of gamma radiation were stored at +2 o C for 21 days. Total bacterial counts (TBC) and trimethylamine (TMA) analysis of the samples were done periodically during storage. Depending on the proposed spoilage mechanism, kinetic model equations were derived. By using experimental data of TBC and TMA in the developed model, the postirradiation spoilage parameters including growth rate constant, inital and maximum attainable TBC, lag time and TMA yield were evaluated and microbial spoilage of fish was simulated for postirradiation storage. Shelf life of irradiated fish was estimated depending on the spoilage kinetics. Dose effects on the kinetic parameters were analyzed. It is suggested that the kinetic evaluation method developed in this study may be used for quality assessment, shelf life determination and dose optimization for radiation preservation of fish

  6. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.

    Science.gov (United States)

    Agarwal, Vinayak; Miles, Zachary D; Winter, Jaclyn M; Eustáquio, Alessandra S; El Gamal, Abrahim A; Moore, Bradley S

    2017-04-26

    Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.

  7. Fire in the Plio-Pleistocene: the functions of hominin fire use, and the mechanistic, developmental and evolutionary consequences.

    Science.gov (United States)

    Attwell, Laura; Kovarovic, Kris; Kendal, Jeremy

    2015-07-20

    Fire is a powerful natural force that can change landscapes extremely quickly. Hominins have harnessed this resource for their own purposes, with mechanistic and developmental physiological consequences. In addition, the use of fire has niche constructive effects, altering selective environments for genetic and cultural evolution. We review the record for hominin fire use in the Plio-Pleistocene, before considering the various functions for its use, and the resultant mechanistic and developmental consequences. We also adopt the niche construction framework to consider how the use of fire can modify selective environments, and thus have evolutionary consequences at genetic and cultural levels. The light that fire produces may influence photoperiodicity and alter hormonally-controlled bodily rhythms. Fire used for cooking could have extended the range of foods hominins were able to consume, and reduced digestion costs. This may have contributed to the expansion of the hominin brain and facial anatomy, influenced by a higher quality cooked diet. Fire may also have allowed dispersal into northern areas with much cooler climates than the hominin African origin, posing novel problems that affected diet and social behaviour.

  8. BACH transcription factors in innate and adaptive immunity.

    Science.gov (United States)

    Igarashi, Kazuhiko; Kurosaki, Tomohiro; Roychoudhuri, Rahul

    2017-07-01

    BTB and CNC homology (BACH) proteins are transcriptional repressors of the basic region leucine zipper (bZIP) transcription factor family. Recent studies indicate widespread roles of BACH proteins in controlling the development and function of the innate and adaptive immune systems, including the differentiation of effector and memory cells of the B and T cell lineages, CD4 + regulatory T cells and macrophages. Here, we emphasize similarities at a molecular level in the cell-type-specific activities of BACH factors, proposing that competitive interactions of BACH proteins with transcriptional activators of the bZIP family form a common mechanistic theme underlying their diverse actions. The findings contribute to a general understanding of how transcriptional repressors shape lineage commitment and cell-type-specific functions through repression of alternative lineage programmes.

  9. Radiosensitivity modulating factors: Role of PARP-1, PARP-2 and Cdk5 proteins and chromatin implication

    International Nuclear Information System (INIS)

    Boudra, M.T.

    2011-12-01

    The post-translational modifications of DNA repair proteins and histone remodeling factors by poly(ADP-ribose)ylation and phosphorylation are essential for the maintenance of DNA integrity and chromatin structure, and in particular in response to DNA damaging produced by ionizing radiation (IR). Amongst the proteins implicated in these two processes are the poly(ADP-ribose) polymerase -1 (PARP-1) and PARP-2, and the cyclin-dependent kinase Cdk5: PARP-1 and 2 are involved in DNA single strand break (SSB) repair (SSBR) and Cdk5 depletion has been linked with increased cell sensitivity to PARP inhibition. We have shown by using HeLa cells stably depleted for either CdK5 or PARP-2, that the recruitment profile of PARP-1 and XRCC-1, two proteins involved in the short-patch (SP) SSBR sub-pathway, to DNA damage sites is sub-maximal and that of PCNA, a protein involved in the long-patch (LP) repair pathway, is increased in the absence of Cdk5 and decreased in the absence of PARP-2 suggesting that both Cdk5 and PARP-2 are involved in both SSBR sub-pathways. PARP-2 and Cdk5 also impact on the poly(ADP-ribose) levels in cells as in the absence of Cdk5 a hyper-activation of PARP-1 was found and in the absence of PARP-2 a reduction in poly(ADP-ribose) glyco-hydrolase (PARG) activity was seen. However, in spite of these changes no impact on the repair of SSBs induced by IR was seen in either the Cdk5 or PARP-2 depleted cells (Cdk5 KD or PARP-2 KD cells) but, interestingly, increased radiation sensitivity in terms of cell killing was noted in the Cdk5 depleted cells. We also found that Cdk5, PARP-2 and PARG were all implicated in the regulation of the recruitment and the dissociation of the chromatin-remodeling factor ALC1 from DNA damage sites suggesting a role for these three proteins in changes in chromatin structure after DNA photo-damage. These results, taken together with the observation that PARP-1 recruitment is sub-optimal in both Cdk5 KD and PARP-2 KD cells, show that

  10. Non-Western students' causal reasoning about biologically adaptive changes in humans, other animals and plants: instructional and curricular implications

    Science.gov (United States)

    Mbajiorgu, Ngozika; Anidu, Innocent

    2017-06-01

    Senior secondary school students (N = 360), 14- to 18-year-olds, from the Igbo culture of eastern Nigeria responded to a questionnaire requiring them to give causal explanations of biologically adaptive changes in humans, other animals and plants. A student subsample (n = 36) was, subsequently, selected for in-depth interviews. Significant differences were found between prompts within the prompt categories, suggesting item feature effects. However, the most coherent pattern was found within the plant category as patterns differed for the mechanistic proximate (MP) reasoning category only. Patterns also differed highly significantly between the prompt categories, with patterns for teleology, MP, mechanistic ultimate and don't know categories similar for plants and other animals but different for the human category. Both urban and rural students recognise commonalities in causality between the three prompt categories, in that their preferences for causal explanations were similar across four reasoning categories. The rural students, however, were more likely than their urban counterparts to give multiple causal explanations in the span of a single response and less likely to attribute causal agency to God. Two factors, religious belief and language, for all the students; and one factor, ecological closeness to nature, for rural students were suspected to have produced these patterns.

  11. Antibiotic-resistant Pseudomonas aeruginosa infection in patients with bronchiectasis: prevalence, risk factors and prognostic implications

    Directory of Open Access Journals (Sweden)

    Gao YH

    2018-01-01

    Full Text Available Yong-hua Gao,1,* Wei-jie Guan,2,* Ya-nan Zhu,3 Rong-chang Chen,2 Guo-jun Zhang1 1Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 2State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 3Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China *These authors contributed equally to this work Background and aims: Pseudomonas aeruginosa (PA is the most common pathogen in bronchiectasis and frequently develops resistance to multiple classes of antibiotics, but little is known about the clinical impacts of PA-resistant (PA-R isolates on bronchiectasis. We, therefore, investigated the prevalence, risk factors and prognostic implications of PA-R isolates in hospitalized bronchiectasis patients.Patients and methods: Between June 2011 and July 2016, data from adult bronchiectasis patients isolated with PA at the First Affiliated Hospital of Zhengzhou University were retrospectively analyzed. PA was classified as PA-R in case antibiogram demonstrated resistance on at least one occasion.Results: Seven hundred forty-seven bronchiectasis patients were assessed. Of these, 147 (19.7% had PA isolate in the sputum or bronchoscopic culture. PA-R and PA-sensitive accounted for 88 (59.9% and 59 (31.1% patients, respectively. In multivariate model, factors associated with PA-R isolate in bronchiectasis included prior exposure to antibiotics (odds ratio [OR] =6.18, three or more exacerbations in the previous year (OR =2.81, higher modified Medical Research Council dyspnea scores (OR =1.93 and greater radiologic severity (OR =1.15. During follow-up (median: 26 months; interquartile range: 6–59 months, 36 patients died, of whom 24 (66

  12. In Vitro Efficacy and Mechanistic Role of Indocyanine Green as a Photodynamic Therapy Agent for Human Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Mamoon, A.; Gamal-Eldeen, A; Ruppel, M; Smith, R; Tsang, T; Miller, L

    2009-01-01

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway.

  13. Chirality-Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and Scalable Production

    Science.gov (United States)

    2016-09-15

    AFRL-AFOSR-VA-TR-2016-0319 Chirality -Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and...TELEPHONE NUMBER (Include area code) DISTRIBUTION A: Distribution approved for public release. 15-06-2016 final Jun 2014 - Jun 2016 Chirality ...for Public Release; Distribution is Unlimited. In this report, we present our efforts in establishing a novel and effective approach for chirality

  14. Toward a mechanistic modeling of nitrogen limitation for photosynthesis

    Science.gov (United States)

    Xu, C.; Fisher, R. A.; Travis, B. J.; Wilson, C. J.; McDowell, N. G.

    2011-12-01

    The nitrogen limitation is an important regulator for vegetation growth and global carbon cycle. Most current ecosystem process models simulate nitrogen effects on photosynthesis based on a prescribed relationship between leaf nitrogen and photosynthesis; however, there is a large amount of variability in this relationship with different light, temperature, nitrogen availability and CO2 conditions, which can affect the reliability of photosynthesis prediction under future climate conditions. To account for the variability in nitrogen-photosynthesis relationship under different environmental conditions, in this study, we developed a mechanistic model of nitrogen limitation for photosynthesis based on nitrogen trade-offs among light absorption, electron transport, carboxylization and carbon sink. Our model shows that strategies of nitrogen storage allocation as determined by tradeoff among growth and persistence is a key factor contributing to the variability in relationship between leaf nitrogen and photosynthesis. Nitrogen fertilization substantially increases the proportion of nitrogen in storage for coniferous trees but much less for deciduous trees, suggesting that coniferous trees allocate more nitrogen toward persistence compared to deciduous trees. The CO2 fertilization will cause lower nitrogen allocation for carboxylization but higher nitrogen allocation for storage, which leads to a weaker relationship between leaf nitrogen and maximum photosynthesis rate. Lower radiation will cause higher nitrogen allocation for light absorption and electron transport but less nitrogen allocation for carboxylyzation and storage, which also leads to weaker relationship between leaf nitrogen and maximum photosynthesis rate. At the same time, lower growing temperature will cause higher nitrogen allocation for carboxylyzation but lower allocation for light absorption, electron transport and storage, which leads to a stronger relationship between leaf nitrogen and maximum

  15. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    2009-08-01

    Full Text Available Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition

  16. A mechanistic modelling and data assimilation approach to estimate the carbon/chlorophyll and carbon/nitrogen ratios in a coupled hydrodynamical-biological model

    Directory of Open Access Journals (Sweden)

    B. Faugeras

    2004-01-01

    Full Text Available The principal objective of hydrodynamical-biological models is to provide estimates of the main carbon fluxes such as total and export oceanic production. These models are nitrogen based, that is to say that the variables are expressed in terms of their nitrogen content. Moreover models are calibrated using chlorophyll data sets. Therefore carbon to chlorophyll (C:Chl and carbon to nitrogen (C:N ratios have to be assumed. This paper addresses the problem of the representation of these ratios. In a 1D framework at the DYFAMED station (NW Mediterranean Sea we propose a model which enables the estimation of the basic biogeochemical fluxes and in which the spatio-temporal variability of the C:Chl and C:N ratios is fully represented in a mechanical way. This is achieved through the introduction of new state variables coming from the embedding of a phytoplankton growth model in a more classical Redfieldian NNPZD-DOM model (in which the C:N ratio is assumed to be a constant. Following this modelling step, the parameters of the model are estimated using the adjoint data assimilation method which enables the assimilation of chlorophyll and nitrate data sets collected at DYFAMED in 1997.Comparing the predictions of the new Mechanistic model with those of the classical Redfieldian NNPZD-DOM model which was calibrated with the same data sets, we find that both models reproduce the reference data in a comparable manner. Both fluxes and stocks can be equally well predicted by either model. However if the models are coinciding on an average basis, they are diverging from a variability prediction point of view. In the Mechanistic model biology adapts much faster to its environment giving rise to higher short term variations. Moreover the seasonal variability in total production differs from the Redfieldian NNPZD-DOM model to the Mechanistic model. In summer the Mechanistic model predicts higher production values in carbon unit than the Redfieldian NNPZD

  17. Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications.

    Science.gov (United States)

    Logan, Randall; Funk, Ryan S; Axcell, Erick; Krise, Jeffrey P

    2012-08-01

    Many commercially available, weakly basic drugs have been shown to be lysosomotropic, meaning they are subject to extensive sequestration in lysosomes through an ion trapping-type mechanism. The extent of lysosomal trapping of a drug is an important therapeutic consideration because it can influence both activity and pharmacokinetic disposition. The administration of certain drugs can alter lysosomes such that their accumulation capacity for co-administered and/or secondarily administered drugs is altered. In this review the authors explore what is known regarding the mechanistic basis for drug-drug interactions involving lysosomes. Specifically, the authors address the influence of drugs on lysosomal pH, volume and lipid processing. Many drugs are known to extensively accumulate in lysosomes and significantly alter their structure and function; however, the therapeutic and toxicological implications of this remain controversial. The authors propose that drug-drug interactions involving lysosomes represent an important potential source of variability in drug activity and pharmacokinetics. Most evaluations of drug-drug interactions involving lysosomes have been performed in cultured cells and isolated tissues. More comprehensive in vivo evaluations are needed to fully explore the impact of this drug-drug interaction pathway on therapeutic outcomes.

  18. Mechanistic modelling of the corrosion behaviour of copper nuclear fuel waste containers

    Energy Technology Data Exchange (ETDEWEB)

    King, F; Kolar, M

    1996-10-01

    A mechanistic model has been developed to predict the long-term corrosion behaviour of copper nuclear fuel waste containers in a Canadian disposal vault. The model is based on a detailed description of the electrochemical, chemical, adsorption and mass-transport processes involved in the uniform corrosion of copper, developed from the results of an extensive experimental program. Predictions from the model are compared with the results of some of these experiments and with observations from a bronze cannon submerged in seawater saturated clay sediments. Quantitative comparisons are made between the observed and predicted corrosion potential, corrosion rate and copper concentration profiles adjacent to the corroding surface, as a way of validating the long-term model predictions. (author). 12 refs., 5 figs.

  19. Induction of specific neuron types by overexpression of single transcription factors.

    Science.gov (United States)

    Teratani-Ota, Yusuke; Yamamizu, Kohei; Piao, Yulan; Sharova, Lioudmila; Amano, Misa; Yu, Hong; Schlessinger, David; Ko, Minoru S H; Sharov, Alexei A

    2016-10-01

    Specific neuronal types derived from embryonic stem cells (ESCs) can facilitate mechanistic studies and potentially aid in regenerative medicine. Existing induction methods, however, mostly rely on the effects of the combined action of multiple added growth factors, which generally tend to result in mixed populations of neurons. Here, we report that overexpression of specific transcription factors (TFs) in ESCs can rather guide the differentiation of ESCs towards specific neuron lineages. Analysis of data on gene expression changes 2 d after induction of each of 185 TFs implicated candidate TFs for further ESC differentiation studies. Induction of 23 TFs (out of 49 TFs tested) for 6 d facilitated neural differentiation of ESCs as inferred from increased proportion of cells with neural progenitor marker PSA-NCAM. We identified early activation of the Notch signaling pathway as a common feature of most potent inducers of neural differentiation. The majority of neuron-like cells generated by induction of Ascl1, Smad7, Nr2f1, Dlx2, Dlx4, Nr2f2, Barhl2, and Lhx1 were GABA-positive and expressed other markers of GABAergic neurons. In the same way, we identified Lmx1a and Nr4a2 as inducers for neurons bearing dopaminergic markers and Isl1, Fezf2, and St18 for cholinergic motor neurons. A time-course experiment with induction of Ascl1 showed early upregulation of most neural-specific messenger RNA (mRNA) and microRNAs (miRNAs). Sets of Ascl1-induced mRNAs and miRNAs were enriched in Ascl1 targets. In further studies, enrichment of cells obtained with the induction of Ascl1, Smad7, and Nr2f1 using microbeads resulted in essentially pure population of neuron-like cells with expression profiles similar to neural tissues and expressed markers of GABAergic neurons. In summary, this study indicates that induction of transcription factors is a promising approach to generate cultures that show the transcription profiles characteristic of specific neural cell types.

  20. Prenatal exposure to environmental factors and congenital limb defects.

    Science.gov (United States)

    Alexander, Peter G; Clark, Karen L; Tuan, Rocky S

    2016-09-01

    Limb congenital defects afflict approximately 0.6:1000 live births. In addition to genetic factors, prenatal exposure to drugs and environmental toxicants, represents a major contributing factor to limb defects. Examples of well-recognized limb teratogenic agents include thalidomide, warfarin, valproic acid, misoprostol, and phenytoin. While the mechanism by which these agents cause dymorphogenesis is increasingly clear, prediction of the limb teratogenicity of many thousands of as yet uncharacterized environmental factors (pollutants) remains inexact. This is limited by the insufficiencies of currently available models. Specifically, in vivo approaches using guideline animal models have inherently deficient predictive power due to genomic and anatomic differences that complicate mechanistic comparisons. On the other hand, in vitro two-dimensional (2D) cell cultures, while accessible for cellular and molecular experimentation, do not reflect the three-dimensional (3D) morphogenetic events in vivo nor systemic influences. More robust and accessible models based on human cells that accurately replicate specific processes of embryonic limb development are needed to enhance limb teratogenesis prediction and to permit mechanistic analysis of the adverse outcome pathways. Recent advances in elucidating mechanisms of normal development will aid in the development of process-specific 3D cell cultures within specialized bioreactors to support multicellular microtissues or organoid constructs that will lead to increased understanding of cell functions, cell-to-cell signaling, pathway networks, and mechanisms of toxicity. The promise is prompting researchers to look to such 3D microphysiological systems to help sort out complex and often subtle interactions relevant to developmental malformations that would not be evident by standard 2D cell culture testing. Birth Defects Research (Part C) 108:243-273, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    International Nuclear Information System (INIS)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-01-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish release fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.

  2. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David [Argonne National Lab. (ANL), Argonne, IL (United States); Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish release fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.

  3. REM sleep behaviour disorder: prodromal and mechanistic insights for Parkinson's disease.

    Science.gov (United States)

    Tekriwal, Anand; Kern, Drew S; Tsai, Jean; Ince, Nuri F; Wu, Jianping; Thompson, John A; Abosch, Aviva

    2017-05-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterised by complex motor enactment of dreams and is a potential prodromal marker of Parkinson's disease (PD). Of note, patients with PD observed during RBD episodes exhibit improved motor function, relative to baseline states during wake periods. Here, we review recent epidemiological and mechanistic findings supporting the prodromal value of RBD for PD, incorporating clinical and electrophysiological studies. Explanations for the improved motor function during RBD episodes are evaluated in light of recent publications. In addition, we present preliminary findings describing changes in the activity of the basal ganglia across the sleep-wake cycle that contribute to our understanding of RBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Mechanistic Modeling Framework for Predicting Extreme Battery Response

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, Harry K.; Geller, Anthony S.; R. Kee (CSM); S. Allu (ORNL)

    2017-03-01

    The objective of this project was to Address root cause and implications of thermal runaway of Li-ion batteries by delivering a software architecture solution that can lead to the development of predictive mechanisms that are based on identification of species.

  5. Mechanistic Modeling Framework for Predicting Extreme Battery Response

    Energy Technology Data Exchange (ETDEWEB)

    Geller, Anthony S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    The objectives of this project are to address the root cause implications of thermal runaway of Li-ion batteries by delivering a software architecture solution that can lead to the development of predictive mechanisms that are based on identification of species.

  6. Nuclear debate and its implications in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz V, J M

    1977-09-01

    The controversy associated with nuclear power has been grouped into three areas: safety, economics, and availability of uranium. Implications of these factors are discussed in terms of their effects on Third World countries, particularly in Latin America.

  7. Development of a mechanistically based computer simulation of nitrogen oxide absorption in packed towers

    International Nuclear Information System (INIS)

    Counce, R.M.

    1981-01-01

    A computer simulation for nitrogen oxide (NO/sub x/) scrubbing in packed towers was developed for use in process design and process control. This simulation implements a mechanistically based mathematical model, which was formulated from (1) an exhaustive literature review; (2) previous NO/sub x/ scrubbing experience with sieve-plate towers; and (3) comparisons of sequential sets of experiments. Nitrogen oxide scrubbing is characterized by simultaneous absorption and desorption phenomena: the model development is based on experiments designed to feature these two phenomena. The model was then successfully tested in experiments designed to put it in jeopardy

  8. The position of place in governing global problems: A mechanistic account of place-as-context, and analysis of transitions towards spatially explicit approaches to climate science and policy

    International Nuclear Information System (INIS)

    MacGillivray, Brian H.

    2015-01-01

    Highlights: • Place is a central yet undertheorised concept within sustainability science. • Introduces an account of place as the context in which social and environmental mechanisms operate. • Uses this account to critique historical aspatial approaches to climate science and policy. • Traces out shifts towards spatially explicit approaches to climate governance. • A focus on place, heterogeneity, and context maximizes the credibility and policy-relevance of climate science. - Abstract: Place is a central concept within the sustainability sciences, yet it remains somewhat undertheorised, and its relationship to generalisation and scale is unclear. Here, we develop a mechanistic account of place as the fundamental context in which social and environmental mechanisms operate. It is premised on the view that the social and environmental sciences are typically concerned with causal processes and their interaction with context, rather than with a search for laws. We deploy our mechanistic account to critique the neglect of place that characterised the early stages of climate governance, ranging from the highly idealised general circulation and integrated assessment models used to analyze climate change, to the global institutions and technologies designed to manage it. We implicate this neglect of place in the limited progress in tackling climate change in both public and policy spheres, before tracing out recent shifts towards more spatially explicit approaches to climate change science and policy-making. These shifts reflect a move towards an ontology which acknowledges that even where causal drivers are in a sense global in nature (e.g. atmospheric levels of greenhouse gases), their impacts are often mediated through variables that are spatially clustered at multiple scales, moderated by contextual features of the local environment, and interact with the presence of other (localised) stressors in synergistic rather than additive ways. We conclude that a

  9. Novel host restriction factors implicated in HIV-1 replication.

    Science.gov (United States)

    Ghimire, Dibya; Rai, Madhu; Gaur, Ritu

    2018-04-01

    Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.

  10. Development of a mechanistic model for prediction of CO2 capture from gas mixtures by amine solutions in porous membranes.

    Science.gov (United States)

    Ghadiri, Mehdi; Marjani, Azam; Shirazian, Saeed

    2017-06-01

    A mechanistic model was developed in order to predict capture and removal of CO 2 from air using membrane technology. The considered membrane was a hollow-fiber contactor module in which gas mixture containing CO 2 was assumed as feed while 2-amino-2-metyl-1-propanol (AMP) was used as an absorbent. The mechanistic model was developed according to transport phenomena taking into account mass transfer and chemical reaction between CO 2 and amine in the contactor module. The main aim of modeling was to track the composition and flux of CO 2 and AMP in the membrane module for process optimization. For modeling of the process, the governing equations were computed using finite element approach in which the whole model domain was discretized into small cells. To confirm the simulation findings, model outcomes were compared with experimental data and good consistency was revealed. The results showed that increasing temperature of AMP solution increases CO 2 removal in the hollow-fiber membrane contactor.

  11. Proof complexity of intuitionistic implicational formulas

    Czech Academy of Sciences Publication Activity Database

    Jeřábek, Emil

    2017-01-01

    Roč. 168, č. 1 (2017), s. 150-190 ISSN 0168-0072 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : proof complexity * intuitionistic logic * implicational fragment Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.647, year: 2016 http://www.sciencedirect.com/science/article/pii/S0168007216301154

  12. Explicit Memory among Individuals with Mild and Moderate Intellectual Disability: Educational Implications

    Science.gov (United States)

    Lifshitz, Hefziba; Shtein, Sarit; Weiss, Itzhak; Svisrsky, Naama

    2011-01-01

    We previously reported a meta-analysis of explicit memory studies in populations with intellectual disability (ID). The current study discusses the educational implications of this meta-analysis. The main factors at the core of these implications can be divided into two categories: those related to task characteristics (e.g., depth of processing,…

  13. Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport.

    Directory of Open Access Journals (Sweden)

    Michelle H Le

    Full Text Available Stress exposure or increased levels of corticotropin-releasing factor (CRF induce hippocampal tau phosphorylation (tau-P in rodent models, a process that is dependent on the type-1 CRF receptor (CRFR1. Although these preclinical studies on stress-induced tau-P provide mechanistic insight for epidemiological work that identifies stress as a risk factor for Alzheimer's disease (AD, the actual impact of stress-induced tau-P on neuronal function remains unclear. To determine the functional consequences of stress-induced tau-P, we developed a novel mouse neuronal cell culture system to explore the impact of acute (0.5hr and chronic (2hr CRF treatment on tau-P and integral cell processes such as axon transport. Consistent with in vivo reports, we found that chronic CRF treatment increased tau-P levels and caused globular accumulations of phosphorylated tau in dendritic and axonal processes. Furthermore, while both acute and chronic CRF treatment led to significant reduction in CREB activation and axon transport of brain-derived neurotrophic factor (BDNF, this was not the case with mitochondrial transport. Acute CRF treatment caused increased mitochondrial velocity and distance traveled in neurons, while chronic CRF treatment modestly decreased mitochondrial velocity and greatly increased distance traveled. These results suggest that transport of cellular energetics may take priority over growth factors during stress. Tau-P was required for these changes, as co-treatment of CRF with a GSK kinase inhibitor prevented CRF-induced tau-P and all axon transport changes. Collectively, our results provide mechanistic insight into the consequences of stress peptide-induced tau-P and provide an explanation for how chronic stress via CRF may lead to neuronal vulnerability in AD.

  14. A dynamic, mechanistic model of metabolism in adipose tissue of lactating dairy cattle.

    Science.gov (United States)

    McNamara, J P; Huber, K; Kenéz, A

    2016-07-01

    Research in dairy cattle biology has resulted in a large body of knowledge on nutrition and metabolism in support of milk production and efficiency. This quantitative knowledge has been compiled in several model systems to balance and evaluate rations and predict requirements. There are also systems models for metabolism and reproduction in the cow that can be used to support research programs. Adipose tissue plays a significant role in the success and efficiency of lactation, and recent research has resulted in several data sets on genomic differences and changes in gene transcription of adipose tissue in dairy cattle. To fully use this knowledge, we need to build and expand mechanistic, dynamic models that integrate control of metabolism and production. Therefore, we constructed a second-generation dynamic, mechanistic model of adipose tissue metabolism of dairy cattle. The model describes the biochemical interconversions of glucose, acetate, β-hydroxybutyrate (BHB), glycerol, C16 fatty acids, and triacylglycerols. Data gathered from our own research and published references were used to set equation forms and parameter values. Acetate, glucose, BHB, and fatty acids are taken up from blood. The fatty acids are activated to the acyl coenzyme A moieties. Enzymatically catalyzed reactions are explicitly described with parameters including maximal velocity and substrate sensitivity. The control of enzyme activity is partially carried out by insulin and norepinephrine, portraying control in the cow. Model behavior was adequate, with sensitive responses to changing substrates and hormones. Increased nutrient uptake and increased insulin stimulate triacylglycerol synthesis, whereas a reduction in nutrient availability or increase in norepinephrine increases triacylglycerol hydrolysis and free fatty acid release to blood. This model can form a basis for more sophisticated integration of existing knowledge and future studies on metabolic efficiency of dairy cattle

  15. Mechanistic Insights into Dye-Decolorizing Peroxidase Revealed by Solvent Isotope and Viscosity Effects

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Ruben [Department; Huang, Gaochao [Department; Meekins, David A. [Department; Geisbrecht, Brian V. [Department; Li, Ping [Department

    2017-08-18

    Dye-decolorizing peroxidases (DyPs) are a family of H2O2-dependent heme peroxidases that have shown potential applications in lignin degradation and valorization. However, the DyP kinetic mechanism remains underexplored. Using structural biology and solvent isotope (sKIE) and viscosity effects, many mechanistic characteristics have been determined for the B-class ElDyP from Enterobacter lignolyticus. Its structure revealed that a water molecule acts as the sixth axial ligand and two channels at diameters of ~3.0 and 8.0 Å lead to the heme center. A conformational change of ERS* to ERS, which have identical spectral characteristics, was proposed as the final step in DyPs’ bisubstrate Ping-Pong mechanism. This step is also the rate-determining step in ABTS oxidation. The normal KIE of wild-type ElDyP with D2O2 at pD 3.5 suggested that compound 0 deprotonation by the distal aspartate is rate-limiting in the formation of compound I, which is more reactive under acidic pH than under neutral or alkaline pH. The viscosity effects and other biochemical methods implied that the reducing substrate binds with compound I instead of the free enzyme. The significant inverse sKIEs of kcat/KM and kERS* suggested that the aquo release in ElDyP is mechanistically important and may explain the enzyme’s adoption of two-electron reduction for compound I. The distal aspartate is catalytically more important than the distal arginine and plays key roles in determining ElDyP’s optimum acidic pH. The kinetic mechanism of D143H-ElDyP was also briefly studied. The results obtained will pave the way for future protein engineering to improve DyPs’ lignolytic activity.

  16. The Potential Impacts of Climate Change Factors on Freshwater Eutrophication: Implications for Research and Countermeasures of Water Management in China

    Directory of Open Access Journals (Sweden)

    Rui Xia

    2016-03-01

    Full Text Available Water eutrophication has become one of the most serious aquatic environmental problems around the world. More and more research has indicated climate change as a major natural factor that will lead to the acceleration of eutrophication in rivers and lakes. However, understanding the mechanism of climate change’s effect on water eutrophication is difficult due to the uncertainties caused by its complex, non-linear process. There is considerable uncertainty about the magnitude of future temperature changes, and how these will drive eutrophication in water bodies at regional scales under the effect of human activities. This review collects the existing international and domestic literature from the last 10 years, discussing the most sensitive factors of climate change (i.e., temperature, precipitation, wind, and solar radiation and analyzing their interaction with water eutrophication. Case studies of serious eutrophication and algal bloom problems in China are discussed to further demonstrate the conclusion. Finally, adaptation countermeasures and related implications are proposed in order to foster the development of sustainability strategies for water management in China.

  17. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans

    NARCIS (Netherlands)

    Kuempel, Eileen D; Jaurand, Marie-Claude; Møller, Peter; Morimoto, Yasuo; Kobayashi, Norihiro; Pinkerton, Kent E; Sargent, Linda M; Vermeulen, Roel C H; Fubini, Bice; Kane, Agnes B

    2017-01-01

    In an evaluation of carbon nanotubes (CNTs) for the IARC Monograph 111, the Mechanisms Subgroup was tasked with assessing the strength of evidence on the potential carcinogenicity of CNTs in humans. The mechanistic evidence was considered to be not strong enough to alter the evaluations based on the

  18. Insulin-like growth factors and pancreas beta cells.

    NARCIS (Netherlands)

    Haeften, T.W. van; Twickler, M.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their

  19. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, T. W.; Twickler, TB

    Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signalling

  20. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, T. W.; Twickler, Th B.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their

  1. Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: implication for vascular permeability.

    Directory of Open Access Journals (Sweden)

    Hongxiu Wen

    Full Text Available Despite the advent of antiretroviral therapy, complications of HIV-1 infection with concurrent drug abuse are an emerging problem. Morphine, often abused by HIV-infected patients, is known to accelerate neuroinflammation associated with HIV-1 infection. Detailed molecular mechanisms of morphine action however, remain poorly understood. Platelet-derived growth factor (PDGF has been implicated in a number of pathological conditions, primarily due to its potent mitogenic and permeability effects. Whether morphine exposure results in enhanced vascular permeability in brain endothelial cells, likely via induction of PDGF, remains to be established. In the present study, we demonstrated morphine-mediated induction of PDGF-BB in human brain microvascular endothelial cells, an effect that was abrogated by the opioid receptor antagonist-naltrexone. Pharmacological blockade (cell signaling and loss-of-function (Egr-1 approaches demonstrated the role of mitogen-activated protein kinases (MAPKs, PI3K/Akt and the downstream transcription factor Egr-1 respectively, in morphine-mediated induction of PDGF-BB. Functional significance of increased PDGF-BB manifested as increased breach of the endothelial barrier as evidenced by decreased expression of the tight junction protein ZO-1 in an in vitro model system. Understanding the regulation of PDGF expression may provide insights into the development of potential therapeutic targets for intervention of morphine-mediated neuroinflammation.

  2. Modeling of the pyruvate production with Escherichia coli: comparison of mechanistic and neural networks-based models.

    Science.gov (United States)

    Zelić, B; Bolf, N; Vasić-Racki, D

    2006-06-01

    Three different models: the unstructured mechanistic black-box model, the input-output neural network-based model and the externally recurrent neural network model were used to describe the pyruvate production process from glucose and acetate using the genetically modified Escherichia coli YYC202 ldhA::Kan strain. The experimental data were used from the recently described batch and fed-batch experiments [ Zelić B, Study of the process development for Escherichia coli-based pyruvate production. PhD Thesis, University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb, Croatia, July 2003. (In English); Zelić et al. Bioproc Biosyst Eng 26:249-258 (2004); Zelić et al. Eng Life Sci 3:299-305 (2003); Zelić et al Biotechnol Bioeng 85:638-646 (2004)]. The neural networks were built out of the experimental data obtained in the fed-batch pyruvate production experiments with the constant glucose feed rate. The model validation was performed using the experimental results obtained from the batch and fed-batch pyruvate production experiments with the constant acetate feed rate. Dynamics of the substrate and product concentration changes was estimated using two neural network-based models for biomass and pyruvate. It was shown that neural networks could be used for the modeling of complex microbial fermentation processes, even in conditions in which mechanistic unstructured models cannot be applied.

  3. Factorization of a 768-Bit RSA Modulus

    OpenAIRE

    Kleinjung, Thorsten; Aoki, Kazumaro; Franke, Jens; Lenstra, Arjen K.; Thome, Emmanuel; Bos, Joppe Willem; Gaudry, Pierrick; Kruppa, Alexander; Montgomery, Peter L.; Osvik, Dag Arne; Riele, Herman Te; Timofeev, Andrey; Zimmermann, Paul

    2010-01-01

    The original publication is available at www.springerlink.com; International audience; This paper reports on the factorization of the 768-bit number RSA-768 by the number field sieve factoring method and discusses some implications for RSA.

  4. Mechanisms behind efficacy of tumor necrosis factor inhibitors in inflammatory bowel diseases

    DEFF Research Database (Denmark)

    Olesen, Caroline Meyer; Coskun, Mehmet; Peyrin-Biroulet, Laurent

    2016-01-01

    Biological treatment with tumor necrosis factor (TNF) inhibitors is successful in the management of inflammatory bowel disease (IBD). All TNF inhibitors antagonize the pro-inflammatory cytokine TNF-α but with varying efficacies in IBD. The variations in efficacy probably are caused by structural ...... inhibitors in order to identify mechanisms of importance for their efficacy in IBD. Thus, a better understanding of the mechanistic basis for clinical efficacy can lead to a more rational use of TNF inhibitors in the management of IBD....

  5. Modulation of the Genome and Epigenome of Individuals Susceptible to Autism by Environmental Risk Factors

    Directory of Open Access Journals (Sweden)

    Costas Koufaris

    2015-04-01

    Full Text Available Diverse environmental factors have been implicated with the development of autism spectrum disorders (ASD. Genetic factors also underlie the differential vulnerability to environmental risk factors of susceptible individuals. Currently the way in which environmental risk factors interact with genetic factors to increase the incidence of ASD is not well understood. A greater understanding of the metabolic, cellular, and biochemical events involved in gene x environment interactions in ASD would have important implications for the prevention and possible treatment of the disorder. In this review we discuss various established and more alternative processes through which environmental factors implicated in ASD can modulate the genome and epigenome of genetically-susceptible individuals.

  6. Mechanistic Modeling of Water Replenishment Rate of Zeer Refrigerator

    Directory of Open Access Journals (Sweden)

    B. N. Nwankwojike

    2017-06-01

    Full Text Available A model for predicting the water replenishment rate of zeer pot refrigerator was developed in this study using mechanistic modeling approach and evaluated at Obowo, Imo State, Nigeria using six fruits, tomatoes, guava, okra, banana, orange and avocado pear. The developed model confirmed zeer pot water replenishment rate as a function of ambient temperature, relative humidity, wind speed, thermal conductivity of the pot materials and sand, density of air and water vapor, permeability coefficient of clay and heat transfer coefficient of water into air, circumferential length, height of pot, geometrical profile of the pot, heat load of the food preserved, heat flow into the device and gradient at which the pot is placed above ground level. Compared to the conventional approach of water replenishment, performance analysis results revealed 44% to 58% water economy when the zeer pot’s water was replenished based on the model’s prediction; while there was no significant difference in the shelf-life of the fruits preserved with both replenishment methods. Application of the developed water replenishment model facilitates optimal water usage in this system, thereby reducing operational cost of zeer pot refrigerator.

  7. Refined pipe theory for mechanistic modeling of wood development.

    Science.gov (United States)

    Deckmyn, Gaby; Evans, Sam P; Randle, Tim J

    2006-06-01

    We present a mechanistic model of wood tissue development in response to changes in competition, management and climate. The model is based on a refinement of the pipe theory, where the constant ratio between sapwood and leaf area (pipe theory) is replaced by a ratio between pipe conductivity and leaf area. Simulated pipe conductivity changes with age, stand density and climate in response to changes in allocation or pipe radius, or both. The central equation of the model, which calculates the ratio of carbon (C) allocated to leaves and pipes, can be parameterized to describe the contrasting stem conductivity behavior of different tree species: from constant stem conductivity (functional homeostasis hypothesis) to height-related reduction in stem conductivity with age (hydraulic limitation hypothesis). The model simulates the daily growth of pipes (vessels or tracheids), fibers and parenchyma as well as vessel size and simulates the wood density profile and the earlywood to latewood ratio from these data. Initial runs indicate the model yields realistic seasonal changes in pipe radius (decreasing pipe radius from spring to autumn) and wood density, as well as realistic differences associated with the competitive status of trees (denser wood in suppressed trees).

  8. Mechanistic study on spraying of blended biodiesel using phase Doppler anemometry

    International Nuclear Information System (INIS)

    Kamrak, Juthamas; Kongsombut, Benjapol; Grehan, Gerard; Saengkaew, Sawitree; Kim, Kyo-Seon; Charinpanitkul, Tawatchai

    2009-01-01

    Droplet size and dynamics of blended palm oil-based fatty acid methyl ester (FAME) and diesel oil spray were mechanistically investigated using a phase Doppler anemometry. A two-fluid atomizer was applied for dispersing viscous blends of blended biodiesel oil with designated flow rates. It was experimentally found that the atomizer could generate a spray with large droplets with Sauter mean diameters of ca. 30 μm at low air injection pressure. Such large droplets traveled with a low velocity along their trajectory after emerging from the nozzle tip. The viscosity of blended biodiesel could significantly affect the atomizing process, resulting in the controlled droplet size distribution. Blended biodiesel with a certain fraction of palm oil-based FAME would be consistently atomized owing to its low viscosity. However, the viscosity could exert only a small effect on the droplet velocity profile with the air injection pressure higher than 0.2 MPa.

  9. Mechanistic origin of dragon-kings in a population of competing agents

    Science.gov (United States)

    Johnson, N.; Tivnan, B.

    2012-05-01

    We analyze the mechanistic origins of the extreme behaviors that arise in an idealized model of a population of competing agents, such as traders in a market. These extreme behaviors exhibit the defining characteristics of `dragon-kings'. Our model comprises heterogeneous agents who repeatedly compete for some limited resource, making binary choices based on the strategies that they have in their possession. It generalizes the well-known Minority Game by allowing agents whose strategies have not made accurate recent predictions, to step out of the competition until their strategies improve. This generates a complex dynamical interplay between the number V of active agents (mimicking market volume) and the imbalance D between the decisions made (mimicking excess demand). The wide spectrum of extreme behaviors which emerge, helps to explain why no unique relationship has been identified between the price and volume during real market crashes and rallies.

  10. FACTORS INFLUENCING STUDENTS UNREST IN INSTITUTIONS OF HIGHER LEARNING AND ITS IMPLICATIONS ON THE ACADEMIC PERFORMANCE OF STUDENTS IN UNIVERSITY OF UYO, AKWA IBOM STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    Davies K.U

    2016-06-01

    Full Text Available Nigerians have for some time been disturbed by the alarming rate at which students' unrest in Nigerian institutions of higher learning have led to destruction of lives and property and untimely interruption of the planned academic programmes. On the basis of the above exposition, the project examined the concept of students’ unrest, factors that influence students’ unrest and its implication on the academic performance of students. A survey research design was adopted and a fifteen items questionnaire entitled "Factors Influencing Students’ Unrest in Institution of Higher Learning Questionnaire" (FISUIHLQ, was used to collect the data needed for analysis. Percentage, frequency count, and mean model were used to analyze the data collected. Items that fall between 0.50-1.49 mean score were considered Very Low, items that fall between 1.50-2.49 mean score were considered Low, items that fall between 2.50-3.49 mean score were considered Moderate, Items that fall between 3.50-4.49 mean score were considered High, while items that fall between mean scores of 4.50-5.00 were considered Very High. The study, therefore, discovered that breaking of rules and regulations, lack of social amenities and students involvement in cultism were seen as 'high' with mean scores of 2.60, 3.71 and 4.16 respectively, that is, they are serious factors that can influence students unrest in institutions of higher learning. While effective students’ union body and periodic strike by staff of the institution were seen as 'Low' with mean score of 2.21 and 1.96 respectively, that is, they are less serious factors that can influence students’ unrest. Also, it was discovered that disrupts of academic programmes, closure of schools, lecturers not unable to cover syllabus, and brain drain syndrome are the implications of students unrest with mean scores of 3.70,2.84,4.06,2.96 respectively were seen as ‘High’, that is, they are serious implication of students

  11. Implicative Algebras

    African Journals Online (AJOL)

    Tadesse

    In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra of Xu (1993) and further we prove that it is a regular Autometrized. Algebra. Further we remark that the binary operation → on lattice implicative algebra can never be associative. Key words: Implicative ...

  12. A scoping review of epidemiologic risk factors for pediatric obesity: Implications for future childhood obesity and dental caries prevention research.

    Science.gov (United States)

    Chi, Donald L; Luu, Monique; Chu, Frances

    2017-06-01

    What are the non-modifiable (socioeconomic, genetic) and modifiable factors (physical activity, dietary behaviors) related to childhood (under age 12) obesity? How can this knowledge be applied to oral health professionals' efforts to prevent or manage dental caries in children? Studies have identified risk factors for childhood obesity. The purpose of this scoping review was to develop a conceptual model to identify non-modifiable and modifiable risk factors for childhood obesity and to illustrate how these findings are relevant in developing interventions aimed at preventing obesity and dental caries in children. The authors searched PubMed and Embase and limited the study to English-language publications. A total of 2,572 studies were identified. After de-duplication, 2,479 studies remained and were downloaded into a citation-management tool. Two authors screened the titles and abstracts for relevance. Two hundred and sixty studies remained and were retrieved for a full-text review, and 80 studies were excluded, resulting in 180 studies included in the scoping review. An inductive content analytic methods was used to organize all statistically significant obesity risk factors into seven domains, which were classified as non-modifiable or modifiable; then a conceptual model of common risk factors associated with childhood obesity and dental caries was developed. Non-modifiable obesity risk factors include biological and developmental (e.g., genes, developmental conditions, puberty), sociodemographic and household (e.g., race/ethnicity, socioeconomic status, parent education, unemployment), cultural (e.g., degree of acculturation), and community (e.g., neighborhood composition). Modifiable risk factors included behavioral (e.g., diet, physical activity, weight), psychosocial (e.g., maternal stress, family functioning, parenting practices, child temperament), and medical (e.g., parent smoking, maternal health, child health). Identifying common risk factors has

  13. Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution.

    Science.gov (United States)

    Okpeku, Moses; Esmailizadeh, Ali; Adeola, Adeniyi C; Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M; Imumorin, Ikhide G; Peters, Sunday O; Zhang, Jiajin; Dong, Yang; Wang, Wen

    2016-01-01

    The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats' populations. Fu and Li tests were significantly positive but Tajima's D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat IRF3

  14. Mechanistic movement models to understand epidemic spread.

    Science.gov (United States)

    Fofana, Abdou Moutalab; Hurford, Amy

    2017-05-05

    An overlooked aspect of disease ecology is considering how and why animals come into contact with one and other resulting in disease transmission. Mathematical models of disease spread frequently assume mass-action transmission, justified by stating that susceptible and infectious hosts mix readily, and foregoing any detailed description of host movement. Numerous recent studies have recorded, analysed and modelled animal movement. These movement models describe how animals move with respect to resources, conspecifics and previous movement directions and have been used to understand the conditions for the occurrence and the spread of infectious diseases when hosts perform a type of movement. Here, we summarize the effect of the different types of movement on the threshold conditions for disease spread. We identify gaps in the literature and suggest several promising directions for future research. The mechanistic inclusion of movement in epidemic models may be beneficial for the following two reasons. Firstly, the estimation of the transmission coefficient in an epidemic model is possible because animal movement data can be used to estimate the rate of contacts between conspecifics. Secondly, unsuccessful transmission events, where a susceptible host contacts an infectious host but does not become infected can be quantified. Following an outbreak, this enables disease ecologists to identify 'near misses' and to explore possible alternative epidemic outcomes given shifts in ecological or immunological parameters.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Author(s).

  15. Multiscale mechanistic modeling in pharmaceutical research and development.

    Science.gov (United States)

    Kuepfer, Lars; Lippert, Jörg; Eissing, Thomas

    2012-01-01

    Discontinuation of drug development projects due to lack of efficacy or adverse events is one of the main cost drivers in pharmaceutical research and development (R&D). Investments have to be written-off and contribute to the total costs of a successful drug candidate receiving marketing authorization and allowing return on invest. A vital risk for pharmaceutical innovator companies is late stage clinical failure since costs for individual clinical trials may exceed the one billion Euro threshold. To guide investment decisions and to safeguard maximum medical benefit and safety for patients recruited in clinical trials, it is therefore essential to understand the clinical consequences of all information and data generated. The complexity of the physiological and pathophysiological processes and the sheer amount of information available overcharge the mental capacity of any human being and prevent a prediction of the success in clinical development. A rigorous integration of knowledge, assumption, and experimental data into computational models promises a significant improvement of the rationalization of decision making in pharmaceutical industry. We here give an overview of the current status of modeling and simulation in pharmaceutical R&D and outline the perspectives of more recent developments in mechanistic modeling. Specific modeling approaches for different biological scales ranging from intracellular processes to whole organism physiology are introduced and an example for integrative multiscale modeling of therapeutic efficiency in clinical oncology trials is showcased.

  16. Analytical techniques for mechanistic characterization of EUV photoresists

    Science.gov (United States)

    Grzeskowiak, Steven; Narasimhan, Amrit; Murphy, Michael; Ackerman, Christian; Kaminsky, Jake; Brainard, Robert L.; Denbeaux, Greg

    2017-03-01

    Extreme ultraviolet (EUV, 13.5 nm) lithography is the prospective technology for high volume manufacturing by the microelectronics industry. Significant strides towards achieving adequate EUV source power and availability have been made recently, but a limited rate of improvement in photoresist performance still delays the implementation of EUV. Many fundamental questions remain to be answered about the exposure mechanisms of even the relatively well understood chemically amplified EUV photoresists. Moreover, several groups around the world are developing revolutionary metal-based resists whose EUV exposure mechanisms are even less understood. Here, we describe several evaluation techniques to help elucidate mechanistic details of EUV exposure mechanisms of chemically amplified and metal-based resists. EUV absorption coefficients are determined experimentally by measuring the transmission through a resist coated on a silicon nitride membrane. Photochemistry can be evaluated by monitoring small outgassing reaction products to provide insight into photoacid generator or metal-based resist reactivity. Spectroscopic techniques such as thin-film Fourier transform infrared (FTIR) spectroscopy can measure the chemical state of a photoresist system pre- and post-EUV exposure. Additionally, electrolysis can be used to study the interaction between photoresist components and low energy electrons. Collectively, these techniques improve our current understanding of photomechanisms for several EUV photoresist systems, which is needed to develop new, better performing materials needed for high volume manufacturing.

  17. Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1α.

    Science.gov (United States)

    Shalova, Irina N; Lim, Jyue Yuan; Chittezhath, Manesh; Zinkernagel, Annelies S; Beasley, Federico; Hernández-Jiménez, Enrique; Toledano, Victor; Cubillos-Zapata, Carolina; Rapisarda, Annamaria; Chen, Jinmiao; Duan, Kaibo; Yang, Henry; Poidinger, Michael; Melillo, Giovanni; Nizet, Victor; Arnalich, Francisco; López-Collazo, Eduardo; Biswas, Subhra K

    2015-03-17

    Sepsis is characterized by a dysregulated inflammatory response to infection. Despite studies in mice, the cellular and molecular basis of human sepsis remains unclear and effective therapies are lacking. Blood monocytes serve as the first line of host defense and are equipped to recognize and respond to infection by triggering an immune-inflammatory response. However, the response of these cells in human sepsis and their contribution to sepsis pathogenesis is poorly understood. To investigate this, we performed a transcriptomic, functional, and mechanistic analysis of blood monocytes from patients during sepsis and after recovery. Our results revealed the functional plasticity of monocytes during human sepsis, wherein they transited from a pro-inflammatory to an immunosuppressive phenotype, while enhancing protective functions like phagocytosis, anti-microbial activity, and tissue remodeling. Mechanistically, hypoxia inducible factor-1α (HIF1α) mediated this functional re-programming of monocytes, revealing a potential mechanism for their therapeutic targeting to regulate human sepsis. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Punica granatum and its therapeutic implications on breast carcinogenesis: A review.

    Science.gov (United States)

    Vini, Ravindran; Sreeja, Sreeharshan

    2015-01-01

    Punica granatum has a recorded history of pharmacological properties which can be attributed to its rich reservoir of phytochemicals. Investigations in recent years have established its tremendous potential as an antitumorogenic agent against various cancers including breast cancer, which is the second leading cause of cancer-related deaths in women. The plausible role of Punica as a therapeutic agent, as an adjuvant in chemotherapy, and its dietary implications as chemopreventive agent in breast cancer have been explored. Mechanistic studies have revealed that Punica extracts and its components, individually or in combination, can modulate and target key proteins and genes involved in breast cancer. Our earlier finding also demonstrated the role of methanolic extract of pomegranate pericarp in reducing proliferation in breast cancer by binding to estrogen receptor at the same time not affecting uterine weight unlike estradiol or tamoxifen. This review analyses other plausible mechanisms of Punica in preventing the progression of breast cancer and how it can possibly be a therapeutic agent by acting at various steps of carcinogenesis including proliferation, invasion, migration, metastasis, angiogenesis, and inflammation via various molecular mechanisms. © 2015 International Union of Biochemistry and Molecular Biology.

  19. Environment, Biology, and Culture: Implications for Adolescent Development.

    Science.gov (United States)

    Zahn-Waxler, Carolyn

    1996-01-01

    Introduces this special theme issue examining the roles of socialization, biology, and culture as they affect adaptive and maladaptive developmental outcomes. Problems of adolescence addressed include antisocial behavior, depressive symptoms, substance abuse, low achievement, and eating problems. Considers factors implicated in successful…

  20. Interleukin-Driven Insulin-Like Growth Factor Promotes Prostatic Inflammatory Hyperplasia

    Science.gov (United States)

    Hahn, Alana M.; Myers, Jason D.; McFarland, Eliza K.; Lee, Sanghee

    2014-01-01

    Prostatic inflammation is of considerable importance to urologic research because of its association with benign prostatic hyperplasia and prostate cancer. However, the mechanisms by which inflammation leads to proliferation and growth remain obscure. Here, we show that insulin-like growth factors (IGFs), previously known as critical developmental growth factors during prostate organogenesis, are induced by inflammation as part of the proliferative recovery to inflammation. Using genetic models and in vivo IGF receptor blockade, we demonstrate that the hyperplastic response to inflammation depends on interleukin-1–driven IGF signaling. We show that human prostatic hyperplasia is associated with IGF pathway activation specifically localized to foci of inflammation. This demonstrates that mechanisms of inflammation-induced epithelial proliferation and hyperplasia involve the induction of developmental growth factors, further establishing a link between inflammatory and developmental signals and providing a mechanistic basis for the management of proliferative diseases by IGF pathway modulation. PMID:25292180

  1. Reversible alkyne insertion in the benzannulation reaction of Fischer carbene complexes with alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Waters, M.L.; Bos, M.E.; Wulff, W.D. [Univ. of Chicago, IL (United States)

    1995-12-31

    The benzannulation reaction of Fischer carbene complexes with alkynes to give phenols is highly regioselective with terminal alkynes, and reasonably regioselective with internal alkynes. This has been attributed to steric factors in intermediates, where one form is favored due to close contact between the R substituent and a cis-CO ligand. Whether alkyne insertion is kinetically or thermodynamically controlled has not been determined. The authors now have evidence from regioselectivity studies that alkyne insertion into the metal-carbon bond is reversible. Implications of these results and further mechanistic considerations will be presented.

  2. Mechanistic Basis for Plant Responses to Drought Stress : Regulatory Mechanism of Abscisic Acid Signaling

    Science.gov (United States)

    Miyakawa, Takuya; Tanokura, Masaru

    The phytohormone abscisic acid (ABA) plays a key role in the rapid adaptation of plants to environmental stresses such as drought and high salinity. Accumulated ABA in plant cells promotes stomatal closure in guard cells and transcription of stress-tolerant genes. Our understanding of ABA responses dramatically improved by the discovery of both PYR/PYL/RCAR as a soluble ABA receptor and inhibitory complex of a protein phospatase PP2C and a protein kinase SnRK2. Moreover, several structural analyses of PYR/PYL/RCAR revealed the mechanistic basis for the regulatory mechanism of ABA signaling, which provides a rational framework for the design of alternative agonists in future.

  3. Complement factor H binds malondialdehyde epitopes and protects from oxidative stress

    DEFF Research Database (Denmark)

    Weismann, David; Hartvigsen, Karsten; Lauer, Nadine

    2011-01-01

    peroxidation product that accumulates in many pathophysiological processes, including AMD. Here we identify complement factor H (CFH) as a major MDA-binding protein that can block both the uptake of MDA-modified proteins by macrophages and MDA-induced proinflammatory effects in vivo in mice. The CFH...... polymorphism H402, which is strongly associated with AMD, markedly reduces the ability of CFH to bind MDA, indicating a causal link to disease aetiology. Our findings provide important mechanistic insights into innate immune responses to oxidative stress, which may be exploited in the prevention of and therapy...

  4. Transcription Factor KLF5 Binds a Cyclin E1 Polymorphic Intronic Enhancer to Confer Increased Bladder Cancer Risk

    Science.gov (United States)

    Pattison, Jillian M.; Posternak, Valeriya; Cole, Michael D.

    2016-01-01

    It is well established that environmental toxins, such as exposure to arsenic, are risk factors in the development of urinary bladder cancer, yet recent genome-wide association studies (GWAS) provide compelling evidence that there is a strong genetic component associated with disease predisposition. A single nucleotide polymorphism (SNP), rs8102137, was identified on chromosome 19q12, residing 6 kb upstream of the important cell cycle regulator and proto-oncogene, Cyclin E1 (CCNE1). However, the functional role of this variant in bladder cancer predisposition has been unclear since it lies within a non-coding region of the genome. Here, it is demonstrated that bladder cancer cells heterozygous for this SNP exhibit biased allelic expression of CCNE1 with 1.5-fold more transcription occurring from the risk allele. Furthermore, using chromatin immunoprecipitation assays, a novel enhancer element was identified within the first intron of CCNE1 that binds Kruppel-like Factor 5 (KLF5), a known transcriptional activator in bladder cancer. Moreover, the data reveal that the presence of rs200996365, a SNP in high linkage disequilibrium with rs8102137 residing in the center of a KLF5 motif, alters KLF5 binding to this genomic region. Through luciferase assays and CRISPR-Cas9 genome editing, a novel polymorphic intronic regulatory element controlling CCNE1 transcription is characterized. These studies uncover how a cancer-associated polymorphism mechanistically contributes to an increased predisposition for bladder cancer development. Implications A polymorphic KLF5 binding site near the CCNE1 gene explains genetic risk identified through genome wide association studies. PMID:27514407

  5. Mechanistic link between uptake of sulfonamides and bacteriostatic effect: model development and application to experimental data from two soil microorganisms.

    Science.gov (United States)

    Focks, Andreas; Klasmeier, Jörg; Matthies, Michael

    2010-07-01

    Sulfonamides (SA) are antibiotic compounds that are widely used as human and veterinary pharmaceuticals. They are not rapidly biodegradable and have been detected in various environmental compartments. Effects of sulfonamides on microbial endpoints in soil have been reported from laboratory incubation studies. Sulfonamides inhibit the growth of sensitive microorganisms by competitive binding to the dihydropteroate-synthase (DHPS) enzyme of folic acid production. A mathematical model was developed that relates the extracellular SA concentration to the inhibition of the relative bacterial growth rate. Two factors--the anionic accumulation factor (AAF) and the cellular affinity factor (CAF)--determine the effective concentration of an SA. The AAF describes the SA uptake into bacterial cells and varies with both the extra- and intracellular pH values and with the acidic pKa value of an SA. The CAF subsumes relevant cellular and enzyme properties, and is directly proportional to the DHPS affinity constant for an SA. Based on the model, a mechanistic dose-response relationship is developed and evaluated against previously published data, where differences in the responses of Pseudomonas aeruginosa and Panthoea agglomerans toward changing medium pH values were found, most likely as a result of their diverse pH regulation. The derived dose-response relationship explains the pH and pKa dependency of mean effective concentration values (EC50) of eight SA and two soil bacteria based on AAF and CAF values. The mathematical model can be used to extrapolate sulfonamide effects to other pH values and to calculate the CAF as a pH-independent measure for the SA effects on microbial growth. Copyright (c) 2010 SETAC.

  6. New paradigms of urinary tract infections: Implications for patient management

    Directory of Open Access Journals (Sweden)

    Dennis J Horvath

    2012-01-01

    Full Text Available Urinary tract infections (UTIs represent one of the most commonly acquired diseases among the general population as well as hospital in-patients, yet remain difficult to effectively and consistently treat. High rates of recurrence, anatomic abnormalities, and functional disturbances of the urinary tract all contribute to the difficulty in management of these infections. However, recent advances reveal important molecular and genetic factors that contribute to bacterial invasion and persistence in the urinary tract, particularly for the most common causative agent, uropathogenic Escherichia coli. Recent studies using animal models of experimental UTIs have recently provided mechanistic insight into the clinical observations that question the effectiveness of antibiotic therapy in treatment. Ultimately, continuing research will be necessary to identify the best targets for effective treatment of this costly and widespread infectious disease.

  7. Mechanistic features of isomerizing alkoxycarbonylation of methyl oleate

    KAUST Repository

    Roesle, Philipp

    2012-10-24

    The weakly coordinated triflate complex [(P̂P)Pd(OTf)] +(OTf)- (1) (P̂P = 1,3-bis(di-tert- butylphosphino)propane) is a suitable reactive precursor for mechanistic studies of the isomerizing alkoxcarbonylation of methyl oleate. Addition of CH 3OH or CD3OD to 1 forms the hydride species [(P ̂P)PdH(CH3OH)]+(OTf)- (2-CH3OH) or the deuteride [(P̂P)PdD(CD 3OD)]+(OTf)- (2D-CD3OD), respectively. Further reaction with pyridine cleanly affords the stable and isolable hydride [(P̂P)PdH(pyridine)]+(OTf) - (2-pyr). This complex yields the hydride fragment free of methanol by abstraction of pyridine with BF3OEt2, and thus provides an entry to mechanistic observations including intermediates reactive toward methanol. Exposure of methyl oleate (100 equiv) to 2D-CD 3OD resulted in rapid isomerization to the thermodynamic isomer distribution, 94.3% of internal olefins, 5.5% of α,β-unsaturated ester and <0.2% of terminal olefin. Reaction of 2-pyr/BF3OEt 2 with a stoichiometric amount of 1-13C-labeled 1-octene at -80 °C yields a 50:50 mixture of the linear alkyls [(P ̂P)Pd13CH2(CH2) 6CH3]+ and [(P̂P)PdCH 2(CH2)6 13CH3] + (4a and 4b). Further reaction with 13CO yields the linear acyls [(P̂P)Pd13C(=O)12/13CH 2(CH2)6 12/13CH3(L)] + (5-L; L = solvent or 13CO). Reaction of 2-pyr/BF 3·OEt2 with a stoichiometric amount of methyl oleate at -80 °C also resulted in fast isomerization to form a linear alkyl species [(P̂P)PdCH2(CH2) 16C(=O)OCH3]+ (6) and a branched alkyl stabilized by coordination of the ester carbonyl group as a four membered chelate [(P̂P)PdCH{(CH2)15CH 3}C(=O)OCH3]+ (7). Addition of carbon monoxide (2.5 equiv) at -80 °C resulted in insertion to form the linear acyl carbonyl [(P̂P)PdC(=O)(CH2)17C(=O)OCH 3(CO)]+ (8-CO) and the five-membered chelate [(P ̂P)PdC(=O)CH{(CH2)15CH3}C(=O) OCH3]+ (9). Exposure of 8-CO and 9 to 13CO at -50 °C results in gradual incorporation of the 13C label. Reversibility of 7 + CO ⇄ 9 is also evidenced by ΔG = -2.9 kcal mol-1 and

  8. An evaluation of factors influencing pore pressure in accretionary complexes: Implications for taper angle and wedge mechanics

    Science.gov (United States)

    Saffer, D.M.; Bekins, B.A.

    2006-01-01

    At many subduction zones, accretionary complexes form as sediment is off-scraped from the subducting plate. Mechanical models that treat accretionary complexes as critically tapered wedges of sediment demonstrate that pore pressure controls their taper angle by modifying basal and internal shear strength. Here, we combine a numerical model of groundwater flow with critical taper theory to quantify the effects of sediment and de??collement permeability, sediment thickness, sediment partitioning between accretion and underthrusting, and plate convergence rate on steady state pore pressure. Our results show that pore pressure in accretionary wedges can be viewed as a dynamically maintained response to factors which drive pore pressure (source terms) and those that limit flow (permeability and drainage path length). We find that sediment permeability and incoming sediment thickness are the most important factors, whereas fault permeability and the partitioning of sediment have a small effect. For our base case model scenario, as sediment permeability is increased, pore pressure decreases from near-lithostatic to hydrostatic values and allows stable taper angles to increase from ??? 2.5?? to 8??-12.5??. With increased sediment thickness in our models (from 100 to 8000 m), increased pore pressure drives a decrease in stable taper angle from 8.4??-12.5?? to 15?? to <4??) with increased sediment thickness (from <1 to 7 km). One key implication is that hydrologic properties may strongly influence the strength of the crust in a wide range of geologic settings. Copyright 2006 by the American Geophysical Union.

  9. Lower radiation weighting factor for radon indicated in mechanistic modelling of human lung cancer

    International Nuclear Information System (INIS)

    Brugmans, M.J.P.; Leenhouts, H.P.

    2002-01-01

    A two-mutation carcinogenesis (TMC) model was fitted to the age-dependent lung cancer incidence in a cohort of Dutch Hodgkin patients treated with radiotherapy. Employing the results of previous TMC analyses of lung cancer due to smoking (by British doctors) and due to exposure to radon (for Colorado miners) a model fit was obtained with an estimate for the low LET radiation effect at the cellular level. This allows risk calculations for lung cancer from low LET radiation. The excess absolute risks are in tune with the values reported in the literature, the excess relative risks differ among the exposed groups. Comparing the cellular radiation coefficients for radon and for low LET radiation leads to an estimated radiation weighting factor for radon of 3 (0.1-6). (author)

  10. Mechanistic study on spraying of blended biodiesel using phase Doppler anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Kamrak, Juthamas; Kongsombut, Benjapol; Charinpanitkul, Tawatchai [Center of Excellence in Particle Technology, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Payathai Road, Patumwan, Bangkok 10330 (Thailand); Grehan, Gerard; Saengkaew, Sawitree [LESP/UMR CNRS6614/INSA et Universite de Rouen, BP 12, avenue de l' universite, 76801, Saint Etienne du Rouvray (France); Kim, Kyo-Seon [Department of Chemical Engineering, Faculty of Engineering, Kangwon National University, Chuncheon (Korea)

    2009-10-15

    Droplet size and dynamics of blended palm oil-based fatty acid methyl ester (FAME) and diesel oil spray were mechanistically investigated using a phase Doppler anemometry. A two-fluid atomizer was applied for dispersing viscous blends of blended biodiesel oil with designated flow rates. It was experimentally found that the atomizer could generate a spray with large droplets with Sauter mean diameters of ca. 30 {mu}m at low air injection pressure. Such large droplets traveled with a low velocity along their trajectory after emerging from the nozzle tip. The viscosity of blended biodiesel could significantly affect the atomizing process, resulting in the controlled droplet size distribution. Blended biodiesel with a certain fraction of palm oil-based FAME would be consistently atomized owing to its low viscosity. However, the viscosity could exert only a small effect on the droplet velocity profile with the air injection pressure higher than 0.2 MPa. (author)

  11. Mechanistic model for Sr and Ba release from severely damaged fuel

    International Nuclear Information System (INIS)

    Rest, J.; Cronenberg, A.W.

    1985-11-01

    Among radionuclides associated with fission product release during severe accidents, the primary ones with health consequences are the volatile species of I, Te, and Cs, and the next most important are Sr, Ba, and Ru. Considerable progress has been made in the mechanistic understanding of I, Cs, Te, and noble gas release; however, no capability presently exists for estimating the release of Sr, Ba, and Ru. This paper presents a description of the primary physical/chemical models recently incorporated into the FASTGRASS-VFP (volatile fission product) code for the estimation of Sr and Ba release. FASTGRASS-VFP release predictions are compared with two data sets: (1) data from out-of-reactor induction-heating experiments on declad low-burnup (1000 and 4000 MWd/t) pellets, and (2) data from the more recent in-reactor PBF Severe Fuel Damage Tests, in which one-meter-long, trace-irradiated (89 MWd/t) and normally irradiated (approx.35,000 MWd/t) fuel rods were tested under accident conditions. 10 refs

  12. Risk factors in school shootings.

    Science.gov (United States)

    Verlinden, S; Hersen, M; Thomas, J

    2000-01-01

    Nine incidents of multiple-victim homicide in American secondary schools are examined and common risk factors are identified. The literature dealing with individual, family, social, societal, and situational risk factors for youth violence and aggression is reviewed along with existing risk assessment methods. Checklists of risk factors for serious youth violence and school violence are used in reviewing each school shooting case. Commonalties among the cases and implications for psychologists practicing in clinical and school settings are discussed.

  13. Improving Predictive Modeling in Pediatric Drug Development: Pharmacokinetics, Pharmacodynamics, and Mechanistic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Slikker, William; Young, John F.; Corley, Rick A.; Dorman, David C.; Conolly, Rory B.; Knudsen, Thomas; Erstad, Brian L.; Luecke, Richard H.; Faustman, Elaine M.; Timchalk, Chuck; Mattison, Donald R.

    2005-07-26

    A workshop was conducted on November 18?19, 2004, to address the issue of improving predictive models for drug delivery to developing humans. Although considerable progress has been made for adult humans, large gaps remain for predicting pharmacokinetic/pharmacodynamic (PK/PD) outcome in children because most adult models have not been tested during development. The goals of the meeting included a description of when, during development, infants/children become adultlike in handling drugs. The issue of incorporating the most recent advances into the predictive models was also addressed: both the use of imaging approaches and genomic information were considered. Disease state, as exemplified by obesity, was addressed as a modifier of drug pharmacokinetics and pharmacodynamics during development. Issues addressed in this workshop should be considered in the development of new predictive and mechanistic models of drug kinetics and dynamics in the developing human.

  14. Associated factors and clinical implications of serum aminotransferase elevation in scrub typhus.

    Science.gov (United States)

    Su, Tung-Hung; Liu, Chun-Jen; Shu, Pei-Yun; Fu, Yang-Hsien; Chang, Chi-Hsien; Jao, Ping; Kao, Jia-Horng

    2016-12-01

    Timely diagnosis and prompt treatment can reduce the complications of scrub typhus. It is thus important to find easy laboratory tests to help in the diagnosis, especially in patients without eschar at initial presentation. Because serum aminotransferase elevation is common in scrub typhus, its associated factors and clinical implications need further investigations. We conducted a retrospective study in Kinmen, Taiwan, to collect clinically suspected scrub typhus patients notified to Taiwan Centers for Disease Control for confirmation during 2005-2010. Scrub typhus was diagnosed and Orientia tsutsugamushi was genotyped by serological or molecular assays. The laboratory data and clinical information were recorded for analysis. Overall, 344 suspected scrub typhus patients were reported to Taiwan Centers for Disease Control and 288 of them were certified scrub typhus. Scrub typhus patients had significantly more thrombocytopenia, serum aminotransferase elevation (76% vs. 54%, p = 0.001), higher frequency of fever, eschar, and lymphadenopathy, compared with nontyphus patients. Hepatic dysfunction in scrub typhus was associated with older age, longer fever duration, and absence of lymphadenopathy, but seemed to be unrelated to the rickettsial genotypes. Multivariate analysis showed that serum aminotransferase elevation (odds ratio: 3.75; p = 0.003; 95% confidence interval: 1.56-9.01) independently predicted scrub typhus. Furthermore, in suspected scrub typhus patients without eschar, 92% of true typhus patients had serum aminotransferase elevation compared with the nontyphus ones (odds ratio: 6.47; p = 0.028, 95% confidence interval: 1.23-34.11). Hepatic dysfunction in scrub typhus patients is associated with older age, longer fever duration, and absence of lymphadenopathy. Serum aminotransferase elevation can aid in the diagnosis of scrub typhus, especially in suspected patients without eschar. Copyright © 2014. Published by Elsevier B.V.

  15. Association of breakfast intake with cardiometabolic risk factors

    Directory of Open Access Journals (Sweden)

    Gita Shafiee

    2013-11-01

    Conclusions: skipping breakfast is associated with increased risk of MetS and other cardiometabooic factors in children and adolescents. Promoting the benefit of eating breakfast could be a simple and important implication to prevent these risk factors.

  16. Respiratory cancer risks associated with low-level nickel exposure: an integrated assessment based on animal, epidemiological, and mechanistic data.

    Science.gov (United States)

    Seilkop, Steven K; Oller, Adriana R

    2003-04-01

    Increased lung and nasal cancer risks have been reported in several cohorts of nickel refinery workers, but in more than 90% of the nickel-exposed workers that have been studied there is little, if any evidence of excess risk. This investigation utilizes human exposure measurements, animal data from cancer bioassays of three nickel compounds, and a mechanistic theory of nickel carcinogenesis to reconcile the disparities in lung cancer risk among nickel-exposed workers. Animal data and mechanistic theory suggest that the apparent absence of risk in workers with low nickel exposures is due to threshold-like responses in lung tumor incidence (oxidic nickel), tumor promotion (soluble nickel), and genetic damage (sulfidic nickel). When animal-based lung cancer dose-response functions for these compounds are extrapolated to humans, taking into account interspecies differences in deposition and clearance, differences in particle size distributions, and human work activity patterns, the predicted risks at occupational exposures are remarkably similar to those observed in nickel-exposed workers. This provides support for using the animal-based dose-response functions to estimate occupational exposure limits, which are found to be comparable to those in current use.

  17. Cross-study and cross-omics comparisons of three nephrotoxic compounds reveal mechanistic insights and new candidate biomarkers

    International Nuclear Information System (INIS)

    Matheis, Katja A.; Com, Emmanuelle; Gautier, Jean-Charles; Guerreiro, Nelson; Brandenburg, Arnd; Gmuender, Hans; Sposny, Alexandra; Hewitt, Philip; Amberg, Alexander; Boernsen, Olaf; Riefke, Bjoern; Hoffmann, Dana; Mally, Angela; Kalkuhl, Arno; Suter, Laura; Dieterle, Frank; Staedtler, Frank

    2011-01-01

    The European InnoMed-PredTox project was a collaborative effort between 15 pharmaceutical companies, 2 small and mid-sized enterprises, and 3 universities with the goal of delivering deeper insights into the molecular mechanisms of kidney and liver toxicity and to identify mechanism-linked diagnostic or prognostic safety biomarker candidates by combining conventional toxicological parameters with 'omics' data. Mechanistic toxicity studies with 16 different compounds, 2 dose levels, and 3 time points were performed in male Crl: WI(Han) rats. Three of the 16 investigated compounds, BI-3 (FP007SE), Gentamicin (FP009SF), and IMM125 (FP013NO), induced kidney proximal tubule damage (PTD). In addition to histopathology and clinical chemistry, transcriptomics microarray and proteomics 2D-DIGE analysis were performed. Data from the three PTD studies were combined for a cross-study and cross-omics meta-analysis of the target organ. The mechanistic interpretation of kidney PTD-associated deregulated transcripts revealed, in addition to previously described kidney damage transcript biomarkers such as KIM-1, CLU and TIMP-1, a number of additional deregulated pathways congruent with histopathology observations on a single animal basis, including a specific effect on the complement system. The identification of new, more specific biomarker candidates for PTD was most successful when transcriptomics data were used. Combining transcriptomics data with proteomics data added extra value.

  18. Evaluation of toxicological implications of ingestion exposure to ...

    African Journals Online (AJOL)

    Because increased LDL cholesterol, decreased HDL cholesterol and alteration in the level of total serum cholesterol have all been implicated as risk factors for atherosclerosis, this present study was designed to determine whether very low percentages of gasoline per kilogramme body weight could cause toxicity in rats.

  19. The Genetic and Psychophysiolgical Basis of Antisocial Behavior: Implications for Counseling and Therapy.

    Science.gov (United States)

    Raine, Adrian; Dunkin, Jennifer J.

    1990-01-01

    Argues that an understanding of the genetic and psychophysiological basis of crime and antisocial behavior has important implications for counselors dealing with antisocial behavior. Contends that psychophysiological factors interact with social factors in producing antisocial behaviors. (Author/ABL)

  20. A rigorous mechanistic model for predicting gas hydrate formation kinetics: The case of CO2 recovery and sequestration

    International Nuclear Information System (INIS)

    ZareNezhad, Bahman; Mottahedin, Mona

    2012-01-01

    Highlights: ► A mechanistic model for predicting gas hydrate formation kinetics is presented. ► A secondary nucleation rate model is proposed for the first time. ► Crystal–crystal collisions and crystal–impeller collisions are distinguished. ► Simultaneous determination of nucleation and growth kinetics are established. ► Important for design of gas hydrate based energy storage and CO 2 recovery systems. - Abstract: A rigorous mechanistic model for predicting gas hydrate formation crystallization kinetics is presented and the special case of CO 2 gas hydrate formation regarding CO 2 recovery and sequestration processes has been investigated by using the proposed model. A physical model for prediction of secondary nucleation rate is proposed for the first time and the formation rates of secondary nuclei by crystal–crystal collisions and crystal–impeller collisions are formulated. The objective functions for simultaneous determination of nucleation and growth kinetics are presented and a theoretical framework for predicting the dynamic behavior of gas hydrate formation is presented. Predicted time variations of CO 2 content, total number and surface area of produced hydrate crystals are in good agreement with the available experimental data. The proposed approach can have considerable application for design of gas hydrate converters regarding energy storage and CO 2 recovery processes.

  1. New Insight into the Observation of Spectroscopic Strength Reduction in Atomic Nuclei: Implication for the Physical Meaning of Spectroscopic Factors

    International Nuclear Information System (INIS)

    Timofeyuk, N. K.

    2009-01-01

    Experimental studies of one-nucleon knockout from magic nuclei suggest that their nucleon orbits are not fully occupied. This conflicts a commonly accepted view of the shell closure associated with such nuclei. The conflict can be reconciled if the overlap between initial and final nuclear states in a knockout reaction are calculated by a nonstandard method. The method employs an inhomogeneous equation based on correlation-dependent effective nucleon-nucleon interactions and allows the simplest wave functions, in which all nucleons occupy only the lowest nuclear orbits, to be used. The method also reproduces the recently established relation between reduction of spectroscopic strength, observed in knockout reactions on other nuclei, and nucleon binding energies. The implication of the inhomogeneous equation method for the physical meaning of spectroscopic factors is discussed.

  2. Non-targeted effects of ionising radiation - Implications for radiation protection

    International Nuclear Information System (INIS)

    Sisko Salomaa

    2006-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (author)

  3. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Sisko Salomaa [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (author)

  4. Combustion aerosols: factors governing their size and composition and implications to human health

    Energy Technology Data Exchange (ETDEWEB)

    Lighty, J.S.; Veranth, J.M.; Sarofim, A.F. [University of Utah, Salt Lake City, UT (USA). Dept. of Chemical and Fuels Engineering

    2000-09-01

    Particulate matter (PM) emissions from stationary combustion sources burning coal, fuel oil, biomass, and waste, and PM from internal combustion (IC) engines burning gasoline and diesel, are a significant source of primary particles smaller than 2.5 {mu}m (PM{sub 2.5}) in urban areas. Combustion-generated particles are generally smaller than geologically produced dust and have unique chemical composition and morphology. The fundamental processes affecting formation of combustion PM and the emission characteristics of important applications are reviewed. Particles containing transition metals, ultrafine particles, and soot are emphasized because these types of particles have been studied extensively, and their emissions are controlled by the fuel composition and the oxidant-temperature-mixing history from the flame to the stack. There is a need for better integration of the combustion, air pollution control, atmospheric chemistry, and inhalation health research communities. Epidemiology has demonstrated that susceptible individuals are being harmed by ambient PM. Particle surface area, number of ultrafine particles, bioavailable transition metals, polycyclic aromatic hydrocarbons (PAH), and other particle-bound organic compounds are suspected to be more important than particle mass in determining the effects of air pollution. Time and size-resolved PM measurements are needed for testing mechanistic toxicological hypotheses, for characterizing the relationship between combustion operating conditions and transient emissions, and for source apportionment studies to develop air quality plans. Citations are provided to more specialized reviews, and the concluding comments make suggestions for further research. 464 refs., 22 figs., 10 tabs.

  5. Mechanistic studies of ethylene biosynthesis in higher plants

    International Nuclear Information System (INIS)

    McGeehan, G.M.

    1986-01-01

    Ethylene is a plant hormone that elicits a wide variety of responses in plant tissue. Among these responses are the hastening of abscission, ripening and senescence. In 1979 it was discovered that 1-amino-1-cyclopropane carboxylic acid is the immediate biosynthetic precursor to ethylene. Given the obvious economic significance of ethylene production the authors concentrated their studies on the conversion of ACC to ethylene. They delved into mechanistic aspects of ACC oxidation and they studied potential inhibitors of ethylene forming enzyme (EFE). They synthesized various analogs of ACC and found that EFE shows good stereodiscrimination among alkyl substituted ACC analogs with the 1R, 2S stereoisomer being processed nine times faster than the 1S, 2R isomer in the MeACC series. They also synthesized 2-cyclopropyl ACC which is a good competitive inhibitor of EFE. This compound also causes time dependent loss of EFE activity leading us to believe it is an irreversible inhibitor of ethylene formation. The synthesis of these analogs has also allowed them to develop a spectroscopic technique to assign the relative stereochemistry of alkyl groups. 13 C NMR allows them to assign the alkyl stereochemistry based upon gamma-shielding effects on the carbonyl resonance. Lastly, they measured kinetic isotope effects on the oxidation of ACC in vivo and in vitro and found that ACC is oxidized by a rate-determining 1-electron removal from nitrogen in close accord with mechanisms for the oxidation of other alkyl amines

  6. Immunological Mechanisms Implicated in the Pathogenesis of Chronic Urticaria and Hashimoto Thyroiditis.

    Science.gov (United States)

    Berghi, Nicolae Ovidiu

    2017-08-01

    Autoimmunity represents the attack of the immune system of an organism against its own cells and tissues. Autoimmune diseases may affect one organ (Hashimoto thyroiditis) or can be systemic (chronic urticaria). Many factors are implicated in the pathogenesis of autoimmunity (white cells, cytokines, chemokines). Hashimoto thyroiditis has been associated with chronic urticaria in the last 3 decades in a number of clinical studies. Anti-thyroid antibodies have been documented in a proportion ranging from 10% to 30% in chronic urticaria patients in different countries from 3 continents. Two of the factors involved in the mechanism of autoimmunity are present both in the pathophysiology of Hashimoto thyroiditis and chronic urticaria. According to recent studies, IL6 is implicated in the pathogenesis of both diseases. TregsCD4+CD25+Foxp3+ cells have also been implicated in the pathological mechanisms of these 2 entities. This review offers an explanation of the clinical and statistical association between these two diseases from the pathophysiological point of view.

  7. A mechanistic model for electricity consumption on dairy farms: definition, validation, and demonstration.

    Science.gov (United States)

    Upton, J; Murphy, M; Shalloo, L; Groot Koerkamp, P W G; De Boer, I J M

    2014-01-01

    Our objective was to define and demonstrate a mechanistic model that enables dairy farmers to explore the impact of a technical or managerial innovation on electricity consumption, associated CO2 emissions, and electricity costs. We, therefore, (1) defined a model for electricity consumption on dairy farms (MECD) capable of simulating total electricity consumption along with related CO2 emissions and electricity costs on dairy farms on a monthly basis; (2) validated the MECD using empirical data of 1yr on commercial spring calving, grass-based dairy farms with 45, 88, and 195 milking cows; and (3) demonstrated the functionality of the model by applying 2 electricity tariffs to the electricity consumption data and examining the effect on total dairy farm electricity costs. The MECD was developed using a mechanistic modeling approach and required the key inputs of milk production, cow number, and details relating to the milk-cooling system, milking machine system, water-heating system, lighting systems, water pump systems, and the winter housing facilities as well as details relating to the management of the farm (e.g., season of calving). Model validation showed an overall relative prediction error (RPE) of less than 10% for total electricity consumption. More than 87% of the mean square prediction error of total electricity consumption was accounted for by random variation. The RPE values of the milk-cooling systems, water-heating systems, and milking machine systems were less than 20%. The RPE values for automatic scraper systems, lighting systems, and water pump systems varied from 18 to 113%, indicating a poor prediction for these metrics. However, automatic scrapers, lighting, and water pumps made up only 14% of total electricity consumption across all farms, reducing the overall impact of these poor predictions. Demonstration of the model showed that total farm electricity costs increased by between 29 and 38% by moving from a day and night tariff to a flat

  8. Risk factors for Alzheimer's disease : a genetic-epidemiologic study

    NARCIS (Netherlands)

    C.M. van Duijn (Cornelia)

    1992-01-01

    textabstractThe work presented in this thesis has been motivated by the Jack of knowledge of risk factors for Alzheimer's disease. It has been long recognised that genetic factors are implicated, in particular in early-onset Alzheimer's disease.4 But to what extent are genetic factors involved?

  9. Factors influencing choice of oral hygiene products by dental ...

    African Journals Online (AJOL)

    Background: Several factors, such as cost, branding, packaging and family influence, had been implicated as influencing the choice of toothpastes and toothbrushes by individuals. Media advertisement is also considered a very strong factor influencing consumer's choice. Aim: To assess the extent to which some factors ...

  10. Stress and food allergy: mechanistic considerations

    OpenAIRE

    Schreier, Hannah M.C.; Wright, Rosalind J.

    2013-01-01

    Recent years have seen a marked increase in food allergy prevalence among children, particularly in Western countries, that cannot be explained by genetic factors alone. This has resulted in an increased effort to identify environmental risk factors underlying food allergies and to understand how these factors may be modified through interventions. Food allergy is an immune-mediated adverse reaction to food. Consequently, considerations of candidate risk factors have begun to focus on environ...

  11. A Divergent Mechanistic Course of Pd(0)-Catalyzed Aza-Claisen Rearrangement and Aza-Rautenstrauch-Type Cyclization of N-Allyl-Ynamides

    Science.gov (United States)

    DeKorver, Kyle A.; Hsung, Richard P.; Lohse, Andrew G.; Zhang, Yu

    2010-01-01

    A fascinating mechanistic study of ynamido-palladium-π-allyl complexes is described that features isolation of a unique silyl-ketenimine via aza-Claisen rearrangement, which can be accompanied by an unusual thermal N-to-C 1,3-Ts shift in the formation of tertiary nitriles, and a novel cyclopentenimine formation via a palladium catalyzed aza-Rautenstrauch-type cyclization pathway. PMID:20337418

  12. Mechanistic Links Underlying the Impact of C-Reactive Protein on Muscle Mass in Elderly

    Directory of Open Access Journals (Sweden)

    Britta Wåhlin-Larsson

    2017-11-01

    Full Text Available Background/Aims: Mechanisms underlying the relationship between systemic inflammation and age-related decline in muscle mass are poorly defined. The purpose of this work was to investigate the relationship between the systemic inflammatory marker CRP and muscle mass in elderly and to identify mechanisms by which CRP mediates its effects on skeletal muscle, in-vitro. Methods: Muscle mass and serum CRP level were determined in a cohort of 118 older women (67±1.7 years. Human muscle cells were differentiated into myotubes and were exposed to CRP. The size of myotubes was determined after immunofluorescent staining using troponin. Muscle protein synthesis was assessed using stable isotope tracers and key signalling pathways controlling protein synthesis were determined using western-blotting. Results: We observed an inverse relationship between circulating CRP level and muscle mass (β= -0.646 (95% CI: -0.888, -0.405 p<0.05 and demonstrated a reduction (p < 0.05 in the size of human myotubes exposed to CRP for 72 h. We next showed that this morphological change was accompanied by a CRP-mediated reduction (p < 0.05 in muscle protein fractional synthetic rate of human myotubes exposed to CRP for 24 h. We also identified a CRP-mediated increased phosphorylation (p<0.05 of regulators of cellular energy stress including AMPK and downstream targets, raptor and ACC-β, together with decreased phosphorylation of Akt and rpS6, which are important factors controlling protein synthesis. Conclusion: This work established for the first time mechanistic links by which chronic elevation of CRP can contribute to age-related decline in muscle function.

  13. Factors Contribute to Safety Culture in the Manufacturing Industry in Malaysia

    OpenAIRE

    Ong Choon Hee

    2014-01-01

    The purpose of this paper is to explain the role of safety culture in the manufacturing industry in Malaysia and identify factors contribute to safety culture. It is suggested in this study that leadership support, management commitment and safety management system are important factors that contribute to safety culture. This study also provides theoretical implications to guide future research and offers practical implications to the managers in the development of safety culture. Given that ...

  14. Modeling and validation of a mechanistic tool (MEFISTO) for the prediction of critical power in BWR fuel assemblies

    International Nuclear Information System (INIS)

    Adamsson, Carl; Le Corre, Jean-Marie

    2011-01-01

    Highlights: → The MEFISTO code efficiently and accurately predicts the dryout event in a BWR fuel bundle, using a mechanistic model. → A hybrid approach between a fast and robust sub-channel analysis and a three-field two-phase analysis is adopted. → MEFISTO modeling approach, calibration, CPU usage, sensitivity, trend analysis and performance evaluation are presented. → The calibration parameters and process were carefully selected to preserve the mechanistic nature of the code. → The code dryout prediction performance is near the level of fuel-specific empirical dryout correlations. - Abstract: Westinghouse is currently developing the MEFISTO code with the main goal to achieve fast, robust, practical and reliable prediction of steady-state dryout Critical Power in Boiling Water Reactor (BWR) fuel bundle based on a mechanistic approach. A computationally efficient simulation scheme was used to achieve this goal, where the code resolves all relevant field (drop, steam and multi-film) mass balance equations, within the annular flow region, at the sub-channel level while relying on a fast and robust two-phase (liquid/steam) sub-channel solution to provide the cross-flow information. The MEFISTO code can hence provide highly detailed solution of the multi-film flow in BWR fuel bundle while enhancing flexibility and reducing the computer time by an order of magnitude as compared to a standard three-field sub-channel analysis approach. Models for the numerical computation of the one-dimensional field flowrate distributions in an open channel (e.g. a sub-channel), including the numerical treatment of field cross-flows, part-length rods, spacers grids and post-dryout conditions are presented in this paper. The MEFISTO code is then applied to dryout prediction in BWR fuel bundle using VIPRE-W as a fast and robust two-phase sub-channel driver code. The dryout power is numerically predicted by iterating on the bundle power so that the minimum film flowrate in the

  15. A mechanistic compartmental model for total antibody uptake in tumors.

    Science.gov (United States)

    Thurber, Greg M; Dane Wittrup, K

    2012-12-07

    Antibodies are under development to treat a variety of cancers, such as lymphomas, colon, and breast cancer. A major limitation to greater efficacy for this class of drugs is poor distribution in vivo. Localization of antibodies occurs slowly, often in insufficient therapeutic amounts, and distributes heterogeneously throughout the tumor. While the microdistribution around individual vessels is important for many therapies, the total amount of antibody localized in the tumor is paramount for many applications such as imaging, determining the therapeutic index with antibody drug conjugates, and dosing in radioimmunotherapy. With imaging and pretargeted therapeutic strategies, the time course of uptake is critical in determining when to take an image or deliver a secondary reagent. We present here a simple mechanistic model of antibody uptake and retention that captures the major rates that determine the time course of antibody concentration within a tumor including dose, affinity, plasma clearance, target expression, internalization, permeability, and vascularization. Since many of the parameters are known or can be estimated in vitro, this model can approximate the time course of antibody concentration in tumors to aid in experimental design, data interpretation, and strategies to improve localization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Mechanistic Features of Nanodiamonds in the Lapping of Magnetic Heads

    Directory of Open Access Journals (Sweden)

    Xionghua Jiang

    2014-01-01

    Full Text Available Nanodiamonds, which are the main components of slurry in the precision lapping process of magnetic heads, play an important role in surface quality. This paper studies the mechanistic features of nanodiamond embedment into a Sn plate in the lapping process. This is the first study to develop mathematical models for nanodiamond embedment. Such models can predict the optimum parameters for particle embedment. From the modeling calculations, the embedded pressure satisfies p0=3/2·W/πa2 and the indentation depth satisfies δ=k1P/HV. Calculation results reveal that the largest embedded pressure is 731.48 GPa and the critical indentation depth δ is 7 nm. Atomic force microscopy (AFM, scanning electron microscopy (SEM, and Auger electron spectroscopy (AES were used to carry out surface quality detection and analysis of the disk head. Both the formation of black spots on the surface and the removal rate have an important correlation with the size of nanodiamonds. The results demonstrate that an improved removal rate (21 nm·min−1 can be obtained with 100 nm diamonds embedded in the plate.

  17. Mechanistic features of nanodiamonds in the lapping of magnetic heads.

    Science.gov (United States)

    Jiang, Xionghua; Chen, Zhenxing; Wolfram, Joy; Yang, Zhizhou

    2014-01-01

    Nanodiamonds, which are the main components of slurry in the precision lapping process of magnetic heads, play an important role in surface quality. This paper studies the mechanistic features of nanodiamond embedment into a Sn plate in the lapping process. This is the first study to develop mathematical models for nanodiamond embedment. Such models can predict the optimum parameters for particle embedment. From the modeling calculations, the embedded pressure satisfies p 0 = (3/2) · (W/πa (2)) and the indentation depth satisfies δ = k1√P/HV. Calculation results reveal that the largest embedded pressure is 731.48 GPa and the critical indentation depth δ is 7 nm. Atomic force microscopy (AFM), scanning electron microscopy (SEM), and Auger electron spectroscopy (AES) were used to carry out surface quality detection and analysis of the disk head. Both the formation of black spots on the surface and the removal rate have an important correlation with the size of nanodiamonds. The results demonstrate that an improved removal rate (21 nm · min(-1)) can be obtained with 100 nm diamonds embedded in the plate.

  18. Psychosocial determinants of health and illness: integrating mind, body, and spirit.

    Science.gov (United States)

    Astin, John A; Forys, Kelly

    2004-01-01

    Presented in this paper is a review of some of the evidence linking psychosocial factors to a variety of health outcomes. Drawing upon the work of the philosopher Ken Wilber, we begin with a consideration of some of the historic roots of the mind-body split. As will be seen, Wilber argues that in the premodern era, "mind" and "body" were essentially fused (ie, thought of as not separate); with the dawn in the West of the Enlightenment and the emergence and subsequent dominance of the empiric-scientific mode of inquiry, the mind and body became separate; and in the postmodern world, the task now is one of reintegrating mind and body, an undertaking with obvious implications for the field of medicine. With the goal of helping in this mind-body reintegration, we first summarize the epidemiological findings examining the relation between various psychosocial factors (personality, mood states, and cognitive factors) and physical health. We then review some of the physiological and mechanistic data that link mental-emotional factors (eg, psychosocial stress) with physical function and health. Finally, we discuss the therapeutic implications of these findings.

  19. Factoring the car-climate challenge: Insights and implications

    International Nuclear Information System (INIS)

    DeCicco, John M.

    2013-01-01

    Three approaches commonly are identified for controlling automobile greenhouse gas (GHG) emissions: reducing travel demand, improving vehicle efficiency and using alternatively (non-petroleum) fueled vehicles (AFVs). Similarly, sector emissions are factored by travel distance, vehicle fuel intensity and fuel GHG (“carbon”) intensity. Analyzing these factors using US and China data reveals that for a broad range of conditions, stringent GHG emissions limits for the auto sector imply limits of comparable stringency for fuel carbon intensity. However, carbon intensity is a modeled representation of complex energy supply and use systems rather than a measurable property of fuels themselves. Carefully examining the locations and magnitudes of fuel-related emissions indicates that the proper policy focus is on the sectors that supply fuel rather than the choice of fuels in the auto sector. Therefore, beyond fundamental R and D, policies to commercialize AFVs are not necessarily required for climate protection at present. In addition to managing travel demand and improving vehicle efficiency, the implied policy priority is limiting net GHG impacts in the energy and other natural resource sectors that supply fuels. Future work is needed to develop GHG management protocols for liquid fuel supply systems involving fungible commodities and dynamic global supply chains. - Highlights: • Factor analysis offers insights about ways to reduce automotive GHG emissions. • Improving vehicle efficiency and reducing travel demand remain important. • Reducing net GHG impacts in energy sectors that supply motor fuels is also a priority. • Commercialization of alternatively fueled vehicles is not necessarily required at present

  20. The Tchernobyl enigma or: the human factors in severe accidents

    International Nuclear Information System (INIS)

    Llory, M.

    1988-01-01

    Using the analysis of many documents published after the Tchernobyl accident, we attempt to distinguish the main human factors aspects in severe accidents that come out, and the causes the most frequently quoted to ''explain'' it. But the Tchernobyl accident keeps its ''enigmatic'' feature, like any other accident. The need to make a deeper investigation concerning safety leads to look for various research paths that go beyond the usual normative positions, based on a too much mechanistic model of man. It is to the functioning of groups in work situations that we suggest to devote part of the research and thinking effort. We attempt to show briefly how two theories, the theory of ''groupthink'' and the theory of ''trade defensive ideologies'', can throw a light on the problem of human factors in nuclear power plants [fr

  1. Factors influencing eating attitudes in secondary-school girls in ...

    African Journals Online (AJOL)

    Family, especially maternal, factors play a role in determining eating attitudes. Peer and media (television) factors are not significantly influential. The findings provide preliminary data on factors that influence eating attrtudes in a group at risk for the development of eating disorders. The findings have implications for the ...

  2. Toxocara infection in the United States: the relevance of poverty, geography and demography as risk factors, and implications for estimating county prevalence.

    Science.gov (United States)

    Congdon, Peter; Lloyd, Patsy

    2011-02-01

    To estimate Toxocara infection rates by age, gender and ethnicity for US counties using data from the National Health and Nutrition Examination Survey (NHANES). After initial analysis to account for missing data, a binary regression model is applied to obtain relative risks of Toxocara infection for 20,396 survey subjects. The regression incorporates interplay between demographic attributes (age, ethnicity and gender), family poverty and geographic context (region, metropolitan status). Prevalence estimates for counties are then made, distinguishing between subpopulations in poverty and not in poverty. Even after allowing for elevated infection risk associated with poverty, seropositivity is elevated among Black non-Hispanics and other ethnic groups. There are also distinct effects of region. When regression results are translated into county prevalence estimates, the main influences on variation in county rates are percentages of non-Hispanic Blacks and county poverty. For targeting prevention it is important to assess implications of national survey data for small area prevalence. Using data from NHANES, the study confirms that both individual level risk factors and geographic contextual factors affect chances of Toxocara infection.

  3. Compulsive Buying among College Students: An Investigation of Its Antecedents, Consequences, and Implications for Public Policy.

    Science.gov (United States)

    Roberts, James A.

    1998-01-01

    This study investigated the incidence, antecedents, consequences, and policy implications of compulsive buying among college students (n=300). Details contributing factors and discusses the relationship between credit card use and compulsive buying. Discusses the implications for consumer policy and suggestions for further research. (JOW)

  4. Experimental and numerical investigations on the direct contact condensation phenomenon in horizontal flow channels and its implications in nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    Ceuca, Sabin Cristian [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Laurinavicius, Darius [Lithuanian Energy Institute, Kaunas (Lithuania)

    2016-11-15

    The complex direct contact condensation phenomenon is investigated in horizontal flow channels both experimentally and numerically with special emphasis on its implications on safety assessment studies. Under certain conditions direct contact condensation can act as the driving force for the water hammer phenomenon with potentially local devastating results, thus posing a threat to the integrity of the affected NPP components. New experimental results of in-depth analysis of the direct contact condensation phenomena obtained in Kaunas at the Lithuanian Energy Institute will be presented. The German system code ATHLET employing for the calculation of the heat transfer coefficient a mechanistic model accounting for two different eddy length scales, combined with the interfacial area transport equation will be assessed against condensation induced water hammer experimental data from the integral thermal-hydraulic experimental facility PMK-2, located at the KFKI Atomic Energy Research Institute in Budapest Hungary.

  5. In silico, experimental, mechanistic model for extended-release felodipine disposition exhibiting complex absorption and a highly variable food interaction.

    Directory of Open Access Journals (Sweden)

    Sean H J Kim

    Full Text Available The objective of this study was to develop and explore new, in silico experimental methods for deciphering complex, highly variable absorption and food interaction pharmacokinetics observed for a modified-release drug product. Toward that aim, we constructed an executable software analog of study participants to whom product was administered orally. The analog is an object- and agent-oriented, discrete event system, which consists of grid spaces and event mechanisms that map abstractly to different physiological features and processes. Analog mechanisms were made sufficiently complicated to achieve prespecified similarity criteria. An equation-based gastrointestinal transit model with nonlinear mixed effects analysis provided a standard for comparison. Subject-specific parameterizations enabled each executed analog's plasma profile to mimic features of the corresponding six individual pairs of subject plasma profiles. All achieved prespecified, quantitative similarity criteria, and outperformed the gastrointestinal transit model estimations. We observed important subject-specific interactions within the simulation and mechanistic differences between the two models. We hypothesize that mechanisms, events, and their causes occurring during simulations had counterparts within the food interaction study: they are working, evolvable, concrete theories of dynamic interactions occurring within individual subjects. The approach presented provides new, experimental strategies for unraveling the mechanistic basis of complex pharmacological interactions and observed variability.

  6. Fidelity in Animal Modeling: Prerequisite for a Mechanistic Research Front Relevant to the Inflammatory Incompetence of Acute Pediatric Malnutrition

    Science.gov (United States)

    Woodward, Bill

    2016-01-01

    Inflammatory incompetence is characteristic of acute pediatric protein-energy malnutrition, but its underlying mechanisms remain obscure. Perhaps substantially because the research front lacks the driving force of a scholarly unifying hypothesis, it is adrift and research activity is declining. A body of animal-based research points to a unifying paradigm, the Tolerance Model, with some potential to offer coherence and a mechanistic impetus to the field. However, reasonable skepticism prevails regarding the relevance of animal models of acute pediatric malnutrition; consequently, the fundamental contributions of the animal-based component of this research front are largely overlooked. Design-related modifications to improve the relevance of animal modeling in this research front include, most notably, prioritizing essential features of pediatric malnutrition pathology rather than dietary minutiae specific to infants and children, selecting windows of experimental animal development that correspond to targeted stages of pediatric immunological ontogeny, and controlling for ontogeny-related confounders. In addition, important opportunities are presented by newer tools including the immunologically humanized mouse and outbred stocks exhibiting a magnitude of genetic heterogeneity comparable to that of human populations. Sound animal modeling is within our grasp to stimulate and support a mechanistic research front relevant to the immunological problems that accompany acute pediatric malnutrition. PMID:27077845

  7. Fidelity in Animal Modeling: Prerequisite for a Mechanistic Research Front Relevant to the Inflammatory Incompetence of Acute Pediatric Malnutrition.

    Science.gov (United States)

    Woodward, Bill

    2016-04-11

    Inflammatory incompetence is characteristic of acute pediatric protein-energy malnutrition, but its underlying mechanisms remain obscure. Perhaps substantially because the research front lacks the driving force of a scholarly unifying hypothesis, it is adrift and research activity is declining. A body of animal-based research points to a unifying paradigm, the Tolerance Model, with some potential to offer coherence and a mechanistic impetus to the field. However, reasonable skepticism prevails regarding the relevance of animal models of acute pediatric malnutrition; consequently, the fundamental contributions of the animal-based component of this research front are largely overlooked. Design-related modifications to improve the relevance of animal modeling in this research front include, most notably, prioritizing essential features of pediatric malnutrition pathology rather than dietary minutiae specific to infants and children, selecting windows of experimental animal development that correspond to targeted stages of pediatric immunological ontogeny, and controlling for ontogeny-related confounders. In addition, important opportunities are presented by newer tools including the immunologically humanized mouse and outbred stocks exhibiting a magnitude of genetic heterogeneity comparable to that of human populations. Sound animal modeling is within our grasp to stimulate and support a mechanistic research front relevant to the immunological problems that accompany acute pediatric malnutrition.

  8. Description and evaluation of a mechanistically based conceptual model for spall

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, F.D.; Knowles, M.K.; Thompson, T.W. [and others

    1997-08-01

    A mechanistically based model for a possible spall event at the WIPP site is developed and evaluated in this report. Release of waste material to the surface during an inadvertent borehole intrusion is possible if future states of the repository include high gas pressure and waste material consisting of fine particulates having low mechanical strength. The conceptual model incorporates the physics of wellbore hydraulics coupled to transient gas flow to the intrusion borehole, and mechanical response of the waste. Degraded waste properties using of the model. The evaluations include both numerical and analytical implementations of the conceptual model. A tensile failure criterion is assumed appropriate for calculation of volumes of waste experiencing fragmentation. Calculations show that for repository gas pressures less than 12 MPa, no tensile failure occurs. Minimal volumes of material experience failure below gas pressure of 14 MPa. Repository conditions dictate that the probability of gas pressures exceeding 14 MPa is approximately 1%. For these conditions, a maximum failed volume of 0.25 m{sup 3} is calculated.

  9. Description and evaluation of a mechanistically based conceptual model for spall

    International Nuclear Information System (INIS)

    Hansen, F.D.; Knowles, M.K.; Thompson, T.W.

    1997-08-01

    A mechanistically based model for a possible spall event at the WIPP site is developed and evaluated in this report. Release of waste material to the surface during an inadvertent borehole intrusion is possible if future states of the repository include high gas pressure and waste material consisting of fine particulates having low mechanical strength. The conceptual model incorporates the physics of wellbore hydraulics coupled to transient gas flow to the intrusion borehole, and mechanical response of the waste. Degraded waste properties using of the model. The evaluations include both numerical and analytical implementations of the conceptual model. A tensile failure criterion is assumed appropriate for calculation of volumes of waste experiencing fragmentation. Calculations show that for repository gas pressures less than 12 MPa, no tensile failure occurs. Minimal volumes of material experience failure below gas pressure of 14 MPa. Repository conditions dictate that the probability of gas pressures exceeding 14 MPa is approximately 1%. For these conditions, a maximum failed volume of 0.25 m 3 is calculated

  10. Mechanistic approach to the sodium leakage and fire analysis

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Muramatsu, Toshiharu; Ohira, Hiroaki; Ida, Masao

    1997-04-01

    In December 1995, a thermocouple well was broken and liquid sodium leaked out of the intermediate heat transport system of the prototype fast breeder reactor Monju. In the initiating process of the incident, liquid sodium flowed out through the hollow thermocouple well, nipple and connector. As a result, liquid sodium, following ignition and combustion, was dropping from the connector to colide with the duct and grating placed below. The collision may cause fragmentation and scattering of the sodium droplet that finally was piled up on the floor. This report deals with the development of computer programs for the phenomena based on mechanistics approach. Numerical analyses are also made for fundamental sodium leakage and combustion phenomenon, sodium combustion experiment, and Monju incident condition. The contents of this report is listed below: (1) Analysis of chemical reaction process based on molecular orbital method, (2) Thermalhy draulic analysis of the sodium combustion experiment II performed in 1996 at O-arai Engineering Center, PNC, (3) Thermalhy draulic analysis of room A-446 of Monju reactor when the sodium leakage took place, (4) Direct numerical simulation of sodium droplet, (5) Sodium leakage and scattering analysis using three dimensional particle method, (6) Multi-dimensional combustion analysis and multi-point approximation combustion analysis code. Subsequent to the development work of the programs, they are to be applied to the safety analysis of the Fast Breeder Reactor. (author)

  11. Mechanistic modeling of insecticide risks to breeding birds in ...

    Science.gov (United States)

    Insecticide usage in the United States is ubiquitous in urban, suburban, and rural environments. In evaluating data for an insecticide registration application and for registration review, scientists at the United States Environmental Protection Agency (USEPA) assess the fate of the insecticide and the risk the insecticide poses to the environment and non-target wildlife. At the present time, current USEPA risk assessments do not include population-level endpoints. In this paper, we present a new mechanistic model, which allows risk assessors to estimate the effects of insecticide exposure on the survival and seasonal productivity of birds known to use agricultural fields during their breeding season. The new model was created from two existing USEPA avian risk assessment models, the Terrestrial Investigation Model (TIM v.3.0) and the Markov Chain Nest Productivity model (MCnest). The integrated TIM/MCnest model has been applied to assess the relative risk of 12 insecticides used to control corn pests on a suite of 31 avian species known to use cornfields in midwestern agroecosystems. The 12 insecticides that were assessed in this study are all used to treat major pests of corn (corn root worm borer, cutworm, and armyworm). After running the integrated TIM/MCnest model, we found extensive differences in risk to birds among insecticides, with chlorpyrifos and malathion (organophosphates) generally posing the greatest risk, and bifenthrin and ë-cyhalothrin (

  12. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes

    Science.gov (United States)

    Das, Hiranmoy; Kumar, Ajay; Lin, Zhiyong; Patino, Willmar D.; Hwang, Paul M.; Feinberg, Mark W.; Majumder, Pradip K.; Jain, Mukesh K.

    2006-01-01

    The mechanisms regulating activation of monocytes remain incompletely understood. Herein we provide evidence that Kruppel-like factor 2 (KLF2) inhibits proinflammatory activation of monocytes. In vitro, KLF2 expression in monocytes is reduced by cytokine activation or differentiation. Consistent with this observation, KLF2 expression in circulating monocytes is reduced in patients with chronic inflammatory conditions such as coronary artery disease. Adenoviral overexpression of KLF2 inhibits the LPS-mediated induction of proinflammatory factors, cytokines, and chemokines and reduces phagocytosis. Conversely, short interfering RNA-mediated reduction in KLF2 increased inflammatory gene expression. Reconstitution of immunodeficient mice with KLF2-overexpressing monocytes significantly reduced carrageenan-induced acute paw edema formation. Mechanistically, KLF2 inhibits the transcriptional activity of both NF-κB and activator protein 1, in part by means of recruitment of transcriptional coactivator p300/CBP-associated factor. These observations identify KLF2 as a novel negative regulator of monocytic activation. PMID:16617118

  13. Uniformity of Peptide Release Is Maintained by Methylation of Release Factors

    Directory of Open Access Journals (Sweden)

    William E. Pierson

    2016-09-01

    Full Text Available Termination of protein synthesis on the ribosome is catalyzed by release factors (RFs, which share a conserved glycine-glycine-glutamine (GGQ motif. The glutamine residue is methylated in vivo, but a mechanistic understanding of its contribution to hydrolysis is lacking. Here, we show that the modification, apart from increasing the overall rate of termination on all dipeptides, substantially increases the rate of peptide release on a subset of amino acids. In the presence of unmethylated RFs, we measure rates of hydrolysis that are exceptionally slow on proline and glycine residues and approximately two orders of magnitude faster in the presence of the methylated factors. Structures of 70S ribosomes bound to methylated RF1 and RF2 reveal that the glutamine side-chain methylation packs against 23S rRNA nucleotide 2451, stabilizing the GGQ motif and placing the side-chain amide of the glutamine toward tRNA. These data provide a framework for understanding how release factor modifications impact termination.

  14. Strategic Decisions and Implications of the German Assault on Norway in 1940

    National Research Council Canada - National Science Library

    Amundsen, Steinar

    2005-01-01

    .... Dismissing one-dimensional theories on the decisions for and strategic implications of the German attack on Norway, this paper discusses underlying factors in the German decision-making process...

  15. UNMASKING MASKED HYPERTENSION: PREVALENCE, CLINICAL IMPLICATIONS, DIAGNOSIS, CORRELATES, AND FUTURE DIRECTIONS

    Science.gov (United States)

    Peacock, James; Diaz, Keith M.; Viera, Anthony J.; Schwartz, Joseph E.; Shimbo, Daichi

    2014-01-01

    ‘Masked hypertension’ is defined as having non-elevated clinic blood pressure (BP) with elevated out-of-clinic average BP, typically determined by ambulatory BP monitoring. Approximately 15–30% of adults with non-elevated clinic BP have masked hypertension. Masked hypertension is associated with increased risks of cardiovascular morbidity and mortality compared to sustained normotension (non-elevated clinic and ambulatory BP), which is similar to or approaching the risk associated with sustained hypertension (elevated clinic and ambulatory BP). The confluence of increased cardiovascular risk and a failure to be diagnosed by the conventional approach of clinic BP measurement makes masked hypertension a significant public health concern. However, many important questions remain. First, the definition of masked hypertension varies across studies. Further, the best approach in the clinical setting to exclude masked hypertension also remains unknown. It is unclear whether home BP monitoring is an adequate substitute for ambulatory BP monitoring in identifying masked hypertension. Few studies have examined the mechanistic pathways that may explain masked hypertension. Finally, scarce data are available on the best approach to treating individuals with masked hypertension. Herein, we review the current literature on masked hypertension including definition, prevalence, clinical implications, special patient populations, correlates, issues related to diagnosis, treatment, and areas for future research. PMID:24573133

  16. Mechanistic basis of infertility of mouse intersubspecific hybrids

    Science.gov (United States)

    Bhattacharyya, Tanmoy; Gregorova, Sona; Mihola, Ondrej; Anger, Martin; Sebestova, Jaroslava; Denny, Paul; Simecek, Petr; Forejt, Jiri

    2013-01-01

    According to the Dobzhansky–Muller model, hybrid sterility is a consequence of the independent evolution of related taxa resulting in incompatible genomic interactions of their hybrids. The model implies that the incompatibilities evolve randomly, unless a particular gene or nongenic sequence diverges much faster than the rest of the genome. Here we propose that asynapsis of heterospecific chromosomes in meiotic prophase provides a recurrently evolving trigger for the meiotic arrest of interspecific F1 hybrids. We observed extensive asynapsis of chromosomes and disturbance of the sex body in >95% of pachynemas of Mus m. musculus × Mus m. domesticus sterile F1 males. Asynapsis was not preceded by a failure of double-strand break induction, and the rate of meiotic crossing over was not affected in synapsed chromosomes. DNA double-strand break repair was delayed or failed in unsynapsed autosomes, and misexpression of chromosome X and chromosome Y genes was detected in single pachynemas and by genome-wide expression profiling. Oocytes of F1 hybrid females showed the same kind of synaptic problems but with the incidence reduced to half. Most of the oocytes with pachytene asynapsis were eliminated before birth. We propose the heterospecific pairing of homologous chromosomes as a preexisting condition of asynapsis in interspecific hybrids. The asynapsis may represent a universal mechanistic basis of F1 hybrid sterility manifested by pachytene arrest. It is tempting to speculate that a fast-evolving subset of the noncoding genomic sequence important for chromosome pairing and synapsis may be the culprit. PMID:23329330

  17. Hidden Hydride Transfer as a Decisive Mechanistic Step in the Reactions of the Unligated Gold Carbide [AuC]+ with Methane under Ambient Conditions.

    Science.gov (United States)

    Li, Jilai; Zhou, Shaodong; Schlangen, Maria; Weiske, Thomas; Schwarz, Helmut

    2016-10-10

    The reactivity of the cationic gold carbide [AuC] + (bearing an electrophilic carbon atom) towards methane has been studied using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The product pairs generated, that is, Au + /C 2 H 4 , [Au(C 2 H 2 )] + /H 2 , and [C 2 H 3 ] + /AuH, point to the breaking and making of C-H, C-C, and H-H bonds under single-collision conditions. The mechanisms of these rather efficient reactions have been elucidated by high-level quantum-chemical calculations. As a major result, based on molecular orbital and NBO-based charge analysis, an unprecedented hydride transfer from methane to the carbon atom of [AuC] + has been identified as a key step. Also, the origin of this novel mechanistic scenario has been addressed. The mechanistic insights derived from this study may provide guidance for the rational design of carbon-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Factors influencing elderly women's mammography screening decisions: implications for counseling.

    Science.gov (United States)

    Schonberg, Mara A; McCarthy, Ellen P; York, Meghan; Davis, Roger B; Marcantonio, Edward R

    2007-11-16

    Although guidelines recommend that clinicians consider life expectancy before screening older women for breast cancer, many older women with limited life expectancies are screened. We aimed to identify factors important to mammography screening decisions among women aged 80 and older compared to women aged 65-79. Telephone surveys of 107 women aged 80+ and 93 women aged 65-79 randomly selected from one academic primary care practice who were able to communicate in English (60% response rate). The survey addressed the following factors in regards to older women's mammography screening decisions: perceived importance of a history of breast disease, family history of breast cancer, doctor's recommendations, habit, reassurance, previous experience, mailed reminder cards, family/friend's recommendations or experience with breast cancer, age, health, and media. The survey also assessed older women's preferred role in decision making around mammography screening. Of the 200 women, 65.5% were non-Hispanic white and 82.8% were in good to excellent health. Most (81.3%) had undergone mammography in the past 2 years. Regardless of age, older women ranked doctor's recommendations as the most important factor influencing their decision to get screened. Habit and reassurance were the next two highly ranked factors influencing older women to get screened. Among women who did not get screened, women aged 80 and older ranked age and doctor's counseling as the most influential factors and women aged 65-79 ranked a previous negative experience with mammography as the most important factor. There were no significant differences in preferred role in decision-making around mammography screening by age, however, most women in both age groups preferred to make the final decision on their own (46.6% of women aged 80+ and 50.5% of women aged 65-79). While a doctor's recommendation is the most important factor influencing elderly women's mammography screening decisions, habit and reassurance

  19. A Mechanistic Source Term Calculation for a Metal Fuel Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2017-06-26

    A mechanistic source term (MST) calculation attempts to realistically assess the transport and release of radionuclides from a reactor system to the environment during a specific accident sequence. The U.S. Nuclear Regulatory Commission (NRC) has repeatedly stated its expectation that advanced reactor vendors will utilize an MST during the U.S. reactor licensing process. As part of a project to examine possible impediments to sodium fast reactor (SFR) licensing in the U.S., an analysis was conducted regarding the current capabilities to perform an MST for a metal fuel SFR. The purpose of the project was to identify and prioritize any gaps in current computational tools, and the associated database, for the accurate assessment of an MST. The results of the study demonstrate that an SFR MST is possible with current tools and data, but several gaps exist that may lead to possibly unacceptable levels of uncertainty, depending on the goals of the MST analysis.

  20. Interactions between aboveground herbivores and the mycorrhizal mutualists of plants.

    Science.gov (United States)

    Gehring, C A; Whitham, T G

    1994-07-01

    Plant growth, reproduction and survival can be affected both by mycorrhizal fungi and aboveground herbivores, but few studies have examined the interactive effects of these factors on plants. Most of the available data suggest that severe herbivory reduces root colonization by vesicular-arbuscular and ectomycorrhizal fungi. However, the reverse interaction has also been documented - mycorrhizal fungi deter herbivores and interact with fungal endophytes to influence herbivory. Although consistent patterns and mechanistic explanations are yet to emerge, it is likely that aboveground herbivore-mycorrhiza interactions have important implications for plant populations and communities. Copyright © 1994. Published by Elsevier Ltd.

  1. Characterization of cementitiously stabilized subgrades for mechanistic-empirical pavement design

    Science.gov (United States)

    Solanki, Pranshoo

    Pavements are vulnerable to subgrade layer performance because it acts as a foundation. Due to increase in the truck traffic, pavement engineers are challenged to build more strong and long-lasting pavements. To increase the load-bearing capacity of pavements, subgrade layer is often stabilized with cementitious additives. Thus, an overall characterization of stabilized subgrade layer is important for enhanced short- and long-term pavement performance. In this study, the effect of type and amount of additive on the short-term performance in terms of material properties recommended by the new Mechanistic-Empirical Pavement Design Guide (MEPDG) is examined. A total of four soils commonly encountered as subgrades in Oklahoma are utilized. Results show that the changes in the Mr, ME and UCS values stabilized specimens depend on the soil type and properties of additives. The long-term performance (or durability) of stabilized soil specimens is investigated by conducting freeze-thaw (F-T) cycling, vacuum saturation and tube suction tests on 7-day cured P-, K- and C-soil specimens stabilized with 6% lime, 10% CFA and 10% CKD. This study is motivated by the fact that during the service life of pavement stabilized layers are subjected to F-T cycles and moisture variations. It is found that that UCS value of all the stabilized specimens decreased with increase in the number of F-T cycles. A strong correlation was observed between UCS values retained after vacuum saturation and F-T cycles indicating that vacuum saturation could be used as a time-efficient and inexpensive method for evaluating durability of stabilized soils. In this study, short- and long-term observations from stabilization of sulfate bearing soil with locally available low (CFA), moderate (CKD) and high (lime) calcium-based stabilizers are determined to evaluate and compare the effect of additive type on the phenomenon of sulfate-induced heave. The impact of different factors on the development of the

  2. Development of mechanistic sorption model and treatment of uncertainties for Ni sorption on montmorillonite/bentonite

    International Nuclear Information System (INIS)

    Ochs, Michael; Ganter, Charlotte; Tachi, Yukio; Suyama, Tadahiro; Yui, Mikazu

    2011-02-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in this barrier is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the detailed/coupled processes of sorption and diffusion in compacted bentonite and develop mechanistic /predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, JAEA has developed the integrated sorption and diffusion (ISD) model/database in montmorillonite/bentonite systems. The main goal of the mechanistic model/database development is to provide a tool for a consistent explanation, prediction, and uncertainty assessment of K d as well as diffusion parameters needed for the quantification of radionuclide transport. The present report focuses on developing the thermodynamic sorption model (TSM) and on the quantification and handling of model uncertainties in applications, based on illustrating by example of Ni sorption on montmorillonite/bentonite. This includes 1) a summary of the present state of the art of thermodynamic sorption modeling, 2) a discussion of the selection of surface species and model design appropriate for the present purpose, 3) possible sources and representations of TSM uncertainties, and 4) details of modeling, testing and uncertainty evaluation for Ni sorption. Two fundamentally different approaches are presented and compared for representing TSM uncertainties: 1) TSM parameter uncertainties calculated by FITEQL optimization routines and some statistical procedure, 2) overall error estimated by direct comparison of modeled and experimental K d values. The overall error in K d is viewed as the best representation of model uncertainty in ISD model/database development. (author)

  3. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    Science.gov (United States)

    Almonacid, Daniel E; Yera, Emmanuel R; Mitchell, John B O; Babbitt, Patricia C

    2010-03-12

    Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine

  4. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    Directory of Open Access Journals (Sweden)

    Daniel E Almonacid

    2010-03-01

    Full Text Available Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3 show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1 catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56% suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to

  5. Application of a Mechanistic Model as a Tool for On-line Monitoring of Pilot Scale Filamentous Fungal Fermentation Processes - The Importance of Evaporation Effects

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albæk, Mads Orla

    2017-01-01

    A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation...... a historical dataset of eleven batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on fourteen new batches utilizing a new strain. The product...... block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate...

  6. Dioxin formation mechanisms: Implications for combustion technologies. Report for October 1997--March 1998

    International Nuclear Information System (INIS)

    Gullett, B.K.

    1998-01-01

    The paper discusses current mechanistic theories relating to the formation of polychlorinated dibenzodioxin and polychlorinated dibenzofuran (PCDD/F) and how these theories relate to coal combustion, diesel vehicles, and open burning practices that may be of interest for the Asia-Pacific region. Co-firing coal with waste combustion has been shown to significantly decrease PCDD/F formation, likely by affecting the catalytic activity of the fly ash. On-road sampling results for diesel trucks have shown that modern, electronically controlled vehicles are likely a minor source of PCDD/F, although older vehicles remain a virtually uncharacterized and potentially significant source. Recent results from open burning of municipal waste have shown that PCDD/F emission factors are at least 14 orders of magnitude higher than modern waste combustors

  7. Global scale analysis and evaluation of an improved mechanistic representation of plant nitrogen and carbon dynamics in the Community Land Model (CLM)

    Science.gov (United States)

    Ghimire, B.; Riley, W. J.; Koven, C. D.; Randerson, J. T.; Mu, M.; Kattge, J.; Rogers, A.; Reich, P. B.

    2014-12-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However mechanistic representation of nitrogen uptake linked to root traits, and functional nitrogen allocation among different leaf enzymes involved in respiration and photosynthesis is currently lacking in Earth System models. The linkage between nitrogen availability and plant productivity is simplistically represented by potential photosynthesis rates, and is subsequently downregulated depending on nitrogen supply and other nitrogen consumers in the model (e.g., nitrification). This type of potential photosynthesis rate calculation is problematic for several reasons. Firstly, plants do not photosynthesize at potential rates and then downregulate. Secondly, there is considerable subjectivity on the meaning of potential photosynthesis rates. Thirdly, there exists lack of understanding on modeling these potential photosynthesis rates in a changing climate. In addition to model structural issues in representing photosynthesis rates, the role of plant roots in nutrient acquisition have been largely ignored in Earth System models. For example, in CLM4.5, nitrogen uptake is linked to leaf level processes (e.g., primarily productivity) rather than root scale process involved in nitrogen uptake. We present a new plant model for CLM with an improved mechanistic presentation of plant nitrogen uptake based on root scale Michaelis Menten kinetics, and stronger linkages between leaf nitrogen and plant productivity by inferring relationships observed in global databases of plant traits (including the TRY database and several individual studies). We also incorporate improved representation of plant nitrogen leaf allocation, especially in tropical regions where significant over-prediction of plant growth and productivity in CLM4.5 simulations exist. We evaluate our improved global model simulations using the International Land Model Benchmarking (ILAMB) framework. We conclude that

  8. Recent Concepts in Dyslexia: Implications for Diagnosis and Remediation.

    Science.gov (United States)

    Forness, Steven R.

    The report briefly reviews research on the concepts of attention, memory, and linguistic deficits, as well as maturational lag and interactive factors; and considers possible implications for assessment and instruction of reading disabled/dyslexic children. Early theories relating to dyslexia or specific reading disability are traced from S.…

  9. Factors influencing elderly women's mammography screening decisions: implications for counseling

    Directory of Open Access Journals (Sweden)

    Davis Roger B

    2007-11-01

    Full Text Available Abstract Background Although guidelines recommend that clinicians consider life expectancy before screening older women for breast cancer, many older women with limited life expectancies are screened. We aimed to identify factors important to mammography screening decisions among women aged 80 and older compared to women aged 65–79. Methods Telephone surveys of 107 women aged 80+ and 93 women aged 65–79 randomly selected from one academic primary care practice who were able to communicate in English (60% response rate. The survey addressed the following factors in regards to older women's mammography screening decisions: perceived importance of a history of breast disease, family history of breast cancer, doctor's recommendations, habit, reassurance, previous experience, mailed reminder cards, family/friend's recommendations or experience with breast cancer, age, health, and media. The survey also assessed older women's preferred role in decision making around mammography screening. Results Of the 200 women, 65.5% were non-Hispanic white and 82.8% were in good to excellent health. Most (81.3% had undergone mammography in the past 2 years. Regardless of age, older women ranked doctor's recommendations as the most important factor influencing their decision to get screened. Habit and reassurance were the next two highly ranked factors influencing older women to get screened. Among women who did not get screened, women aged 80 and older ranked age and doctor's counseling as the most influential factors and women aged 65–79 ranked a previous negative experience with mammography as the most important factor. There were no significant differences in preferred role in decision-making around mammography screening by age, however, most women in both age groups preferred to make the final decision on their own (46.6% of women aged 80+ and 50.5% of women aged 65–79. Conclusion While a doctor's recommendation is the most important factor influencing

  10. Exploring BSEP Inhibition-Mediated Toxicity with a Mechanistic Model of Drug-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Jeffrey L Woodhead

    2014-11-01

    Full Text Available Inhibition of the bile salt export pump (BSEP has been linked to incidence of drug-induced liver injury (DILI, presumably by the accumulation of toxic bile acids in the liver. We have previously constructed and validated a model of bile acid disposition within DILIsym®, a mechanistic model of DILI. In this paper, we use DILIsym® to simulate the DILI response of the hepatotoxic BSEP inhibitors bosentan and CP-724,714 and the non-hepatotoxic BSEP inhibitor telmisartan in humans in order to explore whether we can predict that hepatotoxic BSEP inhibitors can cause bile acid accumulation to reach toxic levels. We also simulate bosentan in rats in order to illuminate potential reasons behind the lack of toxicity in rats compared to the toxicity observed in humans. DILIsym® predicts that bosentan, but not telmisartan, will cause mild hepatocellular ATP decline and serum ALT elevation in a simulated population of humans. The difference in hepatotoxic potential between bosentan and telmisartan is consistent with clinical observations. However, DILIsym® underpredicts the incidence of bosentan toxicity. DILIsym® also predicts that bosentan will not cause toxicity in a simulated population of rats, and that the difference between the response to bosentan in rats and in humans is primarily due to the less toxic bile acid pool in rats. Our simulations also suggest a potential synergistic role for bile acid accumulation and mitochondrial electron transport chain inhibition in producing the observed toxicity in CP-724,714, and suggest that CP-724,714 metabolites may also play a role in the observed toxicity. Our work also compares the impact of competitive and noncompetitive BSEP inhibition for CP-724,714 and demonstrates that noncompetitive inhibition leads to much greater bile acid accumulation and potential toxicity. Our research demonstrates the potential for mechanistic modeling to contribute to the understanding of how bile acid transport inhibitors

  11. Polymerization kinetics of wheat gluten upon thermosetting. A mechanistic model.

    Science.gov (United States)

    Domenek, Sandra; Morel, Marie-Hélène; Bonicel, Joëlle; Guilbert, Stéphane

    2002-10-09

    Size exclusion high-performance liquid chromatography analysis was carried out on wheat gluten-glycerol blends subjected to different heat treatments. The elution profiles were analyzed in order to follow the solubility loss of protein fractions with specific molecular size. Owing to the known biochemical changes involved during the heat denaturation of gluten, a mechanistic mathematical model was developed, which divided the protein denaturation into two distinct reaction steps: (i) reversible change in protein conformation and (ii) protein precipitation through disulfide bonding between initially SDS-soluble and SDS-insoluble reaction partners. Activation energies of gluten unfolding, refolding, and precipitation were calculated with the Arrhenius law to 53.9 kJ x mol(-1), 29.5 kJ x mol(-1), and 172 kJ x mol(-1), respectively. The rate of protein solubility loss decreased as the cross-linking reaction proceeded, which may be attributed to the formation of a three-dimensional network progressively hindering the reaction. The enhanced susceptibility to aggregation of large molecules was assigned to a risen reaction probability due to their higher number of cysteine residues and to the increased percentage of unfolded and thereby activated proteins as complete protein refolding seemed to be an anticooperative process.

  12. Application of a mechanistic model as a tool for on-line monitoring of pilot scale filamentous fungal fermentation processes-The importance of evaporation effects.

    Science.gov (United States)

    Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Sin, Gürkan; Gernaey, Krist V

    2017-03-01

    A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate, dissolved oxygen and mass, as well as other process parameters including k L a, viscosity and partial pressure of CO 2 . State estimation at this scale requires a robust mass model including evaporation, which is a factor not often considered at smaller scales of operation. The model is developed using a historical data set of 11 batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on 14 new batches utilizing a new strain. The product concentration in the validation batches was predicted with an average root mean sum of squared error (RMSSE) of 16.6%. In addition, calculation of the Janus coefficient for the validation batches shows a suitably calibrated model. The robustness of the model prediction is assessed with respect to the accuracy of the input data. Parameter estimation uncertainty is also carried out. The application of this on-line state estimator allows for on-line monitoring of pilot scale batches, including real-time estimates of multiple parameters which are not able to be monitored on-line. With successful application of a soft sensor at this scale, this allows for improved process monitoring, as well as opening up further possibilities for on-line control algorithms, utilizing these on-line model outputs

  13. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite.

    Science.gov (United States)

    Boronat, Mercedes; Martínez, Cristina; Corma, Avelino

    2011-02-21

    The activity and selectivity towards carbonylation presented by Brønsted acid sites located inside the 8MR pockets or in the main 12MR channels of mordenite is studied by means of quantum-chemical calculations, and the mechanistic differences between methanol and DME carbonylation are investigated. The selectivity towards carbonylation is higher inside the 8MR pockets, where the competitive formation of DME and hydrocarbons that finally leads to catalyst deactivation is sterically impeded. Moreover, inclusion of dispersion interactions in the calculations leads to agreement between the calculated activation barriers for the rate determining step and the experimentally observed higher reactivity of methoxy groups located inside the 8MR channels.

  14. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    Science.gov (United States)

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  15. General implications of research relevant to quality factors

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1987-01-01

    Experiments on animals and mammalian cells in vitro support RBE values for fission neutrons relative low dose rate gamma radiation of about 20-30; and a dose rate reduction factor for low dose rate gamma radiation relative to high dose rates of between 2 to 10. Taken together these suggest that the risks from neutron and gamma radiation are not grossly underestimated in radiological protection. (author)

  16. mTOR (Mechanistic Target of Rapamycin) Inhibition Decreases Mechanosignaling, Collagen Accumulation, and Stiffening of the Thoracic Aorta in Elastin-Deficient Mice.

    Science.gov (United States)

    Jiao, Yang; Li, Guangxin; Li, Qingle; Ali, Rahmat; Qin, Lingfeng; Li, Wei; Qyang, Yibing; Greif, Daniel M; Geirsson, Arnar; Humphrey, Jay D; Tellides, George

    2017-09-01

    Elastin deficiency because of heterozygous loss of an ELN allele in Williams syndrome causes obstructive aortopathy characterized by medial thickening and fibrosis and consequent aortic stiffening. Previous work in Eln -null mice with a severe arterial phenotype showed that inhibition of mTOR (mechanistic target of rapamycin), a key regulator of cell growth, lessened the aortic obstruction but did not prevent early postnatal death. We investigated the effects of mTOR inhibition in Eln -null mice partially rescued by human ELN that manifest a less severe arterial phenotype and survive long term. Thoracic aortas of neonatal and juvenile mice with graded elastin deficiency exhibited increased signaling through both mTOR complex 1 and 2. Despite lower predicted wall stress, there was increased phosphorylation of focal adhesion kinase, suggestive of greater integrin activation, and increased transforming growth factor-β-signaling mediators, associated with increased collagen expression. Pharmacological blockade of mTOR by rapalogs did not improve luminal stenosis but reduced mechanosignaling (in delayed fashion after mTOR complex 1 inhibition), medial collagen accumulation, and stiffening of the aorta. Rapalog administration also retarded somatic growth, however, and precipitated neonatal deaths. Complementary, less-toxic strategies to inhibit mTOR via altered growth factor and nutrient responses were not effective. In addition to previously demonstrated therapeutic benefits of rapalogs decreasing smooth muscle cell proliferation in the absence of elastin, we find that rapalogs also prevent aortic fibrosis and stiffening attributable to partial elastin deficiency. Our findings suggest that mTOR-sensitive perturbation of smooth muscle cell mechanosensing contributes to elastin aortopathy. © 2017 American Heart Association, Inc.

  17. Semi-Mechanistic Population Pharmacokinetic Modeling of L-Histidine Disposition and Brain Uptake in Wildtype and Pht1 Null Mice.

    Science.gov (United States)

    Wang, Xiao-Xing; Li, Yang-Bing; Feng, Meihua R; Smith, David E

    2018-01-05

    To develop a semi-mechanistic population pharmacokinetic (PK) model to quantitate the disposition kinetics of L-histidine, a peptide-histidine transporter 1 (PHT1) substrate, in the plasma, cerebrospinal fluid and brain parenchyma of wildtype (WT) and Pht1 knockout (KO) mice. L-[ 14 C]Hisidine (L-His) was administrated to WT and KO mice via tail vein injection, after which plasma, cerebrospinal fluid (CSF) and brain parenchyma samples were collected. A PK model was developed using non-linear mixed effects modeling (NONMEM). The disposition of L-His between the plasma, brain, and CSF was described by a combination of PHT1-mediated uptake, CSF bulk flow and first-order micro-rate constants. The PK profile of L-His was best described by a four-compartment model. A more rapid uptake of L-His in brain parenchyma was observed in WT mice due to PHT1-mediated uptake, a process characterized by a Michaelis-Menten component (V max  = 0.051 nmoL/min and K m  = 34.94 μM). A semi-mechanistic population PK model was successfully developed, for the first time, to quantitatively characterize the disposition kinetics of L-His in brain under in vivo conditions. This model may prove a useful tool in predicting the uptake of L-His, and possibly other PHT1 peptide/mimetic substrates, for drug delivery to the brain.

  18. Ancient Chinese medicine and mechanistic evidence of acupuncture physiology.

    Science.gov (United States)

    Yang, Edward S; Li, Pei-Wen; Nilius, Bernd; Li, Geng

    2011-11-01

    Acupuncture has been widely used in China for three millennia as an art of healing. Yet, its physiology is not yet understood. The current interest in acupuncture started in 1971. Soon afterward, extensive research led to the concept of neural signaling with possible involvement of opioid peptides, glutamate, adenosine and identifying responsive parts in the central nervous system. In the last decade scientists began investigating the subject with anatomical and molecular imaging. It was found that mechanical movements of the needle, ignored in the past, appear to be central to the method and intracellular calcium ions may play a pivotal role. In this review, we trace the technique of clinical treatment from the first written record about 2,200 years ago to the modern time. The ancient texts have been used to introduce the concepts of yin, yang, qi, de qi, and meridians, the traditional foundation of acupuncture. We explore the sequence of the physiological process, from the turning of the needle, the mechanical wave activation of calcium ion channel to beta-endorphin secretion. By using modern terminology to re-interpret the ancient texts, we have found that the 2nd century B.C.: physiologists were meticulous investigators and their explanation fits well with the mechanistic model derived from magnetic resonance imaging (MRI) and confocal microscopy. In conclusion, the ancient model appears to have withstood the test of time surprisingly well confirming the popular axiom that the old wine is better than the new.

  19. A mechanistic approach to the generation of sorption databases

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1992-01-01

    Sorption of radionuclides in the near and far fields of an underground nuclear waste repository is one of the most important processes retarding their release to the environment. In the vast majority of cases sorption data have been presented in terms of empirical parameters such as distribution coefficients and isotherm equations. A consequence of this empirical methodology is that the sorption data are only strictly valid under the experimental conditions at which they were measured. Implicit in this approach is the need to generate large amounts of data and fitting parameters necessary for an empirical description of sorption under all realistically conceivable conditions which may arise in space and time along the migration pathway to Man. An alternative approach to the problem is to try to understand, and develop model descriptions of, underlying retention mechanisms and to identify those systems parameters which essentially determine the extent of sorption. The aim of this work is to see to what extent currently existing mechanistic models, together with their associated data, can be applied to predict sorption data from laboratory experiments on natural systems. This paper describes the current status of this work which is very much in an early stage of development. An example is given whereby model predictions are compared with laboratory results for the sorption of Np at trace concentrations under oxidizing conditions on a series of minerals relevant to granite formations. 31 refs., 11 figs., 5 tabs

  20. Diffusion theory in biology: a relic of mechanistic materialism.

    Science.gov (United States)

    Agutter, P S; Malone, P C; Wheatley, D N

    2000-01-01

    Diffusion theory explains in physical terms how materials move through a medium, e.g. water or a biological fluid. There are strong and widely acknowledged grounds for doubting the applicability of this theory in biology, although it continues to be accepted almost uncritically and taught as a basis of both biology and medicine. Our principal aim is to explore how this situation arose and has been allowed to continue seemingly unchallenged for more than 150 years. The main shortcomings of diffusion theory will be briefly reviewed to show that the entrenchment of this theory in the corpus of biological knowledge needs to be explained, especially as there are equally valid historical grounds for presuming that bulk fluid movement powered by the energy of cell metabolism plays a prominent note in the transport of molecules in the living body. First, the theory's evolution, notably from its origins in connection with the mechanistic materialist philosophy of mid nineteenth century physiology, is discussed. Following this, the entrenchment of the theory in twentieth century biology is analyzed in relation to three situations: the mechanism of oxygen transport between air and mammalian tissues; the structure and function of cell membranes; and the nature of the intermediary metalbolism, with its implicit presumptions about the intracellular organization and the movement of molecules within it. In our final section, we consider several historically based alternatives to diffusion theory, all of which have their precursors in nineteenth and twentieth century philosophy of science.

  1. Tablets in K-12 Education: Integrated Experiences and Implications

    Science.gov (United States)

    An, Heejung, Ed.; Alon, Sandra, Ed.; Fuentes, David, Ed.

    2015-01-01

    The inclusion of new and emerging technologies in the education sector has been a topic of interest to researchers, educators, and software developers alike in recent years. Utilizing the proper tools in a classroom setting is a critical factor in student success. "Tablets in K-12 Education: Integrated Experiences and Implications"…

  2. Implications of bride price on domestic violence and reproductive ...

    African Journals Online (AJOL)

    Objective: Bride price payment is a gender issue with implications on gender relations in different socio-cultural contexts. It also impacts Sexual and Reproductive Health and Rights. In a qualitative study on the perceptions of domestic violence in Wakiso district, payment of bride price emerged as one of the key factors ...

  3. Regulation of the human ADAMTS-4 promoter by transcription factors and cytokines

    International Nuclear Information System (INIS)

    Thirunavukkarasu, Kannan; Pei, Yong; Moore, Terry L.; Wang, He; Yu, Xiao-peng; Geiser, Andrew G.; Chandrasekhar, Srinivasan

    2006-01-01

    ADAMTS-4 (aggrecanase-1) is a metalloprotease that plays a role in aggrecan degradation in the cartilage extracellular matrix. In order to understand the regulation of ADAMTS-4 gene expression we have cloned and characterized a functional 4.5 kb human ADAMTS-4 promoter. Sequence analysis of the promoter revealed the presence of putative binding sites for nuclear factor of activated T cells (NFAT) and Runx family of transcription factors that are known to regulate chondrocyte maturation and differentiation. Using promoter-reporter assays and mRNA analysis we have analyzed the role of chondrocyte-expressed transcription factors NFATp and Runx2 and have shown that ADAMTS-4 is a potential downstream target of these two factors. Our results suggest that inhibition of the expression/function of NFATp and/or Runx2 may enable us to modulate aggrecan degradation in normal physiology and/or in degenerative joint diseases. The ADAMTS-4 promoter would serve as a valuable mechanistic tool to better understand the regulation of ADAMTS-4 expression by signaling pathways that modulate cartilage matrix breakdown

  4. Tissue factor-dependent activation of tritium-labeled factor IX and factor X in human plasma

    International Nuclear Information System (INIS)

    Morrison, S.A.; Jesty, J.

    1984-01-01

    A comparism was made of the tissue factor-dependent activation of tritium-labeled factor IX and factor X in a human plasma system and a study was made of the role of proteases known to stimulate factor VII activity. Plasma was defibrinated by heating and depleted of its factors IX and X by passing it through antibody columns. Addition of human brain thromboplastin, Ca2+, and purified 3H-labeled factor X to the plasma resulted, after a short lag, in burst-like activation of the factor X, measured as the release of radiolabeled activation peptide. The progress of activation was slowed by both heparin and a specific inhibitor of factor Xa but factor X activation could not be completely abolished by such inhibitors. In the case of 3H-factor IX activation, the rate also increased for approximately 3 min after addition of thromboplastin, but was not subsequently curtailed. A survey of proteases implicated as activators of factor VII in other settings showed that both factor Xa and factor IXa could accelerate the activation of factor IX. However, factor Xa was unique in obliterating activation when present at concentrations greater than approximately 1 nM. Heparin inhibited the tissue factor-dependent activation of factor IX almost completely, apparently through the effect of antithrombin on the feedback reactions of factors Xa and IXa on factor VII. These results suggest that a very tight, biphasic control of factor VII activity exists in human plasma, which is modulated mainly by factor Xa. At saturation of factor VIIa/tissue factor, factor IX activation was significantly more rapid than was previously found in bovine plasma under similar conditions. The activation of factor X at saturation was slightly more rapid than in bovine plasma, despite the presence of heparin

  5. Genetics of Atrial Fibrillation and Possible Implications for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Robin Lemmens

    2011-01-01

    Full Text Available Atrial fibrillation is the most common cardiac arrhythmia mainly caused by valvular, ischemic, hypertensive, and myopathic heart disease. Atrial fibrillation can occur in families suggesting a genetic background especially in younger subjects. Additionally recent studies have identified common genetic variants to be associated with atrial fibrillation in the general population. This cardiac arrhythmia has important public health implications because of its main complications: congestive heart failure and ischemic stroke. Since atrial fibrillation can result in ischemic stroke, one might assume that genetic determinants of this cardiac arrhythmia are also implicated in cerebrovascular disease. Ischemic stroke is a multifactorial, complex disease where multiple environmental and genetic factors interact. Whether genetic variants associated with a risk factor for ischemic stroke also increase the risk of a particular vascular endpoint still needs to be confirmed in many cases. Here we review the current knowledge on the genetic background of atrial fibrillation and the consequences for cerebrovascular disease.

  6. Past Perspectives on Teaching about the Vietnam War: Implications for Teaching about Iraq

    Science.gov (United States)

    McMurray, Andrew J.

    2007-01-01

    During the Vietnam War, and the years following the conflict, history teachers were often hesitant to examine the war in the classroom for a variety of reasons. This article explores some of the factors that prohibited the effective teaching of the Vietnam War. Implications regarding how these inhibiting factors might affect teaching about the…

  7. [Pathological gambling: risk factors].

    Science.gov (United States)

    Bouju, G; Grall-Bronnec, M; Landreat-Guillou, M; Venisse, J-L

    2011-09-01

    In France, consumption of gambling games increased by 148% between 1960 and 2005. In 2004, gamblers lost approximately 0.9% of household income, compared to 0.4% in 1960. This represents approximately 134 Euros per year and per head. In spite of this important increase, the level remains lower than the European average (1%). However, gambling practices may continue to escalate in France in the next few years, particularly with the recent announce of the legalisation of online games and sports betting. With the spread of legalised gambling, pathological gambling rates may increase in France in the next years, in response to more widely available and more attractive gambling opportunities. In this context, there is a need for better understanding of the risk factors that are implicated in the development and maintenance of pathological gambling. This paper briefly describes the major risk factors for pathological gambling by examining the recent published literature available during the first quarter of 2008. This documentary basis was collected by Inserm for the collective expert report procedure on Gambling (contexts and addictions). Seventy-two articles focusing on risk factors for pathological gambling were considered in this review. Only 47 of them were taken into account for analysis. The selection of these 47 publications was based on the guide on literature analysis established by the French National Agency for Accreditation and Assessment in Health (ANAES, 2000). Some publications from more recent literature have also been added, mostly about Internet gambling. We identify three major types of risk factors implicated in gambling problems: some of them are related to the subject (individual factors), others are related to the object of the addiction, here the gambling activity by itself (structural factors), and the last are related to environment (contextual or situational factors). Thus, the development and maintenance of pathological gambling seems to be

  8. External Validity in the Study of Human Development: Theoretical and Methodological Issues

    Science.gov (United States)

    Hultsch, David F.; Hickey, Tom

    1978-01-01

    An examination of the concept of external validity from two theoretical perspectives: a traditional mechanistic approach and a dialectical organismic approach. Examines the theoretical and methodological implications of these perspectives. (BD)

  9. Inhibition of thrombin generation by the zymogen factor VII: implications for the treatment of hemophilia A by factor VIIa

    NARCIS (Netherlands)

    van 't Veer, C.; Golden, N. J.; Mann, K. G.

    2000-01-01

    Factor VII circulates as a single chain inactive zymogen (10 nmol/L) and a trace ( approximately 10-100 pmol/L) circulates as the 2-chain form, factor VIIa. Factor VII and factor VIIa were studied in a coagulation model using plasma concentrations of purified coagulation factors with reactions

  10. Radiation-induced acute myeloid leukaemia in mice

    Energy Technology Data Exchange (ETDEWEB)

    Bouffler, S.D.; Silver, A.R.J.; Cox, R. [National Radiological Protection Board, Chilton (United Kingdom)

    2000-07-01

    Ample epidemiological studies of human populations implicate ionizing radiation as a carcinogen and these quantitative studies provide the foundation for the core estimates of radiation cancer risk. The majority of the epidemiological data originate from situations of radiation exposure at high dose and high dose rate. The relevance of risk estimates based on such exposures to the more commonly encountered low dose and dose rate situation has been questioned frequently. Thus, there is a need to investigate and quantitate low dose and dose rate effects. A number of approaches may be considered, for example, very large scale epidemiology, very large scale animal experimentation; however, both of these present problems of a practical and/or ethical nature. A further possible approach is that of mechanistic modelling. This requires a fairly detailed understanding of neoplastic disease and how it develops post-irradiation. Many factors and variables have to be taken into consideration in mechanistic modelling approaches. Testing of mechanistic modelling schemes is best carried out using animal model systems. Acute myeloid leukaemia (AML) is a radiogenic cancer of significance in man and several good mouse models of the disease are available. Here, recent studies conducted at NRPB with the aim of elucidating the post-irradiation development of AML will be discussed. In particular three areas critical for developing a sound mechanistic model will be covered, definition of the initiating event; study of disease progression, this addresses the question of the frequency of conversion of initiated cells into the neoplastic state and the influence of genetic background on leukaemogenesis. (author)

  11. Parenting and demographic factors as predictors of adolescent ...

    African Journals Online (AJOL)

    Previous studies associated conduct disorder among adolescents with great societal damage. ... aggressive behaviour, hostility and deceitfulness) and the effectiveness of ... The results have implications for parenting factors associated with ...

  12. Evolutionary adaptations: theoretical and practical implications for visual ergonomics.

    Science.gov (United States)

    Fostervold, Knut Inge; Watten, Reidulf G; Volden, Frode

    2014-01-01

    The literature discussing visual ergonomics often mention that human vision is adapted to light emitted by the sun. However, theoretical and practical implications of this viewpoint is seldom discussed or taken into account. The paper discusses some of the main theoretical implications of an evolutionary approach to visual ergonomics. Based on interactional theory and ideas from ecological psychology an evolutionary stress model is proposed as a theoretical framework for future research in ergonomics and human factors. The model stresses the importance of developing work environments that fits with our evolutionary adaptations. In accordance with evolutionary psychology, the environment of evolutionary adaptedness (EEA) and evolutionarily-novel environments (EN) are used as key concepts. Using work with visual display units (VDU) as an example, the paper discusses how this knowledge can be utilized in an ergonomic analysis of risk factors in the work environment. The paper emphasises the importance of incorporating evolutionary theory in the field of ergonomics. Further, the paper encourages scientific practices that further our understanding of any phenomena beyond the borders of traditional proximal explanations.

  13. Estimating past hepatitis C infection risk from reported risk factor histories: implications for imputing age of infection and modeling fibrosis progression

    Directory of Open Access Journals (Sweden)

    Busch Michael P

    2007-12-01

    Full Text Available Abstract Background Chronic hepatitis C virus infection is prevalent and often causes hepatic fibrosis, which can progress to cirrhosis and cause liver cancer or liver failure. Study of fibrosis progression often relies on imputing the time of infection, often as the reported age of first injection drug use. We sought to examine the accuracy of such imputation and implications for modeling factors that influence progression rates. Methods We analyzed cross-sectional data on hepatitis C antibody status and reported risk factor histories from two large studies, the Women's Interagency HIV Study and the Urban Health Study, using modern survival analysis methods for current status data to model past infection risk year by year. We compared fitted distributions of past infection risk to reported age of first injection drug use. Results Although injection drug use appeared to be a very strong risk factor, models for both studies showed that many subjects had considerable probability of having been infected substantially before or after their reported age of first injection drug use. Persons reporting younger age of first injection drug use were more likely to have been infected after, and persons reporting older age of first injection drug use were more likely to have been infected before. Conclusion In cross-sectional studies of fibrosis progression where date of HCV infection is estimated from risk factor histories, modern methods such as multiple imputation should be used to account for the substantial uncertainty about when infection occurred. The models presented here can provide the inputs needed by such methods. Using reported age of first injection drug use as the time of infection in studies of fibrosis progression is likely to produce a spuriously strong association of younger age of infection with slower rate of progression.

  14. Computational Modelling Approaches on Epigenetic Factors in Neurodegenerative and Autoimmune Diseases and Their Mechanistic Analysis

    Directory of Open Access Journals (Sweden)

    Afroza Khanam Irin

    2015-01-01

    Full Text Available Neurodegenerative as well as autoimmune diseases have unclear aetiologies, but an increasing number of evidences report for a combination of genetic and epigenetic alterations that predispose for the development of disease. This review examines the major milestones in epigenetics research in the context of diseases and various computational approaches developed in the last decades to unravel new epigenetic modifications. However, there are limited studies that systematically link genetic and epigenetic alterations of DNA to the aetiology of diseases. In this work, we demonstrate how disease-related epigenetic knowledge can be systematically captured and integrated with heterogeneous information into a functional context using Biological Expression Language (BEL. This novel methodology, based on BEL, enables us to integrate epigenetic modifications such as DNA methylation or acetylation of histones into a specific disease network. As an example, we depict the integration of epigenetic and genetic factors in a functional context specific to Parkinson’s disease (PD and Multiple Sclerosis (MS.

  15. Estimation of long-term environmental inventory factors associated with land application of sewage sludge

    DEFF Research Database (Denmark)

    Bruun, Sander; Yoshida, Hiroko; Nielsen, Martin P.

    2016-01-01

    . However, because of the complexity of the agricultural production system, it is difficult to estimate emissions consistently under different conditions. In the current paper, a mechanistic agro-ecosystem model was calibrated to be able to simulate different sludge types stabilized using different...... crop response conditions (i.e. when nitrogen was limiting) and low crop response conditions (i.e. when nitrogen was not limiting). The average high response nitrogen harvest factor over the tested environmental conditions was ranging from 0.06 to 0.30 for the different sludge types included. This means...... that if an additional 1 kg of nitrogen is applied with sludge, between 0.06 and 0.30 kg additional nitrogen is harvested. This is considerably lower than for mineral fertilizer with an average value of 0.63. The low response harvest factors were considerably lower, ranging from 0.03 to 0.13. The emission factor...

  16. Evaluation of cardiovascular risk factors in patients with hypertension

    African Journals Online (AJOL)

    Background: Hypertension is a major health concern in developed and developing countries. Its prevalence is high in Nigeria and accounts for a great percentage of hospital visits and admissions. Hypertension is a chief risk factor for cardiovascular events. Independent risks factors, some of which are implicated in the ...

  17. A Three-Stage Mechanistic Model for Solidification Cracking During Welding of Steel

    Science.gov (United States)

    Aucott, L.; Huang, D.; Dong, H. B.; Wen, S. W.; Marsden, J.; Rack, A.; Cocks, A. C. F.

    2018-03-01

    A three-stage mechanistic model for solidification cracking during TIG welding of steel is proposed from in situ synchrotron X-ray imaging of solidification cracking and subsequent analysis of fracture surfaces. Stage 1—Nucleation of inter-granular hot cracks: cracks nucleate inter-granularly in sub-surface where maximum volumetric strain is localized and volume fraction of liquid is less than 0.1; the crack nuclei occur at solute-enriched liquid pockets which remain trapped in increasingly impermeable semi-solid skeleton. Stage 2—Coalescence of cracks via inter-granular fracture: as the applied strain increases, cracks coalesce through inter-granular fracture; the coalescence path is preferential to the direction of the heat source and propagates through the grain boundaries to solidifying dendrites. Stage 3—Propagation through inter-dendritic hot tearing: inter-dendritic hot tearing occurs along the boundaries between solidifying columnar dendrites with higher liquid fraction. It is recommended that future solidification cracking criterion shall be based on the application of multiphase mechanics and fracture mechanics to the failure of semi-solid materials.

  18. ['Anatomia actuosa et apta'. The mechanist 'proto'-physiology of B.S. Albinus].

    Science.gov (United States)

    van der Korst, J K

    1993-01-01

    Already during his tenure as professor of anatomy and surgery (1721-1746) and before he became a professor of physiology and medicine at the University of Leiden, Bernard Siegfried Albinus held private lecture courses on physiology. In these lectures he pleaded for a separation of physiology from theoretical medicine, which was still its customary place in the medical curriculum of the first half of the eighteenth century. According to Albinus, physiology was a science in its own right and should be solely based on the careful observation of forms and structures of the human body. From the 'fabrica', the function ('aptitudo') could be derived by careful reasoning. As shown by a set of lecture notes, which recently came to light, Albinus adhered, initially, to a strictly mechanistic explanatory model, which was almost completely based on the physiological concepts of Herman Boerhaave. However, in contrast to the latter, he even rejected the involvement of chemical processes in digestion. Although his lectures were highly acclaimed as demonstrations of minute anatomy, Albinus met with little or no direct response in regard to his concept of physiology.

  19. Implications of middlemen in the supply chain of agricultural products

    African Journals Online (AJOL)

    This paper appraised the roles of middlemen in the distribution of agricultural products and the inherent implications to food security. The results showed that climate and weather are known limiting factors of production in agriculture. Also, middlemen intervention raise price for consumers. The result showed that farmers ...

  20. Mechanistic modelling of gaseous fission product behaviour in UO2 fuel by Rtop code

    International Nuclear Information System (INIS)

    Kanukova, V.D.; Khoruzhii, O.V.; Kourtchatov, S.Y.; Likhanskii, V.V.; Matveew, L.V.

    2002-01-01

    The current status of a mechanistic modelling by the RTOP code of the fission product behaviour in polycrystalline UO 2 fuel is described. An outline of the code and implemented physical models is presented. The general approach to code validation is discussed. It is exemplified by the results of validation of the models of fuel oxidation and grain growth. The different models of intragranular and intergranular gas bubble behaviour have been tested and the sensitivity of the code in the framework of these models has been analysed. An analysis of available models of the resolution of grain face bubbles is also presented. The possibilities of the RTOP code are presented through the example of modelling behaviour of WWER fuel over the course of a comparative WWER-PWR experiment performed at Halden and by comparison with Yanagisawa experiments. (author)