Sample records for factor beta signaling

  1. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling. (United States)

    Huang, Yao; Chang, Yongchang


    Dysfunction and destruction of pancreatic islet beta cells is a hallmark of diabetes. Better understanding of cellular signals in beta cells will allow development of therapeutic strategies for diabetes, such as preservation and expansion of beta-cell mass and improvement of beta-cell function. During the past several decades, the number of studies analyzing the molecular mechanisms, including growth factor/hormone signaling pathways that impact islet beta-cell mass and function, has increased exponentially. Notably, somatolactogenic hormones including growth hormone (GH), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) and their receptors (GHR, PRLR, and IGF-1R) are critically involved in beta-cell growth, survival, differentiation, and insulin secretion. In this chapter, we focus more narrowly on GH, PRL, and IGF-1 signaling, and GH-IGF-1 cross talk. We also discuss how these signaling aspects contribute to the regulation of beta-cell proliferation and apoptosis. In particular, our novel findings of GH-induced formation of GHR-JAK2-IGF-1R protein complex and synergistic effects of GH and IGF-1 on beta-cell signaling, proliferation, and antiapoptosis lead to a new concept that IGF-1R may serve as a proximal component of GH/GHR signaling.

  2. Transforming growth factor: beta signaling is essential for limb regeneration in axolotls.

    Directory of Open Access Journals (Sweden)

    Mathieu Lévesque

    Full Text Available Axolotls (urodele amphibians have the unique ability, among vertebrates, to perfectly regenerate many parts of their body including limbs, tail, jaw and spinal cord following injury or amputation. The axolotl limb is the most widely used structure as an experimental model to study tissue regeneration. The process is well characterized, requiring multiple cellular and molecular mechanisms. The preparation phase represents the first part of the regeneration process which includes wound healing, cellular migration, dedifferentiation and proliferation. The redevelopment phase represents the second part when dedifferentiated cells stop proliferating and redifferentiate to give rise to all missing structures. In the axolotl, when a limb is amputated, the missing or wounded part is regenerated perfectly without scar formation between the stump and the regenerated structure. Multiple authors have recently highlighted the similarities between the early phases of mammalian wound healing and urodele limb regeneration. In mammals, one very important family of growth factors implicated in the control of almost all aspects of wound healing is the transforming growth factor-beta family (TGF-beta. In the present study, the full length sequence of the axolotl TGF-beta1 cDNA was isolated. The spatio-temporal expression pattern of TGF-beta1 in regenerating limbs shows that this gene is up-regulated during the preparation phase of regeneration. Our results also demonstrate the presence of multiple components of the TGF-beta signaling machinery in axolotl cells. By using a specific pharmacological inhibitor of TGF-beta type I receptor, SB-431542, we show that TGF-beta signaling is required for axolotl limb regeneration. Treatment of regenerating limbs with SB-431542 reveals that cellular proliferation during limb regeneration as well as the expression of genes directly dependent on TGF-beta signaling are down-regulated. These data directly implicate TGF-beta

  3. Suppressor of cytokine signalling (SOCS)-3 protects beta cells against IL-1beta-mediated toxicity through inhibition of multiple nuclear factor-kappaB-regulated proapoptotic pathways

    DEFF Research Database (Denmark)

    Karlsen, Allan Ertman; Heding, P E; Frobøse, H;


    The proinflammatory cytokine IL-1beta induces apoptosis in pancreatic beta cells via pathways dependent on nuclear factor-kappaB (NF-kappaB), mitogen-activated protein kinase, and protein kinase C. We recently showed suppressor of cytokine signalling (SOCS)-3 to be a natural negative feedback...... regulator of IL-1beta- and IFN-gamma-mediated signalling in rat islets and beta cell lines, preventing their deleterious effects. However, the mechanisms underlying SOCS-3 inhibition of IL-1beta signalling and prevention against apoptosis remain unknown....

  4. DMPD: The interferon signaling network and transcription factor C/EBP-beta. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18163952 The interferon signaling network and transcription factor C/EBP-beta. Li H..., Gade P, Xiao W, Kalvakolanu DV. Cell Mol Immunol. 2007 Dec;4(6):407-18. (.png) (.svg) (.html) (.csml) Show The... interferon signaling network and transcription factor C/EBP-beta. PubmedID 18163952 Title The interfero

  5. Signalling by Transforming Growth Factor Beta Isoforms in Wound Healing and Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Richard W.D. Gilbert


    Full Text Available Transforming growth factor beta (TGFβ signalling is essential for wound healing, including both non-specific scar formation and tissue-specific regeneration. Specific TGFβ isoforms and downstream mediators of canonical and non-canonical signalling play different roles in each of these processes. Here we review the role of TGFβ signalling during tissue repair, with a particular focus on the prototypic isoforms TGFβ1, TGFβ2, and TGFβ3. We begin by introducing TGFβ signalling and then discuss the role of these growth factors and their key downstream signalling mediators in determining the balance between scar formation and tissue regeneration. Next we discuss examples of the pleiotropic roles of TGFβ ligands during cutaneous wound healing and blastema-mediated regeneration, and how inhibition of the canonical signalling pathway (using small molecule inhibitors blocks regeneration. Finally, we review various TGFβ-targeting therapeutic strategies that hold promise for enhancing tissue repair.

  6. Genes involved in the transforming growth factor beta signalling pathway and the risk of intracranial aneurysms

    NARCIS (Netherlands)

    Ruigrok, Y. M.; Tan, S.; Medic, J.; Rinkel, G. J. E.; Wijmenga, C.


    Background and purpose: The 19q13.3 locus for intracranial aneurysms (IA) partly overlaps with the 19q13 locus for abdominal aortic aneurysms (AAA). A common genetic risk factor located in this locus for the two aneurysm types seems plausible. The transforming growth factor beta (TGF-beta) signallin

  7. Interleukin-1 beta impairs brain derived neurotrophic factor-induced signal transduction. (United States)

    Tong, Liqi; Balazs, Robert; Soiampornkul, Rungtip; Thangnipon, Wipawan; Cotman, Carl W


    The expression of IL-1 is elevated in the CNS in diverse neurodegenerative disorders, including Alzheimer's disease. The hypothesis was tested that IL-1 beta renders neurons vulnerable to degeneration by interfering with BDNF-induced neuroprotection. In trophic support-deprived neurons, IL-1 beta compromised the PI3-K/Akt pathway-mediated protection by BDNF and suppressed Akt activation. The effect was specific as in addition to Akt, the activation of MAPK/ERK, but not PLC gamma, was decreased. Activation of CREB, a target of these signaling pathways, was severely depressed by IL-1 beta. As the cytokine did not influence TrkB receptor and PLC gamma activation, IL-1 beta might have interfered with BDNF signaling at the docking step conveying activation to the PI3-K/Akt and Ras/MAPK pathways. Indeed, IL-1 beta suppressed the activation of the respective scaffolding proteins IRS-1 and Shc; this effect might involve ceramide generation. IL-1-induced interference with BDNF neuroprotection and signal transduction was corrected, in part, by ceramide production inhibitors and mimicked by the cell-permeable C2-ceramide. These results suggest that IL-1 beta places neurons at risk by interfering with BDNF signaling involving a ceramide-associated mechanism.

  8. 17-Beta-estradiol inhibits transforming growth factor-beta signaling and function in breast cancer cells via activation of extracellular signal-regulated kinase through the G protein-coupled receptor 30. (United States)

    Kleuser, Burkhard; Malek, Daniela; Gust, Ronald; Pertz, Heinz H; Potteck, Henrik


    Breast cancer development and breast cancer progression involves the deregulation of growth factors leading to uncontrolled cellular proliferation, invasion and metastasis. Transforming growth factor (TGF)-beta plays a crucial role in breast cancer because it has the potential to act as either a tumor suppressor or a pro-oncogenic chemokine. A cross-communication between the TGF-beta signaling network and estrogens has been postulated, which is important for breast tumorigenesis. Here, we provide evidence that inhibition of TGF-beta signaling is associated with a rapid estrogen-dependent nongenomic action. Moreover, we were able to demonstrate that estrogens disrupt the TGF-beta signaling network as well as TGF-beta functions in breast cancer cells via the G protein-coupled receptor 30 (GPR30). Silencing of GPR30 in MCF-7 cells completely reduced the ability of 17-beta-estradiol (E2) to inhibit the TGF-beta pathway. Likewise, in GPR30-deficient MDA-MB-231 breast cancer cells, E2 achieved the ability to suppress TGF-beta signaling only after transfection with GPR30-encoding plasmids. It is most interesting that the antiestrogen fulvestrant (ICI 182,780), which possesses agonistic activity at the GPR30, also diminished TGF-beta signaling. Further experiments attempted to characterize the molecular mechanism by which activated GPR30 inhibits the TGF-beta pathway. Our results indicate that GPR30 induces the stimulation of the mitogen-activated protein kinases (MAPKs), which interferes with the activation of Smad proteins. Inhibition of MAPK activity prevented the ability of E2 from suppressing TGF-beta signaling. These findings are of great clinical relevance, because down-regulation of TGF-beta signaling is associated with the development of breast cancer resistance in response to antiestrogens.

  9. Transforming growth factor-beta inhibits aromatase gene transcription in human trophoblast cells via the Smad2 signaling pathway

    Directory of Open Access Journals (Sweden)

    Fu Guodong


    Full Text Available Abstract Background Transforming growth factor-beta (TGF-beta is known to exert multiple regulatory functions in the human placenta, including inhibition of estrodial production. We have previously reported that TGF-beta1 decreased aromatase mRNA levels in human trophoblast cells. The objective of this study was to investigate the molecular mechanisms underlying the regulatory effect of TGF-beta1 on aromatase expression. Methods To determine if TGF-beta regulates aromatase gene transcription, several reporter constructs containing different lengths of the placental specific promoter of the human aromatase gene were generated. JEG-3 cells were transiently transfected with a promoter construct and treated with or without TGF-beta1. The promoter activity was measured by luciferase assays. To examine the downstream signaling molecule mediating the effect of TGF-beta on aromatase transcription, cells were transiently transfected with dominant negative mutants of TGF-beta type II (TbetaRII and type I receptor (ALK5 receptors before TGF-beta treatment. Smad2 activation was assessed by measuring phophorylated Smad2 protein levels in cytosolic and nuclear fractions. Smad2 expression was silenced using a siRNA expression construct. Finally, aromatase mRNA half-life was determined by treating cells with actinomycin D together with TGF-beta1 and measuring aromatase mRNA levels at various time points after treatment. Results and Discussion TGF-beta1 inhibited the aromatase promoter activity in a time- and dose-dependent manner. Deletion analysis suggests that the TGF-β1 response element resides between -422 and -117 nucleotides upstream from the transcription start site where a Smad binding element was found. The inhibitory effect of TGF-beta1 was blocked by dominant negative mutants of TbetaRII and ALK5. TGF-beta1 treatment induced Smad2 phosphorylation and translocation into the nucleus. On the other hand, knockdown of Smad2 expression reversed the

  10. Suppressor of cytokine signalling-3 inhibits Tumor necrosis factor-alpha induced apoptosis and signalling in beta cells

    DEFF Research Database (Denmark)

    Bruun, Christine; Heding, Peter E; Rønn, Sif G


    Tumor necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine involved in the pathogenesis of several diseases including type 1 diabetes mellitus (T1DM). TNFalpha in combination with interleukin-1-beta (IL-1beta) and/or interferon-gamma (IFNgamma) induces specific destruction of the pancr......Tumor necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine involved in the pathogenesis of several diseases including type 1 diabetes mellitus (T1DM). TNFalpha in combination with interleukin-1-beta (IL-1beta) and/or interferon-gamma (IFNgamma) induces specific destruction...... in INSr3#2 cells and in primary rat islets. Furthermore, SOCS-3 repressed TNFalpha-induced degradation of IkappaB, NFkappaB DNA binding and transcription of the NFkappaB-dependent MnSOD promoter. Finally, expression of Socs-3 mRNA was induced by TNFalpha in rat islets in a transient manner with maximum...

  11. Menin expression is regulated by transforming growth factor beta signaling in leukemia cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; LIU Zu-guo; HUA Xian-xin


    Background Menin is a ubiquitously expressed protein encoded by the multiple endocrine neoplasia type 1 (MEN1)gene. Besides its importance in endocrine organs, menin has been shown to interact with the mixed lineage leukemia (MLL) protein, a histone H3 lysine 4 methyltransferase, and plays a critical role in hematopoiesis and leukemogenesis.Previous studies have shown that menin promotes transforming growth factor beta (TGF-β) signaling in endocrine cells.However, little is known regarding the impact of TGF-β pathway on menin in hematopoietic system. Here, with leukemia cell lines generated from conditional MEN1 or TGF-p receptor (TβRII) knockout mouse models, we investigated the possible cross-talk of these two pathways in leukemia cells.Methods MEN1 or TβRII conditional knockout mice were bred and the bone marrow cells were transduced with retroviruses expressing oncogeneic MLL-AF9 (a mixed lineage leukemia fusion protein) to generate two leukemia cell lines. Cell proliferation assays were performed to investigate the effect of TGF-β treatment on MLL-AF9 transformed leukemia cells with/without MEN1 or TβRII excision. Menin protein was detected with Western blotting and mRNA levels of cell proliferation-related genes Cyclin A2 and Cyclin E2 were examined with real-time RT-PCR for each treated sample.In vivo effect of TGF-p signal on menin expression was also investigated in mouse liver tissue after TβRII excision.Results TGF-β not only inhibited the proliferation of wild type MLL-AF9 transformed mouse bone marrow cells, but also up-regulated menin expression in these cells. Moreover, TGF-P failed to further inhibit the proliferation of Men1-null cells as compared to Men1-expressing control cells. Furthermore, excision of TβRII, a vital component in TGF-β signaling pathway, down-regulated menin expression in MLL-AF9 transformed mouse bone marrow cells. In vivo data also confirmed that menin expression was decreased in liver samples of conditional T

  12. The Influence of Stromal Transforming Growth Factor-(beta) Receptor Signaling on Mouse Mammary Neoplasia (United States)


    responsiveness to TGF-BETA in the stroma effects tumor development transgenic and wild type mice were given pituitary isografts followed by zinc water and...pituitary isograft , zinc and DMBA) while only one tumor has arisen in the control group. To date, only two tumors have arisen in the transgenic mice

  13. Age-related alterations in TGF beta signaling as a causal factor of cartilage degeneration in osteoarthritis

    NARCIS (Netherlands)

    Kraan, P.M. van der


    BACKGROUND: Age is the most important risk factor for primary osteoarthritis (OA). Members of the TGF-beta superfamily play a crucial role in chondrocyte differentiation and maintenance of healthy articular cartilage. OBJECTIVE: We have investigated whether age-related changes in TGF-beta superfamil

  14. Expression of transforming growth factor beta 1-related signaling proteins in irradiated vessels

    Energy Technology Data Exchange (ETDEWEB)

    Preidl, Raimund H.M.; Moebius, Patrick; Weber, Manuel; Neukam, Friedrich W.; Schlegel, Andreas; Wehrhan, Falk [University of Erlangen- Nuernberg, Department of Oral and Maxillofacial Surgery, Erlangen (Germany); University of Erlangen- Nuernberg, Erlangen (Germany); Amann, Kerstin [University of Erlangen- Nuernberg, Erlangen (Germany)


    Microvascular free tissue transfer is a standard method in head and neck reconstructive surgery. However, previous radiotherapy of the operative region is associated with an increased incidence in postoperative flap-related complications and complete flap loss. As transforming growth factor beta (TGF-β) 1 and galectin-3 are well known markers in the context of fibrosis and lectin-like oxidized low-density lipoprotein 1 (LOX-1) supports vascular atherosclerosis, the aim of this study was to evaluate the expression of TGF-β1 and related markers as well as LOX-1 in irradiated vessels. To evaluate the expression of galectin-3, Smad 2/3, TGF-β1, and LOX-1, 20 irradiated and 20 nonirradiated arterial vessels were used for immunohistochemical staining. We semiquantitatively assessed the ratio of stained cells/total number of cells (labeling index). Expression of galectin-3, Smad 2/3, and TGF-β1 was significantly increased in previously irradiated vessels compared with nonirradiated controls. Furthermore, LOX-1 was expressed significantly higher in irradiated compared with nonirradiated vessels. Fibrosis-related proteins like galectin-3, Smad 2/3, and TGF-β1 are upregulated after radiotherapy and support histopathological changes leading to vasculopathy of the irradiated vessels. Furthermore, postoperative complications in irradiated patients can be explained by increased endothelial dysfunction caused by LOX-1 in previously irradiated patients. Consequently, not only TGF-β1 but also galectin-3inhibitors may decrease complications after microsurgical tissue transfer. (orig.) [German] Der freie mikrovaskulaere Gewebetransfer gilt heute als fester Standard in der rekonstruktiven Kopf-Hals-Chirurgie. Es zeigte sich jedoch, dass im Falle einer stattgehabten Bestrahlung im Operationsgebiet mit einer erhoehten Rate an transplantatbezogenen Komplikationen gerechnet werden muss. Sowohl TGF-β1 als auch Galektin-3 sind bekannte Mediatoren in Bezug auf die Fibroseentstehung

  15. Inhibition of Transforming Growth Factor-Beta1 SignalingAttenuates Ataxia Telangiectasia Mutated Activity in Response toGenotoxic Stress

    Energy Technology Data Exchange (ETDEWEB)

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose; Ravani, Shraddha A.; Glick, Adam; Lavin, Martin F.; Koslov, Sergei; Shiloh, Yosef; Barcellos-Hoff, Mary Helen


    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta} (TGF{beta})-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}I null murine epithelial cells or human epithelial cells treated with a small-molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17, and p53; reduced H2AX radiation-induced foci; and increased radiosensitivity compared with TGF{beta} competent cells. We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM, which directs epithelial cell stress responses, cell fate, and tissue integrity. Thus, Tgf{beta}I, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.

  16. Transforming Growth Factor Beta Signaling in Growth of Estrogen-Insensitive Metastatic Bone Lesions (United States)


    global inhibition of AREG signaling, or to specifically reduce cancer cell EGFR signaling during osteolytic lesion growth within the bone, female...the role of EGFR in bone resulted from a study of global changes in osteoblast gene expression induced by the main serum calcium regulator, PTH...suggest that EGFR is xpressed in 18–35% of breast cancers but is not overexpressed elative to the normal breast epithelia [49]. Of course, because

  17. Transforming growth factor beta1 regulates melanocyte proliferation and differentiation in mouse neural crest cells via stem cell factor/KIT signaling. (United States)

    Kawakami, Tamihiro; Soma, Yoshinao; Kawa, Yoko; Ito, Masaru; Yamasaki, Emiko; Watabe, Hidenori; Hosaka, Eri; Yajima, Kenji; Ohsumi, Kayoko; Mizoguchi, Masako


    Stem cell factor is essential to the migration and differentiation of melanocytes during embryogenesis based on the observation that mutations in either the stem cell factor gene, or its ligand, KIT, result in defects in coat pigmentation in mice. Stem cell factor is also required for the survival of melanocyte precursors while they are migrating towards the skin. Transforming growth factor beta1 has been implicated in the regulation of both cellular proliferation and differentiation. NCC-melb4, an immortal cloned cell line, was cloned from a mouse neural crest cell. NCC-melb4 cells provide a model to study the specific stage of differentiation and proliferation of melanocytes. They also express KIT as a melanoblast marker. Using the NCC-melb4 cell line, we investigated the effect of transforming growth factor beta1 on the differentiation and proliferation of immature melanocyte precursors. Immunohistochemically, NCC-melb4 cells showed transforming growth factor beta1 expression. The anti-transforming growth factor beta1 antibody inhibited the cell growth, and downregulated the KIT protein and mRNA expression. To investigate further the activation of autocrine transforming growth factor beta1, NCC-melb4 cells were incubated in nonexogenous transforming growth factor beta1 culture medium. KIT protein decreased with anti-transforming growth factor beta1 antibody concentration in a concentration-dependent manner. We concluded that in NCC-melb4 cells, transforming growth factor beta1 promotes melanocyte precursor proliferation in autocrine and/or paracrine regulation. We further investigated the influence of transforming growth factor beta1 in vitro using a neural crest cell primary culture system from wild-type mice. Anti-transforming growth factor beta1 antibody decreased the number of KIT positive neural crest cell. In addition, the anti-transforming growth factor beta1 antibody supplied within the wild-type neural crest explants abolished the growth of the neural

  18. Npas4 Transcription Factor Expression Is Regulated by Calcium Signaling Pathways and Prevents Tacrolimus-induced Cytotoxicity in Pancreatic Beta Cells. (United States)

    Speckmann, Thilo; Sabatini, Paul V; Nian, Cuilan; Smith, Riley G; Lynn, Francis C


    Cytosolic calcium influx activates signaling pathways known to support pancreatic beta cell function and survival by modulating gene expression. Impaired calcium signaling leads to decreased beta cell mass and diabetes. To appreciate the causes of these cytotoxic perturbations, a more detailed understanding of the relevant signaling pathways and their respective gene targets is required. In this study, we examined the calcium-induced expression of the cytoprotective beta cell transcription factor Npas4. Pharmacological inhibition implicated the calcineurin, Akt/protein kinase B, and Ca(2+)/calmodulin-dependent protein kinase signaling pathways in the regulation of Npas4 transcription and translation. Both Npas4 mRNA and protein had high turnover rates, and, at the protein level, degradation was mediated via the ubiquitin-proteasome pathway. Finally, beta cell cytotoxicity of the calcineurin inhibitor and immunosuppressant tacrolimus (FK-506) was prevented by Npas4 overexpression. These results delineate the pathways regulating Npas4 expression and stability and demonstrate its importance in clinical settings such as islet transplantation.

  19. Clinical development of galunisertib (LY2157299 monohydrate, a small molecule inhibitor of transforming growth factor-beta signaling pathway

    Directory of Open Access Journals (Sweden)

    Herbertz S


    Full Text Available Stephan Herbertz,1 J Scott Sawyer,2 Anja J Stauber,2 Ivelina Gueorguieva,3 Kyla E Driscoll,4 Shawn T Estrem,2 Ann L Cleverly,3 Durisala Desaiah,2 Susan C Guba,2 Karim A Benhadji,2 Christopher A Slapak,2 Michael M Lahn21Lilly Deutschland GmbH, Bad Homburg, Germany; 2Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA; 3Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, UK; 4Lilly Research Laboratories, Eli Lilly and Company, New York, NY, USA Abstract: Transforming growth factor-beta (TGF-β signaling regulates a wide range of biological processes. TGF-β plays an important role in tumorigenesis and contributes to the hallmarks of cancer, including tumor proliferation, invasion and metastasis, inflammation, angiogenesis, and escape of immune surveillance. There are several pharmacological approaches to block TGF-β signaling, such as monoclonal antibodies, vaccines, antisense oligonucleotides, and small molecule inhibitors. Galunisertib (LY2157299 monohydrate is an oral small molecule inhibitor of the TGF-β receptor I kinase that specifically downregulates the phosphorylation of SMAD2, abrogating activation of the canonical pathway. Furthermore, galunisertib has antitumor activity in tumor-bearing animal models such as breast, colon, lung cancers, and hepatocellular carcinoma. Continuous long-term exposure to galunisertib caused cardiac toxicities in animals requiring adoption of a pharmacokinetic/pharmacodynamic-based dosing strategy to allow further development. The use of such a pharmacokinetic/pharmacodynamic model defined a therapeutic window with an appropriate safety profile that enabled the clinical investigation of galunisertib. These efforts resulted in an intermittent dosing regimen (14 days on/14 days off, on a 28-day cycle of galunisertib for all ongoing trials. Galunisertib is being investigated either as monotherapy or in combination with standard antitumor regimens (including nivolumab

  20. Dab2 attenuates brain injur y in APP/PS1 mice via targeting transforming growth factor-beta/SMAD signaling

    Institute of Scientific and Technical Information of China (English)

    Lei Song; Yue Gu; Jing Jie; Xiaoxue Bai; Ying Yang; Chaoying Liu; Qun Liu


    Transforming growth factor-beta (TGF-β) type II receptor (TβRII) levels are extremely low in the brain tissue of patients with Alzheimer’s disease. This receptor inhibits TGF-β1/SMAD signaling and thereby aggravates amyolid-beta deposition and neuronal injury. Dab2, a speciifc adapter protein, protects TβRII from degradation and ensures the effective conduction of TGF-β1/SMAD signaling. In this study, we used an adenoviral vector to overexpress the Dab2 gene in the mouse hippocampus and investigated the regulatory effect of Dab2 protein on TGF-β1/SMAD signaling in a mouse model of Alzheimer’s disease, and the potential neuroprotective effect. The results showed that the TβRII level was lower in APP/PS1 mouse hippocampus than in normal mouse hippocampus. After Dab2 expression, hippocampal TβRII and p-SMAD2/3 levels were signiif-cantly increased, while amyloid-beta deposition, microglia activation, tumor necrosis factor-βand interleulin-6 levels and neuronal loss were signiifcantly attenuated in APP/PS1 mouse brain tissue. These results suggest that Dab2 can exhibit neuroprotective effects in Alzheimer’s disease by regulating TGF-β1/SMAD signaling.

  1. The signaling pathway of Campylobacter jejuni-induced Cdc42 activation: Role of fibronectin, integrin beta1, tyrosine kinases and guanine exchange factor Vav2

    LENUS (Irish Health Repository)

    Krause-Gruszczynska, Malgorzata


    Abstract Background Host cell invasion by the foodborne pathogen Campylobacter jejuni is considered as one of the primary reasons of gut tissue damage, however, mechanisms and key factors involved in this process are widely unclear. It was reported that small Rho GTPases, including Cdc42, are activated and play a role during invasion, but the involved signaling cascades remained unknown. Here we utilised knockout cell lines derived from fibronectin-\\/-, integrin-beta1-\\/-, focal adhesion kinase (FAK)-\\/- and Src\\/Yes\\/Fyn-\\/- deficient mice, and wild-type control cells, to investigate C. jejuni-induced mechanisms leading to Cdc42 activation and bacterial uptake. Results Using high-resolution scanning electron microscopy, GTPase pulldowns, G-Lisa and gentamicin protection assays we found that each studied host factor is necessary for induction of Cdc42-GTP and efficient invasion. Interestingly, filopodia formation and associated membrane dynamics linked to invasion were only seen during infection of wild-type but not in knockout cells. Infection of cells stably expressing integrin-beta1 variants with well-known defects in fibronectin fibril formation or FAK signaling also exhibited severe deficiencies in Cdc42 activation and bacterial invasion. We further demonstrated that infection of wild-type cells induces increasing amounts of phosphorylated FAK and growth factor receptors (EGFR and PDGFR) during the course of infection, correlating with accumulating Cdc42-GTP levels and C. jejuni invasion over time. In studies using pharmacological inhibitors, silencing RNA (siRNA) and dominant-negative expression constructs, EGFR, PDGFR and PI3-kinase appeared to represent other crucial components upstream of Cdc42 and invasion. siRNA and the use of Vav1\\/2-\\/- knockout cells further showed that the guanine exchange factor Vav2 is required for Cdc42 activation and maximal bacterial invasion. Overexpression of certain mutant constructs indicated that Vav2 is a linker

  2. Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes.

    Directory of Open Access Journals (Sweden)

    Adel Tekari

    Full Text Available Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease

  3. A novel glycosylation signal regulates transforming growth factor beta receptors as evidenced by endo-beta-galactosidase C expression in rodent cells. (United States)

    Watanabe, Satoshi; Misawa, Masako; Matsuzaki, Takashi; Sakurai, Takayuki; Muramatsu, Takashi; Sato, Masahiro


    The αGal (Galα1-3Gal) epitope is a xenoantigen that is responsible for hyperacute rejection in xenotransplantation. This epitope is expressed on the cell surface in the cells of all mammals except humans and Old World monkeys. It can be digested by the enzyme endo-β-galactosidase C (EndoGalC), which is derived from Clostridium perfringens. Previously, we produced EndoGalC transgenic mice to identify the phenotypes that would be induced following EndoGalC overexpression. The mice lacked the αGal epitope in all tissues and exhibited abnormal phenotypes such as postnatal death, growth retardation, skin lesion and abnormal behavior. Interestingly, skin lesions caused by increased proliferation of keratinocytes suggest the role of a glycan structure [in which the αGal epitope has been removed or the N-acetylglucosamine (GlcNAc) residue is newly exposed] as a regulator of signal transduction. To verify this hypothesis, we introduced an EndoGalC expression vector into cultured mouse NIH3T3 cells and obtained several EndoGalC-expressing transfectants. These cells lacked αGal epitope expression and exhibited 1.8-fold higher proliferation than untransfected parental cells. We then used several cytokine receptor inhibitors to assess the signal transduction cascades that were affected. Only SB431542 and LY364947, both of which are transforming growth factor β (TGFβ) receptor type-I (TβR-I) inhibitors, were found to successfully reverse the enhanced cell proliferation rate of EndoGalC transfectants, indicating that the glycan structure is a regulator of TβRs. Biochemical analysis demonstrated that the glycan altered association between TβR-I and TβR-II in the absence of ligands.

  4. Klotho-beta overexpression as a novel target for suppressing proliferation and fibroblast growth factor receptor-4 signaling in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Poh Weijie


    Full Text Available Abstract Background We had previously demonstrated overexpression of fibroblast growth factor receptor-4 (FGFR4 in hepatocellular carcinoma (HCC. However, additional molecular mechanisms resulting in amplified FGFR4 signaling in HCC remain under-studied. Here, we studied the mechanistic role of its co-receptor klotho-beta (KLB in driving elevated FGFR4 activity in HCC progression. Results Quantitative real-time PCR analysis identified frequent elevation of KLB gene expression in HCC tumors relative to matched non-tumor tissue, with a more than two-fold increase correlating with development of multiple tumors in patients. KLB-silencing in Huh7 cells decreased cell proliferation and suppressed FGFR4 downstream signaling. While transient repression of KLB-FGFR4 signaling decreased protein expression of alpha-fetoprotein (AFP, a HCC diagnostic marker, prolonged inhibition enriched for resistant HCC cells exhibiting increased liver stemness. Conclusions Elevated KLB expression in HCC tissues provides further credence to the oncogenic role of increased FGFR4 signaling in HCC progression and represents a novel biomarker to identify additional patients amenable to anti-FGFR4 therapy. The restricted tissue expression profile of KLB, together with the anti-proliferative effect observed with KLB-silencing, also qualifies it as a specific and potent therapeutic target for HCC patients. The enrichment of a liver stem cell-like population in response to extended KLB-FGFR4 repression necessitates further investigation to target the development of drug resistance.

  5. Tumor suppressor, AT motif binding factor 1 (ATBF1), translocates to the nucleus with runt domain transcription factor 3 (RUNX3) in response to TGF-{beta} signal transduction

    Energy Technology Data Exchange (ETDEWEB)

    Mabuchi, Motoshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Koseiin Medical Welfare Center, Nagoya (Japan); Kataoka, Hiromi, E-mail: [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Miura, Yutaka; Kim, Tae-Sun [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Kawaguchi, Makoto [Department of Pathology, Niigata Rosai Hospital, Japan Labor Health and Welfare Organization, Niigata (Japan); Ebi, Masahide; Tanaka, Mamoru; Mori, Yoshinori; Kubota, Eiji; Mizushima, Takashi; Shimura, Takaya; Mizoshita, Tsutomu; Tanida, Satoshi; Kamiya, Takeshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Joh, Takashi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan)


    Research highlights: {yields} Significant correlation between ATBF1 and RUNX3 nuclear localization in gastric cancer. {yields} Co-IP reveals a physical association between ATBF1 and RUNX3. {yields} ATBF1 and RUNX3 up-regulates p21 promoter activity synergistically. {yields} TGF-{beta}1 induces endogenous ATBF1 and RUNX3 nuclear translocation. -- Abstract: Background and aims: AT motif binding factor 1 (ATBF1), a homeotic transcription factor, was identified as a tumor suppressor, and loss of heterozygosity at ATBF1 locus occurs frequently in gastric cancers. We previously showed that ATBF1 expression inversely correlated with the malignant character of gastric cancer and that ATBF1 enhanced the promoter activity of p21{sup Waf1/Cip1}. We also found that ATBF1 moves between cytoplasm and nucleus, but the precise mechanism of translocation is unknown. In this study, we investigated the mechanism of ATBF1 translocation to the nucleus with the runt domain transcription factor 3 (RUNX3) in cooperation with TGF-{beta} signal transduction. Materials and methods: To analyze the expression of ATBF1 and RUNX3 in gastric cancer cells, we performed immunohistochemistry on 98 resected gastric cancer tissue samples and scored the nuclear staining intensity as grade 0 to grade 5. Co-immunoprecipitation (co-IP) of ATBF1 and RUNX3 was performed. Dual luciferase assays were performed by transfecting ATBF1 and RUNX3 with a p21{sup Waf1/Cip1} reporter vector. To investigate the nuclear translocation of endogenous ATBF1 and RUNX3 in response to TGF-{beta} signal, we examined the subcellular localization of ATBF1 and RUNX3 in gastric cancer cells treated with recombinant TGF-{beta}1 using confocal laser scanning microscopy. Results: Strong immunohistochemical nuclear staining of ATBF1 was observed in 37 (37.8%) of the gastric cancer tissue samples, and RUNX3 nuclear staining was observed in 15 (15.3%). There was a statistically significant correlation between ATBF1 and RUNX3 nuclear

  6. Effect of oxygen on cardiac differentiation in mouse iPS cells: role of hypoxia inducible factor-1 and Wnt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Tanya L Medley

    Full Text Available BACKGROUND: Disturbances in oxygen levels have been found to impair cardiac organogenesis. It is known that stem cells and differentiating cells may respond variably to hypoxic conditions, whereby hypoxia may enhance stem cell pluripotency, while differentiation of multiple cell types can be restricted or enhanced under hypoxia. Here we examined whether HIF-1alpha modulated Wnt signaling affected differentiation of iPS cells into beating cardiomyocytes. OBJECTIVE: We investigated whether transient and sustained hypoxia affects differentiation of cardiomyocytes derived from murine induced pluripotent stem (iPS cells, assessed the involvement of HIF-1alpha (hypoxia-inducible factor-1alpha and the canonical Wnt pathway in this process. METHODS: Embryoid bodies (EBs derived from iPS cells were differentiated into cardiomyocytes and were exposed either to 24 h normoxia or transient hypoxia followed by a further 13 days of normoxic culture. RESULTS: At 14 days of differentiation, 59 ± 2% of normoxic EBs were beating, whilst transient hypoxia abolished beating at 14 days and EBs appeared immature. Hypoxia induced a significant increase in Brachyury and islet-1 mRNA expression, together with reduced troponin C expression. Collectively, these data suggest that transient and sustained hypoxia inhibits maturation of differentiating cardiomyocytes. Compared to normoxia, hypoxia increased HIF-1alpha, Wnt target and ligand genes in EBs, as well as accumulation of HIF-1alpha and beta-catenin in nuclear protein extracts, suggesting involvement of the Wnt/beta-catenin pathway. CONCLUSION: Hypoxia impairs cardiomyocyte differentiation and activates Wnt signaling in undifferentiated iPS cells. Taken together the study suggests that oxygenation levels play a critical role in cardiomyocyte differentiation and suggest that hypoxia may play a role in early cardiogenesis.

  7. Conditional expression of Smad7 in pancreatic beta cells disrupts TGF-beta signaling and induces reversible diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Nora G Smart


    Full Text Available Identification of signaling pathways that maintain and promote adult pancreatic islet functions will accelerate our understanding of organogenesis and improve strategies for treating diseases like diabetes mellitus. Previous work has implicated transforming growth factor-beta (TGF-beta signaling as an important regulator of pancreatic islet development, but has not established whether this signaling pathway is required for essential islet functions in the adult pancreas. Here we describe a conditional system for expressing Smad7, a potent inhibitor of TGF-beta signaling, to identify distinct roles for this pathway in adult and embryonic beta cells. Smad7 expression in Pdx1+ embryonic pancreas cells resulted in striking embryonic beta cell hypoplasia and neonatal lethality. Conditional expression of Smad7 in adult Pdx1+ cells reduced detectable beta cell expression of MafA, menin, and other factors that regulate beta cell function. Reduced pancreatic insulin content and hypoinsulinemia produced overt diabetes that was fully reversed upon resumption of islet TGF-beta signaling. Thus, our studies reveal that TGF-beta signaling is crucial for establishing and maintaining defining features of mature pancreatic beta cells.

  8. [Transforming growth factor-beta controls pathogenesis of Crohn disease]. (United States)

    Friess, H; di Mola, F F; Egger, B; Scheuren, A; Kleeff, J; Zimmermann, A; Büchler, M W


    The pathogenetic mechanisms which contribute to the progression of Crohn's disease are still not known. Transforming growth factor-beta (TGF-beta) and its subtypes are multifunctional polypeptides which regulate immunological processes as well as the synthesis of the extracellular matrix and fibrogenesis. In the present study, Crohn's disease tissue samples of 18 patients undergoing intestinal resection were analyzed by Northern blot analysis, in situ hybridization and immunostaining for TGF-beta 1-3 and the TGF-beta receptors type I-III (T beta R-I, T beta R-II, T beta R-III). There was a marked overexpression of TGF-beta 1, TGF-beta 3 and T beta R-II in 94% of the Crohn's disease tissue samples. TGF-beta 2 and T beta R-I ALK5 and T beta R-III were enhanced in 72%, 72% and 82% of the Crohn tissue samples, respectively. In situ hybridization and immunostaining revealed that there was frequent coexpression of TGF-beta with its signaling receptors. Our data indicate that TGF-beta and their receptors seem to be involved in the pathogenesis of Crohn's disease. Their enhanced expression might contribute to the increase in extracellular matrix resulting in fibrosis and subsequently in intestinal obstruction.

  9. Analysis of microRNA expression in canine mammary cancer stem-like cells indicates epigenetic regulation of transforming growth factor-beta signaling. (United States)

    Rybicka, A; Mucha, J; Majchrzak, K; Taciak, B; Hellmen, E; Motyl, T; Krol, M


    Cancer stem cells (CSCs) display both unique self-renewal ability as well as the ability to differentiate into many kinds of cancer cells. They are supposed to be responsible for cancer initiation, recurrence and drug resistance. Despite the fact that a variety of methods are currently employed in order to target CSCs, little is known about the regulation of their phenotype and biology by miRNAs. The aim of our study was to assess miRNA expression in canine mammary cancer stem-like cells (expressing stem cell antigen 1, Sca-1; CD44 and EpCAM) sorted from canine mammary tumour cell lines (CMT-U27, CMT-309 and P114). In order to prove their stem-like phenotype, we conducted a colony formation assay that confirmed their ability to form colonies from a single cell. Profiles of miRNA expression were investigated using Agilent custom-designed microarrays. The results were further validated by real-time rt-PCR analysis of expression of randomly selected miRNAs. Target genes were indicated and analysed using Kioto Encyclopedia of Genes and Genomes (KEGG) and BioCarta databases. The results revealed 24 down-regulated and nine up-regulated miRNAs in cancer stem-like cells compared to differentiated tumour cells. According to KEGG and BioCarta databases, target genes (n=240) of significantly down-regulated miRNAs were involved in transforming growth factor-beta signaling, mitogen-activated protein kinases (MAPK) signaling pathway, anaplastic lymphoma receptor tyrosine kinase (ALK) and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC1A) pathways. The analysis of single-gene overlapping with different pathways showed that the most important genes were: TGFBR1, TGFBR2, SOS1, CHUK, PDGFRA, SMAD2, MEF2A, MEF2C and MEF2D. All of them are involved in tumor necrosis factor-beta signaling and may indicate its important role in cancer stem cell biology. Increased expression of TGFBR2, SMAD2, MEF2A and MEF2D in canine mammary cancer stem-like cells was further

  10. Differential role of Sloan-Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells. (United States)

    Vo, BaoHan T; Cody, Bianca; Cao, Yang; Khan, Shafiq A


    Transforming growth factor-beta (TGF-β) signaling pathways contain both tumor suppressor and tumor promoting activities. We have demonstrated that Nodal, another member of the TGF-β superfamily, and its receptors are expressed in prostate cancer cells. Nodal and TGF-β exerted similar biological effects on prostate cells; both inhibited proliferation in WPE, RWPE1 and DU145 cells, whereas neither had any effect on the proliferation of LNCaP or PC3 cells. Interestingly, Nodal and TGF-β induced migration in PC3 cells, but not in DU145 cells. TGF-β induced predominantly phosphorylation of Smad3, whereas Nodal induced phosphorylation of only Smad2. We also determined the expression and differential role of Ski, a corepressor of Smad2/3, in Nodal and TGF-β signaling in prostate cancer cells. Similar levels of Ski mRNA were found in several established prostate cell lines; however, high levels of Ski protein were only detected in prostate cancer cells and prostate cancer tissue samples. Exogenous Nodal and TGF-β had no effects on Ski mRNA levels. On the other hand, TGF-β induced a rapid degradation of Ski protein mediated by the proteasomal pathway, whereas Nodal had no effect on Ski protein. Reduced Ski levels correlated with increased basal and TGF-β-induced Smad2/3 phosphorylation. Knockdown of endogenous Ski reduced proliferation in DU145 cells and enhanced migration of PC3 cells. We conclude that high levels of Ski expression in prostate cancer cells may be responsible for repression of TGF-β and Smad3 signaling, but Ski protein levels do not influence Nodal and Smad2 signaling.

  11. Ingredients of Huangqi decoction slow biliary fibrosis progression by inhibiting the activation of the transforming growth factor-beta signaling pathway

    Directory of Open Access Journals (Sweden)

    Du Jin-Xing


    Full Text Available Abstract Background Huangqi decoction was first described in Prescriptions of the Bureau of Taiping People's Welfare Pharmacy in Song Dynasty (AD 1078, and it is an effective recipe that is usually used to treat consumptive disease, anorexia, and chronic liver diseases. Transforming growth factor beta 1 (TGFβ1 plays a key role in the progression of liver fibrosis, and Huangqi decoction and its ingredients (IHQD markedly ameliorated hepatic fibrotic lesions induced by ligation of the common bile duct (BDL. However, the mechanism of IHQD on hepatic fibrotic lesions is not yet clear. The purpose of the present study is to elucidate the roles of TGFβ1 activation, Smad-signaling pathway, and extracellular signal-regulated kinase (ERK in the pathogenesis of biliary fibrosis progression and the antifibrotic mechanism of IHQD. Methods A liver fibrosis model was induced by ligation of the common bile duct (BDL in rats. Sham-operation was performed in control rats. The BDL rats were randomly divided into two groups: the BDL group and the IHQD group. IHQD was administrated intragastrically for 4 weeks. At the end of the fifth week after BDL, animals were sacrificed for sampling of blood serum and liver tissue. The effect of IHQD on the TGFβ1 signaling pathway was evaluated by western blotting and laser confocal microscopy. Results Decreased content of hepatic hydroxyproline and improved liver function and histopathology were observed in IHQD rats. Hepatocytes, cholangiocytes, and myofibroblasts in the cholestatic liver injury released TGFβ1, and activated TGFβ1 receptors can accelerate liver fibrosis. IHQD markedly inhibited the protein expression of TGFβ1, TGFβ1 receptors, Smad3, and p-ERK1/2 expression with no change of Smad7 expression. Conclusion IHQD exert significant therapeutic effects on BDL-induced fibrosis in rats through inhibition of the activation of TGFβ1-Smad3 and TGFβ1-ERK1/2 signaling pathways.

  12. Inorganic pyrophosphate generation by transforming growth factor-beta-1 is mainly dependent on ANK induction by Ras/Raf-1/extracellular signal-regulated kinase pathways in chondrocytes. (United States)

    Cailotto, Frederic; Bianchi, Arnaud; Sebillaud, Sylvie; Venkatesan, Narayanan; Moulin, David; Jouzeau, Jean-Yves; Netter, Patrick


    ANK is a multipass transmembrane protein transporter thought to play a role in the export of intracellular inorganic pyrophosphate and so to contribute to the pathophysiology of chondrocalcinosis. As transforming growth factor-beta-1 (TGF-beta1) was shown to favor calcium pyrophosphate dihydrate deposition, we investigated the contribution of ANK to the production of extracellular inorganic pyrophosphate (ePPi) by chondrocytes and the signaling pathways involved in the regulation of Ank expression by TGF-beta1. Chondrocytes were exposed to 10 ng/mL of TGF-beta1, and Ank expression was measured by quantitative polymerase chain reaction and Western blot. ePPi was quantified in cell supernatants. RNA silencing was used to define the respective roles of Ank and PC-1 in TGF-beta1-induced ePPi generation. Finally, selective kinase inhibitors and dominant-negative/overexpression plasmid strategies were used to explore the contribution of several signaling pathways to Ank induction by TGF-beta1. TGF-beta1 strongly increased Ank expression at the mRNA and protein levels, as well as ePPi production. Using small interfering RNA technology, we showed that Ank contributed approximately 60% and PC-1 nearly 20% to TGF-beta1-induced ePPi generation. Induction of Ank by TGF-beta1 required activation of the extracellular signal-regulated kinase (ERK) pathway but not of p38-mitogen-activated protein kinase or of protein kinase A. In line with the general protein kinase C (PKC) inhibitor calphostin C, Gö6976 (a Ca2+-dependent PKC inhibitor) diminished TGF-beta1-induced Ank expression by 60%, whereas a 10% inhibition was observed with rottlerin (a PKCdelta inhibitor). These data suggest a regulatory role for calcium in TGF-beta1-induced Ank expression. Finally, we demonstrated that the stimulatory effect of TGF-beta1 on Ank expression was inhibited by the suppression of the Ras/Raf-1 pathway, while being enhanced by their constitutive activation. Transient overexpression of Smad 7, an

  13. Novel aspects on pancreatic beta-cell signal-transduction. (United States)

    Leibiger, Ingo B; Brismar, Kerstin; Berggren, Per-Olof


    Pancreatic beta-cells release insulin in appropriate amounts in order to keep blood glucose levels within physiological limits. Failure to do so leads to the most common metabolic disorder in man, diabetes mellitus. The glucose-stimulus/insulin-secretion coupling represents a sophisticated interplay between glucose and a variety of modulatory factors. These factors are provided by the blood supply (such as nutrients, vitamins, incretins etc.), the nerval innervations, cell-cell contacts as well as by paracrine and autocrine feedback loops within the pancreatic islet of Langerhans. However, the underlying mechanisms of their action remain poorly understood. In the present mini-review we discuss novel aspects of selective insulin signaling in the beta-cell and novel insights into the role of higher inositol phosphates in insulin secretion. Finally we present a newly developed experimental platform that allows non-invasive and longitudinal in vivo imaging of pancreatic islet/beta-cell biology at single-cell resolution.

  14. Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction

    NARCIS (Netherlands)

    Lebrin, F; Goumans, MJ; Jonker, L; Carvalho, RLC; Valdimarsdottir, G; Thorikay, M; Mummery, C; Arthur, HM; ten Dijke, P


    Endoglin is a transmembrane accessory receptor for transforming growth factor-beta (TGF-beta) that is predominantly expressed on proliferating endothelial cells in culture and on angiogenic blood vessels in vivo. Endoglin, as well as other TGF-beta signalling components, is essential during angiogen

  15. Staphylococcus aureus Enterotoxin B Down-Regulates the Expression of Transforming Growth Factor-Beta (TGF-β) Signaling Transducers in Human Glioblastoma. (United States)

    Akbari, Abolfazl; Farahnejad, Zohreh; Akhtari, Javad; Abastabar, Mahdi; Mobini, Gholam Reza; Mehbod, Amir Seied Ali


    It has been revealed that Staphylococcus aureus enterotoxin B (SEB) may feature anti-cancer and anti-metastatic advantages due to its ability to modify cell immunity processes and signaling pathways. Glioblastoma is one of the most aggressive human cancers; it has a high mortality nature, which makes it an attractive area for the development of novel therapies. We examined whether the SEB could exert its growth inhibitory effects on glioblastoma cells partially through the manipulation of a key tumor growth factor termed transforming growth factor-beta (TGF-β). A human primary glioblastoma cell line, U87, was treated with different concentrations of SEB. The cell quantity was measured by the MTT assay at different exposure times. For molecular assessments, total ribonucleic acid (RNA) was extracted from either non-treated or SEB-treated cells. Subsequently, the gene expression of TGF-β transducers, smad2/3, at the messenger RNA (mRNA) level, was analyzed via a quantitative real-time polymerase chain reaction (qPCR) using the SYBR Green method. Significant differences between cell viability and gene expression levels were determined (Prism 5.0 software) using one-way analyses of variance (ANOVA) test. We reported that SEB could effectively down-regulate smad2/3 expression in glioblastoma cells at concentrations as quantity as 1 μg/mL and 2 μg/mL (P < 0.05 and P < 0.01, respectively). The SEB concentrations effective at regulating smad2/3 expression were correlated with those used to inhibit the proliferation of glioblastoma cells. Our results also showed that SEB was able to decrease smad2/3 expression at the mRNA level in a concentration- and time-dependent manner. We suggested that SEB could represent an agent that can significantly decrease smad2/3 expression in glioblastoma cells, leading to moderate TGF-β growth signaling and the reduction of tumor cell proliferation.

  16. IL-1beta-induced pro-apoptotic signalling is facilitated by NCAM/FGF receptor signalling and inhibited by the C3d ligand in the INS-1E rat beta cell line

    DEFF Research Database (Denmark)

    Petersen, L G; Størling, J; Heding, P


    AIMS/HYPOTHESIS: IL-1beta released from immune cells induces beta cell pro-apoptotic signalling via mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB). In neurons, the neural cell adhesion molecule (NCAM) signals to several elements involved in IL-1beta-induced pro-ap...

  17. [Functional analysis of transforming growth factor-beta type II dominant negative receptor]. (United States)

    Takarada, M


    The transforming growth factor-beta (TGF-beta) is a multifunctional homodimeric protein with an apparent molecular weight of 25 KDa. TGF-beta transduces signals by forming heteromeric complexes of their type-I (T beta R-I) and type-II (T beta R-II) serin/threonine kinase receptors. TGF-beta binds first to T beta R-II receptor, and then the ligand in this complex is recognized by T beta R-I, resulting in formation of a heteromeric receptor complex composed of T beta R-I and T beta R-II. Once received, T beta R-I becomes phosphorylated in the GS domain by the associated constitutively active T beta R-II and transmits the downstream signal. It has been reported that formation of the heteromeric complex is indispensible at least in epithelial cells for growth inhibition and extracellular matrix production induced by TGF-beta. In this study, the functional role of T beta R-II for the TGF-beta-induced signals in osteoblastic cells was investigated by using a dominant negative type of T beta R-II mutant receptors (T beta RIIDNR). ROS 17/2.8 and MG 63 cells were found to express T beta R-I, T beta R-II, and T beta R-III, and their cell growth was inhibited by TGF-beta, whereas alkaline phosphatase activity was stimulated. Cells that were stably transfected with the T beta RIIDNR plasmid showed decreased response to TGF-beta during growth and alkaline phosphatase activity. These results indicate that the intracellular serine/threonine kinase domain of T beta R-II is essential for signal transduction of the TGF-beta-induced alkaline phosphatase activity as well as growth inhibition.

  18. Transforming growth factor-beta (TGF-beta) and programmed cell death in the vertebrate retina. (United States)

    Duenker, Nicole


    Programmed cell death (PCD) is a precisely regulated phenomenon essential for the homeostasis of multicellular organisms. Developmental systems, particularly the nervous system, have provided key observations supporting the physiological role of PCD. We have recently shown that transforming growth factor-beta (TGF-beta) plays an important role in mediating ontogenetic PCD in the nervous system. As part of the central nervous system the developing retina serves as an ideal model system for investigating apoptotic processes during neurogenesis in vivo as it is easily accessible experimentally and less complex due to its limited number of different neurons. This review summarizes data indicating a pivotal role of TGF-beta in mediating PCD in the vertebrate retina. The following topics are discussed: expression of TGF-beta isoforms and receptors in the vertebrate retina, the TGF-beta signaling pathway, functions and molecular mechanisms of PCD in the nervous system, TGF-beta-mediated retinal apoptosis in vitro and in vivo, and interactions of TGF-beta with other pro- and anti-apoptotic factors.

  19. Metabolic signalling in pancreatic beta cells


    Piipari, K.


    The main function of pancreatic beta cells is to maintain correct glucose homeostasis within the body by secretion of insulin in response to increased blood glucose concentration. Beta cell dysfunction contributes to the pathogenesis of diabetes. Using transgenic mouse models, the work described in this thesis has investigated the role of AMP-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase (PI3K) in beta cell function and their role in the regulation of ...

  20. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, TW; Twickler, TB


    Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signalling pathway

  1. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette


    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH......). Receptors for both GH and PRL are expressed in islet cells and are upregulated during pregnancy. By mutational analysis we have identified different functional domains of the cytoplasmic part of the GH receptor. Thus the mitotic signaling only requires the membrane proximal part of the receptor...

  2. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Jee [Department of Ophthalmology, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do (Korea, Republic of); Chun, Ji Na; Jung, Sun-Ah [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of); Cho, Jin Won [Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Joon H., E-mail: [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of)


    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  3. Signaling from beta1- and beta2-adrenergic receptors is defined by differential interactions with PDE4

    DEFF Research Database (Denmark)

    Richter, Wito; Day, Peter; Agrawal, Rani


    Beta1- and beta2-adrenergic receptors (betaARs) are highly homologous, yet they play clearly distinct roles in cardiac physiology and pathology. Myocyte contraction, for instance, is readily stimulated by beta1AR but not beta2AR signaling, and chronic stimulation of the two receptors has opposing...

  4. DMPD: Immunoreceptor-like signaling by beta 2 and beta 3 integrins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17913496 Immunoreceptor-like signaling by beta 2 and beta 3 integrins. Jakus Z, Fod...or S, Abram CL, Lowell CA, Mocsai A. Trends Cell Biol. 2007 Oct;17(10):493-501. (.png) (.svg) (.html) (.csml) Show Immunore...ceptor-like signaling by beta 2 and beta 3 integrins. PubmedID 17913496 Title Immunoreceptor-

  5. BAT3 interacts with transforming growth factor-beta (TGF-beta) receptors and enhances TGF-beta1-induced type I collagen expression in mesangial cells. (United States)

    Kwak, Joon Hyeok; Kim, Sung Il; Kim, Jin Kuk; Choi, Mary E


    Transforming growth factor-beta1 (TGF-beta1) plays essential roles in a wide array of cellular processes, such as in development and the pathogenesis of tissue fibrosis, including that associated with progressive kidney diseases. Tight regulation of its signaling pathways is critical, and proteins that associate with the TGF-beta receptors may exert positive or negative regulatory effects on TGF-beta signaling. In the present study we employed a yeast-based two-hybrid screening system to identify BAT3 (HLA-B-associated transcript 3) as a TGF-beta receptor-interacting protein. Analysis of endogenously expressed BAT3 in various tissues including the kidney reveals the existence of approximately 140-kDa full-length protein as well as truncated forms of BAT3 whose expression is developmentally regulated. Endogenous BAT3 protein interacts with TGF-beta receptors type I and type II in renal mesangial cells. Functional assays show that expression of full-length BAT3 results in enhancement of TGF-beta1-stimulated transcriptional activation of p3TP-Lux reporter, and these effects require the presence of functional TGF-beta signaling receptors as demonstrated in R-1B and DR-26 mutant cells. Moreover, expression of full-length BAT3, but not C-terminal truncated mutant of BAT3, enhanced TGF-beta1-induced type I collagen expression in mesangial cells, whereas knock down of BAT3 protein expression by small interfering RNA suppressed the expression of type I collagen induced by TGF-beta1. Our findings suggest that BAT3, a TGF-beta receptor-interacting protein, is capable of modulating TGF-beta signaling and acts as a positive regulator of TGF-beta1 stimulation of type I collagen expression in mesangial cells.

  6. The disintegrin and metalloproteinase ADAM12 contributes to TGF-beta signaling through interaction with the type II receptor

    DEFF Research Database (Denmark)

    Atfi, Azeddine; Dumont, Emmanuelle; Colland, Frédéric;


    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological processes through two types of Ser/Thr transmembrane receptors: the TGF-beta type I receptor and the TGF-beta type II receptor (TbetaRII). Upon ligand binding, TGF-beta type I receptor activated by TbetaRII propagates...... signals to Smad proteins, which mediate the activation of TGF-beta target genes. In this study, we identify ADAM12 (a disintegrin and metalloproteinase 12) as a component of the TGF-beta signaling pathway that acts through association with TbetaRII. We found that ADAM12 functions by a mechanism...... independent of its protease activity to facilitate the activation of TGF-beta signaling, including the phosphorylation of Smad2, association of Smad2 with Smad4, and transcriptional activation. Furthermore, ADAM12 induces the accumulation of TbetaRII in early endosomal vesicles and stabilizes the Tbeta...

  7. Novel aspects on signal-transduction in the pancreatic beta-cell. (United States)

    Berggren, Per-Olof; Leibiger, Ingo B


    The glucose-stimulus/insulin-secretion-coupling by the pancreatic beta-cell, which guarantees the maintenance of glucose homeostasis in man, is regulated by a sophisticated interplay between glucose and a plethora of additional factors. Besides other nutrients, incretins, nerval innervation, systemic growth factors as well as autocrine and paracrine regulatory loops within the islet of Langerhans modulate the function of the insulin-producing beta-cell. Although the modulatory role of these factors is well appreciated, the underlying molecular mechanisms involved remain poorly understood. However, in most cases beta-cell membrane receptors coupled primarily to either G-proteins or tyrosine kinases, which subsequently activate respective second messenger cascades, are involved. In the present mini-review we will discuss the role of signaling through some of these receptor-operated effector systems in the light of pancreatic beta-cell signal-transduction.

  8. Integration of prolactin and glucocorticoid signaling at the beta-casein promoter and enhancer by ordered recruitment of specific transcription factors and chromatin modifiers (United States)

    Lactogenic hormone regulation of beta-casein gene expression in mammary epithelial cells provides an excellent system in which to perform kinetic studies of chromatin remodeling and transcriptional activation. Using HC11 cells as a model, we have investigated the effects of prolactin and glucocortic...

  9. Wnt-3A/beta-catenin signaling induces transcription from the LEF-1 promoter. (United States)

    Filali, Mohammed; Cheng, Ningli; Abbott, Duane; Leontiev, Vladimir; Engelhardt, John F


    Members of the Wnt family of secreted molecules have been established as key factors in determining cell fate and morphogenic signaling. It has long been recognized that Wnt induces morphogenic signaling through the Tcf/LEF-1 cascade by regulating free intracellular levels of beta-catenin, a co-factor for Tcf/LEF-1 transcription factors. In the present study, we have demonstrated that Wnt-3A can also directly induce transcription from the LEF-1 promoter. This induction was dependent on glycogen synthase kinase 3beta inactivation, a rise in free intracellular beta-catenin, and a short 110-bp Wnt-responsive element (WRE) in the LEF-1 promoter. Linear and internal deletion of this WRE led to a dramatic increase in constitutive LEF-1 promoter activity and loss of Wnt-3A responsiveness. In isolation, the 110-bp WRE conferred context-independent Wnt-3A or beta-catenin(S37A) responsiveness to a heterologous SV40 promoter. Studies expressing dominant active and negative forms of LEF-1, beta-catenin, GSK-3beta, and beta-catenin/LEF-1 fusions suggest that Wnt-3A activates the LEF-1 promoter through a beta-catenin-dependent and LEF-1-independent process. Wnt-3A expression also induced multiple changes in the binding of factors to the WRE and suggests that regulatory mechanisms may involve modulation of a multiprotein complex. In summary, these results provide evidence for transcriptional regulation of the LEF-1 promoter by Wnt and enhance the mechanistic understanding of Wnt/beta-catenin signaling in the regulation of LEF-1-dependent developmental processes.

  10. Calcium input potentiates the transforming growth factor (TGF)-beta1-dependent signaling to promote the export of inorganic pyrophosphate by articular chondrocyte. (United States)

    Cailotto, Frederic; Reboul, Pascal; Sebillaud, Sylvie; Netter, Patrick; Jouzeau, Jean-Yves; Bianchi, Arnaud


    Transforming growth factor (TGF)-β1 stimulates extracellular PP(i) (ePP(i)) generation and promotes chondrocalcinosis, which also occurs secondary to hyperparathyroidism-induced hypercalcemia. We previously demonstrated that ANK was up-regulated by TGF-β1 activation of ERK1/2 and Ca(2+)-dependent protein kinase C (PKCα). Thus, we investigated mechanisms by which calcium could affect ePP(i) metabolism, especially its main regulating proteins ANK and PC-1 (plasma cell membrane glycoprotein-1). We stimulated articular chondrocytes with TGF-β1 under extracellular (eCa(2+)) or cytosolic Ca(2+) (cCa(2+)) modulations. We studied ANK, PC-1 expression (quantitative RT-PCR, Western blotting), ePP(i) levels (radiometric assay), and cCa(2+) input (fluorescent probe). Voltage-operated Ca(2+)-channels (VOC) and signaling pathways involved were investigated with selective inhibitors. Finally, Ank promoter activity was evaluated (gene reporter). TGF-β1 elevated cCa(2+) and ePP(i) levels (by up-regulating Ank and PC-1 mRNA/proteins) in an eCa(2+) dose-dependent manner. TGF-β1 effects were suppressed by cCa(2+) chelation or L- and T-VOC blockade while being mostly reproduced by ionomycin. In the same experimental conditions, the activation of Ras, the phosphorylation of ERK1/2 and PKCα, and the stimulation of Ank promoter activity were affected similarly. Activation of SP1 (specific protein 1) and ELK-1 (Ets-like protein-1) transcription factors supported the regulatory role of Ca(2+). SP1 or ELK-1 overexpression or blockade experiments demonstrated a major contribution of ELK-1, which acted synergistically with SP1 to activate Ank promoter in response to TGF-β1. TGF-β1 promotes input of eCa(2+) through opening of L- and T-VOCs, to potentiate ERK1/2 and PKCα signaling cascades, resulting in an enhanced activation of Ank promoter and ePP(i) production in chondrocyte.

  11. Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis. (United States)

    Cacheaux, Luisa P; Ivens, Sebastian; David, Yaron; Lakhter, Alexander J; Bar-Klein, Guy; Shapira, Michael; Heinemann, Uwe; Friedman, Alon; Kaufer, Daniela


    Brain injury may result in the development of epilepsy, one of the most common neurological disorders. We previously demonstrated that albumin is critical in the generation of epilepsy after blood-brain barrier (BBB) compromise. Here, we identify TGF-beta pathway activation as the underlying mechanism. We demonstrate that direct activation of the TGF-beta pathway by TGF-beta1 results in epileptiform activity similar to that after exposure to albumin. Coimmunoprecipitation revealed binding of albumin to TGF-beta receptor II, and Smad2 phosphorylation confirmed downstream activation of this pathway. Transcriptome profiling demonstrated similar expression patterns after BBB breakdown, albumin, and TGF-beta1 exposure, including modulation of genes associated with the TGF-beta pathway, early astrocytic activation, inflammation, and reduced inhibitory transmission. Importantly, TGF-beta pathway blockers suppressed most albumin-induced transcriptional changes and prevented the generation of epileptiform activity. Our present data identifies the TGF-beta pathway as a novel putative epileptogenic signaling cascade and therapeutic target for the prevention of injury-induced epilepsy.

  12. T cell receptor (TCR-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ signaling mediate superior tumor regression in an animal model of adoptive cell therapy

    Directory of Open Access Journals (Sweden)

    Quatromoni Jon G


    Full Text Available Abstract Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ, which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN, were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer.

  13. Lupeol inhibits proliferation of human prostate cancer cells by targeting beta-catenin signaling. (United States)

    Saleem, Mohammad; Murtaza, Imtiyaz; Tarapore, Rohinton S; Suh, Yewseok; Adhami, Vaqar Mustafa; Johnson, Jeremy James; Siddiqui, Imtiaz Ahmad; Khan, Naghma; Asim, Mohammad; Hafeez, Bilal Bin; Shekhani, Mohammed Talha; Li, Benyi; Mukhtar, Hasan


    Lupeol, a dietary triterpene, was shown to decrease serum prostate-specific antigen levels and inhibit the tumorigenicity of prostate cancer (CaP) cells in vivo. Here, we show that Lupeol inhibits the proliferative potential of CaP cells and delineated its mechanism of action. Employing a focused microarray of human CaP-associated genes, we found that Lupeol significantly modulates the expression level of genes such as ERBB2, tissue inhibitor of metalloproteinases-3, cyclin D1 and matrix metalloproteinase (MMP)-2 that are known to be associated with proliferation and survival. A common feature of these genes is that all of them are known to either regulate or act as downstream target of beta-catenin signaling that is highly aberrant in CaP patients. Lupeol treatment significantly (1) reduced levels of beta-catenin in the cytoplasmic and nuclear fractions, (2) modulated expression levels of glycogen synthase kinase 3 beta (GSK3beta)-axin complex (regulator of beta-catenin stability), (3) decreased the expression level and enzymatic activity of MMP-2 (downstream target of beta-catenin), (4) reduced the transcriptional activation of T Cell Factor (TCF) responsive element (marker for beta-catenin signaling) in pTK-TCF-Luc-transfected cells and (5) decreased the transcriptional activation of MMP-2 gene in pGL2-MMP-2-Luc-transfected cells. Effects of Lupeol treatment on beta-catenin degradation were significantly reduced in CaP cells where axin is knocked down through small interfering RNA transfection and GSK3beta activity is blocked. Collectively, these data suggest the multitarget efficacy of Lupeol on beta-catenin-signaling network thus resulting in the inhibition CaP cell proliferation. We suggest that Lupeol could be developed as an agent for chemoprevention as well as chemotherapy of human CaP.

  14. [Transforming growth factor beta (TGF-beta): its structure, function, and role in the pathogenesis of systemic lupus erythematosus]. (United States)

    Stepień-Wyrobiec, Olga; Hrycek, Antoni; Wyrobiec, Grzegorz


    TGF-beta is a cytokine of great importance in many common diseases because it takes part in many physiological processes such as angiogenesis and stimulation of the synthesis and degradation of extracellular matrix proteins. It also regulates the entrance of cells to the apoptotic pathway and can stimulate the division of mesenchymal cells and inhibit hemopoietic, endothelial, and lymphatic cells. There are five genes which encode TGF-beta in vertebrates, of which only three are present in mammals. The best known member of the family of TGF-beta proteins is TGF-beta 1. TGF-beta is synthetized as a precursor protein which, after enzymatic modification, is present as a small or large complex. Three membrane receptors, serine/threonine kinase, are arranged for signal transduction with TGF-beta. Smad proteins are responsible for sending the signal into the cell nucleus; its influence on different transcriptive factors in the cell nucleus promotes the expressions of different genes. Disturbances in TGF-beta expression have been noted in many diseases. Current results clearly indicate an important role of this cytokine in autoimmunological disorders, especially in systemic lupus erythematosus. Studies on an animal model revealed that endogenic TGF-beta can control the progression of systemic lupus erythematosus.

  15. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. (United States)

    Brown, Kimberly A; Pietenpol, Jennifer A; Moses, Harold L


    Transforming growth factor-beta (TGF-beta) is an important growth inhibitor of epithelial cells, and insensitivity to this cytokine results in uncontrolled cell proliferation and can contribute to tumorigenesis. Smad2 and Smad3 are direct mediators of TGF-beta signaling, however little is known about the selective activation of Smad2 versus Smad3. The Smad2 and Smad3 knockout mouse phenotypes and studies comparing Smad2 and Smad3 activation of TGF-beta target genes, suggest that Smad2 and Smad3 have distinct roles in TGF-beta signaling. The observation that TGF-beta inhibits proliferation of Smad3-null mammary gland epithelial cells, whereas Smad3 deficient fibroblasts are only partially growth inhibited, suggests that Smad3 has a different role in epithelial cells and fibroblasts. Herein, the current understanding of Smad2 and Smad3-mediated TGF-beta signaling and their relative roles are discussed, in addition to potential mechanisms for the selective activation of Smad2 versus Smad3. Since alterations in the TGF-beta signaling pathway play an important role in promoting tumorigenesis and cancer progression, methods for therapeutic targeting of the TGF-beta signaling pathway are being pursued. Determining how Smad2 or Smad3 differentially regulate the TGF-beta response may translate into developing more effective strategies for cancer therapy.

  16. Embryonic hair follicle fate change by augmented beta-catenin through Shh and Bmp signaling. (United States)

    Suzuki, Kentaro; Yamaguchi, Yuji; Villacorte, Mylah; Mihara, Kenichiro; Akiyama, Masashi; Shimizu, Hiroshi; Taketo, Makoto M; Nakagata, Naomi; Tsukiyama, Tadasuke; Yamaguchi, Terry P; Birchmeier, Walter; Kato, Shigeaki; Yamada, Gen


    beta-catenin signaling is one of the key factors regulating the fate of hair follicles (HFs). To elucidate the regulatory mechanism of embryonic HF fate determination during epidermal development/differentiation, we analyzed conditional mutant mice with keratinocytes expressing constitutively active beta-catenin (K5-Cre Catnb(ex3)fl/+). The mutant mice developed scaly skin with a thickened epidermis and showed impaired epidermal stratification. The hair shaft keratins were broadly expressed in the epidermis but there was no expression of the terminal differentiation markers K1 and loricrin. Hair placode markers (Bmp2 and Shh) and follicular dermal condensate markers (noggin, patched 1 and Pdgfra) were expressed throughout the epidermis and the upper dermis, respectively. These results indicate that the embryonic epidermal keratinocytes have switched extensively to the HF fate. A series of genetic studies demonstrated that the epidermal switching to HF fate was suppressed by introducing the conditional mutation K5-Cre Catnb(ex3)fl/+Shhfl/- (with additional mutation of Shh signaling) or K5-Cre Catnb(ex3)fl/+BmprIAfl/fl (with additional mutation of Bmp signaling). These results demonstrate that Wnt/beta-catenin signaling relayed through Shh and Bmp signals is the principal regulatory mechanism underlying the HF cell fate change. Assessment of Bmp2 promoter activities suggested a putative regulation by beta-catenin signaling relayed by Shh signaling towards Bmp2. We also found that Shh protein expression was increased and expanded in the epidermis of K5-Cre Catnb(ex3)fl/+BmprIAfl/fl mice. These results indicate the presence of growth factor signal cross-talk involving beta-catenin signaling, which regulates the HF fate.

  17. Polarity of response to transforming growth factor-beta1 in proximal tubular epithelial cells is regulated by beta-catenin. (United States)

    Zhang, Mei; Lee, Chien-Hung; Luo, Dong Dong; Krupa, Aleksandra; Fraser, Donald; Phillips, Aled


    Transforming growth factor-beta1 (TGF-beta1)-mediated loss of proximal tubular epithelial cell-cell interaction is regulated in a polarized fashion. The aim of this study was to further explore the polarity of the TGF-beta1 response and to determine the significance of R-Smad-beta-catenin association previously demonstrated to accompany adherens junction disassembly. Smad3 signaling response to TGF-beta1 was assessed by activity of the Smad3-responsive reporter gene construct (SBE)(4)-Lux and by immunoblotting for phospho-Smad proteins. Similar results were obtained with both methods. Apical application of TGF-beta1 led to increased Smad3 signaling compared with basolateral stimulation. Association of Smad proteins with beta-catenin was greater following basolateral TGFbeta-1 stimulation, as was the expression of cytoplasmic Triton-soluble beta-catenin. Inhibition of beta-catenin expression by small interfering RNA augmented Smad3 signaling. Lithium chloride, a GSK-3 inhibitor, increased expression of beta-catenin and attenuated TGF-beta1-dependent Smad3 signaling. Lithium chloride did not influence degradation of Smad3 but resulted in decreased nuclear translocation. Smad2 activation as assessed by Western blot analysis and activity of the Smad2-responsive reporter constructs ARE/MF1 was also greater following apical as compared with basolateral TGFbeta-1 stimulation, suggesting that this is a generally applicable mechanism for the regulation of TGF-beta1-dependent R-Smads. Caco-2 cells are a colonic carcinoma cell line, with known resistance to the anti-proliferative effects of TGF-beta1 and increased expression of beta-catenin. We used this cell line to address the general applicability of our observations. Inhibition of beta-catenin in this cell line by small interfering RNA resulted in increased TGF-beta1-dependent Smad3 phosphorylation and restoration of TGF-beta1 anti-proliferative effects.

  18. Transforming growth factor-beta as a differentiating factor for cultured smooth muscle cells. (United States)

    Gawaziuk, J P; X; Sheikh, F; Cheng, Z-Q; Cattini, P A; Stephens, N L


    The aim of the present study was to determine whether the development of supercontractile smooth muscle cells, contributing to the nonspecific hyperreactivity of airways in asthmatic patients, is due to transforming growth factor (TGF)-beta. In cultured smooth muscle cells starved by removal of 10% foetal bovine serum for 7 days, growth arrest was seen; 30% became elongated and demonstrated super contractility. Study of conditioned medium suggested that the differentiating factor was TGF-beta. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out on conditioned medium from the arrested cells. Two protein bands were identified as matrix metalloproteinase (MMP)-2 and TGF-beta1. To determine second messenger signalling by SMAD2, Western blotting and confocal microscopy were employed. Conditioned medium from arrested cultures showed the presence of MMP-2 and TGF-beta1, as revealed by SDS-PAGE; 68- and 25-kDa bands were seen. Differentiation was confirmed by upregulation of marker proteins, smooth muscle type myosin heavy chain and myosin light chain kinase. Confirmation was obtained by downregulating these proteins with decorin treatment, which reduces the levels of active TGF-beta and an adenoviral dominant-negative vector coding for a mutated type II TGF-beta-receptor. Activation of second messenger signalling was demonstrated immunocytochemically by the presence of phosphorylated SMAD2 and SMAD4. Transforming growth factor-beta is likely to be the differentiating factor responsible for the development of these supercontractile smooth muscle cells. The development of such cells in vivo after cessation of an asthmatic attack could contribute to the nonspecific hyperreactivity of airways seen in patients.

  19. Expression of transforming growth factor-beta (TGF-beta) receptors, TGF-beta 1 and TGF-beta 2 production and autocrine growth control in osteosarcoma cells. (United States)

    Kloen, P; Jennings, C L; Gebhardt, M C; Springfield, D S; Mankin, H J


    Transforming growth factor-beta (TGF-beta) is a polypeptide with multiple physiological functions. Isoforms of this growth factor have important roles in control of the cell cycle, in regulation of cell-cell interactions and in growth and development. Malignant transformation has been shown to be associated with increased expression of TGF-beta. Since bone is the largest storage site and producer of TGF-beta, we speculated on the existence of an autocrine mechanism in osteosarcoma, a malignant bone tumor. Expression of TGF-beta cell surface receptors, effects on growth of TGF-beta and TGF-beta antibodies and production of 2 TGF-beta isoforms were studied in a panel of 7 osteosarcoma cell lines. In contrast to most previous reports on the effects of TGF-beta on osteosarcoma cell growth, we found a mitogenic effect of TGF-beta 1 in 4 of 7 osteosarcoma cell lines. Receptor profiles for TGF-beta were aberrant in 5 of the 7 cell lines tested, and production of TGF-beta 1 and TGF-beta 2 varied among cell lines. Addition of anti-TGF-beta antagonized the effects of endogenous TGF-beta. Our results suggest a potential role of TGF-beta in autocrine growth control of osteosarcoma cells.

  20. The role of PRAJA and ELF in TGF-beta signaling and gastric cancer. (United States)

    Mishra, Lopa; Katuri, Varalakshmi; Evans, Stephen


    Emerging research has shown that the transforming growth factor-beta (TGF-beta) pathway plays a key role in the suppression of gastric carcinoma. Biological signals for TGF-beta are transduced through transmembrane serine/threonine kinase receptors, which in turn signal to Smad proteins. Inactivation of the TGF-beta pathway often occurs in malignancies of the gastrointestinal system, including gastric cancer. Yet, only a fraction of sporadic gastric tumors exhibit inactivating mutations in early stages of cancer formation, suggesting that other mechanisms play a critical role in the inactivation of this pathway. Smad4, a tumor suppressor, is often mutated in human gastrointestinal cancers. The mechanism of Smad4 inactivation, however, remains uncertain and could be mediated through E3-mediated ubiquitination of Smad4/adaptor protein complexes. The regulation of the TGF-beta pathway through a PRAJA, a RING finger (RING-H2) protein, and ELF, a beta-Spectrin adaptor protein, both which were originally identified in endodermal stem/progenitor cells committed to foregut lineage, could play a pivotal role in gastric carcinogenesis. PRAJA, which functions as an E3 ligase, interacts with ELF in a TGF-beta-dependent manner in gastric cancer cell lines. PRAJA is increased five-fold in human gastric cancers, and inactivates ELF. This is particularly significant since ELF, a Smad4 adaptor protein, possesses potent anti-oncogenic activity and is frequently seen to be inactivated in carcinogenic gastric cells. Strikingly, PRAJA manifests substantial E3-dependent ubiquitination of ELF and Smad3, but not Smad4. The alteration of ELF and/or Smad4 expression and function in the TGF-beta signaling pathway may be induced by enhancement of ELF degradation, which is mediated by the high level expression of PRAJA in gastrointestinal cancers. These studies reveal a mechanism for gastric tumorigenesis whereby defects in adaptor proteins for Smads, such as ELF, can undergo degradation by

  1. Factors influencing beta-amylase activity in sorghum malt

    CSIR Research Space (South Africa)

    Taylor, JRN


    Full Text Available An investigation into factors influencing beta-amylase activity in sorghum malt confirmed that ungerminated sorghum grain exhibited essentially no beta-amylase activity. Malted sorghum had beta-amylase activity less than 25% of the level in barley...

  2. El factor de crecimiento transformante beta como blanco terapéutico Transforming growth factor-beta as a therapeutic target

    Directory of Open Access Journals (Sweden)

    Francisco Javier Gálvez-Gastélum


    Full Text Available El factor de crecimiento transformante beta (TGF-beta es una familia de proteínas que incluye al TGF-beta, activinas y a la proteína morfogénica de hueso (BMP, por sus siglas en inglés, citocinas que son secretadas y se relacionan estructuralmente en diferentes especies de metazoarios. Los miembros de la familia del TGF-beta regulan diferentes funciones celulares como proliferación, apoptosis, diferenciación, migración, y tienen un papel clave en el desarrollo del organismo. El TGF-beta está implicado en varias patologías humanas, incluyendo desórdenes autoinmunes y vasculares, así como enfermedades fibróticas y cáncer. La activación del receptor del TGF-beta propicia su fosforilación en residuos de serina/treonina y dispara la fosforilación de proteínas efectoras intracelulares (smad, que una vez activas se translocan al núcleo para inducir la transcripción de genes blanco, y así regular procesos y funciones celulares. Se están desarrollando novedosas estrategias terapéuticas encaminadas a corregir las alteraciones presentes en patologías que involucran al TGF-beta como actor principal.Transforming growth factor-beta (TGF-beta family members include TGF-beta, activins, and bone morphogenetic proteins (BMP. These proteins are structurally related cytokines secreted in diverse Metazoans. TGF-beta family members regulate cellular functions such as proliferation, apoptosis, differentiation, and migration, and play an important role in organism development. Deregulated TGF-beta family signaling participates in various human pathologies including auto-immune diseases, vascular disorders, fibrotic disease, and cancer. Ligand-induced activation of TGF-beta family receptors with intrinsic serine/threonine kinase activity, triggers phosphorylation of the intracellular effectors of TGF-beta signaling, the Smads proteins. Once these proteins are activated they translocate into the nucleus, where they induce transcription of target

  3. Absence of transforming growth factor-beta type II receptor is associated with poorer prognosis in HER2-negative breast tumours

    DEFF Research Database (Denmark)

    Paiva, C E; Drigo, S A; Rosa, F E;


    BACKGROUND: The clinical relevance of transforming growth factor-beta (TGF-beta)-signalling pathway in breast carcinomas (BCs) remained elusive. This study aimed to evaluate the prognostic value of TGF-beta1 and transforming growth factor-beta type II receptor (TGF-betaRII) expression levels...... in tumour cells and their association with the established biomarkers in BC. PATIENTS AND METHODS: In 324 BC from patients with long-term follow-up, the TGF-beta1 and TGF-betaRII transcript and protein expression levels were assessed. RESULTS: TGF-beta1 and TGF-betaRII down-expression was significantly...... associated with BC. Negative TGF-beta1 and TGF-betaRII protein status was associated with the development of distant metastasis (P = 0.003 and P = 0.029, respectively). In multivariate analysis, TGF-beta1-positive tumours were associated with increased disease-free survival (DFS) [hazard ratio (HR) = 0...

  4. beta-Catenin signaling is required for TGF-beta(1)-induced extracellular matrix production by airway smooth muscle cells

    NARCIS (Netherlands)

    Baarsma, Hoeke A.; Menzen, Mark H.; Halayko, Andrew J.; Meurs, Herman; Kerstjens, Huib A. M.; Gosens, Reinoud


    Baarsma HA, Menzen MH, Halayko AJ, Meurs H, Kerstjens HA, Gosens R. beta-Catenin signaling is required for TGF-beta(1)-induced extracellular matrix production by airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 301: L956-L965, 2011. First published September 9, 2011; doi: 10.1152/ajplu

  5. Factors Influencing Beta-Thalassemia Awareness in Western India


    Ashwin P Patel; Prakash H Parmar; Rupesh B Patel; Nikhil M Trivedi; Nileshkumar A Bhartiya


    "Context: Beta-thalassemia is highly prevalent in western India. Our organization runs a screening and prevention program to create awareness and reduce the incidence of homozygous beta-thalassemia cases. Aims: The study was designed to evaluate factors influencing awareness about Beta-thalassemia. Methodology: This cross sectional survey was conducted at six colleges, two medical clinics, and a thalassemia transfusion centre. It involved 398 adults ( and #8805;18 years).The survey form...

  6. Factors Influencing Beta-Thalassemia Awareness in Western India


    Ashwin P Patel; Prakash H Parmar; Rupesh B Patel; Nikhil M Trivedi; Nileshkumar A Bhartiya


    "Context: Beta-thalassemia is highly prevalent in western India. Our organization runs a screening and prevention program to create awareness and reduce the incidence of homozygous beta-thalassemia cases. Aims: The study was designed to evaluate factors influencing awareness about Beta-thalassemia. Methodology: This cross sectional survey was conducted at six colleges, two medical clinics, and a thalassemia transfusion centre. It involved 398 adults ( and #8805;18 years).The survey form...

  7. beta1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury

    DEFF Research Database (Denmark)

    Cordes, N; Seidler, J; Durzok, R;


    Integrin-mediated adhesion to extracellular matrix proteins confers resistance to radiation- or drug-induced genotoxic injury. To analyse the underlying mechanisms specific for beta1-integrins, wild-type beta1A-integrin-expressing GD25beta1A cells were compared to GD25beta1B cells, which express ...... in tumor cells may promote the development of innovative molecular-targeted therapeutic antitumor strategies.......Integrin-mediated adhesion to extracellular matrix proteins confers resistance to radiation- or drug-induced genotoxic injury. To analyse the underlying mechanisms specific for beta1-integrins, wild-type beta1A-integrin-expressing GD25beta1A cells were compared to GD25beta1B cells, which express...... signaling-incompetent beta1B variants. Cells grown on fibronectin, collagen-III, beta1-integrin-IgG or poly-l-lysine were exposed to 0-6 Gy X-rays in presence or depletion of growth factors and phosphatidylinositol-3 kinase (PI3K) inhibitors (LY294002, wortmannin). In order to test the relevance...

  8. Plasma transforming growth factor beta levels in breast cancer patients

    NARCIS (Netherlands)

    Sminia, P; Barten, AD; Van Waarde, MAWH; Vujaskovic, Z; Van Tienhoven, G


    We investigated whether the concentration of circulating transforming growth factor beta (TGF beta) yields diagnostic value in breast cancer. Blood was collected from twenty stage I and II breast cancer patients both prior to treatment and after surgical excision of the tumour. Both latent and activ

  9. Cellular signaling by fibroblast growth factor receptors. (United States)

    Eswarakumar, V P; Lax, I; Schlessinger, J


    The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. A variety of human skeletal dysplasias have been linked to specific point mutations in FGFR1, FGFR2 and FGFR3 leading to severe impairment in cranial, digital and skeletal development. Gain of function mutations in FGFRs were also identified in a variety of human cancers such as myeloproliferative syndromes, lymphomas, prostate and breast cancers as well as other malignant diseases. The binding of FGF and HSPG to the extracellular ligand domain of FGFR induces receptor dimerization, activation and autophosphorylation of multiple tyrosine residues in the cytoplasmic domain of the receptor molecule. A variety of signaling proteins are phosphorylated in response to FGF stimulation including Shc, phospholipase-Cgamma, STAT1, Gab1 and FRS2alpha leading to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape. The docking proteins FRS2alpha and FRS2beta are major mediators of the Ras/MAPK and PI-3 kinase/Akt signaling pathways as well as negative feedback mechanisms that fine-tune the signal that is initiated at the cell surface following FGFR stimulation.

  10. Ligand-dependent inhibition of beta-catenin/TCF signaling by androgen receptor. (United States)

    Chesire, Dennis R; Isaacs, William B


    Beta-catenin signaling may contribute to prostate cancer (CaP) progression. Although beta-catenin is known to upregulate T cell factor (TCF) target gene expression in CaP cells, recent evidence demonstrates its capacity to enhance ligand-dependent androgen receptor (AR) function. Thus, we wished to further understand the interaction between these two pathways. We find in both CaP cells (CWR22-Rv1, LAPC-4, DU145) and non-CaP cells (HEK-293, TSU, SW480, HCT-116) that beta-catenin/TCF-related transcription (CRT), as measured by activation of a synthetic promoter and that of cyclin D1, is inhibited by androgen treatment. This inhibition is AR-dependent, as it only occurs in cells expressing AR endogenously or transiently, and is abrogated by AR antagonists. Additional analyses convey that the ligand-dependent nature of CRT suppression depends on transactivation-competent AR in the nucleus, but not on indirect effects stemming from AR target gene expression. Given the recent work identifying an AR/beta-catenin interaction, and from our finding that liganded AR does not prompt gross changes in the constitutive nuclear localization of TCF4 or mutant beta-catenin, we hypothesized that transcription factor (i.e. AR and TCF) competition for beta-catenin recruitment may explain, in part, androgen-induced suppression of CRT. To address this idea, we expressed an AR mutant lacking its DNA-binding domain (DBD). This receptor could not orchestrate ligand-dependent CRT repression, thereby providing support for those recent data implicating the AR DBD/LBD as necessary for beta-catenin interaction. Further supporting this hypothesis, TCF/LEF over-expression counteracts androgen-induced suppression of CRT, and requires beta-catenin binding activity to do so. Interestingly, TCF4 over-expression potently antagonizes AR function; however, this inhibition may occur independently of beta-catenin/TCF4 interaction. These results from TCF4 over-expression analyses, taken together, provide

  11. Transforming growth factor-beta pathway: role in pancreas development and pancreatic disease. (United States)

    Rane, Sushil G; Lee, Ji-Hyeon; Lin, Huei-Min


    The pancreas is a complex exocrine and endocrine gland that controls many homeostatic functions. The exocrine pancreas produces and secretes digestive enzymes, whereas, the endocrine pancreas produces four distinct hormones, chief among them being the glucose regulating hormone-insulin. Diabetes, pancreatitis and pancreatic cancer are some of the main afflictions that result from pancreas dysfunction. Transforming growth factor-beta (TGF-beta) proteins are central regulators of pancreas cell function, and have key roles in pancreas development and pancreatic disease. Since expression levels and kinase activities of components of TGF-beta signaling are aberrantly altered in diseases of the pancreas, modulating the activity of TGF-beta provides a unique and rational opportunity for therapeutic intervention. Although TGF-beta still remains elusive in terms of our understanding of its multifunctional modes of action, research is moving closer to the design of approaches directed toward modulating its activities for therapeutic benefit.

  12. PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-beta signaling during mammary tumorigenesis. (United States)

    Tian, Maozhen; Schiemann, William P


    The molecular mechanisms that enable cyclooxygenase-2 (COX-2) and its mediator prostaglandin E2 (PGE2) to inhibit transforming growth factor-beta (TGF-beta) signaling during mammary tumorigenesis remain unknown. We show here that TGF-beta selectively stimulated the expression of the PGE2 receptor EP2, which increased normal and malignant mammary epithelial cell (MEC) invasion, anchorage-independent growth, and resistance to TGF-beta-induced cytostasis. Mechanistically, elevated EP2 expression in normal MECs inhibited the coupling of TGF-beta to Smad2/3 activation and plasminogen activator inhibitor-1 (PAI1) expression, while EP2 deficiency in these same MECs augmented Smad2/3 activation and PAI expression stimulated by TGF-beta. Along these lines, engineering malignant MECs to lack EP2 expression prevented their growth in soft agar, restored their cytostatic response to TGF-beta, decreased their invasiveness in response to TGF-beta, and potentiated their activation of Smad2/3 and expression of PAI stimulated by TGF-beta. More important, we show that COX-2 or EP2 deficiency both significantly decreased the growth, angiogenesis, and pulmonary metastasis of mammary tumors produced in mice. Collectively, this investigation establishes EP2 as a potent mediator of the anti-TGF-beta activities elicited by COX-2/PGE2 in normal and malignant MECs. Our findings also suggest that pharmacological targeting of EP2 receptors may provide new inroads to antagonize the oncogenic activities of TGF-beta during mammary tumorigenesis.-Tian, M., Schiemann, W. P. PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-beta signaling during mammary tumorigenesis.

  13. Modulation of the beta-catenin signaling pathway by the dishevelled-associated protein Hipk1.

    Directory of Open Access Journals (Sweden)

    Sarah H Louie

    Full Text Available BACKGROUND: Wnts are evolutionarily conserved ligands that signal through beta-catenin-dependent and beta-catenin-independent pathways to regulate cell fate, proliferation, polarity, and movements during vertebrate development. Dishevelled (Dsh/Dvl is a multi-domain scaffold protein required for virtually all known Wnt signaling activities, raising interest in the identification and functions of Dsh-associated proteins. METHODOLOGY: We conducted a yeast-2-hybrid screen using an N-terminal fragment of Dsh, resulting in isolation of the Xenopus laevis ortholog of Hipk1. Interaction between the Dsh and Hipk1 proteins was confirmed by co-immunoprecipitation assays and mass spectrometry, and further experiments suggest that Hipk1 also complexes with the transcription factor Tcf3. Supporting a nuclear function during X. laevis development, Myc-tagged Hipk1 localizes primarily to the nucleus in animal cap explants, and the endogenous transcript is strongly expressed during gastrula and neurula stages. Experimental manipulations of Hipk1 levels indicate that Hipk1 can repress Wnt/beta-catenin target gene activation, as demonstrated by beta-catenin reporter assays in human embryonic kidney cells and by indicators of dorsal specification in X. laevis embryos at the late blastula stage. In addition, a subset of Wnt-responsive genes subsequently requires Hipk1 for activation in the involuting mesoderm during gastrulation. Moreover, either over-expression or knock-down of Hipk1 leads to perturbed convergent extension cell movements involved in both gastrulation and neural tube closure. CONCLUSIONS: These results suggest that Hipk1 contributes in a complex fashion to Dsh-dependent signaling activities during early vertebrate development. This includes regulating the transcription of Wnt/beta-catenin target genes in the nucleus, possibly in both repressive and activating ways under changing developmental contexts. This regulation is required to modulate gene

  14. Exendin-4 Promotes Beta Cell Proliferation via PI3k/Akt Signalling Pathway

    Directory of Open Access Journals (Sweden)

    Chaoxun Wang


    Full Text Available Background/Aims: Prevention of diabetes requires maintenance of a functional beta-cell mass, the postnatal growth of which depends on beta cell proliferation. Past studies have shown evidence of an effect of an incretin analogue, Exendin-4, in promoting beta cell proliferation, whereas the underlying molecular mechanisms are not completely understood. Methods: Here we studied the effects of Exendin-4 on beta cell proliferation in vitro and in vivo through analysing BrdU-incorporated beta cells. We also analysed the effects of Exendin-4 on beta cell mass in vivo, and on beta cell number in vitro. Then, we applied specific inhibitors of different signalling pathways and analysed their effects on Exendin-4-induced beta cell proliferation. Results: Exendin-4 increased beta cell proliferation in vitro and in vivo, resulting in significant increases in beta cell mass and beta cell number, respectively. Inhibition of PI3K/Akt signalling, but not inhibition of either ERK/MAPK pathway, or JNK pathway, significantly abolished the effects of Exendin-4 in promoting beta cell proliferation. Conclusion: Exendin-4 promotes beta cell proliferation via PI3k/Akt signaling pathway.

  15. Factors affecting drug adsorption on beta zeolites. (United States)

    Pasti, Luisa; Sarti, Elena; Cavazzini, Alberto; Marchetti, Nicola; Dondi, Francesco; Martucci, Annalisa


    The adsorption behaviour of three commonly used drugs, namely ketoprofen, hydrochlorothiazide and atenolol, from diluted aqueous solutions on beta zeolites with different SiO2/Al2O3 ratio (i.e. 25, 38 and 360) was investigated by changing the ionic strength and the pH, before and after thermal treatment of the adsorbents. The selective adsorption of drugs was confirmed by thermogravimetry and X-ray diffraction. The adsorption capacity of beta zeolites was strongly dependent on both the solution pH and the alumina content of the adsorbent. Such a remarkable difference was interpreted as a function of the interactions between drug molecules and zeolite surface functional groups. Atenolol was readily adsorbed on the less hydrophobic zeolite, under pH conditions in which electrostatic interactions were predominant. On the other hand, ketoprofen adsorption was mainly driven by hydrophobic interactions. For undissociated molecules the adsorption capability increased with the increase of hydrophobicity.

  16. Transforming growth factor-beta1 induces transforming growth factor-beta1 and transforming growth factor-beta receptor messenger RNAs and reduces complement C1qB messenger RNA in rat brain microglia. (United States)

    Morgan, T E; Rozovsky, I; Sarkar, D K; Young-Chan, C S; Nichols, N R; Laping, N J; Finch, C E


    Transforming growth factor-beta1 is a multifunctional peptide with increased expression during Alzheimer's disease and other neurodegenerative conditions which involve inflammatory mechanisms. We examined the autoregulation of transforming growth factor-beta1 and transforming growth factor-beta receptors and the effects of transforming growth factor-beta1 on complement C1q in brains of adult Fischer 344 male rats and in primary glial cultures. Perforant path transection by entorhinal cortex lesioning was used as a model for the hippocampal deafferentation of Alzheimer's disease. In the hippocampus ipsilateral to the lesion, transforming growth factor-beta1 peptide was increased >100-fold; the messenger RNAs encoding transforming growth factor-beta1, transforming growth factor-beta type I and type II receptors were also increased, but to a smaller degree. In this acute lesion paradigm, microglia are the main cell type containing transforming growth factor-beta1, transforming growth factor-beta type I and II receptor messenger RNAs, shown by immunocytochemistry in combination with in situ hybridization. Autoregulation of the transforming growth factor-beta1 system was examined by intraventricular infusion of transforming growth factor-beta1 peptide, which increased hippocampal transforming growth factor-beta1 messenger RNA levels in a dose-dependent fashion. Similarly, transforming growth factor-beta1 increased levels of transforming growth factor-beta1 messenger RNA and transforming growth factor-beta type II receptor messenger RNA (IC(50), 5pM) and increased release of transforming growth factor-beta1 peptide from primary microglia cultures. Interactions of transforming growth factor-beta1 with complement system gene expression are also indicated, because transforming growth factor-beta1 decreased C1qB messenger RNA in the cortex and hippocampus, after intraventricular infusion, and in cultured glia. These indications of autocrine regulation of transforming growth

  17. Gap junction reduction in cardiomyocytes following transforming growth factor-beta treatment and Trypanosoma cruzi infection. (United States)

    Waghabi, Mariana C; Coutinho-Silva, Robson; Feige, Jean-Jacques; Higuchi, Maria de Lourdes; Becker, David; Burnstock, Geoffrey; Araújo-Jorge, Tânia C de


    Gap junction connexin-43 (Cx43) molecules are responsible for electrical impulse conduction in the heart and are affected by transforming growth factor-beta (TGF-beta). This cytokine increases during Trypanosoma cruzi infection, modulating fibrosis and the parasite cell cycle. We studied Cx43 expression in cardiomyocytes exposed or not to TGF-beta T. cruzi, or SB-431542, an inhibitor of TGF-beta receptor type I (ALK-5). Cx43 expression was also examined in hearts with dilated cardiopathy from chronic Chagas disease patients, in which TGF-beta signalling had been shown previously to be highly activated. We demonstrated that TGF-beta treatment induced disorganised gap junctions in non-infected cardiomyocytes, leading to a punctate, diffuse and non-uniform Cx43 staining. A similar pattern was detected in T. cruzi-infected cardiomyocytes concomitant with high TGF-beta secretion. Both results were reversed if the cells were incubated with SB-431542. Similar tests were performed using human chronic chagasic patients and we confirmed a down-regulation of Cx43 expression, an altered distribution of plaques in the heart and a significant reduction in the number and length of Cx43 plaques, which correlated negatively with cardiomegaly. We conclude that elevated TGF-beta levels during T. cruzi infection promote heart fibrosis and disorganise gap junctions, possibly contributing to abnormal impulse conduction and arrhythmia that characterise severe cardiopathy in Chagas disease.

  18. Importin-beta is a GDP-to-GTP exchange factor of Ran: implications for the mechanism of nuclear import. (United States)

    Lonhienne, Thierry G; Forwood, Jade K; Marfori, Mary; Robin, Gautier; Kobe, Bostjan; Carroll, Bernard J


    Ran-GTP interacts strongly with importin-beta, and this interaction promotes the release of the importin-alpha-nuclear localization signal cargo from importin-beta. Ran-GDP also interacts with importin-beta, but this interaction is 4 orders of magnitude weaker than the Ran-GTP.importin-beta interaction. Here we use the yeast complement of nuclear import proteins to show that the interaction between Ran-GDP and importin-beta promotes the dissociation of GDP from Ran. The release of GDP from the Ran-GDP-importin-beta complex stabilizes the complex, which cannot be dissociated by importin-alpha. Although Ran has a higher affinity for GDP compared with GTP, Ran in complex with importin-beta has a higher affinity for GTP. This feature is responsible for the generation of Ran-GTP from Ran-GDP by importin-beta. Ran-binding protein-1 (RanBP1) activates this reaction by forming a trimeric complex with Ran-GDP and importin-beta. Importin-alpha inhibits the GDP exchange reaction by sequestering importin-beta, whereas RanBP1 restores the GDP nucleotide exchange by importin-beta by forming a tetrameric complex with importin-beta, Ran, and importin-alpha. The exchange is also inhibited by nuclear-transport factor-2 (NTF2). We suggest a mechanism for nuclear import, additional to the established RCC1 (Ran-guanine exchange factor)-dependent pathway that incorporates these results.

  19. Endoglin negatively regulates transforming growth factor beta1-induced profibrotic responses in intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P


    BACKGROUND: Fibroblasts isolated from strictures in Crohn\\'s disease (CD) exhibit reduced responsiveness to stimulation with transforming growth factor (TGF) beta1. TGF-beta1, acting through the smad pathway, is critical to fibroblast-mediated intestinal fibrosis. The membrane glycoprotein, endoglin, is a negative regulator of TGF-beta1. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies of patients undergoing intestinal resection for CD strictures or from control patients. Endoglin expression was assessed using confocal microscopy, flow cytometry and western blot. The effect of small interfering (si) RNA-mediated knockdown and plasmid-mediated overexpression of endoglin on fibroblast responsiveness to TGF-beta1 was assessed by examining smad phosphorylation, smad binding element (SBE) promoter activity, connective tissue growth factor (CTGF) expression and ability to contract collagen. RESULTS: Crohn\\'s stricture fibroblasts expressed increased constitutive cell-surface and whole-cell endoglin relative to control cells. Endoglin co-localized with filamentous actin. Fibroblasts treated with siRNA directed against endoglin exhibited enhanced TGF-beta1-mediated smad-3 phosphorylation, and collagen contraction. Cells transfected with an endoglin plasmid did not respond to TGF-beta1 by exhibiting SBE promoter activity or producing CTGF. CONCLUSION: Fibroblasts from strictures in CD express increased constitutive endoglin. Endoglin is a negative regulator of TGF-beta1 signalling in the intestinal fibroblast, modulating smad-3 phosphorylation, SBE promoter activity, CTGF production and collagen contraction.

  20. Surface proteome analysis identifies platelet derived growth factor receptor-alpha as a critical mediator of transforming growth factor-beta-induced collagen secretion. (United States)

    Heinzelmann, Katharina; Noskovičová, Nina; Merl-Pham, Juliane; Preissler, Gerhard; Winter, Hauke; Lindner, Michael; Hatz, Rudolf; Hauck, Stefanie M; Behr, Jürgen; Eickelberg, Oliver


    Fibroblasts are extracellular matrix-producing cells in the lung. Fibroblast activation by transforming growth factor-beta leads to myofibroblast-differentiation and increased extracellular matrix deposition, a hallmark of pulmonary fibrosis. While fibroblast function with respect to migration, invasion, and extracellular matrix deposition has been well-explored, little is known about the surface proteome of lung fibroblasts in general and its specific response to fibrogenic growth factors, in particular transforming growth factor-beta. We thus performed a cell-surface proteome analysis of primary human lung fibroblasts in presence/absence of transforming growth factor-beta, followed by characterization of our findings using FACS analysis, Western blot, and siRNA-mediated knockdown experiments. We identified 213 surface proteins significantly regulated by transforming growth factor-beta, platelet derived growth factor receptor-alpha being one of the top down-regulated proteins. Transforming growth factor beta-induced downregulation of platelet derived growth factor receptor-alpha induced upregulation of platelet derived growth factor receptor-beta expression and phosphorylation of Akt, a downstream target of platelet derived growth factor signaling. Importantly, collagen type V expression and secretion was strongly increased after forced knockdown of platelet derived growth factor receptor-alpha, an effect that was potentiated by transforming growth factor-beta. We therefore show previously underappreciated cross-talk of transforming growth factor-beta and platelet derived growth factor signaling in human lung fibroblasts, resulting in increased extracellular matrix deposition in a platelet derived growth factor receptor-alpha dependent manner. These findings are of particular importance for the treatment of lung fibrosis patients with high pulmonary transforming growth factor-beta activity.

  1. AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of {beta}-catenin at Ser 552

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junxing; Yue, Wanfu; Zhu, Mei J. [Developmental Biology Group, Department of Animal Science, College of Agriculture, University of Wyoming, Laramie, WY 82071 (United States); Sreejayan, Nair [School of Pharmacy, College of Health Science, University of Wyoming, Laramie, WY 82071 (United States); Du, Min, E-mail: [Developmental Biology Group, Department of Animal Science, College of Agriculture, University of Wyoming, Laramie, WY 82071 (United States)


    AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism; its activity is regulated by a plethora of physiological conditions, exercises and many anti-diabetic drugs. Recent studies show that AMPK involves in cell differentiation but the underlying mechanism remains undefined. Wingless Int-1 (Wnt)/{beta}-catenin signaling pathway regulates the differentiation of mesenchymal stem cells through enhancing {beta}-catenin/T-cell transcription factor 1 (TCF) mediated transcription. The objective of this study was to determine whether AMPK cross-talks with Wnt/{beta}-catenin signaling through phosphorylation of {beta}-catenin. C3H10T1/2 mesenchymal cells were used. Chemical inhibition of AMPK and the expression of a dominant negative AMPK decreased phosphorylation of {beta}-catenin at Ser 552. The {beta}-catenin/TCF mediated transcription was correlated with AMPK activity. In vitro, pure AMPK phosphorylated {beta}-catenin at Ser 552 and the mutation of Ser 552 to Ala prevented such phosphorylation, which was further confirmed using [{gamma}-{sup 32}P]ATP autoradiography. In conclusion, AMPK phosphorylates {beta}-catenin at Ser 552, which stabilizes {beta}-catenin, enhances {beta}-catenin/TCF mediated transcription, expanding AMPK from regulation of energy metabolism to cell differentiation and development via cross-talking with the Wnt/{beta}-catenin signaling pathway.

  2. The effect of suppressor of cytokine signaling 3 on GH signaling in beta-cells

    DEFF Research Database (Denmark)

    Rønn, Sif G; Hansen, Johnny A; Lindberg, Karen


    GH is an important regulator of cell growth and metabolism. In the pancreas, GH stimulates mitogenesis as well as insulin production in beta-cells. The cellular effects of GH are exerted mainly through activation of the Janus kinase-signal transducer and activator of transcription (STAT) pathway....... Furthermore, using Northern blot analysis it was shown that SOCS-3 can completely inhibit GH-induced insulin production in these cells. Finally, 5-bromodeoxyuridine incorporation followed by fluorescence-activated cell sorting analysis showed that SOCS-3 inhibits GH-induced proliferation of INS-1 cells...

  3. An effective method to accurately calculate the phase space factors for $\\beta^- \\beta^-$ decay

    CERN Document Server

    Neacsu, Andrei


    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates, and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  4. Expression of transforming growth factor-beta (TGF-beta) isoforms in osteosarcomas: TGF-beta3 is related to disease progression. (United States)

    Kloen, P; Gebhardt, M C; Perez-Atayde, A; Rosenberg, A E; Springfield, D S; Gold, L I; Mankin, H J


    Transforming growth factor-beta (TGF-beta) is a multipotent growth factor affecting development, homeostasis, and tissue repair. In addition, increased expression of TGF-beta has been reported in different malignancies, suggesting a role for this growth factor in tumorigenesis. Using immunohistochemistry, the expression, prevalence, and distribution of TGF-beta isoforms were evaluated in 25 high grade human osteosarcomas. The Cox proportional hazards models and Kaplan-Meier curves were calculated correlating disease free survival with TGF-beta expression. Expression of one or more TGF-beta isoforms was found in all the osteosarcomas. Immunoreactivity for TGF-beta1 and TGF-beta3 generally was stronger than for TGF-beta2. The cytoplasm of the tumor cells showed stronger staining than their surrounding extracellular stroma. Most notably, osteoclasts showed strong to intense staining for all three isoforms. In 11 of 25 specimens angiogenic activity was noted with staining of multiple small vessels in the tumor stroma. Expression of TGF-beta3, but not of TGF-beta2 or TGF-beta1, related to disease progression, such that there was a statistically significant decrease in the disease free interval as the immunoreactivity for TGF-beta3 increased. All osteosarcomas expressed TGF-beta in the cytoplasm of the tumor cells as well as in their extracellular stroma. The presence of TGF-beta in the endothelial and perivascular layers of small vessels in the tumor stroma suggests angiogenic activity of this growth factor. The expression of TGF-beta3 was correlated strongly with disease progression (P = 0.027). These data suggest that increased expression of TGF-beta isoforms, especially TGF-beta3, may play a role in osteosarcoma progression.

  5. Disulfide isoforms of recombinant glia maturation factor beta. (United States)

    Zaheer, A; Lim, R


    Recombinant human glia maturation factor beta (r-hGMF-beta) is a single-chain polypeptide (141 amino acid residues) containing three cysteines, at positions 7, 86 and 95. Nascent r-hGMF-beta exists in the reduced state and has no biological activity. The protein can be activated through oxidative refolding by incubation with a mixture of reduced and oxidized glutathione. Reverse-phase HPLC analysis of the refolded r-hGMF-beta shows the presence of four peaks, corresponding to the reduced form plus three newly generated intrachain disulfide-containing isoforms predicted from the number of cysteine residues. Only one isoform shows biological activity when tested for growth suppression on C6 glioma cells. We infer from the HPLC elution pattern that the active form contains the disulfide bridge Cys86-Cys95.

  6. Beta-nerve growth factor levels in newborn cord sera. (United States)

    Haddad, J; Vilge, V; Juif, J G; Maitre, M; Donato, L; Messer, J; Mark, J


    This study was designed to examine beta-nerve growth factor (NGF) levels in human cord blood by a two-site enzyme immunoassay using MAb 27/21 to mouse NGF and to determine whether beta-NGF levels show developmental changes. Blood was collected at delivery from 61 newborns, 55 neonates appropriate for gestational age (46 term infants and 9 premature infants), 5 neonates small for gestational age, and 1 neonate with congenital hydrocephalus. In addition, samples were collected from 2 microcephalic children (microcephaly vera) aged 15 and 18 mo, 2 control children, and 4 healthy adults. Mean levels of NGF in preterm infants (n = 9; 13.7 +/- 8 pg/mL) were significantly lower than levels in term infants (n = 47; 21.2 +/- 8.8 pg/mL; p = 0.034 by Mann-Whitney U test). There was no correlation between birth weight, length, head circumference, and beta-NGF levels. In microcephalic children, NGF levels were low (8 pg/mL) compared with control infants' values (22 pg/mL). In adults, beta-NGF levels were higher and ranged between 238 and 292 pg/mL. Our study demonstrates that beta-NGF levels can be assessed in human newborn sera using a two-site enzyme immunoassay with MAb 27/21 to mouse beta-NGF, that beta-NGF levels are extremely low in newborns compared with adults, that beta-NGF levels seems to show developmental changes, and that beta-NGF levels may be used to assess NGF utilization under normal and pathologic conditions such as cerebral malformations.

  7. Reduction of hippocampal apoptosis by intracerebroventricular administration of extracellular signal-regulated protein kinase and/or p38 inhibitors in amyloid beta rat model of Alzheimer's disease: involvement of nuclear-related factor-2 and nuclear factor-κB. (United States)

    Ashabi, Ghorbangol; Alamdary, Shabnam Zeighamy; Ramin, Mahmoudreza; Khodagholi, Fariba


    In the present study, we examined the effects of intracerebroventricular administration of extracellular signal-regulated protein kinase- (ERK) and p38-specific inhibitors, U0126 and PD169316, respectively, on apoptosis induced by amyloid beta (Aβ) in rats. To investigate the effects of these compounds, we evaluated intracellular signalling pathways of apoptosis, as well as inflammatory and antioxidant pathways, 7 and 20 days after Aβ injection. We found that caspase-3 and Bax/Bcl-2 ratio, two hallmarks of apoptosis, were significantly decreased in the rats pre-treated with U0126 and PD169316, 7 days after Aβ injection. This observation was in agreement with the results of immunostaining analysis of the hippocampus that showed decreased levels of terminal transferase dUTP nick end labelling positive cells in the hippocampus of U0126 and PD169316 pre-treated rats, compared with the Aβ-injected group. We also chased the changes in the levels of calpain-2 and caspase-12, two ER factors, in the Aβ-injected and treatment groups. Decreased levels of calpain-2 and caspase-12 in U0126 and PD169316 pre-treated rats confirmed the protective effects of these inhibitors. Furthermore, we studied the effect of two stress-sensing transcription factors, nuclear-related factor-2 (Nrf2) and nuclear factor-кB (NF-кB), in Aβ-injected as wells as U0126 and PD169316 pre-treated rats. U0126 and PD169316 activated Nrf2 and suppressed NF-кB pathways, 7 days after Aβ injection. These antioxidant and inflammatory pathways restored to the vehicle level within 20 days. Taken together, our findings reinforce and extend the notion of the potential neuroprotective role of ERK and/or p38 inhibitors against the neuronal toxicity induced by Aβ.

  8. Expression of transforming growth factor-beta 1, -beta 2, and -beta 3 in human developing teeth: immunolocalization according to the odontogenesis phases. (United States)

    Sassá Benedete, Ana Paula; Sobral, Ana Paula Veras; Lima, Dirce Mary Correia; Kamibeppu, Leonardo; Soares, Fernando Augusto; Lourenço, Silvia Vanessa


    Transforming growth factor-beta (TGF-beta) is a multifunctional growth factor that has several biological effects in vivo, including control of cell growth and differentiation, cell migration, lineage determination, motility, adhesion, apoptosis, and synthesis and degradation of extracellular matrix, and TGF-beta plays an important role in regulating tissue repair and regeneration. Our study analyzed the participation of TGF-beta 1, -beta 2, and -beta 3 in the different stages of morphogenesis and differentiation of human developing dental organ using immunohistochemistry. The maxillae and mandibles of 10 human embryos ranging from 8 to 23 weeks of gestation were employed, according to the approval of the ethical committee. Our study revealed that the TGF-beta subunits-beta 1, beta 2, and beta 3-were present in the various stages of tooth development, but the expression varied according to the differentiation stage, tissue, and TGF-beta subunit. Our results indicated that TGF-beta 1 is closely related to differentiation of enamel organ and initiation of matrix secretion, TGF-beta 2 to cellular differentiation, and TGF-beta 3 to mineral maturation matrix.

  9. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins

    Directory of Open Access Journals (Sweden)

    Gábor Lovas


    Full Text Available Transforming growth factor beta (TGF-β proteins are multifunctional cytokines whose neural functions are increasingly recognized. The machinery of TGF-β signaling, including the serine kinase type transmembrane receptors, is present in the central nervous system. However, the 3 mammalian TGF-β subtypes have distinct distributions in the brain suggesting different neural functions. Evidence of their involvement in the development and plasticity of the nervous system as well as their functions in peripheral organs suggested that they also exhibit neuroprotective functions. Indeed, TGF-β expression is induced following a variety of types of brain tissue injury. The neuroprotective function of TGF-βs is most established following brain ischemia. Damage in experimental animal models of global and focal ischemia was shown to be attenuated by TGF-βs. In addition, support for their neuroprotective actions following trauma, sclerosis multiplex, neurodegenerative diseases, infections, and brain tumors is also accumulating. The review will also describe the potential mechanisms of neuroprotection exerted by TGF-βs including anti-inflammatory, -apoptotic, -excitotoxic actions as well as the promotion of scar formation, angiogenesis, and neuroregeneration. The participation of these mechanisms in the neuroprotective effects of TGF-βs during different brain lesions will also be discussed.

  10. A functional connection between pRB and transforming growth factor beta in growth inhibition and mammary gland development. (United States)

    Francis, Sarah M; Bergsied, Jacqueline; Isaac, Christian E; Coschi, Courtney H; Martens, Alison L; Hojilla, Carlo V; Chakrabarti, Subrata; Dimattia, Gabriel E; Khoka, Rama; Wang, Jean Y J; Dick, Frederick A


    Transforming growth factor beta (TGF-beta) is a crucial mediator of breast development, and loss of TGF-beta-induced growth arrest is a hallmark of breast cancer. TGF-beta has been shown to inhibit cyclin-dependent kinase (CDK) activity, which leads to the accumulation of hypophosphorylated pRB. However, unlike other components of TGF-beta cytostatic signaling, pRB is thought to be dispensable for mammary development. Using gene-targeted mice carrying subtle missense changes in pRB (Rb1(DeltaL) and Rb1(NF)), we have discovered that pRB plays a critical role in mammary gland development. In particular, Rb1 mutant female mice have hyperplastic mammary epithelium and defects in nursing due to insensitivity to TGF-beta growth inhibition. In contrast with previous studies that highlighted the inhibition of cyclin/CDK activity by TGF-beta signaling, our experiments revealed that active transcriptional repression of E2F target genes by pRB downstream of CDKs is also a key component of TGF-beta cytostatic signaling. Taken together, our work demonstrates a unique functional connection between pRB and TGF-beta in growth control and mammary gland development.

  11. Rheumatoid factors from patients with rheumatoid arthritis react with Des-Lys58-beta 2m, modified beta 2-microglobulin

    DEFF Research Database (Denmark)

    Williams, R C; Nissen, Mogens Holst; Malone, C C


    Ten polyclonal IgM rheumatoid factor (RF) preparations, affinity-purified from IgG columns, from patients with rheumatoid arthritis were studied for their ELISA reactivity with native beta 2m in parallel with Lys58-cleaved beta 2m and Des-Lys58-beta 2m, the latter representing cleavage products...

  12. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. (United States)

    Sato, Misako; Muragaki, Yasuteru; Saika, Shizuya; Roberts, Anita B; Ooshima, Akira


    Tubulointerstitial fibrosis is the final common result of a variety of progressive injuries leading to chronic renal failure. Transforming growth factor-beta (TGF-beta) is reportedly upregulated in response to injurious stimuli such as unilateral ureteral obstruction (UUO), causing renal fibrosis associated with epithelial-mesenchymal transition (EMT) of the renal tubules and synthesis of extracellular matrix. We now show that mice lacking Smad3 (Smad3ex8/ex8), a key signaling intermediate downstream of the TGF-beta receptors, are protected against tubulointerstitial fibrosis following UUO as evidenced by blocking of EMT and abrogation of monocyte influx and collagen accumulation. Culture of primary renal tubular epithelial cells from wild-type or Smad3-null mice confirms that the Smad3 pathway is essential for TGF-beta1-induced EMT and autoinduction of TGF-beta1. Moreover, mechanical stretch of the cultured epithelial cells, mimicking renal tubular distention due to accumulation of urine after UUO, induces EMT following Smad3-mediated upregulation of TGF-beta1. Exogenous bone marrow monocytes accelerate EMT of the cultured epithelial cells and renal tubules in the obstructed kidney after UUO dependent on Smad3 signaling. Together the data demonstrate that the Smad3 pathway is central to the pathogenesis of interstitial fibrosis and suggest that inhibitors of this pathway may have clinical application in the treatment of obstructive nephropathy.

  13. BRCA1 interacts with Smad3 and regulates Smad3-mediated TGF-beta signaling during oxidative stress responses.

    Directory of Open Access Journals (Sweden)

    Huchun Li

    Full Text Available BACKGROUND: BRCA1 is a key regulatory protein participating in cell cycle checkpoint and DNA damage repair networks. BRCA1 plays important roles in protecting numerous cellular processes in response to cell damaging signals. Transforming growth factor-beta (TGF-beta is a potent regulator of growth, apoptosis and invasiveness of tumor cells. TFG-beta activates Smad signaling via its two cell surface receptors, the TbetaRII and ALK5/TbetaRI, leading to Smad-mediated transcriptional regulation. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report an important role of BRCA1 in modulating TGF-beta signaling during oxidative stress responses. Wild-type (WT BRCA1, but not mutated BRCA1 failed to activate TGF-beta mediated transactivation of the TGF-beta responsive reporter, p3TP-Lux. Further, WT-BRCA1, but not mutated BRCA1 increased the expression of Smad3 protein in a dose-dependent manner, while silencing of WT-BRCA1 by siRNA decreased Smad3 and Smad4 interaction induced by TGF-beta in MCF-7 breast cancer cells. BRCA1 interacted with Smad3 upon TGF-beta1 stimulation in MCF-7 cells and this interaction was mediated via the domain of 298-436aa of BRCA1 and Smad3 domain of 207-426aa. In addition, H(2O(2 increased the colocalization and the interaction of Smad3 with WT-BRCA1. Interestingly, TGF-beta1 induced Smad3 and Smad4 interaction was increased in the presence of H(2O(2 in cells expressing WT-BRCA1, while the TGF-beta1 induced interaction between Smad3 and Smad4 was decreased upon H(2O(2 treatment in a dose-dependent manner in HCC1937 breast cancer cells, deficient for endogenous BRCA1. This interaction between Smad3 and Smad4 was increased in reconstituted HCC1937 cells expressing WT-BRCA1 (HCC1937/BRCA1. Further, loss of BRCA1 resulted in H(2O(2 induced nuclear export of phosphor-Smad3 protein to the cytoplasm, resulting decreased of Smad3 and Smad4 interaction induced by TGF-beta and in significant decrease in Smad3 and Smad4 transcriptional

  14. Smad4 and ERK2 stimulated by transforming growth factor beta1 in rhabdomyosarcoma

    Institute of Scientific and Technical Information of China (English)

    GUO Hua; ZHANG Hong-ying; WANG Shou-li; YE Lü; YANG Guang-hua; BU Hong


    Background Transforming growth factor beta (TGF-beta) plays an essential role in the regulation of normal physiologic processes of cells. TGF-beta has been shown to regulate several mitogen-a ctivated protein kinases (MAPK) pathways in several epithelial cells. However, the effects of TGF-beta on soft tissue sarcoma are seldom reported. Our previous studies suggested that there should be some other signal transduction pathways besides Smads, which are important to regulate the growth of human embryonal rhabdomyosarcoma (RMS) cells. In the present study, we examined the expression and functional relations of extracellular signal-regulated kinase 2 (ERK2) and Smad4 in human RMS tissue and a RMS cell line, RD.Methods RD cells and normal human primary skeletal myoblasts (Mb) were treated with TGF-beta1 to establish the expression profile of ERK2 at the mRNA and protein levels detected by RT-PCR and immunofluorescence.Immunohistochemistry was used to detect the expression of ERK2 and Smad4 in 50 tissue specimens of human RMS and 23 specimens of normal skeletal muscles. Follow-up of specimens was performed 6 months to 70 months later.Results RD cells and human RMS tissues showed the higher expression of ERK2 and Smad4 than the normal control,either the protein level or the mRNA level. And, exogenous TGF-beta1 stimulation can lead to higher expression of ERK2and its nuclear translocation, so TGF-beta1 can also activated MAPK (ERK2) pathway, resulting in a sustained activation of ERK2 for at least 2 hours. Immunohistochemistry analysis, however, showed that there was no correlation between ERK2 and Smad4 protein. The overexpression of ERK2 and Smad4 had no indicative effects on histological subtypes,histological grading, gender, age, and prognosis.Conclusions In RMS, signaling of TGF-beta1 from cell surface to nucleus can also be directed through the MAPK (ERK2) pathway besides the TGF-beta1/Smads pathway. The activation of ERK2 by TGF-beta1 may be Smad4independent

  15. The ankyrin repeat protein Diversin recruits Casein kinase Iepsilon to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling. (United States)

    Schwarz-Romond, Thomas; Asbrand, Christian; Bakkers, Jeroen; Kühl, Michael; Schaeffer, Hans-Joerg; Huelsken, Jörg; Behrens, Jürgen; Hammerschmidt, Matthias; Birchmeier, Walter


    Wnt signals control decisive steps in development and can induce the formation of tumors. Canonical Wnt signals control the formation of the embryonic axis, and are mediated by stabilization and interaction of beta-catenin with Lef/Tcf transcription factors. An alternative branch of the Wnt pathway uses JNK to establish planar cell polarity in Drosophila and gastrulation movements in vertebrates. We describe here the vertebrate protein Diversin that interacts with two components of the canonical Wnt pathway, Casein kinase Iepsilon (CKIepsilon) and Axin/Conductin. Diversin recruits CKIepsilon to the beta-catenin degradation complex that consists of Axin/Conductin and GSK3beta and allows efficient phosphorylation of beta-catenin, thereby inhibiting beta-catenin/Tcf signals. Morpholino-based gene ablation in zebrafish shows that Diversin is crucial for axis formation, which depends on beta-catenin signaling. Diversin is also involved in JNK activation and gastrulation movements in zebrafish. Diversin is distantly related to Diego of Drosophila, which functions only in the pathway that controls planar cell polarity. Our data show that Diversin is an essential component of the Wnt-signaling pathway and acts as a molecular switch, which suppresses Wnt signals mediated by the canonical beta-catenin pathway and stimulates signaling via JNK.

  16. Differential TGF-beta Signaling in Retinal Vascular Cells: A Role in Diabetic Retinopathy?

    NARCIS (Netherlands)

    R.J. van der Geest; I. Klaassen; I.M.C. Vogels; C.J.F. van Noorden; R.O. Schlingemann


    PURPOSE. An early hallmark of preclinical diabetic retinopathy is thickening of the capillary basal lamina (BL). TGF-beta, a multipotent cytokine acting through its receptors ALK5 and -1, has been postulated to be involved in this phenomenon. In light of this possible role, TGF-beta signaling and it

  17. Fibroblast growth factor receptor-3 (FGFR-3) regulates expression of paneth cell lineage-specific genes in intestinal epithelial cells through both TCF4/beta-catenin-dependent and -independent signaling pathways. (United States)

    Brodrick, Brooks; Vidrich, Alda; Porter, Edith; Bradley, Leigh; Buzan, Jenny M; Cohn, Steven M


    Fibroblast growth factor receptor-3 (FGFR-3) expression in the developing intestine is restricted to the undifferentiated epithelial cells within the lower portion of the crypt. We previously showed that mice lacking functional FGFR-3 have a significant decrease in the number of Paneth cells in the small intestine. Here, we used Caco2 cells to investigate whether FGFR-3 signaling can directly modulate expression of Paneth cell differentiation markers through its effects on TCF4/β-catenin or through other signaling pathways downstream of this receptor. Caco2 cells treated with FGFR-3 ligands or expressing FGFR-3(K650E), a constitutively active mutant, resulted in a significantly increased expression of genes characteristic of mature Paneth cells, including human α-defensins 5 and 6 (HD5 and HD6) and Paneth cell lysozyme, whereas enterocytic differentiation markers were reduced. Activation of FGFR-3 signaling sustained high levels of β-catenin mRNA expression, leading to increased TCF4/β-catenin-regulated transcriptional activity in Caco2 cells. Sustained activity of the TCF4/β-catenin pathway was required for the induction of Paneth cell markers. Activation of the MAPK pathway by FGFR-3 is also required for the induction of Paneth cell markers in addition to and independent of the effect of FGFR-3 on TCF4/β-catenin activity. These studies suggest that coordinate activation of multiple independent signaling pathways downstream of FGFR-3 is involved in regulation of Paneth cell differentiation.

  18. Insulin-like growth factors and pancreas beta cells.

    NARCIS (Netherlands)

    Haeften, T.W. van; Twickler, M.


    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signallin

  19. TGF beta-1 dependent fast stimulation of ATM and p53 phosphorylation following exposure to ionizing radiation does not involve TGF beta-receptor I signalling

    NARCIS (Netherlands)

    Wiegman, Erwin M.; Blaese, Marcet A.; Loeffler, Heidi; Coppes, Rob P.; Rodemann, H. Peter


    Background and purpose: It has been proposed that radiation induced stimulation of ATM and downstream components involves activation of TGF beta-1 and that this may be due to TGF beta-1-receptor I-Smad signalling. Therefore, the aim of this study was to clarify the distinct role of TGF beta-1-recept

  20. The low-density lipoprotein receptor-related protein 10 is a negative regulator of the canonical Wnt/{beta}-catenin signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young-Hee; Sekiya, Manami; Hirata, Michiko; Ye, Mingjuan; Yamagishi, Azumi [Department of Molecular and Biochemical Nutrition, Graduate School of Human Life Science, Osaka City University, Osaka 558-8585 (Japan); Lee, Sang-Mi; Kang, Man-Jong [Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Hosoda, Akemi; Fukumura, Tomoe; Kim, Dong-Ho [Department of Molecular and Biochemical Nutrition, Graduate School of Human Life Science, Osaka City University, Osaka 558-8585 (Japan); Saeki, Shigeru, E-mail: [Department of Molecular and Biochemical Nutrition, Graduate School of Human Life Science, Osaka City University, Osaka 558-8585 (Japan)


    Wnt signaling pathways play fundamental roles in the differentiation, proliferation and functions of many cells as well as developmental, growth, and homeostatic processes in animals. Low-density lipoprotein receptor (LDLR)-related protein (LRP) 5 and LRP6 serve as coreceptors of Wnt proteins together with Frizzled receptors, triggering activation of canonical Wnt/{beta}-catenin signaling. Here, we found that LRP10, a new member of the LDLR gene family, inhibits the canonical Wnt/{beta}-catenin signaling pathway. The {beta}-catenin/T cell factor (TCF) transcriptional activity in HEK293 cells was activated by transfection with Wnt3a or LRP6, which was then inhibited by co-transfection with LRP10. Deletion of the extracellular domain of LRP10 negated its inhibitory effect. The inhibitory effect of LRP10 was consistently conserved in HEK293 cells even when GSK3{beta} phosphorylation was inhibited by incubation with lithium chloride and co-transfection with constitutively active S33Y-mutated {beta}-catenin. Nuclear {beta}-catenin accumulation was unaffected by LRP10. The present studies suggest that LRP10 may interfere with the formation of the {beta}-catenin/TCF complex and/or its binding to target DNA in the nucleus, and that the extracellular domain of LRP10 is critical for inhibition of the canonical Wnt/{beta}-catenin signaling pathway.

  1. Signal transduction by growth factor receptors: signaling in an instant

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Blagoev, Blagoy;


    -out by mass spectrometry-based proteomics has allowed exciting views on the very early events in signal transduction. Activation profiles of regulated phosphorylation sites on epidermal growth factor receptor and downstream signal transducers showed different kinetics within the first ten seconds...

  2. The ankyrin repeat protein Diversin recruits Casein kinase Iepsilon to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling.

    NARCIS (Netherlands)

    Schwarz-Romond, T.; Asbrand, C.; Bakkers, J.; Kuhl, M.; Schaeffer, H.J.; Huelsken, J.; Behrens, J.; Hammerschmidt, M.; Birchmeier, W.


    Wnt signals control decisive steps in development and can induce the formation of tumors. Canonical Wnt signals control the formation of the embryonic axis, and are mediated by stabilization and interaction of beta-catenin with Lef/Tcf transcription factors. An alternative branch of the Wnt pathway

  3. Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-beta signaling network. (United States)

    Tewari, Muneesh; Hu, Patrick J; Ahn, Jin Sook; Ayivi-Guedehoussou, Nono; Vidalain, Pierre-Olivier; Li, Siming; Milstein, Stuart; Armstrong, Chris M; Boxem, Mike; Butler, Maurice D; Busiguina, Svetlana; Rual, Jean-François; Ibarrola, Nieves; Chaklos, Sabrina T; Bertin, Nicolas; Vaglio, Philippe; Edgley, Mark L; King, Kevin V; Albert, Patrice S; Vandenhaute, Jean; Pandey, Akhilesh; Riddle, Donald L; Ruvkun, Gary; Vidal, Marc


    To initiate a system-level analysis of C. elegans DAF-7/TGF-beta signaling, we combined interactome mapping with single and double genetic perturbations. Yeast two-hybrid (Y2H) screens starting with known DAF-7/TGF-beta pathway components defined a network of 71 interactions among 59 proteins. Coaffinity purification (co-AP) assays in mammalian cells confirmed the overall quality of this network. Systematic perturbations of the network using RNAi, both in wild-type and daf-7/TGF-beta pathway mutant animals, identified nine DAF-7/TGF-beta signaling modifiers, seven of which are conserved in humans. We show that one of these has functional homology to human SNO/SKI oncoproteins and that mutations at the corresponding genetic locus daf-5 confer defects in DAF-7/TGF-beta signaling. Our results reveal substantial molecular complexity in DAF-7/TGF-beta signal transduction. Integrating interactome maps with systematic genetic perturbations may be useful for developing a systems biology approach to this and other signaling modules.

  4. Integration of the beta-catenin-dependent Wnt pathway with integrin signaling through the adaptor molecule Grb2.

    Directory of Open Access Journals (Sweden)

    Steve P Crampton

    Full Text Available BACKGROUND: THE COMPLEXITY OF WNT SIGNALING LIKELY STEMS FROM TWO SOURCES: multiple pathways emanating from frizzled receptors in response to wnt binding, and modulation of those pathways and target gene responsiveness by context-dependent signals downstream of growth factor and matrix receptors. Both rac1 and c-jun have recently been implicated in wnt signaling, however their upstream activators have not been identified. METHODOLOGY/PRINCIPAL FINDINGS: Here we identify the adapter protein Grb2, which is itself an integrator of multiple signaling pathways, as a modifier of beta-catenin-dependent wnt signaling. Grb2 synergizes with wnt3A, constitutively active (CA LRP6, Dvl2 or CA-beta-catenin to drive a LEF/TCF-responsive reporter, and dominant negative (DN Grb2 or siRNA to Grb2 block wnt3A-mediated reporter activity. MMP9 is a target of beta-catenin-dependent wnt signaling, and an MMP9 promoter reporter is also responsive to signals downstream of Grb2. Both a jnk inhibitor and DN-c-jun block transcriptional activation downstream of Dvl2 and Grb2, as does DN-rac1. Integrin ligation by collagen also synergizes with wnt signaling as does overexpression of Focal Adhesion Kinase (FAK, and this is blocked by DN-Grb2. CONCLUSIONS/SIGNIFICANCE: These data suggest that integrin ligation and FAK activation synergize with wnt signaling through a Grb2-rac-jnk-c-jun pathway, providing a context-dependent mechanism for modulation of wnt signaling.

  5. Vitamin E ameliorates renal fibrosis by inhibition of TGF-beta/Smad2/3 signaling pathway in UUO mice. (United States)

    Tasanarong, Adis; Kongkham, Supranee; Duangchana, Soodkate; Thitiarchakul, Supachai; Eiam-Ong, Somchai


    One striking feature of chronic kidney disease (CKD) is tubular atrophy and interstitial fibrosis (TA/IF). During chronic renal injury, transforming growth factor-beta (TGF-beta) is involved in this process causing progression of renal fibrosis. Smad2/3 proteins have been identified to have an important function in the expression of extracellular matrix (ECM) regulation through TGF-beta signaling pathway. In the present study, the authors investigated the effect of vitamin E on renal fibrosis in mice model of unilateral ureteral obstruction (UUO). UUO or sham-operated mice were randomly assigned to receive vitamin E (alpha tocopherol) or placebo and were sacrificed on days 3, 7 and 14 after UUO or sham operation. Kidney specimens were fixed for pathological study and immunohistochemistry for TGF-beta1. Protein expression of TGF-beta1 and Smad2/3 was determined by western blot analysis. The mRNA expression of TGF-beta1 was measured by real-time RT-PCR. Vitamin E treated UUO mice had less severity of renal fibrosis than placebo treatment. TA/IF was significantly attenuated by vitamin E treatment. Immunohistochemistry revealed increasing of TGF-beta1 protein expression in the interstitium area of obstructed kidneys. Moreover increasing of TGF-beta1 protein and upregulation of TGF-beta1 mRNA in UUO mice were confirmed by western blot and real time RT-PCR. In contrast, vitamin E treatment significantly inhibited the expression of TGF-beta1 protein and mRNA in UUO mice compared with placebo treatment. Interestingly, Smad2/3 protein expression became progressive increasing in UUO mice on day 3, 7 and 14 compared with sham controls. The expression of Smad2/3 protein was significantly lower in vitamin E treated UUO mice than placebo treatment in any time points. Vitamin E treatment attenuated the progression of renal fibrosis in obstructed kidneys. The renoprotective effect of vitamin E could be mediated by inhibition of TGF-beta/Smad2/3 signaling pathway.

  6. Beta-adrenergic stimulation of skeletal muscle HSL can be overridden by AMPK signaling. (United States)

    Watt, Matthew J; Steinberg, Gregory R; Chan, Stanley; Garnham, Andrew; Kemp, Bruce E; Febbraio, Mark A


    Hormone-sensitive lipase (HSL), an important regulatory enzyme for triacylglycerol hydrolysis within skeletal muscle, is controlled by beta-adrenergic signaling as well as intrinsic factors related to contraction and energy turnover. In the current study, we tested the capacity of 5'AMP-activated protein kinase (AMPK) to suppress beta-adrenergic stimulation of HSL activity. Eight male subjects completed 60 min of cycle exercise at 70% VO2 peak on two occasions: either with normal (CON) or low (LG) pre-exercise muscle glycogen content, which is known to enhance exercise-induced AMPK activity. Muscle samples were obtained before and immediately after exercise. Pre-exercise glycogen averaged 375 +/- 35 and 163 +/- 27 mmol x kg(-1) dm for CON and LG, respectively. AMPK alpha-2 was not different between trials at rest and was increased (3.7-fold, PHSL activity did not differ between trials at rest and increased (0 min: 1.67 +/- 0.13; 60 min: 2.60 +/- 0.26 mmol x min(-1) x kg(-1) dm) in CON. The exercise-induced increase in HSL activity was attenuated by AMPK alpha-2 activation in LG. The attenuated HSL activity during LG occurred despite higher plasma epinephrine levels (60 min: CON, 1.96 +/- 0.29 vs LG, 4.25 +/- 0.60 nM, PHSL activity in LG, IMTG was decreased by exercise (0 min: 27.1 +/- 2.0; 60 min: 22.5 +/- 2.0 mmol x kg(-1) dm, PHSL activity, we performed experiments in muscle cell culture. The epineprine-induced increase in HSL activity was totally attenuated (PHSL activity that can override beta-adrenergic stimulation. However, the increased IMTG degradation in LG suggests factors other than HSL activity are important for IMTG degradation.

  7. The Wnt/beta-catenin pathway interacts differentially with PTHrP signaling to control chondrocyte hypertrophy and final maturation.

    Directory of Open Access Journals (Sweden)

    Xizhi Guo

    Full Text Available Sequential proliferation, hypertrophy and maturation of chondrocytes are required for proper endochondral bone development and tightly regulated by cell signaling. The canonical Wnt signaling pathway acts through beta-catenin to promote chondrocyte hypertrophy whereas PTHrP signaling inhibits it by holding chondrocytes in proliferating states. Here we show by genetic approaches that chondrocyte hypertrophy and final maturation are two distinct developmental processes that are differentially regulated by Wnt/beta-catenin and PTHrP signaling. Wnt/beta-catenin signaling regulates initiation of chondrocyte hypertrophy by inhibiting PTHrP signaling activity, but it does not regulate PTHrP expression. In addition, Wnt/beta-catenin signaling regulates chondrocyte hypertrophy in a non-cell autonomous manner and Gdf5/Bmp signaling may be one of the downstream pathways. Furthermore, Wnt/beta-catenin signaling also controls final maturation of hypertrophic chondrocytes, but such regulation is PTHrP signaling-independent.

  8. Evolutionary origin of rhizobium Nod factor signaling

    NARCIS (Netherlands)

    Streng, A.; Camp, Op den R.; Bisseling, T.; Geurts, R.


    For over two decades now, it is known that the nodule symbiosis between legume plants and nitrogen fixing rhizobium bacteria is set in motion by the bacterial signal molecule named nodulation (Nod) factor.1 Upon Nod factor perception a signaling cascade is activated that is also essential for endomy

  9. Snail/beta-catenin signaling protects breast cancer cells from hypoxia attack

    Energy Technology Data Exchange (ETDEWEB)

    Scherbakov, Alexander M., E-mail: [Laboratory of Clinical Biochemistry, Institute of Clinical Oncology, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation); Stefanova, Lidia B.; Sorokin, Danila V.; Semina, Svetlana E. [Laboratory of Molecular Endocrinology, Institute of Carcinogenesis, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation); Berstein, Lev M. [Laboratory of Oncoendocrinology, N.N. Petrov Research Institute of Oncology, St. Petersburg 197758 (Russian Federation); Krasil’nikov, Mikhail A. [Laboratory of Molecular Endocrinology, Institute of Carcinogenesis, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478 (Russian Federation)


    The tolerance of cancer cells to hypoxia depends on the combination of different factors – from increase of glycolysis (Warburg Effect) to activation of intracellular growth/apoptotic pathways. Less is known about the influence of epithelial–mesenchymal transition (EMT) and EMT-associated pathways on the cell sensitivity to hypoxia. The aim of this study was to explore the role of Snail signaling, one of the key EMT pathways, in the mediating of hypoxia response and regulation of cell sensitivity to hypoxia, using as a model in vitro cultured breast cancer cells. Earlier we have shown that estrogen-independent HBL-100 breast cancer cells differ from estrogen-dependent MCF-7 cells with increased expression of Snail1, and demonstrated Snail1 involvement into formation of hormone-resistant phenotype. Because Snail1 belongs to hypoxia-activated proteins, here we studied the influence of Snail1 signaling on the cell tolerance to hypoxia. We found that Snail1-enriched HBL-100 cells were less sensitive to hypoxia-induced growth suppression if compared with MCF-7 line (31% MCF-7 vs. 71% HBL-100 cell viability after 1% O{sub 2} atmosphere for 3 days). Snail1 knock-down enhanced the hypoxia-induced inhibition of cell proliferation giving the direct evidence of Snail1 involvement into cell protection from hypoxia attack. The protective effect of Snail1 was shown to be mediated, at least in a part, via beta-catenin which positively regulated expression of HIF-1-dependent genes. Finally, we found that cell tolerance to hypoxia was accompanied with the failure in the phosphorylation of AMPK – the key energy sensor, and demonstrated an inverse relationship between AMPK and Snail/beta-catenin signaling. Totally, our data show that Snail1 and beta-catenin, besides association with loss of hormone dependence, protect cancer cells from hypoxia and may serve as an important target in the treatment of breast cancer. Moreover, we suggest that the level of these proteins as well

  10. Differential Regulation of Human Thymosin Beta 15 Isoforms by Transforming Growth Factor Beta 1 (United States)

    Banyard, Jacqueline; Barrows, Courtney; Zetter, Bruce R.


    We recently identified an additional isoform of human thymosin beta 15 (also known as NB-thymosin beta, gene name TMSB15A) transcribed from an independent gene, and designated TMSB15B. The purpose of this study was to investigate whether these isoforms were differentially expressed and functional. Our data show that the TMSB15A and TMSB15B isoforms have distinct expression patterns in different tumor cell lines and tissues. TMSB15A was expressed at higher levels in HCT116, DU145, LNCaP and LNCaP-LN3 cancer cells. In MCF-7, SKOV-3, HT1080 and PC-3MLN4 cells, TMSB15A and TMSB15B showed approximately equivalent levels of expression, while TMSB15B was the predominant isoform expressed in PC-3, MDA-MB-231, NCI-H322 and Caco-2 cancer cells. In normal human prostate and prostate cancer tissues, TMSB15A was the predominant isoform expressed. In contrast, normal colon and colon cancer tissue expressed predominantly TMSB15B. The two gene isoforms are also subject to different transcriptional regulation. Treatment of MCF-7 breast cancer cells with transforming growth factor beta 1 repressed TMSB15A expression but had no effect on TMSB15B. siRNA specific to the TMSB15B isoform suppressed cell migration of prostate cancer cells to epidermal growth factor, suggesting a functional role for this second isoform. In summary, our data reveal different expression patterns and regulation of a new thymosin beta 15 gene paralog. This may have important consequences in both tumor and neuronal cell motility. PMID:19296525

  11. Compound list: transforming growth factor beta 1 [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available transforming growth factor beta 1 TGFB1 00182 ...

  12. Targeting PKC: a novel role for beta-catenin in ER stress and apoptotic signaling. (United States)

    Raab, Marc S; Breitkreutz, Iris; Tonon, Giovanni; Zhang, Jing; Hayden, Patrick J; Nguyen, Thu; Fruehauf, Johannes H; Lin, Boris K; Chauhan, Dharminder; Hideshima, Teru; Munshi, Nikhil C; Anderson, Kenneth C; Podar, Klaus


    Targeting protein kinase C (PKC) isoforms by the small molecule inhibitor enzastaurin has shown promising preclinical activity in a wide range of tumor cells. We further delineated its mechanism of action in multiple myeloma (MM) cells and found a novel role of beta-catenin in regulating growth and survival of tumor cells. Specifically, inhibition of PKC leads to rapid accumulation of beta-catenin by preventing the phosphorylation required for its proteasomal degradation. Microarray analysis and small-interfering RNA (siRNA)-mediated gene silencing in MM cells revealed that accumulated beta-catenin activates early endoplasmic reticulum stress signaling via eIF2alpha, C/EBP-homologous protein (CHOP), and p21, leading to immediate growth inhibition. Furthermore, accumulated beta-catenin contributes to enzastaurin-induced cell death. Sequential knockdown of beta-catenin, c-Jun, and p73, as well as overexpression of beta-catenin or p73 confirmed that accumulated beta-catenin triggers c-Jun-dependent induction of p73, thereby conferring MM cell apoptosis. Our data reveal a novel role of beta-catenin in endoplasmic reticulum (ER) stress-mediated growth inhibition and a new proapoptotic mechanism triggered by beta-catenin on inhibition of PKC isoforms. Moreover, we identify p73 as a potential novel therapeutic target in MM. Based on these and previous data, enzastaurin is currently under clinical investigation in a variety of hematologic malignancies, including MM.

  13. Expression of transforming growth factor beta (TGF beta) receptors and expression of TGF beta 1, TGF beta 2 and TGF beta 3 in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M;


    A panel of 21 small cell lung cancer cell (SCLC) lines were examined for the presence of Transforming growth factor beta receptors (TGF beta-r) and the expression of TGF beta mRNAs. By the radioreceptor assay we found high affinity receptors to be expressed in six cell lines. scatchard analysis...... of the binding data demonstrated that the cells bound between 4.5 and 27.5 fmol mg-1 protein with a KD ranging from 16 to 40 pM. TGF beta 1 binding to the receptors was confirmed by cross-linking TGF beta 1 to the TGF beta-r. Three classes of TGF beta-r were demonstrated, type I and type II receptors with M......(r) = 65,000 and 90,000 and the betaglycan (type III) with M(r) = 280,000. Northern blotting showed expression of TGF beta 1 mRNA in ten, TGF beta 2 mRNA in two and TGF beta 3 mRNA in seven cell lines. Our results provide, for the first time, evidence that a large proportion of a broad panel of SCLC cell...

  14. The chicken transforming growth factor-beta 3 gene: genomic structure, transcriptional analysis, and chromosomal location. (United States)

    Burt, D W; Dey, B R; Paton, I R; Morrice, D R; Law, A S


    In this paper, we report the isolation, characterization, and mapping of the chicken transforming growth factor-beta 3 (TGF-beta 3) gene. The gene contains seven exons and six introns spanning 16-kb of the chicken genome. A comparison of the 5'-flanking regions of human and chicken TGF-beta 3 genes reveals two regions of sequence conservation. The first contains ATF/CRE and TBP/TATA sequence motifs within an 87-bp region. The second is a 162-bp region with no known sequence motifs. Identification of transcription start sites using chicken RNA isolated from various embryonic and adult tissues reveals two sites of initiation, P1 and P2, which map to these two conserved regions. Comparison of 3'-flanking regions of chicken and mammalian TGF-beta 3 genes also revealed conserved sequences. The most significant homologies were found in the 3'-most end of the transcribed region. DNA sequence analysis of chicken TGF-beta 3 cDNAs isolated by 3'-RACE revealed multiple polyadenylation sites unusually distant from a poly(A) signal motif. A Msc I restriction fragment length polymorphism (RFLP) marker was used to map the TGFB3 locus to linkage group E7 on the East Lansing reference backcross. Linkage to the TH locus showed that the TGFB3 locus was physically located on chicken chromosome 5.

  15. Constraint-based modeling and kinetic analysis of the Smad dependent TGF-beta signaling pathway.

    Directory of Open Access Journals (Sweden)

    Zhike Zi

    Full Text Available BACKGROUND: Investigation of dynamics and regulation of the TGF-beta signaling pathway is central to the understanding of complex cellular processes such as growth, apoptosis, and differentiation. In this study, we aim at using systems biology approach to provide dynamic analysis on this pathway. METHODOLOGY/PRINCIPAL FINDINGS: We proposed a constraint-based modeling method to build a comprehensive mathematical model for the Smad dependent TGF-beta signaling pathway by fitting the experimental data and incorporating the qualitative constraints from the experimental analysis. The performance of the model generated by constraint-based modeling method is significantly improved compared to the model obtained by only fitting the quantitative data. The model agrees well with the experimental analysis of TGF-beta pathway, such as the time course of nuclear phosphorylated Smad, the subcellular location of Smad and signal response of Smad phosphorylation to different doses of TGF-beta. CONCLUSIONS/SIGNIFICANCE: The simulation results indicate that the signal response to TGF-beta is regulated by the balance between clathrin dependent endocytosis and non-clathrin mediated endocytosis. This model is useful to be built upon as new precise experimental data are emerging. The constraint-based modeling method can also be applied to quantitative modeling of other signaling pathways.

  16. Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction.

    Directory of Open Access Journals (Sweden)

    David Grote


    Full Text Available Metanephric kidney induction critically depends on mesenchymal-epithelial interactions in the caudal region of the nephric (or Wolffian duct. Central to this process, GDNF secreted from the metanephric mesenchyme induces ureter budding by activating the Ret receptor expressed in the nephric duct epithelium. A failure to regulate this pathway is believed to be responsible for a large proportion of the developmental anomalies affecting the urogenital system. Here, we show that the nephric duct-specific inactivation of the transcription factor gene Gata3 leads to massive ectopic ureter budding. This results in a spectrum of urogenital malformations including kidney adysplasia, duplex systems, and hydroureter, as well as vas deferens hyperplasia and uterine agenesis. The variability of developmental defects is reminiscent of the congenital anomalies of the kidney and urinary tract (CAKUT observed in human. We show that Gata3 inactivation causes premature nephric duct cell differentiation and loss of Ret receptor gene expression. These changes ultimately affect nephric duct epithelium homeostasis, leading to ectopic budding of interspersed cells still expressing the Ret receptor. Importantly, the formation of these ectopic buds requires both GDNF/Ret and Fgf signaling activities. We further identify Gata3 as a central mediator of beta-catenin function in the nephric duct and demonstrate that the beta-catenin/Gata3 pathway prevents premature cell differentiation independently of its role in regulating Ret expression. Together, these results establish a genetic cascade in which Gata3 acts downstream of beta-catenin, but upstream of Ret, to prevent ectopic ureter budding and premature cell differentiation in the nephric duct.

  17. Roles of Wnt/{beta}-catenin signaling in epithelial differentiation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China); Li, Yan [Jiangsu Centers for Diseases Prevention and Control, Nanjing 210009 (China); Qin, Jizheng [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China); Han, Xiaodong, E-mail: [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China)


    Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/{beta}-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/{beta}-catenin signaling were determined, suggested down-regulation of Wnt/{beta}-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3{alpha} can inhibit the epithelial differentiation of MSCs. A loss of {beta}-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated {beta}-catenin expression and subsequently decreased {beta}-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/{beta}-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

  18. ICAT Inhibits beta-Catenin Binding to Tcf/Lef-Family Transcription Factors and in the General Coactivator p300 Using Independent Structural Modules

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, D. L.


    In the canonical Wnt signaling pathway, {beta}-catenin activates target genes through its interactions with Tcf/Lef-family transcription factors and additional transcriptional coactivators. The crystal structure of ICAT, an inhibitor of {beta}-catenin-mediated transcription, bound to the armadillo repeat domain of {beta}-catenin, has been determined. ICAT contains an N-terminal helilical domain that binds to repeats 11 and 12 of {beta}-catenin, and an extended C-terminal region that binds to repeats 5-10 in a manner similar that of Tcfs and other {beta}-catenin ligands. Full-length ICAT dissociates complexes of {beta}-catenin, Lef-1, and the transcriptional coactivator p300, whereas the helical domain alone selectively blocks binding to p300. The C-terminal armadillo repeats of {beta}-catenin may be an attractive target for compounds designed to disrupt aberrant {beta}-catenin-mediated transcription associated with various cancers.

  19. Beta-catenin regulates myogenesis by relieving I-mfa-mediated suppression of myogenic regulatory factors in P19 cells. (United States)

    Pan, Weijun; Jia, Yingying; Wang, Jiyong; Tao, Donglei; Gan, Xiaoqing; Tsiokas, Leonidas; Jing, Naihe; Wu, Dianqing; Li, Lin


    Wnt/beta-catenin signaling plays a critical role in embryonic myogenesis. Here we show that, in P19 embryonic carcinoma stem cells, Wnt/beta-catenin signaling initiates the myogenic process depends on beta-catenin-mediated relief of I-mfa (inhibitor of MyoD Family a) suppression of myogenic regulatory factors (MRFs). We found that beta-catenin interacted with I-mfa and that the interaction was enhanced by Wnt3a. In addition, we found that the interaction between beta-catenin and I-mfa was able to attenuate the interaction of I-mfa with MRFs, relieve I-mfa-mediated suppression of the transcriptional activity and cytosolic sequestration of MRFs, and initiate myogenesis in a P19 myogenic model system that expresses exogenous myogenin. This work reveals a mechanism for the regulation of MRFs during myogenesis by elucidating a beta-catenin-mediated, but lymphoid enhancing factor-1/T cell factor independent, mechanism in regulation of myogenic fate specification and differentiation of P19 mouse stem cells.

  20. Evolutionary origin of rhizobium Nod factor signaling. (United States)

    Streng, Arend; op den Camp, Rik; Bisseling, Ton; Geurts, René


    For over two decades now, it is known that the nodule symbiosis between legume plants and nitrogen fixing rhizobium bacteria is set in motion by the bacterial signal molecule named nodulation (Nod) factor. Upon Nod factor perception a signaling cascade is activated that is also essential for endomycorrhizal symbiosis (Fig. 1). This suggests that rhizobium co-opted the evolutionary far more ancient mycorrhizal signaling pathway in order to establish an endosymbiotic interaction with legumes. As arbuscular mycorrhizal fungi of the Glomeromycota phylum can establish a symbiosis with the fast majority of land plants, it is most probable that this signaling cascade is wide spread in plant kingdom. However, Nod factor perception generally is considered to be unique to legumes. Two recent breakthroughs on the evolutionary origin of Rhizobium Nod factor signaling demonstrate that this is not the case. The purification of Nod factor-like molecules excreted by the mycorrhizal fungus Glomus intraradices and the role of the LysM-type Nod factor receptor PaNFP in the non-legume Parasponia andersonii provide novel understanding on the evolution of rhizobial Nod factor signaling.

  1. GSK-3Beta-Dependent Activation of GEF-H1/ROCK Signaling Promotes LPS-Induced Lung Vascular Endothelial Barrier Dysfunction and Acute Lung Injury. (United States)

    Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Huan, Jingning


    The bacterial endotoxin or lipopolysaccharide (LPS) leads to the extensive vascular endothelial cells (EC) injury under septic conditions. Guanine nucleotide exchange factor-H1 (GEF-H1)/ROCK signaling not only involved in LPS-induced overexpression of pro-inflammatory mediator in ECs but also implicated in LPS-induced endothelial hyper-permeability. However, the mechanisms behind LPS-induced GEF-H1/ROCK signaling activation in the progress of EC injury remain incompletely understood. GEF-H1 localized on microtubules (MT) and is suppressed in its MT-bound state. MT disassembly promotes GEF-H1 release from MT and stimulates downstream ROCK-specific GEF activity. Since glycogen synthase kinase (GSK-3beta) participates in regulating MT dynamics under pathologic conditions, we examined the pivotal roles for GSK-3beta in modulating LPS-induced activation of GEF-H1/ROCK, increase of vascular endothelial permeability and severity of acute lung injury (ALI). In this study, we found that LPS induced human pulmonary endothelial cell (HPMEC) monolayers disruption accompanied by increase in GSK-3beta activity, activation of GEF-H1/ROCK signaling and decrease in beta-catenin and ZO-1 expression. Inhibition of GSK-3beta reduced HPMEC monolayers hyper-permeability and GEF-H1/ROCK activity in response to LPS. GSK-3beta/GEF-H1/ROCK signaling is implicated in regulating the expression of beta-catenin and ZO-1. In vivo, GSK-3beta inhibition attenuated LPS-induced activation of GEF-H1/ROCK pathway, lung edema and subsequent ALI. These findings present a new mechanism of GSK-3beta-dependent exacerbation of lung micro-vascular hyper-permeability and escalation of ALI via activation of GEF-H1/ROCK signaling and disruption of intracellular junctional proteins under septic condition.

  2. Sequential mutations in the interleukin-3 (IL3)/granulocyte-macrophage colony-stimulating factor/IL5 receptor beta-subunit genes are necessary for the complete conversion to growth autonomy mediated by a truncated beta C subunit. (United States)

    Hannemann, J; Hara, T; Kawai, M; Miyajima, A; Ostertag, W; Stocking, C


    An amino-terminally truncated beta C receptor (beta C-R) subunit of the interleukin-3 (IL3)/granulocyte-macrophage colony-stimulating factor/IL5 receptor complex mediates factor-independent and tumorigenic growth in two spontaneous mutants of a promyelocytic cell line. The constitutive activation of the JAK2 protein kinase in these mutants confirms that signaling occurs through the truncated receptor protein. Noteworthily, in addition to a 10-kb deletion in the beta C-R subunit gene encoding the truncated receptor, several secondary and independent mutations that result in the deletion or functional inactivation of the allelic beta C-R subunit and the closely related beta IL3-R subunit genes were observed in both mutants, suggesting that such mutations are necessary for the full oncogenic penetrance of the truncated beta C-R subunit. Reversion of these mutations by the expression of the wild-type beta C-R in the two mutants resulted in a fivefold decrease in cloning efficiency of the mutants in the absence of IL3, confirming a functional interaction between the wild-type and truncated proteins. Furthermore, expression of the truncated beta C-R subunit in factor-dependent myeloid cells did not immediately render the cells autonomous but increased the spontaneous frequency to factor-independent growth by 4 orders of magnitude. Implications for both leukemogenic progression and receptor-subunit interaction and signaling are discussed.

  3. Incisional wound healing in transforming growth factor-beta1 null mice. (United States)

    Koch, R M; Roche, N S; Parks, W T; Ashcroft, G S; Letterio, J J; Roberts, A B


    Expression of endogenous transforming growth factor-beta1 is reduced in many animal models of impaired wound healing, and addition of exogenous transforming growth factor-beta has been shown to improve healing. To test the hypothesis that endogenous transforming growth factor-beta1 is essential for normal wound repair, we have studied wound healing in mice in which the transforming growth factor-beta1 gene has been deleted by homologous recombination. No perceptible differences were observed in wounds made in 3-10-day-old neonatal transforming growth factor-beta1 null mice compared to wild-type littermates. To preclude interference from maternally transferred transforming growth factor-beta1, cutaneous wounds were also made on the backs of 30-day-old transforming growth factor-beta1 null and littermate control mice treated with rapamycin, which extends their lifetime and suppresses the inflammatory response characteristic of the transforming growth factor-beta1 null mice. Again, no impairment in healing was seen in transforming growth factor-beta1 null mice. Instead these wounds showed an overall reduction in the amount of granulation tissue and an increased rate of epithelialization compared to littermate controls. Our data suggest that release of transforming growth factor-beta1 from degranulating platelets or secretion by infiltrating macrophages and fibroblasts is not critical to initiation or progression of tissue repair and that endogenous transforming growth factor-beta1 may actually function to increase inflammation and retard wound closure.

  4. Interleukin-1beta can mediate growth arrest and differentiation via the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. (United States)

    Park, Jong-In; Strock, Christopher J; Ball, Douglas W; Nelkin, Barry D


    Interleukin-1beta (IL-1beta) is a pleiotropic cytokine that can induce several cellular signal transduction pathways. Here, we show that IL-1beta can induce cell cycle arrest and differentiation in the human medullary thyroid carcinoma (MTC) cell line, TT. IL-1beta induces cell cycle arrest accompanied by morphological changes and expression of the neuroendocrine marker calcitonin. These changes are blocked by the MEK1/2 specific inhibitor U0126, indicating that MEK1/2 is essential for IL-1beta signaling in TT cells. IL-1beta induces expression of leukemia inhibitory factor (LIF) and activation of STAT3 via the MEK/ERK pathway. This activation of STAT3 could be abrogated by treatment with anti-LIF neutralizing antibody or anti-gp130 blocking antibody, indicating that induction of LIF expression is sufficient and essential for STAT3 activation by IL-1beta. In addition to activation of the LIF/JAK/STAT pathway, IL-1beta also induced an MEK/ERK-mediated intracellular cell-autonomous signaling pathway that is independently sufficient for growth arrest and differentiation. Thus, IL-1beta activates the MEK/ERK pathway to induce growth arrest and differentiation in MTC cells via dual independent signaling mechanisms, the cell-extrinsic LIF/JAK/STAT pathway, and the cell-intrinsic autonomous signaling pathway.

  5. Values of the phase space factors for double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, Sabin, E-mail:; Mirea, Mihai [Horia Hulubei Foundation, 407, Atomistilor street, P.O. Box MG12, 077125 Magurele (Romania); Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului street, P.O. Box MG6, Magurele (Romania)


    We report an up-date list of the experimentally most interesting phase space factors for double beta decay (DBD). The electron/positron wave functions are obtained by solving the Dirac equations with a Coulomb potential derived from a realistic proton density distribution in nucleus and with inclusion of the finite nuclear size (FNS) and electron screening (ES) effects. We build up new numerical routines which allow us a good control of the accuracy of calculations. We found several notable differences as compared with previous results reported in literature and possible sources of these discrepancies are discussed.

  6. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming human beta cell function (United States)

    Rodriguez-Diaz, Rayner; Dando, Robin; Jacques-Silva, M. Caroline; Fachado, Alberto; Molina, Judith; Abdulreda, Midhat; Ricordi, Camillo; Roper, Stephen D.; Berggren, Per-Olof; Caicedo, Alejandro


    Acetylcholine is a neurotransmitter that plays a major role in the function of the insulin secreting pancreatic beta cell1,2. Parasympathetic innervation of the endocrine pancreas, the islets of Langerhans, has been shown to provide cholinergic input to the beta cell in several species1,3,4, but the role of autonomic innervation in human beta cell function is at present unclear. Here we show that, in contrast to mouse islets, cholinergic innervation of human islets is sparse. Instead, we find that the alpha cells of the human islet provide paracrine cholinergic input to surrounding endocrine cells. Human alpha cells express the vesicular acetylcholine transporter and release acetylcholine when stimulated with kainate or a lowering in glucose concentration. Acetylcholine secretion by alpha cells in turn sensitizes the beta cell response to increases in glucose concentration. Our results demonstrate that in human islets acetylcholine is a paracrine signal that primes the beta cell to respond optimally to subsequent increases in glucose concentration. We anticipate these results to revise models about neural input and cholinergic signaling in the endocrine pancreas. Cholinergic signaling within the islet represents a potential therapeutic target in diabetes5, highlighting the relevance of this advance to future drug development. PMID:21685896

  7. New regulators of Wnt/beta-catenin signaling revealed by integrative molecular screening. (United States)

    Major, Michael B; Roberts, Brian S; Berndt, Jason D; Marine, Shane; Anastas, Jamie; Chung, Namjin; Ferrer, Marc; Yi, XianHua; Stoick-Cooper, Cristi L; von Haller, Priska D; Kategaya, Lorna; Chien, Andy; Angers, Stephane; MacCoss, Michael; Cleary, Michele A; Arthur, William T; Moon, Randall T


    The identification and characterization of previously unidentified signal transduction molecules has expanded our understanding of biological systems and facilitated the development of mechanism-based therapeutics. We present a highly validated small interfering RNA (siRNA) screen that functionally annotates the human genome for modulation of the Wnt/beta-catenin signal transduction pathway. Merging these functional data with an extensive Wnt/beta-catenin protein interaction network produces an integrated physical and functional map of the pathway. The power of this approach is illustrated by the positioning of siRNA screen hits into discrete physical complexes of proteins. Similarly, this approach allows one to filter discoveries made through protein-protein interaction screens for functional contribution to the phenotype of interest. Using this methodology, we characterized AGGF1 as a nuclear chromatin-associated protein that participates in beta-catenin-mediated transcription in human colon cancer cells.

  8. Hyperosmolarity enhanced susceptibility to renal tubular fibrosis by modulating catabolism of type I transforming growth factor-beta receptors. (United States)

    Chiang, Tai-An; Yang, Yu-Lin; Yang, Ya-Ying; Hu, Min-Hsiu; Wu, Pei-Fen; Liu, Shu-Fen; Huang, Ruay-Ming; Liao, Tung-Nan; Hung, Chien-Ya; Hung, Tsung-Jen; Lee, Tao-Chen


    Hyperosmolarity plays an essential role in the pathogenesis of diabetic tubular fibrosis. However, the mechanism of the involvement of hyperosmolarity remains unclear. In this study, mannitol was used to evaluate the effects of hyperosmolarity on a renal distal tubule cell line (MDCK). We investigated transforming growth factor-beta receptors and their downstream fibrogenic signal proteins. We show that hyperosmolarity significantly enhances the susceptibility to exogenous transforming growth factor (TGF)-beta1, as mannitol (27.5 mM) significantly enhanced the TGF-beta1-induced increase in fibronectin levels compared with control experiments (5.5 mM). Specifically, hyperosmolarity induced tyrosine phosphorylation on TGF-beta RII at 336 residues in a time (0-24 h) and dose (5.5-38.5 mM) dependent manner. In addition, hyperosmolarity increased the level of TGF-beta RI in a dose- and time-course dependent manner. These observations may be closely related to decreased catabolism of TGF-beta RI. Hyperosmolarity significantly downregulated the expression of an inhibitory Smad (Smad7), decreased the level of Smurf 1, and reduced ubiquitination of TGF-beta RI. In addition, through the use of cycloheximide and the proteasome inhibitor MG132, we showed that hyperosmolarity significantly increased the half-life and inhibited the protein level of TGF-beta RI by polyubiquitination and proteasomal degradation. Taken together, our data suggest that hyperosmolarity enhances cellular susceptibility to renal tubular fibrosis by activating the Smad7 pathway and increasing the stability of type I TGF-beta receptors by retarding proteasomal degradation of TGF-beta RI. This study clarifies the mechanism underlying hyperosmotic-induced renal fibrosis in renal distal tubule cells. (c) 2010 Wiley-Liss, Inc.

  9. TGF-beta Sma/Mab signaling mutations uncouple reproductive aging from somatic aging.

    Directory of Open Access Journals (Sweden)

    Shijing Luo


    Full Text Available Female reproductive cessation is one of the earliest age-related declines humans experience, occurring in mid-adulthood. Similarly, Caenorhabditis elegans' reproductive span is short relative to its total life span, with reproduction ceasing about a third into its 15-20 day adulthood. All of the known mutations and treatments that extend C. elegans' reproductive period also regulate longevity, suggesting that reproductive span is normally linked to life span. C. elegans has two canonical TGF-beta signaling pathways. We recently found that the TGF-beta Dauer pathway regulates longevity through the Insulin/IGF-1 Signaling (IIS pathway; here we show that this pathway has a moderate effect on reproductive span. By contrast, TGF-beta Sma/Mab signaling mutants exhibit a substantially extended reproductive period, more than doubling reproductive span in some cases. Sma/Mab mutations extend reproductive span disproportionately to life span and act independently of known regulators of somatic aging, such as Insulin/IGF-1 Signaling and Dietary Restriction. This is the first discovery of a pathway that regulates reproductive span independently of longevity and the first identification of the TGF-beta Sma/Mab pathway as a regulator of reproductive aging. Our results suggest that longevity and reproductive span regulation can be uncoupled, although they appear to normally be linked through regulatory pathways.

  10. Suramin inhibits growth and transforming growth factor-beta 1 (TGF-beta 1) binding in osteosarcoma cell lines. (United States)

    Kloen, P; Jennings, C L; Gebhardt, M C; Springfield, D S; Mankin, H J


    Autocrine production of growth factors has been shown to be involved in the multistep process of tumorigenesis. The ability of suramin, a polyanionic anti-parasitic drug, to block growth factor-induced cell proliferation makes it a potential antineoplastic drug. We studied the effects of suramin on seven osteosarcoma cell lines. Using clinically achievable concentrations of suramin (50-400 micrograms/ml), we found a time- and dose-dependent inhibition of [3H]thymidine incorporation. We also showed that suramin is able, dose-dependently, to prevent binding of transforming growth factor (TGF)-beta 1 to its receptors. DNA synthesis inhibition by suramin was attenuated by TGF-beta 1 in some cell lines. Two cell lines that were inhibited by TGF-beta 1 were affected similarly by suramin as cell lines that were stimulated by TGF-beta 1. In conclusion, in five out of seven osteosarcoma cell lines, we showed a correlation between inhibition of growth factor-stimulated mitogenesis and binding of TGF-beta 1 to its receptor. Similar effects in TGF-beta 1-inhibited osteosarcoma cell lines suggest involvement of other mechanisms and/or growth factors. However, suramin proves to be a potent inhibitor of osteosarcoma cell proliferation in vitro.

  11. CFTR and Wnt/beta-catenin signaling in lung development

    Directory of Open Access Journals (Sweden)

    Love Damon


    Full Text Available Abstract Background Cystic fibrosis transmembrane conductance regulator (CFTR was shown previously to modify stretch induced differentiation in the lung. The mechanism for CFTR modulation of lung development was examined by in utero gene transfer of either a sense or antisense construct to alter CFTR expression levels. The BAT-gal transgenic reporter mouse line, expressing β-galactosidase under a canonical Wnt/β-catenin-responsive promoter, was used to assess the relative roles of CFTR, Wnt, and parathyroid hormone-related peptide (PTHrP in lung organogenesis. Adenoviruses containing full-length CFTR, a short anti-sense CFTR gene fragment, or a reporter gene as control were used in an intra-amniotic gene therapy procedure to transiently modify CFTR expression in the fetal lung. Results A direct correlation between CFTR expression levels and PTHrP levels was found. An inverse correlation between CFTR and Wnt signaling activities was demonstrated. Conclusion These data are consistent with CFTR participating in the mechanicosensory process essential to regulate Wnt/β-Catenin signaling required for lung organogenesis.

  12. Tumour necrosis factor alpha mediates transient receptor potential vanilloid 1-dependent bilateral thermal hyperalgesia with distinct peripheral roles of interleukin-1beta, protein kinase C and cyclooxygenase-2 signalling. (United States)

    Russell, Fiona A; Fernandes, Elizabeth S; Courade, Jean-Philippe; Keeble, Julie E; Brain, Susan D


    TNFalpha plays a pivotal role in rheumatoid arthritis (RA) but little is known of the mechanisms that link the inflammatory and nociceptive effects of TNFalpha. We have established a murine model of TNFalpha-induced TRPV1-dependent bilateral thermal hyperalgesia that then allowed us to identify distinct peripheral mechanisms involved in mediating TNFalpha-induced ipsilateral and contralateral hyperalgesia. Thermal hyperalgesia and inflammation were assessed in both hindpaws following unilateral intraplantar ( TNFalpha. The hyperalgesic mechanisms were analysed through pharmacogenetic approaches involving TRPV1(-/-) mice and TRPV1 antagonists. To study the mediators downstream of TNFalpha, cyclooxygenase (COX) and PKC inhibitors were utilised and cytokine and prostaglandin levels assessed. The role of neutrophils was determined through use of the selectin inhibitor, fucoidan. We show that TNFalpha (10pmol) causes thermal hyperalgesia (1-4h) in the ipsilateral inflamed and contralateral uninjured hindpaws, which is TRPV1-dependent. GF109203X, a PKC inhibitor, suppressed the hyperalgesia indicating that PKC is involved in TRPV1 sensitisation. Ipsilateral COX-2-derived prostaglandins were also crucial to the development of the bilateral hyperalgesia. The prevention of neutrophil accumulation with fucoidan attenuated hyperalgesia at 4 but not at 1h, indicating a role in the maintenance but not in the induction of bilateral hyperalgesia. However, TNFalpha-induced IL-1beta generation in both paws and the presence of local IL-1beta in the contralateral paw were essential for the development of bilateral hyperalgesia. These results identify a series of peripheral events through which TNFalpha triggers and maintains bilateral inflammatory pain. This potentially allows a better understanding of mechanisms involved in TNFalpha-dependent pain pathways in symmetrical diseases such as arthritis.

  13. Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis. (United States)

    Gonzalo-Gil, Elena; Galindo-Izquierdo, María


    Transforming growth factor-beta (TGF-β) is a cytokine with pleiotropic functions in hematopoiesis, angiogenesis, cell proliferation, differentiation, migration and apoptosis. Although its role in rheumatoid arthritis is not well defined, TGF-β activation leads to functional immunomodulatory effects according to environmental conditions. The function of TGF-β in the development of arthritis in murine models has been extensively studied with controversial results. Recent findings point to a non-relevant role for TGF-β in a mice model of collagen-induced arthritis. The study of TGF-β on T-cell responses has shown controversial results as an inhibitor or promoter of the inflammatory response. This paper presents a review of the role of TGF-β in animal models of arthritis. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  14. The role of transforming growth factor beta in tertiary dentinogenesis

    Directory of Open Access Journals (Sweden)

    Tetiana Haniastuti


    Full Text Available The most visible repair response to pulp injury is the deposition of a tertiary dentin matrix over the dentinal tubules of the primary or secondary dentin. Tertiary dentin is distinguished as reactionary and reparative dentin, depending on the severity of the initiating response and the conditions under which the newly deposited dentin matrix was elaborated. Transforming growth factor beta (TGF-b superfamily is a large group of growth factors that serve important roles in regulating cell growth, differentiation, and function. Members of this superfamily have been implicated in the repair process of the dental tissue after injury. Although numerous studies have proved that those bioactive molecules carry out an important role in the formation of tertiary dentin, comprehensive report regarding that phenomenon is not yet available. This review article aimed to summarize the role of TGF-b on tertiary dentinogenesis during the progression of a carious lesion.

  15. Jasmonate and ethylene signalling and their interaction are integral parts of the elicitor signalling pathway leading to beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. (United States)

    Zhao, Jian; Zheng, Shao-Hui; Fujita, Koki; Sakai, Kokki


    Roles of jasmonate and ethylene signalling and their interaction in yeast elicitor-induced biosynthesis of a phytoalexin, beta-thujaplicin, were investigated in Cupressus lusitanica cell cultures. Yeast elicitor, methyl jasmonate, and ethylene all induce the production of beta-thujaplicin. Elicitor also stimulates the biosynthesis of jasmonate and ethylene before the induction of beta-thujaplicin accumulation. The elicitor-induced beta-thujaplicin accumulation can be partly blocked by inhibitors of jasmonate and ethylene biosynthesis or signal transduction. These results indicate that the jasmonate and ethylene signalling pathways are integral parts of the elicitor signal transduction leading to beta-thujaplicin accumulation. Methyl jasmonate treatment can induce ethylene production, whereas ethylene does not induce jasmonate biosynthesis; methyl jasmonate-induced beta-thujaplicin accumulation can be partly blocked by inhibitors of ethylene biosynthesis and signalling, while blocking jasmonate biosynthesis inhibits almost all ethylene-induced beta-thujaplicin accumulation. These results indicate that the ethylene and jasmonate pathways interact in mediating beta-thujaplicin production, with the jasmonate pathway working as a main control and the ethylene pathway as a fine modulator for beta-thujaplicin accumulation. Both the ethylene and jasmonate signalling pathways can be regulated upstream by Ca(2+). Ca(2+) influx negatively regulates ethylene production, and differentially regulates elicitor- or methyl jasmonate-stimulated ethylene production.

  16. Transforming growth factor beta stimulates collagen-matrix contraction by fibroblasts: implications for wound healing.


    Montesano, R; Orci, L.


    An important event during wound healing is the contraction of newly formed connective tissue (granulation tissue) by fibroblasts. The role of polypeptide growth factors in the process of wound contraction was investigated by analyzing the influence of transforming growth factor beta (TGF-beta), platelet-derived growth factor on the ability of fibroblasts to contract a collagen matrix in an in vitro system. TGF-beta, but not the other growth factors tested, markedly enhanced the ability of BHK...

  17. Transforming growth factor beta stimulates collagen-matrix contraction by fibroblasts: implications for wound healing.


    Montesano, R; Orci, L


    An important event during wound healing is the contraction of newly formed connective tissue (granulation tissue) by fibroblasts. The role of polypeptide growth factors in the process of wound contraction was investigated by analyzing the influence of transforming growth factor beta (TGF-beta), platelet-derived growth factor on the ability of fibroblasts to contract a collagen matrix in an in vitro system. TGF-beta, but not the other growth factors tested, markedly enhanced the ability of BHK...

  18. Beta(3)-adrenergic signaling acutely down regulates adipose triglyceride lipase in brown adipocytes. (United States)

    Deiuliis, Jeffrey A; Liu, Li-Fen; Belury, Martha A; Rim, Jong S; Shin, Sangsu; Lee, Kichoon


    Mice exposed to cold rely upon brown adipose tissue (BAT)-mediated nonshivering thermogenesis to generate body heat using dietary glucose and lipids from the liver and white adipose tissue. In this report, we investigate how cold exposure affects the PI3 K/Akt signaling cascade and the expression of genes involved in lipid metabolism and trafficking in BAT. Cold exposure at an early time point led to the activation of the PI3 K/Akt, insulin-like signaling cascade followed by a transient decrease in adipose triglyceride lipase (ATGL) gene and protein expression in BAT. To further investigate how cold exposure-induced signaling altered ATGL expression, cultured primary brown adipocytes were treated with the beta(3)-adrenergic receptor (beta(3)AR) agonist CL 316,243 (CL) resulting in activation of PI3 K/Akt, ERK 1/2, and p38 signaling pathways and significantly decreased ATGL protein levels. ATGL protein levels decreased significantly 30 min post CL treatment suggesting protein degradation. Inhibition of PKA signaling by H89 rescued ATGL levels. The effects of PKA signaling on ATGL were shown to be independent of relevant pathways downstream of PKA such as PI3 K/Akt, ERK 1/2, and p38. However, CL treatment in 3T3-L1 adipocytes did not decrease ATGL protein and mRNA expression, suggesting a distinct response in WAT to beta3-adrenergic agonism. Transitory effects, possibly attributed to acute Akt activation during the early recruitment phase, were noted as well as stable changes in gene expression which may be attributed to beta3-adrenergic signaling in BAT.

  19. Tumors initiated by constitutive Cdk2 activation exhibit transforming growth factor beta resistance and acquire paracrine mitogenic stimulation during progression

    DEFF Research Database (Denmark)

    Corsino, P.; Davis, B.; Law, M.;


    mediate some of the transforming effects that result from cyclin D1 overexpression in human breast cancers. MMTV-DIK2 cancer cells express the hepatocyte growth factor (HGF) receptor, c-Met. MMTV-D1K2 cancer cells also secrete transforming growth factor beta (TGF beta), but are relatively resistant to TGF......Cyclin D1/cyclin-dependent kinase 2 (Cdk2) complexes are present at high frequency in human breast cancer cell lines, but the significance of this observation is unknown. This report shows that expression of a cyclin D1-Cdk2 fusion protein under the control of the mouse mammary tumor virus (MMITV...... beta antiproliferative effects. Fibroblasts derived from MMTV-DIK2 tumors secrete factors that stimulate the proliferation of MMTV-D1K2 cancer cells, stimulate c-Met tyrosine phosphorylation, and stimulate the phosphorylation of the downstream signaling intermediates p70(s6k) and Akt on activating...

  20. Transforming growth factor beta stimulation of biglycan gene expression is potentially mediated by sp1 binding factors

    DEFF Research Database (Denmark)

    Heegaard, Anne-Marie; Xie, Zhongjian; Young, Marian Frances;


    Biglycan is a small leucine-rich proteoglycan which is localized in the extracellular matrix of bone and other specialized connective tissues. Both biglycan mRNA and protein are up-regulated by transforming growth factor-beta(1) (TGF-beta(1)) and biglycan appears to influence TGF-beta(1) activity...

  1. Roles for transforming growth factor beta superfamily proteins in early folliculogenesis. (United States)

    Trombly, Daniel J; Woodruff, Teresa K; Mayo, Kelly E


    Primordial follicle formation and the subsequent transition of follicles to the primary and secondary stages encompass the early events during folliculogenesis in mammals. These processes establish the ovarian follicle pool and prime follicles for entry into subsequent growth phases during the reproductive cycle. Perturbations during follicle formation can affect the size of the primordial follicle pool significantly, and alterations in follicle transition can cause follicles to arrest at immature stages or result in premature depletion of the follicle reserve. Determining the molecular events that regulate primordial follicle formation and early follicle growth may lead to the development of new fertility treatments. Over the last decade, many of the growth factors and signaling proteins that mediate the early stages of folliculogenesis have been identified using mouse genetic models, in vivo injection studies, and ex vivo organ culture approaches. These studies reveal important roles for the transforming growth factor beta (TGF-beta) superfamily of proteins in the ovary. This article reviews these roles for TGF-beta family proteins and focuses in particular on work from our laboratories on the functions of activin in early folliculogenesis.

  2. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta-Mediated Epithelial-Mesenchymal Transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yongchun [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Liu Junye; Li Jing; Zhang Jie [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Xu Yuqiao [Department of Pathology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Zhang Huawei; Qiu Lianbo; Ding Guirong [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Su Xiaoming [Department of Radiation Oncology, 306th Hospital of PLA, Beijing (China); Mei Shi [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Guo Guozhen, E-mail: [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China)


    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-{beta})-mediated epithelial-mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by {sup 60}Co {gamma}-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-{beta} in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-{beta} signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with {gamma}-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-{beta} were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-{beta} signaling. Conclusions: These results suggest that EMT mediated by TGF-{beta} plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  3. Endoglin structure and function - Determinants of endoglin phosphorylation by transforming growth factor-beta receptors

    NARCIS (Netherlands)

    Koleva, Rositsa I.; Conley, Barbara A.; Romero, Diana; Riley, Kristin S.; Marto, Jarrod A.; Lux, Andreas; Vary, Calvin P. H.


    Determination of the functional relationship between the transforming growth factor-beta(TGF beta) receptor proteins endoglin and ALK1 is essential to the understanding of the human vascular disease, hereditary hemorrhagic telangiectasia. TGF beta 1 caused recruitment of ALK1 into a complex with end

  4. Structural alterations of transforming growth factor-beta receptor genes in human cervical carcinoma

    NARCIS (Netherlands)

    Chen, TP; De Vries, EGE; Hollema, H; Yegen, HA; Vellucci, VF; Strickler, HD; Hildesheim, A; Reiss, M


    The development and progression of invasive uterine cervical carcinomas appear to be associated with the progressive loss of sensitivity to transforming growth factor-beta (TGF beta)-mediated cell cycle arrest. In order to identify possible molecular mechanisms responsible for TGF beta resistance, w

  5. Parkin protects dopaminergic neurons from excessive Wnt/{beta}-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Rawal, Nina [Laboratory of Molecular Neurobiology, MBB, DBRM, Karolinska Institute, S-17177 Stockholm (Sweden); Corti, Olga [Universite Pierre et Marie Curie-Paris 6, CRICM UMR-S975, Inserm, U975 (France); CNRS, UMR 7225, Paris (France); Sacchetti, Paola [Laboratory of Molecular Neurobiology, MBB, DBRM, Karolinska Institute, S-17177 Stockholm (Sweden); Ardilla-Osorio, Hector [Universite Pierre et Marie Curie-Paris 6, CRICM UMR-S975, Inserm, U975 (France); CNRS, UMR 7225, Paris (France); Sehat, Bita [Cancer Center Karolinska, Karolinska Institute, S-17177 Stockholm (Sweden); Brice, Alexis [Universite Pierre et Marie Curie-Paris 6, CRICM UMR-S975, Inserm, U975 (France); CNRS, UMR 7225, Paris (France); Department of Genetics and Cytogenetics, AP-HP, Groupe Hospitalier Pitie-Salpetriere, Paris (France); Arenas, Ernest, E-mail: [Laboratory of Molecular Neurobiology, MBB, DBRM, Karolinska Institute, S-17177 Stockholm (Sweden)


    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates {beta}-catenin protein levels in vivo. Stabilization of {beta}-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of {beta}-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and {beta}-catenin-induced cell death.

  6. Bili inhibits Wnt/beta-catenin signaling by regulating the recruitment of axin to LRP6.

    Directory of Open Access Journals (Sweden)

    Lorna S Kategaya

    Full Text Available BACKGROUND: Insights into how the Frizzled/LRP6 receptor complex receives, transduces and terminates Wnt signals will enhance our understanding of the control of the Wnt/ss-catenin pathway. METHODOLOGY/PRINCIPAL FINDINGS: In pursuit of such insights, we performed a genome-wide RNAi screen in Drosophila cells expressing an activated form of LRP6 and a beta-catenin-responsive reporter. This screen resulted in the identification of Bili, a Band4.1-domain containing protein, as a negative regulator of Wnt/beta-catenin signaling. We found that the expression of Bili in Drosophila embryos and larval imaginal discs significantly overlaps with the expression of Wingless (Wg, the Drosophila Wnt ortholog, which is consistent with a potential function for Bili in the Wg pathway. We then tested the functions of Bili in both invertebrate and vertebrate animal model systems. Loss-of-function studies in Drosophila and zebrafish embryos, as well as human cultured cells, demonstrate that Bili is an evolutionarily conserved antagonist of Wnt/beta-catenin signaling. Mechanistically, we found that Bili exerts its antagonistic effects by inhibiting the recruitment of AXIN to LRP6 required during pathway activation. CONCLUSIONS: These studies identify Bili as an evolutionarily conserved negative regulator of the Wnt/beta-catenin pathway.

  7. The changing expressions of transforming growth factor-beta signaling pathway in the subchondral bone in experimental early traumatic osteoarthritis%转化生长因子-β通路在早期创伤性骨性关节炎软骨下骨的动态变化

    Institute of Scientific and Technical Information of China (English)

    张荣凯; 陈琰; 张颂阳; 方航; 宋炎成; 赵庆; 蔡道章


    Objective To study the expressions of transforming growth factor-beta(TGF-β) signaling pathway in the subchondral bone in experimental early traumatic osteoarthritis to understand the role of TGF-β signaling pathway in the pathogenesis of osteoarthritis.Methods Thirty male SD rats were randomized into 2 equal groups.In the experimental group,the medial meniscus and the medial collateral ligament (MCL)of the right knee joint were exsected while the articular capsule was only cut open in the control group.Samples of the right knee joint were harvested at 1,2 and 4 weeks postsurgery.Total RNA of the subchondral bone was extracted and then hybridized to Agilent Whole Rat Genome Microarray.Analyses of the pathway and differentially expressed genes were conducted to explore changes in the expression of the TGF-β signaling pathway.Results Significant differences in the expression of TGF-β signaling pathway between the experimental group and the control group were found at 1 and 2 weeks postsurgery (P < 0.05),but not at 4 weeks postsurgery (P > 0.05).The following differentially expressed genes were found to be involved in the changing expressions of TGF-β signaling pathway: activin A receptor-I,activin A receptor-2b,anti-mullerian hormone,bone morphogenetic protein-4,bone morphogenetic protein-5,bone morphogenetic protein receptor-la,cartilage oligomeric matrix protein,decorin,interferon gamma,inhibin beta-A,noggin,SMAD specific E3 ubiquitin protein ligase-2,transforming growth factor-beta 1,transforming growth factor-beta 2,transforming growth factor-betareceptor 1,thrombospondin-2,thrombospondin-4precursor,inhibitorofDNAbinding4andFYVEdomain containing 16 (predicted) similar to Zinc finger.Conclusions TGF-β signaling pathway may play an important role in the pathogenesis of experimental early traumatic osteoarthritis in a time-dependent manner.%目的 探讨转化生长因子-β(TGF-β)信号通路在早期创伤性骨性关节炎软骨下骨的动态改变

  8. Deletion of the mitochondrial flavoprotein apoptosis inducing factor (AIF induces beta-cell apoptosis and impairs beta-cell mass.

    Directory of Open Access Journals (Sweden)

    Fabienne T Schulthess

    Full Text Available BACKGROUND: Apoptosis is a hallmark of beta-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to beta-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF. In the present study, we investigated the role of AIF on beta-cell mass and survival using the Harlequin (Hq mutant mice, which are hypomorphic for AIF. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT. Analysis of beta-cell mass in these mice revealed a greater than 4-fold reduction in beta-cell mass together with an 8-fold increase in beta-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of beta-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in beta-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the beta-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. beta-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on beta-cell function was potentiated. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AIF is essential for maintaining beta-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on beta-cell survival.

  9. Dysregulated transforming growth factor-beta in neonatal and adult autoimmune MRL-lpr mice. (United States)

    Kreft, B; Yokoyama, H; Naito, T; Kelley, V R


    Transforming growth factor- beta (TGF- beta) is a cytokine that promotes inflammatory processes and prevents tissue injury. Autoimmune destruction of the kidney in MRL-lpr mice is spontaneous, rapid, fatal and consists of glomerular damage and an influx of lymphocytes surrounding vessels and in the interstitium. In MRL-lpr mice, cytokine dysregulation is apparent in neonates and continues throughout the life span. Circulating levels of tumour necrosis factor (TNF- alpha) and colony stimulating factor-1 (CSF-1) are detected in neonatal mice and progressively increase in proportion to the loss of renal function. We now report elevated intracellular expression of distinct isoforms of TGF- beta (TGF- beta 3, TGF- beta 2, and TGF- beta 1) detected immunohistochemically in MRL-lpr kidneys and other tissues including the liver and thymus. Enhanced TGF- beta 3 and TGF- beta 2 isoforms are detectable in neonatal mice within the renal tubular epithelial cells (TEC) and vascular smooth muscle cells (VSMC). In MRL-lpr mice 4-6 months of age, TGF- beta 2 and TGF- beta 1 are detected in TEC, VSMC, glomerular epithelial cells (GEC) and in perivascular infiltrating cells. By comparison, TGF- beta is minimally detectable in the normal kidneys of age and sex matched MRL(-)+2 or C3H/Fej mice. Paradoxically, in vitro cultured TEC and VSMC from MRL-lpr mice secrete less TGF- beta than TEC and VSMC isolated from MRL(-)+2 or C3H/FeJ mice. TNF- alpha, but not IL-6, CSF-1, or IFN- gamma stimulated the secretion of TGF- beta in TEC and VSMC. Our data demonstrate the dysregulation of TGF- beta isoforms in neonatal and adult MRL-lpr mice prior to and after the onset of autoimmune renal disease. We suggest that TNF- alpha and/or other molecules increase TGF- beta expression in MRL-lpr mice. We speculate that enhanced expression of TGF- beta promotes autoinmune renal injury in MRL-lpr mice.

  10. Signal transduction and metabolic flux of beta-thujaplicin and monoterpene biosynthesis in elicited Cupressus lusitanica cell cultures. (United States)

    Zhao, Jian; Matsunaga, Yoko; Fujita, Koki; Sakai, Kokki


    beta-Thujaplicin is an antimicrobial tropolone derived from geranyl pyrophosphate(GPP) and monoterpene intermediate. Yeast elicitor-treated Cupressus lusitanica cell cultures accumulate high levels of beta-thujaplicin at early stages and other monoterpenes at later stages post-elicitation. The different regulation of beta-thujaplicin and monoterpene biosynthesis and signal transduction directing metabolic flux to beta-thujaplicin firstly and then shifting metabolic flow from beta-thujaplicin to other monoterpene biosynthesis were investigated. The earlier rapid induction of beta-thujaplicin accumulation and a later stimulation of monoterpene biosynthesis by yeast elicitor are in well agreement with elicitor-induced changes in activity of three monoterpene biosynthetic enzymes including isopentenyl pyrophosphate isomerase, GPP synthase, and monoterpene synthase. Yeast elicitor induces an earlier and stronger beta-thujaplicin production and monoterpene biosynthetic enzyme activity than methyl jasmonate (MeJA) does. Profiling all monoterpenes produced by C. lusitanica cell cultures under different conditions reveals that beta-thujaplicin biosynthesis parallels with other monoterpenes and competes for common precursor pools. Yet beta-thujaplicin is produced pre-dominantly at early stage of elicitation whereas other monoterpenes are mainly accumulated at late stage while beta-thujaplicin is metabolized. It is suggested that yeast elicitor-treated C. lusitanica cells preferentially accumulate beta-thujaplicin as a primary defense and other monoterpenes as a secondary defense. Inhibitor treatments suggest that immediate production of beta-thujaplicin post-elicitation largely depends on pre-existing enzymes and translation of pre-existing transcripts as well as recruitment of precursor pools from both the cytosol and plastids. The later beta-thujaplicin and other monoterpene accumulation strictly depends on active transcription and translation. Induction of beta

  11. Potential targets of transforming growth factor-beta1 during inhibition of oocyte maturation in zebrafish

    Directory of Open Access Journals (Sweden)

    Clelland Eric


    Full Text Available Abstract Background TGF-beta is a multifunctional growth factor involved in regulating a variety of cellular activities. Unlike mammals, the function of TGF-beta in the reproduction of lower vertebrates, such as fish, is not clear. Recently, we showed that TGF-beta1 inhibits gonadotropin- and 17alpha, 20beta-dihydroxyprogesterone (DHP-induced maturation in zebrafish. The aim of the present study was to investigate the mechanisms underlying this action. Method To determine if the effect of TGF-beta1 on oocyte maturation involves transcription and/or translation, ovarian follicles were pre-treated with actinomycin D, a blocker of transcription, and cyclohexamide, an inhibitor of translation, and incubated with hCG or DHP, either alone or in combination with TGF-beta1 and oocyte maturation scored. To determine the effect of TGF-beta1 on mRNA levels of several key effectors of oocyte maturation, three sets of experiments were performed. First, follicles were treated with control medium or TGF-beta1 for 2, 6, 12, and 24 h. Second, follicles were treated with different concentrations of TGF-beta1 (0 to 10 ng/ml for 18 h. Third, follicles were incubated with hCG in the absence or presence of TGF-beta1 for 18 h. At the end of each experiment, total RNA was extracted and reverse transcribed. PCR using primers specific for 20beta-hydroxysteroid dehydrogenase (20beta-HSD which is involved in DHP production, follicle stimulating hormone receptor (FSHR, luteinizing hormone receptor (LHR, the two forms of membrane progestin receptor: mPR-alpha and mPR-beta, as well as GAPDH (control, were performed. Results Treatment with actinomycin D, a blocker of transcription, reduced the inhibitory effect of TGF-beta1 on DHP-induced oocyte maturation, indicating that the inhibitory action of TGF-beta1 is in part due to regulation of gene transcription. Treatment with TGF-beta1 caused a dose and time-dependent decrease in mRNA levels of 20beta-HSD, LHR and mPR-beta in

  12. A subset of human pancreatic beta cells express functional CD14 receptors: a signaling pathway for beta cell-related glycolipids, sulfatide and ß-galactosylceramide

    DEFF Research Database (Denmark)

    Østerbye, Thomas; Funda, David P; Fundová, Petra;


    T1DM is a T-cell-mediated autoimmune disease targeting insulin-producing beta-cells. Multiple factors may contribute to the development of T1DM. Among these, the metabolic state of beta-cells and pro-inflammatory cytokines, produced by infiltrating immune cells, have been implicated in the precip...

  13. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Debashis; Mukhopadhyay, Debabrata, E-mail: [Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First Street SW, Guggenheim 1321C, Rochester, MN 55905 (United States)


    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed.

  14. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    Directory of Open Access Journals (Sweden)

    Debashis Nandy


    Full Text Available Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF, insulin-like growth factor (IGF, platelet derived growth factor (PDGF, fibroblast growth factor (FGF, epidermal growth factor (EGF, and transforming growth factor (TGF in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed.

  15. Sonic hedgehog acts as a negative regulator of {beta}-catenin signaling in the adult tongue epithelium. (United States)

    Schneider, Fabian T; Schänzer, Anne; Czupalla, Cathrin J; Thom, Sonja; Engels, Knut; Schmidt, Mirko H H; Plate, Karl H; Liebner, Stefan


    Wnt/beta-catenin signaling has been implicated in taste papilla development; however, its role in epithelial maintenance and tumor progression in the adult tongue remains elusive. We show Wnt/beta-catenin pathway activation in reporter mice and by nuclear beta-catenin staining in the epithelium and taste papilla of adult mouse and human tongues. beta-Catenin activation in APC(min/+) mice, which carry a mutation in adenomatous poliposis coli (APC), up-regulates Sonic hedgehog (Shh) and Jagged-2 (JAG2) in the tongue epithelium without formation of squamous cell carcinoma (SCC). We demonstrate that Shh suppresses beta-catenin transcriptional activity in a signaling-dependent manner in vitro and in vivo. A similar regulation and function was observed for JAG2, suggesting that both pathways negatively regulate beta-catenin, thereby preventing SCC formation in the tongue. This was supported by reduced nuclear beta-catenin in the tongue epithelium of Patched(+/-) mice, exhibiting dominant active Shh signaling. At the invasive front of human tongue cancer, nuclear beta-catenin and Shh were increased, suggesting their participation in tumor progression. Interestingly, Shh but not JAG2 was able to reduce beta-catenin signaling in SCC cells, arguing for a partial loss of negative feedback on beta-catenin transcription in tongue cancer. We show for the first time that the putative Wnt/beta-catenin targets Shh and JAG2 control beta-catenin signaling in the adult tongue epithelium, a function that is partially lost in lingual SCC.

  16. In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion. (United States)

    Maechler, Pierre; Carobbio, Stefania; Rubi, Blanca


    Pancreatic beta-cells are unique neuroendocrine cells displaying the peculiar feature of responding to nutrients, principally glucose, as primary stimulus. This requires translation of a metabolic substrate into intracellular messengers recognized by the exocytotic machinery. Central to this signal transduction mechanism, mitochondria integrate and generate metabolic signals, thereby coupling glucose recognition to insulin secretion. In response to a glucose rise, nucleotides and metabolites are generated by mitochondria and participate, together with cytosolic calcium, to the stimulation of insulin exocytosis. This review describes the mitochondrion-dependent pathways of regulated insulin secretion. In particular, importance of cataplerotic and anaplerotic processes is discussed, with special attention to the mitochondrial enzyme glutamate dehydrogenase. Mitochondrial defects, such as mutations and reactive oxygen species production, are presented in the context of beta-cell failure in the course of type 2 diabetes.

  17. Growth arrest- and DNA-damage-inducible 45beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Claus Morten; Døssing, M G; Papa, S;


    IL-1beta is a candidate mediator of apoptotic beta cell destruction, a process that leads to type 1 diabetes and progression of type 2 diabetes. IL-1beta activates beta cell c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38, all of which are members of the mitogen...

  18. The potential role of SOCS-3 in the interleukin-1beta-induced desensitization of insulin signaling in pancreatic beta-cells

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Glondu, Murielle; Filloux, Chantal


    insulin-dependent IR autophosphorylation and IRS/PI3K pathway in a way comparable to IL-1beta treatment in RINm5F cells. We propose that IL-1beta decreases insulin action in beta-cells through the induction of SOCS-3 expression, and that this effect potentially alters insulin-induced beta-cell survival.......) proteins as well as phosphatidylinositol 3-kinase (PI3K) activation, and that this action is not due to the IL-1beta-dependent nitric oxide (NO) production in RINm5F cells. We next analyzed if suppressor of cytokine signaling (SOCS)-3, which can be induced by multiple cytokines and which we identified...... as an insulin action inhibitor, was implicated in the IL-1beta inhibitory effect on insulin signaling in these cells. We show that IL-1beta increases SOCS-3 expression and induces SOCS-3/IR complex formation in RINm5F cells. Moreover, we find that ectopically expressed SOCS-3 associates with the IR and reduces...

  19. Multiple signalling pathways mediate fungal elicitor-induced beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. (United States)

    Zhao, Jian; Sakai, Kokki


    The biosynthesis of a phytoalexin, beta-thujaplicin, in Cupressus lusitanica cell cultures can be stimulated by a yeast elicitor, H(2)O(2), or methyl jasmonate. Lipoxygenase activity was also stimulated by these treatments, suggesting that the oxidative burst and jasmonate pathway may mediate the elicitor-induced accumulation of beta-thujaplicin. The elicitor signalling pathway involved in beta-thujaplicin induction was further investigated using pharmacological and biochemical approaches. Treatment of the cells with calcium ionophore A23187 alone stimulated the production of beta-thujaplicin. A23187 also enhanced the elicitor-induced production of beta-thujaplicin. EGTA, LaCl(3), and verapamil pretreatments partially blocked A23187- or yeast elicitor-induced accumulation of beta-thujaplicin. These results suggest that Ca(2+) influx is required for elicitor-induced production of beta-thujaplicin. Treatment of cell cultures with mastoparan, melittin or cholera toxin alone or in combination with the elicitor stimulated the production of beta-thujaplicin or enhanced the elicitor-induced production of beta-thujaplicin. The G-protein inhibitor suramin inhibited the elicitor-induced production of beta-thujaplicin, suggesting that receptor-coupled G-proteins are likely to be involved in the elicitor-induced biosynthesis of beta-thujaplicin. Indeed, both GTP-binding activity and GTPase activity of the plasma membrane were stimulated by elicitor, and suramin and cholera toxin affected G-protein activities. In addition, all inhibitors of G-proteins and Ca(2+) flux suppressed elicitor-induced increases in lipoxygenase activity whereas activators of G-proteins and the Ca(2+) signalling pathway increased lipoxygenase activity. These observations suggest that Ca(2+) and G-proteins may mediate elicitor signals to the jasmonate pathway, and the jasmonate signalling pathway may then lead to the production of beta-thujaplicin.

  20. Signal processing in the TGF-beta superfamily ligand-receptor network.

    Directory of Open Access Journals (Sweden)

    Jose M G Vilar


    Full Text Available The TGF-beta pathway plays a central role in tissue homeostasis and morphogenesis. It transduces a variety of extracellular signals into intracellular transcriptional responses that control a plethora of cellular processes, including cell growth, apoptosis, and differentiation. We use computational modeling to show that coupling of signaling with receptor trafficking results in a highly versatile signal-processing unit, able to sense by itself absolute levels of ligand, temporal changes in ligand concentration, and ratios of multiple ligands. This coupling controls whether the response of the receptor module is transient or permanent and whether or not different signaling channels behave independently of each other. Our computational approach unifies seemingly disparate experimental observations and suggests specific changes in receptor trafficking patterns that can lead to phenotypes that favor tumor progression.

  1. Implications for the offspring of circulating factors involved in beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Ringholm, Lene; Søstrup, Birgitte


    is able to stimulate proliferation of rat beta cells. We have identified several circulating factors that may contribute to beta cell adaptation to pregnancy. Further studies are needed to elucidate their possible role in glucose homeostasis in the mother and her offspring.......OBJECTIVE: Several studies have shown an increase in beta cell mass during pregnancy. Somatolactogenic hormones are known to stimulate the proliferation of existing beta cells in rodents whereas the mechanism in humans is still unclear. We hypothesize that in addition to somatolactogenic hormones...... there are other circulating factors involved in beta cell adaptation to pregnancy. This study aimed at screening for potential pregnancy-associated circulating beta cell growth factors. SAMPLES: Serum samples from nonpregnant and pregnant women. METHODS: The effect of serum from pregnant women...

  2. The transforming growth factor-beta receptor genes and the risk of intracranial aneurysms

    NARCIS (Netherlands)

    Ruigrok, Ynte M.; Baas, Annette F.; Medic, Jelena; Wijmenga, Cisca; Rinkel, Gabriel J. E.


    Background Mutations in the receptor genes of the transforming growth factor beta pathway, TGFBR1 and TGFBR2, cause syndromes with thoracic aortic aneurysms, while genetic variants in TGFBR1 and TGFBR2 are associated with abdominal aortic aneurysms. The transforming growth factor-beta pathway may be

  3. Immunohistochemical detection of active transforming growth factor-beta in situ using engineered tissue (United States)

    Barcellos-Hoff, M. H.; Ehrhart, E. J.; Kalia, M.; Jirtle, R.; Flanders, K.; Tsang, M. L.; Chatterjee, A. (Principal Investigator)


    The biological activity of transforming growth factor-beta 1 (TGF-beta) is governed by dissociation from its latent complex. Immunohistochemical discrimination of active and latent TGF-beta could provide insight into TGF-beta activation in physiological and pathological processes. However, evaluation of immunoreactivity specificity in situ has been hindered by the lack of tissue in which TGF-beta status is known. To provide in situ analysis of antibodies to differentiate between these functional forms, we used xenografts of human tumor cells modified by transfection to overexpress latent TGF-beta or constitutively active TGF-beta. This comparison revealed that, whereas most antibodies did not differentiate between TGF-beta activation status, the immunoreactivity of some antibodies was activation dependent. Two widely used peptide antibodies to the amino-terminus of TGF-beta, LC(1-30) and CC(1-30) showed marked preferential immunoreactivity with active TGF-beta versus latent TGF-beta in cryosections. However, in formalin-fixed, paraffin-embedded tissue, discrimination of active TGF-beta by CC(1-30) was lost and immunoreactivity was distinctly extracellular, as previously reported for this antibody. Similar processing-dependent extracellular localization was found with a neutralizing antibody raised to recombinant TGF-beta. Antigen retrieval recovered cell-associated immunoreactivity of both antibodies. Two antibodies to peptides 78-109 showed mild to moderate preferential immunoreactivity with active TGF-beta only in paraffin sections. LC(1-30) was the only antibody tested that discriminated active from latent TGF-beta in both frozen and paraffin-embedded tissue. Thus, in situ discrimination of active versus latent TGF-beta depends on both the antibody and tissue preparation. We propose that tissues engineered to express a specific form of a given protein provide a physiological setting in which to evaluate antibody reactivity with specific functional forms of a

  4. Transforming growth factor-beta and the glomerular filtration barrier

    Directory of Open Access Journals (Sweden)

    Ayesha Ghayur


    Full Text Available The increasing burden of chronic kidney disease worldwide and recent advancements in the understanding of pathologic events leading to kidney injury have opened up new potential avenues for therapies to further diminish progression of kidney disease by targeting the glomerular filtration barrier and reducing proteinuria. The glomerular filtration barrier is affected by many different metabolic and immune-mediated injuries. Glomerular endothelial cells, the glomerular basement membrane, and podocytes—the three components of the filtration barrier—work together to prevent the loss of protein and at the same time allow passage of water and smaller molecules. Damage to any of the components of the filtration barrier can initiate proteinuria and renal fibrosis. Transforming growth factor-beta (TGF-β is a pleiotropic cytokine strongly associated with the fibrogenic response. It has a known role in tubulointerstitial fibrosis. In this review we will highlight what is known about TGF-β and how it interacts with the components of glomerular filtration barrier and causes loss of function and proteinuria.

  5. Extraction of single-trial cortical beta oscillatory activities in EEG signals using empirical mode decomposition

    Directory of Open Access Journals (Sweden)

    Wu Chi-Hsun


    Full Text Available Abstract Background Brain oscillatory activities are stochastic and non-linearly dynamic, due to their non-phase-locked nature and inter-trial variability. Non-phase-locked rhythmic signals can vary from trial-to-trial dependent upon variations in a subject's performance and state, which may be linked to fluctuations in expectation, attention, arousal, and task strategy. Therefore, a method that permits the extraction of the oscillatory signal on a single-trial basis is important for the study of subtle brain dynamics, which can be used as probes to study neurophysiology in normal brain and pathophysiology in the diseased. Methods This paper presents an empirical mode decomposition (EMD-based spatiotemporal approach to extract neural oscillatory activities from multi-channel electroencephalograph (EEG data. The efficacy of this approach manifests in extracting single-trial post-movement beta activities when performing a right index-finger lifting task. In each single trial, an EEG epoch recorded at the channel of interest (CI was first separated into a number of intrinsic mode functions (IMFs. Sensorimotor-related oscillatory activities were reconstructed from sensorimotor-related IMFs chosen by a spatial map matching process. Post-movement beta activities were acquired by band-pass filtering the sensorimotor-related oscillatory activities within a trial-specific beta band. Signal envelopes of post-movement beta activities were detected using amplitude modulation (AM method to obtain post-movement beta event-related synchronization (PM-bERS. The maximum amplitude in the PM-bERS within the post-movement period was subtracted by the mean amplitude of the reference period to find the single-trial beta rebound (BR. Results The results showed single-trial BRs computed by the current method were significantly higher than those obtained from conventional average method (P Conclusions The EMD-based method is effective for artefact removal and extracting

  6. The pleiotropic roles of transforming growth factor beta inhomeostasis and carcinogenesis of endocrine organs.

    Energy Technology Data Exchange (ETDEWEB)

    Fleisch, Markus C.; Maxwell, Christopher A.; Barcellos-Hoff,Mary-Helen


    Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary gland. This review will address the role of TGF-beta in regulating hormone dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition (EMT), will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, and the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.

  7. Requirement of catalytically active Tyk2 and accessory signals for the induction of TRAIL mRNA by IFN-beta. (United States)

    Rani, M R Sandhya; Pandalai, Sudha; Shrock, Jennifer; Almasan, Alex; Ransohoff, Richard M


    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand/Apo2 ligand (TRAIL/Apo2L) mRNA was induced preferentially by interferon (IFN)-beta but not IFN-alpha in human fibrosarcoma and primary fibroblast cells. To characterize the signaling components mediating the IFN subtype-specific induction of this gene, we used mutant cell lines lacking individual components involved in signaling by type I IFNs. TRAIL was not induced by IFN-beta in mutant cell lines U2A, U3A, U4A, U5A, and U6A, which lack, respectively, IFN regulatory factor-9 (IRF-9), Stat1, Jak1, IFNAR-2.2, and Stat2, indicating transcription factor IFN-stimulated gene factor 3 (ISGF3) was essential for the induction of this gene. TRAIL was not induced by IFN-beta in U1A (Tyk2 null) or U1A.R930 cells (that express a kinase-deficient point mutant of Tyk2) but was induced in U1A.wt-5 cells (U1A cells expressing wild-type Tyk2), indicating that Tyk2 protein and kinase activity were both required for induction of the gene. Biochemical and genetic analyses revealed the requirement of transcription factor NF-kappa B and phosphoinositide 3-kinase (PI3K) but not extracellular signal-regulated kinase (ERK) for the induction of TRAIL by IFN-beta. Furthermore, the antiproliferative but not antiviral effects of IFN-beta required catalytically active Tyk2, suggesting that expression of genes, such as TRAIL, may play an important role in mediating the biologic effects of IFNs.

  8. Dibenzocyclooctadiene lignans, gomisins J and N inhibit the Wnt/{beta}-catenin signaling pathway in HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyungsu; Lee, Kyung-Mi; Yoo, Ji-Hye; Lee, Hee Ju [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of); Kim, Chul Young [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of); College of Pharmacy, Hanyang University, Ansan 426-791 (Korea, Republic of); Nho, Chu Won, E-mail: [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of)


    Graphical abstract: Schematic diagram of the possible molecular mechanism underlying the inhibition of the Wnt/{beta}-catenin signaling pathway and the induction of G0/G1-phase arrest by gomisins J and N, derived from the fruits of S. chinensis, in HCT116 human colon cancer cells. Highlights: Black-Right-Pointing-Pointer Gomisins J and N inhibited Wnt/{beta}-catenin signaling pathway in HCT116 cells. Black-Right-Pointing-Pointer Gomisins J and N disrupted the binding of {beta}-catenin to specific DNA sequences, TBE. Black-Right-Pointing-Pointer Gomisins J and N inhibited the HCT116 cell proliferation through G0/G1 phase arrest. Black-Right-Pointing-Pointer Gomisins J and N inhibited the expression of Cyc D1, a Wnt/{beta}-catenin target gene. -- Abstract: Here, we report that gomisin J and gomisin N, dibenzocyclooctadiene type lignans isolated from Schisandra chinensis, inhibit Wnt/{beta}-catenin signaling in HCT116 cells. Gomisins J and N appear to inhibit Wnt/{beta}-catenin signaling by disrupting the interaction between {beta}-catenin and its specific target DNA sequences (TCF binding elements, TBE) rather than by altering the expression of the {beta}-catenin protein. Gomisins J and N inhibit HCT116 cell proliferation by arresting the cell cycle at the G0/G1 phase. The G0/G1 phase arrest induced by gomisins J and N appears to be caused by a decrease in the expression of Cyclin D1, a representative target gene of the Wnt/{beta}-catenin signaling pathway, as well as Cdk2, Cdk4, and E2F-1. Therefore, gomisins J and N, the novel Wnt/{beta}-catenin inhibitors discovered in this study, may serve as potential agents for the prevention and treatment of human colorectal cancers.

  9. Ursolic acid, an antagonist for transforming growth factor (TGF)-beta1. (United States)

    Murakami, Shigeru; Takashima, Hajime; Sato-Watanabe, Mariko; Chonan, Sumi; Yamamoto, Koji; Saitoh, Masako; Saito, Shiuji; Yoshimura, Hiromitsu; Sugawara, Koko; Yang, Junshan; Gao, Nannan; Zhang, Xinggao


    Transforming growth factor-beta (TGF-beta), a multifunctional cytokine which is involved in extracellular matrix modulation, has a major role in the pathogenesis and progression of fibrotic diseases. We now report the effects of ursolic acid on TGF-beta1 receptor binding and TGF-beta1-induced cellular functions in vitro. Ursolic acid inhibited [(125)I]-TGF-beta1 receptor binding to Balb/c 3T3 mouse fibroblasts with an IC(50) value of 6.9+/-0.8 microM. Ursolic acid dose-dependently recovered reduced proliferation of Minc Mv1Lu cells in the presence of 5 nM of TGF-beta1 and attenuated TGF-beta1-induced collagen synthesis and production in human fibroblasts. Molecular dynamics simulations suggest that ursolic acid may interact with the hydrophobic region of the dimeric interface and thereby inhibit the binding of TGF-beta1 to its receptor. All these findings taken together show that ursolic acid functions as an antagonist for TGF-beta1. This is the first report to show that a small molecule can inhibit TGF-beta1 receptor binding and influence functions of TGF-beta1.

  10. Transforming growth factor-beta: possible roles in carcinogenesis.


    Roberts, A B; Thompson, N L; Heine, U.; Flanders, C.; Sporn, M B


    TGF-beta is the prototype of a large family of multifunctional regulatory proteins. The principal sources of the peptide, platelets and bone, suggest that it plays a role in healing and remodeling processes. In vitro, TGF-beta is chemotactic for monocytes and fibroblasts and can greatly enhance accumulation of extracellular matrix components by fibroblasts. Its ability to stimulate the formation of granulation tissue locally and the demonstration of specific time- and tissue-dependent express...

  11. Bmi-1 extends the life span of normal human oral keratinocytes by inhibiting the TGF-{beta} signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Reuben H., E-mail: [UCLA School of Dentistry, Los Angeles, CA 90095 (United States); UCLA Dental Research Institute, Los Angeles, CA 90095 (United States); UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095 (United States); Lieberman, Mark B.; Lee, Rachel [UCLA School of Dentistry, Los Angeles, CA 90095 (United States); Shin, Ki-Hyuk [UCLA School of Dentistry, Los Angeles, CA 90095 (United States); UCLA Dental Research Institute, Los Angeles, CA 90095 (United States); UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095 (United States); Mehrazarin, Shebli; Oh, Ju-Eun [UCLA School of Dentistry, Los Angeles, CA 90095 (United States); Park, No-Hee [UCLA School of Dentistry, Los Angeles, CA 90095 (United States); UCLA Dental Research Institute, Los Angeles, CA 90095 (United States); UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095 (United States); David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Kang, Mo K., E-mail: [UCLA School of Dentistry, Los Angeles, CA 90095 (United States); UCLA Dental Research Institute, Los Angeles, CA 90095 (United States); UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095 (United States)


    We previously demonstrated that Bmi-1 extended the in vitro life span of normal human oral keratinocytes (NHOK). We now report that the prolonged life span of NHOK by Bmi-1 is, in part, due to inhibition of the TGF-{beta} signaling pathway. Serial subculture of NHOK resulted in replicative senescence and terminal differentiation and activation of TGF-{beta} signaling pathway. This was accompanied with enhanced intracellular and secreted TGF-{beta}1 levels, phosphorylation of Smad2/3, and increased expression of p15{sup INK4B} and p57{sup KIP2}. An ectopic expression of Bmi-1 in NHOK (HOK/Bmi-1) decreased the level of intracellular and secreted TGF-{beta}1 induced dephosphorylation of Smad2/3, and diminished the level of p15{sup INK4B} and p57{sup KIP2}. Moreover, Bmi-1 expression led to the inhibition of TGF-{beta}-responsive promoter activity in a dose-specific manner. Knockdown of Bmi-1 in rapidly proliferating HOK/Bmi-1 and cancer cells increased the level of phosphorylated Smad2/3, p15{sup INK4B}, and p57{sup KIP2}. In addition, an exposure of senescent NHOK to TGF-{beta} receptor I kinase inhibitor or anti-TGF-{beta} antibody resulted in enhanced replicative potential of cells. Taken together, these data suggest that Bmi-1 suppresses senescence of cells by inhibiting the TGF-{beta} signaling pathway in NHOK.

  12. Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling. (United States)

    Liu, Na; He, Song; Ma, Li; Ponnusamy, Murugavel; Tang, Jinhua; Tolbert, Evelyn; Bayliss, George; Zhao, Ting C; Yan, Haidong; Zhuang, Shougang


    Histone deacetylase (HDAC) inhibitors are promising anti-fibrosis drugs; however, nonselective inhibition of class I and class II HDACs does not allow a detailed elucidation of the individual HDAC functions in renal fibrosis. In this study, we investigated the effect of MS-275, a selective class I HDAC inhibitor, on the development of renal fibrosis in a murine model of unilateral ureteral obstruction (UUO) and activation of cultured renal interstitial fibroblasts. The UUO model was established by ligation of the left ureter and the contralateral kidney was used as a control. At seven days after UUO injury, kidney developed fibrosis as indicated by deposition of collagen fibrils and increased expression of collagen I, fibronectin and alpha-smooth muscle actin (alpha-SMA). Administration of MS-275 inhibited all these fibrotic responses and suppressed UUO-induced production of transforming growth factor-beta1 (TGF-beta), increased expression of TGF-beta receptor I, and phosphorylation of Smad-3. MS-275 was also effective in suppressing phosphorylation and expression of epidermal growth factor receptor (EGFR) and its downstream signaling molecule, signal transducer and activator of transcription-3. Moreover, class I HDAC inhibition reduced the number of renal tubular cells arrested in the G2/M phase of the cell cycle, a cellular event associated with TGF-beta1overproduction. In cultured renal interstitial fibroblasts, MS-275 treatment inhibited TGF-beta induced phosphorylation of Smad-3, differentiation of renal fibroblasts to myofibroblasts and proliferation of myofibroblasts. These results demonstrate that class I HDACs are critically involved in renal fibrogenesis and renal fibroblast activation through modulating TGF-beta and EGFR signaling and suggest that blockade of class I HDAC may be a useful treatment for renal fibrosis.

  13. Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling.

    Directory of Open Access Journals (Sweden)

    Na Liu

    Full Text Available BACKGROUND: Histone deacetylase (HDAC inhibitors are promising anti-fibrosis drugs; however, nonselective inhibition of class I and class II HDACs does not allow a detailed elucidation of the individual HDAC functions in renal fibrosis. In this study, we investigated the effect of MS-275, a selective class I HDAC inhibitor, on the development of renal fibrosis in a murine model of unilateral ureteral obstruction (UUO and activation of cultured renal interstitial fibroblasts. METHODS/FINDINGS: The UUO model was established by ligation of the left ureter and the contralateral kidney was used as a control. At seven days after UUO injury, kidney developed fibrosis as indicated by deposition of collagen fibrils and increased expression of collagen I, fibronectin and alpha-smooth muscle actin (alpha-SMA. Administration of MS-275 inhibited all these fibrotic responses and suppressed UUO-induced production of transforming growth factor-beta1 (TGF-beta, increased expression of TGF-beta receptor I, and phosphorylation of Smad-3. MS-275 was also effective in suppressing phosphorylation and expression of epidermal growth factor receptor (EGFR and its downstream signaling molecule, signal transducer and activator of transcription-3. Moreover, class I HDAC inhibition reduced the number of renal tubular cells arrested in the G2/M phase of the cell cycle, a cellular event associated with TGF-beta1overproduction. In cultured renal interstitial fibroblasts, MS-275 treatment inhibited TGF-beta induced phosphorylation of Smad-3, differentiation of renal fibroblasts to myofibroblasts and proliferation of myofibroblasts. CONCLUSIONS AND SIGNIFICANCE: These results demonstrate that class I HDACs are critically involved in renal fibrogenesis and renal fibroblast activation through modulating TGF-beta and EGFR signaling and suggest that blockade of class I HDAC may be a useful treatment for renal fibrosis.

  14. Long-term exposure to IL-1beta enhances Toll-IL-1 receptor-mediated inflammatory signaling in murine airway hyperresponsiveness

    DEFF Research Database (Denmark)

    Zhang, Yaping; Xu, Cang-Bao; Cardell, Lars-Olaf


    Toll-interleukin-1 (Toll-IL-1) receptor signaling may play a key role in the development of airway hyperreactivity (AHR) and chronic airway inflammatory diseases such as asthma. Previously, we have demonstrated that pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and interleukin......-time PCR-based cDNA array. The key gene expressions that were altered were verified by immunohistochemistry using confocal microscopy. Tracheal ring segment contractile responsiveness to the inflammatory mediator bradykinin was monitored using a sensitive myograph system. The results showed that after......-1beta (IL-1beta), induce AHR. However, the underlying intracellular signaling mechanisms that lead to AHR remain elusive. In order to see if the Toll-IL-1 receptor-mediated inflammatory signal pathways are involved in the development of AHR, the present study was designed to use a real-time PCR...

  15. Long-term exposure to IL-1beta enhances Toll-IL-1 receptor-mediated inflammatory signaling in murine airway hyperresponsiveness

    DEFF Research Database (Denmark)

    Zhang, Yaping; Xu, Cang-Bao; Cardell, Lars-Olaf


    Toll-interleukin-1 (Toll-IL-1) receptor signaling may play a key role in the development of airway hyperreactivity (AHR) and chronic airway inflammatory diseases such as asthma. Previously, we have demonstrated that pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and interleukin......RNA expression following IL-1beta treatment. Immunohistochemistry confirmed that protein expression for CD14, RP105, MCP-1 and phosphorylated IkappaB-alpha were increased in both the airway epithelial and smooth muscle cells. In order to link the activation of Toll-IL-1 receptor-mediated inflammatory signal...... airway to IL-1beta induces up- and down-regulation of mRNA expression for Toll-IL-1 receptor signal molecules, with a significant increase in the expression of 16 genes that contribute to the development of airway inflammation and AHR. Understanding cytokine-induced activation of the Toll-IL-1 receptor...

  16. Correlation of fibrosis and transforming growth factor-beta type 2 levels in the eye. (United States)

    Connor, T B; Roberts, A B; Sporn, M B; Danielpour, D; Dart, L L; Michels, R G; de Bustros, S; Enger, C; Kato, H; Lansing, M


    Approximately 1 out of every 10 eyes undergoing surgery for retinal detachment develops excessive intraocular fibrosis that can lead to traction retinal detachment and ultimate blindness. This disease process has been termed proliferative vitreoretinopathy (PVR). The ability to monitor and grade this fibrotic response accurately within the eye as well as the ability to aspirate vitreous cavity fluid bathing the fibrotic tissue makes this an ideal setting in which to investigate the development of fibrosis. Although laboratory studies have recently shown that transforming growth factor-beta (TGF-beta) can enhance fibrosis, little clinical evidence is yet available correlating the level of this or other growth factors with the degree of fibrosis in a clinical setting. We have found that vitreous aspirates from eyes with intraocular fibrosis associated with PVR have more than three times the amount of TGF-beta (1,200 +/- 300 pM [SEM]) found in eyes with uncomplicated retinal detachments without intraocular fibrosis (360 +/- 91 pM [SEM]). Using an in vitro assay, 84-100% of the TGF-beta activity could be blocked with specific antibodies against TGF-beta 2, whereas only 10-21% could be blocked by specific antibodies against TGF-beta 1. TGF-beta 1 was used in an animal model of traction retinal detachment. Since beta 1 and beta 2 have essentially identical biologic effects and only human beta 1 was available in quantities required, beta 1 was chosen for these in vivo studies. The injection of TGF-beta1 plus fibronectin (FN) but not TGF-beta1 alone into the vitreous cavity of rabbits resulted in the increased formation of intraocular fibrosis and traction retinal detachments as compared to control eyes. In previous studies, intravitreal FN levels were also found to be elevated in eyes with intraocular fibrosis.

  17. Hepatocyte Nuclear Factor 1beta-Associated Kidney Disease: More than Renal Cysts and Diabetes

    NARCIS (Netherlands)

    Verhave, J.C.; Bech, A.P.; Wetzels, J.F.; Nijenhuis, T.


    Hepatocyte nuclear factor 1beta (HNF1beta)-associated disease is a recently recognized clinical entity with a variable multisystem phenotype. Early reports described an association between HNF1B mutations and maturity-onset diabetes of the young. These patients often presented with renal cysts and

  18. Transforming growth factor-beta, but not ciliary neurotrophic factor, inhibits DNA synthesis of adrenal medullary cells in vitro

    DEFF Research Database (Denmark)

    Wolf, N; Krohn, K; Bieger, S;


    by the neuroendocrine chromaffin cells, which also express the transforming growth factor-beta receptor type II. In contrast to the developmentally related sympathetic neurons, chromaffin cells continue to proliferate throughout postnatal life. Using 5-bromo-2'-deoxyuridine pulse labeling and tyrosine hydroxylase...... regulator of chromaffin cell division.......Transforming growth factor-betas are members of a superfamily of multifunctional cytokines regulating cell growth and differentiation. Their functions in neural and endocrine cells are not well understood. We show here that transforming growth factor-betas are synthesized, stored and released...

  19. Functional interaction between beta-catenin and FOXO in oxidative stress signaling

    NARCIS (Netherlands)

    Essers, MAG; de Vries-Smits, LMM; Barker, N; Polderman, PE; Burgering, BMT; Korswagen, HC


    β-Catenin is a multifunctional protein that mediates Writ signaling by binding to members of the T cell factor (TCF) family of transcription factors. Here, we report an evolutionarily conserved interaction of β-catenin with FOXO transcription factors, which are regulated by insulin and oxidative str

  20. Thyroid hormones regulate fibroblast growth factor receptor signaling during chondrogenesis. (United States)

    Barnard, Joanna C; Williams, Allan J; Rabier, Bénédicte; Chassande, Olivier; Samarut, Jacques; Cheng, Sheue-Yann; Bassett, J H Duncan; Williams, Graham R


    Childhood hypothyroidism causes growth arrest with delayed ossification and growth-plate dysgenesis, whereas thyrotoxicosis accelerates ossification and growth. Thyroid hormone (T(3)) regulates chondrocyte proliferation and is essential for hypertrophic differentiation. Fibroblast growth factors (FGFs) are also important regulators of chondrocyte proliferation and differentiation, and activating mutations of FGF receptor-3 (FGFR3) cause achondroplasia. We investigated the hypothesis that T(3) regulates chondrogenesis via FGFR3 in ATDC5 cells, which undergo a defined program of chondrogenesis. ATDC5 cells expressed two FGFR1, four FGFR2, and one FGFR3 mRNA splice variants throughout chondrogenesis, and expression of each isoform was stimulated by T(3) during the first 6-12 d of culture, when T(3) inhibited proliferation by 50%. FGFR3 expression was also increased in cells treated with T(3) for 21 d, when T(3) induced an earlier onset of hypertrophic differentiation and collagen X expression. FGFR3 expression was reduced in growth plates from T(3) receptor alpha-null mice, which exhibit skeletal hypothyroidism, but was increased in T(3) receptor beta(PV/PV) mice, which display skeletal thyrotoxicosis. These findings indicate that FGFR3 is a T(3)-target gene in chondrocytes. In further experiments, T(3) enhanced FGF2 and FGF18 activation of the MAPK-signaling pathway but inhibited their activation of signal transducer and activator of transcription-1. FGF9 did not activate MAPK or signal transducer and activator of transcription-1 pathways in the absence or presence of T(3). Thus, T(3) exerted differing effects on FGFR activation during chondrogenesis depending on which FGF ligand stimulated the FGFR and which downstream signaling pathway was activated. These studies identify novel interactions between T(3) and FGFs that regulate chondrocyte proliferation and differentiation during chondrogenesis.

  1. Factors contributing to the breakdown of sodium beta-alumina

    Energy Technology Data Exchange (ETDEWEB)

    Buechele, A.C.


    Clarification of the breakdown process occurring during charge transfer in sodium beta alumina solid electrolytes was derived from: (1) studying the effects of molten sodium contact at 350/sup 0/C on single crystal sodium beta alumina and polycrystalline sodium beta alumina; (2) determination of critical current density by monitoring acoustic emissions accompanying crack growth in sodium/sodium beta alumina/sodium cells subjected to linear current ramping at 1 mA cm/sup -2/ sec/sup -1/; (3) failure analysis conducted on cycled electrolytes, some from commercial sodium/sulfur cells, which had been subjected to up to 703 Ahr cm/sup -2/ of charge transfer. Gray coloration developing in beta aluminas in contact with molten sodium was found to be a consequence of formation, through reduction by sodium, of oxygen vacancies charge compensated by electrons. Electronic conductivity of the electrolyte increases as a result. No second phase formation was detected. Colored electrolytes from sodium/sulfur cells show evidence of a newly recognized degradation mechanism in which fracture occurs when sodium is reduced and deposited internally under pressure as metal in regions where an electronic conductivity gradient exists. Heating colored beta aluminas in air produces reoxidation and bleaching. Kinetics and other properties of the coloration and bleaching processes were determined. Critical current density was found to bear an inverse relation to average electrolyte grain size. Evidence was found in the cycled electrolytes for a slow crack growth mechanism and a progressive mode of degradation advancing from the sulfur electrode interface. Implications of the findings for the construction and operation of sodium/sulfur battery systems are discussed.

  2. Platelet-derived growth factor receptor beta is critical for zebrafish intersegmental vessel formation.

    Directory of Open Access Journals (Sweden)

    Katie M Wiens

    Full Text Available BACKGROUND: Platelet-derived growth factor receptor beta (PDGFRbeta is a tyrosine kinase receptor known to affect vascular development. The zebrafish is an excellent model to study specific regulators of vascular development, yet the role of PDGF signaling has not been determined in early zebrafish embryos. Furthermore, vascular mural cells, in which PDGFRbeta functions cell autonomously in other systems, have not been identified in zebrafish embryos younger than 72 hours post fertilization. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate the role of PDGFRbeta in zebrafish vascular development, we cloned the highly conserved zebrafish homolog of PDGFRbeta. We found that pdgfrbeta is expressed in the hypochord, a developmental structure that is immediately dorsal to the dorsal aorta and potentially regulates blood vessel development in the zebrafish. Using a PDGFR tyrosine kinase inhibitor, a morpholino oligonucleotide specific to PDGFRbeta, and a dominant negative PDGFRbeta transgenic line, we found that PDGFRbeta is necessary for angiogenesis of the intersegmental vessels. SIGNIFICANCE/CONCLUSION: Our data provide the first evidence that PDGFRbeta signaling is required for zebrafish angiogenesis. We propose a novel mechanism for zebrafish PDGFRbeta signaling that regulates vascular angiogenesis in the absence of mural cells.

  3. Depressed adrenomedullin in the embryonic transforming growth factor-beta1 null mouse becomes elevated postnatally. (United States)

    Bodegas, Elena; Martínez, Alfredo; Ozbun, Laurent L; Garayoa, Mercedes; Letterio, John J; Montuenga, Luis M; Jakowlew, Sonia B


    Transforming growth factor-beta (TGF-beta) and adrenomedullin are multifunctional regulatory proteins which are expressed in developing embryonic and adult tissues. Because of their colocalization, TGF-beta1 and adrenomedullin may be able to coordinately act to influence development and differentiation. In order to learn more about the biology of adrenomedullin in the absence of the effects of TGF-beta1 in vivo, we examined adrenomedullin in the TGF-beta1 null mouse. A generally lower amount of adrenomedullin was detected by immunohistochemical staining analysis in multiple tissues from embryonic TGF-beta1 null mice compared to wildtype animals, including the heart, lung, brain, liver, and kidney, among others. In contrast, immunohistochemical staining for adrenomedullin was more intense in tissues of the postnatal TGF-beta1 null mouse compared to the wildtype mouse. These observations were confirmed by quantitative real time RT-PCR for adrenomedullin in both embryos and postnatal animals, as well as in cultured mouse embryo fibroblasts from TGF-beta1 null and wildtype mice. In addition, when cultured mouse embryo fibroblasts were treated with a neutralizing monoclonal antibody against TGF-beta1, the levels of adrenomedullin expression were statistically reduced compared to untreated cells. Our data show that expression of adrenomedullin is reduced in tissues of the developing embryonic TGF-beta1 null mouse compared to the wildtype mouse, but increases during postnatal development in TGF-beta1 null mice. The elevated expression of adrenomedullin which occurs postnatally in the TGF-beta1 null mouse may be a cause or a consequence of the multifocal wasting syndrome which is characteristic of postnatal TGF-beta1 null mice.

  4. Catalytic activity of nuclear PLC-beta(1) is required for its signalling function during C2C12 differentiation. (United States)

    Ramazzotti, Giulia; Faenza, Irene; Gaboardi, Gian Carlo; Piazzi, Manuela; Bavelloni, Alberto; Fiume, Roberta; Manzoli, Lucia; Martelli, Alberto M; Cocco, Lucio


    Here we report that PLC-beta(1) catalytic activity plays a role in the increase of cyclin D3 levels and induces the differentiation of C2C12 skeletal muscle cells. PLC-beta(1) mutational analysis revealed the importance of His(331) and His(378) for the catalysis. The expression of PLC-beta(1) and cyclin D3 proteins is highly induced during the process of skeletal myoblast differentiation. We have previously shown that PLC-beta(1) activates cyclin D3 promoter during the differentiation of myoblasts to myotubes, indicating that PLC-beta(1) is a crucial regulator of the mouse cyclin D3 gene. We show that after insulin treatment cyclin D3 mRNA levels are lower in cells overexpressing the PLC-beta(1) catalytically inactive form in comparison to wild type cells. We describe a novel signalling pathway elicited by PLC-beta(1) that modulates AP-1 activity. Gel mobility shift assay and supershift performed with specific antibodies indicate that the c-jun binding site is located in a cyclin D3 promoter region specifically regulated by PLC-beta(1) and that c-Jun binding activity is significantly increased by insulin and PLC-beta(1) overexpression. Mutation of AP-1 site decreased the basal cyclin D3 promoter activity and eliminated its induction by insulin and PLC-beta(1). These results hint at the fact that PLC-beta(1) catalytic activity signals a c-jun/AP-1 target gene, i.e. cyclin D3, during myogenic differentiation.

  5. Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. (United States)

    Prud'homme, Gérald J


    Transforming growth factor beta (TGF-beta) is a highly pleiotropic cytokine that plays an important role in wound healing, angiogenesis, immunoregulation and cancer. The cells of the immune system produce the TGF-beta1 isoform, which exerts powerful anti-inflammatory functions, and is a master regulator of the immune response. However, this is context dependent, because TGF-beta can contribute to the differentiation of both regulatory (suppressive) T cells (Tr cells) and inflammatory Th17 cells. While TGF-beta might be underproduced in some autoimmune diseases, it is overproduced in many pathological conditions. This includes pulmonary fibrosis, glomerulosclerosis, renal interstitial fibrosis, cirrhosis, Crohn's disease, cardiomyopathy, scleroderma and chronic graft-vs-host disease. In neoplastic disease, TGF-beta suppresses the progression of early lesions, but later this effect is lost and cancer cells produce TGF-beta, which then promotes metastasis. This cytokine also contributes to the formation of the tumor stroma, angiogenesis and immunosuppression. In view of this, several approaches are being studied to inhibit TGF-beta activity, including neutralizing antibodies, soluble receptors, receptor kinase antagonist drugs, antisense reagents and a number of less specific drugs such as angiotensin II antagonists and tranilast. It might be assumed that TGF-beta blockade would result in severe inflammatory disease, but this has not been the case, presumably because the neutralization is only partial. In contrast, the systemic administration of TGF-beta for therapeutic purposes is limited by toxicity and safety concerns, but local administration appears feasible, especially to promote wound healing. Immunotherapy or vaccination stimulating TGF-beta production and/or Tr differentiation might be applied to the treatment of autoimmune diseases. The benefits of new therapies targeting TGF-beta are under intense investigation.

  6. Glucagon-like peptide-1 induced signaling and insulin secretion do not drive fuel and energy metabolism in primary rodent pancreatic beta-cells.

    Directory of Open Access Journals (Sweden)

    Marie-Line Peyot

    Full Text Available BACKGROUND: Glucagon like peptide-1 (GLP-1 and its analogue exendin-4 (Ex-4 enhance glucose stimulated insulin secretion (GSIS and activate various signaling pathways in pancreatic beta-cells, in particular cAMP, Ca(2+ and protein kinase-B (PKB/Akt. In many cells these signals activate intermediary metabolism. However, it is not clear whether the acute amplification of GSIS by GLP-1 involves in part metabolic alterations and the production of metabolic coupling factors. METHODOLOGY/PRINICIPAL FINDINGS: GLP-1 or Ex-4 at high glucose caused release (approximately 20% of the total rat islet insulin content over 1 h. While both GLP-1 and Ex-4 markedly potentiated GSIS in isolated rat and mouse islets, neither had an effect on beta-cell fuel and energy metabolism over a 5 min to 3 h time period. GLP-1 activated PKB without changing glucose usage and oxidation, fatty acid oxidation, lipolysis or esterification into various lipids in rat islets. Ex-4 caused a rise in [Ca(2+](i and cAMP but did not enhance energy utilization, as neither oxygen consumption nor mitochondrial ATP levels were altered. CONCLUSIONS/SIGNIFICANCE: The results indicate that GLP-1 barely affects beta-cell intermediary metabolism and that metabolic signaling does not significantly contribute to GLP-1 potentiation of GSIS. The data also indicate that insulin secretion is a minor energy consuming process in the beta-cell, and that the beta-cell is different from most cell types in that its metabolic activation appears to be primarily governed by a "push" (fuel substrate driven process, rather than a "pull" mechanism secondary to enhanced insulin release as well as to Ca(2+, cAMP and PKB signaling.

  7. Intragraft platelet-derived growth factor-alpha and transforming growth factor-beta1 during the development of accelerated graft vascular disease after clinical heart transplantation

    NARCIS (Netherlands)

    de Groot-Kruseman, H A; Baan, C C; Mol, W M; Niesters, H G; Maat, A P; Balk, A H; Weimar, W


    This study was to determine whether the growth factors platelet-derived growth factor-alpha (PDGF-alpha) and transforming growth factor-beta1 (TGF-beta1) contribute to the development of graft vascular disease (GVD) after clinical heart transplantation. We analysed intragraft PDGF-alpha and TGF-beta

  8. Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Huimin Liang; Yaozhou Zhang; Xiaoyan Shi; Tianxiang Wei; Jiyu Lou


    Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer’s disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25-35) (Aβ25-35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Dilfuorophen-acetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25-35 for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Dilfuorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (> 10 nmol/L) prolonged the survival of PC12 cells after Aβ25-35 induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related su-peroxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25-35-induced PC12 apoptosis.

  9. Transforming growth factor-beta 1 does not relate to hypertension in pre-eclampsia. (United States)

    Hennessy, A; Orange, S; Willis, N; Painter, D M; Child, A; Horvath, J S


    1. Pre-eclampsia is a human disease of pregnancy characterized by high blood pressure, proteinuria and end-organ damage, if severe. Pre-eclampsia is thought to be related to changes in early placental development, with the formation of a shallower than normal placental bed. 2. Transforming growth factor (TGF)-beta1 is a multifunctional fibrogenic growth factor involved in immune regulation that is elevated in some populations with a high risk of hypertensive end-organ disease related to increases in endothelin release. Transforming growth factor-beta1 is also an important factor in placental implantation. Alterations in TGF-beta1 may be related to abnormal placental development in early pregnancy and, thus, are a candidate for the development of hypertension in pre-eclampsia. 3. The aim of the present study was to examine the placental distribution and serum concentration of TGF-beta1 in patients with pre-eclampsia compared with normal pregnancy. 4. Patients with pre-eclampsia (n = 12) were compared with patients with normal pregnancy (n = 14). Transforming growth factor-beta1 was determined by TGF-beta1 Max ELISA (Promega, Madsion, WI, USA) after serum dilution (1/150) and acid activation. Placental distribution was determined by immunostaining with TGF-beta1 (Santa Cruz, Santa Cruz, CA, USA; 20 ng/mL) and the villi and decidual trophoblast were scored for intensity and extent of staining. 5. Patients with pre-eclampsia had a mean gestational age of 36 weeks, whereas those with a normal pregnancy had a mean gestational age of 39.0 +/- 0.4 weeks. There was no difference in TGF-beta1 concentration between the two groups (mean (+/-SEM) 27.1 +/- 1.0 vs 26.4 +/- 0.7 pg/mL for normal pregnancy and pre-eclampsia, respectively; P = 0.73, Mann-Whitney U-test). There was no correlation between systolic or diastolic blood pressure and TGF-beta1 concentration (regression analysis P = 0.4 and 0.2). Immunostaining was absent in the villous trophoblast cells and endovascular and

  10. Homeodomain Protein Transforming Growth Factor Beta-Induced Factor 2 Like, X-Linked Function in Colon Adenocarcinoma Cells (United States)

    Akbari, Abolfazl; Agah, Shahram; Heidari, Mansour; Mobini, Gholam Reza; Faghihloo, Ebrahim; Sarveazad, Arash; Mirzaei, Alireza


    Background: TGIF2LX (transforming growth factor beta-induced factor 2 like, X-linked) is a homeodomain (HD) protein that has been implicated in the negative regulation of cell signaling pathways. The aim of this study was to investigate the possible functions of TGIF2LX in colon adenocarcinoma cells. Methods: The human SW48 cell line was transfected with cDNA for the wild-type TGIF2LX gene and gene/protein over-expression was confirmed by microscopic analysis, real time RT-PCR and Western blotting techniques. In vitro cell proliferation was evaluated by MTT and BrdU assays. After developing a colon tumor model in nude mice, immunohistochemical (IHC) staining of tumor tissue was carried out for Ki-67 (proliferation) and CD34 (angiogenesis) markers. To predict potential protein partners of TGIF2LX, in-silico analysis was also conducted. Results: Obtained results showed over-expression of TGIF2LX as a potential transcription factor could inhibit either proliferation or angiogenesis (P<0.05) in colon tumors. In-silico results predicted interaction of TGIF2LX with other proteins considered important for cellular development. Conclusions: Our findings provided evidence of molecular mechanisms by which TGIF2LX could act as a tumor suppressor in colon adenocarcinoma cells. Thus, this gene may potentially be a promising option for colon cancer gene-based therapeutic strategies. Creative Commons Attribution License

  11. Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing (United States)

    Pakyari, Mohammadreza; Farrokhi, Ali; Maharlooei, Mohsen Khosravi; Ghahary, Aziz


    Significance This review highlights the critical role of transforming growth factor beta (TGF-β)1–3 within different phases of wound healing, in particular, late-stage wound healing. It is also very important to identify the TGF-β1–controlling factors involved in slowing down the healing process upon wound epithelialization. Recent Advances TGF-β1, as a growth factor, is a known proponent of dermal fibrosis. Several strategies to modulate or regulate TGF's actions have been thoroughly investigated in an effort to create successful therapies. This study reviews current discourse regarding the many roles of TGF-β1 in wound healing by modulating infiltrated immune cells and the extracellular matrix. Critical Issues It is well established that TGF-β1 functions as a wound-healing promoting factor, and thereby if in excess it may lead to overhealing outcomes, such as hypertrophic scarring and keloid. Thus, the regulation of TGF-β1 in the later stages of the healing process remains as critical issue of which to better understand. Future Directions One hypothesis is that cell communication is the key to regulate later stages of wound healing. To elucidate the role of keratinocyte/fibroblast cross talk in controlling the later stages of wound healing we need to: (1) identify those keratinocyte-released factors which would function as wound-healing stop signals, (2) evaluate the functionality of these factors in controlling the outcome of the healing process, and (3) formulate topical vehicles for these antifibrogenic factors to improve or even prevent the development of hypertrophic scarring and keloids as a result of deep trauma, burn injuries, and any type of surgical incision. PMID:24527344

  12. Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing. (United States)

    Pakyari, Mohammadreza; Farrokhi, Ali; Maharlooei, Mohsen Khosravi; Ghahary, Aziz


    This review highlights the critical role of transforming growth factor beta (TGF-β)1-3 within different phases of wound healing, in particular, late-stage wound healing. It is also very important to identify the TGF-β1-controlling factors involved in slowing down the healing process upon wound epithelialization. TGF-β1, as a growth factor, is a known proponent of dermal fibrosis. Several strategies to modulate or regulate TGF's actions have been thoroughly investigated in an effort to create successful therapies. This study reviews current discourse regarding the many roles of TGF-β1 in wound healing by modulating infiltrated immune cells and the extracellular matrix. It is well established that TGF-β1 functions as a wound-healing promoting factor, and thereby if in excess it may lead to overhealing outcomes, such as hypertrophic scarring and keloid. Thus, the regulation of TGF-β1 in the later stages of the healing process remains as critical issue of which to better understand. One hypothesis is that cell communication is the key to regulate later stages of wound healing. To elucidate the role of keratinocyte/fibroblast cross talk in controlling the later stages of wound healing we need to: (1) identify those keratinocyte-released factors which would function as wound-healing stop signals, (2) evaluate the functionality of these factors in controlling the outcome of the healing process, and (3) formulate topical vehicles for these antifibrogenic factors to improve or even prevent the development of hypertrophic scarring and keloids as a result of deep trauma, burn injuries, and any type of surgical incision.

  13. Fibroblast growth factor signaling in metabolic regulation

    Directory of Open Access Journals (Sweden)

    Vera eNies


    Full Text Available The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases, and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed.In this review we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease, and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  14. Superficial zone protein (lubricin) in the different tissue compartments of the knee joint: modulation by transforming growth factor beta 1 and interleukin-1 beta. (United States)

    Lee, Sang Yang; Niikura, Takahiro; Reddi, A Hari


    Superficial-zone protein (SZP), also known as lubricin, is a key mediator of boundary lubrication and plays an important role in the functional integrity of the diarthrodial joint. The aim of this investigation was to examine the role of transforming growth factor beta (TGF-beta) and interleukin-1 beta (IL-1beta) on the expression of SZP in various compartments of the bovine knee joint: the superficial zone of articular cartilage, synovium, meniscus, and anterior and posterior cruciate ligaments. The effects of TGF-beta1 and IL-1beta on SZP expression were examined in explants and cells from the different tissue compartments. TGF-beta1 up-regulated the expression of SZP in cultured explants, but IL-1beta down-regulated it. Quantitative analysis of secreted proteins in the medium of the cells demonstrated significant stimulation by TGF-beta1 and inhibition by IL1-beta of the accumulation of SZP protein in all four tissues. Real-time polymerase chain reaction analysis revealed that TGF-beta1 significantly up-regulated SZP expression and that IL-1beta down-regulated it. These results revealed the modulation of SZP expression in various compartments of the knee joint by TGF-beta1 and IL-1beta. In addition, SZP was found to be immunolocalized at the surface layer of cells in histological sections of all four tissue compartments. Collectively, results of the current study on regulation of SZP expression by TGF-beta and IL-1 help provide new insights, into tissue engineering strategies to repair and regenerate the different tissue compartments in the articular joint with optimal lubrication.

  15. Anti-transforming growth factor-beta monoclonal antibodies prevent lung injury in hemorrhaged mice. (United States)

    Shenkar, R; Coulson, W F; Abraham, E


    Acute lung injury, characterized as the adult respiratory distress syndrome (ARDS), is a common clinical occurrence following blood loss and injury. We previously found increased levels of transforming growth factor (TGF)-beta 1 mRNA in murine intraparenchymal mononuclear cells and in alveolar macrophages within 1 h after hemorrhage. Because TGF-beta has potent proinflammatory and immunoregulatory properties, we investigated the effect of blocking TGF-beta with mAb on hemorrhage-induced pathology, cytokine mRNA levels in lungs, as well as survival from pneumonia. Mice treated with anti-TGF-beta mAb showed normal pulmonary histology 3 days after hemorrhage and resuscitation in contrast to the mononuclear and neutrophil infiltrates, intraalveolar hemorrhage, and interstitial edema found in hemorrhaged mice either treated with control antibody or not treated with any antibody. Decreased mRNA levels for IL-1 beta, TNF-alpha, IL-6, IL-10, and IFN-gamma as compared with untreated, hemorrhaged controls were present in intraparenchymal pulmonary mononuclear cells following therapy with anti-TGF-beta. In contrast, therapy with anti-TGF-beta increased mRNA levels for IL-1 beta and TNF-alpha in alveolar macrophages and for TGF-beta in peripheral blood mononuclear cells collected 3 days after hemorrhage. Administration of anti-TGF-beta to hemorrhaged mice did not correct the enhanced susceptibility to Pseudomonas aeruginosa pneumonia that exists after hemorrhage. These results suggest that TGF-beta has an important role in hemorrhage-induced acute lung injury, but does not contribute to the post-hemorrhage depression in pulmonary antibacterial response.

  16. Potassium inhibits dietary salt-induced transforming growth factor-beta production. (United States)

    Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W


    Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-beta, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-beta. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-beta demonstrated increased (35.2%) amounts of active TGF-beta in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-beta but did not affect production of TGF-beta by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the alpha subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-beta but did not alter TGF-beta production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-beta in animals receiving the high-salt diet but did not change urinary active TGF-beta in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake.

  17. Effect of transforming growth factor-beta1 on embryonic and posthatch muscle growth and development in normal and low score normal chicken. (United States)

    Li, X; Velleman, S G


    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation. The TGF-beta1 signal is carried by Smad proteins into the cell nucleus, inhibiting the expression of key myogenic regulatory factors including MyoD and myogenin. However, the molecular mechanism by which TGF-beta1 inhibits muscle cell proliferation and differentiation has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on in vivo skeletal muscle growth and development. A chicken line, Low Score Normal (LSN) with reduced muscling and upregulated TGF-beta1 expression, was used and compared to a normal chicken line. The injection of TGF-beta1 at embryonic day (ED) 3 significantly reduced the pectoralis major (p. major) muscle weight in the normal birds at 1 wk posthatch, whereas no significant difference was observed in the LSN birds. The difference between normal and LSN birds in response to TGF-beta1 is likely due to different levels of endogenous TGF-beta1 where the LSN birds have increased TGF-beta1 expression in their p. major muscle at both 17 ED and 6 wk posthatch. Smad3 expression was reduced by TGF-beta1 from 10 ED to 1 wk posthatch in normal p. major muscle. Unlike Smad3, Smad7 expression was not significantly affected by TGF-beta1 until posthatch in both normal and LSN p. major muscle. Expression of MyoD was reduced 35% by TGF-beta1 during embryonic development in normal p. major muscle, whereas LSN p. major muscle showed a delayed decrease at 1 d posthatch in MyoD expression in response to the TGF-beta1 treatment. Myogenin expression was reduced 29% by TGF-beta1 after hatch in normal p. major muscle. In LSN p. major muscle, TGF-beta1 treatment significantly decreased myogenin expression by 43% at 1 d posthatch and 32% at 1 wk posthatch. These data suggested that TGF-beta1 reduced p. major muscle growth by inhibiting MyoD and myogenin expression during both embryonic

  18. Protocol for maximising light signal of metallic magnetic calorimeters for neutrinoless double beta decay search (United States)

    Oh, S. Y.; Kim, G. B.; Kim, H. L.; Kim, I.; Kim, S. R.; Lee, H. J.; Lee, M. K.; Kim, Y. H.


    We report on a systematic study for maximising the signal size of metallic magnetic calorimeters (MMCs) used for large-area light detectors operating at milli-Kelvin temperatures. These light detectors are to be used for phonon-scintillation detection using a scintillating crystal for rare event search experiments. The light detector is composed of a 2 inch wafer as an absorber for scintillation light from a crystal, and an MMC as its sensor. A systematic calculation for the expected signal size is made with different SQUID selections, Er concentrations of an MMC sensor, dimensions of the meander-shaped pick-up coil, field currents and operating temperatures. The optimisation study finds that more than five times larger signals can be achieved compared with that of a reference condition in which 90 eV root-mean-squared threshold is obtained. We also describe the inductance measurement for several MMC devices with different size of the pick-up coil to be applied for an optimal condition. This optimisation protocol is also valid for MMC applications of x-ray, alpha and beta spectroscopies.

  19. Transforming growth factor-beta stimulates the expression of fibronectin by human keratinocytes. (United States)

    Wikner, N E; Persichitte, K A; Baskin, J B; Nielsen, L D; Clark, R A


    Transforming growth factor beta (TGF-beta) is a 25-kD protein which has regulatory activity over a variety of cell types. It is distinct from epidermal growth factor (EGF) and EGF analogs, and exerts its action via a distinct receptor. Its effect on proliferation or differentiation can be positive or negative depending on the cell type and the presence of other growth factors. It also modulates the expression of cellular products. TGF-beta causes fibroblasts to increase their production of the extracellular matrix components, fibronectin and collagen. Human keratinocytes (HK) are known to have TGF-beta receptors. We wished to study the effect of TGF-beta on the production of extracellular matrix proteins by human keratinocytes in culture. Human keratinocytes were grown in serum-free defined medium (MCDB-153) to about 70% confluence. Following a 16-h incubation in medium lacking EGF and TGF-beta, cells were incubated for 12 h in medium containing varying concentrations of EGF and TGF-beta. Cells were then labeled with 35S-methionine for 10 h in the same conditions. Labeled proteins from the medium were analyzed by SDS-PAGE and autoradiography. TGF-beta at 10 ng/ml induced a sixfold increase in the secretion of fibronectin, as well as an unidentified 50-kD protein. Thrombospondin production was also increased, but not over a generalized twofold increase in the production of all other proteins. EGF, at 10 ng/ml, caused a smaller additive effect. TGF-beta may be an important stimulator of extracellular matrix production by human keratinocytes.

  20. The nonsteroidal anti-inflammatory drug, nabumetone, differentially inhibits beta-catenin signaling in the MIN mouse and azoxymethane-treated rat models of colon carcinogenesis. (United States)

    Roy, Hemant K; Karolski, William J; Wali, Ramesh K; Ratashak, Anne; Hart, John; Smyrk, Thomas C


    The mechanisms through which beta-catenin signaling is inhibited during colorectal cancer chemoprevention by nonsteroidal anti-inflammatory agents is incompletely understood. We report that nabumetone decreased uninvolved intestinal mucosal beta-catenin levels in the MIN mouse with a concomitant increase in glycogen synthase kinase (GSK)-3beta levels, an enzyme that targets beta-catenin for destruction. However, in the azoxymethane-treated rat, where beta-catenin is frequently rendered GSK-3beta-insensitive, nabumetone failed to alter beta-catenin levels but did decrease beta-catenin nuclear localization and transcriptional activity as gauged by cyclin D1. In conclusion, we demonstrate that the differential mechanisms for beta-catenin suppression may be determined, at least partly, by GSK-3beta.

  1. [The role of connective tissue growth factor, transforming growth factor and Smad signaling pathway during corneal wound healing]. (United States)

    Yang, Yong-mei; Wu, Xin-yi; Du, Li-qun


    To study the expression and location of connective tissue growth factor (CTGF) and transforming growth factor-beta(1) (TGF-beta(1)) protein and mRNA in rabbit cornea during the wound healing process. To assess the interaction between CTGF and TGF-beta(1), as well as the Smad signaling pathway involved. Twenty-six Albino white rabbits were used as experimental animals and randomly divided into 4 groups: (1) CONTROL GROUP: two rabbits. (2) Simple corneal injury group: a 3 mm diameter and 0.05 mm depth corneal tissue was excised by a trephine at the anterior central cornea as a corneal wound model in 12 rabbits. Two rabbits were randomly sacrificed at 2 h, 6 h, 1 d, 3 d, 7 d and 21 d after the trauma. (3) TGF-beta(1) antibodies treated group: 6 rabbits were injected with TGF-beta(1) antibodies (15.5 microg) subconjunctivally after corneal trephine. Two rabbits were randomly sacrificed at 3 d, 7 d and 21 d after the injection. (4) Smad4 antibodies treated group: 6 rabbits were injected with Smad4 antibodies (20 microg) subconjunctivally after corneal trephine. Two rabbits were randomly sacrificed at 3 d, 7 d and 21 d after the injection. Protein of CTGF, TGF-beta(1), and FN was assessed with immunohistochemistry. CTGF and type one collagen mRNA were measured in by in situ hybridization. (1) CTGF protein or mRNA did not exist in normal rabbit corneas, but TGF-beta(1) protein was expressed in normal rabbit cornea epithelium. (2) Cornea fibroblasts activated 6 h after the operation. Expression of CTGF, TGF-beta(1), FN protein and mRNA of CTGF and type one collagen were upregulated after cornea injury, and reached the highest level in 3 days. The expression was reduced to the basal level 21 days later. (3) Injection of TGF-beta(1) antibodies reduced the expression of CTGF, TGF-beta(1) and FN in the cornea stroma and down-regulated the expression of CTGF in corneal epithelial cells. (4) Injection of Smad4 antibodies inhibited the expression of TGF in the stroma but did not

  2. New Calculations for Phase Space Factors Involved in Double Beta Decay

    CERN Document Server

    Stoica, Sabin


    We present new results for the phase space factors involved in double beta decay for beta-beta- transitions to ground states and excited 0+1 states, for isotopes of experimental interest. The Coulomb distortion of the electron wave functions is treated by solving numerically the Dirac equation with inclusion of the finite nuclear size and electron screening effects, and using a Coulomb potential derived from a realistic proton density distribution in the daughter nucleus. Our results are compared with other results from literature, obtained in different approximations, and possible causes that can give differences are discussed.

  3. Polyclonal antibody localizes glia maturation factor beta-like immunoreactivity in neurons and glia. (United States)

    Wang, B R; Zaheer, A; Lim, R


    A rabbit polyclonal antibody (91-01) was raised against recombinant human glia maturation factor beta (r-hGMF-beta). The antibody did not cross-react with a number of other growth factors on ELISA test. When compared with the monoclonal antibody G2-09 previously obtained, 91-01 immunoblotted the same protein band in rat brain extract. However, unlike G2-09 which immunostained only astrocytes and Bergmann glia, 91-01 stained neurons as well. Many but not all neurons in the central and peripheral nervous system were positive for GMF-beta. The larger cell population stained by the polyclonal antibody was most likely due to its increased sensitivity, although other explanations are possible. The presence of GMF-beta-like immunoreactivity in both neurons and glia raises the possibility of a wider range of cell-cell interaction than was previously considered.

  4. Identification of Tctex2 beta, a novel dynein light chain family member that interacts with different transforming growth factor-beta receptors

    NARCIS (Netherlands)

    Meng, QingJun; Lux, Andreas; Holloschi, Andreas; Li, Jian; Hughes, John M. X.; Foerg, Tassilo; McCarthy, John E. G.; Heagerty, Anthony M.; Kioschis, Petra; Hafner, Mathias; Garland, John M.


    Endoglin is a membrane-inserted protein that is preferentially synthesized in angiogenic vascular endothelial and smooth muscle cells. Endoglin associates with members of the transforming growth factor-beta(TGF-beta) receptor family and has been identified as the gene involved in hereditary hemorrha

  5. Factors That Affect the Degree of Twist in beta-Sheet Structures : A Molecular Dynamics Simulation Study of a Cross-beta Filament of the GNNQQNY Peptide

    NARCIS (Netherlands)

    Periole, Xavier; Rampioni, Aldo; Vendruscolo, Michele; Mark, Alan E.


    By exploiting the recent availability of the crystal structure of a cross-beta filament of the GNNQQNY peptide fragment of the yeast prion protein Sup35, possible factors affecting the twisting of beta-sheets structures have been analyzed. The advantage of this system is that it is composed entirely

  6. Positive reciprocal regulation of ubiquitin C-terminal hydrolase L1 and beta-catenin/TCF signaling.

    Directory of Open Access Journals (Sweden)

    Anjali Bheda

    Full Text Available Deubiquitinating enzymes (DUBs are involved in the regulation of distinct critical cellular processes. Ubiquitin C-terminal Hydrolase L1 (UCH L1 has been linked to several neurological diseases as well as human cancer, but the physiological targets and the regulation of UCH L1 expression in vivo have been largely unexplored. Here we demonstrate that UCH L1 up-regulates beta-catenin/TCF signaling: UCH L1 forms endogenous complexes with beta-catenin, stabilizes it and up-regulates beta-catenin/TCF-dependent transcription. We also show that, reciprocally, beta-catenin/TCF signaling up-regulates expression of endogenous UCH L1 mRNA and protein. Moreover, using ChIP assay and direct mutagenesis we identify two TCF4-binding sites on the uch l1 promoter that are involved in this regulation. Since the expression and deubiquitinating activity of UCH L1 are required for its own basic promoter activity, we propose that UCH L1 up-regulates its expression by activation of the oncogenic beta-catenin/TCF signaling in transformed cells.

  7. Tumor necrosis factor beta and ultraviolet radiation are potent regulators of human keratinocyte ICAM-1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Krutmann, J.; Koeck, A.S.; Schauer, E.; Parlow, F.; Moeller, A.K.; Kapp, A.; Foerster, E.S.; Schoepf, E.L.; Luger, T.A. (Univ. of Freiburg (Germany, F.R.))


    Intercellular adhesion molecule-1 (ICAM-1) functions as a ligand of leukocyte function-associated antigen-1 (LFA-1), as well as a receptor for human picorna virus, and its regulation thus affects various immunologic and inflammatory reactions. The weak, constitutive ICAM-1 expression on human keratinocytes (KC) can be up-regulated by cytokines such as interferon-gamma (IFN gamma) and tumor necrosis factor alpha (TNF alpha). In order to further examine the regulation of KC ICAM-1 expression, normal human KC or epidermoid carcinoma cells (KB) were incubated with different cytokines and/or exposed to ultraviolet (UV) radiation. Subsequently, ICAM-1 expression was monitored cytofluorometrically using a monoclonal anti-ICAM-1 antibody. Stimulation of cells with recombinant human (rh) interleukin (IL) 1 alpha, rhIL-4, rhIL-5, rhIL-6, rh granulocyte/macrophage colony-stimulating factor (GM-CSF), rh interferon alpha (rhIFN alpha), and rh transforming growth factor beta (TGF beta) did not increase ICAM-1 surface expression. In contrast, rhTNF beta significantly up-regulated ICAM-1 expression in a time- and dose-dependent manner. Moreover, the combination of rhTNF beta with rhIFN gamma increased the percentage of ICAM-1-positive KC synergistically. This stimulatory effect of rhTNF beta was further confirmed by the demonstration that rhTNF beta was capable of markedly enhancing ICAM-1 mRNA expression in KC. Finally, exposure of KC in vitro to sublethal doses of UV radiation (0-100 J/m2) prior to cytokine (rhIFN tau, rhTNF alpha, rhTNF beta) stimulation inhibited ICAM-1 up-regulation in a dose-dependent fashion. These studies identify TNF beta and UV light as potent regulators of KC ICAM-1 expression, which may influence both attachment and detachment of leukocytes and possibly viruses to KC.

  8. Hepatocyte Growth Factor Suppresses Transforming Growth Factor-Beta-1 and Type III Collagen in Human Primary Renal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Shan Mou


    Full Text Available Tubulointerstitial changes in the diabetic kidney correlate closely with renal fibrosis, and transforming growth factor-beta-1 (TGF-β1 is thought to play a key role in this process. In contrast, hepatocyte growth factor (HGF has shown therapeutic effects on injured renal tubules in animal models. This study was undertaken to test the hypothesis that the preventive effects of HGF may result from interventions in TGF-β1-mediated signaling and collagen III secretion. We examined the expression of HGF/HGF receptor (c-Met and TGF-β1 in renal fibroblasts at multiple time points. The effects of recombinant human HGF on TGF-β1 expression were studied by RT-PCR and Western blotting, and the levels of collagen III were measured by ELISA. In the high-glucose condition, the expression of HGF and c-Met in renal fibroblasts was detected as early as 6 hours following cell culture while the level of TGF-β1 peaked at 96 hours. The addition of recombinant human HGF to the culture media dose-dependently inhibited TGF-β1 mRNA expression and reduced collagen III secretion by 34%. These results indicate that, during hyperglycemia, HGF inhibits TGF-β1 signaling and type III collagen activation in interstitial fibroblasts. Furthermore, we should recognize that changes in the balance between HGF and TGF-β1 might be decisive in the pathogenesis of chronic renal fibrosis. Therefore, administration of HGF to restore this balance may offer a novel therapeutic intervention in managing renal fibrogenesis in diabetic nephropathy.

  9. The role of enhanced cutaneous IL-1beta signaling in a rat tibia fracture model of complex regional pain syndrome. (United States)

    Li, Wen-Wu; Sabsovich, Ilya; Guo, Tian-Zhi; Zhao, Rong; Kingery, Wade S; Clark, J David


    Tibia fracture in rats initiates a syndrome resembling the complex regional pain syndrome type I. Accumulating evidence indicates that IL-1beta is involved in the modulation of nociceptive information and it acts as an intermediate inflammatory mediator via up-regulation of NGF. We hypothesized that IL-1beta signaling might mediate the development of the CRPS-like changes after tibial fracture, either directly or by stimulating NGF expression. Rats underwent distal tibia fracture and casting for 4 weeks and were chronically treated with an IL-1 receptor antagonist (IL-1ra). Nociceptive testing and assessment of edema and hindpaw warmth were performed at baseline and after cast removal. Bone microarchitecture was evaluated by micro-computed tomography. Confocal immunofluorescence and in situ hybridization techniques were used to evaluate changes in the cutaneous expression of IL-1beta at 4 weeks post-fracture. The nociceptive and vascular effects of intraplantar IL-1beta injections were evaluated in intact rats at different time points after injection. We found that: (1) IL-1ra reduced fracture-induced nociceptive sensitization, but did not decrease hindpaw edema or warmth, (2) fracture chronically up-regulated IL-1beta mRNA and protein expression in hindpaw skin keratinocytes, (3) IL-1beta intraplantar injection induced mechanical allodynia in a dose-dependent manner and stimulated keratinocyte NGF expression in the hindpaw skin, and (4) intraplantar injection of NGF-induced nociceptive sensitization. Collectively, these results indicate that cutaneous IL-1beta signaling can contribute to chronic regional nociceptive sensitization after fracture, possibly by stimulating NGF over-expression in keratinocytes. Our data also highlight the importance of the keratinocyte as the primary source of post-traumatic IL-1beta over-expression.

  10. Cardiac fibroblasts are predisposed to convert into myocyte phenotype: Specific effect of transforming growth factor. beta

    Energy Technology Data Exchange (ETDEWEB)

    Eghbali, M.; Tomek, R.; Woods, C.; Bhambi, B. (Univ. of Chicago, IL (United States))


    Cardiac fibroblasts are mainly responsible for the synthesis of major extracellular matrix proteins in the heart, including fibrillar collagen types I and III and fibronectin. In this report we show that these cells, when stimulated by transforming growth factor {beta}{sub 1} (TGF-{beta}{sub 1}), acquire certain myocyte-specific properties. Cultured cardiac fibroblasts from adult rabbit heart were treated with TGF-{beta}{sub 1}, (10-15 ng/ml) for different periods of time. Northern hybridization analysis of total RNA showed that cells treated with TGF-{beta}{sub 1} became stained with a monoclonal antibody to muscle-specific actin. After treatment of quiescent cells with TGF-{beta}{sub 1}, cell proliferation (as measured by ({sup 3}H)thymidine incorporation) was moderately increased. Cultured cardiac fibroblasts at the subconfluent stage, when exposed to TGF-{beta}{sub 1} in the presence of 10% fetal bovine serum, gave rise to a second generation of slowly growing cells that expressed muscle-specific actin filaments. The findings demonstrate that cardiac fibroblasts can be made to differentiate into cells that display many characteristics of cardiac myocytes. TGF-{beta}{sub 1} seems to be a specific inducer of such conversion.

  11. Effects of ultrasound on Transforming Growth Factor-beta genes in bone cells

    Directory of Open Access Journals (Sweden)

    J Harle


    Full Text Available Therapeutic ultrasound (US is a widely used form of biophysical stimulation that is increasingly applied to promote fracture healing. Transforming growth factor-beta (TGF-beta, which is encoded by three related but different genes, is known to play a major part in bone growth and repair. However, the effects of US on the expression of the TGF-beta genes and the physical acoustic mechanisms involved in initiating changes in gene expression in vitro, are not yet known. The present study demonstrates that US had a differential effect on these TGF-beta isoforms in a human osteoblast cell line, with the highest dose eliciting the most pronounced up-regulation of both TGF-beta1 and TGF-beta3 at 1 hour after treatment and thereafter declining. In contrast, US had no effect on TGF-beta2 expression. Fluid streaming rather than thermal effects or cavitation was found to be the most likely explanation for the gene responses observed in vitro.

  12. Transforming growth factor-beta is elevated in unpasteurized cow's milk. (United States)

    Peroni, Diego G; Piacentini, Giorgio L; Bodini, Alessandro; Pigozzi, Roberta; Boner, Attilio L


    Unpasteurized milk consumption was associated with less atopy prevalence. Not only microbial load but also fatty acids and cytokines such as transforming growth factor-beta(1) (TGF-beta(1)) may play a role on the effect of unpasteurized milk. Levels of TGF-beta(1) in different cow's milk samples were evaluated: we consider raw unpasteurized milk before and after boiling, commercial pasteurized and micro-filtrated cow's milk and different commercially available cow's milk formulas. TGF-beta(1) concentration in raw unpasteurized cow's milk was 642.0 +/- 52.9 pg/ml before boiling and decreased significantly after boiling (302.7 +/- 50.59 pg/ml) (p < 0.05). TGF-beta(1) concentrations were also significantly lower in commercial pasteurized milk (246.2 +/- 43.15 pg/ml) and in commercial micro-filtrated milk (213.0 +/- 31.6 pg/ml) in comparison to unpasteurized unboiled milk (p = 0.002). The levels of TGF-beta(1) in all formula samples were below the threshold of detectability for the assays. As TGF-beta(1) in the milk may contribute to the development of the immature gastrointestinal tract by influencing IgA production and oral tolerance induction, we suggest to consider not only the microbial compounds but also the cytokine patterns to explain the protective effect of unpasteurized cow's milk on allergic disorders.

  13. Transforming growth factor-beta induces nerve growth factor expression in pancreatic stellate cells by activation of the ALK-5 pathway. (United States)

    Haas, Stephan L; Fitzner, Brit; Jaster, Robert; Wiercinska, Eliza; Gaitantzi, Haristi; Jesnowski, Ralf; Jesenowski, Ralf; Löhr, J-Matthias; Singer, Manfred V; Dooley, Steven; Breitkopf, Katja


    Nerve growth factor (NGF), a survival factor for neurons enforces pain by sensitizing nociceptors. Also in the pancreas, NGF was associated with pain and it can stimulate the proliferation of pancreatic cancer cells. Hepatic stellate cells (HSC) respond to NGF with apoptosis. Transforming growth factor (TGF)-beta, one of the strongest pro-fibrogenic activators of pancreatic stellate cells (PSC) induced NGF and its two receptors in an immortalized human cell line (ihPSC) and primary rat PSC (prPSC) as determined by RT-PCR, western blot, and immunofluorescence. In contrast to HSC, PSC expressed both NGF receptors, although p75(NTR) expression was weak in prPSC. In contrast to ihPSC TGF-beta activated both Smad signaling cascades in prPSC. NGF secretion was diminished by the activin-like kinase (ALK)-5 inhibitor SB431542, indicating the predominant role of ALK5 in activating the NGF system in PSC. While NGF did not affect proliferation or survival of PSC it induced expression of Inhibitor of Differentiation-1. We conclude that under conditions of upregulated TGF-beta, like fibrosis, NGF levels will also increase in PSC which might contribute to pancreatic wound healing responses.

  14. Identification and expression of Smads associated with TGF-beta/activin/nodal signaling pathways in the rainbow trout (Oncorhynuchus mykiss) (United States)

    The Smad proteins are essential components of the TGF-beta/activin/nodal family signaling pathway. We report the identification and characterization of transcripts representing 3 receptor Smads (Smad2a, Smad2b, Smad3), 2 common Smads (Smad4a, Smad4b) and one inhibitory Smad (Smad7). Phylogenetic an...

  15. Loss of the tumor suppressor CYLD enhances Wnt/beta-catenin signaling through K63-linked ubiquitination of Dvl

    NARCIS (Netherlands)

    Tauriello, D.V.; Haegebarth, A.; Kuper, I.; Edelmann, M.J.; Henraat, M.; Canninga-van Dijk, M.R.; Kessler, B.M.; Clevers, H.; Maurice, M.M.


    The mechanism by which Wnt receptors transduce signals to activate downstream beta-catenin-mediated target gene transcription remains incompletely understood but involves Frizzled (Fz) receptor-mediated plasma membrane recruitment and activation of the cytoplasmic effector Dishevelled (Dvl). Here, w

  16. Cloning the promoter for transforming growth factor-beta type III receptor. Basal and conditional expression in fetal rat osteoblasts (United States)

    Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.


    Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.

  17. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. (United States)

    Kurosu, Hiroshi; Choi, Mihwa; Ogawa, Yasushi; Dickson, Addie S; Goetz, Regina; Eliseenkova, Anna V; Mohammadi, Moosa; Rosenblatt, Kevin P; Kliewer, Steven A; Kuro-o, Makoto


    The fibroblast growth factor (FGF) 19 subfamily of ligands, FGF19, FGF21, and FGF23, function as hormones that regulate bile acid, fatty acid, glucose, and phosphate metabolism in target organs through activating FGF receptors (FGFR1-4). We demonstrated that Klotho and betaKlotho, homologous single-pass transmembrane proteins that bind to FGFRs, are required for metabolic activity of FGF23 and FGF21, respectively. Here we show that, like FGF21, FGF19 also requires betaKlotho. Both FGF19 and FGF21 can signal through FGFR1-3 bound by betaKlotho and increase glucose uptake in adipocytes expressing FGFR1. Additionally, both FGF19 and FGF21 bind to the betaKlotho-FGFR4 complex; however, only FGF19 signals efficiently through FGFR4. Accordingly, FGF19, but not FGF21, activates FGF signaling in hepatocytes that primarily express FGFR4 and reduces transcription of CYP7A1 that encodes the rate-limiting enzyme for bile acid synthesis. We conclude that the expression of betaKlotho, in combination with particular FGFR isoforms, determines the tissue-specific metabolic activities of FGF19 and FGF21.

  18. Interaction of transforming growth factor-beta-1 with alpha-2-macroglobulin from normal and inflamed equine joints.


    Coté, N; Trout, D R; Hayes, M. A.


    Binding between equine plasma alpha-2-macroglobulin (alpha 2M) and several cytokines known to participate in inflammatory reactions in other species was initially examined. Plasma was obtained from 5 horses with various abnormalities. Samples, both untreated and after reaction with methylamine, were incubated with exogenous, radiolabeled, porcine-derived transforming growth factor-beta-1 (125I-TGF-beta 1), recombinant human interleukin-1-beta (125I-IL-1 beta), and recombinant human tumor necr...

  19. Is Serum Transforming Growth Factor beta-1 Superior to Serum Creatinine for assessing Renal Failure and Renal Transplant Rejection


    Gyanendra Kumar Sonkar, Usha; R.G. Singh


    A sustained overexpression of Transforming Growth Factor beta1 (TGF beta1), a cytokine has beenimplicated in the pathogenesis of fibrosis of kidney leading to end stage . The main aim of present studywas to find the utility of TGF beta1 and serum creatinine in differentiating chronic renal failure (CRF)from acute renal failure (ARF), renal transplant rejection (Tx Rej) and stable renal transplant (Tx Stb)and to study has attempted histopathological correlation of rejection cases with TGF beta...

  20. Amyloid-beta: a crucial factor in Alzheimer's disease. (United States)

    Sadigh-Eteghad, Saeed; Sabermarouf, Babak; Majdi, Alireza; Talebi, Mahnaz; Farhoudi, Mehdi; Mahmoudi, Javad


    Alzheimer's disease (AD) is the most prevalent form of dementia which affects people older than 60 years of age. In AD, the dysregulation of the amyloid-beta (Aβ) level leads to the appearance of senile plaques which contain Aβ depositions. Aβ is a complex biological molecule which interacts with many types of receptors and/or forms insoluble assemblies and, eventually, its nonphysiological depositions alternate with the normal neuronal conditions. In this situation, AD signs appear and the patients experience marked cognitional disabilities. In general, intellect, social skills, personality, and memory are influenced by this disease and, in the long run, it leads to a reduction in quality of life and life expectancy. Due to the pivotal role of Aβ in the pathobiology of AD, a great deal of effort has been made to reveal its exact role in neuronal dysfunctions and to finding efficacious therapeutic strategies against its adverse neuronal outcomes. Hence, the determination of its different molecular assemblies and the mechanisms underlying its pathological effects are of interest. In the present paper, some of the well-established structural forms of Aβ, its interactions with various receptors and possible molecular and cellular mechanisms underlying its neurotoxicity are discussed. In addition, several Aβ-based rodent models of AD are reviewed. © 2014 S. Karger AG, Basel.

  1. Reduction of beta-amyloid-induced neurotoxicity on hippocampal cell cultures by moderate acidosis is mediated by transforming growth factor beta. (United States)

    Uribe-San Martín, R; Herrera-Molina, R; Olavarría, L; Ramírez, G; von Bernhardi, R


    Progression of Alzheimer's disease (AD) is associated with chronic inflammation and microvascular alterations, which can induce impairment of brain perfusion because of vascular pathology and local acidosis. Acidosis can promote amyloidogenesis, which could further contribute to neurodegenerative changes. Nevertheless, there is also evidence that acidosis has neuroprotective effects in hypoxia models. Here we studied the effect of moderate acidosis on beta-amyloid (Abeta)-mediated neurotoxicity. We evaluated morphological changes, cell death, nitrite production and reductive metabolism of hippocampal cultures from Sprague-Dawley rats exposed to Abeta under physiological (pH 7.4) or moderate acidosis (pH 7.15-7.05). In addition, because transforming growth factor beta (TGFbeta) 1 is neuroprotective and is induced by several pathophysiological conditions, we assessed its presence at the different pHs. The exposure of hippocampal cells to Abeta induced a conspicuous reduction of neurites' arborization, as well as increased neuronal death and nitric oxide production. However, Abeta neurotoxicity was significantly attenuated when hippocampal cultures were kept at pH 7.15-7.05, showing a 68% reduction on lactate dehydrogenase release compared with cultures exposed to Abeta at pH 7.4 (Pacidosis compared with basal pH media (Pacidosis decreased intracellular TGFbeta1 precursor (latency associated protein-TGFbeta1) and increased up to fourfold TGFbeta1 bioactivity, detecting a 43% increase in the active TGFbeta levels in cultures exposed to Abeta and moderate acidosis. Inhibition of TGFbeta signaling abolished the neuroprotective effect of moderate acidosis. Our results show that moderate acidosis protected hippocampal cells from Abeta-mediated neurotoxicity through the increased activation and signaling potentiation of TGFbeta.

  2. Effect of human papillomavirus type 16 E6 and E7 oncogenes on the activity of the transforming growth factor-beta2 (TGF-beta2) promoter. (United States)

    Murvai, M; Borbély, A A; Kónya, J; Gergely, L; Veress, G


    The effect of the human papillomavirus type 16 (HPV 16) E6 and E7 proteins was studied on the transcriptional activity of the human transforming growth factor beta2 (TGF-beta) promoter in different cell lines. Luciferase tests were performed after co-transfection of cells with TGF-beta2 reporter constructs and HPV 16 E6 or E7 expression vectors. HPV 16 E7, but not E6 significantly repressed TGF-beta2 promoter activity in NIH/3T3 cells, which have wild-type p53 and pRb proteins. The repressive effect of HPV 16 E7 on the transcriptional activity of the TGF-beta2 promoter could be localized to the promoter region -528 to -251 relative to the transcriptional start site. Ability of E7 to bind pRb was necessary to inhibit the TGF-beta2 promoter. Over-expression of the transcription factor E2F-1 had an effect on the TGF-beta2 promoter similar to that of E7, which may indicate that HPV 16 E7 represses the TGF-beta2 promoter by releasing E2F from pRb.

  3. Effects of transforming growth factor-beta on long-term human cord blood monocyte cultures

    Energy Technology Data Exchange (ETDEWEB)

    Orcel, P.; Bielakoff, J.; De Vernejoul, M.C. (INSERM U18, Hopital Lariboisiere, Paris (France))


    Transforming growth factor-beta (TGF-beta) modulates growth and differentiation in many cell types and is abundant in bone matrix. We recently showed that human cord blood monocytes cultured in the presence of 1,25(OH)2D3 acquire some features of osteoclast precursors. Since TGF-beta has been shown to influence bone resorption in organ culture, we have studied the effect of TGF-beta (1-1,000 pg/ml) on cord blood monocyte cultures. These cells were cultured on plastic substrate during 3 weeks in the presence of 20% horse serum and 10(-9) M 1,25(OH)2D3. TGF-beta, from a concentration of 10 pg/ml in the culture medium, decreased in a dose dependent manner the formation of multinucleated cells. At a concentration of TGF-beta of 1 ng/ml, the multinucleated cells were reduced to 2.1% +/- 0.3%, compared to 19.3% +/- 1.5% in control cultures. TGF-beta inhibited in a dose-dependent manner the proliferation of cord blood monocytes as assessed by 3H-thymidine incorporation at 7 and 14 days of culture. The fusion index was also decreased by 3 weeks of treatment with TGF-beta. Indomethacin did not reverse the inhibitory effects of TGF-beta. The expression of the osteoclastic phenotype was assessed using two different antibodies: 23C6, a monoclonal antibody directed against the vitronectin receptor, which is highly expressed by osteoclasts but not by adult monocytes, and an antibody to HLA-DR, which is not present on osteoclast. TGF-beta decreased the expression of HLA-DR and increased in a dose-dependent manner the proportion of 23C6-labeled cells; these results suggest that TGF-beta could modulate a differentiation effect to the osteoclastic phenotype. However, when cord blood monocytes were cultured on devitalized rat calvariae prelabeled with 45Ca, TGF-beta did not induce any 45Ca release from bone cultured with monocytes.

  4. Loss of transforming growth factor-beta 2 leads to impairment of central synapse function

    Directory of Open Access Journals (Sweden)

    Rickmann Michael


    Full Text Available Abstract Background The formation of functional synapses is a crucial event in neuronal network formation, and with regard to regulation of breathing it is essential for life. Members of the transforming growth factor-beta (TGF-β superfamily act as intercellular signaling molecules during synaptogenesis of the neuromuscular junction of Drosophila and are involved in synaptic function of sensory neurons of Aplysia. Results Here we show that while TGF-β2 is not crucial for the morphology and function of the neuromuscular junction of the diaphragm muscle of mice, it is essential for proper synaptic function in the pre-Bötzinger complex, a central rhythm organizer located in the brainstem. Genetic deletion of TGF-β2 in mice strongly impaired both GABA/glycinergic and glutamatergic synaptic transmission in the pre-Bötzinger complex area, while numbers and morphology of central synapses of knock-out animals were indistinguishable from their wild-type littermates at embryonic day 18.5. Conclusion The results demonstrate that TGF-β2 influences synaptic function, rather than synaptogenesis, specifically at central synapses. The functional alterations in the respiratory center of the brain are probably the underlying cause of the perinatal death of the TGF-β2 knock-out mice.

  5. FoxO3a mediates transforming growth factor-beta1-induced apoptosis in FaO rat hepatoma cells. (United States)

    Kim, Byung-Chul


    FoxO3a is a member of the forkhead box class O (FoxO) transcription factor family and an important regulator of apoptosis. This work aimed to elucidate the involvement of FoxO3a in transforming growth factor-beta1 (TGF-beta1)-induced apoptosis in FaO rat hepatoma cells. TGF-beta1 caused a time-dependent activation of FoxO3a and a subsequent increase in FoxO response-element-containing luciferase reporter activity, which was Akt-sensitive. The FaO cells stably transfected with a wild type FoxO3a were more susceptible to the formation of apoptotic bodies, populations of sub-G1 apoptotic cells, and collapse of the mitochondrial-membrane potential triggered by TGF-beta1. In contrast, transfection with small-interfering RNA (siRNA) oligonucleotide specific for FoxO3a significantly inhibited caspase activation in FaO cells treated with TGF-beta1. It thus appears that FoxO3a plays a crucial mediatory role in the TGF-beta1 signaling pathway leading to apoptosis.

  6. Facilitatory interplay in alpha 1a and beta 2 adrenoceptor function reveals a non-Gq signaling mode: implications for diversification of intracellular signal transduction. (United States)

    Copik, Alicja J; Ma, Cynthia; Kosaka, Alan; Sahdeo, Sunil; Trane, Andy; Ho, Hoangdung; Dietrich, Paul S; Yu, Helen; Ford, Anthony P D W; Button, Donald; Milla, Marcos E


    Agonist occupied alpha(1)-adrenoceptors (alpha(1)-ARs) engage several signaling pathways, including phosphatidylinositol hydrolysis, calcium mobilization, arachidonic acid release, mitogen-activated protein (MAP) kinase activation, and cAMP accumulation. The natural agonist norepinephrine (NE) activates with variable affinity and intrinsic efficacy all adrenoceptors, and in cells that coexpress alpha(1)- and beta-AR subtypes, such as cardiomyocytes, this leads to coactivation of multiple downstream pathways. This may result in pathway cross-talk with significant consequences to heart physiology and pathologic state. To dissect signaling components involved specifically in alpha(1A)- and beta(2)-AR signal interplay, we have developed a recombinant model system that mimics the levels of receptor expression observed in native cells. We followed intracellular Ca(2+) mobilization to monitor in real time the activation of both G(q) and G(s) pathways. We found that coactivation of alpha(1A)- and beta(2)-AR by the nonselective agonist NE or via a combination of the highly selective alpha(1A)-AR agonist A61603 and the beta-selective agonist isoproterenol led to increases in Ca(2+) influx from the extracellular compartment relative to stimulation with A61603 alone, with no effect on the associated transient release of Ca(2+) from intracellular stores. This effect became more evident upon examination of an alpha(1A)-AR variant exhibiting a partial defect in coupling to G(q), and we attribute it to potentiation of a non G(q)-pathway, uncovered by application of a combination of xestospongin C, an endoplasmic reticulum inositol 1,4,5-triphosphate receptor blocker, and 2-aminoethoxydiphenyl borate, a nonselective storeoperated Ca(2+) entry channel blocker. We also found that stimulation with A61603 of a second alpha(1A)-AR variant entirely unable to signal induced no Ca(2+) unless beta(2)-AR was concomitantly activated. These results may be accounted for by the presence of alpha

  7. Mutations in the human naked cuticle homolog NKD1 found in colorectal cancer alter Wnt/Dvl/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Jianhui Guo

    Full Text Available BACKGROUND: Mutation of Wnt signal antagonists Apc or Axin activates beta-catenin signaling in many cancers including the majority of human colorectal adenocarcinomas. The phenotype of apc or axin mutation in the fruit fly Drosophila melanogaster is strikingly similar to that caused by mutation in the segment-polarity gene, naked cuticle (nkd. Nkd inhibits Wnt signaling by binding to the Dishevelled (Dsh/Dvl family of scaffold proteins that link Wnt receptor activation to beta-catenin accumulation and TCF-dependent transcription, but human NKD genes have yet to be directly implicated in cancer. METHODOLOGY/PRINCIPAL FINDINGS: We identify for the first time mutations in NKD1--one of two human nkd homologs--in a subset of DNA mismatch repair-deficient colorectal tumors that are not known to harbor mutations in other Wnt-pathway genes. The mutant Nkd1 proteins are defective at inhibiting Wnt signaling; in addition, the mutant Nkd1 proteins stabilize beta-catenin and promote cell proliferation, in part due to a reduced ability of each mutant Nkd1 protein to bind and destabilize Dvl proteins. CONCLUSIONS/SIGNIFICANCE: Our data raise the hypothesis that specific NKD1 mutations promote Wnt-dependent tumorigenesis in a subset of DNA mismatch-repair-deficient colorectal adenocarcinomas and possibly other Wnt-signal driven human cancers.

  8. Indices of brain beta-adrenergic receptor signal transduction in the learned helplessness animal model of depression. (United States)

    Gurguis, G N; Kramer, G; Petty, F


    Both stress response and antidepressant drug action may be mediated by beta-adrenergic receptors (beta AR). Since learned helplessness is a stress-induced animal model of depression, beta AR are relevant to investigate in this model. To date, studies have measured changes in total receptor density (RT), but have not examined more detailed aspects of signal transduction mechanisms such as coupling of the receptor to GS protein. We have investigated brain beta AR coupling in the frontal cortex, hippocampus and hypothalamus of rats exposed to inescapable shock and then tested for learned helplessness, and in both tested and naive controls using [125I]-iodocyanopindolol (ICYP) as the ligand. Both antagonist-saturation and agonist-displacement experiments were conducted, and the specificity for the beta AR was optimized by excluding ICYP binding to 5HT1B receptors. The percentage receptor density in the high-conformational state (%RH) and the ratio of agonist (isoproterenol) dissociation constant from the receptor in the low-/high-conformational states (KL/KH) were used as indices of coupling to GS protein. No significant differences were found between rats developing learned helplessness and non-helpless rats after inescapable stress in any parameter measured in any brain region. In the frontal cortex, exposure to inescapable shock induced beta AR uncoupling from GS protein as suggested by a low KL/KH ratio both in helpless and non-helpless rats but not in either control group. In the hypothalamus, there were trends for higher RL, RT and KL/KH ratio in helpless rats and stressed controls compared to naive controls. These findings suggest that beta AR binding parameters in frontal cortex, hippocampus or hypothalamus did not differentiate between helpless and non-helpless rats. Changes in beta AR coupling observed in these brain regions may reflect effects of stress, which appeared to be region-specific, rather than stress-induced behavioral depression.

  9. Phase Space Factors for Double Beta Decay: an up-date

    CERN Document Server

    Mirea, M; Stoica, S


    We give a complete, up-date list of the phase space factors (PSF) for beta-beta-, beta+beta+, EC beta+ and ECEC double beta decay (DBD) modes, in all nuclei of interest and possible transitions to final states. In calculation, the Coulomb distortion of the electron wave functions is treated by solving numerically the Dirac equation with inclusion of the finite nuclear size and electron screening effects. In addition to the previous calculations we use a Coulomb potential derived from a realistic proton density distribution in nucleus, improve the precision of the numerical routines used to solve the Dirac equations and to integrate the PSF expressions, and use recently reported Q-values. These ingredients proved to be important, leading in many cases to significant differences as compared to the present available PSF values, which are discussed as well. Accurate values of the PSF are necessary ingredients both for theorists, to improve the DBD lifetime predictions and constraint the neutrino parameters, and f...

  10. Tunable signal processing through modular control of transcription factor translocation (United States)

    Hao, Nan; Budnik, Bogdan A.; Gunawardena, Jeremy; O’Shea, Erin K.


    Signaling pathways can induce different dynamics of transcription factor (TF) activation. We explored how TFs process signaling inputs to generate diverse dynamic responses. The budding yeast general stress responsive TF Msn2 acted as a tunable signal processor that could track, filter, or integrate signals in an input dependent manner. This tunable signal processing appears to originate from dual regulation of both nuclear import and export by phosphorylation, as mutants with one form of regulation sustained only one signal processing function. Versatile signal processing by Msn2 is crucial for generating distinct dynamic responses to different natural stresses. Our findings reveal how complex signal processing functions are integrated into a single molecule and provide a guide for the design of TFs with “programmable” signal processing functions. PMID:23349292

  11. Tunable signal processing through modular control of transcription factor translocation. (United States)

    Hao, Nan; Budnik, Bogdan A; Gunawardena, Jeremy; O'Shea, Erin K


    Signaling pathways can induce different dynamics of transcription factor (TF) activation. We explored how TFs process signaling inputs to generate diverse dynamic responses. The budding yeast general stress-responsive TF Msn2 acted as a tunable signal processor that could track, filter, or integrate signals in an input-dependent manner. This tunable signal processing appears to originate from dual regulation of both nuclear import and export by phosphorylation, as mutants with one form of regulation sustained only one signal-processing function. Versatile signal processing by Msn2 is crucial for generating distinct dynamic responses to different natural stresses. Our findings reveal how complex signal-processing functions are integrated into a single molecule and provide a guide for the design of TFs with "programmable" signal-processing functions.

  12. Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance

    DEFF Research Database (Denmark)

    Campos, Lia S; Leone, Dino P; Relvas, Joao B;


    The emerging evidence that stem cells develop in specialised niches highlights the potential role of environmental factors in their regulation. Here we examine the role of beta1 integrin/extracellular matrix interactions in neural stem cells. We find high levels of beta1 integrin expression...... in the stem-cell containing regions of the embryonic CNS, with associated expression of the laminin alpha2 chain. Expression levels of laminin alpha2 are reduced in the postnatal CNS, but a population of cells expressing high levels of beta1 remains. Using neurospheres - aggregate cultures, derived from...... single stem cells, that have a three-dimensional architecture that results in the localisation of the stem cell population around the edge of the sphere - we show directly that beta1 integrins are expressed at high levels on neural stem cells and can be used for their selection. MAPK, but not PI3K...

  13. Transforming growth factor-beta (TGF-beta) and its role in the pathogenesis of systemic sclerosis: a novel target for therapy? (United States)

    Derk, Chris T


    One of the growth factors that appear to play a crucial role in the pathogenesis of systemic sclerosis is TGF-beta. The three functionally and structurally similar human isoforms of TGF-beta play important roles in embryonic development, in the regulation of tissue repair following injury and in immune responses. Systemic sclerosis fibroblasts express increased levels of TGF-beta receptors on their surface which in turn results in increased signalimg of TGF-beta induced collagen gene expression. Some of the patents and intricate pathways that mediate the stimulation of collagen gene expression by TGF-beta have recently been described and a potential inhibition of these pathways may lead to novel therapeutic targets for systemic sclerosis.

  14. Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study.

    Directory of Open Access Journals (Sweden)

    Marina Yazigi Solis

    Full Text Available Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d(-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1 and on cognitive function before and after exercise in trained cyclists (Study 2.In Study 1, seven healthy vegetarians (3 women and 4 men and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation, with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task being performed before and after exercise on each occasion.In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99 or omnivores (p = 0.27; nor was there any effect when data from both groups were pooled (p = 0.19. Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27. In study 2, exercise improved cognitive function across all tests (P 0.05 of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise.28 d of beta-alanine supplementation at 6.4 g d(-1 appeared not to influence brain homocarnosine/carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists.

  15. Progestin treatment induces apoptosis and modulates transforming growth factor-beta in the uterine endometrium. (United States)

    Rodriguez, Gustavo C; Rimel, B J; Watkin, William; Turbov, Jane M; Barry, Cathy; Du, Hongyan; Maxwell, George L; Cline, J M


    Epidemiologic, animal, and human data suggest that progestins are potent endometrial cancer preventive agents. In the ovarian surface epithelium, progestins have been hypothesized to confer a cancer preventive effect via apoptosis and modulation of transforming growth factor-beta (TGF-beta). Given that the ovarian epithelium and endometrium share a common embryologic origin and similar reproductive and hormonal risk factors for malignancy, we tested the hypothesis that progestins confer biological effects in the endometrium similar to those in the ovary. Postmenopausal female macaques (n = 78) were randomized into four groups to receive a diet for 36 months containing no hormone versus conjugated equine estrogen (CEE), medroxyprogesterone acetate (MPA), or CEE + MPA. The endometrium was then examined immunohistochemically for treatment-specific changes using antibodies to activated caspase-3 (for apoptosis), Ki-67 (proliferation), and the TGF-beta1, TGF-beta2, and TGF-beta3 isoforms. Percentages of caspase-positive endometrial glandular cells were 3- to 5-fold higher in CEE + MPA-treated animals compared with all others (P < 0.05). Caspase-expressing cells were six times more numerous in the endometrial stroma of animals treated with MPA alone relative to other groups (P < 0.0001). Induction of endometrial glandular cell apoptosis in the CEE + MPA-treated group was associated with a dramatic increase in expression of TGF-beta2 and TGF-beta3 in the stromal compartment of the endometrium (P < 0.0001). Progestin treatment activates chemopreventive biological effects in the endometrium that are similar to those in the ovarian surface epithelium. These data may facilitate identification of a chemopreventive approach that dramatically lessens the risk of both uterine and ovarian cancer.

  16. Interleukin-1beta induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity. (United States)

    Puhlmann, Markus; Weinreich, David M; Farma, Jeffrey M; Carroll, Nancy M; Turner, Ewa M; Alexander, H Richard


    IL-1beta is a pleotropic cytokine that may mediate increased procoagulant activity and permeability in endothelial tissue during inflammatory conditions. The procoagulant effects of IL-1beta are mediated through induction of tissue factor (TF) but its alterations on vascular permeability are not well characterized. We found that IL-1beta induced a rapid and dose-dependent increase in TF activity in human umbilical vein endothelial cells (ECs) under routine culture conditions. However, IL-1beta caused a rapid and marked increase in permeability across confluent EC monolayers using a two-compartment in vitro model only in the presence of factor VIII-deficient plasma that was completely abrogated by neutralizing anti-TF antibody pre-treatment. In vitro permeability was associated with loss of EC surface expression of VE-cadherin and contraction of F-actin cytoskeletal elements that resulted in EC intercellular gap formation. These data demonstrate that IL-1beta induces marked changes in permeability across activated endothelium via a TF dependent mechanism and suggest that modulation of TF activity may represent a strategy to treat various acute and chronic inflammatory conditions mediated by this cytokine.

  17. A new method for high yield purification of type beta transforming growth factor from human platelets

    NARCIS (Netherlands)

    Eijnden-van Raaij, A.J.M. van den; Koornneef, I.; Zoelen, E.J.J. van


    A new method was developed for the purification of type beta transforming growth factor from human platelets. This method is a three-step procedure including gel filtration, weak cation exchange HPLC and reverse phase HPLC. All steps are carried out at low pH using exclusively volatile acidic buffer

  18. Myofibroblasts and Transforming Growth Factor-Beta1 in Reactive Gingival Overgrowths

    Directory of Open Access Journals (Sweden)

    Apostolos Epivatianos


    Full Text Available Objectives: The aim of this study was to detect the presence of myofibroblasts and transforming growth factor-beta1 in fibrous and ossifying-fibrous epulis and their possible contribution to the collagenous connective tissue formation. The correlation between the myofibroblasts and the degree of inflammatory infiltration was also examined. Material and Methods: The presence of myofibroblasts as well as transforming growth factor-beta1 was examined in twenty cases of fibrous epulis and 22 ossifying fibrous epulis, using immunohistochemistry. Results: Myofibroblasts positive for alpha smooth muscle actin and vimentin but negative to desmin were found in 20% and 45% in fibrous epulis and ossifying fibrous epulis, respectively. Myofibroblasts were distributed in areas with and without inflammatory infiltration and their presence in inflammatory areas was not related with the degree of inflammatory infiltration. A percentage of 21 - 60% of fibroblasts and chronic inflammatory cells expressed transforming growth factor-beta1 in all cases. Conclusions: These data suggest that transforming growth factor-beta1 and myofibroblasts contribute to the formation of collagenous connective tissue in fibrous epulis and ossifying fibrous epulis. Myofibroblasts are mainly presented in ossifying fibrous epulis than in fibrous epulis. It seems to be no relationship between the presence of myofibroblasts and the degree of inflammatory infiltration of the lesions.

  19. The Disulfide Bond Pattern of Transforming Growth Factor Beta-Induced protein

    DEFF Research Database (Denmark)

    Lukassen, Marie V; Scavenius, Carsten; Thøgersen, Ida B;


    Transforming growth factor beta-induced protein (TGFBIp) is an extracellular matrix protein composed of an NH2-terminal cysteine-rich domain (CRD) annotated as an emilin (EMI) domain, and four fasciclin-1 (FAS1-1 to FAS1-4) domains. Mutations in the gene cause corneal dystrophies, a group...

  20. Hepatic expression of mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesions.


    Sanderson, N.; Factor, V; Nagy, P; Kopp, J; Kondaiah, P; WAKEFIELD, L.; Roberts, A B; Sporn, M B; Thorgeirsson, S S


    Aberrant expression of transforming growth factor beta 1 (TGF-beta 1) has been implicated in a number of disease processes, particularly those involving fibrotic and inflammatory lesions. To determine the in vivo effects of overexpression of TGF-beta 1 on the function and structure of hepatic as well as extrahepatic tissues, transgenic mice were generated containing a fusion gene (Alb/TGF-beta 1) consisting of modified porcine TGF-beta 1 cDNA under the control of the regulatory elements of th...

  1. MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors.

    Directory of Open Access Journals (Sweden)

    Brigitte Teissedre

    Full Text Available Canonical Wnt/beta-catenin signaling regulates stem/progenitor cells and, when perturbed, induces many human cancers. A significant proportion of human breast cancer is associated with loss of secreted Wnt antagonists and mice expressing MMTV-Wnt1 and MMTV-DeltaN89beta-catenin develop mammary adenocarcinomas. Many studies have assumed these mouse models of breast cancer to be equivalent. Here we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin transgenes induce tumors with different phenotypes. Using axin2/conductin reporter genes we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin activate canonical Wnt signaling within distinct cell-types. DeltaN89beta-catenin activated signaling within a luminal subpopulation scattered along ducts that exhibited a K18(+ER(-PR(-CD24(highCD49f(low profile and progenitor properties. In contrast, MMTV-Wnt1 induced canonical signaling in K14(+ basal cells with CD24/CD49f profiles characteristic of two distinct stem/progenitor cell-types. MMTV-Wnt1 produced additional profound effects on multiple cell-types that correlated with focal activation of the Hedgehog pathway. We document that large melanocytic nevi are a hitherto unreported hallmark of early hyperplastic Wnt1 glands. These nevi formed along the primary mammary ducts and were associated with Hedgehog pathway activity within a subset of melanocytes and surrounding stroma. Hh pathway activity also occurred within tumor-associated stromal and K14(+/p63(+ subpopulations in a manner correlated with Wnt1 tumor onset. These data show MMTV-Wnt1 and MMTV-DeltaN89beta-catenin induce canonical signaling in distinct progenitors and that Hedgehog pathway activation is linked to melanocytic nevi and mammary tumor onset arising from excess Wnt1 ligand. They further suggest that Hedgehog pathway activation maybe a critical component and useful indicator of breast tumors arising from unopposed Wnt1 ligand.

  2. Induction of IFN-beta and the innate antiviral response in myeloid cells occurs through an IPS-1-dependent signal that does not require IRF-3 and IRF-7.

    Directory of Open Access Journals (Sweden)

    Stephane Daffis


    Full Text Available Interferon regulatory factors (IRF-3 and IRF-7 are master transcriptional factors that regulate type I IFN gene (IFN-alpha/beta induction and innate immune defenses after virus infection. Prior studies in mice with single deletions of the IRF-3 or IRF-7 genes showed increased vulnerability to West Nile virus (WNV infection. Whereas mice and cells lacking IRF-7 showed reduced IFN-alpha levels after WNV infection, those lacking IRF-3 or IRF-7 had relatively normal IFN-b production. Here, we generated IRF-3(-/-x IRF-7(-/- double knockout (DKO mice, analyzed WNV pathogenesis, IFN responses, and signaling of innate defenses. Compared to wild type mice, the DKO mice exhibited a blunted but not abrogated systemic IFN response and sustained uncontrolled WNV replication leading to rapid mortality. Ex vivo analysis showed complete ablation of the IFN-alpha response in DKO fibroblasts, macrophages, dendritic cells, and cortical neurons and a substantial decrease of the IFN-beta response in DKO fibroblasts and cortical neurons. In contrast, the IFN-beta response was minimally diminished in DKO macrophages and dendritic cells. However, pharmacological inhibition of NF-kappaB and ATF-2/c-Jun, the two other known components of the IFN-beta enhanceosome, strongly reduced IFN-beta gene transcription in the DKO dendritic cells. Finally, a genetic deficiency of IPS-1, an adaptor involved in RIG-I- and MDA5-mediated antiviral signaling, completely abolished the IFN-beta response after WNV infection. Overall, our experiments suggest that, unlike fibroblasts and cortical neurons, IFN-beta gene regulation after WNV infection in myeloid cells is IPS-1-dependent but does not require full occupancy of the IFN-beta enhanceosome by canonical constituent transcriptional factors.

  3. Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells

    DEFF Research Database (Denmark)

    Ortis, Fernanda; Naamane, Najib; Flamez, Daisy


    , and global gene expression was analyzed by microarray. Key results were confirmed by RT-PCR, and small-interfering RNAs were used to investigate the mechanistic role of novel and relevant transcription factors identified by pathway analysis. RESULTS Nearly 16,000 transcripts were detected as present in beta...... of genes involved in the maintenance of beta-cell phenotype and growth/regeneration. Cytokines induced hypoxia-inducible factor-alpha, which in this context has a proapoptotic role. Cytokines also modified the expression of >20 genes involved in RNA splicing, and exon array analysis showed cytokine......-induced changes in alternative splicing of >50% of the cytokine-modified genes. CONCLUSIONS: The present study doubles the number of known genes expressed in primary beta-cells, modified or not by cytokines, and indicates the biological role for several novel cytokine-modified pathways in beta-cells. It also...

  4. Inflammatory cytokine signaling in insulin producing beta-cells enhances the colocalization correlation coefficient between L-type voltage-dependent calcium channel and calcium-sensing receptor. (United States)

    Parkash, Jai


    The immunological processes in type 1 diabetes and metabolic/inflammatory disorder in type 2 diabetes converge on common signaling pathway(s) leading to beta-cell death in these two diseases. The cytokine-mediated beta-cell death seems to be dependent on voltage-dependent calcium channel (VDCC)-mediated Ca2+ entry. The Ca2+ handling molecular networks control the homeostasis of [Ca2+]i in the beta-cell. The activity and membrane density of VDCC are regulated by several mechanisms including G protein-coupled receptors (GPCRs). CaR is a 123-kDa seven transmembrane extracellular Ca2+ sensing protein that belongs to GPCR family C. Tumor necrosis factor-alpha (TNF-alpha), is a cytokine widely known to activate nuclear factor-kappaB (NF-kappaB) transcription in beta-cells. To obtain a better understanding of TNF-alpha-induced molecular interactions between CaR and VDCC, confocal fluorescence measurements were performed on insulin-producing beta-cells exposed to varying concentrations of TNF-alpha and the results are discussed in the light of increased colocalization correlation coefficient. The insulin producing beta-cells were exposed to 5, 10, 20, 30, and 50 ng/ml TNF-alpha for 24 h at 37 degrees . The cells were then immunolabelled with antibodies directed against CaR, VDCC, and NF-kappaB. The confocal fluorescence imaging data showed enhancement in the colocalization correlation coefficient between CaR and VDCC in beta-cells exposed to TNF-alpha thereby indicating increased membrane delimited spatial interactions between these two membrane proteins. TNF-alpha-induced colocalization of VDCC with CaR was inhibited by nimodipine, an inhibitor of L-type VDCC thereby suggesting that VDCC activity is required for spatial interactions with CaR. The 3-D confocal fluorescence imaging data also demonstrated that addition of TNF-alpha to RIN cells led to the translocation of NF-kappaB from the cytoplasm to the nucleus. Such molecular interactions between CaR and VDCC in tissues

  5. Synergistic effects of 1,25-Dihydroxyvitamin D3 and TGF-beta1 on the production of insulin-like growth factor binding protein 3 in human bone marrow stromal cell cultures

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Kassem, M


    1,25-Dihydroxyvitamin D3 (calcitriol), transforming growth factor-beta (TGF-beta), and insulin-like growth factors (IGFs) are all important bone regulatory factors known to affect proliferation and differentiation of human bone-forming cells (osteoblasts). We have previously shown that TGF-beta1...... increased IGF-I and IGF-binding protein (IGFBP)-3 production in human bone marrow stromal (hMS) osteoblast progenitors and calcitriol stimulated IGFBP-3 and IGFBP-4 production. As interaction between signaling pathways of these factors has been reported, the present study aimed at examining the concerted...... actions on components of the IGF-system. We report that co-treatment with TGF-beta1 and calcitriol resulted in a synergistic increase in IGFBP-3 production, thereby suggesting that the effects of these factors on hMS osteoblast differentiation may involve the observed increase in IGFBP-3....

  6. The roles of beta-adrenergic receptors in tumorigenesis and the possible use of beta-adrenergic blockers for cancer treatment: possible genetic and cell-signaling mechanisms

    Directory of Open Access Journals (Sweden)

    Luong KV


    Full Text Available Khanh vinh quốc Lương, Lan Thi Hoàng NguyễnVietnamese American Medical Research Foundation, Westminster, California, USAAbstract: Cancer is the leading cause of death in the USA, and the incidence of cancer increases dramatically with age. Beta-adrenergic blockers appear to have a beneficial clinical effect in cancer patients. In this paper, we review the evidence of an association between β-adrenergic blockade and cancer. Genetic studies have provided the opportunity to determine which proteins link β-adrenergic blockade to cancer pathology. In particular, this link involves the major histocompatibility complex class II molecules, the renin–angiotensin system, transcription factor nuclear factor-kappa-light-chain-enhancer of activated B cells, poly(ADP-ribose polymerase-1, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate oxidase. Beta-adrenergic blockers also exert anticancer effects through non-genomic factors, including matrix metalloproteinase, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase-2, oxidative stress, and nitric oxide synthase. In conclusion, β-adrenergic blockade may play a beneficial role in cancer treatment. Additional investigations that examine β-adrenergic blockers as cancer therapeutics are required to further elucidate this role.Keywords: β-adrenergic blocker, neoplasm, β-adrenergic antagonism, non-genomic factor

  7. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy. (United States)

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L


    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  8. Profiling the Changes in Signaling Pathways in Ascorbic Acid/beta-Glycerophosphate-Induced Osteoblastic Differentiation

    NARCIS (Netherlands)

    Chaves Neto, Antonio Hernandes; Queiroz, Karla Cristiana; Milani, Renato; Paredes-Gamero, Edgar Julian; Justo, Giselle Zenker; Peppelenbosch, Maikel P.; Ferreira, Carmen Verissima


    Despite numerous reports on the ability of ascorbic acid and beta-glycerophosphate (AA/beta-GP) to induce osteoblast differentiation, little is known about the molecular mechanisms involved in this phenomenon. In this work, we used a peptide array containing specific consensus sequences (potential s

  9. Recombinant soluble betaglycan is a potent and isoform-selective transforming growth factor-beta neutralizing agent. (United States)

    Vilchis-Landeros, M M; Montiel, J L; Mendoza, V; Mendoza-Hernández, G; López-Casillas, F


    Betaglycan is an accessory receptor of members of the transforming growth factor-beta (TGF-beta) superfamily, which regulates their actions through ligand-dependent interactions with type II receptors. A natural soluble form of betaglycan is found in serum and extracellular matrices. Soluble betaglycan, prepared as a recombinant protein using the baculoviral expression system, inhibits the actions of TGF-beta. Because of its potential use as an anti-TGF-beta therapeutic agent, we have purified and characterized baculoviral recombinant soluble betaglycan. Baculoviral soluble betaglycan is a homodimer formed by two 110 kDa monomers associated by non-covalent interactions. This protein is devoid of glycosaminoglycan chains, although it contains the serine residues, which, in vertebrate cells, are modified by these carbohydrates. On the other hand, mannose-rich carbohydrates account for approximately 20 kDa of the mass of the monomer. End-terminal sequence analysis of the soluble betaglycan showed that Gly(24) is the first residue of the mature protein. Similarly to the natural soluble betaglycan, baculoviral soluble betaglycan has an equilibrium dissociation constant (K(d)) of 3.5 nM for TGF-beta1. Ligand competition assays indicate that the relative affinities of recombinant soluble betaglycan for the TGF-beta isoforms are TGF-beta2>TGF-beta3>TGF-beta1. The anti-TGF-beta potency of recombinant soluble betaglycan in vitro is 10-fold higher for TGF-beta2 than for TGF-beta1. Compared with a commercial pan-specific anti-TGF-beta neutralizing antibody, recombinant soluble betaglycan is more potent against TGF-beta2 and similar against TGF-beta1. These results indicate that baculoviral soluble betaglycan has the biochemical and functional properties that would make it a suitable agent for the treatment of the diseases in which excess TGF-beta plays a central physiopathological role. PMID:11256966

  10. Association of coatomer proteins with the beta-receptor for platelet-derived growth factor

    DEFF Research Database (Denmark)

    Hansen, Klaus; Rönnstrand, L; Rorsman, C


    of intracellular vesicle transport. In order to explore the functional significance of the interaction between alpha- and beta'-COP and the PDGF receptor, a receptor mutant was made in which the conserved histidine residue 928 was mutated to an alanine residue. The mutant receptor, which was unable to bind alpha......The nonreceptor tyrosine kinase Src binds to and is activated by the beta-receptor for platelet-derived growth factor (PDGF). The interaction leads to Src phosphorylation of Tyr934 in the kinase domain of the receptor. In the course of the functional characterization of this phosphorylation, we...... noticed that components of 136 and 97 kDa bound to a peptide from this region of the receptor in a phosphorylation-independent manner. These components have now been purified and identified as alpha- and beta'-coatomer proteins (COPs), respectively. COPs are a family of proteins involved in the regulation...

  11. Growth hormone is a growth factor for the differentiated pancreatic beta-cell

    DEFF Research Database (Denmark)

    Linde, S; Welinder, B S; Billestrup, N;


    The regulation of the growth of the pancreatic beta-cell is poorly understood. There are previous indications of a role of GH in the growth and insulin production of the pancreatic islets. In the present study we present evidence for a direct long-term effect of GH on proliferation and insulin...... biosynthesis of pancreatic beta-cells in monolayer culture. In culture medium RPMI 1640 supplemented with 2% normal human serum islets or dissociated islet cells from newborn rats maintained their insulin-producing capacity. When supplemented with 1-1000 ng/ml pituitary or recombinant human GH the islet cells....... It is concluded that GH is a potent growth factor for the differentiated pancreatic beta-cell....

  12. Systematic comparison of beta spectra calculations using improved analytical screening correction with experimental shape factors. (United States)

    Mougeot, X


    From a review of the available literature, a database of experimental shape factors from measured beta spectra was created in previous work. Classical assumptions applied in beta spectra calculations which avoid the determination of the electron and nuclear wave functions were tested by comparison with each measured spectrum present in the database. From this systematic comparison, it was demonstrated that the typical assumption λk=1 is inappropriate for all forbidden unique transitions. Moreover, the equally common ξ-approximation was also proved to be incorrect for about half of the listed first forbidden non-unique transitions and for all second non-unique ones. In present work, this study has been performed once again using an improved analytical screening correction. General results from previous study still remain the same. Except for allowed transitions, the mean energies in current nuclear databases are expected to be erroneous. Some selected beta spectra are also given to illustrate these results.

  13. Overexpression of transforming growth factor-beta 1 in the valvular fibrosis of chronic rheumatic heart disease. (United States)

    Kim, Lucia; Kim, Do Kyun; Yang, Woo Ick; Shin, Dong Hwan; Jung, Ick Mo; Park, Han Ki; Chang, Byung Chul


    For the purpose of determining the pathogenic role of transforming growth factor-beta1 (TGF-beta 1) in the mechanism of chronic rheumatic heart disease, we evaluated the expression of TGF-beta 1, proliferation of myofibroblasts, and changes in extracellular matrix components including collagen and proteoglycan in 30 rheumatic mitral valves and in 15 control valves. High TGF-beta 1 expression was identified in 21 cases (70%) of rheumatic mitral valves, whereas only 3 cases (20%) of the control group showed high TGF-beta 1 expression (pvalves. High TGF-beta1 expression positively correlated with the proliferation of myofibroblasts (p=0.004), valvular fibrosis (pvalves (p=0.040). In conclusion, an ongoing inflammatory process, the expression of TGF-beta 1, and proliferation of myofibroblasts within the valves have a potential role in the valvular fibrosis, calcification, and changes in the extracellular matrix that lead to the scarring sequelae of rheumatic heart disease.

  14. Measurements of beta ray spectra inside nuclear generating stations using a silicon detector coincidence telescope: skin dose beta correction factors for TL elements

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Y.S.; Weizmann, Y. [Ben Gurion University of the Negev (Israel); Hirning, C.R. [Ontario Hydro, Whitby (Canada). Health Physics


    The measurement of beta ray spectra at various work locations inside nuclear generating stations operated by Ontario Hydro is described. The measurements were carried out using an advanced coincidence telescope spectrometer using silicon detectors only. The spectrometer is capable of measuring electron energies over the range 70-2500 keV with close to 100% efficiency. Over 40 beta ray spectra were measured at various work locations in three nuclear generating stations. Photon rejection is carried out by requiring a coincidence between either two or three detectors. Monte Carlo calculations were then used to estimate beta correction factors for the LiF:Mg,Ti elements used in the Ontario Hydro thermoluminescence dosemeters. Averaging over all the measured beta correction factors for the `skin chip (100 mg. cm{sup -2}) results in a value of 2.73 {+-} 0.77 and for the extremity dosemeter (240{sup -2}) an average value of 4.42 {+-} 1.17 is obtained. These values are 57% and 120% greater, respectively, than the current values used by Ontario Hydro. In addition, beta correction factors for nine representative spectra were calculated for 40{sup -2} and 20{sup -2} chips, and the results demonstrate the benefits of decreased dosemeter thickness. The average value of the beta correction factor, as well as the spread in the beta correction factor, decreases dramatically from 4.80 {+-} 2.1 (240{sup -2}) to 1.29 {+-} 0.1 ({sup -2}). (Author).

  15. Interleukin-2 induces beta2-integrin-dependent signal transduction involving the focal adhesion kinase-related protein B (fakB)

    DEFF Research Database (Denmark)

    Brockdorff, J; Kanner, S B; Nielsen, M


    B-tyrosine phosphorylation in beta2-integrin-positive T cells. In parallel experiments, IL-2 does not induce or augment tyrosine phosphorylation of p125(FAK). In conclusion, our data indicate that IL-2 induces beta2-integrin-dependent signal transduction events involving the tyrosine kinase substrate fakB.......beta2 integrin molecules are involved in a multitude of cellular events, including adhesion, migration, and cellular activation. Here, we studied the influence of beta2 integrins on interleukin-2 (IL-2)-mediated signal transduction in human CD4(+) T cell lines obtained from healthy donors...... experiments indicate that the IL-2-induced 125-kDa phosphotyrosine protein is the focal adhesion kinase-related protein B (fakB). Thus, IL-2 induces strong tyrosine phosphorylation of fakB in beta2-integrin-positive but not in beta2-integrin-negative T cells, and CD18 mAb selectively blocks IL-2-induced fak...

  16. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis


    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  17. Molecular mechanism of signaling by tumor necrosis factor

    Institute of Scientific and Technical Information of China (English)

    ZHA; Jikun(查纪坤); SHU; Hongbing(舒红兵)


    Tumor necrosis factor (TNF) is an important cytokine with multiple biological effects,including cell growth,differentiation,apoptosis,immune regulation and induction of inflammation. The effects of TNF are mediated by two receptors,TNF-R1 and TNF-R2. The major signal transduction pathways triggered by TNF include those that lead to apoptosis,activation of transcription factor NF-??B and protein kinase JNK. This review will discuss the molecular mechanisms of these signaling pathways.

  18. Partially deglycosylated equine LH preferentially activates beta-arrestin-dependent signaling at the follicle-stimulating hormone receptor. (United States)

    Wehbi, Vanessa; Tranchant, Thibaud; Durand, Guillaume; Musnier, Astrid; Decourtye, Jérémy; Piketty, Vincent; Butnev, Vladimir Y; Bousfield, George R; Crépieux, Pascale; Maurel, Marie-Christine; Reiter, Eric


    Deglycosylated FSH is known to trigger poor Galphas coupling while efficiently binding its receptor. In the present study, we tested the possibility that a deglycosylated equine LH (eLHdg) might be able to selectively activate beta-arrestin-dependent signaling. We compared native eLH to an eLH derivative [i.e. truncated eLHbeta (Delta121-149) combined with asparagine56-deglycosylated eLHalpha (eLHdg)] previously reported as an antagonist of cAMP accumulation at the FSH receptor (FSH-R). We confirmed that, when used in conjunction with FSH, eLHdg acted as an antagonist for cAMP accumulation in HEK-293 cells stably expressing the FSH-R. Furthermore, when used alone at concentrations up to 1 nM, eLHdg had no detectable agonistic activity on cAMP accumulation, protein kinase A activity or cAMP-responsive element-dependent transcriptional activity. At higher concentrations, however, a weak agonistic action was observed with eLHdg, whereas eLH led to robust responses whatever the concentration. Both eLH and eLHdg triggered receptor internalization and led to beta-arrestin recruitment. Both eLH and eLHdg triggered ERK and ribosomal protein (rp) S6 phosphorylation at 1 nM. The depletion of endogenous beta-arrestins had only a partial effect on eLH-induced ERK and rpS6 phosphorylation. In contrast, ERK and rpS6 phosphorylation was completely abolished at all time points in beta-arrestin-depleted cells. Together, these results show that eLHdg has the ability to preferentially activate beta-arrestin-dependent signaling at the FSH-R. This finding provides a new conceptual and experimental framework to revisit the physiological meaning of gonadotropin structural heterogeneity. Importantly, it also opens a field of possibilities for the development of selective modulators of gonadotropin receptors.

  19. An LRP5 receptor with internal deletion in hyperparathyroid tumors with implications for deregulated WNT/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Peyman Björklund


    Full Text Available BACKGROUND: Hyperparathyroidism (HPT is a common endocrine disorder with incompletely understood etiology, characterized by enlarged hyperactive parathyroid glands and increased serum concentrations of parathyroid hormone and ionized calcium. We have recently reported activation of the Wnt signaling pathway by accumulation of beta-catenin in all analyzed parathyroid tumors from patients with primary HPT (pHPT and in hyperplastic parathyroid glands from patients with uremia secondary to HPT (sHPT. Mechanisms that may account for this activation have not been identified, except for a few cases of beta-catenin (CTNNB1 stabilizing mutation in pHPT tumors. METHODS AND FINDINGS: Reverse transcription PCR and Western blot analysis showed expression of an aberrantly spliced internally truncated WNT coreceptor low-density lipoprotein receptor-related protein 5 (LRP5 in 32 out of 37 pHPT tumors (86% and 20 out of 20 sHPT tumors (100%. Stabilizing mutation of CTNNB1 and expression of the internally truncated LRP5 receptor was mutually exclusive. Expression of the truncated LRP5 receptor was required to maintain the nonphosphorylated active beta-catenin level, transcription activity of beta-catenin, MYC expression, parathyroid cell growth in vitro, and parathyroid tumor growth in a xenograft severe combined immunodeficiency (SCID mouse model. WNT3 ligand and the internally truncated LRP5 receptor strongly activated transcription, and the internally truncated LRP5 receptor was insensitive to inhibition by DKK1. CONCLUSIONS: The internally truncated LRP5 receptor is strongly implicated in deregulated activation of the WNT/beta-catenin signaling pathway in hyperparathyroid tumors, and presents a potential target for therapeutic intervention.

  20. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States); Rebecchi, Mario, E-mail: [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States)


    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1} knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a

  1. Effects of concomitant use of fibroblast growth factor (FGF)-2 with beta-tricalcium phosphate ({beta}-TCP) on the beagle dog 1-wall periodontal defect model

    Energy Technology Data Exchange (ETDEWEB)

    Anzai, Jun, E-mail: [Pharmacology Department, Central Research Laboratories, Kaken Pharmaceutical Co., Ltd., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto 607-8042 (Japan); Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kitamura, Masahiro, E-mail: [Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nozaki, Takenori, E-mail: [Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nagayasu, Toshie, E-mail: [Pharmacology Department, Central Research Laboratories, Kaken Pharmaceutical Co., Ltd., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto 607-8042 (Japan); Terashima, Akio, E-mail: [Pharmacology Department, Central Research Laboratories, Kaken Pharmaceutical Co., Ltd., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto 607-8042 (Japan); Asano, Taiji, E-mail: [Pharmacology Department, Central Research Laboratories, Kaken Pharmaceutical Co., Ltd., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto 607-8042 (Japan); Murakami, Shinya, E-mail: [Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871 (Japan)


    Research highlights: {yields} Concomitant use of FGF-2 and {beta}-TCP (an osteo-conductive scaffold) significantly promotes periodontal regeneration in the severe periodontitis model (1-wall defect model) of beagle dog. {yields} FGF-2 enhanced new bone formation via {beta}-TCP at the defects. {yields} In particular, FGF-2 dramatically regenerated new periodontal ligament and cementum formations at the defects, that is one of the most important healing outcomes during the process of periodontal regeneration. {yields} Epithelial downgrowth (undesirable wound healing) was decreased by administration of FGF-2. {yields} This manuscript indicates for the first time that concomitant use of FGF-2 and {beta}-TCP is efficacious in regenerating periodontal tissue following severe destruction of the tissue by progression of periodontitis. -- Abstract: The effects of concomitant use of fibroblast growth factor-2 (FGF-2) and beta-tricalcium phosphate ({beta}-TCP) on periodontal regeneration were investigated in the beagle dog 1-wall periodontal defect model. One-wall periodontal defects were created in the mesial portion of both sides of the mandibular first molars, and 0.3% FGF-2 plus {beta}-TCP or {beta}-TCP alone was administered. Radiographic evaluation was performed at 0, 3, and 6 weeks. At 6 weeks, the periodontium with the defect site was removed and histologically analyzed. Radiographic findings showed that co-administration of FGF-2 significantly increased bone mineral contents of the defect sites compared with {beta}-TCP alone. Histologic analysis revealed that the length of the regenerated periodontal ligament, the cementum, distance to the junctional epithelium, new bone height, and area of newly formed bone were significantly increased in the FGF-2 group. No abnormal inflammatory response or ankylosis was observed in either group. These findings indicate the efficacy of concomitant use of FGF-2 and {beta}-TCP as an osteoconductive material for periodontal

  2. Induction of nuclear factor-kappaB and its downstream genes by TNF-alpha and IL-1beta has a pro-apoptotic role in pancreatic beta cells

    DEFF Research Database (Denmark)

    Ortis, F; Pirot, P; Naamane, N


    AIMS/HYPOTHESIS: IL-1beta and TNF-alpha contribute to pancreatic beta cell death in type 1 diabetes. Both cytokines activate the transcription factor nuclear factor-kappaB (NF-kappaB), but recent observations suggest that NF-kappaB blockade prevents IL-1beta + IFN-gamma- but not TNF-alpha + IFN-g...

  3. Molecular cloning and analysis of zebrafish voltage-gated sodium channel beta subunit genes: implications for the evolution of electrical signaling in vertebrates

    Directory of Open Access Journals (Sweden)

    Zhong Tao P


    Full Text Available Abstract Background Action potential generation in excitable cells such as myocytes and neurons critically depends on voltage-gated sodium channels. In mammals, sodium channels exist as macromolecular complexes that include a pore-forming alpha subunit and 1 or more modulatory beta subunits. Although alpha subunit genes have been cloned from diverse metazoans including flies, jellyfish, and humans, beta subunits have not previously been identified in any non-mammalian species. To gain further insight into the evolution of electrical signaling in vertebrates, we investigated beta subunit genes in the teleost Danio rerio (zebrafish. Results We identified and cloned single zebrafish gene homologs for beta1-beta3 (zbeta1-zbeta3 and duplicate genes for beta4 (zbeta4.1, zbeta4.2. Sodium channel beta subunit loci are similarly organized in fish and mammalian genomes. Unlike their mammalian counterparts, zbeta1 and zbeta2 subunit genes display extensive alternative splicing. Zebrafish beta subunit genes and their splice variants are differentially-expressed in excitable tissues, indicating tissue-specific regulation of zbeta1-4 expression and splicing. Co-expression of the genes encoding zbeta1 and the zebrafish sodium channel alpha subunit Nav1.5 in Chinese Hamster Ovary cells increased sodium current and altered channel gating, demonstrating functional interactions between zebrafish alpha and beta subunits. Analysis of the synteny and phylogeny of mammalian, teleost, amphibian, and avian beta subunit and related genes indicated that all extant vertebrate beta subunits are orthologous, that beta2/beta4 and beta1/beta3 share common ancestry, and that beta subunits are closely related to other proteins sharing the V-type immunoglobulin domain structure. Vertebrate sodium channel beta subunit genes were not identified in the genomes of invertebrate chordates and are unrelated to known subunits of the para sodium channel in Drosophila. Conclusion The

  4. The control of insulin secretion by adipokines: current evidence for adipocyte-beta cell endocrine signalling in metabolic homeostasis. (United States)

    Cantley, James


    Metabolic homeostasis is maintained by the coordinated action of multiple organ systems. Insulin secretion is often enhanced during obesity or insulin resistance to maintain glucose and lipid homeostasis, whereas a loss of insulin secretion is associated with type 2 diabetes. Adipocytes secrete hormones known as adipokines which act on multiple cell types to regulate metabolism. Many adipokines have been shown to influence beta cell function by enhancing or inhibiting insulin release or by influencing beta cell survival. Insulin, in turn, regulates lipolysis and promotes glucose uptake and lipid storage in adipocytes. As adipokine secretion and action is strongly influenced by obesity, this provides a potential route by which beta cell function is coordinated with adiposity, independently of alterations in blood glucose or lipid levels. In this review, I assess the evidence for the direct regulation of beta cell function by the adipokines leptin, adiponectin, extracellular nicotinamide phosphoribosyltransferase, apelin, resistin, retinol binding protein 4, fibroblast growth factor 21, nesfatin-1 and fatty acid binding protein 4. I summarise in vitro and in vivo data and discuss the influence of obesity and diabetes on circulating adipokine concentrations, along with the potential for influencing beta cell function in human physiology. Finally, I highlight future research questions that are likely to yield new insights into the exciting field of insulinotropic adipokines.

  5. Reference intervals for glucose, beta-cell polypeptides, and counterregulatory factors during prolonged fasting

    DEFF Research Database (Denmark)

    Højlund, Kurt; Wildner-Christensen, M; Eshøj, O


    To establish reference intervals for the pancreatic beta-cell response and the counterregulatory hormone response to prolonged fasting, we studied 33 healthy subjects (16 males, 17 females) during a 72-h fast. Glucose, insulin, C-peptide, and proinsulin levels decreased (P ... of counterregulatory factors increased during the fast [P fasting (P ... decreased from the second to third day of fasting (P = 0.03). Males had higher glucose and glucagon levels and lower FFA levels during the fast (P

  6. Nuclear import of glucokinase in pancreatic beta-cells is mediated by a nuclear localization signal and modulated by SUMOylation. (United States)

    Johansson, Bente Berg; Fjeld, Karianne; Solheim, Marie Holm; Shirakawa, Jun; Zhang, Enming; Keindl, Magdalena; Hu, Jiang; Lindqvist, Andreas; Døskeland, Anne; Mellgren, Gunnar; Flatmark, Torgeir; Njølstad, Pål Rasmus; Kulkarni, Rohit N; Wierup, Nils; Aukrust, Ingvild; Bjørkhaug, Lise


    The localization of glucokinase in pancreatic beta-cell nuclei is a controversial issue. Although previous reports suggest such a localization, the mechanism for its import has so far not been identified. Using immunofluorescence, subcellular fractionation and mass spectrometry, we present evidence in support of glucokinase localization in beta-cell nuclei of human and mouse pancreatic sections, as well as in human and mouse isolated islets, and murine MIN6 cells. We have identified a conserved, seven-residue nuclear localization signal ((30)LKKVMRR(36)) in the human enzyme. Substituting the residues KK(31,32) and RR(35,36) with AA led to a loss of its nuclear localization in transfected cells. Furthermore, our data indicates that SUMOylation of glucokinase modulates its nuclear import, while high glucose concentrations do not significantly alter the enzyme nuclear/cytosolic ratio. Thus, for the first time, we provide data in support of a nuclear import of glucokinase mediated by a redundant mechanism, involving a nuclear localization signal, and which is modulated by its SUMOylation. These findings add new knowledge to the functional role of glucokinase in the pancreatic beta-cell. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. BIP, a BRAM-interacting protein involved in TGF-beta signalling, regulates body length in Caenorhabditis elegans. (United States)

    Sugawara, K; Morita, K; Ueno, N; Shibuya, H


    The TGF-beta superfamily has diverse biological activities and is involved in the early development of animals. We previously identified a novel family member, BMP receptor associated molecule (BRAM), which binds to the intracellular domain of BMP type IA receptor and is involved in the BMP signalling pathway. To identify novel molecules involved in TGF-beta signalling pathways, we performed yeast two-hybrid screening using BRAM as bait. From a Xenopus cDNA library, we cloned a cDNA encoding 693 amino acids and containing the motif for an oxysterol binding protein (OSBP), which we designated BRAM interacting protein (BIP). We then isolated a BIP homologue from the Caenorhabditis elegans that encodes 733 amino acids and also contains the OSBP-like motif. Immunoprecipitation and Western blotting studies revealed that C. elegans BIP could interact with the C. elegans BRAM homologues BRA-1 and BRA-2. C. elegans BIP was expressed in pharyngeal muscle, hypodermis and several neuronal cells, an expression pattern overlaps with those of BRA-1 and BRA-2. Finally, we found that inhibition of BIP expression in C. elegans by double stranded RNA interference produces a Sma phenotype. BIP was isolated using the yeast two-hybrid systems. BIP may function in the TGF-beta pathway and regulate body length in C. elegans.

  8. Anti-inflammatory effects of tumour necrosis factor (TNF)-alpha are mediated via TNF-R2 (p75) in tolerogenic transforming growth factor-beta-treated antigen-presenting cells. (United States)

    Masli, Sharmila; Turpie, Bruce


    Exposure of macrophages to transforming growth factor (TGF)-beta is known to alter their functional phenotype such that antigen presentation by these cells leads to tolerance rather than an inflammatory immune response. Typically, eye-derived antigen-presenting cells (APCs) exposed to TGF-beta in the local environment are known to induce a form of peripheral tolerance and protect the eye from inflammatory immune effector-mediated damage. In response to TGF-beta, APCs increase their expression of tumour necrosis factor (TNF)-alpha and TNF receptor 2 (TNF-R2). Although TNF-alpha has been implicated in tolerance and the associated regulation of the inflammatory immune response, its source and the receptors involved remain unclear. In this report we determined the contribution of TNF-alpha and TNF-R2 expressed by TGF-beta-treated APCs to their anti-inflammatory tolerogenic effect. Our results indicate that APC-derived TNF-alpha is essential for the ability of APCs to regulate the immune response and their IL-12 secretion. Moreover, in the absence of TNF-R2, APCs exposed to TGF-beta failed to induce tolerance or regulatory cells known to participate in this tolerance. Also, blocking of TNF-R1 signalling enhanced the ability of the APCs to secrete increased TGF-beta in response to TGF-beta exposure. Together our results support an anti-inflammatory role of TNF-alpha in regulation of an immune response by TGF-beta-treated APCs and suggest that TNF-R2 contributes significantly to this role.

  9. Transforming growth factor-beta inhibits human antigen-specific CD4(+) T cell proliferation without modulating the cytokine response

    NARCIS (Netherlands)

    Tiemessen, MM; Kunzmann, S; Schmidt-Weber, CB; Garssen, J; Bruijnzeel-Koomen, CAFM; Knol, EF; Van Hoffen, E


    Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated y

  10. Transforming growth factor-beta plasma dynamics and post-irradiation lung injury in lung cancer patients

    NARCIS (Netherlands)

    Novakova-Jiresova, A; van Gameren, MM; Coppes, RP; Kampinga, HH; Groen, HJM


    Purpose: To investigate the relevance of transforming growth factor-beta (TGF-beta) dynamics in plasma for identification of patients at low risk for developing pneumonitis as a complication of thoracic radiotherapy (RT). Patients and methods: Non-small cell lung cancer patients undergoing conventio

  11. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Nørgaard, P; Spang-Thomsen, M; Poulsen, H S


    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII...

  12. Prostaglandin E-2 inhibits transforming growth factor beta 1-mediated induction of collagen alpha(1)(I) in hepatic stellate cells

    NARCIS (Netherlands)

    Hui, AY; Dannenberg, AJ; Sung, JJY; Subbaramaiah, K; Du, BH; Olinga, P; Friedman, SL

    Background/Aims: Cyclooxygenase-2 (COX-2) has been implicated in a number of hepatic stellate cell (HSC) functions but its relationship to transforming growth factor-beta1 (TGF-beta1)-mediated fibrogenesis is unknown. We assessed the impact of COX-2 inhibition and PGE(2) on the regulation of

  13. Polycyclic aromatic hydrocarbons and dibutyl phthalate disrupt dorsal-ventral axis determination via the Wnt/{beta}-catenin signaling pathway in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, Elise A., E-mail: [University of California Davis, Bodega Marine Laboratory, P.O. Box 247, Bodega Bay, CA 94923 (United States); Bonthius, Jessica, E-mail: [University of California Davis, Bodega Marine Laboratory, P.O. Box 247, Bodega Bay, CA 94923 (United States); Cherr, Gary N., E-mail: [University of California Davis, Bodega Marine Laboratory, P.O. Box 247, Bodega Bay, CA 94923 (United States); Department of Environmental Toxicology, University of California Davis, Davis, CA 95616 (United States); Department of Nutrition, University of California Davis, Davis, CA 95616 (United States)


    The canonical Wnt/{beta}-catenin signaling pathway is critical during early teleost development for establishing the dorsal-ventral axis. Within this pathway, GSK-3{beta}, a key regulatory kinase in the Wnt pathway, regulates {beta}-catenin degradation and thus the ability of {beta}-catenin to enter nuclei, where it can activate expression of genes that have been linked to the specification of the dorsal-ventral axis. In this study, we describe the morphological abnormalities that resulted in zebrafish embryos when axis determination was disrupted by environmental contaminants. These abnormalities were linked to abnormal nuclear accumulation of {beta}-catenin. Furthermore, we demonstrated that the developmental abnormalities and altered nuclear {beta}-catenin accumulation occurred when embryos were exposed to commercial GSK-3{beta} inhibitors. Zebrafish embryos were exposed to commercially available GSK-3 inhibitors (GSK-3 Inhibitor IX and 1-azakenpaullone), or common environmental contaminants (dibutyl phthalate or the polycyclic aromatic hydrocarbons phenanthrene and fluorene) from the 2 to 8-cell stage through the mid-blastula transition (MBT). These embryos displayed morphological abnormalities at 12.5 h post-fertilization (hpf) that were comparable to embryos exposed to lithium chloride (LiCl) (300 mM LiCl for 10 min, prior to the MBT), a classic disruptor of embryonic axis determination. Whole-mount immunolabeling and laser scanning confocal microscopy were used to localize {beta}-catenin. The commercial GSK-3 Inhibitors as well as LiCl, dibutyl phthalate, fluorene and phenanthrene all induced an increase in the levels of nuclear {beta}-catenin throughout the embryo, indicating that the morphological abnormalities were a result of disruption of Wnt/{beta}-catenin signaling during dorsal-ventral axis specification. The ability of environmental chemicals to directly or indirectly target GSK-3{beta} was assessed. Using Western blot analysis, the ability of these

  14. Isolation of novel human cDNA (hGMF-gamma) homologous to Glia Maturation Factor-beta gene. (United States)

    Asai, K; Fujita, K; Yamamoto, M; Hotta, T; Morikawa, M; Kokubo, M; Moriyama, A; Kato, T


    A novel full-length human cDNA homologous to Glia Maturation Factor-beta (GMF-beta) gene was isolated. Sequence analysis of the entire cDNA revealed an open reading frame of 426 nucleotides with a deduced protein sequence of 142 amino acid residues. The deduced amino acid sequences of its putative product is highly homologous to human GMF-beta (82% identity) and named for GMF-gamma. Northern blot analysis indicated that a message of 0.9 kb long, but not 4.1 kb of GMF-beta, is predominantly expressed in human lung, heart, and placenta.

  15. Differential regulation of transforming growth factor beta and interleukin 2 genes in human T cells: demonstration by usage of novel competitor DNA constructs in the quantitative polymerase chain reaction



    The regulation of mRNA encoding transforming growth factor beta (TGF- beta) and interleukin 2 (IL-2) in normal human T cells was explored using novel competitor DNA constructs in the quantitative polymerase chain reaction and accessory cell-independent T cell activation models. Our experimental design revealed the following: (a) TGF-beta mRNA and IL-2 mRNA are regulated differentially in normal human T cells, quiescent or signaled with the synergistic combinations of: sn-1,2- dioctanoylglycer...

  16. Alcohol Activates TGF-Beta but Inhibits BMP Receptor-Mediated Smad Signaling and Smad4 Binding to Hepcidin Promoter in the Liver

    Directory of Open Access Journals (Sweden)

    Lisa Nicole Gerjevic


    Full Text Available Hepcidin, a key regulator of iron metabolism, is activated by bone morphogenetic proteins (BMPs. Mice pair-fed with regular and ethanol-containing L. De Carli diets were employed to study the effect of alcohol on BMP signaling and hepcidin transcription in the liver. Alcohol induced steatosis and TGF-beta expression. Liver BMP2, but not BMP4 or BMP6, expression was significantly elevated. Despite increased BMP expression, the BMP receptor, and transcription factors, Smad1 and Smad5, were not activated. In contrast, alcohol stimulated Smad2 phosphorylation. However, Smad4 DNA-binding activity and the binding of Smad4 to hepcidin promoter were attenuated. In summary, alcohol stimulates TGF-beta and BMP2 expression, and Smad2 phosphorylation but inhibits BMP receptor, and Smad1 and Smad5 activation. Smad signaling pathway in the liver may therefore be involved in the regulation of hepcidin transcription and iron metabolism by alcohol. These findings may help to further understand the mechanisms of alcohol and iron-induced liver injury.

  17. Cell-specific delivery of a transforming growth factor-beta type I receptor kinase inhibitor to proximal tubular cells for the treatment of renal fibrosis. (United States)

    Prakash, Jai; de Borst, Martin H; van Loenen-Weemaes, Annemiek M; Lacombe, Marie; Opdam, Frank; van Goor, Harry; Meijer, Dirk K F; Moolenaar, Frits; Poelstra, Klaas; Kok, Robbert J


    Activation of tubular epithelial cells by transforming growth factor-beta (TGF-beta) plays an important role in the pathogenesis of renal tubulointerstitial fibrosis. We developed a renally accumulating conjugate of a TGF-beta type-I receptor kinase inhibitor (TKI) and evaluated its efficacy in vitro and in vivo. TKI was conjugated to the protein Lysozyme (LZM) via a platinum-based linker. TKI-LZM was evaluated in human tubular cells (HK-2) for its anti-fibrotic activity. Plasma, kidney and urine drug levels after a single intravenous dose of TKI-LZM in rats were determined by HPLC or immunodetection. Anti-fibrotic effects of TKI-LZM were examined in the unilateral ureteral obstruction (UUO) model. TKI-LZM conjugate was successfully synthesized at an 1:1 drug/carrier ratio, and inhibited TGF-beta1-induced procollagen-1alpha1 gene expression in HK-2 cells. In vivo, TKI-LZM accumulated rapidly in tubular cells and provided a local depot for 3 days. Interestingly, a single dose of TKI-LZM inhibited the activation of tubular cells and fibroblasts in UUO rats and reduced renal inflammation. In contrast, free TKI at an equimolar (low) dosage exhibited little effects. Inhibition of TGF-beta signaling by local drug delivery is a promising antifibrotic strategy, and demonstrated the important role of tubular activation in renal fibrosis.

  18. Inhibition of transforming growth factor-beta-induced liver fibrosis by a retinoic acid derivative via the suppression of Col 1A2 promoter activity. (United States)

    Yang, Kun-Lin; Chang, Wen-Teng; Hung, Kuo-Chen; Li, Eric I C; Chuang, Chia-Chang


    Transforming growth factor-beta1 (TGF-beta1) mediates expression of collagen 1A2 (Col 1A2) gene via a synergistic cooperation between Smad2/Smad3 and Sp1, both act on the Col 1A2 gene promoter. In our previous study, we reported that a retinoic acid derivative obtained from Phellinus linteus (designated PL) antagonizes TGF-beta-induced liver fibrosis through regulation of ROS and calcium influx. In this continuing study we seek further the effect of PL on the Smad signaling pathway. We used a Col 1A2 promoter-luciferase construct to study the action of PL on Smad through TGF-beta. We found that PL decreases the promoter activity of Col 1A2, hinders the translocalization of phosphorylated Smad2/3-Smad 4 complex from cytosol into nucleus and inhibits Sp1 binding activity. These results suggest that PL inhibits TGF-beta1-induced Col 1A2 promoter activity through blocking ROS and calcium influx as well as impeding Sp1 binding and translocalization of pSmad 2/3-Smad4 complex into nucleus.

  19. Autoantibodies to REG, a beta-cell regeneration factor, in diabetic patients. (United States)

    Shervani, N J; Takasawa, S; Uchigata, Y; Akiyama, T; Nakagawa, K; Noguchi, N; Takada, H; Takahashi, I; Yamauchi, A; Ikeda, T; Iwamoto, Y; Nata, K; Okamoto, H


    Regenerating gene (Reg) product, Reg, acts as an autocrine/paracrine growth factor for beta-cell regeneration. The presence of autoimmunity against REG may affect the operative of the regenerative mechanisms in beta cells of Type 1 and Type 2 diabetes patients. We screened sera from Type 1 and Type 2 diabetes subjects for anti-REG autoantibodies, searched for correlations in the general characteristics of the subjects with the presence of anti-REG autoimmunity, and tested the attenuation of REG-induced beta-cell proliferation by the autoanitibodies. We examined the occurrence of anti-REG autoantibodies in patients' sera (265 Type 1, 368 Type 2 diabetes patients, and 75 unrelated control subjects) by Western blot analysis, and evaluated inhibitory effects of the sera on REG-stimulated beta-cell proliferation by a 5'-Bromo-2'-deoxyuridine (BrdU) incorporation assay in vitro. Anti-REG autoantibodies were found in 24.9% of Type 1, 14.9% of Type 2 and 2.7% of control subjects (P = 0.0004). There were significant differences between the autoantibody positive and negative groups in the duration of disease in the Type 1 subjects (P = 0.0035), and the age of onset in the Type 2 subjects (P = 0.0274). The patient sera containing anti-REG autoantibodies significantly attenuated the BrdU incorporation by REG (35.6 +/- 4.06% of the control), whereas the nondiabetic sera without anti-REG autoantibodies scarcely reduced the incorporation (88.8 +/- 5.10%). Anti-REG autoantibodies, which retard beta-cell proliferation in vitro, are found in some diabetic patients. Thus, autoimmunity to REG may be associated with the development/acceleration of diabetes in at least some patients.

  20. Redox-dependent regulation of epidermal growth factor receptor signaling

    Directory of Open Access Journals (Sweden)

    David E. Heppner


    Full Text Available Tyrosine phosphorylation-dependent cell signaling represents a unique feature of multicellular organisms, and is important in regulation of cell differentiation and specialized cell functions. Multicellular organisms also contain a diverse family of NADPH oxidases (NOXs that have been closely linked with tyrosine kinase-based cell signaling and regulate tyrosine phosphorylation via reversible oxidation of cysteine residues that are highly conserved within many proteins involved in this signaling pathway. An example of redox-regulated tyrosine kinase signaling involves the epidermal growth factor receptor (EGFR, a widely studied receptor system with diverse functions in normal cell biology as well as pathologies associated with oxidative stress such as cancer. The purpose of this Graphical Redox Review is to highlight recently emerged concepts with respect to NOX-dependent regulation of this important signaling pathway.

  1. Fibroblast growth factor signaling during early vertebrate development. (United States)

    Böttcher, Ralph T; Niehrs, Christof


    Fibroblast growth factors (FGFs) have been implicated in diverse cellular processes including apoptosis, cell survival, chemotaxis, cell adhesion, migration, differentiation, and proliferation. This review presents our current understanding on the roles of FGF signaling, the pathways employed, and its regulation. We focus on FGF signaling during early embryonic processes in vertebrates, such as induction and patterning of the three germ layers as well as its function in the control of morphogenetic movements.

  2. Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKC alpha activation. (United States)

    Podar, Klaus; Tai, Yu-Tzu; Lin, Boris K; Narsimhan, Radha P; Sattler, Martin; Kijima, Takashi; Salgia, Ravi; Gupta, Deepak; Chauhan, Dharminder; Anderson, Kenneth C


    In multiple myeloma (MM), migration is necessary for the homing of tumor cells to bone marrow (BM), for expansion within the BM microenvironment, and for egress into the peripheral blood. In the present study we characterize the role of vascular endothelial growth factor (VEGF) and beta(1) integrin (CD29) in MM cell migration. We show that protein kinase C (PKC) alpha is translocated to the plasma membrane and activated by adhesion of MM cells to fibronectin and VEGF. We identify beta(1) integrin modulating VEGF-triggered MM cell migration on fibronectin. We show that transient enhancement of MM cell adhesion to fibronectin triggered by VEGF is dependent on the activity of both PKC and beta(1) integrin. Moreover, we demonstrate that PKC alpha is constitutively associated with beta(1) integrin. These data are consistent with PKC alpha-dependent exocytosis of activated beta(1) integrin to the plasma membrane, where its increased surface expression mediates binding to fibronectin; conversely, catalytically active PKC alpha-driven internalization of beta(1) integrin results in MM cell de-adhesion. We show that the regulatory subunit of phosphatidylinositol (PI) 3-kinase (p85) is constitutively associated with FMS-like tyrosine kinase-1 (Flt-1). VEGF stimulates activation of PI 3-kinase, and both MM cell adhesion and migration are PI 3-kinase-dependent. Moreover, both VEGF-induced PI 3-kinase activation and beta(1) integrin-mediated binding to fibronectin are required for the recruitment and activation of PKC alpha. Time-lapse phase contrast video microscopy (TLVM) studies confirm the importance of these signaling components in VEGF-triggered MM cell migration on fibronectin.

  3. Factors contributing to decreased protein stability when aspartic acid residues are in {beta}-sheet regions.

    Energy Technology Data Exchange (ETDEWEB)

    Pokkuluri, P. R.; Cai, X.; Raffen, R.; Gu, M.; Stevens, F. J.; Schiffer, M.


    Asp residues are significantly under represented in {beta}-sheet regions of proteins, especially in the middle of {beta}-strands, as found by a number of studies using statistical, modeling, or experimental methods. To further understand the reasons for this under representation of Asp, we prepared and analyzed mutants of a {beta}-domain. Two Gln residues of the immunoglobulin light-chain variable domain (V{sub L}) of protein Len were replaced with Asp, and then the effects of these changes on protein stability and protein structure were studied. The replacement of Q38D, located at the end of a {beta}-strand, and that of Q89D, located in the middle of a {beta}-strand, reduced the stability of the parent immunoglobulin VL domain by 2.0 kcal/mol and 5.3 kcal/mol, respectively. Because the Q89D mutant of the wild-type V{sub L}-Len domain was too unstable to be expressed as a soluble protein, we prepared the Q89D mutant in a triple mutant background, V{sub L}-Len M4L/Y27dD/T94H, which was 4.2 kcal/mol more stable than the wild-type V{sub L}-Len domain. The structures of mutants V{sub L}-Len Q38D and V{sub L}-Len Q89D/M4L/Y27dD/T94H were determined by X-ray diffraction at 1.6 A resolution. We found no major perturbances in the structures of these QD mutant proteins relative to structures of the parent proteins. The observed stability changes have to be accounted for by cumulative effects of the following several factors: (1) by changes in main-chain dihedral angles and in side-chain rotomers, (2) by close contacts between some atoms, and, most significantly, (3) by the unfavorable electrostatic interactions between the Asp side chain and the carbonyls of the main chain. We show that the Asn side chain, which is of similar size but neutral, is less destabilizing. The detrimental effect of Asp within a {beta}-sheet of an immunoglobulin-type domain can have very serious consequences. A somatic mutation of a {beta}-strand residue to Asp could prevent the expression of the

  4. Factors associated with beta-cell dysfunction in type 2 diabetes: the BETADECLINE study.

    Directory of Open Access Journals (Sweden)

    Giuseppina T Russo

    Full Text Available AIMS: Beta-cell dysfunction is an early event in the natural history of type 2 diabetes. However, its progression is variable and potentially influenced by several clinical factors. We report the baseline data of the BetaDecline study, an Italian prospective multicenter study on clinical predictors of beta-cell dysfunction in type 2 diabetes. MATERIALS AND METHODS: Clinical, lifestyle, and laboratory data, including circulating levels of inflammatory markers and non-esterified fatty acids, were collected in 507 type 2 diabetic outpatients on stable treatment with oral hypoglycemic drugs or diet for more than 1 year. Beta-cell dysfunction was evaluated by calculating the proinsulin/insulin ratio (P/I. RESULTS: At baseline, the subjects in the upper PI/I ratio quartile were more likely to be men and receiving secretagogue drugs; they also showed a borderline longer diabetes duration (P = 0.06 and higher serum levels of glycated hemoglobin (HbA1c, fasting blood glucose, and triglycerides. An inverse trend across all PI/I quartiles was noted for BMI and serum levels of total cholesterol (T-C, LDL-C, HDL-C and C reactive protein (CRP, and with homeostatic model assessment (HOMA-B and HOMA of insulin resistance (HOMA-IR values (P<0.05 for all. At multivariate analysis, the risk of having a P/I ratio in the upper quartile was higher in the subjects on secretagogue drugs (odds ratio [OR] 4.2; 95% confidence interval [CI], 2.6-6.9 and in the males (OR 1.8; 95% CI, 1.1-2.9. CONCLUSIONS: In the BetaDecline study population, baseline higher PI/I values, a marker of beta-cell dysfunction, were more frequent in men and in patients on secretagogues drugs. Follow-up of this cohort will allow the identification of clinical predictors of beta-cell failure in type 2 diabetic outpatients.

  5. Regulation of duodenal bicarbonate secretion during stress by corticotropin-releasing factor and beta-endorphin. (United States)

    Lenz, H J


    Proximal duodenal mucosal bicarbonate secretion is an important factor in the pathogenesis of duodenal ulcer disease. To examine the central nervous system regulation of duodenal bicarbonate secretion, an animal model was developed that allowed cerebroventricular and intravenous injections as well as collection of duodenal perfusates in awake, freely moving rats. The hypothalamic peptide corticotropin-releasing factor (CRF) and stress (physical restraint) significantly stimulated duodenal bicarbonate secretion. These responses were abolished by pretreatment of the animals with the CRF receptor antagonist alpha-helical CRF-(9-41), hypophysectomy, and naloxone. In contrast, blockade of autonomic efferents by surgical and pharmacological means did not prevent the stimulatory effects of stress and CRF. Intravenous, but not cerebroventricular, administration of beta-endorphin that produced plasma concentrations of beta-endorphin that were similar to those produced by exogenous CRF and stress significantly stimulated duodenal bicarbonate secretion. These results indicate that endogenous CRF released during stress and exogenously administered CRF stimulate duodenal bicarbonate secretion by release of beta-endorphin from the pituitary, thus, demonstrating a functional hypothalamus-pituitary-gut axis.

  6. Enhanced Phosphoproteomic Profiling Workflow For Growth Factor Signaling Analysis

    DEFF Research Database (Denmark)

    Sylvester, Marc; Burbridge, Mike; Leclerc, Gregory;


    Background Our understanding of complex signaling networks is still fragmentary. Isolated processes have been studied extensively but cross-talk is omnipresent and precludes intuitive predictions of signaling outcomes. The need for quantitative data on dynamic systems is apparent especially for our...... A549 lung carcinoma cells were used as a model and stimulated with hepatocyte growth factor, epidermal growth factor or fibroblast growth factor. We employed a quick protein digestion workflow with spin filters without using urea. Phosphopeptides in general were enriched by sequential elution from...... transfer dissociation adds confidence in modification site assignment. The workflow is relatively simple but the integration of complementary techniques leads to a deeper insight into cellular signaling networks and the potential pharmacological intervention thereof....

  7. Enhanced Phosphoproteomic Profiling Workflow For Growth Factor Signaling Analysis

    DEFF Research Database (Denmark)

    Sylvester, Marc; Burbridge, Mike; Leclerc, Gregory


    understanding of pathological processes. In our study we create and integrate data on phosphorylations that are initiated by several growth factor receptors. We present an approach for quantitative, time-resolved phosphoproteomic profiling that integrates the important contributions by phosphotyrosines. Methods...... A549 lung carcinoma cells were used as a model and stimulated with hepatocyte growth factor, epidermal growth factor or fibroblast growth factor. We employed a quick protein digestion workflow with spin filters without using urea. Phosphopeptides in general were enriched by sequential elution from...... in order to maximize identification of peptides as well as localization of phosphorylation sites. Results and Conclusions The combination of SIMAC with phosphotyrosine enrichment leads to a significant increase in identification of potential signaling events in growth factor receptor signaling networks...

  8. Abnormal salience signaling in schizophrenia: The role of integrative beta oscillations. (United States)

    Liddle, Elizabeth B; Price, Darren; Palaniyappan, Lena; Brookes, Matthew J; Robson, Siân E; Hall, Emma L; Morris, Peter G; Liddle, Peter F


    Aberrant salience attribution and cerebral dysconnectivity both have strong evidential support as core dysfunctions in schizophrenia. Aberrant salience arising from an excess of dopamine activity has been implicated in delusions and hallucinations, exaggerating the significance of everyday occurrences and thus leading to perceptual distortions and delusional causal inferences. Meanwhile, abnormalities in key nodes of a salience brain network have been implicated in other characteristic symptoms, including the disorganization and impoverishment of mental activity. A substantial body of literature reports disruption to brain network connectivity in schizophrenia. Electrical oscillations likely play a key role in the coordination of brain activity at spatially remote sites, and evidence implicates beta band oscillations in long-range integrative processes. We used magnetoencephalography and a task designed to disambiguate responses to relevant from irrelevant stimuli to investigate beta oscillations in nodes of a network implicated in salience detection and previously shown to be structurally and functionally abnormal in schizophrenia. Healthy participants, as expected, produced an enhanced beta synchronization to behaviorally relevant, as compared to irrelevant, stimuli, while patients with schizophrenia showed the reverse pattern: a greater beta synchronization in response to irrelevant than to relevant stimuli. These findings not only support both the aberrant salience and disconnectivity hypotheses, but indicate a common mechanism that allows us to integrate them into a single framework for understanding schizophrenia in terms of disrupted recruitment of contextually appropriate brain networks.

  9. The potential role of SOCS-3 in the interleukin-1beta-induced desensitization of insulin signaling in pancreatic beta-cells

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Glondu, Murielle; Filloux, Chantal


    Defects in insulin secretion, resulting from loss of function or destruction of pancreatic beta-cells, trigger diabetes. Interleukin (IL)-1beta is a proinflammatory cytokine that is involved in type 1 and type 2 diabetes development and impairs beta-cell survival and function. Because effective i...

  10. Implication of STAT3 signaling in human colonic cancer cells during intestinal trefoil factor 3 (TFF3) -- and vascular endothelial growth factor-mediated cellular invasion and tumor growth. (United States)

    Rivat, Christine; Christine, Rivat; Rodrigues, Sylvie; Sylvie, Rodrigues; Bruyneel, Erik; Erik, Bruyneel; Piétu, Geneviève; Geneviève, Piétu; Robert, Amélie; Amélie, Robert; Redeuilh, Gérard; Gérard, Redeuilh; Bracke, Marc; Marc, Bracke; Gespach, Christian; Christian, Gespach; Attoub, Samir; Samir, Attoub


    Signal transducer and activator of transcription (STAT) 3 is overexpressed or activated in most types of human tumors and has been classified as an oncogene. In the present study, we investigated the contribution of the STAT3s to the proinvasive activity of trefoil factors (TFF) and vascular endothelial growth factor (VEGF) in human colorectal cancer cells HCT8/S11 expressing VEGF receptors. Both intestinal trefoil peptide (TFF3) and VEGF, but not pS2 (TFF1), activate STAT3 signaling through Tyr(705) phosphorylation of both STAT3alpha and STAT3beta isoforms. Blockade of STAT3 signaling by STAT3beta, depletion of the STAT3alpha/beta isoforms by RNA interference, and pharmacologic inhibition of STAT3alpha/beta phosphorylation by cucurbitacin or STAT3 inhibitory peptide abrogates TFF- and VEGF-induced cellular invasion and reduces the growth of HCT8/S11 tumor xenografts in athymic mice. Differential gene expression analysis using DNA microarrays revealed that overexpression of STAT3beta down-regulates the VEGF receptors Flt-1, neuropilins 1 and 2, and the inhibitor of DNA binding/differentiation (Id-2) gene product involved in the neoplastic transformation. Taken together, our data suggest that TFF3 and the essential tumor angiogenesis regulator VEGF(165) exert potent proinvasive activity through STAT3 signaling in human colorectal cancer cells. We also validate new therapeutic strategies targeting STAT3 signaling by pharmacologic inhibitors and RNA interference for the treatment of colorectal cancer patients.

  11. The change of transforming growth factor {beta} 1 (TGF- {beta} 1) expression by melatonin in irradiated lung

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Seong Soon; Choi, Ihl Bohng [College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)


    The changed expressions of TGF- {beta} 1, as a key cytokine in the fibrotic process, due to melatonin with potent antioxidative effects, were investigated in the irradiated lung using fibrosis-sensitive C57BL/6 mice. Female C57BL/6 mice were divided into control irradiation-only, and melatonin (300 mg/kg i.p. 1 hr before irradiation) pretreatment groups. The thoraces of the mice were irradiated with a single dose of 12 Gy. The mRNA expressions of TGF-{beta} 1 in the lung tissue 2 and 4 weeks after irradiation were quantified using semiquantitive RT-PCR, and the cellular origin and expression levels of TGF- {beta} 1 protein were identified using immunohistochemical staining. The relative mRNA expression levels in the irradiation-only and melatonin pretreatment group 2 and 4 weeks after irradiation were 1.92- and 1.80-fold ({rho} = 0.064) and 2.38- and 1.94-fold ({rho} = 0.004) increased, respectively compared to those in the control group. Increased expressions of TGF- {beta} 1 protein were prominently detected in regions of histopathological radiation injury, with alveolar macrophages and septal epithelial cells serving as important sources of TGF- {beta} 1 expression. At 2 and 4 weeks after irradiation, the expression levels of protein were 15.8% vs. 16.9% ({rho} = 0.565) and 36.1% vs. 25.7% ({rho} = 0.009), respectively. The mRNA and protein expressions of TGF- {beta} 1 in the lung tissue following thoracic irradiation with 12 Gy were significantly decreased by melatonin pretreatment at 4 weeks. These results indicate that melatonin may have a possible application as an antifibrotic agent in radiation-induced lung injury.

  12. cAMP-mediated beta-adrenergic signaling negatively regulates Gq-coupled receptor-mediated fetal gene response in cardiomyocytes. (United States)

    Patrizio, Mario; Vago, Valerio; Musumeci, Marco; Fecchi, Katia; Sposi, Nadia Maria; Mattei, Elisabetta; Catalano, Liviana; Stati, Tonino; Marano, Giuseppe


    The treatment with beta-blockers causes an enhancement of the norepinephrine-induced fetal gene response in cultured cardiomyocytes. Here, we tested whether the activation of cAMP-mediated beta-adrenergic signaling antagonizes alpha(1)-adrenergic receptor (AR)-mediated fetal gene response. To address this question, the fetal gene program, of which atrial natriuretic peptide (ANP) and the beta-isoform of myosin heavy chain are classical members, was induced by phenylephrine (PE), an alpha(1)-AR agonist. In cultured neonatal rat cardiomyocytes, we found that stimulation of beta-ARs with isoproterenol, a beta-AR agonist, inhibited the fetal gene expression induced by PE. Similar results were also observed when cardiomyocytes were treated with forskolin (FSK), a direct activator of adenylyl cyclase, or 8-CPT-6-Phe-cAMP, a selective activator of protein kinase A (PKA). Conversely, the PE-induced fetal gene expression was further upregulated by H89, a selective PKA inhibitor. To evaluate whether these results could be generalized to Gq-mediated signaling and not specifically to alpha(1)-ARs, cardiomyocytes were treated with prostaglandin F(2)alpha, another Gq-coupled receptor agonist, which is able to promote fetal gene expression. This treatment caused an increase of both ANP mRNA and protein levels, which was almost completely abolished by FSK treatment. The capability of beta-adrenergic signaling to regulate the fetal gene expression was also evaluated in vivo conditions by using beta1- and beta2-AR double knockout mice, in which the predominant cardiac beta-AR subtypes are lacking, or by administering isoproterenol (ISO), a beta-AR agonist, at a subpressor dose. A significant increase of the fetal gene expression was found in beta(1)- and beta(2)-AR gene deficient mice. Conversely, we found that ANP, beta-MHC and skACT mRNA levels were significantly decreased in ISO-treated hearts. Collectively, these data indicate that cAMP-mediated beta-adrenergic signaling

  13. Reciprocal interactions between Beta1-integrin and epidermal growth factor in three-dimensional basement membrane breast cultures: A different perspective in epithelial biology

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F.; Weaver, V.M.; Petersen, O.W.; Larabell, C.A.; Dedhar, S.; Briand, P.; Lupu, R.; Bissell, M.J.


    Anchorage and growth factor independence are cardinal features of the transformed phenotype. Although it is logical that the two pathways must be coregulated in normal tissues to maintain homeostasis, this has not been demonstrated directly. We showed previously that down-modulation of {beta}1-integrin signaling reverted the malignant behavior of a human breast tumor cell line (T4-2) derived from phenotypically normal cells (HMT-3522) and led to growth arrest in a threedimensional (3D) basement membrane assay in which the cells formed tissue-like acini (14). Here, we show that there is a bidirectional cross-modulation of {beta}1-integrin and epidermal growth factor receptor (EGFR) signaling via the mitogenactivated protein kinase (MAPK) pathway. The reciprocal modulation does not occur in monolayer (2D) cultures. Antibodymediated inhibition of either of these receptors in the tumor cells, or inhibition of MAPK kinase, induced a concomitant downregulation of both receptors, followed by growth-arrest and restoration of normal breast tissue morphogenesis. Crossmodulation and tissue morphogenesis were associated with attenuation of EGF-induced transient MAPK activation. To specifically test EGFR and {beta}1-integrin interdependency, EGFR was overexpressed in nonmalignant cells, leading to disruption of morphogenesis and a compensatory up-regulation of {beta}1-integrin expression, again only in 3D. Our results indicate that when breast cells are spatially organized as a result of contact with basement membrane, the signaling pathways become coupled and bidirectional. They further explain why breast cells fail to differentiate in monolayer cultures in which these events are mostly uncoupled. Moreover, in a subset of tumor cells in which these pathways are misregulated but functional, the cells could be 'normalized' by manipulating either pathway.

  14. Fibroblast growth factor (FGF) signaling in development and skeletal diseases. (United States)

    Teven, Chad M; Farina, Evan M; Rivas, Jane; Reid, Russell R


    Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development.

  15. The statistical mechanics of complex signaling networks: nerve growth factor signaling. (United States)

    Brown, K S; Hill, C C; Calero, G A; Myers, C R; Lee, K H; Sethna, J P; Cerione, R A


    The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'

  16. RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3beta signaling pathways.

    Directory of Open Access Journals (Sweden)

    Linshan Shang

    Full Text Available BACKGROUND: Advanced glycation end-products (AGEs have been implicated in diverse pathological settings including diabetes, inflammation and acute ischemia/reperfusion injury in the heart. AGEs interact with the receptor for AGEs (RAGE and transduce signals through activation of MAPKs and proapoptotic pathways. In the current study, adult cardiomyocytes were studied in an in vitro ischemia/reperfusion (I/R injury model to delineate the molecular mechanisms underlying RAGE-mediated injury due to hypoxia/reoxygenation (H/R. METHODOLOGY/PRINCIPAL FINDINGS: Cardiomyocytes isolated from adult wild-type (WT, homozygous RAGE-null (RKO, and WT mice treated with soluble RAGE (sRAGE were subjected to hypoxia for 30 minutes alone or followed by reoxygenation for 1 hour. In specific experiments, RAGE ligand carboxymethyllysine (CML-AGE (termed "CML" in this manuscript was evaluated in vitro. LDH, a marker of cellular injury, was assayed in the supernatant in the presence or absence of signaling inhibitor-treated cardiomyocytes. Cardiomyocyte levels of heterogeneous AGEs were measured using ELISA. A pronounced increase in RAGE expression along with AGEs was observed in H/R vs. normoxia in WT cardiomyocytes. WT cardiomyocytes after H/R displayed increased LDH release compared to RKO or sRAGE-treated cardiomyocytes. Our results revealed significant increases in phospho-JNK in WT cardiomyocytes after H/R. In contrast, neither RKO nor sRAGE-treated cardiomyocytes exhibited increased phosphorylation of JNK after H/R stress. The impact of RAGE deletion on GSK-3beta phosphorylation in the cardiomyocytes subjected to H/R revealed significantly higher levels of phospho-GSK-3beta/total GSK-3beta in RKO, as well as in sRAGE-treated cardiomyocytes versus WT cardiomyocytes after H/R. Further investigation established a key role for Akt, which functions upstream of GSK-3beta, in modulating H/R injury in adult cardiomyocytes. CONCLUSIONS/SIGNIFICANCE: These data illustrate

  17. Roles of brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signalling in Alzheimer's disease. (United States)

    Zhang, Fang; Kang, Zhilong; Li, Wen; Xiao, Zhicheng; Zhou, Xinfu


    Alzheimer's disease (AD) is one of the most common causes of dementia in the elderly. It is characterized by extracellular deposition of the neurotoxic peptide, amyloid-beta (Aβ) peptide fibrils, and is accompanied by extensive loss of neurons in the brains of affected individuals. However, the pathogenesis of AD is not fully understood. The aim of this review is to discuss the possible role of brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) signalling in the development of AD, focusing on BDNF/TrkB signalling in the production of Aβ, tau hyperphosphorylation and cognition decline, and exploring new possibilities for AD intervention.

  18. The Smad pathway in transforming growth factorsignaling

    Institute of Scientific and Technical Information of China (English)

    林海燕; 王红梅; 祝诚


    The Smad pathway is involved in transforming growth factor-β (TGF-β) signal transduction. The Smad complex binds with the promoter of target gene to modulate gene transcription. Various transcriptional coactivators and corepressors associate directly with Smads for appropriate binding of Smads to target promoters and regulation of Smads transcriptional activities. The ultimate degradation of Smads mediated by the ubiquitin-proteasome pathway (UPP) has been established as a mechanism to shut off the Smad pathway. In addition to the Smad pathway, TGF-β can also activate other signaling pathway such as the MAPK pathway. The cross-talk of the Smad pathway with other signaling pathways constitutes an important mechanism for the regulatory network of TGF-β Signaling.

  19. Fibroblast growth factor signaling in mammalian tooth development. (United States)

    Li, Chun-Ying; Prochazka, Jan; Goodwin, Alice F; Klein, Ophir D


    In this review, we discuss the central role of fibroblast growth factor (FGF) signaling in mammalian tooth development. The FGF family consists of 22 members, most of which bind to four different receptor tyrosine kinases, which in turn signal through a cascade of intracellular proteins. This signaling regulates a number of cellular processes, including proliferation, differentiation, cell adhesion and cell mobility. FGF signaling first becomes important in the presumptive dental epithelium at the initiation stage of tooth development, and subsequently, it controls the invagination of the dental epithelium into the underlying mesenchyme. Later, FGFs are critical in tooth shape formation and differentiation of ameloblasts and odontoblasts, as well as in the development and homeostasis of the stem cell niche that fuels the continuously growing mouse incisor. In addition, FGF signaling is critical in human teeth, as mutations in genes encoding FGF ligands or receptors result in several congenital syndromes characterized by alterations in tooth number, morphology or enamel structure. The parallel roles of FGF signaling in mouse and human tooth development demonstrate the conserved importance of FGF signaling in mammalian odontogenesis.

  20. Amyloid beta-induced nerve growth factor dysmetabolism in Alzheimer disease. (United States)

    Bruno, Martin A; Leon, Wanda C; Fragoso, Gabriela; Mushynski, Walter E; Almazan, Guillermina; Cuello, A Claudio


    We previously reported that the precursor form of nerve growth factor (pro-NGF) and not mature NGF is liberated in the CNS in an activity-dependent manner, and that its maturation and degradation occur in the extracellular space by the coordinated action of proteases.Here, we present evidence of diminished conversion of pro-NGF to its mature form and of greater NGF degradation in Alzheimer disease (AD) brain samples compared with controls. These alterations of the NGF metabolic pathway likely resulted in the increased pro-NGF levels. The pro-NGF was largely in a peroxynitrited form in the AD samples. Intrahippocampal injection of amyloid-beta oligomers provoked similar upregulation of pro-NGF in naive rats that was accompanied by evidence of microglial activation (CD40), increased levels of inducible nitric oxide synthase, and increased activity of the NGF-degrading enzyme matrix metalloproteinase 9. The elevated inducible nitric oxide synthase provoked the generation of biologically inactive, peroxynitrite-modified pro-NGF in amyloid-beta oligomer-injected rats. These parameters were corrected by minocycline treatment. Minocycline also diminished altered matrix metalloproteinase 9, inducible nitric oxide synthase, and microglial activation (CD40); improved cognitive behavior; and normalized pro-NGF levels in a transgenic mouse AD model. The effects of amyloid-beta amyloid CNS burden on NGF metabolism may explain the paradoxical upregulation of pro-NGF in AD accompanied by atrophy of forebrain cholinergic neurons.

  1. Nod factor signal transduction in the Rhizobium-legume symbiosis

    NARCIS (Netherlands)

    Limpens, E.H.M.; Bisseling, T.


    The symbiotic interaction between Rhizobium bacteria and most legume plants is initiated by the perception of bacterial signal molecules, the nodulation (Nod) factors, at the root hairs of the plant. This induces responses both in the root hairs, leading to infection by the bacteria, as well as at a

  2. Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus.

    Directory of Open Access Journals (Sweden)

    Hiroki Kuroda


    Full Text Available The origin of the signals that induce the differentiation of the central nervous system (CNS is a long-standing question in vertebrate embryology. Here we show that Xenopus neural induction starts earlier than previously thought, at the blastula stage, and requires the combined activity of two distinct signaling centers. One is the well-known Nieuwkoop center, located in dorsal-vegetal cells, which expresses Nodal-related endomesodermal inducers. The other is a blastula Chordin- and Noggin-expressing (BCNE center located in dorsal animal cells that contains both prospective neuroectoderm and Spemann organizer precursor cells. Both centers are downstream of the early beta-Catenin signal. Molecular analyses demonstrated that the BCNE center was distinct from the Nieuwkoop center, and that the Nieuwkoop center expressed the secreted protein Cerberus (Cer. We found that explanted blastula dorsal animal cap cells that have not yet contacted a mesodermal substratum can, when cultured in saline solution, express definitive neural markers and differentiate histologically into CNS tissue. Transplantation experiments showed that the BCNE region was required for brain formation, even though it lacked CNS-inducing activity when transplanted ventrally. Cell-lineage studies demonstrated that BCNE cells give rise to a large part of the brain and retina and, in more posterior regions of the embryo, to floor plate and notochord. Loss-of-function experiments with antisense morpholino oligos (MO showed that the CNS that forms in mesoderm-less Xenopus embryos (generated by injection with Cerberus-Short [CerS] mRNA required Chordin (Chd, Noggin (Nog, and their upstream regulator beta-Catenin. When mesoderm involution was prevented in dorsal marginal-zone explants, the anterior neural tissue formed in ectoderm was derived from BCNE cells and had a complete requirement for Chd. By injecting Chd morpholino oligos (Chd-MO into prospective neuroectoderm and Cerberus

  3. Signal and background studies for the search of neutrinoless double beta decay in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Matteo


    The GERDA experiment searches for the neutrinoless double beta decay in Ge-76, by operating bare HPGe detectors in ultra-pure liquid Ar. This dissertation presents a first decomposition of the background measured in the current data-taking phase. The background at the energy of interest was found to be dominated by {sup 214}Bi, {sup 208}Tl and {sup 42}K gamma-rays, with secondary contributions from {sup 42}K and {sup 214}Bi beta-rays, and {sup 210}Po alpha-rays. For the forthcoming upgrade of the apparatus, a new HPGe detector design (BEGe) has been studied, with focus on its capability of suppressing the identified backgrounds through pulse shape analysis. This included the development of a comprehensive modeling of the detectors and the experimental characterization of their response to surface interactions. The achieved results show that GERDA can improve the present limit on the neutrinoless double beta decay half-life by an order of magnitude.

  4. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Hasan Korkaya


    Full Text Available Recent evidence suggests that many malignancies, including breast cancer, are driven by a cellular subcomponent that displays stem cell-like properties. The protein phosphatase and tensin homolog (PTEN is inactivated in a wide range of human cancers, an alteration that is associated with a poor prognosis. Because PTEN has been reported to play a role in the maintenance of embryonic and tissue-specific stem cells, we investigated the role of the PTEN/Akt pathway in the regulation of normal and malignant mammary stem/progenitor cell populations. We demonstrate that activation of this pathway, via PTEN knockdown, enriches for normal and malignant human mammary stem/progenitor cells in vitro and in vivo. Knockdown of PTEN in normal human mammary epithelial cells enriches for the stem/progenitor cell compartment, generating atypical hyperplastic lesions in humanized NOD/SCID mice. Akt-driven stem/progenitor cell enrichment is mediated by activation of the Wnt/beta-catenin pathway through the phosphorylation of GSK3-beta. In contrast to chemotherapy, the Akt inhibitor perifosine is able to target the tumorigenic cell population in breast tumor xenografts. These studies demonstrate an important role for the PTEN/PI3-K/Akt/beta-catenin pathway in the regulation of normal and malignant stem/progenitor cell populations and suggest that agents that inhibit this pathway are able to effectively target tumorigenic breast cancer cells.

  5. Early activation of FGF and nodal pathways mediates cardiac specification independently of Wnt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Lee J Samuel

    Full Text Available BACKGROUND: Cardiac induction, the first step in heart development in vertebrate embryos, is thought to be initiated by anterior endoderm during gastrulation, but what the signals are and how they act is unknown. Several signaling pathways, including FGF, Nodal, BMP and Wnt have been implicated in cardiac specification, in both gain- and loss-of-function experiments. However, as these pathways regulate germ layer formation and patterning, their specific roles in cardiac induction have been difficult to define. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the mechanisms of cardiac induction directly we devised an assay based on conjugates of anterior endoderm from early gastrula stage Xenopus embryos as the inducing tissue and pluripotent ectodermal explants as the responding tissue. We show that the anterior endoderm produces a specific signal, as skeletal muscle is not induced. Cardiac inducing signal needs up to two hours of interaction with the responding tissue to produce an effect. While we found that the BMP pathway was not necessary, our results demonstrate that the FGF and Nodal pathways are essential for cardiogenesis. They were required only during the first hour of cardiogenesis, while sustained activation of ERK was required for at least four hours. Our results also show that transient early activation of the Wnt/beta-catenin pathway has no effect on cardiogenesis, while later activation of the pathway antagonizes cardiac differentiation. CONCLUSIONS/SIGNIFICANCE: We have described an assay for investigating the mechanisms of cardiac induction by anterior endoderm. The assay was used to provide evidence for a direct, early and transient requirement of FGF and Nodal pathways. In addition, we demonstrate that Wnt/beta-catenin pathway plays no direct role in vertebrate cardiac specification, but needs to be suppressed just prior to differentiation.

  6. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    András, Ibolya E., E-mail:; Toborek, Michal, E-mail:


    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ.

  7. 17 beta-estradiol-BSA conjugates and 17 beta-estradiol regulate growth plate chondrocytes by common membrane associated mechanisms involving PKC dependent and independent signal transduction. (United States)

    Sylvia, V L; Walton, J; Lopez, D; Dean, D D; Boyan, B D; Schwartz, Z


    Nuclear receptors for 17 beta-estradiol (E(2)) are present in growth plate chondrocytes from both male and female rats and regulation of chondrocytes through these receptors has been studied for many years; however, recent studies indicate that an alternative pathway involving a membrane receptor may also be involved in the cell response. E(2) was found to directly affect the fluidity of chondrocyte membranes derived from female, but not male, rats. In addition, E(2) activates protein kinase C (PKC) in a nongenomic manner in female cells, and chelerythrine, a specific inhibitor of PKC, inhibits E(2)-dependent alkaline phosphatase activity and proteoglycan sulfation in these cells, indicating PKC is involved in the signal transduction mechanism. The aims of the present study were: (1) to examine the effect of a cell membrane-impermeable 17 beta-estradiol-bovine serum albumin conjugate (E(2)-BSA) on chondrocyte proliferation, differentiation, and matrix synthesis; (2) to determine the pathway that mediates the membrane effect of E(2)-BSA on PKC; and (3) to compare the action of E(2)-BSA to that of E(2). Confluent, fourth passage resting zone (RC) and growth zone (GC) chondrocytes from female rat costochondral cartilage were treated with 10(-9) to 10(-7) M E(2) or E(2)-BSA and changes in alkaline phosphatase specific activity, proteoglycan sulfation, and [(3)H]-thymidine incorporation measured. To examine the pathway of PKC activation, chondrocyte cultures were treated with E(2)-BSA in the presence or absence of GDP beta S (inhibitor of G-proteins), GTP gamma S (activator of G-proteins), U73122 or D609 (inhibitors of phospholipase C [PLC]), wortmannin (inhibitor of phospholipase D [PLD]) or LY294002 (inhibitor of phosphatidylinositol 3-kinase). E(2)-BSA mimicked the effects of E(2) on alkaline phosphatase specific activity and proteoglycan sulfation, causing dose-dependent increases in both RC and GC cell cultures. Both forms of estradiol inhibited [(3)H

  8. The prostaglandin receptor EP2 activates multiple signaling pathways and beta-arrestin1 complex formation during mouse skin papilloma development. (United States)

    Chun, Kyung-Soo; Lao, Huei-Chen; Trempus, Carol S; Okada, Manabu; Langenbach, Robert


    Prostaglandin E(2) (PGE(2)) is elevated in many tumor types, but PGE(2)'s contributions to tumor growth are largely unknown. To investigate PGE(2)'s roles, the contributions of one of its receptors, EP2, were studied using the mouse skin initiation/promotion model. Initial studies indicated that protein kinase A (PKA), epidermal growth factor receptor (EGFR) and several effectors-cyclic adenosine 3',5'-monophosphate response element-binding protein (CREB), H-Ras, Src, protein kinase B (AKT) and extracellular signal-regulated kinase (ERK)1/2-were activated in 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted papillomas and that PKA and EGFR inhibition (H89 and AG1478, respectively) decreased papilloma formation. EP2's contributions to the activation of these pathways and papilloma development were determined by inhibiting endogenous TPA-induced PGE(2) production with indomethacin (Indo) and concomitantly treating with the EP2 agonist, CAY10399 (CAY). CAY treatment restored papilloma formation in TPA/Indo-treated mice and increased cyclic adenosine 3',5'-monophosphate and PKA activation as measured by p-CREB formation. CAY treatment also increased EGFR and Src activation and their inhibition by AG1478 and PP2 indicated that Src was upstream of EGFR. CAY also increased H-Ras, ERK1/2 and AKT activation, and AG1478 decreased their activation indicating EGFR being upstream. Supporting EP2's contribution, EP2-/- mice exhibited 65% fewer papillomas and reduced Src, EGFR, H-Ras, AKT and ERK1/2 activation. G protein-coupled receptor (GPCR) activation of EGFR has been reported to involve Src's activation via a GPCR-beta-arrestin-Src complex. Indeed, immunoprecipitation of beta-arrestin1 or p-Src indicated the presence of an EP2-beta-arrestin1-p-Src complex in papillomas. The data indicated that EP2 contributed to tumor formation via activation of PKA and EGFR and that EP2 formed a complex with beta-arrestin1 and Src that contributed to signaling and/or EP2 desensitization.

  9. Beclin 1 regulates growth factor receptor signaling in breast cancer. (United States)

    Rohatgi, R A; Janusis, J; Leonard, D; Bellvé, K D; Fogarty, K E; Baehrecke, E H; Corvera, S; Shaw, L M


    Beclin 1 is a haploinsufficient tumor suppressor that is decreased in many human tumors. The function of beclin 1 in cancer has been attributed primarily to its role in the degradative process of macroautophagy. However, beclin 1 is a core component of the vacuolar protein sorting 34 (Vps34)/class III phosphatidylinositoI-3 kinase (PI3KC3) and Vps15/p150 complex that regulates multiple membrane-trafficking events. In the current study, we describe an alternative mechanism of action for beclin 1 in breast cancer involving its control of growth factor receptor signaling. We identify a specific stage of early endosome maturation that is regulated by beclin 1, the transition of APPL1-containing phosphatidyIinositol 3-phosphate-negative (PI3P(-)) endosomes to PI3P(+) endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P(-)/APPL(+)-signaling-competent compartment. As a result, suppression of BECN1 sustains growth factor-stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Our data identify a novel role for beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of beclin 1 expression would enhance breast cancer progression.

  10. Do amyloid beta-associated factors co-deposit with Abeta in mouse models for Alzheimer's disease?

    NARCIS (Netherlands)

    Timmer, N.M.; Kuiperij, H.B.; Waal, R.M.W. de; Verbeek, M.M.


    Senile plaques and cerebral amyloid angiopathy in Alzheimer's disease (AD) patients not only consist of the amyloid-beta protein (Abeta), but also contain many different Abeta-associated factors, such as heparan sulfate proteoglycans, apolipoproteins, and complement factors. These factors may all

  11. Dual regulation of the parathyroid hormone (PTH)/PTH-related peptide receptor signaling by protein kinase C and beta-arrestins. (United States)

    Castro, Marián; Dicker, Frank; Vilardaga, Jean-Pierre; Krasel, Cornelius; Bernhardt, Manfred; Lohse, Martin J


    We examined here the role of second messenger-dependent kinases and beta-arrestins in short-term regulation of the PTH receptor (PTHR) signaling. The inhibition of protein kinase C (PKC) in COS-7 cells transiently expressing PTHR, led to an approximately 2-fold increase in PTH-stimulated inositol phosphate (IP) and cAMP production. The inhibition of protein kinase A increased cAMP production 1.5-fold without affecting IP signaling. The effects of PKC inhibition on PTHR-mediated G(q) signaling were strongly decreased for a carboxy-terminally truncated PTHR (T480) that is phosphorylation deficient. PKC inhibition was associated with a decrease in agonist-stimulated PTHR phosphorylation and internalization without blocking PTH-dependent mobilization of beta-arrestin2 to the plasma membrane. Overexpression of beta-arrestins strongly decreased the PTHR-mediated IP signal, whereas cAMP production was impaired to a much lower extent. The regulation of PTH-stimulated signals by beta-arrestins was impaired for the truncated T480 receptor. Our data reveal mechanisms at, and distal to, the receptor regulating PTHR-mediated signaling pathways by second messenger-dependent kinases. We conclude that regulation of PTHR-mediated signaling by PKC and beta-arrestins are separable phenomena that both involve the carboxy terminus of the receptor. A major role for PKC and beta-arrestins in preferential regulation of PTHR-mediated G(q) signaling by independent mechanisms at the receptor level was established.

  12. Delphinidin, a dietary anthocyanidin, inhibits platelet-derived growth factor ligand/receptor (PDGF/PDGFR) signaling. (United States)

    Lamy, Sylvie; Beaulieu, Edith; Labbé, David; Bédard, Valérie; Moghrabi, Albert; Barrette, Stéphane; Gingras, Denis; Béliveau, Richard


    Most cancers are dependent on the growth of tumor blood vessels and inhibition of tumor angiogenesis may thus provide an efficient strategy to retard or block tumor growth. Recently, tumor vascular targeting has expanded to include not only endothelial cells (ECs) but also smooth muscle cells (SMCs), which contribute to a mature and functional vasculature. We have reported previously that delphinidin, a major biologically active constituent of berries, inhibits the vascular endothelial growth factor-induced phosphorylation of vascular endothelial growth factor receptor-2 and blocks angiogenesis in vitro and in vivo. In the present study, we show that delphinidin also inhibits activation of the platelet-derived growth factor (PDGF)-BB receptor-beta [platelet-derived growth factor receptor-beta (PDGFR-beta)] in SMC and that this inhibition may contribute to its antitumor effect. The inhibitory effect of delphinidin on PDGFR-beta was very rapid and led to the inhibition of PDGF-BB-induced activation of extracellular signal-regulated kinase (ERK)-1/2 signaling and of the chemotactic motility of SMC, as well as the differentiation and stabilization of EC and SMC into capillary-like tubular structures in a three-dimensional coculture system. Using an anthocyan-rich extract of berries, we show that berry extracts were able to suppress the synergistic induction of vessel formation by basic fibroblast growth factor-2 and PDGF-BB in the mouse Matrigel plug assay. Oral administration of the berry extract also significantly retarded tumor growth in a lung carcinoma xenograft model. Taken together, these results provide new insight into the molecular mechanisms underlying the antiangiogenic activity of delphinidin that will be helpful for the development of dietary-based chemopreventive strategies.

  13. IL-1beta-induced chemokine and Fas expression are inhibited by suppressor of cytokine signalling-3 in insulin-producing cells

    DEFF Research Database (Denmark)

    Jacobsen, M L B; Rønn, S G; Bruun, C;


    AIMS/HYPOTHESIS: Chemokines recruit activated immune cells to sites of inflammation and are important mediators of insulitis. Activation of the pro-apoptotic receptor Fas leads to apoptosis-mediated death of the Fas-expressing cell. The pro-inflammatory cytokines IL-1beta and IFN-gamma regulate...... the transcription of genes encoding the Fas receptor and several chemokines. We have previously shown that suppressor of cytokine signalling (SOCS)-3 inhibits IL-1beta- and IFN-gamma-induced nitric oxide production in a beta cell line. The aim of this study was to investigate whether SOCS-3 can influence cytokine......-induced Fas and chemokine expression in beta cells. METHODS: Using a beta cell line with inducible Socs3 expression or primary neonatal rat islet cells transduced with a Socs3-encoding adenovirus, we employed real-time RT-PCR analysis to investigate whether SOCS-3 affects cytokine-induced chemokine and Fas m...

  14. Wnt/beta-catenin signaling pathway mediates oriented differentiation of hair-follicle-generating stem cells induced by keratinocyte growth factor and lithium chloride%角质细胞生长因子及氯化锂诱导毛囊干细胞定向分化中的信号通路

    Institute of Scientific and Technical Information of China (English)

    杨斌; 邓立欢; 李秉航; 吴小莹; 丁榆德; 董雪


    BACKGROUND:The proliferation and differentiation of hair-folicle-generating stem cels are influenced by the joint action of their own genes and external signals. Wnt/β-catenin signaling pathway plays an important role in the development of hair folicles, but the detailed mechanisms are not yet clear. OBJECTIVE:To investigate, with interruption of keratinocyte growth factor and lithium chloride, the function and the interrelationship of Wnt/β-catenin signaling pathway with other signal factors when human hair-folicle-generating stem cels differentiate into dermal papila cels or epidermal cels. METHODS: Hair-folicle-generating stem cels were isolated from the bulge and cultivated. Then the growth curve of hair-folicle-generating stem cels was tested and formed in order to observe the cellproliferation ability cultivated at different densities (1×106/L, 1×107/L, 1×108/L, 1×109/L) at each time. Immunoflurorescene staining was performed to identify hair-folicle-generating stem cels and their differentiated cels. Lithium chloride (0, 0.5, 1.5, 10, 25 mmol/L individualy) and keratinocyte growth factor(0, 10, 25, 50, 100 μg/L individualy) were used to induce the differentiation of hair-folicle-generating stem cels. Then, we contrasted and analyzed the proliferation ability in each case, thereby investigating the most appropriate concentration of keratinocyte growth factor and lithium chloride to spur the differentiation of hair-folicle-generating stem cels. At days 3, 5, 7 and 9, we tested and compared the mRNA expressions of β-catenin, APC, GSK-3β, Axin and Lef1 from cels in control group, 10 mmol/L lithium chloride group and 10 μg/L keratinocyte growth factor group. RESULTS AND CONCLUSION:Isolating cultured hair-folicle-generating stem cels stil had a great reproductive activity and multi-lineage potential even after various times subculturein vitro. With higher lithium chloride concentration, the proliferation ability of hair-folicle-generating stem cels

  15. Critical role of transcription factor cyclic AMP response element modulator in beta1-adrenoceptor-mediated cardiac dysfunction. (United States)

    Lewin, Geertje; Matus, Marek; Basu, Abhijit; Frebel, Karin; Rohsbach, Sebastian Pius; Safronenko, Andrej; Seidl, Matthias Dodo; Stümpel, Frank; Buchwalow, Igor; König, Simone; Engelhardt, Stefan; Lohse, Martin J; Schmitz, Wilhelm; Müller, Frank Ulrich


    Chronic stimulation of the beta(1)-adrenoceptor (beta(1)AR) plays a crucial role in the pathogenesis of heart failure; however, underlying mechanisms remain to be elucidated. The regulation by transcription factors cAMP response element-binding protein (CREB) and cyclic AMP response element modulator (CREM) represents a fundamental mechanism of cyclic AMP-dependent gene control possibly implicated in beta(1)AR-mediated cardiac deterioration. We studied the role of CREM in beta(1)AR-mediated cardiac effects, comparing transgenic mice with heart-directed expression of beta(1)AR in the absence and presence of functional CREM. CREM inactivation protected from cardiomyocyte hypertrophy, fibrosis, and left ventricular dysfunction in beta(1)AR-overexpressing mice. Transcriptome and proteome analysis revealed a set of predicted CREB/CREM target genes including the cardiac ryanodine receptor, tropomyosin 1alpha, and cardiac alpha-actin as altered on the mRNA or protein level along with the improved phenotype in CREM-deficient beta(1)AR-transgenic hearts. The results imply the regulation of genes by CREM as an important mechanism of beta(1)AR-induced cardiac damage in mice.

  16. Enhanced expression of the type II transforming growth factor beta receptor in human pancreatic cancer cells without alteration of type III receptor expression. (United States)

    Friess, H; Yamanaka, Y; Büchler, M; Berger, H G; Kobrin, M S; Baldwin, R L; Korc, M


    We have recently found that human pancreatic adenocarcinomas exhibit strong immunostaining for the three mammalian transforming growth factor beta (TGF-beta) isoforms. These important growth-regulating polypeptides bind to a number of proteins, including the type I TGF-beta receptor (T beta R-I), type II TGF-beta receptor (T beta R-II), and the type III TGF-beta receptor (T beta R-III). In the present study we sought to determine whether T beta R-II and T beta R-III expression is altered in pancreatic cancer. Northern blot analysis indicated that, by comparison with the normal pancreas, pancreatic adenocarcinomas exhibited a 4.6-fold increase (P beta R-II. In contrast, mRNA levels encoding T beta R-III were not increased. In situ hybridization showed that T beta R-II mRNA was expressed in the majority of cancer cells, whereas mRNA grains encoding T beta R-III were detectable in only a few cancer cells and were present mainly in the surrounding stroma. These findings suggest that enhanced levels of T beta R-II may have a role in regulating human pancreatic cancer cell growth, while T beta R-III may function in the extracellular matrix.

  17. Transforming growth factor-beta-induced regulatory T cells referee inflammatory and autoimmune diseases. (United States)

    Wahl, Sharon M; Chen, Wanjun


    Naturally occurring CD4+CD25+ regulatory T cells mediate immune suppression to limit immunopathogenesis associated with chronic inflammation, persistent infections and autoimmune diseases. Their mode of suppression is contact-dependent, antigen-nonspecific and involves a nonredundant contribution from the cytokine transforming growth factor (TGF)-beta. Not only can TGF-beta mediate cell-cell suppression between the regulatory T cells and CD4+CD25- or CD8+ T cells, but new evidence also reveals its role in the conversion of CD4+CD25- T cells, together with TCR antigen stimulation, into the regulatory phenotype. Elemental to this conversion process is induction of expression of the forkhead transcription factor, Foxp3. This context-dependent coercion of naive CD4+ T cells into a powerful subset of regulatory cells provides a window into potential manipulation of these cells to orchestrate therapeutic intervention in diseases characterized by inadequate suppression, as well as a promising means of controlling pathologic situations in which excessive suppression dominates.

  18. Wnt signaling through T-cell factor phosphorylation

    Institute of Scientific and Technical Information of China (English)

    Sergei Y Sokol


    Embryonic signaling pathways often lead to a switch from default repression to transcriptional activation of target genes. A major consequence of Wnt signaling is stabilization of p-catenin, which associates with T-cell factors (TCFs) and 'converts' them from repressors into transcriptional activators. The molecular mechanisms responsible for this conversion remain poorly understood. Several studies have reported on the regulation of TCF by phosphorylation,yet its physiological significance has been unclear: in some cases it appears to promote target gene activation, in oth-ers Wnt-dependent transcription is inhibited. This review focuses on recent progress in the understanding of context-dependent post-translational regulation of TCF function by Wnt signaling.

  19. Cloning of a novel signaling molecule, AMSH-2, that potentiates transforming growth factor β signaling

    Directory of Open Access Journals (Sweden)

    Pandey Akhilesh


    Full Text Available Abstract Background Transforming growth factor-βs (TGF-βs, bone morphogenetic proteins (BMPs and activins are important regulators of developmental cell growth and differentiation. Signaling by these factors is mediated chiefly by the Smad family of latent transcription factors. Results There are a large number of uncharacterized cDNA clones that code for novel proteins with homology to known signaling molecules. We have identified a novel molecule from the HUGE database that is related to a previously known molecule, AMSH (associated molecule with the SH3 domain of STAM, an adapter shown to be involved in BMP signaling. Both of these molecules contain a coiled-coil domain located within the amino-terminus region and a JAB (Domain in Jun kinase activation domain binding protein and proteasomal subunits domain at the carboxy-terminus. We show that this novel molecule, which we have designated AMSH-2, is widely expressed and its overexpression potentiates activation of TGF-β-dependent promoters. Coimmunoprecipitation studies indicated that Smad7 and Smad2, but not Smad3 or 4, interact with AMSH-2. We show that overexpression of AMSH-2 decreases the inhibitory effect of Smad7 on TGF-β signaling. Finally, we demonstrate that knocking down AMSH-2 expression by RNA interference decreases the activation of 3TP-lux reporter in response to TGF-β. Conclusions This report implicates AMSH and AMSH-2 as a novel family of molecules that positively regulate the TGF-β signaling pathway. Our results suggest that this effect could be partially explained by AMSH-2 mediated decrease of the action of Smad7 on TGF-β signaling pathway.

  20. Production of tumor necrosis factors alpha and beta by human mononuclear leukocytes stimulated with mitogens, bacteria, and malarial parasites.


    Ferrante, A; Staugas, R E; Rowan-Kelly, B; Bresatz, S; Kumaratilake, L M; Rzepczyk, C M; Adolf, G R


    Tumor necrosis factors alpha and beta (TNF-alpha and TNF-beta) are multifaceted polypeptide cytokines which may mediate some of the significant changes in cellular homeostasis which accompany the invasion of the mammalian host by viruses, bacteria, and parasites. Although it is well established that bacterial lipopolysaccharide is a potent inducer of TNF-alpha, there is still very little known of the types of agents which can trigger the production of TNFs in mononuclear leukocytes. Using an ...

  1. Prevalence of metabolic syndrome in patients with minor beta thalassemia and its related factors: a cross-sectional study


    Gozashti, Mohammad Hossein; Hasanzadeh, Ali; Mashrouteh, Mahdieh


    Background Atherosclerotic disorders, hypertension and lipid profile alterations are of a lower prevalence in patients with minor beta thalassemia. On the other hand, nowadays, metabolic syndrome is considered as one of the major risk factors of developing cardiovascular diseases. Therefore, the present study was performed to determine the prevalence of metabolic syndrome in patients with minor beta thalassemia. Methods In this case-control study, body length, weight and waist circumference, ...

  2. Profiling of anti-fibrotic signaling by hepatocyte growth factor in renal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Schievenbusch, Stephanie; Strack, Ingo; Scheffler, Melanie; Wennhold, Kerstin; Maurer, Julia [Institute for Pathology, University Hospital Cologne, Kerpener Str. 62, 50924 Koeln (Germany); Nischt, Roswitha [Department of Dermatology, University Hospital of Cologne (Germany); Dienes, Hans Peter [Institute for Pathology, University Hospital Cologne, Kerpener Str. 62, 50924 Koeln (Germany); Odenthal, Margarete, E-mail: [Institute for Pathology, University Hospital Cologne, Kerpener Str. 62, 50924 Koeln (Germany)


    Hepatocyte growth factor (HGF) is a multifunctional growth factor affecting cell proliferation and differentiation. Due to its mitogenic potential, HGF plays an important role in tubular repair and regeneration after acute renal injury. However, recent reports have shown that HGF also acts as an anti-inflammatory and anti-fibrotic factor, affecting various cell types such as renal fibroblasts and triggering tubulointerstitial fibrosis of the kidney. The present study provides evidence that HGF stimulation of renal fibroblasts results in the activation of both the Erk1/2 and the Akt pathways. As previously shown, Erk1/2 phosphorylation results in Smad-linker phosphorylation, thereby antagonizing cellular signals induced by TGF{beta}. By siRNA mediated silencing of the Erk1/2-Smad linkage, however, we now demonstrate that Akt signaling acts as an auxiliary pathway responsible for the anti-fibrotic effects of HGF. In order to define the anti-fibrotic function of HGF we performed comprehensive expression profiling of HGF-stimulated renal fibroblasts by microarray hybridization. Functional cluster analyses and quantitative PCR assays indicate that the HGF-stimulated pathways transfer the anti-fibrotic effects in renal interstitial fibroblasts by reducing expression of extracellular matrix proteins, various chemokines, and members of the CCN family.

  3. Transforming growth factor-beta1 stimulates the production of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in human bone marrow stromal osteoblast progenitors

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Eriksen, E F


    While transforming growth factor-beta1 (TGF-beta1) regulates proliferation and differentiation of human osteoblast precursor cells, the mechanisms underlying these effects are not known. Several hormones and locally acting growth factors regulate osteoblast functions through changes in the insulin......-like growth factors (IGFs) and IGF-binding proteins (IGFBPs). Thus, we studied the effects of TGF-beta1 on IGFs and IGFBPs in human marrow stromal (hMS) osteoblast precursor cells. TGF-beta1 increased the steady-state mRNA level of IGF-I up to 8.5+/-0.6-fold (P...

  4. Environmental particulate (PM2.5 augments stiffness-induced alveolar epithelial cell mechanoactivation of transforming growth factor beta.

    Directory of Open Access Journals (Sweden)

    Marilyn M Dysart

    Full Text Available Dysfunctional pulmonary homeostasis and repair, including diseases such as pulmonary fibrosis (PF, chronic obstructive pulmonary disease (COPD, and tumorigenesis have been increasing over the past decade, a fact that heavily implicates environmental influences. Several investigations have suggested that in response to increased transforming growth factor--beta (TGFβ signaling, the alveolar type II (ATII epithelial cell undergoes phenotypic changes that may contribute to the complex pathobiology of PF. We have previously demonstrated that increased tissue stiffness associated with PF is a potent extracellular matrix (ECM signal for epithelial cell activation of TGFβ. The work reported here explores the relationship between tissue stiffness and exposure to environmental stimuli in the activation of TGFβ. We hypothesized that exposure of ATII cells to fine particulate matter (PM2.5 will result in enhanced cell contractility, TGFβ activation, and subsequent changes to ATII cell phenotype. ATII cells were cultured on increasingly stiff substrates with or without addition of PM2.5. Exposure to PM2.5 resulted in increased activation of TGFβ, increased cell contractility, and elongation of ATII cells. Most notably, on 8 kPa substrates, a stiffness greater than normal but less than established fibrotic lung, addition of PM2.5 resulted in increased cortical cell stiffness, enhanced actin staining and cell elongation; a result not seen in the absence of PM2.5. Our work suggests that PM2.5 exposure additionally enhances the existing interaction between ECM stiffness and TGFβ that has been previously reported. Furthermore, we show that this additional enhancement is likely a consequence of intracellular reactive oxygen species (ROS leading to increased TGFβ signaling events. These results highlight the importance of both the micromechanical and biochemical environment in lung disease initiation and suggest that individuals in early stages of lung

  5. Neutrophil transmigration triggers repair of the lung epithelium via beta-catenin signaling. (United States)

    Zemans, Rachel L; Briones, Natalie; Campbell, Megan; McClendon, Jazalle; Young, Scott K; Suzuki, Tomoko; Yang, Ivana V; De Langhe, Stijn; Reynolds, Susan D; Mason, Robert J; Kahn, Michael; Henson, Peter M; Colgan, Sean P; Downey, Gregory P


    Injury to the epithelium is integral to the pathogenesis of many inflammatory lung diseases, and epithelial repair is a critical determinant of clinical outcome. However, the signaling pathways regulating such repair are incompletely understood. We used in vitro and in vivo models to define these pathways. Human neutrophils were induced to transmigrate across monolayers of human lung epithelial cells in the physiological basolateral-to-apical direction. This allowed study of the neutrophil contribution not only to the initial epithelial injury, but also to its repair, as manifested by restoration of transepithelial resistance and reepithelialization of the denuded epithelium. Microarray analysis of epithelial gene expression revealed that neutrophil transmigration activated β-catenin signaling, and this was verified by real-time PCR, nuclear translocation of β-catenin, and TOPFlash reporter activity. Leukocyte elastase, likely via cleavage of E-cadherin, was required for activation of β-catenin signaling in response to neutrophil transmigration. Knockdown of β-catenin using shRNA delayed epithelial repair. In mice treated with intratracheal LPS or keratinocyte chemokine, neutrophil emigration resulted in activation of β-catenin signaling in alveolar type II epithelial cells, as demonstrated by cyclin D1 expression and/or reporter activity in TOPGAL mice. Attenuation of β-catenin signaling by IQ-1 inhibited alveolar type II epithelial cell proliferation in response to neutrophil migration induced by intratracheal keratinocyte chemokine. We conclude that β-catenin signaling is activated in lung epithelial cells during neutrophil transmigration, likely via elastase-mediated cleavage of E-cadherin, and regulates epithelial repair. This pathway represents a potential therapeutic target to accelerate physiological recovery in inflammatory lung diseases.

  6. [Anti-arrhythmic effect of acupuncture pretreatment in the rat of myocardial ischemia the post-receptor signaling pathway of beta-adrenergic receptor]. (United States)

    Gao, Jun-hong; Fu, Wei-xing; Jin, Zhi-gao; Yu, Xiao-chun


    To observe anti-arrhythmic effect of acupuncture pretreatment in the rat of myocardial ischemia and reperfusion (MIR) and to explore the role of cAMP and Gsa protein in beta-adrenergic receptor signaling. MIR was produced by ligation and reperfusion of the left anterior descending coronary artery in the rat. Arrhythmic score, content of cAMP and Gsalpha protein in ischemic myocardium were compared among the normal control (NC), ischemia and reperfusion (IR), electroacupuncture (EA) and EA plus propranolol (EAP) groups. The arrhythmic score in the IR group at 10 min after reperfusion was higher than the NC group (P signaling pathway of beta-adrenergic receptor.

  7. Monte Carlo calculations of monoenergetic electron depth dose distributions in LiF chips: Skin dose correction factors for beta rays

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Y.S. [Ben Gurion Univ. of the Negev, Beersheva (Israel); Hirning, C.R. [Ontario Hydro, Whitby (Canada); Yuen, P.; Wong, P. [Chalk River Labs., Ontario (Canada)


    Monte Carlo calculations have been carried out for monoenergetic electrons from 0.1 to 4 MeV irradiating LiF chips in both perpendicular and isotropic geometry. This enabled the calculation of skin dose correction factors (beta factors) for typical beta energy spectra as measured with a beta-ray spectrometer at CANDU nuclear generating stations. The correction factors were estimated by averaging the depth dose distributions for the monoenergetic electrons over the experimentally measured beta-ray spectra. The calculations illustrate the large uncertainty in beta factors arising from the unknown angular distribution of the beta-ray radiation field and uncertainties in the shape of the beta-ray spectra below 500 keV. 28 refs., 8 figs., 2 tabs.

  8. Signaling with homeoprotein transcription factors in development and throughout adulthood. (United States)

    Prochiantz, A


    The concept of homeoprotein transduction as a novel signaling pathway has dramatically evolved since it was first proposed in 1991. It is now well established in several biological systems from plants to mammals. In this review, the different steps that have led to this unexpected observation are recalled and the developmental and physiological models that have allowed us (and a few others) to consolidate the original hypothesis are described. Because homeoprotein signaling is active in plants and animals it is proposed that it has predated the separation between animals and plants and is thus very ancient. This may explain why the basic phenomenon of homeoprotein transduction is so minimalist, requiring no specific receptors or transduction pathways beside those offered by mitochondria, organelles present in all eukaryotic cells. Indeed complexity has been added in the course of evolution and the conservation of homeoprotein transduction is discussed in the context of its synergy with bona fide signaling mechanism that may have added robustness to this primitive cell communication device. The same synergy possibly explains why homeoprotein signaling is important both in embryonic development and in adult functions fulfilled by signaling entities (e.g. growth factors) themselves active throughout development and in the adult. The cell biological mechanism of homeoprotein transfer is also discussed. Although it is clear that many questions are still in want of precise answers, it appears that the sequences responsible both for secretion and internalization are in the DNA-binding domain and very highly conserved among most homeoproteins. On this basis, it is proposed that this signaling pathway is likely to imply as many as 200 proteins that participate in a myriad of developmental and physiological pathways.

  9. Prognostic factors in bone marrow transplantation for beta thalassemia major: experiences from Iran. (United States)

    Ghavamzadeh, A; Nasseri, P; Eshraghian, M R; Jahani, M; Baybordi, I; Nateghi, J; Khodabandeh, A; Sadjadi, A R; Mohyeddin, M; Khademi, Y


    This study concerns the effects of several pre-transplant features on outcome for patients with beta thalassemia major who underwent bone marrow transplantation (BMT). Seventy patients with beta thalassemia major underwent bone marrow transplantation during the period 1991-1997 in Shariati Hospital in Tehran, Iran. The survival and rejection curves levelled off at 8 and 18 months after transplantation at 82.6% and 11.4%, respectively. Pre-transplant clinical features (age, serum ferritin, portal fibrosis, hepatomegaly and quality of chelation therapy) were examined for their effects on survival and recurrence of thalassemia in this group of patients who were less than 16 years old. Increasing age, presence of portal fibrosis and increasing serum ferritin were significantly associated with reduced probability of survival (P = 0.0047, P = 0.016 and P = 0.024, respectively). Hepatomegaly and inadequate pre-transplant chelation therapy which were documented as poor prognostic factors in previous studies, were not evaluable in this study. We also showed the benefits of transplanting more than 5.5 x 10(8)/kg cells in this group of patients with no increase in complications.

  10. Bayesian Nonparametric Measurement of Factor Betas and Clustering with Application to Hedge Fund Returns

    Directory of Open Access Journals (Sweden)

    Urbi Garay


    Full Text Available We define a dynamic and self-adjusting mixture of Gaussian Graphical Models to cluster financial returns, and provide a new method for extraction of nonparametric estimates of dynamic alphas (excess return and betas (to a choice set of explanatory factors in a multivariate setting. This approach, as well as the outputs, has a dynamic, nonstationary and nonparametric form, which circumvents the problem of model risk and parametric assumptions that the Kalman filter and other widely used approaches rely on. The by-product of clusters, used for shrinkage and information borrowing, can be of use to determine relationships around specific events. This approach exhibits a smaller Root Mean Squared Error than traditionally used benchmarks in financial settings, which we illustrate through simulation. As an illustration, we use hedge fund index data, and find that our estimated alphas are, on average, 0.13% per month higher (1.6% per year than alphas estimated through Ordinary Least Squares. The approach exhibits fast adaptation to abrupt changes in the parameters, as seen in our estimated alphas and betas, which exhibit high volatility, especially in periods which can be identified as times of stressful market events, a reflection of the dynamic positioning of hedge fund portfolio managers.

  11. Gene Expression Analysis of Murine and Human Osteoarthritis Synovium Reveals Elevation of Transforming Growth Factor beta-Responsive Genes in Osteoarthritis-Related Fibrosis

    NARCIS (Netherlands)

    Remst, D. F. G.; Blom, A. B.; Vitters, E. L.; Bank, R. A.; van den Berg, W. B.; Davidson, E. N. Blaney; van der Kraan, P. M.

    Objective. Synovial fibrosis is a major contributor to joint stiffness in osteoarthritis (OA). Transforming growth factor beta (TGF beta), which is elevated in OA, plays a key role in the onset and persistence of synovial fibrosis. However, blocking of TGF beta in OA as a therapeutic intervention

  12. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice

    DEFF Research Database (Denmark)

    Clausen, Bettina Hjelm; Lambertsen, Kate Lykke; Babcock, Alicia


    BACKGROUND: Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) are expressed by microglia and infiltrating macrophages following ischemic stroke. Whereas IL-1beta is primarily neurotoxic in ischemic stroke, TNF-alpha may have neurotoxic and/or neuroprotective effects. We inv...

  13. Cell-specific delivery of a transforming growth factor-beta type I receptor kinase inhibitor to proximal tubular cells for the treatment of renal fibrosis

    NARCIS (Netherlands)

    Prakash, Jai; de Borst, Martin H.; van Loenen - Weemaes, Annemiek M.; Lacombe, Marie; Opdam, Frank; van Goor, Harry; Meijer, Dirk K. F.; Moolenaar, Frits; Poelstra, Klaas; Kok, Robbert J.


    Purpose. Activation of tubular epithelial cells by transforming growth factor-beta (TGF-beta) plays an important role in the pathogenesis of renal tubulointerstitial fibrosis. We developed a renally accumulating conjugate of a TGF-beta type-I receptor kinase inhibitor (TKI) and evaluated its

  14. Production and action of transforming growth factor-beta in human osteoblast cultures: dependence on cell differentiation and modulation by calcitriol

    DEFF Research Database (Denmark)

    Kassem, M; Kveiborg, Marie; Eriksen, E F


    Transforming growth factor beta (TGF-beta) plays an important role in skeletal remodelling. However, few studies have examined its effects on cultured human osteoblasts. Our aim is to characterise the biological effects of TGF-beta1 on human osteoblasts and to examine the interaction between TGF-...

  15. Production and action of transforming growth factor-beta in human osteoblast cultures: dependence on cell differentiation and modulation by calcitriol

    DEFF Research Database (Denmark)

    Kassem, M; Kveiborg, Marie; Eriksen, E F


    Transforming growth factor beta (TGF-beta) plays an important role in skeletal remodelling. However, few studies have examined its effects on cultured human osteoblasts. Our aim is to characterise the biological effects of TGF-beta1 on human osteoblasts and to examine the interaction between TGF-...

  16. Transforming growth factor-beta1 stimulates the production of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in human bone marrow stromal osteoblast progenitors

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Eriksen, E F;


    While transforming growth factor-beta1 (TGF-beta1) regulates proliferation and differentiation of human osteoblast precursor cells, the mechanisms underlying these effects are not known. Several hormones and locally acting growth factors regulate osteoblast functions through changes in the insuli...

  17. [Influence of ASODN to the human tenon's fibroblasts in expressing CTGF induced by transforming growth factor beta2]. (United States)

    Hu, Yi-Zhen; Wang, Yu-Hong; Cao, Yang; Zhang, Ming-Chang


    To investigate the effect of connective tissue growth factor's antisense oligonucleotides (ASODN) on the growth of human tenon' s capsule fibroblasts (HTF) induced by transforming growth factor beta2 (TGF-beta2) in vitro. It was a experimental study. HTF was collected from glaucoma patients and cultured. The 5-6 passage was used for experiments. The HTF induced by TGF-beta2 was divided into the following groups: N group: normal HTF; T group: HTF induced by TGF-beta2; A group: CTGF ASODN antisense:5'-TACTGGCGGCGGTCAT-3' encapsulated with liposome; S group: sense 5'-ATGACCGCCGCCAGTA-3' encapsulated with liposome; D group: HTF encapsulated with liposome only. The activity of HTF treated by different concentrations of liposome was detected using methylthianolyldiphenyl tetrazolium bromide (MT) colorimetry. The expression of CTGF was detected by reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry assays. The expression of fibronectin (Fn) was examined by Western blot and immunocytochemistry assays. Liposome-ASODN (A group) significantly (F=15.25, 204.88, 19.73, 90.00; P HTF induced by TGF-beta2 compared with S and D group. However, Liposome alone (T group) has no significant impact in HTF growth compared with T group (t = 0.90, 2.32, 0.75, 2.11; P > 0.05). CTGF-ASODN inhibits the CTGF and Fn expression of HTF induced by TGF-beta2, which may delay the formation of scar in glaucoma filtering surgery.

  18. Apolipoproteins A1, B, and other prognostic biochemical cardiovascular risk factors in patients with beta-thalassemia major. (United States)

    Ghorban, Khodayar; Shanaki, Mehrnoosh; Mobarra, Naser; Azad, Mehdi; Asadi, Jahanbakhsh; Pakzad, Reza; Ehteram, Hassan


    The occurrence of cardiac iron deposition is one of the late effect of iron over load which causes cardiovascular disease (CVD) in patients who are affected by beta-thalassemia major. Evaluation of some cardiovascular risk factors plays a crucial role in prediction and prevention of CVD. This study consisted of 70 young adult subjects with beta-thalassemia major (beta-TM) (aged  0.05) were different. Some elements included ferritin (P  0.05) was not significantly different in study groups. Exception of high-density lipoprotein (P > 0.05), other lipid profiles, and apoB had a negative meaningful correlation with PAB (P beta-thalassemia major. Even so, they contribute toward the gradual development of CVD.

  19. Transforming growth factor-beta. En potent multifunktionel voekstfaktor for normale og maligne celler

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Spang-Thomsen, M;


    incomplete, together with other substances such as steroid hormones, oncogene products and integrins. Five isoforms for TGF-beta and five different TGF-beta receptors have been described. TGF-beta exhibits an antiproliferative effect in vitro and in vivo on many cells of epthelial, myeloid, lymphoid...

  20. [Influence of Smad4-independent pathway of transforming growth factor beta1 on the biological activity of pancreatic cancer cells]. (United States)

    Chen, Ying; Zhu, Ming-hua; Yu, Guan-zhen; Li, Fang-mei; Liu, Xiao-hong


    To study effects of the expression of transforming growth factor (TGF)-beta1 on the growth of Smad4-null pancreatic cancer cells. TGF-beta1 eukaryotic expression vector was transfected into pancreatic cancer cell line BxPC3. Effects of the expressison of TGF-beta1 was studied by growth curve analysis and flow cytometry. Cell motility was monitored by wound-healing assay. Western blot was used to estimate the expression level of p21(WAF/CLIP1), a cyclin-dependent kinase inhibitor. Transfection of TGF-beta1 changed the morphology of BxPC3 into spindle shaped cells. The growth rate of BxPC3 began to decrease after the fourth day of TGF-beta1 transfection, compared with the control groups. Flow cytometry showed that the percentages of cells in the S phase were (27.53 +/- 0.02)%, (26.32 +/- 0.01)% and (17.01 +/- 0.03)% in naïve BxPC3, vector-control group and TGF-beta1 transfection group respectively. Lesser cells entered the S phase after TGF-beta1 transfection (P BxPC3 and vector groups (P > 0.05). The expression of p21(WAF/CLIP1) increased upon the expression of TGF-beta1. The Smad4-independent pathway of TGF-beta1 not only induces epithelial-mesenchymal transition in pancreatic cancer BxPC3, but also inhibits its growth through the up-regulation of p21(WAF/CLIP1).

  1. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-{beta}1 up-regulation in proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Seok; Chang, Jai Won [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of); Han, Nam Jeong [Department of Cell Biology, Asan Institute for Life Sciences, Seoul (Korea, Republic of); Lee, Sang Koo [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of); Park, Su-Kil, E-mail: [Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of)


    The role of spleen tyrosine kinase (Syk) in high glucose-induced intracellular signal transduction has yet to be elucidated. We investigated whether Syk is implicated in high glucose-induced transforming growth factor-{beta}1 (TGF-{beta}1) up-regulation in cultured human proximal tubular epithelial cells (HK-2 cell). High glucose increased TGF-{beta}1 gene expression through Syk, extracellular signal-regulated kinase (ERK), AP-1 and NF-{kappa}B. High glucose-induced AP-1 DNA binding activity was decreased by Syk inhibitors and U0126 (an ERK inhibitor). Syk inhibitors suppressed high glucose-induced ERK activation, whereas U0126 had no effect on Syk activation. High glucose-induced NF-{kappa}B DNA binding activity was also decreased by Syk inhibitors. High glucose increased nuclear translocation of p65 without serine phosphorylation of I{kappa}B{alpha} and without degradation of I{kappa}B{alpha}, but with an increase in tyrosine phosphorylation of I{kappa}B{alpha} that may account for the activation of NF-{kappa}B. Both Syk inhibitors and Syk-siRNA attenuated high glucose-induced I{kappa}B{alpha} tyrosine phosphorylation and p65 nuclear translocation. Depletion of p21-activated kinase 2 (Pak2) by transfection of Pak2-siRNA abolished high glucose-induced Syk activation. In summary, high glucose-induced TGF-{beta}1 gene transcription occurred through Pak2, Syk and subsequent ERK/AP-1 and NF-{kappa}B pathways. This suggests that Syk might be implicated in the diabetic kidney disease.

  2. Glycogen synthase kinase 3 beta positively regulates Notch signaling in vascular smooth muscle cells: role in cell proliferation and survival. (United States)

    Guha, Shaunta; Cullen, John P; Morrow, David; Colombo, Alberto; Lally, Caitríona; Walls, Dermot; Redmond, Eileen M; Cahill, Paul A


    The role of glycogen synthase kinase 3 beta (GSK-3β) in modulating Notch control of vascular smooth muscle cell (vSMC) growth (proliferation and apoptosis) was examined in vitro under varying conditions of cyclic strain and validated in vivo following changes in medial tension and stress. Modulation of GSK-3β in vSMC following ectopic expression of constitutively active GSK-3β, siRNA knockdown and pharmacological inhibition with SB-216763 demonstrated that GSK-3β positively regulates Notch intracellular domain expression, CBF-1/RBP-Jκ transactivation and downstream target gene mRNA levels, while concomitantly promoting vSMC proliferation and inhibiting apoptosis. In contrast, inhibition of GSK-3β attenuated Notch signaling and decreased vSMC proliferation and survival. Exposure of vSMC to cyclic strain environments in vitro using both a Flexercell™ Tension system and a novel Sylgard™ phantom vessel following bare metal stent implantation revealed that cyclic strain inhibits GSK-3β activity independent of p42/p44 MAPK and p38 activation concomitant with reduced Notch signaling and decreased vSMC proliferation and survival. Exposure of vSMC to changes in medial strain microenvironments in vivo following carotid artery ligation revealed that enhanced GSK-3β activity was predominantly localized to medial and neointimal vSMC concomitant with increased Notch signaling, proliferating nuclear antigen and decreased Bax expression, respectively, as vascular remodeling progressed. GSK-3β is an important modulator of Notch signaling leading to altered vSMC cell growth where low strain/tension microenvironments prevail.

  3. Developing Strategies to Block Beta-Catenin Action in Signaling and Cell Adhesion During Carcinogenesis (United States)


    Chapel Hill NC July, 2001 "Cell adhesion, signal transduction, and cancer: the Armadillo Connection." Department of Embryology , Carnegie Institution...Published online May 30, 2001 Copyright © 2001 by Academic Prcss. All rights of reproduction in any form rescrved. Article Abelson kinase regulates APC2 divisions, when astral microtubules are prominent during late mutants: (1 ) abnormal mitoses owing to pseudocleavage furrow mitosis (Fig. 3i,j

  4. Effect of transforming growth factor beta 1/Sma-and Mad-related protein signal pathway in diabetic nephropathy and related drugs:a review%糖尿病肾病中转化生长因子β1/Sma和Mad相关蛋白信号通路的作用及其相关药物研究进展

    Institute of Scientific and Technical Information of China (English)

    贾会玉; 李中南; 陈光亮


    转化生长因子β1(TGF-β1)参与糖尿病肾病(DN)的进程已作为临床慢性肾病进展的重要生物学标志物和治疗靶标。Sma和Mad相关蛋白(Smad)是TGF-β家族下游信号转导蛋白,TGF-β1与受体结合激活Smad2和Smad3,上调细胞核内结缔组织生长因子的转录,Smad3促进系膜细胞增生、细胞外基质积聚和细胞上皮间质转化,导致肾纤维化;Smad2和Smad7则起着负向调控作用,抑制肾纤维化。TGF-β1特异性抑制剂(SB431542等)具有抗肾纤维化作用,大多处在临床前研究阶段,已上市的对DN有一定疗效的药物如苯那普利、阿托伐他汀、氯沙坦和吡非尼酮等可抑制TGF-β1表达,雷公藤、冬虫夏草和小檗碱也通过降低TGF-β1水平延缓DN进程。本文就近年来TGF-β1/Smad信号通路及其防治药物在DN中的研究进展进行综述。%Transforming growth factor-β1(TGF-β1)has become an important biological marker and therapeutic target of clinical progression of chronic kidney diseases. Sma- and Mad-related protein (Smad)is a downstream signal transduction protein of the TGF-β family. TGF-β1 activates Smad2 and Smad3 before increasing the transcription of connective tissue growth factors in the nucleus. Smad3 promotes mesangial cell proliferation,extracellular matrix accumulation,epithelial-mesenchymal transition, leading to renal fibrosis. However,Smad2 and Smad7 play a negative regulatory role by inhibiting renal fibrosis. TGF-β1 specific inhibitor (SB431542,etc.) has antifibrosis effect,most of which is in the preclinical stage. The drugs on the market that are effective for DN,such as benzodiazepines,atorvastatin, losartan,and pirfenidone,can inhibit the expression of TGF-β1,while tripterygium wilfordii,cordyceps sinensis,and berberine can delay the process of diabetic nephropathy by reducing TGF-β1 levels.

  5. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoou [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Liu, Lian [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Wen, Fuqiang, E-mail: [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China)


    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis.

  6. Transforming growth factor-beta messenger RNA and protein in murine colitis

    DEFF Research Database (Denmark)

    Whiting, C V; Williams, A M; Claesson, Mogens Helweg


    Using a CD4+ T-cell-transplanted SCID mouse model of colitis, we have analyzed TGF-beta transcription and translation in advanced disease. By in situ hybridization, the epithelium of both control and inflamed tissues transcribed TGF-beta1 and TGF-beta3 mRNAs, but both were expressed significantly...... TGF-beta. By ELISA, very low levels (0-69 pg/mg) of soluble total or active TGF-beta were detected in hypotonic tissue lysates. TGF-beta1 and TGF-beta3 are produced by SCID mouse colon and transcription is increased in the colitis caused by transplantation of CD4+ T-cells, but this does not result...

  7. Transforming growth factor beta receptor 1 is increased following abstinence from cocaine self-administration, but not cocaine sensitization.

    Directory of Open Access Journals (Sweden)

    Amy M Gancarz-Kausch

    Full Text Available The addicted phenotype is characterized as a long-lasting, chronically relapsing disorder that persists following long periods of abstinence, suggesting that the underlying molecular changes are stable and endure for long periods even in the absence of drug. Here, we investigated Transforming Growth Factor-Beta Type I receptor (TGF-β R1 expression in the nucleus accumbens (NAc following periods of withdrawal from cocaine self-administration (SA and a sensitizing regimen of non-contingent cocaine. Rats were exposed to either (i repeated systemic injections (cocaine or saline, or (ii self-administration (cocaine or saline and underwent a period of forced abstinence (either 1 or 7 days of drug cessation. Withdrawal from cocaine self-administration resulted in an increase in TGF-β R1 protein expression in the NAc compared to saline controls. This increase was specific for volitional cocaine intake as no change in expression was observed following a sensitizing regimen of experimenter-administered cocaine. These findings implicate TGF-β signaling as a novel potential therapeutic target for treating drug addiction.

  8. Recruitment of beta-arrestin2 to the dopamine D2 receptor: insights into anti-psychotic and anti-parkinsonian drug receptor signaling

    DEFF Research Database (Denmark)

    Klewe, Ib V; Nielsen, Søren M; Tarpø, Louise


    Drugs acting at dopamine D2-like receptors play a pivotal role in the treatment of both schizophrenia and Parkinson's disease. Recent studies have demonstrated a role for G-protein independent D2 receptor signaling pathways acting through beta-arrestin. In this study we describe the establishment...... of a Bioluminescence Resonance Energy Transfer (BRET) assay for measuring dopamine induced recruitment of human beta-arrestin2 to the human dopamine D2 receptor. Dopamine, as well as the dopamine receptor agonists pramipexole and quinpirole, acted as full agonists in the assay as reflected by their ability to elicit...... marked concentration dependent increases in the BRET signal signifying beta-arrestin2 recruitment to the D2 receptor. As expected from their effect on G-protein coupling and cAMP levels mediated through the D2 receptor RNPA, pergolide, apomorphine, ropinirole, bromocriptine, 3PPP, terguride, aripiprazole...

  9. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    Directory of Open Access Journals (Sweden)

    H. Susana Marinho


    Full Text Available The regulatory mechanisms by which hydrogen peroxide (H2O2 modulates the activity of transcription factors in bacteria (OxyR and PerR, lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4 and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1 are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1 synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for

  10. Factor de crecimiento transformante beta-1: estructura, función y mecanismos de regulación en cáncer Transforming growth factor beta-1: structure, function and regulation mechanisms in cancer

    Directory of Open Access Journals (Sweden)

    Oscar Peralta-Zaragoza


    Full Text Available El factor de crecimiento transformante beta-1 (TGF-beta1 es sintetizado por muchas estirpes celulares como linfocitos, macrófagos y células dendríticas, y su expresión regula de manera autócrina o parácrina la diferenciación, proliferación y el estado de activación de éstas y muchas otras células. En general, el TGF-beta1 tiene propiedades pleiotrópicas en el contexto de la respuesta inmune durante el desarrollo de infecciones y procesos neoplásicos; sin embargo, los mecanismos de acción y regulación de la expresión de esta citocina aún no se comprenden del todo. En la presente revisión se describen las propiedades biológicas y los procesos moleculares que regulan la expresión del TGF-beta1, para entender los efectos de esta citocina durante la proliferación y la diferenciación celular. El conocimiento de los mecanismos moleculares de la regulación del TGF-beta1 puede representar una importante estrategia de tratamiento del cáncer. El texto completo en inglés de este artículo está disponible en: growth factor beta-1 (TGF-beta1 is produced by several cell lineages such as lymphocytes, macrophages, and dendritic cells, and its expression serves in both autocrine and paracrine modes to control the differentiation, proliferation, and state of activation of these and other cells. In general, TGF-beta1 has pleiotropic properties on the immune response during the development of infection diseases and cancer; however, the mechanisms of action and regulation of gene expression of this cytokine are poorly understood, In this review, the biological properties and the molecular mechanisms that regulate TGF-beta1 gene expression are described, to understand the role of this cytokine in growth and cell differentiation. The knowledge of molecular mechanisms of gene expression of TGF-beta1 may serve to develop new cancer therapies. The English version of this paper is available at:

  11. Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists.

    Directory of Open Access Journals (Sweden)

    Gunnar Kleinau

    Full Text Available Trace amine-associated receptors (TAAR are rhodopsin-like G-protein-coupled receptors (GPCR. TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR, phenylethylamine (PEA, octopamine (OA, but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1 and 2 (ADRB2 have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR octopamine (OAR, ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes.

  12. G beta gamma signaling reduces intracellular cAMP to promote meiotic progression in mouse oocytes. (United States)

    Gill, Arvind; Hammes, Stephen R


    In nearly every vertebrate species, elevated intracellular cAMP maintains oocytes in prophase I of meiosis. Prior to ovulation, gonadotropins trigger various intra-ovarian processes, including the breakdown of gap junctions, the activation of EGF receptors, and the secretion of steroids. These events in turn decrease intracellular cAMP levels in select oocytes to allow meiotic progression, or maturation, to resume. Studies suggest that cAMP levels are kept elevated in resting oocytes by constitutive G protein signaling, and that the drop in intracellular cAMP that accompanies maturation may be due in part to attenuation of this inhibitory G protein-mediated signaling. Interestingly, one of these G protein regulators of meiotic arrest is the Galpha(s) protein, which stimulates adenylyl cyclase to raise intracellular cAMP in two important animal models of oocyte development: Xenopus leavis frogs and mice. In addition to G(alpha)(s), constitutive Gbetagamma activity similarly stimulates adenylyl cyclase to raise cAMP and prevent maturation in Xenopus oocytes; however, the role of Gbetagamma in regulating meiosis in mouse oocytes has not been examined. Here we show that Gbetagamma does not contribute to the maintenance of murine oocyte meiotic arrest. In fact, contrary to observations in frog oocytes, Gbetagamma signaling in mouse oocytes reduces cAMP and promotes oocyte maturation, suggesting that Gbetagamma might in fact play a positive role in promoting oocyte maturation. These observations emphasize that, while many general concepts and components of meiotic regulation are conserved from frogs to mice, specific differences exist that may lead to important insights regarding ovarian development in vertebrates.

  13. Cdc42/N-WASP signaling links actin dynamics to pancreatic beta cell delamination and differentiation

    DEFF Research Database (Denmark)

    Kesavan, Gokul; Lieven, Oliver; Mamidi, Anant;


    to differentiation remains unknown. Using the developing mouse pancreas as a model system, we show that β cell delamination and differentiation are two independent events, which are controlled by Cdc42/N-WASP signaling. Specifically, we show that expression of constitutively active Cdc42 in β cells inhibits β cell......Delamination plays a pivotal role during normal development and cancer. Previous work has demonstrated that delamination and epithelial cell movement within the plane of an epithelium are associated with a change in cellular phenotype. However, how this positional change is linked...

  14. Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/Activin/Nodal signaling using SB-431542

    DEFF Research Database (Denmark)

    Mahmood, Amer; Harkness, Linda; Schrøder, Henrik Daa


    progenitor cells. We demonstrate that inhibition of TGF-beta/Activin/Nodal signaling during embryoid bodies (EB) formation using SB-431542 (SB) in serum free medium, markedly up-regulated paraxial mesodermal markers (TBX6, TBX5), and several myogenic developmental markers including early myogenic...

  15. Reorganization of endothelial cord-like structures on basement membrane complex (Matrigel): involvement of transforming growth factor beta 1. (United States)

    Kuzuya, M; Kinsella, J L


    The formation of capillary-like network structures by cultured vascular endothelial cells on reconstituted basement membrane matrix, Matrigel, models endothelial cell differentiation, the final step of angiogenesis (Kubota et al., 1988; Grant et al., 1989). When endothelial cells derived from bovine aorta and brain capillaries were plated on Matrigel, DNA synthesis was suppressed and a network of capillary-like structures rapidly formed in 8-12 h. With time, the network broke down, resulting in dense cellular cords radiating from multiple cellular clusters in 16-24 h. Finally, multicellular aggregates of cells were formed as the network underwent further retraction. Network regression was prevented when either dithiothreitol (DTT) or anti-TGF-beta 1 antibodies were added during the assay. The addition of exogenous TGF-beta 1 promoted the regression of endothelial cells into the clusters. This response to TGF-beta 1 was blocked by potent serine threonine protein kinase inhibitors, H-7 and HA100. TGF-beta 1 was released from polymerized Matrigel by incubation with Dulbecco's modified eagle's medium (DMEM) in the absence of cells. The Matrigel-conditioned DMEM inhibited endothelial DNA synthesis even in the presence of anti-TGF-beta 1 antibodies. These results suggest that TGF-beta 1 and possibly other soluble factors from Matrigel may be important for differentiation and remodeling of endothelial cells in a capillary network with possible implications for wound healing and development.

  16. Anti-cadherin-17 antibody modulates beta-catenin signaling and tumorigenicity of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Yonggang Wang

    Full Text Available Cadherin-17 (CDH17 is an oncofetal molecule associated with poor prognostic outcomes of hepatocellular carcinoma (HCC, for which the treatment options are very limited. The present study investigates the therapeutic potential of a monoclonal antibody (Lic5 that targets the CDH17 antigen in HCC. In vitro experiments showed Lic5 could markedly reduce CDH17 expression in a dose-dependent manner, suppress β-catenin signaling, and induce cleavages of apoptotic enzymes caspase-8 and -9 in HCC cells. Treatment of animals in subcutaneous HCC xenograft model similarly demonstrated significant tumor growth inhibition (TGI using Lic5 antibody alone (5 mg/kg, i.p., t.i.w.; ca.60-65% TGI vs. vehicle at day 28, or in combination with conventional chemotherapy regimen (cisplatin 1 mg/kg; ca. 85-90% TGI. Strikingly, lung metastasis was markedly suppressed by Lic5 treatments. Immunohistochemical and western blot analyses of xenograft explants revealed inactivation of the Wnt pathway and suppression of Wnt signaling components in HCC tissues. Collectively, anti-CDH17 antibody promises as an effective biologic agent for treating malignant HCC.

  17. Transforming Growth FactorSignaling Pathway Activation in Keratoconus (United States)



    PURPOSE To assess the presence of transforming growth factor-β (TGFβ) pathway markers in the epithelium of keratoconus patient corneas. DESIGN Retrospective, comparative case series of laboratory specimens. METHODS Immunohistochemistry results for TGFβ2, total TGFβ, mothers against decacentaplegic homolog (Smad) 2, and phosphorylated Smad2 was performed on formalin-fixed, paraffin-embedded sections of keratoconus patient corneas and normal corneas from human autopsy eyes. Keratoconus patient corneas were divided in two groups, depending on their severity based on keratometer readings and pachymetry. Autopsy controls were age-matched with the keratoconus cases. Immunohistochemistry signal quantification was performed using automated software. Real-time reverse-transcriptase polymerase chain reaction was performed on total ribonucleic acid of epithelium of keratoconus patient corneas and autopsy control corneas. RESULTS Immunohistochemistry quantification showed a significant increase in mean signal in the group of severe keratoconus cases compared with normal corneas for TGFβ2 and phosphorylated Smad2 (P keratoconus cases versus the autopsy controls. Reverse-transcriptase polymerase chain reaction exhibited elevated messenger ribonucleic acid levels of Smad2 and TGFβ2 in severe keratoconus corneal epithelium. CONCLUSIONS This work shows increased TGFβ pathway markers in severe keratoconus cases and provides the rationale for investigating TGFβ signaling further in the pathophysiology of keratoconus. PMID:21310385

  18. Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. (United States)

    Van Buskirk, Cheryl; Sternberg, Paul W


    The epidermal growth factor receptor (EGFR)/ErbB receptor tyrosine kinases regulate several aspects of development, including the development of the mammalian nervous system. ErbB signaling also has physiological effects on neuronal function, with influences on synaptic plasticity and daily cycles of activity. However, little is known about the effectors of EGFR activation in neurons. Here we show that EGF signaling has a nondevelopmental effect on behavior in Caenorhabditis elegans. Ectopic expression of the EGF-like ligand LIN-3 at any stage induces a reversible cessation of feeding and locomotion. These effects are mediated by neuronal EGFR (also called LET-23) and phospholipase C-gamma (PLC-gamma), diacylglycerol-binding proteins, and regulators of synaptic vesicle release. Activation of EGFR within a single neuron, ALA, is sufficient to induce a quiescent state. This pathway modulates the cessation of pharyngeal pumping and locomotion that normally occurs during the lethargus period that precedes larval molting. Our results reveal an evolutionarily conserved role for EGF signaling in the regulation of behavioral quiescence.

  19. Epidermal Growth Factor Receptor Cell Survival Signaling Requires Phosphatidylcholine Biosynthesis

    Directory of Open Access Journals (Sweden)

    Matt Crook


    Full Text Available Identification of pro-cell survival signaling pathways has implications for cancer, cardiovascular, and neurodegenerative disease. We show that the Caenorhabditis elegans epidermal growth factor receptor LET-23 (LET-23 EGFR has a prosurvival function in counteracting excitotoxicity, and we identify novel molecular players required for this prosurvival signaling. uv1 sensory cells in the C. elegans uterus undergo excitotoxic death in response to activation of the OSM-9/OCR-4 TRPV channel by the endogenous agonist nicotinamide. Activation of LET-23 EGFR can effectively prevent this excitotoxic death. We investigate the roles of signaling pathways known to act downstream of LET-23 EGFR in C. elegans and find that the LET-60 Ras/MAPK pathway, but not the IP3 receptor pathway, is required for efficient LET-23 EGFR activity in its prosurvival function. However, activation of LET-60 Ras/MAPK pathway does not appear to be sufficient to fully mimic LET-23 EGFR activity. We screen for genes that are required for EGFR prosurvival function and uncover a role for phosphatidylcholine biosynthetic enzymes in EGFR prosurvival function. Finally, we show that exogenous application of phosphatidylcholine is sufficient to prevent some deaths in this excitotoxicity model. Our work implicates regulation of lipid synthesis downstream of EGFR in cell survival and death decisions.

  20. Effects of transforming growth factor beta, tumor necrosis factor alpha, interferon gamma and LIF-HILDA on the proliferation of acute myeloid leukemia cells. (United States)

    Kerangueven, F; Sempere, C; Tabilio, A; Mannoni, P


    A group of polypeptide factors that regulate cell growth and differentiation has been tested for their biological activities on the growth and differentiation of leukemic cells isolated from patients with Acute Myeloid Leukemias (AML). The effects of Transforming Growth Factor beta 1 (TGF beta), Tumor Necrosis Factor alpha (TNF alpha), Interferon gamma (IFN gamma) and LIF-HILDA were compared on leukemic cells cultured in vitro for seven days. Spontaneously growing leukemic cells were selected in order to study either inhibition or enhancement of proliferation induced by these factors. Only TGF beta 1 was found to induce a clear inhibition of leukemic proliferation in all cases tested. Recombinant TNF alpha and IFN gamma were found to induce either inhibition or enhancement of the proliferation on separate specimens. Under the conditions of culture, it was not possible to document any effect of LIF-HILDA. Cell differentiation and cell maturation were documented studying the modulation of cell surface antigens. TGF beta did not modify antigen expression on the cells surviving after 3 days in culture. Both TNF alpha and IFN gamma were found to enhance the expression of adhesion molecules and to a lesser extent, the expression of some lineage associated antigens. No effect of LIF-HILDA on antigen modulation was documented in the cases tested. These data confirm that TGF beta is by itself a potent inhibitor of the myeloid leukemia cells proliferation.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Activation of the Wnt/{beta}-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanchun [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Guan, Yingjun, E-mail: [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Liu, Huancai [Department of Orthopedic, Affiliated Hospital, Weifang Medical University, Weifang, Shandong (China); Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Wang, Xin, E-mail: [Department of Neurosurgery, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)


    Highlights: Black-Right-Pointing-Pointer Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. Black-Right-Pointing-Pointer {beta}-catenin translocated from the cell membrane to the nucleus in the ALS mice. Black-Right-Pointing-Pointer Wnt3a, {beta}-catenin and Cyclin D1 co-localized for astrocytes were all increased. Black-Right-Pointing-Pointer BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. Black-Right-Pointing-Pointer BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, {beta}-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/{beta}-catenin signaling pathway. We determined the expression of Wnt3a, {beta}-catenin, and Cyclin D1 in the adult spinal cord of SOD1{sup G93A} ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, {beta}-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, {beta}-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, {beta}-catenin or Cyclin D1 in mature GFAP{sup +} astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that

  2. Characterization of novel transforming growth factor-beta type I receptors found in malignant pleural effusion tumor cells

    Directory of Open Access Journals (Sweden)

    Leu Sy-Jye C


    Full Text Available Abstract Background Tumors expressing a transforming growth factor-beta type I receptor (TβRI mutant with sequence deletions in a nine-alanine (9A stretch of the signal peptide are reported to be highly associated with disease progression. Expression of this mutant could interfere with endogenous TGFβ signaling in the cell. However, little is known about the importance of the remaining part of the signal peptide on the cellular function of TβRI. Results We cloned and identified four new in-frame deletion variants of TβRI, designated DM1 to DM4, in pleural effusion-derived tumor cells. Intriguingly, DM1 and DM2, with a small region truncated in the putative signal peptide of TβRI, had a serious defect in their protein expression compared with that of the wild-type receptor. Using serial deletion mutagenesis, we characterized a region encoded by nucleotides 16–51 as a key element controlling TβRI protein expression. Consistently, both DM1 and DM2 have this peptide deleted. Experiments using cycloheximde and MG132 further confirmed its indispensable role for the protein stability of TβRI. In contrast, truncation of the 9A-stretch itself or a region downstream to the stretch barely affected TβRI expression. However, variants lacking a region C-terminal to the stretch completely lost their capability to conduct TGFβ-induced transcriptional activation. Intriguingly, expression of DM3 in a cell sensitive to TGFβ made it significantly refractory to TGFβ-mediated growth inhibition. The effect of DM3 was to ablate the apoptotic event induced by TGFβ. Conclusion We identified four new transcript variants of TβRI in malignant effusion tumor cells and characterized two key elements controlling its protein stability and transcriptional activation. Expression of one of variants bestowed cancer cells with a growth advantage in the presence of TGFβ. These results highlight the potential roles of some naturally occurring TβRI variants on the

  3. Polychlorinated Biphenyls Disrupt Hepatic Epidermal Growth Factor Receptor Signaling. (United States)

    Hardesty, Josiah E; Wahlang, Banrida; Falkner, K Cameron; Clair, Heather B; Clark, Barbara J; Ceresa, Brian P; Prough, Russell A; Cave, Matthew C


    1. Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that disrupt hepatic xenobiotic and intermediary metabolism, leading to metabolic syndrome and nonalcoholic steatohepatitis (NASH). 2. Since phenobarbital indirectly activates Constitutive Androstane Receptor (CAR) by antagonizing growth factor binding to the epidermal growth factor receptor (EGFR), we hypothesised that PCBs may also diminish EGFR signaling. 3. The effects of the PCB mixture Aroclor 1260 on the protein phosphorylation cascade triggered by EGFR activation were determined in murine (in vitro and in vivo) and human models (in vitro). EGFR tyrosine residue phosphorylation was decreased by PCBs in all models tested. 4. The IC50 values for Aroclor 1260 concentrations that decreased Y1173 phosphorylation of EGFR were similar in murine AML-12 and human HepG2 cells (∼2-4 μg/mL). Both dioxin and non-dioxin-like PCB congeners decreased EGFR phosphorylation in cell culture. 5. PCB treatment reduced phosphorylation of downstream EGFR effectors including Akt and mTOR, as well as other phosphoprotein targets including STAT3 and c-RAF in vivo. 6. PCBs diminish EGFR signaling in human and murine hepatocyte models and may dysregulate critical phosphoprotein regulators of energy metabolism and nutrition, providing a new mechanism of action in environmental diseases.

  4. Smad Acetylation: A New Level of Regulation in TGF-Beta Signaling (United States)


    20. Gronroos E, HU, Heldin, CH, and Ericsson J, Control of Smad7 Stability by Competition between Acetylation and Ubiquitination. Molecular Cell , 2002...10: p. 483-493. 21. Soutoglou E, KN, and Talianidis I, Acetylation Regulates Transcription Factor Activity at Multiple Levels. Molecular Cell , 2000

  5. Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis. (United States)

    Jaikaran, E T; Higham, C E; Serpell, L C; Zurdo, J; Gross, M; Clark, A; Fraser, P E


    Human islet amyloid polypeptide (hIAPP) accumulates as pancreatic amyloid in type 2 diabetes and readily forms fibrils in vitro. Investigations into the mechanism of hIAPP fibril formation have focused largely on residues 20 to 29, which are considered to comprise a primary amyloidogenic domain. In rodents, proline substitutions within this region and the subsequent beta-sheet disruption, prevents fibril formation. An additional amyloidogenic fragment within the C-terminal sequence, residues 30 to 37, has been identified recently. We have extended these observations by examining a series of overlapping peptide fragments from the human and rodent sequences. Using protein spectroscopy (CD/FTIR), electron microscopy and X-ray diffraction, a previously unrecognised amyloidogenic domain was localised within residues 8 to 20. Synthetic peptides corresponding to this region exhibited a transition from random coil to beta-sheet conformation and assembled into fibrils having a typical amyloid-like morphology. The comparable rat 8-20 sequence, which contains a single His18Arg substitution, was also capable of assembling into amyloid-like fibrils. Examination of peptide fragments corresponding to residues 1 to 13 revealed that the immediate N-terminal region is likely to have only a modulating influence on fibril formation or conformational conversion. The contributions of charged residues as they relate to the amyloid-forming 8-20 sequence were also investigated using IAPP fragments and by assessing the effects of pH and counterions. The identification of these principal amyloidogenic sequences and the effects of associated factors provide details on the IAPP aggregation pathway and structure of the peptide in its fibrillar state. Copyright 2001 Academic Press.

  6. Modular and Stochastic Approaches to Molecular Pathway Models of ATM, TGF beta, and WNT Signaling (United States)

    Cucinotta, Francis A.; O'Neill, Peter; Ponomarev, Artem; Carra, Claudio; Whalen, Mary; Pluth, Janice M.


    Deterministic pathway models that describe the biochemical interactions of a group of related proteins, their complexes, activation through kinase, etc. are often the basis for many systems biology models. Low dose radiation effects present a unique set of challenges to these models including the importance of stochastic effects due to the nature of radiation tracks and small number of molecules activated, and the search for infrequent events that contribute to cancer risks. We have been studying models of the ATM, TGF -Smad and WNT signaling pathways with the goal of applying pathway models to the investigation of low dose radiation cancer risks. Modeling challenges include introduction of stochastic models of radiation tracks, their relationships to more than one substrate species that perturb pathways, and the identification of a representative set of enzymes that act on the dominant substrates. Because several pathways are activated concurrently by radiation the development of modular pathway approach is of interest.

  7. E2F1 transcription factor and its impact on growth factor and cytokine signaling. (United States)

    Ertosun, Mustafa Gokhan; Hapil, Fatma Zehra; Osman Nidai, Ozes


    E2F1 is a transcription factor involved in cell cycle regulation and apoptosis. The transactivation capacity of E2F1 is regulated by pRb. In its hypophosphorylated form, pRb binds and inactivates DNA binding and transactivating functions of E2F1. The growth factor stimulation of cells leads to activation of CDKs (cyclin dependent kinases), which in turn phosphorylate Rb and hyperphosphorylated Rb is released from E2F1 or E2F1/DP complex, and free E2F1 can induce transcription of several genes involved in cell cycle entry, induction or inhibition of apoptosis. Thus, growth factors and cytokines generally utilize E2F1 to direct cells to either fate. Furthermore, E2F1 regulates expressions of various cytokines and growth factor receptors, establishing positive or negative feedback mechanisms. This review focuses on the relationship between E2F1 transcription factor and cytokines (IL-1, IL-2, IL-3, IL-6, TGF-beta, G-CSF, LIF), growth factors (EGF, KGF, VEGF, IGF, FGF, PDGF, HGF, NGF), and interferons (IFN-α, IFN-β and IFN-γ).

  8. Beta2-adrenergic signaling affects the phenotype of human cardiac progenitor cells through EMT modulation. (United States)

    Pagano, Francesca; Angelini, Francesco; Siciliano, Camilla; Tasciotti, Julia; Mangino, Giorgio; De Falco, Elena; Carnevale, Roberto; Sciarretta, Sebastiano; Frati, Giacomo; Chimenti, Isotta


    Human cardiac progenitor cells (CPCs) offer great promises to cardiac cell therapy for heart failure. Many in vivo studies have shown their therapeutic benefits, paving the way for clinical translation. The 3D model of cardiospheres (CSs) represents a unique niche-like in vitro microenvironment, which includes CPCs and supporting cells. CSs have been shown to form through a process mediated by epithelial-to-mesenchymal transition (EMT). β2-Adrenergic signaling significantly affects stem/progenitor cells activation and mobilization in multiple tissues, and crosstalk between β2-adrenergic signaling and EMT processes has been reported. In the present study, we aimed at investigating the biological response of CSs to β2-adrenergic stimuli, focusing on EMT modulation in the 3D culture system of CSs. We treated human CSs and CS-derived cells (CDCs) with the β2-blocker butoxamine (BUT), using either untreated or β2 agonist (clenbuterol) treated CDCs as control. BUT-treated CS-forming cells displayed increased migration capacity and a significant increase in their CS-forming ability, consistently associated with increased expression of EMT-related genes, such as Snai1. Moreover, long-term BUT-treated CDCs contained a lower percentage of CD90+ cells, and this feature has been previously correlated with higher cardiogenic and therapeutic potential of the CDCs population. In addition, long-term BUT-treated CDCs had an increased ratio of collagen-III/collagen-I gene expression levels, and showed decreased release of inflammatory cytokines, overall supporting a less fibrosis-prone phenotype. In conclusion, β2 adrenergic receptor block positively affected the stemness vs commitment balance within CSs through the modulation of type1-EMT (so called "developmental"). These results further highlight type-1 EMT to be a key process affecting the features of resident cardiac progenitor cells, and mediating their response to the microenvironment.

  9. Transforming growth factor beta 1 prevents cytokine-mediated inhibitory effects and induction of nitric oxide synthase in the RINm5F insulin-containing beta-cell line. (United States)

    Mabley, J G; Cunningham, J M; John, N; Di Matteo, M A; Green, I C


    The aim of this study was to examine if the growth factor, transforming growth factor beta 1 (TGF beta 1), could prevent induction of nitric oxide synthase and cytokine-mediated inhibitory effects in the insulin-containing, clonal beta cell line RINm5F. Treatment of RINm5F cells for 24 h with interleukin-1 beta (IL-1 beta) (100 pM) induced expression of nitric oxide synthase and inhibited glyceraldehyde-stimulated insulin secretion. Combinations of IL-1 beta (100 pM), tumour necrosis factor-alpha (100 pM) and interferon-gamma (100 pM) reduced RINm5F cell viability (determined by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium (MTT) reduction assay) and de novo protein synthesis, as measured by incorporation of radiolabelled amino acids into perchloric acid-precipitable protein. Pretreatment of RINm5F cells with TGF beta 1 (10 pM) for 18 or 24 h, prior to the addition of either IL-1 beta or combined cytokines, prevented cytokine-induced inhibition of insulin secretion, protein synthesis and the loss of cell viability. TGF beta 1 pretreatment inhibited cytokine-induced expression and activity of nitric oxide synthase in RINm5F cells as determined by Western blotting and by cytosolic conversion of radiolabelled arginine into labelled citrulline and nitric oxide. Chemically generated superoxide also induced expression of nitric oxide synthase possibly due to direct activation of the nuclear transcription factor NF kappa B, an effect prevented by both an antioxidant and TGF beta 1 pretreatment. In conclusion, the mechanism of action of TGF beta 1 in blocking cytokine inhibitory effects was by preventing induction of nitric oxide synthase.

  10. Presenilin 1 regulates epidermal growth factor receptor turnover and signaling in the endosomal-lysosomal pathway. (United States)

    Repetto, Emanuela; Yoon, Il-Sang; Zheng, Hui; Kang, David E


    Mutations in the gene encoding presenilin 1 (PS1) cause the most aggressive form of early-onset familial Alzheimer disease. In addition to its well established role in Abeta production and Notch proteolysis, PS1 has been shown to mediate other physiological activities, such as regulation of the Wnt/beta-catenin signaling pathway, modulation of phosphatidylinositol 3-kinase/Akt and MEK/ERK signaling, and trafficking of select membrane proteins and/or intracellular vesicles. In this study, we present evidence that PS1 is a critical regulator of a key signaling receptor tyrosine kinase, epidermal growth factor receptor (EGFR). Specifically, EGFR levels were robustly increased in fibroblasts deficient in both PS1 and PS2 (PS(-/-)) due to delayed turnover of EGFR protein. Stable transfection of wild-type PS1 but not PS2 corrected EGFR to levels comparable to PS(+/+) cells, while FAD PS1 mutations showed partial loss of activity. The C-terminal fragment of PS1 was sufficient to fully reduce EGFR levels. In addition, the rapid ligand-induced degradation of EGFR was markedly delayed in PS(-/-) cells, resulting in prolonged signal activation. Despite the defective turnover of EGFR, ligand-induced autophosphorylation, ubiquitination, and endocytosis of EGFR were not affected by the lack of PS1. Instead, the trafficking of EGFR from early endosomes to lysosomes was severely delayed by PS1 deficiency. Elevation of EGFR was also seen in brains of adult mice conditionally ablated in PS1 and in skin tumors associated with the loss of PS1. These findings demonstrate a critical role of PS1 in the trafficking and turnover of EGFR and suggest potential pathogenic effects of elevated EGFR as well as perturbed endosomal-lysosomal trafficking in cell cycle control and Alzheimer disease.

  11. Growth factor expression in degenerated intervertebral disc tissue. An immunohistochemical analysis of transforming growth factor beta, fibroblast growth factor and platelet-derived growth factor. (United States)

    Tolonen, Jukka; Grönblad, Mats; Vanharanta, Heikki; Virri, Johanna; Guyer, Richard D; Rytömaa, Tapio; Karaharju, Erkki O


    Degenerated intervertebral disc has lost its normal architecture, and there are changes both in the nuclear and annular parts of the disc. Changes in cell shape, especially in the annulus fibrosus, have been reported. During degeneration the cells become more rounded, chondrocyte-like, whereas in the normal condition annular cells are more spindle shaped. These chondrocyte-like cells, often forming clusters, affect extracellular matrix turnover. In previous studies transforming growth factor beta (TGFbeta) -1 and -2, basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) have been highlighted in herniated intervertebral disc tissue. In the present study the same growth factors are analysed immunohistochemically in degenerated intervertebral disc tissue. Disc material was obtained from 16 discs operated for painful degenerative disc disease. Discs were classified according to the Dallas Discogram Description. Different disc regions were analysed in parallel. As normal control disc tissue material from eight organ donors was used. Polyclonal antibodies against different growth factors and TGFbeta receptor type II were used, and the immunoreaction was detected by the avidin biotin complex method. All studied degenerated discs showed immunoreactivity for TGFbeta receptor type II and bFGF. Fifteen of 16 discs were immunopositive for TGFbeta-1 and -2, respectively, and none showed immunoreaction for PDGF. Immunopositivity was located in blood vessels and in disc cells. In the nucleus pulposus the immunoreaction was located almost exclusively in chondrocyte-like disc cells, whereas in the annular region this reaction was either in chondrocyte-like disc cells, often forming clusters, or in fibroblast-like disc cells. Chondrocyte-like disc cells were especially prevalent in the posterior disrupted area. In the anterior area of the annulus fibrosus the distribution was more even between these two cell types. bFGF was expressed in the anterior annulus

  12. Alterations of expression and regulation of transforming growth factor beta in human cancer prostate cell lines. (United States)

    Blanchère, M; Saunier, E; Mestayer, C; Broshuis, M; Mowszowicz, I


    TGF beta can promote and/or suppress prostate tumor growth through multiple and opposing actions. Alterations of its expression, secretion, regulation or of the sensitivity of target cells can lead to a favorable environment for tumor development. To gain a better insight in TGF beta function during cancer progression, we have used different cultured human prostate cells: preneoplastic PNT2 cells, the androgen-dependent LNCaP and the androgen-independent PC3 and DU145 prostate cancer cell lines. We have studied by specific ELISA assays in conditioned media (CM), the secretion of TGF beta 1 and TGF beta 2 in basal conditions and after hormonal treatment (DHT or E2) and the expression of TGF beta 1 mRNA by Northern blot. We have also compared the effect of fibroblast CM on TGF beta secretion by the different cell types. Compared to PNT2 cells, cancer cell lines secrete lower levels of active TGF beta which are not increased in the presence of fibroblast CM. LNCaP cells respond to androgen or estrogen treatment by a 10-fold increase of active TGF beta secretion while PC3 and DU145 are unresponsive. In conclusion, prostate cancer cell lines have lost part of their ability to secrete and activate TGF beta, and to regulate this secretion through stromal-epithelial interactions. Androgen-sensitive cancer cells may compensate this loss by hormonal regulation.

  13. Alpha9beta1 integrin in melanoma cells can signal different adhesion states for migration and anchorage

    DEFF Research Database (Denmark)

    Lydolph, Magnus C; Morgan-Fisher, Marie; Høye, Anette M


    Cell surface integrins are the primary receptors for cell migration on extracellular matrix, and exist in several activation states regulated in part by ectodomain conformation. The alpha9 integrin subunit, which pairs only with beta1, has specific roles in the immune system and may regulate cell...... migration. Melanoma cells express abundant alpha9beta1 integrin, and its role in cell migration was assessed. Ligands derived from Tenascin-C and ADAM12 supported alpha9beta1 integrin-mediated cell attachment and GTP-Rac dependent migration, but not focal adhesion formation. Manganese ions induced alpha9......beta1 integrin- and Rho kinase-dependent focal adhesion and stress fibre formation, suggesting that the activation status of alpha9beta1 integrin was altered. The effect of manganese ions in promoting focal adhesion formation was reproduced by beta1 integrin activating antibody. The alpha9beta1...

  14. Vertebral Artery Aneurysm Mimicking as Left Subclavian Artery Aneurysm in a Patient with Transforming Growth Factor Beta Receptor II Mutation. (United States)

    Afifi, Rana O; Dhillon, Baltej Singh; Sandhu, Harleen K; Charlton-Ouw, Kristofer M; Estrera, Anthony L; Azizzadeh, Ali


    We report successful endovascular repair of a left vertebral artery aneurysm in a patient with transforming growth factor beta receptor II mutation. The patient was initially diagnosed with a left subclavian artery aneurysm on computed tomography angiography. The patient consented to publication of this report.

  15. Crucial role of synovial lining macrophages in the promotion of transforming growth factor beta-mediated osteophyte formation.

    NARCIS (Netherlands)

    Lent, P.L.E.M. van; Blom, A.B.; Kraan, P.M. van der; Holthuysen, A.E.M.; Vitters, E.L.; Rooijen, N. van; Smeets, R.L.L.; Nabbe, K.C.A.M.; Berg, W.B. van den


    OBJECTIVE: To investigate in vivo and in vitro whether macrophages have an intermediate role in transforming growth factor beta (TGFbeta)-induced osteophyte formation. METHODS: In vivo, synovial lining macrophages were selectively depleted by injection of clodronate-laden liposomes 7 days prior to i


    NARCIS (Netherlands)


    Tumor necrosis factor-alpha, IL-1beta, and IL-6 are thought to be involved in the pathogenesis of sepsis with gram-negative bacteria. We studied these cytokines during neonatal sepsis with mainly gram-positive bacteria. Ten newborns with clinical sepsis and 22 healthy controls were enrolled in the

  17. Recombinant expression of human nerve growth factor beta in rabbit bone marrow mesenchymal stem cells. (United States)

    Fan, Bo-Sheng; Lou, Ji-Yu


    Nerve growth factor (NGF) is required for the differentiation and maintenance of sympathetic and sensory neurons. In the present study, the recombinant expression of human nerve growth factor beta (hNGF-β) gene in rabbit bone marrow mesenchymal stem cells (rMSCs) was undertaken. Recombinant vector containing hNGF-β was constructed and transferred into rMSCs, the expressions of the exogenous in rMSCs were determined by reverse transcriptase PCR (RT-PCR), ELISA and Western blot, whereas the biological activity of recombinant hNGF-β was confirmed using PC12 cells and cultures of dorsal root ganglion neurons from chicken embryos. The results showed that the hNGF-β gene expressed successfully in the rMSCs, a polypeptide with a molecular weight of 13.2 kDa was detected. The maximal expression level of recombinant hNGF-β in rMSCs reached 126.8012 pg/10(6) cells, the mean concentration was 96.4473 pg/10(6) cells. The recombinant hNGF-β in the rMSCs showed full biological activity when compared to commercial recombinant hNGF-β.

  18. Association of cardiovascular factors and Alzheimer's disease plasma amyloid-beta protein in subjective memory complainers. (United States)

    Bates, Kristyn A; Sohrabi, Hamid R; Rodrigues, Mark; Beilby, John; Dhaliwal, Satvinder S; Taddei, Kevin; Criddle, Arthur; Wraith, Megan; Howard, Matthew; Martins, Georgia; Paton, Athena; Mehta, Pankaj; Foster, Jonathan K; Martins, Ian J; Lautenschlager, Nicola T; Mastaglia, Frank L; Laws, Simon M; Gandy, Samuel E; Martins, Ralph N


    A strong link is indicated between cardiovascular disease (CVD) and risk for developing Alzheimer's disease (AD), which may be exacerbated by the major AD genetic risk factor apolipoprotein Eepsilon4 (APOEepsilon4). Since subjective memory complaint (SMC) may potentially be an early indicator for cognitive decline, we examined CVD risk factors in a cohort of SMC. As amyloid-beta (Abeta) is considered to play a central role in AD, we hypothesized that the CVD risk profile (increased LDL, reduced HDL, and increased body fat) would be associated with plasma Abeta levels. We explored this in 198 individuals with and without SMC (average age = 63 years). Correlations between Abeta40 and HDL were observed, which were stronger in non-APOEepsilon4 carriers (rho = -0.315, p association between HDL and Abeta, which if demonstrated to be causal has implications for the development of lifestyle interventions and/or novel therapeutics. The relationship between HDL and Abeta and the potential significance of such an association needs to be validated in a larger longitudinal study.

  19. Interleukin-2 induces beta2-integrin-dependent signal transduction involving the focal adhesion kinase-related protein B (fakB)

    DEFF Research Database (Denmark)

    Brockdorff, J; Kanner, S B; Nielsen, M;


    experiments indicate that the IL-2-induced 125-kDa phosphotyrosine protein is the focal adhesion kinase-related protein B (fakB). Thus, IL-2 induces strong tyrosine phosphorylation of fakB in beta2-integrin-positive but not in beta2-integrin-negative T cells, and CD18 mAb selectively blocks IL-2-induced fakB......-tyrosine phosphorylation in beta2-integrin-positive T cells. In parallel experiments, IL-2 does not induce or augment tyrosine phosphorylation of p125(FAK). In conclusion, our data indicate that IL-2 induces beta2-integrin-dependent signal transduction events involving the tyrosine kinase substrate fakB....... and a leukocyte adhesion deficiency (LAD) patient. We show that IL-2 induces tyrosine phosphorylation of a 125-kDa protein and homotypic adhesion in beta2 integrin (CD18)-positive but not in beta2-integrin-negative T cells. EDTA, an inhibitor of integrin adhesion, blocks IL-2-induced tyrosine phosphorylation...

  20. Association between Plasma Levels of Transforming Growth Factor-beta1, IL-23 and IL-17 and the Severity of Autism in Egyptian Children (United States)

    Hashim, Haitham; Abdelrahman, Hadeel; Mohammed, Doaa; Karam, Rehab


    It has been recently shown that dysregulation of transforming growth factor-beta1 (TGF-beta1), IL-23 and IL-17 has been identified as a major factor involved in autoimmune disorders. Based on the increasing evidence of immune dysfunction in autism the aim of this study was to measure serum levels of TGF-beta1, IL-23 and IL-17 in relation to the…

  1. Transforming Growth Factor Beta Is a Major Regulator of Human Neonatal Immune Responses following Respiratory Syncytial Virus Infection▿ † (United States)

    Thornburg, Natalie J.; Shepherd, Bryan; Crowe, James E.


    Respiratory syncytial virus (RSV) is a major cause of morbidity and mortality. Previous studies have suggested that T-cell responses may contribute to RSV immunopathology, which could be driven by dendritic cells (DCs). DCs are productively infected by RSV, and during RSV infections, there is an increase of DCs in the lungs with a decrease in the blood. Pediatric populations are particularly susceptible to severe RSV infections; however, DC responses to RSV from pediatric populations have not been examined. In this study, primary isolated DCs from cord blood and adult peripheral blood were compared after RSV infection. Transcriptional profiling and biological network analysis identified transforming growth factor beta (TGF-β) and associated signaling molecules as differentially regulated in the two age groups. TGF-β1 was decreased in RSV-infected adult-blood DCs but increased in RSV-infected cord blood DCs. Coculture of adult RSV-infected DCs with autologous T cells induced secretion of gamma interferon (IFN-γ), interleukin 12p70 (IL-12p70), IL-2, and tumor necrosis factor alpha (TNF-α). Conversely, coculture of cord RSV-infected DCs and autologous T cells induced secretion of IL-4, IL-6, IL-1β, and IL-17. Addition of purified TGF-β1 to adult DC-T-cell cocultures reduced secretion of IFN-γ, IL-12p70, IL-2, and TNF-α, while addition of a TGF-β chemical inhibitor to cord DC-T-cell cocultures increased secretion of IL-12p70. These data suggest that TGF-β acts as a major regulator of RSV DC-T-cell responses, which could contribute to immunopathology during infancy. PMID:20926560

  2. Factor de crecimiento transformante beta-1: estructura, función y mecanismos de regulación en cáncer Transforming growth factor beta-1: structure, function and regulation mechanisms in cancer


    Oscar Peralta-Zaragoza; A. Lagunas-Martínez; Vicente Madrid-Marina


    El factor de crecimiento transformante beta-1 (TGF-beta1) es sintetizado por muchas estirpes celulares como linfocitos, macrófagos y células dendríticas, y su expresión regula de manera autócrina o parácrina la diferenciación, proliferación y el estado de activación de éstas y muchas otras células. En general, el TGF-beta1 tiene propiedades pleiotrópicas en el contexto de la respuesta inmune durante el desarrollo de infecciones y procesos neoplásicos; sin embargo, los mecanismos de acción y r...

  3. Effects of osmotic stress on the activity of MAPKs and PDGFR-beta-mediated signal transduction in NIH-3T3 fibroblasts

    DEFF Research Database (Denmark)

    Nielsen, M-B; Christensen, Søren Tvorup; Hoffmann, E K


    Signaling in cell proliferation, cell migration, and apoptosis is highly affected by osmotic stress and changes in cell volume, although the mechanisms underlying the significance of cell volume as a signal in cell growth and death are poorly understood. In this study, we used NIH-3T3 fibroblasts...... in a serum- and nutrient-free inorganic medium (300 mosM) to analyze the effects of osmotic stress on MAPK activity and PDGF receptor (PDGFR)-beta-mediated signal transduction. We found that hypoosmolarity (cell swelling at 211 mosM) induced the phosphorylation and nuclear translocation of ERK1/2, most...

  4. Transcription factor Ets-1 links glucotoxicity to pancreatic beta cell dysfunction through inhibiting PDX-1 expression in rodent models. (United States)

    Chen, Fang; Sha, Min; Wang, Yanyang; Wu, Tijun; Shan, Wei; Liu, Jia; Zhou, Wenbo; Zhu, Yunxia; Sun, Yujie; Shi, Yuguang; Bleich, David; Han, Xiao


    'Glucotoxicity' is a term used to convey the negative effect of hyperglycaemia on beta cell function; however, the underlying molecular mechanisms that impair insulin secretion and gene expression are poorly defined. Our objective was to define the role of transcription factor v-ets avian erythroblastosis virus E26 oncogene homologue 1 (Ets-1) in beta cell glucotoxicity. Primary islets and Min6 cells were exposed to high glucose and Ets-1 expression was measured. Recombinant adenovirus and transgenic mice were used to upregulate Ets-1 expression in beta cells in vitro and in vivo, and insulin secretion was assessed. The binding activity of H3/H4 histone on the Ets-1 promoter, and that of forkhead box (FOX)A2, FOXO1 and Ets-1 on the Pdx-1 promoter was measured by chromatin immunoprecipitation and quantitative real-time PCR assay. High glucose induced upregulation of Ets-1 expression and hyperacetylation of histone H3 and H4 at the Ets-1 gene promoter in beta cells. Ets-1 overexpression dramatically suppressed insulin secretion and biosynthesis both in vivo and in vitro. Besides, Ets-1 overexpression increased the activity of FOXO1 but decreased that of FOXA2 binding to the pancreatic and duodenal homeobox 1 (PDX-1) homology region 2 (PH2), resulting in inhibition of Pdx-1 promoter activity and downregulation of PDX-1 expression and activity. In addition, high glucose promoted the interaction of Ets-1 and FOXO1, and the activity of Ets-1 binding to the Pdx-1 promoter. Importantly, PDX-1 overexpression reversed the defect in pancreatic beta cells induced by Ets-1 excess, while knockdown of Ets-1 prevented hyperglycaemia-induced dysfunction of pancreatic beta cells. Our observations suggest that Ets-1 links glucotoxicity to pancreatic beta cell dysfunction through inhibiting PDX-1 expression in type 2 diabetes.

  5. Quantitative analysis of transforming growth factor beta 1 mRNA in patients with alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Wei-Xing Chen; You-Ming Li; Chao-Hui Yu; Wei-Min Cai; Min Zheng; Feng Chen


    AIM: To investigate the expression of the transforminggrowth factor beta 1 (TGF- beta 1 ) mRNA in different stagesof alcoholic liver disease (ALD) and its clinical value.METHODS: One hundred and seven male alcoholics weregrouped by clinical findings into four groups: alcoholabusers without liver impairment (n=22 ), alcoholicsteatosis ( n = 30 ); alcoholic hepatitis ( n = 31 ); andalcoholic cirrhosis ( n = 24 ) Using peripheral bloodmononuclear cells(PBMC) as samples the gene expressionof TGF-beta 1 was examined quantitatively by reversetranscription polymerase chain reaction (RT-PCR) and dotblot. There are 34 healthy subjects served as control.RESULTS: The expression of TGF-beta 1 from all ALDpatients was significantly greater than that in controls ( 1. 320± 1.162 vs 0.808±0.276, P<0.001). The differences of theexpressions were significant between the patients from eachgroups ( alcoholic steatosis, alcoholic hepatitis andalcoholic cirrhosis) and the controls ( 1. 168 ± 0.852, 1.462 ±1.657, 1.329± 0.610 vs 0.808 ± 0.276, P< 0.050). Nosignificant differences of TGF -beta 1 mRNA expression wereobserved between alcohol abusers without liver impairmentand controls. The expressions in patients with alcoholichepatitis and alcoholic cirrhosis were significantly greaterthan that in alcohol abusers respectively (1.462 ± 1. 657, 1.329 ± 0. 610 vs 0. 841 ± 0. 706, P < 0. 050). No significantdifferences of TGF -beta 1 mRNA expression were observedbetween alcoholic fatty liver men and alcohol abusers.CONCLUSION: TGF-beta 1 expression level can be a riskfactor for alcoholic liver disease and might be related to theinflammatory activity and fibrosis of the liver in patients .

  6. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Milatovic, Dejan [Department of Pediatrics/Pediatric Toxicology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Splittgerber, Ryan [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Fan, Guo-Huang [Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37221 (United States); Richmond, Ann, E-mail: [VA Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States)


    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP

  7. Polarity of stimulation and secretion of transforming growth factor-beta 1 by cultured proximal tubular cells.


    Phillips, A.O.; Steadman, R.; Morrisey, K.; Williams, J. D.


    Proximal tubular epithelial cells are the most abundant cells in the renal cortex, and recent studies suggest that they may play an important role in initiating pathological changes in renal disease. Transforming growth factor (TGF)-beta 1 has been implicated as a major factor controlling the development and progression of renal fibrosis in numerous diseases, including diabetic nephropathy. We have recently demonstrated that human proximal tubular epithelial cells synthesize and secrete TGF-b...

  8. Coconut oil protects cortical neurons from amyloid beta toxicity by enhancing signaling of cell survival pathways. (United States)

    Nafar, F; Clarke, J P; Mearow, K M


    Alzheimer's disease is a progressive neurodegenerative disease that has links with other conditions that can often be modified by dietary and life-style interventions. In particular, coconut oil has received attention as having potentially having benefits in lessening the cognitive deficits associated with Alzheimer's disease. In a recent report, we showed that neuron survival in cultures co-treated with coconut oil and Aβ was rescued compared to cultures exposed only to Aβ. Here we investigated treatment with Aβ for 1, 6 or 24 h followed by addition of coconut oil for a further 24 h, or treatment with coconut oil for 24 h followed by Aβ exposure for various periods. Neuronal survival and several cellular parameters (cleaved caspase 3, synaptophysin labeling and ROS) were assessed. In addition, the influence of these treatments on relevant signaling pathways was investigated with Western blotting. In terms of the treatment timing, our data indicated that coconut oil rescues cells pre-exposed to Aβ for 1 or 6 h, but is less effective when the pre-exposure has been 24 h. However, pretreatment with coconut oil prior to Aβ exposure showed the best outcomes. Treatment with octanoic or lauric acid also provided protection against Aβ, but was not as effective as the complete oil. The coconut oil treatment reduced the number of cells with cleaved caspase and ROS labeling, as well as rescuing the loss of synaptophysin labeling observed with Aβ treatment. Treatment with coconut oil, as well as octanoic, decanoic and lauric acids, resulted in a modest increase in ketone bodies compared to controls. The biochemical data suggest that Akt and ERK activation may contribute to the survival promoting influence of coconut oil. This was supported by observations that a PI3-Kinase inhibitor blocked the rescue effect of CoOil on Aβ amyloid toxicity. Further studies into the mechanisms of action of coconut oil and its constituent medium chain fatty acids are warranted.

  9. Transcription factors and target genes of pre-TCR signaling. (United States)

    López-Rodríguez, Cristina; Aramburu, Jose; Berga-Bolaños, Rosa


    Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.

  10. Inactivation of the transforming growth factor beta type II receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Hougaard, S; Nørgaard, P; Abrahamsen, N;


    Transforming growth factor beta (TGF-beta) exerts a growth inhibitory effect on many cell types through binding to two types of receptors, the type I and II receptors. Resistance to TGF-beta due to lack of type II receptor (RII) has been described in some cancer types including small cell lung...... cancer (SCLC). The purpose of this study was to examine the cause of absent RII expression in SCLC cell lines. Northern blot analysis showed that RII RNA expression was very weak in 16 of 21 cell lines. To investigate if the absence of RII transcript was due to mutations, we screened the poly-A tract...... for mutations, but no mutations were detected. Additional screening for mutations of the RII gene revealed a GG to TT base substitution in one cell line, which did not express RII. This mutation generates a stop codon resulting in predicted synthesis of a truncated RII of 219 amino acids. The nature...

  11. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    DEFF Research Database (Denmark)

    Neve, Bernadette; Fernandez-Zapico, Martin E; Ashkenazi-Katalan, Vered


    a role in free radical clearance that may render beta cells more sensitive to oxidative stress. Thus, both functional and genetic analyses reveal that KLF11 plays a role in the regulation of pancreatic beta cell physiology, and its variants may contribute to the development of diabetes.......KLF11 (TIEG2) is a pancreas-enriched transcription factor that has elicited significant attention because of its role as negative regulator of exocrine cell growth in vitro and in vivo. However, its functional role in the endocrine pancreas remains to be established. Here, we report, for the first...... in beta cells. Genetic analysis of the KLF11 gene revealed two rare variants (Ala347Ser and Thr220Met) that segregate with diabetes in families with early-onset type 2 diabetes, and significantly impair its transcriptional activity. In addition, analysis of 1,696 type 2 diabetes mellitus and 1...

  12. Slow-dissociation effect of common signaling subunit beta c on IL5 and GM-CSF receptor assembly. (United States)

    Ishino, Tetsuya; Harrington, Adrian E; Zaks-Zilberman, Meirav; Scibek, Jeffery J; Chaiken, Irwin


    Receptor activation by IL5 and GM-CSF is a sequential process that depends on their interaction with a cytokine-specific subunit alpha and recruitment of a common signaling subunit beta (betac). In order to elucidate the assembly dynamics of these receptor subunits, we performed kinetic interaction analysis of the cytokine-receptor complex formation by a surface plasmon resonance biosensor. Using the extracellular domains of receptor fused with C-terminal V5-tag, we developed an assay method to co-anchor alpha and betac subunits on the biosensor surface. We demonstrated that dissociation of the cytokine-receptor complexes was slower when both subunits were co-anchored on the biosensor surface than when alpha subunit alone was anchored. The slow-dissociation effect of betac had a similar impact on GM-CSF receptor stabilization to that of IL5. The effects were abolished by alanine replacement of either Tyr18 or Tyr344 residue in betac, which together constitute key parts of a cytokine binding epitope. The data argue that betac plays an important role in preventing the ligand-receptor complexes from rapidly dissociating. This slow-dissociation effect of betac explains how, when multiple betac cytokine receptor alpha subunits are present on the same cell surface, selective betac usage can be controlled by sequestration in stabilized cytokine-alpha-betac complexes.

  13. Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts. (United States)

    Lee, K H; Song, S U; Hwang, T S; Yi, Y; Oh, I S; Lee, J Y; Choi, K B; Choi, M S; Kim, S J


    Transforming growth factor beta (TGF-beta) has been considered as a candidate for gene therapy of orthopedic diseases. The possible application of cell-mediated TGF-beta gene therapy as a new treatment regimen for degenerative arthritis was investigated. In this study, fibroblasts expressing active TGF-beta 1 were injected into the knee joints of rabbits with artificially made cartilage defects to evaluate the feasibility of this therapy for orthopedic diseases. Two to 3 weeks after the injection there was evidence of cartilage regeneration, and at 4 to 6 weeks the cartilage defect was completely filled with newly grown hyaline cartilage. Histological analyses of the regenerated cartilage suggested that it was well integrated with the adjacent normal cartilage at the sides of the defect and that the newly formed tissue was indeed hyaline cartilage. Our findings suggest that cell-mediated TGF-beta 1 gene therapy may be a novel treatment for orthopedic diseases in which hyaline cartilage damage has occurred.

  14. Dact2 represses PITX2 transcriptional activation and cell proliferation through Wnt/beta-catenin signaling during odontogenesis.

    Directory of Open Access Journals (Sweden)

    Xiao Li

    Full Text Available Dact proteins belong to the Dapper/Frodo protein family and function as cytoplasmic attenuators in Wnt and TGFβ signaling. Previous studies show that Dact1 is a potent Wnt signaling inhibitor by promoting degradation of β-catenin. We report a new mechanism for Dact2 function as an inhibitor of the canonical Wnt signaling pathway by interacting with PITX2. PITX2 is a downstream transcription factor in Wnt/β-catenin signaling, and PITX2 synergizes with Lef-1 to activate downstream genes. Immunohistochemistry verified the expression of Dact2 in the tooth epithelium, which correlated with Pitx2 epithelial expression. Dact2 loss of function and PITX2 gain of function studies reveal a feedback mechanism for controlling Dact2 expression. Pitx2 endogenously activates Dact2 expression and Dact2 feeds back to repress Pitx2 transcriptional activity. A Topflash reporter system was employed showing PITX2 activation of Wnt signaling, which is attenuated by Dact2. Transient transfections demonstrate the inhibitory effect of Dact2 on critical dental epithelial differentiation factors during tooth development. Dact2 significantly inhibits PITX2 activation of the Dlx2 and amelogenin promoters. Multiple lines of evidence conclude the inhibition is achieved by the physical interaction between Dact2 and Pitx2 proteins. The loss of function of Dact2 also reveals increased cell proliferation due to up-regulated Wnt downstream genes, cyclinD1 and cyclinD2. In summary, we have identified a novel role for Dact2 as an inhibitor of the canonical Wnt pathway in embryonic tooth development through its regulation of cell proliferation and differentiation.

  15. Dact2 represses PITX2 transcriptional activation and cell proliferation through Wnt/beta-catenin signaling during odontogenesis. (United States)

    Li, Xiao; Florez, Sergio; Wang, Jianbo; Cao, Huojun; Amendt, Brad A


    Dact proteins belong to the Dapper/Frodo protein family and function as cytoplasmic attenuators in Wnt and TGFβ signaling. Previous studies show that Dact1 is a potent Wnt signaling inhibitor by promoting degradation of β-catenin. We report a new mechanism for Dact2 function as an inhibitor of the canonical Wnt signaling pathway by interacting with PITX2. PITX2 is a downstream transcription factor in Wnt/β-catenin signaling, and PITX2 synergizes with Lef-1 to activate downstream genes. Immunohistochemistry verified the expression of Dact2 in the tooth epithelium, which correlated with Pitx2 epithelial expression. Dact2 loss of function and PITX2 gain of function studies reveal a feedback mechanism for controlling Dact2 expression. Pitx2 endogenously activates Dact2 expression and Dact2 feeds back to repress Pitx2 transcriptional activity. A Topflash reporter system was employed showing PITX2 activation of Wnt signaling, which is attenuated by Dact2. Transient transfections demonstrate the inhibitory effect of Dact2 on critical dental epithelial differentiation factors during tooth development. Dact2 significantly inhibits PITX2 activation of the Dlx2 and amelogenin promoters. Multiple lines of evidence conclude the inhibition is achieved by the physical interaction between Dact2 and Pitx2 proteins. The loss of function of Dact2 also reveals increased cell proliferation due to up-regulated Wnt downstream genes, cyclinD1 and cyclinD2. In summary, we have identified a novel role for Dact2 as an inhibitor of the canonical Wnt pathway in embryonic tooth development through its regulation of cell proliferation and differentiation.

  16. [Enterobacteriaceae producing extended spectrum beta-lactamase: epidemiology, risk factors, and prevention]. (United States)

    Vodovar, D; Marcadé, G; Raskine, L; Malissin, I; Mégarbane, B


    Multidrug-resistant bacteria are a major worldwide health public concern. It results from the growing increase in antibiotic prescriptions, which are responsible for selection pressure on bacteria. In France like in other countries, enterobacteriaceae producing extended spectrum beta-lactamase (EESBL) are the predominant multidrug-resistant bacteria. EESBL may be responsible for severe infections and require prescription of broad-spectrum antibacterial agents. The current EESBL outbreak is different from methicillin-resistant Staphylococcus aureus outbreak that occurred in the early 1980. Consistently, EESBL are isolated both in hospital and community. Moreover, standard hygiene measures appear ineffective since EESBL prevalence is still increasing. The current inability to contain EESBL outbreak is due to several factors, including the existence of a wide community- and hospital-acquired tank of EESBL, failure to follow strict rules for hygiene, and the current irrational prescription of antibiotics. Copyright © 2012 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  17. Induction of gastric cancer cell adhesion through transforming growth factor-beta1-mediated peritoneal fibrosis

    Directory of Open Access Journals (Sweden)

    Ma Xiao-Yang


    Full Text Available Abstract Background Peritoneal dissemination is one of the main causes of death in gastric cancer patients. Transforming growth factor-beta1 (TGF-β1, one of the most potent fibrotic stimuli for mesothelial cells, may play a key role in this processing. The purpose of this study is to elucidate the effects of TGF-β1 on regulation of gastric cancer adhesion to mesothelial cells. Methods Peritoneal tissues and peritoneal wash fluid were obtained for hematoxylin and eosin staining or ELISA to measure fibrosis and TGF-β1 levels, respectively. The peritoneal mesothelial cell line, HMrSV5, was used to determine the role of TGF-β1 in regulation of gastric cancer cell adhesion to mesothelial cells and expression of collagen, fibronectin, and Smad 2/3 by using adhesion assay, western blot, and RT-PCR. Results The data showed that TGF-β1 treatment was able to induce collagen III and fibronectin expression in the mesothelial cells, which was associated with an increased adhesion ability of gastric cancer cells, but knockdown of minimal sites of cell binding domain of extracellular matrix can partially inhibit these effects. Conclusion Peritoneal fibrosis induced by TGF-β1 may provide a favorable environment for the dissemination of gastric cancer.

  18. Peptide-based targeting of the platelet-derived growth factor receptor beta. (United States)

    Askoxylakis, Vasileios; Marr, Annabell; Altmann, Annette; Markert, Annette; Mier, Walter; Debus, Jürgen; Huber, Peter E; Haberkorn, Uwe


    The aim of this work is to identify new ligands targeting the platelet-derived growth factor receptor beta (PDGFRβ). Biopanning was carried out with a 12-amino-acid phage display library against the recombinant extracellular domain of PDGFRβ. The identified peptide PDGFR-P1 was chemically synthesized and labeled with (125)I or (131)I. In vitro studies were performed on the PDGFRβ-expressing cell lines BxPC3 and MCF7 and on PDGFRβ-transfected HEK cells in comparison to negative control wtHEK293 and CaIX-transfected HEK cells. Biodistribution experiments were performed in Balb/c nude mice, carrying subcutaneously BxPC3 tumors. In vitro studies demonstrated a higher binding to BxPC3, MCF7, and PDGFRβ-tr-HEK cells in comparison to negative control cell lines. Binding was inhibited up to 90% by the unlabeled PDGFR-P1 peptide. Organ distribution studies revealed a higher accumulation in BxPC3 tumors than in most organs. PDGFR-P1 is a promising candidate for targeting human PDGFRβ.

  19. Both ERK/MAPK and TGF-Beta/Smad Signaling Pathways Play a Role in the Kidney Fibrosis of Diabetic Mice Accelerated by Blood Glucose Fluctuation

    Directory of Open Access Journals (Sweden)

    Xiaoyun Cheng


    Full Text Available Background. The notion that diabetic nephropathy is the leading cause of renal fibrosis prompted us to investigate the effects of blood glucose fluctuation (BGF under high glucose condition on kidney in the mice. Methods. The diabetic and BGF animal models were established in this study. Immunohistochemistry, Western blot, and RT-PCR analysis were applied to detect the expression of type I collagen, matrix metalloproteinase-1 (MMP1, metalloproteinase inhibitor 1 (TIMP1, transforming growth factor beta 1 (TGF-β1, phosphorylated-ERK, p38, smad2/3, and Akt. Results. BGF treatment increased type I collagen synthesis by two times compared with the control. The expression of MMP1 was reduced markedly while TIMP1 synthesis was enhanced after BGF treatment. ERK phosphorylation exhibits a significant increase in the mice treated with BGF. Furthermore, BGF can markedly upregulate TGF-β1 expression. The p-smad2 showed 2-fold increases compared with the only diabetic mice. However, p-AKT levels were unchanged after BGF treatment. Conclusions. These data demonstrate that BGF can accelerate the trend of kidney fibrosis in diabetic mice by increasing collagen production and inhibiting collagen degradation. Both ERK/MAPK and TGF-β/smad signaling pathways seem to play a role in the development of kidney fibrosis accelerated by blood glucose fluctuation.

  20. Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B alpha-beta-delta subunit families (United States)

    Kyrpides, N. C.; Woese, C. R.


    As the amount of available sequence data increases, it becomes apparent that our understanding of translation initiation is far from comprehensive and that prior conclusions concerning the origin of the process are wrong. Contrary to earlier conclusions, key elements of translation initiation originated at the Universal Ancestor stage, for homologous counterparts exist in all three primary taxa. Herein, we explore the evolutionary relationships among the components of bacterial initiation factor 2 (IF-2) and eukaryotic IF-2 (eIF-2)/eIF-2B, i.e., the initiation factors involved in introducing the initiator tRNA into the translation mechanism and performing the first step in the peptide chain elongation cycle. All Archaea appear to posses a fully functional eIF-2 molecule, but they lack the associated GTP recycling function, eIF-2B (a five-subunit molecule). Yet, the Archaea do posses members of the gene family defined by the (related) eIF-2B subunits alpha, beta, and delta, although these are not specifically related to any of the three eukaryotic subunits. Additional members of this family also occur in some (but by no means all) Bacteria and even in some eukaryotes. The functional significance of the other members of this family is unclear and requires experimental resolution. Similarly, the occurrence of bacterial IF-2-like molecules in all Archaea and in some eukaryotes further complicates the picture of translation initiation. Overall, these data lend further support to the suggestion that the rudiments of translation initiation were present at the Universal Ancestor stage.

  1. Transforming growth factorsignalling controls human breast cancer metastasis in a zebrafish xenograft model. (United States)

    Drabsch, Yvette; He, Shuning; Zhang, Long; Snaar-Jagalska, B Ewa; ten Dijke, Peter


    The transforming growth factor beta (TGF-β) signalling pathway is known to control human breast cancer invasion and metastasis. We demonstrate that the zebrafish xenograft assay is a robust and dependable animal model for examining the role of pharmacological modulators and genetic perturbation of TGF-β signalling in human breast tumour cells. We injected cancer cells into the embryonic circulation (duct of cuvier) and examined their invasion and metastasis into the avascular collagenous tail. Various aspects of the TGF-β signalling pathway were blocked by chemical inhibition, small interfering RNA (siRNA), or small hairpin RNA (shRNA). Analysis was conducted using fluorescent microscopy. Breast cancer cells with different levels of malignancy, according to in vitro and in vivo mouse studies, demonstrated invasive and metastatic properties within the embryonic zebrafish model that nicely correlated with their differential tumourigenicity in mouse models. Interestingly, MCF10A M2 and M4 cells invaded into the caudal hematopoietic tissue and were visible as a cluster of cells, whereas MDA MB 231 cells invaded into the tail fin and were visible as individual cells. Pharmacological inhibition with TGF-β receptor kinase inhibitors or tumour specific Smad4 knockdown disturbed invasion and metastasis in the zebrafish xenograft model and closely mimicked the results we obtained with these cells in a mouse metastasis model. Inhibition of matrix metallo proteinases, which are induced by TGF-β in breast cancer cells, blocked invasion and metastasis of breast cancer cells. The zebrafish-embryonic breast cancer xenograft model is applicable for the mechanistic understanding, screening and development of anti-TGF-β drugs for the treatment of metastatic breast cancer in a timely and cost-effective manner.

  2. Tissue inhibitor of metalloproteinase-3 is up-regulated by transforming growth factor-beta1 in vitro and expressed in fibroblastic foci in vivo in idiopathic pulmonary fibrosis. (United States)

    García-Alvarez, Jorge; Ramirez, Remedios; Checa, Marco; Nuttall, Robert K; Sampieri, Clara L; Edwards, Dylan R; Selman, Moisés; Pardo, Annie


    Idiopathic pulmonary fibrosis (IPF) is characterized by fibroblast expansion and extracellular matrix accumulation. However, the mechanisms involved in matrix remodeling have not been elucidated. In this study, the authors aimed to evaluate the expression of the tissue inhibitors of matrix metalloproteinases (TIMPs) in human fibroblasts and whole tissues from IPF and normal lungs. They also determined the role of mitogen-activated protein kinase (MAPK) in TIMP3 expression. TIMP1, TIMP2, and TIMP3 were highly expressed in lung fibroblasts. Transforming growth factor (TGF)-beta1, a profibrotic mediator, induced strong up-regulation of TIMP3 at the mRNA and protein levels. The authors examined whether the MAPK pathway was involved in TGF-beta1-induced TIMP3 expression. TGF-beta1 induced the phosphorylation of p38 and extracellular signal-regulated kinase (ERK)1/2. Biochemical blockade of p38 by SB203580, but not of the ERK MAPK pathway, inhibited the effect of this factor. The effect was also blocked by the tyrosine kinase inhibitor genistein and by antagonizing TGF-beta1 receptor type I (activin-linked kinase [ALK5]). In IPF tissues TIMP3 gene expression was significantly increased and the protein was localized to fibroblastic foci and extracellular matrix. Our findings suggest that TGF-beta1-induced TIMP3 may be an important mediator in lung fibrogenesis.

  3. Spatial signalling mediated by the transforming growth factorsignalling pathway during tooth formation. (United States)

    He, Xin-Yu; Sun, Ke; Xu, Ruo-Shi; Tan, Jia-Li; Pi, Cai-Xia; Wan, Mian; Peng, Yi-Ran; Ye, Ling; Zheng, Li-Wei; Zhou, Xue-Dong


    Tooth development relies on sequential and reciprocal interactions between the epithelial and mesenchymal tissues, and it is continuously regulated by a variety of conserved and specific temporal-spatial signalling pathways. It is well known that suspensions of tooth germ cells can form tooth-like structures after losing the positional information provided by the epithelial and mesenchymal tissues. However, the particular stage in which the tooth germ cells start to form tooth-like structures after losing their positional information remains unclear. In this study, we investigated the reassociation of tooth germ cells suspension from different morphological stages during tooth development and the phosphorylation of Smad2/3 in this process. Four tooth morphological stages were designed in this study. The results showed that tooth germ cells formed odontogenic tissue at embryonic day (E) 14.5, which is referred to as the cap stage, and they formed tooth-like structures at E16.5, which is referred to as the early bell stage, and E18.5, which is referred to as the late bell stage. Moreover, the transforming growth factorsignalling pathway might play a role in this process.

  4. Survival Analysis and its Associated Factors of Beta Thalassemia Major in Hamadan Province

    Directory of Open Access Journals (Sweden)

    Reza Zamani


    Full Text Available Background: There currently is a lack of knowledge about the long-term survival of patients with beta thalassemia (BT, particularly in regions with low incidence of the disease. The aim of the present study was to determine the survival rate of the patients with BT major and the factors associated with the survival time. Methods: This retrospective cohort study was performed in Hamadan province, located in the west of Iran. The study included patients that referred to the provincial hospitals during 16 year period from 1997 to 2013. The follow up of each subject was calculated from the date of birth to the date of death. Demographic and clinical data were extracted from patients’ medical records using a checklist. Statistical analysis included the Kaplan-Meier method to analyze survivals, log-rank to compare curves between groups, and Cox regression for multivariate prognostic analysis. Results: A total of 133 patients with BT major were enrolled, 54.9% of whom were male and 66.2% were urban. The 10-, 20- and 30-year survival rate for all patients were 98.3%, 88.4% and 80.5%, respectively. Based on hazard ratio (HR, we found that accompanied diseases (P=0.01, blood type (P=0.03 and residency status (P=0.01 were significant predictors for the survival time of patients. Conclusion: The survival rate of BT patients has improved. Future researches such as prospective designs are required for the estimation of survival rate and to find other prognostic factors, which have reliable sources of data.

  5. Interaction of ASK1 and the beta-amyloid precursor protein in a stress-signaling complex. (United States)

    Galvan, Veronica; Banwait, Surita; Spilman, Patricia; Gorostiza, Olivia F; Peel, Alyson; Ataie, Marina; Crippen, Danielle; Huang, Wei; Sidhu, Gurleen; Ichijo, Hidenori; Bredesen, Dale E


    The amyloid precursor protein (APP) is a type I transmembrane protein translocated to neuronal terminals, whose function is still unknown. The C-terminus of APP mediates its interaction with cellular adaptor and signaling proteins, some of which signal to the stress-activated protein kinase (SAPK) pathway. Here we show that ASK1, a MAPKKK that activates two SAPKs, c-Jun N-terminal-kinase (JNK) and p38, is present in a complex containing APP, phospho-MKK6, JIP1 and JNK1. In primary neurons deprived of growth factors, as well as in brains of (FAD)APP-transgenic mice, ASK1 was upregulated in neuronal projections, where it interacted with APP. In non-transgenic brains, ASK1 and APP associated mainly in the ER. Our results indicate that recruitment of ASK1 to stress-signaling complexes assembled with APP may be triggered and enhanced by cellular stress. Thus, ASK1 may be the apical MAPKKK in a signaling complex assembled with APP as a response to stress.

  6. Coagulation factor V mediates inhibition of tissue factor signaling by activated protein C in mice. (United States)

    Liang, Hai Po H; Kerschen, Edward J; Basu, Sreemanti; Hernandez, Irene; Zogg, Mark; Jia, Shuang; Hessner, Martin J; Toso, Raffaella; Rezaie, Alireza R; Fernández, José A; Camire, Rodney M; Ruf, Wolfram; Griffin, John H; Weiler, Hartmut


    The key effector molecule of the natural protein C pathway, activated protein C (aPC), exerts pleiotropic effects on coagulation, fibrinolysis, and inflammation. Coagulation-independent cell signaling by aPC appears to be the predominant mechanism underlying its highly reproducible therapeutic efficacy in most animal models of injury and infection. In this study, using a mouse model of Staphylococcus aureus sepsis, we demonstrate marked disease stage-specific effects of the anticoagulant and cell signaling functions of aPC. aPC resistance of factor (f)V due to the R506Q Leiden mutation protected against detrimental anticoagulant effects of aPC therapy but also abrogated the anti-inflammatory and mortality-reducing effects of the signaling-selective 5A-aPC variant that has minimal anticoagulant function. We found that procofactor V (cleaved by aPC at R506) and protein S were necessary cofactors for the aPC-mediated inhibition of inflammatory tissue-factor signaling. The anti-inflammatory cofactor function of fV involved the same structural features that govern its cofactor function for the anticoagulant effects of aPC, yet its anti-inflammatory activities did not involve proteolysis of activated coagulation factors Va and VIIIa. These findings reveal a novel biological function and mechanism of the protein C pathway in which protein S and the aPC-cleaved form of fV are cofactors for anti-inflammatory cell signaling by aPC in the context of endotoxemia and infection.

  7. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Srisuttee, Ratakorn; Moon, Jeong [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, Young-Whan [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Oh, Sangtaek [Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702 (Korea, Republic of); Chung, Young-Hwa, E-mail: [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)


    Highlights: Black-Right-Pointing-Pointer SIRT1 inhibits protein levels of {beta}-catenin and its transcriptional activity. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for the decrease of {beta}-catenin expression. Black-Right-Pointing-Pointer SIRT1-mediated degradation of {beta}-catenin is not required for GSK-3{beta} and Siah-1 but for proteosome. Black-Right-Pointing-Pointer SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of {beta}-catenin, we postulated that {beta}-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target {beta}-catenin in a colon cancer model, suppresses {beta}-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of {beta}-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced {beta}-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of {beta}-catenin. Treatment with MG132, a proteasomal inhibitor, restored {beta}-catenin protein levels, suggesting that SIRT1-mediated degradation of {beta}-catenin requires proteasomal activity. It was reported that inhibition of GSK-3{beta} or Siah-1 stabilizes {beta}-catenin in colon cancer cells, but suppression of GSK-3{beta} or Siah-1 using siRNA in the presence of resveratrol instead diminished {beta}-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3{beta} and Siah-1 are not involved in SIRT1

  8. Follicle-stimulating hormone (FSH activates extracellular signal-regulated kinase phosphorylation independently of beta-arrestin- and dynamin-mediated FSH receptor internalization

    Directory of Open Access Journals (Sweden)

    Crepieux Pascale


    Full Text Available Abstract Background The follicle-stimulating hormone receptor (FSH-R is a seven transmembrane spanning receptor (7TMR which plays a crucial role in male and female reproduction. Upon FSH stimulation, the FSH-R activates the extracellular signal-regulated kinases (ERK. However, the mechanisms whereby the agonist-stimulated FSH-R activates ERK are poorly understood. In order to activate ERK, some 7 TMRs require beta-arrestin-and dynamin-dependent internalization to occur, whereas some others do not. In the present study, we examined the ability of the FSH-activated FSH-R to induce ERK phosphorylation, in conditions where its beta-arrestin- and dynamin-mediated internalization was impaired. Methods Human embryonic kidney (HEK 293 cells were transiently transfected with the rat FSH-R. Internalization of the FSH-R was manipulated by co-expression of either a beta-arrestin (319–418 dominant negative peptide, either an inactive dynamin K44A mutant or of wild-type beta-arrestin 1 or 2. The outcomes on the FSH-R internalization were assayed by measuring 125I-FSH binding at the cell surface when compared to internalized 125I-FSH binding. The resulting ERK phosphorylation level was visualized by Western blot analysis. Results In HEK 293 cells, FSH stimulated ERK phosphorylation in a dose-dependent manner. Co-transfection of the beta- arrestin (319–418 construct, or of the dynamin K44A mutant reduced FSH-R internalization in response to FSH, without affecting ERK phosphorylation. Likewise, overexpression of wild-type beta-arrestin 1 or 2 significantly increased the FSH-R internalization level in response to FSH, without altering FSH-induced ERK phosphorylation. Conclusion From these results, we conclude that the FSH-R does not require beta-arrestin- nor dynamin-mediated internalization to initiate ERK phosphorylation in response to FSH.

  9. [Effects of acupuncture intervention on hepatic platelet-derived growth factor signaling pathway in CCl4-induced hepatic fibrosis rats]. (United States)

    Kong, De-Song; Ma, Jin; Lu, Yin; Ni, Guang-Xia; Ni, Chun-Yan; Zhang, Xue-Jiao; Wang, Ai-Yun; Chen, Wen-Xing; Zheng, Shi-Zhong


    To observe the effect of acupuncture stimulation of "Taichong" (LR 3), "Qimen" (LR 14), etc. on hepatic platelet-derived growth factor (PDGF) signal pathway activity at the protein and mRNA levels in hepatic fibrosis rats. Forty-six SD rats were randomly divided into control (10 rats), model (12 rats), acupuncture (12 rats) and non-acupoint (12 rats) groups. Hepatic fibrosis model was established by intraperitoneal injection of mixture solution of 50% CCl4 and olive oil [1:1, 3 times on the 1st week (W), twice/W thereafter for 5 more weeks]. During modeling, acupuncture stimulation of "Taichong" (LR 3), "Qimen" (LR 14), "Ganshu" (BL 18) and "Zusanli" (ST 36) was conducted simultaneously. At the end of the experiments, all the rats were sacrificed for collecting their liver and blood samples, followed by separation of the hepatic stellate cells (HSCs). ELISA, Western blot and Real-time quantitative PCR techniques were used to detect the content of serum PDGF and expression levels of PDGF-beta receptor (PDGF-beta R), extracellular signal-regulated kinase (ERK1/2), c-jun N-terminal kinase (JNK) and P 38 genes and proteins of HSCs, respectively. Compared to the control group, serum PDGF content, and expression levels of PDGF-beta R mRNA and protein, ERK mRNA and protein and P 38 protein of HSCs in the model group were upregulated significantly (P acupuncture group were down-regulated apparently (P acupuncture and non-acupoint groups in serum PDGF content and between the model group and non-acupoint group in the expression levels of PDGF-beta R mRNA and protein, ERK mRNA and protein, JNK protein and P 38 protein of HSCs, as well as between the model group and acupuncture group in the expression levels of JNK protein and P 38 protein of HSCs (P > 0.05). Acupuncture intervention can effectively down-regulate serum PDGF content, and expression levels of PDGF-beta R mRNA and protein, ERK mRNA and protein of HSCs in liver fibrosis rats, which may contribute to its effect in

  10. Thymosin beta 4 is associated with RUNX2 expression through the Smad and Akt signaling pathways in mouse dental epithelial cells (United States)



    In previous studies by our group, we reported that thymosin beta 4 (Tb4) is closely associated with the initiation and development of the tooth germ, and can induce the expression of runt-related transcription factor 2 (RUNX2) during the development of the tooth germ. RUNX2 regulates the expression of odontogenesis-related genes, such as amelogenin, X-linked (Amelx), ameloblastin (Ambn) and enamelin (Enam), as well as the differentiation of osteoblasts during bone formation. However, the mechanisms through which Tb4 induces the expression of RUNX2 remain unknown. In the present study, we employed a mouse dental epithelial cell line, mDE6, with the aim to elucidate these mechanisms. The mDE6 cells expressed odontogenesis-related genes, such as Runx2, Amelx, Ambn and Enam, and formed calcified matrices upon the induction of calcification, thus showing characteristics of odontogenic epithelial cells. The expression of odontogenesis-related genes, and the calcification of the mDE6 cells were reduced by the inhibition of phosphorylated Smad1/5 (p-Smad1/5) and phosphorylated Akt (p-Akt) proteins. Furthermore, we used siRNA against Tb4 to determine whether RUNX2 expression and calcification are associated with Tb4 expression in the mDE6 cells. The protein expression of p-Smad1/5 and p-Akt in the mDE6 cells was reduced by treatment with Tb4-siRNA. These results suggest that Tb4 is associated with RUNX2 expression through the Smad and PI3K-Akt signaling pathways, and with calcification through RUNX2 expression in the mDE6 cells. This study provides putative information concerning the signaling pathway through which Tb4 induces RUNX2 expression, which may help to understand the regulation of tooth development and tooth regeneration. PMID:25739055

  11. The Inflammasome and the Epidermal Growth Factor Receptor (EGFR Are Involved in the Staphylococcus aureus-Mediated Induction of IL-1alpha and IL-1beta in Human Keratinocytes.

    Directory of Open Access Journals (Sweden)

    Maren Simanski

    Full Text Available Staphylococcus (S. aureus is an important pathogen causing various infections including those of the skin. Keratinocytes are able to sense invading S. aureus and to initiate a fast defense reaction by the rapid release of innate defense mediators such as antimicrobial peptides and cytokines. There is increasing evidence that the cytokines IL-1alpha and IL-1beta, which both signal through the IL-1 receptor, play an important role in cutaneous defense against S. aureus. The aim of this study was to gain more insight into the underlying mechanisms leading to the S. aureus-induced IL-1alpha and IL-1beta expression in keratinocytes. Infection of human primary keratinocytes with S. aureus led to the induction of gene expression and protein secretion of IL-1alpha and IL-1beta. Full S. aureus-induced IL-1 protein release required the inflammasome components caspase-1 and ASC (apoptosis-associated speck-like protein containing a CARD whereas gene induction of IL-1alpha and IL-beta by S. aureus was not dependent on caspase-1 and ASC. Since patients receiving anti-cancer therapy by inhibition of the epidermal growth factor receptor (EGFR often suffer from skin infections caused by S. aureus we additionally evaluated whether the EGFR pathway may be involved in the IL-1alpha and IL-1beta induction by S. aureus. Inactivation of the EGFR with a blocking antibody decreased the S. aureus-mediated IL-1alpha and IL-1beta induction in primary keratinocytes. Moreover, the use of siRNA experiments revealed that ADAM17 (A Disintegrin and A Metalloprotease 17, a metalloproteinase known to mediate the shedding and release of EGFR ligands, was required for full induction of IL-1alpha and IL-1beta in keratinocytes infected with S. aureus. A failure of keratinocytes to adequately upregulate IL-1alpha and IL-1beta may promote S. aureus skin infections.

  12. The Inflammasome and the Epidermal Growth Factor Receptor (EGFR) Are Involved in the Staphylococcus aureus-Mediated Induction of IL-1alpha and IL-1beta in Human Keratinocytes. (United States)

    Simanski, Maren; Rademacher, Franziska; Schröder, Lena; Gläser, Regine; Harder, Jürgen


    Staphylococcus (S.) aureus is an important pathogen causing various infections including those of the skin. Keratinocytes are able to sense invading S. aureus and to initiate a fast defense reaction by the rapid release of innate defense mediators such as antimicrobial peptides and cytokines. There is increasing evidence that the cytokines IL-1alpha and IL-1beta, which both signal through the IL-1 receptor, play an important role in cutaneous defense against S. aureus. The aim of this study was to gain more insight into the underlying mechanisms leading to the S. aureus-induced IL-1alpha and IL-1beta expression in keratinocytes. Infection of human primary keratinocytes with S. aureus led to the induction of gene expression and protein secretion of IL-1alpha and IL-1beta. Full S. aureus-induced IL-1 protein release required the inflammasome components caspase-1 and ASC (apoptosis-associated speck-like protein containing a CARD) whereas gene induction of IL-1alpha and IL-beta by S. aureus was not dependent on caspase-1 and ASC. Since patients receiving anti-cancer therapy by inhibition of the epidermal growth factor receptor (EGFR) often suffer from skin infections caused by S. aureus we additionally evaluated whether the EGFR pathway may be involved in the IL-1alpha and IL-1beta induction by S. aureus. Inactivation of the EGFR with a blocking antibody decreased the S. aureus-mediated IL-1alpha and IL-1beta induction in primary keratinocytes. Moreover, the use of siRNA experiments revealed that ADAM17 (A Disintegrin and A Metalloprotease 17), a metalloproteinase known to mediate the shedding and release of EGFR ligands, was required for full induction of IL-1alpha and IL-1beta in keratinocytes infected with S. aureus. A failure of keratinocytes to adequately upregulate IL-1alpha and IL-1beta may promote S. aureus skin infections.

  13. Beta-elemene blocks epithelial-mesenchymal transition in human breast cancer cell line MCF-7 through Smad3-mediated down-regulation of nuclear transcription factors.

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    Full Text Available Epithelial-mesenchymal transition (EMT is the first step required for breast cancer to initiate metastasis. However, the potential of drugs to block and reverse the EMT process are not well explored. In the present study, we investigated the inhibitory effect of beta-elemene (ELE, an active component of a natural plant-derived anti-neoplastic agent in an established EMT model mediated by transforming growth factor-beta1 (TGF-β1. We found that ELE (40 µg/ml blocked the TGF-β1-induced phenotypic transition in the human breast cancer cell line MCF-7. ELE was able to inhibit TGF-β1-mediated upregulation of mRNA and protein expression of nuclear transcription factors (SNAI1, SNAI2, TWIST and SIP1, potentially through decreasing the expression and phosphorylation of Smad3, a central protein mediating the TGF-β1 signalling pathway. These findings suggest a potential therapeutic benefit of ELE in treating basal-like breast cancer.

  14. Trefoil factor 3 stimulates human and rodent pancreatic islet beta-cell replication with retention of function. (United States)

    Fueger, Patrick T; Schisler, Jonathan C; Lu, Danhong; Babu, Daniella A; Mirmira, Raghavendra G; Newgard, Christopher B; Hohmeier, Hans E


    Both major forms of diabetes involve a decline in beta-cell mass, mediated by autoimmune destruction of insulin-producing cells in type 1 diabetes and by increased rates of apoptosis secondary to metabolic stress in type 2 diabetes. Methods for controlled expansion of beta-cell mass are currently not available but would have great potential utility for treatment of these diseases. In the current study, we demonstrate that overexpression of trefoil factor 3 (TFF3) in rat pancreatic islets results in a 4- to 5-fold increase in [(3)H]thymidine incorporation, with full retention of glucose-stimulated insulin secretion. This increase was almost exclusively due to stimulation of beta-cell replication, as demonstrated by studies of bromodeoxyuridine incorporation and co-immunofluorescence analysis with anti-bromodeoxyuridine and antiinsulin or antiglucagon antibodies. The proliferative effect of TFF3 required the presence of serum or 0.5 ng/ml epidermal growth factor. The ability of TFF3 overexpression to stimulate proliferation of rat islets in serum was abolished by the addition of epidermal growth factor receptor antagonist AG1478. Furthermore, TFF3-induced increases in [3H]thymidine incorporation in rat islets cultured in serum was blocked by overexpression of a dominant-negative Akt protein or treatment with triciribine, an Akt inhibitor. Finally, overexpression of TFF3 also caused a doubling of [3H]thymidine incorporation in human islets. In summary, our findings reveal a novel TFF3-mediated pathway for stimulation of beta-cell replication that could ultimately be exploited for expansion or preservation of islet beta-cell mass.

  15. Factors affecting quality for beta dose rate measurements using ISO 6980 series I reference sources

    Energy Technology Data Exchange (ETDEWEB)

    Burns, R.E. Jr.; O`Brien, J.M. Jr. [Atlan-Tech, Rosewll, GA (United States)


    Atlan-Tech, Inc. has performed several calibrations of ISO 6980 Series 1 reference beta sources over the past two to three years. There were many problems encountered in attempting to compare the results of these calibrations with those from other laboratories, indicating the need for more standardization in the methodology employed for the measurement of the absorbed dose rate from ISO 6980 Series 1 reference beta sources. This document describes some of the problems encountered in attempting to intercompare results of beta dose-rate measurements. It proposes some solutions in an attempt to open a dialogue among facilities using reference beta standards for the purpose of promoting better measurement quality assurance through data intercomparison.

  16. Interleukin-4, interleukin-10, and interleukin-1-receptor antagonist but not transforming growth factor-beta induce ramification and reduce adhesion molecule expression of rat microglial cells. (United States)

    Wirjatijasa, Florentina; Dehghani, Faramarz; Blaheta, Roman A; Korf, Horst-Werner; Hailer, Nils P


    The activity of microglial cells is strictly controlled in order to maintain central nervous system (CNS) immune privilege. We hypothesized that several immunomodulatory factors present in the CNS parenchyma, i.e., the Th2-derived cytokines interleukin (IL)-4 and IL-10, interleukin-1-receptor-antagonist (IL-1-ra), or transforming growth factor (TGF)-beta can modulate microglial morphology and functions. Microglial cells were incubated with IL-4, IL-10, IL-1-ra, TGF-beta, or with astrocyte conditioned media (ACM) and were analyzed for morphological changes, expression of intercellular adhesion molecule (ICAM)-1, and secretion of IL-1beta or tumor necrosis factor (TNF)-alpha. Whereas untreated controls showed an amoeboid morphology both Th2-derived cytokines, IL-1-ra, and ACM induced a morphological transformation to the ramified phenotype. In contrast, TGF-beta-treated microglial cells showed an amoeboid morphology. Even combined with the neutralizing antibodies against IL-4, IL-10, or TGF-beta ACM induced microglial ramification. Furthermore, ACM did not contain relevant amounts of IL-4 and IL-10, as measured by enzyme-linked immunosorbent assay (ELISA). Flow cytometry showed that lipopolysaccharide (LPS)-induced ICAM-1-expression on microglial cells was strongly suppressed by ACM, significantly modulated by IL-4, IL-10, or IL-1-ra, but not influenced by TGF-beta. The LPS-induced secretion of IL-1beta and TNF-alpha was only reduced after application of ACM, whereas IL-4 or IL-10 did not inhibit IL-1beta- or TNF-alpha secretion. TGF-beta enhanced IL-1beta- but not TNF-alpha secretion. In summary, we demonstrate that IL-4, IL-10, and IL-1-ra induce microglial ramification and reduce ICAM-1-expression, whereas the secretion of proinflammatory cytokines is not prevented. TGF-beta has no modulating effects. Importantly, unidentified astrocytic factors that are not identical with IL-4, IL-10, or TGF-beta possess strong immunomodulatory properties.

  17. TGF-{beta} signals the formation of a unique NF1/Smad4-dependent transcription repressor-complex in human diploid fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Luciakova, Katarina, E-mail: [Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Vlarska 7, 833 91 Bratislava (Slovakia); Kollarovic, Gabriel; Kretova, Miroslava; Sabova, Ludmila [Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Vlarska 7, 833 91 Bratislava (Slovakia); Nelson, B. Dean [Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, S-106 91 Stockholm (Sweden)


    Highlights: {yields} TGF-{beta} induces the formation of unique nuclear NF1/Smad4 complexes that repress expression of the ANT-2 gene. {yields} Repression is mediated through an NF1-dependent repressor element in the promoter. {yields} The formation of NF1/Smad4 complexes and the repression of ANT2 are prevented by inhibitors of p38 kinase and TGF-{beta} RI. {yields} NF1/Smad complexes implicate novel role for NF1 and Smad proteins in the regulation of growth. -- Abstract: We earlier reported the formation of a unique nuclear NF1/Smad complex in serum-restricted fibroblasts that acts as an NF1-dependent repressor of the human adenine nucleotide translocase-2 gene (ANT2) [K. Luciakova, G. Kollarovic, P. Barath, B.D. Nelson, Growth-dependent repression of human adenine nucleotide translocator-2 (ANT2) transcription: evidence for the participation of Smad and Sp family proteins in the NF1-dependent repressor complex, Biochem. J. 412 (2008) 123-130]. In the present study, we show that TGF-{beta}, like serum-restriction: (a) induces the formation of NF1/Smad repressor complexes, (b) increases binding of the complexes to the repressor elements (Go elements) in the ANT2 promoter, and (c) inhibits ANT2 expression. Repression of ANT2 by TGF-{beta} is eliminated by mutating the NF1 binding sites in the Go repressor elements. All of the above responses to TGF-{beta} are prevented by inhibitors of TGF-{beta} RI and MAPK p38. These inhibitors also prevent NF1/Smad4 repressor complex formation and repression of ANT2 expression in serum-restricted cells, suggesting that similar signaling pathways are initiated by TGF-{beta} and serum-restriction. The present finding that NF1/Smad4 repressor complexes are formed through TGF-{beta} signaling pathways suggests a new, but much broader, role for these complexes in the initiation or maintenance of the growth-inhibited state.

  18. Beta-2 GPI induced tissue factor and placental apoptosis for the pathophysiology of pregnancy loss in antiphospholipid syndrome

    Directory of Open Access Journals (Sweden)

    Shanmugam Velayuthaprabhu


    Full Text Available Based on large concurrent studies on human and in vivo results from experimental animals, it is evident that antiphospholipid syndrome (APS plays a vital role in pregnancy failure in human being. Many underlying pathophysiology including venous thrombosis, thrombocytopenia and placental apoptosis have been demonstrated for the APS-mediated pregnancy loss. On the other hand, Tissue factor (TF remains considered as a crucial factor for pregnancy morbidity in women with APS globally. Hence, we hypothesize that TF and/or beta-2 glycoprotein and ndash; I (beta2GPI-induced TF might play an important role for the increased index of apoptosis in placenta, especially during early stages of fetal development. Further, this could represent as potentially preventable etiology of APS-mediated pregnancy loss in women. [Int J Res Med Sci 2016; 4(8.000: 3109-3113

  19. DNase I-hypersensitive sites and transcription factor-binding motifs within the mouse E beta meiotic recombination hot spot. (United States)

    Shenkar, R; Shen, M H; Arnheim, N


    The second intron of the E beta gene in the mouse major histocompatibility complex is the site of a meiotic recombination hot spot. We detected two DNase I-hypersensitive sites in this intron in meiotic cells isolated from mouse testes. One site appears to be constitutive and is found in other tissues regardless of whether or not they express the E beta gene. Near this hypersensitive site are potential binding motifs for H2TF1/KBF1, NF kappa B, and octamer transcription factors. Gel retardation studies with mouse lymphoma cell nuclear extracts confirmed that each of these motifs is capable of binding protein. The binding of transcription factors may contribute to the enhancement of recombination potential by altering chromatin structure and increasing the accessibility of the DNA to the recombination machinery.

  20. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Fukada

    Full Text Available BACKGROUND: Zinc (Zn is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS. The Slc39a13 knockout (Slc39a13-KO mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP and TGF-beta signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice. CONCLUSIONS/SIGNIFICANCE: Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-beta signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-beta signaling and connective tissue dysfunction.

  1. Transforming growth factor beta receptor II polymorphisms are associated with Kawasaki disease

    Directory of Open Access Journals (Sweden)

    Yu Mi Choi


    Full Text Available Purpose : Transforming growth factor beta receptor 2 (TGFBR2 is a tumor suppressor gene that plays a role in the differentiation of striated cells and remodeling of coronary arteries. Single nucleotide polymorphisms (SNPs of this gene are associated with Marfan syndrome and sudden death in patients with coronary artery disease. Cardiovascular remodeling and T cell activation of TGFBR2 gene suggest that the TGFBR2 gene SNPs are related to the pathogenesis of Kawasaki disease (KD and coronary artery lesion (CAL. Methods : The subjects were 105 patients with KD and 500 healthy adults as controls. Mean age of KD group was 32 months age and 26.6% of those had CAL. We selected TGFBR2 gene SNPs from serum and performed direct sequencing. Results : The sequences of the eleven SNPs in the TGFBR2 gene were compared between the KD group and controls. Three SNPs (rs1495592, rs6550004, rs795430 were associated with development of KD (P=0.019, P=0.026, P=0.016, respectively. One SNP (rs1495592 was associated with CAL in KD group (P=0.022. Conclusion : Eleven SNPs in TGFBR2 gene were identified at that time the genome wide association. But, with the change of the data base, only six SNPs remained associated with the TGFBR2 gene. One of the six SNPs (rs6550004 was associated with development of KD. One SNP associated with CAL (rs1495592 was disassociated from the TGFBR2 gene. The other five SNPs were not functionally identified, but these SNPs are notable because the data base is changing. Further studies involving larger group of patients with KD are needed.

  2. Post-transcriptional regulation of Transforming Growth Factor Beta-1 by microRNA-744.

    Directory of Open Access Journals (Sweden)

    John Martin

    Full Text Available Transforming Growth Factor Beta-1 (TGF-β1 is a pleiotropic cytokine that is of central importance in wound healing, inflammation, and in key pathological processes including cancer and progressive tissue fibrosis. TGF-β1 is post-transcriptionally regulated, but the underlying mechanisms remain incompletely defined. Previously, we have extensively delineated post-transcriptional regulation of TGF-β1 synthesis in the kidney, with evidence for relief of translational repression in proximal tubular cells in the context of diabetic nephropathy. In this study, we have investigated the role of the TGF-β1 3'Untranslated Region (3'UTR. Two different 3'UTR lengths have been reported for TGF-β1, of 543 and 137 nucleotides. Absolute quantification showed that, while both UTR lengths were detectable in various human cell types and in a broad range of tissues, the short form predominated in the kidney and elsewhere. Expression of both forms was up-regulated following auto-induction by TGF-β1, but the short:long UTR ratio remained constant. Incorporation of the short UTR into a luciferase reporter vector significantly reduced reporter protein synthesis without major effect on RNA amount, suggesting post-transcriptional inhibition. In silico approaches identified multiple binding sites for miR-744 located in the proximal TGF-β1 3'UTR. A screen in RNA from human tissues showed widespread miR-744 expression. miR-744 transfection inhibited endogenous TGF-β1 synthesis, while direct targeting of TGF-β1 was shown in separate experiments, in which miR-744 decreased TGF-β1 3'UTR reporter activity. This work identifies miR-744-directed post-transcriptional regulation of TGF-β1 which, given the pleiotropic nature of cellular responses to TGF-β1, is potentially widely significant.

  3. Gene polymorphisms of interleukin-10 and transforming growth factor beta in allergic rhinitis. (United States)

    Nasiri, R; Hirbod-Mobarakeh, A; Movahedi, M; Farhadi, E; Ansaripour, B; Amirzargar, A A; Rezaei, N


    Allergic rhinitis (AR) is a polygenic inflammatory disorder of the upper respiratory airway with an increasing prevalence worldwide. Interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β), as two cytokines with pleiotropic effects on both innate and adaptive immunity, play important roles in allergic responses. Therefore, this study was performed to evaluate the associations of five polymorphisms of IL-10 and TGF-β genes with AR. Ninety-eight patients with AR along with 140 healthy volunteers with no history of AR and with the same ethnicity of the patients were recruited in this study. Genotyping was done for three polymorphisms in promoter region of IL-10 gene (rs1800896, rs1800871, rs1800872), and two polymorphisms in the exonic region of TGF-β1 gene (rs1982037, rs1800471) using PCR sequence-specific-primers method. A allele and AA genotype in rs1800896 of IL-10 and TT genotype in rs1982037 in TGF-β were significantly less frequent in the patients than in controls. While the C allele and the CG genotype in rs1800471 in TGF-β1 were associated with a higher susceptibility to AR. C/C and T/C haplotypes (rs1982037, rs1800471) in TGF-β1 gene and A/C/A, A/T/C and G/C/A haplotypes (rs1800896, rs1800871, rs1800872) in IL-10 gene were found with higher frequencies in patients than controls. Patients with CC genotype in rs1800871 in Il-10 had significantly lower levels of IgE. We found that certain genetic variants in IL-10 and TGF-β polymorphisms were associated with susceptibility to AR as well as some clinical parameters in the patients with AR. Copyright © 2015 SEICAP. Published by Elsevier Espana. All rights reserved.

  4. Effect of transforming growth factor-beta1 on decorin expression and muscle morphology during chicken embryonic and posthatch growth and development. (United States)

    Li, X; Velleman, S G


    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation, as well as a regulator of extracellular matrix (ECM) production. Decorin, a member of the small leucine-rich ECM proteoglycans, binds to TGF-beta1 and modulates TGF-beta1-dependent cell growth stimulation or inhibition. The expression of decorin can be regulated by TGF-beta1 during muscle proliferation and differentiation. How TGF-beta1 affects decorin and muscle growth, however, has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on decorin expression and intracellular connective tissue development during skeletal muscle growth. Exogenous TGF-beta1 significantly decreased the number of myofibers in a given area at both 1 d and 6 wk posthatch. The TGF-beta1-treated muscle had a significant decrease in decorin mRNA expression at embryonic day (ED) 10, whereas protein amounts decreased at 17 ED and 1 d posthatch compared to the control muscle. Decorin was localized in both the endomysium and perimysium in the control pectoralis major muscle. Transforming growth factor-beta1 reduced decorin in both the endomysium and perimysium from 17 ED to 6 wk posthatch. Compared to the control muscle, the perimysium space in the pectoralis major muscle was dramatically decreased by TGF-beta1 during embryonic development through posthatch growth. Because decorin regulates collagen fibrillogenesis, a major component of the ECM, the reduction of decorin by TGF-beta1 treatment may cause the irregular formation of collagen fibrils, leading to the decrease in endomysium and perimysium space. The results from the current study suggest that the effect of TGF-beta1 on decorin expression and localization was likely associated with altered development of the perimysium and the regulation of muscle fiber development.

  5. Nerve growth factor signaling in prostate health and disease. (United States)

    Arrighi, Nicola; Bodei, Serena; Zani, Danilo; Simeone, Claudio; Cunico, Sergio Cosciani; Missale, Cristina; Spano, Pierfranco; Sigala, Sandra


    The prostate is one of the most abundant sources of nerve growth factor (NGF) in different species, including humans. NGF and its receptors are implicated in the control of prostate cell proliferation and apoptosis and it can either support or suppress cell growth. The co-expression of both NGF receptors, p75(NGFR) and tropomyosin-related kinase A (trkA), represents a crucial condition for the antiproliferative effect of NGF; indeed, p75(NGFR) is progressively lost during prostate tumorigenesis and its disappearance represents a malignancy marker of prostate adenocarcinoma (PCa). Interestingly, a dysregulation of NGF signal transduction was found in a number of human tumors. This review summarizes the current knowledge on the role of NGF and its receptors in prostate and in PCa. Conclusions bring to the hypothesis that the NGF network could be a candidate for future pharmacological manipulation in the PCa therapy: in particular the re-expression of p75(NTR) and/or the negative modulation of trkA could represent a target to induce apoptosis and to reduce proliferation and invasiveness of PCa.

  6. Control of yeast mating signal transduction by a mammalian. beta. sub 2 -adrenergic receptor and G sub s. alpha. subunit

    Energy Technology Data Exchange (ETDEWEB)

    King, K.; Caron, M.G.; Lefkowitz, R.J. (Duke Univ. Medical Center, Durham, NC (USA)); Dohlman, H.G.; Thorner, J. (Univ. of California, Berkeley (USA))


    To facilitate functional and mechanistic studies of receptor-G protein interactions by expression of the human {beta}{sub 2}-adrenergic receptor (h{beta}-AR) has been expressed in Saccharomyces cerevisiae. This was achieved by placing a modified h{beta}-AR gene under control of the galactose-inducible GAL1 promoter. After induction by galactose, functional h{beta}-AR was expressed at a concentration several hundred times as great as that found in any human tissue. As determined from competitive ligand binding experiments, h{beta}-AR expressed in yeast displayed characteristic affinities, specificity, and stereoselectivity. Partial activation of the yeast pheromone response pathway by {beta}-adrenergic receptor agonists was achieved in cells coexpressing h{beta}-AR and a mammalian G protein (G{sub s}) {alpha} subunit - demonstrating that these components can couple to each other and to downstream effectors when expressed in yeast. This in vivo reconstitution system provides a new approach for examining ligand binding and G protein coupling to cell surface receptors.

  7. Platelet-derived growth factor-DD targeting arrests pathological angiogenesis by modulating glycogen synthase kinase-3beta phosphorylation. (United States)

    Kumar, Anil; Hou, Xu; Lee, Chunsik; Li, Yang; Maminishkis, Arvydas; Tang, Zhongshu; Zhang, Fan; Langer, Harald F; Arjunan, Pachiappan; Dong, Lijin; Wu, Zhijian; Zhu, Linda Y; Wang, Lianchun; Min, Wang; Colosi, Peter; Chavakis, Triantafyllos; Li, Xuri


    Platelet-derived growth factor-DD (PDGF-DD) is a recently discovered member of the PDGF family. The role of PDGF-DD in pathological angiogenesis and the underlying cellular and molecular mechanisms remain largely unexplored. In this study, using different animal models, we showed that PDGF-DD expression was up-regulated during pathological angiogenesis, and inhibition of PDGF-DD suppressed both choroidal and retinal neovascularization. We also demonstrated a novel mechanism mediating the function of PDGF-DD. PDGF-DD induced glycogen synthase kinase-3beta (GSK3beta) Ser(9) phosphorylation and Tyr(216) dephosphorylation in vitro and in vivo, leading to increased cell survival. Consistently, GSK3beta activity was required for the antiangiogenic effect of PDGF-DD targeting. Moreover, PDGF-DD regulated the expression of GSK3beta and many other genes important for angiogenesis and apoptosis. Thus, we identified PDGF-DD as an important target gene for antiangiogenic therapy due to its pleiotropic effects on vascular and non-vascular cells. PDGF-DD inhibition may offer new therapeutic options to treat neovascular diseases.

  8. Genetic effects analysis of myeloid leukemia factor 2 and T cell receptor-beta on resistance to coccidiosis in chickens. (United States)

    Kim, E-S; Hong, Y H; Lillehoj, H S


    Associations between the parameters of resistance to coccidiosis and SNP in 3 candidate genes located on chromosome 1 [T cell receptor-beta (TCR-beta), myeloid leukemia factor 2 (MLF2), and lymphotactin] were determined. Single nucleotide polymorphisms were genotyped in 24 F1 generation and 290 F2 generation birds. Four SNP were identified in the lymphotactin gene, 12 were located in the TCR-beta gene, and 4 in the MLF2 gene. At various times after experimental infection of the F2 generation with Eimeria maxima, BW, fecal oocyst shedding, and biochemical parameters were measured as parameters of coccidiosis resistance. Single marker association test was applied to determine the associations between the 20 SNP and the parameters of coccidiosis resistance. The maximum additive genetic effect on disease resistance of an SNP in MLF2 was explained by BW (P = 0.0002). The SNP in MLF2 significantly associated with BW was also associated with fecal oocyst shedding (P = 0.001). Four SNP associated with oocyst shedding were found within the coding region of TCR-beta (P coccidiosis resistance in chickens.

  9. [Expression of elongation factor-1 alpha-A and beta-actin promoters in embryos of transgenic Medaka (Oryzias latipes)]. (United States)

    Long, Hua


    Two expression vectors with the promoter of either Medaka (Oryzias latipes) elongation factor gene or beta-actin gene were constructed based on pBluescript SK+. Both of them are linked with green-fluorescent protein (GFP) gene. And they are named as pB-EF and pB-BA, respectively. The microinjection experiments were conducted with fertilized Medaka eggs at one-cell stage. The expression of two vectors, pB-EF and pB-BA, was observed under stereo-fluorescence microscope. The detection results showed that both EF-1 alpha-A promoter and beta-actin promoter are strong. In the process of embryo development, the activity of beta-actin promoter became stronger while that of EF-1 alpha-A promoter weaker gradually. beta-actin promoter was but EF-1 alpha-A promoter distributed throughout fish body uniformly. The expression rate of two vectors, pB-EF and pB-BA, are 8.23% and 6.10%, respectively.

  10. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation. (United States)

    Zhao, Haotian; Yang, Tianyu; Madakashira, Bhavani P; Thiels, Cornelius A; Bechtle, Chad A; Garcia, Claudia M; Zhang, Huiming; Yu, Kai; Ornitz, David M; Beebe, David C; Robinson, Michael L


    The vertebrate lens provides an excellent model to study the mechanisms that regulate terminal differentiation. Although fibroblast growth factors (FGFs) are thought to be important for lens cell differentiation, it is unclear which FGF receptors mediate these processes during different stages of lens development. Deletion of three FGF receptors (Fgfr1-3) early in lens development demonstrated that expression of only a single allele of Fgfr2 or Fgfr3 was sufficient for grossly normal lens development, while mice possessing only a single Fgfr1 allele developed cataracts and microphthalmia. Profound defects were observed in lenses lacking all three Fgfrs. These included lack of fiber cell elongation, abnormal proliferation in prospective lens fiber cells, reduced expression of the cell cycle inhibitors p27(kip1) and p57(kip2), increased apoptosis and aberrant or reduced expression of Prox1, Pax6, c-Maf, E-cadherin and alpha-, beta- and gamma-crystallins. Therefore, while signaling by FGF receptors is essential for lens fiber differentiation, different FGF receptors function redundantly.

  11. Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics

    DEFF Research Database (Denmark)

    Akimov, Vyacheslav; Rigbolt, Kristoffer T G; Nielsen, Mogens M;


    ) for selectively decoding ubiquitination-driven processes involved in the regulation of cellular signaling networks. We applied this approach to characterize the temporal dynamics of ubiquitination events accompanying epidermal growth factor receptor (EGFR) signal transduction. We used recombinant UBDs derived...

  12. Beta-adrenergic receptor agonists induce the release of granulocyte chemotactic protein-2, oncostatin M, and vascular endothelial growth factor from macrophages

    NARCIS (Netherlands)

    Verhoeckx, K.C.; Doornbos, R.P.; Witkamp, R.F.; Greef, J. van der; Rodenburg, R.J.T.


    Vascular endothelial growth factor (VEGF), oncostatin M (OSM), and granulocyte chemotactic protein-2 (GCP-2/CXCL6) are up-regulated in U937 macrophages and peripheral blood macrophages exposed to LPS, beta-adrenergic receptor (beta2-AR) agonists (e.g. zilpaterol, and clenbuterol) and some other agen

  13. Transforming growth factor-beta 1 downregulates dexamethasone-induced tetranectin gene expression during the in vitro mineralization of the human osteoblastic cell line SV-HFO

    DEFF Research Database (Denmark)

    Iba, K; Sawada, N; Chiba, H


    treatment as evidenced by Northern blotting. When transforming growth factor-beta 1 (TGF-beta 1) was added together with dexamethasone to the SV-HFO cell cultures, the mineralization process was markedly suppressed and the expression of tetra nectin and alkaline phosphatase was downregulated in a dose...

  14. HLA-E: strong association with beta2-microglobulin and surface expression in the absence of HLA class I signal sequence-derived peptides. (United States)

    Lo Monaco, Elisa; Sibilio, Leonardo; Melucci, Elisa; Tremante, Elisa; Suchànek, Miloslav; Horejsi, Vaclav; Martayan, Aline; Giacomini, Patrizio


    The nonclassical class I HLA-E molecule folds in the presence of peptide ligands donated by the signal sequences of permissive class I HLA alleles, with the aid of TAP and tapasin. To identify HLA-E-specific Abs, four monoclonals of the previously described MEM series were screened by isoelectric focusing (IEF) blot and immunoprecipitation/IEF on >30 single-allele class I transfectants and HLA-homozygous B lymphoid cells coexpressing HLA-E and HLA-A, -B, -C, -F, or -G. Despite their HLA-E-restricted reactivity patterns (MEM-E/02 in IEF blot; MEM-E/07 and MEM-E/08 in immunoprecipitation), all of the MEM Abs unexpectedly reacted with beta(2)-microglobulin (beta(2)m)-free and denatured (but not beta(2)m-associated and folded) HLA-E H chains. Remarkably, other HLA-E-restricted Abs were also reactive with free H chains. Immunodepletion, in vitro assembly, flow cytometry, and three distinct surface-labeling methods, including a modified (conformation-independent) biotin-labeling assay, revealed the coexistence of HLA-E conformers with unusual and drastically antithetic features. MEM-reactive conformers were thermally unstable and poorly surface expressed, as expected, whereas beta(2)m-associated conformers were either unstable and weakly reactive with the prototypic conformational Ab W6/32, or exceptionally stable and strongly reactive with Abs to beta(2)m even in cells lacking permissive alleles (721.221), TAP (T2), or tapasin (721.220). Noncanonical, immature (endoglycosidase H-sensitive) HLA-E glycoforms were surface expressed in these cells, whereas mature glycoforms were exclusively expressed (and at much lower levels) in cells carrying permissive alleles. Thus, HLA-E is a good, and not a poor, beta(2)m assembler, and TAP/tapasin-assisted ligand donation is only one, and possibly not even the major, pathway leading to its stabilization and surface expression.

  15. Autotaxin-mediated lipid signaling intersects with LIF and BMP signaling to promote the naive pluripotency transcription factor program (United States)

    Kime, Cody; Sakaki-Yumoto, Masayo; Goodrich, Leeanne; Hayashi, Yohei; Sami, Salma; Derynck, Rik; Asahi, Michio; Panning, Barbara; Yamanaka, Shinya; Tomoda, Kiichiro


    Developmental signaling molecules are used for cell fate determination, and understanding how their combinatorial effects produce the variety of cell types in multicellular organisms is a key problem in biology. Here, we demonstrate that the combination of leukemia inhibitory factor (LIF), bone morphogenetic protein 4 (BMP4), lysophosphatidic acid (LPA), and ascorbic acid (AA) efficiently converts mouse primed pluripotent stem cells (PSCs) into naive PSCs. Signaling by the lipid LPA through its receptor LPAR1 and downstream effector Rho-associated protein kinase (ROCK) cooperated with LIF signaling to promote this conversion. BMP4, which also stimulates conversion to naive pluripotency, bypassed the need for exogenous LPA by increasing the activity of the extracellular LPA-producing enzyme autotaxin (ATX). We found that LIF and LPA-LPAR1 signaling affect the abundance of signal transducer and activator of transcription 3 (STAT3), which induces a previously unappreciated Kruppel-like factor (KLF)2-KLF4-PR domain 14 (PRDM14) transcription factor circuit key to establish naive pluripotency. AA also affects this transcription factor circuit by controlling PRDM14 expression. Thus, our study reveals that ATX-mediated autocrine lipid signaling promotes naive pluripotency by intersecting with LIF and BMP4 signaling. PMID:27738243

  16. beta-Tryptase up-regulates vascular endothelial growth factor expression via proteinase-activated receptor-2 and mitogen-activated protein kinase pathways in bone marrow stromal cells in acute myeloid leukemia. (United States)

    Yang, Xiu-Peng; Li, Yan; Wang, Yazhu; Wang, Yue; Wang, Pingping


    Tryptases are predominantly mast cell-specific serine proteases with pleiotropic biological activities. Recently, significant amounts of tryptases have been shown to be produced by myeloblasts in certain patients with acute myeloid leukemia (AML), but the function of secreted tryptases in pathological circumstances remains unknown. In this study, we investigated whether beta-tryptase affects the expression of vascular endothelial growth factor (VEGF) in bone marrow stromal cells (BMSCs) in AML. We detected the expression of proteinase-activated receptor-2 (PAR-2) on AML BMSCs and found that beta-tryptase significantly up-regulated VEGF mRNA and protein expression in a dose-dependent manner by real-time PCR, Western blot, and ELISA. Furthermore, beta-tryptase increased ERK1/2 and p38MAPK phosphorylation, and pretreatment with FLLSY-NH(2), PD98059, and SB230580 (PAR-2, ERK1/2, and p38MAPK inhibitors, respectively) inhibited the beta-tryptase-induced production of VEGF. These results suggest that beta-tryptase up-regulates VEGF production in AML BMSCs via the PAR-2, ERK1/2, and p38MAPK signaling pathways.

  17. Interferon (IFN)-beta induces apoptotic cell death in DHL-4 diffuse large B cell lymphoma cells through tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). (United States)

    Oehadian, Amaylia; Koide, Naoki; Mu, Mya Mya; Hassan, Ferdaus; Islam, Shamima; Yoshida, Tomoaki; Yokochi, Takashi


    The effect of interferon (IFN)-alpha, beta and gamma on the growth of DHL-4 diffuse large B cell lymphoma cells was studied. IFN-beta significantly inhibited the cell growth, and the effect was stronger than that of IFN-alpha. IFN-gamma did not inhibit the cell growth because of lack of IFN-gamma receptors. IFN-beta caused apoptotic cell death which was accompanied by DNA fragmentation, caspase 3 activation and annexin V binding. IFN-beta lead to the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA. Anti-TRAIL antibody significantly prevented IFN-beta-induced apoptosis. It was suggested that IFN-beta might cause apoptosis in DHL-4 cells through TRAIL.

  18. P-glycoprotein efflux and other factors limit brain amyloid beta reduction by beta-site amyloid precursor protein-cleaving enzyme 1 inhibitors in mice. (United States)

    Meredith, Jere E; Thompson, Lorin A; Toyn, Jeremy H; Marcin, Lawrence; Barten, Donna M; Marcinkeviciene, Jovita; Kopcho, Lisa; Kim, Young; Lin, Alan; Guss, Valerie; Burton, Catherine; Iben, Lawrence; Polson, Craig; Cantone, Joe; Ford, Michael; Drexler, Dieter; Fiedler, Tracey; Lentz, Kimberley A; Grace, James E; Kolb, Janet; Corsa, Jason; Pierdomenico, Maria; Jones, Kelli; Olson, Richard E; Macor, John E; Albright, Charles F


    Alzheimer's disease (AD) is a progressive neurodegenerative disease. Amyloid beta (Abeta) peptides are hypothesized to cause the initiation and progression of AD based on pathologic data from AD patients, genetic analysis of mutations that cause early onset forms of AD, and preclinical studies. Based on this hypothesis, beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) inhibitors are an attractive therapeutic approach for AD because cleavage of the APP by BACE1 is required to form Abeta. In this study, three potent BACE1 inhibitors are characterized. All three inhibitors decrease Abeta formation in cultured cells with IC(50) values less than 10 nM. Analysis of APP C-terminal fragments by immunoblotting and Abeta peptides by mass spectrometry showed that these inhibitors decreased Abeta by inhibiting BACE1. An assay for Abeta1-40 in mice was developed and used to show that these BACE1 inhibitors decreased plasma Abeta1-40, but not brain Abeta1-40, in wild-type mice. Because these BACE1 inhibitors were substrates for P-glycoprotein (P-gp), a member of the ATP-binding cassette superfamily of efflux transporters, these inhibitors were administered to P-gp knockout (KO) mice. These studies showed that all three BACE1 inhibitors decreased brain Abeta1-40 in P-gp KO mice, demonstrating that P-gp is a major limitation for development of BACE1 inhibitors to test the amyloid hypothesis. A comparison of plasma Abeta1-40 and brain Abeta1-40 dose responses for these three compounds revealed differences in relative ED(50) values, indicating that factors other than P-gp can also contribute to poor brain activity by BACE1 inhibitors.

  19. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis

    Directory of Open Access Journals (Sweden)

    Zuzanna Rzepka


    Full Text Available Melanins are natural pigments of skin, hair and eyes and can be classified into two main types: brown to black eumelanin and yellow to reddish-brown pheomelanin. Biosynthesis of melanins takes place in melanosomes, which are specialized cytoplasmic organelles of melanocytes - dendritic cells located in the basal layer of the epidermis, uveal tract of the eye, hair follicles, as well as in the inner ear, central nervous system and heart. Melanogenesis is a multistep process and begins with the conversion of amino acid L-tyrosine to DOPAquinone. The addition of cysteine or glutathione to DOPAquinone leads to the intermediates formation, followed by subsequent transformations and polymerization to the final product, pheomelanin. In the absence of thiol compounds DOPAquinone undergoes an intramolecular cyclization and oxidation to form DOPAchrome, which is then converted to 5,6-dihydroksyindole (DHI or 5,6-dihydroxyindole-2-carboxylic acid (DHICA. Eumelanin is formed by polymerization of DHI and DHICA and their quinones. Regulation of melanogenesis is achieved by physical and biochemical factors. The article presents the intracellular signaling pathways: cAMP/PKA/CREB/MITF cascade, MAP kinases cascade, PLC/DAG/PKCβ cascade and NO/cGMP/PKG cascade, which are involved in the regulation of expression and activity of the melanogenesis-related proteins by ultraviolet radiation and endogenous agents (cytokines, hormones. Activity of the key melanogenic enzyme, tyrosinase, is also affected by pH and temperature. Many pharmacologically active substances are able to inhibit or stimulate melanin biosynthesis, as evidenced by in vitro studies on cultured pigment cells.

  20. Release of transforming growth factor beta 1 and platelet derived growth factor type AB from canine platelet gels obtained by the tube method and activated with calcium salts


    RF Silva; GC Santana; FOP Leme; JU Carmona; CMF Rezende


    The objectives of this study were: 1) to measure the concentrations of transforming growth factor beta 1 (TGF-β1) and platelet-derived growth factor type AB (PDGF-AB) in plasma and platelet gel (PG) activated with calcium salts (gluconate or chloride) in dogs, and 2) to determine correlations between cell results and growth factors (GF) concentrations. Blood samples were collected from fourteen Brazilian Fila dogs. EDTA was used to obtain whole blood and plasma while ACD-A solution was used t...

  1. A beta strand lock exchange for signal transduction in TonB-dependent transducers on the basis of a common structural motif. (United States)

    Brillet, Karl; Journet, Laure; Célia, Hervé; Paulus, Laetitia; Stahl, Aude; Pattus, Franc; Cobessi, David


    Transport of molecules larger than 600 Da across the outer membrane involves TonB-dependent receptors and TonB-ExbB-ExbD of the inner membrane. The transport is energy consuming, and involves direct interactions between a short N-terminal sequence of receptor, called the TonB box, and TonB. We solved the structure of the ferric pyoverdine (Pvd-Fe) outer membrane receptor FpvA from Pseudomonas aeruginosa in its apo form. Structure analyses show that residues of the TonB box are in a beta strand which interacts through a mixed four-stranded beta sheet with the periplasmic signaling domain involved in interactions with an inner membrane sigma regulator. In this conformation, the TonB box cannot form a four-stranded beta sheet with TonB. The FhuA-TonB or BtuB-TonB structures show that the TonB-FpvA interactions require a conformational change which involves a beta strand lock-exchange mechanism. This mechanism is compatible with movements of the periplasmic domain deduced from crystallographic analyses of FpvA, FpvA-Pvd, and FpvA-Pvd-Fe.

  2. Characterization of beta-R1, a gene that is selectively induced by interferon beta (IFN-beta) compared with IFN-alpha. (United States)

    Rani, M R; Foster, G R; Leung, S; Leaman, D; Stark, G R; Ransohoff, R M


    We report preliminary characterization of a gene designated beta-R1, which is selectively expressed in response to interferon beta (IFN-beta) compared with IFN-alpha. In human astrocytoma cells, beta-R1 was induced to an equivalent extent by 10 IU/mL IFN-beta or 2500 IU/mL IFN-alpha2. To address the mechanism of this differential response, we analyzed induction of the beta-R1 gene in fibrosarcoma cells and derivative mutant cells lacking components required for signaling by type I IFNs. beta-R1 was readily induced by IFN-beta in the parental 2fTGH cell line, but not by recombinant IFN-alpha2, IFN-alpha Con1, or a mixture of IFN-alpha subtypes. IFN-alpha8 induced beta-R1 weakly. beta-R1 was not induced by IFN-beta in mutant cell lines U2A, U3A, U4A, and U6A, which lack, respectively, p48, STAT1, JAK1, and STAT2. U5A cells, which lack the Ifnar 2.2 component of the IFN-alpha and -beta receptor, also failed to express beta-R1. U1A cells are partially responsive to IFN-beta and IFN-alpha8 but lacked beta-R1 expression, indicating that TYK2 protein is essential for induction of this gene. Taken together, these results suggest that the expression of beta-R1 in response to type I IFN requires IFN-stimulated gene factor 3 plus an additional component, which is more efficiently formed on induction by IFN-beta compared with IFN-alpha.

  3. Targeting signaling factors for degradation, an emerging mechanism for TRAF functions


    Yang, Xiao-Dong; Sun, Shao-Cong


    Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well-recognized function of TRAF2 and TRAF3 in this aspect is to mediate ubiquitin-dependent degradation of NF-κB-inducing kinase (NIK), an action required for the control ...

  4. Distinct changes in pulmonary surfactant homeostasis in common beta-chain-and GM-CSF-deficient mice

    NARCIS (Netherlands)

    Reed, JA; Ikegami, M; Robb, L; Begley, CG; Ross, G; Whitsett, JA

    Pulmonary alveolar proteinosis (PAP) is caused by inactivation of either granulocyte-macrophage colony-stimulating factor (GMCSF) or GM receptor common beta-chain (beta(c)) genes in mice [GM(-/-), beta(c)(-/-)], demonstrating a critical role of GM-CSF signaling in surfactant homeostasis. To

  5. Beta-nerve growth factor promotes neurogenesis and angiogenesis during the repair of bone defects

    Institute of Scientific and Technical Information of China (English)

    Wei-hui Chen; Chuan-qing Mao; Li-li Zhuo; Joo L Ong


    We previously showed that the repair of bone defects is regulated by neural and vascular signals. In the present study, we examined the effect of topically appliedβ-nerve growth factor (β-NGF) on neurogenesis and angiogenesis in critical-sized bone defects iflled with collagen bone substi-tute. We created two symmetrical defects, 2.5 mm in diameter, on either side of the parietal bone of the skull, and filled them with bone substitute. Subcutaneously implanted osmotic pumps were used to infuse 10 μgβ-NGF in PBS (β-NGF + PBS) into the right-hand side defect, and PBS into the left (control) defect, over the 7 days following surgery. Immunohistochemical staining and hematoxylin-eosin staining were carried out at 3, 7, 14, 21 and 28 days postoperatively. On day 7, expression of β III-tubulin was lower on theβ-NGF + PBS side than on the control side, and that of neuroiflament 160 was greater. On day 14,β III-tubulin and protein gene product 9.5 were greater on theβ-NGF + PBS side than on the control side. Vascular endothelial growth factor expression was greater on the experimental side than the control side at 7 days, and vascular endothelial growth factor receptor 2 expression was elevated on days 14 and 21, but lower than control levels on day 28. However, no difference in the number of blood vessels was observed between sides. Our results indicate that topical application ofβ-NGF promoted neu-rogenesis, and may modulate angiogenesis by promoting nerve regeneration in collagen bone substitute-iflled defects.

  6. Role of interleukin-10 and transforming growth factor beta 1 in otitis media with effusion

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shou-qin; LI Jie; LIU Hua; ZHANG Quan-geng; WANG Yang; HAN De-min


    Background Otitis media with effusion (OME) is a disease with complicated pathogeneses which are not clearly known. Increasing interest has been focused on immunological cells, cytokines and their roles in chronic inflammatory states. This study was designed to disclose the existence and roles of interleukin-10 (IL-10) and transforming growth factor beta1 (TGF-β1) in the cause of OME in adults, and to investigate the probable role of Foxp3+CD4+CD25+ T cells in OME.Methods The concentrations of IL-10 and TGF-β1 in the middle ear effusions (MEEs) and plasmas of 36 adults (45 ears) with OME were measured by means of enzyme linked immunosorbent assay (ELISA). As contrast, the concentrations of IL-10 and TGF-β1 in the plasma of 30 normal volunteers were measured using the same method. Furthermore, the proportion of Foxp3+CD4+CD25+ T cells in CD4+ T cells of blood was tested by flow cytometry. Results (1) The concentrations of IL-10 in all MEEs and plasmas of the chronic OME patients were higher than those in patients with acute OME (both P 0.05). The concentration of IL-10 in MEEs had a strong correlation with the duration of the illness (r=0.547, P<0.01). The same correlation was also found between the concentration of TGF-β1 in MEEs and the times patients being treated (r=0.579, P <0.01). (3) The proportion of Foxp3+CD4+CD25+T/CD4+ T cells in the blood of chronic OME was not only significantly higher than that in the acute OME (P<0.01), but also higher than that in normal volunteers (P <0.01). In chronic OME, there was a correlation between the proportion of Foxp3+CD4+CD25+ T/CD4+ T cells in the blood and the concentration of IL-10 in the plasmas (r=0.602, P <0.05). Conclusions IL-10 and TGF-β1, as two important immunoregulatory mediators, participate in middle ear inflammatory response, especially in chronic course of OME in adults. Foxp3+CD4+CD25+ T cells may play some immunoregulatory roles in the course of this disease.

  7. Transforming Growth Factor-beta signal responding in hepatic stem-like cells

    Institute of Scientific and Technical Information of China (English)

    CUI Wei


    Objective To investigate the effects of TGF-β on the expressions and distribution of phosphorated Smad2/3 and Smad7 in hepatic stem-like cells. Methods Using immunogold transmission electron microscopy, we observed the expressions and distribution of phosphorated Smad2/3, and Smad7 before and after TGF-β1 (5 ng·mL-1) treatment for 4, 8, and 24 hours in hepatic stem-like cells (WB cells). In addition, we also detected the apoptosis status after TGF-β1 stimulation by transmission electron microscopy. Results TGF-β1 stimulation can result in expression increasing of phosphorated Smad2/3 in WB cells, and reach the peak at 8 h, especially in the nuclear. After treatment with TGF-β1 for 24 h, the nuclear expression of phosphorated Smad2/3 gradually decreased. Additionally, we found that TGF-β1 treatment also contributed to increasing in protein level and alteration in cellular distribution of Smad7 (translocation from the nucleus to the cytoplasm) in WB cells. Furthermore, we observed apoptotic body in WB cells after TGF-β1 treatment for 8 h. Conclusions These results indicate that TGF-β stimulation can alter the expression and cellular distribution of phosphorated Srnad2/3 and Smad7 which are its downstream molecular, suggesting hepatic stem-like cells own intact responding to TGF-β.

  8. The Influence of Stromal Transforming Growth Factor-Beta Receptor signaling on Mouse Mammary Neoplasia (United States)


    the stroma affects tumor development transgenic and wild type mice were given pituitary isografts , zinc water and either left untreated or treated...with 7, 12-dimethylbenz (a) anthracene (DMBA). Fifteen tumors developed in the wild type group on a full regiment (pituitary isograft , zinc and DMBA

  9. Transforming growth factor-beta induced by live or ultraviolet-inactivated equid herpes virus type-1 mediates immunosuppression in the horse. (United States)

    Charan, S; Palmer, K; Chester, P; Mire-Sluis, A R; Meager, A; Edington, N


    Up to 21 days after exposure to live or ultraviolet-inactivated equid herpesvirus type-1 (EHV-1) autologous serum from ponies caused an immunosuppressive effect if incorporated into T-cell proliferation assays to EHV-1. The suppressive factor in the sera of ponies also inhibited T-cell response to phytohaemagglutinin. Increased levels of circulating activated transforming growth factor-beta 1 (TGF-beta 1) were detected, and the suppressive activity of the serum could be reversed by antibody to TGF-beta 1. In a challenge experiment the ponies which exhibited circulating TGF-beta 1 activity succumbed to infection while the ones with similar magnitudes of T-cell responses, but no TGF-beta 1 activity, were protected. A definition of this immunosuppressive mechanism and its mode of induction must be central to the design of vaccines and to an understanding of the pathogenesis of EHV-1.

  10. Multiple factors contribute to the peripheral induction of cerebral beta-amyloidosis

    NARCIS (Netherlands)

    Eisele, Y.S.; Fritschi, S.K.; Hamaguchi, T.; Obermüller, U.; Füger, P.; Skodras, A.; Schäfer, C.; Odenthal, J.; Heikenwalder, M.; Staufenbiel, M.; Jucker, M.


    Deposition of aggregated amyloid-beta (Abeta) peptide in brain is an early event and hallmark pathology of Alzheimer's disease and cerebral Abeta angiopathy. Experimental evidence supports the concept that Abeta multimers can act as seeds and structurally corrupt other Abeta peptides by a

  11. Chronic effects of palmitate overload on nutrient-induced insulin secretion and autocrine signalling in pancreatic MIN6 beta cells. (United States)

    Watson, Maria L; Macrae, Katherine; Marley, Anna E; Hundal, Harinder S


    Sustained exposure of pancreatic β cells to an increase in saturated fatty acids induces pleiotropic effects on β-cell function, including a reduction in stimulus-induced insulin secretion. The objective of this study was to investigate the effects of chronic over supply of palmitate upon glucose- and amino acid-stimulated insulin secretion (GSIS and AASIS, respectively) and autocrine-dependent insulin signalling with particular focus on the importance of ceramide, ERK and CaMKII signalling. GSIS and AASIS were both stimulated by >7-fold resulting in autocrine-dependent activation of protein kinase B (PKB, also known as Akt). Insulin release was dependent upon nutrient-induced activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) as their pharmacological inhibition suppressed GSIS/AASIS significantly. Chronic (48 h, 0.4 mM) palmitate treatment blunted glucose/AA-induced activation of CaMKII and ERK and caused a concomitant reduction (~75%) in GSIS/AASIS and autocrine-dependent activation of PKB. This inhibition could not be attributed to enhanced mitochondrial fatty acid uptake/oxidation or ceramide synthesis, which were unaffected by palmitate. In contrast, diacylglycerol synthesis was elevated suggesting increased palmitate esterification rather than oxidation may contribute to impaired stimulus-secretion coupling. Consistent with this, 2-bromopalmitate, a non-oxidisable palmitate analogue, inhibited GSIS as effectively as palmitate. Our results exclude changes in ceramide content or mitochondrial fatty acid handling as factors initiating palmitate-induced defects in insulin release from MIN6 β cells, but suggest that reduced CaMKII and ERK activation associated with palmitate overload may contribute to impaired stimulus-induced insulin secretion.

  12. Chronic effects of palmitate overload on nutrient-induced insulin secretion and autocrine signalling in pancreatic MIN6 beta cells.

    Directory of Open Access Journals (Sweden)

    Maria L Watson

    Full Text Available BACKGROUND: Sustained exposure of pancreatic β cells to an increase in saturated fatty acids induces pleiotropic effects on β-cell function, including a reduction in stimulus-induced insulin secretion. The objective of this study was to investigate the effects of chronic over supply of palmitate upon glucose- and amino acid-stimulated insulin secretion (GSIS and AASIS, respectively and autocrine-dependent insulin signalling with particular focus on the importance of ceramide, ERK and CaMKII signalling. PRINCIPAL FINDINGS: GSIS and AASIS were both stimulated by >7-fold resulting in autocrine-dependent activation of protein kinase B (PKB, also known as Akt. Insulin release was dependent upon nutrient-induced activation of calcium/calmodulin-dependent protein kinase II (CaMKII and extracellular signal-regulated kinase (ERK as their pharmacological inhibition suppressed GSIS/AASIS significantly. Chronic (48 h, 0.4 mM palmitate treatment blunted glucose/AA-induced activation of CaMKII and ERK and caused a concomitant reduction (~75% in GSIS/AASIS and autocrine-dependent activation of PKB. This inhibition could not be attributed to enhanced mitochondrial fatty acid uptake/oxidation or ceramide synthesis, which were unaffected by palmitate. In contrast, diacylglycerol synthesis was elevated suggesting increased palmitate esterification rather than oxidation may contribute to impaired stimulus-secretion coupling. Consistent with this, 2-bromopalmitate, a non-oxidisable palmitate analogue, inhibited GSIS as effectively as palmitate. CONCLUSIONS: Our results exclude changes in ceramide content or mitochondrial fatty acid handling as factors initiating palmitate-induced defects in insulin release from MIN6 β cells, but suggest that reduced CaMKII and ERK activation associated with palmitate overload may contribute to impaired stimulus-induced insulin secretion.

  13. Evaluation of Mental Health and Related Factors Among Patients with Beta-Thalassemia Major in South East of Iran

    Directory of Open Access Journals (Sweden)

    Morteza Ashrafi


    Full Text Available Objective: Beta-thalassemia major (β-TM is a chronic, genetic and hematological disorder. Children and teenagers with chronic physical illnesses exemplified by thalassemia are vulnerable to emotional and behavioral problems. The aim of this study was to evaluate mental health and its related factors among young patients with beta-thalassemia major. Methods: In this cross-sectional observational descriptive-analytic study, we studied 164 patients suffering from Beta-thalassemia major with age range of 15-24 years who referred for treatment to Ali Ebn-e Abitaleb (AS University Hospital in Zahedan, a city in South East of Iran, during 2009- 2010. The demographic data and pattern of mental health were collected by standard general health questionnaire (GHQ-28.Data was analyzed using statistical software SPSS (version 17.0; Student t test and Chi-square (χ2 were used. Results: In this study, 96 (58.5% patients were male; the mean age of all patients was 18.78 ±2.28. Based on data analysis, 83 patients (50.8% suspected to have psychiatric disorders (58.8% of girls, 44.8% of boys. In addition, frequency of somatic symptoms, depression disorder, anxiety disorder and social dysfunction in all patients were 7.3%, 11.6%, 8.5% and 4.3% respectively. In illiterate patients, 70.4% suspected to have psychiatric disorder. Except for somatic disorder, other mental disorders were more frequent in girls. No significant association was found between mental state and gender, marital and literacy status and occupation. Conclusion : In this study, due to high prevalence of psychological disorders in young patients with Beta-thalassemia major, especially in girls, we suggest implementing further educational psychological programs to decrease the frequency of disorders. Moreover, conducting more quantitative and comprehensive researches is suggested to evaluate specific effective factors in psycho-social health.

  14. Signal and Noise scaling factors in digital holography

    CERN Document Server

    Lesaffre, Max; Atlan, Michael; Gross, Michel


    An experimental study on how reconstructed image signal and noise scale with acquisition and reconstruction parameters is proposed. Monte-carlo simulation is performed to emphasize that the measured noise is shot-noise.

  15. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol-Hee [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Department of Pharmacology, College of Medicine, Chosun University, Seosuk-do