WorldWideScience

Sample records for factor gdnf-neural cell

  1. Role of glial cell line-derived neurotrophic factor (GDNF)-neural cell adhesion molecule (NCAM) interactions in induction of neurite outgrowth and identification of a binding site for NCAM in the heel region of GDNF

    DEFF Research Database (Denmark)

    Nielsen, Janne; Gotfryd, Kamil; Li, Shizhong

    2009-01-01

    The formation of appropriate neuronal circuits is an essential part of nervous system development and relies heavily on the outgrowth of axons and dendrites and their guidance to their respective targets. This process is governed by a large array of molecules, including glial cell line......-derived neurotrophic factor (GDNF) and the neural cell adhesion molecule (NCAM), the interaction of which induce neurite outgrowth. In the present study the requirements for NCAM-mediated GDNF-induced neurite outgrowth were investigated in cultures of hippocampal neurons, which do not express Ret. We demonstrate...

  2. Endothelial cells, tissue factor and infectious diseases

    Directory of Open Access Journals (Sweden)

    Lopes-Bezerra L.M.

    2003-01-01

    Full Text Available Tissue factor is a transmembrane procoagulant glycoprotein and a member of the cytokine receptor superfamily. It activates the extrinsic coagulation pathway, and induces the formation of a fibrin clot. Tissue factor is important for both normal homeostasis and the development of many thrombotic diseases. A wide variety of cells are able to synthesize and express tissue factor, including monocytes, granulocytes, platelets and endothelial cells. Tissue factor expression can be induced by cell surface components of pathogenic microorganisms, proinflammatory cytokines and membrane microparticles released from activated host cells. Tissue factor plays an important role in initiating thrombosis associated with inflammation during infection, sepsis, and organ transplant rejection. Recent findings suggest that tissue factor can also function as a receptor and thus may be important in cell signaling. The present minireview will focus on the role of tissue factor in the pathogenesis of septic shock, infectious endocarditis and invasive aspergillosis, as determined by both in vivo and in vitro models.

  3. Making a tooth: growth factors, transcription factors, and stem cells

    Institute of Scientific and Technical Information of China (English)

    Yah Ding ZHANG; Zhi CHEN; Yi Qiang SONG; Chao LIU; Yi Ping CHEN

    2005-01-01

    Mammalian tooth development is largely dependent on sequential and reciprocal epithelial-mesenchymal interactions.These processes involve a series of inductive and permissive interactions that result in the determination, differentiation,and organization of odontogenic tissues. Multiple signaling molecules, including BMPs, FGFs, Shh, and Wnt proteins,have been implicated in mediating these tissue interactions. Transcription factors participate in epithelial-mesenchymal interactions via linking the signaling loops between tissue layers by responding to inductive signals and regulating the expression of other signaling molecules. Adult stem cells are highly plastic and multipotent. These cells including dental pulp stem cells and bone marrow stromal cells could be reprogrammed into odontogenic fate and participated in tooth formation. Recent progress in the studies of molecular basis of tooth development, adult stem cell biology, and regeneration will provide fundamental knowledge for the realization of human tooth regeneration in the near future.

  4. Embryonic stem cell factors and pancreatic cancer.

    Science.gov (United States)

    Herreros-Villanueva, Marta; Bujanda, Luis; Billadeau, Daniel D; Zhang, Jin-San

    2014-03-07

    Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic tumor, is a highly aggressive human cancer with the lowest five-year survival rate of any human maligancy primarily due to its early- metastasis and lack of response to chemotherapy and radiation. Recent research suggests that PDAC cells comprise a hierarchy of tumor cells that develop around a population of cancer stem cells (CSCs), a small and distinct population of cancer cells that mediates tumoregenesis, metastasis and resistance to standard treatments. Thus, CSCs could be a target for more effective treatment options. Interestingly, pancreatic CSCs are subject to regulation by some of key embryonic stem cell (ESC) transctiption factors abberently expressed in PDAC, such as SOX2, OCT4 and NANOG. ESC transcription factors are important DNA-binding proteins present in both embryonic and adult somatic cells. The critical role of these factors in reprogramming processes makes them essential not only for embryonic development but also tumorigenesis. Here we provide an overview of stem cell transcription factors, particularly SOX2, OCT4, and NANOG, on their expression and function in pancreatic cancer. In contrast to embryonic stem cells, in which OCT4 and SOX2 are tightly regulated and physically interact to regulate a wide spectrum of target genes, de novo SOX2 expression alone in pancreatic cancer cells is sufficient to promote self-renewal, de-differentiation and imparting stemness characteristics via impacting specific cell cycle regulatory genes and epithelial-mesnechymal transtion driver genes. Thus, targeting ESC factors, particularly SOX2, could be a worthy strategy for pancreatic cancer therapy.

  5. Erythropoietin, Stem Cell Factor, and Cancer Cell Migration.

    Science.gov (United States)

    Vazquez-Mellado, Maria J; Monjaras-Embriz, Victor; Rocha-Zavaleta, Leticia

    2017-01-01

    Cell migration of normal cells is tightly regulated. However, tumor cells are exposed to a modified microenvironment that promotes cell migration. Invasive migration of tumor cells is stimulated by receptor tyrosine kinases (RTKs) and is regulated by growth factors. Erythropoietin (Epo) is a glycoprotein hormone that regulates erythropoiesis and is also known to be a potent chemotactic agent that induces cell migration by binding to its receptor (EpoR). Expression of EpoR has been documented in tumor cells, and the potential of Epo to induce cell migration has been explored. Stem cell factor (SCF) is a cytokine that synergizes the effects of Epo during erythropoiesis. SCF is the ligand of c-Kit, a member of the RTKs family. Molecular activity of RTKs is a primary stimulus of cell motility. Thus, expression of the SCF/c-Kit axis is associated with cell migration. In this chapter, we summarize data describing the potential effect of Epo/EpoR and SCF/c-Kit as promoters of cancer cell migration. We also integrate recent findings on molecular mechanisms of Epo/EpoR- and SCF/c-Kit-mediated migration described in various cancer models. © 2017 Elsevier Inc. All rights reserved.

  6. Nerve growth factor interactions with mast cells.

    Science.gov (United States)

    Kritas, S K; Caraffa, A; Antinolfi, P; Saggini, A; Pantalone, A; Rosati, M; Tei, M; Speziali, A; Saggini, R; Pandolfi, F; Cerulli, G; Conti, P

    2014-01-01

    Neuropeptides are involved in neurogenic inflammation where there is vasodilation and plasma protein extravasion in response to this stimulus. Nerve growth factor (NGF), identified by Rita Levi Montalcini, is a neurotrophin family compound which is important for survival of nociceptive neurons during their development. Therefore, NGF is an important neuropeptide which mediates the development and functions of the central and peripheral nervous system. It also exerts its proinflammatory action, not only on mast cells but also in B and T cells, neutrophils and eosinophils. Human mast cells can be activated by neuropeptides to release potent mediators of inflammation, and they are found throughout the body, especially near blood vessels, epithelial tissue and nerves. Mast cells generate and release NGF after degranulation and they are involved in iperalgesia, neuroimmune interactions and tissue inflammation. NGF is also a potent degranulation factor for mast cells in vitro and in vivo, promoting differentiation and maturation of these cells and their precursor, acting as a co-factor with interleukin-3. In conclusion, these studies are focused on cross-talk between neuropeptide NGF and inflammatory mast cells.

  7. QR Factorization for the Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    Jakub Kurzak

    2009-01-01

    Full Text Available The QR factorization is one of the most important operations in dense linear algebra, offering a numerically stable method for solving linear systems of equations including overdetermined and underdetermined systems. Modern implementations of the QR factorization, such as the one in the LAPACK library, suffer from performance limitations due to the use of matrix–vector type operations in the phase of panel factorization. These limitations can be remedied by using the idea of updating of QR factorization, rendering an algorithm, which is much more scalable and much more suitable for implementation on a multi-core processor. It is demonstrated how the potential of the cell broadband engine can be utilized to the fullest by employing the new algorithmic approach and successfully exploiting the capabilities of the chip in terms of single instruction multiple data parallelism, instruction level parallelism and thread-level parallelism.

  8. Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries

    DEFF Research Database (Denmark)

    Høyer, Poul Erik; Byskov, Anne Grete; Møllgård, Kjeld

    2005-01-01

    Prenatal ovary (human), Primordial germ cells, Folliculogenesis, c-Kit, Stem cell factor, immunohistochemistry......Prenatal ovary (human), Primordial germ cells, Folliculogenesis, c-Kit, Stem cell factor, immunohistochemistry...

  9. Rheumatoid factors, B cells and immunoglobulin genes.

    Science.gov (United States)

    Jefferis, R

    1995-04-01

    The paradigm of self, non-self discrimination in the immune system is under review as autoreactive B or T cells are increasingly delineated within normal individuals. The products of autoreactive B cells are, mostly, polyspecific IgM antibodies of low affinity. These 'natural' antibodies include rheumatoid factors (RF) encoded by unmutated germline immunoglobulin genes. In rheumatoid arthritis (RA) the RF may be of the IgM, IgG or IgA isotype, show evidence of somatic mutation and have increased affinity; consistent with maturation of an antigen driven immune response. This response could be initiated or driven by an auto-immunogenic form of IgG or an exogenous cross-reactive antigen. Changes in galactosylation of IgG have been reported to be a valuable diagnostic and prognostic indicator in RA. Speculation that these changes may precipitate some of the disease processes is critically reviewed.

  10. [Stem cells and growth factors in wound healing].

    Science.gov (United States)

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  11. Stem cells and growth factors in wound healing

    Directory of Open Access Journals (Sweden)

    Michał Pikuła

    2015-01-01

    Full Text Available Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF, fibroblast growth factor (FGF, platelet-derived growth factor (PDGF, transforming growth factor (TGF, vascular endothelial growth factor (VEGF. Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  12. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    Science.gov (United States)

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  13. Genome Binding and Gene Regulation by Stem Cell Transcription Factors

    NARCIS (Netherlands)

    J.H. Brandsma (Johan)

    2016-01-01

    markdownabstractNearly all cells of an individual organism contain the same genome. However, each cell type transcribes a different set of genes due to the presence of different sets of cell type-specific transcription factors. Such transcription factors bind to regulatory regions such as promoters

  14. [Cell therapy using stem cells: trophic factor, differentiation, and cell transplantation].

    Science.gov (United States)

    Hida, Hideki

    2013-02-01

    Our research of stem cell transplantation using mouse embryonic stem (ES) cells and induced pluripotent (iPS) cells was carried out from the aspect of trophic factor, cell differentiation, and better survival of grafted cells. Pleiotrophin, an enhanced trophic factor in the dopamine (DA)-depleted striatum, increased the number of DAergic neurons from ES-derived neural stem cells (ES-NSCs), increased cell survival of cultured DAergic neurons, and affected cell survival of grafted DAergic cells in Parkinson model rats. It was shown that DAergic differentiation from ES-NSCs was mediated by hypoxia inducible factor 1-alpha. Our challenges of the transplantation of ES-NSCs and iPS-derived oligodendrocyte progenitor cells (iPS-OPCs) into periventricular leukomalasia (PVL) model rats are also presented. It was found that grafted ES-NSCs survived better in the corpus callosum without immunosuppressant and most of them differentiated into neurons near the grafted site. It was also revealed that only a few of the grafted iPS-OPCs induced by a stepwise culture method with no use of serum could survive in PVL model rats, indicating that trophic factor (s) and improvement of graft techniques will be needed for better survival of grafted iPS-OPCs.

  15. Measuring the acoustophoretic contrast factor of living cells in microchannels

    DEFF Research Database (Denmark)

    Augustsson, P.; Barnkob, Rune; Grenvall, C.

    2010-01-01

    We report a new method, which allows for accurate measurement of the acostophoretic contrast factor Φ of different cell types, an acousto-physical parameter of fundamental importance in microchip acoustophoresis. As a test case the Φ factor is measured for undifferentiated and four-days different......We report a new method, which allows for accurate measurement of the acostophoretic contrast factor Φ of different cell types, an acousto-physical parameter of fundamental importance in microchip acoustophoresis. As a test case the Φ factor is measured for undifferentiated and four......-days differentiated cells from a human embryonic ventral mesencephalic cell line. The measured cell Φ factors are distributed around 0.04 and 0.07 for the two cell types, respectively. Despite a close acoustic similarity, the two cell populations are shown to be separable by acoustophoresis....

  16. Measuring the acoustophoretic contrast factor of living cells in microchannels

    DEFF Research Database (Denmark)

    Augustsson, P.; Barnkob, Rune; Grenvall, C.

    2010-01-01

    We report a new method, which allows for accurate measurement of the acostophoretic contrast factor Φ of different cell types, an acousto-physical parameter of fundamental importance in microchip acoustophoresis. As a test case the Φ factor is measured for undifferentiated and four-days different......We report a new method, which allows for accurate measurement of the acostophoretic contrast factor Φ of different cell types, an acousto-physical parameter of fundamental importance in microchip acoustophoresis. As a test case the Φ factor is measured for undifferentiated and four......-days differentiated cells from a human embryonic ventral mesencephalic cell line. The measured cell Φ factors are distributed around 0.04 and 0.07 for the two cell types, respectively. Despite a close acoustic similarity, the two cell populations are shown to be separable by acoustophoresis....

  17. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH......). Receptors for both GH and PRL are expressed in islet cells and are upregulated during pregnancy. By mutational analysis we have identified different functional domains of the cytoplasmic part of the GH receptor. Thus the mitotic signaling only requires the membrane proximal part of the receptor...

  18. Cellular factors targeting APCs to modulate adaptive T cell immunity.

    Science.gov (United States)

    Visperas, Anabelle; Do, Jeongsu; Min, Booki

    2014-01-01

    The fate of adaptive T cell immunity is determined by multiple cellular and molecular factors, among which the cytokine milieu plays the most important role in this process. Depending on the cytokines present during the initial T cell activation, T cells become effector cells that produce different effector molecules and execute adaptive immune functions. Studies thus far have primarily focused on defining how these factors control T cell differentiation by targeting T cells themselves. However, other non-T cells, particularly APCs, also express receptors for the factors and are capable of responding to them. In this review, we will discuss how APCs, by responding to those cytokines, influence T cell differentiation and adaptive immunity.

  19. Cellular Factors Targeting APCs to Modulate Adaptive T Cell Immunity

    Directory of Open Access Journals (Sweden)

    Anabelle Visperas

    2014-01-01

    Full Text Available The fate of adaptive T cell immunity is determined by multiple cellular and molecular factors, among which the cytokine milieu plays the most important role in this process. Depending on the cytokines present during the initial T cell activation, T cells become effector cells that produce different effector molecules and execute adaptive immune functions. Studies thus far have primarily focused on defining how these factors control T cell differentiation by targeting T cells themselves. However, other non-T cells, particularly APCs, also express receptors for the factors and are capable of responding to them. In this review, we will discuss how APCs, by responding to those cytokines, influence T cell differentiation and adaptive immunity.

  20. Role of chromatin factors in Arabidopsis root stem cell maintenance

    NARCIS (Netherlands)

    Kornet, N.G.|info:eu-repo/dai/nl/311445713

    2008-01-01

    Stem cells replenish the cells present in an organism throughout its lifetime and sustain growth. They have unique characteristics: the capability to self-renew and the potential to differentiate into several cell types. Recently, it has become clear that chromatin factors support these unique

  1. Role of chromatin factors in Arabidopsis root stem cell maintenance

    NARCIS (Netherlands)

    Kornet, N.G.

    2008-01-01

    Stem cells replenish the cells present in an organism throughout its lifetime and sustain growth. They have unique characteristics: the capability to self-renew and the potential to differentiate into several cell types. Recently, it has become clear that chromatin factors support these unique featu

  2. Molecular mechanism of extrinsic factors affecting antiagingof stem cells

    Institute of Scientific and Technical Information of China (English)

    Tzyy Yue Wong; Mairim Alexandra Solis; Ying-Hui Chen; Lynn Ling-Huei Huang

    2015-01-01

    Scientific evidence suggests that stem cells possessthe anti-aging ability to self-renew and maintaindifferentiation potentials, and quiescent state. Theobjective of this review is to discuss the microenvironmentwhere stem cells reside in vivo , thesecreted factors to which stem cells are exposed, thehypoxic environment, and intracellular factors includinggenome stability, mitochondria integrity, epigeneticregulators, calorie restrictions, nutrients, and vitaminD. Secreted tumor growth factor-β and fibroblastgrowth factor-2 are reported to play a role in stem cellquiescence. Extracellular matrices may interact withcaveolin-1, the lipid raft on cell membrane to regulatequiescence. N-cadherin, the adhesive protein on nichecells provides support for stem cells. The hypoxicmicro-environment turns on hypoxia-inducible factor-1to prevent mesenchymal stem cells aging throughp16 and p21 down-regulation. Mitochondria expressglucosephosphate isomerase to undergo glycolysisand prevent cellular aging. Epigenetic regulators suchas p300, protein inhibitors of activated Stats and H19help maintain stem cell quiescence. In addition, calorierestriction may lead to secretion of paracrines cyclicADP-ribose by intestinal niche cells, which help maintainintestinal stem cells. In conclusion, it is crucial tounderstand the anti-aging phenomena of stem cells atthe molecular level so that the key to solving the agingmystery may be unlocked.

  3. Stem cells and growth factors in wound healing

    OpenAIRE

    Michał Pikuła; Paulina Langa; Paulina Kosikowska; Piotr Trzonkowski

    2015-01-01

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound...

  4. Extracellular Vesicles: Evolving Factors in Stem Cell Biology

    Science.gov (United States)

    Nawaz, Muhammad; Fatima, Farah; Vallabhaneni, Krishna C.; Penfornis, Patrice; Valadi, Hadi; Ekström, Karin; Kholia, Sharad; Whitt, Jason D.; Fernandes, Joseph D.; Pochampally, Radhika; Squire, Jeremy A.; Camussi, Giovanni

    2016-01-01

    Stem cells are proposed to continuously secrete trophic factors that potentially serve as mediators of autocrine and paracrine activities, associated with reprogramming of the tumor microenvironment, tissue regeneration, and repair. Hitherto, significant efforts have been made to understand the level of underlying paracrine activities influenced by stem cell secreted trophic factors, as little is known about these interactions. Recent findings, however, elucidate this role by reporting the effects of stem cell derived extracellular vesicles (EVs) that mimic the phenotypes of the cells from which they originate. Exchange of genetic information utilizing persistent bidirectional communication mediated by stem cell-EVs could regulate stemness, self-renewal, and differentiation in stem cells and their subpopulations. This review therefore discusses stem cell-EVs as evolving communication factors in stem cell biology, focusing on how they regulate cell fates by inducing persistent and prolonged genetic reprogramming of resident cells in a paracrine fashion. In addition, we address the role of stem cell-secreted vesicles in shaping the tumor microenvironment and immunomodulation and in their ability to stimulate endogenous repair processes during tissue damage. Collectively, these functions ensure an enormous potential for future therapies. PMID:26649044

  5. An Evolutionarily Conserved Plant RKD Factor Controls Germ Cell Differentiation.

    Science.gov (United States)

    Koi, Satoshi; Hisanaga, Tetsuya; Sato, Katsutoshi; Shimamura, Masaki; Yamato, Katsuyuki T; Ishizaki, Kimitsune; Kohchi, Takayuki; Nakajima, Keiji

    2016-07-11

    In contrast to animals, in which the germ cell lineage is established during embryogenesis, plant germ cells are generated in reproductive organs via reprogramming of somatic cells. The factors that control germ cell differentiation and reprogramming in plants are poorly understood. Members of the RKD subfamily of plant-specific RWP-RK transcription factors have been implicated in egg cell formation in Arabidopsis based on their expression patterns and ability to cause an egg-like transcriptome upon ectopic expression [1]; however, genetic evidence of their involvement is lacking, due to possible genetic redundancy, haploid lethality, and the technical difficulty of analyzing egg cell differentiation in angiosperms. Here we analyzed the factors that govern germ cell formation in the liverwort Marchantia polymorpha. This recently revived model bryophyte has several characteristics that make it ideal for studies of germ cell formation, such as low levels of genetic redundancy, readily accessible germ cells, and the ability to propagate asexually via gemma formation [2, 3]. Our analyses revealed that MpRKD, a single RWP-RK factor closely related to angiosperm RKDs, is preferentially expressed in developing eggs and sperm precursors in M. polymorpha. Targeted disruption of MpRKD had no effect on the gross morphology of the vegetative and reproductive organs but led to striking defects in egg and sperm cell differentiation, demonstrating that MpRKD is an essential regulator of germ cell differentiation. Together with previous findings [1, 4-6], our results suggest that RKD factors are evolutionarily conserved regulators of germ cell differentiation in land plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors

    Institute of Scientific and Technical Information of China (English)

    Huiqun YIN; Heng WANG; Hongguo CAO; Yunhai ZHANG; Yong TAO; Xiaorong ZHANG

    2009-01-01

    Pluripotent stem cells (PSCs), characterized by being able to differentiate into various types of cells, are generally regarded as the most promising sources for cell replacement therapies. However, as typical PSCs, embryonic stem cells (ESCs) are still far away from human clinics so far due to ethical issues and immune rejection response. One way to avoid such problems is to use stem cells derived from autologous somatic cells. Up to date, PSCs could be obtained by reprogramming somatic cells to pluripotent state with approaches including somatic cell nuclear transfer (SCNT), fusion with stem cells, coculture with cells' extracts, and induction with defined factors. Among these, through reprogramming somatic cells directly by retroviral transduction of transcription factors, induced pluripotent stem (iPS) cells have been successfully generated in both mouse and human recently. These iPS cells shared similar morphology and growth properties to ESCs, could express ESCs marker genes, and could produce adult or germline-competent chimaeras and differentiate into a variety of cell types, including germ cells. Moreover, with iPS technique, patient specific PSCs could be derived more easily from handful somatic cells in human without immune rejection responses innately connected to ESCs. Consequently, generation of iPS cells would be of great help to further understand disease mechanisms, drug screening, and cell transplantation therapies as well.In summary,the recent progress in the study of cell reprogramming for the creation of patientspecific pluripotent stem cells, some existing problems, and research perspectives were suggested.

  7. ETS transcription factors in hematopoietic stem cell development.

    Science.gov (United States)

    Ciau-Uitz, Aldo; Wang, Lu; Patient, Roger; Liu, Feng

    2013-12-01

    Hematopoietic stem cells (HSCs) are essential for the maintenance of the hematopoietic system. However, these cells cannot be maintained or created in vitro, and very little is known about their generation during embryogenesis. Many transcription factors and signaling pathways play essential roles at various stages of HSC development. Members of the ETS ('E twenty-six') family of transcription factors are recognized as key regulators within the gene regulatory networks governing hematopoiesis, including the ontogeny of HSCs. Remarkably, although all ETS transcription factors bind the same DNA consensus sequence and overlapping tissue expression is observed, individual ETS transcription factors play unique roles in the development of HSCs. Also, these transcription factors are recurrently used throughout development and their functions are context-dependent, increasing the challenge of studying their mechanism of action. Critically, ETS factors also play roles under pathological conditions, such as leukemia and, therefore, deciphering their mechanism of action will not only enhance our knowledge of normal hematopoiesis, but also inform protocols for their creation in vitro from pluripotent stem cells and the design of new therapeutic approaches for the treatment of malignant blood cell diseases. In this review, we summarize the key findings on the roles of ETS transcription factors in HSC development and discuss novel mechanisms by which they could control hematopoiesis. © 2013.

  8. Connective Tissue Growth Factor Expression in Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Amrita DOSANJH

    2006-01-01

    Connective tissue growth factor (CTGF) is a cysteine-rich protein that promotes extracellular matrix deposition. CTGF is selectively induced by transforming growth factor β and des-Arg kallidin in lung fibroblasts and increases steady-state mRNA levels of α type I collagen, 5α-integrin and fibronectin in fibroblasts. Bronchial epithelial cells have been proposed to functionally interact with lung fibroblasts. We therefore investigated if bronchial epithelial cells are able to synthesize CTGF. Human bronchial epithelial cells were grown to subconfluence in standard growth media. Proliferating cells grown in small airway growth media were harvested following starvation for up to 24 h. Expression of CTGF transcripts was measured by PCR. Immunocytochemistry was also completed using a commercially available antibody.The cells expressed readily detectable CTGF transcripts. Starvation of these cells resulted in a quantitative decline of CTGF transcripts. Direct sequencing of the PCR product identified human CTGF. Immunocytochemistry confirmed intracellular CTGF in the cells and none in negative control cells. We conclude that bronchial epithelial cells could be a novel source of CTGF. Bronchial epithelial cell-derived CTGF could thus directly influence the deposition of collagen in certain fibrotic lung diseases.

  9. Novel factors modulating human β-cell proliferation.

    Science.gov (United States)

    Shirakawa, J; Kulkarni, R N

    2016-09-01

    β-Cell dysfunction in type 1 and type 2 diabetes is accompanied by a progressive loss of β-cells, and an understanding of the cellular mechanism(s) that regulate β-cell mass will enable approaches to enhance hormone secretion. It is becoming increasingly recognized that enhancement of human β-cell proliferation is one potential approach to restore β-cell mass to prevent and/or cure type 1 and type 2 diabetes. While several reports describe the factor(s) that enhance β-cell replication in animal models or cell lines, promoting effective human β-cell proliferation continues to be a challenge in the field. In this review, we discuss recent studies reporting successful human β-cell proliferation including WS6, an IkB kinase and EBP1 inhibitor; harmine and 5-IT, both DYRK1A inhibitors; GNF7156 and GNF4877, GSK-3β and DYRK1A inhibitors; osteoprotegrin and Denosmab, receptor activator of NF-kB (RANK) inhibitors; and SerpinB1, a protease inhibitor. These studies provide important examples of proteins and pathways that may prove useful for designing therapeutic strategies to counter the different forms of human diabetes.

  10. Human vascular smooth muscle cells both express and respond to heparin-binding growth factor I (endothelial cell growth factor)

    Energy Technology Data Exchange (ETDEWEB)

    Winkles, J.A.; Friesel, R.; Burgess, W.H.; Howk, R.; Mehlman, T.; Weinstein, R.; Maciag, T.

    1987-10-01

    The control of vascular endothelial and muscle cell proliferation is important in such processes as tumor angiogenesis, wound healing, and the pathogenesis of atherosclerosis. Class I heparin-binding growth factor (HBGF-I) is a potent mitogen and chemoattractant for human endothelial cells in vitro and will induce angiogenesis in vivo. RNA gel blot hybridization experiments demonstrate that cultured human vascular smooth muscle cells, but not human umbilical cells also synthesize an HBGF-I mRNA. Smooth muscle cells also synthesize an HBGF-I-like polypeptide since (i) extract prepared from smooth muscle cells will compete with /sup 125/I-labeled HBGF-I for binding to the HBGF-I cell surface receptor, and (ii) the competing ligand is eluted from heparin-Sepharose affinity resin at a NaCl concentration similar to that required by purified bovine brain HBGF-I and stimulates endothelial cell proliferation in vitro. Furthermore, like endothelial cells, smooth muscle cells possess cell-surface-associated HBGF-I receptors and respond to HBGF-I as a mitogen. These results indicate the potential for an additional autocrine component of vascular smooth muscle cell growth control and establish a vessel wall source of HBGF-I for endothelial cell division in vivo.

  11. Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy.

    Science.gov (United States)

    Maeshima, Akito; Nakasatomi, Masao; Nojima, Yoshihisa

    2014-01-01

    The kidney has the capacity for regeneration and repair after a variety of insults. Over the past few decades, factors that promote repair of the injured kidney have been extensively investigated. By using kidney injury animal models, the role of intrinsic and extrinsic growth factors, transcription factors, and extracellular matrix in this process has been examined. The identification of renal stem cells in the adult kidney as well as in the embryonic kidney is an active area of research. Cell populations expressing putative stem cell markers or possessing stem cell properties have been found in the tubules, interstitium, and glomeruli of the normal kidney. Cell therapies with bone marrow-derived hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, and amniotic fluid-derived stem cells have been highly effective for the treatment of acute or chronic renal failure in animals. Embryonic stem cells and induced pluripotent stem cells are also utilized for the construction of artificial kidneys or renal components. In this review, we highlight the advances in regenerative medicine for the kidney from the perspective of renotropic factors, renal stem/progenitor cells, and stem cell therapies and discuss the issues to be solved to realize regenerative therapy for kidney diseases in humans.

  12. Phytoestrogens regulate the proliferation and expression of stem cell factors in cell lines of malignant testicular germ cell tumors.

    Science.gov (United States)

    Hasibeder, Astrid; Venkataramani, Vivek; Thelen, Paul; Radzun, Heinz-Joachim; Schweyer, Stefan

    2013-11-01

    Phytoestrogens have been shown to exert anti-proliferative effects on different cancer cells. In addition it could be demonstrated that inhibition of proliferation is associated with downregulation of the known stem cell factors NANOG, POU5F1 and SOX2 in tumor cells. We demonstrate the potential of Belamcanda chinensis extract (BCE) and tectorigenin as anticancer drugs in cell lines of malignant testicular germ cell tumor cells (TGCT) by inhibition of proliferation and regulating the expression of stem cell factors. The TGCT cell lines TCam-2 and NTera-2 were treated with BCE or tectorigenin and MTT assay was used to measure the proliferation of tumor cells. In addition, the expression of stem cell factors was analyzed by quantitative PCR and western blot analysis. Furthermore, global expression analysis was performed by microarray technique. BCE and tectorigenin inhibited proliferation and downregulated the stem cell factors NANOG and POU5F1 in TGCT cells. In addition, gene expression profiling revealed induction of genes important for the differentiation and inhibition of oncogenes. Utilizing connectivity map in an attempt to elucidate mechanism underlying BCE treatments we found highly positive association to histone deacetylase inhibitors (HDACi) amongst others. Causing no histone deacetylase inhibition, the effects of BCE on proliferation and stem cell factors may be based on histone-independent mechanisms such as direct hyperacetylation of transcription factors. Based on these findings, phytoestrogens may be useful as new agents in the treatment of TGCT.

  13. Effects of Growth Factors on Dental Stem/ProgenitorCells

    Science.gov (United States)

    Kim, Sahng G.; Solomon, Charles; Zheng, Ying; Suzuki, Takahiro; Mo, Chen; Song, Songhee; Jiang, Nan; Cho, Shoko; Zhou, Jian; Mao, Jeremy J.

    2014-01-01

    Synopsis The primary goal of regenerative endodontics is to restore the vitality and functions of the dentin-pulp complex, as opposed to filing of the root canal with bioinert materials. Structural restoration is also important but is likely secondary to vitality and functions. Myriads growth factors regulate multiple cellular functions including migration, proliferation, differentiation and apoptosis of several cell types that are intimately involved in dentin-pulp regeneration: odontoblasts, interstitial fibroblasts, vascular-endothelial cells and sprouting nerve fibers. Recent work showing that growth factor delivery, without cell transplantation, can yield pulp-dentin like tissues in vivo provides one of the tangible pathways for regenerative endodontics. This review synthesizes our knowledge on a multitude of growth factors that are known or anticipated to be efficacious in dental pulp-dentin regeneration. PMID:22835538

  14. Soluble and cell surface receptors for tumor necrosis factor

    DEFF Research Database (Denmark)

    Wallach, D; Engelmann, H; Nophar, Y

    1991-01-01

    Tumor necrosis factor (TNF) initiates its multiple effects on cell function by binding at a high affinity to specific cell surface receptors. Two different molecular species of these receptors, which are expressed differentially in different cells, have been identified. The cDNAs of both receptor...... have recently been cloned. Antibodies to one of these receptor species (the p55, type I receptor) can trigger a variety of TNF like effects by cross-linking of the receptor molecules. Thus, it is not TNF itself but its receptors that provide the signal for the response to this cytokine...... in certain pathological situations. Release of the soluble receptors from the cells seems to occur by proteolytic cleavage of the cell surface forms and appears to be a way of down-regulating the cell response to TNF. Because of their ability to bind TNF, the soluble receptors exert an inhibitory effect...

  15. Adipocyte secreted factors enhance aggressiveness of prostate carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Ângela Moreira

    Full Text Available Obesity has been associated with increased incidence and risk of mortality of prostate cancer. One of the proposed mechanisms underlying this risk association is the change in adipokines expression that could promote the development and progression of the prostate tumor cells. The main goal of this study was to evaluate the effect of preadipocyte and adipocyte secretome in the proliferation, migration and invasion of androgen independent prostate carcinoma cells (RM1 and to assess cell proliferation in the presence of the adiposity signals leptin and insulin. RM1 cells were co-cultured in with preadipocytes, adipocytes or cultured in their respective conditioned medium. Cell proliferation was assessed by flow cytometry and XTT viability test. Cell migration was evaluated using a wound healing injury assay of RM1 cells cultured with conditioned media. Cellular invasion of RM1 cells co-cultured with adipocytes and preadipocytes was assessed using matrigel membranes. Preadipocyte conditioned medium was associated with a small increase in RM1 proliferation, while adipocytes conditioned media significantly increased RM1 cell proliferation (p<0.01. Adipocytes also significantly increased the RM1 cells proliferation in co-culture (p <0.01. Cell migration was higher in RM1 cells cultured with preadipocyte and adipocyte conditioned medium. RM1 cell invasion was significantly increased after co-culture with preadipocytes and adipocytes (p <0.05. Insulin also increased significantly the cell proliferation in contrast to leptin, which showed no effect. In conclusion, prostate carcinoma cells seem to be influenced by factors secreted by adipocytes that are able to increase their ability to proliferate, migrate and invade.

  16. von Willebrand factor binds to the surface of dendritic cells and modulates peptide presentation of factor VIII.

    Science.gov (United States)

    Sorvillo, Nicoletta; Hartholt, Robin B; Bloem, Esther; Sedek, Magdalena; ten Brinke, Anja; van der Zwaan, Carmen; van Alphen, Floris P; Meijer, Alexander B; Voorberg, Jan

    2016-03-01

    It has been proposed that von Willebrand factor might affect factor VIII immunogenicity by reducing factor VIII uptake by antigen presenting cells. Here we investigate the interaction of recombinant von Willebrand factor with immature monocyte-derived dendritic cells using flow cytometry and confocal microscopy. Surprisingly, von Willebrand factor was not internalized by immature dendritic cells, but remained bound to the cell surface. As von Willebrand factor reduces the uptake of factor VIII, we investigated the repertoire of factor VIII presented peptides when in complex with von Willebrand factor. Interestingly, factor VIII-derived peptides were still abundantly presented on major histocompatibility complex class II molecules, even though a reduction of factor VIII uptake by immature dendritic cells was observed. Inspection of peptide profiles from 5 different donors showed that different core factor VIII peptide sequences were presented upon incubation with factor VIII/von Willebrand factor complex when compared to factor VIII alone. No von Willebrand factor peptides were detected when immature dendritic cells were pulsed with different concentrations of von Willebrand factor, confirming lack of von Willebrand factor endocytosis. Several von Willebrand factor derived peptides were recovered when cells were pulsed with von Willebrand factor/factor VIII complex, suggesting that factor VIII promotes endocytosis of small amounts of von Willebrand factor by immature dendritic cells. Taken together, our results establish that von Willebrand factor is poorly internalized by immature dendritic cells. We also show that von Willebrand factor modulates the internalization and presentation of factor VIII-derived peptides on major histocompatibility complex class II.

  17. Angiogenic factors stimulate growth of adult neural stem cells.

    Directory of Open Access Journals (Sweden)

    Andreas Androutsellis-Theotokis

    Full Text Available BACKGROUND: The ability to grow a uniform cell type from the adult central nervous system (CNS is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4 and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2. These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes. CONCLUSIONS/SIGNIFICANCE: We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.

  18. Cell-cycle radiation response: Role of intracellular factors

    Science.gov (United States)

    Blakely, E.; Chang, P.; Lommel, L.; Bjornstad, K.; Dixon, M.; Tobias, C.; Kumar, K.; Blakely, W. F.

    We have been studying variations of radiosensitivity and endogenous cellular factors during the course of progression through the human and hamster cell cycle. After exposure to low-LET radiations, the most radiosensitive cell stages are mitosis and the G1/S interface. The increased activity of a specific antioxidant enzyme such as superoxide dismutase in G1-phase, and the variations of endogenous thiols during cell division are thought to be intracellular factors of importance to the radiation survival response. These factors may contribute to modifying the age-dependent yield of lesions or more likely, to the efficiency of the repair processes. These molecular factors have been implicated in our cellular measurements of the larger values for the radiobiological oxygen effect late in the cycle compared to earlier cell ages. Low-LET radiation also delays progression through S phase which may allow more time for repair and hence contribute to radioresistance in late-S-phase. The cytoplasmic and intranuclear milieu of the cell appears to have less significant effects on lesions produced by high-LET radiation compared to those made by low-LET radiation. High-LET radiation fails to slow progression through S phase, and there is much less repair of lesions evident at all cell ages; however, high-LET particles cause a more profound block in G2 phase than that observed after low-LET radiation. Hazards posed by the interaction of damage from sequential doses of radiations of different qualities have been evaluated and are shown to lead to a cell-cycle-dependent enhancement of radiobiological effects. A summary comparison of various cell-cycle-dependent endpoints measured with low-or high-LET radiations is given and includes a discussion of the possible additional effects introduced by microgravity.

  19. Transcription factors regulating B cell fate in the germinal centre.

    Science.gov (United States)

    Recaldin, T; Fear, D J

    2016-01-01

    Diversification of the antibody repertoire is essential for the normal operation of the vertebrate adaptive immune system. Following antigen encounter, B cells are activated, proliferate rapidly and undergo two diversification events; somatic hypermutation (followed by selection), which enhances the affinity of the antibody for its cognate antigen, and class-switch recombination, which alters the effector functions of the antibody to adapt the response to the challenge faced. B cells must then differentiate into antibody-secreting plasma cells or long-lived memory B cells. These activities take place in specialized immunological environments called germinal centres, usually located in the secondary lymphoid organs. To complete the germinal centre activities successfully, a B cell adopts a transcriptional programme that allows it to migrate to specific sites within the germinal centre, proliferate, modify its DNA recombination and repair pathways, alter its apoptotic potential and finally undergo terminal differentiation. To co-ordinate these processes, B cells employ a number of 'master regulator' transcription factors which mediate wholesale transcriptomic changes. These master transcription factors are mutually antagonistic and form a complex regulatory network to maintain distinct gene expression programs. Within this network, multiple points of positive and negative feedback ensure the expression of the 'master regulators', augmented by a number of 'secondary' factors that reinforce these networks and sense the progress of the immune response. In this review we will discuss the different activities B cells must undertake to mount a successful T cell-dependent immune response and describe how a regulatory network of transcription factors controls these processes.

  20. Imatinib alters cell viability but not growth factors levels in TM4 Sertoli cells

    Science.gov (United States)

    Hashemnia, Seyyed Mohammad Reza; Atari-Hajipirloo, Somayeh; Roshan-Milani, Shiva; Valizadeh, Nasim; Mahabadi, Sonya; Kheradmand, Fatemeh

    2016-01-01

    Background: The anticancer agent imatinib (IM) is a small molecular analog of ATP that inhibits tyrosine kinase activity of platelet derived growth factors (PDGFs) and stem cell factor (SCF) receptor in cancer cells. However these factors have a key role in regulating growth and development of normal Sertoli, Leydig and germ cells. Objective: The aim of this study was to determine cell viability, PDGF and SCF levels in mouse normal Sertoli cells exposed to IM. Materials and Methods: In this experimental study, the mouse TM4 Sertoli cells were treated with 0, 2.5, 5, 10 and 20 μM IM for 2, 4 or 6 days. The cell viability and growth factors levels were assessed by MTT and ELISA methods, respectively. For statistical analysis, One-Way ANOVA was performed. Results: IM showed significant decrease in Sertoli cell viability compared to control group (p=0.001). However, IM increased PDGF and SCF level insignificantly (p>0.05). Conclusion: Results suggested that IM treatment induced a dose dependent reduction of cell viability in Sertoli cells. It seems that treatment with this anticancer drug is involved in the fertility process. Further studies are needed to evaluate the role of PDGF and SCF in this cell. PMID:27738659

  1. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2.

    Science.gov (United States)

    Simmini, Salvatore; Bialecka, Monika; Huch, Meritxell; Kester, Lennart; van de Wetering, Marc; Sato, Toshiro; Beck, Felix; van Oudenaarden, Alexander; Clevers, Hans; Deschamps, Jacqueline

    2014-12-11

    The endodermal lining of the adult gastro-intestinal tract harbours stem cells that are responsible for the day-to-day regeneration of the epithelium. Stem cells residing in the pyloric glands of the stomach and in the small intestinal crypts differ in their differentiation programme and in the gene repertoire that they express. Both types of stem cells have been shown to grow from single cells into 3D structures (organoids) in vitro. We show that single adult Lgr5-positive stem cells, isolated from small intestinal organoids, require Cdx2 to maintain their intestinal identity and are converted cell-autonomously into pyloric stem cells in the absence of this transcription factor. Clonal descendants of Cdx2(null) small intestinal stem cells enter the gastric differentiation program instead of producing intestinal derivatives. We show that the intestinal genetic programme is critically dependent on the single transcription factor encoding gene Cdx2.

  2. Placental growth factor is a survival factor for tumor endothelial cells and macrophages.

    Science.gov (United States)

    Adini, Avner; Kornaga, Tad; Firoozbakht, Farshid; Benjamin, Laura E

    2002-05-15

    The vascular endothelial growth factor (VEGF)-related factor, placental growth factor (PlGF),has been shown recently to play an important role in pathological VEGF-driven angiogenesis. In this study, we examine the effects of mPlGF/PlGF-2 overexpression in tumors grown from glioma cells containing a tetracycline-regulated mPlGF cDNA. Overexpression of mPlGF leads to increased tumor growth and vascular survival. When tetracycline is used to abruptly withdraw mPlGF overexpression, we see increased apoptosis in both vascular cells and macrophages. In addition, PlGF-2 induces survival gene expression and inhibits apoptosis in vitro. Thus, we propose that PlGF-2 contributes to tumor angiogenesis by providing increased survival function to endothelial cells and macrophages.

  3. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    , the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells, thus......Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected...... with a monoclonal mouse antibody and EGF with polyclonal rabbit antiserum. Thirty-five of the tumours were positive for TGF-alpha and 26 of the tumours for EGF. None of the poorly differentiated tumours was positive for EGF, but they all were for TGF-alpha. In sections including normal differentiated oral mucosa...

  4. Insulin-like growth factors and pancreas beta cells.

    NARCIS (Netherlands)

    Haeften, T.W. van; Twickler, M.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signallin

  5. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, TW; Twickler, TB

    2004-01-01

    Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signalling pathway

  6. Visceral fat cell lipolysis and cardiovascular risk factors in obesity.

    Science.gov (United States)

    Andersson, D P; Löfgren, P; Thorell, A; Arner, P; Hoffstedt, J

    2011-10-01

    Visceral fat accumulation relates to cardiovascular risk factors, but the underlying mechanisms are not well understood. We investigated the role of visceral adipocyte triglyceride breakdown (lipolysis) for several risk factors of cardiovascular disease. In 73 obese women, fat mass and distribution, blood pressure, blood samples for cardiometabolic risk factors, and whole-body insulin sensitivity were determined. A subcutaneous and a visceral fat biopsy were taken. Fat cell glycerol release after stimulation with a major lipolytic hormone, noradrenaline, was measured. In simple regression analysis, visceral fat cell lipolysis, but not subcutaneous adipocyte lipolysis was related to components of the metabolic syndrome. Moreover, subjects in the highest quartile of catecholamine-induced visceral lipolysis had higher levels of systolic blood pressure, estimated liver fat, plasma levels of glucose, insulin, cholesterol, LDL-cholesterol, triglycerides and apolipoprotein B and lower whole-body insulin sensitivity than those in the lowest quartile (p=0.0004-0.048). Among subjects with the metabolic syndrome, visceral fat cell lipolysis was 40% higher than in the remaining subjects (p=0.0052). Catecholamine-activated lipolysis in visceral but not subcutaneous fat cells is associated with cardiovascular risk factors in obesity. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Transcription factor interplay in T helper cell differentiation.

    Science.gov (United States)

    Evans, Catherine M; Jenner, Richard G

    2013-11-01

    The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity.

  8. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  9. Tissue factor: A potent stimulator of Von Willebrand factor synthesis by human umbilical vein endothelial cells

    Science.gov (United States)

    Meiring, Muriel; Allers, W.; Le Roux, E.

    2016-01-01

    Inflammation and dysfunction of endothelial cells are thought to be triggers for the secretion of Von Willebrand factor. The aim of this study was to examine the effects of the inflammatory cytokines interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor-alpha (TNF-α) and the coagulation factors, tissue factor and thrombin on the release and cleavage potential of ultra-large von Willebrand factor (ULVWF) and its cleavage protease by cultured human umbilical vein endothelial cells (HUVEC). HUVEC were treated with IL-6, IL-8, and TNF-α, tissue factor (TF) and thrombin, and combinations thereof for 24 hours under static conditions. The cells were then exposed to shear stress after which the VWF-propeptide levels and the VWF cleavage protease, ADAMTS13 content were measured. All treatments and their combinations, excluding IL-6, significantly stimulated the secretion of VWF from HUVEC. The VWF secretion from the HUVEC was stimulated most by the combination of TF with TNF-α. Slightly lower levels of ADAMTS13 secretion were found with all treatments. This may explain the thrombogenicity of patients with inflammation where extremely high VWF levels and slightly lower ADAMTS13 levels are present.

  10. Targeting cancer stem cells: emerging role of Nanog transcription factor

    Directory of Open Access Journals (Sweden)

    Wang ML

    2013-09-01

    Full Text Available Mong-Lien Wang,1 Shih-Hwa Chiou,2,3 Cheng-Wen Wu1,4–61Institute of Biochemistry and Molecular Biology, 2Institute of Pharmacology, National Yang Ming University, Taipei, Taiwan; 3Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan; 4Institute of Microbiology and Immunology, 5Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan; 6Institute of Biomedical Science, Academia Sinica, Taipei, TaiwanAbstract: The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in several types of cancer stem cells; the importance and therapeutic potential of targeting these stemness regulators in cancers has turned to research focus. Nanog determines cell fate in both embryonic and cancer stem cells; activating Nanog at an inappropriate time would result in cancer stem cells rather than normal pluripotent stem cells or differentiated somatic cells. Upregulated Nanog is correlated with poor survival outcome of patients with various types of cancer. The discoveries of downstream regulatory pathways directly or indirectly mediated by Nanog indicate that Nanog regulates several aspects of cancer development such as tumor cell proliferation, self-renewal, motility, epithelial-mesenchymal transition, immune evasion, and drug-resistance, which are all defined features for cancer stem cells. The current review paper illustrates the central role of Nanog in the regulatory networks of cancer malignant development and stemness acquirement, as well as in the communication between cancer cells and the surrounding stroma. Though a more defined model is needed to test the

  11. Risk factors in the development of stem cell therapy

    Directory of Open Access Journals (Sweden)

    Hermsen Harm PH

    2011-03-01

    Full Text Available Abstract Stem cell therapy holds the promise to treat degenerative diseases, cancer and repair of damaged tissues for which there are currently no or limited therapeutic options. The potential of stem cell therapies has long been recognised and the creation of induced pluripotent stem cells (iPSC has boosted the stem cell field leading to increasing development and scientific knowledge. Despite the clinical potential of stem cell based medicinal products there are also potential and unanticipated risks. These risks deserve a thorough discussion within the perspective of current scientific knowledge and experience. Evaluation of potential risks should be a prerequisite step before clinical use of stem cell based medicinal products. The risk profile of stem cell based medicinal products depends on many risk factors, which include the type of stem cells, their differentiation status and proliferation capacity, the route of administration, the intended location, in vitro culture and/or other manipulation steps, irreversibility of treatment, need/possibility for concurrent tissue regeneration in case of irreversible tissue loss, and long-term survival of engrafted cells. Together these factors determine the risk profile associated with a stem cell based medicinal product. The identified risks (i.e. risks identified in clinical experience or potential/theoretical risks (i.e. risks observed in animal studies include tumour formation, unwanted immune responses and the transmission of adventitious agents. Currently, there is no clinical experience with pluripotent stem cells (i.e. embryonal stem cells and iPSC. Based on their characteristics of unlimited self-renewal and high proliferation rate the risks associated with a product containing these cells (e.g. risk on tumour formation are considered high, if not perceived to be unacceptable. In contrast, the vast majority of small-sized clinical trials conducted with mesenchymal stem/stromal cells (MSC in

  12. Epidemiologic characteristics and risk factors for renal cell cancer

    Directory of Open Access Journals (Sweden)

    Loren Lipworth

    2009-04-01

    Full Text Available Loren Lipworth1,2, Robert E Tarone1,2, Lars Lund2,3, Joseph K McLaughlin1,21International Epidemiology Institute, Rockville, MD, USA; 2Department of Medicine (JKM, RET and Preventive Medicine (LL, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; 3Department of Urology, Viborg Hospital, Viborg, DenmarkAbstract: Incidence rates of renal cell cancer, which accounts for 85% of kidney cancers, have been rising in the United States and in most European countries for several decades. Family history is associated with a two- to four-fold increase in risk, but the major forms of inherited predisposition together account for less than 4% of renal cell cancers. Cigarette smoking, obesity, and hypertension are the most consistently established risk factors. Analgesics have not been convincingly linked with renal cell cancer risk. A reduced risk of renal cell cancer among statin users has been hypothesized but has not been adequately studied. A possible protective effect of fruit and vegetable consumption is the only moderately consistently reported dietary finding, and, with the exception of a positive association with parity, evidence for a role of hormonal or reproductive factors in the etiology of renal cell cancer in humans is limited. A recent hypothesis that moderate levels of alcohol consumption may be protective for renal cell cancer is not strongly supported by epidemiologic results, which are inconsistent with respect to the categories of alcohol consumption and the amount of alcohol intake reportedly associated with decreased risk. For occupational factors, the weight of the evidence does not provide consistent support for the hypotheses that renal cell cancer may be caused by asbestos, gasoline, or trichloroethylene exposure. The established determinants of renal cell cancer, cigarette smoking, obesity, and hypertension, account for less than half of these cancers. Novel epidemiologic approaches

  13. Cerebrovascular accidents in sickle cell disease: rates and risk factors.

    Science.gov (United States)

    Ohene-Frempong, K; Weiner, S J; Sleeper, L A; Miller, S T; Embury, S; Moohr, J W; Wethers, D L; Pegelow, C H; Gill, F M

    1998-01-01

    Cerebrovascular accident (CVA) is a major complication of sickle cell disease. The incidence and mortality of and risk factors for CVA in sickle cell disease patients in the United States have been reported only in small patient samples. The Cooperative Study of Sickle Cell Disease collected clinical data on 4,082 sickle cell disease patients enrolled from 1978 to 1988. Patients were followed for an average of 5.2 +/- 2.0 years. Age-specific prevalence and incidence rates of CVA in patients with the common genotypes of sickle cell disease were determined, and the effects of hematologic and clinical events on the risk of CVA were analyzed. The highest rates of prevalence of CVA (4.01%) and incidence (0.61 per 100 patient-years) were in sickle cell anemia (SS) patients, but CVA occurred in all common genotypes. The incidence of infarctive CVA was lowest in SS patients 20 to 29 years of age and higher in children and older patients. Conversely, the incidence of hemorrhagic stroke in SS patients was highest among patients aged 20 to 29 years. Across all ages the mortality rate was 26% in the 2 weeks after hemorrhagic stroke. No deaths occurred after infarctive stroke. Risk factors for infarctive stroke included prior transient ischemic attack, low steady-state hemoglobin concentration and rate of and recent episode of acute chest syndrome, and elevated systolic blood pressure. Hemorrhagic stroke was associated with low steady-state hemoglobin and high leukocyte count.

  14. Vascular endothelial growth factor enhances macrophage clearance of apoptotic cells

    Science.gov (United States)

    Dalal, Samay; Horstmann, Sarah A.; Richens, Tiffany R.; Tanaka, Takeshi; Doe, Jenna M.; Boe, Darren M.; Voelkel, Norbert F.; Taraseviciene-Stewart, Laimute; Janssen, William J.; Lee, Chun G.; Elias, Jack A.; Bratton, Donna; Tuder, Rubin M.; Henson, Peter M.; Vandivier, R. William

    2012-01-01

    Efficient clearance of apoptotic cells from the lung by alveolar macrophages is important for the maintenance of tissue structure and function. Lung tissue from humans with emphysema contains increased numbers of apoptotic cells and decreased levels of vascular endothelial growth factor (VEGF). Mice treated with VEGF receptor inhibitors have increased numbers of apoptotic cells and develop emphysema. We hypothesized that VEGF regulates apoptotic cell clearance by alveolar macrophages (AM) via its interaction with VEGF receptor 1 (VEGF R1). Our data show that the uptake of apoptotic cells by murine AMs and human monocyte-derived macrophages is inhibited by depletion of VEGF and that VEGF activates Rac1. Antibody blockade or pharmacological inhibition of VEGF R1 activity also decreased apoptotic cell uptake ex vivo. Conversely, overexpression of VEGF significantly enhanced apoptotic cell uptake by AMs in vivo. These results indicate that VEGF serves a positive regulatory role via its interaction with VEGF R1 to activate Rac1 and enhance AM apoptotic cell clearance. PMID:22307908

  15. Induction of cancer stem cell properties in colon cancer cells by defined factors.

    Directory of Open Access Journals (Sweden)

    Nobu Oshima

    Full Text Available Cancer stem cells (CSCs are considered to be responsible for the dismal prognosis of cancer patients. However, little is known about the molecular mechanisms underlying the acquisition and maintenance of CSC properties in cancer cells because of their rarity in clinical samples. We herein induced CSC properties in cancer cells using defined factors. We retrovirally introduced a set of defined factors (OCT3/4, SOX2 and KLF4 into human colon cancer cells, followed by culture with conventional serum-containing medium, not human embryonic stem cell medium. We then evaluated the CSC properties in the cells. The colon cancer cells transduced with the three factors showed significantly enhanced CSC properties in terms of the marker gene expression, sphere formation, chemoresistance and tumorigenicity. We designated the cells with CSC properties induced by the factors, a subset of the transduced cells, as induced CSCs (iCSCs. Moreover, we established a novel technology to isolate and collect the iCSCs based on the differences in the degree of the dye-effluxing activity enhancement. The xenografts derived from our iCSCs were not teratomas. Notably, in contrast to the tumors from the parental cancer cells, the iCSC-based tumors mimicked actual human colon cancer tissues in terms of their immunohistological findings, which showed colonic lineage differentiation. In addition, we confirmed that the phenotypes of our iCSCs were reproducible in serial transplantation experiments. By introducing defined factors, we generated iCSCs with lineage specificity directly from cancer cells, not via an induced pluripotent stem cell state. The novel method enables us to obtain abundant materials of CSCs that not only have enhanced tumorigenicity, but also the ability to differentiate to recapitulate a specific type of cancer tissues. Our method can be of great value to fully understand CSCs and develop new therapies targeting CSCs.

  16. Transcription factor ABF-1 suppresses plasma cell differentiation but facilitates memory B cell formation.

    Science.gov (United States)

    Chiu, Yi-Kai; Lin, I-Ying; Su, Shin-Tang; Wang, Kuan-Hsiung; Yang, Shii-Yi; Tsai, Dong-Yan; Hsieh, Yi-Ting; Lin, Kuo-I

    2014-09-01

    Ag-primed B cells that result from an immune response can form either memory B cells or Ab-secreting plasma cells; however, the molecular machinery that controls this cellular fate is poorly understood. In this study, we show that activated B cell factor-1 (ABF-1), which encodes a basic helix-loop-helix transcriptional repressor, participates in this regulation. ABF-1 was prevalently expressed in purified memory B cells and induced by T follicular helper cell-mediated signals. ABF-1 expression declined by the direct repression of B lymphocyte-induced maturation protein-1 during differentiation. Ectopic expression of ABF-1 reduced the formation of Ab-secreting cells in an in vitro differentiation system of human memory B cells. Accordingly, knockdown of ABF-1 potentiates the formation of Ab-secreting cells. A transgenic mouse that expresses inducible ABF-1 in a B cell-specific manner was generated to demonstrate that the formation of germinal center and memory B cells was augmented by induced ABF-1 in an immune response, whereas the Ag-specific plasma cell response was dampened. This effect was associated with the ability of ABF-1 to limit cell proliferation. Together, our results demonstrate that ABF-1 facilitates formation of memory B cells but prevents plasma cell differentiation.

  17. Responsiveness of fetal rat brain cells to glia maturation factor during neoplastic transformation in cell culture

    DEFF Research Database (Denmark)

    Haugen, A; Laerum, O D; Bock, E

    1981-01-01

    The effect of partially purified extracts from adult pig brains containing a glia maturation protein factor (BE) has been investigated on neural cells during carcinogenesis. Pregnant BD IX-rats were given a single transplacental dose of the carcinogen ethylnitrosourea (EtNU) on the 18th day of ge...... on GFA-content was seen any longer, although some few weakly GFA positive cells could be observed in all permanent cell lines. Fetal rat brain cells therefore seem to become less responsive to this differentiation inducer during neoplastic transformation in cell culture....

  18. Stem cell pluripotency and transcription factor Oct4

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Mammalian cell totipotency is a subject that has fascinated scientists for generations. A long lastingquestion whether some of the somatic cells retains totipotency was answered by the cloning of Dolly atthe end of the 20th century. The dawn of the 21st has brought forward great expectations in harnessingthe power of totipotentcy in medicine. Through stem cell biology, it is possible to generate any parts ofthe human body by stem cell engineering. Considerable resources will be devoted to harness the untappedpotentials of stem cells in the foreseeable future which may transform medicine as we know today. At themolecular level, totipotency has been linked to a singular transcription factor and its expression appearsto define whether a cell should be totipotent. Named Oct4, it can activate or repress the expression ofvarious genes. Curiously, very little is known about Oct4 beyond its ability to regulate gene expression. Themechanism by which Oct4 specifies totipotency remains entirely unresolved. In this review, we summarizethe structure and function of Oct4 and address issues related to Oct4 function in maintaining totipotencyor pluripotency of embryonic stem cells.

  19. Differential activation of dendritic cells by nerve growth factor and brain-derived neurotrophic factor.

    Science.gov (United States)

    Noga, O; Peiser, M; Altenähr, M; Knieling, H; Wanner, R; Hanf, G; Grosse, R; Suttorp, N

    2007-11-01

    Neurotrophins are involved in inflammatory reactions influencing several cells in health and disease including allergy and asthma. Dendritic cells (DCs) play a major role in the induction of inflammatory processes with an increasing role in allergic diseases as well. The aim of this study was to investigate the influence of neurotrophins on DC function. Monocyte-derived dendritic cells were generated from allergic and non-allergic donors. Neurotrophin receptors were demonstrated by western blotting, flow cytometry and fluorescence microscopy. Activation of small GTPases was evaluated by pull-down assays. DCs were incubated with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and supernatants were collected for measurement of IL-4, IL-6, IL-10, IL-12p70, TNF-alpha and TGF-beta. Receptor proteins were detectable by western blot, fluorescence activated cell sorting analysis and fluorescence microscopy. Signalling after neurotrophin stimulation occurred in a ligand-specific pattern. NGF led to decreased RhoA and increased Rac activation, while BDNF affected RhoA and Rac activity in a reciprocal fashion. Cells of allergics released a significantly increased amount of IL-6, while for healthy subjects a significantly higher amount of IL-10 was found. These data indicate that DCs are activated by the neurotrophins NGF and BDNF by different pathways in a receptor-dependant manner. These cells then may initiate inflammatory responses based on allergic sensitization releasing preferred cytokines inducing tolerance or a T-helper type 2 response.

  20. Induction of Cancer Stem Cell Properties in Colon Cancer Cells by Defined Factors

    OpenAIRE

    Oshima, Nobu

    2014-01-01

    Oshima N, Yamada Y, Nagayama S, Kawada K, Hasegawa S, et al. (2014) Induction of Cancer Stem Cell Properties in Colon Cancer Cells by Defined Factors. PLoS ONE 9(7): e101735. doi:10.1371/journal.pone.0101735

  1. Elastase induces lung epithelial cell autophagy through placental growth factor

    Science.gov (United States)

    Hou, Hsin-Han; Cheng, Shih-Lung; Chung, Kuei-Pin; Kuo, Mark Yen-Ping; Yeh, Cheng-Chang; Chang, Bei-En; Lu, Hsuan-Hsuan; Wang, Hao-Chien; Yu, Chong-Jen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease, which is associated with increasing mortality and morbidity. Therefore, there is a need to clearly define the COPD pathogenic mechanism and to explore effective therapies. Previous studies indicated that cigarette smoke (CS) induces autophagy and apoptosis in lung epithelial (LE) cells. Excessive ELANE/HNE (elastase, neutrophil elastase), a factor involved in protease-antiprotease imbalance and the pathogenesis of COPD, causes LE cell apoptosis and upregulates the expression of several stimulus-responsive genes. However, whether or not elastase induces autophagy in LE cell remains unknown. The level of PGF (placental growth factor) is higher in COPD patients than non-COPD controls. We hypothesize that elastase induces PGF expression and causes autophagy in LE cells. In this study, we demonstrated that porcine pancreatic elastase (PPE) induced PGF expression and secretion in LE cells in vitro and in vivo. The activation of MAPK8/JNK1 (mitogen-activated protein kinase 8) and MAPK14/p38alpha MAPK signaling pathways was involved in the PGF mediated regulation of the TSC (tuberous sclerosis complex) pathway and autophagy in LE cells. Notably, PGF-induced MAPK8 and MAPK14 signaling pathways mediated the inactivation of MTOR (mechanistic target of rapamycin), the upregulation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and the increase of autophagosome formation in mice. Furthermore, the PPE-induced autophagy promotes further apoptosis in vitro and in vivo. In summary, elastase-induced autophagy promotes LE cell apoptosis and pulmonary emphysema through the upregulation of PGF. PGF and its downstream MAPK8 and MAPK14 signaling pathways are potential therapeutic targets for the treatment of emphysema and COPD. PMID:24988221

  2. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Science.gov (United States)

    Serfozo, Peter; Schlarman, Maggie S; Pierret, Chris; Maria, Bernard L; Kirk, Mark D

    2006-01-01

    Background Pluripotent mouse embryonic stem (ES) cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321) or Stem Cell Factor (SCF). Results Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium). RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. Conclusion Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed. PMID:16436212

  3. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Directory of Open Access Journals (Sweden)

    Maria Bernard L

    2006-01-01

    Full Text Available Abstract Background Pluripotent mouse embryonic stem (ES cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321 or Stem Cell Factor (SCF. Results Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium. RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. Conclusion Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed.

  4. Transfection of the glial cell line-derived neurotrophic factor gene promotes neuronal differentiation

    Institute of Scientific and Technical Information of China (English)

    Jie Du; Xiaoqing Gao; Li Deng; Nengbin Chang; Huailin Xiong; Yu Zheng

    2014-01-01

    Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, micro-tubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 protein in the su-pernatant were signiifcantly higher in glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells compared with empty virus plasmid-transfected bone marrow mes-enchymal stem cells. Furthermore, microtubule-associated protein 2, glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 mRNA levels in cell pellets were statistically higher in glial cell line-derived neurotrophic factor/bone marrow mesen-chymal stem cells compared with empty virus plasmid-transfected bone marrow mesenchymal stem cells. These results suggest that glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells have a higher rate of induction into neuron-like cells, and this enhanced differentiation into neuron-like cells may be associated with up-regulated expression of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43.

  5. Vectorology and Factor Delivery in Induced Pluripotent Stem Cell Reprogramming

    OpenAIRE

    Hu, Kejin

    2014-01-01

    Induced pluripotent stem cell (iPSC) reprogramming requires sustained expression of multiple reprogramming factors for a limited period of time (10–30 days). Conventional iPSC reprogramming was achieved using lentiviral or simple retroviral vectors. Retroviral reprogramming has flaws of insertional mutagenesis, uncontrolled silencing, residual expression and re-activation of transgenes, and immunogenicity. To overcome these issues, various technologies were explored, including adenoviral vect...

  6. Transforming growth factor-beta as a differentiating factor for cultured smooth muscle cells.

    Science.gov (United States)

    Gawaziuk, J P; X; Sheikh, F; Cheng, Z-Q; Cattini, P A; Stephens, N L

    2007-10-01

    The aim of the present study was to determine whether the development of supercontractile smooth muscle cells, contributing to the nonspecific hyperreactivity of airways in asthmatic patients, is due to transforming growth factor (TGF)-beta. In cultured smooth muscle cells starved by removal of 10% foetal bovine serum for 7 days, growth arrest was seen; 30% became elongated and demonstrated super contractility. Study of conditioned medium suggested that the differentiating factor was TGF-beta. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out on conditioned medium from the arrested cells. Two protein bands were identified as matrix metalloproteinase (MMP)-2 and TGF-beta1. To determine second messenger signalling by SMAD2, Western blotting and confocal microscopy were employed. Conditioned medium from arrested cultures showed the presence of MMP-2 and TGF-beta1, as revealed by SDS-PAGE; 68- and 25-kDa bands were seen. Differentiation was confirmed by upregulation of marker proteins, smooth muscle type myosin heavy chain and myosin light chain kinase. Confirmation was obtained by downregulating these proteins with decorin treatment, which reduces the levels of active TGF-beta and an adenoviral dominant-negative vector coding for a mutated type II TGF-beta-receptor. Activation of second messenger signalling was demonstrated immunocytochemically by the presence of phosphorylated SMAD2 and SMAD4. Transforming growth factor-beta is likely to be the differentiating factor responsible for the development of these supercontractile smooth muscle cells. The development of such cells in vivo after cessation of an asthmatic attack could contribute to the nonspecific hyperreactivity of airways seen in patients.

  7. Pluripotent stem cell transcription factors during human odontogenesis.

    Science.gov (United States)

    da Cunha, Juliana Malta; da Costa-Neves, Adriana; Kerkis, Irina; da Silva, Marcelo Cavenaghi Pereira

    2013-09-01

    Stem cells are capable of generating various cell lines and can be obtained from adult or embryonic tissues for clinical therapies. Stem cells from deciduous dental pulp are among those that are easily obtainable from adult tissues and have been widely studied because of their ability to differentiate into a variety of cell lines in the presence of various chemical mediators. We have analyze the expression of several proteins related to the differentiation and proliferative potential of cell populations that compose the tooth germ of human fetuses. We evaluate 20 human fetuses of both genders. After being paraffin-embedded, cap and bell stages of tooth germ development were subjected to immunohistochemistry for the following markers: Oct-4, Nanog, Stat-3 and Sox-2. The studied antibodies showed nuclear or cytoplasmic immunnostaining within various anatomical structures and with various degrees of expression, indicating the action of these proteins during tooth development. We conclude that the interrelationship between these transcription factors is complex and associated with self-renewal and cell differentiation. Our results suggest that the expression of Oct-4, Nanog, Sox-2 and Stat-3 are related to differentiation in ameloblasts and odontoblasts.

  8. Thin and small form factor cells : simulated behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Clews, Peggy Jane; Pluym, Tammy; Grubbs, Robert K.; Cruz-Campa, Jose Luis; Zubia, David (University of Texas at El Paso, El Paso, TX); Young, Ralph Watson; Okandan, Murat; Gupta, Vipin P.; Nielson, Gregory N.; Resnick, Paul James

    2010-07-01

    Thin and small form factor cells have been researched lately by several research groups around the world due to possible lower assembly costs and reduced material consumption with higher efficiencies. Given the popularity of these devices, it is important to have detailed information about the behavior of these devices. Simulation of fabrication processes and device performance reveals some of the advantages and behavior of solar cells that are thin and small. Three main effects were studied: the effect of surface recombination on the optimum thickness, efficiency, and current density, the effect of contact distance on the efficiency for thin cells, and lastly the effect of surface recombination on the grams per Watt-peak. Results show that high efficiency can be obtained in thin devices if they are well-passivated and the distance between contacts is short. Furthermore, the ratio of grams per Watt-peak is greatly reduced as the device is thinned.

  9. Cell and molecular biology of epidermal growth factor receptor.

    Science.gov (United States)

    Ceresa, Brian P; Peterson, Joanne L

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.

  10. Regulation of stem cell factor expression in inflammation and asthma

    Directory of Open Access Journals (Sweden)

    Carla A Da Silva

    2005-03-01

    Full Text Available Stem cell factor (SCF is a major mast cell growth factor, which could be involved in the local increase of mast cell number in the asthmatic airways. In vivo, SCF expression increases in asthmatic patients and this is reversed after treatment with glucocorticoids. In vitro in human lung fibroblasts in culture, IL-1beta, a pro-inflammatory cytokine, confirms this increased SCF mRNA and protein expression implying the MAP kinases p38 and ERK1/2 very early post-treatment, and glucocorticoids confirm this decrease. Surprisingly, glucocorticoids potentiate the IL-1beta-enhanced SCF expression at short term treatment, implying increased SCF mRNA stability and SCF gene transcription rate. This potentiation involves p38 and ERK1/2. Transfection experiments with the SCF promoter including intron1 also confirm this increase and decrease of SCF expression by IL-1beta and glucocorticoids, and the potentiation by glucocorticoids of the IL-1beta-induced SCF expression. Deletion of the GRE or kappaB sites abolishes this potentiation, and the effect of IL-1beta or glucocorticoids alone. DNA binding of GR and NF-kappaB are also demonstrated for these effects. In conclusion, this review concerns new mechanisms of regulation of SCF expression in inflammation that could lead to potential therapeutic strategy allowing to control mast cell number in the asthmatic airways.

  11. Secretion of nerve growth factor, brain-derived neurotrophic factor, and glial cell-line derived neurotrophic factor in co-culture of four cell types in cerebrospinal fluid-containing medium

    Institute of Scientific and Technical Information of China (English)

    Sanjiang Feng; Minghua Zhuang; Rui Wu

    2012-01-01

    The present study co-cultured human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells in complete culture medium- containing cerebrospinal fluid. Enzyme linked immunosorbent assay was used to detect nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor secretion in the supernatant of co-cultured cells. Results showed that the number of all cell types reached a peak at 7–10 days, and the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor peaked at 9 days. Levels of secreted nerve growth factor were four-fold higher than brain-derived neurotrophic factor, which was three-fold higher than glial cell line-derived neurotrophic factor. Increasing concentrations of cerebrospinal fluid (10%, 20% and 30%) in the growth medium caused a decrease of neurotrophic factor secretion. Results indicated co-culture of human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells improved the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. The reduction of cerebrospinal fluid extravasation at the transplant site after spinal cord injury is beneficial for the survival and secretion of neurotrophic factors from transplanted cells.

  12. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Devandir Antonio de Souza Junior

    Full Text Available Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7 in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.

  13. Glial cell line-derived neurotrophic factor influences proliferation of osteoblastic cells.

    Science.gov (United States)

    Gale, Zoe; Cooper, Paul R; Scheven, Ben A

    2012-02-01

    Little is known about the role of neurotrophic growth factors in bone metabolism. This study investigated the short-term effects of glial cell line-derived neurotrophic factor (GDNF) on calvarial-derived MC3T3-E1 osteoblasts. MC3T3-E1 expressed GDNF as well as its canonical receptors, GFRα1 and RET. Addition of recombinant GDNF to cultures in serum-containing medium modestly inhibited cell growth at high concentrations; however, under serum-free culture conditions GDNF dose-dependently increased cell proliferation. GDNF effects on cell growth were inversely correlated with its effect on alkaline phosphatase (AlP) activity showing a significant dose-dependent inhibition of relative AlP activity with increasing concentrations of GDNF in serum-free culture medium. Live/dead and lactate dehydrogenase assays demonstrated that GDNF did not significantly affect cell death or survival under serum-containing and serum-free conditions. The effect of GDNF on cell growth was abolished in the presence of inhibitors to GFRα1 and RET indicating that GDNF stimulated calvarial osteoblasts via its canonical receptors. Finally, this study found that GDNF synergistically increased tumor necrosis factor-α (TNF-α)-stimulated MC3T3-E1 cell growth suggesting that GDNF interacted with TNF-α-induced signaling in osteoblastic cells. In conclusion, this study provides evidence for a direct, receptor-mediated effect of GDNF on osteoblasts highlighting a novel role for GDNF in bone physiology.

  14. The AP-1 transcription factor Fra1 inhibits follicular B cell differentiation into plasma cells.

    Science.gov (United States)

    Grötsch, Bettina; Brachs, Sebastian; Lang, Christiane; Luther, Julia; Derer, Anja; Schlötzer-Schrehardt, Ursula; Bozec, Aline; Fillatreau, Simon; Berberich, Ingolf; Hobeika, Elias; Reth, Michael; Wagner, Erwin F; Schett, Georg; Mielenz, Dirk; David, Jean-Pierre

    2014-10-20

    The cornerstone of humoral immunity is the differentiation of B cells into antibody-secreting plasma cells. This process is tightly controlled by a regulatory gene network centered on the transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp1). Proliferation of activated B cells is required to foster Blimp1 expression but needs to be terminated to avoid overshooting immune reactions. Activator protein 1 (AP-1) transcription factors become quickly up-regulated upon B cell activation. We demonstrate that Fra1, a Fos member of AP-1, enhances activation-induced cell death upon induction in activated B cells. Moreover, mice with B cell-specific deletion of Fra1 show enhanced plasma cell differentiation and exacerbated antibody responses. In contrast, transgenic overexpression of Fra1 blocks plasma cell differentiation and immunoglobulin production, which cannot be rescued by Bcl2. On the molecular level, Fra1 represses Blimp1 expression and interferes with binding of the activating AP-1 member c-Fos to the Blimp1 promoter. Conversely, overexpression of c-Fos in Fra1 transgenic B cells releases Blimp1 repression. As Fra1 lacks transcriptional transactivation domains, we propose that Fra1 inhibits Blimp1 expression and negatively controls plasma cell differentiation through binding to the Blimp1 promoter. In summary, we demonstrate that Fra1 negatively controls plasma cell differentiation by repressing Blimp1 expression.

  15. Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes.

    Science.gov (United States)

    Takebayashi, T; Iwamoto, M; Jikko, A; Matsumura, T; Enomoto-Iwamoto, M; Myoukai, F; Koyama, E; Yamaai, T; Matsumoto, K; Nakamura, T

    1995-06-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities.

  16. Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes

    Science.gov (United States)

    1995-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities. PMID:7775584

  17. Cytokines and growth factors which regulate bone cell function

    Science.gov (United States)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  18. The effect of stem cell factor on proliferation of human endometrial CD146+ cells

    Directory of Open Access Journals (Sweden)

    Mehri Fayazi

    2016-07-01

    Full Text Available Background: Stem cell factor (SCF is a transcriptional factor which plays crucial roles in normal proliferation, differentiation and survival in a range of stem cells. Objective: The aim of the present study was to examine the proliferation effect of different concentrations of SCF on expansion of human endometrial CD146+ cells. Materials and Methods: In this experimental study, total populations of isolated human endometrial suspensions after fourth passage were isolated by magnetic activated cell sorting (MACS into CD146+ cells. Human endometrial CD146+ cells were karyotyped and tested for the effect of SCF on proliferation of CD146+ cells, then different concentrations of 0, 12.5, 25, 50 and 100 ng/ml was carried out and mitogens-stimulated endometrial CD146+ cells proliferation was assessed by MTT assay. Results: Chromosomal analysis showed a normal metaphase spread and 46XX karyotype. The proliferation rate of endometrial CD146P + P cells in the presence of 0, 12.5, 25, 50 and 100 ng/ml SCF were 0.945±0.094, 0.962±0.151, 0.988±0.028, 1.679±0.012 and 1.129±0.145 respectively. There was a significant increase in stem/ stromal cell proliferation following in vitro treatment by 50 ng/ml than other concentrations of SCF (p=0.01. Conclusion: The present study suggests that SCF could have effect on the proliferation and cell survival of human endometrial CD146P+P cells and it has important implications for medical sciences and cell therapies

  19. Cell cycle regulatory factors in juxta-tumoral renal parenchyma.

    Science.gov (United States)

    Petruşcă, Daniela Nicoleta; Petrescu, Amelia; Vrabie, Camelia; Niculescu, L; Jinga, V; Diaconu, Carmen; Braşoveanu, Lorelei

    2005-01-01

    The aim of this study was to evaluate regulatory cell cycle factors in juxta-tumoral renal parenchyma in order to obtain information regarding early primary changes occurred in normal renal cells. Specimens of juxta-tumoral renal parenchyma were harvested from the tumoral kidney in 10 patients with no history of treatment before surgery. The expression of p53, Bcl-2, Rb and PCNA was studied by immunohistochemical methods in paraffin-embedded tissues. The apoptotic status was evaluated by flow-cytometry analysis following propidium iodide incorporation. The p53 protein expression was recognized in most of the cases (80%) with different intensities. High intensity apoptotic process detected in juxta-tumoral parenchyma seemed to be p53 dependent and well correlated with the low Bcl-2 expression. 70% of cases were Rb positive. In this type of tissue Rb has only an anti-proliferative and anti-tumoral role. PCNA was present in half of the cases being low expressed due to the tissue regenerating mechanism. Our data suggest that the high intensity of programmed cell death in this type of tissue is supported by the status of cell regulatory factors that control this process. Previous studies have demonstrated that healthy renal tissue has neither apoptosis nor mitotic activity. Juxta-tumoral renal tissue is also displaying normal morphology and DNA content (diploidy) but the microenvironmental status induced by the tumor presence prompts cells to choose death rather than malignant transformation. Further studies are necessary to emphasize if these results have a clinical relevance for the outcome of therapeutical approaches in renal carcinomas.

  20. Transforming growth factor-beta, but not ciliary neurotrophic factor, inhibits DNA synthesis of adrenal medullary cells in vitro

    DEFF Research Database (Denmark)

    Wolf, N; Krohn, K; Bieger, S;

    1999-01-01

    by the neuroendocrine chromaffin cells, which also express the transforming growth factor-beta receptor type II. In contrast to the developmentally related sympathetic neurons, chromaffin cells continue to proliferate throughout postnatal life. Using 5-bromo-2'-deoxyuridine pulse labeling and tyrosine hydroxylase...... regulator of chromaffin cell division.......Transforming growth factor-betas are members of a superfamily of multifunctional cytokines regulating cell growth and differentiation. Their functions in neural and endocrine cells are not well understood. We show here that transforming growth factor-betas are synthesized, stored and released...

  1. Epidemiology, molecular epidemiology, and risk factors for renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Chiara Paglino

    2011-12-01

    Full Text Available Despite only accounting for approximately 2% of all new primary cancer cases, renal cell carcinoma (RCC incidence has dramatically increased over time. Incidence rates vary greatly according to geographic areas, so that it is extremely likely that exogenous risk factors could play an important role in the development of this cancer. Several risk factors have been linked with RCC, including cigarette smoking, obesity, hypertension (and antihypertensive drugs, chronic kidney diseases (also dialysis and transplantation, as well as the use of certain analgesics. Furthermore, although RCC has not generally been considered an occupational cancer, several types of occupationally-derived exposures have been implicated in its pathogenesis. These include exposure to asbestos, chlorinated solvents, gasoline, diesel exhaust fumes, polycyclic aromatic hydrocarbons, printing inks and dyes, cadmium and lead. Finally, families with a predisposition to the development of renal neoplasms were identified and the genes involved discovered and characterized. Therefore, there are now four well-characterized, genetically determined syndromes associated with an increased incidence of kidney tumors, i.e., Von Hippel Lindau (VHL, Hereditary Papillary Renal Carcinoma (HPRC, Birt-Hogg-Dubé Syndrome (BHD, and Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC. This review will address present knowledge about the epidemiology, molecular epidemiology and risk factors of RCC.

  2. Extrinsic Factors Involved in the Differentiation of Stem Cells into Insulin-Producing Cells: An Overview

    Directory of Open Access Journals (Sweden)

    Rebecca S. Y. Wong

    2011-01-01

    Full Text Available Diabetes mellitus is a chronic disease with many debilitating complications. Treatment of diabetes mellitus mainly revolves around conventional oral hypoglycaemic agents and insulin replacement therapy. Recently, scientists have turned their attention to the generation of insulin-producing cells (IPCs from stem cells of various sources. To date, many types of stem cells of human and animal origins have been successfully turned into IPCs in vitro and have been shown to exert glucose-lowering effect in vivo. However, scientists are still faced with the challenge of producing a sufficient number of IPCs that can in turn produce sufficient insulin for clinical use. A careful choice of stem cells, methods, and extrinsic factors for induction may all be contributing factors to successful production of functional beta-islet like IPCs. It is also important that the mechanism of differentiation and mechanism by which IPCs correct hyperglycaemia are carefully studied before they are used in human subjects.

  3. CD34+ cells cultured in stem cell factor and interleukin-2 generate CD56+ cells with antiproliferative effects on tumor cell lines

    Directory of Open Access Journals (Sweden)

    Hensel Nancy

    2005-04-01

    Full Text Available Abstract In vitro stimulation of CD34+ cells with IL-2 induces NK cell differentiation. In order to define the stages of NK cell development, which influence their generation from CD34 cells, we cultured G-CSF mobilized peripheral blood CD34+ cells in the presence of stem cell factor and IL-2. After three weeks culture we found a diversity of CD56+ subsets which possessed granzyme A, but lacked the cytotoxic apparatus required for classical NK-like cytotoxicity. However, these CD56+ cells had the unusual property of inhibiting proliferation of K562 and P815 cell lines in a cell-contact dependent fashion.

  4. Comparative genomics of human stem cell factor (SCF

    Directory of Open Access Journals (Sweden)

    Moein Dehbashi

    2017-03-01

    Full Text Available Stem cell factor (SCF is a critical protein with key roles in the cell such as hematopoiesis, gametogenesis and melanogenesis. In the present study a comparative analysis on nucleotide sequences of SCF was performed in Humanoids using bioinformatics tools including NCBI-BLAST, MEGA6, and JBrowse. Our analysis of nucleotide sequences to find closely evolved organisms with high similarity by NCBI-BLAST tools and MEGA6 showed that human and Chimpanzee (Pan troglodytes were placed into the same cluster. By using JBrowse, we found that SCF in Neanderthal had a single copy number similar to modern human and partly conserved nucleotide sequences. Together, the results approved the gene flow and genetics similarity of SCF among human and P. troglodytes. This may suggest that during evolution, SCF gene transferred partly intact either on the basis of sequence or function from the same ancestors to P. troglodytes, the ancient human like Neanderthal, and then to the modern human.

  5. Stromal cell-derived factor 1α (SDF-1α)

    DEFF Research Database (Denmark)

    Li, Dana; Bjørnager, Louise; Langkilde, Anne

    2016-01-01

    OBJECTIVES: Stromal cell-derived factor 1a (SDF-1α), is a chemokine and is able to home hematopoietic progenitor cells to injured areas of heart tissue for structural repair. Previous studies have found increased levels of SDF-1α in several cardiac diseases, but only few studies have investigated...... SDF-1α in patients with atrial fibrillation (AF). We aimed to test SDF-1α in a large cohort of patients with AF and its role as a prognostic marker. DESIGN: Between January 1st 2008 to December 1st 2012, 290 patients with ECG documented AF were enrolled from the in- and outpatient clinics...... at the Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark. Plasma levels of SDF-1α were measured using ELISA technique. Clinical data were registered and patient follow-up was conducted. RESULTS: Patients with permanent AF had significantly higher SDF-1α levels (2199.5 pg...

  6. Renal cell carcinoma: Review of etiology, pathophysiology and risk factors.

    Science.gov (United States)

    Petejova, Nadezda; Martinek, Arnost

    2016-06-01

    The global incidence of renal cell cancer is increasing annually and the causes are multifactorial. Early diagnosis and successful urological procedures with partial or total nephrectomy can be life-saving. However, only up to 10% of RCC patients present with characteristic clinical symptoms. Over 60% are detected incidentally in routine ultrasound examination. The question of screening and preventive measures greatly depends on the cause of the tumor development. For the latter reason, this review focuses on etiology, pathophysiology and risk factors for renal neoplasm. A literature search using the databases Medscape, Pubmed, UpToDate and EBSCO from 1945 to 2015. Genetic predisposition/hereditary disorders, obesity, smoking, various nephrotoxic industrial chemicals, drugs and natural/manmade radioactivity all contribute and enviromental risks are a serious concern in terms of prevention and the need to screen populations at risk. Apropos treatment, current oncological research is directed to blocking cancer cell division and inhibiting angiogenesis based on a knowledge of molecular pathways.

  7. Dock-family exchange factors in cell migration and disease.

    Science.gov (United States)

    Gadea, Gilles; Blangy, Anne

    2014-10-01

    Dock family proteins are evolutionary conserved exchange factors for the Rho GTPases Rac and Cdc42. There are 11 Dock proteins in mammals, named Dock1 (or Dock180) to Dock11 that play different cellular functions. In particular, Dock proteins regulate actin cytoskeleton, cell adhesion and migration. Not surprisingly, members of the Dock family have been involved in various pathologies, including cancer and defects in the central nervous and immune systems. This review proposes an update of the recent findings regarding the function of Dock proteins, focusing on their role in the control of cell migration and invasion and the consequences in human diseases. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Somatic cell and factors which affect their count in milk

    Directory of Open Access Journals (Sweden)

    Zrinka Čačić

    2003-01-01

    Full Text Available Milk quality is determined by chemical composition, physical characteristics and hygienic parameters. The main indicators of hygienic quality of milk are total number of microorganisms and somatic cell count (SCC. Environmental factors have the greatest influence on increasing SCC. The most important environmental parameters are status of udder infection, age of cow, stage of lactation, number of lactation, breed, housing, geographicalarea and seasons, herd size, stress, heavy physical activity and, milking. A farmer (milk producer himself can control a great number of environmental factors using good management practise and permanent education. Since SCC participate in creating the price of milk, it is necessary to inform milk producers how to organise their production so that they would produce maximum quantity of good hygienic quality milk.

  9. Platelet-Activating Factor Induces Th17 Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Anne-Marie Drolet

    2011-01-01

    Full Text Available Th17 cells have been implicated in a number of inflammatory and autoimmune diseases. The phospholipid mediator platelet-activating factor (PAF is found in increased concentrations in inflammatory lesions and has been shown to induce IL-6 production. We investigated whether PAF could affect the development of Th17 cells. Picomolar concentrations of PAF induced IL-23, IL-6, and IL-1β expression in monocyte-derived Langerhans cells (LCs and in keratinocytes. Moreover, when LC were pretreated with PAF and then cocultured with anti-CD3- and anti-CD28-activated T cells, the latter developed a Th17 phenotype, with a significant increase in the expression of the transcriptional regulator RORγt and enhanced expression of IL-17, IL-21, and IL-22. PAF-induced Th17 development was prevented by the PAF receptor antagonist WEB2086 and by neutralizing antibodies to IL-23 and IL-6R. This may constitute a previously unknown stimulus for the development and persistence of inflammatory processes that could be amenable to pharmacologic intervention.

  10. Factors affecting daughter cells' arrangement during the early bacterial divisions.

    Directory of Open Access Journals (Sweden)

    Pin-Tzu Su

    Full Text Available On agar plates, daughter cells of Escherichia coli mutually slide and align side-by-side in parallel during the first round of binary fission. This phenomenon has been previously attributed to an elastic material that restricts apparently separated bacteria from being in string. We hypothesize that the interaction between bacteria and the underneath substratum may affect the arrangement of the daughter bacteria. To test this hypothesis, bacterial division on hyaluronic acid (HA gel, as an alternative substratum, was examined. Consistent with our proposition, the HA gel differs from agar by suppressing the typical side-by-side alignments to a rare population. Examination of bacterial surface molecules that may contribute to the daughter cells' arrangement yielded an observation that, with disrupted lpp, the E. coli daughter cells increasingly formed non-typical patterns, i.e. neither sliding side-by-side in parallel nor forming elongated strings. Therefore, our results suggest strongly that the early cell patterning is affected by multiple interaction factors. With oscillatory optical tweezers, we further demonstrated that the interaction force decreased in bacteria without Lpp, a result substantiating our notion that the side-by-side sliding phenomenon directly reflects the strength of in-situ interaction between bacteria and substratum.

  11. Heat shock factors: integrators of cell stress, development and lifespan.

    Science.gov (United States)

    Akerfelt, Malin; Morimoto, Richard I; Sistonen, Lea

    2010-08-01

    Heat shock factors (HSFs) are essential for all organisms to survive exposures to acute stress. They are best known as inducible transcriptional regulators of genes encoding molecular chaperones and other stress proteins. Four members of the HSF family are also important for normal development and lifespan-enhancing pathways, and the repertoire of HSF targets has thus expanded well beyond the heat shock genes. These unexpected observations have uncovered complex layers of post-translational regulation of HSFs that integrate the metabolic state of the cell with stress biology, and in doing so control fundamental aspects of the health of the proteome and ageing.

  12. Cell functional enviromics: Unravelling the function of environmental factors

    Directory of Open Access Journals (Sweden)

    Alves Paula M

    2011-06-01

    Full Text Available Abstract Background While functional genomics, focused on gene functions and gene-gene interactions, has become a very active field of research in molecular biology, equivalent methodologies embracing the environment and gene-environment interactions are relatively less developed. Understanding the function of environmental factors is, however, of paramount importance given the complex, interactive nature of environmental and genetic factors across multiple time scales. Results Here, we propose a systems biology framework, where the function of environmental factors is set at its core. We set forth a "reverse" functional analysis approach, whereby cellular functions are reconstructed from the analysis of dynamic envirome data. Our results show these data sets can be mapped to less than 20 core cellular functions in a typical mammalian cell culture, while explaining over 90% of flux data variance. A functional enviromics map can be created, which provides a template for manipulating the environmental factors to induce a desired phenotypic trait. Conclusion Our results support the feasibility of cellular function reconstruction guided by the analysis and manipulation of dynamic envirome data.

  13. Stromal Cell-Derived Factor-1 Promotes Cell Migration, Tumor Growth of Colorectal Metastasis

    Directory of Open Access Journals (Sweden)

    Otto Kollmar

    2007-10-01

    Full Text Available In a mouse model of established extrahepatic colorectal metastasis, we analyzed whether stromal cellderived factor (SDF 1 stimulates tumor cell migration in vitro, angiogenesis, tumor growth in vivo. METHODS: Using chemotaxis chambers, CT26.WT colorectal tumor cell migration was studied under stimulation with different concentrations of SDF-1. To evaluate angiogenesis, tumor growth in vivo, green fluorescent protein-transfected CT26.WT cells were implanted in dorsal skinfold chambers of syngeneic BALB/c mice. After 5 days, tumors were locally exposed to SDF-1. Cell proliferation, tumor microvascularization, growth were studied during a further 9-day period using intravital fluorescence microscopy, histology, immunohistochemistry. Tumors exposed to PBS only served as controls. RESULTS:In vitro, > 30% of unstimulated CT26.WT cells showed expression of the SDF-1 receptor CXCR4. On chemotaxis assay, SDF-1 provoked a dose-dependent increase in cell migration. In vivo, SDF-1 accelerated neovascularization, induced a significant increase in tumor growth. Capillaries of SDF-1-treated tumors showed significant dilation. Of interest, SDF-1 treatment was associated with a significantly increased expression of proliferating cell nuclear antigen, a downregulation of cleaved caspase-3. CONCLUSION: Our study indicates that the CXC chemokine SDF-1 promotes tumor cell migration in vitro, tumor growth of established extrahepatic metastasis in vivo due to angiogenesis-dependent induction of tumor cell proliferation, inhibition of apoptotic cell death.

  14. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing.

    Directory of Open Access Journals (Sweden)

    Liwen Chen

    Full Text Available Bone marrow derived mesenchymal stem cells (BM-MSCs have been shown to enhance wound healing; however, the mechanisms involved are barely understood. In this study, we examined paracrine factors released by BM-MSCs and their effects on the cells participating in wound healing compared to those released by dermal fibroblasts. Analyses of BM-MSCs with Real-Time PCR and of BM-MSC-conditioned medium by antibody-based protein array and ELISA indicated that BM-MSCs secreted distinctively different cytokines and chemokines, such as greater amounts of VEGF-alpha, IGF-1, EGF, keratinocyte growth factor, angiopoietin-1, stromal derived factor-1, macrophage inflammatory protein-1alpha and beta and erythropoietin, compared to dermal fibroblasts. These molecules are known to be important in normal wound healing. BM-MSC-conditioned medium significantly enhanced migration of macrophages, keratinocytes and endothelial cells and proliferation of keratinocytes and endothelial cells compared to fibroblast-conditioned medium. Moreover, in a mouse model of excisional wound healing, where concentrated BM-MSC-conditioned medium was applied, accelerated wound healing occurred compared to administration of pre-conditioned or fibroblast-conditioned medium. Analysis of cell suspensions derived from the wound by FACS showed that wounds treated with BM-MSC-conditioned medium had increased proportions of CD4/80-positive macrophages and Flk-1-, CD34- or c-kit-positive endothelial (progenitor cells compared to wounds treated with pre-conditioned medium or fibroblast-conditioned medium. Consistent with the above findings, immunohistochemical analysis of wound sections showed that wounds treated with BM-MSC-conditioned medium had increased abundance of macrophages. Our results suggest that factors released by BM-MSCs recruit macrophages and endothelial lineage cells into the wound thus enhancing wound healing.

  15. Pleiotropic effects of cancer cells' secreted factors on human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Al-toub, Mashael; Almusa, Abdulaziz; Almajed, Mohammed

    2013-01-01

    INTRODUCTION: Studying cancer tumors' microenvironment may reveal a novel role in driving cancer progression and metastasis. The biological interaction between stromal (mesenchymal) stem cells (MSCs) and cancer cells remains incompletely understood. Herein, we investigated the effects of tumor...... cells' secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. METHODS: Morphological changes were assessed using fluorescence microscopy....... Changes in gene expression were assessed using Agilent microarray and qRT-PCR. GeneSpring 12.1 and DAVID tools were used for bioinformatic and signaling pathway analyses. Cell migration was assessed using a transwell migration system. SB-431542, PF-573228 and PD98059 were used to inhibit transforming...

  16. Cheiradone: a vascular endothelial cell growth factor receptor antagonist

    Directory of Open Access Journals (Sweden)

    Ahmed Nessar

    2008-01-01

    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with physiological (for example wound healing and pathological conditions (tumour development. Vascular endothelial growth factor (VEGF, fibroblast growth factor-2 (FGF-2 and epidermal growth factor (EGF are the major angiogenic regulators. We have identified a natural product (cheiradone isolated from a Euphorbia species which inhibited in vivo and in vitro VEGF- stimulated angiogenesis but had no effect on FGF-2 or EGF activity. Two primary cultures, bovine aortic and human dermal endothelial cells were used in in vitro (proliferation, wound healing, invasion in Matrigel and tube formation and in vivo (the chick chorioallantoic membrane models of angiogenesis in the presence of growth factors and cheiradone. In all cases, the concentration of cheiradone which caused 50% inhibition (IC50 was determined. The effect of cheiradone on the binding of growth factors to their receptors was also investigated. Results Cheiradone inhibited all stages of VEGF-induced angiogenesis with IC50 values in the range 5.20–7.50 μM but did not inhibit FGF-2 or EGF-induced angiogenesis. It also inhibited VEGF binding to VEGF receptor-1 and 2 with IC50 values of 2.9 and 0.61 μM respectively. Conclusion Cheiradone inhibited VEGF-induced angiogenesis by binding to VEGF receptors -1 and -2 and may be a useful investigative tool to study the specific contribution of VEGF to angiogenesis and may have therapeutic potential.

  17. B cell activating factor (BAFF) selects IL-10(-)B cells over IL-10(+)B cells during inflammatory responses.

    Science.gov (United States)

    Ma, Ning; Zhang, Yu; Liu, Qilin; Wang, Zhiding; Liu, Xiaoling; Zhu, Gaizhi; Yu, Dandan; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Wang, Tianxiao; Ma, Yuanfang; Shen, Beifen; Li, Yan; Xiao, He; Wang, Renxi

    2017-02-12

    B cell activating factor (BAFF) regulates B cell maturation, survival, function, and plays a critical pathogenic role in autoimmune diseases. It remains unclear how BAFF affects IL-10(-)B cells versus regulatory B cells (Bregs) in inflammatory responses. In this study, we found that IL-10-expressing Bregs decreased in lupus-prone MRL/lpr mice and experimental allergic encephalomyelitis (EAE) mice. On blockade of the effects of BAFF with TACI-IgG, IL-10(+) Bregs were upregulated in MRL/lpr and EAE mice. In addition, BAFF expanded IL-10(+)B cells over IL-10(-)B cells under noninflammatory conditions in vitro, whereas it expanded IL-10(-)B cells over IL-10(+)B cells during inflammatory responses, such as stimulation with autoantigen and LPS. Finally, the selection of IL-10(-)B cells over IL-10(+)B cells by BAFF was dependent on BAFF receptors (BAFFR, TACI, and BCMA) that were upregulated by inflammatory responses. This study suggests that BAFF selects IL-10(-)B cells over IL-10(+) regulatory B cells via BAFF receptors in inflammatory responses.

  18. Cell-Cell Communication in Yeast Using Auxin Biosynthesis and Auxin Responsive CRISPR Transcription Factors.

    Science.gov (United States)

    Khakhar, Arjun; Bolten, Nicholas J; Nemhauser, Jennifer; Klavins, Eric

    2016-04-15

    An engineering framework for synthetic multicellular systems requires a programmable means of cell-cell communication. Such a communication system would enable complex behaviors, such as pattern formation, division of labor in synthetic microbial communities, and improved modularity in synthetic circuits. However, it remains challenging to build synthetic cellular communication systems in eukaryotes due to a lack of molecular modules that are orthogonal to the host machinery, easy to reconfigure, and scalable. Here, we present a novel cell-to-cell communication system in Saccharomyces cerevisiae (yeast) based on CRISPR transcription factors and the plant hormone auxin that exhibits several of these features. Specifically, we engineered a sender strain of yeast that converts indole-3-acetamide (IAM) into auxin via the enzyme iaaH from Agrobacterium tumefaciens. To sense auxin and regulate transcription in a receiver strain, we engineered a reconfigurable library of auxin-degradable CRISPR transcription factors (ADCTFs). Auxin-induced degradation is achieved through fusion of an auxin-sensitive degron (from IAA corepressors) to the CRISPR TF and coexpression with an auxin F-box protein. Mirroring the tunability of auxin perception in plants, our family of ADCTFs exhibits a broad range of auxin sensitivities. We characterized the kinetics and steady-state behavior of the sender and receiver independently as well as in cocultures where both cell types were exposed to IAM. In the presence of IAM, auxin is produced by the sender cell and triggers deactivation of reporter expression in the receiver cell. The result is an orthogonal, rewireable, tunable, and, arguably, scalable cell-cell communication system for yeast and other eukaryotic cells.

  19. IRF8 Transcription-Factor-Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis.

    Science.gov (United States)

    Luda, Katarzyna M; Joeris, Thorsten; Persson, Emma K; Rivollier, Aymeric; Demiri, Mimoza; Sitnik, Katarzyna M; Pool, Lieneke; Holm, Jacob B; Melo-Gonzalez, Felipe; Richter, Lisa; Lambrecht, Bart N; Kristiansen, Karsten; Travis, Mark A; Svensson-Frej, Marcus; Kotarsky, Knut; Agace, William W

    2016-04-19

    The role of dendritic cells (DCs) in intestinal immune homeostasis remains incompletely defined. Here we show that mice lacking IRF8 transcription-factor-dependent DCs had reduced numbers of T cells in the small intestine (SI), but not large intestine (LI), including an almost complete absence of SI CD8αβ(+) and CD4(+)CD8αα(+) T cells; the latter requiring β8 integrin expression by migratory IRF8 dependent CD103(+)CD11b(-) DCs. SI homing receptor induction was impaired during T cell priming in mesenteric lymph nodes (MLN), which correlated with a reduction in aldehyde dehydrogenase activity by SI-derived MLN DCs, and inefficient T cell localization to the SI. These mice also lacked intestinal T helper 1 (Th1) cells, and failed to support Th1 cell differentiation in MLN and mount Th1 cell responses to Trichuris muris infection. Collectively these results highlight multiple non-redundant roles for IRF8 dependent DCs in the maintenance of intestinal T cell homeostasis.

  20. Nerve growth factor modulate proliferation of cultured rabbit corneal endothelial cells and epithelial cells.

    Science.gov (United States)

    Li, Xinyu; Li, Zhongguo; Qiu, Liangxiu; Zhao, Changsong; Hu, Zhulin

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF. MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570 nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner. 50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did. Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  1. Epidermal Growth Factor Receptor Cell Survival Signaling Requires Phosphatidylcholine Biosynthesis

    Directory of Open Access Journals (Sweden)

    Matt Crook

    2016-11-01

    Full Text Available Identification of pro-cell survival signaling pathways has implications for cancer, cardiovascular, and neurodegenerative disease. We show that the Caenorhabditis elegans epidermal growth factor receptor LET-23 (LET-23 EGFR has a prosurvival function in counteracting excitotoxicity, and we identify novel molecular players required for this prosurvival signaling. uv1 sensory cells in the C. elegans uterus undergo excitotoxic death in response to activation of the OSM-9/OCR-4 TRPV channel by the endogenous agonist nicotinamide. Activation of LET-23 EGFR can effectively prevent this excitotoxic death. We investigate the roles of signaling pathways known to act downstream of LET-23 EGFR in C. elegans and find that the LET-60 Ras/MAPK pathway, but not the IP3 receptor pathway, is required for efficient LET-23 EGFR activity in its prosurvival function. However, activation of LET-60 Ras/MAPK pathway does not appear to be sufficient to fully mimic LET-23 EGFR activity. We screen for genes that are required for EGFR prosurvival function and uncover a role for phosphatidylcholine biosynthetic enzymes in EGFR prosurvival function. Finally, we show that exogenous application of phosphatidylcholine is sufficient to prevent some deaths in this excitotoxicity model. Our work implicates regulation of lipid synthesis downstream of EGFR in cell survival and death decisions.

  2. Transforming growth factor beta1 regulates melanocyte proliferation and differentiation in mouse neural crest cells via stem cell factor/KIT signaling.

    Science.gov (United States)

    Kawakami, Tamihiro; Soma, Yoshinao; Kawa, Yoko; Ito, Masaru; Yamasaki, Emiko; Watabe, Hidenori; Hosaka, Eri; Yajima, Kenji; Ohsumi, Kayoko; Mizoguchi, Masako

    2002-03-01

    Stem cell factor is essential to the migration and differentiation of melanocytes during embryogenesis based on the observation that mutations in either the stem cell factor gene, or its ligand, KIT, result in defects in coat pigmentation in mice. Stem cell factor is also required for the survival of melanocyte precursors while they are migrating towards the skin. Transforming growth factor beta1 has been implicated in the regulation of both cellular proliferation and differentiation. NCC-melb4, an immortal cloned cell line, was cloned from a mouse neural crest cell. NCC-melb4 cells provide a model to study the specific stage of differentiation and proliferation of melanocytes. They also express KIT as a melanoblast marker. Using the NCC-melb4 cell line, we investigated the effect of transforming growth factor beta1 on the differentiation and proliferation of immature melanocyte precursors. Immunohistochemically, NCC-melb4 cells showed transforming growth factor beta1 expression. The anti-transforming growth factor beta1 antibody inhibited the cell growth, and downregulated the KIT protein and mRNA expression. To investigate further the activation of autocrine transforming growth factor beta1, NCC-melb4 cells were incubated in nonexogenous transforming growth factor beta1 culture medium. KIT protein decreased with anti-transforming growth factor beta1 antibody concentration in a concentration-dependent manner. We concluded that in NCC-melb4 cells, transforming growth factor beta1 promotes melanocyte precursor proliferation in autocrine and/or paracrine regulation. We further investigated the influence of transforming growth factor beta1 in vitro using a neural crest cell primary culture system from wild-type mice. Anti-transforming growth factor beta1 antibody decreased the number of KIT positive neural crest cell. In addition, the anti-transforming growth factor beta1 antibody supplied within the wild-type neural crest explants abolished the growth of the neural

  3. Tropism mechanism of stem cells targeting injured brain tissues by stromal cell-derived factor-1

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sai; LIU Xiao-zhi; LIU Zhen-lin; SHANG Chong-zhi; HU Qun-liang

    2009-01-01

    Objective: To explore the role and function of stromal cell-derived factor- 1 (SDF- 1) in stem cells migrating into injured brain area.Methods: Rat-derived nerve stem cells (NSCs) were isolated and cultured routinely. Transwell system was used to observe the migration ability of NSCs into injured nerve cells. Immunocytochemistry was used to explore the expression of chemotactic factor receptor-4 (CXCR-4) in NSCs. In vivo, we applied immunofluorescence technique to observe the migration of NSCs into injured brain area. Immunofluorescence technique and Western blotting were used to test expression level of SDF- 1. After AMD3100 (a special chemical blocker) blocking CXCR-4, the migration ability of NSCs was tested in vivo and in vitro, respectively.Results: NSCs displayed specific tropism for injured nerve cells or traumatic brain area in vivo and in vitro. The expression level of SDF-1 in traumatic brain area increased remarkably and the expression level of CXCR-4 in the NSCs increased simultaneously. After AMD3100 blocking the expression of CXCR-4, the migration ability of NSCs decreased significantly both in vivo and in vitro.Conclusions: SDF-1 may play a key role in stem cells migrating into injured brain area through specially combining with CXCR-4.

  4. Pharmacological targeting of the KIT growth factor receptor: a therapeutic consideration for mast cell disorders

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Akin, C; Gilfillan, A M

    2008-01-01

    KIT is a member of the tyrosine kinase family of growth factor receptors which is expressed on a variety of haematopoietic cells including mast cells. Stem cell factor (SCF)-dependent activation of KIT is critical for mast cell homeostasis and function. However, when KIT is inappropriately activa...

  5. IRF8 Transcription-Factor-Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis

    DEFF Research Database (Denmark)

    Luda, Katarzyna M.; Joeris, Thorsten; Persson, Emma K.;

    2016-01-01

    The role of dendritic cells (DCs) in intestinal immune homeostasis remains incompletely defined. Here we show that mice lacking IRF8 transcription-factor-dependent DCs had reduced numbers of T cells in the small intestine (SI), but not large intestine (LI), including an almost complete absence...... of SI CD8αβ+ and CD4+CD8αα+ T cells; the latter requiring β8 integrin expression by migratory IRF8 dependent CD103+CD11b- DCs. SI homing receptor induction was impaired during T cell priming in mesenteric lymph nodes (MLN), which correlated with a reduction in aldehyde dehydrogenase activity by SI......-derived MLN DCs, and inefficient T cell localization to the SI. These mice also lacked intestinal T helper 1 (Th1) cells, and failed to support Th1 cell differentiation in MLN and mount Th1 cell responses to Trichuris muris infection. Collectively these results highlight multiple non-redundant roles for IRF8...

  6. Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration

    National Research Council Canada - National Science Library

    Lee, Christopher Sd; Burnsed, Olivia A; Raghuram, Vineeth; Kalisvaart, Jonathan; Boyan, Barbara D; Schwartz, Zvi

    2012-01-01

    Adipose stem cells (ASCs) secrete many trophic factors that can stimulate tissue repair, including angiogenic factors, but little is known about how ASCs and their secreted factors influence cartilage regeneration...

  7. Factors affecting somatic cell count in dairy goats: a review

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Granda, R.; Sanchez-Rodriguez, M.; Arce, C.; Rodriguez-Estevez, V.

    2014-06-01

    Somatic cell count (SCC) in monitoring udder health has been described in numerous studies as a useful method for the diagnosis of intramammary infection (IMI), and it is considered in standards of quality and hygiene of cows milk in many countries. However, several authors have questioned the validity of SCC as a reliable IMI diagnosis tool in dairy goats. This review attempts to reflect the importance of different infectious and non-infectious factors that can modify SCC values in goat milk, and must, therefore, be taken into account when using the SCC as a tool in the improvement of udder health and the quality of milk in this species. In dairy goats, some investigations have shown that mammary bacterial infections are a major cause of increased SCC and loss of production. In goats however, the relationship between bacterial infections and SCC values is not as simple as in dairy cattle, since non-infectious factors also have a big impact on SCC. Intrinsic factors are those that depend directly on the animal: time and number of lactation (higher SCC late in lactation and in aged goats), prolificity (higher SCC in multiple births), milking time (higher SCC in evening compared to morning milking) and number of milkings per day, among others. Extrinsic factors include: milking routine (lower SCC in machine than in manual milking), seasonality and food. In addition, milk secretion in goats is mostly apocrine and therefore characterized by the presence of epithelial debris or cytoplasmic particles, which makes the use of DNA specific counters mandatory. All this information is of interest in order to correctly interpret the SCC in goat milk and to establish differential SCC standards. (Author)

  8. Factors affecting somatic cell count in dairy goats: a review

    Directory of Open Access Journals (Sweden)

    Rocío Jiménez-Granado

    2014-02-01

    Full Text Available Somatic cell count (SCC in monitoring udder health has been described in numerous studies as a useful method for the diagnosis of intramammary infection (IMI, and it is considered in standards of quality and hygiene of cow’s milk in many countries. However, several authors have questioned the validity of SCC as a reliable IMI diagnosis tool in dairy goats. This review attempts to reflect the importance of different infectious and non-infectious factors that can modify SCC values in goat milk, and must, therefore, be taken into account when using the SCC as a tool in the improvement of udder health and the quality of milk in this species. In dairy goats, some investigations have shown that mammary bacterial infections are a major cause of increased SCC and loss of production. In goats however, the relationship between bacterial infections and SCC values is not as simple as in dairy cattle, since non-infectious factors also have a big impact on SCC. Intrinsic factors are those that depend directly on the animal: time and number of lactation (higher SCC late in lactation and in aged goats, prolificity (higher SCC in multiple births, milking time (higher SCC in evening compared to morning milking and number of milkings per day, among others. Extrinsic factors include: milking routine (lower SCC in machine than in manual milking, seasonality and food. In addition, milk secretion in goats is mostly apocrine and therefore characterized by the presence of epithelial debris or cytoplasmic particles, which makes the use of DNA specific counters mandatory. All this information is of interest in order to correctly interpret the SCC in goat milk and to establish differential SCC standards.

  9. Influencing factors of rat small intestinal epithelial cell cultivation and effects of radiation on cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Xin Ze Ran; Yong Ping Su; Yong Jiang Wei; Guo Ping Ai; Tian Min Cheng; Yuan Lin

    2001-01-01

    @@ INTRODUCTIONCrypt epithelial cells in normal small intestineproliferate at a high speed. But they are verydifficult to culture in vitro and passage stably. A lotof studies have been done[1-16]. Some domestic labsisolated and cultured crypt cells from embryonalintestines and aseptic animal intestine, but failed.We introduced normal rat epithelial cell line-IEC-6from the USA and its living condition for stablepassage was successfully established after trials. Thecell line was testified to be the small intestinalepithelial cell by electron microscopy,immunihistochemistry and enzymatic histoch-emistry. It has been applied to some relatedresearch work[17-21]. It was found that manyfactors were involved in the culture system. Ourpresent study focuses on the culture method and theinfluencing factors on IEC-6.

  10. A Progenitor Cell Expressing Transcription Factor RORγt Generates All Human Innate Lymphoid Cell Subsets.

    Science.gov (United States)

    Scoville, Steven D; Mundy-Bosse, Bethany L; Zhang, Michael H; Chen, Li; Zhang, Xiaoli; Keller, Karen A; Hughes, Tiffany; Chen, Luxi; Cheng, Stephanie; Bergin, Stephen M; Mao, Hsiaoyin C; McClory, Susan; Yu, Jianhua; Carson, William E; Caligiuri, Michael A; Freud, Aharon G

    2016-05-17

    The current model of murine innate lymphoid cell (ILC) development holds that mouse ILCs are derived downstream of the common lymphoid progenitor through lineage-restricted progenitors. However, corresponding lineage-restricted progenitors in humans have yet to be discovered. Here we identified a progenitor population in human secondary lymphoid tissues (SLTs) that expressed the transcription factor RORγt and was unique in its ability to generate all known ILC subsets, including natural killer (NK) cells, but not other leukocyte populations. In contrast to murine fate-mapping data, which indicate that only ILC3s express Rorγt, these human progenitor cells as well as human peripheral blood NK cells and all mature ILC populations expressed RORγt. Thus, all human ILCs can be generated through an RORγt(+) developmental pathway from a common progenitor in SLTs. These findings help establish the developmental signals and pathways involved in human ILC development.

  11. Expression of insulin-like growth factor family genes in clear cell renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ryszard Braczkowski

    2016-06-01

    Full Text Available Aim of the study : Despite significant progress in the pathology of clear cell renal cell carcinoma (ccRCC, diagnostic and predictive factors of major importance have not been discovered. Some hopes are associated with insulin-like growth factors. The aim of the study was to compare the expression of genes for insulin-like growth factor family in tumours and in tissue of kidneys without cancer. Material and methods : Fifty-two patients years with clear cell renal cell cancer were qualified to the study group; patients nephrectomised because of hydronephrosis were included in the control group. Expression of genes were evaluated by RT-PCR. Results : Expression of IGFR-1 gene in tumour accounts for about 60% of cases. The incidence is higher than in corresponding adjacent non-cancerous kidney tissues and higher (but with no statistical significance than in kidney without cancer. Expression of IGFR-2 gene in tumours has not been established. The incidence of the expression in corresponding adjacent non-cancerous kidney tissues is small. Expression of this gene has been present in all specimens from kidneys without cancer. Expression of IGFBP-3 gene ascertained in all (except four cases of ccRCC and in the majority of clippings from adjacent tissue. It was not found in kidneys from the control group. IGF-1, IGF-2, and IGFR-1 mRNA copy numbers in ccRCC were higher than in the material from the control group

  12. Comprehensive analysis of clinical significance of stem-cell related factors in renal cell cancer

    Directory of Open Access Journals (Sweden)

    Zhou Libin

    2011-10-01

    Full Text Available Abstract Background C-MYC, LIN28, OCT4, KLF4, NANOG and SOX2 are stem cell related factors. We detected whether these factors express in renal cell carcinoma (RCC tissues to study their correlations with the clinical and pathological characteristics. Methods The expressions of c-MYC, LIN28, SOX2, KLF4, OCT4 and NANOG in 30 RCC patients and 5 non-RCC patients were detected with quantitative real-time reverse transcription-PCR (qRT-PCR. The data were analyzed with Wilcoxon signed rank sum test and x2 test. Results In RCC group, c-MYC expression was significantly higher in RCC tissues compared with normal tissues (P 0.05. Also the expression levels of all above factors were not significantly changed in non-RCC group (P > 0.05. Conclusions The present analysis strongly suggests that altered expression of several stem cell related factors may play different roles in RCC. C-MYC may function as an oncogene and OCT4, KLF4, NANOG and SOX2 as tumor suppressors.

  13. Host Cell Factors as Antiviral Targets in Arenavirus Infection

    Directory of Open Access Journals (Sweden)

    Elsa B. Damonte

    2012-09-01

    Full Text Available Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection.

  14. Host cell factors as antiviral targets in arenavirus infection.

    Science.gov (United States)

    Linero, Florencia N; Sepúlveda, Claudia S; Giovannoni, Federico; Castilla, Viviana; García, Cybele C; Scolaro, Luis A; Damonte, Elsa B

    2012-09-01

    Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF) in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection.

  15. Wnt signaling through T-cell factor phosphorylation

    Institute of Scientific and Technical Information of China (English)

    Sergei Y Sokol

    2011-01-01

    Embryonic signaling pathways often lead to a switch from default repression to transcriptional activation of target genes. A major consequence of Wnt signaling is stabilization of p-catenin, which associates with T-cell factors (TCFs) and 'converts' them from repressors into transcriptional activators. The molecular mechanisms responsible for this conversion remain poorly understood. Several studies have reported on the regulation of TCF by phosphorylation,yet its physiological significance has been unclear: in some cases it appears to promote target gene activation, in oth-ers Wnt-dependent transcription is inhibited. This review focuses on recent progress in the understanding of context-dependent post-translational regulation of TCF function by Wnt signaling.

  16. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M;

    1992-01-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...... of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell...

  17. Crocin suppresses tumor necrosis factor-alpha-induced cell death of neuronally differentiated PC-12 cells.

    Science.gov (United States)

    Soeda, S; Ochiai, T; Paopong, L; Tanaka, H; Shoyama, Y; Shimeno, H

    2001-11-01

    Crocus sativus L. is used in Chinese traditional medicine to treat some disorders of the central nervous system. Crocin is an ethanol-extractable component of Crocus sativus L.; it is reported to prevent ethanol-induced impairment of learning and memory in mice. In this study, we demonstrate that crocin suppresses the effect of tumor necrosis factor (TNF)-alpha on neuronally differentiated PC-12 cells. PC-12 cells dead from exposure to TNF-alpha show apoptotic morphological changes and DNA fragmentation. These hallmark features of cell death did not appear in cells treated in the co-presence of 10 microM crocin. Moreover, crocin suppressed the TNF-alpha-induced expression of Bcl-Xs and LICE mRNAs and simultaneously restored the cytokine-induced reduction of Bcl-X(L) mRNA expression. The modulating effects of crocin on the expression of Bcl-2 family proteins led to a marked reduction of a TNF-alpha-induced release of cytochrome c from the mitochondria. Crocin also blocked the cytochrome c-induced activation of caspase-3. To learn how crocin exhibits these anti-apoptotic actions in PC-12 cells, we tested the effect of crocin on PC-12 cell death induced by daunorubicin. We found that crocin inhibited the effect of daunorubicin as well. Our findings suggest that crocin inhibits neuronal cell death induced by both internal and external apoptotic stimuli.

  18. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation.

    Science.gov (United States)

    Strzalka, Wojciech; Ziemienowicz, Alicja

    2011-05-01

    PCNA (proliferating cell nuclear antigen) has been found in the nuclei of yeast, plant and animal cells that undergo cell division, suggesting a function in cell cycle regulation and/or DNA replication. It subsequently became clear that PCNA also played a role in other processes involving the cell genome. This review discusses eukaryotic PCNA, with an emphasis on plant PCNA, in terms of the protein structure and its biochemical properties as well as gene structure, organization, expression and function. PCNA exerts a tripartite function by operating as (1) a sliding clamp during DNA synthesis, (2) a polymerase switch factor and (3) a recruitment factor. Most of its functions are mediated by its interactions with various proteins involved in DNA synthesis, repair and recombination as well as in regulation of the cell cycle and chromatid cohesion. Moreover, post-translational modifications of PCNA play a key role in regulation of its functions. Finally, a phylogenetic comparison of PCNA genes suggests that the multi-functionality observed in most species is a product of evolution. Most plant PCNAs exhibit features similar to those found for PCNAs of other eukaryotes. Similarities include: (1) a trimeric ring structure of the PCNA sliding clamp, (2) the involvement of PCNA in DNA replication and repair, (3) the ability to stimulate the activity of DNA polymerase δ and (4) the ability to interact with p21, a regulator of the cell cycle. However, many plant genomes seem to contain the second, probably functional, copy of the PCNA gene, in contrast to PCNA pseudogenes that are found in mammalian genomes.

  19. Choline Phospholipid Metabolites of Human Vascular Endothelial Cells Altered by Cyclooxygenase Inhibition, Growth Factor Depletion, and Paracrine Factors Secreted by Cancer Cells

    Directory of Open Access Journals (Sweden)

    Noriko Mori

    2003-04-01

    Full Text Available Magnetic resonance studies have previously shown that solid tumors and cancer cells in culture typically exhibit high phosphocholine and total choline. Treatment of cancer cells with the anti-inflammatory agent, indomethacin (INDO, reverted the phenotype of choline phospholipid metabolites in cancer cells towards a less malignant phenotype. Since endothelial cells form a key component of tumor vasculature, in this study, we used MR spectroscopy to characterize the phenotype of choline phospholipid metabolites in human umbilical vein endothelial cells (HUVECs. We determined the effect of growth factors, the anti-inflammatory agent INDO, and conditioned media obtained from a malignant cell line, on choline phospholipid metabolites. Growth factor depletion or treatment with INDO induced similar changes in the choline phospholipid metabolites of HUVECs. Treatment with conditioned medium obtained from MDA-MB-231 cancer cells induced changes similar to the presence of growth factor supplements. These results suggest that cancer cells secrete growth factors and/or other molecules that influence the choline phospholipid metabolism of HUVECs. The ability of INDO to alter choline phospholipid metabolism in the presence of growth factor supplements suggests that the inflammatory response pathways of HUVECs may play a role in cancer cell-HUVEC interaction and in the response of HUVECs to growth factors.

  20. Cell physiology regulation by hypoxia inducible factor-1: Targeting oxygen-related nanomachineries of hypoxic cells.

    Science.gov (United States)

    Eskandani, Morteza; Vandghanooni, Somayeh; Barar, Jaleh; Nazemiyeh, Hossein; Omidi, Yadollah

    2017-06-01

    Any dysfunctionality in maintaining the oxygen homeostasis by mammalian cells may elicit hypoxia/anoxia, which results in inescapable oxidative stress and possible subsequent detrimental impacts on certain cells/tissues with high demands to oxygen molecules. The ischemic damage in turn can trigger initiation of a number of diseases including organs ischemia, metabolic disorders, inflammatory diseases, different types of malignancies, and alteration in wound healing process. Thus, full comprehension of molecular mechanism(s) and cellular physiology of the oxygen homeostasis is the cornerstone of the mammalian cells metabolism, energetic pathways and health and disease conditions. An imbalance in oxygen content within the cellular microenvironment activates a cascade of molecular events that are often compensated, otherwise pathologic condition occurs through a complexed network of biomolecules. Hypoxia inducible factor-1 (HIF-1) plays a key transcriptional role in the adaptation of cell physiology in relation with the oxygen content within a cell. In this current study, we provide a comprehensive review on the molecular mechanisms of oxygen sensing and homeostasis and the impacts of HIF-1 in hypoxic/anoxic conditions. Moreover, different molecular and biochemical responses of the cells to the surrounding environment are discussed in details. Finally, modern technological approaches for targeting the hypoxia related proteins are articulated. Copyright © 2017. Published by Elsevier B.V.

  1. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Carol Ann, E-mail: carol.greene@auckland.ac.nz; Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  2. Fibroblast growth factor 21 as a possible endogenous factor inhibits apoptosis in cardiac endothelial cells

    Institute of Scientific and Technical Information of China (English)

    L(U) Yun; ZHANG Ying-chuan; LIU Jing-hua; ZHANG Li-ke; DU Jie; ZENG Xiang-jun; HAO Gang; HUANG Ji; ZHAO Dong-hui; WANG Guo-zhong

    2010-01-01

    Background Fibroblast growth factor 21 (FGF21) is a new member of FGF super family that is an important endogenous regulator for systemic glucose and lipid metabolism. This study aimed to explore whether FGF21 reduces atherosclerotic injury and prevents endothelial dysfunction as an independent protection factor.Methods The present study was designed to investigate the changes of FGF21 levels induced by oxidized-low density lipoprotein (ox-LDL), and the changes of apoptosis affected by regulating FGF21 expression. The FGF21 mRNA levels of cultured cardiac microvascular endothelial cells (CMECs) were determined by real time-PCR and the protein concentration in culture media was detected by enzyme-linked immunosorbent assay. We analyzed the different expression levels of untreated controls and CMFCs incubated with ox-LDL, and the changes of CMECs apoptosis initiated by the enhancement or suppression of FGF21 levels.Results The secretion levels of FGF21 mRNA and protein were significantly upregulated in CMECs incubated with ox-LDL. Furthermore, FGF21 levels increased by 200 μmol/L bezafibrate could reduce CMECs apoptosis, and inhibit FGF21 expression by shRNA induced apoptosis (P <0.05).Conclusions FGF21 may be a signal of injured target tissue, and may play physiological roles in improving the endothelial function at an early stage of atherosclerosis and in stopping the development of coronary heart disease.

  3. Glial cell line-derived neurotrophic factor induces cell proliferation in the mouse urogenital sinus.

    Science.gov (United States)

    Park, Hyun-Jung; Bolton, Eric C

    2015-02-01

    Glial cell line-derived neurotrophic factor (GDNF) is a TGFβ family member, and GDNF signals through a glycosyl-phosphatidylinositol-linked cell surface receptor (GFRα1) and RET receptor tyrosine kinase. GDNF signaling plays crucial roles in urogenital processes, ranging from cell fate decisions in germline progenitors to ureteric bud outgrowth and renal branching morphogenesis. Gene ablation studies in mice have revealed essential roles for GDNF signaling in urogenital development, although its role in prostate development is unclear. We investigated the functional role of GDNF signaling in the urogenital sinus (UGS) and the developing prostate of mice. GDNF, GFRα1, and RET show time-specific and cell-specific expression during prostate development in vivo. In the UGS, GDNF and GFRα1 are expressed in the urethral mesenchyme (UrM) and epithelium (UrE), whereas RET is restricted to the UrM. In each lobe of the developing prostate, GDNF and GFRα1 expression declines in the epithelium and becomes restricted to the stroma. Using a well-established organ culture system, we determined that exogenous GDNF increases proliferation of UrM and UrE cells, altering UGS morphology. With regard to mechanism, GDNF signaling in the UrM increased RET expression and phosphorylation of ERK1/2. Furthermore, inhibition of RET kinase activity or ERK kinases suppressed GDNF-induced proliferation of UrM cells but not UrE cells. We therefore propose that GDNF signaling in the UGS increases proliferation of UrM and UrE cells by different mechanisms, which are distinguished by the role of RET receptor tyrosine kinase and ERK kinase signaling, thus implicating GDNF signaling in prostate development and growth.

  4. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews.

    Science.gov (United States)

    Xiong, Liu-Lin; Chen, Zhi-Wei; Wang, Ting-Hua

    2016-04-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  5. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Institute of Scientific and Technical Information of China (English)

    Liu-lin Xiong; Zhi-wei Chen; Ting-hua Wang

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promotein vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, lfuorescence mi-croscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These ifndings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  6. TCPs, WUSs, and WINDs: families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation.

    Science.gov (United States)

    Ikeda, Miho; Ohme-Takagi, Masaru

    2014-01-01

    In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP), WUSCHEL (WUS), and WOUND INDUCED DEDIFFERENTIATION (WIND1) families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS, and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.

  7. Epidermal growth factor induces changes of interaction between epidermal growth factor receptor and actin in intact cells

    Institute of Scientific and Technical Information of China (English)

    Wei Song; Haixing Xuan; Qishui Lin

    2008-01-01

    The epidermal growth factor receptor (EGFR) is a cyto-skeleton-binding protein. Although purified EGFR can interact with actins in vitro and normally at least 10% of EGFR exist in the insoluble cytoskeleton fraction of A431 cells, interaction of cytosolic EGFR with actin can only be visualized by fluorescence resonance energy transfer when epidermal growth factor presents in the cell medium. Results indicate that the correct orientation between EGFR and actin is important in the signal transduction process.

  8. Factors affecting the cryosurvival of mouse two-cell embryos.

    Science.gov (United States)

    Critser, J K; Arneson, B W; Aaker, D V; Huse-Benda, A R; Ball, G D

    1988-01-01

    A series of 4 experiments was conducted to examine factors affecting the survival of frozen-thawed 2-cell mouse embryos. Rapid addition of 1.5 M-DMSO (20 min equilibration at 25 degrees C) and immediate, rapid removal using 0.5 M-sucrose did not alter the frequency (mean +/- s.e.m.) of blastocyst development in vitro when compared to untreated controls (90.5 +/- 2.7% vs 95.3 +/- 2.8%). There was an interaction between the temperature at which slow cooling was terminated and thawing rate. Termination of slow cooling (-0.3 degrees C/min) at -40 degrees C with subsequent rapid thawing (approximately 1500 degrees C/min) resulted in a lower frequency of blastocyst development than did termination of slow cooling at -80 degrees C with subsequent slow thawing (+8 degrees C/min) (36.8 +/- 5.6% vs 63.9 +/- 5.7%). When slow cooling was terminated between -40 and -60 degrees C, higher survival rates were achieved with rapid thawing. When slow cooling was terminated below -60 degrees C, higher survival rates were obtained with slow thawing rates. In these comparisons absolute survival rates were highest among embryos cooled below -60 degrees C and thawed slowly. However, when slow cooling was terminated at -32 degrees C, with subsequent rapid warming, survival rates were not different from those obtained when embryos were cooled to -80 degrees C and thawed slowly (52.4 +/- 9.5%, 59.5 +/- 8.6%). These results suggest that optimal cryosurvival rates may be obtained from 2-cell mouse embryos by a rapid or slow thawing procedure, as has been found for mouse preimplantation embryos at later stages.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications.

    Science.gov (United States)

    Wang, Limin; Detamore, Michael S

    2009-01-01

    Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.

  10. Human B cell activating factor (BCAF): production by a human T cell tumor line.

    Science.gov (United States)

    Fevrier, M; Diu, A; Mollier, P; Abadie, A; Olive, D; Mawas, C; Theze, J

    1989-01-01

    In a previous study, we demonstrated that supernatants from human T cell clones stimulated by a pair of anti-CD2 monoclonal antibodies cause resting human B cells to become activated and to proliferate in the absence of any other signals. The activity responsible for these effects was shown to be different from already characterized lymphokines and in particular from IL-2 and IL-4, and was named B Cell Activating Factor or BCAF. In this paper, we describe the production of BCAF by a human T cell tumor line T687 after phorbol myristate acetate (PMA) stimulation; this production can be potentiated by phytohemagglutinin (PHA). We further show that the stimulatory phase can be separated from the secretory phase thereby avoiding contamination of BCAF-containing supernatant by PMA and PHA. Supernatants produced under these conditions do not contain either IL-4 or IFN but contain traces of lymphotoxin and 2 to 10 ng/ml of IL-2. The T687 cell line will allow us to obtain a large volume of supernatant for biochemical study and purification of the molecule(s) responsible for BCAF activity.

  11. The stem cell factor SOX2 regulates the tumorigenic potential in human gastric cancer cells.

    Science.gov (United States)

    Hütz, Katharina; Mejías-Luque, Raquel; Farsakova, Katarina; Ogris, Manfred; Krebs, Stefan; Anton, Martina; Vieth, Michael; Schüller, Ulrich; Schneider, Marlon R; Blum, Helmut; Wagner, Ernst; Jung, Andreas; Gerhard, Markus

    2014-04-01

    Gastric cancer (GC) is still one of the most common causes of cancer-related death worldwide, which is mainly attributable to late diagnosis and poor treatment options. Infection with Helicobacter pylori, different environmental factors and genetic alterations are known to influence the risk of developing gastric tumors. However, the molecular mechanisms involved in gastric carcinogenesis are still not fully understood, making it difficult to design targeted therapeutic approaches. Aberrant expression of the specific gastric differentiation marker SOX2 has been observed in stomach cancer. However, the role of SOX2 in gastric tumors has not been well established to date. To elucidate the role of SOX2 in gastric tumorigenesis, SOX2 transcriptional activity was blocked in AZ-521 cells. Interestingly, inhibition of SOX2 reduced cell proliferation and migration, increased apoptosis and induced changes in cell cycle. Blocking of SOX2 also reduced the tumorigenic potential of AZ-521 cells in vivo. In addition, correlation of SOX2 expression and proliferation was observed in a subset of human gastric tumors. Finally, target genes of SOX2 were for the first time identified by RNA microarray in GC cells. Taken together, the results presented here indicate that SOX2 controls several aspects related to GC development and progression by regulating the expression of members of important signaling pathways. These findings could provide new therapeutic options for a subset of GCs exhibiting SOX2 deregulation.

  12. Factors influencing the determination of cell traction forces.

    Science.gov (United States)

    Zündel, Manuel; Ehret, Alexander E; Mazza, Edoardo

    2017-01-01

    Methods summarized by the term Traction Force Microscopy are widely used to quantify cellular forces in mechanobiological studies. These methods are inverse, in the sense that forces must be determined such that they comply with a measured displacement field. This study investigates how several experimental and analytical factors, originating in the realization of the experiments and the procedures for the analysis, affect the determined traction forces. The present results demonstrate that even for very high resolution measurements free of noise, traction forces can be significantly underestimated, while traction peaks are typically overestimated by 50% or more, even in the noise free case. Compared to this errors, which are inherent to the nature of the mechanical problem and its discretization, the effect of ignoring the out-of-plane displacement component, the interpolation scheme used between the discrete measurement points and the disregard of the geometrical non-linearities when using a nearly linear substrate material are less consequential. Nevertheless, a nonlinear elastic substrate, with strain-stiffening response and some degree of compressibility, can substantially improve the robustness of the reconstruction of traction forces over a wide range of magnitudes. This poses the need for a correct mechanical representation of these non-linearities during the traction reconstruction and a correct mechanical characterization of the substrate itself, especially for the large strain shear domain which is shown to plays a major role in the deformations induced by cells.

  13. Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors.

    Science.gov (United States)

    Hermann, Andreas; Kim, Jeong Beom; Srimasorn, Sumitra; Zaehres, Holm; Reinhardt, Peter; Schöler, Hans R; Storch, Alexander

    2016-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC) or two (OCT4, KLF4; hiPSC2F-NSC) reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB) or four reprogramming factors (hiPSC4F-FIB). After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.

  14. Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors

    Directory of Open Access Journals (Sweden)

    Andreas Hermann

    2016-01-01

    Full Text Available Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC or two (OCT4, KLF4; hiPSC2F-NSC reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB or four reprogramming factors (hiPSC4F-FIB. After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.

  15. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    OpenAIRE

    Yoshizaki Yumiko; Kumei Shima; Tanno Sachie; Motomura Wataru; Yoshizaki Takayuki; Tanno Satoshi; Okumura Toshikatsu

    2010-01-01

    Abstract Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF) gene via peroxisome proliferator-activated receptor γ (PPARγ); VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC). Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and...

  16. The Non-Survival Effects of Glial Cell Line-Derived Neurotrophic Factor on Neural Cells

    Directory of Open Access Journals (Sweden)

    Daniel Cortés

    2017-08-01

    Full Text Available Glial cell line-derived neurotrophic factor (GDNF was first characterized as a survival-promoting molecule for dopaminergic neurons (DANs. Afterwards, other cells were also discovered to respond to GDNF not only as a survival factor but also as a protein supporting other cellular functions, such as proliferation, differentiation, maturation, neurite outgrowth and other phenomena that have been less studied than survival and are now more extendedly described here in this review article. During development, GDNF favors the commitment of neural precursors towards dopaminergic, motor, enteric and adrenal neurons; in addition, it enhances the axonal growth of some of these neurons. GDNF also induces the acquisition of a dopaminergic phenotype by increasing the expression of Tyrosine Hydroxylase (TH, Nurr1 and other proteins that confer this identity and promote further dendritic and electrical maturation. In motor neurons (MNs, GDNF not only promotes proliferation and maturation but also participates in regenerating damaged axons and modulates the neuromuscular junction (NMJ at both presynaptic and postsynaptic levels. Moreover, GDNF modulates the rate of neuroblastoma (NB and glioblastoma cancer cell proliferation. Additionally, the presence or absence of GDNF has been correlated with conditions such as depression, pain, muscular soreness, etc. Although, the precise role of GDNF is unknown, it extends beyond a survival effect. The understanding of the complete range of properties of this trophic molecule will allow us to investigate its broad mechanisms of action to accelerate and/or improve therapies for the aforementioned pathological conditions.

  17. PLACENTAL SECRETORY FACTORS INFLUENCE TO THP-1 CELLS PHENOTYPE AND THP-1 CELLS TRANSENDOTHELIAL MIGRATION

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2013-01-01

    Full Text Available Decidual and placental macrophage pools are renewed due to its transendothelial monocyte migration from peripheral blood. Tissue macrophages control placental development and provide fetomaternal immunological tolerance. Preeclamptic pregnancy is accompanied by increased monocyte migration to decidual tissue and local inflammatory events. Regulatory mechanisms of monocyte recruitment to placental and decidual tissues is still unclear. Therefore we investigated the influence soluble placental factors (SPFs during the first- and third-trimester normal pregnancy, as compared to effects of these factors in preeclamptic pregnancy. We studied biological actions of SPF upon transendothelial migration of monocyte-like THP-1 cells and their phenotypic pattern. Transendothelial migration of THP-1 cells was more intensive with firsttrimester SPFs from normal pregnancy, when compared with third-trimester samples, and it was accompanied by decreased CD11a expression. SPFs from pre-eclamptic pregnancy caused an increase in transendothelial migration of THP-1 cells, as compared to SPFs from normal pregnancies, being accompanied by increased CD11b expression. The present study was supported by grants ГК №  02.740.11.0711, НШ-3594.2010.7, МД-150.2011.7 and a grant from St.-Petersburg Goverment for young scientists.

  18. Cell proliferation as a long-term prognostic factor in diffuse large-cell lymphomas.

    Science.gov (United States)

    Silvestrini, R; Costa, A; Boracchi, P; Giardini, R; Rilke, F

    1993-05-01

    The relevance of cell proliferation rate--defined as the 3H-thymidine labeling index (3H-dT LI)--in predicting response to treatment (complete remission, CR), freedom from progression (FFP) and overall survival (OS) was evaluated in 86 patients with diffuse large-cell lymphoma (DLCL). The biologic variable was not associated with most of the established clinical factors, such as gender and age of the patient, performance status, B symptoms, tumor bulk, or extranodal disease, but was directly related to stage. 3H-dT LI significantly predicted short- and long-term clinical outcome. In fact, more patients with slowly proliferating DLCL reached CR and had longer median FFP and OS than patients with rapidly proliferating DLCL. Multiple-regression analysis to evaluate the relative contribution of the different biologic and clinical variables in predicting CR, FFP and OS showed that 3H-dT LI and Ann Arbor stage were the only 2 stable factors, which retained their prognostic significance even in the presence of other conventional factors, and that 3H-dT LI was the most powerful as an indicator of risk of death in DLCL patients.

  19. Streptococcus pyogenes CAMP factor attenuates phagocytic activity of RAW 264.7 cells.

    Science.gov (United States)

    Kurosawa, Mie; Oda, Masataka; Domon, Hisanori; Saitoh, Issei; Hayasaki, Haruaki; Terao, Yutaka

    2016-02-01

    Streptococcus pyogenes produces molecules that inhibit the function of human immune system, thus allowing the pathogen to grow and spread in tissues. It is known that S. pyogenes CAMP factor increases erythrocytosis induced by Staphylococcus aureus β-hemolysin. However, the effects of CAMP factor for immune cells are unclear. In this study, we investigated the effects of CAMP factor to macrophages. Western blotting analysis demonstrated that all examined strains expressed CAMP factor protein. In the presence of calcium or magnesium ion, CAMP factor was significantly released in the supernatant. In addition, both culture supernatant from S. pyogenes strain SSI-9 and recombinant CAMP factor dose-dependently induced vacuolation in RAW 264.7 cells, but the culture supernatant from Δcfa isogenic mutant strain did not. CAMP factor formed oligomers in RAW 264.7 cells in a time-dependent manner. CAMP factor suppressed cell proliferation via G2 phase cell cycle arrest without inducing cell death. Furthermore, CAMP factor reduced the uptake of S. pyogenes and phagocytic activity indicator by RAW 264.7 cells. These results suggest that CAMP factor works as a macrophage dysfunction factor. Therefore, we conclude that CAMP factor allows S. pyogenes to escape the host immune system, and contribute to the spread of streptococcal infection.

  20. Incidence of Etiologic Factors in Squamous Cell Carcinoma of Head and Neck in Ahvaz

    Directory of Open Access Journals (Sweden)

    Soheila Nikakhlagh

    2011-01-01

     Conclusion: According to this study, tobacco smoking was the most important etiologic factor and had a strong effect on risk of head and neck squamous cell carcinoma. Other factors are also important and need more research study.

  1. THE ISOLATION OF NOVEL MESENCHYMAL STROMAL CELL CHEMOTACTIC FACTORS FROM THE CONDITIONED MEDIUM OF TUMOR CELLS

    Science.gov (United States)

    Lin, Siang-Yo; Yang, Jun; Everett, Allen D.; Clevenger, Charles V.; Koneru, Mythili; Mishra, Pravin J.; Kamen, Barton; Banerjee, Debabrata; Glod, John

    2008-01-01

    Bone marrow-derived mesenchymal stromal cells (MSCs) localize to solid tumors. Defining the signaling mechanisms that regulate this process is important to understanding the role of MSCs in tumor growth. Using a combination of chromatography and electrospray tandem mass spectrometry we have identified novel soluble signaling molecules that induce MSC chemotaxis present in conditioned medium of the breast carcinoma cell line MDA-MB231. Previous work has employed survey strategies using ELISA assay to identify known chemokines that promote MSC chemotaxis. While these studies provide valuable insights into the intercellular signals that impact MSC behavior, many less well-described, but potentially important soluble signaling molecules could be overlooked using these methods. Through the less directed method of column chromatography we have identified novel candidate MSC chemotactic peptides. Two proteins, cyclophilin B and hepatoma-derived growth factor were then further characterized and shown to promote MSC chemotaxis. PMID:18722367

  2. More synergetic cooperation of Yamanaka factors in in-duced pluripotent stem cells than in embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Jinyan Huang; Taotao Chen; Xiaosong Liu; Jing Jiang; Jinsong Li; Dangsheng Li; X Shirley Liu; Wei Li; Jiuhong Kang; Gang Pei

    2009-01-01

    The role of Yamanaka factors as the core regulators in the induction of pluripotency during somatic cell repro-gramming has been discovered recently. Our previous study found that Yamanaka factors regulate a developmental signaling network in maintaining embryonic stem (ES) cell pluripotency. Here, we established completely repro-grammed induced pluripotent stem (iPS) cells and analyzed the global promoter occupancy of Yamanaka factors in these cells by ChiP-chip assays. We found that promoters of 565 genes were co-bound by four Yamanaka factors in iPS cells, a 10-fold increase when compared with their binding in ES cells. The promoters occupied by a single Ya-manaka factor distributed equally in activated and repressed genes in iPS cells, while in ES cells Oct4, Sox2, or Klf4 distributed mostly in repressed genes and c-Myc in activated ones. Pathway analysis of the ChIP-chip data revealed that Yamanaka factors regulated 16 developmental signaling pathways in iPS cells, among which 12 were common and 4 were unique compared to pathways regulated in ES cells. We further analyzed another recently published ChiP-chip dataset in iPS cells and observed similar results, showing the power of ChIP-chip plus pathway analysis for revealing the nature of pluripotency maintenance and regeneration. Next, we experimentally tested one of the repressive signaling pathways and found that its inhibition indeed improved efficiency of cell reprogramming. Taken together, we proposed that there is a core developmental signaling network necessary for pluripotency, with TGF-β, Hedgehog, Wnt, p53 as repressive (Yin) regulators and Jak-STAT, cell cycle, focal adhesion, adherens junction as ac-tive (Yang) ones; and Yamanaka factors synergistically regulate them in a Yin-Yang balanced way to induce pluripo-tency.

  3. Novel coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Galli, Elisa; Møller-Jensen, Jakob;

    2008-01-01

    Formation of the Z ring is the first known event in bacterial cell division. However, it is not yet known how the assembly and contraction of the Z ring are regulated. Here, we identify a novel cell division factor ZapB in Escherichia coli that simultaneously stimulates Z ring assembly and cell...

  4. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Yoshizaki Yumiko

    2010-03-01

    Full Text Available Abstract Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF gene via peroxisome proliferator-activated receptor γ (PPARγ; VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC. Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and A549. These mRNA expressions were evaluated by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR analysis. We also studied the effect of Je-11, a VEGF inhibitor, on the growth of these cells. Results In NSCLC cells, thiazolidinediones increased the mRNA expression of VEGF and neuropilin-1, but not that of other receptors such as fms-like tyrosine kinase and kinase insert domain receptor-1. Furthermore, the PPARγ antagonist GW9662 completely reversed this thiazolidinedione-induced increase in VEGF expression. Furthermore, the addition of VEGF inhibitors into the culture medium resulted in the reversal of thiazolidinedione-induced growth inhibition. Conclusions Our results indicated that thiazolidinediones enhance VEGF and neuropilin-1 expression and induce the inhibition of cell growth. We propose the existence of a pathway for arresting cell growth that involves the interaction of thiazolidinedione-induced VEGF and neuropilin-1 in NSCLC.

  5. Effect of operating current dependent series resistance on the fill factor of a solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Dadu, Meena; Kapoor, A.; Tripathi, K.N. [Department of Electronic Science, University of Delhi, South Campus, Benito Juarez road, -110 021 New Delhi (India)

    2002-02-01

    The fill factor of a solar cell depends upon the series resistance, reverse saturation current, diode quality factor, operating current and voltage. Since the series resistance itself depends upon the operating current (or voltage), it makes the evaluation of fill factor very complicated. In this paper, we have evaluated the fill factor of a solar cell, taking into account operating current dependence of the series resistance.

  6. The transcription factors IRF8 and PU.1 negatively regulate plasma cell differentiation.

    Science.gov (United States)

    Carotta, Sebastian; Willis, Simon N; Hasbold, Jhagvaral; Inouye, Michael; Pang, Swee Heng Milon; Emslie, Dianne; Light, Amanda; Chopin, Michael; Shi, Wei; Wang, Hongsheng; Morse, Herbert C; Tarlinton, David M; Corcoran, Lynn M; Hodgkin, Philip D; Nutt, Stephen L

    2014-10-20

    Activated B cells undergo immunoglobulin class-switch recombination (CSR) and differentiate into antibody-secreting plasma cells. The distinct transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors: those that maintain the B cell program, including BCL6 and PAX5, and plasma cell-promoting factors, such as IRF4 and BLIMP-1. We show that the complex of IRF8 and PU.1 controls the propensity of B cells to undergo CSR and plasma cell differentiation by concurrently promoting the expression of BCL6 and PAX5 and repressing AID and BLIMP-1. As the PU.1-IRF8 complex functions in a reciprocal manner to IRF4, we propose that concentration-dependent competition between these factors controls B cell terminal differentiation.

  7. Growth factors and the kidney: regulation of epithelial cell movement and morphogenesis.

    Science.gov (United States)

    Cantley, L G

    1996-12-01

    The control of epithelial cell movement and shape change is complex and requires regulation of a broad range of events including cell-cell adhesion contacts, cell-substratum interactions, and the actin cytoskeleton. Utilizing the hepatocyte growth factor tyrosine kinase receptor, c-met, the present review examines how growth factor receptors activate intracellular signaling pathways, which can then regulate the events necessary for epithelial cells to disassemble their existing structure, undergo extensive shape change and cell body movement, and reassemble into a polarized epithelium. The role of growth factor-mediated activation of the phosphoinositide 3-kinase, phospholipase C-gamma, c-src family members, and ras family members is addressed in relation to integrin-mediated cell-basement membrane contacts, cadherin-mediated cell-cell adhesions, and regulation of the actin cytoskeleton.

  8. Hypoxia-induced cell death and changes in hypoxia-inducible factor-1 activity in PC12 cells upon exposure to nerve growth factor.

    Science.gov (United States)

    Charlier, Nico; Leclere, Norbert; Felderhoff, Ursula; Heldt, Julia; Kietzmann, Thomas; Obladen, Michael; Gross, Johann

    2002-07-15

    The transcription factor hypoxia-inducible factor-1 (HIF-1) strongly contributes to the expression of adaptive genes under hypoxic conditions. In addition, HIF-1 has been implicated in the regulation of delayed neuronal cell death. Suspension-grown and adherent PC12 cells treated with NGF were used as an experimental model for studying the relationship between hypoxia-induced cell death and activation of HIF-1. Cell damage was assessed by flow cytometry of double-stained (Annexin V and propidiumiodide) cells, and by analysis of the overall death parameters LDH and mitochondrial dehydrogenase. In parallel, cells were transfected with a control and a three-hypoxia-responsive-elements (HRE)-containing vector and HIF-1-driven luciferase activity was determined. Exposure of NGF-treated PC12 cells to hypoxia resulted in a higher cell death rate when compared to untreated controls. PC12 cells exposed for 2 days to NGF exhibited a decrease of HIF-1 activity up to a factor of ten. This decrease may contribute to the enhanced hypoxia-induced cell death via reduced expression of HIF-1alpha-regulated genes responsible for adaptation to hypoxia, like those for glucose transport proteins and enzymes of the glycolytic chain. The decrease in HIF-1 activity and the increase in hypoxia sensitivity may suggest that NGF act as an hierarchically organized signaling molecule.

  9. Cell death and autophagy: cytokines, drugs, and nutritional factors.

    Science.gov (United States)

    Bursch, Wilfried; Karwan, Anneliese; Mayer, Miriam; Dornetshuber, Julia; Fröhwein, Ulrike; Schulte-Hermann, Rolf; Fazi, Barbara; Di Sano, Federica; Piredda, Lucia; Piacentini, Mauro; Petrovski, Goran; Fésüs, László; Gerner, Christopher

    2008-12-30

    Cells may use multiple pathways to commit suicide. In certain contexts, dying cells generate large amounts of autophagic vacuoles and clear large proportions of their cytoplasm, before they finally die, as exemplified by the treatment of human mammary carcinoma cells with the anti-estrogen tamoxifen (TAM, < or = 1 microM). Protein analysis during autophagic cell death revealed distinct proteins of the nuclear fraction including GST-pi and some proteasomal subunit constituents to be affected during autophagic cell death. Depending on the functional status of caspase-3, MCF-7 cells may switch between autophagic and apoptotic features of cell death [Fazi, B., Bursch, W., Fimia, G.M., Nardacci R., Piacentini, M., Di Sano, F., Piredda, L., 2008. Fenretinide induces autophagic cell death in caspase-defective breast cancer cells. Autophagy 4(4), 435-441]. Furthermore, the self-destruction of MCF-7 cells was found to be completed by phagocytosis of cell residues [Petrovski, G., Zahuczky, G., Katona, K., Vereb, G., Martinet, W., Nemes, Z., Bursch, W., Fésüs, L., 2007. Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death Diff. 14 (6), 1117-1128]. Autophagy also constitutes a cell's strategy of defense upon cell damage by eliminating damaged bulk proteins/organelles. This biological condition may be exemplified by the treatment of MCF-7 cells with a necrogenic TAM-dose (10 microM), resulting in the lysis of almost all cells within 24h. However, a transient (1h) challenge of MCF-7 cells with the same dose allowed the recovery of cells involving autophagy. Enrichment of chaperones in the insoluble cytoplasmic protein fraction indicated the formation of aggresomes, a potential trigger for autophagy. In a further experimental model HL60 cells were treated with TAM, causing dose-dependent distinct responses: 1-5 microM TAM, autophagy predominant; 7-9 microM, apoptosis predominant; 15 microM, necrosis. These phenomena

  10. Transcriptional program induced by factor VIIa-tissue factor, PAR1 and PAR2 in MDA-MB-231 cells

    DEFF Research Database (Denmark)

    Albrektsen, T; Sørensen, B B; Hjortø, G M

    2007-01-01

    -regulated genes was also regulated by a PAR1 agonist peptide suggesting extensive redundancy between FVIIa/PAR2 signaling and thrombin/PAR1 signaling. The FVIIa regulated genes encode cytokines, chemokines and growth factors, and the gene repertoire induced by FVIIa in MDA-MB-231 cells is consistent...... with a role for TF-FVIIa signaling in regulation of a wound healing type of response. Interestingly, a number of genes regulated exclusively by FVIIa/PAR2-mediated cell signaling in MDA-MB-231 cells were regulated by thrombin and a PAR1 agonist, but not by FVIIa, in the TF-expressing glioblastoma U373 cell...

  11. Expression of T cell factor-4 in non-small-cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    LI Chun-yan; WANG Yan; CUI Ze-shi; WANG En-hua

    2005-01-01

    Background T cell factor- 4 (TCF- 4) plays an important role in development and carcinogenesis. Recently, the role of TCF- 4 has been described in colon cancer and other cancers. However, whether TCF- 4 plays a similar role in lung cancer is unknown. To answer this question, we studied the expression of TCF- 4 protein and mRNA in non-small-cell lung cancer (NSCLC) and the relation of TCF- 4 expression pattern to histological type and cell differentiation. Methods Tissue samples from sixty cases of pathologically diagnosed NSCLC and eight normal tissue samples were obtained between September 2001 and March 2003. Immunohistochemistry was used to investigate the distribution of TCF- 4 protein. The staining patterns of the tumors were divided into 4 categories: nuclear staining alone or nuclear staining greater than cytoplasmic staining; cytoplasmic staining or cytoplasmic staining greater than nuclear staining; equal nuclear and cytoplasmic staining; no nuclear staining or cytoplasmic staining. The integrated optical density (OD) values of all sections were analyzed by UIC MetaMorph image analysis software. The expression of TCF- 4 mRNA was detected by one-step reverse transcription-polymerase chain reaction (RT-PCR). The integrated density values of the PCR products were analyzed semi-quantitatively.Results Immunohistochemistry showed that there was no expression of TCF- 4 in normal tissue. However, TCF- 4 was expressed in 86.7% (52/60) of NSCLC samples, mainly in the nuclei of tumor cells. Furthermore, there was a significant difference in TCF- 4 localization patterns between squamous cell carcinomas and adenocarcinomas (P<0.05). The integrated OD values of TCF- 4 expression was significantly higher in tumors with moderate-poor cell differentiation than in well differentiated tumors (51.63±6.67 vs 46.13±12.31, P<0.01). There was no TCF- 4 mRNA expression in normal tissue. However, 63.9% (23/36) of carcinoma samples expressed TCF- 4 mRNA. TCF- 4 mRNA expression was

  12. Purification of autocrine growth factor from conditioned medium of rat sarcoma (XC) cells.

    Science.gov (United States)

    Checiówna, D; Klein, A

    1996-01-01

    Transformation of rat cells by Rous sarcoma virus(es) induced the release of growth factors into serum-free conditioned media. An PR-RSV-transformed rat cell line, XC, produced and released polypeptide factors which promote anchorage-dependent and anchorage-independent growth of XC cells. One of the autocrine factors of XC cells was purified to homogeneity by four-step procedure: ultrafiltration, ion-exchange chromatography on MonoS, reverse-phase chromatography on Spherisorb ODS2 and gel filtration on Superose 12. The factor gave a single band on SDS-electrophoresis on polyacrylamide gel and was assumed to have a molecular weight of 16 kDa. The factor is a potent mitogen for XC cells; half-maximal stimulation of DNA synthesis was achieved at a concentration of 0.8 ng/ml. The peptide is probably one of the family of EGF-like heparin-binding growth factors.

  13. Identification of transcription factors that promote the differentiation of human pluripotent stem cells into lacrimal gland epithelium-like cells.

    Science.gov (United States)

    Hirayama, Masatoshi; Ko, Shigeru B H; Kawakita, Tetsuya; Akiyama, Tomohiko; Goparaju, Sravan K; Soma, Atsumi; Nakatake, Yuhki; Sakota, Miki; Chikazawa-Nohtomi, Nana; Shimmura, Shigeto; Tsubota, Kazuo; Ko, Minoru S H

    2017-01-01

    Dry eye disease is the most prevalent pathological condition in aging eyes. One potential therapeutic strategy is the transplantation of lacrimal glands, generated in vitro from pluripotent stem cells such as human embryonic stem cells, into patients. One of the preceding requirements is a method to differentiate human embryonic stem cells into lacrimal gland epithelium cells. As the first step for this approach, this study aims to identify a set of transcription factors whose overexpression can promote the differentiation of human embryonic stem cells into lacrimal gland epithelium-like cells. We performed microarray analyses of lacrimal glands and lacrimal glands-related organs obtained from mouse embryos and adults, and identified transcription factors enriched in lacrimal gland epithelium cells. We then transfected synthetic messenger RNAs encoding human orthologues of these transcription factors into human embryonic stem cells and examined whether the human embryonic stem cells differentiate into lacrimal gland epithelium-like cells by assessing cell morphology and marker gene expression. The microarray analysis of lacrimal glands tissues identified 16 transcription factors that were enriched in lacrimal gland epithelium cells. We focused on three of the transcription factors, because they are expressed in other glands such as salivary glands and are also known to be involved in the development of lacrimal glands. We tested the overexpression of various combinations of the three transcription factors and PAX6, which is an indispensable gene for lacrimal glands development, in human embryonic stem cells. Combining PAX6, SIX1, and FOXC1 caused significant changes in morphology, i.e., elongated cell shape and increased expression (both RNAs and proteins) of epithelial markers such as cytokeratin15, branching morphogenesis markers such as BARX2, and lacrimal glands markers such as aquaporin5 and lactoferrin. We identified a set of transcription factors enriched in

  14. Receptors for T cell-replacing factor/interleukin 5. Specificity, quantitation, and its implication

    OpenAIRE

    1988-01-01

    T cell-replacing factor (TRF)/IL-5 is a glycosylated polypeptide that acts as a key factor for B cell growth and differentiation. Since IL-5 action is probably mediated by specific cell surface receptor(s), we have characterized the binding of IL-5 to cells using biosynthetically [35S]methionine-labeled IL-5 and 125I-IL-5 that had been prepared using Bolton-Hunter reagent. The radiolabeled IL-5 binds specifically to BCL1- B20 (in vitro line) (a murine chronic B cell leukemic cell line previou...

  15. Growth factors have a protective effect on neomycin-induced hair cell loss.

    Science.gov (United States)

    Lou, Xiangxin; Yuan, Huihua; Xie, Jing; Wang, Xianliu; Yang, Liangliang; Zhang, Yanzhong

    2015-01-01

    We have demonstrated that selected growth factors are involved in regulating survival and proliferation of progenitor cells derived from the neonatal rat organ of Corti (OC). The protective and regenerative effects of these defined growth factors on the injured organ of Corti were therefore investigated. The organ of Corti dissected from the Wistar rat pups (P3-P5) was split into apical, middle, and basal parts, explanted and cultured with or without neomycin and growth factors. Insulin-like growth factor-1 (IGF-1), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF) protected the inner hair cells (IHCs) and outer hair cells (OHCs) from neomycin ototoxicity. Using EGF, IGF-1, and FGF-2 alone induced no protective effect on the survival of auditory hair cells. Combining 2 growth factors (EGF + IGF-1, EGF + FGF-2, or IGF-1 + FGF-2) gave statistically protective effects. Similarly, combining all three growth factors effectively protected auditory hair cells from the ototoxic insult. None of the growth factors induced regeneration of hair cells in the explants injured with neomycin. Thus various combinations of the three defined factors (IGF-1, FGF-2, and EGF) can protect the auditory hair cells from the neomycin-induced ototoxic damage, but no regeneration was seen. This offers a possible novel approach to the treatment of hearing loss.

  16. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S.; Tanaka, J.; Okada, S.; Isobe, T.; Yamamoto, G.; Yasuhara, R.; Irie, T.; Akiyama, C.; Kohno, Y.; Tachikawa, T.; Mishima, K., E-mail: mishima-k@dent.showa-u.ac.jp

    2013-05-01

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment - Highlights: ► Lin28a is a SP cell-specific factor in oral squamous cell carcinoma (OSCC) cells. ► SP cells in OSCC cells show cancer stem cell-like properties. ► Lin28a regulates OSCC proliferative and invasive activities.

  17. Trophic factor induction of human umbilical cord blood cells in vitro and in vivo

    Science.gov (United States)

    Chen, Ning; Kamath, Siddharth; Newcomb, Jennifer; Hudson, Jennifer; Garbuzova-Davis, Svitlana; Bickford, Paula; Davis-Sanberg, Cyndy; Sanberg, Paul; Zigova, Tanja; Willing, Alison

    2007-06-01

    The mononuclear fraction of human umbilical cord blood (HUCBmnf) is a mixed cell population that multiple research groups have shown contains cells that can express neural proteins. In these studies, we have examined the ability of the HUCBmnf to express neural antigens after in vitro exposure to defined media supplemented with a cocktail of growth and neurotrophic factors. It is our hypothesis that by treating the HUCBmnf with these developmentally-relevant factors, we can expand the population, enhance the expression of neural antigens and increase cell survival upon transplantation. Prior to growth factor treatment in culture, expression of stem cell antigens is greater in the non-adherent HUCBmnf cells compared to the adherent cells (p vitro (DIV). In HUCBmnf-embryonic mouse striata co-culture, a small number of growth factor treated HUCBmnf cells were able to integrate into the growing neural network and express immature (nestin and TuJ1) and mature (GFAP and MAP2) neural markers. Treated HUCBmnf cells implanted in the subventricular zone predominantly expressed GFAP although some grafted HUCBmnf cells were MAP2 positive. While short-term treatment of HUCBmnf cells with growth and neurotrophic factors enhanced proliferative capacity in vitro and survival of the cells in vivo, the treatment regimen employed was not enough to ensure long-term survival of HUCBmnf-derived neurons necessary for cell replacement therapies for neurodegenerative diseases.

  18. Molecular mechanism of extrinsic factors affecting anti-aging of stem cells.

    Science.gov (United States)

    Wong, Tzyy Yue; Solis, Mairim Alexandra; Chen, Ying-Hui; Huang, Lynn Ling-Huei

    2015-03-26

    Scientific evidence suggests that stem cells possess the anti-aging ability to self-renew and maintain differentiation potentials, and quiescent state. The objective of this review is to discuss the micro-environment where stem cells reside in vivo, the secreted factors to which stem cells are exposed, the hypoxic environment, and intracellular factors including genome stability, mitochondria integrity, epigenetic regulators, calorie restrictions, nutrients, and vitamin D. Secreted tumor growth factor-β and fibroblast growth factor-2 are reported to play a role in stem cell quiescence. Extracellular matrices may interact with caveolin-1, the lipid raft on cell membrane to regulate quiescence. N-cadherin, the adhesive protein on niche cells provides support for stem cells. The hypoxic micro-environment turns on hypoxia-inducible factor-1 to prevent mesenchymal stem cells aging through p16 and p21 down-regulation. Mitochondria express glucosephosphate isomerase to undergo glycolysis and prevent cellular aging. Epigenetic regulators such as p300, protein inhibitors of activated Stats and H19 help maintain stem cell quiescence. In addition, calorie restriction may lead to secretion of paracrines cyclic ADP-ribose by intestinal niche cells, which help maintain intestinal stem cells. In conclusion, it is crucial to understand the anti-aging phenomena of stem cells at the molecular level so that the key to solving the aging mystery may be unlocked.

  19. Requirement for Tumor Necrosis Factor Receptor 2 Expression on Vascular Cells To Induce Experimental Cerebral Malaria

    OpenAIRE

    Stoelcker, Benjamin; Hehlgans, Thomas; Weigl, Karin; Bluethmann, Horst; Grau, Georges E.; Männel, Daniela N

    2002-01-01

    Using tumor necrosis factor receptor type 2 (TNFR2)-deficient mice and generating bone marrow chimeras which express TNFR2 on either hematopoietic or nonhematopoietic cells, we demonstrated the requirement for TNFR2 expression on tissue cells to induce lethal cerebral malaria. Thus, TNFR2 on the brain vasculature mediates tumor necrosis factor-induced neurovascular lesions in experimental cerebral malaria.

  20. An increase in circulating B cell-activating factor in childhood-onset ocular myasthenia gravis.

    Science.gov (United States)

    Motobayashi, Mitsuo; Inaba, Yuji; Nishimura, Takafumi; Kobayashi, Norimoto; Nakazawa, Yozo; Koike, Kenichi

    2015-04-01

    Myasthenia gravis is a B cell-mediated autoimmune disorder. The pathophysiology of childhood-onset ocular myasthenia gravis remains unclear. We investigated serum B cell-activating factor levels and other immunological parameters in child patients with ocular myasthenia gravis. Blood samples were obtained from 9 children with ocular myasthenia gravis and 20 age-matched controls. We assayed serum concentrations of B cell-activating factor, anti-acetylcholine receptor antibody titers, 7 types of cytokines (interleukins-2, -4, -6, -10, and -17A; interferon-γ; tumor necrosis factor-α) as well as the percentages of peripheral blood CD4+, CD8+, and CD19+ cells. Serum B cell-activating factor levels were significantly higher before immunosuppressive therapy in patients with childhood-onset ocular myasthenia gravis than in controls and decreased after immunosuppressive therapy. A significant positive correlation was observed between serum B cell-activating factor levels and anti-acetylcholine receptor antibody titers in patients with myasthenia gravis. Serum B cell-activating factor concentrations did not correlate with the percentages of CD4+, CD8+, and CD19+ cells or the CD4+/CD8+ ratio. No significant differences were observed in the levels of the 7 different types of cytokines examined, including interleukin-17A, between preimmunosuppressive therapy myasthenia gravis patients and controls. Circulating B cell-activating factor may play a key role in the pathophysiology of childhood-onset ocular myasthenia gravis. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Interaction between human monocytes and vascular smooth muscle cells induces vascular endothelial growth factor expression.

    Science.gov (United States)

    Hojo, Y; Ikeda, U; Maeda, Y; Takahashi, M; Takizawa, T; Okada, M; Funayama, H; Shimada, K

    2000-05-01

    The objective of this study was to investigate whether synthesis of vascular endothelial growth factor (VEGF), a major mitogen for vascular endothelial cells, was induced by a cell-to-cell interaction between monocytes and vascular smooth muscle cells (VSMCs). Human VSMCs and THP-1 cells (human monocytoid cell) were cocultured. VEGF levels in the coculture medium were determined by enzyme-linked immunosorbent assay. Northern blot analysis of VEGF mRNA was performed using a specific cDNA probe. Immunohistochemistry was performed to determine which types of cell produce VEGF. Adding THP-1 cells to VSMCs for 24 h increased VEGF levels of the culture media, 8- and 10-fold relative to those of THP-1 cells and VSMCs alone, respectively. Northern blot analysis showed that VEGF mRNA expression was induced in the cocultured cells and peaked after 12 h. Immunohistochemistry disclosed that both types of cell in the coculture produced VEGF. Separate coculture experiments revealed that both direct contact and a soluble factor(s) contributed to VEGF production. Neutralizing anti-interleukin (IL)-6 antibody inhibited VEGF production by the coculture of THP-1 cells and VSMCs. A cell-to-cell interaction between monocytes and VSMCs induced VEGF synthesis in both types of cell. An IL-6 mediated mechanism is at least partially involved in VEGF production by the cocultures. Local VEGF production induced by a monocyte-VSMC interaction may play an important role in atherosclerosis and vascular remodeling.

  2. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    Science.gov (United States)

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  3. Inferring yeast cell cycle regulators and interactions using transcription factor activities

    Directory of Open Access Journals (Sweden)

    Galbraith Simon J

    2005-06-01

    Full Text Available Abstract Background Since transcription factors are often regulated at the post-transcriptional level, their activities, rather than expression levels may provide valuable information for investigating functions and their interactions. The recently developed Network Component Analysis (NCA and its generalized form (gNCA provide a robust framework for deducing the transcription factor activities (TFAs from various types of DNA microarray data and transcription factor-gene connectivity. The goal of this work is to demonstrate the utility of TFAs in inferring transcription factor functions and interactions in Saccharomyces cerevisiae cell cycle regulation. Results Using gNCA, we determined 74 TFAs from both wild type and fkh1 fkh2 deletion mutant microarray data encompassing 1529 ORFs. We hypothesized that transcription factors participating in the cell cycle regulation exhibit cyclic activity profiles. This hypothesis was supported by the TFA profiles of known cell cycle factors and was used as a basis to uncover other potential cell cycle factors. By combining the results from both cluster analysis and periodicity analysis, we recovered nearly 90% of the known cell cycle regulators, and identified 5 putative cell cycle-related transcription factors (Dal81, Hap2, Hir2, Mss11, and Rlm1. In addition, by analyzing expression data from transcription factor knockout strains, we determined 3 verified (Ace2, Ndd1, and Swi5 and 4 putative interaction partners (Cha4, Hap2, Fhl1, and Rts2 of the forkhead transcription factors. Sensitivity of TFAs to connectivity errors was determined to provide confidence level of these predictions. Conclusion By subjecting TFA profiles to analyses based upon physiological signatures we were able to identify cell cycle related transcription factors consistent with current literature, transcription factors with potential cell cycle dependent roles, and interactions between transcription factors.

  4. Platelet-derived stromal cell-derived factor-1 is required for the transformation of circulating monocytes into multipotential cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Seta

    Full Text Available BACKGROUND: We previously described a primitive cell population derived from human circulating CD14(+ monocytes, named monocyte-derived multipotential cells (MOMCs, which are capable of differentiating into mesenchymal and endothelial lineages. To generate MOMCs in vitro, monocytes are required to bind to fibronectin and be exposed to soluble factor(s derived from circulating CD14(- cells. The present study was conducted to identify factors that induce MOMC differentiation. METHODS: We cultured CD14(+ monocytes on fibronectin in the presence or absence of platelets, CD14(- peripheral blood mononuclear cells, platelet-conditioned medium, or candidate MOMC differentiation factors. The transformation of monocytes into MOMCs was assessed by the presence of spindle-shaped adherent cells, CD34 expression, and the potential to differentiate in vitro into mesenchymal and endothelial lineages. RESULTS: The presence of platelets or platelet-conditioned medium was required to generate MOMCs from monocytes. A screening of candidate platelet-derived soluble factors identified stromal cell-derived factor (SDF-1 as a requirement for generating MOMCs. Blocking an interaction between SDF-1 and its receptor CXCR4 inhibited MOMC generation, further confirming SDF-1's critical role in this process. Finally, circulating MOMC precursors were found to reside in the CD14(+CXCR4(high cell population. CONCLUSION: The interaction of SDF-1 with CXCR4 is essential for the transformation of circulating monocytes into MOMCs.

  5. Multiple factors conferring high radioresistance in insect Sf9 cells.

    Science.gov (United States)

    Cheng, I-Cheng; Lee, How-Jing; Wang, T C

    2009-05-01

    Sf9, a lepidopteran cell line isolated from the fall armyworm, Spodoptera frugiperda, was shown to be significantly more resistant to growth inhibition and apoptosis induction effects of x-ray irradiation than several human cell lines of different origins. The single-cell electrophoresis technique revealed that Sf9 cells showed lower x-ray irradiation-induced DNA damage as well as better efficiency at repairing these damages. In addition, Sf9 cells were lower in both background and x-ray irradiation-induced intracellular oxidative stress, in which the higher intracellular level of reduced glutathione seemed to play a major role. The significance of oxidative stress in determining the radioresistance of Sf9 cells was confirmed by their being more resistant to hydrogen peroxide while equally susceptible to other non-reactive oxygen species of N-nitroso alkylating agents when compared with a human cell line. Although the Sf9 and human cell lines were equally susceptible to the lethal effects of N-nitroso alkylating agents, the components of DNA damage-induced and the repair enzymes involved significantly differ. This phenomenon is also discussed in this report.

  6. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation

    DEFF Research Database (Denmark)

    Kratchmarova, Irina; Blagoev, Blagoy; Haack-Sorensen, M.

    2005-01-01

    Closely related signals often lead to very different cellular outcomes. We found that the differentiation of human mesenchymal stem cells into bone-forming cells is stimulated by epidermal growth factor (EGF) but not platelet-derived growth factor (PDGF). We used mass spectrometry-based proteomics...... it as a possible control point. Indeed, chemical inhibition of PI3K in PDGF-stimulated cells removed the differential effect of the two growth factors, bestowing full differentiation effect onto PDGF. Thus, quantitative proteomics can directly compare entire signaling networks and discover critical differences...... capable of changing cell fate....

  7. Tumour necrosis factor production and natural killer cell activity in peripheral blood during treatment with recombinant tumour necrosis factor

    OpenAIRE

    Männel, Daniela N.; Kist, A.; Ho, A D; Räth, U.; Reichardt, P; Wiedenmann, B; Schlick, E.; Kirchner, H.

    1989-01-01

    Tumour necrosis factor (TNF) has been found to be an important immunomodulator. Among other functions TNF activates natural killer (NK) cells and stimulates monocytes/macrophages in an autocrine fashion. TNF production and NK activity in peripheral blood mononuclear cells were determined in a clinical phase I study in which recombinant human (rh) TNF was administered as a continuous infusion weekly for a period of 8 weeks. Even though TNF production and NK activity were significantly reduced ...

  8. Liver-derived systemic factors drive β-cell hyperplasia in insulin resistant states

    Energy Technology Data Exchange (ETDEWEB)

    El Ouaamari, Abdelfattah; Kawamori, Dan; Dirice, Ercument; Liew, Chong Wee; Shadrach, Jennifer L.; Hu, Jiang; Katsuta, Hitoshi; Hollister-Lock, Jennifer; Qian, Weijun; Wagers, Amy J.; Kulkarni, Rohit N.

    2013-02-21

    Integrative organ cross-talk regulates key aspects of energy homeostasis and its dysregulation may underlie metabolic disorders such as obesity and diabetes. To test the hypothesis that cross-talk between the liver and pancreatic islets modulates β-cell growth in response to insulin resistance, we used the Liver-specific Insulin Receptor Knockout (LIRKO) mouse, a unique model that exhibits dramatic islet hyperplasia. Using complementary in vivo parabiosis and transplantation assays, and in vitro islet culture approaches, we demonstrate that humoral, non-neural, non-cell autonomous factor(s) induce β-cell proliferation in LIRKO mice. Furthermore, we report that a hepatocyte-derived factor(s) stimulates mouse and human β-cell proliferation in ex vivo assays, independent of ambient glucose and insulin levels. These data implicate the liver as a critical source of β-cell growth factors in insulin resistant states.

  9. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Keigo [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Lee, Chun Man [Medical Center for Translational Research, Osaka University Hospital, Osaka (Japan); Okura, Hanayuki; Matsuyama, Akifumi [Research on Disease Bioresources, Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, Osaka (Japan); Kitamura, Masahiro; Murakami, Shinya [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan)

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.

  10. Signaling Proteins and Transcription Factors in Normal and Malignant Early B Cell Development

    Directory of Open Access Journals (Sweden)

    Patricia Pérez-Vera

    2011-01-01

    Full Text Available B cell development starts in bone marrow with the commitment of hematopoietic progenitors to the B cell lineage. In murine models, the IL-7 and preBCR receptors, and the signaling pathways and transcription factors that they regulate, control commitment and maintenance along the B cell pathway. E2A, EBF1, PAX5, and Ikaros are among the most important transcription factors controlling early development and thereby conditioning mice homeostatic B cell lymphopoiesis. Importantly, their gain or loss of function often results in malignant development in humans, supporting conserved roles for these transcription factors. B cell acute lymphoblastic leukemia is the most common cause of pediatric cancer, and it is characterized by unpaired early B cell development resulting from genetic lesions in these critical signaling pathways and transcription factors. Fine mapping of these genetic abnormalities is allowing more specific treatments, more accurately predicting risk profiles for this disease, and improving survival rates.

  11. Growth factor-and cytokine-stimulated endothelial progenitor cells in post-ischemic cerebral neovascularization

    Institute of Scientific and Technical Information of China (English)

    Philip V.Peplow

    2014-01-01

    Endothelial progenitor cells are resident in the bone marrow blood sinusoids and circulate in the peripheral circulation. They mobilize from the bone marrow after vascular injury and home to the site of injury where they differentiate into endothelial cells. Activation and mobilization of endothelial progenitor cells from the bone marrow is induced via the production and release of endothelial progenitor cell-activating factors and includes speciifc growth factors and cytokines in response to peripheral tissue hypoxia such as after acute ischemic stroke or trauma. Endotheli-al progenitor cells migrate and home to speciifc sites following ischemic stroke via growth factor/cytokine gradients. Some growth factors are less stable under acidic conditions of tissue isch-emia, and synthetic analogues that are stable at low pH may provide a more effective therapeutic approach for inducing endothelial progenitor cell mobilization and promoting cerebral neovas-cularization following ischemic stroke.

  12. A model for sigma factor competition in bacterial cells.

    Science.gov (United States)

    Mauri, Marco; Klumpp, Stefan

    2014-10-01

    Sigma factors control global switches of the genetic expression program in bacteria. Different sigma factors compete for binding to a limited pool of RNA polymerase (RNAP) core enzymes, providing a mechanism for cross-talk between genes or gene classes via the sharing of expression machinery. To analyze the contribution of sigma factor competition to global changes in gene expression, we develop a theoretical model that describes binding between sigma factors and core RNAP, transcription, non-specific binding to DNA and the modulation of the availability of the molecular components. The model is validated by comparison with in vitro competition experiments, with which excellent agreement is found. Transcription is affected via the modulation of the concentrations of the different types of holoenzymes, so saturated promoters are only weakly affected by sigma factor competition. However, in case of overlapping promoters or promoters recognized by two types of sigma factors, we find that even saturated promoters are strongly affected. Active transcription effectively lowers the affinity between the sigma factor driving it and the core RNAP, resulting in complex cross-talk effects. Sigma factor competition is not strongly affected by non-specific binding of core RNAPs, sigma factors and holoenzymes to DNA. Finally, we analyze the role of increased core RNAP availability upon the shut-down of ribosomal RNA transcription during the stringent response. We find that passive up-regulation of alternative sigma-dependent transcription is not only possible, but also displays hypersensitivity based on the sigma factor competition. Our theoretical analysis thus provides support for a significant role of passive control during that global switch of the gene expression program.

  13. Mycoplasma hyorhinis-Contaminated Cell Lines Activate Primary Innate Immune Cells via a Protease-Sensitive Factor.

    Science.gov (United States)

    Heidegger, Simon; Jarosch, Alexander; Schmickl, Martina; Endres, Stefan; Bourquin, Carole; Hotz, Christian

    2015-01-01

    Mycoplasma are a frequent and occult contaminant of cell cultures, whereby these prokaryotic organisms can modify many aspects of cell physiology, rendering experiments that are conducted with such contaminated cells problematic. Chronic Mycoplasma contamination in human monocytic cells lines has been associated with suppressed Toll-like receptor (TLR) function. In contrast, we show here that components derived from a Mycoplasma hyorhinis-infected cell line can activate innate immunity in non-infected primary immune cells. Release of pro-inflammatory cytokines such as IL-6 by dendritic cells in response to Mycoplasma hyorhinis-infected cell components was critically dependent on the adapter protein MyD88 but only partially on TLR2. Unlike canonical TLR2 signaling that is triggered in response to the detection of Mycoplasma infection, innate immune activation by components of Mycoplasma-infected cells was inhibited by chloroquine treatment and sensitive to protease treatment. We further show that in plasmacytoid dendritic cells, soluble factors from Mycoplasma hyorhinis-infected cells induce the production of large amounts of IFN-α. We conclude that Mycoplasma hyorhinis-infected cell lines release protein factors that can potently activate co-cultured innate immune cells via a previously unrecognized mechanism, thus limiting the validity of such co-culture experiments.

  14. Generating induced pluripotent stem cells from common marmoset (Callithrix jacchus) fetal liver cells using defined factors, including Lin28.

    Science.gov (United States)

    Tomioka, Ikuo; Maeda, Takuji; Shimada, Hiroko; Kawai, Kenji; Okada, Yohei; Igarashi, Hiroshi; Oiwa, Ryo; Iwasaki, Tsuyoshi; Aoki, Mikio; Kimura, Toru; Shiozawa, Seiji; Shinohara, Haruka; Suemizu, Hiroshi; Sasaki, Erika; Okano, Hideyuki

    2010-09-01

    Although embryonic stem (ES) cell-like induced pluripotent stem (iPS) cells have potential therapeutic applications in humans, they are also useful for creating genetically modified human disease models in nonhuman primates. In this study, we generated common marmoset iPS cells from fetal liver cells via the retrovirus-mediated introduction of six human transcription factors: Oct-3/4, Sox2, Klf4, c-Myc, Nanog, and Lin28. Four to five weeks after introduction, several colonies resembling marmoset ES cells were observed and picked for further expansion in ES cell medium. Eight cell lines were established, and validation analyses of the marmoset iPS cells followed. We detected the expression of ES cell-specific surface markers. Reverse transcription-PCR showed that these iPS cells expressed endogenous Oct-3/4, Sox2, Klf4, c-Myc, Nanog and Lin28 genes, whereas all of the transgenes were silenced. Karyotype analysis showed that two of three iPS cell lines retained a normal karyotype after a 2-month culture. Both embryoid body and teratoma formation showed that marmoset iPS cells had the developmental potential to give rise to differentiated derivatives of all three primary germ layers. In summary, we generated marmoset iPS cells via the transduction of six transcription factors; this provides a powerful preclinical model for studies in regenerative medicine.

  15. Berberine induces caspase-independent cell death in colon tumor cells through activation of apoptosis-inducing factor.

    Directory of Open Access Journals (Sweden)

    Lihong Wang

    Full Text Available Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently been shown to suppress growth of several tumor cell lines, information regarding the effect of berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying the effects of berberine on regulating the fate of colon tumor cells, specifically the mouse immorto-Min colonic epithelial (IMCE cells carrying the Apc(min mutation, and of normal colon epithelial cells, namely young adult mouse colonic epithelium (YAMC cells. Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells. In contrast, YAMC cells were not sensitive to berberine-induced cell death. Berberine did not stimulate caspase activation, and PARP cleavage and berberine-induced cell death were not affected by a caspase inhibitor in IMCE cells. Rather, berberine stimulated a caspase-independent cell death mediator, apoptosis-inducing factor (AIF release from mitochondria and nuclear translocation in a ROS production-dependent manner. Amelioration of berberine-stimulated ROS production or suppression of AIF expression blocked berberine-induced cell death and LDH release in IMCE cells. Furthermore, two targets of ROS production in cells, cathepsin B release from lysosomes and PARP activation were induced by berberine. Blockage of either of these pathways decreased berberine-induced AIF activation and cell death in IMCE cells. Thus, berberine-stimulated ROS production leads to cathepsin B release and PARP activation-dependent AIF activation, resulting in caspase-independent cell death in colon tumor cells. Notably, normal colon epithelial cells are less susceptible to berberine-induced cell death, which suggests the specific inhibitory effects of berberine on colon tumor cell growth.

  16. ENDOCANNABINOIDS INHIBIT RELEASE OF NERVE GROWTH FACTOR BY INFLAMMATION-ACTIVATED MAST CELLS

    OpenAIRE

    2011-01-01

    Abstract Nerve growth factor (NGF) is a pleiotropic member of the neurotrophin family. Beside its neuronal effects, NGF plays a role in various processes, including angiogenesis. Mast cells release NGF and are among elements contributing to angiogenesis, a process regulated by arrays of factors, including the inhibitory cannabinoids. The possible inhibitory role of cannabinoids on mast cell-related NGF mitogenic effect on endothelial cells was then investigated. Human mastocytic ce...

  17. Trypsin promotes C6 glioma cell proliferation in serum- and growth factor-free medium.

    Science.gov (United States)

    Amano, H; Kurosaka, R; Ema, M; Ogawa, Y

    1996-07-01

    C6 glioma cells could be successively subcultured and maintained in serum- and growth factor-free medium (SF/GFF medium). C6 cell proliferation in SF/GFF medium was positively correlated with the initial cell density at plating. This correlation disappeared when the medium had been renewed early after cell adhesion (3 h after plating), suggesting that C6 cell growth depends on some diffusible factor in the medium before renewal, and that this factor is not secreted from C6 cells in the assay culture but is transferred from the cell suspension. The supernatant of trypsinized C6 cell suspension (SCS), trypsin-EDTA solution for routine cell harvesting use, and modified trypsin of protein sequencing grade all promoted C6 cell proliferation at, appropriate dilutions or concentrations under SF/GFF conditions. The growth promoting effects of SCS and trypsin-EDTA solution were completely inhibited by soybean trypsin inhibitor. These results demonstrate that the serine protease trypsin has a proliferative effect on C6 cells continuously subcultured in SF/GFF medium. In addition, it is suggested that trypsin used for cell dispersion is transferred from cell suspension into the culture, where it promotes C6 cell growth after passage in our SF/GFF subculture system.

  18. Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors.

    Directory of Open Access Journals (Sweden)

    Hidetatsu Outani

    Full Text Available The repair of large cartilage defects with hyaline cartilage continues to be a challenging clinical issue. We recently reported that the forced expression of two reprogramming factors (c-Myc and Klf4 and one chondrogenic factor (SOX9 can induce chondrogenic cells from mouse dermal fibroblast culture without going through a pluripotent state. We here generated induced chondrogenic (iChon cells from human dermal fibroblast (HDF culture with the same factors. We developed a chondrocyte-specific COL11A2 promoter/enhancer lentiviral reporter vector to select iChon cells. The human iChon cells expressed marker genes for chondrocytes but not fibroblasts, and were derived from non-chondrogenic COL11A2-negative cells. The human iChon cells formed cartilage but not tumors in nude mice. This approach could lead to the preparation of cartilage directly from skin in human, without going through pluripotent stem cells.

  19. Improving poor fill factors for solar cells via light-induced plating

    Institute of Scientific and Technical Information of China (English)

    Xing Zhao; Jia Rui; Ding Wuchang; Meng Yanlong; Jin Zhi; Liu Xinyu

    2012-01-01

    Silicon solar cells are prepared following the conventional fabrication processes,except for the metallization firing process.The cells are divided into two groups with higher and lower fill factors,respectively.After light-induced plating (LIP),the fill factors of the solar cells in both groups with different initial values reach the same level.Scanning electron microscope (SEM) images are taken under the bulk silver electrodes,which prove that the improvement for cells with a poor factor after LIP should benefit from sufficient exploitation of the high density silver crystals formed during the firing process.Moreover,the application of LIP to cells with poor electrode contact performance,such as nanowire cells and radial junction solar cells,is proposed.

  20. In vitro generation of long-term repopulating hematopoietic stem cells by fibroblast growth factor-1

    NARCIS (Netherlands)

    de Haan, G; Weersing, E; Dontje, B; van Os, R; Bystrykh, LV; Vellenga, E; Miller, G

    2003-01-01

    The role of fibroblast growth factors and their receptors (FGFRs) in the regulation of normal hematopoietic stem cells is unknown. Here we show that, in mouse bone marrow, long-term repopulating stem cells are found exclusively in the FGFR(+) cell fraction. During differentiation toward committed pr

  1. Chemokine stromal cell-derived factor 1alpha activates basophils by means of CXCR4

    DEFF Research Database (Denmark)

    Jinquan, T; Jacobi, H H; Jing, C

    2000-01-01

    The CXC chemokine receptor 4 (CXCR4) is predominantly expressed on inactivated naive T lymphocytes, B lymphocytes, dendritic cells, and endothelial cells. CXC chemokine stromal cell-derived factor 1alpha (SDF-1alpha) is the only known ligand for CXCR4. To date, the CXCR4 expression and function...... of SDF-1alpha in basophils are unknown....

  2. Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells.

    NARCIS (Netherlands)

    Paleolog, E.M.; Delasalle, S.A.; Buurman, W.A.; Feldmann, M.

    1994-01-01

    Tumor necrosis factor-alpha (TNF-alpha) plays a critical role in the control of endothelial cell function and hence in regulating traffic of circulating cells into tissues in vivo. Stimulation of endothelial cells in vitro by TNF-alpha increases the surface expression of leukocyte adhesion molecules

  3. The forkhead transcription factor FOXP1 represses human plasma cell differentiation

    NARCIS (Netherlands)

    M. Van Keimpema (Martine); L.J. Grüneberg (Leonie J.); M. Mokry (Michal); R. Van Boxtel (Ruben); M.C. van Zelm (Menno); P.J. Coffer (Paul); S. Pals; M. Spaargaren

    2015-01-01

    textabstractExpression of the for khead transcription factor FOXP1 is essential for early B-cell development, whereas down regulation ofFOXP1at the germinal center (GC) stage is required for GC B-cell function. Aberrantly high FOXP1 expression is frequently observed in diffuse large B-cell lymphoma

  4. Undifferentiated Embryonic Cell Transcription Factor 1 Regulates ESC Chromatin Organization and Gene Expression

    NARCIS (Netherlands)

    Kooistra, Susanne M.; van den Boom, Vincent; Thummer, Rajkumar P.; Johannes, Frank; Wardenaar, Rene; Tesson, Bruno M.; Veenhoff, Liesbeth M.; Fusetti, Fabrizia; O'Neill, Laura P.; Turner, Bryan M.; de Haan, Gerald; Eggen, Bart J. L.; O’Neill, Laura P.

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES ce

  5. Indoxyl Sulfate Downregulates Mas Receptor via Aryl Hydrocarbon Receptor/Nuclear Factor-kappa B, and Induces Cell Proliferation and Tissue Factor Expression in Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Ng, Hwee-Yeong; Bolati, Wulaer; Lee, Chien-Te; Chien, Yu-Shu; Yisireyili, Maimaiti; Saito, Shinichi; Pei, Sung-Nan; Nishijima, Fuyuhiko; Niwa, Toshimitsu

    2016-01-01

    Angiotensin converting enzyme-related carboxypeptidase 2/angiotensin (Ang)-(1-7)/Mas receptor axis is protective in the development of chronic kidney disease and cardiovascular disease. This study is aimed at investigating whether indoxyl sulfate (IS) affects Mas receptor expression, cell proliferation and tissue factor expression in vascular smooth muscle cells, and if Ang-(1-7), an activator of Mas receptor, counteracts the IS-induced effects. IS was administered to normotensive and hypertensive rats. Human aortic smooth muscle cells (HASMCs) were cultured with IS. IS reduced the expression of Mas receptor in the aorta of normotensive and hypertensive rats. IS downregulated the Mas receptor expression in a time- and dose-dependent manner in HASMCs. Knockdown of aryl hydrocarbon receptor (AhR) and nuclear factor-kappa B (NF-x03BA;B) inhibited IS-induced downregulation of Mas receptor. Further, IS stimulated cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) attenuated IS-induced cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) suppressed phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and NF-x03BA;B in HASMCs. IS downregulated the expression of Mas receptor via AhR/NF-x03BA;B, and induced cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) inhibited IS-induced cell proliferation and tissue factor expression by suppressing the phosphorylation of ERK1/2 and NF-x03BA;B p65. © 2016 S. Karger AG, Basel.

  6. The in Vitro Assessment of Biochemical Factors in Hepatocyte like Cells Derived from Umbilical Cord Blood Stem Cells

    Directory of Open Access Journals (Sweden)

    A KHoramroodi

    2009-10-01

    Full Text Available Introduction & Objective: Umbilical cord blood (UCB is a source of Hematopoietic Stem Cells (HSC and progenitor cells that can reconstitute the hematopoietic system in patients with malignant and nonmalignant disorders. Mesenchymal stem cell-derived from umbilical cord blood (UCB have been differentiated to some kind of cells, such as osteobblast, adipoblast and chondroblast in Vitro. This study examined the differentiation of Umbilical Cord Blood (UCB derived stem cells to functional hepatocytes. Materials & Methods: The present study was an experimental study which was carried out in the Payam-e-Noor University of Tehran in cooperation with Hamedan University of Medical Sciences in 2008. Umbilical cord blood (UCB was obtained from Fatemieh hospital (Hamadan, Iran. Stem cells were isolated from the cord blood by combining density gradient centrifugation with plastic adherence. When the isolated cells reached 80% confluence, they differentiated to hepatocyte like cells. The medium which was used was consists of DMEM and 10% Fetal Bovine Serum (FBS supplemented with 20 ng/mL Hepatocyte Growth Factor (HGF, 10 ng/mL basic Fibroblast Growth Factor (bFGF and 20 ng/mL Oncostatin M (OSM.The medium was changed every 3 days and stored for Albumin (ALB, Alpha Fetoprotein (AFP, Alkaline Phosphatase (ALP, and urea assay. Finally PAS stain was done to study Glycogen storage in the differentiated cell. Results: Measurement of biochemical factors in different days showed that concentration of albumin (ALB, alpha fetoprotein (AFP, alkaline phosphatase (ALP, and Urea gradually increased. Also, PAS staining showed the storage of glycogen in these cells. Conclusion: Stem cell-derived from human umbilical cord blood (HUCB is a new source of cell types for cell transplantation therapy of hepatic diseases and under certain conditions these cells can differentiate into liver cells.

  7. Transcriptional program induced by factor VIIa-tissue factor, PAR1 and PAR2 in MDA-MB-231 cells

    DEFF Research Database (Denmark)

    Albrektsen, Tatjana; Sørensen, B B; Hjortø, G M

    2007-01-01

    -activated receptor 1 (PAR1) or PAR2 agonists using MDA-MB-231 breast carcinoma cells that constitutively express TF, PAR1 and PAR2. RESULTS AND CONCLUSIONS: Out of 8500 genes, FVIIa stimulation induced differential regulation of 39 genes most of which were not previously recognized as FVIIa regulated. All genes...... regulated genes encode cytokines, chemokines and growth factors, and the gene repertoire induced by FVIIa in MDA-MB-231 cells is consistent with a role for TF-FVIIa signaling in regulation of a wound healing type of response. Interestingly, a number of genes regulated exclusively by FVIIa/PAR2-mediated cell...... signaling in MDA-MB-231 cells were regulated by thrombin and a PAR1 agonist, but not by FVIIa, in the TF-expressing glioblastoma U373 cell line....

  8. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    Science.gov (United States)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; Topol, Eric J.; Penn, Marc S.

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, ptissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  9. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor.

    Science.gov (United States)

    Lamond, Rebecca; Barnett, Susan C

    2013-11-20

    Cell transplantation is a promising strategy to promote CNS repair and has been studied for several decades with a focus on glial cells. Promising candidates include Schwann cells (SCs) and olfactory ensheathing cells (OECs). Both cell types are thought to be neural crest derived and share many properties in common, although OECs appear to be a better candidate for transplantation by evoking less astrogliosis. Using CNS mixed myelinating rat cultures plated on to a monolayer of astrocytes, we demonstrated that SCs, but not OECs, secrete a heat labile factor(s) that inhibits oligodendrocyte myelination. Comparative qRT-PCR and ELISA showed that SCs expressed higher levels of mRNA and protein for connective tissue growth factor (CTGF) than OECs. Anti-CTGF reversed the SCM-mediated effects on myelination. Both SCM and CTGF inhibited the differentiation of purified rat oligodendrocyte precursor cells (OPCs). Furthermore, pretreatment of astrocyte monolayers with SCM inhibited CNS myelination and led to transcriptional changes in the astrocyte, corresponding to upregulation of bone morphogenic protein 4 mRNA and CTGF mRNA (inhibitors of OPC differentiation) and the downregulation of insulin-like growth factor 2 mRNA (promoter of OPC differentiation). CTGF pretreatment of astrocytes increased their expression of CTGF, suggesting that this inhibitory factor can be positively regulated in astrocytes. These data provide evidence for the advantages of using OECs, and not mature SCs, for transplant-mediated repair and provide more evidence that they are a distinct and unique glial cell type.

  10. Expression of germ cell nuclear factor in mouse germ cells and sperm during postnatal period

    Institute of Scientific and Technical Information of China (English)

    ChenXu; Zong-YaoZhou; Qiang-SuGuo; Yi-FeiWang

    2004-01-01

    Aim: To assess the spatial and temporal expression of germ cell nuclear factor (GCNF) in male mouse germ cells during postnatal development and in sperm before and after capacitation. Methods: The indirect immunofluorescence method with anti-GCNF antiserum was used to investigate the GCNF expression in mice at day 8, 10,14, 17, 20, 28, 35, 70, and 420 after birth and in sperm before and after capacitation. Results: With the proceeding of spermatogenesis, GCNF was first detected in the nuclei of spermatogonia and a few early stage primary spermatocytes at day 8, which was increased gradually at day 10 to 14 inclusive. From day 17 to day 20, the GCNF was concentrated in round spermatids, while both spermatogonia and early stage primary spermatocytes became GCNF negative. From day 28 until day 420, strong GCNF expression was shown in round spermatids and pachytene spermatocytes, while spermatogonia, early primary spermatocytes and elongating spermatids were all GCNF negative.In addition, it was also found that GCNF was localized on the acrosomal cap region of spermatozoa and there was a big change in GCNF expression during capacitation, from 98 % GCNF positive before capacitation to about 20 % positive following capacitation. The localization of GCNF in caput and cauda spermatozoa was similar. Conclusion:GCNF may play important roles in spermatogenesis, capacitation and fertilization. (Asian J Androl 2004 Sep; 6: 217-222)

  11. Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Xiaosong Liu; Jinyan Huang; Taotao Chen; Ying Wang; Shunmei Xin; Jian Li; Gang Pei; Jiuhong Kang

    2008-01-01

    Yamanaka factors (Oct3/4,Sox2,KIf4,c-Myc) are highly expressed in embryonic stem (ES) cells,and their overexpression can induce pluripotency in both mouse and human somatic cells,indicating that these factors regulate the developmental signaling network necessary for ES cell pluripotency.However,systemic analysis of the signaling pathways regulated by Yamanaka factors has not yet been fully described.In this study,we identified the target promoters of endogenous Yamanaka factors on a whole genome scale using ChIP (chromatin immunoprecipitation)-on-chip in E14.1 mouse ES cells,and we found that these four factors co-occupied 58 promoters.Interestingly,when Oct4 and Sox2 were analyzed as core factors,Kif4 functioned to enhance the core factors for development regulation,whereas c-Myc seemed to play a distinct role in regulating metabolism.The pathway analysis revealed that Yamanaka factors collectively regulate a developmental signaling network composed of 16 developmental signaling pathways,nine of which represent earlier unknown pathways in ES cells,including apoptosis and cellcycle pathways.We further analyzed data from a recent study examining Yamanaka factors in mouse ES cells.Interestingly,this analysis also revealed 16 developmental signaling pathways,of which 14 pathways overlap with the ones revealed by this study,despite that the target genes and the signaling pathways regulated by each individual Yamanaka factor differ significantly between these two datasets.We suggest that Yamanaka factors critically regulate a developmental signaling network composed of approximately a dozen crucial developmental signaling pathways to maintain the pluripotency of ES cells and probably also to induce pluripotent stem cells.

  12. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Nørgaard, P; Spang-Thomsen, M; Poulsen, H S

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII...

  13. Homeodomain Protein Transforming Growth Factor Beta-Induced Factor 2 Like, X-Linked Function in Colon Adenocarcinoma Cells

    Science.gov (United States)

    Akbari, Abolfazl; Agah, Shahram; Heidari, Mansour; Mobini, Gholam Reza; Faghihloo, Ebrahim; Sarveazad, Arash; Mirzaei, Alireza

    2017-08-27

    Background: TGIF2LX (transforming growth factor beta-induced factor 2 like, X-linked) is a homeodomain (HD) protein that has been implicated in the negative regulation of cell signaling pathways. The aim of this study was to investigate the possible functions of TGIF2LX in colon adenocarcinoma cells. Methods: The human SW48 cell line was transfected with cDNA for the wild-type TGIF2LX gene and gene/protein over-expression was confirmed by microscopic analysis, real time RT-PCR and Western blotting techniques. In vitro cell proliferation was evaluated by MTT and BrdU assays. After developing a colon tumor model in nude mice, immunohistochemical (IHC) staining of tumor tissue was carried out for Ki-67 (proliferation) and CD34 (angiogenesis) markers. To predict potential protein partners of TGIF2LX, in-silico analysis was also conducted. Results: Obtained results showed over-expression of TGIF2LX as a potential transcription factor could inhibit either proliferation or angiogenesis (P<0.05) in colon tumors. In-silico results predicted interaction of TGIF2LX with other proteins considered important for cellular development. Conclusions: Our findings provided evidence of molecular mechanisms by which TGIF2LX could act as a tumor suppressor in colon adenocarcinoma cells. Thus, this gene may potentially be a promising option for colon cancer gene-based therapeutic strategies. Creative Commons Attribution License

  14. Deficiency in the nuclear factor E2-related factor 2 renders pancreatic β-cells vulnerable to arsenic-induced cell damage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bei [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110001 (China); Fu, Jingqi; Zheng, Hongzhi; Xue, Peng; Yarborough, Kathy; Woods, Courtney G.; Hou, Yongyong; Zhang, Qiang; Andersen, Melvin E. [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States)

    2012-11-01

    Chronic human exposure to inorganic arsenic (iAs), a potent environmental oxidative stressor, is associated with increased prevalence of type 2 diabetes, where impairment of pancreatic β-cell function is a key pathogenic factor. Nuclear factor E2-related factor 2 (Nrf2) is a central transcription factor regulating cellular adaptive response to oxidative stress. However, persistent activation of Nrf2 in response to chronic oxidative stress, including inorganic arsenite (iAs{sup 3+}) exposure, blunts glucose-triggered reactive oxygen species (ROS) signaling and impairs glucose-stimulated insulin secretion (GSIS). In the current study, we found that MIN6 pancreatic β-cells with stable knockdown of Nrf2 (Nrf2-KD) by lentiviral shRNA and pancreatic islets isolated from Nrf2-knockout (Nrf2−/−) mice exhibited reduced expression of several antioxidant and detoxification enzymes in response to acute iAs{sup 3+} exposure. As a result, Nrf2-KD MIN6 cells and Nrf2−/− islets were more susceptible to iAs{sup 3+} and monomethylarsonous acid (MMA{sup 3+})-induced cell damage, as measured by decreased cell viability, augmented apoptosis and morphological change. Pretreatment of MIN6 cells with Nrf2 activator tert-butylhydroquinone protected the cells from iAs{sup 3+}-induced cell damage in an Nrf2-dependent fashion. In contrast, antioxidant N‐acetyl cysteine protected Nrf2-KD MIN6 cells against acute cytotoxicity of iAs{sup 3+}. The present study demonstrates that Nrf2-mediated antioxidant response is critical in the pancreatic β-cell defense mechanism against acute cytotoxicity by arsenic. The findings here, combined with our previous results on the inhibitory effect of antioxidants on ROS signaling and GSIS, suggest that Nrf2 plays paradoxical roles in pancreatic β-cell dysfunction induced by environmental arsenic exposure. -- Highlights: ► Lack of Nrf2 reduced expression of antioxidant genes induced by iAs{sup 3+} in β-cells. ► Deficiency of Nrf2 in β-cells

  15. Stem cell factor and stromal cell co-culture prevent apoptosis in a subculture of the megakaryoblastic cell line, UT-7.

    Science.gov (United States)

    Liesveld, J L; Harbol, A W; Abboud, C N

    1996-07-01

    The megakaryoblastic cell line, UT-7, is dependent for its growth upon interleukin-3 (IL-3), erythropoietin, or granulocyte-macrophage colony stimulating factor (GM-CSF). A subculture of this line can be maintained in recombinant human c-kit ligand [stem cell factor (SCF)] at 100 ng/ml without requirement for other growth factors. Removal of this subculture from SCF results in rapid loss of viability and decreased proliferation. Cells grown in SCF also can be maintained in GM-CSF but not vice versa. In this work, we have characterized the SCF dependence of this UT-7 subculture. Stem cell factor removal results in apoptosis and a decline in viability which can be restored partially by re-addition of SCF, GM-CSF, or co-culture with adherent marrow stromal cells. Apoptosis in the factor-starved UT-7 population has been documented by light microscopy, electron microscopy and DNA analysis, showing the typical 180 base pair laddering characteristic of apoptosis. To quantitate the degree of apoptosis in the cell populations, and to assess whether apoptosis decreased with re-exposure of starved cells to growth factors or stroma, we utilized flow cytometry. This confirmed that exposure of previously factor-starved cells to stroma decreased the percentage of cells undergoing apoptosis. Co-culture with an SCF-deficient murine stromal cell line was also able to prevent apoptosis, suggesting contribution of other stromal cell factors. Experiments performed using trans-well inserts which do not allow cell passage, showed greatest viability of cells in contact with stroma, but viability was also improved in cells cultured in the presence of, but not in contact with, stromal cells compared to those cultured above plastic, suggesting a role for soluble stroma-produced substances. These data demonstrate that SCF alone can prevent apoptosis in cells dependent upon its presence for proliferation. Also, marrow stromal cells can serve as a partial substitute for growth factor in the

  16. Bone marrow mesenchymal stem cells ameliorate inflammatory factor-induced dysfunction of INS-1 cells on chip.

    Science.gov (United States)

    Sun, Yu; Yao, Zhina; Lin, Peng; Hou, Xinguo; Chen, Li

    2014-05-01

    Using a microfluidic chip, we have investigated whether bone marrow mesenchymal stem cells (BM-MSCs) could ameliorate IL-1β/IFN-γ-induced dysfunction of INS-1 cells. BM-MSCs were obtained from diabetes mellitus patients and their cell surface antigen expression profiles were analyzed by flow cytometric. INS-1 cells were cocultured with BM-MSCs on a microfluidic chip with persistent perfusion of medium containing 1 ng/mL IL-1β and 2.5 U/mL IFN-γ for 72 h. BM-MSCs could partially rescue INS-1 cells from cytokine-induced dysfunction and ameliorate the expression of insulin and PDX-1 gene in INS-1 cells. Thus BM-MSCs can be viewed as a promising stem cell source to depress inflammatory factor-induced dysfunction of pancreatic β cells in diabetic patients.

  17. Generation of induced pluripotent stem cells from human cord blood cells with only two factors: Oct4 and Sox2.

    Science.gov (United States)

    Giorgetti, Alessandra; Montserrat, Nuria; Rodriguez-Piza, Ignacio; Azqueta, Carmen; Veiga, Anna; Izpisúa Belmonte, Juan Carlos

    2010-04-01

    Induced pluripotent stem cells (iPSC) provide an invaluable resource for regenerative medicine as they allow the generation of patient-specific progenitors with potential value for cell therapy. However, in many instances, an off-the-shelf approach is desirable, such as for cell therapy of acute conditions or when the patient's somatic cells are altered as a consequence of a chronic disease or aging. Cord blood (CB) stem cells appear ideally suited for this purpose as they are young cells expected to carry minimal somatic mutations and possess the immunological immaturity of newborn cells; additionally, several hundred thousand immunotyped CB units are readily available through a worldwide network of CB banks. Here we present a detailed protocol for the derivation of CB stem cells and how they can be reprogrammed to pluripotency by retroviral transduction with only two factors (OCT4 and SOX2) in 2 weeks and without the need for additional chemical compounds.

  18. Brain endothelial cells increase the proliferation of Plasmodium falciparum through production of soluble factors.

    Science.gov (United States)

    Khaw, L T; Ball, H J; Mitchell, A J; Grau, G E; Stocker, R; Golenser, J; Hunt, N H

    2014-10-01

    We here describe the novel finding that brain endothelial cells in vitro can stimulate the growth of Plasmodium falciparum through the production of low molecular weight growth factors. By using a conditioned medium approach, we show that the brain endothelial cells continued to release these factors over time. If this mirrors the in vivo situation, these growth factors potentially would provide an advantage, in terms of enhanced growth, for sequestered parasitised red blood cells in the brain microvasculature. We observed this phenomenon with brain endothelial cells from several sources as well as a second P. falciparum strain. The characteristics of the growth factors included: heat stable, and in part chloroform soluble. Future efforts should be directed at identifying these growth factors, since blocking their production or actions might be of benefit for reducing parasite load and, hence, malaria pathology.

  19. The effect of celecoxib on tissue factor expression in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-yuan; YANG Yin-mo; ZHUANG Yan; CHEN Huan-nian; WAN Yuan-lian; HUANG Yan-ting

    2007-01-01

    Background Tissue factor (TF) is overexpressed in many malignant tumours and is linked to the pathogenesis and prognosis of such malignancies. In vitro studies have proved that reduced expression of TF has inhibitory effect on the angiogenesis and cell proliferation of the malignant tumour. Therefore, TF suppression has been raised as a possible treatment for malignant tumours. Here we investigated the effect of celecoxib on TF expression induced by tumour necrosis factor α (TNFα) in PANC-1 cells and a possible molecular mechanism underlying the celecoxib effect.Methods Various doses of celecoxib solution were added to standard cell numbers of PANC-1 cells mixed with equal dose of TNFα for 6 hours. The expression of tissue factor was detected quantitatively by Western blot, whilst the activation of nuclear factor κB was tested by electromobility shift assay.Results As the doses of celecoxib increased, the tissue factor expression was decreased in PANC-1 cells and so was the activation of nuclear factor κB.Conclusions Celecoxib can downregulate the expression of tissue factor induced by TNFα in PANC-1 cells. This antitumour effect of celecoxib can be explained indirectly via its suppressive role in activation of nuclear factor KB.

  20. Krüppel-Like Factor 4 Acts as an Oncogene in Colon Cancer Stem Cell-Enriched Spheroid Cells

    Science.gov (United States)

    Xia, Qinghua; Tan, Jun; Yue, Zhongyi; Chen, Jinhuang; Xi, Hailin; Li, Jie; Zheng, Hai

    2013-01-01

    Cancer stem cells (CSCs), a rare population in any type of cancers, including colon cancer, are tumorigenic. It has been thought that CSCs are responsible for cancer recurrence, metastasis, and drug resistance. Isolating CSCs in colon cancers is challenging, and thus the molecular mechanism regulating the self-renewing and differentiation of CSCs remains unknown. We cultured DLD-1 cells, one of types of cells derived from colon cancers, in serum-free medium to obtain spheroid cells. These cells possessed the characteristics of CSCs, with the expression of CD133, CD166, Lgr5, and ALDH1, higher capacities of chemo-resistance, migration, invasion, and tumorigenicity in vitro and in vivo than the adherent DLD-1 cells. Krüppel-like factor 4 (KLF4) is essential factor for maintaining self-renewal of adult and embryonic stem cells. It has been used to induce pluripotent stem cells (iPS) from somatic cells. Since KLF4 is expressed in colon cancer cells, we investigated its role in spheroid cells isolated from DLD-1 cells and found that KLF4 was overexpressed only in spheroid cells and reducing the expression of KLF4 by short-hairpin RNA significantly decreased the capacities of these cells to resist the chemicals, migrate, invade, and generate tumors in vitro and in vivo. The spheroid cells with reduced KLF4 expression also had decreased expression of CSCs markers and mesenchymal markers. Taken together, culturing DLD-1 cells in serum-free medium enriches CSCs and the expression of KLF4 is essential for the characteristics of CSCs in DLD-1; thus KLF4 can be a potential therapeutic target for treating colon cancer. PMID:23418515

  1. Kruppel-like factor 4 acts as an oncogene in colon cancer stem cell-enriched spheroid cells.

    Directory of Open Access Journals (Sweden)

    Zhengwei Leng

    Full Text Available Cancer stem cells (CSCs, a rare population in any type of cancers, including colon cancer, are tumorigenic. It has been thought that CSCs are responsible for cancer recurrence, metastasis, and drug resistance. Isolating CSCs in colon cancers is challenging, and thus the molecular mechanism regulating the self-renewing and differentiation of CSCs remains unknown. We cultured DLD-1 cells, one of types of cells derived from colon cancers, in serum-free medium to obtain spheroid cells. These cells possessed the characteristics of CSCs, with the expression of CD133, CD166, Lgr5, and ALDH1, higher capacities of chemo-resistance, migration, invasion, and tumorigenicity in vitro and in vivo than the adherent DLD-1 cells. Krüppel-like factor 4 (KLF4 is essential factor for maintaining self-renewal of adult and embryonic stem cells. It has been used to induce pluripotent stem cells (iPS from somatic cells. Since KLF4 is expressed in colon cancer cells, we investigated its role in spheroid cells isolated from DLD-1 cells and found that KLF4 was overexpressed only in spheroid cells and reducing the expression of KLF4 by short-hairpin RNA significantly decreased the capacities of these cells to resist the chemicals, migrate, invade, and generate tumors in vitro and in vivo. The spheroid cells with reduced KLF4 expression also had decreased expression of CSCs markers and mesenchymal markers. Taken together, culturing DLD-1 cells in serum-free medium enriches CSCs and the expression of KLF4 is essential for the characteristics of CSCs in DLD-1; thus KLF4 can be a potential therapeutic target for treating colon cancer.

  2. Establishment of Multiple Myeloma Cell lines with Hepatocyte growth factor (HGF) overexpression and knockdown

    OpenAIRE

    Qadir, Fouzia

    2013-01-01

    Multiple myeloma is the malignancy of plasma cells which causes 0.9 % of all cancer related deaths. These malignant plasma cells acquire chromosomal abnormalities and complex genetic instability. Hepatocyte growth factor (HGF) is a multifunctional cytokine promoting cell proliferation, survival, motility, scattering, differentiation and morphogenesis. HGF/c-MET pathway plays an important role in multiple myeloma pathogenesis and in extravasation and homing of myeloma cells to bone marrow micr...

  3. Endothelial cells undergo morphological, biomechanical, and dynamic changes in response to tumor necrosis factor

    OpenAIRE

    Stroka, Kimberly M.; Vaitkus, Janina A.; Aranda-Espinoza, Helim

    2012-01-01

    The immune response triggers a complicated sequence of events, one of which is release of the cytokine tumor necrosis factor-α (TNF-α) from stromal cells such as monocytes and macrophages. In this work we explored the biophysical effects of TNF-α on endothelial cells (ECs), including changes in cell morphology, biomechanics, migration, and cytoskeletal dynamics. We found that TNF-α induces a wide distribution of cell area and aspect ratio, with these properties increasing on average during tr...

  4. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    Science.gov (United States)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; Topol, Eric J.; Penn, Marc S.

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, pmyocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  5. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    Science.gov (United States)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; Topol, Eric J.; Penn, Marc S.

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, pfunction (shortening fraction 9.2 [4.9] vs 17.2 [4.2]%, n=8 per group, pmyocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  6. Hematopoietic transcription factor GATA-2 promotes upregulation of alpha globin and cell death in FL5.12 cells.

    Science.gov (United States)

    Brecht, K; Simonen, M; Kamke, M; Heim, J

    2005-10-01

    Recently we showed that alpha globin is a novel pro-apoptotic factor in programmed cell death in the pro-B cell line, FL5.12. Alpha globin was also upregulated in various other cell lines after different apoptotic stimuli. Under withdrawal of IL-3, overexpression of alpha globin accelerated apoptosis in FL5.12. Here, we have studied how transcription of alpha globin is placed in the broader context of apoptosis. We used Affymetrix chip technology and RT QPCR to compare expression patterns of FL5.12 cells growing with or without IL-3 to search for transcription factors which were concomitantly upregulated with alpha globin. The erythroid-specific transcription factor GATA-2 was the earliest and most prominently upregulated candidate. GATA-1 was expressed at low levels and was weakly induced while GATA-3 was completely absent. To evaluate the influence of GATA-2 on alpha globin expression and cell viability we overexpressed GATA-2 in FL5.12 cells. Interestingly, high expression of GATA-2 resulted in cell death and elevated alpha globin levels in FL5.12 cells. Transduction of antisense GATA-2 prevented both increase of GATA-2 and alpha globin under apoptotic conditions and delayed cell death. We suggest a role of GATA-2 in apoptosis besides its function in maintenance and proliferation of immature hematopoietic progenitors.

  7. Factor XII binding to endothelial cells depends on caveolae

    DEFF Research Database (Denmark)

    Schousboe, Inger; Thomsen, Peter; van Deurs, Bo

    2004-01-01

    to human umbilical vein endothelial cells (HUVEC) has never been shown to be localized to these specialized membrane structures. Using microscopical techniques, we here report that FXII binds to specific patches of the HUVEC plasma membrane with a high density of caveolae. Further investigations of FXII...... lipid rafts. Accordingly, cholesterol-depleted cells were found to bind significantly reduced amounts of FXII. These observations, combined with the presence of a minority of u-PAR in caveolae concomitant with FXII binding, indicate that FXII binding to u-PAR may be secondary and depends upon...... the structural elements within caveolae. Thus, FXII binding to HUVEC depends on intact caveolae on the cellular surface....

  8. Effects of glial cell line-derived neurotrophic factor, fibroblast growth factor 2 and epidermal growth factor on proliferation and the expression of some genes in buffalo (Bubalus bubalis) spermatogonial cells.

    Science.gov (United States)

    Kadam, Prashant H; Kala, Sushila; Agrawal, Himanshu; Singh, Karn P; Singh, Manoj K; Chauhan, Manmohan S; Palta, Prabhat; Singla, Suresh K; Manik, Radhay S

    2013-01-01

    The present study evaluated the effects of glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor (FGF) 2 and epidermal growth factor (EGF) on proliferation and the expression of some genes in spermatogonial cells. Spermatogonial cells were isolated from prepubertal buffalo testes and enriched by double enzyme treatment, filtration through 80- and 60-μm nylon mesh filters, differential plating on lectin-coated dishes and Percoll density gradient centrifugation. Cells were then cultured on a buffalo Sertoli cell feeder layer and formed colonies within 15-18 days. The colonies were found to predominantly contain undifferentiated Type A spermatogonia because they bound Dolichos biflorus agglutinin and did not express c-kit. The colonies expressed alkaline phosphatase, NANOG, octamer-binding transcription factor (OCT)-4 and tumour rejection antigen (TRA)-1-60. Cells were subcultured for 15 days, with or without growth factor supplementation. After 15 days, colony area and the relative mRNA abundance of PLZF were higher (Pgrowth factor supplementation. In the Sertoli cell feeder layer, EGF and FGF2 decreased (Pgrowth factors was developed for the short-term culture of buffalo spermatogonia.

  9. Function of GATA transcription factors in hydroxyurea-induced HEL cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    HEL cells, a human erythroleukemia cell line, mainly express the fetal (γ)globin gene and trace amount of the embryonic (ε)globin gene, but not adult (β) globin gene. Here we show that hydroxyurea (HU) can induce HEL cells to express adult (β) globin gene and lead these cells to terminal differentiation. Results showed in Gel mobility shift assays that GATA factors could specifically bind to the regulatory elements of humanβ- globin gene, including the proximal regulatory element (theβ- promoter) and the distal regulatory elements (the DNase I hypersensitive sites in the LCR, HS2-HS4 core sequences). However, the DNA binding patterns of GATA factors were quite different between HU-induced and uninduced HEL cells. Western-blot analysis of nuclear extracts from both the uninduced and HU- induced HEL cells revealed that the level of GATA-2 transcription factor decreased, whereas the level of GATA-1 transcription factor increased following the time of hydroxyurea induction. Furthermore, using RT-PCR analysis the expression of human β-globin gene in HU-induced HEL cells could be blocked again when HEL cells were incubated in the presence of antisense oligonucleotides for hGATA-1, suggesting that the upregulation of hGATA-1 transcription factor might be critical for the expression of humanβ- globin gene in HU-induced HEL cells.

  10. Effects of Basic Fibroblast Growth Factor and Insulin-like Growth Factor on Cultured Cartilage Cells from Skate Raja porasa

    Institute of Scientific and Technical Information of China (English)

    樊廷俊; 晋凌云; 汪小锋

    2003-01-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24℃. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  11. Implications for the offspring of circulating factors involved in beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Ringholm, Lene; Søstrup, Birgitte

    2014-01-01

    is able to stimulate proliferation of rat beta cells. We have identified several circulating factors that may contribute to beta cell adaptation to pregnancy. Further studies are needed to elucidate their possible role in glucose homeostasis in the mother and her offspring.......OBJECTIVE: Several studies have shown an increase in beta cell mass during pregnancy. Somatolactogenic hormones are known to stimulate the proliferation of existing beta cells in rodents whereas the mechanism in humans is still unclear. We hypothesize that in addition to somatolactogenic hormones...... there are other circulating factors involved in beta cell adaptation to pregnancy. This study aimed at screening for potential pregnancy-associated circulating beta cell growth factors. SAMPLES: Serum samples from nonpregnant and pregnant women. METHODS: The effect of serum from pregnant women...

  12. Hexamethylenebisacetamide (HMBA) is a growth factor for human, ovine and porcine thyroid cells.

    Science.gov (United States)

    Fayet, G; Amphoux-Fazekas, T; Aouani, A; Hovsépian, S

    1996-03-01

    Hexamethylenebisacetamide (HMBA) provokes in murine erythroleukemia cells (MELC) a commitment to terminal differentiation leading to the activation of the expression of hemoglobin. HMBA has been tested also in other cells from colon cancer, melanoma or lung cancer. However it has not yet been tested in the thyroid. We demonstrate in this paper that HMBA in kinetics and concentration-response experiments increases the proliferation of human thyroid cells isolated from Graves'-Basedow patients. It also acts like a growth factor for ovine and porcine thyroid cells, respectively, from the OVNIS line and the ATHOS line. This molecule which is a differentiating factor in the MELC system and a growth factor in human thyroid cell cultures represents a potential to get human thyroid cell lines expressing specialized functions.

  13. Zinc inhibits nuclear factor-kappa B activation and sensitizes prostate cancer cells to cytotoxic agents.

    Science.gov (United States)

    Uzzo, Robert G; Leavis, Paul; Hatch, William; Gabai, Vladimir L; Dulin, Nickolai; Zvartau, Nadezhda; Kolenko, Vladimir M

    2002-11-01

    Prostate carcinogenesis involves transformation of zinc-accumulating normal epithelial cells to malignant cells, which do not accumulate zinc. In this study, we demonstrate by immunoblotting and immunohistochemistry that physiological levels of zinc inhibit activation of nuclear factor (NF)-kappa B transcription factor in PC-3 and DU-145 human prostate cancer cells, reduce expression of NF-kappa B-controlled antiapoptotic protein c-IAP2, and activate c-Jun NH(2)-terminal kinases. Preincubation of PC-3 cells with physiological concentrations of zinc sensitized tumor cells to tumor necrosis factor (TNF)-alpha, and paclitaxel mediated cell death as defined by terminal deoxynucleotidyl transferase-mediated nick end labeling assay. These results suggest one possible mechanism for the inhibitory effect of zinc on the development and progression of prostate malignancy and might have important consequences for the prevention and treatment of prostate cancer.

  14. Factors affecting the spontaneous mutational spectra in somatic mammalian cells

    Directory of Open Access Journals (Sweden)

    О.А. Ковальова

    2006-04-01

    Full Text Available  In our survey of references we are discussed the influence of factors biological origin on the spontaneous mutation specters in mammalian. Seasonal and age components influence on the frequence of cytogenetic anomalies. The immune and endocrinous systems are take part in control of the alteration of the spontaneous mutation specters. Genetical difference of sensibility in animal and human at the alteration of factors enviroment as and  genetical differences of repair systems activity are may influence on individual variation of spontaneous destabilization characters of chromosomal apparatus.

  15. Efficient Hepatitis Delta Virus RNA Replication in Avian Cells Requires a Permissive Factor(s) from Mammalian Cells

    OpenAIRE

    Liu, Yu-Tsueng; Brazas, Rob; Ganem, Don

    2001-01-01

    Hepatitis delta virus (HDV) is a highly pathogenic human RNA virus whose genome is structurally related to those of plant viroids. Although its spread from cell to cell requires helper functions supplied by hepatitis B virus (HBV), intracellular HDV RNA replication can proceed in the absence of HBV proteins. As HDV encodes no RNA-dependent RNA polymerase, the identity of the (presumably cellular) enzyme responsible for this reaction remains unknown. Here we show that, in contrast to mammalian...

  16. Inducing effects of hepatocyte growth factor on the expression of vascular endothelial growth factor in human colorectal carcinoma cells through MEK and PI3K signaling pathways

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-hua; WEI Wei; XU Hao; WANG Yan-yan; WU Wen-xi

    2007-01-01

    Background Vascular endothelial growth factor plays a key role in human colorectal carcinoma invasion and metastasis. However, the regulation mechanism remains unknown. Recent studies have shown that several cytokines can regulate the expression of vascular endothelial growth factor in tumor cells. In this study, we investigated whether hepatocyte growth factor can regulate the expression of vascular endothelial growth factor in colorectal carcinoma cells.Methods Hepatocyte growth factor and vascular endothelial growth factor in human serum were measured by ELISA.The mRNA level of vascular endothelial growth factor was analyzed by reverse transcription-PCR. Western blot assay was performed to evaluate levels of c-Met and several other proteins involved in the MAPK and PI3K signaling pathways in colorectal carcinoma cells.Results Serum hepatocyte growth factor and vascular endothelial growth factor were significantly increased in colorectal carcinoma subjects. In vitro extraneous hepatocyte growth factor markedly increased protein and mRNA levels of vascular endothelial growth factor in colorectal carcinoma cells. Hepatocyte growth factor induced phosphorylation of c-Met, ERK1/2 and AKT in a dose-dependent manner. Specific inhibitors on MEK and PI3K inhibited the hepatocyte growth factor-induced expression of vascular endothelial growth factor in colorectal carcinoma cells.Conclusion This present study indicates that hepatocyte growth factor upregulates the expression of vascular endothelial growth factor in colorectal carcinoma cells via the MEK/ERK and PI3K/AKT signaling pathways.

  17. Factors influencing ER subtype-mediated cell proliferation and apoptosis

    NARCIS (Netherlands)

    Evers, N.M.

    2014-01-01

      The aim of the current thesis is to elucidate the role of estrogen receptor (ER)αand ERβin cell proliferation and apoptosis induced by estrogenic compounds. Special attention is paid to the importance of the receptor preference of the estrogenic compounds, the cellular ERα/E

  18. Soluble mediators can replace helper T cells in the activation of resting B lymphocytes: evidence for a human B cell activating factor.

    Science.gov (United States)

    Diu, A; Février, M; Moreau, J L; Gougeon, M L; Abadie, A; Thèze, J

    1988-01-01

    We were interested in studying the participation of T cell-derived soluble factors in the early steps of B cell activation. Thus supernatants containing such factors were obtained following activation of human T cell clones and their effects on isolated B cells investigated. These supernatants induced activation, blastogenesis and proliferation of purified resting human B cells. Our results strongly suggest the existence of a B cell Activating Factor (BCAF) of apparent molecular weight (m.w.) of 12,000-15,000 daltons which acts directly on resting B cells and replaces helper T cells in B cell activation.

  19. TCPs, WUSs, and WINDs: Families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation

    Directory of Open Access Journals (Sweden)

    Miho eIkeda

    2014-09-01

    Full Text Available In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP, WUSCHEL (WUS, and WOUND INDUCED DEDIFFERENTIATION (WIND1 families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.

  20. Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma

    DEFF Research Database (Denmark)

    Jensen, Hanne Krogh; Donskov, Frede; Marcussen, Niels;

    2009-01-01

    PURPOSE: We have previously demonstrated a significant negative impact of intratumoral neutrophils in metastatic renal cell carcinoma. This study assessed intratumoral neutrophils in localized clear cell renal cell carcinoma (RCC). PATIENTS AND METHODS: The study comprised 121 consecutive patients...... neutrophils was also an independent prognostic factor for cancer-specific survival (HR, 3.5; 95% CI, 1.9 to 6.4; P .... CONCLUSION: The presence of intratumoral neutrophils is a new, strong, independent prognostic factor for short recurrence-free, cancer-specific, and overall survival in localized clear cell RCC....

  1. Role of Pancreatic Transcription Factors in Maintenance of Mature β-Cell Function

    OpenAIRE

    Hideaki Kaneto; Taka-aki Matsuoka

    2015-01-01

    A variety of pancreatic transcription factors including PDX-1 and MafA play crucial roles in the pancreas and function for the maintenance of mature β-cell function. However, when β-cells are chronically exposed to hyperglycemia, expression and/or activities of such transcription factors are reduced, which leads to deterioration of b-cell function. These phenomena are well known as β-cell glucose toxicity in practical medicine as well as in the islet biology research area. Here we describe th...

  2. Induction of mast cell proliferation, maturation, and heparin synthesis by the rat c-kit ligand, stem cell factor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, M.; Takeishi, Takashi; Geissler, E.N. (Beth Israel Hospital, Boston, MA (United States)); Thompson, H.; Metcalfe, D.D. (National Inst. of Health, Bethesda, MD (United States)); Langley, K.E.; Zsebo, K.M.; Galli, S.J. (Amgen, Inc., Thousand Oaks, CA (United States))

    1991-07-15

    The authors investigated the effects of a newly recognized multifunctional growth factor, the c-kit ligand stem cell factor (SCF), on mouse mast cell proliferation and phenotype. Recombinant rat SCF{sup 164} (rrSCF{sup 164}) induced the development of large numbers of dermal mast cells in normal mice in vivo. Many of these mast cells had features of connective tissue-type mast cells (CTMC), in that they were reactive both with the heparin-binding fluorescent dye berberine sulfate and with safranin. In vitro, rrSCF{sup 164} induced the proliferation of cloned interleukin 3 (IL-3)-dependent mouse mast cells and primary populations of IL-3-dependent, bone marrow-derived cultured mast cells (BMCMC), which represent immature mast cells, and purified peritoneal mast cells, which represent a type of mature CTMC> BMCMC maintained in rrSCF{sup 164} not only proliferated but also matured. These findings identify SCF as a single cytokine that can induce immature, IL-3-dependent mast cells to mature and to acquire multiple characteristics of CTMC. These findings also directly demonstrate that SCF can regulate the development of a cellular lineage expressing c-kit through effects on both proliferation and maturation.

  3. Fibroblast growth factor receptor-3 regulates Paneth cell lineage allocation and accrual of epithelial stem cells during murine intestinal development.

    Science.gov (United States)

    Vidrich, Alda; Buzan, Jenny M; Brodrick, Brooks; Ilo, Chibuzo; Bradley, Leigh; Fendig, Kirstin Skaar; Sturgill, Thomas; Cohn, Steven M

    2009-07-01

    Fibroblast growth factor receptor 3 (FGFR-3) is expressed in the lower crypt epithelium, where stem cells of the intestine reside. The role of FGFR-3 signaling in regulating features of intestinal morphogenesis was examined in FGFR-3-null (FGFR-3(-/-)) mice. FGFR-3(-/-) mice had only about half the number of intestinal crypts and a marked decrease in the number of functional clonogenic stem cells, as assessed by an in vivo microcolony-forming assay, compared with wild-type littermates. A marked deficit in allocation of progenitor cells to Paneth cell differentiation was noted, although all the principal epithelial lineages were represented in FGFR-3(-/-) mice. The total cellular content and nuclear localization of beta-catenin protein were reduced in FGFR-3(-/-) mice, as was expression of cyclin D1 and matrix metalloproteinase-7, major downstream targets of beta-catenin/T cell factor-4 (Tcf-4) signaling. Activation of FGFR-3 in Caco-2 cells, an intestinal epithelial cell line, abrogated the fall in beta-catenin/Tcf-4 signaling activity that is normally observed in these cells as cultures become progressively more confluent. These findings are consistent with the hypothesis that, during intestinal development, FGFR-3 signaling regulates crypt epithelial stem cell expansion and crypt morphogenesis, as well as Paneth cell lineage specification, through beta-catenin/Tcf-4-dependent and -independent pathways.

  4. Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos.

    Science.gov (United States)

    Telugu, Bhanu Prakash V L; Ezashi, Toshihiko; Sinha, Sunilima; Alexenko, Andrei P; Spate, Lee; Prather, Randall S; Roberts, R Michael

    2011-08-19

    The pig is important for agriculture and as an animal model in human and veterinary medicine, yet despite over 20 years of effort, there has been a failure to generate pluripotent stem cells analogous to those derived from mouse embryos. Here we report the production of leukemia inhibitory factor-dependent, so-called naive type, pluripotent stem cells from the inner cell mass of porcine blastocysts by up-regulating expression of KLF4 and POU5F1. The alkaline phosphatase-positive colonies resulting from reprogramming resemble mouse embryonic stem cells in colony morphology, cell cycle interval, transcriptome profile, and expression of pluripotent markers, such as POU5F1, SOX2, and surface marker SSEA1. They are dependent on leukemia inhibitory factor signaling for maintenance of pluripotency, can be cultured over extended passage, and have the ability to form teratomas. These cells derived from the inner cell mass of pig blastocysts are clearly distinct from the FGF2-dependent "primed" induced pluripotent stem cells described recently from porcine mesenchymal cells. The data are consistent with the hypothesis that the up-regulation of KLF4, as well as POU5F1, is required to create and stabilize the naive pluripotent state and may explain why the derivation of embryonic stem cells from pigs and other ungulates has proved so difficult.

  5. Expression pattern of fibroblast growth factors (FGFs), their receptors and antagonists in primary endothelial cells and vascular smooth muscle cells.

    Science.gov (United States)

    Antoine, M; Wirz, W; Tag, C G; Mavituna, M; Emans, N; Korff, T; Stoldt, V; Gressner, A M; Kiefer, P

    2005-06-01

    Fibroblast growth factors (FGFs) are important angiogenic growth factors. While basic FGF (FGF2) is well established as a potent inducer of angiogenesis much less is known about other FGFs possibly expressed by EC. We investigated the expression of all known FGFs, their main tyrosine kinase receptors and antagonists by RT-PCR analysis in human umbilical vascular endothelial cells (HUVECs) to obtain a complete expression profile of this important growth factor system in model endothelial cells (EC). In addition to FGFR1IIIc, which is considered as the major FGF receptor in EC, HUVECs express similar levels of FGFR3IIIc, detectable amounts of FGFR2IIIc and a new FGF receptor without an intracellular kinase domain (FGFR5). HUVECs express several secreted FGFs, including FGF5, 7, 8, 16 and 18 and two members of the fibroblast growth factor homologous factors (FHFs), not yet reported to be expressed in EC. The expression panel was compared with that obtained from human vascular smooth muscle cells (VSMCs) and human aortic tissue. Human umbilical artery smooth muscle cells (HUASMCs) and HUVECs express the identical FGF receptor and ligand panel implicating that both cell types act, according the FGF signals more as an entity than as individual cell types. Expression of Fgf1, 2, 7, 16 and 18 and the antagonists Sprouty 2,3 and 4 was demonstrated for all analysed cDNAs. The IIIc isoforms of FGFR1 and 2 and the novel FGFR5 were expressed in the aorta, but expression of the FGF receptor 3 was not detected in cDNAs derived from aortic tissue. In the VSMC of rat aortic tissue and in HUASM cultured cells we could demonstrate FGF18 immunoreactivity in the nucleus of the cells. The expression of several secreted FGFs by EC may focus the view more on their paracrine effects on neighbouring cells during tissue regeneration or tumor formation.

  6. Factors inducing human umbilical cord blood-derived mesenchymal stem cells to differentiate into neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Nawei Zhang; Fengqing Ji

    2006-01-01

    OBJECTIVE:Human umbilical cord blood-derived mesenchymal stem cells (HUCB-derived MSCs)can differentiate into neuron-like cells,which can be used to treat some central nervous system(CNS)diseases.To investigate the factors,which can induce HUCB-derived MSCs to differentiate into neuron-like cells,so as to find effective methods for future clinical application.DATA SOURCES:Using the key terms"human umbilical cord blood"combined with"mesenchymal stem cells,neuron-like cells,neural cells"respectively,the relevant articles in English published during the period from January 1999 to June 2006 were searched from the Medline database.Meanwhile,relevant Chinese articles published from January 1999 to June 2006 were searched Using the same key terms.STUDY SELECTION: All articles associated with the differentiation from human umbilical cord blood into neuron-like cells were selected firstly.Then the full texts were looked up by searchling Ovid medical Journals full-text database and Elsevier Electrical Journals Full-text Database.Articles with full expeiments,enrolled in inducible factors or involved inducible mechanism were retdeved.DATA EXTRACTION:Among 119 collected correlative articles,29 were involved and 90 were excluded.DATA SYNTHESIS:The inducible factors of HUCB-derived MSCs differentiatling into neuron-like cells included renal endothelial growth factors,fibroblasts,β-mercaptoethanol,dimethyl sulfoxide,butyl hydroxyl anisol,brain-derived neurotrophic factor,Danshen,retinoic acid,sodium ferulate and so on,but its mechanism was unclear.CONCLUSION:Human umbilical cord blood-derived MSCs can differentiate into neuron-like cells,with varied inductors.

  7. Cyclooxygenase-2 inhibitor, celecoxib, inhibits leiomyoma cell proliferation through the nuclear factor κB pathway.

    Science.gov (United States)

    Park, Seung Bin; Jee, Byung Chul; Kim, Seok Hyun; Cho, Yeon Jean; Han, Myoungseok

    2014-09-01

    Our aim was to investigate whether celecoxib, a cyclooxygenase 2 (COX-2) inhibitor, decreases the in vitro proliferation of leiomyoma cells if the inflammatory pathway is blocked. Menstruation is an inflammation of uterus that produces cytokines and prostanoids, but the inflammatory mechanism underlying the growth of leiomyoma remains unexplained. Using in vitro cultures of leiomyoma cells obtained from 5 patients who underwent hysterectomy, cell proliferation, inflammatory signaling, transcription factors, growth factors, and extracellular matrix were examined by (4,5-dimethylthiaxol-2-yi)-2,5-diphenyltetraxolium bromide assay, immunoblotting, and quantitative polymerase chain reaction. Prostaglandin E2 was used to induce menstruation-like condition in the cells. We found that celecoxib inhibited COX-2 through the expression of nuclear factor κB in the cells. Celcoxib also decreased the gene expression of interleukin 6, tumor necrosis factor α, collagen A, fibronectin, platelet-derived growth factor, epidermal growth factor, and transforming growth factor β. In conclusion, the present study indicated that celecoxib could inhibit leiomyoma cell proliferation through blocking the inflammatory pathway that is probably one of the mechanisms underlying its pathogenesis.

  8. Overexpression of G6PD Represents a Potential Prognostic Factor in Clear Cell Renal Cell Carcinoma

    Science.gov (United States)

    Zhang, Qiao; Yi, Xiaojia; Yang, Zhe; Han, Qiaoqiao; Di, Xuesong; Chen, Fufei; Wang, Yanling; Yi, Zihan; Kuang, Yingmin; Zhu, Yuechun

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) participates in glucose metabolism and it acts as the rate-limiting enzyme of the pentose phosphate pathway (PPP). Recently, G6PD dysregulation has been found in a variety of human cancers. Through analyzing published data in The Cancer Genome Atlas (TCGA), our pilot study indicated that G6PD mRNA expression was significantly higher in advanced Fuhrman grade in clear cell renal cell carcinoma (ccRCC). These clues promoted us to further evaluate the expression profile of G6PD and its prognostic impact in patients with ccRCC. In this study, G6PD expression levels were analyzed in 149 human ccRCC and normal tissues using immunohistochemistry. The results showed that compared with that in the normal renal samples, G6PD was found highly expressed in 51.0% of ccRCC (p<0.05). High expression of G6PD was significantly correlated to tumor extent, lymph node metastasis, Fuhrman grade, and TNM stage of ccRCC (all p<0.05). Moreover, positive G6PD expression was associated with poorer overall survival in ccRCC (p<0.001). In Cox regression analyses, high expression of G6PD also could be an independent prognostic factor for overall survival in ccRCC (p=0.007). This study suggests that overexpression of G6PD is associated with advanced disease status and therefore may become an important prognosticator for poor outcomes in ccRCC, as well as a potential therapeutic target for developing effective treatment modalities. PMID:28367246

  9. Glial cell line-derived neurotrophic factor induced the differentiation of amniotic fluid-derived stem cells into vascular endothelial-like cells in vitro.

    Science.gov (United States)

    Zhang, Ruyu; Lu, Ying; Li, Ju; Wang, Jia; Liu, Caixia; Gao, Fang; Sun, Dong

    2016-02-01

    Amniotic fluid-derived stem cells (AFSCs) are a novel source of stem cells that are isolated and cultured from second trimester amniocentesis. Glial cell line-derived neurotrophic factor (GDNF) acts as a tissue morphogen and regulates stem cell proliferation and differentiation. This study investigated the effect of an adenovirus-mediated GDNF gene, which was engineered into AFSCs, on the cells' biological properties and whether GDNF in combination with AFSCs can be directionally differentiated into vascular endothelial-like cells in vitro. AFSCs were isolated and cultured using the plastic adherence method in vitro and identified by the transcription factor Oct-4, which is the primary marker of pluripotent stem cells. AFSCs were efficiently transfected by a GFP-labeled plasmid system of an adenovirus vector carrying the GDNF gene (Ad-GDNF-GFP). Transfected AFSCs stably expressed GDNF. Transfected AFSCs were cultured in endothelial growth medium-2 containing vascular endothelial growth factor. After 1 week, AFSCs were positive for von Willebrand factor (vWF) and CD31, which are markers of endothelial cells, and the recombinant GDNF group was significantly higher than undifferentiated controls and the GFP only group. These results demonstrated that AFSCs differentiated into vascular endothelial-like cells in vitro, and recombinant GDNF promoted differentiation. The differentiation-induced AFSCs may be used as seed cells to provide a new manner of cell and gene therapies for transplantation into the vascular injury site to promote angiogenesis.

  10. The role of NANOG transcriptional factor in the development of malignant phenotype of cancer cells.

    Science.gov (United States)

    Gawlik-Rzemieniewska, Natalia; Bednarek, Ilona

    2016-01-01

    NANOG is a transcription factor that is involved in the self-renewal of embryonic stem cells (ES) and is a critical factor for the maintenance of the undifferentiated state of pluripotent cells. Extensive data in the literature show that the NANOG gene is aberrantly expressed during the development of malignancy in cancer cells. ES and cancer stem cells (CSCs), a subpopulation of cancer cells within the tumor, are thought to share common phenotypic properties. This review describes the role of NANOG in cancer cell proliferation, epithelial-mesenchymal transition (EMT), apoptosis and metastasis. In addition, this paper illustrates a correlation between NANOG and signal transducer and activator of transcription 3 (STAT3) in the maintenance of cancer stem cell properties and multidrug resistance. Together, the available data demonstrate that NANOG is strictly involved in the process of carcinogenesis and is a potential prognostic marker of malignant tumors.

  11. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.

    Science.gov (United States)

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R; Greenleaf, William J; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2015-07-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

  12. The B-domain of factor VIII reduces cell membrane attachement to host cells in serum free conditions

    DEFF Research Database (Denmark)

    Kolind, Mille Petersen; Nørby, Peder Lisby; Flintegaard, Thomas Veje

    2010-01-01

    engineered extensively throughout the years to increase the low production yields that initially were obtained from mammalian cell cultures. The scope of this work was to investigate the interaction of rFVIII with the cell membrane surface of the producing cells in serum free medium. We wondered whether...... binding of rFVIII to the cell membrane could be a factor diminishing the production yield. We studied the contribution of the rFVIII B-domain to membrane attachment by transfecting several constructs containing increasing lengths of the B-domain into cells under serum free conditions. We found that 90......% of rFVIII is attached to the cell membrane of the producing cell when the rFVIII variant contains a short B-domain (21 aa). By increasing the length of the B-domain the membrane attached fraction can be reduced to 50% of the total expressed rFVIII. Further, our studies show that the N...

  13. Kruppel-like factor 4 regulates intestinal epithelial cell morphology and polarity.

    Directory of Open Access Journals (Sweden)

    Tianxin Yu

    Full Text Available Krüppel-like factor 4 (KLF4 is a zinc finger transcription factor that plays a vital role in regulating cell lineage differentiation during development and maintaining epithelial homeostasis in the intestine. In normal intestine, KLF4 is predominantly expressed in the differentiated epithelial cells. It has been identified as a tumor suppressor in colorectal cancer. KLF4 knockout mice demonstrated a decrease in number of goblet cells in the colon, and conditional ablation of KLF4 from the intestinal epithelium led to altered epithelial homeostasis. However, the role of KLF4 in differentiated intestinal cells and colon cancer cells, as well as the mechanism by which it regulates homeostasis and represses tumorigenesis in the intestine is not well understood. In our study, KLF4 was partially depleted in the differentiated intestinal epithelial cells by a tamoxifen-inducible Cre recombinase. We found a significant increase in the number of goblet cells in the KLF4-deleted small intestine, suggesting that KLF4 is not only required for goblet cell differentiation, but also required for maintaining goblet cell numbers through its function in inhibiting cell proliferation. The number and position of Paneth cells also changed. This is consistent with the KLF4 knockout study using villin-Cre [1]. Through immunohistochemistry (IHC staining and statistical analysis, we found that a stem cell and/or tuft cell marker, DCAMKL1, and a proliferation marker, Ki67, are affected by KLF4 depletion, while an enteroendocrine cell marker, neurotensin (NT, was not affected. In addition, we found KLF4 depletion altered the morphology and polarity of the intestinal epithelial cells. Using a three-dimensional (3D intestinal epithelial cyst formation assay, we found that KLF4 is essential for cell polarity and crypt-cyst formation in human colon cancer cells. These findings suggest that, as a tumor suppressor in colorectal cancer, KLF4 affects intestinal epithelial cell

  14. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Directory of Open Access Journals (Sweden)

    Liu-lin Xiong

    2016-01-01

    Full Text Available Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 µg/L to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  15. Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 1α Enhances Myocardial Repair.

    Science.gov (United States)

    Tilokee, Everad L; Latham, Nicholas; Jackson, Robyn; Mayfield, Audrey E; Ye, Bin; Mount, Seth; Lam, Buu-Khanh; Suuronen, Erik J; Ruel, Marc; Stewart, Duncan J; Davis, Darryl R

    2016-07-01

    First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene transfer of stromal-cell derived factor 1α. Unlike previous unsuccessful attempts to increase efficacy by boosting the paracrine signature of cardiac stem cells, cytokine profiling revealed that stromal-cell derived factor 1α over-expression prevented lv-mediated "loss of cytokines" through autocrine stimulation of CXCR4+ cardiac stem cells. Stromal-cell derived factor 1α enhanced angiogenesis and stem cell recruitment while priming cardiac stem cells to readily adopt a cardiac identity. As compared to injection with unmodified cardiac stem cells, transplant of stromal-cell derived factor 1α enhanced cells into immunodeficient mice improved myocardial function and angiogenesis while reducing scarring. Increases in myocardial stromal-cell derived factor 1α content paralleled reductions in myocyte apoptosis but did not influence long-term engraftment or the fate of transplanted cells. Transplantation of stromal-cell derived factor 1α transduced cardiac stem cells increased the generation of new myocytes, recruitment of bone marrow cells, new myocyte/vessel formation and the salvage of reversibly damaged myocardium to enhance cardiac repair after experimental infarction. Stem Cells 2016;34:1826-1835.

  16. Rapamycin promotes Schwann cell migration and nerve growth factor secretion

    OpenAIRE

    Liu, Fang; Zhang, Haiwei; Zhang, Kaiming; Wang, Xinyu; Li, Shipu; Yin, Yixia

    2014-01-01

    Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Schwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more significantly promoted Schwa...

  17. Distinct and shared transcriptomes are regulated by microphthalmia-associated transcription factor isoforms in mast cells.

    Science.gov (United States)

    Shahlaee, Amir H; Brandal, Stephanie; Lee, Youl-Nam; Jie, Chunfa; Takemoto, Clifford M

    2007-01-01

    The Microphthalmia-associated transcription factor (Mitf) is an essential basic helix-loop-helix leucine zipper transcription factor for mast cell development. Mice deficient in Mitf harbor a severe mast cell deficiency, and Mitf-mutant mast cells cultured ex vivo display a number of functional defects. Therefore, an understanding of the genetic program regulated by Mitf may provide important insights into mast cell differentiation. Multiple, distinct isoforms of Mitf have been identified in a variety of cell types; we found that Mitf-a, Mitf-e, and Mitf-mc were the major isoforms expressed in mast cells. To determine the physiologic function of Mitf in mast cells, we restored expression of these isoforms in primary mast cells from Mitf(-/-) mice. We found that these isoforms restored granular morphology and integrin-mediated migration. By microarray analysis, proteases, signaling molecules, cell surface receptor, and transporters comprised the largest groups of genes up-regulated by all isoforms. Furthermore, we found that isoforms also regulated distinct genes sets, suggesting separable biological activities. This work defines the transcriptome regulated by Mitf in mast cells and supports its role as master regulator of mast cell differentiation. Expression of multiple isoforms of this transcription factor may provide for redundancy of biological activities while also allowing diversity of function.

  18. Muscle Atrophy Reversed by Growth Factor Activation of Satellite Cells in a Mouse Muscle Atrophy Model

    DEFF Research Database (Denmark)

    Hauerslev, Simon; Vissing, John; Krag, Thomas O

    2014-01-01

    Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory...... factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth...... control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we...

  19. Organotypic Cultures of Intervertebral Disc Cells: Responses to Growth Factors and Signaling Pathways Involved

    Directory of Open Access Journals (Sweden)

    Harris Pratsinis

    2015-01-01

    Full Text Available Intervertebral disc (IVD degeneration is strongly associated with low back pain, a major cause of disability worldwide. An in-depth understanding of IVD cell physiology is required for the design of novel regenerative therapies. Accordingly, aim of this work was the study of IVD cell responses to mitogenic growth factors in a three-dimensional (3D organotypic milieu, comprising characteristic molecules of IVD’s extracellular matrix. In particular, annulus fibrosus (AF cells were cultured inside collagen type-I gels, while nucleus pulposus (NP cells in chondroitin sulfate A (CSA supplemented collagen gels, and the effects of Platelet-Derived Growth Factor (PDGF, basic Fibroblast Growth Factor (bFGF, and Insulin-Like Growth Factor-I (IGF-I were assessed. All three growth factors stimulated DNA synthesis in both AF and NP 3D cell cultures, with potencies similar to those observed previously in monolayers. CSA supplementation inhibited basal DNA synthesis rates, without affecting the response to growth factors. ERK and Akt were found to be phosphorylated following growth factor stimulation. Blockade of these two signaling pathways using pharmacologic inhibitors significantly, though not completely, inhibited growth factor-induced DNA synthesis. The proposed culture systems may prove useful for further in vitro studies aiming at future interventions for IVD regeneration.

  20. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    Science.gov (United States)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; Topol, Eric J.; Penn, Marc S.

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, pstem-cell homing to injured myocardium and suggest a strategy for directed stem-cell engraftment into injured tissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  1. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h......% of fetal, 20% of neonatal, and 2% of adult chromaffin cells. The ED50 value of IGF-I- and IGF-II-stimulated BrdUrd labeling in neonatal chromaffin cells was 0.3 nM and 0.8 nM, respectively. In neonatal and adult chromaffin cells, addition of 1 nM bFGF or 2 nM NGF stimulated nuclear BrdUrd incorporation...... to approximately the same level as 10 nM IGF-I or IGF-II. However, the response to bFGF or NGF in combination with either IGF-I or IGF-II was more than additive, indicating that the combined effect of the IGFs and bFGF or NGF is synergistic. The degree of synergism was 2- to 4-fold in neonatal chromaffin cells...

  2. A novel monoclonal antibody of human stem cell factor inhibits umbilical cord blood stem cell ex vivo expansion

    Directory of Open Access Journals (Sweden)

    Fan Jie

    2012-12-01

    Full Text Available Abstract Stem cell factor (SCF activates hematopoietic stem cell (HSC self-renewal and is being used to stimulate the ex vivo expansion of HSCs. The mechanism by which SCF supports expansion of HSCs remains poorly understood. In cord blood ex vivo expansion assays, a newly produced anti-SCF monoclonal antibody (clone 23C8 was found to significantly inhibit the expansion of CD34+ cells. This antibody appears to bind directly to a part of SCF that is critical for biological activity toward expansion of CD34+ cells, which is located in the first 104 amino acids from the NH2-terminus.

  3. Diffusible Factors Secreted by Glioblastoma and Medulloblastoma Cells Induce Oxidative Stress in Bystander Neural Stem Progenitors.

    Science.gov (United States)

    Sharma, Neha; Colangelo, Nicholas W; de Toledo, Sonia M; Azzam, Edouard I

    2016-08-01

    Harmful effects that alter the homeostasis of neural stem or progenitor cells (NSPs) can affect regenerative processes in the central nervous system. We investigated the effect of soluble factors secreted by control or (137)Cs-γ-irradiated glioblastoma or medulloblastoma cells on redox-modulated endpoints in recipient human NSPs. Growth medium harvested from the nonirradiated brain tumor cells, following 24 h of growth, induced prominent oxidative stress in recipient NSPs as judged by overall increases in mitochondrial superoxide radical levels (p p21(Waf1) and p27(Kip1), and perturbations in cell cycle progression (p cells to radiation only slightly altered the induced oxidative changes in the bystander NSPs, except for medium from irradiated medulloblastoma cells that was more potent at inducing apoptosis in the NSPs than medium from nonirradiated cells (p cells is often used to support the growth of stem cells.

  4. A Systematic Approach to Identify Candidate Transcription Factors that Control Cell Identity

    Directory of Open Access Journals (Sweden)

    Ana C. D’Alessio

    2015-11-01

    Full Text Available Hundreds of transcription factors (TFs are expressed in each cell type, but cell identity can be induced through the activity of just a small number of core TFs. Systematic identification of these core TFs for a wide variety of cell types is currently lacking and would establish a foundation for understanding the transcriptional control of cell identity in development, disease, and cell-based therapy. Here, we describe a computational approach that generates an atlas of candidate core TFs for a broad spectrum of human cells. The potential impact of the atlas was demonstrated via cellular reprogramming efforts where candidate core TFs proved capable of converting human fibroblasts to retinal pigment epithelial-like cells. These results suggest that candidate core TFs from the atlas will prove a useful starting point for studying transcriptional control of cell identity and reprogramming in many human cell types.

  5. The Drosophila Transcription Factors Tinman and Pannier Activate and Collaborate with Myocyte Enhancer Factor-2 to Promote Heart Cell Fate.

    Directory of Open Access Journals (Sweden)

    TyAnna L Lovato

    Full Text Available Expression of the MADS domain transcription factor Myocyte Enhancer Factor 2 (MEF2 is regulated by numerous and overlapping enhancers which tightly control its transcription in the mesoderm. To understand how Mef2 expression is controlled in the heart, we identified a late stage Mef2 cardiac enhancer that is active in all heart cells beginning at stage 14 of embryonic development. This enhancer is regulated by the NK-homeodomain transcription factor Tinman, and the GATA transcription factor Pannier through both direct and indirect interactions with the enhancer. Since Tinman, Pannier and MEF2 are evolutionarily conserved from Drosophila to vertebrates, and since their vertebrate homologs can convert mouse fibroblast cells to cardiomyocytes in different activator cocktails, we tested whether over-expression of these three factors in vivo could ectopically activate known cardiac marker genes. We found that mesodermal over-expression of Tinman and Pannier resulted in approximately 20% of embryos with ectopic Hand and Sulphonylurea receptor (Sur expression. By adding MEF2 alongside Tinman and Pannier, a dramatic expansion in the expression of Hand and Sur was observed in almost all embryos analyzed. Two additional cardiac markers were also expanded in their expression. Our results demonstrate the ability to initiate ectopic cardiac fate in vivo by the combination of only three members of the conserved Drosophila cardiac transcription network, and provide an opportunity for this genetic model system to be used to dissect the mechanisms of cardiac specification.

  6. Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells

    NARCIS (Netherlands)

    Carey, B.W.; Markoulaki, S.; Hanna, J.H.; Faddah, D.A.; Buganim, Y.; Kim, J.; Ganz, K.; Steine, E.J.; Cassady, J.P.; Creyghton, M.P.; Welstead, G.G.; Gao, Q.; Jaenisch, R.

    2011-01-01

    We compared two genetically highly defined transgenic systems to identify parameters affecting reprogramming of somatic cells to a pluripotent state. Our results demonstrate that the level and stoichiometry of reprogramming factors during the reprogramming process strongly influence the resulting pl

  7. Growth factors and medium hyperglycemia induce Sox9+ ductal cell differentiation into β cells in mice with reversal of diabetes.

    Science.gov (United States)

    Zhang, Mingfeng; Lin, Qing; Qi, Tong; Wang, Tiankun; Chen, Ching-Cheng; Riggs, Arthur D; Zeng, Defu

    2016-01-19

    We previously reported that long-term administration of a low dose of gastrin and epidermal growth factor (GE) augments β-cell neogenesis in late-stage diabetic autoimmune mice after eliminating insulitis by induction of mixed chimerism. However, the source of β-cell neogenesis is still unknown. SRY (sex-determining region Y)-box 9(+) (Sox9(+)) ductal cells in the adult pancreas are clonogenic and can give rise to insulin-producing β cells in an in vitro culture. Whether Sox9(+) ductal cells in the adult pancreas can give rise to β cells in vivo remains controversial. Here, using lineage-tracing with genetic labeling of Insulin- or Sox9-expressing cells, we show that hyperglycemia (>300 mg/dL) is required for inducing Sox9(+) ductal cell differentiation into insulin-producing β cells, and medium hyperglycemia (300-450 mg/dL) in combination with long-term administration of low-dose GE synergistically augments differentiation and is associated with normalization of blood glucose in nonautoimmune diabetic C57BL/6 mice. Short-term administration of high-dose GE cannot augment differentiation, although it can augment preexisting β-cell replication. These results indicate that medium hyperglycemia combined with long-term administration of low-dose GE represents one way to induce Sox9(+) ductal cell differentiation into β cells in adult mice.

  8. Subcutaneous administration of granulocyte colony stimulating factor and stem cell factor ameliorates the outcome of acute myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    LIN Ling; ZHOU Sheng-hua; QI Shu-shan; SHEN Xiang-qian; LIU Qi-ming; FANG Zhen-fei

    2005-01-01

    @@ Orlic et al1 treated mice (splenectomized two weeks ago) with granulocyte colony stimulating factor (G-CSF) and stem cell factor (SCF) for five days before acute myocardium infarction (AMI) and three days after AMI.They found that those treatments could repair infarcted hearts,improve heart performance and decrease mortality.However,from the clinical standpoint,the work of Orlic and his co-workers has an obvious limitation.The strategy of delivering agents before infarction is not practicable because the onset of infarction is unpredictable.Therefore,we delivered the agents after infarction to modify its effect on rats closer to clinical reality.

  9. Further evidence for a human B cell activating factor distinct from IL-4.

    Science.gov (United States)

    Diu, A; Février, M; Mollier, P; Charron, D; Banchereau, J; Reinherz, E L; Thèze, J

    1990-01-01

    Supernatants from activated human T cell clones were previously shown to contain B cell-activating factor (BCAF), an activity which results in polyclonal resting B cell stimulation. In the present study, we investigate the relationship between this activity and human interleukin-4 which was also shown to act on resting B cells. The supernatant of the T cell clone TT9 contains IL-4 but anti-IL-4 antiserum does not affect the response of B cells as measured by thymidine uptake or cell volume increase. Furthermore, IL-4 induces Fc epsilon-receptor (CD23) expression on 30% of unstimulated human B cells, whereas BCAF-containing supernatants from clone P2, that do not contain detectable amounts of IL-4, promote B cell proliferation without inducing CD23 expression. Our results therefore establish that IL-4 and BCAF are distinct activities and suggest that they trigger different activation pathways in human B cells. In addition, culture of B cells with T cell supernatants for 72 hr induces a three- to fourfold increase in the expression of HLA-DR, -DP, and -DQ antigens in 50% of B cells. The addition of inhibiting concentrations of anti-IFN-gamma, LT, or IL-4 antisera to the cultures does not change these results. Finally, 30% of B cells cultured with T cell supernatants leave the G1 phase of the cell cycle and 20% reach mitosis. Taken together, our findings further support the existence of a B cell-activating factor responsible for the activation of resting human B cells.

  10. Systematic identification of yeast cell cycle transcription factors using multiple data sources

    Directory of Open Access Journals (Sweden)

    Li Wen-Hsiung

    2008-12-01

    Full Text Available Abstract Background Eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs that regulate the expression of cell cycle-regulated genes. Results We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor binding site (TFBS, and cell cycle gene expression data. We identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1, Rlm1, Ste12, Stp1, Tec1 are putative novel cell cycle TFs. For each cell cycle TF, we assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes, among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated genes. Most of our predictions are supported by previous experimental or computational studies. Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust. Conclusion Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated genes. Many of our predictions are validated by the literature. Our study shows that integrating multiple data sources is a powerful approach to studying complex biological systems.

  11. Adaptability and variability of the cell functions to the environmental factors

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Tadatoshi [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1995-02-01

    Adaptive phenomenon of the cells to the environmental factors is one of the most important functions of cells. In the initial research program, yeast, Saccharomyces cerevisiae, as model species of eukaryote was selected to use for the experiments and copper sulfate was adopted as one of the ideal environmental factors, and then adaptation mechanisms of yeast cells in the environment surrounded by copper ions were analyzed metabolically and morphologically. Furthermore, in the relationships between environmental factors and the cells, the researches performed were as follows: (1) Induced mutation in the extranuclear-inheritable system: Mutagenic effect of ethidium bromide on mitochondria and plastids. (2) Induction of gene expression by light exposure in the early development of chloroplast in Chlamydomonas reinhardi. (3) Some features of RNA and protein syntheses in thermophilic alga Cyanidium caldarium. (4) Satellite DNA of Ochromonas danica. (5) Analyses of cell functions using various kinds of radiations. (6) Novel methionine requirement of radiation resistant bacterium, Deinococcus radiodurans. (author).

  12. Atrial natriuretic factor inhibits mitogen-induced growth in aortic smooth muscle cells.

    Science.gov (United States)

    Baldini, P M; De Vito, P; Fraziano, M; Mattioli, P; Luly, P; Di Nardo, P

    2002-10-01

    Atrial natriuretic factor (ANF) is a polypeptide able to affect cardiovascular homeostasis exhibiting diuretic, natriuretic, and vasorelaxant activities. ANF shows antimitogenic effects in different cell types acting through R(2) receptor. Excessive proliferation of smooth muscle cells is a common phenomenon in diseases such as atherosclerosis, but the role of growth factors in the mechanism which modulate this process has yet to be clarified. The potential antimitogenic role of ANF on the cell growth induced by growth factors appears very intriguing. Aim of the present study was to investigate the possible involvement of ANF on rat aortic smooth muscle (RASM) cells proliferation induced by known mitogens and the mechanism involved. Our data show that ANF, at physiological concentration range, inhibits RASM cell proliferation induced by known mitogens such as PDGF and insulin, and the effect seems to be elicited through the modulation of phosphatidic acid (PA) production and MAP kinases involvement.

  13. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Kellermeier Silvia

    2010-06-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Methods Expression of EGFR (epithelial growth factor receptor, HGFR (hepatocyte growth factor receptor IGF1R (insulin-like growth factor 1 receptor, IGF2R (insulin-like growth factor 2 receptor and VEGFR1-3 (vascular endothelial growth factor receptor 1-3 were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1. The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. Results EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml, with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D. HuH28, OZ and TFK-1 lacked KRAS mutation. Conclusion CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab.

  14. Sulindac sulfide inhibits colon cancer cell growth and downregulates specificity protein transcription factors

    OpenAIRE

    Li, Xi; Pathi, Satya S.; Safe, Stephen

    2015-01-01

    Background Specificity protein (Sp) transcription factors play pivotal roles in maintaining the phenotypes of many cancers. We hypothesized that the antineoplastic effects of sulindac and its metabolites were due, in part, to targeting downregulation of Sp transcription factors. Methods The functional effects of sulindac, sulindac sulfone and sulindac sulfide on colon cancer cell proliferation were determined by cell counting. Effects of these compounds on expression of Sp1, Sp3, Sp4 and pro-...

  15. Factor VIII and von Willebrand factor co-delivery by endothelial cells

    NARCIS (Netherlands)

    Bouwens, E.A.M.|info:eu-repo/dai/nl/314061894

    2011-01-01

    A defect in coagulation factor VIII (FVIII) results in the inherited bleeding disorder hemophilia A. Current treatment of hemophilia A is hampered by the need of frequent administration of costly FVIII products. Therefore gene therapy is an attractive alternative for protein replacement to treat

  16. Factor VIII and von Willebrand factor co-delivery by endothelial cells

    NARCIS (Netherlands)

    Bouwens, E.A.M.

    2011-01-01

    A defect in coagulation factor VIII (FVIII) results in the inherited bleeding disorder hemophilia A. Current treatment of hemophilia A is hampered by the need of frequent administration of costly FVIII products. Therefore gene therapy is an attractive alternative for protein replacement to treat hem

  17. Tissue factors and differentiation of T helper cells

    DEFF Research Database (Denmark)

    Blom, Lars

    2012-01-01

    allergiske sygedomme, samt at undersøge hvordan disse påvirker sensibiliseringen af ellers uskadelige stoffer. Nyligt publicerede data indikerer, at initieringen og udviklingen af allergiske sygdomme ikke udelukkende er et resultat af et fejlreguleret erhvervet immunforsvar, men sker som et samspil mellem...... cytokiner involveret i allergiske sygdomme. Vi fandt frem til at etableringen af in vitro Th1 og Th2 kulturer er påvirket af flere faktorer såsom renheden af de oprindelige naive CD4+ T kulturer, styrken af T celle receptor aktivering samt aktiveringssystemet. I yderligere forsøg fandt vi, at de etablerede...

  18. ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells

    Directory of Open Access Journals (Sweden)

    Ohshima Koichi

    2011-03-01

    Full Text Available Abstract Background Adult T-cell leukemia (ATL is an aggressive malignancy of CD4+ T-cells caused by human T-cell leukemia virus type 1 (HTLV-1. The HTLV-1 bZIP factor (HBZ gene, which is encoded by the minus strand of the viral genome, is expressed as an antisense transcript in all ATL cases. By using yeast two-hybrid screening, we identified activating transcription factor 3 (ATF3 as an HBZ-interacting protein. ATF3 has been reported to be expressed in ATL cells, but its biological significance is not known. Results Immunoprecipitation analysis confirmed that ATF3 interacts with HBZ. Expression of ATF3 was upregulated in ATL cell lines and fresh ATL cases. Reporter assay revealed that ATF3 could interfere with the HTLV-1 Tax's transactivation of the 5' proviral long terminal repeat (LTR, doing so by affecting the ATF/CRE site, as well as HBZ. Suppressing ATF3 expression inhibited proliferation and strongly reduced the viability of ATL cells. As mechanisms of growth-promoting activity of ATF3, comparative expression profiling of ATF3 knockdown cells identified candidate genes that are critical for the cell cycle and cell death, including cell division cycle 2 (CDC2 and cyclin E2. ATF3 also enhanced p53 transcriptional activity, but this activity was suppressed by HBZ. Conclusions Thus, ATF3 expression has positive and negative effects on the proliferation and survival of ATL cells. HBZ impedes its negative effects, leaving ATF3 to promote proliferation of ATL cells via mechanisms including upregulation of CDC2 and cyclin E2. Both HBZ and ATF3 suppress Tax expression, which enables infected cells to escape the host immune system.

  19. The transcription factor NFAT5 is required for cyclin expression and cell cycle progression in cells exposed to hypertonic stress.

    Directory of Open Access Journals (Sweden)

    Katherine Drews-Elger

    Full Text Available BACKGROUND: Hypertonicity can perturb cellular functions, induce DNA damage-like responses and inhibit proliferation. The transcription factor NFAT5 induces osmoprotective gene products that allow cells to adapt to sustained hypertonic conditions. Although it is known that NFAT5-deficient lymphocytes and renal medullary cells have reduced proliferative capacity and viability under hypertonic stress, less is understood about the contribution of this factor to DNA damage responses and cell cycle regulation. METHODOLOGY/PRINCIPAL FINDINGS: We have generated conditional knockout mice to obtain NFAT5(-/- T lymphocytes, which we used as a model of proliferating cells to study NFAT5-dependent responses. We show that hypertonicity triggered an early, NFAT5-independent, genotoxic stress-like response with induction of p53, p21 and GADD45, downregulation of cyclins, and cell cycle arrest. This was followed by an NFAT5-dependent adaptive phase in wild-type cells, which induced an osmoprotective gene expression program, downregulated stress markers, resumed cyclin expression and proliferation, and displayed enhanced NFAT5 transcriptional activity in S and G2/M. In contrast, NFAT5(-/- cells failed to induce osmoprotective genes and exhibited poorer viability. Although surviving NFAT5(-/- cells downregulated genotoxic stress markers, they underwent cell cycle arrest in G1/S and G2/M, which was associated with reduced expression of cyclins E1, A2 and B1. We also show that pathologic hypertonicity levels, as occurring in plasma of patients and animal models of osmoregulatory disorders, inhibited the induction of cyclins and aurora B kinase in response to T cell receptor stimulation in fresh NFAT5(-/- lymphocytes. CONCLUSIONS/SIGNIFICANCE: We conclude that NFAT5 facilitates cell proliferation under hypertonic conditions by inducing an osmoadaptive response that enables cells to express fundamental regulators needed for cell cycle progression.

  20. The Ets-1 transcription factor controls the development and function of natural regulatory T cells

    Science.gov (United States)

    Mouly, Enguerran; Chemin, Karine; Nguyen, Hai Vu; Chopin, Martine; Mesnard, Laurent; Leite-de-Moraes, Maria; Burlen-defranoux, Odile; Bandeira, Antonio

    2010-01-01

    Regulatory T cells (T reg cells) constitute a population of CD4+ T cells that limits immune responses. The transcription factor Foxp3 is important for determining the development and function of T reg cells; however, the molecular mechanisms that trigger and maintain its expression remain incompletely understood. In this study, we show that mice deficient for the Ets-1 transcription factor (Ets-1−/−) developed T cell–mediated splenomegaly and systemic autoimmunity that can be blocked by functional wild-type T reg cells. Spleens of Ets-1−/− mice contained mostly activated T cells, including Th2-polarized CD4+ cells and had reduced percentages of T reg cells. Splenic and thymic Ets-1−/− T reg cells expressed low levels of Foxp3 and displayed the CD103 marker that characterizes antigen-experienced T reg cells. Thymic development of Ets-1−/− T reg cells appeared intrinsically altered as Foxp3-expressing cells differentiate poorly in mixed fetal liver reconstituted chimera and fetal thymic organ culture. Ets-1−/− T reg cells showed decreased in vitro suppression activity and did not protect Rag2−/− hosts from naive T cell–induced inflammatory bowel disease. Furthermore, in T reg cells, Ets-1 interacted with the Foxp3 intronic enhancer and was required for demethylation of this regulatory sequence. These data demonstrate that Ets-1 is required for the development of natural T reg cells and suggest a role for this transcription factor in the regulation of Foxp3 expression. PMID:20855499

  1. Hypoxia and proinflammatory factors upregulate apelin receptor expression in human stellate cells and hepatocytes.

    Science.gov (United States)

    Melgar-Lesmes, Pedro; Pauta, Montserrat; Reichenbach, Vedrana; Casals, Gregori; Ros, Josefa; Bataller, Ramon; Morales-Ruiz, Manuel; Jiménez, Wladimiro

    2011-10-01

    The activation of the apelin receptor (APJ) plays a major role in both angiogenic and fibrogenic response to chronic liver injury. However, the mechanisms that govern the induction of APJ expression have not been clarified so far. The regulation and the role of APJ in cultured human liver cells were investigated. Tissular expression of APJ and α-smooth muscle actin was analysed by immunocolocalisation in human cirrhotic liver and in control samples. mRNA and protein expression of APJ were analysed in two cell lines, LX-2 (as hepatic stellate cells, HSCs) and HepG2 (as hepatocytes), under hypoxic conditions or after exposure to proinflammatory or profibrogenic factors. Additionally, both hepatic cell lines were stimulated with apelin to assess cell survival and the expression of angiogenic factors. The APJ-positive signal was negligible in control livers. In contrast, APJ was highly expressed in HSCs and slightly expressed in hepatocytes of human cirrhotic liver. Sustained hypoxia and lipopolysaccharide stimulated the expression of APJ in LX-2 cells. Moreover, hypoxia, tumour necrosis factor α and angiotensin II induced the expression of APJ in HepG2 cells. Activation of APJ stimulated angiopoietin-1 expression and cell survival in LX-2 cells and, in turn, triggered the synthesis of vascular endothelial growth factor type A and platelet-derived growth factor-BB in HepG2 cells. These results suggest that hypoxia and inflammatory factors could play a major role in the activation of the hepatic apelin system leading to angiogenic and fibroproliferative response occurring in chronic liver disease.

  2. Modulation of B-cell receptor and microenvironment signaling by a guanine exchange factor in B-cell malignancies

    Institute of Scientific and Technical Information of China (English)

    Wei Liao; Sanjai Sharma

    2016-01-01

    Objective: Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cells over-express a guanine exchange factor (GEF), Rasgrf-1. This GEF increases active Ras as it catalyzes the removal of GDP from Ras so that GTP can bind and activate Ras. This study aims to study the mechanism of action of Rasgrf-1 in B-cell malignancies. Methods: N-terminus truncated Rasgrf-1 variants have a higher GEF activity as compared to the full-length transcript therefore a MCL cell line with stable over-expression of truncated Rasgrf-1 was established. The B-cell receptor (BCR) and chemokine signaling pathways were compared in the Rasgrf-1 over-expressing and a control transfected cell line. Results: Cells over-expressing truncated form of Rasgrf-1 have a higher proliferative rate as compared to control transfected cells. BCR was activated by lower concentrations of anti-IgM antibody in Rasgrf-1 over-expressing cells as compared to control cells indicating that these cells are more sensitive to BCR signaling. BCR signaling also phosphorylates Rasgrf-1 that further increases its GEF function and amplifies BCR signaling. This activation of Rasgrf-1 in over-expressing cells resulted in a higher expression of phospho-ERK, AKT, BTK and PKC-alpha as compared to control cells. Besides BCR, Rasgrf-1 over-expressing cells were also more sensitive to microenvironment stimuli as determined by resistance to apoptosis, chemotaxis and ERK pathway activation. Conclusions: This GEF protein sensitizes B-cells to BCR and chemokine mediated signaling and also upregulates a number of other signaling pathways which promotes growth and survival of these cells.

  3. NFAT1 transcription factor regulates cell cycle progression and cyclin E expression in B lymphocytes.

    Science.gov (United States)

    Teixeira, Leonardo K; Carrossini, Nina; Sécca, Cristiane; Kroll, José E; DaCunha, Déborah C; Faget, Douglas V; Carvalho, Lilian D S; de Souza, Sandro J; Viola, João P B

    2016-09-01

    The NFAT family of transcription factors has been primarily related to T cell development, activation, and differentiation. Further studies have shown that these ubiquitous proteins are observed in many cell types inside and outside the immune system, and are involved in several biological processes, including tumor growth, angiogenesis, and invasiveness. However, the specific role of the NFAT1 family member in naive B cell proliferation remains elusive. Here, we demonstrate that NFAT1 transcription factor controls Cyclin E expression, cell proliferation, and tumor growth in vivo. Specifically, we show that inducible expression of NFAT1 inhibits cell cycle progression, reduces colony formation, and controls tumor growth in nude mice. We also demonstrate that NFAT1-deficient naive B lymphocytes show a hyperproliferative phenotype and high levels of Cyclin E1 and E2 upon BCR stimulation when compared to wild-type B lymphocytes. NFAT1 transcription factor directly regulates Cyclin E expression in B cells, inhibiting the G1/S cell cycle phase transition. Bioinformatics analysis indicates that low levels of NFAT1 correlate with high expression of Cyclin E1 in different human cancers, including Diffuse Large B-cell Lymphomas (DLBCL). Together, our results demonstrate a repressor role for NFAT1 in cell cycle progression and Cyclin E expression in B lymphocytes, and suggest a potential function for NFAT1 protein in B cell malignancies.

  4. Exposure to nerve growth factor worsens nephrotoxic effect induced by Cyclosporine A in HK-2 cells.

    Directory of Open Access Journals (Sweden)

    Donatella Vizza

    Full Text Available Nerve growth factor is a neurotrophin that promotes cell growth, differentiation, survival and death through two different receptors: TrkA(NTR and p75(NTR. Nerve growth factor serum concentrations increase during many inflammatory and autoimmune diseases, glomerulonephritis, chronic kidney disease, end-stage renal disease and, particularly, in renal transplant. Considering that nerve growth factor exerts beneficial effects in the treatment of major central and peripheral neurodegenerative diseases, skin and corneal ulcers, we asked whether nerve growth factor could also exert a role in Cyclosporine A-induced graft nephrotoxicity. Our hypothesis was raised from basic evidence indicating that Cyclosporine A-inhibition of calcineurin-NFAT pathway increases nerve growth factor expression levels. Therefore, we investigated the involvement of nerve growth factor and its receptors in the damage exerted by Cyclosporine A in tubular renal cells, HK-2. Our results showed that in HK-2 cells combined treatment with Cyclosporine A + nerve growth factor induced a significant reduction in cell vitality concomitant with a down-regulation of Cyclin D1 and up-regulation of p21 levels respect to cells treated with Cyclosporine A alone. Moreover functional experiments showed that the co-treatment significantly up-regulated human p21promoter activity by involvement of the Sp1 transcription factor, whose nuclear content was negatively regulated by activated NFATc1. In addition we observed that the combined exposure to Cyclosporine A + nerve growth factor promoted an up-regulation of p75 (NTR and its target genes, p53 and BAD leading to the activation of intrinsic apoptosis. Finally, the chemical inhibition of p75(NTR down-regulated the intrinsic apoptotic signal. We describe two new mechanisms by which nerve growth factor promotes growth arrest and apoptosis in tubular renal cells exposed to Cyclosporine A.

  5. Exposure to Nerve Growth Factor Worsens Nephrotoxic Effect Induced by Cyclosporine A in HK-2 Cells

    Science.gov (United States)

    Lofaro, Danilo; Toteda, Giuseppina; Lupinacci, Simona; Leone, Francesca; Gigliotti, Paolo; Papalia, Teresa; Bonofiglio, Renzo

    2013-01-01

    Nerve growth factor is a neurotrophin that promotes cell growth, differentiation, survival and death through two different receptors: TrkANTR and p75NTR. Nerve growth factor serum concentrations increase during many inflammatory and autoimmune diseases, glomerulonephritis, chronic kidney disease, end-stage renal disease and, particularly, in renal transplant. Considering that nerve growth factor exerts beneficial effects in the treatment of major central and peripheral neurodegenerative diseases, skin and corneal ulcers, we asked whether nerve growth factor could also exert a role in Cyclosporine A-induced graft nephrotoxicity. Our hypothesis was raised from basic evidence indicating that Cyclosporine A-inhibition of calcineurin-NFAT pathway increases nerve growth factor expression levels. Therefore, we investigated the involvement of nerve growth factor and its receptors in the damage exerted by Cyclosporine A in tubular renal cells, HK-2. Our results showed that in HK-2 cells combined treatment with Cyclosporine A + nerve growth factor induced a significant reduction in cell vitality concomitant with a down-regulation of Cyclin D1 and up-regulation of p21 levels respect to cells treated with Cyclosporine A alone. Moreover functional experiments showed that the co-treatment significantly up-regulated human p21promoter activity by involvement of the Sp1 transcription factor, whose nuclear content was negatively regulated by activated NFATc1. In addition we observed that the combined exposure to Cyclosporine A + nerve growth factor promoted an up-regulation of p75 NTR and its target genes, p53 and BAD leading to the activation of intrinsic apoptosis. Finally, the chemical inhibition of p75NTR down-regulated the intrinsic apoptotic signal. We describe two new mechanisms by which nerve growth factor promotes growth arrest and apoptosis in tubular renal cells exposed to Cyclosporine A. PMID:24244623

  6. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Sontag, Ryan L. [Systems Toxicology Groups, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Weber, Thomas J., E-mail: Thomas.Weber@pnl.gov [Systems Toxicology Groups, Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response.

  7. Cholinergic neurons regulate secretion of glial cell line-derived neurotrophic factor by skeletal muscle cells in culture.

    Science.gov (United States)

    Vianney, John-Mary; Spitsbergen, John M

    2011-05-16

    Glial cell line-derived neurotrophic factor (GDNF) has been identified as a potent survival factor for both central and peripheral neurons. GDNF has been shown to be a potent survival factor for motor neurons during programmed cell death and continuous treatment with GDNF maintains hyperinnervation of skeletal muscle in adulthood. However, little is known about factors regulating normal production of endogenous GDNF in skeletal muscle. This study aimed to examine the role that motor neurons play in regulating GDNF secretion by skeletal muscle. A co-culture of skeletal muscle cells (C2C12) and cholinergic neurons, glioma×neuroblastoma hybrid cells (NG108-15) were used to create nerve-muscle interactions in vitro. Acetylcholine receptors (AChRs) on nerve-myotube co-cultures were blocked with alpha-bungarotoxin (α-BTX). GDNF protein content in cells and in culture medium was analyzed by enzyme-linked immunosorbant assay (ELISA) and western blotting. GDNF localization was examined by immunocytochemistry. The nerve-muscle co-culture study indicated that the addition of motor neurons to skeletal muscle cells reduced the secretion of GDNF by skeletal muscle. The results also showed that blocking AChRs with α-BTX reversed the action of neural cells on GDNF secretion by skeletal muscle. Although ELISA results showed no GDNF in differentiated NG108-15 cells grown alone, immunocytochemical analysis showed that GDNF was localized in NG108-15 cells co-cultured with C2C12 myotubes. These results suggest that motor neurons may be regulating their own supply of GDNF secreted by skeletal muscle and that activation of AChRs may be involved in this process. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Bole of macrophage colony-stimulating factor in the differentiation and expansion of monocytes and dendritic cells from CD34(+) progenitor cells

    NARCIS (Netherlands)

    Kamps, AWA; Smit, JW; Vellenga, E

    1999-01-01

    The present study focused on whether it is possible to expand monocytic cells from CD34(+) progenitor cells by using macrophage colony-stimulating factor (M-CSF) in the absence and presence of mast cell growth factor (MGF) and IL-6. It was demonstrated that CD34(+) cells differentiate without expans

  9. A lipochito-oligosaccharide, Nod factor, induces transient calcium influx in soybean suspension-cultured cells.

    Science.gov (United States)

    Yokoyama, T; Kobayashi, N; Kouchi, H; Minamisawa, K; Kaku, H; Tsuchiya, K

    2000-04-01

    Lipochito-oligosaccharides (Nod factors) produced by Rhizobium or Bradyrhizobium are the key signal molecules for eliciting nodulation in their corresponding host legumes. To elucidate the signal transduction events mediated by Nod factors, we investigated the effects of Nod factors on the cytosolic [Ca2+] of protoplasts prepared from roots and suspension-cultured cells of soybean (Glycine max and G. soja) using a fluorescent Ca2+ indicator, Fura-PE3. NodBj-V (C18:1, MeFuc), which is a major component of Nod factors produced by Bradyrhizobium japonicum, induces transient elevation of cytosolic [Ca2+] in the cells of soybean within a few minutes. This effect is specific to soybean cells and was not observed in the tobacco BY-2 cells. Furthermore, NodBj-V without MeFuc did not induce any cytosolic [Ca2+] elevation in soybean cells. Exclusion of Ca2+ from the medium, as well as pre-treatment of the cells with an external Ca2+ chelator or with a plasma membrane voltage-dependent Ca2+ channel inhibitor, suppressed the Nod factor-dependent cytosolic [Ca2+] elevation. These results indicate that transient Ca2+ influx from extracellular fluid is one of the earliest responses of soybean cells to NodBj-V (C18:1, MeFuc) in a host-specific manner.

  10. Transcription factors involved in the regulation of natural killer cell development and function: an update

    Directory of Open Access Journals (Sweden)

    Martha Elia Luevano

    2012-10-01

    Full Text Available Natural Killer (NK cells belong to the innate immune system and are key effectors in the immune response against cancer and infection. Recent studies have contributed to the knowledge of events controlling NK cell fate. The use of knockout mice has enabled the discovery of key transcription factors (TFs essential for NK cell development and function. Yet, unwrapping the downstream targets of these TFs and their influence on NK cells remains a challenge. In this review we discuss the latest TFs described to be involved in the regulation of NK cell development and maturation.

  11. Alternative splicing isoform of T cell factor 4K suppresses the proliferation and metastasis of non-small cell lung cancer cells.

    Science.gov (United States)

    Fan, Y C; Min, L; Chen, H; Liu, Y L

    2015-10-30

    The Wnt pathway has been implicated in the initiation, progression, and metastasis of lung cancer. T cell factor 4, a member of TCF/LEF family, acts as a transcriptional factor for Wnt pathways in lung cancer. Increasing amounts of evidence have shown that TCF-4 has multiple alternative splicing isoforms with transactivation or transrepression activity toward the Wnt pathway. Here, we found the presence of multiple TCF-4 isoforms in lung cancer cell lines and in normal bronchial epithelial cells. TCF-4K isoform expression was significantly decreased in lung cancer cells compared with normal bronchial epithelial cells and was identified as a transcriptional suppressor of the Wnt pathway in non-small cell lung carcinoma (NSCLC). Overexpression of TCF-4K significantly inhibited the proliferation and migration of NSCLC cells. Collectively, our data indicate that TCF-4K functions as a tumor suppressor in NSCLC by down-regulating the Wnt pathway.

  12. T Cell Factor 1-Expressing Memory-like CD8(+) T Cells Sustain the Immune Response to Chronic Viral Infections.

    Science.gov (United States)

    Utzschneider, Daniel T; Charmoy, Mélanie; Chennupati, Vijaykumar; Pousse, Laurène; Ferreira, Daniela Pais; Calderon-Copete, Sandra; Danilo, Maxime; Alfei, Francesca; Hofmann, Maike; Wieland, Dominik; Pradervand, Sylvain; Thimme, Robert; Zehn, Dietmar; Held, Werner

    2016-08-16

    Chronic infections promote the terminal differentiation (or "exhaustion") of T cells and are thought to preclude the formation of memory T cells. In contrast, we discovered a small subpopulation of virus-specific CD8(+) T cells that sustained the T cell response during chronic infections. These cells were defined by, and depended on, the expression of the transcription factor Tcf1. Transcriptome analysis revealed that this population shared key characteristics of central memory cells but lacked an effector signature. Unlike conventional memory cells, Tcf1-expressing T cells displayed hallmarks of an "exhausted" phenotype, including the expression of inhibitory receptors such as PD-1 and Lag-3. This population was crucial for the T cell expansion that occurred in response to inhibitory receptor blockade during chronic infection. These findings identify a memory-like T cell population that sustains T cell responses and is a prime target for therapeutic interventions to improve the immune response in chronic infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The interaction between Sertoli cells and luekemia inhibitory factor on the propagation and differentiation of spermatogonial stem cells in vitro

    Directory of Open Access Journals (Sweden)

    Tayebeh Rastegar

    2015-11-01

    Full Text Available Background: Sertoli cells play a pivotal role in creating microenvironments essential for spermatogonial stem cells (SSCs self-renewal and commitment to differentiation. Maintenance of SSCs and or induction of in vitro spermiogenesis may provide a therapeutic strategy to treat male infertility. Objective: This study investigated the role of luekemia inhibitory factor (LIF on the propagation of SSCs and both functions of Sertoli cells on the proliferation and differentiation of these cells. Materials and Methods: SSCs were sorted from the testes of adult male mice by magnetic activated cell sorting and thymus cell antigen 1 antibody. On the other hand, isolated Sertoli cells were enriched using lectin coated plates. SSCs were cultured on Sertoli cells for 7 days in the absence or presence of LIF. The effects of these conditions were evaluated by microscopy and expression of meiotic and post meiotic transcripts by reverse transcriptase polymerase chain reaction. Results: Our data showed that SSCs co-cultured with Sertoli cells in the presence of LIF formed colonies on top of the Sertoli cells. These colonies had alkaline phosphatesase activity and expressed SSCs specific genes. SSCs were enjoyed limited development after the mere removal of LIF, and exhibiting expression of meiotic and postmeiotic transcript and loss of SSCs specific gene expression (p< 0.05. Conclusion: Our findings represent co-culture of SSCs with Sertoli cells provides conditions that may allow efficient proliferation and differentiation of SSCs for male infertility treatment.

  14. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  15. Amplification of the E2F1 transcription factor gene in the HEL erythroleukemia cell line

    DEFF Research Database (Denmark)

    Saito, M; Helin, K; Valentine, M B;

    1995-01-01

    and overexpressed in HEL erythroleukemia cells and translocated to other chromosomes in several established human leukemia cell lines. This study provides the first evidence of gene amplification involving a member of the E2F family of transcription factors. We propose that E2F1 overexpression in erythroid......The E2F transcription factor plays an important regulatory role in cell proliferation, mediating the expression of genes whose products are essential for inducing resting cells to enter the cell cycle and synthesize DNA. To investigate the possible involvement of E2F in hematopoietic malignancies...... progenitors may stimulate abnormal cell proliferation by overriding negative regulatory signals mediated by tumor suppressor proteins such as pRb....

  16. Bone forming capacity of cell- and growth factor-based constructs at different ectopic implantation sites.

    NARCIS (Netherlands)

    Ma, K.; Yang, F.; Both, Sanne Karijn; Prins, H.J.; Helder, M.N.; Pan, J.; Cui, F.Z.; Jansen, J.A.; van den Beucken, J.J.

    2015-01-01

    The aim of this study was to compare the effect of implantation site (i.e., subcutaneous, SQ vs. intramuscular, IM) on bone forming capacity of cell-based and growth factor-based scaffolds in athymic nude rats after an implantation period of 8 weeks. Cell-based scaffolds consisted of porous

  17. Coagulation Factor Xa inhibits cancer cell migration via Protease-activated receptor-1 activation

    NARCIS (Netherlands)

    Borensztajn, Keren; Bijlsma, Maarten F.; Reitsma, Pieter H.; Peppelenbosch, Maikel R.; Spek, C. Arnold

    2009-01-01

    Cell migration is critically important in (patho) physiological processes. The metastatic potential of cancer cells partly depends on activation of the coagulation cascade. The aim of the present study was to determine whether coagulation factor X (FXa) can regulate the migration and invasion of can

  18. Fibroblast growth factors as regulators of stem cell self-renewal and aging

    NARCIS (Netherlands)

    Yeoh, Joyce S. G.; de Haan, Gerald

    Organ and tissue dysfunction which is readily observable during aging results from a loss of cellular homeostasis and reduced stem cell self-renewal. Over the past 10 years, studies have been aimed at delineating growth factors that will sustain and promote the self-renewal potential of stem cells

  19. T cells activate the tumor necrosis factor-alpha system during hemodialysis, resulting in tachyphylaxis

    NARCIS (Netherlands)

    van Riemsdijk, I C; Baan, C C; Loonen, E H; Knoop, C J; Navarro Betonico, G; Niesters, H G; Zietse, R; Weimar, W

    2001-01-01

    BACKGROUND: The immunosuppressive state of hemodialysis (HD) patients is accompanied by activation of antigen-presenting cell-derived cytokines, for example, tumor necrosis factor-alpha (TNF-alpha), which are required for T-cell activation. To test whether an activated TNF-alpha system results in im

  20. Growth hormone-releasing factor induces c-fos expression in cultured primary pituitary cells

    DEFF Research Database (Denmark)

    Billestrup, Nils; Mitchell, R L; Vale, W;

    1987-01-01

    GH-releasing factor (GRF) and somatostatin regulates the secretion and biosynthesis of GH as well as the proliferation of GH-producing cells. In order to further characterize the mitogenic effect of GRF, we studied the expression of the proto-oncogene c-fos in primary pituitary cells. Maximal...

  1. Fibroblast growth factors as regulators of stem cell self-renewal and aging

    NARCIS (Netherlands)

    Yeoh, Joyce S. G.; de Haan, Gerald

    2007-01-01

    Organ and tissue dysfunction which is readily observable during aging results from a loss of cellular homeostasis and reduced stem cell self-renewal. Over the past 10 years, studies have been aimed at delineating growth factors that will sustain and promote the self-renewal potential of stem cells a

  2. RNA interference inhibits expression of vascular endothelial growth factor (VEGF) in human retinal pigment epithelial cells

    Institute of Scientific and Technical Information of China (English)

    CAI Chun-mei; SUN Bao-chen; LIU Xu-yang; WANG Jin-jin; LI Jun-fa; HAN Song; WANG Ning-li; LU Qing-jun

    2005-01-01

    @@ Choroidal neovascularization (CNV), a major cause of vision loss, is the result of the increased vascular endothelial growth factor (VEGF) expression in human retinal pigment epithelial (RPE) cells. It is important to inhibit the expression of VEGF protein in RPE cells.

  3. Fibroblast growth factors as regulators of stem cell self-renewal and aging

    NARCIS (Netherlands)

    Yeoh, Joyce S. G.; de Haan, Gerald

    2007-01-01

    Organ and tissue dysfunction which is readily observable during aging results from a loss of cellular homeostasis and reduced stem cell self-renewal. Over the past 10 years, studies have been aimed at delineating growth factors that will sustain and promote the self-renewal potential of stem cells a

  4. Preoperative factors associated with red blood cell transfusion in hip fracture patients

    DEFF Research Database (Denmark)

    Madsen, Christian Medom; Jørgensen, Henrik Løvendahl; Norgaard, Astrid

    2014-01-01

    Red blood cell (RBC) transfusion is a frequently used treatment in patients admitted with a fractured hip, but the use remains an area of much debate. The aim of this study was to determine preoperative factors associated with the risk of receiving a red blood cell transfusion in hip fracture...

  5. Stem cell therapeutic possibilities: future therapeutic options for male-factor and female-factor infertility?

    Science.gov (United States)

    Easley, Charles A.; Simerly, Calvin R.; Schatten, Gerald

    2013-01-01

    Recent advances in assisted reproduction treatment have enabled some couples with severe infertility issues to conceive, but the methods are not successful in all cases. Notwithstanding the significant financial burden of assisted reproduction treatment, the emotional scars from an inability to conceive a child enacts a greater toll on affected couples. While methods have circumvented some root causes for male and female infertility, often the underlying causes cannot be treated, thus true cures for restoring a patient’s fertility are limited. Furthermore, the procedures are only available if the affected patients are able to produce gametes. Patients rendered sterile by medical interventions, exposure to toxicants or genetic causes are unable to utilize assisted reproduction to conceive a child – and often resort to donors, where permitted. Stem cells represent a future potential avenue for allowing these sterile patients to produce offspring. Advances in stem cell biology indicate that stem cell replacement therapies or in-vitro differentiation may be on the horizon to treat and could cure male and female infertility, although significant challenges need to be met before this technology can reach clinical practice. This article discusses these advances and describes the impact that these advances may have on treating infertility. PMID:23664220

  6. Storage and regulated secretion of factor VIII in blood outgrowth endothelial cells

    NARCIS (Netherlands)

    van den Biggelaar, M.; Bouwens, E.A.M.; Kootstra, N.A.; Hebbel, R.P.; Voorberg, J.; Mertens, K.

    2009-01-01

    Background Gene therapy provides an attractive alternative for protein replacement therapy in hemophilia A patients. Recent studies have shown the potential benefit of directing factor (F)VIII gene delivery to cells that also express its natural carrier protein von Willebrand factor (VWF). In this

  7. Mast Cell Growth Factor Enhances Multilineage Hematopoietic Recovery in Vivo Following Radiation-Induced Aplasia

    Science.gov (United States)

    1994-01-01

    lymphocyte, monocyte, tributing to morbidity and mortality associated with hemato- eosinophil , and basophil numbers, as well as an increase in...factor (ligand for c-kit) administered in murine mast cell growth factor (c-kit figand) on colony vivo to mice either alone or in combination with granu

  8. Vascular endothelial cell function and cardiovascular risk factors in patients with chronic renal failure

    DEFF Research Database (Denmark)

    Haaber, A B; Eidemak, I; Jensen, T

    1995-01-01

    Cardiovascular risk factors and markers of endothelial cell function were studied in nondiabetic patients with mild to moderate chronic renal failure. The transcapillary escape rate of albumin and the plasma concentrations of von Willebrand factor, fibrinogen, and plasma lipids were measured in 29...

  9. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression

    NARCIS (Netherlands)

    Thurlings, Ingrid; de Bruin, Alain

    2016-01-01

    Initially, the E2F transcription factor was discovered as a factor able to bind the adenovirus E2 promoter and activate viral genes. Afterwards it was shown that E2F also binds to promoters of nonviral genes such as C-MYC and DHFR, which were already known at that time to be important for cell growt

  10. Storage and regulated secretion of factor VIII in blood outgrowth endothelial cells

    NARCIS (Netherlands)

    van den Biggelaar, M.; Bouwens, E.A.M.; Kootstra, N.A.; Hebbel, R.P.; Voorberg, J.; Mertens, K.

    2009-01-01

    Background Gene therapy provides an attractive alternative for protein replacement therapy in hemophilia A patients. Recent studies have shown the potential benefit of directing factor (F)VIII gene delivery to cells that also express its natural carrier protein von Willebrand factor (VWF). In this s

  11. Storage and regulated secretion of factor VIII in blood outgrowth endothelial cells

    NARCIS (Netherlands)

    van den Biggelaar, M.; Bouwens, E.A.M.; Kootstra, N.A.; Hebbel, R.P.; Voorberg, J.; Mertens, K.

    2009-01-01

    Background Gene therapy provides an attractive alternative for protein replacement therapy in hemophilia A patients. Recent studies have shown the potential benefit of directing factor (F)VIII gene delivery to cells that also express its natural carrier protein von Willebrand factor (VWF). In this s

  12. Effect of Human Cytomegalovirus Infection on Nerve Growth Factor Expression in Human Glioma U251 Cells

    Institute of Scientific and Technical Information of China (English)

    HAI-TAO WANG; BIN WANG; ZHI-JUN LIU; ZHI-QIANG BAI; LING LI; HAI-YAN LIU; DONG-MENG QIAN; ZHI-YONG YAN; XU-XIA SONG

    2009-01-01

    Objectives To explore the change of endogenic nerve growth factor (NGF) expression in human glioma cells infected with human cytomegalovirus (HCMV). Methods U251 cells were cultured in RPMI 1640 culture medium and infected with HCMV AD169 strain in vitro to establish a cell model of viral infection. Morphologic changes of U251 cells were observed under inverted microscope before and after infection with HCMV. Expression of NGF gene and protein of cells was detected by RT-PCR and Western blotting before and after infection with HCMV. Results The cytopathic effects of HCMV-infected cells appeared on day 5 after infection. However, differential NGF expression was evident on day 7. NGF expression was decreased significantly in U251 cells on day 7 after infection in comparison with control group (P<0.05). Conclusion HCMV can down-regulate endogenous NGF levels in human glioma cell line U251.

  13. Neutralization of (NK-cell-derived) B-cell activating factor by Belimumab restores sensitivity of chronic lymphoid leukemia cells to direct and Rituximab-induced NK lysis.

    Science.gov (United States)

    Wild, J; Schmiedel, B J; Maurer, A; Raab, S; Prokop, L; Stevanović, S; Dörfel, D; Schneider, P; Salih, H R

    2015-08-01

    Natural killer (NK) cells are cytotoxic lymphocytes that substantially contribute to the therapeutic benefit of antitumor antibodies like Rituximab, a crucial component in the treatment of B-cell malignancies. In chronic lymphocytic leukemia (CLL), the ability of NK cells to lyse the malignant cells and to mediate antibody-dependent cellular cytotoxicity upon Fc receptor stimulation is compromised, but the underlying mechanisms are largely unclear. We report here that NK-cells activation-dependently produce the tumor necrosis factor family member 'B-cell activating factor' (BAFF) in soluble form with no detectable surface expression, also in response to Fc receptor triggering by therapeutic CD20-antibodies. BAFF in turn enhanced the metabolic activity of primary CLL cells and impaired direct and Rituximab-induced lysis of CLL cells without affecting NK reactivity per se. The neutralizing BAFF antibody Belimumab, which is approved for treatment of systemic lupus erythematosus, prevented the effects of BAFF on the metabolism of CLL cells and restored their susceptibility to direct and Rituximab-induced NK-cell killing in allogeneic and autologous experimental systems. Our findings unravel the involvement of BAFF in the resistance of CLL cells to NK-cell antitumor immunity and Rituximab treatment and point to a benefit of combinatory approaches employing BAFF-neutralizing drugs in B-cell malignancies.

  14. C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis

    OpenAIRE

    Inoue, Takao; Sternberg, Paul W.

    2010-01-01

    The control of cell division is critical to organogenesis, but how this control is achieved is not fully understood. We found that mutations in bed-3, encoding a BED Zn-finger domain transcription factor, confer a phenotype where a specific set of cell divisions during vulval organogenesis is lost. Unlike general cell cycle regulators in Caenorhabditis elegans, the function of bed-3 is restricted to specific lineages. Transcriptional reporters suggest that bed-3 is expressed in a limited numb...

  15. Electrical inhibition of lens epithelial cell proliferation: an additional factor in secondary cataract?

    OpenAIRE

    Wang, Entong; Reid, Brian; Lois, Noemi; Forrester, John V.; McCaig, Colin D.; Zhao, Min

    2005-01-01

    Cataract is the most common cause of blindness but is at least curable by surgery. Unfortunately, many patients gradually develop the complication of posterior capsule opacification (PCO) or secondary cataract. This arises from stimulated cell growth within the lens capsule and can greatly impair vision. It is not fully understood why residual lens epithelial cell growth occurs after surgery. We propose and show that cataract surgery might remove an important inhibitory factor for lens cell g...

  16. Density-dependent nerve growth factor regulation of Gs-alpha RNA in pheochromocytoma 12 cells.

    Science.gov (United States)

    Tjaden, G; Aguanno, A; Kumar, R; Benincasa, D; Gubits, R M; Yu, H; Dolan, K P

    1990-01-01

    Nerve growth factor (NGF) affects levels of the alpha subunit of the stimulatory G protein (Gs-alpha) in pheochromocytoma 12 cells in a bidirectional, density-dependent manner. Cells grown at high density responded to NGF treatment with increased levels of Gs-alpha mRNA and protein. Conversely, in cells grown in low-density cultures, levels of this mRNA were lowered by NGF treatment. Images PMID:2160599

  17. B Cell-Activating Factor Regulates Different Aspects of B Cell Functionality and Is Produced by a Subset of Splenic B Cells in Teleost Fish.

    Science.gov (United States)

    Tafalla, Carolina; González, Lucia; Castro, Rosario; Granja, Aitor G

    2017-01-01

    In mammals, B cell functionality is greatly influenced by cytokines released by innate cells, such as macrophages or dendritic cells, upon the early recognition of common pathogen patterns through invariant receptors. B cell-activating factor (BAFF) is one of these innate B cell-helper signals and plays a key role in the survival and differentiation of B cells. Although, evolutionarily, teleost fish constitute the first animal group in which adaptive immunity based on Ig receptors is present, fish still rely greatly on innate responses. In this context, we hypothesized that BAFF would play a key role in the control of B cell responses in fish. Supporting this, our results show that teleost BAFF recapitulates mammalian BAFF stimulating actions on B cells, upregulating the expression of membrane MHC II, improving the survival of fish naïve B cells and antibody-secreting cells, and increasing the secretion of IgM. Surprisingly, we also demonstrate that BAFF is not only produced in fish by myeloid cells but is also produced by a subset of splenic B cells. Thus, if this B cell-produced BAFF proves to be actively regulating this same B cell subset, our findings point to an ancient mechanism to control B cell differentiation and survival in lower vertebrates, which has been silenced in mammals in physiological conditions, but reemerges under pathological conditions, such as B cell lymphomas and autoimmune diseases.

  18. Prognostic factors for survival in metastatic renal cell carcinoma: update 2008.

    Science.gov (United States)

    Bukowski, Ronald M

    2009-05-15

    A variety of prognostic factor models to predict survival in patients with metastatic renal cell carcinoma have been developed. Diverse populations of patients with variable treatments have been used for these analyses. A variety of clinical, pathologic, and molecular factors have been studied, but current models use predominantly easily obtained clinical factors. These approaches are reviewed, and current approaches to further refine and develop these techniques are reviewed.

  19. Stem cell factor and interleukin-2/15 combine to enhance MAPK-mediated proliferation of human natural killer cells

    Science.gov (United States)

    Benson, Don M.; Yu, Jianhua; Becknell, Brian; Wei, Min; Freud, Aharon G.; Ferketich, Amy K.; Trotta, Rossana; Perrotti, Danilo; Briesewitz, Roger

    2009-01-01

    Stem cell factor (SCF) promotes synergistic cellular proliferation in combination with several growth factors, and appears important for normal natural killer (NK)–cell development. CD34+ hematopoietic precursor cells (HPCs) require interleukin-15 (IL-15) for differentiation into human NK cells, and this effect can be mimicked by IL-2. Culture of CD34+ HPCs or some primary human NK cells in IL-2/15 and SCF results in enhanced growth compared with either cytokine alone. The molecular mechanisms responsible for this are unknown and were investigated in the present work. Activation of NK cells by IL-2/15 increases expression of c-kit whose kinase activity is required for synergy with IL-2/15 signaling. Mitogen-activated protein kinase (MAPK) signaling intermediaries that are activated both by SCF and IL-2/15 are enhanced in combination to facilitate earlier cell-cycle entry. The effect results at least in part via enhanced MAPK-mediated modulation of p27 and CDK4. Collectively the data reveal a novel mechanism by which SCF enhances cellular proliferation in combination with IL-2/15 in primary human NK cells. PMID:19060242

  20. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion.

    Science.gov (United States)

    Gorin, Caroline; Rochefort, Gael Y; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Muller, Laurent; Chaussain, Catherine; Germain, Stéphane

    2016-03-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF.

  1. Microbiota promotes systemic T-cell survival through suppression of an apoptotic factor.

    Science.gov (United States)

    Soto, Raymond; Petersen, Charisse; Novis, Camille L; Kubinak, Jason L; Bell, Rickesha; Stephens, W Zac; Lane, Thomas E; Fujinami, Robert S; Bosque, Alberto; O'Connell, Ryan M; Round, June L

    2017-05-23

    Symbiotic microbes impact the severity of a variety of diseases through regulation of T-cell development. However, little is known regarding the molecular mechanisms by which this is accomplished. Here we report that a secreted factor, Erdr1, is regulated by the microbiota to control T-cell apoptosis. Erdr1 expression was identified by transcriptome analysis to be elevated in splenic T cells from germfree and antibiotic-treated mice. Suppression of Erdr1 depends on detection of circulating microbial products by Toll-like receptors on T cells, and this regulation is conserved in human T cells. Erdr1 was found to function as an autocrine factor to induce apoptosis through caspase 3. Consistent with elevated levels of Erdr1, germfree mice have increased splenic T-cell apoptosis. RNA sequencing of Erdr1-overexpressing cells identified the up-regulation of genes involved in Fas-mediated cell death, and Erdr1 fails to induce apoptosis in Fas-deficient cells. Importantly, forced changes in Erdr1 expression levels dictate the survival of auto-reactive T cells and the clinical outcome of neuro-inflammatory autoimmune disease. Cellular survival is a fundamental feature regulating appropriate immune responses. We have identified a mechanism whereby the host integrates signals from the microbiota to control T-cell apoptosis, making regulation of Erdr1 a potential therapeutic target for autoimmune disease.

  2. Effects of transforming growth interacting factor on biological behaviors of gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Zhong-Liang Hu; Ji-Fang Wen; De-Sheng Xiao; Hui Zhen; Chun-Yan Fu

    2005-01-01

    AIM:Transforming growth interacting factor (TGIF) is an inhibitor of both transforming growth factor β (TGF-β) and retinoid signaling pathways. Moreover, the activation of MAPK pathway can prolong its half-life. However, its role in carcinogenesis is still unknown. Thus we attempted to investigate the effect of TGIF on biologic behaviors of gastric carcinoma cells.METHODS: Gastric carcinoma cell line, SGC-7901, was stably transfected with plasmid PcDNA3.1-TGIF. Western blotting and cell immunohistochemistry screening for the highly expressing clone of TGIF were employed. The growth of transfected cells was investigated by MTT and colonyformation assays, and apoptosis was measured by flow cytometry (FCM) and transmission electron microscopy.Tumorigenicity of the transfectant cells was also analyzed.RESULTS: TGIF had no effect on the proliferation, cell cycle and apoptosis of SGC-7901 cells, but cellular organelles of cells transfected with TGIF were richer than those of vector control or parental cells. Its clones were smaller than the control ones in plate efficiency, and its tumor tissues also had no obvious necrosis compared with the vector control or parental cells. Moreover, TGIF could resist TGF-β mediated growth inhibition.CONCLUSION: TGIF may induce differentiation of stomach neoplastic cells. In addition, TGIF can counteract the growth inhibition induced by TGF-β.

  3. Transcription factor Oct1 is a somatic and cancer stem cell determinant.

    Directory of Open Access Journals (Sweden)

    Jessica Maddox

    Full Text Available Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1(HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24(LOCD44(HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDH(HI and dye efflux(HI cells, and increasing Oct1 increases the proportion of ALDH(HI cells. Normal ALDH(HI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function.

  4. Hepatic stellate cells secreted hepatocyte growth factor contributes to the chemoresistance of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Guofeng Yu

    Full Text Available As the main source of extracellular matrix proteins in tumor stroma, hepatic stellate cells (HSCs have a great impact on biological behaviors of hepatocellular carcinoma (HCC. In the present study, we have investigated a mechanism whereby HSCs modulate the chemoresistance of hepatoma cells. We used human HSC line lx-2 and chemotherapeutic agent cisplatin to investigate their effects on human HCC cell line Hep3B. The results showed that cisplatin resistance in Hep3B cells was enhanced with LX-2 CM (cultured medium exposure in vitro as well as co-injection with LX-2 cells in null mice. Meanwhile, in presence of LX-2 CM, Hep3B cells underwent epithelial to mesenchymal transition (EMT and upregulation of cancer stem cell (CSC -like properties. Besides, LX-2 cells synthesized and secreted hepatic growth factor (HGF into the CM. HGF receptor tyrosine kinase mesenchymal-epithelial transition factor (Met was activated in Hep3B cells after LX-2 CM exposure. The HGF level of LX-2 CM could be effectively reduced by using HGF neutralizing antibody. Furthermore, depletion of HGF in LX-2 CM abolished its effects on activation of Met as well as promotion of the EMT, CSC-like features and cisplatin resistance in Hep3B cells. Collectively, secreting HGF into tumor milieu, HSCs may decrease hepatoma cells sensitization to chemotherapeutic agents by promoting EMT and CSC-like features via HGF/Met signaling.

  5. B cell follicle-like structures in multiple sclerosis-with focus on the role of B cell activating factor

    DEFF Research Database (Denmark)

    Morten, Haugen; Frederiksen, Jette L; Vinter, Matilda Degn

    2014-01-01

    B lymphocytes play an important role in the pathogenesis of multiple sclerosis (MS). Follicle-like structures (FLS) have recently been found in the subarachnoid space in the leptomeninges in some patients with secondary progressive MS (SPMS). They contain proliferating B lymphocytes, plasma cells....... In this review, we will discuss the role of FLS in MS pathogenesis and disease course and the possible influence by B cell activating factor (BAFF) and C-X-C motif chemokine 13 (CXCL13)....

  6. Tumor necrosis factor alpha induces spermidine/spermine N1-acetyltransferase through nuclear factor kappaB in non-small cell lung cancer cells.

    Science.gov (United States)

    Babbar, Naveen; Hacker, Amy; Huang, Yi; Casero, Robert A

    2006-08-25

    Tumor necrosis factor alpha (TNFalpha) is a potent pleiotropic cytokine produced by many cells in response to inflammatory stress. The molecular mechanisms responsible for the multiple biological activities of TNFalpha are due to its ability to activate multiple signal transduction pathways, including nuclear factor kappaB (NFkappaB), which plays critical roles in cell proliferation and survival. TNFalpha displays both apoptotic and antiapoptotic properties, depending on the nature of the stimulus and the activation status of certain signaling pathways. Here we show that TNFalpha can lead to the induction of NFkappaB signaling with a concomitant increase in spermidine/spermine N(1)-acetyltransferase (SSAT) expression in A549 and H157 non-small cell lung cancer cells. Induction of SSAT, a stress-inducible gene that encodes a rate-limiting polyamine catabolic enzyme, leads to lower intracellular polyamine contents and has been associated with decreased cell growth and increased apoptosis. Stable overexpression of a mutant, dominant negative IkappaBalpha protein led to the suppression of SSAT induction by TNFalpha in these cells, thereby substantiating a role of NFkappaB in the induction of SSAT by TNFalpha. SSAT promoter deletion constructs led to the identification of three potential NFkappaB response elements in the SSAT gene. Electromobility shift assays, chromatin immunoprecipitation experiments and mutational studies confirmed that two of the three NFkappaB response elements play an important role in the regulation of SSAT in response to TNFalpha. The results of these studies indicate that a common mediator of inflammation can lead to the induction of SSAT expression by activating the NFkappaB signaling pathway in non-small cell lung cancer cells.

  7. Tumor necrosis factor-{alpha} enhanced fusions between oral squamous cell carcinoma cells and endothelial cells via VCAM-1/VLA-4 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kai; Zhu, Fei; Zhang, Han-zhong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); First Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan (China)

    2012-08-15

    Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-{alpha} (TNF-{alpha}) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oral squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-{alpha}-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer-endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-{alpha} could enhance cancer-endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer-endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: Black-Right-Pointing-Pointer Spontaneous oral cancer-endothelial cell fusion. Black-Right-Pointing-Pointer TNF-{alpha} enhanced cell fusions. Black-Right-Pointing-Pointer VCAM-1/VLA-4 expressed in oral cancer. Black-Right-Pointing-Pointer TNF-{alpha} increased expression of VCAM-1 on endothelial cells. Black

  8. Cloning, expression and identification of an isoform of human stromal cell derived factor-1α

    OpenAIRE

    LIANG, YIN-KU; Ping, Wei; BIAN, LIU-JIAO

    2015-01-01

    Human stromal cell derived factor-1α (hSDF-1α), a chemotactic factor of stem cells, regulates inflammation, promotes the mobilization of stem cells and induces angiogenesis following ischemia. Six SDF-1 isoforms, SDF-1α, SDF-1β, SDF-1γ, SDF-1δ, SDF-1ε and SDF-1ϕ, which all contain a signal peptide at the N-terminus, have been reported. In the present study a special isoform of hSDF-1α is described that does not contain the N-terminal signal peptide sequence. The hSDF-1α gene was cloned with t...

  9. Insulin-like growth factor binding protein-5 influences pancreatic cancer cell growth

    Institute of Scientific and Technical Information of China (English)

    Sarah K Johnson; Randy S Haun

    2009-01-01

    AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).METHODS: The effects of IGFBP-5 on cell growth were assessed by stable transfection of BxPC-3 and PANC-1 cell lines and measuring cell number and DNA synthesis. Alterations in the cell cycle were assessed by flow cytometry and immunoblot analyses.Changes in cell survival and signal transduction were evaluated after mitogen activated protein kinase and phosphatidylinositol 3-kinase (PI3K) inhibitor treatment.RESULTS: After serum depr ivat ion, IGFBP-5 expression increased both cell number and DNA synthesis in BxPC-3 cells, but reduced cell number in PANC-1 cells. Consistent with this observation, cell cycle analysis of IGFBP-5-expressing cells revealed accelerated cell cycle progression in BxPC-3 and G2/M arrest of PANC-1 cells. Signal transduction analysis revealed that Akt activation was increased in BxPC-3, but reduced in PANC-1 cells that express IGFBP-5. Inhibition of PI3K with LY294002 suppressed extracellular signal-regulated kinase-1 and -2 (ERK1/2) activation in BxPC-3, but enhanced ERK1/2 activation in PANC-1 cells that express IGFBP-5. When MEK1/2 was blocked, Akt activation remained elevated in IGFBP-5 expressing PaC cells; however, inhibition of PI3K or MEK1/2 abrogated IGFBP-5-mediated cell survival.CONCLUSION: These results indicate that IGFBP-5 expression affects the cell cycle and survival signal pathways and thus it may be an important mediator of PaC cell growth.

  10. Partial purification and characterization of an escherichia coli toxic factor that induces morphological cell alterations.

    OpenAIRE

    Caprioli, A; Falbo, V.; Roda, L G; Ruggeri, F. M.; Zona, C

    1983-01-01

    A factor produced by several strains of Escherichia coli isolated from enteritis-affected children has been shown to produce both a necrotizing effect on rabbit skin and striking morphological alterations on CHO, Vero, and HeLa cells. The same strains were found to have hemolytic activity on sheep erythrocytes. The toxic, cell-altering factor was demonstrated to be different from both heat-labile and heat-stable enterotoxins and from Vero toxin. The main effect induced by the isolated factor ...

  11. Inhibiting cell migration and cell invasion by silencing the transcription factor ETS-1 in human bladder cancer.

    Science.gov (United States)

    Liu, Li; Liu, Yuchen; Zhang, Xintao; Chen, Mingwei; Wu, Hanwei; Lin, Muqi; Zhan, Yonghao; Zhuang, Chengle; Lin, Junhao; Li, Jianfa; Xu, Wen; Fu, Xing; Zhang, Qiaoxia; Sun, Xiaojuan; Zhao, Guoping; Huang, Weiren

    2016-05-03

    As one of the members of the ETS gene family, the transcription factor v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS-1) plays key role in the regulation of physiological processes in normal cells and tumors. In this study, we aimed to investigate the relationship between the transcription factor ETS-1 and malignant phenotypes of bladder cancer. We demonstrated that ETS-1 was up-regulated in human bladder cancer tissue compared to paired normal bladder tissue. In order to evaluate the functional role of ETS-1 in human bladder cancer, vectors expressing ETS-1 shRNA and ETS-1 protein were constructed in vitro and transfected into the human bladder cancer T24 and 5637 cells. Our results showed that the transcription factor ETS-1 could promote cell migration and cell invasion in human bladder cancer, without affecting cell proliferation and apoptosis. In conclusion, ETS-1 plays oncogenic roles through inducing cell migration and invasion in human bladder cancer, and it can be used as a therapeutic target for treating human bladder cancer.

  12. Stem cell expansion during carcinogenesis in stem cell-depleted conditional telomeric repeat factor 2 null mutant mice.

    Science.gov (United States)

    Bojovic, B; Ho, H-Y; Wu, J; Crowe, D L

    2013-10-24

    To examine the role of telomeric repeat-binding factor 2 (TRF2) in epithelial tumorigenesis, we characterized conditional loss of TRF2 expression in the basal layer of mouse epidermis. These mice exhibit some characteristics of dyskeratosis congenita, a human stem cell depletion syndrome caused by telomere dysfunction. The epidermis in conditional TRF2 null mice exhibited DNA damage response and apoptosis, which correlated with stem cell depletion. The stem cell population in conditional TRF2 null epidermis exhibited shorter telomeres than those in control mice. Squamous cell carcinomas induced in conditional TRF2 null mice developed with increased latency and slower growth due to reduced numbers of proliferating cells as the result of increased apoptosis. TRF2 null epidermal stem cells were found in both primary and metastatic tumors. Despite the low-grade phenotype of the conditional TRF2 null primary tumors, the number of metastatic lesions was similar to control cancers. Basal cells from TRF2 null tumors demonstrated extreme telomere shortening and dramatically increased numbers of telomeric signals by fluorescence in situ hybridization due to increased genomic instability and aneuploidy in these cancers. DNA damage response signals were detected at telomeres in TRF2 null tumor cells from these mice. The increased genomic instability in these tumors correlated with eightfold expansion of the transformed stem cell population compared with that in control cancers. We concluded that genomic instability resulting from loss of TRF2 expression provides biological advantages to the cancer stem cell population.

  13. E-cadherin expression increases cell proliferation by regulating energy metabolism through nuclear factor-κB in AGS cells.

    Science.gov (United States)

    Park, Song Yi; Shin, Jee-Hye; Kee, Sun-Ho

    2017-09-01

    β-Catenin is a central player in Wnt signaling, and activation of Wnt signaling is associated with cancer development. E-cadherin in complex with β-catenin mediates cell-cell adhesion, which suppresses β-catenin-dependent Wnt signaling. Recently, a tumor-suppressive role for E-cadherin has been reconsidered, as re-expression of E-cadherin was reported to enhance the metastatic potential of malignant tumors. To explore the role of E-cadherin, we established an E-cadherin-expressing cell line, EC96, from AGS cells that featured undetectable E-cadherin expression and a high level of Wnt signaling. In EC96 cells, E-cadherin re-expression enhanced cell proliferation, although Wnt signaling activity was reduced. Subsequent analysis revealed that nuclear factor-κB (NF-κB) activation and consequent c-myc expression might be involved in E-cadherin expression-mediated cell proliferation. To facilitate rapid proliferation, EC96 cells enhance glucose uptake and produce ATP using both mitochondria oxidative phosphorylation and glycolysis, whereas AGS cells use these mechanisms less efficiently. These events appeared to be mediated by NF-κB activation. Therefore, E-cadherin re-expression and subsequent induction of NF-κB signaling likely enhance energy production and cell proliferation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. The F309S mutation increases factor VIII secretion in human cell line

    Directory of Open Access Journals (Sweden)

    Daianne Maciely Carvalho Fantacini

    2016-06-01

    Full Text Available ABSTRACT OBJECTIVES: The capacity of a human cell line to secrete recombinant factor VIII with a F309S point mutation was investigated, as was the effect of the addition of chemical chaperones (betaine and sodium-4-phenylbutyrate on the secretion of factor VIII. METHODS: This work used a vector with a F309S mutation in the A1 domain to investigate FVIII production in the HEK 293 human cell line. Factor VIII activity was measured by chromogenic assay. Furthermore, the effects of chemical drugs on the culture were evaluated. RESULTS: The addition of the F309S mutation to a previously described FVIII variant increased FVIII secretion by 4.5 fold. Moreover, the addition of betaine or sodium-4-phenylbutyrate increased the secretion rate of FVIIIΔB proteins in HEK 293 cells, but the same effect was not seen for FVIIIΔB-F309S indicating that all the recombinant protein produced had been efficiently secreted. CONCLUSION: Bioengineering factor VIII expressed in human cells may lead to an efficient production of recombinant factor VIII and contribute toward low-cost coagulation factor replacement therapy for hemophilia A. FVIII-F309S produced in human cells can be effective in vivo.

  15. Hepatic Leukemia Factor Promotes Resistance To Cell Death: Implications For Therapeutics and Chronotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J.

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation.

  16. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression.

    Science.gov (United States)

    Thurlings, Ingrid; de Bruin, Alain

    2016-01-01

    Initially, the E2F transcription factor was discovered as a factor able to bind the adenovirus E2 promoter and activate viral genes. Afterwards it was shown that E2F also binds to promoters of nonviral genes such as C-MYC and DHFR, which were already known at that time to be important for cell growth and DNA metabolism, respectively. These findings provided the first clues that the E2F transcription factor might be an important regulator of the cell cycle. Since this initial discovery in 1987, several additional E2F family members have been identified, and more than 100 targets genes have been shown to be directly regulated by E2Fs, the majority of these are important for controlling the cell cycle. The progression of a cell through the cell cycle is accompanied with the increased expression of a specific set of genes during one phase of the cell cycle and the decrease of the same set of genes during a later phase of the cell cycle. This roller coaster ride, or oscillation, of gene expression is essential for the proper progression through the cell cycle to allow accurate DNA replication and cell division. The E2F transcription factors have been shown to be critical for the temporal expression of the oscillating cell cycle genes. This review will focus on how the oscillation of E2Fs and their targets is regulated by transcriptional, post-transcriptional and post-translational mechanism in mammals, yeast, flies, and worms. Furthermore, we will discuss the functional impact of E2Fs on the cell cycle progression and outline the consequences when E2F expression is disturbed.

  17. Purification of replication factors using insect and mammalian cell expression systems.

    Science.gov (United States)

    Uno, Shuji; You, Zhiying; Masai, Hisao

    2012-06-01

    Purification of factors for DNA replication in an amount sufficient for detailed biochemical characterization is essential to elucidating its mechanisms. Insect cell expression systems are commonly used for purification of the factors proven to be difficult to deal with in bacteria. We describe first the detailed protocols for purification of mammalian Mcm complexes including the Mcm2/3/4/5/6/7 heterohexamer expressed in insect cells. We then describe a convenient and economical system in which large-sized proteins and multi-factor complexes can be transiently overexpressed in human 293T cells and be rapidly purified in a large quantity. We describe various expression vectors and detailed methods for transfection and purification of various replication factors which have been difficult to obtain in a sufficient amount in other systems. Availability of efficient methods to overproduce and purify the proteins that have been challenging would facilitate the enzymatic analyses of the processes of DNA replication.

  18. C/EBPβ regulates transcription factors critical for proliferation and survival of multiple myeloma cells

    Science.gov (United States)

    Pal, Rekha; Janz, Martin; Galson, Deborah L.; Gries, Margarete; Li, Shirong; Jöhrens, Korinna; Anagnostopoulos, Ioannis; Dörken, Bernd; Mapara, Markus Y.; Borghesi, Lisa; Kardava, Lela; Roodman, G. David; Milcarek, Christine

    2009-01-01

    CCAAT/enhancer-binding protein β (C/EBPβ), also known as nuclear factor–interleukin-6 (NF-IL6), is a transcription factor that plays an important role in the regulation of growth and differentiation of myeloid and lymphoid cells. Mice deficient in C/EBPβ show impaired generation of B lymphocytes. We show that C/EBPβ regulates transcription factors critical for proliferation and survival in multiple myeloma. Multiple myeloma cell lines and primary multiple myeloma cells strongly expressed C/EBPβ, whereas normal B cells and plasma cells had little or no detectable levels of C/EBPβ. Silencing of C/EBPβ led to down-regulation of transcription factors such as IRF4, XBP1, and BLIMP1 accompanied by a strong inhibition of proliferation. Further, silencing of C/EBPβ led to a complete down-regulation of antiapoptotic B-cell lymphoma 2 (BCL2) expression. In chromatin immunoprecipitation assays, C/EBPβ directly bound to the promoter region of IRF4, BLIMP1, and BCL2. Our data indicate that C/EBPβ is involved in the regulatory network of transcription factors that are critical for plasma cell differentiation and survival. Targeting C/EBPβ may provide a novel therapeutic strategy in the treatment of multiple myeloma. PMID:19717648

  19. Autologous peripheral blood stem cell harvest: Collection efficiency and factors affecting it

    Directory of Open Access Journals (Sweden)

    Aseem K Tiwari

    2016-01-01

    Full Text Available Background: Harvest of hematopoietic progenitor cells via leukapheresis is being used increasingly for transplants in India. Adequate yield of cells per kilogram body weight of recipient is required for successful engraftment. Collection efficiency (CE is an objective quality parameter used to assess the quality of leukapheresis program. In this study, we calculated the CE of the ComTec cell separator (Fresenius Kabi, Germany using two different formulae (CE1 and CE2 and analyzed various patient and procedural factors, which may affect it. Materials and Methods: One hundred and one consecutive procedures in 77 autologous donors carried out over 3 years period were retrospectively reviewed. Various characteristics like gender, age, weight, disease status, hematocrit, preprocedure total leukocyte count, preprocedure CD34 positive (CD34+ cells count, preprocedure absolute CD34+ cell count and processed apheresis volume effect on CE were compared. CE for each procedure was calculated using two different formulae, and results were compared using statistical correlation and regression analysis. Results: The mean CE1 and CE2 was 41.2 and 49.1, respectively. CE2 appeared to be more accurate indicator of overall CE as it considered the impact of continued mobilization of stem cells during apheresis procedure, itself. Of all the factors affecting CE, preprocedure absolute CD34+ was the only independent factor affecting CE. Conclusion: The only factor affecting CE was preprocedure absolute CD34+ cells. Though the mean CE2 was higher than CE1, it was not statistically significant.

  20. Muscle atrophy reversed by growth factor activation of satellite cells in a mouse muscle atrophy model.

    Directory of Open Access Journals (Sweden)

    Simon Hauerslev

    Full Text Available Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we demonstrated that myostatin regulates satellite cell activation and myogenesis in vivo following treatment, consistent with previous findings in vitro. Our results suggest, not only a novel in vivo pharmacological treatment directed specifically at activating the satellite cells, but also a myostatin dependent mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength.

  1. SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells

    Energy Technology Data Exchange (ETDEWEB)

    Noah, Taeko K.; Kazanjian, Avedis [Gastroenterology, Hepatology and Nutrition, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Whitsett, Jeffrey [Developmental Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Neonatology and Pulmonary Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Shroyer, Noah F., E-mail: noah.shroyer@cchmc.org [Gastroenterology, Hepatology and Nutrition, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Developmental Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States)

    2010-02-01

    Background and Aims: SPDEF (also termed PDEF or PSE) is an ETS family transcription factor that regulates gene expression in the prostate and goblet cell hyperplasia in the lung. Spdef has been reported to be expressed in the intestine. In this paper, we identify an important role for Spdef in regulating intestinal epithelial cell homeostasis and differentiation. Methods: SPDEF expression was inhibited in colon cancer cells to determine its ability to control goblet cell gene activation. The effects of transgenic expression of Spdef on intestinal differentiation and homeostasis were determined. Results: In LS174T colon cancer cells treated with Notch/{gamma}-secretase inhibitor to activate goblet cell gene expression, shRNAs that inhibited SPDEF also repressed expression of goblet cell genes AGR2, MUC2, RETLNB, and SPINK4. Transgenic expression of Spdef caused the expansion of intestinal goblet cells and corresponding reduction in Paneth, enteroendocrine, and absorptive enterocytes. Spdef inhibited proliferation of intestinal crypt cells without induction of apoptosis. Prolonged expression of the Spdef transgene caused a progressive reduction in the number of crypts that expressed Spdef, consistent with its inhibitory effects on cell proliferation. Conclusions: Spdef was sufficient to inhibit proliferation of intestinal progenitors and induce differentiation into goblet cells; SPDEF was required for activation of goblet cell associated genes in vitro. These data support a model in which Spdef promotes terminal differentiation into goblet cells of a common goblet/Paneth progenitor.

  2. Effect of leukemia inhibitory factor on embryonic stem cell differentiation: implications for supporting neuronal differentiation

    Institute of Scientific and Technical Information of China (English)

    Zhao HE; Jing-jing LI; Chang-hong ZHEN; Lin-ying FENG; Xiao-yan DING

    2006-01-01

    Aim: Leukemia inhibitory factor (LIF), a pleiotropic cytokine, has been used extensively in the maintenance of mouse embryonic stem cell pluripotency. In this current work, we examined the effect of the LIF signaling pathway in embryonic stem (ES) cell differentiation to a neural fate. Methods: In the presence of LIF (1000 U/mL), the production of neuronal cells derived from embryoid bodies (EB)was tested under various culture conditions. Inhibition of the LIF pathway was examined with specific inhibitors. The effects of cell apoptosis and proliferation on neural differentiation were examined. ES cell differentiation into three-gem layers was compared. Results: Under various culture conditions, neuronal differentiation was increased in the presence of LIF. Blocking the LIF-activated STAT3signaling pathway with specific inhibitors abolished the neuronal differentiation of ES cells, whereas inhibition of the LIF-activated MEK signaling pathway impaired the differentiation of ES cells toward a glial fate. LIF suppressed cell apoptosis and promoted cell proliferation during ES cell differentiation. LIF inhibited the differentiation of ES cells to both mesoderm and extraembryonic endoderm fates, but enhanced the determination of neural progenitors. Conclusion:These results suggest that LIF plays a positive role during the differentiation of ES cells into neuronal cells.

  3. Establishment of forskolin yielding transformed cell suspension cultures of Coleus forskohlii as controlled by different factors.

    Science.gov (United States)

    Mukherjee, S; Ghosh, B; Jha, S

    2000-01-07

    Suspension cultures derived from gall calli which were obtained following infection with Agrobacterium tumefaciens (C58) were established in Coleus forskohlii. Cell line selection following single cell cloning or cell aggregate cloning was carried out to select cell lines capable of fast growth and for producing high level of forskolin. A fast growing cell line (GSO-5/7) thus selected was found to accumulate 0.021% forskolin in 42 days. The effect of cultural conditions on cell growth was studied to identify factors influencing biomass yield. Cell growth in suspension was found to be influenced significantly by carbon source, initial cell density and light or dark condition. Optimal cell growth (20 fold increase in biomass in a 42 day period) was obtained when the cells were grown in dark condition in B5O media containing 3% sucrose as sole carbon source with an initial cell density of 1.5 x 10(5) cells per ml. Forskolin accumulation was maximum (0.021%) in the stationary phase of cell growth. These suspension cultures showed continuous and stable production of forskolin.

  4. The Effects of Environmental Factors on Smooth Muscle Cells Differentiation from Adipose-Derived Stem Cells and Esophagus Tissues Engineering

    DEFF Research Database (Denmark)

    Wang, Fang

    Adipose-derived stem cells (ASCs) are increasingly being used for regenerative medicine and tissue engineering. Smooth muscle cells (SMCs) can be differentiated from ASCs. Oxygen is a key factor influencing the stem cell differentiation. Tissue engineered esophagus has been a preferred solution...... of esophagus was studied. Our results showed that both SMCs and ASCs could attach on the porcine esophageal acellular matrix (EAM) scaffold in vitro after 24 hours and survive until 7 days. Thus ASCs might be a substitute for SMCs in the construction of tissue engineered esophageal muscle layer....

  5. Host Cell Factors in Filovirus Entry: Novel Players, New Insights

    Directory of Open Access Journals (Sweden)

    Stefan Pöhlmann

    2012-11-01

    Full Text Available Filoviruses cause severe hemorrhagic fever in humans with high case-fatality rates. The cellular factors exploited by filoviruses for their spread constitute potential targets for intervention, but are incompletely defined. The viral glycoprotein (GP mediates filovirus entry into host cells. Recent studies revealed important insights into the host cell molecules engaged by GP for cellular entry. The binding of GP to cellular lectins was found to concentrate virions onto susceptible cells and might contribute to the early and sustained infection of macrophages and dendritic cells, important viral targets. Tyrosine kinase receptors were shown to promote macropinocytic uptake of filoviruses into a subset of susceptible cells without binding to GP, while interactions between GP and human T cell Ig mucin 1 (TIM-1 might contribute to filovirus infection of mucosal epithelial cells. Moreover, GP engagement of the cholesterol transporter Niemann-Pick C1 was demonstrated to be essential for GP-mediated fusion of the viral envelope with a host cell membrane. Finally, mutagenic and structural analyses defined GP domains which interact with these host cell factors. Here, we will review the recent progress in elucidating the molecular interactions underlying filovirus entry and discuss their implications for our understanding of the viral cell tropism.

  6. Stress factor – dependent differences in molecular mechanisms of premature cell senescence

    Directory of Open Access Journals (Sweden)

    Petrova N. V.

    2015-10-01

    Full Text Available Cell senescence is an established cell stress response in the form of a permanent proliferation arrest accompanied by a complex phenotype. Senescent cells share several crucial features, such as lack of DNA synthesis, increased senescence-associated β-galactosidase activity and upregulation of cyclin-dependent kinase inhibitors. Most of these universal senescence markers are indicative not only for cell senescence but for other types of growth arrest as well. Along with ubiquitous markers, cell senescence has accessory characteristics, which mostly depend on senescence-inducing stimulus and/or cell type. Here, we review main markers and mechanisms involved in the induction of cell senescence with a focus on stress factor-dependent differences in signaling pathways activated in senescence.

  7. Fibroblast growth factor 9 activates akt and MAPK pathways to stimulate steroidogenesis in mouse leydig cells.

    Science.gov (United States)

    Lai, Meng-Shao; Cheng, Yu-Sheng; Chen, Pei-Rong; Tsai, Shaw-Jenq; Huang, Bu-Miin

    2014-01-01

    Fibroblast growth factor 9 (FGF9) is a multifunctional polypeptide belonging to the FGF family and has functions related to bone formation, lens-fiber differentiation, nerve development, gap-junction formation and sex determination. In a previous study, we demonstrated that FGF9 stimulates the production of testosterone in mouse Leydig cells. In the present study, we used both primary mouse Leydig cells and MA-10 mouse Leydig tumor cells to further investigate the molecular mechanism of FGF9-stimulated steroidogenesis. Results showed that FGF9 significantly activated steroidogenesis in both mouse primary and tumor Leydig cells (psteroidogenesis in mouse Leydig cells. In conclusion, FGF9 specifically activated the Akt and ERK1/2 in normal mouse Leydig cells and the Akt, JNK and ERK1/2 in MA-10 mouse Leydig tumor cells to stimulate steroidogenesis.

  8. Hypoxia inducible factor 1α promotes survival of mesenchymal stem cells under hypoxia

    Science.gov (United States)

    Lv, Bingke; Li, Feng; Fang, Jie; Xu, Limin; Sun, Chengmei; Han, Jianbang; Hua, Tian; Zhang, Zhongfei; Feng, Zhiming; Jiang, Xiaodan

    2017-01-01

    Mesenchymal stem cells (MSCs) are ideal materials for cell therapy. Research has indicated that hypoxia benefits MSC survival, but little is known about the underlying mechanism. This study aims to uncover potential mechanisms involving hypoxia inducible factor 1α (HIF1A) to explain the promoted MSC survival under hypoxia. MSCs were obtained from Sprague-Dawley rats and cultured under normoxia or hypoxia condition. The overexpression vector or small interfering RNA of Hif1a gene was transfected to MSCs, after which cell viability, apoptosis and expression of HIF1A were analyzed by MTT assay, flow cytometry, qRT-PCR and Western blot. Factors in p53 pathway were detected to reveal the related mechanisms. Results showed that hypoxia elevated MSCs viability and up-regulated HIF1A (P cell CLL/lymphoma 2 (BCL2) expression had the opposite pattern (P cell therapy.

  9. Inactivation of the transforming growth factor beta type II receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Hougaard, S; Nørgaard, P; Abrahamsen, N;

    1999-01-01

    Transforming growth factor beta (TGF-beta) exerts a growth inhibitory effect on many cell types through binding to two types of receptors, the type I and II receptors. Resistance to TGF-beta due to lack of type II receptor (RII) has been described in some cancer types including small cell lung...... cancer (SCLC). The purpose of this study was to examine the cause of absent RII expression in SCLC cell lines. Northern blot analysis showed that RII RNA expression was very weak in 16 of 21 cell lines. To investigate if the absence of RII transcript was due to mutations, we screened the poly-A tract...... for mutations, but no mutations were detected. Additional screening for mutations of the RII gene revealed a GG to TT base substitution in one cell line, which did not express RII. This mutation generates a stop codon resulting in predicted synthesis of a truncated RII of 219 amino acids. The nature...

  10. Effects of enamel matrix derivative and transforming growth factor-β1 on human osteoblastic cells

    Directory of Open Access Journals (Sweden)

    Rosa Adalberto L

    2011-07-01

    Full Text Available Abstract Background Extracellular matrix proteins are key factors that influence the regenerative capacity of tissues. The objective of the present study was to evaluate the effects of enamel matrix derivative (EMD, TGF-β1, and the combination of both factors (EMD+TGF-β1 on human osteoblastic cell cultures. Methods Cells were obtained from alveolar bone of three adult patients using enzymatic digestion. Effects of EMD, TGF-β1, or a combination of both were analyzed on cell proliferation, bone sialoprotein (BSP, osteopontin (OPN and alkaline phosphatase (ALP immunodetection, total protein synthesis, ALP activity and bone-like nodule formation. Results All treatments significantly increased cell proliferation compared to the control group at 24 h and 4 days. At day 7, EMD group showed higher cell proliferation compared to TGF-β1, EMD + TGF-β1 and the control group. OPN was detected in the majority of the cells for all groups, whereas fluorescence intensities for ALP labeling were greater in the control than in treated groups; BSP was not detected in all groups. All treatments decreased ALP levels at 7 and 14 days and bone-like nodule formation at 21 days compared to the control group. Conclusions The exposure of human osteoblastic cells to EMD, TGF-β1 and the combination of factors in vitro supports the development of a less differentiated phenotype, with enhanced proliferative activity and total cell number, and reduced ALP activity levels and matrix mineralization.

  11. Recruitment of Factor H to the Streptococcus suis Cell Surface is Multifactorial

    Directory of Open Access Journals (Sweden)

    David Roy

    2016-07-01

    Full Text Available Streptococcus suis is an important bacterial swine pathogen and a zoonotic agent. Recently, two surface proteins of S. suis, Fhb and Fhbp, have been described for their capacity to bind factor H—a soluble complement regulatory protein that protects host cells from complement-mediated damages. Results obtained in this study showed an important role of host factor H in the adhesion of S. suis to epithelial and endothelial cells. Both Fhb and Fhbp play, to a certain extent, a role in such increased factor H-dependent adhesion. The capsular polysaccharide (CPS of S. suis, independently of the presence of its sialic acid moiety, was also shown to be involved in the recruitment of factor H. However, a triple mutant lacking Fhb, Fhbp and CPS was still able to recruit factor H resulting in the degradation of C3b in the presence of factor I. In the presence of complement factors, the double mutant lacking Fhb and Fhbp was similarly phagocytosed by human macrophages and killed by pig blood when compared to the wild-type strain. In conclusion, this study suggests that recruitment of factor H to the S. suis cell surface is multifactorial and redundant.

  12. Recruitment of Factor H to the Streptococcus suis Cell Surface is Multifactorial.

    Science.gov (United States)

    Roy, David; Grenier, Daniel; Segura, Mariela; Mathieu-Denoncourt, Annabelle; Gottschalk, Marcelo

    2016-07-07

    Streptococcus suis is an important bacterial swine pathogen and a zoonotic agent. Recently, two surface proteins of S. suis, Fhb and Fhbp, have been described for their capacity to bind factor H-a soluble complement regulatory protein that protects host cells from complement-mediated damages. Results obtained in this study showed an important role of host factor H in the adhesion of S. suis to epithelial and endothelial cells. Both Fhb and Fhbp play, to a certain extent, a role in such increased factor H-dependent adhesion. The capsular polysaccharide (CPS) of S. suis, independently of the presence of its sialic acid moiety, was also shown to be involved in the recruitment of factor H. However, a triple mutant lacking Fhb, Fhbp and CPS was still able to recruit factor H resulting in the degradation of C3b in the presence of factor I. In the presence of complement factors, the double mutant lacking Fhb and Fhbp was similarly phagocytosed by human macrophages and killed by pig blood when compared to the wild-type strain. In conclusion, this study suggests that recruitment of factor H to the S. suis cell surface is multifactorial and redundant.

  13. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    Directory of Open Access Journals (Sweden)

    Tsutomu Motohashi

    2016-03-01

    Full Text Available Neural crest cells (NC cells are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+ cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells.

  14. Interaction between x-irradiated plateau-phase bone marrow stromal cell lines and co-cultivated factor-dependent cell lines leading to leukemogenesis in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Naparstek, E.; Anklesaria, P.; FitzGerald, T.J.; Sakakeeny, M.A.; Greenberger, J.S.

    1987-03-01

    Plateau-phase mouse clonal bone marrow stromal cell lines D2XRII and C3H cl 11 produce decreasing levels of M-CSF (CSF-1), a specific macrophage progenitor cell humoral regulator, following X-irradiation in vitro. The decrease did not go below 40% of control levels, even after irradiation doses of 50,000 rad (500 Gy). In contrast, a distinct humoral regulator stimulating growth of GM-CSF/IL-3 factor-dependent (FD) hematopoietic progenitor cell lines was detected following radiation to doses above 2000 rad. This humoral factor was not detectable in conditioned medium from irradiated cells, weakly detected using factor-dependent target cell populations in agar overlay, and was prominently detected by liquid co-cultivation of factor-dependent cells with irradiated stromal cell cultures. Subclonal lines of FD cells, derived after co-cultivation revealed karyotypic abnormalities and induced myeloblastic tumors in syngeneic mice. Five-eight weeks co-cultivation was required for induction of factor independence and malignancy and was associated with dense cell to cell contact between FD cells and stromal cells demonstrated by light and electron microscopy. Increases in hematopoietic to stromal cell surface area, total number of adherent cells per flask, total non-adherent cell colonies per flask, and cumulative non-adherent cell production were observed after irradiation. The present data may prove very relevant to an understanding of the cell to cell interactions during X-irradiation-induced leukemia.

  15. BASAL TISSUE FACTOR EXPRESSION IN ENDOTHELIAL-CELL CULTURES IS CAUSED BY CONTAMINATING SMOOTH-MUSCLE CELLS - REDUCTION BY USING CHYMOTRYPSIN INSTEAD OF COLLAGENASE

    NARCIS (Netherlands)

    MULDER, AB; BLOM, NR; SMIT, JW; RUITERS, MHJ; VANDERMEER, J; HALIE, MR; BOM, VJJ

    1995-01-01

    A discrepancy exists between basal tissue factor (TF) expression found in endothelial cell cultures and the failure to detect TF in unpertubated endothelial cells in vivo. We demonstrated that basal TF expression in endothelial cell cultures originated from contaminating cells. These cells were ultr

  16. Cell surface syndecan-1 contributes to binding and function of macrophage migration inhibitory factor (MIF) on epithelial tumor cells.

    Science.gov (United States)

    Pasqualon, Tobias; Lue, Hongqi; Groening, Sabine; Pruessmeyer, Jessica; Jahr, Holger; Denecke, Bernd; Bernhagen, Jürgen; Ludwig, Andreas

    2016-04-01

    Surface expressed proteoglycans mediate the binding of cytokines and chemokines to the cell surface and promote migration of various tumor cell types including epithelial tumor cells. We here demonstrate that binding of the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) to epithelial lung and breast tumor cell lines A549 and MDA-MB231 is sensitive to enzymatic digestion of heparan sulphate chains and competitive inhibition with heparin. Moreover, MIF interaction with heparin was confirmed by chromatography and a structural comparison indicated a possible heparin binding site. These results suggested that proteoglycans carrying heparan sulphate chains are involved in MIF binding. Using shRNA-mediated gene silencing, we identified syndecan-1 as the predominant proteoglycan required for the interaction with MIF. MIF binding was decreased by induction of proteolytic shedding of syndecan-1, which could be prevented by inhibition of the metalloproteinases involved in this process. Finally, MIF induced the chemotactic migration of A549 cells, wound closure and invasion into matrigel without affecting cell proliferation. These MIF-induced responses were abrogated by heparin or by silencing of syndecan-1. Thus, our study indicates that syndecan-1 on epithelial tumor cells promotes MIF binding and MIF-mediated cell migration. This may represent a relevant mechanism through which MIF enhances tumor cell motility and metastasis.

  17. In vivo isolation and characterization of stem cells with diverse phenotypes using growth factor impregnated biomatrices.

    Directory of Open Access Journals (Sweden)

    Annalisa Grimaldi

    Full Text Available BACKGROUND: The stimulation to differentiate into specific cell types for somatic stem cells is largely due to a series of internal and external signals coming from the microenvironment that surrounds the stem cell. Even though intensive research has been made, the basic mechanisms of plasticity and/or the molecules regulating stem cells proliferation and differentiation are not completely determined. Potential answers concerning the problems could be derived from the studies of stem cells in culture. METHODOLOGY/PRINCIPLE FINDINGS: We combine a new procedure (using the matrigel biopolymer supplemented with a selected cytokine/growth factor with classic techniques such as light, confocal and electron microscopy, immunohistochemistry and cell culture, to perform an analysis on stem cells involved in the leech (Hirudo medicinalis repair tissues. The leech has a relative anatomical simplicity and is a reliable model for studying a variety of basic events, such as tissue repair, which has a striking similarity with vertebrate responses. Our data demonstrate that the injection of an appropriate combination of the matrigel biopolymer supplemented with a selected cytokine/growth factor in the leech Hirudo medicinalis is a remarkably effective tool for isolating a specific cell population in vivo. A comparative analysis of biopolymer in vivo sorted stem cells indicates that VEGF recruited cells of a hematopoietic/endothelial phenotype whereas MCP-1/CCL2 isolated cells that were of an early myeloid lineage. CONCLUSION: Our paper describes, for the first time, a method allowing not only the isolation of a specific cell population in relation to the cytokine utilized but also the possibility to culture a precise cell type whose isolation is otherwise quite difficult. This approach could be broadly applied to isolate stem cells of diverse origins based on the recruitment stimuli employed.

  18. Induction of tumor necrosis factor expression and resistance in a human breast tumor cell line.

    OpenAIRE

    Spriggs, D; Imamura, K; Rodriguez, C; Horiguchi, J; Kufe, D W

    1987-01-01

    Tumor necrosis factor (TNF) is a polypeptide cytokine that is cytotoxic to some but not all tumor cells. The basis for resistance to the cytotoxic effects of this agent remains unclear. We have studied the development of TNF resistance in human ZR-75-1 breast carcinoma cells. ZR-75-1 cells have undetectable levels of TNF RNA and protein. However, TNF transcripts are transiently induced in these cells by exposure to recombinant human TNF. This induction of TNF RNA is associated with production...

  19. Neutrophil Recruitment by Tumor Necrosis Factor from Mast Cells in Immune Complex Peritonitis

    Science.gov (United States)

    Zhang, Yan; Ramos, Bernard F.; Jakschik, Barbara A.

    1992-12-01

    During generalized immune complex-induced inflammation of the peritoneal cavity, two peaks of tumor necrosis factor (TNF) were observed in the peritoneal exudate of normal mice. In mast cell-deficient mice, the first peak was undetected, and the second peak of TNF and neutrophil influx were significantly reduced. Antibody to TNF significantly inhibited neutrophil infiltration in normal but not in mast cell-deficient mice. Mast cell repletion of the latter normalized TNF, neutrophil mobilization, and the effect of the antibody to TNF. Thus, in vivo, mast cells produce the TNF that augments neutrophil emigration.

  20. Rat Testicular Germ Cells and Sertoli Cells Release Different Types of Bioactive Transforming Growth Factor-B in vitro

    NARCIS (Netherlands)

    Haagmans, B.L.; Hoogerbrugge, J.W.; Themmen, A.P.N.; Teerds, K.J.

    2003-01-01

    Several in vivo studies have reported the presence of immunoreactive transforming growth factor-ß's (TGF-ß's) in testicular cells at defined stages of their differentiation. The most pronounced changes in TGF-ß1 and TGF-ß2 immunoreactivity occurred during spermatogenesis. In the present study we hav

  1. Rat testicular germ cells and sertoli cells release different types of bioactive transforming growth factor beta in vitro

    NARCIS (Netherlands)

    B.L. Haagmans (Bart); J.W. Hoogerbrugge (Jos); A.P.N. Themmen (Axel); K.J. Teerds (Katja)

    2003-01-01

    textabstractSeveral in vivo studies have reported the presence of immunoreactive transforming growth factor-β's (TGF-β's) in testicular cells at defined stages of their differentiation. The most pronounced changes in TGF-β1 and TGF-β2 immunoreactivity occurred during spermatogenesis. In the present

  2. HEAT SHOCK FACTOR 1-MEDIATED THERMOTOLERANCE PREVENTS CELL DEATH AND RESULTS IN G2/M CELL CYCLE ARREST

    Science.gov (United States)

    Mammalian cells respond to stress by activating heat shock transcription factors (e.g., HSF1) that regulate increased synthesis of heat shock proteins (HSPs). HSPs mediate protection from deleterious effects of stress by preventing permanent disruption of normal cellular mitosis...

  3. HEAT SHOCK FACTOR 1-MEDIATED THERMOTOLERANCE PREVENTS CELL DEATH AND RESULTS IN G2/M CELL CYCLE ARREST

    Science.gov (United States)

    Mammalian cells respond to stress by activating heat shock transcription factors (e.g., HSF1) that regulate increased synthesis of heat shock proteins (HSPs). HSPs mediate protection from deleterious effects of stress by preventing permanent disruption of normal cellular mitosis...

  4. [Regulation of in vitro and in vivo differentiation of mouse embryonic stem cells, embryonic germ cells, and teratocarcinoma cells by TGFb family signaling factors].

    Science.gov (United States)

    Gordeeva, O F; Nikonova, T M; Lifantseva, N V

    2009-01-01

    The activity of specific signaling and transcription factors determines the cell fate in normal development and in tumor transformation. The transcriptional profiles of gene-components of different branches of TGFbeta family signaling pathways were studied in experimental models of initial stages of three-dimensional in vitro differentiation of embryonic stem cells, embryonic germ cells and teratocarcinoma cells and in teratomas and teratocarcinomas developed after their transplantation into immunodeficient Nude mice. Gene profile analysis of studied cell systems have revealed that expression patterns of ActivinA, Nodal, Lefty1, Lefty2, TGF TGFbeta1, BMP4, and GDF were identical in pluripotent stem cells whereas the mRNAs of all examined genes with the exception of Inhibin betaA/ActivinA were detected in the teratocarcinoma cells. These results indicate that differential activity of signaling pathways of the TGFbeta family factors regulates pluripotent state maintenance and pluripotent stem cell differentiation into the progenitors of three germ layers and extraembryonic structures and that normal expression pattern of TGFbeta family factors is rearranged in embryonic teratocarcinoma cells during tumor growth in vitro and in vivo.

  5. Delivery of differentiation factors by mesoporous silica particles assists advanced differentiation of transplanted murine embryonic stem cells

    DEFF Research Database (Denmark)

    Garcia-Bennett, Alfonso E; Kozhevnikova, Mariya; König, Niclas;

    2013-01-01

    Stem cell transplantation holds great hope for the replacement of damaged cells in the nervous system. However, poor long-term survival after transplantation and insufficiently robust differentiation of stem cells into specialized cell types in vivo remain major obstacles for clinical application...... neurotrophic factor and glial cell line-derived neurotrophic factor, respectively, with these particles enabled not only robust functional differentiation of motor neurons from transplanted embryonic stem cells but also their long-term survival in vivo. We propose that the delivery of growth factors...... by mesoporous nanoparticles is a potentially versatile and widely applicable strategy for efficient differentiation and functional integration of stem cell derivatives upon transplantation....

  6. Expression of cell cycle regulating factor mRNA in small cell lung cancer xenografts

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1998-01-01

    We have investigated the expression of cyclins, cyclin dependent kinases (CDK), and CDK inhibitors (CKI) at the mRNA level in a panel of small-cell lung cancer (SCLC) cell lines in vitro and in vivo as xenografts in nude mice. The results showed that the cell lines expressed varying amounts of most...... cyclin and CDK's but only a few of the cell lines expressed cyclin D1 and/or D2 and some lacked expression of CDK6. Most cell lines expressed mRNA for the CKI's but two cell lines lacked expression of P15INK4B and p16INK4A. The mRNA expression differed for a few of the cell lines regarding cyclin D2...... and CDK6 when in vitro and in vivo data were compared. Two of the cell lines that express the retinoblastoma (Rb) protein had no sign of a deregulated Rb pathway but further studies at the protein level are necessary to demonstrate whether these two cell lines should have a normal Rb pathway or whether...

  7. ENHANCEMENT OF NIH3T3 CELL PROLIFERATION BY EXPRESSING MACROPHAGE COLONY STIMULATING FACTOR IN NUCLEI

    Institute of Scientific and Technical Information of China (English)

    曹震宇; 吴克复; 李戈; 林永敏; 张斌; 郑国光

    2003-01-01

    Objective: To explore the effects of nuclear M-CSF on the process of tumorigenesis. Methods: Functional part of M-CSF cDNA was inserted into an eukaryotic expression plasmid pCMV/myc/nuc, which can add three NLS to the C-terminal of the expressed protein and direct the protein into the cell nuclei. The constructed plasmid was transferred into NIH3T3 cells and the cell clones were selected by G-418 selection. Cell clones stable expressing target protein were identified by RT-PCR, ABC immunohistochemistry assay and Western blot. Cell growth kinetics analyses through growth curves, cell doubling time, MTT test and anti-sense oligodeoxynucleotide (ASODN) inhibiting cell growth test were performed to identify cells proliferation potential. Results: The transfected cells showed elevated proliferation potential over the control cells. Conclusion: Abnormal appearance of M-CSF in nucleus could enhance cell proliferation, which suggests that cytokine isoforms within cell nucleus might play transcription factor-like role.

  8. A quorum-sensing factor in vegetative Dictyostelium discoideum cells revealed by quantitative migration analysis.

    Directory of Open Access Journals (Sweden)

    Laurent Golé

    Full Text Available BACKGROUND: Many cells communicate through the production of diffusible signaling molecules that accumulate and once a critical concentration has been reached, can activate or repress a number of target genes in a process termed quorum sensing (QS. In the social amoeba Dictyostelium discoideum, QS plays an important role during development. However little is known about its effect on cell migration especially in the growth phase. METHODS AND FINDINGS: To investigate the role of cell density on cell migration in the growth phase, we use multisite timelapse microscopy and automated cell tracking. This analysis reveals a high heterogeneity within a given cell population, and the necessity to use large data sets to draw reliable conclusions on cell motion. In average, motion is persistent for short periods of time (t ≤ 5 min, but normal diffusive behavior is recovered over longer time periods. The persistence times are positively correlated with the migrated distances. Interestingly, the migrated distance decreases as well with cell density. The adaptation of cell migration to cell density highlights the role of a secreted quorum sensing factor (QSF on cell migration. Using a simple model describing the balance between the rate of QSF generation and the rate of QSF dilution, we were able to gather all experimental results into a single master curve, showing a sharp cell transition between high and low motile behaviors with increasing QSF. CONCLUSION: This study unambiguously demonstrates the central role played by QSF on amoeboid motion in the growth phase.

  9. SNS-032 Prevents Tumor Cell-Induced Angiogenesis By Inhibiting Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    M. Aktar Ali

    2007-05-01

    Full Text Available Cell proliferation, migration, and capillary network formation of endothelial cells are the fundamental steps for angiogenesis, which involves the formation of new blood vessels. The purpose of this study is to investigate the effect of a novel aminothiazole SNS-032 on these critical steps for in vitro angiogenesis using a coculture system consisting of human umbilical vein endothelial cells (HUVECs and human glioblastoma cells (U87MG. SNS-032 is a potent selective inhibitor of cyclin-dependent kinases 2, 7, and 9, and inhibits both transcription and cell cycle. In this study, we examined the proliferation and viability of HUVECs and U87MG cells in the presence of SNS-032 and observed a dose-dependent inhibition of cellular proliferation in both cell lines. SNS-032 inhibited threedimensional capillary network formations of endothelial cells. In a coculture study, SNS-032 completely prevented U87MG cell-mediated capillary formation of HUVECs. This inhibitor also prevented the migration of HUVECs when cultured alone or cocultured with U87MG cells. In addition, SNS-032 significantly prevented the production of vascular endothelial growth factor (VEGF in both cell lines, whereas SNS-032 was less effective in preventing capillary network formation and migration of endothelial cells when an active recombinant VEGF was added to the medium. In conclusion, SNS-032 prevents in vitro angiogenesis, and this action is attributable to blocking of VEGF.

  10. Multiple Mechanisms are Responsible for Transactivation of the Epidermal Growth Factor Receptor in Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle L.; Opresko, Lee; Coffey, Robert J.; Zangar, Richard C.; Wiley, H. S.

    2008-11-14

    REVIEW ENTIRE DOCUMENT AT: https://pnlweb.pnl.gov/projects/bsd/ERICA%20Manuscripts%20for%20Review/KD%20Rodland%20D7E80/HMEC_transactivation_ms01_15+Figs.pdf ABSTRACT: Using a single nontransformed strain of human mammary epithelial cells, we found that the ability of multiple growth factors and cytokines to induce ERK phosphorylation was dependent on EGFR activity. These included lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factoralpha. In contrast, hepatocyte growth factor could stimulate ERK phosphorylation independent of EGFR activity...

  11. A Review of Alumina Feeding and Dissolution Factors in Aluminum Reduction Cells

    Science.gov (United States)

    Lavoie, Pascal; Taylor, Mark P.; Metson, James B.

    2016-08-01

    Modern aluminum reduction cells use point feeding technology to replenish alumina as it is consumed by the electrolytic process. The dissolution of alumina has become increasingly difficult to control as the cell sizes and electrolysis intensity have increased. The mass of alumina added per unit time is now much higher than a decade ago, and must take place within a smaller electrolyte mixing volume. In order to replenish the alumina concentration evenly, the alumina needs to be delivered, dispersed, dissolved, and distributed throughout the reduction cell. The dissolution itself follows a 4-step process that can be limited by a multitude of factors. The status of the research on each of these factors is reviewed in the present paper. Although research in laboratory cells has been conducted many times, and the impact of many factors on dissolution has been measured, published observations of alumina feeding on industrial cells are very sparse, especially regarding the dissolution dynamics in the space-time domain and the impact of the feeder hole condition. The present paper therefore presents a qualitative model of the factors governing alumina dissolution in industrial cells and offers the hypothesis that maintenance of the feeder hole condition is central to ensuring alumina dissolution and prevention of sludging.

  12. Favorable prognostic influence of T-box transcription factor Eomesodermin in metastatic renal cell cancer patients.

    Science.gov (United States)

    Dielmann, Anastasia; Letsch, Anne; Nonnenmacher, Anika; Miller, Kurt; Keilholz, Ulrich; Busse, Antonia

    2016-02-01

    T-box transcription factors, T-box expressed in T cells (T-bet) encoded by Tbx21 and Eomesodermin (Eomes), drive the differentiation of effector/memory T cell lineages and NK cells. The aim of the study was to determine the prognostic influence of the expression of these transcription factors in peripheral blood (pB) in a cohort of 41 metastatic (m) RCC patients before receiving sorafenib treatment and to analyze their association with the immunophenotype in pB. In contrast to Tbx21, in the multivariate analysis including clinical features, Eomes mRNA expression was identified as an independent good prognostic factor for progression-free survival (PFS, p = 0.042) and overall survival (OS, p = 0.001) in addition to a favorable ECOG performance status (p = 0.01 and p = 0.008, respectively). Eomes expression correlated positively not only with expression of Tbx21 and TGFβ1 mRNA, but also with mRNA expression of the activation marker ICOS, and with in vivo activated HLA-DR(+) T cells. Eomes expression was negatively associated with TNFα-producing T cells. On protein level, Eomes was mainly expressed by CD56(+)CD3(-) NK cells in pB. In conclusion, we identified a higher Eomes mRNA expression as an independent good prognostic factor for OS and PFS in mRCC patients treated with sorafenib.

  13. Advanced Research of Fibroblast Growth Factor Receptor 
in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Dan PU

    2013-11-01

    Full Text Available Lung cancer is severely threatening human health. In recent years, the treatment for lung adenocarcinoma has made a great progress, targeted therapy has been widely applied in clinic, and benefits amount of patients. However, in squamous cell lung cancer, the incidence of epidermal growth factor receptor (EGFR gene mutant and ALK fusion gene are low,and targeted therapy like Tarceva and crizotinib, can hardly work. Since the fibroblast growth factors (fibroblast growth factor, FGF pathway is considered to be related to tumor cell proliferation, metastasis and angiogenesis, more and more researches proved the amplification of fibroblast growth factor receptor (FGFR in squamous cell lung cancer. Experiments in vivo and in vitro found that blocking FGF pathway could reduce the proliferation of tumor cells and inhibit metastasis. The FGF pathway might be a new target for treatment of squamous cell lung cancer. This article reviews the effect of FGFR in tumorigenesis,as well as the prospect as a therapeutic target in non-small cell lung cancer.

  14. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Chia-I Ko

    2014-01-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  15. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells.

    Science.gov (United States)

    Ko, Chia-I; Wang, Qin; Fan, Yunxia; Xia, Ying; Puga, Alvaro

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  16. Distribution and localization of fibroblast growth factor-8 in rat brain and nerve cells during neural stem/progenitor cell differentiation

    Institute of Scientific and Technical Information of China (English)

    Jiang Lu; Dongsheng Li; Kehuan Lu

    2012-01-01

    The present study explored the distribution and localization of fibroblast growth factor-8 and its potential receptor,fibroblast growth factor receptor-3,in adult rat brain in vivo and in nerve cells during differentiation of neural stem/progenitor cells in vitro.Immunohistochemistry was used to examine the distribution of fibroblast growth factor-8 in adult rat brain in vivo.Localization of fibroblast growth factor-8 and fibroblast growth factor receptor-3 in cells during neural stem/progenitor cell differentiation in vitro was detected by immunofluorescence.Flow cytometry and immunofluorescence were used to evaluate the effect of an anti-fibroblast growth factor-8 antibody on neural stem/progenitor cell differentiation and expansion in vitro.Results from this study confirmed that fibroblast growth factor-8 was mainly distributed in adult midbrain,namely the substantia nigra,compact part,dorsal tier,substantia nigra and reticular part,but was not detected in the forebrain comprising the caudate putamen and striatum.Unusual results were obtained in retrosplenial locations of adult rat brain.We found that fibroblast growth factor-8 and fibroblast growth factor receptor-3 were distributed on the cell membrane and in the cytoplasm of nerve cells using immunohistochemistry and immunofluorescence analyses.We considered that the distribution of fibroblast growth factor-8 and fibroblast growth factor receptor-3 in neural cells corresponded to the characteristics of fibroblast growth factor-8,a secretory factor.Addition of an anti-fibroblast growth factor-8 antibody to cultures significantly affected the rate of expansion and differentiation of neural stem/progenitor cells.In contrast,addition of recombinant fibroblast growth factor-8 to differentiation medium promoted neural stem/progenitor cell differentiation and increased the final yields of dopaminergic neurons and total neurons.Our study may help delineate the important roles of fibroblast growth factor-8 in brain

  17. Characterization of hematopoietic GATA transcription factor expression in mouse and human dendritic cells.

    Science.gov (United States)

    Scheenstra, Maaike R; Salunkhe, Vishal; De Cuyper, Iris M; Hoogenboezem, Mark; Li, Eveline; Kuijpers, Taco W; van den Berg, Timo K; Gutiérrez, Laura

    2015-12-01

    Dendritic cells (DCs) are key initiators and regulators of the immune response. The development of the DC lineage and their subsets requires an orchestrated regulation of their transcriptional program. Gata1, a transcription factor expressed in several hematopoietic cell lineages, has been recently reported to be required for mouse DC development and function. In humans, GATA1 is involved in the lineage separation between monocyte-derived DCs and Langerhans cells (LC) and loss of GATA1 results in differentiation arrest at the monocyte stage. The hematopoietic GATA factors (i.e. Gata1, Gata2, Gata3) are known to regulate each other's expression and to function consecutively throughout lineage commitment (so-called GATA switch). In humans, mutations in GATA2 are causative of MonoMAC disease, a human immunodeficiency syndrome characterized by loss of DCs, monocytes, B and NK cells. However, additional data on the expression of hematopoietic GATA factors in the DC lineage is missing. In this study, we have characterized the expression of hematopoietic GATA factors in murine and human DCs and their expression dynamics upon TLR stimulation. We found that all hematopoietic GATA factors are expressed in DCs, but identified species-specific differences in the relative expression of each GATA factor, and how their expression fluctuates upon stimulation.

  18. Microarray Analyses Reveal Marked Differences in Growth Factor and Receptor Expression Between 8-Cell Human Embryos and Pluripotent Stem Cells.

    Science.gov (United States)

    Vlismas, Antonis; Bletsa, Ritsa; Mavrogianni, Despina; Mamali, Georgina; Pergamali, Maria; Dinopoulou, Vasiliki; Partsinevelos, George; Drakakis, Peter; Loutradis, Dimitris; Kiessling, Ann A

    2016-01-15

    Previous microarray analyses of RNAs from 8-cell (8C) human embryos revealed a lack of cell cycle checkpoints and overexpression of core circadian oscillators and cell cycle drivers relative to pluripotent human stem cells [human embryonic stem cells/induced pluripotent stem (hES/iPS)] and fibroblasts, suggesting growth factor independence during early cleavage stages. To explore this possibility, we queried our combined microarray database for expression of 487 growth factors and receptors. Fifty-one gene elements were overdetected on the 8C arrays relative to hES/iPS cells, including 14 detected at least 80-fold higher, which annotated to multiple pathways: six cytokine family (CSF1R, IL2RG, IL3RA, IL4, IL17B, IL23R), four transforming growth factor beta (TGFB) family (BMP6, BMP15, GDF9, ENG), one fibroblast growth factor (FGF) family [FGF14(FH4)], one epidermal growth factor member (GAB1), plus CD36, and CLEC10A. 8C-specific gene elements were enriched (73%) for reported circadian-controlled genes in mouse tissues. High-level detection of CSF1R, ENG, IL23R, and IL3RA specifically on the 8C arrays suggests the embryo plays an active role in blocking immune rejection and is poised for trophectoderm development; robust detection of NRG1, GAB1, -2, GRB7, and FGF14(FHF4) indicates novel roles in early development in addition to their known roles in later development. Forty-four gene elements were underdetected on the 8C arrays, including 11 at least 80-fold under the pluripotent cells: two cytokines (IFITM1, TNFRSF8), five TGFBs (BMP7, LEFTY1, LEFTY2, TDGF1, TDGF3), two FGFs (FGF2, FGF receptor 1), plus ING5, and WNT6. The microarray detection patterns suggest that hES/iPS cells exhibit suppressed circadian competence, underexpression of early differentiation markers, and more robust expression of generic pluripotency genes, in keeping with an artificial state of continual uncommitted cell division. In contrast, gene expression patterns of the 8C embryo suggest that

  19. Microarray Analyses Reveal Marked Differences in Growth Factor and Receptor Expression Between 8-Cell Human Embryos and Pluripotent Stem Cells

    Science.gov (United States)

    Vlismas, Antonis; Bletsa, Ritsa; Mavrogianni, Despina; Mamali, Georgina; Pergamali, Maria; Dinopoulou, Vasiliki; Partsinevelos, George; Drakakis, Peter; Loutradis, Dimitris

    2016-01-01

    Previous microarray analyses of RNAs from 8-cell (8C) human embryos revealed a lack of cell cycle checkpoints and overexpression of core circadian oscillators and cell cycle drivers relative to pluripotent human stem cells [human embryonic stem cells/induced pluripotent stem (hES/iPS)] and fibroblasts, suggesting growth factor independence during early cleavage stages. To explore this possibility, we queried our combined microarray database for expression of 487 growth factors and receptors. Fifty-one gene elements were overdetected on the 8C arrays relative to hES/iPS cells, including 14 detected at least 80-fold higher, which annotated to multiple pathways: six cytokine family (CSF1R, IL2RG, IL3RA, IL4, IL17B, IL23R), four transforming growth factor beta (TGFB) family (BMP6, BMP15, GDF9, ENG), one fibroblast growth factor (FGF) family [FGF14(FH4)], one epidermal growth factor member (GAB1), plus CD36, and CLEC10A. 8C-specific gene elements were enriched (73%) for reported circadian-controlled genes in mouse tissues. High-level detection of CSF1R, ENG, IL23R, and IL3RA specifically on the 8C arrays suggests the embryo plays an active role in blocking immune rejection and is poised for trophectoderm development; robust detection of NRG1, GAB1, -2, GRB7, and FGF14(FHF4) indicates novel roles in early development in addition to their known roles in later development. Forty-four gene elements were underdetected on the 8C arrays, including 11 at least 80-fold under the pluripotent cells: two cytokines (IFITM1, TNFRSF8), five TGFBs (BMP7, LEFTY1, LEFTY2, TDGF1, TDGF3), two FGFs (FGF2, FGF receptor 1), plus ING5, and WNT6. The microarray detection patterns suggest that hES/iPS cells exhibit suppressed circadian competence, underexpression of early differentiation markers, and more robust expression of generic pluripotency genes, in keeping with an artificial state of continual uncommitted cell division. In contrast, gene expression patterns of the 8C embryo suggest that

  20. Flow cytometric detection of growth factor receptors in autografts and analysis of growth factor concentrations in autologous stem cell transplantation: possible significance for platelet recovery

    DEFF Research Database (Denmark)

    Schiødt, I; Jensen, Charlotte Harken; Kjaersgaard, E

    2000-01-01

    In order to improve prediction of hematopoietic recovery, we conducted a pilot study, analyzing the significance of growth factor receptor expression in autografts as well as endogenous growth factor levels in blood before, during and after stem cell transplantation. Three early acting (stem cell...

  1. (*) Central Growth Factor Loaded Depots in Bone Tissue Engineering Scaffolds for Enhanced Cell Attraction.

    Science.gov (United States)

    Quade, Mandy; Knaack, Sven; Akkineni, Ashwini Rahul; Gabrielyan, Anastasia; Lode, Anja; Rösen-Wolff, Angela; Gelinsky, Michael

    2017-08-01

    Tissue engineering, the application of stem and progenitor cells in combination with an engineered extracellular matrix, is a promising strategy for bone regeneration. However, its success is limited by the lack of vascularization after implantation. The concept of in situ tissue engineering envisages the recruitment of cells necessary for tissue regeneration from the host environment foregoing ex vivo cell seeding of the scaffold. In this study, we developed a novel scaffold system for enhanced cell attraction, which is based on biomimetic mineralized collagen scaffolds equipped with a central biopolymer depot loaded with chemotactic agents. In humid milieu, as after implantation, the signaling factors are expected to slowly diffuse out of the central depot forming a gradient that stimulates directed cell migration toward the scaffold center. Heparin, hyaluronic acid, and alginate have been shown to be capable of depot formation. By using vascular endothelial growth factor (VEGF) as model factor, it was demonstrated that the release kinetics can be adjusted by varying the depot composition. While alginate and hyaluronic acid are able to reduce the initial burst and prolong the release of VEGF, the addition of heparin led to a much stronger retention that resulted in an almost linear release over 28 days. The biological activity of released VEGF was proven for all variants using an endothelial cell proliferation assay. Furthermore, migration experiments with endothelial cells revealed a relationship between the degree of VEGF retention and migration distance: cells invaded deepest in scaffolds containing a heparin-based depot indicating that the formation of a steep gradient is crucial for cell attraction. In conclusion, this novel in situ tissue engineering approach, specifically designed to recruit and accommodate endogenous cells upon implantation, appeared highly promising to stimulate cell invasion, which in turn would promote vascularization and finally new

  2. Function and regulation of transcription factors involved in root apical meristem and stem cell maintenance

    Directory of Open Access Journals (Sweden)

    Rebecca Corinna Drisch

    2015-07-01

    Full Text Available Plant roots are essential for overall plant development, growth and performance by providing anchorage in the soil and uptake of nutrients and water. The primary root of higher plants derives from a group of pluripotent, mitotically active stem cells residing in the root apical meristem (RAM which provides the basis for growth, development and regeneration of the root. The stem cells in the Arabidopsis thaliana RAM are surrounding the quiescent center (QC, which consists of a group of rarely dividing cells. The QC maintains the stem cells in a non-cell-autonomous manner and prevents them from differentiation. The necessary dynamic but also tight regulation of the transition from stem cell fate to differentiation most likely requires complex regulatory mechanisms to integrate external and internal cues. Transcription factors play a central role in root development and are regulated by phytohormones, small signaling molecules and miRNAs. In this review we give a comprehensive overview about the function and regulation of specific transcription factors controlling stem cell fate and root apical meristem maintenance and discuss the possibility of TF complex formation, subcellular translocations and cell-to-cell movement functioning as another level of regulation.

  3. Host and viral factors contributing to CD8+ T cell failure in hepatitis C virus infection

    Institute of Scientific and Technical Information of China (English)

    Christoph Neumann-Haefelin; Hans Christian Spangenberg; Hubert E Blum; Robert Thimme

    2007-01-01

    Virus-specific CD8+ T cells are thought to be the major anti-viral effector cells in hepatitis C virus (HCV)infection. Indeed, viral clearance is associated with vigorous CD8+ T cell responses targeting multiple epitopes. In the chronic phase of infection, HCV-specific CD8+ T cell responses are usually weak, narrowly focused and display often functional defects regarding cytotoxicity, cytokine production, and proliferative capacity. In the last few years, different mechanisms which might contribute to the failure of HCV-specific CD8+ T cells in chronic infection have been identified,including insufficient CD4+ help, deficient CD8+ T cell differentiation, viral escape mutations, suppression by viral factors, inhibitory cytokines, inhibitory ligands, and regulatory T cells. In addition, host genetic factors such as the host's human leukocyte antigen (HLA) background may play an important role in the efficiency of the HCVspecific CD8+ T cell response and thus outcome of infection. The growing understanding of the mechanisms contributing to T cell failure and persistence of HCV infection will contribute to the development of successful immunotherapeutical and -prophylactical strategies.

  4. Spire, an actin nucleation factor, regulates cell division during Drosophila heart development.

    Directory of Open Access Journals (Sweden)

    Peng Xu

    Full Text Available The Drosophila dorsal vessel is a beneficial model system for studying the regulation of early heart development. Spire (Spir, an actin-nucleation factor, regulates actin dynamics in many developmental processes, such as cell shape determination, intracellular transport, and locomotion. Through protein expression pattern analysis, we demonstrate that the absence of spir function affects cell division in Myocyte enhancer factor 2-, Tinman (Tin-, Even-skipped- and Seven up (Svp-positive heart cells. In addition, genetic interaction analysis shows that spir functionally interacts with Dorsocross, tin, and pannier to properly specify the cardiac fate. Furthermore, through visualization of double heterozygous embryos, we determines that spir cooperates with CycA for heart cell specification and division. Finally, when comparing the spir mutant phenotype with that of a CycA mutant, the results suggest that most Svp-positive progenitors in spir mutant embryos cannot undergo full cell division at cell cycle 15, and that Tin-positive progenitors are arrested at cell cycle 16 as double-nucleated cells. We conclude that Spir plays a crucial role in controlling dorsal vessel formation and has a function in cell division during heart tube morphogenesis.

  5. Transforming growth factor-beta-induced regulatory T cells referee inflammatory and autoimmune diseases.

    Science.gov (United States)

    Wahl, Sharon M; Chen, Wanjun

    2005-01-01

    Naturally occurring CD4+CD25+ regulatory T cells mediate immune suppression to limit immunopathogenesis associated with chronic inflammation, persistent infections and autoimmune diseases. Their mode of suppression is contact-dependent, antigen-nonspecific and involves a nonredundant contribution from the cytokine transforming growth factor (TGF)-beta. Not only can TGF-beta mediate cell-cell suppression between the regulatory T cells and CD4+CD25- or CD8+ T cells, but new evidence also reveals its role in the conversion of CD4+CD25- T cells, together with TCR antigen stimulation, into the regulatory phenotype. Elemental to this conversion process is induction of expression of the forkhead transcription factor, Foxp3. This context-dependent coercion of naive CD4+ T cells into a powerful subset of regulatory cells provides a window into potential manipulation of these cells to orchestrate therapeutic intervention in diseases characterized by inadequate suppression, as well as a promising means of controlling pathologic situations in which excessive suppression dominates.

  6. Combinatorial delivery of immunosuppressive factors to dendritic cells using dual-sized microspheres.

    Science.gov (United States)

    Lewis, Jamal S; Roche, Chris; Zhang, Ying; Brusko, Todd M; Wasserfall, Clive H; Atkinson, Mark; Clare-Salzler, Michael J; Keselowsky, Benjamin G

    2014-05-07

    Microparticulate systems are beginning to show promise for delivery of modulatory agents for immunotherapeutic applications which modulate dendritic cell (DC) functions. Co-administration of multiple factors is an emerging theme in immune modulation which may prove beneficial in this setting. Herein, we demonstrate that localized, controlled delivery of multiple factors can be accomplished through poly (lactic-co-glycolic acid) (PLGA) microparticle systems fabricated in two size classes of phagocytosable and unphagocytosable microparticles (MPs). The immunosuppressive ability of combinatorial multi-factor dual MP systems was evaluated by investigating effects on DC maturation, DC resistance to LPS-mediated maturation and proliferation of allogeneic T cells in a mixed lymphocyte reaction. Phagocytosable MPs (~2 μm) were fabricated encapsulating either rapamycin (RAPA) or all-trans retinoic acid (RA), and unphagocytosable MPs (~30 μm) were fabricated encapsulating either transforming growth factor beta-1 (TGF-β1) or interleukin-10 (IL-10). Combinations of these MP classes reduced expression of stimulatory/costimulatory molecules (MHC-II, CD80 and CD86) in comparison to iDC and soluble controls, but not necessarily to single factor MPs. Dual MP-treated DCs resisted LPS-mediated activation, in a manner driven by the single factor phagocytosable MPs used. Dendritic cells treated with dual MP systems suppressed allogeneic T cell proliferation, generally demonstrating greater suppression by combination MPs than single factor formulations, particularly for the RA/IL-10 MPs. This work demonstrates feasibility of simultaneous targeted delivery of immunomodulatory factors to cell surface receptors and intracellular locations, and indicates that a combinatorial approach can boost immunoregulatory responses for therapeutic application in autoimmunity and transplantation.

  7. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  8. Growth factors and feeder cells promote differentiation of human embryonic stem cell into dopaminergic neurons: a novel role of fibroblast growth factor-20

    Directory of Open Access Journals (Sweden)

    Ana Sofia Correia

    2008-07-01

    Full Text Available Human embryonic stem cells (hESCs are a potential source of dopaminergic neurons for treatment of Parkinson’s disease (PD. Dopaminergic neurons can be derived from hESCs and display a characteristic midbrain phenotype. Once transplanted, they can induce partial behavioral recovery in animal models of PD. The potential research field faces several challenges that need to be overcome before clinical application of hESCs in a transplantation therapy in PD can be considered. These include low survival of the hESC-derived, grafted dopaminergic neurons after transplantation; unclear functional integration of the grafted neurons in the host brain; and, the risk of teratoma/tumor formation from the transplanted cells. This review is focused on our recent efforts to improve the survival of hESC-dervied dopaminergic neurons. We have examined the effect of fibroblast growth factor (FGF-20 in the differentiation of hESCs into dopaminergic neurons. We supplemented cultures of hESCs with FGF-20 during differentiation on PA6 mouse stromal cells for three weeks. When we added FGF-20 the yield of neurons expressing tyrosine hydroxylase increased. We demonstrated that at least part of the effect is contributed by enhanced cell differentiation towards the dopaminergic phenotype as well as reduced cell death. We compare our results with those obtained in other published protocols using different sets of growth factors. Our data indicate that FGF-20 has potent effects to generate large number of dopaminergic neurons derived from hESCs, which may be useful for cell therapy in PD.

  9. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2

    NARCIS (Netherlands)

    Simmini, Salvatore; Bialecka, Monika; Huch, Meritxell; Kester, Lennart; van de Wetering, Marc; Sato, Toshiro; Beck, Felix; van Oudenaarden, Alexander; Clevers, Hans; Deschamps, Jacqueline

    2014-01-01

    The endodermal lining of the adult gastro-intestinal tract harbours stem cells that are responsible for the day-to-day regeneration of the epithelium. Stem cells residing in the pyloric glands of the stomach and in the small intestinal crypts differ in their differentiation programme and in the gene

  10. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    Science.gov (United States)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; Topol, Eric J.; Penn, Marc S.

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, p<0.02) resulting in greater left-ventricular mass (1.24 [0.29] vs 1.57 [0.27] g) and better cardiac function (shortening fraction 9.2 [4.9] vs 17.2 [4.2]%, n=8 per group, p<0.05). INTERPRETATION: These findings show that SDF-1 is sufficient to induce therapeutic stem-cell homing to injured myocardium and suggest a strategy for directed stem-cell engraftment into injured tissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  11. Role of Pancreatic Transcription Factors in Maintenance of Mature β-Cell Function

    Directory of Open Access Journals (Sweden)

    Hideaki Kaneto

    2015-03-01

    Full Text Available A variety of pancreatic transcription factors including PDX-1 and MafA play crucial roles in the pancreas and function for the maintenance of mature β-cell function. However, when β-cells are chronically exposed to hyperglycemia, expression and/or activities of such transcription factors are reduced, which leads to deterioration of b-cell function. These phenomena are well known as β-cell glucose toxicity in practical medicine as well as in the islet biology research area. Here we describe the possible mechanism for β-cell glucose toxicity found in type 2 diabetes. It is likely that reduced expression levels of PDX-1 and MafA lead to suppression of insulin biosynthesis and secretion. In addition, expression levels of incretin receptors (GLP-1 and GIP receptors in β-cells are decreased, which likely contributes to the impaired incretin effects found in diabetes. Taken together, down-regulation of insulin gene transcription factors and incretin receptors explains, at least in part, the molecular mechanism for β-cell glucose toxicity.

  12. H4 histamine receptors mediate cell cycle arrest in growth factor-induced murine and human hematopoietic progenitor cells.

    Directory of Open Access Journals (Sweden)

    Anne-France Petit-Bertron

    Full Text Available The most recently characterized H4 histamine receptor (H4R is expressed preferentially in the bone marrow, raising the question of its role during hematopoiesis. Here we show that both murine and human progenitor cell populations express this receptor subtype on transcriptional and protein levels and respond to its agonists by reduced growth factor-induced cell cycle progression that leads to decreased myeloid, erythroid and lymphoid colony formation. H4R activation prevents the induction of cell cycle genes through a cAMP/PKA-dependent pathway that is not associated with apoptosis. It is mediated specifically through H4R signaling since gene silencing or treatment with selective antagonists restores normal cell cycle progression. The arrest of growth factor-induced G1/S transition protects murine and human progenitor cells from the toxicity of the cell cycle-dependent anticancer drug Ara-C in vitro and reduces aplasia in a murine model of chemotherapy. This first evidence for functional H4R expression in hematopoietic progenitors opens new therapeutic perspectives for alleviating hematotoxic side effects of antineoplastic drugs.

  13. Cocaine induces cell death and activates the transcription nuclear factor kappa-b in pc12 cells

    Science.gov (United States)

    Lepsch, Lucilia B; Munhoz, Carolina D; Kawamoto, Elisa M; Yshii, Lidia M; Lima, Larissa S; Curi-Boaventura, Maria F; Salgado, Thais ML; Curi, Rui; Planeta, Cleopatra S; Scavone, Cristoforo

    2009-01-01

    Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-κB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-κB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-κB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-κB activation. Inhibition of NF-κB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-κB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells. PMID:19183502

  14. Cocaine induces cell death and activates the transcription nuclear factor kappa-b in pc12 cells

    Directory of Open Access Journals (Sweden)

    Lepsch Lucilia B

    2009-02-01

    Full Text Available Abstract Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-κB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-κB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment activated the p50/p65 subunit of NF-κB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-κB activation. Inhibition of NF-κB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis and activates NF-κB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells.

  15. Opposite Effects of Soluble Factors Secreted by Adipose Tissue on Proliferating and Quiescent Osteosarcoma Cells.

    Science.gov (United States)

    Avril, Pierre; Duteille, Franck; Ridel, Perrine; Heymann, Marie-Françoise; De Pinieux, Gonzague; Rédini, Françoise; Blanchard, Frédéric; Heymann, Dominique; Trichet, Valérie; Perrot, Pierre

    2016-03-01

    Autologous adipose tissue transfer may be performed for aesthetic needs following resection of osteosarcoma, the most frequent primary malignant tumor of bone, excluding myeloma. The safety of autologous adipose tissue transfer regarding the potential risk of cancer recurrence must be addressed. Adipose tissue injection was tested in a human osteosarcoma preclinical model induced by MNNG-HOS cells. Culture media without growth factors from fetal bovine serum were conditioned with adipose tissue samples and added to two osteosarcoma cell lines (MNNG-HOS and MG-63) that were cultured in monolayer or maintained in nonadherent spheres, favoring a proliferation or quiescent stage, respectively. Proliferation and cell cycle were analyzed. Adipose tissue injection increased local growth of osteosarcoma in mice but was not associated with aggravation of lung metastasis or osteolysis. Adipose tissue-derived soluble factors increased the in vitro proliferation of osteosarcoma cells up to 180 percent. Interleukin-6 and leptin were measured in higher concentrations in adipose tissue-conditioned medium than in osteosarcoma cell-conditioned medium, but the authors' results indicated that they were not implicated alone. Furthermore, adipose tissue-derived soluble factors did not favor a G0-to-G1 phase transition of MNNG-HOS cells in nonadherent oncospheres. This study indicates that adipose tissue-soluble factors activate osteosarcoma cell cycle from G1 to mitosis phases, but do not promote the transition from quiescent G0 to G1 phases. Autologous adipose tissue transfer may not be involved in the activation of dormant tumor cells or cancer stem cells.

  16. Deletion of the Mitochondrial Flavoprotein Apoptosis Inducing Factor (AIF) Induces β-Cell Apoptosis and Impairs β-Cell Mass

    Science.gov (United States)

    Schulthess, Fabienne T.; Katz, Sophie; Ardestani, Amin; Kawahira, Hiroshi; Georgia, Senta; Bosco, Domenico; Bhushan, Anil; Maedler, Kathrin

    2009-01-01

    Background Apoptosis is a hallmark of β-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to β-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF). In the present study, we investigated the role of AIF on β-cell mass and survival using the Harlequin (Hq) mutant mice, which are hypomorphic for AIF. Methodology/Principal Findings Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT). Analysis of β-cell mass in these mice revealed a greater than 4-fold reduction in β-cell mass together with an 8-fold increase in β-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of β-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in β-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the β-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. β-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on β-cell function was potentiated. Conclusions/Significance Our results indicate that AIF is essential for maintaining β-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on β-cell survival. PMID:19197367

  17. Deletion of the mitochondrial flavoprotein apoptosis inducing factor (AIF induces beta-cell apoptosis and impairs beta-cell mass.

    Directory of Open Access Journals (Sweden)

    Fabienne T Schulthess

    Full Text Available BACKGROUND: Apoptosis is a hallmark of beta-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to beta-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF. In the present study, we investigated the role of AIF on beta-cell mass and survival using the Harlequin (Hq mutant mice, which are hypomorphic for AIF. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT. Analysis of beta-cell mass in these mice revealed a greater than 4-fold reduction in beta-cell mass together with an 8-fold increase in beta-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of beta-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in beta-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the beta-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. beta-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on beta-cell function was potentiated. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AIF is essential for maintaining beta-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on beta-cell survival.

  18. Ability of cell-sized beads bearing tumor cell membrane proteins to stimulate LAK cells to secrete interferon-gamma and tumor necrosis factor-alpha.

    Science.gov (United States)

    Chong, A S; Pinkard, J K; Lam, K S; Scuderi, P; Hersh, E M; Grimes, W J

    1991-04-15

    We recently reported that lymphokine activated killer (LAK) cells were stimulated to release both interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) when stimulated by a variety of tumor cells. We proposed then that the released cytokines may play a role in mediating tumor cell regression in vivo. In this paper, we provide further information on the nature of the signals, provided by the tumor cells (K562 erythroleukemia), that stimulate LAK cells to secrete IFN-gamma and TNF-alpha. Using a previously published protocol for coating tumor-membrane molecules onto cell-sized hydrophobic beads (also called pseudocytes), we demonstrate that the signal provided by the tumor cell is membrane associated. Beads coated with K562 membranes stimulated LAK cells to release IFN-gamma and TNF-alpha. The pretreatment of these beads with trypsin and sodium periodate eliminated the ability of these pseudocytes to stimulate cytokine release in LAK cells. The glycoproteins that stimulate LAK cells to secrete IFN-gamma and TNF-alpha were further enriched by their ability to bind concanavalin A (Con A, Jack Bean). To determine if the tumor-associated molecules that stimulate LAK cells to release IFN-gamma and TNF-alpha are also the molecules involved in mediating tumor cell lysis, we tested the ability of the Con A binding and nonbinding proteins to inhibit the LAK cell-mediated lysis of K562 cells. Our results demonstrate that molecules that inhibited LAK cell-mediated cytotoxicity were not enriched by Con A. These results are therefore consistent with the conclusion that different sets of tumor-associated molecules are involved in the stimulation of LAK cells to secrete cytokine and in the induction of LAK cells to mediate tumor cell cytolysis.

  19. Storage of factor VIII variants with impaired von Willebrand factor binding in Weibel-Palade bodies in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Maartje van den Biggelaar

    Full Text Available BACKGROUND: Point mutations resulting in reduced factor VIII (FVIII binding to von Willebrand factor (VWF are an important cause of mild/moderate hemophilia A. Treatment includes desmopressin infusion, which concomitantly increases VWF and FVIII plasma levels, apparently from storage pools containing both proteins. The source of these VWF/FVIII co-storage pools and the mechanism of granule biogenesis are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS: We studied intracellular trafficking of FVIII variants implicated in mild/moderate hemophilia A together with VWF in HEK293 cells and primary endothelial cells. The role of VWF binding was addressed using FVIII variants displaying reduced VWF interaction. Binding studies using purified FVIII proteins revealed moderate (Arg2150His, Del2201, Pro2300Ser to severe (Tyr1680Phe, Ser2119Tyr VWF binding defects. Expression studies in HEK293 cells and primary endothelial cells revealed that all FVIII variants were present within VWF-containing organelles. Quantitative studies showed that the relative amount of FVIII storage was independent of various mutations. Substantial amounts of FVIII variants are co-stored in VWF-containing storage organelles, presumably by virtue of their ability to interact with VWF at low pH. CONCLUSIONS: Our data suggest that the potential of FVIII co-storage with VWF is not affected in mild/moderate hemophilia A caused by reduced FVIII/VWF interaction in the circulation. These data support the hypothesis that Weibel-Palade bodies comprise the desmopressin-releasable FVIII storage pool in vivo.

  20. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves.

    Science.gov (United States)

    Hara, Kenta; Yokoo, Toshiya; Kajita, Ryoko; Onishi, Takaaki; Yahata, Saiko; Peterson, Kylee M; Torii, Keiko U; Kakimoto, Tatsuo

    2009-06-01

    Regulation of the number of cells is critical for development of multicellular organisms. During plant epidermal development, a protodermal cell first makes a fate decision of whether or not to be the meristemoid mother cell (MMC), which undergoes asymmetric cell division forming a meristemoid and its sister cell. The MMC-derived lineage produces all stomatal guard cells and a large proportion of non-guard cells. We demonstrate that a small secretory peptide, EPIDERMAL PATTERING FACTOR 2 (EPF2), is produced by the MMC and its early descendants, and negatively regulates the density of guard and non-guard epidermal cells. Our results suggest that EPF2 inhibits cells from adopting the MMC fate in a non-cell-autonomous manner, thus limiting the number of MMCs. This feedback loop is critical for regulation of epidermal cell density. The amino acid sequence of EPF2 resembles that of EPF1, which is known to control stomatal positioning. Over-expression of EPF1 also inhibits stomatal development, but EPF1 can act only on a later developmental process than EPF2. Overexpression and promoter swapping experiments suggested that the protein functions of EPF1 and EPF2, rather than the expression patterns of the genes, are responsible for the specific functions. Although targets of EPF1 and EPF2 are different, both EPF1 and EPF2 require common putative receptor components TOO MANY MOUTHS (TMM), ERECTA (ER), ERECTA LIKE 1 (ERL1) and ERL2 in order to function.

  1. NF-κB Regulates B-Cell-Derived Nerve Growth Factor Expression

    Institute of Scientific and Technical Information of China (English)

    Klaus Heese; Noriko Inoue; Tohru Sawada

    2006-01-01

    In the mammalian brain, four neurotrophins have been identified: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5). NGF exerts an important role in the development and functions of the central and peripheral nervous system. However, it has recently been documented that several types of immune cells, such as mast cells, lymphocytes, basophils and eosinophils, produce,store and release NGF. Accumulating preclinical and clinical data indicate that dysfunctions of NGF and the other neurotrophins may contribute to impaired immune responses and concentration of NGF frequently correlates with disease severity. Thus, the aim of this study was to elucidate the potential signaling mechanisms of cytokineneurotrophins interactions contributing to increased NGF levels. Our data show that the transcription factorNF-κB plays a pivotal role in regulating B-cell-derived NGF expression.

  2. Elusive liver factor that causes pancreatic α cell hyperplasia: A review of literature

    Institute of Scientific and Technical Information of China (English)

    Run; Yu; Yun; Zheng; Matthew; B; Lucas; Yun-Guang; Tong

    2015-01-01

    Tumors and cancers of the gastrointestinal tract and pancreas are commonly derived from precursor lesions so that understanding the physiological, cellular, and molecular mechanisms underlying the pathogenesis of precursor lesions is critical for the prevention and treatment of those neoplasms. Pancreatic neuroendocrine tumors(PNETs) can also be derived from precursor lesions. Pancreatic α cell hyperplasia(ACH), a specific and overwhelming increase in the number of α cells, is a precursor lesion leading to PNET pathogenesis. One of the 3 subtypes of ACH, reactive ACH is caused by glucagon signaling disruption and invariably evolves into PNETs. In this article, the existing work on the mechanisms underlying reactive ACH pathogenesis is reviewed. It is clear that the liver secretes a humoral factor regulating α cell numbers but the identity of the liver factor remains elusive. Potential approaches to identify the liver factor are discussed.

  3. Elusive liver factor that causes pancreatic α cell hyperplasia: A review of literature.

    Science.gov (United States)

    Yu, Run; Zheng, Yun; Lucas, Matthew B; Tong, Yun-Guang

    2015-11-15

    Tumors and cancers of the gastrointestinal tract and pancreas are commonly derived from precursor lesions so that understanding the physiological, cellular, and molecular mechanisms underlying the pathogenesis of precursor lesions is critical for the prevention and treatment of those neoplasms. Pancreatic neuroendocrine tumors (PNETs) can also be derived from precursor lesions. Pancreatic α cell hyperplasia (ACH), a specific and overwhelming increase in the number of α cells, is a precursor lesion leading to PNET pathogenesis. One of the 3 subtypes of ACH, reactive ACH is caused by glucagon signaling disruption and invariably evolves into PNETs. In this article, the existing work on the mechanisms underlying reactive ACH pathogenesis is reviewed. It is clear that the liver secretes a humoral factor regulating α cell numbers but the identity of the liver factor remains elusive. Potential approaches to identify the liver factor are discussed.

  4. In Silico Identification of Co-transcribed Core Cell Cycle Regulators and Transcription Factors in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Regulatory networks involving transcription factors and core cell cycle regulators are expected to play crucial roles in plant growth and development. In this report, we describe the identification of two groups of co-transcribed core cell cycle regulators and transcription factors via a two-step in silico screening. The core cell cycle regulators include TARDY ASYNCHRONOUS MEIOSIS (CYCA1;2), CYCB1;1, CYCB2;1, CDKB1;2, and CDKB2;2 while the transcription factors include CURLY LEAF, AINTEGUMENTA, a MYB protein, two Forkhead-associated domain proteins, and a SCARECROW family protein. Promoter analysis revealed a potential web of cross- and self-regulations among the identified proteins. Because one criterion for screening for these genes is that they are predominantly transcribed in young organs but not in mature organs, these genes are likely to be particularly involved in Arabidopsis organ growth.

  5. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...... based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted...... antimetabolites using two cell lines with different phenotypic origins, and found that it is effective in inhibiting the growth of these cell lines. Using immunohistochemistry, we also showed high or moderate expression levels of proteins targeted by the validated antimetabolite. Identified anti-growth factors...

  6. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  7. Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors

    Institute of Scientific and Technical Information of China (English)

    Chao Sheng; Ziwei Wang; Changlong Guo; Hua-Jun Wu; Zhonghua Liu; Liu Wang; Shigang He; Xiu-Jie Wang; Zhiguo Chen; Qi Zhou; Qinyuan Zheng; Jianyu Wu; Zhen Xu; Libin Wang; Wei Li; Haijiang Zhang; Xiao-YangZhao; Lei Liu

    2012-01-01

    Multipotent neural stem/progenitor cells hold great promise for cell therapy.The reprogramming of fibroblasts to induced pluripotent stem cells as well as mature neurons suggests a possibility to convert a terminally differentiated somatic cell into a muitipotent state without first establishing pluripotency.Here,we demonstrate that sertoli cells derived from mesoderm can be directly converted into a multipotent state that possesses neural stem/progenitor cell properties.The induced neural stem/progenitor cells (iNSCs) express multiple NSC-specific markers,exhibit a global gene-expression profile similar to normal NSCs,and are capable of self-renewal and differentiating into glia and electrophysiologically functional neurons,iNSC-derived neurons stain positive for tyrosine hydroxylase (TH),γ-aminobutyric acid,and choline acetyltransferase.In addition,iNSCs can survive and generate synapses following transplantation into the dentate gyrus.Generation of iNSCs may have important implications for disease modeling and regenerative medicine.

  8. Hypoxic preconditioning improves survival of cardiac progenitor cells: role of stromal cell derived factor-1α-CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Fengdi Yan

    Full Text Available BACKGROUND: Cardiac progenitor cells (CPCs have been shown to be suitable in stem cell therapy for resurrecting damaged myocardium, but poor retention of transplanted cells in the ischemic myocardium causes ineffective cell therapy. Hypoxic preconditioning of cells can increase the expression of CXCR4 and pro-survival genes to promote better cell survival; however, it is unknown whether hypoxia preconditioning will influence the survival and retention of CPCs via the SDF-1α/CXCR4 axis. METHODS AND RESULTS: CPCs were isolated from adult mouse hearts and purified by magnetic activated cell sorting using c-kit magnetic beads. These cells were cultured at various times in either normoxic or hypoxic conditions, and cell survival was analyzed using flow cytometry and the expression of hypoxia-inducible factor-1α (HIF-1α, CXCR4, phosphorylated Akt and Bcl-2 were measured by Western blot. Results showed that the expression of pro-survival genes significantly increased after hypoxia treatment, especially in cells cultured in hypoxic conditions for six hours. Upon completion of hypoxia preconditioning from c-kit+ CPCs for six hours, the anti-apoptosis, migration and cardiac repair potential were evaluated. Results showed a significant enhancement in anti-apoptosis and migration in vitro, and better survival and cardiac function after being transplanted into acute myocardial infarction (MI mice in vivo. The beneficial effects induced by hypoxia preconditioning of c-kit+ CPCs could largely be blocked by the addition of CXCR4 selective antagonist AMD3100. CONCLUSIONS: Hypoxic preconditioning may improve the survival and retention of c-kit+ CPCs in the ischemic heart tissue through activating the SDF-1α/CXCR4 axis and the downstream anti-apoptosis pathway. Strategies targeting this aspect may enhance the effectiveness of cell-based cardiac regenerative therapy.

  9. CD133+ adult human retinal cells remain undifferentiated in Leukaemia Inhibitory Factor (LIF

    Directory of Open Access Journals (Sweden)

    Mayer Eric J

    2009-02-01

    Full Text Available Abstract Background CD133 is a cell surface marker of haematopoietic stem and progenitor cells. Leukaemia inhibitory factor (LIF, sustains proliferation and not differentiation of embryonic stem cells. We used CD133 to purify adult human retinal cells and aimed to determine what effect LIF had on these cultures and whether they still had the ability to generate neurospheres. Methods Retinal cell suspensions were derived from adult human post-mortem tissue with ethical approval. With magnetic automated cell sorting (MACS CD133+ retinal cells were enriched from post mortem adult human retina. CD133+ retinal cell phenotype was analysed by flow cytometry and cultured cells were observed for proliferative capacity, neuropshere generation and differentiation with or without LIF supplementation. Results We demonstrated purification (to 95% of CD133+ cells from adult human postmortem retina. Proliferating cells were identified through BrdU incorporation and expression of the proliferation markers Ki67 and Cyclin D1. CD133+ retinal cells differentiated whilst forming neurospheres containing appropriate lineage markers including glia, neurons and photoreceptors. LIF maintained CD133+ retinal cells in a proliferative and relatively undifferentiated state (Ki67, Cyclin D1 expression without significant neurosphere generation. Differentiation whilst forming neurospheres was re-established on LIF withdrawal. Conclusion These data support the evidence that CD133 expression characterises a population of cells within the resident adult human retina which have progenitor cell properties and that their turnover and differentiation is influenced by LIF. This may explain differences in retinal responses observed following disease or injury.

  10. Endocannabinoids inhibit release of nerve growth factor by inflammation-activated mast cells.

    Science.gov (United States)

    Cantarella, Giuseppina; Scollo, Mimmo; Lempereur, Laurence; Saccani-Jotti, Gloria; Basile, Francesco; Bernardini, Renato

    2011-08-15

    Nerve growth factor (NGF) is a pleiotropic member of the neurotrophin family. Beside its neuronal effects, NGF plays a role in various processes, including angiogenesis. Mast cells release NGF and are among elements contributing to angiogenesis, a process regulated by arrays of factors, including the inhibitory cannabinoids. The possible inhibitory role of cannabinoids on mast cell-related NGF mitogenic effect on endothelial cells was then investigated. Human mastocytic cells HMC-1, challenged with PMA to yield release of NGF, were preincubated with the endocannabinoid PEA. Then, conditioned media were added to HUVEC cultures. PMA-activated HMC-1 cells released substantial amounts of NGF, whereas PEA inhibited PMA-induced NGF release. HUVEC proliferation increased after treatment with media from activated HMC-1 cells, while was reduced with media from HMC-1 cells treated with PEA. To characterize receptors mediating such effects of PEA, RT-PCR and western blot analysis were performed on HMC-1 cells. None of the two cannabinoid CB1 and CB2 receptors was expressed by HMC-1 cells, which on the other hand expressed the orphan receptor GPR55. PEA was ineffective in inhibiting NGF release from HMC-1 cells treated with PMA and transfected with positive GPR55 RNAi, whereas it induced significant reduction of NGF in cells transfected with the corresponding negative control RNAi. Results indicate that NGF released from inflammatory mast cells induces angiogenesis. Cannabinoids attenuate such pro-angiogenic effects of NGF. Finally, cannabinoids could be considered for antiangiogenic treatment in disorders characterized by prominent inflammation.

  11. Deficient leukemia inhibitory factor signaling in muscle precursor cells from patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Broholm, Christa; Brandt, Claus; Schultz, Ninna S

    2012-01-01

    The cytokine leukemia-inhibitory factor (LIF) is expressed by skeletal muscle and induces proliferation of muscle precursor cells, an important feature of skeletal muscle maintenance and repair. We hypothesized that muscle precursor cells from patients with type 2 diabetes had a deficient response......-stimulated cell proliferation and a decreased LIF-stimulated induction of the proliferation-promoting factors cyclin D1, JunB, and c-myc. SOCS3 protein was upregulated in diabetic myoblasts, and knockdown of SOCS3 rescued LIF-induced gene expression in diabetic myoblasts, whereas neither STAT1 or STAT3 signaling...... nor proliferation rate was affected. In conclusion, although LIF and LIFR proteins were increased in muscle tissue and myoblasts from diabetic patients, LIF signaling and LIF-stimulated cell proliferation were impaired in diabetic myoblasts, suggesting a novel mechanism by which muscle function...

  12. Macroscopic extent of gastric mucosal atrophy: increased risk factor for esophageal squamous cell carcinoma in Japan

    Directory of Open Access Journals (Sweden)

    Kobayashi Noritoshi

    2009-05-01

    Full Text Available Abstract Background We aimed to estimate whether the macroscopic extent of gastric mucosal atrophy is associated with a risk for esophageal squamous cell carcinoma using a case-control study in Japanese subjects, a population known to have a high prevalence of CagA-positive H. pylori infection. Methods Two hundred and fifty-three patients who were diagnosed as having esophageal squamous cell carcinoma, and 253 sex- and age-matched controls were enrolled in the present study. The macroscopic extent of gastric mucosal atrophy was evaluated based on the Kimura and Takemoto Classification. A conditional logistic regression model with adjustment for potential confounding factors was used to assess the associations. Results Body gastritis, defined endoscopically, was independently associated with an increased risk for esophageal squamous cell carcinoma. Conclusion Our findings suggest that macroscopic body gastritis may be a risk factor for esophageal squamous cell carcinoma in Japan. Further studies are needed to confirm these findings.

  13. Treatment results and prognostic factors of clear cell ovarian carcinomas and ovarian carcinomas with clear cell component

    Directory of Open Access Journals (Sweden)

    M. D. Ahmedova

    2012-01-01

    Full Text Available The most important prognostic factors for clear cell carcinoma (CCC are clinical and morphological signs and clinical stage of the disease. Analyses of 5-year survival in patients with I stage of CCC is 69 %, in II stage – 55 %, in III stage – 14 % and in IV stage – 4 % patients. We analyzed distant results of treatment of 71 patients with CCC and of 25 patients with mixed malignant ovaries neoplasm with obligatory clear cell component taking into consideration main clinical and morphological sings of disease. On the base of performed reseal we revealed that morphological structure of the tumors and stage of the disease exerted heist influence on the exponent of survival of the patients with clear CCC ovaries neoplasm. Besides, there is a correlation between exponent of patients’ survival and radicalized of surgery, character of tumor growth, differentiation degree, cell anaplasia and mitotic activity of tumor cells.

  14. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Davis Rodney

    2006-07-01

    Full Text Available Abstract Background Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF, was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. Methods We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. Results We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM or nucleolin (on the cell surfaces eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of

  15. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  16. Effects of insulin-like growth factor-1 on B-cell precursor acute lymphoblastic leukemia.

    Science.gov (United States)

    Yamada, Hiroyuki; Iijima, Kazutoshi; Tomita, Osamu; Taguchi, Tomoko; Miharu, Masashi; Kobayashi, Kenichiro; Okita, Hajime; Saito, Masahiro; Shimizu, Toshiaki; Kiyokawa, Nobutaka

    2013-01-01

    Insulin-like growth factor-1 (IGF-1) is known to be a major growth factor with effects on various cell types, including hematopoietic cells, as well as neoplasms, and is regulated by IGF-binding proteins (IGFBPs). In this study, we investigated the effects of IGF-1 on B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells. When the expression of IGF-1R in clinical samples of BCP-ALL was examined, five of thirty-two cases showed IGF-1R expression, whereas IGF-1R was expressed in most BCP-ALL cell lines. We observed that IGF-1 enhanced the proliferation of BCP-ALL cell lines that can be partially inhibited by IGFBP-1, -3, and -4, but not other IGFBPs. IGF-1 also partially inhibited dexamethasone-induced apoptosis, but not apoptosis mediated by VP-16 and irradiation. Interestingly, the proliferative effect of IGF-1 was partially blocked by inhibitors of MAPK and AKT, whereas the inhibition of dexamethasone-induced apoptosis was completely blocked by both inhibitors. Our data indicate that IGF-1 is involved in cell proliferation and apoptosis regulation in BCP-ALL cells. Since some BCP-ALL cases express IGF-1R, it appears to be a plausible target for prognostic evaluation and may represent a new therapeutic strategy.

  17. Correlation between Grade in Transitional Cell Carcinoma (TCC and Expression of Epidermal Growth Factor Receptor (EGFR

    Directory of Open Access Journals (Sweden)

    MR Jallali Nadoushan

    2007-08-01

    Full Text Available Background: The present study was undertaken to investigate the correlation of Epidermal Growth Factor Receptor (EGFR expression with grade of Transitional Cell Carcinoma (TCC. Methods: Tumor samples of 75 patients from Mostafa Khomaini Hospital with Transitional Cell Carcinoma of the bladder were analyzed by immunohistochemistry for expression of EGFR. In this context, we assigned the bladder tumors a grade accord¬ing WHO classification. Results analyzed for possible correlation with the expression status of the Epidermal Growth Factor Receptor (EGFR. Results: This cross-sectional study showed that all grades of Transitional Cell Carcinoma expressed EGFR, and 14 cases were LMP (18.9% which 10 cases among them had negative cells according EGFR point of view(71.4% and 4 cases had re¬ported positive (28.6%. Thirty five cases were low grade (46.7% which 18 cases among them had reported negative cells (51.4% and 17 cases had positive cells (48.6%. Twenty six cases were high grade (34.7% that 9 cases among them had reported negative cells (34.6%. Seventeen cases had positive cells (65.4%. Mann-Witney test showed relation between grade and expression of EGFR (P<0.05. Conclusions: This study showed that expression of EGFR is correlated with grade of tumor.

  18. Upregulation of RNA Processing Factors in Poorly Differentiated Lung Cancer Cells.

    Science.gov (United States)

    Geles, Kenneth G; Zhong, Wenyan; O'Brien, Siobhan K; Baxter, Michelle; Loreth, Christine; Pallares, Diego; Damelin, Marc

    2016-04-01

    Intratumoral heterogeneity in non-small cell lung cancer (NSCLC) has been appreciated at the histological and cellular levels, but the association of less differentiated pathology with poor clinical outcome is not understood at the molecular level. Gene expression profiling of intact human tumors fails to reveal the molecular nature of functionally distinct epithelial cell subpopulations, in particular the tumor cells that fuel tumor growth, metastasis, and disease relapse. We generated primary serum-free cultures of NSCLC and then exposed them to conditions known to promote differentiation: the air-liquid interface (ALI) and serum. The transcriptional network of the primary cultures was associated with stem cells, indicating a poorly differentiated state, and worse overall survival of NSCLC patients. Strikingly, the overexpression of RNA splicing and processing factors was a prominent feature of the poorly differentiated cells and was also observed in clinical datasets. A genome-wide analysis of splice isoform expression revealed many alternative splicing events that were specific to the differentiation state of the cells, including an unexpectedly high frequency of events on chromosome 19. The poorly differentiated cells exhibited alternative splicing in many genes associated with tumor progression, as exemplified by the preferential expression of the short isoform of telomeric repeat-binding factor 1 (TERF1), also known as Pin2. Our findings demonstrate the utility of the ALI method for probing the molecular mechanisms that underlie NSCLC pathogenesis and provide novel insight into posttranscriptional mechanisms in poorly differentiated lung cancer cells.

  19. Upregulation of RNA Processing Factors in Poorly Differentiated Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kenneth G. Geles

    2016-04-01

    Full Text Available Intratumoral heterogeneity in non–small cell lung cancer (NSCLC has been appreciated at the histological and cellular levels, but the association of less differentiated pathology with poor clinical outcome is not understood at the molecular level. Gene expression profiling of intact human tumors fails to reveal the molecular nature of functionally distinct epithelial cell subpopulations, in particular the tumor cells that fuel tumor growth, metastasis, and disease relapse. We generated primary serum-free cultures of NSCLC and then exposed them to conditions known to promote differentiation: the air-liquid interface (ALI and serum. The transcriptional network of the primary cultures was associated with stem cells, indicating a poorly differentiated state, and worse overall survival of NSCLC patients. Strikingly, the overexpression of RNA splicing and processing factors was a prominent feature of the poorly differentiated cells and was also observed in clinical datasets. A genome-wide analysis of splice isoform expression revealed many alternative splicing events that were specific to the differentiation state of the cells, including an unexpectedly high frequency of events on chromosome 19. The poorly differentiated cells exhibited alternative splicing in many genes associated with tumor progression, as exemplified by the preferential expression of the short isoform of telomeric repeat-binding factor 1 (TERF1, also known as Pin2. Our findings demonstrate the utility of the ALI method for probing the molecular mechanisms that underlie NSCLC pathogenesis and provide novel insight into posttranscriptional mechanisms in poorly differentiated lung cancer cells.

  20. Allograft inflammatory factor 1 is a regulator of transcytosis in M cells

    Science.gov (United States)

    Kishikawa, Sari; Sato, Shintaro; Kaneto, Satoshi; Uchino, Shigeo; Kohsaka, Shinichi; Nakamura, Seiji; Kiyono, Hiroshi

    2017-01-01

    M cells in follicle-associated epithelium (FAE) are specialized antigen-sampling cells that take up intestinal luminal antigens. Transcription factor Spi-B regulates M-cell maturation, but the molecules that promote transcytosis within M cells are not fully identified. Here we show that mouse allograft inflammatory factor 1 (Aif1) is expressed by M cells and contributes to M-cell transcytosis. FAE in Aif1−/− mice has suppressed uptake of particles and commensal bacteria, compared with wild-type mice. Translocation of Yersinia enterocolitica, but not of Salmonella enterica serovar Typhimurium, leading to the generation of antigen-specific IgA antibodies, is also diminished in Aif1-deficient mice. Although β1 integrin, which acts as a receptor for Y. enterocolitica via invasin protein, is expressed on the apical surface membranes of M cells, its active form is rarely found in Aif1−/− mice. These findings show that Aif1 is important for bacterial and particle transcytosis in M cells. PMID:28224999

  1. Fibroblast growth factor receptor 2 IIIc as a therapeutic target for colorectal cancer cells.

    Science.gov (United States)

    Matsuda, Yoko; Hagio, Masahito; Seya, Tomoko; Ishiwata, Toshiyuki

    2012-09-01

    A high percentage of colorectal carcinomas overexpress a lot of growth factors and their receptors, including fibroblast growth factor (FGF) and FGF receptor (FGFR). We previously reported that FGFR2 overexpression was associated with distant metastasis and that FGFR2 inhibition suppressed cell growth, migration, and invasion. The FGFR2 splicing isoform FGFR2IIIb is associated with well-differentiated histologic type, tumor angiogenesis, and adhesion to extracellular matrices. Another isoform, FGFR2IIIc, correlates with the aggressiveness of various types of cancer. In the present study, we examined the expression and roles of FGFR2IIIc in colorectal carcinoma to determine the effectiveness of FGFR2IIIc-targeting therapy. In normal colorectal tissues, FGFR2IIIc expression was weakly detected in superficial colorectal epithelial cells and was not detected in proliferative zone cells. FGFR2IIIc-positive cells were detected by immunohistochemistry in the following lesions, listed in the order of increasing percentage: hyperplastic polyps growth, soft agar colony formation, migration, and invasion, as well as decreased adhesion to extracellular matrices. Furthermore, FGFR2IIIc-transfected colorectal carcinoma cells formed larger tumors in subcutaneous tissues and the cecum of nude mice. Fully human anti-FGFR2IIIc monoclonal antibody inhibited the growth and migration of colorectal carcinoma cells through alterations in cell migration, cell death, and development-related genes. In conclusion, FGFR2IIIc plays an important role in colorectal carcinogenesis and tumor progression. Monoclonal antibody against FGFR2IIIc has promising potential in colorectal carcinoma therapy.

  2. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling.

    Science.gov (United States)

    Huang, Yao; Chang, Yongchang

    2014-01-01

    Dysfunction and destruction of pancreatic islet beta cells is a hallmark of diabetes. Better understanding of cellular signals in beta cells will allow development of therapeutic strategies for diabetes, such as preservation and expansion of beta-cell mass and improvement of beta-cell function. During the past several decades, the number of studies analyzing the molecular mechanisms, including growth factor/hormone signaling pathways that impact islet beta-cell mass and function, has increased exponentially. Notably, somatolactogenic hormones including growth hormone (GH), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) and their receptors (GHR, PRLR, and IGF-1R) are critically involved in beta-cell growth, survival, differentiation, and insulin secretion. In this chapter, we focus more narrowly on GH, PRL, and IGF-1 signaling, and GH-IGF-1 cross talk. We also discuss how these signaling aspects contribute to the regulation of beta-cell proliferation and apoptosis. In particular, our novel findings of GH-induced formation of GHR-JAK2-IGF-1R protein complex and synergistic effects of GH and IGF-1 on beta-cell signaling, proliferation, and antiapoptosis lead to a new concept that IGF-1R may serve as a proximal component of GH/GHR signaling.

  3. Transforming Growth Factor-β Expression Induced by Rhinovirus Infection in Respiratory Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Amrita DOSANJH

    2006-01-01

    Rhinovirus infection of the lower airways is now a recognized disease, associated with bronchiolitis and asthma. The bronchial epithelial cells are the host cells when rhinovirus infection occurs in the airway. It was hypothesized that a pro-fibrotic growth factor response may occur in these infected cells,leading to production of a key transforming growth factor, TGF-β-1. Bronchial epithelial cells were inoculated with human rhinovirus and compared at day 1, 3 and 5 to control non-infected cells. Cell culture supernatant fluid and cellular RNA were isolated. The amount of released TGF-β protein was measured by enzyme-linked immunosorbent assay (ELISA). Expression of TGF-β at the level of transcription was measured by polymerase chain reaction (PCR) and gel electrophoresis. The results show that at all time points studied, TGF-β production is greater in the infected cells, as demonstrated by ELISA (P<0.05) and by semiquantitative PCR analysis. It was concluded that bronchial epithelial cells infected with common cold virus and rhinovirus, showed higher levels of TGF-β. The production of TGF-β may be indicative of a normal repair mechanism to counter inflammation, or in the setting of persistent asthma, could potentially lead to increased fibrosis and collagen deposition.

  4. Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye

    Science.gov (United States)

    Gardner, Peter J.; Liyanage, Sidath E.; Cristante, Enrico; Sampson, Robert D.; Dick, Andrew D.; Ali, Robin R.; Bainbridge, James W.

    2017-01-01

    Hypoxia inducible factors (HIFs) are ubiquitously expressed transcription factors important for cell homeostasis during dynamic oxygen levels. Myeloid specific HIFs are crucial for aspects of myeloid cell function, including their ability to migrate into inflamed tissues during autoimmune disease. This contrasts with the concept that accumulation of myeloid cells at ischemic and hypoxic sites results from a lack of chemotactic responsiveness. Here we seek to address the role of HIFs in myeloid trafficking during inflammation in a mouse model of human uveitis. We show using mice with myeloid-specific Cre-deletion of HIFs that myeloid HIFs are dispensable for leukocyte migration into the inflamed eye. Myeloid-specific deletion of Hif1a, Epas1, or both together, had no impact on the number of myeloid cells migrating into the eye. Additionally, stabilization of HIF pathways via deletion of Vhl in myeloid cells had no impact on myeloid trafficking into the inflamed eye. Finally, we chemically induce hypoxemia via hemolytic anemia resulting in HIF stabilization within circulating leukocytes to demonstrate the dispensable role of HIFs in myeloid cell migration into the inflamed eye. These data suggest, contrary to previous reports, that HIF pathways in myeloid cells during inflammation and hypoxia are dispensable for myeloid cell tissue trafficking. PMID:28112274

  5. Heat stable cell growth inhibiting factor isolated from rat liver microsomes.

    Directory of Open Access Journals (Sweden)

    Inaba,Kozo

    1979-08-01

    Full Text Available A heat stable cell growth inhibiting factor was isolated from rat liver microsomes by hot salt extraction, ethanol fractionation and the hot phenol method. The factor was contained in the RNA fraction (designated as mhRNA. mhRNA inhibited the growth of mouse fibroblast (L-929 cells at a relatively low concentration (55 microgram/ml of culture medium. The molecular weight of mhRNA was about 27,000 and the base composition was guanine and cytosine rich.

  6. Transcription factor ZNF25 is associated with osteoblast differentiation of human skeletal stem cells

    DEFF Research Database (Denmark)

    Twine, Natalie A.; Harkness, Linda; Kassem, Moustapha;

    2016-01-01

    Background The differentiation of human bone marrow derived skeletal stem cells (known as human bone marrow stromal or mesenchymal stem cells, hMSCs) into osteoblasts involves the activation of a small number of well-described transcription factors. To identify additional osteoblastic transcription...... containing G protein-coupled receptor 5 and RAN-binding protein 3-like. We also observed enrichment in extracellular matrix organization, skeletal system development and regulation of ossification in the entire upregulated set of genes. Consistent with its function as a transcription factor during osteoblast...

  7. Colchicine inhibits epidermal growth factor degradation in 3T3 cells.

    OpenAIRE

    Brown, K. D.; Friedkin, M; Rozengurt, E

    1980-01-01

    Colchicine (2 microM) did not affect the initial rate of association of 125I-labeled epidermal growth factor (125I-EGF) to Swiss 3T3 cells but continued incubation (up to 24 hr) led to an increase in cell-associated radioactivity. The effect is also produced by Colcemid, vinblastine, and podophyllotoxin but not by lumicolchicine. Disruption of microtubules with colchicine does not alter the rate of "down regulation" of EGF receptors, suggesting the binding and internalization of the factor pr...

  8. RhoC GTPase Overexpression Modulates Induction of Angiogenic Factors in Breast Cells

    Directory of Open Access Journals (Sweden)

    Kenneth L. van Golen

    2000-09-01

    Full Text Available Inflammatory breast cancer (IBC is a distinct and aggressive form of locally advanced breast cancer. IBC is highly angiogenic, invasive, and metastatic at its inception. Previously, we identified specific genetic alterations of IBC that contribute to this highly invasive phenotype. RhoC GTPase was overexpressed in 90% of archival IBC tumor samples, but not in stage-matched, non-IBC tumors. To study the role of RhoC GTPase in contributing to an IBC-like phenotype, we generated stable transfectants of human mammary epithelial cells overexpressing the RhoC gene, and studied the effect of RhoC GTPase overexpression on the modulation of angiogenesis in IBC. Levels of vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF, interleukin-6 (IL-6, and interleukin-8 (IL-8 were significantly higher in the conditioned media of the HME-RhoC transfectants than in the untransfected HME and HME-β-galactosidase control media, similar to the SUM149 IBC cell line. Inhibition of RhoC function by introduction of C3 exotransferase decreased production of angiogenic factors by the HME-RhoC transfectants and the SUM149 IBC cell line, but did not affect the control cells. These data support the conclusion that overexpression of RhoC GTPase is specifically and directly implicated in the control of the production of angiogenic factors by IBC cells.

  9. Assessment of factors responsible for polymer electrolyte membrane fuel cell electrode performance by statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Velayutham, G.; Dhathathreyan, K.S.; Rajalakshmi, N. [Centre For Fuel Cell Technology, Project of ARC International, 120, Mambakkam Main Road, Medavakkam, Chennai 600 100 (India); Sampangi Raman, D. [Indian Statistical Institute, Nelson Manickam Road, Chennai 600 029 (India)

    2009-06-01

    The performance of the fuel cell electrode depends on many factors: types of materials and their properties, composition, process parameters and fuel cell operation conditions. In the present paper, cathode electrode performance in a PEM fuel cell as a function of Teflon concentration in the substrate materials and in micro-layer carbon, pore former in the micro-layer, amount of carbon used in the diffusion layer and Platinum and Nafion loading in the catalyst layer are studied. These six factors each at two levels are considered. A full factorial design would have required 2{sup 6}, i.e., 64 experiments to be carried out. With the use of Taguchi method, L{sub 12} designs, the number of experiments can be reduced to 12. The electrode current density values are taken as responses for the analysis. Statistical sensitivity analysis (ANOVA analysis) is used to compute the effects and the contributions of the various factors to the fuel cell electrode. Some graphic representations are employed in order to display the results of the statistical analysis made for different current values. The behavior of cathode PEM fuel cell electrode was studied using humidified hydrogen and compressed air. The present paper examines the six main factors and their levels responsible for altering the performance particularly when the fuel is operated under ambient pressure. (author)

  10. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.

    Science.gov (United States)

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  11. Vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 expression in non-small cell lung cancer patients: relation to prognosis

    DEFF Research Database (Denmark)

    Bonnesen, Barbara; Pappot, Helle; Holmstav, Julie;

    2009-01-01

    elements in neoplastic cells and their microenvironment have recently been and are continuously developed including drugs inhibiting the angiogenic system. Angiogenic factor vascular endothelial growth factor (VEGF) and its receptor vascular endothelial growth factor receptor 2 (VEGFR2) seem to play key...

  12. Implementing a Parallel Matrix Factorization Library on the Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    B.C. Vishwas

    2009-01-01

    Full Text Available Matrix factorization (or often called decomposition is a frequently used kernel in a large number of applications ranging from linear solvers to data clustering and machine learning. The central contribution of this paper is a thorough performance study of four popular matrix factorization techniques, namely, LU, Cholesky, QR and SVD on the STI Cell broadband engine. The paper explores algorithmic as well as implementation challenges related to the Cell chip-multiprocessor and explains how we achieve near-linear speedup on most of the factorization techniques for a range of matrix sizes. For each of the factorization routines, we identify the bottleneck kernels and explain how we have attempted to resolve the bottleneck and to what extent we have been successful. Our implementations, for the largest data sets that we use, running on a two-node 3.2 GHz Cell BladeCenter (exercising a total of sixteen SPEs, on average, deliver 203.9, 284.6, 81.5, 243.9 and 54.0 GFLOPS for dense LU, dense Cholesky, sparse Cholesky, QR and SVD, respectively. The implementations achieve speedup of 11.2, 12.8, 10.6, 13.0 and 6.2, respectively for dense LU, dense Cholesky, sparse Cholesky, QR and SVD, when running on sixteen SPEs. We discuss the interesting interactions that result from parallelization of the factorization routines on a two-node non-uniform memory access (NUMA Cell Blade cluster.

  13. Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin 1

    OpenAIRE

    1986-01-01

    Tumor necrosis factor/cachectin (TNF) has been implicated as a mediator of the host response in sepsis and neoplasia. Recent work has shown that TNF can modulate endothelial cell hemostatic properties, suggesting that endothelium is a target tissue for TNF. This led us to examine whether endothelial cells have specific binding sites for TNF and augment the biological response to TNF by elaborating the inflammatory mediator, IL-1. Incubation of 125I-recombinant human TNF with confluent, cultur...

  14. Structural Factors That Affect the Performance of Organic Bulk Heterojunction Solar Cells

    KAUST Repository

    Vandewal, Koen

    2013-08-27

    The performance of polymer:fullerene solar cells is strongly affected by the active layer morphology and polymer microstructure. In this Perspective, we review ongoing research on how structural factors influence the photogeneration and collection of charge carriers as well as charge carrier recombination and the related open-circuit voltage. We aim to highlight unexplored research opportunities and provide some guidelines for the synthesis of new conjugated polymers for high-efficiency solar cells. © 2013 American Chemical Society.

  15. Silencing of osteopontin promotes the radiosensitivity of breast cancer cells by reducing the expression of hypoxia inducible factor 1 and vascular endothelial growth factor

    Institute of Scientific and Technical Information of China (English)

    YANG Li; ZHAO Wei; ZUO Wen-shu; WEI Ling; SONG Xian-rang; WANG Xing-wu; ZHENG Gang; ZHENG Mei-zhu

    2012-01-01

    Background Osteopontin (OPN) is a secreted phosphoglycoprotein (SSP) that is overexpressed in a variety of tumors and was regarded as a molecular marker of tumors.In this study,we intended to demonstrate the role of OPN in human breast cancer cell line MDA-MB-231.Methods Recombinant plasmid expressing small interfering RNA (siRNA) specific to OPN mRNA was transfected into MDA-MB-231 cells to generate the stable transfected cell line MDA-MB-343,and the empty plasmid tansfected cells (MDA-MB-neg) or wildtype MDA-MB-231 cells were used as control cells respectively.Expression of OPN,hypoxia inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) proteins was analyzed by Western blotting analysis.The radiosensitivity of cells was determined by detecting cell apoptosis,cell proliferation and cell senescence.Results HIF-1 and VEGF proteins in MDA-MB-343 cells were significantly downregulated upon the efficient knockdown of OPN expression under either hypoxia or normoxia environment.Moreover,expression of OPN protein was upregualted upon hypoxic culture.Stable OPN-silencing also decreased cell invasion,increased cell apoptosis and cell senescence,as well as reduced clonogenic survival,resulting in increase radiation tolerance.Conclusions Suppression of OPN gene expression can enhance radiosensitivity and affect cell apoptosis in breast cancer cells.OPN seems to be an attractive target for the improvement of radiotherapy.

  16. Macrophage migration inhibitory factor promotes cell death and aggravates neurologic deficits after experimental stroke

    OpenAIRE

    Inácio, Ana R; Ruscher, Karsten; Leng, Lin; Bucala, Richard; Deierborg, Tomas

    2010-01-01

    Multiple mechanisms contribute to tissue demise and functional recovery after stroke. We studied the involvement of macrophage migration inhibitory factor (MIF) in cell death and development of neurologic deficits after experimental stroke. Macrophage migration inhibitory factor is upregulated in the brain after cerebral ischemia, and disruption of the Mif gene in mice leads to a smaller infarct volume and better sensory-motor function after transient middle cerebral artery occlusion (tMCAo)....

  17. Proteinuria in adult Saudi patients with sickle cell disease is not associated with identifiable risk factors

    OpenAIRE

    Aleem Aamer

    2010-01-01

    Renal involvement in patients with sickle cell disease (SCD) is associated with signi-ficant morbidity and mortality. Proteinuria is common in patients with SCD and is a risk factor for future development of renal failure. We sought to identify risk factors, if any, associated with pro-teinuria in adult Saudi patients with SCD. We studied 67 patients with SCD followed-up at the King Khalid University Hospital, Riyadh, Saudi Arabia. All patients underwent 24-hour urine collection to measure cr...

  18. Effects of anti-vascular endothelial growth factor monoclonal antibody (bevacizumab on lens epithelial cells

    Directory of Open Access Journals (Sweden)

    Jun JH

    2016-06-01

    Full Text Available Jong Hwa Jun,1 Wern-Joo Sohn,2 Youngkyun Lee,2 Jae-Young Kim21Department of Ophthalmology, School of Medicine, Dongsan Medical Center, Keimyung University, 2Department of Oral Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South KoreaAbstract: The molecular and cellular effects of anti-vascular endothelial growth factor monoclonal antibody (bevacizumab on lens epithelial cells (LECs were examined using both an immortalized human lens epithelial cell line and a porcine capsular bag model. After treatment with various concentrations of bevacizumab, cell viability and proliferation patterns were evaluated using the water-soluble tetrazolium salt assay and 5-bromo-2'-deoxyuridine enzyme-linked immunosorbent assay, respectively. The scratch assay and Western blot analysis were employed to validate the cell migration pattern and altered expression levels of signaling molecules related to the epithelial–mesenchymal transition (EMT. Application of bevacizumab induced a range of altered cellular events in a concentration-dependent manner. A 0.1–2 mg/mL concentration demonstrated dose-dependent increase in proliferation and viability of LECs. However, 4 mg/mL decreased cell proliferation and viability. Cell migrations displayed dose-dependent retardation from 0.1 mg/mL bevacizumab treatment. Transforming growth factor-β2 expression was markedly increased in a dose-dependent manner, and α-smooth muscle actin, matrix metalloproteinase-9, and vimentin expression levels showed dose-dependent changes in a B3 cell line. Microscopic observation of porcine capsular bag revealed changes in cellular morphology and a decline in cell density compared to the control after 2 mg/mL treatment. The central aspect of posterior capsule showed delayed confluence, and the factors related to EMT revealed similar expression patterns to those identified in the cell line. Based on these results, bevacizumab modulates the proliferation

  19. Brain-derived neurotrophic factor increases vascular endothelial growth factor expression and enhances angiogenesis in human chondrosarcoma cells.

    Science.gov (United States)

    Lin, Chih-Yang; Hung, Shih-Ya; Chen, Hsien-Te; Tsou, Hsi-Kai; Fong, Yi-Chin; Wang, Shih-Wei; Tang, Chih-Hsin

    2014-10-15

    Chondrosarcomas are a type of primary malignant bone cancer, with a potent capacity for local invasion and distant metastasis. Brain-derived neurotrophic factor (BDNF) is commonly upregulated during neurogenesis. The aim of the present study was to examine the mechanism involved in BDNF-mediated vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma cells. Here, we knocked down BDNF expression in chondrosarcoma cells and assessed their capacity to control VEGF expression and angiogenesis in vitro and in vivo. We found knockdown of BDNF decreased VEGF expression and abolished chondrosarcoma conditional medium-mediated angiogenesis in vitro as well as angiogenesis effects in vivo in the chick chorioallantoic membrane and Matrigel plug nude mouse models. In addition, in the xenograft tumor angiogenesis model, the knockdown of BDNF significantly reduced tumor growth and tumor-associated angiogenesis. BDNF increased VEGF expression and angiogenesis through the TrkB receptor, PLCγ, PKCα, and the HIF-1α signaling pathway. Finally, we analyzed samples from chondrosarcoma patients by immunohistochemical staining. The expression of BDNF and VEGF protein in 56 chondrosarcoma patients was significantly higher than in normal cartilage. In addition, the high level of BDNF expression correlated strongly with VEGF expression and tumor stage. Taken together, our results indicate that BDNF increases VEGF expression and enhances angiogenesis through a signal transduction pathway that involves the TrkB receptor, PLCγ, PKCα, and the HIF-1α. Therefore, BDNF may represent a novel target for anti-angiogenic therapy for human chondrosarcoma.

  20. Antiproliferative factor regulates connective tissue growth factor (CTGF/CCN2) expression in T24 bladder carcinoma cells

    Science.gov (United States)

    Matika, Christina A.; Wasilewski, Melissa; Arnott, John A.; Planey, Sonia Lobo

    2012-01-01

    Antiproliferative factor (APF) is a sialoglycopeptide elevated in the urine of patients with interstitial cystitis (IC)—a chronic, painful bladder disease of unknown etiology. APF inhibits the proliferation of normal bladder epithelial and T24 bladder carcinoma cells in vitro by binding to cytoskeleton-associated protein 4 (CKAP4) and altering the transcription of genes involved in proliferation, cellular adhesion, and tumorigenesis; however, specific molecular mechanisms and effector genes that control APF's antiproliferative effects are unknown. In this study, we found that there was a 7.5-fold up-regulation of connective tissue growth factor (CTGF/CCN2) expression in T24 bladder carcinoma cells treated with APF. Western blot revealed a dose-dependent increase in CCN2 protein levels, with secretion into the culture medium after APF treatment. CCN2 overexpression enhanced APF's antiproliferative activity, whereas CCN2 knockdown diminished APF-induced p53 expression. Using a luciferase reporter construct, we found that APF treatment resulted in fivefold activation of the CCN2 proximal promoter and, of importance, that small interfering RNA–mediated knockdown of CKAP4 inhibited CCN2 upregulation. In addition, we demonstrate that CKAP4 translocates to the nucleus and binds to the CCN2 proximal promoter in an APF-dependent manner, providing evidence that CCN2 regulation by APF involves CKAP4 nuclear translocation and binding to the CCN2 promoter. PMID:22438586

  1. Prostaglandin E2 regulates macrophage colony stimulating factor secretion by human bone marrow stromal cells.

    Science.gov (United States)

    Besse, A; Trimoreau, F; Faucher, J L; Praloran, V; Denizot, Y

    1999-07-08

    Bone marrow stromal cells regulate marrow haematopoiesis by secreting growth factors such as macrophage colony stimulating factor (M-CSF) that regulates the proliferation, differentiation and several functions of cells of the mononuclear-phagocytic lineage. By using a specific ELISA we found that their constitutive secretion of M-CSF is enhanced by tumour necrosis factor-alpha (TNF-alpha). The lipid mediator prostaglandin E2 (PGE2) markedly reduces in a time- and dose-dependent manner the constitutive and TNF-alpha-induced M-CSF synthesis by bone marrow stromal cells. In contrast, other lipid mediators such as 12-HETE, 15-HETE, leukotriene B4, leukotriene C4 and lipoxin A4 have no effect. EP2/EP4 selective agonists (11-deoxy PGE1 and 1-OH PGE1) and EP2 agonist (19-OH PGE2) inhibit M-CSF synthesis by bone marrow stromal cells while an EP1/EP3 agonist (sulprostone) has no effect. Stimulation with PGE2 induces an increase of intracellular cAMP levels in bone marrow stromal cells. cAMP elevating agents (forskolin and cholera toxin) mimic the PGE2-induced inhibition of M-CSF production. In conclusion, PGE2 is a potent regulator of M-CSF production by human bone marrow stromal cells, its effects being mediated via cAMP and PGE receptor EP2/EP4 subtypes.

  2. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Directory of Open Access Journals (Sweden)

    J.C. Zhang

    2014-10-01

    Full Text Available Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs expressing human basic fibroblast growth factor (hbFGF. After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC, MSCs expressing hbFGF (hbFGF-MSC, MSC controls, and phosphate-buffered saline (PBS controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001; however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008 and microvessel density (P<0.001. Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  3. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.C. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Zheng, G.F. [Department of Vascular Surgery, The People' s Hospital of Ganzhou, Ganzhou (China); Wu, L.; Ou Yang, L.Y.; Li, W.X. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-08-08

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  4. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages

    Energy Technology Data Exchange (ETDEWEB)

    Caiazzo, Massimiliano, E-mail: caiazzo@igb.cnr.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy); Istituto di diagnosi e cura ' Hermitage Capodimonte,' 80131 Naples (Italy); Colucci-D' Amato, Luca, E-mail: luca.colucci@unina2.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy); Dipartimento di Scienze della Vita, Seconda Universita di Napoli, 81100 Caserta (Italy); Esposito, Maria T., E-mail: maria_teresa.esposito@kcl.ac.uk [CEINGE Biotecnologie Avanzate, 80145 Naples (Italy); Parisi, Silvia, E-mail: parisi@ceinge.unina.it [CEINGE Biotecnologie Avanzate, 80145 Naples (Italy); Stifani, Stefano, E-mail: stefano.stifani@mcgill.ca [Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4 (Canada); Ramirez, Francesco, E-mail: francesco.ramirez@mssm.edu [Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029 (United States); Porzio, Umberto di, E-mail: diporzio@igb.cnr.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy)

    2010-08-15

    Previous gene targeting studies in mice have implicated the nuclear protein Krueppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.

  5. Selective alterations of transcription factors in MPP+-induced neurotoxicity in PC12 cells.

    Science.gov (United States)

    Xu, Z; Cawthon, D; McCastlain, K A; Duhart, H M; Newport, G D; Fang, H; Patterson, T A; Slikker, W; Ali, S F

    2005-08-01

    MPP(+) (1-methyl-4-phenylpyridinium; the active metabolite of the neurotoxin MPTP (1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine)) depletes dopamine (DA) content and elicits cell death in PC12 cells. However, the mechanism of MPP(+)-induced neurotoxicity is still unclear. In this study, the dose response and time-course of MPP(+)-induced DA depletion and decreased cell viability were determined in nerve growth factor (NGF)-differentiated PC12 cells. The alteration of transcription factors (TFs) induced by MPP(+) from a selected dose level and time point was then evaluated using protein/DNA-binding arrays. K-means clustering analysis identified four patterns of protein/DNA-binding changes. Three of the 28 TFs identified in PC12 cells increased by 100% (p53, PRE, Smad SBE) and 2 decreased by 50% (HSE, RXR(DR1)) of control with MPP(+) treatment. In addition, three TFs decreased within the range of 33-50% (TFIID, E2F1, CREB) and two TFs increased within the range of 50-100% (PAX-5, Stat4). An electrophoretic mobility shift assay (EMSA) was used to confirm the changes of p53 and HSE. The observed changes in TFs correlated with the alterations of DA and cell viability. The data indicates that selective transcription factors are involved in MPP(+)-induced neurotoxicity and it provides mechanistic information that may be applicable to animal studies with MPTP and clinical studies of Parkinson's disease.

  6. Bone morphogenetic protein-4 enhances vascular endothelial growth factor secretion by human retinal pigment epithelial cells.

    Science.gov (United States)

    Vogt, Rhonda R; Unda, Richard; Yeh, Lee-Chuan C; Vidro, Eileen K; Lee, John C; Tsin, Andrew T

    2006-08-01

    Retinal pigment epithelial (RPE) cells secrete vascular endothelial growth factor (VEGF), a cytokine known to promote angiogenesis. Results from RNase protection assays (RPAs) show that RPE from non-diabetic human donors and from adult retinal pigment epithelium-19 (ARPE-19) cells expressed significant bone morphogenetic protein-4 (BMP-4) message. In addition, ARPE-19 cells cultured in high glucose (25 mM), compared to those in physiological glucose (5.5 mM) released significantly more BMP-4 into the conditioned media (CM). However, the effect of BMP-4 on the release of VEGF by ARPE-19 cells has not been studied. Accordingly, ARPE-19 cells were treated with BMP-4 to determine VEGF secretion. BMP-4 and VEGF levels in the CM and cell lysates were measured by enzyme-linked immunosorbent assay (ELISA). Cells treated with exogenous BMP-4 had higher VEGF in the CM and this treatment effect was dose- and time-dependent, while cell lysates had low levels of VEGF. Addition of cycloheximide (CHX) or actinomycin-D (ACT) significantly reduced VEGF secretion from cells treated with BMP-4, suggesting that the BMP-4-induced secretion of VEGF requires new RNA and protein synthesis. Our results suggest that BMP-4 may play a role in the regulation of ocular angiogenesis associated with diabetic retinopathy (DR) by stimulating VEGF release from RPE cells.

  7. Chicken leukemia inhibitory factor maintains chicken embryonic stem cells in the undifferentiated state.

    Science.gov (United States)

    Horiuchi, Hiroyuki; Tategaki, Airo; Yamashita, Yusuke; Hisamatsu, Hikaru; Ogawa, Mari; Noguchi, Takashi; Aosasa, Masayoshi; Kawashima, Tsuyoshi; Akita, Sachiko; Nishimichi, Norihisa; Mitsui, Naoko; Furusawa, Shuichi; Matsuda, Haruo

    2004-06-04

    Mouse embryonic stem (ES) cells can be maintained in an undifferentiated state in the presence of leukemia inhibitory factor (LIF), a member of the interleukin-6 cytokine family. In other mammals, this is not possible with LIF alone. Chicken ES-like cells (blastodermal cells) have only been cultured with mouse LIF because chicken LIF was not available. However the culture system is imperfect and chicken ES-like cells equivalent to mouse ES cells were not observed. In the present study, we cloned the cDNA-encoding chicken LIF using mRNA subtraction and RACE methodology. The chicken LIF cDNA encodes a protein with approximately 40% sequence identity to mouse LIF. It has 211 amino acids including a putative N-terminal signal peptide of 24 residues. Chicken blastodermal cells were cultured in the presence of bacterially expressed chicken LIF or mouse LIF. The expression of alkaline phosphatase and embryonal carcinoma cell monoclonal antibody-1 and stage-specific embryonic antigen-1 and the activation of STAT3 were examined, all of which are indices of the undifferentiated state. Exposure in the blastodermal cells to recombinant chicken LIF but not to mouse LIF maintained the expression of these various markers. After 9 days of incubation, the blastodermal cells formed cystic embryoid bodies in the presence of mouse LIF but not in the presence of recombinant chicken LIF. We conclude that chicken LIF is able to maintain chicken ES cell cultures in the undifferentiated state.

  8. Proliferative and Invasive Effects of Progesterone-Induced Blocking Factor in Human Glioblastoma Cells

    Science.gov (United States)

    Hansberg-Pastor, Valeria

    2017-01-01

    Progesterone-induced blocking factor (PIBF) is a progesterone (P4) regulated protein expressed in different types of high proliferative cells including astrocytomas, the most frequent and aggressive brain tumors. It has been shown that PIBF increases the number of human astrocytoma cells. In this work, we evaluated PIBF regulation by P4 and the effects of PIBF on proliferation, migration, and invasion of U87 and U251 cells, both derived from human glioblastomas. PIBF mRNA expression was upregulated by P4 (10 nM) from 12 to 24 h. Glioblastoma cells expressed two PIBF isoforms, 90 and 57 kDa. The content of the shorter isoform was increased by P4 at 24 h, while progesterone receptor antagonist RU486 (10 μM) blocked this effect. PIBF (100 ng/mL) increased the number of U87 cells on days 4 and 5 of treatment and induced cell proliferation on day 4. Wound-healing assays showed that PIBF increased the migration of U87 (12–48 h) and U251 (24 and 48 h) cells. Transwell invasion assays showed that PIBF augmented the number of invasive cells in both cell lines at 24 h. These data suggest that PIBF promotes proliferation, migration, and invasion of human glioblastoma cells. PMID:28168193

  9. Proliferative and Invasive Effects of Progesterone-Induced Blocking Factor in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Araceli Gutiérrez-Rodríguez

    2017-01-01

    Full Text Available Progesterone-induced blocking factor (PIBF is a progesterone (P4 regulated protein expressed in different types of high proliferative cells including astrocytomas, the most frequent and aggressive brain tumors. It has been shown that PIBF increases the number of human astrocytoma cells. In this work, we evaluated PIBF regulation by P4 and the effects of PIBF on proliferation, migration, and invasion of U87 and U251 cells, both derived from human glioblastomas. PIBF mRNA expression was upregulated by P4 (10 nM from 12 to 24 h. Glioblastoma cells expressed two PIBF isoforms, 90 and 57 kDa. The content of the shorter isoform was increased by P4 at 24 h, while progesterone receptor antagonist RU486 (10 μM blocked this effect. PIBF (100 ng/mL increased the number of U87 cells on days 4 and 5 of treatment and induced cell proliferation on day 4. Wound-healing assays showed that PIBF increased the migration of U87 (12–48 h and U251 (24 and 48 h cells. Transwell invasion assays showed that PIBF augmented the number of invasive cells in both cell lines at 24 h. These data suggest that PIBF promotes proliferation, migration, and invasion of human glioblastoma cells.

  10. EFFECTS OF SECRETABLE PLACENTAL FACTORS UPON SECRETION OF CYTOKINES BY THP-1 MONOCYTE-LIKE CELLS

    Directory of Open Access Journals (Sweden)

    Ya. S. Onokhina

    2013-01-01

    Full Text Available Abstract. Мonocytes in feto-placental circulation are exposed to factors secreted by placental tissue. These factors influence monocyte functions in pregnancy. In present study, an in vitro model (monocyte-like THP-1 cells was used for assessing effects of soluble placental factors obtained from women with physiological pregnancies, or preeclampsia cases. The following effects of placental factors were revealed: increased secretion of VEGF by THP-1 cells along with decreased secretion of IL-6, IL-8 and MCP-1 under the influence of placental factors from the I. trimester of pregnancy in comparison with III. trimester. Secretion of IL-6 and MCP-1 by THP-1 cells was increased, and secretion of soluble TNFRII was decreased upon co-cultivation with soluble placental factors from the women with preeclampsia, as compared with placental products from physiological pregnancies.The work is supported by grants ГК № 02.740.11.0711 from Ministry of Education and Science, and НШ-3594.2010.7 grant from the President of Russian Federation.

  11. Fibronectin-Alginate microcapsules improve cell viability and protein secretion of encapsulated Factor IX-engineered human mesenchymal stromal cells.

    Science.gov (United States)

    Sayyar, Bahareh; Dodd, Megan; Marquez-Curtis, Leah; Janowska-Wieczorek, Anna; Hortelano, Gonzalo

    2015-01-01

    Continuous delivery of proteins by engineered cells encapsu-lated in biocompatible polymeric microcapsules is of considerable therapeutic potential. However, this technology has not lived up to expectations due to inadequate cell--matrix interactions and subsequent cell death. In this study we hypoth-esize that the presence of fibronectin in an alginate matrix may enhance the viability and functionality of encapsulated human cord blood-derived mesenchymal stromal cells (MSCs) expressing the human Factor IX (FIX) gene. MSCs were encapsulated in alginate-PLL microcapsules containing 10, 100, or 500 μg/ml fibronectin to ameliorate cell survival. MSCs in microcapsules with 100 and 500 μg/ml fibronectin demonstrated improved cell viability and proliferation and higher FIX secretion compared to MSCs in non-supplemented microcapsules. In contrast, 10 μg/ml fibronectin did not significantly affect the viability and protein secretion from the encapsulated cells. Differentiation studies demonstrated osteogenic (but not chondrogenic or adipogenic) differentiation capability and efficient FIX secretion of the enclosed MSCs in the fibronectin-alginate suspension culture. Thus, the use of recombinant MSCs encapsulated in fibronectin-alginate microcapsules in basal or osteogenic cultures may be of practical use in the treatment of hemophilia B.

  12. Novel Coiled-Coil Cell Division Factor ZapB Stimulates Z Ring Assembly and Cell Division

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Galli, Elizabeth; Møller-Jensen, Jakob

    2008-01-01

    Formation of the Z ring is the first known event in bacterial cell division. However, it is not yet known how the assembly and contraction of the Z ring is regulated. Here, we identify a novel cell division factor ZapB in Escherichia coli that simultaneously stimulates Z ring assembly and cell...... division. Deletion of zapB resulted in delayed cell division and the formation of ectopic Z rings and spirals whereas overexpression of ZapB resulted in nucleoid condensation and aberrant cell divisions. Localization of ZapB to the divisome depended on FtsZ but not FtsA, ZipA or FtsI and ZapB interacted...... with FtsZ in a bacterial two-hybrid analysis. The simultaneous inactivation of FtsA and ZipA prevented Z ring assembly and ZapB localization. Time lapse microscopy showed that ZapB-GFP is present at mid-cell in a pattern very similar to that of FtsZ. Cells carrying a zapB deletion and the ftsZ84ts allele...

  13. Transcriptional coactivator undifferentiated embryonic cell transcription factor 1 expressed in spermatogonial stem cells: a putative marker of boar spermatogonia.

    Science.gov (United States)

    Lee, Won-Young; Lee, Kyung-Hoon; Heo, Young-Tae; Kim, Nam-Hyung; Kim, Jin-Hoi; Kim, Jae-Hwan; Moon, Sung-Hwan; Chung, Hak-Jae; Yoon, Min-Jung; Song, Hyuk

    2014-11-30

    Spermatogenesis is initiated from spermatogonial stem cells (SSCs), which are derived from gonocytes. Although some rodent SSC markers have been investigated, other species- and developmental stage-specific markers of spermatogonia have not been identified. The objective of this study was to characterize the expression of undifferentiated embryonic cell transcription factor 1 (UTF1) gene as a potential marker for spermatogonia and SSCs in the boar testis. In boar testis tissue at pre-pubertal stages (tissues collected at 5, 30, and 60 days of age), UTF1 gene expression was detected in almost all spermatogonia cells that expressed a protein gene product 9.5 (PGP9.5), and immunocytochemical analysis of isolated total testicular cells showed that 91.14% of cells staining for PGP9.5 also stained for UTF1. However, in boar testis tissue at pubertal and post-pubertal stages (tissues collected at 90, 120, 150, and 180 days of age), UTF1 was not detected in all PGP9.5-positive cells in the basement membrane. While some PGP9.5-positive cells stained for UTF1, other cells stained only for PGP9.5 or UTF1. PGP9.5, UTF1, and NANOG was assessed in in vitro cultures of pig SSCs (pSSCs) from testes collected at 5 days of age. The relative amounts of PGP9.5, NANOG, and UTF1 mRNA were greater in pSSC colonies than in testis and muscle tissue. Thus, the UTF1 gene is expressed in PGP9.5-positive spermatogonia cells of pigs at 5 days of age, and its expression is maintained in cultured pSSC colonies, suggesting that UTF1 is a putative marker for early-stage spermatogonia in the pre-pubertal pig testis. These findings will facilitate the study of spermatogenesis and applications in germ cell research.

  14. Epigallocatechin-3-gallate regulates cell growth, cell cycle and phosphorylated nuclear factor-KB in human dermal fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Dong-Wook HAN; Mi Hee LEE; Hak Hee KIM; Suong-Hyu HYON; Jong-Chul PARK

    2011-01-01

    Aim: To investigate the effects of (-)epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, on cell growth, cell cycle and phosphorylated nuclear factor-kB (pNF-KB) expression in neonatal human dermal fibroblasts (nHDFs).Methods: The proliferation and cell-cycle of nHDFs were determined using WST-8 cell growth assay and flow cytometry, respectively. The apoptosis was examined using DNA ladder and Annexin V-FITC assays. The expression levels of pNF-kB and cell cycle-related genes and proteins in nHDFs were measured using cDNA microarray analyses and Western blot. The cellular uptake of EGCG was examined using fluorescence (FITC)-Iabeled EGCG (FITC-EGCG) in combination with confocal microscopy.Results: The effect of EGCG on the growth of nHDFs depended on the concentration tested. At a low concentration (200 μmol/L), EGCG resulted in a slight decrease in the proportion of ceils in the S and G/M phases of cell cycle with a concomitant increase in the proportion of cells in G/G phase. At the higher doses (400 and 800 pmol/L), apoptosis was induced. The regulation of EGCG on the expression of pNF-kB was also concentration-dependent, whereas it did not affect the unphosphorylated NF-kB expression, cDNA microarray analysis showed that cell cycle-related genes were down-regulated by EGCG (200 μmol/L). The expression of cyclins A/B and cyclin-dependent kinase 1 was reversibly regulated by EGCG (200 μmol/L). FITC-EGCG was found to be internalized into the cyto-plasm and translocated into the nucleus of nHDFs.Conclusion: EGCG, through uptake into cytoplasm, reversibly regulated the cell growth and expression of cell cycle-related proteins and genes in normal fibroblasts.

  15. Changes in mast cell number and stem cell factor expression in human skin after radiotherapy for breast cancer.

    Science.gov (United States)

    Westbury, Charlotte B; Freeman, Alex; Rashid, Mohammed; Pearson, Ann; Yarnold, John R; Short, Susan C

    2014-05-01

    Mast cells are involved in the pathogenesis of radiation fibrosis and may be a therapeutic target. The mechanism of increased mast cell number in relation to acute and late tissue responses in human skin was investigated. Punch biopsies of skin 1 and 15-18 months after breast radiotherapy and a contralateral control biopsy were collected. Mast cells were quantified by immunohistochemistry using the markers c-Kit and tryptase. Stem cell factor (SCF) and collagen-1 expression was analysed by qRT-PCR. Clinical photographic scores were performed at post-surgical baseline and 18 months and 5 years post-radiotherapy. Primary human dermal microvascular endothelial cell (HDMEC) cultures were exposed to 2Gy ionising radiation and p53 and SCF expression was analysed by Western blotting and ELISA. Dermal mast cell numbers were increased at 1 (p=0.047) and 18 months (p=0.040) using c-Kit, and at 18 months (p=0.024) using tryptase immunostaining. Collagen-1 mRNA in skin was increased at 1 month (p=0.047) and 18 months (p=0.032) and SCF mRNA increased at 1 month (p=0.003). None of 16 cases scored had a change in photographic appearance at 5 years, compared to baseline. SCF expression was not increased in HDMECs irradiated in vitro. Increased mast cell number was associated with up-regulated collagen-1 expression in human skin at early and late time points. This increase could be secondary to elevated SCF expression at 1 month after radiotherapy. Although mast cells accumulate around blood vessels, no endothelial cell secretion of SCF was seen after in vitro irradiation. Modification of mast cell number and collagen-1 expression may be observed in skin at 1 and 18 months after radiotherapy in breast cancer patients with no change in photographic breast appearance at 5 years. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Hypoxia inducible factor-1α mediates protective effects of ischemic preconditioning on ECV-304 endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Liu-Bin Shi; Jian-Hua Huang; Bao-San Han

    2007-01-01

    AIM: To investigate whether hypoxia inducible factor-1α (HIF-1α) is linked to the protective effects of ischemic preconditioning (IP) on sinusoidal endothelial cells against ischemia/reperfusion injury.METHODS: Sinusoidal endothelial cell lines ECV-304 were cultured and divided into four groups: control group, cells were cultured in complete DMEM medium; cold anoxia/warm reoxygenation (A/R) group, cells were preserved in a 4℃ UW solution in a mixture of 95% N2 and 5% CO2 for 24 h; anoxia-preconditioning (ARC) group, cells were treated with 4 cycles of short anoxia and reoxygenation before prolonged anoxia-preconditioning treatment; and anoxia-preconditioning and hypoxia inducible factor-1α (HIF-1α) inhibitor (I-HIF-1) group, cells were pretreated with 5 μm of HIF-1α inhibitor NS398 in DMEM medium before subjected to the same treatment as group ARC. After the anoxia treatment, each group was reoxygenated in a mixture of 95% air and 5% CO2 incubator for 6 h. Cytoprotections were evaluated by cell viabilities from Trypan blue, lactate dehydrogenase (LDH) release rates, and intracellular cell adhesion molecule-1 (ICAM-1) expressions. Expressions of HIF-1α mRNA and HIF-1α protein from each group were determined by the RT-PCR method and Western blotting, respectively.RESULTS: Ischemia preconditioning increased cell viability, and reduced LDH release and ICAM-1 expressions. Ischemia preconditioning also upregulated the HIF-1α mRNA level and HIF-1α protein expression. However, all of these changes were reversed by HIF-1α inhibitor NS398.CONCLUSION: Ischemia preconditioning effectively inhibited cold hypoxia/warm reoxygenation injury to endothelial cells, and the authors showed for the first time HIF-1α is causally linked to the protective effects of ischemic preconditioning on endothelial cells.

  17. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells.

    Science.gov (United States)

    Bahadorani, M; Hosseini, S M; Abedi, P; Abbasi, H; Nasr-Esfahani, M H

    2015-01-01

    Growth factors are increasingly considered as important regulators of spermatogonial stem cells (SSCs). This study investigated the effects of various growth factors (GDNF, IGF1, bFGF, EGF and GFRalpha-1) on purification and colonization of undifferentiated goat SSCs under in vitro and in vivo conditions. Irrespective of the culture condition used, the first signs of developing colonies were observed from day 4 of culture onwards. The number of colonies developed in GDNF + IGF1 + bFGF culture condition was significantly higher than the other groups (p cells (vimentin, alpha-inhibin and α-SMA) and spermatogonial cells (PLZF, THY 1, VASA, alpha-1 integrin, bet-1 integrin and DBA) revealed that both cell types existed in developing colonies, irrespective of the culture condition used. Even though, the relative abundance of VASA, FGFR3, OCT4, PLZF, BCL6B and THY1 transcription factors in GDNF + IGF1 + bFGF treatment group was significantly higher than the other groups (p cell depleted recipient mice following xenotransplantation. Obtained results demonstrated that combination of GDNF with IGF1 and bFGF promote in vitro culture of goat SSCs while precludes uncontrolled proliferation of somatic cells.

  18. Characterization of Chinese Hamster Ovary Cells Producing Coagulation Factor VIII Using Multi-omics Tools

    DEFF Research Database (Denmark)

    Kaas, Christian Schrøder

    ,000 fold over the last couple of years due to the revolution of next-generation sequencing (NGS), has dramatically accelerated CHO-omics from virtually non-existent to a vibrant growing field. The aim of this thesis was to investigate the impact of coagulation factor VIII (FVIII) production in CHO cells...... for analysis and engineering of industrially relevant CHO cells. Full implementation of such tools for generating specifically engineered CHO production cell lines may allow significant cost-reductions in production of complex biopharmaceuticals such as FVIII....

  19. Key factors regulating the mass delivery of macromolecules to model cell membranes

    DEFF Research Database (Denmark)

    Campbell, Richard A.; Watkins, Erik B.; Jagalski, Vivien

    2014-01-01

    We show that both gravity and electrostatics are key factors regulating interactions between model cell membranes and self-assembled liquid crystalline aggregates of dendrimers and phospholipids. The system is a proxy for the trafficking of reservoirs of therapeutic drugs to cell membranes for slow...... diffusion and continuous delivery. Neutron reflectometry measurements were carried out on supported lipid bilayers of varying charge and on hydrophilic silica surfaces. Translocation of the macromolecule across the membrane and adsorption of the lamellar aggregates occur only when the membrane (1...... of the aggregates to activate endocytosis pathways on specific cell types is discussed in the context of targeted drug delivery applications....

  20. Model for Osteosarcoma-9 as a potent factor in cell survival and resistance to apoptosis

    Science.gov (United States)

    Vourvouhaki, Ekaterini; Carvalho, Carla; Aguiar, Paulo

    2007-07-01

    In this paper we use a simple model to explore the function of the gene Osteosarcoma-9 (OS-9). We are particularly interested in understanding the role of this gene as a potent anti-apoptotic factor. The theoretical description is constrained by experimental data from induction of apoptosis in cells where OS-9 is overexpressed. The data available suggest that OS-9 promotes cell viability and confers resistance to apoptosis, potentially implicating OS-9 in the survival of cancer cells. Three different apoptosis-inducing mechanisms were tested and are modeled here. A more complex and realistic model is also discussed.

  1. Generation of mouse ES cell lines engineered for the forced induction of transcription factors

    OpenAIRE

    Correa-Cerro, Lina S.; Piao, Yulan; Sharov, Alexei A; Nishiyama, Akira; Cadet, Jean S.; Yu, Hong; Sharova, Lioudmila V.; Xin, Li; Hoang, Hien G.; Thomas, Marshall; Qian, Yong; Dudekula, Dawood B.; Meyers, Emily; Binder, Bernard Y.; Mowrer, Gregory

    2011-01-01

    Here we report the generation and characterization of 84 mouse ES cell lines with doxycycline-controllable transcription factors (TFs) which, together with the previous 53 lines, cover 7–10% of all TFs encoded in the mouse genome. Global gene expression profiles of all 137 lines after the induction of TFs for 48 hrs can associate each TF with the direction of ES cell differentiation, regulatory pathways, and mouse phenotypes. These cell lines and microarray data provide building blocks for a ...

  2. Generation of mouse ES cell lines engineered for the forced induction of transcription factors

    Science.gov (United States)

    Correa-Cerro, Lina S.; Piao, Yulan; Sharov, Alexei A.; Nishiyama, Akira; Cadet, Jean S.; Yu, Hong; Sharova, Lioudmila V.; Xin, Li; Hoang, Hien G.; Thomas, Marshall; Qian, Yong; Dudekula, Dawood B.; Meyers, Emily; Binder, Bernard Y.; Mowrer, Gregory; Bassey, Uwem; Longo, Dan L.; Schlessinger, David; Ko, Minoru S. H.

    2011-01-01

    Here we report the generation and characterization of 84 mouse ES cell lines with doxycycline-controllable transcription factors (TFs) which, together with the previous 53 lines, cover 7–10% of all TFs encoded in the mouse genome. Global gene expression profiles of all 137 lines after the induction of TFs for 48 hrs can associate each TF with the direction of ES cell differentiation, regulatory pathways, and mouse phenotypes. These cell lines and microarray data provide building blocks for a variety of future biomedical research applications as a community resource. PMID:22355682

  3. Activation of resting human B cells by helper T-cell clone supernatant: characterization of a human B-cell-activating factor.

    Science.gov (United States)

    Diu, A; Gougeon, M L; Moreau, J L; Reinherz, E L; Thèze, J

    1987-12-01

    The effects of helper T-cell clone supernatants on resting human B cells were investigated. Four different helper T-cell clones (two T4+ and two T8+) were stimulated by anti-T3 monoclonal antibodies on Sepharose beads or anti-T11(2) plus anti-T11(3) monoclonal antibodies. The supernatants from these activated clones induced the proliferation of highly purified resting B lymphocytes from the peripheral blood. The B cells exhibited a cell size and a surface-antigen pattern (4F2 antigen and transferrin receptor) of phase G0 B cells, and they were functionally resting. In response to T-cell supernatants a large fraction of the B cells enlarged and expressed 4F2 antigens and transferrin receptors. In gel filtration, the corresponding activity migrated with an apparent Mr of 12,000-15,000. Our findings strongly support the existence of a human B-cell-activating factor acting on resting B cells and causing them to enter phase G1 of the cell cycle.

  4. RNA interference-mediated knockdown of brain-derived neurotrophic factor (BDNF) promotes cell cycle arrest and apoptosis in B-cell lymphoma cells.

    Science.gov (United States)

    Xia, D; Li, W; Zhang, L; Qian, H; Yao, S; Qi, X

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin superfamily that has been reported to be involved in a number of neurological and psychological situations. Recently, high expression level of BDNF is observed in diverse human malignancies, delineating a role of BDNF in tumorigenesis. Nevertheless, its effect on B-cell lymphoma remains unclear. In this study, RNA interference technology mediated by short hairpin RNA (shRNA) was performed to inhibit endogenous BDNF expression in B-cell lymphoma cells. Results showed that knockdown of BDNF reduced cell growth and proliferation of Raji and Ramos cells. Furthermore, down-regulation of BDNF induced a cell cycle arrest at G0/G1 phase in Raji cells, and consequently led to cell apoptosis in vitro. Meanwhile, down-regulation of Bcl-2 and up-regulation of Bax, activated caspase-3 and caspase-9 and cleaved poly (ADP-ribose) polymerase (PARP) were observed in Raji cells when endogenous BDNF was inhibited. Besides, we also found that suppression of BDNF in Raji cells increased their sensitivity to chemotherapeutic drug, 5-Fluorouracil (5-FU). Our research provides a promising therapeutic strategy for human B-cell lymphoma by targeting BDNF.

  5. Dauricine inhibits insulin-like growth factor-Ⅰ-induced hypoxia inducible factor 1α protein accumulation and vascular endothelial growth factor expression in human breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xu-dong TANG; Xin ZHOU; Ke-yuan ZHOU

    2009-01-01

    Aim: To investigate the effects of dauricine (Dau) on insulin-like growth factor-Ⅰ (IGF-Ⅰ)-induced hypoxia inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression in human breast cancer cells (MCF-7).Methods: Serum-starved MCF-7 cells were pretreated for 1 h with different concentrations of Dau, followed by incubation with IGF-Ⅰ for 6 h. HIF-1α and VEGF protein expression levels were analyzed by Western blotting and ELISA, respectively.HIF-1α and VEGF mRNA levels were determined by real-time PCR. In vitro angiogenesis was observed via the human umbilical vein endothelial cell (HUVEC) tube formation assay. An in vitro invasion assay on HUVECs was performed.Results: Dau significantly inhibited IGF-Ⅰ-induced HIF-1α protein expression but had no effect on HIF-1α mRNA expression. However, Dau remarkably suppressed VEGF expression at both protein and mRNA levels in response to IGF-Ⅰ.Mechanistically, Dau suppressed IGF-Ⅰ-induced HIF-1α and VEGF protein expression mainly by blocking the activation of PI-3K/AKT/mTOR signaling pathway. In addition, Dan reduced IGF-Ⅰ-induced HIF-1α protein accumulation by inhibiting its synthesis as well as by promoting its degradation. Functionally, Dau inhibited angiogenesis in vitro. Moreover, Dau had a direct effect on IGF-Ⅰ-induced invasion of HUVECs.Conclusion: Dau inhibits human breast cancer angiogenesis by suppressing HIF-1α protein accumulation and VEGF expression, which may provide a novel potential mechanism for the anticancer activities of Dau in human breast cancer.

  6. Interferon (IFN)-beta induces apoptotic cell death in DHL-4 diffuse large B cell lymphoma cells through tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

    Science.gov (United States)

    Oehadian, Amaylia; Koide, Naoki; Mu, Mya Mya; Hassan, Ferdaus; Islam, Shamima; Yoshida, Tomoaki; Yokochi, Takashi

    2005-07-08

    The effect of interferon (IFN)-alpha, beta and gamma on the growth of DHL-4 diffuse large B cell lymphoma cells was studied. IFN-beta significantly inhibited the cell growth, and the effect was stronger than that of IFN-alpha. IFN-gamma did not inhibit the cell growth because of lack of IFN-gamma receptors. IFN-beta caused apoptotic cell death which was accompanied by DNA fragmentation, caspase 3 activation and annexin V binding. IFN-beta lead to the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA. Anti-TRAIL antibody significantly prevented IFN-beta-induced apoptosis. It was suggested that IFN-beta might cause apoptosis in DHL-4 cells through TRAIL.

  7. A short-term treatment with tumor necrosis factor-alpha enhances stem cell phenotype of human dental pulp cells.

    Science.gov (United States)

    Ueda, Mayu; Fujisawa, Takuo; Ono, Mitsuaki; Hara, Emilio Satoshi; Pham, Hai Thanh; Nakajima, Ryu; Sonoyama, Wataru; Kuboki, Takuo

    2014-02-28

    During normal pulp tissue healing, inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) or interleukins, act in the initial 48 hours (inflammatory phase) and play important roles not only as chemo-attractants of inflammatory cells and stem/progenitor cells but also in inducing a cascade of reactions toward tissue regeneration or reparative dentin formation or both. Previous reports have shown that inflammatory cytokines regulate the differentiation capacity of dental pulp stem/progenitor cells (DPCs), but none has interrogated the impact of these cytokines on the stem cell phenotype of stem/progenitor cells. This study investigated the effects of a short-term treatment with TNF-α on the stem cell phenotype and differentiation ability of human DPCs. An in vivo mouse model of pulp exposure was performed for analysis of expression of the mesenchymal stem cell marker CD146 in DPCs during the initial stage of inflammatory response. For in vitro studies, human DPCs were isolated and incubated with TNF-α for 2 days and passaged to eliminate TNF-α completely. Analysis of stem cell phenotype was performed by quantification of cells positive for mesenchymal stem cell markers SSEA-4 (stage-specific embryonic antigen 4) and CD146 by flow cytometry as well as by quantitative analysis of telomerase activity and mRNA levels of OCT-4 and NANOG. Cell migration, colony-forming ability, and differentiation toward odontogenesis and adipogenesis were also investigated. The pulp exposure model revealed a strong staining for CD146 during the initial inflammatory response, at 2 days after pulp exposure. In vitro experiments demonstrated that a short-term (2-day) treatment of TNF-α increased by twofold the percentage of SSEA-4+ cells. Accordingly, STRO-1, CD146, and SSEA-4 protein levels as well as OCT-4 and NANOG mRNA levels were also significantly upregulated upon TNF-α treatment. A short-term TNF-α treatment also enhanced DPC function, including the ability to

  8. Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro.

    Science.gov (United States)

    Meir, Michael; Flemming, Sven; Burkard, Natalie; Bergauer, Lisa; Metzger, Marco; Germer, Christoph-Thomas; Schlegel, Nicolas

    2015-10-15

    Recent data suggest that neurotrophic factors from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). We further investigated the potential role and mechanisms of GDNF in the regulation of intestinal barrier functions. Immunostaining of human gut specimen showed positive GDNF staining in enteric neuronal plexus and in enterocytes. In Western blots of the intestinal epithelial cell lines Caco2 and HT29B6, significant amounts of GDNF were detected, suggesting that enterocytes represent an additional source of GDNF. Application of recombinant GDNF on Caco2 and HT29B6 cells for 24 h resulted in significant epithelial barrier stabilization in monolayers with immature barrier functions. Wound-healing assays showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38 MAPK in immature cells. Activation of p38 MAPK signaling by SB-202190 mimicked GDNF-induced barrier maturation, whereas the p38 MAPK activator anisomycin blocked GDNF-induced effects. Increasing cAMP levels had adverse effects on barrier maturation, as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells, and GDNF-induced proliferation of epithelial cells was abrogated by the PKA inhibitor H89. Our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38 MAPK signaling.

  9. Hypoxia, leptin, and vascular endothelial growth factor stimulate vascular endothelial cell differentiation of human adipose tissue-derived stem cells.

    Science.gov (United States)

    Bekhite, Mohamed M; Finkensieper, Andreas; Rebhan, Jennifer; Huse, Stephanie; Schultze-Mosgau, Stefan; Figulla, Hans-Reiner; Sauer, Heinrich; Wartenberg, Maria

    2014-02-15

    The plasticity of human adipose tissue-derived stem cells (hASCs) is promising, but differentiation in vitro toward endothelial cells is poorly understood. Flow cytometry demonstrated that hASCs isolated from excised fat tissue were positive for CD29, CD44, CD70, CD90, CD105, and CD166 and negative for the endothelial marker CD31, and the hematopoietic cell markers CD34 and CD133. hASCs differentiated into adipocytes after cultivation in adipogenic medium. Exposure of hASCs for 10 days under hypoxia (3% oxygen) in combination with leptin increased the percentage of CD31(+) endothelial cells as well as CD31, VE-Cadherin, Flk-1, Tie2, von Willebrand factor, and endothelial cell nitric oxide synthase mRNA expression. This was enhanced on co-incubation of vascular endothelial growth factor (VEGF) and leptin, whereas VEGF alone was not sufficient. Moreover, hASCs cultured on a matrigel surface under hypoxia/VEGF/leptin, showed a stable branching network. Hypoxic conditions significantly decreased apoptosis as evaluated by cleaved caspase-3, and increased prolyl hydroxylase domain 3 mRNA expression. Hypoxia increased expression of VEGF as well as leptin transcripts, which were significantly inhibited on co-incubation with either VEGF or leptin or a combination of both. Furthermore, leptin treatment of hypoxic cells increased the expression of the long/signaling form of the leptin receptor (ObRL), which was augmented on co-incubation with VEGF. The observed endothelial differentiation was dependent on the Akt pathway, as co-administration with Akt inhibitor abolished the observed effects. In conclusion, our data demonstrate that hASCs can be efficiently differentiated to endothelial cells by mimicking the hypoxic and pro-angiogenic microenvironment of adipose tissue.

  10. Targeting c-Myc on cell growth and vascular endothelial growth factor expression in IN500 glioblastoma cells

    Institute of Scientific and Technical Information of China (English)

    HU Yu-hua; KONG Shi-qi; KONG Hai-bo; WU Jian-liang; CHEN Ze

    2012-01-01

    Background The level of c-Myc is closely associated with high pathological grade and the poor prognosis of gliomas.Vascular endothelial growth factor (VEGF) is the most important angiogenic factor that potently stimulates the proliferation and migration of vascular endothelial cells.This study aimed to address the biological importance of c-Myc in the development of gliomas,we downregulated the expression of c-Myc in the human glioblastoma cell line IN500 and studied the in vitro effect on cellular growth,proliferation,and apoptosis and the expression of VEGF and the in vivo effect on tumor formation in a xenograft mouse model.Methods IN500△ cells were stably transfected with shRNA-expressing plasmids for either c-Myc (pCMYC-shRNA) or as a control (pCtrl-shRNA).Following establishment of stable cells,the mRNA expressions of c-Myc and VEGF were examined by reverse transcription (RT)-PCR,and c-Myc and VEGF proteins by Western blotting and immunohistochemistry.Cell-cycle progression and apoptosis were determined by flow cytometry.The in vivo effect of targeting c-Myc was determined by subcutaneous injection of stable cells into immunodeficient nude mice.Results The stable transfection of pCMYC-shRNA successfully knocked down the steady-state mRNA and protein levels of c-Myc in IN500,which positively correlated with the downregulation of VEGF.Downregulating c-Myc in vitro also led to G1-S arrest and enhanced apoptosis.In vivo,targeting c-Myc reduced xenograft tumor formation and resulted in significantly smaller tumors.Conclusions c-Myc has multiple functions in glioblastoma development that include regulating cell-cycle,apoptosis,and VEGF expression.Targeting c-Myc expression may be a promising therapy for malignant glioma.

  11. Downregulation of the transcription factor KLF4 is required for the lineage commitment of T cells

    Institute of Scientific and Technical Information of China (English)

    Xiaomin Wen; Haifeng Liu; Gang Xiao; Xiaolong Liu

    2011-01-01

    The roles of the reprogramming factors Oct4,Sox2,c-Myc and Klf4 in early T cell development are incompletely defined.Here,we show that Klf4 is the only reprogramming factor whose expression is downregulated when early thymic progenitors (ETPs) differentiate into T cells.Enforced expression of Klf4 in uncommitted progenitors severely impaired T cell development mainly at the DN2-to-DN3 transition when T cell lineage commitment occurs and affected the transcription of a variety of genes with crucial functions in early T cell development,including genes involved in microenvironmental signaling (IL-7Rα),Notch target genes (Deltexl),and essential T cell lineage regulatory or inhibitory genes (Bcllla,SpiB,and ldl).The survival of thymocytes and the rearrangement at the Tcrb locus were impaired in the presence of enforced Klf4 expression.The defects in the DN1-to-DN2 and DN2-to-DN3 transitions in Klf4 transgenic mice could not be rescued by the introduction of a TCR transgene,but was partially rescued by restoring the expression of IL-7Rα.Thus,our data indicate that the downregulation of Klf4 is a prerequisite for T cell lineage commitment.

  12. Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1

    Directory of Open Access Journals (Sweden)

    Soham Chanda

    2014-08-01

    Full Text Available Direct conversion of nonneural cells to functional neurons holds great promise for neurological disease modeling and regenerative medicine. We previously reported rapid reprogramming of mouse embryonic fibroblasts (MEFs into mature induced neuronal (iN cells by forced expression of three transcription factors: ASCL1, MYT1L, and BRN2. Here, we show that ASCL1 alone is sufficient to generate functional iN cells from mouse and human fibroblasts and embryonic stem cells, indicating that ASCL1 is the key driver of iN cell reprogramming in different cell contexts and that the role of MYT1L and BRN2 is primarily to enhance the neuronal maturation process. ASCL1-induced single-factor neurons (1F-iN expressed mature neuronal markers, exhibited typical passive and active intrinsic membrane properties, and formed functional pre- and postsynaptic structures. Surprisingly, ASCL1-induced iN cells were predominantly excitatory, demonstrating that ASCL1 is permissive but alone not deterministic for the inhibitory neuronal lineage.

  13. The hematopoietic growth factor "erythropoietin" enhances the therapeutic effect of mesenchymal stem cells in Alzheimer's disease.

    Science.gov (United States)

    Khairallah, M I; Kassem, L A; Yassin, N A; El Din, M A Gamal; Zekri, M; Attia, M

    2014-01-01

    Alzheimer's disease is a neurodegenerative disorder clinically characterized by cognitive dysfunction and by deposition of amyloid plaques, neurofibrillary tangles in the brain. The study investigated the therapeutic effect of combined mesenchymal stem cells and erythropoietin on Alzheimer's disease. Five groups of mice were used: control group, Alzheimer's disease was induced in four groups by a single intraperitoneal injection of 0.8 mg kg(-1) lipopolysaccharide and divided as follows: Alzheimer's disease group, mesenchymal stem cells treated group by injecting mesenchymal stem cells into the tail vein (2 x 10(6) cells), erythropoietin treated group (40 microg kg(-1) b.wt.) injected intraperitoneally 3 times/week for 5 weeks and mesenchymal stem cells and erythropoietin treated group. Locomotor activity and memory were tested using open field and Y-maze. Histological, histochemical, immunohistochemical studies, morphometric measurements were examined in brain sections of all groups. Choline transferase activity, brain derived neurotrophic factor expression and mitochondrial swellings were assessed in cerebral specimens. Lipopolysaccharide decreased locomotor activity, memory, choline transferase activity and brain derived neurotrophic factor. It increased mitochondrial swelling, apoptotic index and amyloid deposition. Combined mesenchymal stem cells and erythropoietin markedly improved all these parameters. This study proved the effective role of mesenchymal stem cells in relieving Alzheimer's disease symptoms and manifestations; it highlighted the important role of erythropoietin in the treatment of Alzheimer's disease.

  14. Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Inoue-Yamauchi, Akane, E-mail: ainoyama@research.twmu.ac.jp [Department of Pathology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Oda, Hideaki [Department of Pathology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer DRP1 is required for mitochondrial fission in colon cancer cells. Black-Right-Pointing-Pointer DRP1 participates in inhibition of colon cancer cell apoptosis. Black-Right-Pointing-Pointer DRP1 can inhibit apoptosis through the regulation of cytochrome c release. -- Abstract: Mitochondria play a critical role in regulation of apoptosis, a form of programmed cell death, by releasing apoptogenic factors including cytochrome c. Growing evidence suggests that dynamic changes in mitochondrial morphology are involved in cellular apoptotic response. However, whether DRP1-mediated mitochondrial fission is required for induction of apoptosis remains speculative. Here, we show that siRNA-mediated DRP1 knockdown promoted accumulation of elongated mitochondria in HCT116 and SW480 human colon cancer cells. Surprisingly, DRP1 down-regulation led to decreased proliferation and increased apoptosis of these cells. A higher rate of cytochrome c release and reductions in mitochondrial membrane potential were also revealed in DRP1-depleted cells. Taken together, our present findings suggest that mitochondrial fission factor DRP1 inhibits colon cancer cell apoptosis through the regulation of cytochrome c release and mitochondrial membrane integrity.

  15. Suppression of estrogen receptor-alpha transactivation by thyroid transcription factor-2 in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eunsook; Gong, Eun-Yeung [Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Romanelli, Maria Grazia [Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134 Verona (Italy); Lee, Keesook, E-mail: klee@chonnam.ac.kr [Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer TTF-2 was expressed in mammary glands and breast cancer cells. Black-Right-Pointing-Pointer TTF-2 repressed ER{alpha} transactivation. Black-Right-Pointing-Pointer TTF-2 inhibited the proliferation of breast cancer cells. -- Abstract: Estrogen receptors (ERs), which mediate estrogen actions, regulate cell growth and differentiation of a variety of normal tissues and hormone-responsive tumors through interaction with cellular factors. In this study, we show that thyroid transcription factor-2 (TTF-2) is expressed in mammary gland and acts as ER{alpha} co-repressor. TTF-2 inhibited ER{alpha} transactivation in a dose-dependent manner in MCF-7 breast cancer cells. In addition, TTF-2 directly bound to and formed a complex with ER{alpha}, colocalizing with ER{alpha} in the nucleus. In MCF-7/TTF-2 stable cell lines, TTF-2 repressed the expression of endogenous ER{alpha} target genes such as pS2 and cyclin D1 by interrupting ER{alpha} binding to target promoters and also significantly decreased cell proliferation. Taken together, these data suggest that TTF-2 may modulate the function of ER{alpha} as a corepressor and play a role in ER-dependent proliferation of mammary cells.

  16. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.

    Science.gov (United States)

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.

  17. Transforming growth factor-β superfamily, implications in development and differentiation of stem cells.

    Sc