WorldWideScience

Sample records for factor activator protein-1

  1. Tumor necrosis factor receptor-associated protein 1 improves hypoxia-impaired energy production in cardiomyocytes through increasing activity of cytochrome c oxidase subunit II.

    Science.gov (United States)

    Xiang, Fei; Ma, Si-Yuan; Zhang, Dong-Xia; Zhang, Qiong; Huang, Yue-Sheng

    2016-10-01

    Tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes against hypoxia, but the underlying mechanisms are not completely understood. In the present study, we used gain- and loss-of-function approaches to explore the effects of tumor necrosis factor receptor-associated protein 1 and cytochrome c oxidase subunit II on energy production in hypoxic cardiomyocytes. Hypoxia repressed ATP production in cultured cardiomyocytes, whereas overexpression of tumor necrosis factor receptor-associated protein 1 significantly improved ATP production. Conversely, knockdown of tumor necrosis factor receptor-associated protein 1 facilitated the hypoxia-induced decrease in ATP synthesis. Further investigation revealed that tumor necrosis factor receptor-associated protein 1 induced the expression and activity of cytochrome c oxidase subunit II, a component of cytochrome c oxidase that is important in mitochondrial respiratory chain function. Moreover, lentiviral-mediated overexpression of cytochrome c oxidase subunit II antagonized the decrease in ATP synthesis caused by knockdown of tumor necrosis factor receptor-associated protein 1, whereas knockdown of cytochrome c oxidase subunit II attenuated the increase in ATP synthesis caused by overexpression of tumor necrosis factor receptor-associated protein 1. In addition, inhibition of cytochrome c oxidase subunit II by a specific inhibitor sodium azide suppressed the ATP sy nthesis induced by overexpressed tumor necrosis factor receptor-associated protein 1. Hence, tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes from hypoxia at least partly via potentiation of energy generation, and cytochrome c oxidase subunit II is one of the downstream effectors that mediates the tumor necrosis factor receptor-associated protein 1-mediated energy generation program.

  2. Insulin-like growth factor binding protein-1 activates integrin-mediated intracellular signaling and migration in oligodendrocytes

    NARCIS (Netherlands)

    Chesik, Daniel; De Keyser, Jacques; Bron, Reinier; Fuhler, Gwenny M.

    2010-01-01

    P>In multiple sclerosis (MS), oligodendrocytes in lesions are lost, leaving damaged tissue virtually devoid of these myelin-producing cells. Our group has recently demonstrated enhanced expression of insulin-like growth factor (IGF) binding protein-1 (IGFBP-1) in oligodendrocytes (CNPase+) localized

  3. Hind Limb Unloading Model Alters Nuclear Factor kappa B and Activator Protein-1 Signaling in Mouse Brain

    Science.gov (United States)

    Ramesh, Govindarajan; Vani, Vani; Renard, Renard; Vera, Vera; Wilosn, Wilosn; Ramesh, Govindarajan

    Microgravity induces inflammatory response and also modulates immune functions, which may increase oxidative stress. Exposure to the microgravity environment induces adverse neurological effects. However, there is little research exploring the etiology of neurological effects of exposure to this environment. To explore this area we evaluated changes in Nuclear Factor kappa B, Activator Protein 1, MAPP kinase and N terminal c-Jun kinase in mouse brain exposed to a simulated microgravity environment using the hindlimb unloading model. BALB/c male mice were randomly assigned to hindlimb unloading group (n=12) and control group (n=12) to simulate a microgravity environment, for 7 days. Changes observed in NF-κB, AP- 1 DNA binding, MAPKK and N terminal c-Jun kinase were measured using electrophoretic mobility shift assay (EMSA) and western blot analysis and compared to unexposed brain regions. Hindlimb unloading exposed mice showed significant increases in generated NF-κB, AP-1, MAPKK and Kinase in all regions of the brain exposed to hindlimb unloading as compared to the control brain regions. Results suggest that exposure to simulated microgravity can induce expression of certain transcription factors and protein kinases. This work was supported by funding from NASA NCC 9-165. 504b030414000600080000002100828abc13fa0000001c020000130000005b436f6e74656e745f54797065735d2e78

  4. Porins from Salmonella enterica Serovar Typhimurium Activate the Transcription Factors Activating Protein 1 and NF-κB through the Raf-1-Mitogen-Activated Protein Kinase Cascade

    Science.gov (United States)

    Galdiero, Massimiliano; Vitiello, Mariateresa; Sanzari, Emma; D’Isanto, Marina; Tortora, Annalisa; Longanella, Anna; Galdiero, Stefania

    2002-01-01

    In this study we examined the ability of Salmonella enterica serovar Typhimurium porins to activate activating protein 1 (AP-1) and nuclear factor κB (NF-κB) through the mitogen-activated protein kinase (MAPK) cascade, and we identified the AP-1-induced protein subunits. Our results demonstrate that these enzymes may participate in cell signaling pathways leading to AP-1 and NF-κB activation following porin stimulation of cells. Raf-1 was phosphorylated in response to the treatment of U937 cells with porins; moreover, the porin-mediated increase in Raf-1 phosphorylation is accompanied by the phosphorylation of MAPK kinase 1/2 (MEK1/2), p38, extracellular-signal-regulated kinase 1/2, and c-Jun N-terminal kinase. We used three different inhibitors of phosphorylation pathways: 2′-amino-3′-methoxyflavone (PD-098059), a selective inhibitor of MEK1 activator and the MAPK cascade; 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), a specific inhibitor of the p38 pathway; and 7β-acetoxy-1α,6β,9α-trihydroxy-8,13-epoxy-labd-14-en-11-one (forskolin), an inhibitor at the level of Raf-1 kinase. PD-098059 pretreatment of cells decreases AP-1 and NF-κB activation by lipopolysaccharide (LPS) but not by porins, and SB203580 pretreatment of cells decreases mainly AP-1 and NF-κB activation by porins; in contrast, forskolin pretreatment of cells does not affect AP-1 and NF-κB activation following either porin or LPS stimulation. Our data suggest that the p38 signaling pathway mainly regulates AP-1 and NF-κB activation in cells treated with S. enterica serovar Typhimurium porins. Antibody electrophoretic mobility shift assays showed that JunD and c-Fos binding is found in cells treated with porins, in cells treated with LPS, and in unstimulated cells. However, by 30 to 60 min of stimulation, a different complex including c-Jun appears in cells treated with porins or LPS, while the Fra-2 subunit is present only after porin stimulation

  5. Factor H and factor H-related protein 1 bind to human neutrophils via complement receptor 3, mediate attachment to Candida albicans, and enhance neutrophil antimicrobial activity.

    Science.gov (United States)

    Losse, Josephine; Zipfel, Peter F; Józsi, Mihály

    2010-01-15

    The host complement system plays an important role in protection against infections. Several human-pathogenic microbes were shown to acquire host complement regulators, such as factor H (CFH), that downregulate complement activation at the microbial surface and protect the pathogens from the opsonic and lytic effects of complement. Because CFH can also bind to host cells, we addressed the role of CFH and CFH-related proteins as adhesion ligands in host-pathogen interactions. We show that the CFH family proteins CFH, CFH-like protein 1 (CFHL1), CFH-related protein (CFHR) 1, and CFHR4 long isoform bind to human neutrophil granulocytes and to the opportunistic human-pathogenic yeast Candida albicans. Two major binding sites, one within the N-terminus and one in the C-terminus of CFH, were found to mediate binding to neutrophils. Complement receptor 3 (CD11b/CD18; alpha(M)beta2 integrin) was identified as the major cellular receptor on neutrophils for CFH, CFHL1, and CFHR1, but not for CFHR4 long isoform. CFH and CFHR1 supported cell migration. Furthermore, CFH, CFHL1, and CFHR1 increased attachment of neutrophils to C. albicans. Adhesion of neutrophils to plasma-opsonized yeasts was reduced when CFH binding was inhibited by specific Abs or when using CFH-depleted plasma. Yeast-bound CFH and CFHR1 enhanced the generation of reactive oxygen species and the release of the antimicrobial protein lactoferrin by human neutrophils, and resulted in a more efficient killing of the pathogen. Thus, CFH and CFHR1, when bound on the surface of C. albicans, enhance antimicrobial activity of human neutrophils.

  6. Distal Interleukin-1β (IL-1β) Response Element of Human Matrix Metalloproteinase-13 (MMP-13) Binds Activator Protein 1 (AP-1) Transcription Factors and Regulates Gene Expression*

    Science.gov (United States)

    Schmucker, Adam C.; Wright, Jason B.; Cole, Michael D.; Brinckerhoff, Constance E.

    2012-01-01

    The collagenase matrix metalloproteinase-13 (MMP-13) plays an important role in the destruction of cartilage in arthritic joints. MMP-13 expression is strongly up-regulated in arthritis, largely because of stimulation by inflammatory cytokines such as IL-1β. Treatment of chondrocytes with IL-1β induces transcription of MMP-13 in vitro. IL-1β signaling converges upon the activator protein-1 transcription factors, which have been shown to be required for IL-1β-induced MMP-13 gene expression. Using chromatin immunoprecipitation (ChIP), we detected activator protein-1 binding within an evolutionarily conserved DNA sequence ∼20 kb 5′ relative to the MMP-13 transcription start site (TSS). Also using ChIP, we detected histone modifications and binding of RNA polymerase II within this conserved region, all of which are consistent with transcriptional activation. Chromosome conformation capture indicates that chromosome looping brings this region in close proximity with the MMP-13 TSS. Finally, a luciferase reporter construct driven by a component of the conserved region demonstrated an expression pattern similar to that of endogenous MMP-13. These data suggest that a conserved region at 20 kb upstream from the MMP-13 TSS includes a distal transcriptional response element of MMP-13, which contributes to MMP-13 gene expression. PMID:22102411

  7. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan [Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3 (Canada); Babiuk, Lorne A. [University of Alberta, Edmonton, Alberta (Canada); Liu, Qiang, E-mail: qiang.liu@usask.ca [Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3 (Canada)

    2010-11-19

    Research highlights: {yields} A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. {yields} HCV-3a NS5A increases mature SREBP-1c protein level. {yields} HCV-3a NS5A activates SREBP-1c transcription. {yields} Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. {yields} Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  8. Interference of fisetin with targets of the nuclear factor-κB signal transduction pathway activated by Epstein-Barr virus encoded latent membrane protein 1.

    Science.gov (United States)

    Li, Rong; Liang, Hong-Ying; Li, Ming-Yong; Lin, Chun-Yan; Shi, Meng-Jie; Zhang, Xiu-Juan

    2014-01-01

    Fisetin is an effective compound extracted from lacquer which has been used in the treatment of various diseases. Preliminary data indicate that it also exerts specific anti-cancer effects. However, the manner in which fisetin regulates cancer growth remains unknown. In this study, we elucidated interference of fisetin with targets of the nuclear factorκB signal transduction pathway activated by Epstein-Barr virus encoding latent membrane protein 1 (LMP1)in nasopharyngeal carcinoma (NPC) cells, Results showed that fisetin inhibited the survival rate of CNE-LMP1 cells and NF-κB activation caused by LMP1. Fisetin also suppressed nuclear translocation of NF-κB (p65) and IκBα phosphorylation, while inhibiting CyclinD1, all key targets of the NF-κB signal transduction pathway. It was suggested that interference effects of fisetin with signal transduction activated by LMP1 encoded by the Epstein-Barr virus may play an important role in its anticancer potential.

  9. Increased MMP-9 expression and activity by aortic smooth muscle cells after nitric oxide synthase inhibition is associated with increased nuclear factor-kappaB and activator protein-1 activity.

    Science.gov (United States)

    Knipp, Brian S; Ailawadi, Gorav; Ford, John W; Peterson, David A; Eagleton, Matthew J; Roelofs, Karen J; Hannawa, Kevin K; Deogracias, Michael P; Ji, Baoan; Logsdon, Craig; Graziano, Kathleen D; Simeone, Diane M; Thompson, Robert W; Henke, Peter K; Stanley, James C; Upchurch, Gilbert R

    2004-01-01

    To determine the mechanism underlying increased expression and activity of matrix metalloproteinase 9 (MMP-9) by rat aortic smooth muscle cells (RA-SMC) after inhibition of inducible nitric oxide synthase (iNOS). Treatment of interleukin-1beta-stimulated RA-SMC with aminoguanidine led to an increase of 96% in MMP-9 activity (P = 0.003) by gelatin zymography, a 40% increase in pro-MMP-9 protein (P = 0.018) by Western blot, and a 155% increase in MMP-9 mRNA (P = 0.06) by reverse transcription polymerase chain reaction. Aminoguanidine also caused a 26% decrease in cytosolic IkappaB levels (P = 0.014) by Western blot, as well as a 97% increase in nuclear factor-kappaB binding and a 216% increase in activator protein-1 binding as measured by electrophoretic mobility shift assay. No significant changes were noted in MMP-2 or TIMP-1 expression, protein levels, or activity after aminoguanidine administration. MMP-9 expression and activity is increased in cytokine stimulated RA-SMCs after iNOS inhibition, coincident with activation of the nuclear factor-kappaB and activator protein-1 pathways. We speculate that local derangements in iNOS may favor MMP-9-dependent vessel wall damage in vivo via an inflammatory cascade mechanism.

  10. First molluscan transcription factor activator protein-1 (Ap-1) member from disk abalone and its expression profiling against immune challenge and tissue injury.

    Science.gov (United States)

    De Zoysa, Mahanama; Nikapitiya, Chamilani; Lee, Youngdeuk; Lee, Sukkyoung; Oh, Chulhong; Whang, Ilson; Yeo, Sang-Yeop; Choi, Cheol Young; Lee, Jehee

    2010-12-01

    The regulation of transcriptional activation is an essential and critical point in gene expression. In this study, we describe a novel transcription factor activator protein-1 (Ap-1) gene from disk abalone Haliotis discus discus (AbAp-1) for the first time in mollusk. It was identified by homology screening of an abalone normalized cDNA library. The cloned AbAp-1 consists of a 945 bp coding region that encodes a putative protein containing 315 amino acids. The AbAp-1 gene is composed of a characteristic Jun transcription factor domain and a highly conserved basic leucine zipper (bZIP) signature similar to known Ap-1 genes. The AbAp-1 shares 46, 43 and, 40% amino acid identities with fish (Takifugu rubripes), human and insect (Ixodes scapularis) Ap-1, respectively. Quantitative real time RT-PCR analysis confirmed that AbAp-1 gene expression is constitutive in all selected tissues. AbAp-1 was upregulated in gills after bacteria (Vibrio alginolyticus, Vibrio parahemolyticus and Lysteria monocytogenes) challenge; and, upregulated in hemocytes and gills by viral hemorrhagic septicemia virus (VHSV) challenge. Shell damage and tissue injury also increased the transcriptional level of Ap-1 in mantle together with other transcription factors (NF-kB, LITAF) and pro-inflammatory TNF-α. All results considered, identification and gene expression data demonstrate that abalone Ap-1 is an important regulator in innate immune response against bacteria and virus, as well as in the inflammatory response during tissue injury. In addition, stimulation of Ap-1 under different external stimuli could be useful to understand the Ap-1 biology and its downstream target genes, especially in abalone-like mollusks.

  11. Characterization of human constitutive photomorphogenesis protein 1, a RING finger ubiquitin ligase that interacts with Jun transcription factors and modulates their transcriptional activity.

    Science.gov (United States)

    Bianchi, Elisabetta; Denti, Simona; Catena, Raffaella; Rossetti, Grazisa; Polo, Simona; Gasparian, Sona; Putignano, Stella; Rogge, Lars; Pardi, Ruggero

    2003-05-30

    RING finger proteins have been implicated in many fundamental cellular processes, including the control of gene expression. A key regulator of light-dependent development in Arabidopsis thaliana is the constitutive photomorphogenesis protein 1 (atCOP1), a RING finger protein that plays an essential role in translating light/dark signals into specific changes in gene transcription. atCOP1 binds the basic leucine zipper factor HY5 and suppresses its transcriptional activity through a yet undefined mechanism that results in HY5 degradation in response to darkness. Furthermore, the pleiotropic phenotype of atCOP1 mutants indicates that atCOP1 may be a central regulator of several transcriptional pathways. Here we report the cloning and characterization of the human orthologue of atCOP1. Human COP1 (huCOP1) distributes both to the cytoplasm and the nucleus of cells and shows a striking degree of sequence conservation with atCOP1, suggesting the possibility of a functional conservation as well. In co-immunoprecipitation assays huCOP1 specifically binds basic leucine zipper factors of the Jun family. As a functional consequence of this interaction, expression of huCOP1 in mammalian cells down-regulates c-Jun-dependent transcription and the expression of the AP-1 target genes, urokinase and matrix metalloproteinase 1. The RING domain of huCOP1 displays ubiquitin ligase activity in an autoubiquitination assay in vitro; however, suppression of AP-1-dependent transcription by huCOP1 occurs in the absence of changes in c-Jun protein levels, suggesting that this inhibitory effect is independent of c-Jun degradation. Our findings indicate that huCOP1 is a novel regulator of AP-1-dependent transcription sharing the important properties of Arabidopsis COP1 in the control of gene expression.

  12. Human recombinant macrophage inflammatory protein-1 alpha and -beta and monocyte chemotactic and activating factor utilize common and unique receptors on human monocytes.

    Science.gov (United States)

    Wang, J M; Sherry, B; Fivash, M J; Kelvin, D J; Oppenheim, J J

    1993-04-01

    The human macrophage inflammatory proteins-1 alpha and -beta (MIP-1 alpha and -beta), which are also known as LD78 and ACT2, respectively, are distinct but highly related members of the chemoattractant cytokine (chemokine) family. rMIP-1 alpha and -beta labeled with 125I specifically bind to human peripheral blood monocytes, the monocytic cell line THP-1, peripheral blood T cells, and the YT cell line. Steady state binding experiments revealed approximately 3000 high affinity binding sites/cell for MIP-1 alpha on human monocytes and on THP-1 cells, with Kd values of 383 pM and 450 pM, respectively. Human MIP-1 alpha and -beta had nearly identical affinities for the binding sites and each competed equally well for binding. Human monocyte chemotactic and activating factor (MCAF), a member of the same chemokine family, consistently displaced about 25% of human MIP-1 alpha and -beta binding on monocytes but not on YT cells, which did not bind MCAF. On the other hand, human rMIP-1 alpha and -beta partially inhibited binding of radiolabeled MCAF to monocytes. Both MIP-1 alpha and -beta were chemotactic for human monocytes. Preincubation of monocytes with human rMIP-1 alpha or -beta markedly reduced cell migration towards the other cytokine, whereas preincubation with human rMCAF only partially desensitized the monocyte chemotaxis response to human rMIP-1 alpha or -beta. These data suggest the existence of three subtypes of receptors, i.e., one unique receptor shared by MIP-1 alpha and -beta, a second unique receptor for MCAF, and a third species that recognizes both MCAF and MIP-1 peptides.

  13. Ketamine inhibits tumor necrosis factor-alpha and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation.

    Science.gov (United States)

    Wu, Gone-Jhe; Chen, Ta-Liang; Ueng, Yune-Fang; Chen, Ruei-Ming

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-alpha (TNF-alpha) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 microM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 microM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-alpha and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-alpha and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 microM) significantly inhibited LPS-induced TNF-alpha and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-alpha and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-alpha and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through

  14. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells

    Science.gov (United States)

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B.

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT.

  15. Activation of the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2) pathway through covalent modification of the 2-alkenal group of aliphatic electrophiles in Coriandrum sativum L.

    Science.gov (United States)

    Abiko, Yumi; Mizokawa, Mai; Kumagai, Yoshito

    2014-11-12

    Phytochemicals able to activate the transcription factor NF-E2-related factor 2 (Nrf2) were isolated from an extract of Coriandrum sativum L. (C. sativum) leaves by preparative octadecyl silica column chromatography. Ultraperformance liquid chromatography and liquid chromatography-tandem mass spectrometry analysis of the isolated components after derivatization with 2-diphenylacetyl-1,3-inandione-1-hydrazone and experiments with HepG2 cells revealed that (E)-2-alkenals with different carbon numbers play a role in Nrf2 activation in these cells. Such Nrf2 activation appears to be attributable to S-alkylation of Kelch-like ECH-associated protein 1 (Keap1), the negative regulator for Nrf2, as determined by a biotin-PEAC5-maleimide assay. Interestingly, (E)-2-butenal caused Keap1 modification and Nrf2 activation, whereas butanal did not. These results suggest that (E)-2-alkenals with an α,β-unsaturated aldehyde moiety, which is a common substituent in phytochemicals isolated from C. sativum leaves, activate the Keap1/Nrf2 pathway associated with cellular protection.

  16. Functional interaction of hepatic nuclear factor-4 and peroxisome proliferator-activated receptor-gamma coactivator 1alpha in CYP7A1 regulation is inhibited by a key lipogenic activator, sterol regulatory element-binding protein-1c.

    Science.gov (United States)

    Ponugoti, Bhaskar; Fang, Sungsoon; Kemper, Jongsook Kim

    2007-11-01

    Insulin inhibits transcription of cholesterol 7alpha-hydroxylase (Cyp7a1), a key gene in bile acid synthesis, and the hepatic nuclear factor-4 (HNF-4) site in the promoter was identified as a negative insulin response sequence. Using a fasting/feeding protocol in mice and insulin treatment in HepG2 cells, we explored the inhibition mechanisms. Expression of sterol regulatory element-binding protein-1c (SREBP-1c), an insulin-induced lipogenic factor, inversely correlated with Cyp7a1 expression in mouse liver. Interaction of HNF-4 with its coactivator, peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), was observed in livers of fasted mice and was reduced after feeding. Conversely, HNF-4 interaction with SREBP-1c was increased after feeding. In vitro studies suggested that SREBP-1c competed with PGC-1alpha for direct interaction with the AF2 domain of HNF-4. Reporter assays showed that SREBP-1c, but not of a SREBP-1c mutant lacking the HNF-4 interacting domain, inhibited HNF-4/PGC-1alpha transactivation of Cyp7a1. SREBP-1c also inhibited PGC-1alpha-coactivation of estrogen receptor, constitutive androstane receptor, pregnane X receptor, and farnesoid X receptor, implying inhibition of HNF-4 by SREBP-1c could extend to other nuclear receptors. In chromatin immunoprecipitation studies, HNF-4 binding to the promoter was not altered, but PGC-1alpha was dissociated, SREBP-1c and histone deacetylase-2 (HDAC2) were recruited, and acetylation of histone H3 was decreased upon feeding. Adenovirus-mediated expression of a SREBP-1c dominant-negative mutant, which blocks the interaction of SREBP-1c and HNF-4, partially but significantly reversed the inhibition of Cyp7a1 after feeding. Our data show that SREBP-1c functions as a non-DNA-binding inhibitor and mediates, in part, suppression of Cyp7a1 by blocking functional interaction of HNF-4 and PGC-1alpha. This mechanism may be relevant to known repression of many other HNF-4 target genes upon

  17. Comparative analysis of oncogenic properties and nuclear factor-kappaB activity of latent membrane protein 1 natural variants from Hodgkin's lymphoma's Reed-Sternberg cells and normal B-lymphocytes.

    Science.gov (United States)

    Faumont, Nathalie; Chanut, Aurélie; Benard, Alan; Cogne, Nadine; Delsol, Georges; Feuillard, Jean; Meggetto, Fabienne

    2009-03-01

    In Epstein-Barr virus-associated Hodgkin's lymphomas, neoplastic Reed-Sternberg cells and surrounding non-tumor B-cells contain different variants of the LMP1-BNLF1 oncogene. In this study, we raised the question of functional properties of latent membrane protein 1 (LMP1) natural variants from both Reed-Sternberg and non-tumor B-cells. Twelve LMP1 natural variants from Reed-Sternberg cells, non-tumor B-cells of Hodgkin's lymphomas and from B-cells of benign reactive lymph nodes were cloned, sequenced and stably transfected in murine recombinant interleukin-3-dependent Ba/F3 cells to search for relationships between LMP1 cellular origin and oncogenic properties as well as nuclear factor-kappaB activation, and apoptosis protection. LMP1 variants of Reed-Sternberg cell origin were often associated with increased mutation rate and with recurrent genetic events, such as del15bp associated with S to N replacement at codon 309, and four substitutions I85L, F106Y, I122L, and M129I. Oncogenic potential (growth factor-independence plus clonogenicity) was consistently associated with LMP1 variants from Reed-Sternberg cells, but inconstantly for LMP1-variants from non-tumor B-cells. Analysis of LMP1 variants from both normal B-cells and Reed-Sternberg cells indicates that protection against apoptosis through activation of nuclear factor-kappaB - whatever the cellular origin of LMP1 - was maintained intact, regardless of the mutational pattern. Taken together, our results demonstrate that preserved nuclear factor-kappaB activity and protection against apoptosis would be the minimal prerequisites for all LMP1 natural variants from both normal and tumor cells in Hodgkin's lymphomas, and that oncogenic potential would constitute an additional feature for LMP1 natural variants in Reed-Sternberg cells.

  18. 4-hydroxy-2, 3-nonenal activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Kazuhiro Kikuta; Atsushi Masamune; Masahiro Satoh; Noriaki Suzuki; Tooru Shimosegawa

    2004-01-01

    AIM: Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis,where oxidative stress is thought to play a key role. 4-hydroxy2,3-nonenal (HNE) is generated endogenously during the process of lipid peroxidation, and has been accepted as a mediator of oxidative stress. The aim of this study was to clarify the effects of HNE on the activation of signal transduction pathways and cellular functions in PSCs.METHODS: PSCs were isolated from the pancreas of male Wistar rats after perfusion with collagenase P, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. PSCs were treated with physiologically relevant and non-cytotoxic concentrations (up to 5 μmol/L)of HNE. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay.Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. Cell proliferation was assessed by measuring the incorporation of 5-bromo-2'-deoxyuridine. Production of type Ⅰ collagen and monocyte chemoattractant protein-1was determined by enzyme-linked immunosorbent assay.The effect of HNE on the transformation of freshly isolated PSCs in culture was also assessed.RESULTS: HNE activated activator protein-1, but not nuclear factor κB. In addition, HNE activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. HNE increased type Ⅰ collagen production through the activation of p38 MAP kinase and c-Jun N-terminal kinase. HNE did not alter the proliferation,or monocyte chemoattractant protein-1 production. HNE did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype.CONCLUSION: Specific activation of these signal transduction pathways and altered cell functions such as collagen production by HNE may play a role in the pathogenesis of pancreatic

  19. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: A possible role in atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Hseu, You-Cheng [Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan (China); Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, TX 77030 (United States); Senthil Kumar, K.J. [Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan (China); Chen, Chih-Sheng; Cho, Hsin-Ju; Lin, Shu-Wei; Shen, Pei-Chun [Institute of Nutrition, China Medical University, Taichung 40402, Taiwan (China); Lin, Cheng-Wen [Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan (China); Lu, Fung-Jou [Institute of Medicine, Chun Shan Medical University, Taichung 40201, Taiwan (China); Yang, Hsin-Ling, E-mail: hlyang@mail.cmu.edu.tw [Institute of Nutrition, China Medical University, Taichung 40402, Taiwan (China); Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, TX 77030 (United States)

    2014-01-15

    Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25–200 μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE{sub 2} production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease. - Highlights: • Humic acid (HA) induce pro-inflammatory cytokines and mediators in macrophages. • HA-induced inflammation is mediated by ROS and NF-κB/AP-1 signaling pathways. • The inflammatory potential of HA correlated with activation of Nrf2/HO-1 genes. • HA exposure to mice increased pro-inflammatory cytokines production in vivo. • HA may be one of the main causes of early

  20. HTLV-1 Tax upregulates early growth response protein 1 through nuclear factor-κB signaling.

    Science.gov (United States)

    Huang, Qingsong; Niu, Zhiguo; Han, Jingxian; Liu, Xihong; Lv, Zhuangwei; Li, Huanhuan; Yuan, Lixiang; Li, Xiangping; Sun, Shuming; Wang, Hui; Huang, Xinxiang

    2017-08-01

    Human T cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that causes adult T cell leukemia (ATL) in susceptible individuals. The HTLV-1-encoded oncoprotein Tax induces persistent activation of the nuclear factor-κB (NF-κB) pathway. Early growth response protein 1 (EGR1) is overexpressed in HTLV-1-infected T cell lines and ATL cells. Here, we showed that both Tax expression and HTLV-1 infection promoted EGR1 overexpression. Loss of the NF-κB binding site in the EGR1 promotor or inhibition of NF-κB activation reduced Tax-induced EGR1 upregulation. Tax mutants unable to activate NF-κB induced only slight EGR1 upregulation as compared with wild-type Tax, confirming NF-κB pathway involvement in EGR1 regulation. Tax also directly interacted with the EGR1 protein and increased endogenous EGR1 stability. Elevated EGR1 in turn promoted p65 nuclear translocation and increased NF-κB activation. These results demonstrate a positive feedback loop between EGR1 expression and NF-κB activation in HTLV-1-infected and Tax-expressing cells. Both NF-κB activation and Tax-induced EGR1 stability upregulated EGR1, which in turn enhanced constitutive NF-κB activation and facilitated ATL progression in HTLV-1-infected cells. These findings suggest EGR1 may be an effective anti-ATL therapeutic target.

  1. Ketamine inhibits transcription factors activator protein 1 and nuclear factor-kappaB, interleukin-8 production, as well as CD11b and CD16 expression: studies in human leukocytes and leukocytic cell lines.

    NARCIS (Netherlands)

    Welters, I.D.; Hafer, G.; Menzebach, A.; Muhling, J.; Neuhauser, C.; Browning, P.; Goumon, Y.

    2010-01-01

    BACKGROUND: Recent data indicate that ketamine exerts antiinflammatory actions. However, little is known about the signaling mechanisms involved in ketamine-induced immune modulation. In this study, we investigated the effects of ketamine on lipopolysaccharide-induced activation of transcription

  2. Ketamine inhibits transcription factors activator protein 1 and nuclear factor-kappaB, interleukin-8 production, as well as CD11b and CD16 expression: studies in human leukocytes and leukocytic cell lines.

    NARCIS (Netherlands)

    Welters, I.D.; Hafer, G.; Menzebach, A.; Muhling, J.; Neuhauser, C.; Browning, P.; Goumon, Y.

    2010-01-01

    BACKGROUND: Recent data indicate that ketamine exerts antiinflammatory actions. However, little is known about the signaling mechanisms involved in ketamine-induced immune modulation. In this study, we investigated the effects of ketamine on lipopolysaccharide-induced activation of transcription fac

  3. The activating protein 1 transcription factor basic leucine zipper transcription factor, ATF-like (BATF), regulates lymphocyte- and mast cell-driven immune responses in the setting of allergic asthma.

    Science.gov (United States)

    Übel, Caroline; Sopel, Nina; Graser, Anna; Hildner, Kai; Reinhardt, Cornelia; Zimmermann, Theodor; Rieker, Ralf Joachim; Maier, Anja; Neurath, Markus F; Murphy, Kenneth M; Finotto, Susetta

    2014-01-01

    Mice without the basic leucine zipper transcription factor, ATF-like (BATF) gene (Batf(-/-)) lack TH17 and follicular helper T cells, which demonstrates that Batf is a transcription factor important for T- and B-cell differentiation. In this study we examined whether BATF expression would influence allergic asthma. In a cohort of preschool control children and children with asthma, we analyzed BATF mRNA expression using real-time PCR in PBMCs. In a murine model of allergic asthma, we analyzed differences in this allergic disease between wild-type, Batf transgenic, and Batf(-/-) mice. In the absence of corticosteroid treatment, children with recurrent asthma have a significant increase in BATF mRNA expression in their PBMCs. Batf(-/-) mice display a significant reduction in the pathophysiologic responses seen in asthmatic wild-type littermates. Moreover, we discovered a decrease in IL-3 production and IL-3-dependent mast cell development in Batf(-/-) mice. By contrast, IFN-γ was induced in lung CD4(+) and CD8(+) T cells. Intranasal delivery of anti-IFN-γ antibodies induced airway hyperresponsiveness and inflammation in wild-type but not in Batf(-/-) mice. Transgenic overexpression of Batf under the control of the CD2 promoter/enhancer augmented lung inflammation and IgE levels in the setting of experimental asthma. BATF is increased in non-steroid-treated asthmatic children. Targeting BATF expression resulted in amelioration of the pathophysiologic responses seen in children with allergic asthma, and BATF has emerged as a novel target for antiasthma interventions. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  4. Epicatechin induces NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells.

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Martín, María Angeles; Haegeman, Guy; Goya, Luis; Bravo, Laura; Ramos, Sonia

    2010-01-01

    The dietary flavonoid epicatechin has been reported to exhibit a wide range of biological activities. The objective of the present study was to investigate the time-dependent regulation by epicatechin on the activity of the main transcription factors (NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor (Nrf2)) related to antioxidant defence and survival and proliferation pathways in HepG2 cells. Treatment of cells with 10 microm-epicatechin induced the NF-kappaB pathway in a time-dependent manner characterised by increased levels of IkappaB kinase (IKK) and phosphorylated inhibitor of kappaB subunit-alpha (p-IkappaBalpha) and proteolytic degradation of IkappaB, which was consistent with an up-regulation of the NF-kappaB-binding activity. Time-dependent activation of the AP-1 pathway, in concert with enhanced c-Jun nuclear levels and induction of Nrf2 translocation and phosphorylation were also demonstrated. Additionally, epicatechin-induced NF-kappaB and Nrf2 were connected to reactive oxygen species intracellular levels and to the activation of cell survival and proliferation pathways, being phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) associated to Nrf2 modulation and ERK to NF-kappaB induction. These data suggest that the epicatechin-induced survival effect occurs by the induction of redox-sensitive transcription factors through a tight regulation of survival and proliferation pathways.

  5. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1).

    Science.gov (United States)

    Bresciani, Alberto; Missineo, Antonino; Gallo, Mariana; Cerretani, Mauro; Fezzardi, Paola; Tomei, Licia; Cicero, Daniel Oscar; Altamura, Sergio; Santoprete, Alessia; Ingenito, Raffaele; Bianchi, Elisabetta; Pacifici, Robert; Dominguez, Celia; Munoz-Sanjuan, Ignacio; Harper, Steven; Toledo-Sherman, Leticia; Park, Larry C

    2017-10-01

    Mechanisms that activate innate antioxidant responses, as a way to mitigate oxidative stress at the site of action, hold much therapeutic potential in diseases, such as Parkinson's disease, Alzheimer's disease and Huntington's disease, where the use of antioxidants as monotherapy has not yielded positive results. The nuclear factor NRF2 is a transcription factor whose activity upregulates the expression of cell detoxifying enzymes in response to oxidative stress. NRF2 levels are modulated by KEAP1, a sensor of oxidative stress. KEAP1 binds NRF2 and facilitates its ubiquitination and subsequent degradation. Recently, compounds that reversibly disrupt the NRF2-KEAP1 interaction have been described, opening the field to a new era of safer NRF2 activators. This paper describes a set of new, robust and informative biochemical assays that enable the selection and optimization of non-covalent KEAP1 binders. These include a time-resolved fluorescence resonance energy transfer (TR-FRET) primary assay with high modularity and robustness, a surface plasmon resonance (SPR) based KEAP1 direct binding assay that enables the quantification and analysis of full kinetic binding parameters and finally a (1)H-(15)N heteronuclear single quantum coherence (HSQC) NMR assay suited to study the interaction surface of KEAP1 with residue-specific information to validate the interaction of ligands in the KEAP1 binding site. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse.

    Science.gov (United States)

    Baixauli, Francesc; Martín-Cófreces, Noa B; Morlino, Giulia; Carrasco, Yolanda R; Calabia-Linares, Carmen; Veiga, Esteban; Serrador, Juan M; Sánchez-Madrid, Francisco

    2011-04-06

    During antigen-specific T-cell activation, mitochondria mobilize towards the vicinity of the immune synapse. We show here that the mitochondrial fission factor dynamin-related protein 1 (Drp1) docks at mitochondria, regulating their positioning and activity near the actin-rich ring of the peripheral supramolecular activation cluster (pSMAC) of the immune synapse. Mitochondrial redistribution in response to T-cell receptor engagement was abolished by Drp1 silencing, expression of the phosphomimetic mutant Drp1S637D and the Drp1-specific inhibitor mdivi-1. Moreover, Drp1 knockdown enhanced mitochondrial depolarization and T-cell receptor signal strength, but decreased myosin phosphorylation, ATP production and T-cell receptor assembly at the central supramolecular activation cluster (cSMAC). Our results indicate that Drp1-dependent mitochondrial positioning and activity controls T-cell activation by fuelling central supramolecular activation cluster assembly at the immune synapse.

  7. Activator protein 1 promotes the transcriptional activation of IRAK-M.

    Science.gov (United States)

    Jin, Peipei; Bo, Lulong; Liu, Yongjian; Lu, Wenbin; Lin, Shengwei; Bian, Jinjun; Deng, Xiaoming

    2016-10-01

    Interleukin-1 receptor-associated kinase M (IRAK-M) is a well-known negative regulator for Toll-like receptor signaling, which can regulate immune homeostasis and tolerance in a number of pathological settings. However, the mechanism for IRAK-M regulation at transcriptional level remains largely unknown. In this study, a 1.4kb upstream sequence starting from the major IRAK-M transcriptional start site was cloned into luciferase reporter vector pGL3-basic to construct the full-length IRAK-M promoter. Luciferase reporter plasmids harboring the full-length and the deletion mutants of IRAK-M were transfected into 293T and A549 cells, and their relative luciferase activity was measured. The results demonstrated that activator protein 1(AP-1) cis-element plays a crucial role in IRAK-M constitutive gene transcription. Silencing of c-Fos and/or c-Jun expression suppressed the IRAK-M promoter activity as well as its mRNA and protein expressions. As a specific inhibitor for AP-1 activation, SP600125 also significantly suppressed the basal transcriptional activity of IRAK-M, the binding activity of c-Fos/c-Jun with IRAK-M promoter, and IRAK-M protein expression. Taken together, the result of this study highlights the importance of AP-1 in IRAK-M transcription, which offers more information on the role of IRAK-M in infectious and non-infectious diseases.

  8. Adiponectin stimulates Wnt inhibitory factor-1 expression through epigenetic regulations involving the transcription factor specificity protein 1.

    Science.gov (United States)

    Liu, Jing; Lam, Janice B B; Chow, Kim H M; Xu, Aimin; Lam, Karen S L; Moon, Randall T; Wang, Yu

    2008-11-01

    Adiponectin (ADN) is an adipokine possessing growth inhibitory activities against various types of cancer cells. Our previous results demonstrated that ADN could impede Wnt/beta-catenin-signaling pathways in MDA-MB-231 human breast carcinoma cells [Wang,Y. et al. (2006) Adiponectin modulates the glycogen synthase kinase-3 beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res., 66, 11462-11470]. Here, we extended our studies to elucidate the effects of ADN on regulating the expressions of Wnt inhibitory factor-1 (WIF1), a Wnt antagonist frequently silenced in human breast tumors. Our results showed that ADN time dependently stimulated WIF1 gene and protein expressions in MDA-MB-231 cells. Overexpression of WIF1 exerted similar inhibitory effects to those of ADN on cell proliferations, nuclear beta-catenin activities, cyclin D1 expressions and serum-induced phosphorylations of Akt and glycogen synthase kinase-3 beta. Blockage of WIF1 activities significantly attenuated the suppressive effects of ADN on MDA-MB-231 cell growth. Furthermore, our in vivo studies showed that both supplementation of recombinant ADN and adenovirus-mediated overexpression of this adipokine substantially enhanced WIF1 expressions in MDA-MB-231 tumors implanted in nude mice. More interestingly, we found that ADN could alleviate methylation of CpG islands located within the proximal promoter region of WIF1, possibly involving the specificity protein 1 (Sp1) transcription factor and its downstream target DNA methyltransferase 1 (DNMT1). Upon ADN treatment, the protein levels of both Sp1 and DNMT1 were significantly decreased. Using silencing RNA approaches, we confirmed that downregulation of Sp1 resulted in an increased expression of WIF1 and decreased methylation of WIF1 promoter. Taken together, these data suggest that ADN might elicit its antitumor activities at least partially through promoting WIF1 expressions.

  9. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria

    OpenAIRE

    Shabalina, Irina G.; Kalinovich, Anastasia V.; Cannon, Barbara; Nedergaard, Jan

    2015-01-01

    The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse b...

  10. Curcumin inhibits srebp-2 expression in activated hepatic stellate cells in vitro by reducing the activity of specificity protein-1.

    Science.gov (United States)

    Kang, Qiaohua; Chen, Anping

    2009-12-01

    Elevated levels of cholesterol/low-density lipoprotein (LDL) are a risk factor for the development of nonalcoholic steatohepatitis and its associated hepatic fibrosis. However, underlying mechanisms remain elusive. We previously reported that curcumin induced gene expression of peroxisome proliferator-activated receptor (PPAR)-gamma and stimulated its activity, leading to the inhibition of the activation of hepatic stellate cells (HSCs), the major effector cells during hepatic fibrogenesis. We recently showed that curcumin suppressed gene expression of LDL receptor in activated HSCs in vitro by repressing gene expression of the transcription factor sterol regulatory element binding protein-2 (SREBP-2), leading to the reduction in the level of intracellular cholesterol in HSCs and to the attenuation of the stimulatory effects of LDL on HSCs activation. The current study aimed at exploring molecular mechanisms by which curcumin inhibits srebp-2 expression in HSCs. Promoter deletion assays, mutagenesis assays, and EMSAs localize a specificity protein-1 (SP-1) binding GC-box in the srebp-2 promoter, which is responsible for enhancing the promoter activity and responding to curcumin in HSCs. Curcumin suppresses gene expression of SP-1 and reduces its trans-activation activity, which are mediated by the activation of PPARgamma. The inhibitory effect of curcumin on SP-1 binding to the GC-box is confirmed by chromatin immuno-precipitation. In summary, our results demonstrate that curcumin inhibits srebp-2 expression in cultured HSCs by activating PPARgamma and reducing the SP-1 activity, leading to the repression of ldlr expression. These results provide novel insights into molecular mechanisms by which curcumin inhibits LDL-induced HSC activation.

  11. Serum concentrations of free and total insulin-like growth factor-I, IGF binding proteins -1 and -3 and IGFBP-3 protease activity in boys with normal or precocious puberty

    DEFF Research Database (Denmark)

    Juul, A; Flyvbjerg, Allan; Frystyk, Jan

    1996-01-01

    Circulating IGF-I and IGF binding protein-3 (IGFBP-3) levels both increase in puberty where growth velocity is high. The amount of free IGF-I is dependent on the IGF-I level and on the concentrations of the specific IGFBPs. Furthermore, IGFBP-3 proteolysis regulates the bioavailability of IGF......-I. However, the concentration of free IGF-I and possible IGFBP-3 proteolytic activity in puberty has not previously been studied....

  12. Tumor necrosis factor-α-induced protein 1 and immunity to hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    Marie C Lin; Nikki P Lee; Ning Zheng; Pai-Hao Yang; Oscar G Wong; Hsiang-Fu Kung; Chee-Kin Hui; John M Luk; George Ka-Kit Lau

    2005-01-01

    AIM: To compare the gene expression profile in a pair of HBV-infected twins.METHODS: The gene expression profile was compared in a pair of HBV-infected twins.RESULTS: The twins displayed different disease outcomes. One acquired natural immunity against HBV,whereas the other became a chronic HBV carrier. Eightyeight and forty-six genes were found to be up- or downregulated in their PBMCs, respectively. Tumor necrosis factor-alpha-induced protein 1 (TNF-αIP1) that expressed at a higher level in the HBV-immune twins was identified and four pairs of siblings with HBV immunity by RTPCR. However, upon HBV core antigen stimulation,TNF-αIP1 was downregulated in PBMCs from subjects with immunity, whereas it was slightly upregulated in HBV carriers. Bioinformatics analysis revealed a K+channel tetramerization domain in TNF-αIP1 that shares a significant homology with some human, mouse, and C elegan proteins.CONCLUSION: TNF-αIP1 may play a role in the innate immunity against HBV.

  13. [Nonstructural protein 1 of tick-borne encephalitis virus activates the expression of immunoproteasome subunits].

    Science.gov (United States)

    Kuzmenko, Y V; Starodubova, E S; Karganova, G G; Timofeev, A V; Karpov, V L

    2016-01-01

    The interaction of viral proteins with host cell components plays an important role in antiviral immune response. One of the key steps of antiviral defense is the formation of immunoproteasomes. The effect of nonstructural protein 1 (NS1) of tick-borne encephalitis virus on the immunoproteasome formation was studied. It was shown that cell expression of NS1 does not reduce the efficacy of the immunoproteasome generation in response to interferon-γ stimulation and even increases the content of the immunoproteasome subunits without the interferon-γ treatment. Thus, NS1 of tick-borne encephalitis virus activates, rather than blocks the mechanisms of immune defense in the cell.

  14. Ribonuclease, deoxyribonuclease, and antiviral activity of Escherichia coli-expressed Bougainvillea xbuttiana antiviral protein 1.

    Science.gov (United States)

    Choudhary, N L; Yadav, O P; Lodha, M L

    2008-03-01

    A full-length cDNA encoding ribosome-inactivating/antiviral protein from the leaves of Bougainvillea xbuttiana was recently isolated. The coding region of cDNA was cloned and expressed in Escherichia coli, and the protein product was designated as BBAP1 (Bougainvillea xbuttiana antiviral protein 1). BBAP1 showed ribonuclease activity against Torula yeast RNA. It also exhibited depurination activity against supercoiled pBlueScript SK+ plasmid DNA in a concentration dependent manner, and was found to convert nicked circular DNA into linear form only at higher concentration. On bioassay, BBAP1 exhibited antiviral activity against sunnhemp rosette virus infecting Cyamopsis tetragonoloba leaves in which 95% inhibition of local lesion formation was observed.

  15. PTIP associated protein 1, PA1, is an independent prognostic factor for lymphnode negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Takashi Takeshita

    Full Text Available Pax transactivation domain interacting protein (PTIP associated protein 1, PA1, was a newly found protein participating in the modulation of transactivity of nuclear receptor super family members such as estrogen receptor (ER, androgen receptor (AR and glucocorticoid receptor (GR. Breast cancer is one of the most life threatening diseases for women and has tight association with estrogen and ER. This study was performed to understand the function of PA1 in breast cancer. The expression of PA1 had been evaluated in a total of 344 primary invasive breast cancer samples and examined the relationship with clinical output, relapse free survival (RFS, breast cancer-specific survival (BCSS. PA1 expression was observed in both nucleus and cytoplasm, however, appeared mainly in nuclear. PA1 nuclear expression was correlated with postmenopausal (P = 0.0097, smaller tumor size (P = 0.0025, negative Ki67 (P = 0.02, positive AR (P = 0.049 and positive ERβ (P = 0.0020. Kaplan-Meier analysis demonstrated PA1 nuclear positive cases seemed to have a longer survival than negative ones for RFS (P = 0.023 but not for BCSS (P = 0.23. In the Cox hazards model, PA1 nuclear protein expression proved to be a significant prognostic univariate parameter for RFS (P = 0.03, but not for BCSS (P = 0.20. In addition, for those patients without lymphnode metastasis PA1 was found to be an independent prognostic factor for RFS (P = 0.025, which was verified by univariate and multivariate analyses. These investigations suggested PA1 expression could be a potential prognostic indicator for RFS in breast cancer.

  16. Activation of farnesoid X receptor downregulates monocyte chemoattractant protein-1 in murine macrophage.

    Science.gov (United States)

    Li, Liangpeng; Zhang, Qian; Peng, Jiahe; Jiang, Chanjui; Zhang, Yan; Shen, Lili; Dong, Jinyu; Wang, Yongchao; Jiang, Yu

    2015-11-27

    Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, which plays important roles in bile acids/lipid homeostasis and inflammation. Monocyte chemoattractant protein-1 (MCP-1) contributes to macrophage infiltration into body tissues during inflammation. Here we investigated whether FXR can regulate MCP-1 expression in murine macrophage. FXR activation down regulate MCP-1 mRNA and protein levels in ANA-1 and Raw264.7 cells. Luciferase reporter assay, Gel shift and Chromatin immunoprecipitation assays have revealed that the activated FXR bind to the FXR element located in -738 bp ∼  -723 bp in MCP-1 promoter. These results suggested that FXR may serve as a novel target for regulating MCP-1 levels for the inflammation related diseases therapies.

  17. Vascular endothelial growth factor induces multidrug resistance-associated protein 1 overexpression through phosphatidylinositol-3-kinase/protein kinase B signaling pathway and transcription factor specificity protein 1 in BGC823 cell line

    Institute of Scientific and Technical Information of China (English)

    Juan Li; Xiaojun Wu; Jinling Gong; Jing Yang; Jiayan Leng; Qiaoyun Chen; Wenlin Xu

    2013-01-01

    Multidrug resistance (MDR) is one of the most important causes of chemotherapy failure and carcinoma recurrence.But the roles of the MDR-associated protein MRP1 in MDR remain poorly understood.Vascular endothelial growth factor (VEGF),one of the most active and specific vascular growth factors,plays a significant role in proliferation,differentiation,and metastasis of cancers.To explore the effect of VEGF on the expression of MRP1,we used recombinant human VEGF to stimulate K562 and BGC-823 cell lines.Quantitative real-time polymerase chain reaction and western blot analysis showed that the expression of MRP1 at both mRNA and protein levels was increased.3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide results also showed that VEGF significantly enhanced the ICs0 of the cells treated with adriamycin.To explore the underlying regulatory mechanisms,we constructed MRP1 promoter and the luciferase reporter gene recombinant vector.The luciferase reporter gene assay showed that the activity of the MRP1 promoter was markedly increased by VEGF stimulation,while LY294002,an inhibitor of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway,reduced this effect.Transcription factor specificity protein 1 (SP1) binding site mutation partially blocked the up-regulation of MRP1 promoter activity by VEGF.In summary,our results demonstrated that VEGF enhanced the expression of MRP1,and the PI3K/Akt signaling pathway and SP1 may be involved in this modulation.

  18. Interaction of Tumor Necrosis Factor Receptor-associated Factors with the Latent Membrane Protein 1 Is Essential for Activation of NF-κB%EB病毒潜伏膜蛋白1通过结合TRAFs调控NF-κB

    Institute of Scientific and Technical Information of China (English)

    王承兴; 李晓艳; 顾焕华; 邓锡云; 曹亚

    2001-01-01

    为了探讨EB病毒潜伏膜蛋白1(LMP1)的致瘤机制,对鼻咽癌中LMP1激活重要 的核转录因子NF-κB机制进行了研究.首先,采用免疫共沉淀-蛋白质印迹在稳定表达LMP1 的鼻咽癌细胞系HNE2-LMP1中证实LMP1与TRAF1,2,3结合形成免疫共沉淀复合物,进一步以 野生型LMP1及其三种突变体的鼻咽癌细胞系LMP1(野生型,wt)、HNE2-LMP1 del187~3 51(CTAR1缺失型)、HNE2-LMP1(1~231)(CTAR2缺失型)、HNE2-LMP1(1~187)(羧基端胞浆 区缺失型)、HNE2-pSG5(空白载体型)为材料,结合NF-κB报道基因质粒(pGL2-NF-κB -luc)的荧光素酶活性表达分析NF-κB的活性,证实:较之母细胞, 野生型LMP1活化NF- κB达13.8倍, LMP1(1~187)几乎不活化NF-κB,LMP1(1~231)活化NF-κB达4.9倍, L MP1(del187~351)活化NF-κB达9.1倍;TRAF1过表达升高LMP1(wt)及LMP1(1~231)介导的 NF-κB活性,而对LMP1(del 187~351)活化NF-κB无影响;TRAF3过表达或TRAF3负显性 突变体抑制LMP1(wt)及LMP1(1~231)介导的NF-κB活性,而不影响LMP1(del 187~351)活 化NF-κB; TRAF2过表达升高LMP1(wt)、LMP1 (1~231)及LMP1(del 187~351)介导的NF-κB活性.这些结果表明:鼻咽癌中LMP1通过TRAF1、TRAF2或TRAF3调控NF-κB,TRAF1 和TRAF3主要通过CTAR1发挥作用,TRAF2的作用主要是通过CTAR1和CTAR2介导的.%The Epstein-Barr virus latent membrane protein 1 (LMP1) oncopro tein causes multiple cellular changes, including activation of the NF-κB trans cription factor. To elucidate its possible mechanism, the interaction between LM P1 and the tumor necrosis factor receptor associated factor (TRAF) molecules was detected by the immunoprecipitation-Western blotting assay. Results showed tha t LMP1 was co-precipitated with TRAF1,2,3 in the LMP1-HNE2 cell line. In the m eantime, κB reporter gene analysis revealed that over expression of TRAF1 or TR AF2 augmented LMP1-mediated NF-κB activation from LMP1, suprisingly, overexpr ession of

  19. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Hammer, Niels A; Nielsen, Jacob

    2004-01-01

    Insulin-like growth factor II mRNA-binding protein 1 (IMP1) belongs to a family of RNA-binding proteins implicated in mRNA localization, turnover, and translational control. Mouse IMP1 is expressed during early development, and an increase in expression occurs around embryonic day 12.5 (E12.5). T...

  20. Potential Role of Vascular Endothelial Growth Factor, Interleukin-8 and Monocyte Chemoattractant Protein-1 in Periodontal Diseases

    Directory of Open Access Journals (Sweden)

    En Lee

    2003-08-01

    Full Text Available Host-mediated immunoinflammatory pathways activated by bacteria lead to destruction of the periodontal connective tissues and alveolar bone. The objective of this study was to elucidate the activation of the inflammatory processes in periodontal disease by quantitative assessment of cytokines and periodontopathogens. Gingival crevicular fluids (GCF and subgingival plaque samples were collected from patients with chronic periodontitis and gingivitis and from periodontally healthy sites. Vascular endothelial growth factor (VEGF, monocyte chemoattractant protein-1 (MCP-1, and interleukin 8 (IL-8 in GCF were analyzed by enzyme-linked immunosorbent assay. Periodontopathogens, including Bacteroides forsythus, Campylobacter rectus, Porphyromonas gingivalis and Prevotella intermedia, were analyzed by immunofluorescence and dark-field microscopy. There was significantly more VEGF and IL-8 in chronic periodontitis and gingivitis sites than in periodontally healthy sites. There were significant positive correlations between the concentrations and total amounts of VEGF and IL-8 in chronic periodontitis and gingivitis sites, and between the levels of periodontopathogens and the total amounts of VEGF, MCP-1 and IL-8. These data indicate that inflammatory processes induced by periodontopathogens and the activation of certain cytokines (VEGF, MCP-1, IL-8 in periodontal diseases may be relevant to host-mediated destruction in chronic periodontitis.

  1. Quantitative Proteomics Identifies Serum Response Factor Binding Protein 1 as a Host Factor for Hepatitis C Virus Entry

    Directory of Open Access Journals (Sweden)

    Gisa Gerold

    2015-08-01

    Full Text Available Hepatitis C virus (HCV enters human hepatocytes through a multistep mechanism involving, among other host proteins, the virus receptor CD81. How CD81 governs HCV entry is poorly characterized, and CD81 protein interactions after virus binding remain elusive. We have developed a quantitative proteomics protocol to identify HCV-triggered CD81 interactions and found 26 dynamic binding partners. At least six of these proteins promote HCV infection, as indicated by RNAi. We further characterized serum response factor binding protein 1 (SRFBP1, which is recruited to CD81 during HCV uptake and supports HCV infection in hepatoma cells and primary human hepatocytes. SRFBP1 facilitates host cell penetration by all seven HCV genotypes, but not of vesicular stomatitis virus and human coronavirus. Thus, SRFBP1 is an HCV-specific, pan-genotypic host entry factor. These results demonstrate the use of quantitative proteomics to elucidate pathogen entry and underscore the importance of host protein-protein interactions during HCV invasion.

  2. Bryostatin-1 stimulates the transcription of cyclooxygenase-2: evidence for an activator protein-1-dependent mechanism.

    Science.gov (United States)

    De Lorenzo, Mariana S; Yamaguchi, Kentaro; Subbaramaiah, Kotha; Dannenberg, Andrew J

    2003-10-15

    Bryostatin-1 (bryostatin) is a macrocyclic lactone derived from Bugula neritina, a marine bryozoan. On the basis of the strength of in vitro and animal studies, bryostatin is being investigated as a possible treatment for a variety of human malignancies. Severe myalgias are a common dose-limiting side effect. Because cyclooxygenase-2 (COX-2)-derived prostaglandins can cause pain, we investigated whether bryostatin induced COX-2. Bryostatin (1-10 nM) induced COX-2 mRNA, COX-2 protein, and prostaglandin biosynthesis. These effects were observed in macrophages as well as in a series of human cancer cell lines. Transient transfections localized the stimulatory effects of bryostatin to the cyclic AMP response element of the COX-2 promoter. Electrophoretic mobility shift assays and supershift experiments revealed a marked increase in the binding of activator protein-1 (AP-1)(c-Jun/c-Fos) to the cyclic AMP response element of the COX-2 promoter. Pharmacological and transient transfection studies indicated that bryostatin stimulated COX-2 transcription via the protein kinase C-->mitogen-activated protein kinase-->AP-1 pathway. All-trans-retinoic acid, a prototypic AP-1 antagonist, blocked bryostatin-mediated induction of COX-2. Taken together, these results suggest that bryostatin-mediated induction of COX-2 can help to explain the myalgias that are commonly associated with treatment. Moreover, it will be worthwhile to evaluate whether the addition of a selective COX-2 inhibitor can increase the antitumor activity of bryostatin.

  3. Urinary monocyte chemoattractant protein-1 as a biomarker of lupus nephritis activity in children.

    Science.gov (United States)

    Ghobrial, Emad E; El Hamshary, Azza A; Mohamed, Ashraf G; Abd El Raheim, Yomna A; Talaat, Ahmed A

    2015-01-01

    Systemic lupus erythematosus (SLE) is a life-long, life-limiting and multi-systemic autoimmune disease. Glomerulonephritis is one of the most serious manifestations of SLE. Younger children have an increased incidence, severity and morbidity of lupus nephritis (LN) compared with adult-onset disease. Monocyte chemoattractant protein-1 (MCP-1) enhances leukocyte adhesiveness and endothelial permeability in the kidneys of murine and human LN models. Our study aimed to assess the role of urinary MCP-1 in the early diagnosis of LN activity. Sixty children, of whom 45 children aged from six to 12 years old and of both sexes (15 SLE patients without nephritis, 15 active LN and 15 inactive LN) fulfilling the American College of Rheumatology Classification Criteria for SLE were studied in comparison with 15 healthy subjects. We investigated the serum and urinary MCP-1 in all groups using the enzyme-linked immunosorbent assay test. Urinary MCP-1 was significantly higher in active LN in comparison with inactive LN and controls, and also significantly higher in inactive LN in comparison with SLE without nephritis and controls. There was also a significant difference between SLE without nephritis and controls. Serum MCP-1 was significantly higher in the group with active LN in comparison with the inactive group and SLE without nephritis and controls, but there was no significant difference between SLE and controls. The urinary MCP-1 level correlated well with SLE disease activity as measured by the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). Urinary MCP-1 correlates positively with proteinuria, blood urea nitrogen level and creatinine and negatively with hemoglobin and creatinine clearance. We concluded that measurement of MCP-1 in urine may be useful for monitoring the severity of renal involvement in SLE. We recommend measuring urinary MCP-1 in pediatric SLE for the early diagnosis of LN and for the evaluation of the severity of renal involvement.

  4. Auxiliary diagnostic value of monocyte chemoattractant protein-1 of whole blood in active tuberculosis.

    Science.gov (United States)

    Wang, Ying; Li, Hang; Bao, Hong; Jin, Yufen; Liu, Xiaoju; Wu, Xueqiong; Yu, Ting

    2015-01-01

    The aim of this study was to study the expression level of interferon-γ (IFN-γ) and monocyte chemoattractant protein-1 (MCP-1) in peripheral blood and its auxiliary diagnostic value in active tuberculosis. A chemiluminescence enzyme immunoassay method was used to detect the levels of IFN-γ and MCP-1 in peripheral blood. Then the receiver operating characteristic curve were drawn to determine the threshold of IFN-γ and MCP-1 for diagnosis of active tuberculosis and to evaluate their diagnostic performance. The specific IFN-γ and MCP-1 levels in the active tuberculosis group were significantly higher than those in the non-tuberculous pulmonary disease group (P 0.05), but the MCP-1 levels in the non-tuberculous respiratory disease group were significantly higher than those of the healthy control group (P < 0.05). The specific IFN-γ and MCP-1 level cut off values were 256 pg/ml and 389 pg/ml as an active tuberculosis diagnostic standard. The sensitivities of IFN-γ and MCP-1 were 57.3% and 92.8%, respectively; specificities were 80% and 80.7%, respectively; the positive predictive values were 76.9% and 84.9%, respectively; negative predictive values were 61.7% and 78.7%, respectively; and accuracy rates were 76.9% and 84.9%, respectively. Compared with the detection of IFN-γ, we observed a better diagnostic performance of MCP-1 in peripheral blood in active tuberculosis. MCP-1 may become one of the active tuberculosis auxiliary diagnostic targets.

  5. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria.

    Science.gov (United States)

    Shabalina, Irina G; Kalinovich, Anastasia V; Cannon, Barbara; Nedergaard, Jan

    2016-05-01

    The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse brown-fat mitochondria. In wild-type brown-fat mitochondria, PFOS and PFOA overcame GDP-inhibited thermogenesis, leading to increased oxygen consumption and dissipated membrane potential. The absence of this effect in brown-fat mitochondria from UCP1-ablated mice indicated that it occurred through activation of UCP1. A competitive type of inhibition by increased GDP concentrations indicated interaction with the same mechanistic site as that utilized by fatty acids. No effect was observed in heart mitochondria, i.e., in mitochondria without UCP1. The stimulatory effect of PFOA/PFOS was not secondary to non-specific mitochondrial membrane permeabilization or to ROS production. Thus, metabolic effects of perfluorinated fatty acids could include direct brown adipose tissue (UCP1) activation. The possibility that this may lead to unwarranted extra heat production and thus extra utilization of food resources, leading to decreased fitness in mammalian wildlife, is discussed, as well as possible negative effects in humans. However, a possibility to utilize PFOA-/PFOS-like substances for activating UCP1 therapeutically in obesity-prone humans may also be envisaged.

  6. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1 in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cyril Sobolewski

    2015-08-01

    Full Text Available The RNA-binding protein tristetraprolin (TTP promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE. In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC inhibitors (Trichostatin A, SAHA and sodium butyrate promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells and cervix carcinoma cells (HeLa. We found that HDAC inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription through activation of the transcription factor Early Growth Response protein 1 (EGR1. Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer.

  7. Activation of farnesoid X receptor downregulates monocyte chemoattractant protein-1 in murine macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangpeng; Zhang, Qian; Peng, Jiahe; Jiang, Chanjui; Zhang, Yan; Shen, Lili; Dong, Jinyu; Wang, Yongchao; Jiang, Yu, E-mail: yujiang0207@163.com

    2015-11-27

    Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, which plays important roles in bile acids/lipid homeostasis and inflammation. Monocyte chemoattractant protein-1 (MCP-1) contributes to macrophage infiltration into body tissues during inflammation. Here we investigated whether FXR can regulate MCP-1 expression in murine macrophage. FXR activation down regulate MCP-1 mRNA and protein levels in ANA-1 and Raw264.7 cells. Luciferase reporter assay, Gel shift and Chromatin immunoprecipitation assays have revealed that the activated FXR bind to the FXR element located in −738 bp ∼  −723 bp in MCP-1 promoter. These results suggested that FXR may serve as a novel target for regulating MCP-1 levels for the inflammation related diseases therapies. - Highlights: • FXR is expressed in murine macrophage cell line. • FXR down regulates MCP-1 expression. • FXR binds to the DR4 in MCP-1 promoter.

  8. Monocyte chemoattractant protein-1 but not tumor necrosis factor-alpha is correlated with monocyte infiltration in mouse lipid lesions

    Energy Technology Data Exchange (ETDEWEB)

    Reckless, Jill; Rubin, Edward M.; Verstuyft, Judy B.; Metcalfe, James C.; Grainger, David J.

    1999-01-11

    The infiltration of monocytes into the vascular wall and their transformation into lipid-laden foam cells characterize early atherogenesis. This focal accumulation of lipids, together with smooth muscle cell proliferation and migration, and the synthesis of extracellular matrix in the intima of large arteries result in the formation of an atherosclerotic plaque. The extent to which the plaque is infiltrated with monocytes appears to be an important determinant of plaque stability. It has been proposed that macrophages secrete an excess of matrix-degrading enzymes over their inhibitors, resulting in conversion of a stable plaque into anunstable plaque that is likely to rupture, resulting in acutemyocardial infarction. Macrophages and T cells constitute {approx}40 percent of the total population of cells in the lipid core region of atherosclerotic plaques. Their recruitment to the lesion may depend on alterations in the adhesive properties of the endothelial surface. Increased endothelial cell permeability and endothelial cell activation are among the earliest changes associated with developing lesions of atherosclerosis. Many of the cell adhesion molecules involved in monocyte recruitment are expressed at low or undetectable levels on normal endothelium but are substantially elevated on the endothelium overlaying atherosclerotic lesions In addition to endothelial cell activation, numerous chemotactic cytokines have also been postulated to be involved in monocyte recruitment. For example, interleukin (IL)-1 and tumor necrosis factor-a (TNF-a) are direct chemoattractants for human monocytes but additionally induce cytoskeletal changes in the endothelium that result in increased permeability. This increased permeability, together with stimulated expression of adhesion molecules such as E-selectin, plays an important part in the local inflammation mediated by TNF-a and IL-1. In addition, a large number of other proinflammatory cytokines, including macrophage

  9. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease.

    Science.gov (United States)

    Zenz, Rainer; Eferl, Robert; Scheinecker, Clemens; Redlich, Kurt; Smolen, Josef; Schonthaler, Helia B; Kenner, Lukas; Tschachler, Erwin; Wagner, Erwin F

    2008-01-01

    Activator protein 1 (AP-1) (Fos/Jun) is a transcriptional regulator composed of members of the Fos and Jun families of DNA binding proteins. The functions of AP-1 were initially studied in mouse development as well as in the whole organism through conventional transgenic approaches, but also by gene targeting using knockout strategies. The importance of AP-1 proteins in disease pathways including the inflammatory response became fully apparent through conditional mutagenesis in mice, in particular when employing gene inactivation in a tissue-specific and inducible fashion. Besides the well-documented roles of Fos and Jun proteins in oncogenesis, where these genes can function both as tumor promoters or tumor suppressors, AP-1 proteins are being recognized as regulators of bone and immune cells, a research area termed osteoimmunology. In the present article, we review recent data regarding the functions of AP-1 as a regulator of cytokine expression and an important modulator in inflammatory diseases such as rheumatoid arthritis, psoriasis and psoriatic arthritis. These new data provide a better molecular understanding of disease pathways and should pave the road for the discovery of new targets for therapeutic applications.

  10. Specific interaction with cardiolipin triggers functional activation of Dynamin-Related Protein 1.

    Directory of Open Access Journals (Sweden)

    Itsasne Bustillo-Zabalbeitia

    Full Text Available Dynamin-Related Protein 1 (Drp1, a large GTPase of the dynamin superfamily, is required for mitochondrial fission in healthy and apoptotic cells. Drp1 activation is a complex process that involves translocation from the cytosol to the mitochondrial outer membrane (MOM and assembly into rings/spirals at the MOM, leading to membrane constriction/division. Similar to dynamins, Drp1 contains GTPase (G, bundle signaling element (BSE and stalk domains. However, instead of the lipid-interacting Pleckstrin Homology (PH domain present in the dynamins, Drp1 contains the so-called B insert or variable domain that has been suggested to play an important role in Drp1 regulation. Different proteins have been implicated in Drp1 recruitment to the MOM, although how MOM-localized Drp1 acquires its fully functional status remains poorly understood. We found that Drp1 can interact with pure lipid bilayers enriched in the mitochondrion-specific phospholipid cardiolipin (CL. Building on our previous study, we now explore the specificity and functional consequences of this interaction. We show that a four lysine module located within the B insert of Drp1 interacts preferentially with CL over other anionic lipids. This interaction dramatically enhances Drp1 oligomerization and assembly-stimulated GTP hydrolysis. Our results add significantly to a growing body of evidence indicating that CL is an important regulator of many essential mitochondrial functions.

  11. A repressor activator protein1 homologue from an oleaginous strain of Candida tropicalis increases storage lipid production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Chattopadhyay, Atrayee; Dey, Prabuddha; Barik, Amita; Bahadur, Ranjit P; Maiti, Mrinal K

    2015-06-01

    The repressor activator protein1 (Rap1) has been studied over the years as a multifunctional regulator in Saccharomyces cerevisiae. However, its role in storage lipid accumulation has not been investigated. This report documents the identification and isolation of a putative transcription factor CtRap1 gene from an oleaginous strain of Candida tropicalis, and establishes the direct effect of its expression on the storage lipid accumulation in S. cerevisiae, usually a non-oleaginous yeast. In silico analysis revealed that the CtRap1 polypeptide binds relatively more strongly to the promoter of fatty acid synthase1 (FAS1) gene of S. cerevisiae than ScRap1. The expression level of CtRap1 transcript in vivo was found to correlate directly with the amount of lipid produced in oleaginous native host C. tropicalis. Heterologous expression of the CtRap1 gene resulted in ∼ 4-fold enhancement of storage lipid content (57.3%) in S. cerevisiae. We also showed that the functionally active CtRap1 upregulates the endogenous ScFAS1 and ScDGAT genes of S. cerevisiae, and this, in turn, might be responsible for the increased lipid production in the transformed yeast. Our findings pave the way for the possible utility of the CtRap1 gene in suitable microorganisms to increase their storage lipid content through transcription factor engineering.

  12. Insight into temperature dependence of GTPase activity in human guanylate binding protein-1.

    Directory of Open Access Journals (Sweden)

    Anjana Rani

    Full Text Available Interferon-γ induced human guanylate binding protein-1(hGBP1 belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1.

  13. Insulin-like growth factor binding protein 1 and human embryonic development during 6-10 gestational weeks

    Institute of Scientific and Technical Information of China (English)

    方群; 王艳霞; 周祎

    2004-01-01

    Background Insulin-like growth factor binding protein-1 (IGFBP-1), which is a carrier of Insulin-like growth factors (IGFs) regulates the fetal development by working as an active factor controlling the combination of IGFs with their receptors. This study was designed to investigate the relationship between IGFBP-1 and human embryonic development during weeks 6 -10 of gestation.Methods A total of 44 pregnant women with singleton pregnancy were divided into two groups: one with abnormal embryo development (n = 32) and the other with normal embryo development (n = 12).Enzyme-linked immunosorbent assay (ELISA) was employed to detect IGFBP-1 levels in maternal serum and decidual tissue. The expression of IGFBP-1 mRNA in deciduas was examined by reverse transcription polymerase chain reaction (RT-PCR) technique.Results The level of IGFBP-1 protein in maternal serum was significantly higher in the abnormal group [ (125.36 ± 47.93) μg/ml] than in the normal group [(70.72 ± 21.21) μg/ml ]. Both of IGFBP-1 and IGFBP-1 mRNA in deciduas were higher in abnormal group [ (1.60 ± 1.39) μg/ml and 1.66 ± 1.64, respectively ] than in the normal group [ (0.35 ± 0.23) μg/mi and 0.40 ± 0.20,respectively]. The level of IGFBP-1 in maternal serum was positively correlated with IGFBP-1 mRNA (r=0. 90, P<0.05) and IGFBP-1 protein (r=0.92, P<0.05) in decidual tissue.Conclusions During weeks 6 -10 of gestation, abnormal embryonic development is correlated with elevated IGFBP-1. The level of IGFBP-1 in maternal serum is related to the concentrations of IGFBP1 mRNA and IGFBP-1 in decidual tissue. The IGFBP-1 level in maternal serum may be used as a predictive marker to evaluate embryonic development.

  14. Pyrrolopyrimidine derivatives and purine analogs as novel activators of Multidrug Resistance-associated Protein 1 (MRP1, ABCC1).

    Science.gov (United States)

    Schmitt, Sven Marcel; Stefan, Katja; Wiese, Michael

    2017-01-01

    Multidrug resistance (MDR) is the main cause of diminished success in cancer chemotherapy. ABC transport proteins are considered to be one important factor of MDR. Besides P-glycoprotein (P-gp, ABCB1) and Breast Cancer Resistance Protein (BCRP, ABCG2), Multidrug Resistance-associated Protein 1 (MRP1, ABCC1) is associated with non-response to chemotherapy in different cancers. While considerable effort was spent in overcoming MDR during the last two decades, almost nothing is known with respect to activators of transport proteins. In this work we present certain pyrrolo[3,2-d]pyrimidine derivatives with variations at positions 4 and 5 and purine analogs with variations at position 6 as novel activators of MRP1-mediated transport of the MRP1 substrate calcein AM and the anticancer drug daunorubicin in low nanomolar concentration range. Two different MRP1 overexpressing cell lines were used, the doxorubicin-selected human lung cancer cell line H69 AR and the transfected Madin-Darby Canine Kidney cell line MDCK II MRP1. No effect was observed in the sensitive counterparts H69 and MDCK II wild type (wt). Derivatives with higher molecular weight possessed also inhibitory properties at low micromolar concentrations, although most compounds were rather poor MRP1 inhibitors. Purine analogs derived from potent MRP1 inhibitors of the pyrrolopyrimidine class showed equal activating, but no inhibiting effects at all. All tested compounds were non-toxic and had only minor impact on P-gp or BCRP, showing no inhibition or activation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The Metastasis-associated Proteins 1 and 2 Form Distinct Protein Complexes with Histone Deacetylase Activity

    Institute of Scientific and Technical Information of China (English)

    Ya-LiYao; Wcn-MingYang

    2005-01-01

    The metastasis-associated protein MTA1 has been shown to express differentially to high levels in metastatic cells. MTA2, which is homologous to MTA1, is a component of the NURD ATP-dependcnt chromatin remodeling and histone deacetylase complex. Here we report evidence that although both human MTA1 and MTA2 repress transcription specifically, are located in the nucleus, and contain associated histone deacetylase activity, they exist in two biochemically distinct protein complexes and may perform different functions pertaining to tumor metastasis. Specifically, both MTA1 and MTA2 complexes exert histone deacetylase activity. However, the MTA1 complex contained HDAC1/2, RbAp46/48, and MBD3, but not Sin3 or Mi2, two important components of the MTA2 complex. Moreover, the MTA2 complex is similar to the HDAC1 complex, suggesting a housekeeping role of the MTA2 complex. The MTA1 complex could be further separated, resulting in acore MTA1-HDAC complex, showing that the histone deacetylase activity and transcriptional repression activity were integral properties of the MTA1 complex. Finally, MTA1, unlike MTA2, did not interact with the pleotropic transcription factor YY1 or the immunophilin FKBP25. We suggest that MTA1 associates with adifferent set of transcription factors from MTA2 and that this property may contribute to the metastatic potential of cells overexpressing MTA1. We also report the finding of human MTA3, which is highly homologous toboth MTA1 and MTA2. However, MTA3 does not repress transcription to a significant level and appears to have a diffused pattern of subcellular localization, suggesting a biological role distinct from that of the other two MTA proteins.

  16. Slit3 inhibits activator protein 1-mediated migration of malignant melanoma cells.

    Science.gov (United States)

    Denk, Alexandra E; Braig, Simone; Schubert, Thomas; Bosserhoff, Anja K

    2011-11-01

    The repellent factor family of Slit molecules has been described to have repulsive function in the developing nervous system on growing axons expressing the Robo receptors. Alterations of the Slit/Robo system have been observed in various pathological conditions and in cancer. However, until today no detailed studies on Slit function on melanoma migration are available. Therefore, we analysed the mRNA expression in melanoma cells and found induction of Robo3 expression compared to normal melanocytes. Functional assays performed with melanoma cells revealed that treatment with Slit3 led to strong inhibition of migration. Interestingly, we observed down-regulation of AP-1 activity and target gene expression after Slit3 treatment contributing to the negative regulation of migration. Taken together, our data showed that Slit3 reduces the migratory activity of melanoma cells, potentially by repulsion of the cells in analogy to the neuronal system. Further studies will be necessary to prove Slit activity in vivo, but due to its function, Slit3 activity may be helpful in the treatment of melanoma.

  17. Cycle modulation of insulin-like growth factor-binding protein 1 in human endometrium

    Directory of Open Access Journals (Sweden)

    Corleta H.

    2000-01-01

    Full Text Available Endometrium is one of the fastest growing human tissues. Sex hormones, estrogen and progesterone, in interaction with several growth factors, control its growth and differentiation. Insulin-like growth factor 1 (IGF-1 interacts with cell surface receptors and also with specific soluble binding proteins. IGF-binding proteins (IGF-BP have been shown to modulate IGF-1 action. Of six known isoforms, IGF-BP-1 has been characterized as a marker produced by endometrial stromal cells in the late secretory phase and in the decidua. In the current study, IGF-1-BP concentration and affinity in the proliferative and secretory phase of the menstrual cycle were measured. Endometrial samples were from patients of reproductive age with regular menstrual cycles and taking no steroid hormones. Cytosolic fractions were prepared and binding of 125I-labeled IGF-1 performed. Cross-linking reaction products were analyzed by SDS-polyacrylamide gel electrophoresis (7.5% followed by autoradiography. 125I-IGF-1 affinity to cytosolic proteins was not statistically different between the proliferative and secretory endometrium. An approximately 35-kDa binding protein was identified when 125I-IGF-1 was cross-linked to cytosol proteins. Secretory endometrium had significantly more IGF-1-BP when compared to proliferative endometrium. The specificity of the cross-linking process was evaluated by the addition of 100 nM unlabeled IGF-1 or insulin. Unlabeled IGF-1 totally abolished the radioactivity from the band, indicating specific binding. Insulin had no apparent effect on the intensity of the labeled band. These results suggest that IGF-BP could modulate the action of IGF-1 throughout the menstrual cycle. It would be interesting to study this binding protein in other pathologic conditions of the endometrium such as adenocarcinomas and hyperplasia.

  18. 在患有急性肺损伤的小猪的肺泡巨噬细胞中一氧化氮,表面活性剂和糖皮质激素对核因子-κB和激活蛋白-1的活性的调控作用%Regulation of activity of nuclear factor-κB and activator protein-1 by nitric oxide, surfactant and glucocorticoids in alveolar macrophages from piglets with acute lung injury

    Institute of Scientific and Technical Information of China (English)

    曹蕾; 钱莉玲; 朱友荣; 郭春宝; 龚小慧; 孙波

    2003-01-01

    AIM: To investigate whether acute lung injury (ALI) in ventilated piglets with bacterial infection affects NF-κB and AP-1 expression in alveolar macrophages (AM) and whether nitric oxide (NO), surfactant (Surf), glucocorticoids (GC) affect NF-κB and AP-1 activation in AM in vivo and in vitro. METHODS: The animals were intraperitoneally injected Escherichia coli, which caused ALI. Nuclear extracts of AM were analyzed by electrophoretic mobility shift assay (EMSA) for the nuclear factor-kappa B (NF-κB) and activation protein-1 (AP-1) expression. Detection of IκB-α protein was from cytoplasmic extract by Western blotting. Immunocytochemistry staining was used for intracellular location of p65 subunits of NF-κB. RESULTS: In ex vivo experiments, strikingly higher expression of NF-κB and AP-1 by EMSA was found 6 h after bacterial injection in contrast to the Normal group. In the NO, SNO, and GC groups, markedly attenuated NF-κB and AP-1 activation was observed. The NF-κB and AP-1 activation in Surf group showed lower levels of the expression. Immunoblotting of AM cytoplasmic extract showed low expression of IκB-α protein in the Control and Surf groups. The stronger expression was observed in the NO, GC, and SNO groups. AM of the Control and Surf groups showed intense nuclear staining, with decreased nuclear staining in the NO, GC and SNO groups. In in vitro experiment, it caused a significant increase in NF-κB and AP l activity in AM 1 h after exposure to lipopolysaccharides (LPS). In AM treated by LPS+SNP and LPS+GC, all showed decrease of DNA binding activity of NF-κB and AP-1 compared to those exposed to LPS+Surf. Immunoblotting of AM cytoplasmic extract showed that LPS stimulation of AM resulted in the low expression of Iκ B-α protein, which was not observed in the presence of SNP and methylprednisolone. However, the surfactant did not show such effect. LPS+Surf-exposed AM had intense nuclear staining, whereas decreased nuclear staining in the LPS

  19. ERG induces epigenetic activation of Tudor domain-containing protein 1 (TDRD1 in ERG rearrangement-positive prostate cancer.

    Directory of Open Access Journals (Sweden)

    Lukasz A Kacprzyk

    Full Text Available BACKGROUND: Overexpression of ERG transcription factor due to genomic ERG-rearrangements defines a separate molecular subtype of prostate tumors. One of the consequences of ERG accumulation is modulation of the cell's gene expression profile. Tudor domain-containing protein 1 gene (TDRD1 was reported to be differentially expressed between TMPRSS2:ERG-negative and TMPRSS2:ERG-positive prostate cancer. The aim of our study was to provide a mechanistic explanation for the transcriptional activation of TDRD1 in ERG rearrangement-positive prostate tumors. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression measurements by real-time quantitative PCR revealed a remarkable co-expression of TDRD1 and ERG (r(2 = 0.77 but not ETV1 (r(2<0.01 in human prostate cancer in vivo. DNA methylation analysis by MeDIP-Seq and bisulfite sequencing showed that TDRD1 expression is inversely correlated with DNA methylation at the TDRD1 promoter in vitro and in vivo (ρ = -0.57. Accordingly, demethylation of the TDRD1 promoter in TMPRSS2:ERG-negative prostate cancer cells by DNA methyltransferase inhibitors resulted in TDRD1 induction. By manipulation of ERG dosage through gene silencing and forced expression we show that ERG governs loss of DNA methylation at the TDRD1 promoter-associated CpG island, leading to TDRD1 overexpression. CONCLUSIONS/SIGNIFICANCE: We demonstrate that ERG is capable of disrupting a tissue-specific DNA methylation pattern at the TDRD1 promoter. As a result, TDRD1 becomes transcriptionally activated in TMPRSS2:ERG-positive prostate cancer. Given the prevalence of ERG fusions, TDRD1 overexpression is a common alteration in human prostate cancer which may be exploited for diagnostic or therapeutic procedures.

  20. Differential expression of serum glycodelin and insulin-like growth factor binding protein 1 in early pregnancy.

    Science.gov (United States)

    Douglas, Nataki C; Thornton, Melvin H; Nurudeen, Sahadat K; Bucur, Maria; Lobo, Rogerio A; Sauer, Mark V

    2013-11-01

    This prospective study evaluated whether serum glycodelin and insulin-like growth factor binding protein 1 (IGFBP-1) predict the likelihood of embryo implantation in recipients undergoing donor egg in vitro fertilization. We measured glycodelin and IGFBP-1 at 6 points from lining check to lutenizing hormone (LH) + 31. β-Human chorionic gonadotropin levels were first measured at LH + 17. The recipients were divided into those without embryo implantation (group 1, n = 6) and those with successful implantation (group 2, n = 30). Although this is a negative study in that neither glycodelin nor IGFBP-1 alone reflected endometrial (EM) receptivity, the glycodelin/IGFBP-1 ratio on the day of blastocyst transfer was higher in recipients who achieved pregnancy (P = .05). At LH + 17, glycodelin was higher (P = .04), and IGFBP-1 was lower (P = .004) in recipients who achieved pregnancy when compared to those who did not. These observations are likely due to EM changes induced by successful embryo implantation.

  1. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    Science.gov (United States)

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  2. Increased activator protein 1 activity as well as resistance to heat-induced radiosensitization, hydrogen peroxide, and cisplatin are inhibited by indomethacin in oxidative stress-resistant cells.

    Science.gov (United States)

    Bradbury, C M; Locke, J E; Wei, S J; Rene, L M; Karimpour, S; Hunt, C; Spitz, D R; Gius, D

    2001-04-15

    It has been established that tumor cells develop resistance to a variety of therapeutic agents after multiple exposures to these agents/drugs. Many of these therapeutic agents also appear to increase the activity of transcription factors, such as activator protein 1 (AP-1), believed to be involved in cellular responses to oxidative stress. Therefore, we hypothesized that cellular resistance to cancer therapeutic agents may involve the increased activity of transcription factors that govern resistance to oxidative stress, such as AP-1. To investigate this hypothesis, a previously characterized cisplatin, hyperthermia, and oxidative stress-resistant Chinese hamster fibroblast cell line, OC-14, was compared to the parental HA-1 cell line. Electrophoretic mobility shift and Western blot assays performed on extracts isolated from OC-14 cells demonstrated a 10-fold increase in constitutive AP-1 DNA-binding activity as well as increased constitutive c-Fos and c-Jun immunoreactive protein relative to HA-1 cells. Treatment of OC-14 cells with indomethacin inhibited constitutive increases in AP-1 DNA-binding activity and c-Fos/c-Jun-immunoreactive protein levels. Clonogenic survival assays demonstrated that pretreatment with indomethacin, at concentrations that inhibited AP-1 activity, significantly reduced the resistance of OC-14 cells to heat-induced radiosensitization, hydrogen peroxide, and cisplatin. These results demonstrate a relationship between increases in AP-1 DNA-binding activity and increased cellular resistance to cancer therapeutic agents and oxidative stress that is inhibited by indomethacin. These results support the hypothesis that inhibition of AP-1 activity with nonsteroidal anti-inflammatory drugs, such as indomethacin, may represent a useful adjuvant to cancer therapy.

  3. Guanylate-Binding Protein 1, an Interferon-Induced GTPase, Exerts an Antiviral Activity against Classical Swine Fever Virus Depending on Its GTPase Activity

    Science.gov (United States)

    Li, Lian-Feng; Yu, Jiahui; Li, Yongfeng; Wang, Jinghan; Li, Su; Zhang, Lingkai; Xia, Shui-Li; Yang, Qian; Wang, Xiao; Yu, Shaoxiong; Luo, Yuzi; Sun, Yuan; Zhu, Yan; Munir, Muhammad

    2016-01-01

    ABSTRACT Many viruses trigger the type I interferon (IFN) pathway upon infection, resulting in the transcription of hundreds of interferon-stimulated genes (ISGs), which define the antiviral state of the host. Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious viral disease endangering the pig industry in many countries. However, anti-CSFV ISGs are poorly documented. Here we screened 20 ISGs that are commonly induced by type I IFNs against CSFV in lentivirus-delivered cell lines, resulting in the identification of guanylate-binding protein 1 (GBP1) as a potent anti-CSFV ISG. We observed that overexpression of GBP1, an IFN-induced GTPase, remarkably suppressed CSFV replication, whereas knockdown of endogenous GBP1 expression by small interfering RNAs significantly promoted CSFV growth. Furthermore, we demonstrated that GBP1 acted mainly on the early phase of CSFV replication and inhibited the translation efficiency of the internal ribosome entry site of CSFV. In addition, we found that GBP1 was upregulated at the transcriptional level in CSFV-infected PK-15 cells and in various organs of CSFV-infected pigs. Coimmunoprecipitation and glutathione S-transferase (GST) pulldown assays revealed that GBP1 interacted with the NS5A protein of CSFV, and this interaction was mapped in the N-terminal globular GTPase domain of GBP1. Interestingly, the K51 of GBP1, which is crucial for its GTPase activity, was essential for the inhibition of CSFV replication. We showed further that the NS5A-GBP1 interaction inhibited GTPase activity, which was critical for its antiviral effect. Taking our findings together, GBP1 is an anti-CSFV ISG whose action depends on its GTPase activity. IMPORTANCE Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), an economically important viral disease affecting the pig industry in many countries. To date, only a few host restriction factors against CSFV

  4. Poly(A binding protein 1 enhances cap-independent translation initiation of neurovirulence factor from avian herpesvirus.

    Directory of Open Access Journals (Sweden)

    Abdessamad Tahiri-Alaoui

    Full Text Available Poly(A binding protein 1 (PABP1 plays a central role in mRNA translation and stability and is a target by many viruses in diverse manners. We report a novel viral translational control strategy involving the recruitment of PABP1 to the 5' leader internal ribosome entry site (5L IRES of an immediate-early (IE bicistronic mRNA that encodes the neurovirulence protein (pp14 from the avian herpesvirus Marek's disease virus serotype 1 (MDV1. We provide evidence for the interaction between an internal poly(A sequence within the 5L IRES and PABP1 which may occur concomitantly with the recruitment of PABP1 to the poly(A tail. RNA interference and reverse genetic mutagenesis results show that a subset of virally encoded-microRNAs (miRNAs targets the inhibitor of PABP1, known as paip2, and therefore plays an indirect role in PABP1 recruitment strategy by increasing the available pool of active PABP1. We propose a model that may offer a mechanistic explanation for the cap-independent enhancement of the activity of the 5L IRES by recruitment of a bona fide initiation protein to the 5' end of the message and that is, from the affinity binding data, still compatible with the formation of 'closed loop' structure of mRNA.

  5. Salvianolic Acid B Protects Normal Human Dermal Fibroblasts Against Ultraviolet B Irradiation-Induced Photoaging Through Mitogen-Activated Protein Kinase and Activator Protein-1 Pathways.

    Science.gov (United States)

    Sun, Zhengwang; Park, Sang-Yong; Hwang, Eunson; Zhang, Mengyang; Jin, Fengxie; Zhang, Baochun; Yi, Tae Hoo

    2015-01-01

    Exposure to ultraviolet (UV) light causes increased matrix metalloproteinase (MMP) activity and decreased collagen synthesis, leading to skin photoaging. Salvianolic acid B (SAB), a polyphenol, was extracted and purified from salvia miltiorrhiza. We assessed effects of SAB on UVB-induced photoaging and investigated its molecular mechanism of action in UVB-irradiated normal human dermal fibroblasts. Our results show that SAB significantly inhibited the UVB-induced expression of metalloproteinases-1 (MMP-1) and interleukin-6 (IL-6) while promoting the production of type I procollagen and transforming growth factor β1 (TGF-β1). Moreover, treatment with SAB in the range of 1-100 μg/mL significantly inhibited UVB-induced extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 phosphorylation, which resulted in decreasing UVB-induced phosphorylation of c-Fos and c-Jun. These results indicate that SAB downregulates UV-induced MMP-1 expression by inhibiting Mitogen-activated protein kinase (MAPK) signaling pathways and activator protein-1 (AP-1) activation. Our results suggest a potential use for SAB in skin photoprotection.

  6. Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines.

    Directory of Open Access Journals (Sweden)

    Roland Züst

    2007-08-01

    Full Text Available Attenuated viral vaccines can be generated by targeting essential pathogenicity factors. We report here the rational design of an attenuated recombinant coronavirus vaccine based on a deletion in the coding sequence of the non-structural protein 1 (nsp1. In cell culture, nsp1 of mouse hepatitis virus (MHV, like its SARS-coronavirus homolog, strongly reduced cellular gene expression. The effect of nsp1 on MHV replication in vitro and in vivo was analyzed using a recombinant MHV encoding a deletion in the nsp1-coding sequence. The recombinant MHV nsp1 mutant grew normally in tissue culture, but was severely attenuated in vivo. Replication and spread of the nsp1 mutant virus was restored almost to wild-type levels in type I interferon (IFN receptor-deficient mice, indicating that nsp1 interferes efficiently with the type I IFN system. Importantly, replication of nsp1 mutant virus in professional antigen-presenting cells such as conventional dendritic cells and macrophages, and induction of type I IFN in plasmacytoid dendritic cells, was not impaired. Furthermore, even low doses of nsp1 mutant MHV elicited potent cytotoxic T cell responses and protected mice against homologous and heterologous virus challenge. Taken together, the presented attenuation strategy provides a paradigm for the development of highly efficient coronavirus vaccines.

  7. Folate concentration dependent transport activity of the Multidrug Resistance Protein 1 (ABCC1).

    NARCIS (Netherlands)

    Hooijberg, J.H.; Jansen, G.; Assaraf, Y.G.; Kathmann, I.; Pieters, R.; Laan, AC; Veerman, A.J.P.; Kaspers, G.J.L.; Peters, G.J.

    2004-01-01

    The Multidrug Resistance Protein MRP1 (ABCC1) can confer resistance to a variety of therapeutic drugs. In addition, MRP1/ABCC1 mediates cellular export of natural folates, such as folic acid and l-leucovorin. In this study we determined whether cellular folate status affected the functional activity

  8. Effects of Tumor Necrosis Factor-α on Podocyte Expression of Monocyte Chemoattractant Protein-1 and in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Choon Hee Chung

    2015-02-01

    Full Text Available Background/Aims: Tumor necrosis factor (TNF-α is believed to play a role in diabetic kidney disease. This study explores the specific effects of TNF-α with regard to nephropathy-relevant parameters in the podocyte. Methods: Cultured mouse podocytes were treated with recombinant TNF-α and assayed for production of monocyte chemoattractant protein-1 (MCP-1 by enzyme-linked immunosorbent assay (ELISA. TNF-α signaling of MCP-1 was elucidated by antibodies against TNF receptor (TNFR 1 or TNFR2 or inhibitors of nuclear factor-kappaB (NF-κB, phosphatidylinositol 3-kinase (PI3K or Akt. In vivo studies were done on male db/m and type 2 diabetic db/db mice. Levels of TNF-α and MCP-1 were measured by RT-qPCR and ELISA in the urine, kidney and plasma of the two cohorts and correlated with albuminuria. Results: Podocytes treated with TNF-α showed a robust increase (∼900% in the secretion of MCP-1, induced in a dose- and time-dependent manner. Signaling of MCP-1 expression occurred through TNFR2, which was inducible by TNF-α ligand, but did not depend on TNFR1. TNF-α then proceeded via the NF-κB and the PI3K/Akt systems, based on the effectiveness of the inhibitors of those pathways. For in vivo relevance to diabetic kidney disease, TNF-α and MCP-1 levels were found to be elevated in the urine of db/db mice but not in the plasma. Conclusion: TNF-α potently stimulates podocytes to produce MCP-1, utilizing the TNFR2 receptor and the NF-κB and PI3K/Akt pathways. Both TNF-α and MCP-1 levels were increased in the urine of diabetic db/db mice, correlating with the severity of diabetic albuminuria.

  9. [Mechanism of protective effects of tumor necrosis factor receptor associated protein 1 on hypoxic cardiomyocytes of rats].

    Science.gov (United States)

    Xiang, F; Zhang, D X; Ma, S Y; Huang, Y S

    2016-12-20

    Objective: To investigate the mechanism of protective effects of tumor necrosis factor receptor associated protein 1 (TRAP1) on hypoxic cardiomyocytes of rats. Methods: Primary cultured cardiomyocytes were obtained from neonatal Sprague-Dawley rats (aged 1 to 3 days) and then used in the following experiments. (1) Cells were divided into group TRAP1 and control group according to the random number table (the same grouping method below), and then the total protein of cells was extracted. Total protein of cells in group TRAP1 was added with mouse anti-rat TRAP1 monoclonal antibody, while that in control group was added with the same type of IgG from mouse. Co-immunoprecipitation and protein mass spectrography analysis were used to determine the possible proteins interacted with TRAP1. (2) Cells were divided into normoxia blank control group (NBC), normoxia+ TRAP1 interference control group (NTIC), normoxia+ TRAP1 interference group (NTI), normoxia+ TRAP1 over-expression control group (NTOC), and normoxia+ TRAP1 over-expression group (NTO), with 1 well in each group. Cells in group NBC were routinely cultured, while cells in the latter four groups were respectively added with TRAP1 RNA interference empty virus vector, TRAP1 RNA interference adenovirus vector, TRAP1 over-expression empty virus vector, and TRAP1 over-expression adenovirus vector. Another batch of cells were divided into group NBC, hypoxic blank control group (HBC), hypoxic+ TRAP1 interference control group (HTIC), hypoxic+ TRAP1 interference group (HTI), hypoxic+ TRAP1 over-expression control group (HTOC), and hypoxic+ TRAP1 over-expression group (HTO), with 1 well in each group. Cells in hypoxic groups were under hypoxic condition for 6 hours after being treated as those in the corresponding normoxia groups, respectively. The mRNA expression of cytochrome c oxidase subunit Ⅱ (COXⅡ) of cells in each group was detected by real time fluorescent quantitive reverse transcription polymerase chain

  10. Urine Monocyte Chemoattractant Protein-1 and Lupus Nephritis Disease Activity: Preliminary Report of a Prospective Longitudinal Study

    Directory of Open Access Journals (Sweden)

    Sabah Alharazy

    2015-01-01

    Full Text Available Objective. This longitudinal study aimed to determine the urine monocyte chemoattractant protein-1 (uMCP-1 levels in patients with biopsy-proven lupus nephritis (LN at various stages of renal disease activity and to compare them to current standard markers. Methods. Patients with LN—active or inactive—had their uMCP-1 levels and standard disease activity markers measured at baseline and 2 and 4 months. Urinary parameters, renal function test, serological markers, and renal SLE disease activity index-2K (renal SLEDAI-2K were analyzed to determine their associations with uMCP-1. Results. A hundred patients completed the study. At each visit, uMCP-1 levels (pg/mg creatinine were significantly higher in the active group especially with relapses and were significantly associated with proteinuria and renal SLEDAI-2K. Receiver operating characteristic (ROC curves showed that uMCP-1 was a potential biomarker for LN. Whereas multiple logistic regression analysis showed that only proteinuria and serum albumin and not uMCP-1 were independent predictors of LN activity. Conclusion. uMCP-1 was increased in active LN. Although uMCP-1 was not an independent predictor for LN activity, it could serve as an adjunctive marker when the clinical diagnosis of LN especially early relapse remains uncertain. Larger and longer studies are indicated.

  11. Activator protein 1 promotes gemcitabine-induced apoptosis in pancreatic cancer by upregulating its downstream target Bim.

    Science.gov (United States)

    Ren, Xiaoxia; Zhao, Wenjing; Du, Yongxing; Zhang, Taiping; You, Lei; Zhao, Yupei

    2016-12-01

    Gemcitabine is a commonly used chemotherapy drug in pancreatic cancer. The function of activator protein 1 (AP-1) is cell-specific, and its function depends on the expression of other complex members. In the present study, we added gemcitabine to the media of Panc-1 and SW1990 cells at clinically achieved concentrations (10 µM). Compared with constitutive c-Fos expression, c-Jun expression increased in a dose-dependent manner upon gemcitabine treatment. c-Jun overexpression increased gemcitabine-induced apoptosis through Bim activation, while cell apoptosis and Bim expression decreased following c-Jun knockdown. Furthermore, gemcitabine-induced apoptosis and Bim levels decreased when c-Jun phosphorylation was blocked by SP600125. Our findings suggest that c-Jun, which is a member of the AP-1 complex, functions in gemcitabine-induced apoptosis by regulating its downstream target Bim in pancreatic cancer cells.

  12. Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription.

    Science.gov (United States)

    Cartier, Jessy; Berthelet, Jean; Marivin, Arthur; Gemble, Simon; Edmond, Valérie; Plenchette, Stéphanie; Lagrange, Brice; Hammann, Arlette; Dupoux, Alban; Delva, Laurent; Eymin, Béatrice; Solary, Eric; Dubrez, Laurence

    2011-07-29

    The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprecipitation experiments demonstrate that cIAP1 is recruited on E2F binding sites of the CCNE and CCNA promoters in a cell cycle- and differentiation-dependent manner. cIAP1 silencing inhibits E2F1 DNA binding and E2F1-mediated transcriptional activation of the CCNE gene. In cells that express a nuclear cIAP1 such as HeLa, THP1 cells and primary human mammary epithelial cells, down-regulation of cIAP1 inhibits cyclin E and A expression and cell proliferation. We conclude that one of the functions of cIAP1 when localized in the nucleus is to regulate E2F1 transcriptional activity.

  13. Tumor Necrosis Factor-alpha Induced Protein 3 Interacting Protein 1 Gene Polymorphisms and Pustular Psoriasis in Chinese Han Population

    Institute of Scientific and Technical Information of China (English)

    Jian-Wen Han; Yong Wang; Chulu Alateng; Hong-Bin Li; Yun-Hua Bai; Xin-Xiang Lyu; Rina Wu

    2016-01-01

    Background:Psoriasis is a common immune-mediated inflammatory dermatosis.Generalized pustular psoriasis (GPP) is the severe and rare type of psoriasis.The association between tumor necrosis factor-alpha induced protein 3 interacting protein 1 (TNIP1) gene and psoriasis was confirmed in people with multiple ethnicities.This study was to investigate the association between TNIP1 gene polymorphisms and pustular psoriasis in Chinese Han population.Methods:Seventy-three patients with GPP,67 patients with palmoplantar pustulosis (PPP),and 476 healthy controls were collected from Chinese Han population.Six single nucleotide polymorphisms (SNPs) of the TNIP1 gene,namely rs3805435,rs3792798,rs3792797,rs869976,rs17728338,and rs999011 were genotyped by using polymerase chain reaction-ligase detection reaction.Statistical analyses were performed using the PLINK 1.07 package.Allele frequencies and genotyping frequencies for six SNPs were compared by using Chi-square test,odd ratio (OR) (including 95% confidence interval) were calculated.The haplotype analysis was conducted by Haploview software.Results:The frequencies of alleles of five SNPs were significantly different between the GPP group and the control group (P≤ 7.22 × 10-3),especially in the GPP patients without psoriasis vulgaris (PsV).In the haplotype analysis,the most significantly different haplotype was H4:ACGAAC,with 13.1% frequency in the GPP group but only 3.4% in the control group (OR =4.16,P =4.459 × 10-7).However,no significant difference in the allele frequencies was found between the PPP group and control group for each of the six SNPs (P > 0.05).Conclusions:Polymorphisms in TNIP1 are associated with GPP in Chinese Han population.However,no association with PPP was found.These findings suggest that TNIP1 might be a susceptibility gene for GPP.

  14. Urine Monocyte Chemoattractant Protein-1 Is an Independent Predictive Factor of Hospital Readmission and Survival in Cirrhosis.

    Directory of Open Access Journals (Sweden)

    Isabel Graupera

    Full Text Available MCP-1 (monocyte chemoattractant protein-1 is a proinflammatory cytokine involved in chemotaxis of monocytes. In several diseases, such as acute coronary syndromes and heart failure, elevated MCP-1 levels have been associated with poor outcomes. Little is known about MCP-1 in cirrhosis.To investigate the relationship between MCP-1 and outcome in decompensated cirrhosis.Prospective study of 218 patients discharged from hospital after an admission for complications of cirrhosis. Urine and plasma levels of MCP-1 and other urine proinflammatroy biomarkers: osteopontin(OPN, trefoil-factor3 and liver-fatty-acid-binding protein were measured at admission. Urine non-inflammatory mediators cystatin-C, β2microglobulin and albumin were measured as control biomarkers. The relationship between these biomarkers and the 3-month hospital readmission, complications of cirrhosis, and mortality were assessed.69 patients(32% had at least one readmission during the 3-month period of follow-up and 30 patients died(14%. Urine MCP-1 and OPN levels, were associated with 3-month probability of readmission (0.85 (0.27-2.1 and 2003 (705-4586 ug/g creat vs 0.47 (0.2-1.1 and 1188 (512-2958 ug/g creat, in patients with and without readmission, respectively; p<0.05; median (IQR. Furthermore, urine levels of MCP-1 were significantly associated with mortality (1.01 (1-3.6 vs 0.5 (0.2-1.1 μg/g creat, in dead and alive patients at 3 months; p<0.05. Patients with higher levels of urine MCP-1 (above percentile 75th had higher probability of development of hepatic encephalopathy, bacterial infections or AKI. Urine MCP-1 was an independent predictive factor of hospital readmission and combined end-point of readmission or dead at 3 months. Plasma levels of MCP-1 did not correlated with outcomes.Urine, but not plasma, MCP-1 levels are associated with hospital readmission, development of complications of cirrhosis, and mortality. These results suggest that in cirrhosis there is an

  15. Tsetse salivary gland proteins 1 and 2 are high affinity nucleic acid binding proteins with residual nuclease activity.

    Directory of Open Access Journals (Sweden)

    Guy Caljon

    Full Text Available Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2 display DNA/RNA non-specific, high affinity nucleic acid binding with K(D values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents.

  16. Tumor-infiltrating Cytotoxic T Lymphocytes as Independent Prognostic Factor in Epithelial Ovarian Cancer With Wilms Tumor Protein 1 Overexpression

    NARCIS (Netherlands)

    Vermeij, Renee; de Bock, Geertruida H.; Leffers, Ninke; ten Hoor, Klaske A.; Schulze, Ute; Hollema, Harry; van der Burg, Sjoerd H.; van der Zee, Ate G. J.; Daemen, Toos; Nijman, Hans W.

    2011-01-01

    Immune response characterization at the primary tumor site enables the design of therapeutic vaccination strategies with higher efficacy in epithelial ovarian cancer (EOC). In this study, we related Wilms tumor protein 1 (WT1) overexpression, a well-established immunotherapeutic target, to clinicopa

  17. Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway.

    Science.gov (United States)

    Huang, Chuanshu; Li, Jingxia; Song, Lun; Zhang, Dongyun; Tong, Qiangsong; Ding, Min; Bowman, Linda; Aziz, Robeena; Stoner, Gary D

    2006-01-01

    Previous studies have shown that freeze-dried black raspberry extract fractions inhibit benzo(a)pyrene [B(a)P]-induced transformation of Syrian hamster embryo cells and benzo(a)pyrene diol-epoxide [B(a)PDE]-induced activator protein-1 (AP-1) activity in mouse epidermal Cl 41 cells. The phosphotidylinositol 3-kinase (PI-3K)/Akt pathway is critical for B(a)PDE-induced AP-1 activation in mouse epidermal Cl 41 cells. In the present study, we determined the potential involvement of PI-3K and its downstream kinases on the inhibition of AP-1 activation by black raspberry fractions, RO-FOO3, RO-FOO4, RO-ME, and RO-DM. In addition, we investigated the effects of these fractions on the expression of the AP-1 target genes, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Pretreatment of Cl 41 cells with fractions RO-F003 and RO-ME reduced activation of AP-1 and the expression of VEGF, but not iNOS. In contrast, fractions RO-F004 and RO-DM had no effect on AP-1 activation or the expression of either VEGF or iNOS. Consistent with inhibition of AP-1 activation, the RO-ME fraction markedly inhibited activation of PI-3K, Akt, and p70 S6 kinase (p70(S6k)). In addition, overexpression of the dominant negative PI-3K mutant delta p85 reduced the induction of VEGF by B(a)PDE. It is likely that the inhibitory effects of fractions RO-FOO3 and RO-ME on B(a)PDE-induced AP-1 activation and VEGF expression are mediated by inhibition of the PI-3K/Akt pathway. In view of the important roles of AP-1 and VEGF in tumor development, one mechanism for the chemopreventive activity of black raspberries may be inhibition of the PI-3K/Akt/AP-1/VEGF pathway.

  18. FETAL FIBRONECTIN AND PHOSPHORILATED INSULIN- LIKE GROWTH FACTOR BINDING PROTEIN-1 AS PREDICTORS OF SPONTANEUS PRETERM DELIVERY

    Directory of Open Access Journals (Sweden)

    Marija Hadži-Lega

    2014-09-01

    Full Text Available The aim of the paper was to assess the combined use of cervical length, fetal fibronectin and cervical phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1 in the prediction of preterm delivery in symptomatic women in the following 14 days. Cervical length was prospectively measured in 58 consecutive singleton pregnancies with intact membranes and regular contractions at 24–36 weeks; fetal fibronectin and phIGFBP-1 were also assessed. Demographic data was evaluated (history of previous preterm delivery, history of spontaneous abortion, parity, BMI, maternal age, Islamic or Orthodox religion. Values of all variables were evaluated (demographic data, cervical length and values of phIGFBP1 and fetal fibronectin alone and in combination with cervical length of ≤ 15mm and more than 15 mm. PhIGFPB was positive in 30 patients (22 of them gave birth in 14 days. In women with cervical length less than 15 mm phIGFBP-1, it was positive in 9 pregnant women who were delivered in 14 days. In women with cervical length less than 25 mm phIGFBP-1 was positive in 26 patients (2 of them gave birth in 14 days. In patients with cervical length more than 25 mm phIGFBP-1 was positive in 4 patients (2 of them gave birth in 14 days. Using logistic regression we confirmed that with OR 0.117 and CI 95% (0.046-0.295 and p<0.01 odds for preterm birth among patients with negative test results, phIGFBP-1 was by 0.117 lower than the odds for preterm birth among patients with positive test results. Using the same test, we confirmed that with OR=14,722 (CI 95% 5.27-41.1, (p<0.01 cervical length less than 25 mm was a good predictor of preterm delivery in symptomatic patients. Probability for delivery in the following 14 days in patients with positive phIGFBP-1 and cervical length≤15 mm is 0.88 or probability for not delivering in those patients is 0.12. Eighty-eight percents of patients with positive phIGFBP-1 and cervical length ≤15 mm will give birth

  19. Triptolide inhibits transcription of hTERT through down-regulation of transcription factor specificity protein 1 in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, Cong; Wang, Jingchao [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Guo, Wei [Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Wang, Huan; Wang, Chao; Liu, Yu [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Sun, Xiaoping, E-mail: xsun6@whu.edu.cn [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); State Key Laboratory of Virology, Wuhan University, Wuhan, 430072 (China)

    2016-01-01

    Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated that triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.

  20. Hematopoietic lineage cell specific protein 1 (HS1) is a functionally important signaling molecule in platelet activation.

    Science.gov (United States)

    Kahner, Bryan N; Dorsam, Robert T; Mada, Sripal R; Kim, Soochong; Stalker, Timothy J; Brass, Lawrence F; Daniel, James L; Kitamura, Daisuke; Kunapuli, Satya P

    2007-10-01

    Collagen activates platelets through an intracellular signaling cascade downstream of glycoprotein VI (GPVI). We have investigated the contribution of hematopoietic lineage cell-specific protein 1 (HS1) downstream of GPVI in platelet activation. Stimulation of GPVI leads to tyrosine phosphorylation of HS1, which is blocked by Src-family kinase inhibitors. Coimmunoprecipitation experiments revealed that HS1 associates with Syk and phosphatidylinositol 3-kinases. HS1-null mice displayed increased bleeding times and increased time to occlusion in the FeCl(3) in vivo thrombosis model compared with their wild-type littermates. In addition, aggregation and secretion responses were diminished in HS1-null mouse platelets after stimulation of GPVI and protease-activated receptor 4 (PAR-4) agonists compared with wild-type littermate mouse platelets. Finally, Akt phosphorylation was diminished after GPVI or PAR-4 stimulation in platelets from HS1-null mice compared with their wild-type littermates. These results demonstrate that phosphorylation of the HS1 protein occurs downstream of GPVI stimulation and that HS1 plays a significant functional role in platelet activation downstream of GPVI and PARs.

  1. Molecular Mechanisms of TNFR-associated Factor 6 (TRAF6) Utilization by the Oncogenic Viral Mimic of CD40, Latent Membrane Protein 1 (LMP1)*

    Science.gov (United States)

    Arcipowski, Kelly M.; Stunz, Laura L.; Graham, John P.; Kraus, Zachary J.; Bush, Tony J. Vanden; Bishop, Gail A.

    2011-01-01

    Latent membrane protein 1 (LMP1), encoded by Epstein-Barr virus, is required for EBV-mediated B cell transformation and plays a significant role in the development of posttransplant B cell lymphomas. LMP1 has also been implicated in exacerbation of autoimmune diseases such as systemic lupus erythematosus. LMP1 is a constitutively active functional mimic of the tumor necrosis factor receptor superfamily member CD40, utilizing tumor necrosis factor receptor-associated factor (TRAF) adaptor proteins to induce signaling. However, LMP1-mediated B cell activation is amplified and sustained compared with CD40. We have previously shown that LMP1 and CD40 use TRAFs 1, 2, 3, and 5 differently. TRAF6 is important for CD40 signaling, but the role of TRAF6 in LMP1 signaling in B cells is not clear. Although TRAF6 binds directly to CD40, TRAF6 interaction with LMP1 in B cells has not been characterized. Here we tested the hypothesis that TRAF6 is a critical regulator of LMP1 signaling in B cells, either as part of a receptor-associated complex and/or as a cytoplasmic adaptor protein. Using TRAF6-deficient B cells, we determined that TRAF6 was critical for LMP1-mediated B cell activation. Although CD40-mediated TRAF6-dependent signaling does not require the TRAF6 receptor-binding domain, we found that LMP1 signaling required the presence of this domain. Furthermore, TRAF6 was recruited to the LMP1 signaling complex via the TRAF1/2/3/5 binding site within the cytoplasmic domain of LMP1. PMID:21262968

  2. Epstein - Barr virus latent membrane protein 1 suppresses reporter activity through modulation of promyelocytic leukemia protein-nuclear bodies

    Directory of Open Access Journals (Sweden)

    Flemington Erik K

    2011-10-01

    Full Text Available Abstract The Epstein-Barr virus (EBV encoded Latent Membrane Protein 1 (LMP1 has been shown to increase the expression of promyelocytic leukemia protein (PML and the immunofluorescent intensity of promyelocytic leukemia nuclear bodies (PML NBs. PML NBs have been implicated in the modulation of transcription and the association of reporter plasmids with PML NBs has been implicated in repression of reporter activity. Additionally, repression of various reporters in the presence of LMP1 has been noted. This study demonstrates that LMP1 suppresses expression of reporter activity in a dose responsive manner and corresponds with the LMP1 induced increase in PML NB intensity. Disruption of PML NBs with arsenic trioxide or a PML siRNA restores reporter activity. These data offer an explanation for previously conflicting data on LMP1 signaling and calls attention to the possibility of false-positives and false-negatives when using reporter assays as a research tool in cells expressing LMP1.

  3. Actin-interacting Protein 1 Promotes Disassembly of Actin-depolymerizing Factor/Cofilin-bound Actin Filaments in a pH-dependent Manner.

    Science.gov (United States)

    Nomura, Kazumi; Hayakawa, Kimihide; Tatsumi, Hitoshi; Ono, Shoichiro

    2016-03-04

    Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly. Both AIP1 isoforms only weakly enhance disassembly of ADF/cofilin-bound actin filaments at an acidic pH but show stronger disassembly activity at neutral and basic pH values. However, a severing-defective mutant of UNC-78 shows pH-insensitive binding to ADF/cofilin-decorated actin filaments, suggesting that the process of filament severing or disassembly, but not filament binding, is pH-dependent. His-60 of AIP1 is located near the predicted binding surface for the ADF/cofilin-actin complex, and an H60K mutation of AIP1 partially impairs its pH sensitivity, suggesting that His-60 is involved in the pH sensor for AIP1. These biochemical results suggest that pH-dependent changes in AIP1 activity might be a novel regulatory mechanism of actin filament dynamics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. N-(4-bromophenethyl) Caffeamide Inhibits Melanogenesis by Regulating AKT/Glycogen Synthase Kinase 3 Beta/Microphthalmia-associated Transcription Factor and Tyrosinase-related Protein 1/Tyrosinase.

    Science.gov (United States)

    Kuo, Yueh-Hsiung; Chen, Chien-Chia; Lin, Ping; You, Ya-Jhen; Chiang, Hsiu-Mei

    2015-01-01

    Skin color is primarily produced by melanin, which is a crucial pigment that protects the skin from UV-induced damage and prevents carcinogenesis. However, accumulated melanin in the skin may cause hyperpigmentation and related disorders. Melanin synthesis comprises consecutive oxidative reactions, and tyrosinase is the enzyme that catalyzes the rate-limiting process of melanogenesis. In this study, tyrosinase-related protein 1 (TRP-1) and TRP-2 contributed to melanin formation. N-(4-bromophenethyl) caffeamide ((E)-N-(4-bromophenethyl)-3-(3,4-dihydroxyphenyl)acrylamide; K36H), a caffeic acid phenyl amide derivative, inhibited α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity in B16F0 cells. In addition, K36H reduced the protein expression of the phospho-cAMP response element binding protein (p-CREB), microphthalmia-associated transcription factor (MITF), tyrosinase, and TRP-1. Moreover, K36H promoted AKT and glycogen synthase kinase 3 beta (GSK3β) phosphorylation, thereby inhibiting MITF transcription activity. Thus, K36H attenuated α-MSH-induced cAMP pathways, contributing to hypopigmentation. The results of a safety assay revealed that K36H did not exhibit cytotoxicity or irritate the skin or eyes. According to these results, K36H may have the potential to be used as a whitening agent in the cosmetic and pharmaceutical industries.

  5. Src kinase and Syk activation initiate PI3K signaling by a chimeric latent membrane protein 1 in Epstein-Barr virus (EBV)+ B cell lymphomas.

    Science.gov (United States)

    Hatton, Olivia; Lambert, Stacie L; Krams, Sheri M; Martinez, Olivia M

    2012-01-01

    The B lymphotrophic γ-herpesvirus EBV is associated with a variety of lymphoid- and epithelial-derived malignancies, including B cell lymphomas in immunocompromised and immunosuppressed individuals. The primary oncogene of EBV, latent membrane protein 1 (LMP1), activates the PI3K/Akt pathway to induce the autocrine growth factor, IL-10, in EBV-infected B cells, but the mechanisms underlying PI3K activation remain incompletely understood. Using small molecule inhibition and siRNA strategies in human B cell lines expressing a chimeric, signaling-inducible LMP1 protein, nerve growth factor receptor (NGFR)-LMP1, we show that NGFR-LMP1 utilizes Syk to activate PI3K/Akt signaling and induce IL-10 production. NGFR-LMP1 signaling induces phosphorylation of BLNK, a marker of Syk activation. Whereas Src kinases are often required for Syk activation, we show here that PI3K/Akt activation and autocrine IL-10 production by NGFR-LMP1 involves the Src family kinase Fyn. Finally, we demonstrate that NGFR-LMP1 induces phosphorylation of c-Cbl in a Syk- and Fyn-dependent fashion. Our results indicate that the EBV protein LMP1, which lacks the canonical ITAM required for Syk activation, can nevertheless activate Syk, and the Src kinase Fyn, resulting in downstream c-Cbl and PI3K/Akt activation. Fyn, Syk, and PI3K/Akt antagonists thus may present potential new therapeutic strategies that target the oncogene LMP1 for treatment of EBV+ B cell lymphomas.

  6. Src kinase and Syk activation initiate PI3K signaling by a chimeric latent membrane protein 1 in Epstein-Barr virus (EBV+ B cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Olivia Hatton

    Full Text Available The B lymphotrophic γ-herpesvirus EBV is associated with a variety of lymphoid- and epithelial-derived malignancies, including B cell lymphomas in immunocompromised and immunosuppressed individuals. The primary oncogene of EBV, latent membrane protein 1 (LMP1, activates the PI3K/Akt pathway to induce the autocrine growth factor, IL-10, in EBV-infected B cells, but the mechanisms underlying PI3K activation remain incompletely understood. Using small molecule inhibition and siRNA strategies in human B cell lines expressing a chimeric, signaling-inducible LMP1 protein, nerve growth factor receptor (NGFR-LMP1, we show that NGFR-LMP1 utilizes Syk to activate PI3K/Akt signaling and induce IL-10 production. NGFR-LMP1 signaling induces phosphorylation of BLNK, a marker of Syk activation. Whereas Src kinases are often required for Syk activation, we show here that PI3K/Akt activation and autocrine IL-10 production by NGFR-LMP1 involves the Src family kinase Fyn. Finally, we demonstrate that NGFR-LMP1 induces phosphorylation of c-Cbl in a Syk- and Fyn-dependent fashion. Our results indicate that the EBV protein LMP1, which lacks the canonical ITAM required for Syk activation, can nevertheless activate Syk, and the Src kinase Fyn, resulting in downstream c-Cbl and PI3K/Akt activation. Fyn, Syk, and PI3K/Akt antagonists thus may present potential new therapeutic strategies that target the oncogene LMP1 for treatment of EBV+ B cell lymphomas.

  7. Notch2 controls prolactin and insulin-like growth factor binding protein-1 expression in decidualizing human stromal cells of early pregnancy.

    Directory of Open Access Journals (Sweden)

    Gerlinde R Otti

    Full Text Available Decidualization, the transformation of the human uterine mucosa into the endometrium of pregnancy, is critical for successful implantation and embryonic development. However, key regulatory factors controlling differentiation of uterine stromal cells into hormone-secreting decidual cells have not been fully elucidated. Hence, we herein investigated the role of the Notch signaling pathway in human decidual stromal cells (HDSC isolated from early pregnancy samples. Immunofluorescence of first trimester decidual tissues revealed expression of Notch2 receptor and its putative, membrane-anchored interaction partners Jagged1, Delta-like (DLL 1 and DLL4 in stromal cells whereas other Notch receptors and ligands were absent from these cells. During in vitro differentiation with estrogen/progesterone (E2P4 and/or cyclic adenosine monophosphate (cAMP HDSC constitutively expressed Notch2 and weakly downregulated Jagged1 mRNA and protein, measured by quantitative PCR (qPCR and Western blotting, respectively. However, increased levels of DLL1 and DLL4 were observed in the decidualizing cultures. Transfection of a Notch luciferase reporter and qPCR of the Notch target gene hairy and enhancer of split 1 (HES1 revealed an induction of canonical Notch activity during in vitro differentiation. In contrast, treatment of HDSC with a chemical Notch/γ-secretase inhibitor decreased cAMP/E2P4-stimulated Notch luciferase activity, HES1 transcript levels and mRNA expression of the decidual marker genes prolactin (PRL and insulin-like growth factor binding protein 1 (IGFBP1. Similarly, siRNA-mediated gene silencing or antibody-mediated blocking of Notch2 diminished HES1, PRL and IGFBP1 mRNA levels as well as secreted PRL protein. In summary, the data suggest that canonical, Notch2-dependent signaling plays a role in human decidualization.

  8. Dickkopf‑related protein 1 induces angiogenesis by upregulating vascular endothelial growth factor in the synovial fibroblasts of patients with temporomandibular joint disorders.

    Science.gov (United States)

    Jiang, Sheng-Jun; Li, Wei; Li, Ying-Jie; Fang, Wei; Long, Xing

    2015-10-01

    Angiogenesis has an important role in the progression of temporomandibular joint disorders (TMD). The aim of the present study was to explore the association between dickkopf‑related protein 1 (DKK‑1) and angiogenesis in TMD. The expression levels of DKK‑1 and vascular endothelial growth factor (VEGF) were quantified by an ELISA assay of the synovial fluid from patients with TMD. The correlation between DKK‑1 and VEGF was analyzed by Pearson correlation test. Synovial fibroblasts were isolated from patients with TMD and were subsequently treated with recombinant human DKK‑1, anti‑DKK‑1 antibody, hypoxia inducible factor‑1α (HIF‑1α), or small interfering RNA (siRNA). The expression levels of DKK‑1, HIF‑1α, and VEGF were subsequently quantified. The present study also investigated the effects of DKK‑1 on the migration of human umbilical vein endothelial cells (HUVEC). Increased expression levels of DKK‑1 were concordant with increased expression levels of VEGF in the synovial fluid from patients with TMD. In the synovial fibroblasts, DKK‑1 increased the expression levels of VEGF, and promoted HIF‑1α nuclear localization. In addition, DKK‑1 induced HUVEC migration, and HIF‑1α siRNA inhibited DKK‑1‑induced cell migration. The results of the present study indicate that DKK‑1 is associated with angiogenesis in the synovial fluid of patients with TMD. Furthermore, HIF‑1α may be associated with DKK‑1‑induced HUVEC activation.

  9. Platelet-derived growth factor (PDGF-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation

    Directory of Open Access Journals (Sweden)

    Bethel-Brown Crystal

    2012-12-01

    Full Text Available Abstract Chemokine (C-C motif ligand 2, also known as monocyte chemoattractant protein 1 (MCP-1 is an important factor for the pathogenesis of HIV-associated neurocognitive disorders (HAND. The mechanisms of MCP-1-mediated neuropathogenesis, in part, revolve around its neuroinflammatory role and the recruitment of monocytes into the central nervous system (CNS via the disrupted blood-brain barrier (BBB. We have previously demonstrated that HIV-1/HIV-1 Tat upregulate platelet-derived growth factor (PDGF-BB, a known cerebrovascular permeant; subsequently, the present study was aimed at exploring the regulation of MCP-1 by PDGF-BB in astrocytes with implications in HAND. Specifically, the data herein demonstrate that exposure of human astrocytes to HIV-1 LAI elevated PDGF-B and MCP-1 levels. Furthermore, treating astrocytes with the human recombinant PDGF-BB protein significantly increased the production and release of MCP-1 at both the RNA and protein levels. MCP-1 induction was regulated by activation of extracellular-signal-regulated kinase (ERK1/2, c-Jun N-terminal kinase (JNK and p38 mitogen-activated protein (MAP kinases and phosphatidylinositol 3-kinase (PI3K/Akt pathways and the downstream transcription factor, nuclear factor κB (NFκB. Chromatin immunoprecipitation (ChIP assays demonstrated increased binding of NFκB to the human MCP-1 promoter following PDGF-BB exposure. Conditioned media from PDGF-BB-treated astrocytes increased monocyte transmigration through human brain microvascular endothelial cells (HBMECs, an effect that was blocked by STI-571, a tyrosine kinase inhibitor (PDGF receptor (PDGF-R blocker. PDGF-BB-mediated release of MCP-1 was critical for increased permeability in an in vitro BBB model as evidenced by blocking antibody assays. Since MCP-1 is linked to disease severity, understanding its modulation by PDGF-BB could aid in understanding the proinflammatory responses in HAND. These results suggest that astrocyte

  10. Expression of insulin-like growth factor binding protein-1 and -2 genes through the perinatal period in the rat.

    Science.gov (United States)

    Babajko, S; Hardouin, S; Segovia, B; Groyer, A; Binoux, M

    1993-06-01

    Insulin-like growth factor binding proteins (IGFBPs) are essential mediators of the bioavailability and biological effects of the IGFs. Liver expression of the rat (r) IGFBP-1 and rIGFBP-2 genes has been characterized between day 16 in utero (16 diu) and 16 days postnatally (+16 dpn). Run-on experiments showed transcriptional activity of the rIGFBP-1 and rIGFBP-2 genes at birth (B) to be 25 and 5 times that at 16 diu, respectively. After B, transcriptional activity of the rIGFBP-1 gene remained high (140% B at +6 dpn), but that of the rIGFBP-2 gene dropped to 70% B by +6 dpn. Northern blot analysis done simultaneously showed rIGFBP-1 messenger RNA (mRNA) levels to increase approximately 50-fold between 16 diu and B, whereas rIGFBP-2 mRNA increased only 5- to 10-fold. rIGFBP-1 mRNA levels decreased after birth, reaching about 20% B by +6 dpn; rIGFBP-2 mRNA, however, remained stable (about 80% B) at least up to +6 dpn. Parallel Western ligand blot and immunoblot analyses of serum rIGFBPs revealed rIGFBP-1 and rIGFBP-2 concentrations to be increased 3- and 2-fold, respectively between 20 diu and B. Maximal expression of rIGFBP-1 was at +1 dpn (220% B), and of rIGFBP-2, at B. Both rIGFBPs then decreased, reaching about 5% B at adulthood. All these data indicate that increased transcriptional activity of the rIGFBP-1 and rIGFBP-2 genes at birth would determine the increased synthesis in the liver and circulating levels of these proteins. In addition, it would seem that post-transcriptional events (reduced half-life of the rIGFBP-1 messenger after birth, translation efficiency of the rIGFBP-2 messenger) modulate transcriptional regulation.

  11. Adipocyte-derived monocyte chemotactic protein-1 (MCP-1) promotes prostate cancer progression through the induction of MMP-2 activity.

    Science.gov (United States)

    Ito, Yusuke; Ishiguro, Hitoshi; Kobayashi, Naohito; Hasumi, Hisashi; Watanabe, Masatoshi; Yao, Masahiro; Uemura, Hiroji

    2015-07-01

    Obesity is known to be associated with prostate cancer development and progression, but the detailed mechanism is not clear. Monocyte chemotactic protein-1 (MCP-1) is secreted from cancer cells, stromal cells, and adipocytes, and it is involved in prostate cancer progression. Here we investigated the biological role of MCP-1 secreted from adipocytes for prostate cancer cells. Human pre-adipocytes (HPAds) were cultured and differentiated to mature adipocytes. Conditioned medium (CM) from HPAd cells was obtained using phenol red-free RPMI1640 medium. We performed a cytokine membrane array analysis to detect cytokines in the CM. To characterize the physiological function of MCP-1 in the CM, we performed an MTT-assay, a wound-healing and invasion assay with anti-MCP-1 antibody using three prostate cancer cell lines: DU145, LNCaP, and PC-3. Matrix metalloproteinase (MMP)-2 and MMP-9 activities were evaluated by gelatin zymography. A qPCR and Western blotting were used to examine the mRNA and protein expression levels of MMP-2. The cytokine membrane array of the CM showed a strong signal of MCP-1compared to the control medium, and we thus focused our attention on MCP-1 in the CM. The CM up-regulated the cancer cell proliferation, and the neutralization by anti-MCP-1 antibody inhibited the proliferative effect of the prostate cancer cell lines. The CM greatly increased the invasive activity in the prostate cancer cell lines, and anti-MCP-1 antibody decreased the invasiveness. Gelatin zymography revealed that the CM markedly enhanced the enzymatic activity of MMP-2, and anti-MCP-1 antibody down-regulated its effect. MMP-2 mRNA expression was undetected and the MMP-2 protein level was unchanged between the control medium and CM in DU145 cells. MCP-1 from adipocytes enhances the growth and invasion activity of prostate cancer cells. The inhibition of MCP-1 derived from adipocytes might be an effective treatment for prostate cancer. © 2015 Wiley Periodicals, Inc.

  12. FAH domain containing protein 1 (FAHD-1 is required for mitochondrial function and locomotion activity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Andrea Taferner

    Full Text Available The fumarylacetoacetate hydrolase (FAH protein superfamily of metabolic enzymes comprises a diverse set of enzymatic functions, including ß-diketone hydrolases, decarboxylases, and isomerases. Of note, the FAH superfamily includes many prokaryotic members with very distinct functions that lack homologs in eukaryotes. A prokaryotic member of the FAH superfamily, referred to as Cg1458, was shown to encode a soluble oxaloacetate decarboxylase (ODx. Based on sequence homologies to Cg1458, we recently identified human FAH domain containing protein-1 (FAHD1 as the first eukaryotic oxaloacetate decarboxylase. The physiological functions of ODx in eukaryotes remain unclear. Here we have probed the function of fahd-1, the nematode homolog of FAHD1, in the context of an intact organism. We found that mutation of fahd-1 resulted in reduced brood size, a deregulation of the egg laying process and a severe locomotion deficit, characterized by a reduced frequency of body bends, reduced exploratory movements and reduced performance in an endurance exercise test. Notably, mitochondrial function was altered in the fahd-1(tm5005 mutant strain, as shown by a reduction of mitochondrial membrane potential and a reduced oxygen consumption of fahd-1(tm5005 animals. Mitochondrial dysfunction was accompanied by lifespan extension in worms grown at elevated temperature; however, unlike in mutant worms with a defect in the electron transport chain, the mitochondrial unfolded protein response was not upregulated in worms upon inactivation of fahd-1. Together these data establish a role of fahd-1 to maintain mitochondrial function and consequently physical activity in nematodes.

  13. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells.

    Science.gov (United States)

    Gordillo, Gayle M; Biswas, Ayan; Khanna, Savita; Spieldenner, James M; Pan, Xueliang; Sen, Chandan K

    2016-05-06

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics.

  14. Amblyomma americanum tick saliva insulin-like growth factor binding protein-related protein 1 binds insulin but not insulin-like growth factors.

    Science.gov (United States)

    Radulović, Ž M; Porter, L M; Kim, T K; Bakshi, M; Mulenga, A

    2015-10-01

    Silencing Amblyomma americanum insulin-like growth factor binding protein-related protein 1 (AamIGFBP-rP1) mRNA prevented ticks from feeding to repletion. In this study, we used recombinant (r)AamIGFBP-rP1 in a series of assays to obtain further insight into the role(s) of this protein in tick feeding regulation. Our results suggest that AamIGFBP-1 is an antigenic protein that is apparently exclusively expressed in salivary glands. We found that both males and females secrete AamIGFBP-rP1 into the host during feeding and confirmed that female ticks secrete this protein from within 24-48 h after attachment. Our data suggest that native AamIGFBP-rP1 is a functional insulin binding protein in that both yeast- and insect cell-expressed rAamIGFBP-rP1 bound insulin, but not insulin-like growth factors. When subjected to anti-blood clotting and platelet aggregation assays, rAamIGFBP-rP1 did not have any effect. Unlike human IGFBP-rP1, which is controlled by trypsinization, rAamIGFBP-rP1 is resistant to digestion, suggesting that the tick protein may not be under mammalian host control at the tick feeding site. The majority of tick-borne pathogens are transmitted 48 h after the tick has attached. Thus, the demonstrated antigenicity and secretion into the host within 24-48 h of the tick starting to feed makes AamIGFBP-rP1 an attractive target for antitick vaccine development.

  15. Ran GTPase-activating protein 1 is a therapeutic target in diffuse large B-cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Kung-Chao Chang

    Full Text Available Lymphoma-specific biomarkers contribute to therapeutic strategies and the study of tumorigenesis. Diffuse large B-cell lymphoma (DLBCL is the most common type of malignant lymphoma. However, only 50% of patients experience long-term survival after current treatment; therefore, developing novel therapeutic strategies is warranted. Comparative proteomic analysis of two DLBCL lines with a B-lymphoblastoid cell line (LCL showed differential expression of Ran GTPase-activating protein 1 (RanGAP1 between them, which was confirmed using immunoblotting. Immunostaining showed that the majority of DLBCLs (92%, 46/50 were RanGAP1(+, while reactive lymphoid hyperplasia (n = 12 was RanGAP1(+ predominantly in germinal centers. RanGAP1 was also highly expressed in other B-cell lymphomas (BCL, n = 180 with brisk mitotic activity (B-lymphoblastic lymphoma/leukemia: 93%, and Burkitt lymphoma: 95% or cell-cycle dysregulation (mantle cell lymphoma: 83%, and Hodgkin's lymphoma 91%. Interestingly, serum RanGAP1 level was higher in patients with high-grade BCL (1.71 ± 2.28 ng/mL, n = 62 than in low-grade BCL (0.75 ± 2.12 ng/mL, n = 52 and healthy controls (0.55 ± 1.58 ng/mL, n = 75 (high-grade BCL vs. low-grade BCL, p = 0.002; high-grade BCL vs. control, p < 0.001, Mann-Whitney U test. In vitro, RNA interference of RanGAP1 showed no effect on LCL but enhanced DLBCL cell death (41% vs. 60%; p = 0.035 and cell-cycle arrest (G0/G1: 39% vs. 49%, G2/M: 19.0% vs. 7.5%; p = 0.030 along with decreased expression of TPX2 and Aurora kinases, the central regulators of mitotic cell division. Furthermore, ON 01910.Na (Estybon, a multikinase inhibitor induced cell death, mitotic cell arrest, and hyperphosphorylation of RanGAP1 in DLBCL cell lines but no effects in normal B and T cells. Therefore, RanGAP1 is a promising marker and therapeutic target for aggressive B-cell lymphoma, especially DLBCL.

  16. Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis.

    Science.gov (United States)

    Nakai, Yusuke; Nakahira, Yoichi; Sumida, Hiroki; Takebayashi, Kosuke; Nagasawa, Yumiko; Yamasaki, Kanako; Akiyama, Masako; Ohme-Takagi, Masaru; Fujiwara, Sumire; Shiina, Takashi; Mitsuda, Nobutaka; Fukusaki, Eiichiro; Kubo, Yasuyuki; Sato, Masa H

    2013-03-01

    Plants adapt to abiotic and biotic stresses by activating abscisic acid-mediated (ABA) abiotic stress-responsive and salicylic acid-(SA) or jasmonic acid-mediated (JA) biotic stress-responsive pathways, respectively. Although the abiotic stress-responsive pathway interacts antagonistically with the biotic stress-responsive pathways, the mechanisms that regulate these pathways remain largely unknown. In this study, we provide insight into the function of vascular plant one-zinc-finger proteins (VOZs) that modulate various stress responses in Arabidopsis. The expression of many stress-responsive genes was changed in the voz1voz2 double mutant under normal growth conditions. Consistent with altered stress-responsive gene expression, freezing- and drought-stress tolerances were increased in the voz1voz2 double mutant. In contrast, resistance to a fungal pathogen, Colletotrichum higginsianum, and to a bacterial pathogen, Pseudomonas syringae, was severely impaired. Thus, impairing VOZ function simultaneously conferred increased abiotic tolerance and biotic stress susceptibility. In a chilling stress condition, both the VOZ1 and VOZ2 mRNA expression levels and the VOZ2 protein level gradually decreased. VOZ2 degradation during cold exposure was completely inhibited by the addition of the 26S proteasome inhibitor, MG132, a finding that suggested that VOZ2 degradation is dependent on the ubiquitin/26S proteasome system. In voz1voz2, ABA-inducible transcription factor CBF4 expression was enhanced significantly even under normal growth conditions, despite an unchanged endogenous ABA content. A finding that suggested that VOZs negatively affect CBF4 expression in an ABA-independent manner. These results suggest that VOZs function as both negative and positive regulators of the abiotic and biotic stress-responsive pathways, and control Arabidopsis adaptation to various stress conditions. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  17. A novel method for evaluating microglial activation using ionized calcium-binding adaptor protein-1 staining: cell body to cell size ratio

    NARCIS (Netherlands)

    Hovens, Iris; Nyakas, Csaba; Schoemaker, Regina

    2014-01-01

    Aim: The aim was to validate a newly developed methodology of semi-automatic image analysis to analyze microglial morphology as marker for microglial activation in ionized calcium-binding adaptor protein-1 (IBA-1) stained brain sections. Methods: The novel method was compared to currently used analy

  18. Effect of gene modified mesenchymal stem cells overexpression human receptor activity modified protein 1 on inflammation and cardiac repair in a rabbit model of myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    赵然尊

    2012-01-01

    Objective To investigate the effect of mesenchymal stem cells(MSCs) overexpressing human receptor activity modified protein 1(hRAMP1) by adenovirus vector on infarction related inflammation and cardiac repair in a rabbit model of myocardial infarction(MI)

  19. Insulin-like growth factor binding protein-1 : isolation of the gene and characterization of the protein

    NARCIS (Netherlands)

    A. Brinkman (Arend)

    1994-01-01

    textabstractFetal and postnatal growth is the ultitnate result of a delicate balance between processes of proliferation, differentiation and death of cells. Proliferation and differentiation are strictly controlled by growth factors and hormones. A large number of growth factors has been characteriz

  20. Effects of insulin-like growth factor binding protein-related protein 1 in mice with hepatic fibrosis induced by thioacetamide

    Institute of Scientific and Technical Information of China (English)

    LIU Li-xin; ZHANG Hai-yan; ZHANG Qian-qian; GUO Xiao-hong

    2010-01-01

    Background Insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) can activate hepatic stellate cells and increase extracellular matrix (ECM) in vitro. However, the effects of IGFBPrP1 in mice with hepatic fibrosis, and the mechanisms of these effects, are currently unknown. We aim to address these issues in this study.Methods Intraperitoneal injection of thioacetamide (TAA) is a classic method for establishing a mouse model of hepatic fibrosis. Using this model, we administered anti-IGFBPrP1 antibody, again via intraperitoneal injection. The morphological changes of liver fibrosis were observed with both HE and Masson stainning. The immunohistochemical assays and Western blotting were used to measure changes in IGFBPrP1, α-smooth muscle actin (α-SMA) and ECM in liver tissues, and the expression of transforming growth factor-β1 (TGF-β1) and Smad3. Data were statistically analyzed using one-way analysis of variance (ANOVA), the SNK-q test for inter-group differences.Results The Masson staining analysis showed that compared with normal control group, content of collagen fiber in TAA5w group was significantly increased (P <0.01), and it was significantly decreased in TAA5w/alGFBPrP1 group compared with in TAA5w group (P <0.01). The expression of hepatic IGFBPrP1, α-SMA, TGF-β1, Smad3, collagen I and fibronectin (FN) was significantly up-regulated in the TAA5w group (P <0.01). Anti-IGFBPrP1 treatment reversed these changes (P <0.01).Conclusions IGFBPrP1 plays an important role in the development of hepatic fibrosis. Anti-IGFBPrP1 prevents fibrosis in mice by suppressing the activation of hepatic stellate cells, inhibiting the synthesis of major components of the ECM (namely, collagen I and FN). The mechanism for this suppression of fibrosis is associated with the TGF-β1/Smad3 signaling pathways.

  1. Effects of Simvastatin on NF-κB-DNA Binding Activity and Monocyte Chemoattractant Protein-1 Expression in a Rabbit Model of Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaoyun; WANG Lin; ZENG Hesong; DUBEY Laxman; ZHOU Ning; PU Jun

    2006-01-01

    To observe the effects of simvastatin on nuclear factor kappaB (NF-κB)-DNA binding activity and on the expression of monocyte chemoattractant protein-1 (MCP-1) in atherosclerotic plaque in rabbits and to explore the anti-atherosclerotic properties beyond its lipid-lowering effects.Thirty-six New Zealand male rabbits were randomly divided into low-cholesterol group (LC), highcholesterol group (HC), high-cholesterol+ simvastatin group (HC+S) and then were fed for 12weeks. At the end of theexperiment, standard enzymatic assays, electrophoretic mobility shift assay (EMSA), immunohistochemical staining, and morphometry were performed to observe serum lipids, NF-κB-DNA binding activity, MCP-1 protein expression, intima thickness and plaque area of aorta respectively in all three groups. Our results showed that the serum lipids, NF-κB-DNA binding activity, expression of MCP-1 protein, intima thickness, and plaque area of aorta in the LC and HC+S groups were significantly lower than those in the HC group (P<0.05). There was no significant difference in the serum lipids between the LC and HC+S groups (P>0.05), but the NF-κB-DNA binding activity, the expression of MCP-1 protein and the intima thickness and plaque area of aorta in the HC+S group were significantly decreased as compared to the LC group (P<0.05). This study demonstrated that simvastatin could decrease atherosclerosis by inhibiting the NFκB-DNA binding activity and by reducing the expression of MCP-1 protein.

  2. Porcine reproductive and respiratory syndrome virus nonstructural protein 1beta modulates host innate immune response by antagonizing IRF3 activation.

    Science.gov (United States)

    Beura, Lalit K; Sarkar, Saumendra N; Kwon, Byungjoon; Subramaniam, Sakthivel; Jones, Clinton; Pattnaik, Asit K; Osorio, Fernando A

    2010-02-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) infection of swine leads to a serious disease characterized by a delayed and defective adaptive immune response. It is hypothesized that a suboptimal innate immune response is responsible for the disease pathogenesis. In the study presented here we tested this hypothesis and identified several nonstructural proteins (NSPs) with innate immune evasion properties encoded by the PRRS viral genome. Four of the total ten PRRSV NSPs tested were found to have strong to moderate inhibitory effects on beta interferon (IFN-beta) promoter activation. The strongest inhibitory effect was exhibited by NSP1 followed by, NSP2, NSP11, and NSP4. We focused on NSP1alpha and NSP1beta (self-cleavage products of NSP1 during virus infection) and NSP11, three NSPs with strong inhibitory activity. All of three proteins, when expressed stably in cell lines, strongly inhibited double-stranded RNA (dsRNA) signaling pathways. NSP1beta was found to inhibit both IFN regulatory factor 3 (IRF3)- and NF-kappaB-dependent gene induction by dsRNA and Sendai virus. Mechanistically, the dsRNA-induced phosphorylation and nuclear translocation of IRF3 were strongly inhibited by NSP1beta. Moreover, when tested in a porcine myelomonocytic cell line, NSP1beta inhibited Sendai virus-mediated activation of porcine IFN-beta promoter activity. We propose that this NSP1beta-mediated subversion of the host innate immune response plays an important role in PRRSV pathogenesis.

  3. Effects of glutathione depletion by 2-cyclohexen-1-one on excitatory amino acids-induced enhancement of activator protein-1 DNA binding in murine hippocampus.

    Science.gov (United States)

    Ogita, K; Kitayama, T; Okuda, H; Yoneda, Y

    2001-03-01

    We have investigated the role of glutathione in mechanisms associated with excitatory amino acid signaling to the nuclear transcription factor activator protein-1 (AP1) in the brain using mice depleted of endogenous glutathione by prior treatment with 2-cyclohexen-1-one (CHX). In the hippocampus of animals treated with CHX 2 h before, a significant increase was seen in enhancement of AP1 DNA binding when determined 2 h after the injection of kainic acid (KA) at low doses. The sensitization to KA was not seen in animals injected with CHX 24 h before, in coincidence with the recovery of glutathione contents to the normal levels. By contrast, CHX did not significantly affect the potentiation by NMDA of AP1 binding under any experimental conditions. Prior treatment with CHX resulted in facilitation of behavioral changes induced by KA without affecting those induced by NMDA. These results suggest that endogenous glutathione may be at least in part involved in molecular mechanisms underlying transcriptional control by KA, but not by NMDA, signals of cellular functions.

  4. Human pathogenic Borrelia spielmanii sp. nov. resists complement-mediated killing by direct binding of immune regulators factor H and factor H-like protein 1.

    Science.gov (United States)

    Herzberger, Pia; Siegel, Corinna; Skerka, Christine; Fingerle, Volker; Schulte-Spechtel, Ulrike; van Dam, Alje; Wilske, Bettina; Brade, Volker; Zipfel, Peter F; Wallich, Reinhard; Kraiczy, Peter

    2007-10-01

    Borrelia spielmanii sp. nov. has recently been shown to be a novel human pathogenic genospecies that causes Lyme disease in Europe. In order to elucidate the immune evasion mechanisms of B. spielmanii, we compared the abilities of isolates obtained from Lyme disease patients and tick isolate PC-Eq17 to escape from complement-mediated bacteriolysis. Using a growth inhibition assay, we show that four B. spielmanii isolates, including PC-Eq17, are serum resistant, whereas a single isolate, PMew, was more sensitive to complement-mediated lysis. All isolates activated complement in vitro, as demonstrated by covalent attachment of C3 fragments; however, deposition of the later activation products C6 and C5b-9 was restricted to the moderately serum-resistant isolate PMew and the serum-sensitive B. garinii isolate G1. Furthermore, serum adsorption experiments revealed that all B. spielmanii isolates acquired the host alternative pathway regulators factor H and factor H-like protein (FHL-1) from human serum. Both complement regulators retained their factor I-mediated C3b inactivation activities when bound to spirochetes. In addition, two distinct factor H and FHL-1 binding proteins, BsCRASP-1 and BsCRASP-2, were identified, which we estimated to be approximately 23 to 25 kDa in mass. A further factor H binding protein, BsCRASP-3, was found exclusively in the tick isolate, PC-Eq17. This is the first report describing an immune evasion mechanism utilized by B. spielmanii sp. nov., and it demonstrates the capture of human immune regulators to resist complement-mediated killing.

  5. Bioactive insulin-like growth factor (IGF) I and IGF-binding protein-1 in anorexia nervosa

    DEFF Research Database (Denmark)

    Støving, René; Chen, Jian-Wen; Glintborg, Dorte

    2007-01-01

    CONTEXT: Regulation of IGF-I activity appears crucial in anorexia nervosa (AN) during adaptation to chronic starvation as well as during the regenerative processes on nutritional restoration. OBJECTIVE: The objective of this study was to examine the relationship between IGF-I bioactivity and IGF...

  6. Sterol Regulatory Element Binding Protein 1a Regulates Hepatic Fatty Acid Partitioning by Activating Acetyl Coenzyme A Carboxylase 2

    OpenAIRE

    Im, Seung-Soon; Hammond, Linda E.; Yousef, Leyla; Nugas-Selby, Cherryl; Shin, Dong-Ju; Seo, Young-Kyo; Fong, Loren G.; Young, Stephen G.; Osborne, Timothy F.

    2009-01-01

    We generated a line of mice in which sterol regulatory element binding protein 1a (SREBP-1a) was specifically inactivated by insertional mutagenesis. Homozygous mutant mice were completely viable despite expressing SREBP-1a mRNA below 5% of normal, and there were minimal effects on expression of either SREBP-1c or -2. Microarray expression studies in liver, where SREBP-1a mRNA is 1/10 the level of the highly similar SREBP-1c, demonstrated that only a few genes were affected. The only downregu...

  7. Interaction between Fibrinogen and Insulin-Like Growth Factor-Binding Protein-1 in Human Plasma under Physiological Conditions.

    Science.gov (United States)

    Gligorijević, N; Nedić, O

    2016-02-01

    Fibrinogen is a plasma glycoprotein and one of the principle participants in blood coagulation. It interacts with many proteins during formation of a blood clot, including insulin-like growth factors (IGFs) and their binding proteins (IGFBP). Fibrinogen complexes were found as minor fractions in fibrinogen preparations independently of the coagulation process, and their presence influences the kinetics of polymerization. The idea of this work was to investigate whether fibrinogen in human plasma interacts with IGFBPs independently of the tissue injury or coagulation process. The results have shown that fibrinogen forms complexes with IGFBP-1 under physiological conditions. Several experimental approaches have confirmed that complexes are co-isolated with fibrinogen from plasma, they are relatively stable, and they appear as a general feature of human plasma. Several other experiments excluded the possibility that alpha-2 macroglobulin/IGFBP-1 complexes or IGFBP-1 oligomers contributed to IGFBP-1 immunoreactivity. The role of fibrinogen/IGFBP-1 complexes is still unknown. Further investigation in individuals expressing both impaired glucose control and coagulopathy could contribute to identification and understanding of their possible physiological role.

  8. Identification of Arabidopsis cyclase-associated protein 1 as the first nucleotide exchange factor for plant actin.

    Science.gov (United States)

    Chaudhry, Faisal; Guérin, Christophe; von Witsch, Matthias; Blanchoin, Laurent; Staiger, Christopher J

    2007-08-01

    The actin cytoskeleton powers organelle movements, orchestrates responses to abiotic stresses, and generates an amazing array of cell shapes. Underpinning these diverse functions of the actin cytoskeleton are several dozen accessory proteins that coordinate actin filament dynamics and construct higher-order assemblies. Many actin-binding proteins from the plant kingdom have been characterized and their function is often surprisingly distinct from mammalian and fungal counterparts. The adenylyl cyclase-associated protein (CAP) has recently been shown to be an important regulator of actin dynamics in vivo and in vitro. The disruption of actin organization in cap mutant plants indicates defects in actin dynamics or the regulated assembly and disassembly of actin subunits into filaments. Current models for actin dynamics maintain that actin-depolymerizing factor (ADF)/cofilin removes ADP-actin subunits from filament ends and that profilin recharges these monomers with ATP by enhancing nucleotide exchange and delivery of subunits onto filament barbed ends. Plant profilins, however, lack the essential ability to stimulate nucleotide exchange on actin, suggesting that there might be a missing link yet to be discovered from plants. Here, we show that Arabidopsis thaliana CAP1 (AtCAP1) is an abundant cytoplasmic protein; it is present at a 1:3 M ratio with total actin in suspension cells. AtCAP1 has equivalent affinities for ADP- and ATP-monomeric actin (Kd approximately 1.3 microM). Binding of AtCAP1 to ATP-actin monomers inhibits polymerization, consistent with AtCAP1 being an actin sequestering protein. However, we demonstrate that AtCAP1 is the first plant protein to increase the rate of nucleotide exchange on actin. Even in the presence of ADF/cofilin, AtCAP1 can recharge actin monomers and presumably provide a polymerizable pool of subunits to profilin for addition onto filament ends. In turnover assays, plant profilin, ADF, and CAP act cooperatively to promote flux

  9. Insulin-like growth factor binding protein-1 levels are increased in patients with IgA nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, Koki [Department of Digestive and Life-Style Related Disease, Health Research Course, Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Uto, Hirofumi, E-mail: hirouto@m2.kufm.kagoshima-u.ac.jp [Department of Digestive and Life-Style Related Disease, Health Research Course, Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Takami, Yoichiro; Mera, Kumiko; Nishida, Chika; Yoshimine, Yozo; Fukumoto, Mayumi; Oku, Manei; Sogabe, Atsushi; Nosaki, Tsuyoshi; Moriuchi, Akihiro; Oketani, Makoto; Ido, Akio; Tsubouchi, Hirohito [Department of Digestive and Life-Style Related Disease, Health Research Course, Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan)

    2010-08-20

    Research highlights: {yields} IGFBP-1 mRNA over express in kidneys obtained from mice model of IgA nephropathy. {yields} Serum IGFBP-1 levels are high in patients with IgA nephropathy. {yields} Serum IGFBP-1 levels correlate with renal function and the severity of renal injury. -- Abstract: The mechanisms underlying the pathogenesis of immunoglobulin A (IgA) nephropathy (IgAN) are not well understood. In this study, we examined gene expression profiles in kidneys obtained from mice with high serum IgA levels (HIGA mice), which exhibit features of human IgAN. Female inbred HIGA, established from the ddY line, were used in these experiments. Serum IgA levels, renal IgA deposition, mesangial proliferation, and glomerulosclerosis were increased in 32-week-old HIGA mice in comparison to ddY animals. By microarray analysis, five genes were observed to be increased by more than 2.5-fold in 32-week-old HIGA in comparison to 16-week-old HIGA; these same five genes were decreased more than 2.5-fold in 32-week-old ddY in comparison to 16-week-old ddY mice. Of these five genes, insulin-like growth factor (IGF) binding protein (IGFBP)-1 exhibited differential expression between these mouse lines, as confirmed by quantitative RT-PCR. In addition, serum IGFBP-1 levels were significantly higher in patients with IgAN than in healthy controls. In patients with IgAN, these levels correlated with measures of renal function, such as estimated glomerular filtration rate (eGFR), but not with sex, age, serum IgA, C3 levels, or IGF-1 levels. Pathologically, serum IGFBP-1 levels were significantly associated with the severity of renal injury, as assessed by mesangial cell proliferation and interstitial fibrosis. These results suggest that increased IGFBP-1 levels are associated with the severity of renal pathology in patients with IgAN.

  10. Unfractionated heparin suppresses lipopolysaccharide-induced monocyte chemoattractant protein-1 expression in human microvascular endothelial cells by blocking Krüppel-like factor 5 and nuclear factor-κB pathway.

    Science.gov (United States)

    Li, Xu; Li, Xin; Zheng, Zhen; Liu, Yina; Ma, Xiaochun

    2014-10-01

    Unfractionated heparin (UFH) and low-molecular-weight heparins (LMWH), apart from anticoagulant activities, contain a variety of biological properties such as anti-inflammatory actions possibly affecting sepsis. Chemokines are vital for promoting the movement of circulating leukocytes to the site of infection and are involved in the pathogenesis of sepsis. The purpose of this study was to investigate the effects and potential mechanisms of UFH on lipopolysaccharide (LPS)-induced chemokine production in human pulmonary microvascular endothelial cells (HPMECs). HPMECs were pretreated with UFH (0.1 U/ml and 1 U/ml), 15 min prior to stimulation with LPS (10 μg/ml). Cells were cultured under various experimental conditions for 2 h and 6 h for analysis. UFH markedly decreased LPS-induced interleukin (IL)-8 and monocyte chemoattractant protein-1 (MCP-1) mRNA and protein expression in HPMECs. UFH also attenuated the secretion of these chemokines in culture supernatants. In addition, UFH blocked the chemotactic activities of LPS-stimulated HPMECs supernatants on monocytes migration as expected. UFH inhibited LPS-induced Krüppel-like factor 5 (KLF-5) mRNA and protein levels. Concurrently, UFH reduced nuclear factor (NF)-κB nuclear translocation. Importantly, transfection with siRNA targeting KLF-5 reduced NF-κB activation and chemokines expression. These results demonstrate that interfering with KLF-5 mediated NF-κB activation might contribute to the inhibitory effects of chemokines and monocytes migration by UFH in LPS-stimulated HPMECs.

  11. Insulin-like growth factor-binding protein-1 (IGFBP-1 in cervical secretions in women with symptoms of preterm delivery

    Directory of Open Access Journals (Sweden)

    Amra Habibović

    2008-08-01

    Full Text Available The aim of this prospective study was to investigate a value ofinsulin-like growth factor-binding protein-1 (IGFBP-1 in cervicalsecretion in women with symptoms of preterm delivery and correlatethis test to the Bishop Score in prediction of a preterm delivery.The study group included 30 pregnant women with singletonpregnancy between 24 – 34 gestational weeks who were hospitalizedbecause of a threatening preterm delivery with intact fetalmembranes. A positive Actim Partus test (concentration higherthan 10 µg/l and Bishop Score higher than 4 signify a risk of thepreterm delivery. The Bishop Score is a better predictor of the pretermdelivery in patients with symptoms of the preterm delivery.

  12. Impact of the Tumor Necrosis Factor Receptor-Associated Protein 1 (Trap1) on Renal DNaseI Shutdown and on Progression of Murine and Human Lupus Nephritis

    DEFF Research Database (Denmark)

    Fismen, Silje; Thiyagarajan, Dhivya; Seredkina, Natalya

    2013-01-01

    electron microscopy, IHC, and in situ hybridization. Data indicate that silencing of DNaseI gene expression correlates inversely with expression of the Trap1 gene. Our observations suggest that the mouse model is relevant for the aspects of disease progression in human lupus nephritis. Acquired silencing...... basement membranes where they appear in complex with IgG antibodies. Here, we implicate the anti-apoptotic and survival protein, tumor necrosis factor receptor-associated protein 1 (Trap1) in the disease process, based on the observation that annotated transcripts from this gene overlap with transcripts...... from the DNaseI gene. Furthermore, we translate these observations to human lupus nephritis. In this study, mouse and human DNaseI and Trap1 mRNA levels were determined by quantitative PCR and compared with protein expression levels and clinical data. Cellular localization was analyzed by immune...

  13. Quercetin Induces Antiproliferative Activity Against Human Hepatocellular Carcinoma (HepG2) Cells by Suppressing Specificity Protein 1 (Sp1).

    Science.gov (United States)

    Lee, Ra Ham; Cho, Jin Hyoung; Jeon, Young-Joo; Bang, Woong; Cho, Jung-Jae; Choi, Nag-Jin; Seo, Kang Seok; Shim, Jung-Hyun; Chae, Jung-Il

    2015-02-01

    Preclinical Research Quercetin, found in red onions and red apple skin can induce apoptosis insome malignant cells. However, the apoptotic effect of quercetin in hepatocellular carcinoma HepG2 cells via regulation of specificity protein 1 (Sp1) has not been studied. Here, we demonstrated that quercetin decreased cell growth and induce apoptosis in HepG2 cells via suppression of Sp1 using 3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, Annexin V, and Western blot analysis, an effect that was dose- and time-dependent manner. Treatment of HepG2 cells with quercetin reduced cell growth and induced apoptosis, followed by regulation of Sp1 and Sp1 regulatory protein. Taken together, the results suggest that quercetin can induce apoptotic cell death by regulating cell cycle and suppressing antiapoptotic proteins. Therefore, quercetin may be useful for cancer prevention. Drug Dev Res 76 : 9-16, 2015. © 2015 Wiley Periodicals, Inc.

  14. Activator protein-1 involved in growth inhibition by RASSF1A gene in the human gastric carcinoma cell line SGC7901

    Institute of Scientific and Technical Information of China (English)

    Zheng-Hao Deng; Ji-Fang Wen; Jing-He Li; De-Sheng Xiao; Jian-Hua Zhou

    2008-01-01

    AIM:To investigate the role of Ras association domain family protein 1 isoform A (RASSFIA) in gastric tumorigenesis.METHODS:Through over-expression of RASSFIA gene in the SGC7901 cell line which was induced by a lipofectamine-mediated gene transfer approach.Activator protein-1 (AP-1) DNA binding activity was measured by electrophoretic mobility shift assay (EMSA).RESULTS:Compared with the control clones,cells over expressing RASSF1A exhibited significant inhibition of cell growth with G1 cell cycle arrest in vitro and in vivo.The over-expression of RASSF1A significantly inhibited AP-1activity in SGC7901 cells (0.981 + 0.011 vs 0.354 ± 0.053,P<0.001).In addition,both Western blot analysis and immunocytochemistry demonstrated that RASSF1A down-regulated the expression of c-Fos (0.975±0.02 vs0.095+0.024,P<0.001) but not c-Jun.CONCLUSION:Over-expression of RASSF1A inhibits the growth of SGC7901 cells by negatively regulating the AP-1 activity,the latter in turn negatively signals cell proliferation.

  15. Advanced oxidation protein products induce monocyte chemoattractant protein-1 expression via p38 mitogen-activated protein kinase activation in rat vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    PENG Kan-fu; WU Xiong-fei; ZHAO Hong-wen; SUN Yan

    2006-01-01

    Background Advanced oxidation protein products (AOPPs) are new uremic toxins reported by Witko-Sarsat in 1996, which are associated with the pathogenesis of atherosclerosis. However, the mechanisms by which AOPPs enhance atherosclerosis have not been fully understood. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine which stimulates migration of monocytes and plays a critical role in the development of atherosclerosis. In this study, we investigated the effect of AOPPs on MCP-1 expression in cultured vascular smooth muscle cells (VSMCs).Methods VSMCs were cultured and then co-incubated with AOPP (200 μ mol/L, 400 μ mol/L) for different times with or without pretreatment with specific p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. RT-PCR and Western blott were used to detect MCP-1 mRNA and protein expression at different time points after AOPP stimulation in rat smooth muscle cells. Western blot was used to detect the expression of phosphorylated p38 MAPK.Results Treatment of VSMC with AOPPs resulted in a significant increase of the expression of MCP- 1 mRNA and protein in time- and dose-dependent manner, and could activated p38 MAPK. Pretreatment of VSMCs with SB203580 resulted in a dose-dependent inhibition of AOPPs-induced MCP-1 mRNA and protein expression.Conclusions AOPPs can stimulate MCP-1 expression via p38 MAPK in VSMCs. This suggests that AOPPs might contribute to the formation of atherosclerosis through this proinflammatory effect.

  16. Inhibitory effects of omega-3 fatty acids on early brain injury after subarachnoid hemorrhage in rats: Possible involvement of G protein-coupled receptor 120/β-arrestin2/TGF-β activated kinase-1 binding protein-1 signaling pathway.

    Science.gov (United States)

    Yin, Jia; Li, Haiying; Meng, Chengjie; Chen, Dongdong; Chen, Zhouqing; Wang, Yibin; Wang, Zhong; Chen, Gang

    2016-06-01

    Omega-3 fatty acids have been reported to improve neuron functions during aging and in patients affected by mild cognitive impairment, and mediate potent anti-inflammatory via G protein-coupled receptor 120 (GPR120) signal pathway. Neuron dysfunction and inflammatory response also contributed to the progression of subarachnoid hemorrhage (SAH)-induced early brain injury (EBI). This study was to examine the effects of omega-3 fatty acids on SAH-induced EBI. Two weeks before SAH, 30% Omega-3 fatty acids was administered by oral gavage at 1g/kg body weight once every 24h. Specific siRNA for GPR120 was exploited. Terminal deoxynucleotidyl transferase dUTP nick end labeling, fluoro-Jade B staining, and neurobehavioral scores and brain water content test showed that omega-3 fatty acids effectively suppressed SAH-induced brain cell apoptosis and neuronal degradation, behavioral impairment, and brain edema. Western blot, immunoprecipitation, and electrophoretic mobility shift assays results showed that omega-3 fatty acids effectively suppressed SAH-induced elevation of inflammatory factors, including cyclooxygenase-2, monocyte chemoattractant protein-1, and inducible nitric oxide synthase. In addition, omega-3 fatty acids could inhibit phosphorylation of transforming growth factor β activated kinase-1 (TAK1), MEK4, c-Jun N-terminal kinase, and IkappaB kinase as well as activation of nuclear factor kappa B through regulating GPR120/β-arrestin2/TAK1 binding protein-1 pathway. Furthermore, siRNA-induced GPR120 silencing blocked the protective effects of omega-3 fatty acids. Here, we show that stimulation of GPR120 with omega-3 fatty acids pretreatment causes anti-apoptosis and anti-inflammatory effects via β-arrestin2/TAK1 binding protein-1/TAK1 pathway in the brains of SAH rats. Fish omega-3 fatty acids as part of a daily diet may reduce EBI in an experimental rat model of SAH.

  17. Growth Factors: Production of Monocyte Chemotactic Protein-1 (MCP-1/JE) by Bone Marrow Stromal Cells: Effect on the Migration and Proliferation of Hematopoietic Progenitor Cells.

    Science.gov (United States)

    Xu, Y. X.; Talati, B. R.; Janakiraman, N.; Chapman, R. A.; Gautam, S. C.

    1999-01-01

    Recombinant chemotactic cytokines (chemokines) have been shown to modulate in vitro proliferation of hematopoietic progenitor cells. Whether bone marrow stromal cells produce chemokines and the physiological role they may have in the regulation of hematopoiesis has largely remained unexamined. We have examined the expression of monocyte chemoattractant protein-1 (MCP-1/JE) in bone marrow stromal cells and its effect on the migration and proliferation of murine hematopoietic progenitor cells. Freshly derived murine bone marrow stromal cells were found to secrete abundant amounts of MCP-1/JE, which was further increased upon stimulation of stromal cells with pro-inflammatory agents LPS, IL1-alpha, IFN-gamma, or TNF-alpha. Although culture supernatant conditioned by stromal cells exhibited chemotactic activity toward hematopoietic progenitor cells, the chemotactic activity was not due to MCP-1/JE. Furthermore, rMCP-1/JE also failed to induce migration of progenitor cells. MCP-1/JE, however, caused 20 to 30% increase in the clonal expansion of progenitor cells. Thus, although MCP-1/JE does not chemoattract hematopoietic progenitor cells it may have a role in their proliferation and clonal expansion.

  18. Plant Translation Elongation Factor 1Bβ Facilitates Potato Virus X (PVX) Infection and Interacts with PVX Triple Gene Block Protein 1.

    Science.gov (United States)

    Hwang, JeeNa; Lee, Seonhee; Lee, Joung-Ho; Kang, Won-Hee; Kang, Jin-Ho; Kang, Min-Young; Oh, Chang-Sik; Kang, Byoung-Cheorl

    2015-01-01

    The eukaryotic translation elongation factor 1 (eEF1) has two components: the G-protein eEF1A and the nucleotide exchange factor eEF1B. In plants, eEF1B is itself composed of a structural protein (eEF1Bγ) and two nucleotide exchange subunits (eEF1Bα and eEF1Bβ). To test the effects of elongation factors on virus infection, we isolated eEF1A and eEF1B genes from pepper (Capsicum annuum) and suppressed their homologs in Nicotiana benthamiana using virus-induced gene silencing (VIGS). The accumulation of a green fluorescent protein (GFP)-tagged Potato virus X (PVX) was significantly reduced in the eEF1Bβ- or eEF1Bɣ-silenced plants as well as in eEF1A-silenced plants. Yeast two-hybrid and co-immunoprecipitation analyses revealed that eEF1Bα and eEF1Bβ interacted with eEF1A and that eEF1A and eEF1Bβ interacted with triple gene block protein 1 (TGBp1) of PVX. These results suggest that both eEF1A and eEF1Bβ play essential roles in the multiplication of PVX by physically interacting with TGBp1. Furthermore, using eEF1Bβ deletion constructs, we found that both N- (1-64 amino acids) and C-terminal (150-195 amino acids) domains of eEF1Bβ are important for the interaction with PVX TGBp1 and that the C-terminal domain of eEF1Bβ is involved in the interaction with eEF1A. These results suggest that eEF1Bβ could be a potential target for engineering virus-resistant plants.

  19. Dengue Virus Nonstructural Protein 1-Induced Antibodies Cross-React with Human Plasminogen and Enhance Its Activation.

    Science.gov (United States)

    Chuang, Yung-Chun; Lin, Jessica; Lin, Yee-Shin; Wang, Shuying; Yeh, Trai-Ming

    2016-02-01

    Dengue virus (DENV) infection is the most common mosquito-borne viral disease, and it can cause life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Abnormal activation of the coagulation and fibrinolysis system is one of the hallmarks of DHF/DSS. However, the mechanism underlying hemorrhage in DHF/DSS remains elusive. In previous studies, plasminogen (Plg) cross-reactive Abs, which can recognize DENV nonstructural protein (NS) 1, have been found in dengue patients. However, it is unclear whether these Abs are indeed induced by DENV NS1. Thus, we immunized mice with recombinant NS1 from both bacteria and drosophila to determine whether NS1 can induce Plg cross-reactive Abs. The results from the NS1-immunized mouse sera indicated that NS1 immunization induced Abs that could cross-react with Plg. To study the effects of these NS1-induced Plg cross-reactive Abs on fibrinolysis, we isolated several Plg cross-reactive anti-NS1 mAbs from these mice and found that some of them could enhance Plg activation. In addition, epitope mapping with a phage-displayed random peptide library revealed that one of these mAbs (2A5) could recognize NS1 C-terminal residues 305-311, which share sequence homology with Plg residues 590-597. A synthetic peptide of NS1 residues 305-311 could inhibit the binding of both 2A5 and its Fab to Plg and its enhanced activation. Thus, our results suggest that DENV NS1 can induce Plg cross-reactive Abs through molecular mimicry, which can enhance Plg activation and may contribute to the pathogenesis of DHF/DSS.

  20. Effects of tibolone and its metabolites on prolactin and insulin-like growth factor binding protein-1 expression in human endometrial stromal cells.

    Science.gov (United States)

    Guzel, Elif; Buchwalder, Lynn; Basar, Murat; Kayisli, Umit; Ocak, Nehir; Bozkurt, Idil; Lockwood, Charles J; Schatz, Frederick

    2015-05-01

    The effects of the postmenopausal replacement steroid tibolone and its 3α-, 3β-OH and Δ-4 tibolone metabolites were evaluated on progesterone receptor-mediated classic decidualization markers insulin-like growth factor binding protein-1 (IGFBP-1) and prolactin expression in human endometrial stromal cells (HESCs). Supernatants of conditioned medium or erxtracted RNA from experimental cell incubations of confluent HESCs were subjected to ELISAs, Western blot analysis and RT/PCR, and results were statisically assesed. Over 21 days, specific ELISAs observed linear increases in secreted IGFBP-1 and prolactin levels elicited by tibolone and its metabolites. Cultured HESCs were refractory to E2 and dexamethasone, whereas tibolone and each metabolite exceeded medroxyprogesterone acetate in significantly elevating IGFBP-1 and prolactin output. Anti-progestins eliminated IGFBP-1 and prolactin induction by tibolone and its metabolites. Immunoblotting and RT/PCR confirmed ELISA results. These observations of IGFBP-1 and prolactin expression: (a) indicate the relevance of cultured HESCs in evaluating the chronic effects of tibolone administration to women; (b) are consistent with PR-mediated endometrial atrophy and protection against endometrial bleeding despite the persistence of circulating ER-binding, but not PR-binding metabolites following tibolone administration to women.

  1. Fli-1 transcription factor affects glomerulonephritis development by regulating expression of monocyte chemoattractant protein-1 in endothelial cells in the kidney.

    Science.gov (United States)

    Suzuki, Eiji; Karam, Eva; Williams, Sarah; Watson, Dennis K; Gilkeson, Gary; Zhang, Xian K

    2012-12-01

    Expression of transcription factor Fli-1 is implicated in the development of glomerulonephritis. Fli-1 heterozygous knockout (Fli1(+/-)) NZM2410 mice, a murine model of lupus, had significantly improved survival and reduced glomerulonephritis. In this study, we found that infiltrated inflammatory cells were significantly decreased in the kidneys from Fli-1(+/-) NZM2410 mice. The expression of monocyte chemoattractant protein-1 (MCP-1) was significantly decreased in kidneys from Fli-1(+/-) NZM2410 mice. The primary endothelial cells isolated from the kidneys of Fli-1(+/-) NZM2410 mice produced significantly less MCP-1. In endothelial cells transfected with specific Fli-1 siRNA the production of MCP-1 was significantly reduced compared to cells transfected with negative control siRNA. By Chromatin Immunoprecipitation (ChIP) assay, we further demonstrated that Fli-1 directly binds to the promoter of the MCP-1 gene. Our data indicate that Fli-1 impacts glomerulonephritis development by regulating expression of inflammatory chemokine MCP-1 and inflammatory cell infiltration in the kidneys in the NZM2410 mice. Published by Elsevier Inc.

  2. Detection of placental alpha microglobulin-1 versus insulin-like growth factor-binding protein-1 in amniotic fluid at term: a comparative study.

    Science.gov (United States)

    Pollet-Villard, Marie; Cartier, Régine; Gaucherand, Pascal; Doret, Muriel

    2011-06-01

    We compared two biochemical tests of premature rupture of membranes (PROM) in vitro: Actim PROM (Medix Biochemica, Kauniainen, Finland), which detects insulin-like growth factor binding protein-1, and AmniSure (AmniSure International LLC, Cambridge, MA), which detects placental alpha microglobulin-1. Samples of amniotic fluid were collected during caesarean section in 41 patients. A dilution series was prepared and both tests were performed twice at each dilution. Sensitivity, detection limit, response time, and reproducibility of both tests were compared. Both tests' sensitivity was 100% at dilution 1:10 and 1:20. AmniSure sensitivity was higher at dilution 1:40 and 1:80 ( P AmniSure had a lower detection limit than Actim PROM. AmniSure response times were shorter and reproducibility was higher than Actim PROM ( P AmniSure had a lower detection limit of amniotic fluid than Actim PROM, with a shorter response time, a higher sensitivity, and a better reproducibility.

  3. Suppression of tumor necrosis factor receptor-associated protein 1 expression induces inhibition of cell proliferation and tumor growth in human esophageal cancer cells.

    Science.gov (United States)

    Tian, Xin; Ma, Ping; Sui, Cheng-Guang; Meng, Fan-Dong; Li, Yan; Fu, Li-Ye; Jiang, Tao; Wang, Yang; Jiang, You-Hong

    2014-06-01

    Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a molecular chaperone involved in multidrug resistance and antiapoptosis in some human tumors, but its regulatory mechanisms have not been revealed in esophageal squamous cell carcinoma (ESCC). In this study, 138 specimens of ESCC were analyzed. TRAP1 was overexpressed in ESCC, particularly in poorly differentiated tumors. To further explore the molecular regulatory mechanism, we constructed specific small interfering RNA-expressing vectors targeting Trap1, and knocked down Trap1 expression in the esophageal cancer cell lines ECA109 and EC9706. Knockdown of Trap1 induced increases in reactive oxygen species and mitochondrial depolarization, which have been proposed as critical regulators of apoptosis. The cell cycle was arrested in G2/M phase, and in vitro inhibition of cell proliferation was confirmed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and bromodeoxyuridine assays. Furthermore, re-expression of TRAP1 in Trap1 small interfering RNA-transfected ESCC cells restored cell proliferation and cell apoptosis. Bioluminescence of subcutaneously xenografted ESCC tumor cells demonstrated significant inhibition of in vivo tumor growth by Trap1 knockdown. This study shows that TRAP1 was overexpressed in most patients with ESCC, and caused an increase in antiapoptosis potency. TRAP1 may be regarded as a target in ESCC biotherapy.

  4. Insulin-like growth factor 2 (IGF2 ) and IGF-binding protein 1 (IGFBP1) gene variants are associated with overfeeding-induced metabolic changes.

    Science.gov (United States)

    Ukkola, O; Sun, G; Bouchard, C

    2001-12-01

    The aim of this study was to investigate the role of insulin-like growth factor 1 (IGF1), IGF2, IGF binding protein 1 (IGFBP1) and IGFBP3 gene variants on the metabolic changes observed in response to a 100-day overfeeding protocol conducted with 12 pairs of monozygotic twins. Genotyping was done by PCR-RFLP and DNA sequencer methods. Body fat measurements included hydrodensitometry and abdominal fat from computed tomography. Plasma glucose and insulin during fasting and in response to an OGTT were assayed. Plasma lipids were measured enzymatically. In response to caloric surplus, fasting plasma insulin (p < 0.05) and OGTT insulin (p = 0.004) but not glucose area, increased more among the subjects with IGF2 Apa I GG (n = 12) than those with AA + AG (n = 12). The changes were independent of changes in total fatness. The subjects with IGFBP1 Bgl II AA (n = 8) showed greater increases in abdominal visceral fat (p < 0.01), OGTT insulin area (p = 0.05) and total cholesterol (p < 0.03) with overfeeding than the subjects with AG + GG (n = 16). IGFBP3 Nde I and the IGF1 (CT)n markers were not associated with responsiveness to overfeeding. Insulin sensitivity decreased in the subjects with IGF2 Apa I GG and the subjects with IGFBP1 Bgl II AA showed an accumulation of abdominal visceral fat and the early symptoms of the metabolic syndrome after long-term caloric surplus. Genetic variation at the IGF2 and IGFBP1 loci could be among the factors responsible for the inter-individual differences observed in the response to long-term alterations in energy balance and should be further investigated in larger cohorts.

  5. Hyperhomocysteinemia-Induced Monocyte Chemoattractant Protein-1 Promoter DNA Methylation by Nuclear Factor-κB/DNA Methyltransferase 1 in Apolipoprotein E-Deficient Mice.

    Science.gov (United States)

    Wang, Ju; Jiang, Yideng; Yang, Anning; Sun, Weiwei; Ma, Changjian; Ma, Shengchao; Gong, Huihui; Shi, Yingkang; Wei, Jun

    2013-04-01

    Hyperhomocysteinemia is considered to be a significant risk factor in atherosclerosis and plays an important role in it. The purpose of this study was to determine the molecular mechanism of blood monocyte chemoattractant protein-1 (MCP-1) promoter DNA hypomethylation in the formation of atherosclerosis induced by hyperhomocysteinemia, and to explore the effect of nuclear factor-κB (NF-κB)/DNA methyltransferase 1 (DNMT1) in this mechanism. The atherosclerotic effect of MCP-1 in apolipoprotein E-deficient (ApoE(-/-)) and wild-type C57BL/6J mice was evaluated using atherosclerotic lesion area; serum NF-κB, MCP-1, and DNMT1 levels; and MCP-1 promoter DNA methylation expression. In vitro, the mechanism responsible for the effect of NF-κB/DNMT1 on foam cells was investigated by measuring NF-κB and DNMT1 levels to determine whether NF-κB/DNMT1 had an effect on gene expression. Compared with the control group, atherosclerotic lesions in ApoE(-/-) mice fed a high methionine diet significantly increased, as did the expression of MCP-1. In vitro study showed that pyrrolidine dithiocarbamate treatment down-regulated levels of NF-κB and raised DNMT1 concentrations, confirming the effect of NF-κB/DNMT1 in the MCP-1 promoter DNA methylation process. In conclusion, our results suggest that through NF-κB/DNMT1, MCP-1 promoter DNA hypomethylation may play a key role in formation of atherosclerosis under hyperhomocysteinemia.

  6. Urine Epidermal Growth Factor, Monocyte Chemoattractant Protein-1 or Their Ratio as Biomarkers for Interstitial Fibrosis and Tubular Atrophy in Primary Glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Supanat Worawichawong

    2016-12-01

    Full Text Available Background/Aims: The degree of tubular atrophy and interstitial fibrosis (IFTA is an important prognostic factor in glomerulonephritis. Imbalance between pro-inflammatory cytokines such as monocyte chemoattractant protein- 1 (MCP-1 and protective cytokines such as epidermal growth factor (EGF likely determine IFTA severity. In separate studies, elevated MCP-1 and decreased EGF have been shown to be associated with IFTA severity. In this study, we aim to evaluate the predictive value of urinary EGF/MCP-1 ratio compared to each biomarker individually for moderate to severe IFTA in primary glomerulonephritis (GN. Methods: Urine samples were collected at biopsy from primary GN (IgA nephropathy, focal and segmental glomerulosclerosis, minimal change disease, membranous nephropathy. MCP-1 and EGF were analyzed by enzyme-linked immunosorbent assay. Results: EGF, MCP-1 and EGF/MCP-1 ratio from primary GN, all correlated with IFTA (n=58. By univariate analysis, glomerular filtration rate, EGF, and EGF/MCP-1 ratio were associated with IFTA. By multivariate analysis, only EGF/MCP-1 ratio was independently associated with IFTA. EGF/MCP-1 ratio had a sensitivity of 88% and specificity of 74 % for IFTA. EGF/MCP-1 had good discrimination for IFTA (AUC=0.85, but the improvement over EGF alone was not significant. Conclusion: EGF/MCP-1 ratio is independently associated IFTA severity in primary glomerulonephritis, but the ability of EGF/MCP-1 ratio to discriminate moderate to severe IFTA may not be much better than EGF alone.

  7. Activation and localization of cartilage-derived morphogenetic protein-1 at the site of ossification of the ligamentum flavum.

    Science.gov (United States)

    Nakase, T; Ariga, K; Yonenobu, K; Tsumaki, N; Luyten, F P; Mukai, Y; Sato, I; Yoshikawa, H

    2001-08-01

    Localization and expression of cartilage-derived morphogenetic protein (CDMP)-1 in tissues at the site of ossification of the ligamentum flavum (OLF) were examined by immunohistochemistry and in situ hybridization. The CDMP-1 protein and messenger ribonucleic acid (mRNA) were localized in spindle-shaped cells and chondrocytes in the OLF tissues. CDMP-1 was not detected in cells in non-ossified sites. These data indicate that CDMP-1 is locally activated and localized in spindle-shaped cells and chondrocytes at the site of OLE. Given the previously reported promoting action of CDMP-1 for chondrogenesis, the current results suggest that CDMP-1 may be involved in the progression of OLF, leading to the narrowing of spinal canal and thus causing severe clinical manifestations.

  8. Uterine receptivity and implantation: The regulation and action of insulin-like growth factor binding protein-1 (IGFBP-1, HOXA10 and forkhead transcription factor-1 (FOXO-1 in the baboon endometrium

    Directory of Open Access Journals (Sweden)

    Fazleabas Asgerally T

    2004-06-01

    Full Text Available Abstract In primates, the phase of the menstrual cycle when the uterus becomes receptive is initially dependent on estrogen and progesterone. Further morphological and biochemical changes are induced as a result of biochemical signals between the embryo and the maternal endometrium. Blastocyst implantation in the baboon usually occurs between 8 and 10 days post ovulation and is similar to that described for the rhesus macaque. In the baboon, when chorionic gonadotropin is infused in a manner that mimics blastocyst transit, this has physiological effects on the three major cell types in the uterine endometrium. The luminal epithelium undergoes endoreplication and distinct epithelial plaques are evident. The glandular epithelium responds by inducing transcriptional and post-translational modifications in the major secretory product, glycodelin. The stromal fibroblasts initiate their differentiation process into a decidual phenotype and are characterized by the expression of actin filaments. Decidualization, is the major change that occurs in the primate endometrium after conception. During this process the fibroblast-like stromal cells change morphologically into polygonal cells and express specific decidual proteins. Studies in the baboon demonstrated that insulin-like growth factor binding protein-1 (IGFBP-1 gene expression is a conceptus-mediated response. Subsequent studies in vitro established that IGFBP-1 is transcriptionally regulated by FOXO1 and HOXA10 which together upregulate the IGFBP-1 promoter activity. A baboon endometriosis model was utilized to determine if the changes observed during uterine receptivity in normally cycling animals were compromised. The data suggests that in animals with disease, markers of uterine receptivity are not appropriately expressed in the eutopic endometrium. It is possible that these differences influence the fertility of the animals with disease and the baboon could be used as a primate model to study

  9. Crotonis Fructus Extract Inhibits 12-O-Tetradecanoylphorbol-13-Acetate-Induced Expression of Matrix Metalloproteinase-9 via the Activator Protein-1 Pathway in MCF-7 Cells.

    Science.gov (United States)

    Song, Hyun-Kyung; Lee, Guem-San; Park, Sueng Hyuk; Noh, Eun-Mi; Kim, Jeong-Mi; Ryu, Do-Gon; Jung, Sung Hoo; Youn, Hyun Jo; Lee, Young-Rae; Kwon, Kang-Beom

    2017-09-01

    Metastatic cancers spread from the primary site of origin to other parts of the body. Matrix metalloproteinase-9 (MMP-9) is essential in metastatic cancers owing to its major role in cancer cell invasion. Crotonis fructus (CF), the mature fruits of Croton tiglium L., have been used for the treatment of gastrointestinal disturbance in Asia. In this study, the effect of the ethanol extract of CF (CFE) on MMP-9 activity and the invasion of 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 cells was examined. The cell viability was evaluated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The expression of MMP-9 was examined by Western blotting, zymography, and real-time polymerase chain reaction. An electrophoretic mobility gel shift assay was performed to detect activator protein-1 (AP-1) DNA binding activity and cell invasiveness was measured by an in vitro Matrigel invasion assay. CFE significantly suppressed MMP-9 expression and activation in a dose-dependent manner. Furthermore, CFE attenuated the TPA-induced activation of AP-1. The results indicated that the inhibitory effects of CFE against TPA-induced MMP-9 expression and MCF-7 cell invasion were dependent on the protein kinase C δ/p38/c-Jun N-terminal kinase/AP-1 pathway. Therefore, CFE could restrict breast cancer invasiveness owing to its ability to inhibit MMP-9 activity.

  10. The association between oxidative stress, activator protein-1, inflammatory, total antioxidant status and artery stiffness and the efficacy of olmesartan in elderly patients with mild-to-moderate essential hypertension.

    Science.gov (United States)

    Liu, Qunwei; Han, Limin; Du, Qiufan; Zhang, Ming; Zhou, Shenghua; Shen, Xiangqian

    This study investigated the change of oxidative stress, activator protein-1 (AP-1), inflammatory, total antioxidant status (TAS) and artery stiffness, and explored the relationship between these characteristics and the efficacy of olmesartan intervention in elderly patients with mild-to-moderate essential hypertension (EH). In total, 386 elderly patients with EH and 353 normotensive controls were recruited. All study subjects had oxidative stress markers, AP-1, inflammatory factors, TAS and brancial-ankle artery pulse wave velocity (ba-PWV) measured. In total, 193 elderly patients with EH were randomized to olmesartan and were matched with 193 normotensive controls to observe the change of index above mentioned before and after the treatment. Compared with the controls, superoxide dismutase (SOD) and TAS were significantly reduced in patients with EH, and malondialdehyde (MDA), AP-1, high-sensitivity C-reactive protein (Hs-CRP), Monocyte Chemoattractant Protein-1 (MCP-1), heart rate, endothelin-1 (ET-1), TAS and ba-PWV were significantly increased (P olmesartan, SOD and TAS were increased, while BP, heart rate, AP-1 and inflammatory factors were reduced with significant improvement in ba-PWV (P Olmesartan may increase TAS, yet inhibit oxidative stress, AP-1, inflammatory, and heart rate with improved artery stiffness in elderly hypertensive patients.

  11. Interleukin-1β,Tumor Necrosis Factor-α and Lipopolysaccharide Induce Expression of Monocyte Chemoattractant Protein-1 in Calf Aortic Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    MENG Feng; DENG Zhongduan; NI Juan

    2000-01-01

    To investigate whether interleukin-1β(IL-1β), tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) induce expression of monocyte chemoattractant protein-1 (MCP-1)mRNA and protein in calf aortic smooth muscle cells(SMCs), calf aortic SMCs were cultured by a substrate-attached explant method. The cultured SMCs were used between the third to the fifth passage. After the cells became confluent, the SMCs were exposed to 2 ng/ml IL- 1β, 20 ng/mlTNF-lα and 100 ng/ml LPS respectively, and the total RNA of SMCs which were incubated for 4h at 37℃ were extracted from the cells by using guanidinium isothiocyanate method. The expression of MCP-1 mRNA in SMCs was detected by using dot blotting analysis using a probe of γ-32p-end-labelled 35-mer oligonucleotide. After a 24-h incubation, the media conditioned by the cultured SMCs were collected. The MCP-1 protein content in the conditioned media was determined by using sandwich ELISA. The results were as follows: Dot blotting analysis showed that the cultured SMCs could express MCP-1 mRNA. After a 4-h exposure to IL-Iβ, TNF-α and LPS, the MCP-1 mRNA expression in SMCs was increased (3.6-fold, 2.3-fold and 1.6-fold, respectively).ELISA showed that the levels of MCP-1 protein in the conditioned media were also increased (2.9-fold, 1.7-fold and 1.1-fold, respectively ). The results suggest that calf aortic SMCs could express MCP-1 mRNA and protein. IL-1β and TNF-α can induce strong expression of MCP- 1mRNA and protein, and the former is more effective than the latter.

  12. Monocyte chemoattractant protein-1 gene polymorphism and its serum level have an impact on anthropometric and biochemical risk factors of metabolic syndrome in Indian population.

    Science.gov (United States)

    Madeshiya, A K; Singh, S; Dwivedi, S; Saini, K S; Singh, R; Tiwari, S; Konwar, R; Ghatak, A

    2015-04-01

    Monocyte chemoattractant protein-1 (MCP-1), encoded by gene CCL-2 (Chemokine C-C motif 2), is the ligand of chemokine receptor CCR-2. Concurrent clinical alteration in several metabolic aspects, including central obesity, dysglycemia, dyslipidemia and hypertension, is clinically characterized as metabolic syndrome (MetS). Role of MCP-1 in each of these aspects has been established in vitro and in animal studies as well. We here report genetic association of -2518 A>G MCP-1 (rs 1024611) gene polymorphism and level of MCP-1 with MetS in North Indian subjects. We analysed (n=386, controls and n=384, MetS subjects) for MCP-1 gene polymorphism using PCR-RFLP, its serum level using ELISA, anthropometric (body mass index, waist and hip circumferences, waist-hip ratio and blood pressure) and biochemical (serum lipids, plasma glucose and insulin levels) variables in a genetic association study. The body mass index, waist circumference, hip circumference, waist-hip ratio, blood pressure, serum lipids, insulin and fasting plasma glucose level were significantly high in MetS subjects. Regression analysis showed significant correlation of body mass index, waist and hip circumference, systolic/diastolic blood pressure, fasting glucose, total cholesterol, high-density lipoprotein, low-density lipoprotein fasting insulin and HOMA-IR with MetS. MCP-1 allele and genotype were significantly associated with MetS. Serum MCP-1 level was high in overall cases. In conclusions, the MCP-1 2518A>G (rs 1024611) polymorphism has significant impact on risk of MetS, and MCP-1 level correlates with anthropometric and biochemical risk factors of MetS.

  13. Roles of monocyte chemotactic protein 1 and nuclear factor-κB in immune response to spinal tuberculosis in a New Zealand white rabbit model

    Science.gov (United States)

    Guo, X.H.; Bai, Z.; Qiang, B.; Bu, F.H.; Zhao, N.

    2017-01-01

    This study aimed to explore the roles of monocyte chemotactic protein 1 (MCP-1) and nuclear factor kappa B (NF-κB) in immune response to spinal tuberculosis in a New Zealand white rabbit model. Forty-eight New Zealand white rabbits were collected and divided into four groups: experimental group (n=30, spinal tuberculosis model was established), the sham group (n=15, sham operation was performed) and the blank group (n=3). The qRT-PCR assay and western blotting were applied to detect the mRNA and protein expressions of MCP-1 and NF-κB in peripheral blood. ELISA was used to measure serum levels of MCP-1, NF-κB, IFN-γ, IL-2, IL-4, and IL-10. Flow cytometry was adopted to assess the distributions of CD4+, CD8+ lymphocytes and CD4+ CD25+ Foxp3 lymphocyte subsets. Compared with the sham and blank groups, the mRNA and protein expressions of MCP-1 and NF-κB in the experimental group were significantly increased. The experimental group had lower serum levels of IL-2 and IFN-γ and higher serum level of IL-10 than the sham and blank groups. In comparison to the sham and blank groups, CD4+ T lymphocyte subsets percentage, CD4+/CD8+ ratio and CD4+ CD25+ Foxp3+ Tregs subsets accounting for CD4+ lymphocyte in the experimental group were lower, while percentage of CD8+ T lymphocyte subsets was higher. Our study provided evidence that higher expression of MCP-1 and NF-κB may be associated with decreased immune function of spinal tuberculosis, which can provide a new treatment direction for spinal tuberculosis. PMID:28225889

  14. Involvement of Nurr-1/Nur77 in corticotropin-releasing factor/urocortin1-induced tyrosinase-related protein 1 gene transcription in human melanoma HMV-II cells.

    Science.gov (United States)

    Watanuki, Yutaka; Takayasu, Shinobu; Kageyama, Kazunori; Iwasaki, Yasumasa; Sakihara, Satoru; Terui, Ken; Nigawara, Takeshi; Suda, Toshihiro

    2013-05-06

    Recent molecular and biochemical analyses have revealed the presence of corticotropin-releasing factor (CRF) and urocortin (Ucn), together with their corresponding receptors in mammalian skin. The melanosomal enzyme tyrosinase-related protein 1 (TRP1) is involved in modulation of pigment production in response to stressors. Although CRF and Ucn are thought to have potent effects on the skin system, their possible roles and regulation have yet to be fully determined. This study aimed to explore the effects of CRF and Ucn on TRP1 gene expression using human melanoma HMV-II cells. The mRNA of CRF, Ucn1, Ucn2, and CRF receptor type 1 (CRF1 receptor) was detected in HMV-II cells. CRF and Ucn1 stimulated TRP1 gene transcription via the CRF1 receptor, and increased both Nurr-1 and Nur77 mRNA expression levels. Both CRF- and Ucn1-induced Nurr-1/Nur77 acted via a NGFI-B response element on the TRP1 promoter. The combination of Nurr-1/Nur77 and microphthalmia-associated transcription factor, a melanocyte-specific transcription factor gene induced by α-melanocyte-stimulating hormone, had additive effects on activation of TRP1 gene transcription. The findings suggest that in human melanoma HMV-II cells both CRF and Ucn1 regulate TRP1 gene expression via Nurr-1/Nur77 production, independent of pro-opiomelanocortin or α-melanocyte-stimulating hormone stimulation.

  15. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Schuetz, Erin G. [Department of Pharmaceutical Sciences, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Chen, Taosheng, E-mail: taosheng.chen@stjude.org [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States)

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  16. Cervical length and phosphorilated insulin like growth factor binding protein-1 as the predictors of spontaneus preterm delivery in symptomatic women

    Directory of Open Access Journals (Sweden)

    Hadži-Lega Marija

    2014-07-01

    Full Text Available Objective: To assess the combined use of cervical length and cervical phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1 in the prediction of preterm delivery in symptomatic women in next 14 days. Methods: Cervical length was prospectively measured in 58 consecutive singleton pregnancies with intact membranes and regular contractions at 24-36 weeks, and phIGFBP-1 was assessed. Demographic data was evaluated(history of previous preterm delivery, history of spontaneous abortion, parity, BMI, maternal age, Orthodox or Muslims. Results: Values of all variables were evaluated (demographic data, cervical length and values ofphIGFBP-1 alone and in combination with cervical length of ≤ 15 mm and more than 15 mm. In women with cervical length less than 15 mm/ /phIGFPB-1 was positive in 30 patients(22 of them delivered in 14 days. In women with cervical length less than 15 mm/phIGFBP-1was positive in 9 of delivered pregnant women in 14 days. In women with cervical length less than 25 mm/phIGFBP-1was positive in 26 patients (2 of them delivered in 14 days. In patients with cervical length more than 25 mm/ph IGFBP-1 was positive in 4 patients (2 of them delivered in 14 days. With logistic regression we confirmed that with OR 0.117 and CI 95% (0.046-0.295 and p < 0.01 odds for preterm birth among patients with negative phIGFBP-1 is 0.117 lower than the odds for preterm birth among patients with positive test results. With same test for p = 0.009 (p < 0.01 we confirmed with OR and CI 95% (0.06 to 0.671 that cervical length less than 25 mm is good predictor of preterm delivery with symptomatic patients. Probability for delivery in the following 14 days with patients with positive phIGFBP-1 and cervical length ≤ 15 mm is 0.88 or probability for not delivering in those patients is 0.12. In 88% patients with positive phIGFBP-1 and cervical length ≤ 15 mm will deliver in the following 14 days. Conclusions: In symptomatic women phIGFBP-1

  17. CERVICAL LENGTH AND PHOSPHORILATED INSULIN LIKE GROWTH FACTOR BINDING PROTEIN-1 AS THE PREDICTORS OF SPONTANEUS PRETERM DELIVERY IN SYMPTOMATIC WOMEN

    Directory of Open Access Journals (Sweden)

    Hadzi-Lega Marija

    2014-07-01

    Full Text Available Objective: To assess the combined use of cervical length and cervical phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1 in the prediction of preterm delivery in symptomatic women in next 14 days. Methods: Cervical length was prospectively measured in 58 consecutive singleton pregnancies with intact membranes and regular contractions at 24–36 weeks, and phIGFBP-1 was assessed. Demographic data was evaluated (history of previous preterm delivery, history of spontaneous abortion, parity, BMI, maternal age, Orthodox or Muslims. Results: Values of all variables were evaluated (demographic data, cervical length and values of phIGFBP-1 alone and in combination with cervical length of ≤15 mm and more than 15 mm. In women with cervical length less than 15 mm/phIGFPB-1 was positive in 30 patients (22 of them delivered in 14 days. In women with cervical length less than 15 mm/phIGFBP-1 was positive in 9 of delivered pregnant women in 14 days. In women with cervical length less than 25 mm/phIGFBP-1was positive in 26 patients (2 of them delivered in 14 days. In patients with cervical length more than 25 mm/ph IGFBP-1 was positive in 4 patients (2 of them delivered in 14 days. With logistic regression we confirmed that with OR 0.117 and CI 95% (0.046–0.295 and p < 0.01 odds for preterm birth among patients with negative phIGFBP-1 is 0.117 lower than the odds for preterm birth among patients with positive test results. With same test for p = 0.009 (p < 0.01 we confirmed with OR and CI 95% (0.06 to 0.671 that cervical length less than 25 mm is good predictor of preterm delivery with symptomatic patients. Probability for delivery in the following 14 days with patients with positive phIGFBP-1and cervical length ≤ 15 mm is 0.88 or probability for not delivering in those patients is 0.12. In 88% patients with positive phIGFBP-1 and cervical length ≤ 15 mm will deliver in the following 14 days. Conclusions: In symptomatic women ph

  18. Additional sex comb-like (ASXL) proteins 1 and 2 play opposite roles in adipogenesis via reciprocal regulation of peroxisome proliferator-activated receptor {gamma}.

    Science.gov (United States)

    Park, Ui-Hyun; Yoon, Seung Kew; Park, Taesun; Kim, Eun-Joo; Um, Soo-Jong

    2011-01-14

    Our previous studies have suggested that the mammalian additional sex comb-like 1 protein functions as a coactivator or repressor of retinoic acid receptors in a cell-specific manner. Here, we investigated the roles of additional sex comb-like 1 proteins in regulating peroxisome proliferator-activated receptors (PPARs). In pulldown assays in vitro and in immunoprecipitation assays in vivo, ASXL1 and its paralog, ASXL2, interacted with PPARα and PPARγ. In 3T3-L1 preadipocyte cells, overexpression of ASXL1 inhibited the induction of PPARγ activity by rosiglitazone, as shown by transcription assays, and completely suppressed adipogenesis, as shown by Oil Red O staining. In contrast, overexpression of ASXL2 greatly enhanced rosiglitazone-induced PPARγ activity and enhanced adipogenesis. Deletion of the heterochromatin protein 1 (HP1)-binding domain from ASXL1 caused the mutant protein to enhance adipogenesis similarly to ASXL2, indicating that HP1 binding is required for the adipogenesis-suppressing activity of ASXL1. Adipocyte differentiation was associated with a gradual decrease in ASXL1 expression but did not affect ASXL2 expression. Knockdown of ASXL1 and ASXL2 had reciprocal effects on adipogenesis. In chromatin immunoprecipitation assays in 3T3-L1 cells, ASXL1 occupied the promoter of the PPARγ target gene aP2 together with HP1α and Lys-9-methylated histone H3, whereas ASXL2 occupied the aP2 promoter together with histone-lysine N-methyltransferase MLL1 and Lys-9-acetylated and Lys-4-methylated H3 histones. Finally, microarray analysis demonstrated that ASXL1 represses, whereas ASXL2 increases, the expression of adipogenic genes, most of which are PPARγ targets. These results suggest that members of the additional sex comb-like family provide complex regulation of adipogenesis via differential modulation of PPARγ activity.

  19. Glomerular expression of myxovirus resistance protein 1 in human mesangial cells: possible activation of innate immunity in the pathogenesis of lupus nephritis.

    Science.gov (United States)

    Watanabe, Shojiro; Imaizumi, Tadaatsu; Tsuruga, Kazushi; Aizawa, Tomomi; Ito, Tatsuya; Matsumiya, Tomoh; Yoshida, Hidemi; Joh, Kensuke; Ito, Etsuro; Tanaka, Hiroshi

    2013-12-01

    Since viral infections activate type I interferon (IFN) pathways and cause subsequent release of IFN-dependent proinflammatory chemokines and cytokines, the innate immune system plays an important role in the pathogenesis of lupus nephritis (LN). It has been reported that human myxovirus resistance protein 1 (Mx1), a type I IFN-dependent transcript, acts against a wide range of RNA viruses. Although the expression of Mx1 in biopsy specimens obtained from patients with dermatomyositis and cutaneous lupus has been described, the expression of Mx1 in human mesangial cells (MCs) has remained largely unknown. We treated normal human MCs in culture with polyinosinic-polycytidylic acid (poly IC), an authentic double-stranded RNA, and analyzed the expression of Mx1 by reverse transcription-polymerase chain reaction and western blotting. To elucidate the poly IC-signalling pathway, we subjected the cells to RNA interference against IFN-β. We also conducted an immunofluorescence study to examine mesangial Mx1 expression in biopsy specimens from patients with LN. Poly IC-induced Mx1 expression in MCs are shown both time- and dose-dependently, and RNA interference against IFN-β inhibited poly IC-induced Mx1 expression. Intense glomerular Mx1 expression was observed in biopsy specimens from patients with LN, whereas negative staining occurred in specimens from patients with IgA nephropathy or purpura nephritis. These preliminary observations support, at least in part, the theory of innate immune system activation in the pathogenesis of LN.

  20. Expression of extracellular matrix protein 1 and vascular endothelial growth factor in gastric cancer%ECM-1和VEGF在胃癌中的表达

    Institute of Scientific and Technical Information of China (English)

    何新阳; 梁伟; 王志华; 朱志强; 柏亚平

    2011-01-01

    Objective To explore the relationship between the expression of extracellular matrix protein 1 ( ECM1 ) and vascular endothelial growth factor (VEGF) and clinicopathological features in gastric cancer. Methods The expression of ECM-l and VEGF proteins in 60 gastric carcinomas and tumor-adjacent normal tissues were detected by immunohistochemical staining and Western blot methods. Results Compared with the tumor-adjacent normal tissues, the positive expression rate of ECM-l and VEGF was 86. 7% and 78.3%, respectively. And there was significant difference between two groups ( P < 0. 05 ). The expression of ECM-1 was closely correlated with tumor size, depth of invasion, metastasis of lymph nodes and TNM stage ( P < 0. 05 ), but no association was observed with gender, age, size,pathological grades. The expression of VEGF was related to the depth of invasion,metastasis of lymph nodes and TNM stage (P <0. 05), but not related to the gender, age, pathological grades and tumor size (P > 0. 05 ). There was significant positive correlation between the expressions of two indicators in gastric cancer (r8 = 0. 753, P < 0. 05 ). Conclusion The expression level of ECM-l and VEGF may correlate with the invasion and metastasis of gastric cancer, which may be associated with the up-regulation of VEGF induced by ECM-l.%目的 探讨细胞外基质蛋白1(ECM-1)和血管内皮生长因子(VEGF)在胃癌中的表达及其临床意义.方法 分别采用免疫组化法和Western blot法检测60例手术切除的胃癌组织及癌旁正常组织中ECM-1和VEGF的表达水平.结果 与癌旁正常组织相比,ECM-1和VEGF在胃癌组织中的阳性表达率分别为86.7%和78.3%,差异有统计学意义(P<0.05).ECM-1的阳性表达与肿块大小、浸润深度、淋巴结转移和TNM分期显著相关(P<0.05),与患者的性别、年龄和肿瘤的分化程度差异无统计学意义;VEGF的阳性表达与肿瘤的浸润深度、淋巴结

  1. High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4.

    Science.gov (United States)

    Laird, Melissa D; Shields, Jessica S; Sukumari-Ramesh, Sangeetha; Kimbler, Donald E; Fessler, R David; Shakir, Basheer; Youssef, Patrick; Yanasak, Nathan; Vender, John R; Dhandapani, Krishnan M

    2014-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Cerebral edema, a life-threatening medical complication, contributes to elevated intracranial pressure (ICP) and a poor clinical prognosis after TBI. Unfortunately, treatment options to reduce post-traumatic edema remain suboptimal, due in part, to a dearth of viable therapeutic targets. Herein, we tested the hypothesis that cerebral innate immune responses contribute to edema development after TBI. Our results demonstrate that high-mobility group box protein 1 (HMGB1) was released from necrotic neurons via a NR2B-mediated mechanism. HMGB1 was clinically associated with elevated ICP in patients and functionally promoted cerebral edema after TBI in mice. The detrimental effects of HMGB1 were mediated, at least in part, via activation of microglial toll-like receptor 4 (TLR4) and the subsequent expression of the astrocytic water channel, aquaporin-4 (AQP4). Genetic or pharmacological (VGX-1027) TLR4 inhibition attenuated the neuroinflammatory response and limited post-traumatic edema with a delayed, clinically implementable therapeutic window. Human and rodent tissue culture studies further defined the cellular mechanisms demonstrating neuronal HMGB1 initiates the microglial release of interleukin-6 (IL-6) in a TLR4 dependent mechanism. In turn, microglial IL-6 increased the astrocytic expression of AQP4. Taken together, these data implicate microglia as key mediators of post-traumatic brain edema and suggest HMGB1-TLR4 signaling promotes neurovascular dysfunction after TBI.

  2. A δ38 deletion variant of human transketolase as a model of transketolase-like protein 1 exhibits no enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Stefan Schneider

    Full Text Available Besides transketolase (TKT, a thiamin-dependent enzyme of the pentose phosphate pathway, the human genome encodes for two closely related transketolase-like proteins, which share a high sequence identity with TKT. Transketolase-like protein 1 (TKTL1 has been implicated in cancerogenesis as its cellular expression levels were reported to directly correlate with invasion efficiency of cancer cells and patient mortality. It has been proposed that TKTL1 exerts its function by catalyzing an unusual enzymatic reaction, a hypothesis that has been the subject of recent controversy. The most striking difference between TKTL1 and TKT is a deletion of 38 consecutive amino acids in the N-terminal domain of the former, which constitute part of the active site in authentic TKT. Our structural and sequence analysis suggested that TKTL1 might not possess transketolase activity. In order to test this hypothesis in the absence of a recombinant expression system for TKTL1 and resilient data on its biochemical properties, we have engineered and biochemically characterized a "pseudo-TKTL1" Δ38 deletion variant of human TKT (TKTΔ38 as a viable model of TKTL1. Although the isolated protein is properly folded under in vitro conditions, both thermal stability as well as stability of the TKT-specific homodimeric assembly are markedly reduced. Circular dichroism and NMR spectroscopic analysis further indicates that TKTΔ38 is unable to bind the thiamin cofactor in a specific manner, even at superphysiological concentrations. No transketolase activity of TKTΔ38 can be detected for conversion of physiological sugar substrates thus arguing against an intrinsically encoded enzymatic function of TKTL1 in tumor cell metabolism.

  3. Epstein-Barr virus encoded latent membrane protein 1 induces TRAF1 expression to promote anti-apoptosis activity via NF-κB signaling pathway in nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    王承兴; 艾米丹; 任维; 肖绘; 李小燕; 唐发清; 顾焕华; 易薇; 翁新宪; 邓锡云; 曹亚

    2003-01-01

    Objectives To identify whether Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) can induce tumor necrosis factor receptor-associated factor 1 (TRAF1) expression and promote its anti-apoptosis activity via the NF-κB signaling pathway, and assess that LMP1 suppresses apoptosis in nasopharyngeal carcinoma (NPC). Methods A stable transfected cell line HNE2-LMP1 was established by introducing LMP1 cDNA into HNE2 cells. Transactivation of TRAF1 was determined by luciferase reporter assay, while expression of TRAF1 mRNA was detected by RT-PCR and expression of TRAF1 protein and caspase 3 by Western blot analysis. Apoptosis activity was observed through fluorescence staining. Results LMP1 induced TRAF1 expression in NPC cells and caused a decrease in apoptosis. This induction could be blocked by antisense LMP1. Moreover, LMP1-mediated induction of a TRAF1 promoter-driven reporter gene was significantly impaired when the κB site κB1 or κB5 was disrupted, whereas mutation of κB3 had only a minor effect on LMP1 dependent up-regulation of the reporter gene. Conclusion LMP1 induces TRAF1 expression and promotes its anti-apoptosis activity via the NF-κB signaling pathway, which may be one of the mechanisms that LMP1 uses to suppress apoptosis in NPC cells.

  4. Pertussis toxin B-oligomer suppresses IL-6 induced HIV-1 and chemokine expression in chronically infected U1 cells via inhibition of activator protein 1.

    Science.gov (United States)

    Rizzi, Chiara; Crippa, Massimo P; Jeeninga, Rienk E; Berkhout, Ben; Blasi, Francesco; Poli, Guido; Alfano, Massimo

    2006-01-15

    Pertussis toxin B-oligomer (PTX-B) inhibits HIV replication in T lymphocytes and monocyte-derived macrophages by interfering with multiple steps of the HIV life cycle. PTX-B prevents CCR5-dependent (R5) virus entry in a noncompetitive manner, and it also exerts suppressive effects on both R5- and CXCR4-dependent HIV expression at a less-characterized postentry level. We demonstrate in this study that PTX-B profoundly inhibits HIV expression in chronically infected promonocytic U1 cells stimulated with several cytokines and, particularly, the IL-6-mediated effect, a cytokine that triggers viral production in these cells independently of NF-kappaB activation. From U1 cells we have subcloned a cell line, named U1-CR1, with increased responsiveness to IL-6. In these cells, PTX-B neither down-regulated the IL-6R nor prevented IL-6 induced signaling in terms of STAT3 phosphorylation and DNA binding. In contrast, PTX-B inhibited AP-1 binding to target DNA and modified its composition with a proportional increases in FosB, Fra2, and ATF2. PTX-B inhibited IL-6-induced HIV-1 long-terminal repeat-driven transcription from A, C, E, and F viral subtypes, which contain functional AP-1 binding sites, but failed to inhibit transcription from subtypes B and D LTR devoid of these sites. In addition, PTX-B inhibited the secretion of IL-6-induced, AP-1-dependent genes, including urokinase-type plasminogen activator, CXCL8/IL-8, and CCL2/monocyte chemotactic protein-1. Thus, PTX-B suppression of IL-6 induced expression of HIV and cellular genes in chronically infected promonocytic cells is strongly correlated to inhibition of AP-1.

  5. FE, a phloem-specific Myb-related protein, promotes flowering through transcriptional activation of FLOWERING LOCUS T and FLOWERING LOCUS T INTERACTING PROTEIN 1.

    Science.gov (United States)

    Abe, Mitsutomo; Kaya, Hidetaka; Watanabe-Taneda, Ayako; Shibuta, Mio; Yamaguchi, Ayako; Sakamoto, Tomoaki; Kurata, Tetsuya; Ausín, Israel; Araki, Takashi; Alonso-Blanco, Carlos

    2015-09-01

    In many flowering plants, the transition to flowering is primarily affected by seasonal changes in day length (photoperiod). An inductive photoperiod promotes flowering via synthesis of a floral stimulus, called florigen. In Arabidopsis thaliana, the FLOWERING LOCUS T (FT) protein is an essential component of florigen, which is synthesized in leaf phloem companion cells and is transported through phloem tissue to the shoot apical meristem where floral morphogenesis is initiated. However, the molecular mechanism involved in the long-distance transport of FT protein remains elusive. In this study, we characterized the classic Arabidopsis mutant fe, which is involved in the photoperiodic induction of flowering, and showed that FE encodes a phloem-specific Myb-related protein that was previously reported as ALTERED PHLOEM DEVELOPMENT. Phenotypic analyses of the fe mutant showed that FT expression is reduced in leaf phloem companion cells. In addition, the transport of FT protein from leaves to the shoot apex is impaired in the fe mutant. Expression analyses further demonstrated that FE is also required for transcriptional activation of FLOWERING LOCUS T INTERACTING PROTEIN 1 (FTIP1), an essential regulator for selective trafficking of the FT protein from companion cells to sieve elements. These findings indicate that FE plays a dual role in the photoperiodic induction of flowering: as a transcriptional activator of FT on the one hand, and its transport machinery component, FTIP1, on the other hand. Thus, FE is likely to play a role in regulating FT by coordinating FT synthesis and FT transport in phloem companion cells.

  6. Role of Activator Protein-1 in the Transcription of Interleukin-5 Gene Regulated by Protein Kinase C Signal in Asthmatic Human T Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to explore the role of activator protein-1 (AP-1) in the transcription of interleukin-5 (IL-5) gene regulated by protein kinase C (PKC) signal in peripheral blood T lymphocytes from asthmatic patient, T lymphocytes were isolated and purified from peripheral blood of each asthmatic patient. The T lymphocytes were randomly divided int9 4 groups: group A (blank control), group B (treated with PKC agonist phorbol 12-myristate 13-acetate (PMA)), Group C (treated with PMA and AP-1 cis-element decoy oligodeoxynucleotides (decoy ODNs)), and group D (treated with PMA and AP-1 mutant decoy ODNs). The ODNs were transfected into the T cells of group C and D by cation liposome respectively. Reverse transcription-polymerase chain reaction (RT-PCR) was employed to assess IL-5 mRNA expression, and electrophoretic mobility shift assays (EMSA) for the activation of AP-1. The results showed that the activation of AP-1 (88 003.58±1 626.57) and the expression of IL5 mRNA (0. 8300±0. 0294) in T lymphocytes stimulated with PMA were significantly higher than these in blank control (20 888.47±1103.56 and 0. 3050±0. 0208, respectively, P< 0.01), while the indexes (23 219.83±1 024.86 and 0. 3425±0. 0171 respectively) of T lymphocytes stimulated with PMA and AP-1 decoy ODNs were significantly inhibited, as compared with group B (P<0.01). The indexes (87 107. 41±1 342.92 and 0. 8225±0. 0222, respectively) in T lymphocytes stimulated with PMA and AP-1 mutant decoy ODNs did not exhibit significant changes, as compared with group B (P>0.05). The significant positive correlation was found between the activation of AP-1 and the expression of IL-5 mRNA (P< 0.01). It was concluded that AP-1 might participate in the signal transduction of PKC-triggered transcription of IL-5 gene in asthmatic T lymphocytes. This suggests the activation of PKC/AP-1 signal transduction cascade of T lymphocytes may play an important role in the pathogenesis of asthma.

  7. Tumor Necrosis Factor Receptor-associated Protein 1 (TRAP1) Mutation and TRAP1 Inhibitor Gamitrinib-triphenylphosphonium (G-TPP) Induce a Forkhead Box O (FOXO)-dependent Cell Protective Signal from Mitochondria*

    OpenAIRE

    Kim, Hyunjin; Yang, Jinsung; Kim, Min Ju; Choi, Sekyu; Chung, Ju-Ryung; Kim, Jong-Min; Yoo, Young Hyun; Chung, Jongkyeong; Koh, Hyongjong

    2015-01-01

    TRAP1 (tumor necrosis factor receptor-associated protein 1), a mitochondrial Hsp90 family chaperone, has been identified as a critical regulator of cell survival and bioenergetics in tumor cells. To discover novel signaling networks regulated by TRAP1, we generated Drosophila TRAP1 mutants. The mutants successfully developed into adults and produced fertile progeny, showing that TRAP1 is dispensable in development and reproduction. Surprisingly, mutation or knockdown of TRAP1 markedly enhance...

  8. A genotypic difference in primary root length is associated with the inhibitory role of transforming growth factor-beta receptor-interacting protein-1 on root meristem size in wheat.

    Science.gov (United States)

    He, Xue; Fang, Jingjing; Li, Jingjuan; Qu, Baoyuan; Ren, Yongzhe; Ma, Wenying; Zhao, Xueqiang; Li, Bin; Wang, Daowen; Li, Zhensheng; Tong, Yiping

    2014-03-01

    Previously we identified a major quantitative trait locus (QTL) qTaLRO-B1 for primary root length (PRL) in wheat. Here we compare proteomics in the roots of the qTaLRO-B1 QTL isolines 178A, with short PRL and small meristem size, and 178B, with long PRL and large meristem size. A total of 16 differentially expressed proteins were identified: one, transforming growth factor (TGF)-beta receptor-interacting protein-1 (TaTRIP1), was enriched in 178A, while various peroxidases (PODs) were more abundantly expressed in 178B. The 178A roots showed higher TaTRIP1 expression and lower levels of the unphosphorylated form of the brassinosteroid (BR) signaling component BZR1, lower expression of POD genes and reduced POD activity and accumulation of the superoxide anion O2(-) in the root elongation zone compared with the 178B roots. Low levels of 24-epibrassinolide increased POD gene expression and root meristem size, and rescued the short PRL phenotype of 178A. TaTRIP1 directly interacted with the BR receptor TaBRI1 of wheat. Moreover, overexpressing TaTRIP1 in Arabidopsis reduced the abundance of unphosphorylated BZR1 protein, altered the expression of BR-responsive genes, inhibited POD activity and accumulation of the O2(-) in the root tip and inhibited root meristem size. Our data suggested that TaTRIP1 is involved in BR signaling and inhibited root meristem size, possibly by reducing POD activity and accumulation of O2(-) in the root tip. We further demonstrated a negative correlation between the level of TaTRIP1 mRNA and PRL of landraces and modern wheat varieties, providing a valuable insight for better understanding of the molecular mechanism underlying the genotypic differences in root morphology of wheat in the future. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  9. Epstein-Barr virus-encoded latent membrane protein 1 impairs G2 checkpoint in human nasopharyngeal epithelial cells through defective Chk1 activation.

    Directory of Open Access Journals (Sweden)

    Wen Deng

    Full Text Available Nasopharyngeal carcinoma (NPC is a common cancer in Southeast Asia, particularly in southern regions of China. EBV infection is closely associated with NPC and has long been postulated to play an etiological role in the development of NPC. However, the role of EBV in malignant transformation of nasopharyngeal epithelial cells remains enigmatic. The current hypothesis of NPC development is that premalignant nasopharyngeal epithelial cells harboring genetic alterations support EBV infection and expression of EBV genes induces further genomic instability to facilitate the development of NPC. The latent membrane protein 1 (LMP1 is a well-documented EBV-encoded oncogene. The involvement of LMP1 in human epithelial malignancies has been implicated, but the mechanisms of oncogenic actions of LMP1, particularly in nasopharyngeal cells, are unclear. Here we observed that LMP1 expression in nasopharyngeal epithelial cells impaired G2 checkpoint, leading to formation of unrepaired chromatid breaks in metaphases after γ-ray irradiation. We further found that defective Chk1 activation was involved in the induction of G2 checkpoint defect in LMP1-expressing nasopharyngeal epithelial cells. Impairment of G2 checkpoint could result in loss of the acentrically broken chromatids and propagation of broken centric chromatids in daughter cells exiting mitosis, which facilitates chromosome instability. Our findings suggest that LMP1 expression facilitates genomic instability in cells under genotoxic stress. Elucidation of the mechanisms involved in LMP1-induced genomic instability in nasopharyngeal epithelial cells will shed lights on the understanding of role of EBV infection in NPC development.

  10. Tumor Necrosis Factor Receptor-associated Protein 1 (TRAP1) Mutation and TRAP1 Inhibitor Gamitrinib-triphenylphosphonium (G-TPP) Induce a Forkhead Box O (FOXO)-dependent Cell Protective Signal from Mitochondria*

    Science.gov (United States)

    Kim, Hyunjin; Yang, Jinsung; Kim, Min Ju; Choi, Sekyu; Chung, Ju-Ryung; Kim, Jong-Min; Yoo, Young Hyun; Chung, Jongkyeong; Koh, Hyongjong

    2016-01-01

    TRAP1 (tumor necrosis factor receptor-associated protein 1), a mitochondrial Hsp90 family chaperone, has been identified as a critical regulator of cell survival and bioenergetics in tumor cells. To discover novel signaling networks regulated by TRAP1, we generated Drosophila TRAP1 mutants. The mutants successfully developed into adults and produced fertile progeny, showing that TRAP1 is dispensable in development and reproduction. Surprisingly, mutation or knockdown of TRAP1 markedly enhanced Drosophila survival under oxidative stress. Moreover, TRAP1 mutation ameliorated mitochondrial dysfunction and dopaminergic (DA) neuron loss induced by deletion of a familial Parkinson disease gene PINK1 (Pten-induced kinase 1) in Drosophila. Gamitrinib-triphenylphosphonium, a mitochondria-targeted Hsp90 inhibitor that increases cell death in HeLa and MCF7 cells, consistently inhibited cell death induced by oxidative stress and mitochondrial dysfunction induced by PINK1 mutation in mouse embryonic fibroblast cells and DA cell models such as SH-SY5Y and SN4741 cells. Additionally, gamitrinib-triphenylphosphonium also suppressed the defective locomotive activity and DA neuron loss in Drosophila PINK1 null mutants. In further genetic analyses, we showed enhanced expression of Thor, a downstream target gene of transcription factor FOXO, in TRAP1 mutants. Furthermore, deletion of FOXO almost nullified the protective roles of TRAP1 mutation against oxidative stress and PINK1 mutation. These results strongly suggest that inhibition of the mitochondrial chaperone TRAP1 generates a retrograde cell protective signal from mitochondria to the nucleus in a FOXO-dependent manner. PMID:26631731

  11. Arctigenin suppresses transforming growth factor-β1-induced expression of monocyte chemoattractant protein-1 and the subsequent epithelial-mesenchymal transition through reactive oxygen species-dependent ERK/NF-κB signaling pathway in renal tubular epithelial cells.

    Science.gov (United States)

    Li, A; Wang, J; Zhu, D; Zhang, X; Pan, R; Wang, R

    2015-01-01

    Transforming growth factor-β1 (TGF-β1) induces expression of the proinflammatory and profibrotic cytokine monocyte chemoattractant protein-1 (MCP-1) in tubular epithelial cells (TECs) and thereby contributes to the tubular epithelial-mesenchymal transition (EMT), which in turn leads to the progression of tubulointerstitial inflammation into tubulointerstitial fibrosis. Exactly how TGF-β1 causes MCP-1 overexpression and subsequent EMT is not well understood. Using human tubular epithelial cultures, we found that TGF-β1 upregulated the expression of reduced nicotinamide adenine dinucleotide phosphate oxidases 2 and 4 and their regulatory subunits, inducing the production of reactive oxygen species. These reactive species activated a signaling pathway mediated by extracellular signal-regulated kinase (ERK1/2) and nuclear factor-κB (NF-κB), which upregulated expression of MCP-1. Incubating cultures with TGF-β1 was sufficient to induce hallmarks of EMT, such as downregulation of epithelial marker proteins (E-cadherin and zonula occludens-1), induction of mesenchymal marker proteins (α-smooth muscle actin, fibronectin, and vimentin), and elevated cell migration and invasion in an EMT-like manner. Overexpressing MCP-1 in cells exposed to TGF-β1 exacerbated these EMT-like changes. Pretreating cells with the antioxidant and anti-inflammatory compound arctigenin (ATG) protected them against these TGF-β1-induced EMT-like changes; the compound worked by inhibiting the ROS/ERK1/2/NF-κB pathway to decrease MCP-1 upregulation. These findings suggest ATG as a new therapeutic candidate to inhibit or even reverse tubular EMT-like changes during progression to tubulointerstitial fibrosis, and they provide the first clues to how ATG may work.

  12. Tumor Necrosis Factor Receptor-associated Protein 1 (TRAP1) Mutation and TRAP1 Inhibitor Gamitrinib-triphenylphosphonium (G-TPP) Induce a Forkhead Box O (FOXO)-dependent Cell Protective Signal from Mitochondria.

    Science.gov (United States)

    Kim, Hyunjin; Yang, Jinsung; Kim, Min Ju; Choi, Sekyu; Chung, Ju-Ryung; Kim, Jong-Min; Yoo, Young Hyun; Chung, Jongkyeong; Koh, Hyongjong

    2016-01-22

    TRAP1 (tumor necrosis factor receptor-associated protein 1), a mitochondrial Hsp90 family chaperone, has been identified as a critical regulator of cell survival and bioenergetics in tumor cells. To discover novel signaling networks regulated by TRAP1, we generated Drosophila TRAP1 mutants. The mutants successfully developed into adults and produced fertile progeny, showing that TRAP1 is dispensable in development and reproduction. Surprisingly, mutation or knockdown of TRAP1 markedly enhanced Drosophila survival under oxidative stress. Moreover, TRAP1 mutation ameliorated mitochondrial dysfunction and dopaminergic (DA) neuron loss induced by deletion of a familial Parkinson disease gene PINK1 (Pten-induced kinase 1) in Drosophila. Gamitrinib-triphenylphosphonium, a mitochondria-targeted Hsp90 inhibitor that increases cell death in HeLa and MCF7 cells, consistently inhibited cell death induced by oxidative stress and mitochondrial dysfunction induced by PINK1 mutation in mouse embryonic fibroblast cells and DA cell models such as SH-SY5Y and SN4741 cells. Additionally, gamitrinib-triphenylphosphonium also suppressed the defective locomotive activity and DA neuron loss in Drosophila PINK1 null mutants. In further genetic analyses, we showed enhanced expression of Thor, a downstream target gene of transcription factor FOXO, in TRAP1 mutants. Furthermore, deletion of FOXO almost nullified the protective roles of TRAP1 mutation against oxidative stress and PINK1 mutation. These results strongly suggest that inhibition of the mitochondrial chaperone TRAP1 generates a retrograde cell protective signal from mitochondria to the nucleus in a FOXO-dependent manner. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Monocyte chemoattractant protein-1, trans-forming growth factor-β1, nerve growth factor, resistin and hyaluronic acid as serum markers:comparison between recurrent acute and chronic pancreatitis

    Institute of Scientific and Technical Information of China (English)

    M Ganesh Kamath; C Ganesh Pai; Asha Kamath; Annamma Kurien

    2016-01-01

    BACKGROUND: Diagnostic parameters that can predict the presence of chronic pancreatitis (CP) in patients with recur-rent pain due to pancreatitis would help to direct appropri-ate therapy. This study aimed to compare the serum levels of monocyte chemoattractant protein-1 (MCP-1), transforming growth factor-β1 (TGF-β1), nerve growth factor (NGF), resis-tin and hyaluronic acid (HA) in patients with recurrent acute pancreatitis (RAP) and CP to assess their ability to differenti-ate the two conditions. METHODS: Levels of serum markers assessed by enzyme-linked immunosorbent assay (ELISA) were prospectively com-pared in consecutive patients with RAP, CP and in controls, and stepwise discriminant analysis was performed to identify the markers differentiating RAP from CP. RESULTS: One hundred and thirteen consecutive patients (RAP=32, CP=81) and 78 healthy controls were prospectively enrolled. The mean (SD) age of the patients was 32.0 (14.0) years; 89 (78.8%) were male. All markers were signiifcantly higher in CP patients than in the controls (P CONCLUSION: Serum resistin is a promising marker to dif-ferentiate between RAP and CP and needs validation in future studies, especially in those with early CP.

  14. Molecular Characterization and Expression Analysis of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Protein-1 Genes in Qinghai-Tibet Plateau and Lowland

    Directory of Open Access Journals (Sweden)

    Ya-bing Chen

    2015-01-01

    Full Text Available Insulin-like growth factor-1 (IGF-1 and insulin-like growth factor binding protein-1 (IGFBP-1 play a pivotal role in regulating cellular hypoxic response. In this study, we cloned and characterized the genes encoding IGF-1 and IGFBP-1 to improve the current knowledge on their roles in highland Bos grunniens (Yak. We also compared their expression levels in the liver and kidney tissues between yaks and lowland cattle. We obtained full-length 465 bp IGF-1 and 792 bp IGFBP-1, encoding 154 amino acids (AA IGF-1, and 263 AA IGFBP-1 protein, respectively using reverse transcriptase-polyerase chain reaction (RT-PCR technology. Analysis of their corresponding amino acid sequences showed a high identity between B. grunniens and lowland mammals. Moreover, the two genes were proved to be widely distributed in the examined tissues through expression pattern analysis. Real-time PCR results revealed that IGF-1 expression was higher in the liver and kidney tissues in B. grunniens than in Bos taurus (p<0.05. The IGFBP-1 gene was expressed at a higher level in the liver (p<0.05 of B. taurus than B. grunniens, but it has a similar expression level in the kidneys of the two species. These results indicated that upregulated IGF-1 and downregulated IGFBP-1 are associated with hypoxia adaptive response in B. grunniens.

  15. Interaction of glucocorticoid receptor (GR) with estrogen receptor (ER) α and activator protein 1 (AP1) in dexamethasone-mediated interference of ERα activity.

    Science.gov (United States)

    Karmakar, Sudipan; Jin, Yetao; Nagaich, Akhilesh K

    2013-08-16

    The role of glucocorticoids in the inhibition of estrogen (17-β-estradiol (E2))-regulated estrogen receptor (ER)-positive breast cancer cell proliferation is well established. We and others have seen that synthetic glucocorticoid dexamethasone (Dex) antagonizes E2-stimulated endogenous ERα target gene expression. However, how glucocorticoids negatively regulate the ERα signaling pathway is still poorly understood. ChIP studies using ERα- and glucocorticoid receptor (GR)-positive MCF-7 cells revealed that GR occupies several ERα-binding regions (EBRs) in cells treated with E2 and Dex simultaneously. Interestingly, there was little or no GR loading to these regions when cells were treated with E2 or Dex alone. The E2+Dex-dependent GR recruitment is associated with the displacement of ERα and steroid receptor coactivator-3 from the target EBRs leading to the repression of ERα-mediated transcriptional activation. The recruitment of GR to EBRs requires assistance from ERα and FOXA1 and is facilitated by AP1 binding within the EBRs. The GR binding to EBRs is mediated via direct protein-protein interaction between the GR DNA-binding domain and ERα. Limited mutational analyses indicate that arginine 488 located within the C-terminal zinc finger domain of the GR DNA-binding domain plays a critical role in stabilizing this interaction. Together, the results of this study unravel a novel mechanism involved in glucocorticoid inhibition of ERα transcriptional activity and E2-mediated cell proliferation and thus establish a foundation for future exploitation of the GR signaling pathway in the treatment of ER-positive breast cancer.

  16. Epstein-barr virus latent membrane protein 1 (EBV-LMP1) and tumor proliferation rate as predictive factors of nasopharyngeal cancer (NPC) radiation response

    Energy Technology Data Exchange (ETDEWEB)

    Gondhowiardjo, S. [Univ. of Indonesia, Jakarta (Indonesia). Faculty of Medicine

    2000-05-01

    Irradiation is still the treatment of choice in NPC treatment as one of highest malignancy in Indonesia as well as in Southeast Asia. Up to now there is no accurate predictor on radiation response, since that the similar histo-morphological pattern, as a well-known prognostic factor can revealed a wide range of treatment outcomes. Purpose of the study is to established the influence of EBV-LMP 1 as the most important protein expressed by EBV oncogenes in cellular behavior such as proliferation rate, tumor aggressivity in NPC and to find out the role of both, proliferation rate and EBV-LMP1 expression as a predictor on NPC radiation response. One-hundred seventy-two paraffin-embedded biopsy specimens from NPC patients were analysed flow-cytometrically to obtain the S-phase fraction value as the proliferation parameter. From this group of patients, 81 fresh specimen biopsies could be collected, and the EBV-LMP 1 expression were detected by western blotting technique (mAB S12-Karolinska Institute) could be done. Several variables such as clinical stage, pathology pattern and radiation response were also collected. The radiation responses were established clinically (by nasopharyngoscopy), by CT scanning and pathologically. Sixty-five percent of our patients belong to the T3 and T4, whereby the N2-3 group consists 75% of them. Fourteen percent of the patients are Hsu type I, 48% are Hs type II and the rest belong to Hsu type III. Our study revealed that the mean SPF value was 14.62% (10.18%, which correlated (p<0.05) with the tumor and nodal sizes). The rate of positive expression of the EBV-LMP1 was 50%, and did not show a correlation with the proliferation activity as well as the radiation response. However, it showed a significant correlation with the tumor and nodal size. There was a significant correlation between this proliferation value with the radiation response calculated by both, bivariate as well as by multivariate analysis. The complete and incomplete

  17. Herbal formula menoprogen alters insulin-like growth factor-1 and insulin-like growth factor binding protein-1 levels in the serum and ovaries of an aged female rat model of menopause.

    Science.gov (United States)

    Wei, Min; Zheng, Sheng Z; Lu, Ye; Liu, Daniel; Ma, Hong; Mahady, Gail B

    2015-10-01

    Menoprogen (MPG), a traditional Chinese medicine formula for menopause, improves menopausal symptoms; however, its mechanism remains unknown. Previous studies have shown that MPG is not directly estrogenic; thus, the goal of this study was to investigate the effects of MPG on insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-1 (IGFBP-1) levels in an aged female rat model of menopause. In a six-arm study, 14-month-old female Sprague-Dawley rats (n = 8 per arm) were randomly divided into the following groups: untreated aged, 17β-estradiol-treated aged (estradiol [E2]), and three arms with increasing doses of MPG (162, 324, or 648 mg/kg/d). The sixth arm contained 4-month-old female Sprague-Dawley rats as a normal comparison group. Four weeks after MPG or E2 administration, animals were killed after blood draws, and ovarian tissues were excised. Levels of E2 and progesterone (P4) were determined by radioimmunoassay. Serum and ovarian tissue levels of IGF-1, IGFBP-1, and IGF-1 receptor were determined by enzyme-linked immunosorbent assay. Compared with the normal group, aged rats had significantly reduced serum levels of E2, P4, and IGF-1, and increased serum and ovarian tissue levels of IGFBP-1. MPG restored serum IGF-1 and IGFBP-1 levels and down-regulated ovarian levels of IGFBP-1, which were closely related to increases in E2 and P4 levels in aged rats. No significant differences in either IGF-1 or IGFBP-1 were observed between the three doses of MPG. MPG exerts a direct in vivo effect on aged female rats by positively regulating serum and ovarian IGF-1 and IGFBP-1 levels.

  18. Lycopene supplementation elevates circulating insulin-like growth factor binding protein-1 and -2 concentrations in persons at greater risk of colorectal cancer.

    NARCIS (Netherlands)

    Vrieling, A.; Voskuil, D.W.; Bonfrer, J.M.G.; Korse, C.M.; Doorn, J. van; Cats, A.; Depla, A.C.; Timmer, R.; Witteman, B.J.M.; Leeuwen, F.E. van; Veer, L.J. van 't; Rookus, M.A.; Kampman, E.

    2007-01-01

    BACKGROUND: Higher circulating insulin-like growth factor I (IGF-I) concentrations have been related to a greater risk of cancer. Lycopene intake is inversely associated with cancer risk, and experimental studies have shown that it may affect the IGF system, possibly through an effect on IGF-binding

  19. Lycopene supplementation elevates circulating insulin-like growth factor-binding protein-1 and-2 concentrations in persons at greater risk of colorectal cancer

    NARCIS (Netherlands)

    Vrieling, A.; Voskuil, D.W.; Bonfrer, J.M.; Korse, C.M.; Doorn, J.; Cats, A.; Depla, A.C.; Timmer, R.; Witteman, B.J.M.; Leeuwen, van F.E.; van't Veer, L.J.; Rookus, M.A.; Kampman, E.

    2007-01-01

    Background: Higher circulating insulin-like growth factor I (IGF-I) concentrations have been related to a greater risk of cancer. Lycopene intake is inversely associated with cancer risk, and experimental studies have shown that it may affect the IGF system, possibly through an effect on IGF-binding

  20. Lycopene supplementation elevates circulating insulin-like growth factor-binding protein-1 and-2 concentrations in persons at greater risk of colorectal cancer

    NARCIS (Netherlands)

    Vrieling, A.; Voskuil, D.W.; Bonfrer, J.M.; Korse, C.M.; Doorn, J.; Cats, A.; Depla, A.C.; Timmer, R.; Witteman, B.J.M.; Leeuwen, van F.E.; van't Veer, L.J.; Rookus, M.A.; Kampman, E.

    2007-01-01

    Background: Higher circulating insulin-like growth factor I (IGF-I) concentrations have been related to a greater risk of cancer. Lycopene intake is inversely associated with cancer risk, and experimental studies have shown that it may affect the IGF system, possibly through an effect on IGF-binding

  1. Lycopene supplementation elevates circulating insulin-like growth factor binding protein-1 and -2 concentrations in persons at greater risk of colorectal cancer.

    NARCIS (Netherlands)

    Vrieling, A.; Voskuil, D.W.; Bonfrer, J.M.G.; Korse, C.M.; Doorn, J. van; Cats, A.; Depla, A.C.; Timmer, R.; Witteman, B.J.M.; Leeuwen, F.E. van; Veer, L.J. van 't; Rookus, M.A.; Kampman, E.

    2007-01-01

    BACKGROUND: Higher circulating insulin-like growth factor I (IGF-I) concentrations have been related to a greater risk of cancer. Lycopene intake is inversely associated with cancer risk, and experimental studies have shown that it may affect the IGF system, possibly through an effect on IGF-binding

  2. Kidney growth in normal and diabetic mice is not affected by human insulin-like growth factor binding protein-1 administration

    NARCIS (Netherlands)

    V. Cingel-Ristic; B.F. Schrijvers; A.K. van Vliet (Arlène); R. Rasch; V.K. Han; S.L.S. Drop (Stenvert); A. Flyvbjerg (Allan)

    2005-01-01

    textabstractInsulin-like growth factor I (IGF-I) accumulates in the kidney following the onset of diabetes, initiating diabetic renal hypertrophy. Increased renal IGF-I protein content, which is not reflected in messenger RNA (mRNA) levels, suggests that renal IGF-I accumulation is

  3. Lycopene supplementation elevates circulating insulin-like growth factor-binding protein-1 and-2 concentrations in persons at greater risk of colorectal cancer

    OpenAIRE

    Vrieling, A.; Voskuil, D.W.; Bonfrer, J.M.; Korse, C M; van Doorn, J.; Cats, A; Depla, A.C.; Timmer, R; Witteman, B.J.M.; Leeuwen, van, P.J.; van 't Veer, L J; Rookus, M A; Kampman, E.

    2007-01-01

    Background: Higher circulating insulin-like growth factor I (IGF-I) concentrations have been related to a greater risk of cancer. Lycopene intake is inversely associated with cancer risk, and experimental studies have shown that it may affect the IGF system, possibly through an effect on IGF-binding proteins (IGFBPs). Objective: The objective of our study was to investigate the effect of an 8-wk supplementation with tomato-derived lycopene (30 mg/d) on serum concentrations of total IGF-I, IGF...

  4. Interleukin-4 and 13 induce the expression and release of monocyte chemoattractant protein 1, interleukin-6 and stem cell factor from human detrusor smooth muscle cells: synergy with interleukin-1beta and tumor necrosis factor-alpha

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Andresen, Lars; Alvarez, Susana

    2006-01-01

    Interstitial cystitis is characterized by an increased number of activated MCs in the detrusor muscle. However, to our knowledge the factors that influence the anatomical relationship between MCs and HDSMCs are unknown. MCP-1, IL-6 and SCF have a critical role in the regulation of MC development,...

  5. cAMP response element binding protein1 is essential for activation of steroyl co-enzyme a desaturase 1 (Scd1 in mouse lung type II epithelial cells.

    Directory of Open Access Journals (Sweden)

    Nisha Antony

    Full Text Available Cyclic AMP Response Element-Binding Protein 1 (Creb1 is a transcription factor that mediates cyclic adenosine 3', 5'-monophosphate (cAMP signalling in many tissues. Creb1(-/- mice die at birth due to respiratory failure and previous genome-wide microarray analysis of E17.5 Creb1(-/- fetal mouse lung identified important Creb1-regulated gene targets during lung development. The lipogenic enzymes stearoyl-CoA desaturase 1 (Scd1 and fatty acid synthase (Fasn showed highly reduced gene expression in Creb1(-/- lungs. We therefore hypothesized that Creb1 plays a crucial role in the transcriptional regulation of genes involved in pulmonary lipid biosynthetic pathways during lung development. In this study we confirmed that Scd1 and Fasn mRNA levels were down regulated in the E17.5 Creb1(-/- mouse lung while the lipogenic-associated transcription factors SrebpF1, C/ebpα and Pparγ were increased. In vivo studies using germline (Creb1(-/- and lung epithelial-specific (Creb1(EpiΔ/Δ Creb1 knockout mice showed strongly reduced Scd1, but not Fasn gene expression and protein levels in lung epithelial cells. In vitro studies using mouse MLE-15 epithelial cells showed that forskolin-mediated activation of Creb1 increased both Scd1 gene expression and protein synthesis. Additionally, MLE15 cells transfected with a dominant-negative ACreb vector blocked forskolin-mediated stimulation of Scd1 gene expression. Lipid profiling in MLE15 cells showed that dominant-negative ACreb suppressed forskolin-induced desaturation of ether linked lipids to produce plasmalogens, as well as levels of phosphatidylethanolamine, ceramide and lysophosphatidylcholine. Taken together these results demonstrate that Creb1 is essential for the induction and maintenance of Scd1 in developing fetal mouse lung epithelial cells.

  6. Psychosocial factors underlying physical activity

    Directory of Open Access Journals (Sweden)

    Ji Cheng-Ye

    2007-09-01

    of physical activity on academic achievement and other factors beyond physical health; barriers of not having enough time and having too many assignments perceived to hinder frequent physical activity; and parental approval. More rigorous research on psychosocial determinants with close-ended items developed from these open-ended data and with larger sample sizes of students is necessary. Research with parents and school staff will be needed to understand the perceptions of these stakeholder groups key to creating the students' social environment.

  7. Elevated Dengue Virus Nonstructural Protein 1 Serum Levels and Altered Toll-Like Receptor 4 Expression, Nitric Oxide, and Tumor Necrosis Factor Alpha Production in Dengue Hemorrhagic Fever Patients

    Directory of Open Access Journals (Sweden)

    Denise Maciel Carvalho

    2014-01-01

    Full Text Available Background. During dengue virus (DV infection, monocytes produce tumor necrosis factor alpha (TNF-α and nitric oxide (NO which might be critical to immunopathogenesis. Since intensity of DV replication may determine clinical outcomes, it is important to know the effects of viral nonstructural protein 1 (NS1 on innate immune parameters of infected patients. The present study investigates the relationships between dengue virus nonstructural protein 1 (NS1 serum levels and innate immune response (TLR4 expression and TNF-α/NO production of DV infected patients presenting different clinical outcomes. Methodology/Principal Findings. We evaluated NO, NS1 serum levels (ELISA, TNF-α production by peripheral blood mononuclear cells (PBMCs, and TLR4 expression on CD14+ cells from 37 dengue patients and 20 healthy controls. Early in infection, increased expression of TLR4 in monocytes of patients with dengue fever (DF was detected compared to patients with dengue hemorrhagic fever (DHF. Moreover, PBMCs of DHF patients showed higher NS1 and lower NO serum levels during the acute febrile phase and a reduced response to TLR4 stimulation by LPS (with a reduced TNF-α production when compared to DF patients. Conclusions/Significance. During DV infection in humans, some innate immune parameters change, depending on the NS1 serum levels, and phase and severity of the disease which may contribute to development of different clinical outcomes.

  8. Contraction-induced Interleukin-6 Gene Transcription in Skeletal Muscle Is Regulated by c-Jun Terminal Kinase/Activator Protein-1*

    Science.gov (United States)

    Whitham, Martin; Chan, M. H. Stanley; Pal, Martin; Matthews, Vance B.; Prelovsek, Oja; Lunke, Sebastian; El-Osta, Assam; Broenneke, Hella; Alber, Jens; Brüning, Jens C.; Wunderlich, F. Thomas; Lancaster, Graeme I.; Febbraio, Mark A.

    2012-01-01

    Exercise increases the expression of the prototypical myokine IL-6, but the precise mechanism by which this occurs has yet to be identified. To mimic exercise conditions, C2C12 myotubes were mechanically stimulated via electrical pulse stimulation (EPS). We compared the responses of EPS with the pharmacological Ca2+ carrier calcimycin (A23187) because contraction induces marked increases in cytosolic Ca2+ levels or the classical IκB kinase/NFκB inflammatory response elicited by H2O2. We demonstrate that, unlike H2O2-stimulated increases in IL-6 mRNA, neither calcimycin- nor EPS-induced IL-6 mRNA expression is under the transcriptional control of NFκB. Rather, we show that EPS increased the phosphorylation of JNK and the reporter activity of the downstream transcription factor AP-1. Furthermore, JNK inhibition abolished the EPS-induced increase in IL-6 mRNA and protein expression. Finally, we observed an exercise-induced increase in both JNK phosphorylation and IL-6 mRNA expression in the skeletal muscles of mice after 30 min of treadmill running. Importantly, exercise did not increase IL-6 mRNA expression in skeletal muscle-specific JNK-deficient mice. These data identify a novel contraction-mediated transcriptional regulatory pathway for IL-6 in skeletal muscle. PMID:22351769

  9. A novel intronic cAMP response element modulator (CREM) promoter is regulated by activator protein-1 (AP-1) and accounts for altered activation-induced CREM expression in T cells from patients with systemic lupus erythematosus.

    Science.gov (United States)

    Rauen, Thomas; Benedyk, Konrad; Juang, Yuang-Taung; Kerkhoff, Claus; Kyttaris, Vasileios C; Roth, Johannes; Tsokos, George C; Tenbrock, Klaus

    2011-09-16

    The transcriptional repressor cAMP response element modulator (CREM) α has important roles in normal T cell physiology and contributes to aberrant T cell function in patients with systemic lupus erythematosus (SLE). Recently, we characterized a specificity protein-1-dependent promoter located upstream of the CREM gene that accounts for increased basal CREM expression in SLE T cells and reflects disease activity. Here, we identify a novel intronic CREM promoter (denoted P2) in front of the second exon of the CREM gene that harbors putative binding sites for TATA-binding proteins and the transcriptional activator AP-1. DNA binding studies, chromatin immunoprecipitation, and reporter assays confirmed the functional relevance of these sites, and T cell activation through CD3/CD28 stimulation or phorbol 12-myristate 13-acetate/ionomycin treatment enhances P2 promoter activity. Although the basal CREM levels are increased in T cells from SLE patients compared with healthy controls, there are remarkable differences in the regulation of CREM expression in response to T cell activation. Whereas T cells from healthy individuals display increased CREM expression after T cell activation, most likely through AP-1-dependent up-regulation of the P2 promoter, SLE T cells fail to further increase their basal CREM levels upon T cell activation due to a decreased content of the AP-1 family member c-Fos. Because CREM trans-represses c-fos transcription in SLE T cells, we propose an autoregulatory feedback mechanism between CREM and AP-1. Our findings extend the understanding of CREM gene regulation in the context of T cell activation and disclose another difference in the transcriptional machinery in SLE T cells.

  10. The effects of a selective inhibitor of c-Fos/activator protein-1 on endotoxin-induced acute kidney injury in mice

    Directory of Open Access Journals (Sweden)

    Miyazaki Hiroyuki

    2012-11-01

    Full Text Available Abstract Background Sepsis has been identified as the most common cause of acute kidney injury (AKI in intensive care units. Lipopolysaccharide (LPS induces the production of several proinflammatory cytokines including tumor necrosis factor (TNF-alpha, a major pathogenetic factor in septic AKI. c-Fos/activator protein (AP-1 controls the expression of these cytokines by binding directly to AP-1 motifs in the cytokine promoter regions. T-5224 is a new drug developed by computer-aided drug design that selectively inhibits c-Fos/AP-1 binding to DNA. In this study, we tested whether T-5224 has a potential inhibitory effect against LPS-induced AKI, by suppressing the TNF-alpha inflammatory response and other downstream effectors. Methods To test this hypothesis, male C57BL/6 mice at 7 weeks old were divided into three groups (control, LPS and T-5224 groups. Mice in the control group received saline intraperitoneally and polyvinylpyrrolidone solution orally. Mice in the LPS group were injected intraperitoneally with a 6 mg/kg dose of LPS and were given polyvinylpyrrolidone solution immediately after LPS injection. In the T-5224 group, mice were administered T-5224 orally at a dose of 300 mg/kg immediately after LPS injection. Serum concentrations of TNF-alpha, interleukin (IL-1beta, IL-6 and IL-10 were measured by ELISA. Moreover, the expression of intercellular adhesion molecule (ICAM-1 mRNA in kidney was examined by quantitative real-time RT-PCR. Finally, we evaluated renal histological changes. Results LPS injection induced high serum levels of TNF-alpha, IL-1beta and IL-6. However, the administration of T-5224 inhibited the LPS-induced increase in these cytokine levels. The serum levels of IL-10 in the LPS group and T-5224 group were markedly elevated compared with the control group. T-5224 also inhibited LPS-induced ICAM-1 mRNA expression. Furthermore histological studies supported an anti-inflammatory role of T-5224. Conclusions In endotoxin

  11. Thromboxane A2 receptor-mediated release of matrix metalloproteinase-1 (MMP-1) induces expression of monocyte chemoattractant protein-1 (MCP-1) by activation of protease-activated receptor 2 (PAR2) in A549 human lung adenocarcinoma cells.

    Science.gov (United States)

    Li, Xiuling; Tai, Hsin-Hsiung

    2014-08-01

    Matrix metalloproteinases (MMPs) and monocyte chemoattractant protein-1 (MCP-1, CCL2) are known to be upregulated in many tumors. Their roles in tumor invasion and metastasis are being uncovered. How they are related to each other and involved in tumor progression remains to be determined. Earlier it was reported that I-BOP-initiated activation of thromboxane A2 receptor (TP) induced the release of MMP-1, MMP-3, and MMP-9 from lung cancer A549 cells overexpressing TPα (A549-TPα). Herein it was found that MMP-1, but not MMP-3 or MMP-9, induced the expression of MCP-1 in A549 cells. Conditioned medium (CM) from I-BOP activated, MMP-1 siRNA pretreated A549-TPα cells induced greatly attenuated expression of MCP-1 in A549 cells indicating that MMP-1 in the CM contributed significantly to the expression of MCP-1. MMP-1 was shown to activate protease-activated receptor 2 (PAR2) instead of commonly assumed PAR1 to increase the expression of MCP-1 in A549 cells. This conclusion was reached from the following findings: (1) expression of MCP-1 induced by trypsin, a PAR2 agonist, and also PAR2 agonist peptide, was inhibited by a PAR2 antagonist; (2) expression of MCP-1 induced by MMP-1 and by CM from I-BOP activated A549-TPα cells was blocked by a PAR2 antagonist but not by other PAR antagonists; (3) expression of MCP-1 induced by MMP-1 and by CM from I-BOP activated A549-TPα cells was attenuated significantly by pretreatment of cells with PAR2-siRNA. These results suggest that PAR2 is a novel MMP-1 target mediating MMP-1-induced signals in A549 lung cancer cells.

  12. Expression and functional activity of the ABC-transporter proteins P-glycoprotein and multidrug-resistance protein 1 in human brain tumor cells and astrocytes.

    Science.gov (United States)

    Spiegl-Kreinecker, Sabine; Buchroithner, Johanna; Elbling, Leonilla; Steiner, Elisabeth; Wurm, Gabriele; Bodenteich, Angelika; Fischer, Johannes; Micksche, Michael; Berger, Walter

    2002-03-01

    The poor prognosis of glioma patients is partly based on the minor success obtained from chemotherapeutic treatments. Resistance mechanisms at the tumor cell level may be, in addition to the blood-brain barrier, involved in the intrinsic chemo-insensitivity of brain tumors. We investigated the expression of the drug-transporter proteins P-glycoprotein (P-gp) and multidrug-resistance protein 1 (MRP1) in cell lines (N = 24) and primary cell cultures (N = 36) from neuroectodermal tumors, as well as in brain tumor extracts (N = 18) and normal human astrocytes (N = 1). We found that a considerable expression of P-gp was relatively rare in glioma cells, in contrast to MRP1, which was constitutively overexpressed in cells derived from astrocytomas as well as glioblastomas. Also, normal astrocytes cultured in vitro expressed high amounts of MRPI but no detectable P-gp. Meningioma cells frequently co-expressed P-gp and MRP1, while, most of the neuroblastoma cell lines express higher P-gp but lower MRP1 levels as compared to the other tumor types. Both, a drug-exporting and a chemoprotective function of P-gp as well as MRP1 could be demonstrated in selected tumor cells by a significant upregulation of cellular 3H-daunomycin accumulation and daunomycin cytotoxicity via administration of transporter antagonists. Summing up, our data suggest that P-gp contributes to cellular resistance merely in a small subgroup of gliomas, but frequently in neuroblastomas and meningiomas. In contrast, MRP1 is demonstrated to play a constitutive role in the intrinsic chemoresistance of gliomas and their normal cell counterpart.

  13. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    Science.gov (United States)

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD.

  14. E. coli histidine triad nucleotide binding protein 1 (ecHinT) is a catalytic regulator of D-alanine dehydrogenase (DadA) activity in vivo.

    Science.gov (United States)

    Bardaweel, Sanaa; Ghosh, Brahma; Chou, Tsui-Fen; Sadowsky, Michael J; Wagner, Carston R

    2011-01-01

    Histidine triad nucleotide binding proteins (Hints) are highly conserved members of the histidine triad (HIT) protein superfamily. Hints comprise the most ancient branch of this superfamily and can be found in Archaea, Bacteria, and Eukaryota. Prokaryotic genomes, including a wide diversity of both gram-negative and gram-positive bacteria, typically have one Hint gene encoded by hinT (ycfF in E. coli). Despite their ubiquity, the foundational reason for the wide-spread conservation of Hints across all kingdoms of life remains a mystery. In this study, we used a combination of phenotypic screening and complementation analyses with wild-type and hinT knock-out Escherichia coli strains to show that catalytically active ecHinT is required in E. coli for growth on D-alanine as a sole carbon source. We demonstrate that the expression of catalytically active ecHinT is essential for the activity of the enzyme D-alanine dehydrogenase (DadA) (equivalent to D-amino acid oxidase in eukaryotes), a necessary component of the D-alanine catabolic pathway. Site-directed mutagenesis studies revealed that catalytically active C-terminal mutants of ecHinT are unable to activate DadA activity. In addition, we have designed and synthesized the first cell-permeable inhibitor of ecHinT and demonstrated that the wild-type E. coli treated with the inhibitor exhibited the same phenotype observed for the hinT knock-out strain. These results reveal that the catalytic activity and structure of ecHinT is essential for DadA function and therefore alanine metabolism in E. coli. Moreover, they provide the first biochemical evidence linking the catalytic activity of this ubiquitous protein to the biological function of Hints in Escherichia coli.

  15. E. coli histidine triad nucleotide binding protein 1 (ecHinT is a catalytic regulator of D-alanine dehydrogenase (DadA activity in vivo.

    Directory of Open Access Journals (Sweden)

    Sanaa Bardaweel

    Full Text Available Histidine triad nucleotide binding proteins (Hints are highly conserved members of the histidine triad (HIT protein superfamily. Hints comprise the most ancient branch of this superfamily and can be found in Archaea, Bacteria, and Eukaryota. Prokaryotic genomes, including a wide diversity of both gram-negative and gram-positive bacteria, typically have one Hint gene encoded by hinT (ycfF in E. coli. Despite their ubiquity, the foundational reason for the wide-spread conservation of Hints across all kingdoms of life remains a mystery. In this study, we used a combination of phenotypic screening and complementation analyses with wild-type and hinT knock-out Escherichia coli strains to show that catalytically active ecHinT is required in E. coli for growth on D-alanine as a sole carbon source. We demonstrate that the expression of catalytically active ecHinT is essential for the activity of the enzyme D-alanine dehydrogenase (DadA (equivalent to D-amino acid oxidase in eukaryotes, a necessary component of the D-alanine catabolic pathway. Site-directed mutagenesis studies revealed that catalytically active C-terminal mutants of ecHinT are unable to activate DadA activity. In addition, we have designed and synthesized the first cell-permeable inhibitor of ecHinT and demonstrated that the wild-type E. coli treated with the inhibitor exhibited the same phenotype observed for the hinT knock-out strain. These results reveal that the catalytic activity and structure of ecHinT is essential for DadA function and therefore alanine metabolism in E. coli. Moreover, they provide the first biochemical evidence linking the catalytic activity of this ubiquitous protein to the biological function of Hints in Escherichia coli.

  16. Effects of retinoic acid and hydrogen peroxide on sterol regulatory element-binding protein-1a activation during adipogenic differentiation of 3T3-L1 cells

    OpenAIRE

    Eldaim, Mabrouk A. Abd; Okamatsu-Ogura, Yuko; Terao, Akira; Kimura, Kazuhiro

    2010-01-01

    Both retinoic acid (RA) and oxidative stress (H2O2) increased transcription and cleavage of membrane-bound sterol regulatory element-binding protein (SREBP)-1, leading to enhanced transcription of fatty acid synthase (FAS) in hepatoma cells. On the other hand, RA and H2O2 decreased and increased lipogenesis in adipocytes, respectively, although roles of SREBP-1 activation in these effects remain to be elucidated. To elucidate its involvement, we examined the activation of SREBP...

  17. The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases

    Institute of Scientific and Technical Information of China (English)

    Chi-NeuTsai

    2005-01-01

    The latent membrane protein (LMP1) of Epstein-Barr virus (EBV) is expressed in EBV-associated nasopharyngeal carcinoma, which isnotoriously metastatic. Although it Is established that LMP1 represses E-cadherin expression and enhances the invasive ability of carcinoma cells, the mechanism underlying this repression remains to be elucidated. In this study, we demonstrate that LMP1 induces the expression and activity of the DNA methyltransferases 1, 3a, and 3b, using real-time reverse transcription-PCR and enzyme activity assay. This results in hypermethylation of the E-cadherin promoter and down-regulation of E-cadherin gene expression, as revealed by methylation-specific PCR, real-time reverse transcription-PeR and Western blotting data. The DNA methyltransferase inhibitor, 5'-Aza-2'dC, restores E-cadherin promoter activity and protein expression in LMPl-expressing cells, which in turn blocks cell migration ability, as demonstrated by the Transwell cell migration assay. Our findings suggest that LMP1 down-regulates E-cadherin gene expression and induces cell migration activity by using cellular DNA methylation machinery.

  18. Hydrogen sulfide suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor κB (NF-κB) pathway.

    Science.gov (United States)

    Du, Junbao; Huang, Yaqian; Yan, Hui; Zhang, Qiaoli; Zhao, Manman; Zhu, Mingzhu; Liu, Jia; Chen, Stella X; Bu, Dingfang; Tang, Chaoshu; Jin, Hongfang

    2014-04-01

    This study was designed to examine the role of hydrogen sulfide (H2S) in the generation of oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 (MCP-1) from macrophages and possible mechanisms. THP-1 cells and RAW macrophages were pretreated with sodium hydrosulfide (NaHS) and hexyl acrylate and then treated with ox-LDL. The results showed that ox-LDL treatment down-regulated the H2S/cystathionine-β-synthase pathway, with increased MCP-1 protein and mRNA expression in both THP-1 cells and RAW macrophages. Hexyl acrylate promoted ox-LDL-induced inflammation, whereas the H2S donor NaHS inhibited it. NaHS markedly suppressed NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter in ox-LDL-treated macrophages. Furthermore, NaHS decreased the ratio of free thiol groups in p65, whereas the thiol reductant DTT reversed the inhibiting effect of H2S on the p65 DNA binding activity. Most importantly, site-specific mutation of cysteine 38 to serine in p65 abolished the effect of H2S on the sulfhydration of NF-κB and ox-LDL-induced NF-κB activation. These results suggested that endogenous H2S inhibited ox-LDL-induced macrophage inflammation by suppressing NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter. The sulfhydration of free thiol group on cysteine 38 in p65 served as a molecular mechanism by which H2S inhibited NF-κB pathway activation in ox-LDL-induced macrophage inflammation.

  19. Sterol Regulatory Element-Binding Protein-1c Regulates Inflammasome Activation in Gingival Fibroblasts Infected with High-Glucose-Treated Porphyromonas gingivalis

    Science.gov (United States)

    Kuo, Hsing-Chun; Chang, Li-Ching; Chen, Te-Chuan; Lee, Ko-Chao; Lee, Kam-Fai; Chen, Cheng-Nan; Yu, Hong-Ren

    2016-01-01

    Background: Porphyromonas gingivalis is a major bacterial species implicated in the progression of periodontal disease, which is recognized as a common complication of diabetes. The interleukin (IL)-1β, processed by the NLR family pyrin domain containing 3 (NLRP3) inflammasome, has been identified as a target for pathogenic infection of the inflammatory response. However, the effect of P. gingivalis in a high-glucose situation in the modulation of inflammasome activation in human gingival fibroblasts (HGFs) is not well-understood. Methods: P. gingivalis strain CCUG25226 was used to study the mechanisms underlying the regulation of HGF NLRP3 expression by the infection of high-glucose-treated P. gingivalis (HGPg). Results: HGF infection with HGPg increases the expression of IL-1β and NLRP3. We further demonstrated that the upregulation of sterol regulatory element-binding protein (SREBP)-1c by activation of the Akt and p70S6K pathways is critical for HGPg-induced NLRP3 expression. We showed that the inhibition of Janus kinase 2 (JAK2) blocks the Akt- and p70S6K-mediated SREBP-1c, NLRP3, and IL-1β expression. The effect of HGPg on HGF signaling and NLRP3 expression is mediated by β1 integrin. In addition, gingival tissues from diabetic patients with periodontal disease exhibited higher NLRP3 and SREBP-1c expression. Conclusions: Our findings identify the molecular pathways underlying HGPg-dependent NLRP3 inflammasome expression in HGFs, providing insight into the effect of P. gingivalis invasion in HGFs. PMID:28083517

  20. Tea polyphenols increase X-ray repair cross-complementing protein 1 and apurinic/apyrimidinic endonuclease/redox factor-1 expression in the hippocampus of rats during cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Zhi Wang; Hui Gao; Xin Wei; Rongliang Xue; Xi Lei; Jianrui Lv; Gang Wu; Wei Li; Li Xue; Xiaoming Lei; Hongxia Zhao

    2012-01-01

    Recent studies have shown that tea polyphenols can cross the blood-brain barrier,inhibit apoptosis and play a neuroprotective role against cerebral ischemia.Furthermore,tea polyphenols can decrease DNA damage caused by free radicals.We hypothesized that tea polyphenols repair DNA damage and inhibit neuronal apoptosis during global cerebral ischemia/reperfusion.To test this hypothesis,we employed a rat model of global cerebral ischemia/reperfusion.We demonstrated that intraperitoneal injection of tea polyphenols immediately after reperfusion significantly reduced apoptosis in the hippocampal CA1 region; this effect started 6 hours following reperfusion.Immunohistochemical staining showed that tea polyphenols could reverse the ischemia/reperfusion-induced reduction in the expression of DNA repair proteins,X-ray repair cross-complementing protein 1 and apurinic/apyrimidinic endonuclease/redox factor-1 starting at 2 hours.Both effects lasted at least 72 hours.These experimental findings suggest that tea polyphenols promote DNA damage repair and protect against apoptosis in the brain.

  1. Activity factors of the Korean exposure factors handbook.

    Science.gov (United States)

    Jang, Jae-Yeon; Jo, Soo-Nam; Kim, So-Yeon; Lee, Kyung-Eun; Choi, Kyung-Ho; Kim, Young-Hee

    2014-01-01

    Exposure factors based on the Korean population are required for making appropriate risk assessment. It is expected that handbooks for exposure factors will be applied in many fields, as well as by health department risk assessors. The present article describes the development of an exposure factors handbook that specifically focuses on human activities in situations involving the possible risk of exposure to environmental contaminants. We define majour exposure factors that represent behavioral patterns for risk assessment, including time spent on routine activities, in different places, on using transportation, and engaged in activities related to water contact including swimming, bathing and washing. Duration of residence and employment are also defined. National survey data were used to identify recommended levels of exposure factors in terms of time spent on routine activities and period of residence and employment. An online survey was conducted with 2073 subjects who were selected using a stratified random sampling method in order to develop a list of exposure factors for the time spent in different places and in performing water-related activities. We provide the statistical distribution of the variables, and report reference levels of average exposure based on the reliable data in our exposure factors handbook.

  2. Role of receptor activity modifying protein 1 in function of the calcium sensing receptor in the human TT thyroid carcinoma cell line.

    Directory of Open Access Journals (Sweden)

    Aditya J Desai

    Full Text Available The Calcium Sensing Receptor (CaSR plays a role in calcium homeostasis by sensing minute changes in serum Ca(2+ and modulating secretion of calciotropic hormones. It has been shown in transfected cells that accessory proteins known as Receptor Activity Modifying Proteins (RAMPs, specifically RAMPs 1 and 3, are required for cell-surface trafficking of the CaSR. These effects have only been demonstrated in transfected cells, so their physiological relevance is unclear. Here we explored CaSR/RAMP interactions in detail, and showed that in thyroid human carcinoma cells, RAMP1 is required for trafficking of the CaSR. Furthermore, we show that normal RAMP1 function is required for intracellular responses to ligands. Specifically, to confirm earlier studies with tagged constructs, and to provide the additional benefit of quantitative stoichiometric analysis, we used fluorescence resonance energy transfer to show equal abilities of RAMP1 and 3 to chaperone CaSR to the cell surface, though RAMP3 interacted more efficiently with the receptor. Furthermore, a higher fraction of RAMP3 than RAMP1 was observed in CaSR-complexes on the cell-surface, suggesting different ratios of RAMPs to CaSR. In order to determine relevance of these findings in an endogenous expression system we assessed the effect of RAMP1 siRNA knock-down in medullary thyroid carcinoma TT cells, (which express RAMP1, but not RAMP3 constitutively and measured a significant 50% attenuation of signalling in response to CaSR ligands Cinacalcet and neomycin. Blockade of RAMP1 using specific antibodies induced a concentration-dependent reduction in CaSR-mediated signalling in response to Cinacalcet in TT cells, suggesting a novel functional role for RAMP1 in regulation of CaSR signalling in addition to its known role in receptor trafficking. These data provide evidence that RAMPs traffic the CaSR as higher-level oligomers and play a role in CaSR signalling even after cell surface localisation has

  3. Insulin-like growth factor-1 (IGF-1) enhances recovery from HgCl2-induced acute renal failure: the effects on renal IGF-1, IGF-1 receptor, and IGF-binding protein-1 mRNA.

    Science.gov (United States)

    Friedlaender, M; Popovtzer, M M; Weiss, O; Nefesh, I; Kopolovic, J; Raz, I

    1995-04-01

    Several growth factors have been found to play an important role in the recovery from acute renal failure (ARF). The effect of the continuous subcutaneous infusion of human recombinant insulin-like growth factor (IGF)-1 (125 micrograms daily by osmotic minipumps) in a rat model of mercuric chloride (HgCl2)-induced ARF was examined. HgCl2 (4 mg/kg) induced ARF with a mortality that was unaffected by IGF-1. However, IGF-1 significantly enhanced functional and histologic recovery in the survivors, as measured by serum creatinine and creatinine clearance and by histologic scoring. Solution hybridization RNAase protection assays showed that renal IGF-1 mRNA, IGF-1 receptor (IGF-1R) mRNA, and IGF-binding protein-1 (IGFBP-1) mRNA were unaffected by exogenous IGF-1, but this treatment significantly increased renal IGF-1 in ARF rats compared with normal rats and ARF rats not receiving IGF-1. After ARF renal mRNA for IGF-1 was decreased, IGF-1R was unchanged and IGFBP-1 was increased. Similar changes occurred in IGF-1-infused ARF rats. Thus, (1) IGF-1 enhances recovery from nephrotoxic ARF both functionally and histologically; (2) in nephrotoxic ARF, there is (a) a reduction in IGF-1 mRNA expression that is not prevented by IGF-1 infusion, and (b) an increase in renal IGFBP-1 mRNA. This may allow a significant increase in renal IGF-1 levels in IGF-1-infused ARF rats, despite the decrease in renal IGF-1 mRNA. A local increase in renal IGFBP-1 and IGF-1 may explain the accelerated recovery from ATN in this model. It was concluded that HgCl2-induced ARF is amenable to improvement by IGF-1 infusion and that the increase in renal IGFBP-1 mRNA may be an important modulator in the recovery of the kidney.

  4. Coagulation factor VIII activity in diabetic patients

    Directory of Open Access Journals (Sweden)

    Nermina Babić

    2011-02-01

    Full Text Available Aim To examine coagulation factor VIII activity in plasma, as a risk factor for thrombosis, in the patients with diabetes mellitus (DM. Also, to assess its relationship with ibrinogen and fasting blood glucose concentrations and with body mass index. Methods The plasma coagulation factor VIII activity, plasma levels of ibrinogen and blood glucose concentrations were measured in 30 patients with DM type 1, 30 patients with DM type 2 and in 30 healthy subjects. Body weight and body height were also measured and BMI was calculated.Results The plasma factor VIII activity in patients with DM type 1 and patients with DM type 2 was signiicantly higher than the values measured in healthy subjects. There was no signiicant difference in the factor VIII activity between patients with DM type 1 and type 2. The concentrations of ibrinogen and blood glucose in both groups of patients were signiicantly higher than in the group of healthy subjects. Patients with DM type 2 had a signiicantly higher BMI compared to healthy subjects, as well as compared to patients with DM type 1. There was a signiicant positive correlation between plasma factor VIII activity and plasma level of ibrinogen and a signiicant negative correlation between factor VIII activity and BMI in patients with DM type 2. Conclusion Diabetic patients have the elevated plasma coagulation factor VIII activity and increased ibrinogen concentration thus an increased risk of thrombosis and vascular diseases.

  5. Study of Transcription Activity of X-Box Binding Protein 1 Gene in Human Different Cell Lines%人类不同类型细胞中X-盒结合蛋白1转录活性研究

    Institute of Scientific and Technical Information of China (English)

    郭风劲; 宋方洲; 张静; 李婧; 唐勇

    2007-01-01

    Human X-box binding protein 1 (XBP1), an important transcription factor, participates in many signal transduction processes. To further investigate the biological function of XBP1, sequences of XBP1 promoter and its two deletion mutants were first determined using bioinformatic analysis. The report vectors containing XBP1 promoter and its deletion mutants were then constructed, namely, p1-XBP1p, p2-XBP1p, and p3-XBP1p. Each reporter vector was separately transfected into HepG2, L02, K562,SMMC-7721, HSF, and Lipocyte Ito Cell line using FuGENE 6 transfection reagents. The activity of chloramphenicol acetyltransferase (CAT) in each group of transfected cells was detected by ELISA assay, which in turn reflects the transcription activity of the XBP1 gene promoter. The activity involving p3-XBP1p was the highest in HepG2, which was 12.4-fold of that of pCAT3-Basic. The activities of p3-XBP1p in K562 and SMMC-7721 were the second and the third highest, which were 10.9-fold and 10.0-fold of that of the pCAT3-Basic, respectively. The CAT activity in L02 was lower than that in the above-mentioned abnormal cell, and no reporter activity was detected in HSF and Ito Cell. The XBP1 transcription and expression in K562, HepG2 and SMMC-7721 were found to be higher than that in L02, HSF and Ito cells, based on the results of real-time RT-PCR and Western blot. The XBP1 transcription and expression in L02, HSF was lower, whereas that in Ito cells was totally lacking. The result was similar to that of CAT-ELISA. Therefore, the XBP1 gene promoter can drive its downstream gene expression and its activity is cell line-dependent.The core sequence of XBP1 promoter was found between -227bp and 66bp sequence. This sequence was closely associated with the transcriptional activity of XBP1 promoter.%人类X-盒结合蛋白1(X-box binding protein1,XBP1)作为一种重要的转录因子,在细胞中涉及了广泛的信号调控过程.为进一步研究XBP1的生物学功能,首先利用

  6. Key factors of enterprise innovation activity

    Directory of Open Access Journals (Sweden)

    Pichugina Maryna Anatoliivna

    2015-02-01

    Full Text Available The article deals with the studies of factors and conditions that define enterprise innovative activity. It is distinguished factors that influence the orientation on innovation of a company and factors that influence the innovation ability. It is noted an interdependence between innovative ability, orientation and activity. The article is also dedicated to analyses of influence specific industry characteristics and inner view of enterprise. It is discussed the influence of such factors as knowledge base, the organizational learning mechanisms, an external openness and the structure of innovative connections on the company opportunities to innovate. It is tried to focus on the impact of the environment on enterprise capabilities.

  7. Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense.

    Science.gov (United States)

    Lai, Zhibing; Li, Ying; Wang, Fei; Cheng, Yuan; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2011-10-01

    Necrotrophic pathogens are important plant pathogens that cause many devastating plant diseases. Despite their impact, our understanding of the plant defense response to necrotrophic pathogens is limited. The WRKY33 transcription factor is important for plant resistance to necrotrophic pathogens; therefore, elucidation of its functions will enhance our understanding of plant immunity to necrotrophic pathogens. Here, we report the identification of two WRKY33-interacting proteins, nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2, which also interact with plastid-encoded plastid RNA polymerase SIGMA FACTOR1. Both SIB1 and SIB2 contain an N-terminal chloroplast targeting signal and a putative nuclear localization signal, suggesting that they are dual targeted. Bimolecular fluorescence complementation indicates that WRKY33 interacts with SIBs in the nucleus of plant cells. Both SIB1 and SIB2 contain a short VQ motif that is important for interaction with WRKY33. The two VQ motif-containing proteins recognize the C-terminal WRKY domain and stimulate the DNA binding activity of WRKY33. Like WRKY33, both SIB1 and SIB2 are rapidly and strongly induced by the necrotrophic pathogen Botrytis cinerea. Resistance to B. cinerea is compromised in the sib1 and sib2 mutants but enhanced in SIB1-overexpressing transgenic plants. These results suggest that dual-targeted SIB1 and SIB2 function as activators of WRKY33 in plant defense against necrotrophic pathogens.

  8. The Bone Morphogenetic Protein 1/Tolloid-like Metalloproteinases

    Science.gov (United States)

    Hopkins, Delana R.; Keles, Sunduz; Greenspan, Daniel S.

    2009-01-01

    A decade ago, bone morphogenetic protein 1 (BMP1) was shown to provide the activity necessary for proteolytic removal of the C-propeptides of procollagens I–III: precursors of the major fibrillar collagens. Subsequent studies have shown BMP1 to be the prototype of a small group of extracellular metalloproteinases that play manifold roles in regulating formation of the extracellular matrix (ECM). Soon after initial cloning of BMP1, genetic studies showed the related Drosophila proteinase Tolloid (TLD) to be necessary for formation of the dorsal-ventral axis in early embryogenesis. It is now clear that the BMP1/TLD-like proteinases, conserved in species ranging from Drosophila to humans, act in dorsal-ventral patterning via activation of transforming growth factor β (TGFβ)-like proteins BMP2, BMP4 (vertebrates) and decapentaplegic (arthropods). More recently, it has become apparent that the BMP1/TLD-like proteinases are key activators of a broader subset of the TGFβ superfamily of proteins, with implications that these proteinases may be key in orchestrating formation of ECM with growth factor activation and BMP signaling in morphogenetic processes. PMID:17560775

  9. Glycosylation analysis and protein structure determination of murine fetal antigen 1 (mFA1)--the circulating gene product of the delta-like protein (dlk), preadipocyte factor 1 (Pref-1) and stromal-cell-derived protein 1 (SCP-1) cDNAs

    DEFF Research Database (Denmark)

    Krogh, T N; Bachmann, E; Teisner, B

    1997-01-01

    By means of sequence analysis, murine fetal antigen 1 (mFA1) isolated from Mus musculus amniotic fluid was shown to be the circulating protein of the delta-like protein, stromal-cell-derived protein 1 (SCP-1) and preadipocyte factor 1 (Pref-1) gene products. The protein contains 36 cysteine resid...

  10. Altered activities of transcription factors and their related gene expression in cardiac tissues of diabetic rats.

    Science.gov (United States)

    Nishio, Y; Kashiwagi, A; Taki, H; Shinozaki, K; Maeno, Y; Kojima, H; Maegawa, H; Haneda, M; Hidaka, H; Yasuda, H; Horiike, K; Kikkawa, R

    1998-08-01

    Gene regulation in the cardiovascular tissues of diabetic subjects has been reported to be altered. To examine abnormal activities in transcription factors as a possible cause of this altered gene regulation, we studied the activity of two redox-sensitive transcription factors--nuclear factor-kappaB (NF-kappaB) and activating protein-1 (AP-1)--and the change in the mRNA content of heme oxygenase-1, which is regulated by these transcription factors in the cardiac tissues of rats with streptozotocin-induced diabetes. Increased activity of NF-kappaB and AP-1 but not nuclear transcription-activating factor, as determined by an electrophoretic mobility shift assay, was found in the hearts of 4-week diabetic rats. Glycemic control by a subcutaneous injection of insulin prevented these diabetes-induced changes in transcription factor activity. In accordance with these changes, the mRNA content of heme oxygenase-1 was increased fourfold in 4-week diabetic rats and threefold in 24-week diabetic rats as compared with control rats (P oxidative stress is involved in the activation of the transcription factors NF-kappaB and AP-1 in the cardiac tissues of diabetic rats, and that these abnormal activities of transcription factors could be associated with the altered gene regulation observed in the cardiovascular tissues of diabetic rats.

  11. Changes in serum concentrations of growth hormone, insulin, insulin-like growth factor and insulin-like growth factor-binding proteins 1 and 3 and urinary growth hormone excretion during the menstrual cycle

    DEFF Research Database (Denmark)

    Juul, A; Scheike, Thomas Harder; Pedersen, A T

    1997-01-01

    Few studies exist on the physiological changes in the concentrations of growth hormone (GH), insulin-like growth factors (IGF) and IGF-binding proteins (IGFBP) within the menstrual cycle, and some controversy remains. We therefore decided to study the impact of endogenous sex steroids on the GH......-IGF-IGFBP axis during the ovulatory menstrual cycle in 10 healthy women (aged 18-40 years). Blood sampling and urinary collection was performed every morning at 0800 h for 32 consecutive days. Every second day the subjects were fasted overnight before blood sampling. Follicle stimulating hormone, luteinizing...... hormone (LH), oestradiol, progesterone, IGF-I, IGFBP-3, sex hormone-binding globulin, dihydroepiandrosterone sulphate and GH were determined in all samples, whereas insulin and IGFBP-1 were determined in fasted samples only. Serum IGF-I concentrations showed some fluctuation during the menstrual cycle...

  12. The p38 mitogen-activated protein kinase signaling pathway is involved in regulating low-density lipoprotein receptor-related protein 1-mediated β-amyloid protein internalization in mouse brain.

    Science.gov (United States)

    Ma, Kai-Ge; Lv, Jia; Hu, Xiao-Dan; Shi, Li-Li; Chang, Ke-Wei; Chen, Xin-Lin; Qian, Yi-Hua; Yang, Wei-Na; Qu, Qiu-Min

    2016-07-01

    Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Recently, increasing evidence suggests that intracellular β-amyloid protein (Aβ) alone plays a pivotal role in the progression of AD. Therefore, understanding the signaling pathway and proteins that control Aβ internalization may provide new insight for regulating Aβ levels. In the present study, the regulation of Aβ internalization by p38 mitogen-activated protein kinases (MAPK) through low-density lipoprotein receptor-related protein 1 (LRP1) was analyzed in vivo. The data derived from this investigation revealed that Aβ1-42 were internalized by neurons and astrocytes in mouse brain, and were largely deposited in mitochondria and lysosomes, with some also being found in the endoplasmic reticulum. Aβ1-42-LRP1 complex was formed during Aβ1-42 internalization, and the p38 MAPK signaling pathway was activated by Aβ1-42 via LRP1. Aβ1-42 and LRP1 were co- localized in the cells of parietal cortex and hippocampus. Furthermore, the level of LRP1-mRNA and LRP1 protein involved in Aβ1-42 internalization in mouse brain. The results of this investigation demonstrated that Aβ1-42 induced an LRP1-dependent pathway that related to the activation of p38 MAPK resulting in internalization of Aβ1-42. These results provide evidence supporting a key role for the p38 MAPK signaling pathway which is involved in the regulation of Aβ1-42 internalization in the parietal cortex and hippocampus of mouse through LRP1 in vivo.

  13. Fluorescent visualisation of the hypothalamic oxytocin neurones activated by cholecystokinin-8 in rats expressing c-fos-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 fusion transgenes.

    Science.gov (United States)

    Katoh, A; Shoguchi, K; Matsuoka, H; Yoshimura, M; Ohkubo, J-I; Matsuura, T; Maruyama, T; Ishikura, T; Aritomi, T; Fujihara, H; Hashimoto, H; Suzuki, H; Murphy, D; Ueta, Y

    2014-05-01

    The up-regulation of c-fos gene expression is widely used as a marker of neuronal activation elicited by various stimuli. Anatomically precise observation of c-fos gene products can be achieved at the RNA level by in situ hybridisation or at the protein level by immunocytochemistry. Both of these methods are time and labour intensive. We have developed a novel transgenic rat system that enables the trivial visualisation of c-fos expression using an enhanced green fluorescent protein (eGFP) tag. These rats express a transgene consisting of c-fos gene regulatory sequences that drive the expression of a c-fos-eGFP fusion protein. In c-fos-eGFP transgenic rats, robust nuclear eGFP fluorescence was observed in osmosensitive brain regions 90 min after i.p. administration of hypertonic saline. Nuclear eGFP fluorescence was also observed in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) 90 min after i.p. administration of cholecystokinin (CCK)-8, which selectively activates oxytocin (OXT)-secreting neurones in the hypothalamus. In double transgenic rats that express c-fos-eGFP and an OXT-monomeric red fluorescent protein 1 (mRFP1) fusion gene, almost all mRFP1-positive neurones in the SON and PVN expressed nuclear eGFP fluorescence 90 min after i.p. administration of CCK-8. It is possible that not only a plane image, but also three-dimensional reconstruction image may identify cytoplasmic vesicles in an activated neurone at the same time.

  14. Peroxisome proliferator-activated receptor-γ activation enhances insulin-stimulated glucose disposal by reducing ped/pea-15 gene expression in skeletal muscle cells: evidence for involvement of activator protein-1.

    Science.gov (United States)

    Ungaro, Paola; Mirra, Paola; Oriente, Francesco; Nigro, Cecilia; Ciccarelli, Marco; Vastolo, Viviana; Longo, Michele; Perruolo, Giuseppe; Spinelli, Rosa; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco

    2012-12-14

    The gene network responsible for inflammation-induced insulin resistance remains enigmatic. In this study, we show that, in L6 cells, rosiglitazone- as well as pioglitazone-dependent activation of peroxisome proliferator-activated receptor-γ (PPARγ) represses transcription of the ped/pea-15 gene, whose increased activity impairs glucose tolerance in mice and humans. Rosiglitazone enhanced insulin-induced glucose uptake in L6 cells expressing the endogenous ped/pea-15 gene but not in cells expressing ped/pea-15 under the control of an exogenous promoter. The ability of PPARγ to affect ped/pea-15 expression was also lost in cells and in C57BL/6J transgenic mice expressing ped/pea-15 under the control of an exogenous promoter, suggesting that ped/pea-15 repression may contribute to rosiglitazone action on glucose disposal. Indeed, high fat diet mice showed insulin resistance and increased ped/pea-15 levels, although these effects were reduced by rosiglitazone treatment. Both supershift and ChIP assays revealed the presence of the AP-1 component c-JUN at the PED/PEA-15 promoter upon 12-O-tetradecanoylphorbol-13-acetate stimulation of the cells. In these experiments, rosiglitazone treatment reduced c-JUN presence at the PED/PEA-15 promoter. This effect was not associated with a decrease in c-JUN expression. In addition, c-jun silencing in L6 cells lowered ped/pea-15 expression and caused nonresponsiveness to rosiglitazone, although c-jun overexpression enhanced the binding to the ped/pea-15 promoter and blocked the rosiglitazone effect. These results indicate that PPARγ regulates ped/pea-15 transcription by inhibiting c-JUN binding at the ped/pea-15 promoter. Thus, ped/pea-15 is downstream of a major PPARγ-regulated inflammatory network. Repression of ped/pea-15 transcription might contribute to the PPARγ regulation of muscle sensitivity to insulin.

  15. Unemployment as a factor of entrepreneurial activity

    Directory of Open Access Journals (Sweden)

    Sebastian Șipoș-Gug

    2012-12-01

    Full Text Available We aim to investigate the nature and direction of the relationship between unemployment and entrepreneurial activity. Our research, using monthly data from Romania (1991-2012, brings evidence to the hypothesis that the relationship is non-linear in regard to the temporal delay factor. From our data it would seem that unemployment and entrepreneurial activity are negatively related on the short term, and positively related on the long term. Based on these results, we propose that the two effects be treated separately, and we propose two predictive models of entrepreneurial activity based on unemployment that follow this distinction.

  16. MCP-1 (Monocyte Chemotactic Protein-1)-induced Protein, a Recently Identified Zinc Finger Protein, Induces Adipogenesis in 3T3-L1 Pre-adipocytes without Peroxisome Proliferator-activated Receptor γ*

    OpenAIRE

    Younce, Craig W; Azfer, Asim; Kolattukudy, Pappachan E.

    2009-01-01

    Adipogenesis is a key differentiation process relevant to obesity and associated diseases such as type 2 diabetes. This process involves temporally regulated genes controlled by a set of transcription factors, CCAAT/enhancer-binding proteins (C/EBP) β, C/EBPδ, and C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). Currently, PPARγ is universally accepted as the master regulator that is necessary and sufficient to induce adipogenesis as no known factor can induce adipogenesis wit...

  17. Monocyte chemotactic protein-1 gene polymorphism and spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Levent; Filik

    2010-01-01

    I read with great interest the article by Gbele et al published in issue 44 of World J Gastroenterol 2009.The results of their study indicate that-2518 Monocyte chemotactic protein-1(MCP-1)genotype AA is a risk factor for spontaneous bacterial peritonitis in patients with alcoholic cirrhosis.However,there are some items that need to be discussed.

  18. Activated human neutrophils release hepatocyte growth factor/scatter factor.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Hepatocyte growth factor or scatter factor (HGF\\/SF) is a pleiotropic cytokine that has potent angiogenic properties. We have previously demonstrated that neutrophils (PMN) are directly angiogenic by releasing vascular endothelial growth factor (VEGF). We hypothesized that the acute inflammatory response can stimulate PMN to release HGF. AIMS: To examine the effects of inflammatory mediators on PMN HGF release and the effect of recombinant human HGF (rhHGF) on PMN adhesion receptor expression and PMN VEGF release. METHODS: In the first experiment, PMN were isolated from healthy volunteers and stimulated with tumour necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), interleukin-8 (IL-8), and formyl methionyl-leucyl-phenylalanine (fMLP). Culture supernatants were assayed for HGF using ELISA. In the second experiment, PMN were lysed to measure total HGF release and HGF expression in the PMN was detected by Western immunoblotting. Finally, PMN were stimulated with rhHGF. PMN CD 11a, CD 11b, and CD 18 receptor expression and VEGF release was measured using flow cytometry and ELISA respectively. RESULTS: TNF-alpha, LPS and fMLP stimulation resulted in significantly increased release of PMN HGF (755+\\/-216, 484+\\/-221 and 565+\\/-278 pg\\/ml, respectively) compared to controls (118+\\/-42 pg\\/ml). IL-8 had no effect. Total HGF release following cell lysis and Western blot suggests that HGF is released from intracellular stores. Recombinant human HGF did not alter PMN adhesion receptor expression and had no effect on PMN VEGF release. CONCLUSIONS: This study demonstrates that pro-inflammatory mediators can stimulate HGF release from a PMN intracellular store and that activated PMN in addition to secreting VEGF have further angiogenic potential by releasing HGF.

  19. 蜜蜂蜂王不同于工蜂的关键因素-蜂王浆主蛋白1%The key factor induces differentiation of queen and worker in honeybees-main royal jelly protein 1

    Institute of Scientific and Technical Information of China (English)

    柳丹丹; 肖发; 杨晓丽; 李玫璐; 曾艳军; 于张颖; 沈立荣; 裘卫; 尹志红

    2012-01-01

    蜂王浆是决定蜜蜂幼虫发育中级型分化,即成为蜂王还是工蜂的关键环境因素,而蜂王浆主蛋白(main royal jelly proteins,MRJPs)是反映蜂王浆新鲜度的重要指标。日本镰仓昌树以蜜蜂和果蝇为模型的最新研究表明,MRJP1是蜂王浆中决定蜜蜂级型分化的关键因子,该蛋白可通过激活虫体脂肪体中的表皮生长因子信号通路,引发个体增大、发育时间缩短和卵巢发育等蜂王特征的出现。因此,今后很有必要进一步开展MRJP1对人体的营养功能和作用机理研究,为MRJP1应用于功能食品提供科学依据。%The royal jelly(RJ)is the critical environment factors of caste determination,becoming worker or queen in development for honeybee larvae.Main royal jelly proteins(MRJPs)are the important quality index revealed RJ fresh level.According to Kamakura’s new discovery with honey bee and Drosophila as models,MRJP1 was the critical factors of caste determination in honeybee.The appearance of the characters of queen,such as increasing of body weight,decreasing of developmental time and ovary development appeared were caused by activating an epidermal growth factor receptor(Egfr)signaling pathway in fat body.Therefore,it was essential to further study the nutritional functions and mechanism of MRJP1 in human in future,which will provide knowledge for the protein to be applied in functional foods.

  20. Differential regulation of dentin matrix protein 1 expression during odontogenesis.

    Science.gov (United States)

    Lu, Yongbo; Zhang, Shubin; Xie, Yixia; Pi, Yuli; Feng, Jian Q

    2005-01-01

    Dentin matrix protein 1 (DMP1) is highly expressed in mineralized tooth and bone. Both in vitro and in vivo data show that DMP1 is critical for mineralization and tooth morphogenesis (growth and development). In this study, we studied Dmp1 gene regulation. The in vitro transient transfection assay identified two important DNA fragments, the 2.4- and 9.6-kb promoter regions. We next generated and analyzed transgenic mice bearing the beta-galactosidase (lacZ) reporter gene driven by the 2.4- or 9.6-kb promoter with the complete 4-kb intron 1. The 9.6-kb Dmp1-lacZ mice conferred a DMP1 expression pattern in odontoblasts identical to that in the endogenous Dmp1 gene. This is reflected by lacZ expression in Dmp1-lacZ knock-in mice during all stages of odontogenesis. In contrast, the 2.4-kb Dmp1-lacZ mice display activity in odontoblast cells only at the early stage of odontogenesis. Thus, we propose that different transcription factors regulate early or later cis-regulatory domains of the Dmp1 promoter, which gives rise to the unique spatial and temporal expression pattern of Dmp1 gene at different stages of tooth development. 2005 S. Karger AG, Basel

  1. Caloric restriction-associated remodeling of rat white adipose tissue: effects on the growth hormone/insulin-like growth factor-1 axis, sterol regulatory element binding protein-1, and macrophage infiltration.

    Science.gov (United States)

    Chujo, Yoshikazu; Fujii, Namiki; Okita, Naoyuki; Konishi, Tomokazu; Narita, Takumi; Yamada, Atsushi; Haruyama, Yushi; Tashiro, Kosuke; Chiba, Takuya; Shimokawa, Isao; Higami, Yoshikazu

    2013-08-01

    The role of the growth hormone (GH)-insulin-like growth factor (IGF)-1 axis in the lifelong caloric restriction (CR)-associated remodeling of white adipose tissue (WAT), adipocyte size, and gene expression profiles was explored in this study. We analyzed the WAT morphology of 6-7-month-old wild-type Wistar rats fed ad libitum (WdAL) or subjected to CR (WdCR), and of heterozygous transgenic dwarf rats bearing an anti-sense GH transgene fed ad libitum (TgAL) or subjected to CR (TgCR). Although less effective in TgAL, the adipocyte size was significantly reduced in WdCR compared with WdAL. This CR effect was blunted in Tg rats. We also used high-density oligonucleotide microarrays to examine the gene expression profile of WAT of WdAL, WdCR, and TgAL rats. The gene expression profile of WdCR, but not TgAL, differed greatly from that of WdAL. The gene clusters with the largest changes induced by CR but not by Tg were genes involved in lipid biosynthesis and inflammation, particularly sterol regulatory element binding proteins (SREBPs)-regulated and macrophage-related genes, respectively. Real-time reverse-transcription polymerase chain reaction analysis confirmed that the expression of SREBP-1 and its downstream targets was upregulated, whereas the macrophage-related genes were downregulated in WdCR, but not in TgAL. In addition, CR affected the gene expression profile of Tg rats similarly to wild-type rats. Our findings suggest that CR-associated remodeling of WAT, which involves SREBP-1-mediated transcriptional activation and suppression of macrophage infiltration, is regulated in a GH-IGF-1-independent manner.

  2. Glycosylation analysis and protein structure determination of murine fetal antigen 1 (mFA1)--the circulating gene product of the delta-like protein (dlk), preadipocyte factor 1 (Pref-1) and stromal-cell-derived protein 1 (SCP-1) cDNAs

    DEFF Research Database (Denmark)

    Krogh, T N; Bachmann, E; Teisner, B

    1997-01-01

    By means of sequence analysis, murine fetal antigen 1 (mFA1) isolated from Mus musculus amniotic fluid was shown to be the circulating protein of the delta-like protein, stromal-cell-derived protein 1 (SCP-1) and preadipocyte factor 1 (Pref-1) gene products. The protein contains 36 cysteine resid......, Ser193 and fucose at Thr201) was tentatively ascertained by combining Edman degradation and MALDI-MS. The results presented shows mFA1 to be the circulating heterogeneous cleavage products of the membrane-bound protein encoded by the murine cDNAs dlk, pref-1 and SCP-1....

  3. Free and total insulin-like growth factor I (IGF-I), IGF-binding protein-1 (IGFBP-1), and IGFBP-3 and their relationships to the presence of diabetic retinopathy and glomerular hyperfiltration in insulin-dependent diabetes mellitus

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); M.L. Jacobs (Marloes); F.H.M. Derkx (Frans); R.F.A. Weber (Robert); A-J. van der Lely (Aart-Jan); S.W.J. Lamberts (Steven)

    1997-01-01

    textabstractThe existing literature on serum insulin-like growth factor I (IGF-I) levels in insulin-dependent diabetes mellitus (IDDM) is conflicting. Free IGF-I may have greater physiological and clinical relevance than total IGF-I. Recently, a validated method has

  4. Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and MCP-5 (Ccl12) in astrocytes

    OpenAIRE

    Mojsilovic-Petrovic Jelena; Callaghan Debbie; Cui Hong; Dean Clare; Stanimirovic Danica B; Zhang Wandong

    2007-01-01

    Abstract Background Neuroinflammation has been implicated in various brain pathologies characterized by hypoxia and ischemia. Astroglia play an important role in the initiation and propagation of hypoxia/ischemia-induced inflammation by secreting inflammatory chemokines that attract neutrophils and monocytes into the brain. However, triggers of chemokine up-regulation by hypoxia/ischemia in these cells are poorly understood. Hypoxia-inducible factor-1 (HIF-1) is a dimeric transcriptional fact...

  5. Xanthohumol from Hop (Humulus lupulus L.) Is an Efficient Inhibitor of Monocyte Chemoattractant Protein-1 and Tumor Necrosis Factor-a Release in LPS-Stimulated RAW 264.7 Mouse Macrophages and U937 Human Monocytes

    NARCIS (Netherlands)

    Lupinacci, E.; Meijerink, J.; Vincken, J.P.; Gabriele, B.; Gruppen, H.; Witkamp, R.F.

    2009-01-01

    Activated macrophages in adipose tissue play a major role in the chronic inflammatory process that has been linked to the complications of overweight and obesity. The hop plant (Humulus lupulus L.) has been described to possess both anti-inflammatory and antidiabetic effects. In the present study, t

  6. Nicotinamide downregulates gene expression of interleukin-6, interleukin-10, monocyte chemoattractant protein-1, and tumour necrosis factor-α gene expression in HaCaT keratinocytes after ultraviolet B irradiation.

    Science.gov (United States)

    Monfrecola, G; Gaudiello, F; Cirillo, T; Fabbrocini, G; Balato, A; Lembo, S

    2013-03-01

    Ultraviolet (UV) radiation has profound effects on human skin, causing sunburn, inflammation, cellular-tissue injury, cell death, and skin cancer. Most of these effects are mediated by a number of cytokines produced by keratinocytes. In this study we investigated whether nicotinamide (NCT), the amide form of vitamin B3, might have a protective function in reducing the expression of interleukin (IL)-1β, IL-6, IL-8, IL-10, monocyte chemoattractant protein (MCP)-1 and tumour necrosis factor (TNF)-α in UV-irradiated keratinocytes. HaCaT cells were treated with UVB in the presence or absence of NCT, and cytokine mRNA levels were examined by quantitative real-time PCR. NCT significantly downregulated IL-6, IL-10, MCP-1 and TNF-α mRNA expression, whereas it did not exert any significant effect on IL-1β or IL-8 expression. Because of its ability to decrease these cytokine mediators after UV exposure, NCT is a possible therapy to improve or prevent conditions induced or aggravated by UV light.

  7. Serum concentrations and peripheral secretion of the beta chemokines monocyte chemoattractant protein 1 and macrophage inflammatory protein 1α in alcoholic liver disease

    OpenAIRE

    Fisher, N; Neil, D.; Williams, A.; Adams, D.

    1999-01-01

    BACKGROUND—Alcoholic liver disease is associated with increased hepatic expression of monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein 1α (MIP-1α).
AIMS—To determine whether concentrations of chemokines in the peripheral circulation reflect disease activity, and whether chemokine secretion is restricted to the liver or is part of a systemic inflammatory response in alcoholic liver disease.
PATIENTS—Fifty one patients with alcoholic liver disease and 12 healthy co...

  8. Up-regulation of hepatic low-density lipoprotein receptor-related protein 1: a possible novel mechanism of antiatherogenic activity of hydroxymethylglutaryl-coenzyme A reductase inhibitor Atorvastatin and hepatic LRP1 expression.

    Science.gov (United States)

    Moon, Jae Hoon; Kang, Saet Byol; Park, Jong Suk; Lee, Byung Wan; Kang, Eun Seok; Ahn, Chul Woo; Lee, Hyun Chul; Cha, Bong Soo

    2011-07-01

    Low-density lipoprotein receptor-related protein 1 (LRP1) binds to apolipoprotein E and serves as a receptor for remnant lipoproteins in the liver, thus playing an important role in clearing these atherogenic particles. In this study, we investigated the effect of atorvastatin, a hydroxymethylglutaryl-coenzyme A reductase inhibitor, on hepatic LRP1 expression. We used HepG2 and Hep3B cells for in vitro study, and Otsuka Long-Evans Tokushima fatty and Sprague-Dawley rats for in vivo study. We used relatively high pharmacologic dose of atorvastatin in this study (in vitro, 0.5 μmol/L in culture media, for 48 hours; in vivo, 20 mg/[kg d], for 6 weeks). Atorvastatin increased LRP1 and low-density lipoprotein (LDL) receptor expression in HepG2 and Hep3B cells and induced hepatic LRP1 and LDL receptor expression in chow diet-fed Sprague-Dawley rats and high-fat diet-fed Otsuka Long-Evans Tokushima fatty rats. Atorvastatin decreased intracellular sterol level and increased the amount of the nuclear form of sterol response element-binding protein-2 (SREBP-2) in both HepG2 and Hep3B cells as well as in two animal models. Treatment of HepG2 cells with LDL increased intracellular sterol level and reduced LRP1, LDL receptor, and SREBP-2. When SREBP-2 in HepG2 cells was knocked down by small interfering RNA, the induction of LRP1 expression by atorvastatin did not take place. In conclusion, up-regulation of hepatic LRP1 might be a novel mechanism by which statin treatment decreases remnant lipoproteins. In addition, SREBP-2 acts as a mediator of atorvastatin-induced up-regulation of hepatic LRP1. Future studies using standard doses of atorvastatin in humans are needed to elucidate clinical relevance of these findings.

  9. Physical activity and cardiovascular disease risk factors among ...

    African Journals Online (AJOL)

    We assessed level physical activity and its relationship with CVD risk factors among ... Anthropometric measurements, blood pressure, fasting blood glucose and ... Conclusion: Physical activity energy expenditure was high in this population ...

  10. Active Von Willebrand Factor, thrombocytopenia and thrombosis

    NARCIS (Netherlands)

    Hulstein, J.J.J.

    2006-01-01

    Platelets and von Willebrand factor (VWF) are unable to interact in circulation. To induce an interaction, a conversion of VWF to a platelet-binding conformation is required. At higher shear stresses, the first step in thrombus formation is binding of VWF to the subendothelium. This results in expos

  11. Ecological Factors Improving Efficiency of Business Activities

    Directory of Open Access Journals (Sweden)

    Kononova G. A.

    2015-01-01

    Full Text Available The economic importance of optimizing the environmental situation from the perspective of an entrepreneur are assessed in the article. The classification of administrative decisions taken in the course of the business activities is proposed. The authors identified a group of solutions directly providing optimization of environment external to the enterprise, solutions that have an indirect positive impact on the environment and solutions that improve ecology of industrial premises. The nature of economic effect of resulting solutions of various types is taken into account. Vectors of influence of working conditions on the economic results of business activities are described. The nature and strength of the impact of model management decisions results of business activities are defined. Key performance indicators of entrepreneurial activity are identified: employee productivity, the amount of revenue and profitability, solvency, staff stability, the competitiveness of enterprises. Grouping the costs of ecological parameters optimization of the production environment is proposed. Relationship between level of working conditions and socio-psychological climate in the collective enterprise is disclosed. The methods of motivation of entrepreneurs in solving of environmental, production problems are considered. The role of training entrepreneurs engaged of medium and small businesses are underlined especially. Thus, in the article the relationship between environmental and economic problems of entrepreneurial activity is investigated. Role and opportunities of entrepreneurs in solving these problems are defined and structured.

  12. 24. The transcription factors and the relevant signaling pathways activated by low concentration MNNG

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Aims: To explore the transcription factors and related signal transduction pathways activated in the alkylating agents N-methyl-N'-nitro-N-nitrosoguanindine (MNNG) exposed cells which may involved in the mechanism of MNNG induced changes of gene expression, especially the elevation of DNA polymerase β expression and also the consequence of JNK kinase activation which were reported previously in this lab. Methods: Clontech Mercury pathway profiling system containing 8 different vectors in which a specific response element is located upstream from the SEAP-reporter gene were employed to detect the transcription factor activation in Vero cells treated with 0.2 μmol/L MNNG for 2 hours. Thoroughly, CREB phosphorylation, protein kinase A (PKA) and the cellular cAMP content were also assayed with PhosphoPlus CREB (ser-133) antibody kit, protein kinase assay kit and cAMP RIA kit respectively. Results: Among 8 different response elements, the expression of the reporter gene governed by the transcription factors CREB (cAMP response element binding protein), AP1 (activator protein 1), NF-κB (nuclear factor κ B) were elevated by 1.3, 1.4 and 1.3 times higber than control respectively. The level of activated CREB by Ser-133 phosphorylation was 2.08 times higher than control in cells treated with MNNG for 60 min, as measured by immunoblotting. The activity of CREB upstream kinase protein kinase A (PKA), which can phosphorylate CREB on ser-133 was also activated, and the activation peaked at 60 min (11.03±2.80 arbitrary units vs 0.86±0.43 of control). Also, cAMP levels were significantly raised after 60-minute-treatment, 1.52 times higher vs those in solvent control. Conclusion: In addition of previously reported JNK activation, we show here that low concentration alkylating agent MNNG can also activate the cAMP-PKA and NF-κB pathway. These in consequence induce the activation of transcription factors APl, CREB and NF-κB, which may related to the MNNG induced changes in

  13. Interrelationships between paraoxonase-1 and monocyte chemoattractant protein-1 in the regulation of hepatic inflammation.

    Science.gov (United States)

    Camps, Jordi; Marsillach, Judit; Rull, Anna; Alonso-Villaverde, Carlos; Joven, Jorge

    2010-01-01

    Oxidative stress and inflammation play a central role in the onset and development of liver diseases irrespective of the agent causing the hepatic impairment. The monocyte chemoattractant protein-1 is intimately involved in the inflammatory reaction and is directly correlated with the degree of hepatic inflammation in patients with chronic liver disease. Recent studies showed that hepatic paraoxonase-1 may counteract the production of the monocyte chemoattractant protein-1, thus playing an anti-inflammatory role. The current review summarises experiments suggesting how paraoxonase-1 activity and expression are altered in liver diseases, and their relationships with the monocyte chemoattractant protein-1 and inflammation.

  14. Factors influencing beta-amylase activity in sorghum malt

    CSIR Research Space (South Africa)

    Taylor, JRN

    1993-09-01

    Full Text Available An investigation into factors influencing beta-amylase activity in sorghum malt confirmed that ungerminated sorghum grain exhibited essentially no beta-amylase activity. Malted sorghum had beta-amylase activity less than 25% of the level in barley...

  15. Serum free and total insulin-like growth factor-1, insulin-like growth factor binding protein-1 and insulin-like growth factor binding protein-3 levels in healthy elderly individuals - Relation to self-reported duality of health and disability

    NARCIS (Netherlands)

    Janssen, JAMJL; Stolk, RP; Pols, HAP; Grobbee, DE; Lamberts, SWJ

    1998-01-01

    Background: Little is known about the influence of the free insulin-like growth factor-I/insulin-like growth factor binding protein (IGF-I/IGFBP) system on the quality of health and on disability in the elderly population. Design: In a cross-sectional population based study of 218 healthy elderly

  16. Human cytomegalovirus IE2 protein interacts with transcription activating factors

    Institute of Scientific and Technical Information of China (English)

    XU; Jinping(徐进平); YE; Linbai(叶林柏)

    2002-01-01

    The human cytomegalovirus (HCMV) IE86 Cdna was cloned into Pgex-2T and fusion protein GST-IE86 was expressed in E. Coli. SDS-PAGE and Western blot assay indicated that fusion protein GST-IE86 with molecular weight of 92 ku is soluble in the supernatant of cell lysate. Protein GST and fusion protein GST-IE86 were purified by affinity chromatography. The technology of co-separation and specific affinity chromatography was used to study the interactions of HCMV IE86 protein with some transcriptional regulatory proteins and transcriptional factors. The results indicated that IE86 interacts separately with transcriptional factor TFIIB and promoter DNA binding transcription trans-activating factors SP1, AP1 and AP2 to form a heterogenous protein complex. These transcriptional trans-activating factors, transcriptional factor and IE86 protein were adsorbed and retained in the affinity chromatography simultaneously. But IE86 protein could not interact with NF-Кb, suggesting that the function of IE86 protein that can interact with transcriptional factor and transcriptional trans-activating factors has no relevance to protein glycosylation. IE86 protein probably has two domains responsible for binding transcriptional trans-activating regulatory proteins and transcriptional factors respectively, thus activating the transcription of many genes. The interactions accelerated the assembly of the transcriptional initiation complexes.

  17. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Backues, Steven K. [Department of Biochemistry, University of Wisconsin - Madison, 433 Babcock Dr., Madison, WI 53706 (United States); Bednarek, Sebastian Y., E-mail: sybednar@wisc.edu [Department of Biochemistry, University of Wisconsin - Madison, 433 Babcock Dr., Madison, WI 53706 (United States)

    2010-03-19

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.

  18. [Factors influencing research activity of Andalusian nurses and improvement strategies].

    Science.gov (United States)

    López Alonso, Sergio R; Gálvez González, María; Amezcua, Manuel

    2013-04-01

    To identify factors influencing research activity of Andalusian nurses and to find improvement strategies. Qualitative research using SWOT analysis (weaknesses, threats, strengths, opportunities). Nurses were selected deliberately in eight groups according to predetermined criteria. Analysis included categorization and relationship of factors and strategies. 81 participants were included in groups of 7-12 range. 45 categories were identified with 212 factors: 12 weaknesses (50 factors), 10 strengths (44 factors), 12 threats (68 factors) and 11 opportunities (50 factors). In addition, 32 categories were identified with 53 strategies: 14 categories of W-T strategies (42 strategies), 3 categories of S-T strategies (11 strategies), 5 categories of W-O strategies (13 strategies) and 10 categories of S-O strategies (41 strategies). Nurses identified numerous factors, mainly threats. The strategies are focused on W-T but they also suggest many but weak 5-0 strategies due to the low potential of the opportunities and strengths perceived.

  19. Crystallographic B factor of critical residues at enzyme active site

    Institute of Scientific and Technical Information of China (English)

    张海龙; 宋时英; 林政炯

    1999-01-01

    Thirty-seven sets of crystallographic enzyme data were selected from Protein Data Bank (PDB, 1995). The average temperature factors (B) of the critical residues at the active site and the whole molecule of those enzymes were calculated respectively. The statistical results showed that the critical residues at the active site of most of the enzymes had lower B factors than did the whole molecules, indicating that in the crystalline state the critical residues at the active site of the natural enzymes possess more stable conformation than do the whole molecules. The flexibility of the active site during the unfolding by denaturing was also discussed.

  20. The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments.

    Science.gov (United States)

    Yoshimura, Teizo

    2017-02-08

    Infiltration of leukocytes is one of the hallmarks of the inflammatory response. Among the leukocyte populations, neutrophils are the first to infiltrate, followed by monocytes and lymphocytes, suggesting the presence of mediators that specifically recruit these cell types. Cytokine-like chemoattractants with monocyte chemotactic activity, such as lymphocyte-derived chemotactic factor (LDCF) or tumor-derived chemotactic factor (TDCF), were reported as molecules that could play a critical role in the recruitment of monocytes into sites of immune responses or tumors; however, their identities remained unclear. In the 1980s, researchers began to test the hypothesis that leukocyte chemotactic activity is a part of the wider activities exhibited by cytokines, such as interleukin-1 (IL-1). In 1987, we demonstrated, for the first time, the presence of a cytokine like chemoattractant with cell type-specificity (now known as the chemokine interleukin-8 or CXC chemokine ligand 8) that was different from IL-1. This led us to the purification of the second such molecule with monocyte chemotactic activity. This monocyte chemoattractant was found identical to the previously described LDCF or TDCF, and termed monocyte chemoattractant protein-1 (MCP-1). Isolation of MCP-1 created a revolution in not only inflammation but also cancer research that continues today, and MCP-1 has become a molecular target to treat patients with many diseases. In this review, I will first describe a history associated with the discovery of MCP-1 and then discuss complex mechanisms regulating MCP-1 production in tumor microenvironments.

  1. Nutrition, Physical Activity, and Obesity - Behavioral Risk Factor Surveillance System

    Data.gov (United States)

    U.S. Department of Health & Human Services — This dataset includes data on adult's diet, physical activity, and weight status from Behavioral Risk Factor Surveillance System. This data is used for DNPAO's Data,...

  2. Nedd4 family interacting protein 1 (Ndfip1) is required for ubiquitination and nuclear trafficking of BRCA1-associated ATM activator 1 (BRAT1) during the DNA damage response.

    Science.gov (United States)

    Low, Ley-Hian; Chow, Yuh-Lit; Li, Yijia; Goh, Choo-Peng; Putz, Ulrich; Silke, John; Ouchi, Toru; Howitt, Jason; Tan, Seong-Seng

    2015-03-13

    During injury, cells are vulnerable to apoptosis from a variety of stress conditions including DNA damage causing double-stranded breaks. Without repair, these breaks lead to aberrations in DNA replication and transcription, leading to apoptosis. A major response to DNA damage is provided by the protein kinase ATM (ataxia telangiectasia mutated) that is capable of commanding a plethora of signaling networks for DNA repair, cell cycle arrest, and even apoptosis. A key element in the DNA damage response is the mobilization of activating proteins into the cell nucleus to repair damaged DNA. BRAT1 is one of these proteins, and it functions as an activator of ATM by maintaining its phosphorylated status while also keeping other phosphatases at bay. However, it is unknown how BRAT1 is trafficked into the cell nucleus to maintain ATM phosphorylation. Here we demonstrate that Ndfip1-mediated ubiquitination of BRAT1 leads to BRAT1 trafficking into the cell nucleus. Without Ndfip1, BRAT1 failed to translocate to the nucleus. Under genotoxic stress, cells showed increased expression of both Ndfip1 and phosphorylated ATM. Following brain injury, neurons show increased expression of Ndfip1 and nuclear translocation of BRAT1. These results point to Ndfip1 as a sensor protein during cell injury and Ndfip1 up-regulation as a cue for BRAT1 ubiquitination by Nedd4 E3 ligases, followed by nuclear translocation of BRAT1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Site-directed Mutagenesis Shows the Significance of Interactions with Phospholipids and the G-protein OsYchF1 for the Physiological Functions of the Rice GTPase-activating Protein 1 (OsGAP1).

    Science.gov (United States)

    Yung, Yuk-Lin; Cheung, Ming-Yan; Miao, Rui; Fong, Yu-Hang; Li, Kwan-Pok; Yu, Mei-Hui; Chye, Mee-Len; Wong, Kam-Bo; Lam, Hon-Ming

    2015-09-25

    The C2 domain is one of the most diverse phospholipid-binding domains mediating cellular signaling. One group of C2-domain proteins are plant-specific and are characterized by their small sizes and simple structures. We have previously reported that a member of this group, OsGAP1, is able to alleviate salt stress and stimulate defense responses, and bind to both phospholipids and an unconventional G-protein, OsYchF1. Here we solved the crystal structure of OsGAP1 to a resolution of 1.63 Å. Using site-directed mutagenesis, we successfully differentiated between the clusters of surface residues that are required for binding to phospholipids versus OsYchF1, which, in turn, is critical for its role in stimulating defense responses. On the other hand, the ability to alleviate salt stress by OsGAP1 is dependent only on its ability to bind OsYchF1 and is independent of its phospholipid-binding activity.

  4. Expression of protooncogenes during lymphocyte activation by growth factors.

    Science.gov (United States)

    Bulanova, E G; Budagyan, V M; Yarilin, A A; Mazurenko, N N

    1997-09-01

    Effects of growth factors of non-immune origin including somatotropin (ST) and platelet-derived growth factor (PDGF) on the expression of the proteins encoded by c-fos, c-myc, c-fun, and c-ets family protooncogenes were studied for the first time. The dynamics of the oncoprotein expression in activated CD(3+)-lymphocytes was investigated by immunoblotting. The accumulation of the Fos and Myc proteins was enhanced in T-lymphocytes treated with ST, PDGF, or phytohemagglutinin; the accumulation was maximum at 30-60 min and decreased in 2 h; the data indicate that the oncoproteins participate in the early lymphocyte activation by various growth factors. The Jun protein appears only in 3 h after the onset of lymphocyte activation; this suggests independent participation of Fos in the early stages of lymphocyte activation prior to the appearance of Jun, preceding the joint action of Fos and Jun within the AP-1 transcription complex. The products of the c-ets family are differentially activated by the studied growth factors. Resting lymphocytes actively accumulate the Ets-1 protein; ST and PDGF activation decreases Ets-1 expression in 2 h. The Ets-2 protein is not detected in resting cells and PDGF-activated lymphocytes, whereas lymphocyte activation by ST is associated with accumulation of Ets-2. The data suggest that the product of the c-ets-1 gene is more important in the regulation of resting cells and the product of the c-ets-2 gene is important during activation of lymphocytes by ST. The results indicate that activation of lymphocytes with growth factors of non-immune origin is mediated by several signal transduction pathways.

  5. The N-terminal extracellular domain 23-60 of the calcitonin receptor-like receptor in chimeras with the parathyroid hormone receptor mediates association with receptor activity-modifying protein 1.

    Science.gov (United States)

    Ittner, Lars M; Koller, Daniela; Muff, Roman; Fischer, Jan A; Born, Walter

    2005-04-19

    The calcitonin receptor-like receptor (CLR) requires the associated receptor activity-modifying protein (RAMP)1 to reveal a calcitonin gene-related peptide (CGRP) receptor. Here, the subdomain of the CLR that associates with RAMP1 has been identified in chimeras between the CLR and the parathyroid hormone (PTH) receptor 1 (PTHR). The PTHR alone does not interact with RAMP1. RAMP1 requires the CLR for its transport to the cell surface. Thus, receptor-dependent RAMP1 delivery to the plasma membrane and coimmunoprecipitation from the cell surface were used as measures for receptor/RAMP1 interaction. Several chimeric CLR-PTHR included the N-terminal amino acids 23-60 of the CLR transported RAMP1 to the surface of COS-7 cells much like the intact CLR. Moreover, RAMP1 coimmunoprecipitated with these receptors from the cell surface. A CLR deletion mutant, consisting of the N-terminal extracellular domain, the first transmembrane domain, and the C-terminal intracellular region, revealed the same results. Cyclic AMP was stimulated by CGRP in CLR/RAMP1 expressing cells (58 +/- 19-fold, EC(50) = 0.12 +/- 0.03 nM) and by PTH-related protein in cells expressing the PTHR (50 +/- 10-fold, EC(50) = 0.25 +/- 0.03 nM) or a PTHR with the N-terminal amino acids 23-60 of the CLR (23 +/- 5-fold, EC(50) > 1000 nM). Other chimeric CLR-PTHR were inactive. In conclusion, structural elements in the extreme N-terminus of the CLR between amino acids 23-60 are required and sufficient for CLR/RAMP1 cotransport to the plasma membrane and heterodimerization.

  6. Rotavirus nonstructural protein 1 antagonizes innate immune response by interacting with retinoic acid inducible gene I

    Directory of Open Access Journals (Sweden)

    Qin Lan

    2011-12-01

    Full Text Available Abstract Background The nonstructural protein 1 (NSP1 of rotavirus has been reported to block interferon (IFN signaling by mediating proteasome-dependent degradation of IFN-regulatory factors (IRFs and (or the β-transducin repeat containing protein (β-TrCP. However, in addition to these targets, NSP1 may subvert innate immune responses via other mechanisms. Results The NSP1 of rotavirus OSU strain as well as the IRF3 binding domain truncated NSP1 of rotavirus SA11 strain are unable to degrade IRFs, but can still inhibit host IFN response, indicating that NSP1 may target alternative host factor(s other than IRFs. Overexpression of NSP1 can block IFN-β promoter activation induced by the retinoic acid inducible gene I (RIG-I, but does not inhibit IFN-β activation induced by the mitochondrial antiviral-signaling protein (MAVS, indicating that NSP1 may target RIG-I. Immunoprecipitation experiments show that NSP1 interacts with RIG-I independent of IRF3 binding domain. In addition, NSP1 induces down-regulation of RIG-I in a proteasome-independent way. Conclusions Our findings demonstrate that inhibition of RIG-I mediated type I IFN responses by NSP1 may contribute to the immune evasion of rotavirus.

  7. Physical Activity : The interplay between individual and neighbourhood factors

    NARCIS (Netherlands)

    M.A. Beenackers (Marielle)

    2013-01-01

    textabstractPhysical inactivity is among the most important and prevalent risk factors of many major diseases. Although the health benefits of regular exercise and a physically active lifestyle are well known, many people are still not active. Understanding why some population groups are physically

  8. Potential Role of Activating Transcription Factor 5 during Osteogenesis

    Directory of Open Access Journals (Sweden)

    Luisa Vicari

    2016-01-01

    Full Text Available Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2, encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology.

  9. MOTIVATIONAL FACTORS FOR PHYSICAL ACTIVITY IN THE ELDERS

    Directory of Open Access Journals (Sweden)

    J. Parreira

    2015-04-01

    Full Text Available Nowadays the elderly population is well aware of the benefits of the practice of physical activity, which leads to an increasing demand for specialized physical activity programs in urban centers or recreational self-practice. However, people easily quit those programs or recreational self-practice and return to a sedentary lifestyle. A key factor to avoid this quittance is to keep them motivated to practice and stay in the programs.Objectives: This study aims to understand the motivational factors that lead older people to physical activity in order to improve existing programs so to better meet the needs of this population.

  10. Activated protein C resistance testing for factor V Leiden.

    Science.gov (United States)

    Kadauke, Stephan; Khor, Bernard; Van Cott, Elizabeth M

    2014-12-01

    Activated protein C resistance assays can detect factor V Leiden with high accuracy, depending on the method used. Factor Xa inhibitors such as rivaroxaban and direct thrombin inhibitors including dabigatran, argatroban, and bivalirudin can cause falsely normal results. Lupus anticoagulants can cause incorrect results in most current assays. Assays that include dilution into factor V-deficient plasma are needed to avoid interference from factor deficiencies or elevations, which can arise from a wide variety of conditions such as warfarin, liver dysfunction, or pregnancy. The pros and cons of the currently available assays are discussed. © 2014 Wiley Periodicals, Inc.

  11. Comparison of automated von Willebrand factor activity assays

    DEFF Research Database (Denmark)

    Timm, Annette; Hillarp, Andreas; Philips, Malou

    2015-01-01

    activity/antigen ratios in samples classified as having VWD (activity classification power might interfere with the interpretation......INTRODUCTION: Von Willebrand Disease (VWD) is the most common inherited bleeding disorder. Measurement of von Willebrand factor (VWF) activity in plasma is often based on platelet agglutination stimulated by the ristocetin cofactor activity. Novel assays, based on latex beads with recombinant...... glycoprotein Ib instead of platelets, have recently been developed but it is unclear whether these can improve the diagnostic capability for VWD. AIM: To compare four automated VWF activity methods in a mixed population of patients referred for evaluation of bleeding tendency. METHODS: The analytical...

  12. Comparison of kaolin and tissue factor activated thromboelastography in haemophilia.

    Science.gov (United States)

    Young, G; Zhang, R; Miller, R; Yassin, D; Nugent, D J

    2010-05-01

    A limitation of bypassing agent therapy for haemophilia patients with inhibitors is the absence of a laboratory assay, which predicts the clinical response to treatment. Recent investigations have demonstrated the potential for thromboelastography to assess the effects of bypassing agent therapy in this patient population. While tissue factor activation has been used in several prior studies, a recent multicentre study failed to demonstrate an expected concentration-response effect of rFVIIa and called into question the tissue factor activation methods that have been employed. A comparison of kaolin to two concentrations of tissue factor as the activation method for thromboelastography was investigated in patients with haemophilia. We performed kaolin and tissue factor activated thromboelastography on blood from inhibitor and non-inhibitor patients with and without addition of rFVIIa and rFVIII. The results demonstrate that kaolin leads to a longer R, K and angle than the higher dilution of tissue factor (1:17 000) at baseline (no factor) and after addition of rFVIIa for both the inhibitor and non-inhibitor patients. Kaolin led to a longer R and K in comparison to a low dilution of tissue factor (1:42 000) following the addition of rFVIIa in the inhibitor patients. The longer R and K allows for better discrimination of the effects of rFVIIa thus making kaolin the most sensitive activation method in this setting. Thus kaolin activated thromboelastography should be considered an effective, perhaps the most effective, activator when utilizing thromboelastography to assess the effects of rFVIIa in haemophilia patients with inhibitors.

  13. Activity of recombinant factor VIIa under different conditions in vitro

    DEFF Research Database (Denmark)

    Bladbjerg, Else-Marie; Jespersen, Jørgen

    2008-01-01

    , but no effects on clotting time indicating that haemodilution does not affect clot formation, but the clot formed at high haemodilution may not be so firm. In conclusion, the activity of recombinant activated factor VII was affected in vitro by pH, temperature, and haemodilution. Additional studies are necessary...... investigated the in-vitro effects of pH, temperature, and haemodilution on the activity of recombinant activated factor VII. Samples from eight healthy volunteers were spiked with recombinant activated factor VII (final concentration 1.7 microg/ml) and adjusted to pH 6.0, 6.5, 7.0, and 7.4 or analysed at 30...... activity in plasma. Significant effects of pH were observed for clotting time, clot formation time, maximum clot firmness, and factor VII coagulant activity in the direction of longer clot formation times and less firm clots with decreasing pH. Temperature had significant effects on clotting time, clot...

  14. Tissue factor activates allosteric networks in factor VIIa through structural and dynamic changes

    DEFF Research Database (Denmark)

    Madsen, Jesper Jonasson; Persson, E.; Olsen, O. H.

    2015-01-01

    Background: Tissue factor (TF) promotes colocalization of enzyme (factorVIIa) and substrate (FX or FIX), and stabilizes the active conformation of FVIIa. Details on how TF induces structural and dynamic changes in the catalytic domain of FVIIa to enhance its efficiency remain elusive. Objective...

  15. Expression of monocyte chemoattractant protein-1 in the pancreas of mice

    Institute of Scientific and Technical Information of China (English)

    LI Dong; ZHU Su-wen; LIU Dong-juan; LIU Guo-liang; SHAN Zhong-yan

    2005-01-01

    Background Type 1 diabetes has been recognized as an organ specific autoimmune disease owing to the immune destruction of pancreatic islet β cells in genetically susceptible individuals.In both human and rodent models of type 1 diabetes, such as nonobese diabetic (NOD) mice, biobreeding rats, the disease has a distinct stage characterized by immune cells infiltrating in the pancreas (insulitis).The major populations of infiltrating cells are macrophages and T lymphocytes.Therefore, immune cell infiltration of pancreatic islets may be a crucial step in the pathogenesis of type 1 diabetes.Monocyte chemoattractant protein-1 can specifically attract monocytes in vivo.Interferon induced protein-10 has chemoattractant effects on the activated lymphocytes.In this study, we analysed the expression of monocyte chemoattractant protein-1 in the pancreas of mice and interferon inducible protein-10 mRNA in the pancreas of NOD mice, and discussed their possible role in the pathogenesis of type 1 diabetes.Methods The immunohistochemical method and immunoelectronmicroscopy were used to evaluate the expression of monocyte chemoattractant protein-1 in the pancreas of NOD mice and BALB/c mice.RT-PCR was used to evaluate the expression of monocyte chemoattractant protein-1 and interferon inducible protein mRNA in NOD mice.Results Monocyte chemoattractant protein-1 was positive in the pancreas of NOD mice, whereas negative in the pancreas of BALB/C mice.RT-PCR showed that monocyte chemoattractant protein-1 and interferon inducible protein-10 mRNA could be found in the pancreas of NOD mice.Immunoelectronmicroscopy demonstrated that monocyte chemoattractant protein-1 was produced by β cells and stored in the cytoplasm of the cells.Conclusions Pancreatic islet β cells produce monocyte chemoattractantprotein-1 in NOD mice.Monocyte chemoattractant protein-1 may play an important part in the pathogenesis of type 1 diabetes by attracting monocytes/macrophages to infiltrate pancreatic

  16. PTPRT regulates the interaction of Syntaxin-binding protein 1 with Syntaxin 1 through dephosphorylation of specific tyrosine residue

    Energy Technology Data Exchange (ETDEWEB)

    Lim, So-Hee; Moon, Jeonghee [Biomedical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Lee, Myungkyu [Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Lee, Jae-Ran, E-mail: leejr@kribb.re.kr [Biomedical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of)

    2013-09-13

    Highlights: •PTPRT is a brain-specific, expressed, protein tyrosine phosphatase. •PTPRT regulated the interaction of Syntaxin-binding protein 1 with Syntaxin 1. •PTPRT dephosphorylated the specific tyrosine residue of Syntaxin-binding protein 1. •Dephosphorylation of Syntaxin-binding protein 1 enhanced the interaction with Syntaxin 1. •PTPRT appears to regulate the fusion of synaptic vesicle through dephosphorylation. -- Abstract: PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified as a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1.

  17. Heighten the Study on Factor Seven Activating Protease

    Institute of Scientific and Technical Information of China (English)

    贺石林; 陈方平; 张广森; 文志斌

    2008-01-01

    @@ Recent studies have showed that factor seven activating protease (FSAP) is a novel serine protease in human plasma. Immunoreactivity for FSAP has been observed in vascular endothelial cells,epithelial cells and macrophages but FSAP-specific mRNA expression only exists in the former two cells. FSAP has three epidermal growth factor (EGF) domains,a kringle domain and a serine protease domain.

  18. Physical activity and associated factors among students attending evening classes

    Directory of Open Access Journals (Sweden)

    Fabio Luis Ceschini

    2015-03-01

    Full Text Available The aim of this study was to describe the physical activity level and associated factors among students attending evening classes in public and private schools in a region of the city of São Paulo. The sample was composed of 1,844 adolescents of both sexes aged 15-20 years. Three public and private schools in the city of São Paulo were visited. Daily physical activity level was assessed through International Physical Activity Questionnaire that classifies physical activity level. Physical activity level was divided into insufficiently active (when subject reported less than 300 minutes of moderate to vigorous physical activities per week and physically active (when subject reported more than 300 minutes of moderate to vigorous physical activities per week. Information related to risk behavior such as smoking and alcohol consumption was collected. Data were analyzed using logistic regression with three levels of data input and p<.05 as significance level. The prevalence of physically active adolescents was 36.1%. Most active subjects were: A younger boys with low socioeconomic levels; B adolescents from private schools; C adolescents that do not smoke or drink alcoholic beverages; D those who do not attend formal exercise program; E those who go to school to perform physical activities on weekends. Adolescents attending evening classes tended to be insufficiently active. We believe that school structure, working hours, and distance from home and workplace to school and risk factor should explain these data. Intervention programs could significantly contribute to increase the physical activity level among adolescents.

  19. Psychosocial factors associated with increased physical activity in insufficiently active adults with arthritis.

    Science.gov (United States)

    Peeters, G M E E Geeske; Brown, Wendy J; Burton, Nicola W

    2015-09-01

    Although physical activity can potentially reduce symptoms of arthritis, 50% of people with arthritis are insufficiently active. The aim was to identify psychosocial factors associated with increased physical activity in mid-age adults with arthritis who did not meet recommended physical activity levels. Longitudinal cohort study. Data were from 692 insufficiently active men and women (mean age 55 ± 6.6 years) with arthritis, who answered mailed surveys in 2007 and 2009 in the HABITAT study. Increased physical activity was defined as a change of ≥ 200 MET min/week in walking, moderate and vigorous activities from 2007 to 2009. Scale scores were used to measure psychosocial factors including intention, experiences, attitudes, efficacy, barriers, motivation, social support, and health professional advice. Associations between (1) 2007 psychosocial factors and (2) 2007-2009 improvement (≥ +1 standard deviation) in psychosocial factors and increased physical activity were examined with logistic regression models. Results were adjusted for education, body mass index, and self-rated health. Between 2007 and 2009, 296 participants (42.8%) increased their physical activity. Engagement, mastery and physical activity intention in 2007 were associated with this increase in physical activity (engagement OR = 1.11, 99% confidence interval (CI) = 1.05-1.17; mastery OR = 1.12, 99%CI = 1.02-1.22; physical activity intention OR = 1.29, 99%CI = 1.06-1.56). Improved scores for encouragement (OR = 2.07, CI = 1.07-4.01) and self-efficacy (OR =2 .27, CI = 1.30-3.97) were also significantly associated with increased physical activity. Positive physical activity experiences and intentions were predictors of increased physical activity among people with arthritis. Improved physical activity confidence and social support were associated with increased physical activity. It is important to consider these psychosocial factors when planning physical activity interventions for people with

  20. Factor H-related proteins determine complement-activating surfaces.

    Science.gov (United States)

    Józsi, Mihály; Tortajada, Agustin; Uzonyi, Barbara; Goicoechea de Jorge, Elena; Rodríguez de Córdoba, Santiago

    2015-06-01

    Complement factor H-related proteins (FHRs) are strongly associated with different diseases involving complement dysregulation, which suggests a major role for these proteins regulating complement activation. Because FHRs are evolutionarily and structurally related to complement inhibitor factor H (FH), the initial assumption was that the FHRs are also negative complement regulators. Whereas weak complement inhibiting activities were originally reported for these molecules, recent developments indicate that FHRs may enhance complement activation, with important implications for the role of these proteins in health and disease. We review these findings here, and propose that FHRs represent a complex set of surface recognition molecules that, by competing with FH, provide improved discrimination of self and non-self surfaces and play a central role in determining appropriate activation of the complement pathway.

  1. Therapeutic targeting of Krüppel-like factor 4 abrogates microglial activation

    Directory of Open Access Journals (Sweden)

    Kaushik Deepak

    2012-03-01

    Full Text Available Abstract Background Neuroinflammation occurs as a result of microglial activation in response to invading micro-organisms or other inflammatory stimuli within the central nervous system. According to our earlier findings, Krüppel-like factor 4 (Klf4, a zinc finger transcription factor, is involved in microglial activation and subsequent release of proinflammatory cytokines, tumor necrosis factor alpha, macrophage chemoattractant protein-1 and interleukin-6 as well as proinflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-treated microglial cells. Our current study focuses on finding the molecular mechanism of the anti-inflammatory activities of honokiol in lipopolysaccharide-treated microglia with emphasis on the regulation of Klf4. Methods For in vitro studies, mouse microglial BV-2 cell lines as well as primary microglia were treated with 500 ng/mL lipopolysaccharide as well as 1 μM and 10 μM of honokiol. We cloned full-length Klf4 cDNA in pcDNA3.1 expression vector and transfected BV-2 cells with this construct using lipofectamine for overexpression studies. For in vivo studies, brain tissues were isolated from BALB/c mice treated with 5 mg/kg body weight of lipopolysaccharide either with or without 2.5 or 5 mg/kg body weight of honokiol. Expression of Klf4, cyclooxygenase-2, inducible nitric oxide synthase and phospho-nuclear factor-kappa B was measured using immunoblotting. We also measured the levels of cytokines, reactive oxygen species and nitric oxide in different conditions. Results Our findings suggest that honokiol can substantially downregulate the production of proinflammatory cytokines and inflammatory enzymes in lipopolysaccharide-stimulated microglia. In addition, honokiol downregulates lipopolysaccharide-induced upregulation of both Klf4 and phospho-nuclear factor-kappa B in these cells. We also found that overexpression of Klf4 in BV-2 cells suppresses the anti

  2. Factors Associated with Early Platelet Activation in Obese Children

    Science.gov (United States)

    García, Anel Gómez; Núñez, Guillermina García; Sandoval, Martha Eva Viveros; Castellanos, Sergio Gutierrez; Aguilar, Cleto Alvarez

    2014-01-01

    Objective To investigate the factors associated with platelet activation in obese children. Design Cross-sectional study. Setting Department of Pediatrics of Regional Hospital N∘ 1 of Mexican Institute of Social Security in Morelia, Michoacán, Mexico. Participants 79 obese and 64 non-obese children between the ages of 5 and 10 years. Main Outcomes Measures Obese children (body mass index [BMI] >85 in growth curves for Centers for Disease Control/National Center for Health Statistics), and the control group of 64 non-obese children (percentile <85), % body fat, platelet activation was assessed by sP-selectin. Other measures were leptin, uric acid (UA), von Willebrand Factor (vWF), plasminogen activator inhibitor (PAI-1), lipid profile, and glucose. Results Obese children displayed higher plasma sP-selectin, leptin, PAI-1, and vWF than non-obese children. In the univariate logistic regression analysis, leptin, vWF, UA, and high density lipoprotein (HDL), but not with PAI-1, were factors associated with platelet activation. By stepwise linear regression analysis adjusted by sex and age, the best predictor variables for platelet activation were leptin (β:0.381; t:4.665; P=0.0001), vWF (β:0.211; t:2.926; P=0.004), UA (β:0.166; t:2.146; P=0.034), and HDL (β:−0.215; t:−2.819; P=0.006). Conclusions Obese children have a higher risk of developing early platelet activation. Factors associated with platelet activation were Leptin, vWF, UA, and HDL. Further studies involving larger numbers of patients over a longer duration are needed to understand the possible molecular mechanism underlying the association between leptin, vWF, and UA and endothelial activation and/or endothelial damage/dysfunction in obese children and its influence in cardiovascular disease in adults. PMID:24415745

  3. Uncoupling protein-1 as a target for the treatment of obesity/insulin resistance

    Directory of Open Access Journals (Sweden)

    Anne-Laure ePoher

    2015-01-01

    Full Text Available Presence of brown adipose tissue (BAT, characterised by the expression of the thermogenic uncoupling protein 1 (UCP1, has recently been described in adult humans. UCP1 is expressed in classical brown adipocytes, as well as in beige cells in white adipose tissue (WAT. The thermogenic activity of BAT is mainly controlled by the sympathetic nervous system. Endocrine factors, such as fibroblast growth factor 21 (FGF21 and bone morphogenetic protein factor-9 (BMP-9, predominantly produced in the liver, were shown to lead to activation of BAT thermogenesis, as well as to browning of WAT. This was also observed in response to irisin, a hormone secreted by skeletal muscles. Different approaches were used to delineate the impact of UCP1 on insulin sensitivity. When studied under thermoneutral conditions, UCP1 knockout mice exhibited markedly increased metabolic efficiency due to impaired thermogenesis. The impact of UCP1 deletion on insulin sensitivity in these mice was not reported. Conversely, several studies in both rodents and humans have shown that BAT activation (by cold exposure, β3-agonist treatment, transplantation and others improves glucose tolerance and insulin sensitivity. Interestingly, similar results were obtained by adipose tissue-specific overexpression of PR-domain-containing 16 (PRDM16 or BMP4 in mice. The mediators of such beneficial effects seem to include FGF21, interleukin-6, BMP8B and prostaglandin D2 synthase. Interestingly, some of these molecules can be secreted by BAT itself, indicating the occurrence of autocrine effects.Stimulation of BAT activity and/or recruitment of UCP1-positive cells are therefore relevant targets for the treatment of obesity/type 2 diabetes in humans.

  4. Plasma factor VII-activating protease is increased by oral contraceptives and induces factor VII activation in-vivo

    DEFF Research Database (Denmark)

    Sidelmann, Johannes J; Skouby, Sven O; Kluft, Cornelis

    2011-01-01

    Oral contraceptive (OC) use influences the hemostatic system significantly and is a risk factor for development of cardiovascular disease. Factor VII-activating protease (FSAP) has potential effects on hemostasis. The 1601GA genotype of the 1601G/A polymorphism in the FSAP gene expresses a FSAP...... alloenzyme with reduced pro-fibrinolytic activity. Presently, we address whether OC use and OC formulation affect FSAP measures in human blood. Healthy women (n=588) were allocated to six cycles of OCs with estrogen contents of 20µg (n=158), 30µg (n=284), 35µg (n=79) or 50µg (n=67) combined with various...... progestins. FSAP genotypes, FSAP and factor VII (FVII) plasma measures were assessed at baseline and after 6 cycles of OC. The 1601GA genotype was present in 49 (8.3%) of the women and was associated with significantly reduced levels of FSAP (P=0.001). OC use increased FSAP antigen by 25% and FSAP activity...

  5. Physical Activity in Adolescents following Treatment for Cancer: Influencing Factors.

    Science.gov (United States)

    Wright, Marilyn; Bryans, Angie; Gray, Kaylin; Skinner, Leah; Verhoeve, Amanda

    2013-01-01

    The purpose of this study was to examine physical activity levels and influencing individual and environmental factors in a group of adolescent survivors of cancer and a comparison group. Methods. The study was conducted using a "mixed methods" design. Quantitative data was collected from 48 adolescent survivors of cancer and 48 comparison adolescents using the Godin Leisure-Time Exercise Questionnaire, the Fatigue Scale-Adolescents, and the Amherst Health and Activity Study-Student Survey. Qualitative data was collected in individual semistructured interviews. Results. Reported leisure-time physical activity total scores were not significantly different between groups. Physical activity levels were positively correlated with adult social support factors in the group of adolescent survivors of cancer, but not in the comparison group. Time was the primary barrier to physical activity in both groups. Fatigue scores were higher for the comparison but were not associated with physical activity levels in either group. The qualitative data further supported these findings. Conclusions. Barriers to physical activity were common between adolescent survivors of cancer and a comparative group. Increased knowledge of the motivators and barriers to physical activity may help health care providers and families provide more effective health promotion strategies to adolescent survivors of pediatric cancer.

  6. Physical Activity in Adolescents following Treatment for Cancer: Influencing Factors

    Directory of Open Access Journals (Sweden)

    Marilyn Wright

    2013-01-01

    Full Text Available The purpose of this study was to examine physical activity levels and influencing individual and environmental factors in a group of adolescent survivors of cancer and a comparison group. Methods. The study was conducted using a “mixed methods” design. Quantitative data was collected from 48 adolescent survivors of cancer and 48 comparison adolescents using the Godin Leisure-Time Exercise Questionnaire, the Fatigue Scale—Adolescents, and the Amherst Health and Activity Study—Student Survey. Qualitative data was collected in individual semistructured interviews. Results. Reported leisure-time physical activity total scores were not significantly different between groups. Physical activity levels were positively correlated with adult social support factors in the group of adolescent survivors of cancer, but not in the comparison group. Time was the primary barrier to physical activity in both groups. Fatigue scores were higher for the comparison but were not associated with physical activity levels in either group. The qualitative data further supported these findings. Conclusions. Barriers to physical activity were common between adolescent survivors of cancer and a comparative group. Increased knowledge of the motivators and barriers to physical activity may help health care providers and families provide more effective health promotion strategies to adolescent survivors of pediatric cancer.

  7. Factors determining physical activity of Ukrainian students

    Directory of Open Access Journals (Sweden)

    Barbara Bergier

    2014-09-01

    Full Text Available [b]Objective[/b]. Scientific reports provide information concerning an insufficient level of physical activity of societies. The objective of the study is recognition of the level of physical activity among Ukrainian students, and factors which condition this activity: gender, place of residence, self-reported physical fitness, and the BMI. [b]Methods[/b]. The study was conducted in 2013 among 2,125 Ukrainian students using a long version of the International Physical Activity Questionnaire (IPAQ, supplemented with data concerning the respondents’ physical development. [b]Results[/b]. The results of the study showed that the mean total physical activity of students was 3.560 MET, and its highest percentage pertained to the area of activity in sports – 1.124 MET. Significantly higher statistically physical activity was observed among males than females. In males, the highest activity was related to participation in sports classes, while in females – engagement in household chores. It was found that males, compared to females, were significantly more physically active in such areas as occupational activity (education and sports activity, whereas females showed higher activity performing household chores. According to the place of residence, inhabitants of medium-size towns and rural areas obtained the most favourable results in activity, while the inhabitants of large cities the poorest. Self-reported physical fitness was significantly correlated with the results in physical activity obtained by the students. No relationship was found between the BMI and the level of student’s physical activity. [b]Conclusion[/b]. Considering the very large population of respondents, the results obtained may be considered as an up-to-date pattern of physical activity among Ukrainian students.

  8. Myocardial ischemic preconditioning upregulated protein 1(Mipu1):zinc finger protein 667 - a multifunctional KRAB/C{sub 2}H{sub 2} zinc finger protein

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.; Zhang, C. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); Fan, W.J. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province (China); Pan, W.J.; Feng, D.M.; Qu, S.L.; Jiang, Z.S. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China)

    2014-10-31

    Myocardial ischemic preconditioning upregulated protein 1 (Mipu1) is a newly discovered upregulated gene produced in rats during the myocardial ischemic preconditioning process. Mipu1 cDNA contains a 1824-base pair open reading frame and encodes a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C{sub 2}H{sub 2} motifs in the C-terminus. Mipu1 protein is located in the cell nucleus. Recent studies found that Mipu1 has a protective effect on the ischemia-reperfusion injury of heart, brain, and other organs. As a nuclear factor, Mipu1 may perform its protective function through directly transcribing and repressing the expression of proapoptotic genes to repress cell apoptosis. In addition, Mipu1 also plays an important role in regulating the gene expression of downstream inflammatory mediators by inhibiting the activation of activator protein-1 and serum response element.

  9. Effects of mechanical ventilation on oulmonary macrophage inflammatory protein-1α and nuclear factor-κB expression in rats%机械通气大鼠肺组织巨噬细胞炎症蛋白-1α及核因子-κB的表达

    Institute of Scientific and Technical Information of China (English)

    王磊; 张新日; 郝海龙

    2013-01-01

    目的 通过观察巨噬细胞炎症蛋白-1α(MIP-1α)和核因子-κB (NF-κB)在机械通气大鼠肺组织中的表达,探讨MIP-1α及NF-κB在呼吸机所致肺损伤(VILI)发生中的作用.方法 32只雄性健康Wistar大鼠随机分为对照组、小潮气量组、常规潮气量组和大潮气量组.分别采用原位分子杂交技术和免疫组织化学染色方法检测各组大鼠肺组织MIP-1α mRNA及NF-κB p65蛋白表达水平,测定其支气管肺泡灌洗液(BALF)中白细胞及中性粒细胞计数.结果 大潮气量组和常规潮气量组大鼠BALF中白细胞和中性粒细胞计数,以及细支气管上皮MIP-1α mRNA和NF-κB p65蛋白阳性表达细胞百分比均明显高于小潮气量组和对照组(P<0.01).对照组与小潮气量组比较差异无统计学意义(P>0.05).相关分析结果表明,各组大鼠细支气管上皮MIP-1αmRNA阳性表达细胞百分比与BALF中性粒细胞计数和NF-κB p65蛋白阳性表达细胞百分比之间均呈正相关(r=0.546,r=0.482,均P<0.05).结论 在VILI发生过程中,MIP-1α是导致中性粒细胞在肺内募集、活化的重要细胞因子;肺组织细胞表达MIP-1α在一定程度上可能受NF-κB的调控;机械刺激→NF-κB→MIP-1α信号通路可能是VILI发生过程中细胞内信号传导途径之一.%Objective To determine the pulmonary macrophage inflammatory protein-1α (MIP-1α) and nuclear factor-κB (NF-κB) expression and their roles in ventilator-induced lung injury (VILI) in rats treated with mechanical ventilation.Methods Thirty-two health male Wistar rats were randomly assigned to control,low tidal volume,conventional tidal volume and high tidal volume group,respectively.The expression of MIP-1α mRNA and NF-κB p65 protein in lung tissues was detected by in situ hybridization and immunohistochemistry for measurement of white blood cell (WBC) and neutrophil count.Results Compared with low tidal volume and control group,significantly higher WBC and

  10. Elevated plasma phospholipase A2 and platelet-activating factor acetylhydrolase activity in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Yves Denizot

    2004-01-01

    Full Text Available This clinical study reports that blood levels of the pro-inflammatory mediator platelet-activating factor (PAF did not change in colorectal cancer patients. In contrast, plasma levels of two enzymatic activities, one implicated in PAF production (i.e. phospholipase A2 and one in PAF degradation (i.e. PAF acetylhydrolase activity were significantly elevated.

  11. Glycosylation of Dentin Matrix Protein 1 is critical for osteogenesis.

    Science.gov (United States)

    Sun, Yao; Weng, Yuteng; Zhang, Chenyang; Liu, Yi; Kang, Chen; Liu, Zhongshuang; Jing, Bo; Zhang, Qi; Wang, Zuolin

    2015-12-04

    Proteoglycans play important roles in regulating osteogenesis. Dentin matrix protein 1 (DMP1) is a highly expressed bone extracellular matrix protein that regulates both bone development and phosphate metabolism. After glycosylation, an N-terminal fragment of DMP1 protein was identified as a new proteoglycan (DMP1-PG) in bone matrix. In vitro investigations showed that Ser(89) is the key glycosylation site in mouse DMP1. However, the specific role of DMP1 glycosylation is still not understood. In this study, a mutant DMP1 mouse model was developed in which the glycosylation site S(89) was substituted with G(89) (S89G-DMP1). The glycosylation level of DMP1 was down-regulated in the bone matrix of S89G-DMP1 mice. Compared with wild type mice, the long bones of S89G-DMP1 mice showed developmental changes, including the speed of bone remodeling and mineralization, the morphology and activities of osteocytes, and activities of both osteoblasts and osteoclasts. These findings indicate that glycosylation of DMP1 is a key posttranslational modification process during development and that DMP1-PG functions as an indispensable proteoglycan in osteogenesis.

  12. Allosteric activation of coagulation factor VIIa visualized by hydrogen exchange

    DEFF Research Database (Denmark)

    Rand, Kasper Dyrberg; Jørgensen, Thomas; Olsen, Ole H;

    2006-01-01

    Coagulation factor VIIa (FVIIa) is a serine protease that, after binding to tissue factor (TF), plays a pivotal role in the initiation of blood coagulation. We used hydrogen exchange monitored by mass spectrometry to visualize the details of FVIIa activation by comparing the exchange kinetics...... tissue factor binding, FVIIa undergoes dramatic structural stabilization as indicated by decreased exchange rates localized throughout the protease domain and in distant parts of the light chain, spanning across 50A and revealing a concerted interplay between functional sites in FVIIa. The results...... of distinct molecular states, namely zymogen FVII, endoproteolytically cleaved FVIIa, TF-bound zymogen FVII, TF-bound FVIIa, and FVIIa in complex with an active site inhibitor. The hydrogen exchange kinetics of zymogen FVII and FVIIa are identical indicating highly similar solution structures. However, upon...

  13. Osteogenic protein-1 is required for mammalian eye development.

    Science.gov (United States)

    Solursh, M; Langille, R M; Wood, J; Sampath, T K

    1996-01-17

    Osteogenic Protein-1 (OP-1/BMP-7) is a bone morphogenetic protein in the transforming growth factor-beta superfamily and has been shown to be expressed temporally and spatially during epithelial-mesenchymal interactions mediating tissue morphogenesis in early embryogenesis. In order to identify the primary role(s) for OP-1 in development, we carried out whole rat embryo cultures, over a 72-h period from primitive streak stages to early limb bud stages, in rat sera containing either OP-1 blocking antibodies (10 micrograms/ml) or nonreactive IgG. Rat embryos cultured with control antibodies developed normally, while those cultured with anti-OP-1 antibodies consistently exhibited over-all reduced size and absence of eyes. Histological sections revealed a greater reduction in neural retina development in the embryos treated with anti-OP-1 blocking antibodies. In situ hybridization and immunolocalization analyses indicate that OP-1 is expressed in the neuroepithelium of the optic vesicle at E11.5, is limited to the presumptive neural retina and developing lens placode, and is subsequently expressed in the neural retina, lens and developing cornea at E12.5-E13.5. Our results indicate that OP-1 mediates the inductive signals involved in mammalian eye development.

  14. Serum Monocyte Chemoattractant Protein-1 in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Jennifer Sullivan

    2011-01-01

    Full Text Available Background/Aims. Pancreatic ductal adenocarcinoma (PDA has etiological association with chronic inflammation. Elevated circulating levels of inflammatory mediators, such as monocyte chemoattractant protein-1 (MCP-1, are found in obese individuals. We hypothesized that serum MCP-1 levels are elevated in obese PDA patients. Methods. ELISA was used to analyze MCP-1 serum levels in PDA (n=62 and intraductal papillary mucinous neoplasms (IPMN (n=27. Recursive partitioning statistical analysis investigated the relationship between log MCP-1 and clinicopathological parameters. Results. Log MCP-1 values were significantly (P<0.05 elevated in patients with BMI ≥ 37.5. In patients with BMI < 37.5, average log MCP-1 values were significantly elevated in PDA patients when compared to IPMN patients. Within the IPMN group, higher log MCP-1 levels correlated with increased age. Recursive partitioning analysis of IPMN versus PDA revealed a strategy of predicting characteristics of patients who are more likely to have cancer. This strategy utilizes log MCP-1 as the primary factor and also utilizes smoking status, gender, and age. Conclusion. MCP-1 is a promising biomarker in pancreatic cancer. The potential of using MCP-1 to distinguish PDA from IPMN patients must be studied in larger populations to validate and demonstrate its eventual clinical utility.

  15. Phyllostachys edulis compounds inhibit palmitic acid-induced monocyte chemoattractant protein 1 (MCP-1 production.

    Directory of Open Access Journals (Sweden)

    Jason K Higa

    Full Text Available BACKGROUND: Phyllostachys edulis Carriere (Poaceae is a bamboo species that is part of the traditional Chinese medicine pharmacopoeia. Compounds and extracts from this species have shown potential applications towards several diseases. One of many complications found in obesity and diabetes is the link between elevated circulatory free fatty acids (FFAs and chronic inflammation. This study aims to present a possible application of P. edulis extract in relieving inflammation caused by FFAs. Monocyte chemoattractant protein 1 (MCP-1/CCL2 is a pro-inflammatory cytokine implicated in chronic inflammation. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and activator protein 1 (AP-1 are transcription factors activated in response to inflammatory stimuli, and upregulate pro-inflammatory cytokines such as MCP-1. This study examines the effect of P. edulis extract on cellular production of MCP-1 and on the NF-κB and AP-1 pathways in response to treatment with palmitic acid (PA, a FFA. METHODOLOGY/PRINCIPAL FINDINGS: MCP-1 protein was measured by cytometric bead assay. NF-κB and AP-1 nuclear localization was detected by colorimetric DNA-binding ELISA. Relative MCP-1 mRNA was measured by real-time quantitative PCR. Murine cells were treated with PA to induce inflammation. PA increased expression of MCP-1 mRNA and protein, and increased nuclear localization of NF-κB and AP-1. Adding bamboo extract (BEX inhibited the effects of PA, reduced MCP-1 production, and inhibited nuclear translocation of NF-κB and AP-1 subunits. Compounds isolated from BEX inhibited MCP-1 secretion with different potencies. CONCLUSIONS/SIGNIFICANCE: PA induced MCP-1 production in murine adipose, muscle, and liver cells. BEX ameliorated PA-induced production of MCP-1 by inhibiting nuclear translocation of NF-κB and AP-1. Two O-methylated flavones were isolated from BEX with functional effects on MCP-1 production. These results may represent a possible

  16. Changes in CVD risk factors in the activity counseling trial

    Directory of Open Access Journals (Sweden)

    Meghan Baruth

    2011-01-01

    Full Text Available Meghan Baruth1, Sara Wilcox1, James F Sallis3, Abby C King4,5, Bess H Marcus6, Steven N Blair1,21Department of Exercise Science, 2Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Public Health Research Center, Columbia, SC, USA; 3Department of Psychology, San Diego State University, San Diego, CA, USA; 4Department of Health Research and Policy, 5Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; 6Behavioral and Social Sciences Section, Brown University Program in Public Health, Providence, RI, USAAbstract: Primary care facilities may be a natural setting for delivering interventions that focus on behaviors that improve cardiovascular disease (CVD risk factors. The purpose of this study was to examine the 24-month effects of the Activity Counseling Trial (ACT on CVD risk factors, to examine whether changes in CVD risk factors differed according to baseline risk factor status, and to examine whether changes in fitness were associated with changes in CVD risk factors. ACT was a 24-month multicenter randomized controlled trial to increase physical activity. Participants were 874 inactive men and women aged 35–74 years. Participants were randomly assigned to one of three arms that varied by level of counseling, intensity, and resource requirements. Because there were no significant differences in change over time between arms on any of the CVD risk factors examined, all arms were combined, and the effects of time, independent of arm, were examined separately for men and women. Time × Baseline risk factor status interactions examined whether changes in CVD risk factors differed according to baseline risk factor status. Significant improvements in total cholesterol, high-density lipoprotein cholesterol (HDL-C and low-density lipoprotein cholesterol, the ratio of total cholesterol to HDL-C, and triglycerides were seen in

  17. Factors Predicting Physical Activity Among Children With Special Needs

    Directory of Open Access Journals (Sweden)

    Shahram Yazdani, MD

    2013-07-01

    Full Text Available Introduction Obesity is especially prevalent among children with special needs. Both lack of physical activity and unhealthful eating are major contributing factors. The objective of our study was to investigate barriers to physical activity among these children. Methods We surveyed parents of the 171 children attending Vista Del Mar School in Los Angeles, a nonprofit school serving a socioeconomically diverse group of children with special needs from kindergarten through 12th grade. Parents were asked about their child’s and their own physical activity habits, barriers to their child’s exercise, and demographics. The response rate was 67%. Multivariate logistic regression was used to examine predictors of children being physically active at least 3 hours per week. Results Parents reported that 45% of the children were diagnosed with attention deficit hyperactivity disorder, 38% with autism, and 34% with learning disabilities; 47% of children and 56% of parents were physically active less than 3 hours per week. The top barriers to physical activity were reported as child’s lack of interest (43%, lack of developmentally appropriate programs (33%, too many behavioral problems (32%, and parents’ lack of time (29%. However, child’s lack of interest was the only parent-reported barrier independently associated with children’s physical activity. Meanwhile, children whose parents were physically active at least 3 hours per week were 4.2 times as likely to be physically active as children whose parents were less physically active (P = .01. Conclusion In this group of students with special needs, children’s physical activity was strongly associated with parental physical activity; parent-reported barriers may have had less direct effect. Further studies should examine the importance of parental physical activity among children with special needs.

  18. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  19. Activating transcription factor 4 regulates osteoclast differentiation in mice

    Science.gov (United States)

    Cao, Huiling; Yu, Shibing; Yao, Zhi; Galson, Deborah L.; Jiang, Yu; Zhang, Xiaoyan; Fan, Jie; Lu, Binfeng; Guan, Youfei; Luo, Min; Lai, Yumei; Zhu, Yibei; Kurihara, Noriyoshi; Patrene, Kenneth; Roodman, G. David; Xiao, Guozhi

    2010-01-01

    Activating transcription factor 4 (ATF4) is a critical transcription factor for osteoblast (OBL) function and bone formation; however, a direct role in osteoclasts (OCLs) has not been established. Here, we targeted expression of ATF4 to the OCL lineage using the Trap promoter or through deletion of Atf4 in mice. OCL differentiation was drastically decreased in Atf4–/– bone marrow monocyte (BMM) cultures and bones. Coculture of Atf4–/– BMMs with WT OBLs or a high concentration of RANKL failed to restore the OCL differentiation defect. Conversely, Trap-Atf4-tg mice displayed severe osteopenia with dramatically increased osteoclastogenesis and bone resorption. We further showed that ATF4 was an upstream activator of the critical transcription factor Nfatc1 and was critical for RANKL activation of multiple MAPK pathways in OCL progenitors. Furthermore, ATF4 was crucial for M-CSF induction of RANK expression on BMMs, and lack of ATF4 caused a shift in OCL precursors to macrophages. Finally, ATF4 was largely modulated by M-CSF signaling and the PI3K/AKT pathways in BMMs. These results demonstrate that ATF4 plays a direct role in regulating OCL differentiation and suggest that it may be a therapeutic target for treating bone diseases associated with increased OCL activity. PMID:20628199

  20. Activating transcription factor 4 regulates osteoclast differentiation in mice.

    Science.gov (United States)

    Cao, Huiling; Yu, Shibing; Yao, Zhi; Galson, Deborah L; Jiang, Yu; Zhang, Xiaoyan; Fan, Jie; Lu, Binfeng; Guan, Youfei; Luo, Min; Lai, Yumei; Zhu, Yibei; Kurihara, Noriyoshi; Patrene, Kenneth; Roodman, G David; Xiao, Guozhi

    2010-08-01

    Activating transcription factor 4 (ATF4) is a critical transcription factor for osteoblast (OBL) function and bone formation; however, a direct role in osteoclasts (OCLs) has not been established. Here, we targeted expression of ATF4 to the OCL lineage using the Trap promoter or through deletion of Atf4 in mice. OCL differentiation was drastically decreased in Atf4-/- bone marrow monocyte (BMM) cultures and bones. Coculture of Atf4-/- BMMs with WT OBLs or a high concentration of RANKL failed to restore the OCL differentiation defect. Conversely, Trap-Atf4-tg mice displayed severe osteopenia with dramatically increased osteoclastogenesis and bone resorption. We further showed that ATF4 was an upstream activator of the critical transcription factor Nfatc1 and was critical for RANKL activation of multiple MAPK pathways in OCL progenitors. Furthermore, ATF4 was crucial for M-CSF induction of RANK expression on BMMs, and lack of ATF4 caused a shift in OCL precursors to macrophages. Finally, ATF4 was largely modulated by M-CSF signaling and the PI3K/AKT pathways in BMMs. These results demonstrate that ATF4 plays a direct role in regulating OCL differentiation and suggest that it may be a therapeutic target for treating bone diseases associated with increased OCL activity.

  1. Macrophage inflammatory protein-1 alpha expression in interstitial lung disease.

    Science.gov (United States)

    Standiford, T J; Rolfe, M W; Kunkel, S L; Lynch, J P; Burdick, M D; Gilbert, A R; Orringer, M B; Whyte, R I; Strieter, R M

    1993-09-01

    Mononuclear phagocyte (M phi) recruitment and activation is a hallmark of a number of chronic inflammatory diseases of the lung, including sarcoidosis and idiopathic pulmonary fibrosis (IPF). We hypothesized that macrophage inflammatory protein-1 (MIP-1 alpha), a peptide with leukocyte activating and chemotactic properties, may play an important role in mediating many of the cellular changes that occur in sarcoidosis and IPF. In initial experiments, we demonstrated that human rMIP-1 alpha exerted chemotactic activities toward both polymorphonuclear leukocytes and monocytes, and these activities were inhibited by treatment with rabbit anti-human MIP-1 alpha antiserum. In support of the potential role of MIP-1 alpha in interstitial lung disease, we detected MIP-1 alpha in the bronchoalveolar lavage fluid of 22/23 patients with sarcoidosis (mean 443 +/- 76 pg/ml) and 9/9 patients with IPF (mean 427 +/- 81 pg/ml), whereas detectable MIP-1 alpha was found in only 1/7 healthy subjects (mean 64 +/- 64 pg/ml). In addition, we found a 2.5- and 1.8-fold increase in monocyte chemotactic activity in BALF obtained from patients with sarcoidosis and IPF respectively, as compared to healthy subjects, and this monocyte chemotactic activity, but not neutrophil chemotactic activity, was reduced by approximately 22% when bronchoalveolar lavage fluid from sarcoidosis and IPF patients were preincubated with rabbit antihuman MIP-1 alpha antibodies. To determine the cellular source(s) of MIP-1 alpha within the lung, we performed immunohistochemical analysis of bronchoalveolar lavage cell pellets, transbronchial biopsies, and open lung biopsies obtained from patients with IPF and sarcoidosis. Substantial expression of cell-associated MIP-1 alpha was detected in M phi, including both alveolar AM phi and interstitial M phi. In addition, interstitial fibroblasts within biopsies obtained from sarcoid and IPF patients also expressed immunoreactive MIP-1 alpha. Minimal to no detectable MIP-1

  2. Speciifc effects of c-Jun NH2-terminal kinase-interacting protein 1 in neuronal axons

    Institute of Scientific and Technical Information of China (English)

    Shu Tang; Qiang Wen; Xiao-jian Zhang; Quan-cheng Kan

    2016-01-01

    c-Jun NH2-terminal kinase (JNK)-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B (TrkB) anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of TrkB anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neuronsin vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed TrkB com-plexesin vitro andin vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of TrkB gradually increased in axon terminals. However, the distribution of TrkB reduced in axon terminals after knocking out JNK-interact-ing protein 1. In addition, there were differences in distribution of TrkB after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of TrkB in dendrites. These ifndings conifrm that JNK-inter-acting protein 1 can interact with TrkB in neuronal cells, and can regulate the transport of TrkB in axons, but not in dendrites.

  3. Specific effects of c-Jun NH2-terminal kinase-interacting protein 1 in neuronal axons

    Directory of Open Access Journals (Sweden)

    Shu Tang

    2016-01-01

    Full Text Available c-Jun NH2-terminal kinase (JNK-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B (TrkB anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of TrkB anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neurons in vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed TrkB complexes in vitro and in vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of TrkB gradually increased in axon terminals. However, the distribution of TrkB reduced in axon terminals after knocking out JNK-interacting protein 1. In addition, there were differences in distribution of TrkB after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of TrkB in dendrites. These findings confirm that JNK-interacting protein 1 can interact with TrkB in neuronal cells, and can regulate the transport of TrkB in axons, but not in dendrites.

  4. Platelet-activating factor in liver injury: A relational scope

    Institute of Scientific and Technical Information of China (English)

    Nikolaos P Karidis; Gregory Kouraklis; Stamatios E Theocharis

    2006-01-01

    The hepatocyte, the main cellular component of the liver, exhibits variable susceptibility to different types of injury induced by endogenous or exogenous factors.Hepatocellular dysfunction or death and regeneration are dependent upon the complicated interactions between numerous biologically active molecules. Plateletactivating factor (PAF) seems to play a pivotal role as the key mediator of liver injury in the clinical and experimental setting, as implied by the beneficial effects of its receptor antagonists. A comprehensive up-todate overview of the specific functional and regulatory properties of PAF in conditions associated with liver injury is attempted in this review.

  5. 3T3-L1 preadipocytes exhibit heightened monocyte-chemoattractant protein-1 response to acute fatty acid exposure.

    Science.gov (United States)

    Dordevic, Aimee L; Konstantopoulos, Nicky; Cameron-Smith, David

    2014-01-01

    Preadipocytes contribute to the inflammatory responses within adipose tissue. Whilst fatty acids are known to elicit an inflammatory response within adipose tissue, the relative contribution of preadipocytes and mature adipocytes to this is yet to be determined. We aimed to examine the actions of common dietary fatty acids on the acute inflammatory and adipokine response in 3T3-L1 preadipocytes and differentiated mature adipocytes. Gene expression levels of key adipokines in 3T3-L1 preadipocytes and adipocytes were determined following incubation with palmitic acid, myristic acid or oleic acid and positive inflammatory control, lipopolysaccharide for 2 and 4 h. Inflammatory kinase signalling was assessed by analysis of nuclear factor-κB, p38-mitogen-activated protein kinase and c-jun amino-terminal kinase phosphorylation. Under basal conditions, intracellular monocyte chemoattractant protein-1 and interleukin-6 gene expression levels were increased in preadipocytes, whereas mature adipocytes expressed increased gene expression levels of leptin and adiponectin. Fatty acid exposure at 2 and 4 h increased both monocyte chemoattractant protein-1 and interleukin-6 gene expression levels in preadipocytes to greater levels than in mature adipocytes. There was an accompanying increase of inhibitor of κB-α degradation and nuclear factor-κB (p65) (Ser536) phosphorylation with fatty acid exposure in the preadipocytes only. The current study points to preadipocytes rather than the adipocytes as the contributors to both immune cell recruitment and inflammatory adipokine secretion with acute increases in fatty acids.

  6. MAVS protein is attenuated by rotavirus nonstructural protein 1.

    Directory of Open Access Journals (Sweden)

    Satabdi Nandi

    Full Text Available Rotavirus is the single, most important agent of infantile gastroenteritis in many animal species, including humans. In developing countries, rotavirus infection attributes approximately 500,000 deaths annually. Like other viruses it establishes an intimate and complex interaction with the host cell to counteract the antiviral responses elicited by the cell. Among various pattern recognition receptors (PAMPs of the host, the cytosolic RNA helicases interact with viral RNA to activate the Mitochondrial Antiviral Signaling protein (MAVS, which regulates cellular interferon response. With an aim to identify the role of different PAMPs in rotavirus infected cell, MAVS was found to degrade in a time dependent and strain independent manner. Rotavirus non-structural protein 1 (NSP1 which is a known IFN antagonist, interacted with MAVS and degraded it in a strain independent manner, resulting in a complete loss of RNA sensing machinery in the infected cell. To best of our knowledge, this is the first report on NSP1 functionality where a signaling protein is targeted unanimously in all strains. In addition NSP1 inhibited the formation of detergent resistant MAVS aggregates, thereby averting the antiviral signaling cascade. The present study highlights the multifunctional role of rotavirus NSP1 and reinforces the fact that the virus orchestrates the cellular antiviral response to its own benefit by various back up strategies.

  7. Factors related to physical activity: a study of adolescents.

    Science.gov (United States)

    Vilhjalmsson, R; Thorlindsson, T

    1998-09-01

    Although the consequences of physical activity have been carefully documented, less is known about its correlates, particularly among children and youth. Based on a representative national survey of 1131 Icelandic adolescents, the study examined various physical, psychological, social and demographic factors related to physical activity. Male sex, significant others' involvement in physical activity (father, friend and older brother), sociability, perceived importance of sport and of health improvement and satisfaction with mandatory gym classes in school, were all related to more involvement, whereas hours of paid work and TV-viewing were related to less. Furthermore, the data suggested that the influence of friend's participation in physical activity depends on his or her emotional significance. Influential others appeared to affect males and females in the same way. The meaning of the results and their implications for future research are discussed.

  8. Factor VII activating protease. Single nucleotide polymorphisms light the way.

    Science.gov (United States)

    Kanse, S M; Etscheid, M

    2011-08-01

    Factor VII activating protease (FSAP) is a circulating serine protease with high homology to fibrinolytic enzymes. A role in the regulation of coagulation and fibrinolysis is suspected based on in vitro studies demonstrating activation of FVII or pro-urokinase plasminogen activator (uPA). However, considering the paucity of any studies in animal models or any correlative studies in humans the role of FSAP in haemostasis remains unclear. In relation to vascular remodeling processes or inflammation it has been convincingly shown that FSAP interacts with growth factors as well as protease activated receptors (PAR). Against this sparse background there are a plethora of studies which have investigated the linkage of single nucleotide polymorphisms (SNP) in the FSAP gene (HABP2) to various diseases. The G534E SNP of FSAP is associated with a low proteolytic activity due to an amino acid exchange in the protease domain. This and other SNPs have been linked to carotid stenosis, stroke as well as thrombosis in the elderly and plaque calcification. These SNP analyses indicate an important role for FSAP in the regulation of the haemostasis system as well as fibroproliferative inflammatory processes.

  9. Risk factors for glucose intolerance in active acromegaly

    Directory of Open Access Journals (Sweden)

    Kreze A.

    2001-01-01

    Full Text Available In the present retrospective study we determined the frequency of glucose intolerance in active untreated acromegaly, and searched for risk factors possibly supporting the emergence of the diabetic condition. Among 43 patients, 8 (19%; 95% CI: 8-33% had diabetes mellitus and 2 (5%; 1-16% impaired glucose tolerance. No impaired fasting glycemia was demonstrable. The frequency of diabetes was on average 4.5 times higher than in the general Slovak population. Ten factors suspected to support progression to glucose intolerance were studied by comparing the frequency of glucose intolerance between patients with present and absent risk factors. A family history of diabetes and arterial hypertension proved to have a significant promoting effect (P<0.05, chi-square test. A significant association with female gender was demonstrated only after pooling our data with literature data. Concomitant prolactin hypersecretion had a nonsignificant promoting effect. In conclusion, the association of active untreated acromegaly with each of the three categories of glucose intolerance (including impaired fasting glycemia, not yet studied in this connection was defined as a confidence interval, thus permitting a sound comparison with the findings of future studies. Besides a family history of diabetes, female gender and arterial hypertension were defined as additional, not yet described risk factors.

  10. TALE factors poise promoters for activation by Hox proteins.

    Science.gov (United States)

    Choe, Seong-Kyu; Ladam, Franck; Sagerström, Charles G

    2014-01-27

    Hox proteins form complexes with TALE cofactors from the Pbx and Prep/Meis families to control transcription, but it remains unclear how Hox:TALE complexes function. Examining a Hoxb1b:TALE complex that regulates zebrafish hoxb1a transcription, we find maternally deposited TALE proteins at the hoxb1a promoter already during blastula stages. These TALE factors recruit histone-modifying enzymes to promote an active chromatin profile at the hoxb1a promoter and also recruit RNA polymerase II (RNAPII) and P-TEFb. However, in the presence of TALE factors, RNAPII remains phosphorylated on serine 5 and hoxb1a transcription is inefficient. By gastrula stages, Hoxb1b binds together with TALE factors to the hoxb1a promoter. This triggers P-TEFb-mediated transitioning of RNAPII to the serine 2-phosphorylated form and efficient hoxb1a transcription. We conclude that TALE factors access promoters during early embryogenesis to poise them for activation but that Hox proteins are required to trigger efficient transcription.

  11. Feedback activation of neurofibromin terminates growth factor-induced Ras activation

    OpenAIRE

    Hennig, Anne; Markwart, Robby; Wolff, Katharina; Schubert, Katja; Cui, Yan; Ian A Prior; Manuel A Esparza-Franco; Ladds, Graham; Rubio, Ignacio

    2016-01-01

    This is the final published version. It first appeared at http://biosignaling.biomedcentral.com/articles/10.1186/s12964-016-0128-z. Background Growth factors induce a characteristically short-lived Ras activation in cells emerging from quiescence. Extensive work has shown that transient as opposed to sustained Ras activation is critical for the induction of mitogenic programs. Mitogen-induced accumulation of active Ras-GTP results from increased nucleotide exchange driven by the nucleo...

  12. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.

    Science.gov (United States)

    Naranjo, José R; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C; Arrabal, María D; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-02-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD.

  13. A possible role of LIM mineralization protein 1 in tertiary dentinogenesis of dental caries treatment.

    Science.gov (United States)

    Wang, Xiao-Ying; Zhang, Qi; Chen, Zhi

    2007-01-01

    Dental caries is a slowly progressive infectious disease with high risks. In response to dental caries stimuli, the tertiary dentin might be formed, protecting the dental pulp. Tertiary dentinogenesis contributes greatly to the treatment of carious lesions as well as the preservation and restoration of entire tooth function. A number of studies have found that application of exogenous growth factors such as transforming growth factors and bone morphogenetic proteins on unexposed pulps are able to signal tertiary dentinogenesis. Since precise mechanism of tertiary dentinogenesis is still not clear, more potential signaling factors might contribute to this process. Dentinogenesis shares many similarities with osteogenesis. The factors involved in osteogenesis and bone repair such as bone morphogenetic proteins 2, 7 and core binding factor alpha1 play important roles in dentinogenesis. LIM mineralization protein 1 is a critical positive regulator of osteoblast differentiation, bone formation and repair. It is logical to postulate that LIM mineralization protein 1 might be involved in odontoblast differentiation and dentin formation both in normal and in pathological conditions. Application of LIM mineralization protein 1 might be a promising approach for inducing tertiary dentinogenesis in dental caries treatment.

  14. Factors affecting perceived change in physical activity in pregnancy.

    Science.gov (United States)

    Merkx, Astrid; Ausems, Marlein; Budé, Luc; de Vries, Raymond; Nieuwenhuijze, Marianne J

    2017-08-01

    reduction of physical activity (PA) during pregnancy is common but undesirable, as it is associated with negative outcomes, including excessive gestational weight gain. Our objective was to explore changes in five types of activity that occurred during pregnancy and the behavioural determinants of the reported changes in PA. we performed a secondary analysis of a cross sectional survey that was constructed using the ASE-Model - an approach to identifying the factors that drive behaviour change that focuses on Attitude, Social influence, and self-Efficacy. 455 healthy pregnant women of all gestational ages, receiving prenatal care from midwifery practices in the Netherlands. more than half of our respondents reported a reduction in their PA during pregnancy. The largest reduction occurred in sports and brief rigorous activities, but other types of PA were reduced as well. Reduction of PA was more likely in women who considered themselves as active before pregnancy, women who experienced pregnancy-related barriers, women who were advised to reduce their PA, and multiparous women. Fewer than 5% increased their PA. Motivation to engage in PA was positively associated with enjoying PA. all pregnant women should be informed about the positive effects of staying active and should be encouraged to engage in, or to continue, moderately intensive activities like walking, biking or swimming. Our findings concerning the predictors of PA reduction can be used to develop an evidence-based intervention aimed at encouraging healthy PA during pregnancy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Modulation of topoisomerase activities by tumor necrosis factor.

    Science.gov (United States)

    Baloch, Z; Cohen, S; Fresa, K; Coffman, F D

    1995-01-01

    A number of chemotherapeutic agents which inhibit the DNA topoisomerases markedly potentiate cell death mediated by tumor necrosis factor, suggesting a role for these enzymes in the TNF cytotoxic mechanism. To investigate this possibility, topoisomerase I and II activities were assayed following TNF addition to murine L929 cells. Topoisomerase I and II activities increased within 15 min of TNF addition and returned to baseline levels within 1 and 2 hr, respectively. The increases in both topoisomerase activities were blocked by H-7 (but not H-8) and similar increases were seen following PMA addition. However, concentrations of H-7 which blocked the increased topoisomerase activities had no effect on TNF cytotoxicity nor on the enhancement of TNF cytotoxicity by topoisomerase inhibitors. Thus, in these cells topoisomerase activities are directly modified by TNF during the initial phases of a cytotoxic response. However, neither TNF cytotoxicity nor the enhancement of TNF cytotoxicity by topoisomerase inhibitors appears to require the TNF-mediated increases in topoisomerase activities.

  16. Time-activity relationships to VOC personal exposure factors

    Science.gov (United States)

    Edwards, Rufus D.; Schweizer, Christian; Llacqua, Vito; Lai, Hak Kan; Jantunen, Matti; Bayer-Oglesby, Lucy; Künzli, Nino

    Social and demographic factors have been found to play a significant role in differences between time-activity patterns of population subgroups. Since time-activity patterns largely influence personal exposure to compounds as individuals move across microenvironments, exposure subgroups within the population may be defined by factors that influence daily activity patterns. Socio-demographic and environmental factors that define time-activity subgroups also define quantifiable differences in VOC personal exposures to different sources and individual compounds in the Expolis study. Significant differences in exposures to traffic-related compounds ethylbenzene, m- and p-xylene and o-xylene were observed in relation to gender, number of children and living alone. Categorization of exposures further indicated time exposed to traffic at work and time in a car as important determinants. Increased exposures to decane, nonane and undecane were observed for males, housewives and self-employed. Categorization of exposures indicated exposure subgroups related to workshop use and living downtown. Higher exposures to 3-carene and α-pinene commonly found in household cleaning products and fragrances were associated with more children, while exposures to traffic compounds ethylbenzene, m- and p-xylene and o-xylene were reduced with more children. Considerable unexplained variation remained in categorization of exposures associated with home product use and fragrances, due to individual behavior and product choice. More targeted data collection methods in VOC exposure studies for these sources should be used. Living alone was associated with decreased exposures to 2-methyl-1-propanol and 1-butanol, and traffic-related compounds. Identification of these subgroups may help to reduce the large amount of unexplained variation in VOC exposure studies. Further they may help in assessing impacts of urban planning that result in changes in behavior of individuals, resulting in shifts in

  17. Factors Associated With Ambulatory Activity in De Novo Parkinson Disease.

    Science.gov (United States)

    Christiansen, Cory; Moore, Charity; Schenkman, Margaret; Kluger, Benzi; Kohrt, Wendy; Delitto, Anthony; Berman, Brian; Hall, Deborah; Josbeno, Deborah; Poon, Cynthia; Robichaud, Julie; Wellington, Toby; Jain, Samay; Comella, Cynthia; Corcos, Daniel; Melanson, Ed

    2017-04-01

    Objective ambulatory activity during daily living has not been characterized for people with Parkinson disease prior to initiation of dopaminergic medication. Our goal was to characterize ambulatory activity based on average daily step count and examine determinants of step count in nonexercising people with de novo Parkinson disease. We analyzed baseline data from a randomized controlled trial, which excluded people performing regular endurance exercise. Of 128 eligible participants (mean ± SD = 64.3 ± 8.6 years), 113 had complete accelerometer data, which were used to determine daily step count. Multiple linear regression was used to identify factors associated with average daily step count over 10 days. Candidate explanatory variable categories were (1) demographics/anthropometrics, (2) Parkinson disease characteristics, (3) motor symptom severity, (4) nonmotor and behavioral characteristics, (5) comorbidities, and (6) cardiorespiratory fitness. Average daily step count was 5362 ± 2890 steps per day. Five factors explained 24% of daily step count variability, with higher step count associated with higher cardiorespiratory fitness (10%), no fear/worry of falling (5%), lower motor severity examination score (4%), more recent time since Parkinson disease diagnosis (3%), and the presence of a cardiovascular condition (2%). Daily step count in nonexercising people recruited for this intervention trial with de novo Parkinson disease approached sedentary lifestyle levels. Further study is warranted for elucidating factors explaining ambulatory activity, particularly cardiorespiratory fitness, and fear/worry of falling. Clinicians should consider the costs and benefits of exercise and activity behavior interventions immediately after diagnosis of Parkinson disease to attenuate the health consequences of low daily step count.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A170).

  18. Plasma factor VII-activating protease is increased by oral contraceptives and induces factor VII activation in-vivo

    DEFF Research Database (Denmark)

    Sidelmann, Johannes Jakobsen; Skouby, Sven O.; Kluft, Cornelis

    2011-01-01

    Oral contraceptive (OC) use influences the hemostatic system significantly and is a risk factor for development of cardiovascular disease. Factor VII-activating protease (FSAP) has potential effects on hemostasis. The 1601GA genotype of the 1601G/A polymorphism in the FSAP gene expresses a FSAP...... alloenzyme with reduced pro-fibrinolytic activity. Presently, we address whether OC use and OC formulation affect FSAP measures in human blood. Healthy women (n=588) were allocated to six cycles of OCs with estrogen contents of 20μg (n=158), 30μg (n=284), 35μg (n=79) or 50μg (n=67) combined with various...... progestins. FSAP genotypes, FSAP and factor VII (FVII) plasma measures were assessed at baseline and after 6 cycles of OC. The 1601GA genotype was present in 49 (8.3%) of the women and was associated with significantly reduced levels of FSAP (P≤0.001). OC use increased FSAP antigen by 25% and FSAP activity...

  19. Absence of in vitro Procoagulant Activity in Immunoglobulin Preparations due to Activated Coagulation Factors

    Science.gov (United States)

    Oviedo, Adriana E.; Bernardi, María E.; Guglielmone, Hugo A.; Vitali, María S.

    2015-01-01

    Summary Background Immunoglobulin (IG) products, including intravenous (IVIG) or subcutaneous (SCIG) immunoglobulins are considered safe and effective for medical therapy; however, a sudden and unexpected increase in thromboembolic events (TE) after administration of certain batches of IVIG products has been attributed to the presence of activated coagulation factors, mainly factor XIa. Our aims were to examine the presence of enduring procoagulant activity during the manufacturing process of IGs, with special focus on monitoring factor XIa, and to evaluate the presence of in vitro procoagulant activity attributed to coagulation factors in different lots of IVIG and SCIG. Methods Samples of different steps of IG purification, 19 lots of IVIG and 9 of SCIG were analyzed and compared with 1 commercial preparation of IVIG and 2 of SCIG, respectively. Factors II, VII, IX, XI and XIa and non-activated partial thromboplastin time (NAPTT) were assayed. Results The levels of factors II, VII, IX, X and XI were non-quantifiable once fraction II had been re-dissolved and in all analyzed lots of IVIG and SCIG. The level of factor XIa at that point was under the detection limits of the assay, and NAPTT yielded values greater than the control during the purification process. In SCIG, we detected higher concentrations of factor XIa in the commercial products, which reached values up to 5 times higher than the average amounts found in the 9 batches produced by UNC-Hemoderivados. Factor XIa in commercial IVIG reached levels slightly higher than those of the 19 batches produced by UNC-Hemoderivados. Conclusion IVIG and SCIG manufactured by UNC-Hemoderivados showed a lack of thrombogenic potential, as demonstrated not only by the laboratory data obtained in this study but also by the absence of any reports of TE registered by the post marketing pharmacovigilance department. PMID:26733772

  20. Differential activation of dendritic cells by nerve growth factor and brain-derived neurotrophic factor.

    Science.gov (United States)

    Noga, O; Peiser, M; Altenähr, M; Knieling, H; Wanner, R; Hanf, G; Grosse, R; Suttorp, N

    2007-11-01

    Neurotrophins are involved in inflammatory reactions influencing several cells in health and disease including allergy and asthma. Dendritic cells (DCs) play a major role in the induction of inflammatory processes with an increasing role in allergic diseases as well. The aim of this study was to investigate the influence of neurotrophins on DC function. Monocyte-derived dendritic cells were generated from allergic and non-allergic donors. Neurotrophin receptors were demonstrated by western blotting, flow cytometry and fluorescence microscopy. Activation of small GTPases was evaluated by pull-down assays. DCs were incubated with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and supernatants were collected for measurement of IL-4, IL-6, IL-10, IL-12p70, TNF-alpha and TGF-beta. Receptor proteins were detectable by western blot, fluorescence activated cell sorting analysis and fluorescence microscopy. Signalling after neurotrophin stimulation occurred in a ligand-specific pattern. NGF led to decreased RhoA and increased Rac activation, while BDNF affected RhoA and Rac activity in a reciprocal fashion. Cells of allergics released a significantly increased amount of IL-6, while for healthy subjects a significantly higher amount of IL-10 was found. These data indicate that DCs are activated by the neurotrophins NGF and BDNF by different pathways in a receptor-dependant manner. These cells then may initiate inflammatory responses based on allergic sensitization releasing preferred cytokines inducing tolerance or a T-helper type 2 response.

  1. [Activated protein C resistance and factor V Leiden: clinical interest].

    Science.gov (United States)

    Guermazi, S; Znazen, R

    2011-10-01

    Activated protein C resistance (APCR) is a coagulation abnormality often linked to FV Leiden mutation, a single nucleotide G1691A substitution resulting in arginine 506→glutamine missense factor V mutation. FV Leiden has a frequency of 20 to 30% in groups of patients with venous thrombosis while it is of 4 to 10% in normal subjects. FV Leiden is considered as a weak risk factor of thrombosis except in homozygote. FV Leiden is implicated in deep venous thrombosis occurrence. Duration of oral anticoagulant treatment is six months in patients developing a first venous thrombosis except in patients with combined defects or a clinical context suggesting a high risk of severe relapse. Detection of APCR by coagulation methods is often used in first intention with a high specificity if plasmas tested are diluted in factor V deficient plasma. Genotyping study is essential to establish the heterozygote or homozygote statute and certain teams perform it directly. Nevertheless, APCR not related to FV Leiden could be an independent thrombosis risk factor. APCR and FV Leiden are included in laboratory investigations of thrombophilic markers in patients less than 50 years with venous thrombosis. In arterial thrombosis, FV Leiden implication is weak or absent. FV Leiden increases the risk of thrombosis in other situations as in patients with cancer. An association with recurrent miscarriages and other vasculoplacental complications is also reported in many studies but the data concerning the efficacy of antithrombotic treatment to prevent recurrence are currently insufficient. Copyright © 2009 Elsevier Masson SAS. All rights reserved.

  2. The dust covering factor in active galactic nuclei

    CERN Document Server

    Stalevski, Marko; Ueda, Yoshihiro; Lira, Paulina; Fritz, Jacopo; Baes, Maarten

    2016-01-01

    The primary source of emission of active galactic nuclei (AGN), the accretion disk, is surrounded by an optically and geometrically thick dusty structure ("the so-called dusty torus"). The infrared radiation emitted by the dust is nothing but a reprocessed fraction of the accretion disk emission, so the ratio of the torus to the AGN luminosity ($L_{\\text{torus}}/L_{\\text{AGN}}$) should correspond to the fraction of the sky obscured by dust, i.e. the covering factor. We undertook a critical investigation of the $L_{\\text{torus}}/L_{\\text{AGN}}$ as the dust covering factor proxy. Using state-of-the-art 3D Monte Carlo radiative transfer code, we calculated a grid of SEDs emitted by the clumpy two-phase dusty structure. With this grid of SEDs, we studied the relation between $L_{\\text{torus}}/L_{\\text{AGN}}$ and the dust covering factor for different parameters of the torus. We found that in case of type 1 AGNs the torus anisotropy makes $L_{\\text{torus}}/L_{\\text{AGN}}$ underestimate low covering factors and ove...

  3. Monocyte chemoattractant protein-1 promoter polymorphism and plasma levels in alzheimer’s disease

    OpenAIRE

    Porcellini, Elisa; Ianni, Manuela; Carbone, Ilaria; Franceschi, Massimo; Licastro, Federico

    2013-01-01

    Background Neurodegenerative disorders such Alzheimer's disease (AD) are often characterized by senile plaques and neurofibrillary tangle. In addition, reactive astrogliosis, microglia activation and a chronic inflammation are found in AD brain. Activated microglia has been reported to express a large number of beta chemokines including monocyte chemoattractant protein-1 (MCP-1). The potential role of MCP-1 in AD pathogenesis is supported by the over expression of MCP-1 associated with an inc...

  4. Factor VII activating protease (FSAP) promotes the proteolysis and inhibition of tissue factor pathway inhibitor (TFPI)

    Science.gov (United States)

    Kanse, Sandip M.; Declerck, Paul J.; Ruf, Wolfram; Broze, George; Etscheid, Michael

    2013-01-01

    Objectives Factor VII activating protease (FSAP) activates FVII as well as pro-urokinase and inhibits platelet-derived growth factor-BB, thus regulating haemostasis- and remodeling-associated processes in the vasculature. A genetic variant of FSAP (Marburg I polymorphism) results in low enzymatic activity and is associated with an enhanced risk for carotid stenosis and stroke. We postulate that there are additional substrates for FSAP that will help to explain its role in vascular biology and have searched for such a substrate. Results and Methods Using screening procedures to determine the influence of FSAP on various haemostasis-related processes on endothelial cells we discovered that FSAP inhibited tissue factor pathway inhibitor (TFPI), a major anti-coagulant secreted by these cells. Proteolytic degradation of TFPI by FSAP could also be demonstrated by Western blotting and the exact cleavage sites were determined by N-terminal sequencing. The Marburg I variant of FSAP had a diminished ability to inhibit TFPI. A monoclonal antibody to FSAP, that specifically inhibited FSAP binding to TFPI, reversed the inhibitory effect of FSAP on TFPI. Conclusions The identification of TFPI as a sensitive substrate for FSAP increases our understanding of its role in regulating haemostasis and proliferative remodeling events in the vasculature. PMID:22116096

  5. Monocyte Chemotactic Protein-1 Promotes the Myocardial Homing of Mesenchymal Stem Cells in Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Yunzeng Zou

    2013-04-01

    Full Text Available Dilated cardiomyopathy (DCM is the most common form of non-ischemic cardiomyopathy that leads to heart failure. Mesenchymal stem cells (MSCs are under active investigation currently as a potential therapy for DCM. However, little information is available about the therapeutic potential of intravenous administration of MSCs for DCM. Moreover, how MSCs home to the myocardium in DCM is also unclear. DCM was induced by intraperitoneally administering Doxorubicin and MSCs or vehicles were infused through the internal jugular vein. Cardiac functions including the percentage of fractional shortening, left ventricular diastolic dimension, left ventricular end-diastolic pressure, and left ventricular maximum dp/dt were evaluated by echocardiographic and hemodynamic studies. Fibrosis was determined by Masson’s trichrome staining. The mRNA expression levels of monocyte chemotactic protein-1 (MCP-1, stromal cell-derived factor-1 (SDF-1, macrophage inflammatory protein-1α (MIP-1α, and monocyte chemotactic protein-3 (MCP-3 were determined using real time polymerase chain reactions and the protein expression level of MCP-1 was detected with Western blot. The MSCs expression of C-C chemokine receptor type 2 (CCR2, a MCP-1 receptor, was confirmed by Western blot and flow cytometry analysis. The chemotactic effects of MCP-1/CCR2 were checked by assessing the migration in vitro and in vivo. MSCs transplantation improved the cardiac function and decreased the myocardial fibrosis of mice with DCM. MCP-1 was up-regulated in dilated myocardial tissue both at the mRNA and protein level while SDF-1, MIP-1α and MCP-3 remain unchanged. CCR2 was present in MSCs. MCP-1 promoted MSCs migration in vitro while CCR2 inhibition decreased the migration of MCP-1 to the dilated heart. This study provides direct evidences that peripheral intravenous infusion of MSCs can support the functional recovery of DCM. In addition, novel insights into the myocardial homing factor of MSCs

  6. Enhanced imaging of DNA via active quality factor control

    Science.gov (United States)

    Humphris, A. D. L.; Round, A. N.; Miles, M. J.

    2001-10-01

    Adsorption processes at single molecule level are of fundamental importance for the understanding and development of biomaterials. Atomic force microscopy (AFM) has played a critical role in this field due to its high resolution and ability to image in a liquid environment. We present a method that improves the dynamic force sensitivity and the resolution of a conventional AFM. This is achieved via a positive feedback loop that enhances the effective quality factor of the cantilever in a liquid environment to values in excess of 300, compared to a nominal value of ˜1. This active quality factor enhancement has been used to image DNA and an increase in the height of the molecule observed.

  7. The potential role of monocyte chemoattractant protein-1 for major depressive disorder.

    Science.gov (United States)

    Pae, Chi-Un

    2014-07-01

    The immune hypothesis of major depressive disorder (MDD) fits well with the supposed interaction between genetic and environmental factors in disorders with a complicated etiopathogenesis. It has been suggested that infectious diseases are associated with MDD in that cytokines may play a critical role as a key modulator in the transition between infection and the development of MDD. It has been also suggested that antidepressants have immunomodulatory effects on some cytokines and cytokine receptors, although the exact mechanism has not yet been fully elucidated. Among cytokines, monocyte chemoattractant protein-1 (MCP-1) is especially well known and has attracted considerable interest owing to its immunomodulatory functions. MCP-1 is expressed in highly regionalized neuronal areas in the brain, leading to kind of modulation of neuronal activity and neuroendocrine functions commonly seen in patients with MDD. Additionally, it is involved in the control of other cytokines that have been consistently proposed as associated with the development of MDD. It also has a possible role in the neurodegenerative process of a number of central nervous system (CNS) diseases. Hence, this paper draws from the perspective of immunology to offer several suggestions about the role of MPC-1 in the development of MDD.

  8. Disruption of Plasmodium sporozoite transmission by depletion of sporozoite invasion-associated protein 1.

    Science.gov (United States)

    Engelmann, Sabine; Silvie, Olivier; Matuschewski, Kai

    2009-04-01

    Accumulation of infectious Plasmodium sporozoites in Anopheles spp. salivary glands marks the final step of the complex development of the malaria parasite in the insect vector. Sporozoites are formed inside midgut-associated oocysts and actively egress into the mosquito hemocoel. Traversal of the salivary gland acinar cells correlates with the sporozoite's capacity to perform continuous gliding motility. Here, we characterized the cellular role of the Plasmodium berghei sporozoite invasion-associated protein 1 (SIAP-1). Intriguingly, SIAP-1 orthologs are found exclusively in apicomplexan hemoprotozoa, parasites that are transmitted by arthropod vectors, e.g., Plasmodium, Babesia, and Theileria species. By fluorescent tagging with mCherry, we show that SIAP-1 is expressed in oocyst-derived and salivary gland-associated sporozoites, where it accumulates at the apical tip. Targeted disruption of SIAP-1 does not affect sporozoite formation but causes a partial defect in sporozoite egress from oocysts and abolishes sporozoite colonization of mosquito salivary glands. Parasites with the siap-1(-) mutation are blocked in their capacity to perform continuous gliding motility. We propose that arthropod-transmitted apicomplexan parasites specifically express secretory factors, such as SIAP-1, that mediate efficient oocyst exit and migration to the salivary glands.

  9. Disruption of Plasmodium Sporozoite Transmission by Depletion of Sporozoite Invasion-Associated Protein 1▿ §

    Science.gov (United States)

    Engelmann, Sabine; Silvie, Olivier; Matuschewski, Kai

    2009-01-01

    Accumulation of infectious Plasmodium sporozoites in Anopheles spp. salivary glands marks the final step of the complex development of the malaria parasite in the insect vector. Sporozoites are formed inside midgut-associated oocysts and actively egress into the mosquito hemocoel. Traversal of the salivary gland acinar cells correlates with the sporozoite's capacity to perform continuous gliding motility. Here, we characterized the cellular role of the Plasmodium berghei sporozoite invasion-associated protein 1 (SIAP-1). Intriguingly, SIAP-1 orthologs are found exclusively in apicomplexan hemoprotozoa, parasites that are transmitted by arthropod vectors, e.g., Plasmodium, Babesia, and Theileria species. By fluorescent tagging with mCherry, we show that SIAP-1 is expressed in oocyst-derived and salivary gland-associated sporozoites, where it accumulates at the apical tip. Targeted disruption of SIAP-1 does not affect sporozoite formation but causes a partial defect in sporozoite egress from oocysts and abolishes sporozoite colonization of mosquito salivary glands. Parasites with the siap-1(−) mutation are blocked in their capacity to perform continuous gliding motility. We propose that arthropod-transmitted apicomplexan parasites specifically express secretory factors, such as SIAP-1, that mediate efficient oocyst exit and migration to the salivary glands. PMID:19181869

  10. Targeted disruption of fibrinogen like protein-1 accelerates hepatocellular carcinoma development

    Science.gov (United States)

    Nayeb-Hashemi, Hamed; Desai, Anal; Demchev, Valeriy; Bronson, Roderick T.; Hornick, Jason L.; Cohen, David E.; Ukomadu, Chinweike

    2015-01-01

    Fibrinogen like protein-1 (Fgl1) is a predominantly liver expressed protein that has been implicated as both a hepatoprotectant and a hepatocyte mitogen. Fgl1 expression is decreased in hepatocellular carcinoma (HCC) and its loss correlates with a poorly differentiated phenotype. To better elucidate the role of Fgl1 in hepatocarcinogenesis, we treated mice wild type or null for Fgl1 with diethyl nitrosamine and monitored for incidence of hepatocellular cancer. We find that mice lacking Fgl1 develop HCC at more than twice the rate of wild type mice. We show that hepatocellular cancers from Fgl1 null mice are molecularly distinct from those of the wild type mice. In tumors from Fgl1 null mice there is enhanced activation of Akt and downstream targets of the mammalian target of rapamycin (mTOR). In addition, there is paradoxical up regulation of putative hepatocellular cancer tumor suppressors; tripartite motif-containing protein 35 (Trim35) and tumor necrosis factor super family 10b (Tnfrsf10b). Taken together, these findings suggest that Fgl1 acts as a tumor suppressor in hepatocellular cancer through an Akt dependent mechanism and supports its role as a potential therapeutic target in HCC. PMID:26225745

  11. Targeted deletion of fibrinogen like protein 1 reveals a novel role in energy substrate utilization.

    Directory of Open Access Journals (Sweden)

    Valeriy Demchev

    Full Text Available Fibrinogen like protein 1(Fgl1 is a secreted protein with mitogenic activity on primary hepatocytes. Fgl1 is expressed in the liver and its expression is enhanced following acute liver injury. In animals with acute liver failure, administration of recombinant Fgl1 results in decreased mortality supporting the notion that Fgl1 stimulates hepatocyte proliferation and/or protects hepatocytes from injury. However, because Fgl1 is secreted and detected in the plasma, it is possible that the role of Fgl1 extends far beyond its effect on hepatocytes. In this study, we show that Fgl1 is additionally expressed in brown adipose tissue. We find that signals elaborated following liver injury also enhance the expression of Fgl1 in brown adipose tissue suggesting that there is a cross talk between the injured liver and adipose tissues. To identify extra hepatic effects, we generated Fgl1 deficient mice. These mice exhibit a phenotype suggestive of a global metabolic defect: Fgl1 null mice are heavier than wild type mates, have abnormal plasma lipid profiles, fasting hyperglycemia with enhanced gluconeogenesis and exhibit differences in white and brown adipose tissue morphology when compared to wild types. Because Fgl1 shares structural similarity to Angiopoietin like factors 2, 3, 4 and 6 which regulate lipid metabolism and energy utilization, we postulate that Fgl1 is a member of an emerging group of proteins with key roles in metabolism and liver regeneration.

  12. Metastasis-Associated Protein 1 Is Involved in Angiogenesis after Transarterial Chemoembolization Treatment

    Directory of Open Access Journals (Sweden)

    Tao Xue

    2017-01-01

    Full Text Available Background. Transarterial chemoembolization (TACE, a well-established treatment for unresectable hepatocellular carcinoma (HCC, blocks the arterial blood supply to the tumor, which can be short-lived as development of collateral neovessels, leading to the failure of treatment. Metastasis-associated protein 1 (MTA1 is involved in development of tumors and metastases. However, the role of MTA1 in angiogenesis is still obscure. Methods. We detected the expression of MTA1 and hypoxia-inducible factor-1α (HIF-1α and microvessel density (MVD value in liver tumor tissues and tumor periphery before and after TACE treatment. Hepatocellular carcinoma cell line HepG2, tube formation assay, and chorioallantoic membrane (CAM assay were applied to explore the mechanism of MTA1 in angiogenesis. Results. We found that expression of MTA1 increased after TACE treatment, especially in tumor periphery, which was accompanied by markedly elevated MVD value, indicating a significant correlation between MTA1 and MVD value. Moreover, MTA1 contributed to neovascularization of residual tumors. Cellular experiments further revealed that MTA1 increased the stability and the expression of HIF-1α, and overexpression of MTA1 enhanced tube formation and neovessels of chick embryos. Conclusions. MTA1 is an active angiogenic regulator; our results shed light on better understanding in neovascularization, which are helpful to predict prognosis of TACE, and provide evidences for intervention to improve therapeutic effects on HCC.

  13. The epithelial membrane protein 1 is a novel tight junction protein of the blood-brain barrier.

    Science.gov (United States)

    Bangsow, Thorsten; Baumann, Ewa; Bangsow, Carmen; Jaeger, Martina H; Pelzer, Bernhard; Gruhn, Petra; Wolf, Sabine; von Melchner, Harald; Stanimirovic, Danica B

    2008-06-01

    In the central nervous system, a constant microenvironment required for neuronal cell activity is maintained by the blood-brain barrier (BBB). The BBB is formed by the brain microvascular endothelial cells (BMEC), which are sealed by tight junctions (TJ). To identify genes that are differentially expressed in BMEC compared with peripheral endothelial cells, we constructed a subtractive cDNA library from porcine BMEC (pBMEC) and aortic endothelial cells (AOEC). Screening the library for differentially expressed genes yielded 26 BMEC-specific transcripts, such as solute carrier family 35 member F2 (SLC35F2), ADP-ribosylation factor-like 5B (ARL5B), TSC22 domain family member 1 (TSC22D1), integral membrane protein 2A (ITM2A), and epithelial membrane protein 1 (EMP1). In this study, we show that EMP1 transcript is enriched in pBMEC compared with brain tissue and that EMP1 protein colocalizes with the TJ protein occludin in mouse BMEC by coimmunoprecipitation and in rat brain vessels by immunohistochemistry. Epithelial membrane protein 1 expression was transiently induced in laser-capture microdissected rat brain vessels after a 20-min global cerebral ischemia, in parallel with the loss of occludin immunoreactivity. The study identifies EMP1 as a novel TJ-associated protein of the BBB and suggests its potential role in the regulation of the BBB function in cerebral ischemia.

  14. Nuclear factor Y regulates ancient budgerigar hepadnavirus core promoter activity.

    Science.gov (United States)

    Shen, Zhongliang; Liu, Yanfeng; Luo, Mengjun; Wang, Wei; Liu, Jing; Liu, Wei; Pan, Shaokun; Xie, Youhua

    2016-09-16

    Endogenous viral elements (EVE) in animal genomes are the fossil records of ancient viruses and provide invaluable information on the origin and evolution of extant viruses. Extant hepadnaviruses include avihepadnaviruses of birds and orthohepadnaviruses of mammals. The core promoter (Cp) of hepadnaviruses is vital for viral gene expression and replication. We previously identified in the budgerigar genome two EVEs that contain the full-length genome of an ancient budgerigar hepadnavirus (eBHBV1 and eBHBV2). Here, we found eBHBV1 Cp and eBHBV2 Cp were active in several human and chicken cell lines. A region from nt -85 to -11 in eBHBV1 Cp was critical for the promoter activity. Bioinformatic analysis revealed a putative binding site of nuclear factor Y (NF-Y), a ubiquitous transcription factor, at nt -64 to -50 in eBHBV1 Cp. The NF-Y core binding site (ATTGG, nt -58 to -54) was essential for eBHBV1 Cp activity. The same results were obtained with eBHBV2 Cp and duck hepatitis B virus Cp. The subunit A of NF-Y (NF-YA) was recruited via the NF-Y core binding site to eBHBV1 Cp and upregulated the promoter activity. Finally, the NF-Y core binding site is conserved in the Cps of all the extant avihepadnaviruses but not of orthohepadnaviruses. Interestingly, a putative and functionally important NF-Y core binding site is located at nt -21 to -17 in the Cp of human hepatitis B virus. In conclusion, our findings have pinpointed an evolutionary conserved and functionally critical NF-Y binding element in the Cps of avihepadnaviruses.

  15. Factor XI and contact activation as targets for antithrombotic therapy.

    Science.gov (United States)

    Gailani, D; Bane, C E; Gruber, A

    2015-08-01

    The most commonly used anticoagulants produce therapeutic antithrombotic effects either by inhibiting thrombin or factor Xa (FXa) or by lowering the plasma levels of the precursors of these key enzymes, prothrombin and FX. These drugs do not distinguish between thrombin generation contributing to thrombosis from thrombin generation required for hemostasis. Thus, anticoagulants increase bleeding risk, and many patients who would benefit from therapy go untreated because of comorbidities that place them at unacceptable risk for hemorrhage. Studies in animals demonstrate that components of the plasma contact activation system contribute to experimentally induced thrombosis, despite playing little or no role in hemostasis. Attention has focused on FXII, the zymogen of a protease (FXIIa) that initiates contact activation when blood is exposed to foreign surfaces, and FXI, the zymogen of the protease FXIa, which links contact activation to the thrombin generation mechanism. In the case of FXI, epidemiologic data indicate this protein contributes to stroke and venous thromboembolism, and perhaps myocardial infarction, in humans. A phase 2 trial showing that reduction of FXI may be more effective than low molecular weight heparin at preventing venous thrombosis during knee replacement surgery provides proof of concept for the premise that an antithrombotic effect can be uncoupled from an anticoagulant effect in humans by targeting components of contact activation. Here, we review data on the role of FXI and FXII in thrombosis and results of preclinical and human trials for therapies targeting these proteins.

  16. Role of PDI in regulating tissue factor: FVIIa activity.

    Science.gov (United States)

    Popescu, Narcis I; Lupu, Cristina; Lupu, Florea

    2010-04-01

    Cell exposed tissue factor (TF) is generally in a low procoagulant ("cryptic") state, and requires an activation step (decryption) to exhibit its full procoagulant potential. Recent data suggest that TF decryption may be regulated by the redox environment through the oxidoreductase activity of protein disulfide isomerase (PDI). In this article we review PDI contribution to different models of TF decryption, namely the disulfide switch model and the phosphatidylserine dynamics, and hypothesize on PDI contribution to TF self-association and association with lipid domains. Experimental evidence debate the disulfide switch model of TF decryption and its regulation by PDI. More recently we showed that PDI oxidoreductase activity regulates the phosphatidylserine equilibrium at the plasma membrane. Interestingly, PDI reductase activity could maintain TF in the reduced monomeric form, while also maintaining low exposure of PS, both states correlated with low procoagulant function. In contrast, PDI inhibition or oxidants may promote the adverse effects with a net increase in coagulation. The relative contribution of disulfide isomerization and PS exposure needs to be further analyzed to understand the redox control of TF procoagulant function. For the moment however TF regulation remains cryptic.

  17. High Mobility Group Box Protein-1 Correlates with Renal Function in Chronic Kidney Disease (CKD)

    OpenAIRE

    Bruchfeld, Annette; Qureshi, Abdul Rashid; Lindholm, Bengt; Barany, Peter; Yang, Lihong; Stenvinkel, Peter; Tracey, Kevin J.

    2007-01-01

    Chronic kidney disease (CKD) is associated with inflammation and malnutrition and carries a markedly increased risk of cardiovascular disease (CVD). High Mobility Group Box Protein-1 (HMGB-1) is a 30-kDa nuclear and cytosolic protein known as a transcription and growth factor, recently identified as a proinflammatory mediator of tissue injury. Recent data implicates HMGB-1 in endotoxin lethality, rheumatoid arthritis, and atherosclerosis. The aim of this post-hoc, cross-sectional study was to...

  18. Thioredoxin interacting protein inhibits hypoxia-inducible factor transcriptional activity

    Science.gov (United States)

    Farrell, Michael R; Rogers, Lynette K; Liu, Yusen; Welty, Stephen E; Tipple, Trent E

    2010-01-01

    Vascular endothelial growth factor (VEGF) is required for proper lung development and is transcriptionally regulated in alveolar epithelial cells by hypoxia inducible factor (HIF). Previous findings in a newborn mouse model of bronchopulmonary dysplasia (BPD) suggest that thioredoxin interacting protein (Txnip) is a novel regulator of VEGF expression. The present studies were designed to test the hypothesis that Txnip negatively regulates VEGF through effects on HIF-mediated gene expression. To test this hypothesis, we first examined the levels of VEGF and Txnip protein in the lungs of 1 day-old newborn and E19 embryos and detected a significant inverse correlation. To elucidate the mechanisms underlying this relationship, we studied the effects of Txnip overexpression on HIF-mediated transcription using murine lung epithelial (MLE-12) cells. Overexpression of Txnip inhibited HIF-mediated reporter activity in both hypoxia and room air. Suppression of HIF activity by Txnip appeared to be independent of the ability of Txnip to bind to thioredoxin. Thus, our studies support a model in which Txnip is a potentially critical regulator of HIF-mediated gene transcription in the murine lung. Alterations in Txnip expression could alter lung VEGF expression in prematurely born human infants and contribute to the development of BPD. PMID:20692333

  19. IDENTIFICATION OF CRITICAL SSCM ACTIVITIES THROUGH CONFIRMATORY FACTOR ANALYSIS

    Directory of Open Access Journals (Sweden)

    V. Narasimham

    2013-06-01

    Full Text Available As a developing country, economic and environmental performance has to be balanced in India. Green supply chain management (GSCM is emerging as an important proactive approach for Indian enterprises for improving environmental performance of processes and products in accordance with the requirements of environmental regulations. This study examines the consistency approaches by confirmatory factor analysis that determines the construct validity, convergent validity,construct reliability and internal consistency of the items of Sustainable supply chain management (SSCM requirements. This study examines the consistency approaches by Confirmatory factor analysis that determines the adoption and implementation of Sustainable supply chain management activities in small & medium scale industries. The requirements include Management commitment, customer coordination, sustainable design & production, green procurement and eco logistics for sustainable supply chains. This study suggested that the five factor model with eighteen items of the sustainable supply chain design had a good fit. Further, the study showed a valid and reliable measurement to identify critical items among the requirements of sustainable supply chains.

  20. Factors associated with Spanish older people's membership in political organizations: the role of active aging activities.

    Science.gov (United States)

    Serrat, Rodrigo; Villar, Feliciano; Celdrán, Montserrat

    2015-09-01

    This study explores older people's membership in political organizations by using data from the Survey on older people 2010, carried out by Spain's National Institute for older people and social services. The objectives were to describe the extent of this kind of participation among Spaniards aged 65 and over, and to analyze the factors that are associated with it. Results show that only slightly less than 7 % of the sample belonged to a political organization. To analyze the factors related to this membership, a set of models of multivariate analyses were run, including socioeconomic resources and participation in other types of active aging activity (participation in leisure, learning, and productive activities). Educational level, leisure activities, learning activities, and only volunteering in the case of productive activities were found to be associated with membership in political organizations. Results provide partial support for the socioeconomic resources model and suggest that engagement in leisure activities, learning activities, and volunteering might have an enhancing effect on membership in political organizations.

  1. Risk factors of falls in community dwelling active elderly.

    Science.gov (United States)

    Tuunainen, Eeva; Rasku, Jyrki; Jäntti, Pirkko; Pyykkö, Ilmari

    2014-02-01

    To search for measures to describe and relate to accidental falls in community dwelling elderly. A EuroQol EQ-5D questionnaire based on a patient's otoneurological case history provided a general health related quality of life measure, a fall history for the last 3 months and force platform measures for 96 active elderly from a pensioner organization. On average, the elderly experienced 0.3 falls over the preceding three months. A fall was seen to cause a significant deterioration in the quality of life and vertigo and caused fear of falling. The postural instability correlated with falls. Vertigo was present among 42% and was most commonly characterized as episodic and rotatory in factorial analysis items relating to vertigo correlated to falls and balance complaints. Four factors were identified and three of these correlated with falls. Vestibular failure correlated to a fall occurring when a person was rising up; Movement intolerance correlated with falls due to slips and trips, and Near-syncope factor correlated to falls for other reasons. In posturography, the variable measuring critical time describing the memory based "closed loop" control of postural stability carried a risk for accidental fall with an odds ratio of 6. The variable measuring zero crossing velocity showed a high rate of velocity change around the neutral position of stance. Vertigo and poor postural stability were the major reasons for falls in the active elderly. In ageing, postural control is shifted towards open loop control (visual, proprioception, exteroception and vestibular) instead of closed loop control and is a factor that contributes to a fall. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Huntingtin associated protein 1 is involved with the endocytosis of mature brain derived neurotrophic factor%亨廷顿蛋白相关蛋白1与脑源性神经营养因子的胞吞关系的机制研究

    Institute of Scientific and Technical Information of China (English)

    陈锶; 肖波; 毕方方; 冯莉

    2011-01-01

    Objective To investigate the roles of Huntingtin associated protein 1 ( HAP1 ) in the endocytosis of mature brain derived neurotrophic factor (mBDNF) and the underlying mechanism. Methods PC12 cells were differentiated by NGF and co-transfected with plasmid of HAP1 A-CFP and (or) mBDNF-ds-red. The cells were incubated with either recombinant ds-red-labeled mBDNF, or in combination of sheep anti-BDNF antibodies or rabbit anti-p75NTR. The expression of fluorescence and its intercellular location were determined by laser scanning confocal microscope. Cortical neurons from HAP1 +/+ and HAP1-/- mice at postnatal day 1 were cultured and treated with biotin labeled mBDNF to trigger endocytosis. After 60 minutes, the cells were washed and fixed, followed by immunostaining and confocal imaging. Results Co-transfected PC12 cells expressed partly co-localization of HAPl with mBDNF. Cells transfected with HAPl A-CFP which were incubated with recombinant ds-red-labeled mBDNF showed almost complete co-localization of HAPl with mBDNF. The antibodies to BDNF and p75NTR abolished co-internalization of HAPl with mBDNF. In addition, the labeled mBDNF was detected in almost all HAP1+/+, but not in HAP1-/- cortical neurons. Conclusions HAP1 plays an important role in the endocytosis of mBDNF.%目的 探讨亨廷顿蛋白相关蛋白1(HAP1)与脑源性神经营养因子(mBDNF)胞吞的相关性和可能的机制.方法 神经营养因子(NGF)诱导分化PC12细胞,将荧光质粒HAP1A-CFP和(或)mBDNF-ds-red转染进入细胞,培养48 h后在含有BDNF或p75NTR抗体的培养基中继续培养,激光共聚焦显微镜观察荧光的表达情况及其在细胞中的定位;利用小鼠皮层神经元(正常型和HAP1基因敲除型)在生物素标记mBDNF的培养基中孵育60 min,激光共聚焦显微镜观察皮层神经元免疫荧光的效果.结果 共转染HAP1A-CFP和mBDNF-ds-red质粒的细胞,2种荧光蛋白存在部分共定位34%.共转染的细胞在抗BDNF培养

  3. Coagulation Factor Xa inhibits cancer cell migration via Protease-activated receptor-1 activation

    NARCIS (Netherlands)

    Borensztajn, Keren; Bijlsma, Maarten F.; Reitsma, Pieter H.; Peppelenbosch, Maikel R.; Spek, C. Arnold

    2009-01-01

    Cell migration is critically important in (patho) physiological processes. The metastatic potential of cancer cells partly depends on activation of the coagulation cascade. The aim of the present study was to determine whether coagulation factor X (FXa) can regulate the migration and invasion of can

  4. Associations between Socio-Motivational Factors, Physical Education Activity Levels and Physical Activity Behavior among Youth

    Science.gov (United States)

    Ning, Weihong; Gao, Zan; Lodewyk, Ken

    2012-01-01

    This study examined the relationships between established socio-motivational factors and children's physical activity levels daily and during physical education classes. A total of 307 middle school students (149 boys, 158 girls) from a suburban public school in the Southern United States participated in this study. Participants completed…

  5. Arenavirus nucleoproteins prevent activation of nuclear factor kappa B.

    Science.gov (United States)

    Rodrigo, W W Shanaka I; Ortiz-Riaño, Emilio; Pythoud, Christelle; Kunz, Stefan; de la Torre, Juan C; Martínez-Sobrido, Luis

    2012-08-01

    Arenaviruses include several causative agents of hemorrhagic fever (HF) disease in humans that are associated with high morbidity and significant mortality. Morbidity and lethality associated with HF arenaviruses are believed to involve the dysregulation of the host innate immune and inflammatory responses that leads to impaired development of protective and efficient immunity. The molecular mechanisms underlying this dysregulation are not completely understood, but it is suggested that viral infection leads to disruption of early host defenses and contributes to arenavirus pathogenesis in humans. We demonstrate in the accompanying paper that the prototype member in the family, lymphocytic choriomeningitis virus (LCMV), disables the host innate defense by interfering with type I interferon (IFN-I) production through inhibition of the interferon regulatory factor 3 (IRF3) activation pathway and that the viral nucleoprotein (NP) alone is responsible for this inhibitory effect (C. Pythoud, W. W. Rodrigo, G. Pasqual, S. Rothenberger, L. Martínez-Sobrido, J. C. de la Torre, and S. Kunz, J. Virol. 86:7728-7738, 2012). In this report, we show that LCMV-NP, as well as NPs encoded by representative members of both Old World (OW) and New World (NW) arenaviruses, also inhibits the nuclear translocation and transcriptional activity of the nuclear factor kappa B (NF-κB). Similar to the situation previously reported for IRF3, Tacaribe virus NP (TCRV-NP) does not inhibit NF-κB nuclear translocation and transcriptional activity to levels comparable to those seen with other members in the family. Altogether, our findings demonstrate that arenavirus infection inhibits NF-κB-dependent innate immune and inflammatory responses, possibly playing a key role in the pathogenesis and virulence of arenavirus.

  6. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, S.D.; Berliner, J.A.; Valente, A.J.; Territo, M.C.; Navab, M.; Parhami, F.; Gerrity, R.; Schwartz, C.J.; Fogelman, A.M.

    1990-07-01

    After exposure to low density lipoprotein (LDL) that had been minimally modified by oxidation (MM-LDL), human endothelial cells (EC) and smooth muscle cells (SMC) cultured separately or together produced 2- to 3-fold more monocyte chemotactic activity than did control cells or cells exposed to freshly isolated LDL. This increase in monocyte chemotactic activity was paralleled by increases in mRNA levels for a monocyte chemotactic protein 1 (MCP-1) that is constitutively produced by the human glioma U-105MG cell line. Antibody that had been prepared against cultured baboon smooth muscle cell chemotactic factor (anti-SMCF) did not inhibit monocyte migration induced by the potent bacterial chemotactic factor f-Met-Leu-Phe. However, anti-SMCF completely inhibited the monocyte chemotactic activity found in the media of U-105MG cells, EC, and SMC before and after exposure to MM-LDL. Moreover, monocyte migration into the subendothelial space of a coculture of EC and SMC that had been exposed to MM-LDL was completely inhibited by anti-SMCF. Anti-SMCF specifically immunoprecipitated 10-kDa and 12.5-kDa proteins from EC. Incorporation of (35S)methionine into the immunoprecipitated proteins paralleled the monocyte chemotactic activity found in the medium of MM-LDL stimulated EC and the levels of MCP-1 mRNA found in the EC. We conclude that SMCF is in fact MCP-1 and MCP-1 is induced by MM-LDL.

  7. Overexpression of the transcription factor Sp1 activates the OAS-RNAse L-RIG-I pathway.

    Directory of Open Access Journals (Sweden)

    Valéryane Dupuis-Maurin

    Full Text Available Deregulated expression of oncogenes or transcription factors such as specificity protein 1 (Sp1 is observed in many human cancers and plays a role in tumor maintenance. Paradoxically in untransformed cells, Sp1 overexpression induces late apoptosis but the early intrinsic response is poorly characterized. In the present work, we studied increased Sp1 level consequences in untransformed cells and showed that it turns on an early innate immune transcriptome. Sp1 overexpression does not activate known cellular stress pathways such as DNA damage response or endoplasmic reticulum stress, but induces the activation of the OAS-RNase L pathway and the generation of small self-RNAs, leading to the upregulation of genes of the antiviral RIG-I pathway at the transcriptional and translational levels. Finally, Sp1-induced intrinsic innate immune response leads to the production of the chemokine CXCL4 and to the recruitment of inflammatory cells in vitro and in vivo. Altogether our results showed that increased Sp1 level in untransformed cells constitutes a novel danger signal sensed by the OAS-RNase L axis leading to the activation of the RIG-I pathway. These results suggested that the OAS-RNase L-RIG-I pathway may be activated in sterile condition in absence of pathogen.

  8. Coagulation factor V mediates inhibition of tissue factor signaling by activated protein C in mice.

    Science.gov (United States)

    Liang, Hai Po H; Kerschen, Edward J; Basu, Sreemanti; Hernandez, Irene; Zogg, Mark; Jia, Shuang; Hessner, Martin J; Toso, Raffaella; Rezaie, Alireza R; Fernández, José A; Camire, Rodney M; Ruf, Wolfram; Griffin, John H; Weiler, Hartmut

    2015-11-19

    The key effector molecule of the natural protein C pathway, activated protein C (aPC), exerts pleiotropic effects on coagulation, fibrinolysis, and inflammation. Coagulation-independent cell signaling by aPC appears to be the predominant mechanism underlying its highly reproducible therapeutic efficacy in most animal models of injury and infection. In this study, using a mouse model of Staphylococcus aureus sepsis, we demonstrate marked disease stage-specific effects of the anticoagulant and cell signaling functions of aPC. aPC resistance of factor (f)V due to the R506Q Leiden mutation protected against detrimental anticoagulant effects of aPC therapy but also abrogated the anti-inflammatory and mortality-reducing effects of the signaling-selective 5A-aPC variant that has minimal anticoagulant function. We found that procofactor V (cleaved by aPC at R506) and protein S were necessary cofactors for the aPC-mediated inhibition of inflammatory tissue-factor signaling. The anti-inflammatory cofactor function of fV involved the same structural features that govern its cofactor function for the anticoagulant effects of aPC, yet its anti-inflammatory activities did not involve proteolysis of activated coagulation factors Va and VIIIa. These findings reveal a novel biological function and mechanism of the protein C pathway in which protein S and the aPC-cleaved form of fV are cofactors for anti-inflammatory cell signaling by aPC in the context of endotoxemia and infection.

  9. The transcription factor Gfi1 regulates G-CSF signaling and neutrophil development through the Ras activator RasGRP1

    Science.gov (United States)

    de la Luz Sierra, Maria; Sakakibara, Shuhei; Gasperini, Paola; Salvucci, Ombretta; Jiang, Kan; McCormick, Peter J.; Segarra, Marta; Stone, Jim; Maric, Dragan; Zhu, Jinfang; Qian, Xiaolan; Lowy, Douglas R.

    2010-01-01

    The transcription factor growth factor independence 1 (Gfi1) and the growth factor granulocyte colony-stimulating factor (G-CSF) are individually essential for neutrophil differentiation from myeloid progenitors. Here, we provide evidence that the functions of Gfi1 and G-CSF are linked in the regulation of granulopoiesis. We report that Gfi1 promotes the expression of Ras guanine nucleotide releasing protein 1 (RasGRP1), an exchange factor that activates Ras, and that RasGRP1 is required for G-CSF signaling through the Ras/mitogen–activated protein/extracellular signal-regulated kinase (MEK/Erk) pathway. Gfi1-null mice have reduced levels of RasGRP1 mRNA and protein in thymus, spleen, and bone marrow, and Gfi1 transduction in myeloid cells promotes RasGRP1 expression. When stimulated with G-CSF, Gfi1-null myeloid cells are selectively defective at activating Erk1/2, but not signal transducer and activator of transcription 1 (STAT1) or STAT3, and fail to differentiate into neutrophils. Expression of RasGRP1 in Gfi1-deficient cells rescues Erk1/2 activation by G-CSF and allows neutrophil maturation by G-CSF. These results uncover a previously unknown function of Gfi1 as a regulator of RasGRP1 and link Gfi1 transcriptional control to G-CSF signaling and regulation of granulopoiesis. PMID:20203268

  10. Platelet-activating factor in cirrhotic liver and hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Muriel Mathonnet; Bernard Descottes; Denis Valleix; Véronique Truffinet; Francois Labrousse; Yves Denizot

    2006-01-01

    AIM: Platelet-activating factor (PAF) is a pro-inflammatory and angiogenic lipid mediator. Here we aimed to investigate levels of PAF, lyso-PAF (the PAF precursor),phospholipase A2 (PLA2, the enzymatic activity generating lyso-PAF), acetylhydrolase activity (AHA, the PAF degrading enzyme) and PAF receptor (PAF-R) transcripts in cirrhotic liver and hepatocellular carcinoma (HCC).METHODS: Twenty-nine patients with HCC were ehrolled in this study. Cirrhosis was present in fourteen patients and seven had no liver disease. Tissue PAF levels were investigated by a platelet-aggregation assay. LysoPAF was assessed after its chemical acetylation into PAF.AHA was determined by degradation of [3H]-PAF. PLA2 levels were assessed by EIA. PAF-R transcripts were investigated using RT-PCR.RESULTS: Elevated amounts of PAF and PAF-R transcripts 1 (leukocyte-type) were found in cirrhotic tissues as compared with non-cirrhotic ones. Higher amounts of PAF and PAF-R transcripts 1 and 2 (tissue-type) were found in HCC tissues as compared with non-tumor tissues. PLA2, lyso-PAF and AHA levels were not changed in cirrhotic tissues and HCC.CONCLUSION: While the role of PAF is currently unknown in liver physiology, this study suggests its potential involvement in the inflammatory network found in the cirrhotic liver and in the angiogenic response during HCC.

  11. High Mobility Group Box Protein-1 in Wound Repair

    Directory of Open Access Journals (Sweden)

    Mauro Patrone

    2012-09-01

    Full Text Available High-mobility group box 1 protein (HMGB1, a member of highly conserved non-histone DNA binding protein family, has been studied as transcription factor and growth factor. Secreted extracellularly by activated monocytes and macrophages or passively released by necrotic or damaged cells, extracellular HMGB1 is a potent mediator of inflammation. Extracellular HMGB1 has apparently contrasting biological actions: it sustains inflammation (with the possible establishment of autoimmunity or of self-maintaining tissue damage, but it also activates and recruits stem cells, boosting tissue repair. Here, we focus on the role of HMGB1 in physiological and pathological responses, the mechanisms by which it contributes to tissue repair and therapeutic strategies base on targeting HMGB1.

  12. Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers.

    Science.gov (United States)

    Sahin, K; Orhan, C; Tuzcu, M; Sahin, N; Hayirli, A; Bilgili, S; Kucuk, O

    2016-05-01

    This study was conducted to evaluate the effects of dietary lycopene supplementation on growth performance, antioxidant status, and muscle nuclear transcription factor [Kelch like-ECH-associated protein 1 (Keap1) and (erythroid-derived 2)-like 2 (Nrf2)] expressions in broiler chickens exposed to heat stress (HS). A total of 180 one-day-old male broiler chicks (Ross 308) were assigned randomly to one of 2×3 factorially arranged treatments: two housing temperatures (22°C for 24 h/d; thermoneutral, TN or 34°C for 8 h/d HS) and three dietary lycopene levels (0, 200, or 400 mg/kg). Each treatment consisted of three replicates of 10 birds. Birds were reared to 42 d of age. Heat stress caused reductions in feed intake and weight gain by 12.2 and 20.7% and increased feed efficiency by 10.8% (Plycopene level improved performance in both environments. Birds reared under the HS environment had lower serum and muscle lycopene concentration (0.34 vs. 0.50 μg/mL and 2.80 vs. 2.13 μg/g), activities of superoxide dismutase (151 vs. 126 U/mL and 131 vs. 155 U/mg protein), glutathione peroxidase (184 vs. 154 U/mL and 1.39 vs. 1.74 U/mg protein), and higher malondialdehyde (MDA) concentration (0.53 vs. 0.83 μg/mL and 0.78 vs. 0.45 μg/ mg protein) than birds reared under the TN environment. Changes in levels of lycopene and MDA and activities of enzymes in serum and muscle varied by the environmental temperature as dietary lycopene level increased. Moreover, increasing dietary lycopene level suppressed muscle Keap1 expression and enhanced muscle Nrf2 expression, which had increased by 150% and decreased by 40%, respectively in response to HS. In conclusion, lycopene supplementation alleviates adverse effects of HS on performance through modulating expressions of stress-related nuclear transcription factors.

  13. hypoxia-inducible factors activate CD133 promoter through ETS family transcription factors.

    Directory of Open Access Journals (Sweden)

    Shunsuke Ohnishi

    Full Text Available CD133 is a cellular surface protein that has been reported to be a cancer stem cell marker, and thus it is considered to be a potential target for cancer treatment. However, the mechanism regulating CD133 expression is not yet understood. In this study, we analyzed the activity of five putative promoters (P1-P5 of CD133 in human embryonic kidney (HEK 293 cells and colon cancer cell line WiDr, and found that the activity of promoters, particularly of P5, is elevated by overexpression of hypoxia-inducible factors (HIF-1α and HIF-2α. Deletion and mutation analysis identified one of the two E-twenty six (ETS binding sites (EBSs in the P5 region as being essential for its promoter activity induced by HIF-1α and HIF-2α. In addition, a chromatin imunoprecipitation assay demonstrated that HIF-1α and HIF-2α bind to the proximal P5 promoter at the EBSs. The immunoprecipitation assay showed that HIF-1α physically interacts with Elk1; however, HIF-2α did not bind to Elk1 or ETS1. Furthermore, knockdown of both HIF-1α and HIF-2α resulted in a reduction of CD133 expression in WiDr. Taken together, our results revealed that HIF-1α and HIF-2α activate CD133 promoter through ETS proteins.

  14. Hepatitis B virus X promotes hepatocellular carcinoma development via nuclear protein 1 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Yesol; Shin, Hye-jun; Bak, In seon [Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon (Korea, Republic of); Yoon, Do-young [Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul (Korea, Republic of); Yu, Dae-Yeul, E-mail: dyyu10@kribb.re.kr [Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon (Korea, Republic of)

    2015-10-30

    Hepatocellular carcinoma (HCC) is one of the most common malignancies and chronic hepatitis B virus (HBV) infection is a major risk factor for HCC. Hepatitis B virus X (HBx) protein relates to trigger oncogenesis. HBx has oncogenic properties with a hyperproliferative response to HCC. Nuclear protein 1 (NUPR1) is a stress-response protein, frequently upregulated in several cancers. Recent data revealed that NUPR1 is involved in tumor progression, but its function in HCC is not revealed yet. Here we report HBx can induce NUPR1 in patients, mice, and HCC cell lines. In an HBx transgenic mouse model, we found that HBx overexpression upregulates NUPR1 expression consistently with tumor progression. Further, in cultured HBV positive cells, HBx knockdown induces downregulation of NUPR1. Smad4 is a representative transcription factor, regulated by HBx, and we showed that HBx upregulates NUPR1 by Smad4 dependent way. We found that NUPR1 can inhibit cell death and induce vasculogenic mimicry in HCC cell lines. Moreover, NUPR1 silencing in HepG2-HBx showed reduced cell motility. These results suggest that HBx can modulate NUPR1 expression through the Smad4 pathway and NUPR1 has a role in hepatocellular carcinoma progression. - Highlights: • NUPR1 is overexpressed in HBx transgenic mouse and HCC patients. • NUPR1 inactivation hampers the HBx induced growth, VM formation, and migration of HepG2 cells in vitro. • NUPR1 has a role for survival of HCC and mechanistically NUPR1 is activated by HBx-Smad4 axis.

  15. Pinitol targets nuclear factor-kappaB activation pathway leading to inhibition of gene products associated with proliferation, apoptosis, invasion, and angiogenesis.

    Science.gov (United States)

    Sethi, Gautam; Ahn, Kwang Seok; Sung, Bokyung; Aggarwal, Bharat B

    2008-06-01

    Pinitol (3-O-methyl-chiroinositol), a component of traditional Ayurvedic medicine (talisapatra), has been shown to exhibit anti-inflammatory and antidiabetic activities through undefined mechanisms. Because the transcription factor nuclear factor-kappaB (NF-kappaB) has been linked with inflammatory diseases, including insulin resistance, we hypothesized that pinitol must mediate its effects through modulation of NF-kappaB activation pathway. We found that pinitol suppressed NF-kappaB activation induced by inflammatory stimuli and carcinogens. This suppression was not specific to cell type. Besides inducible, pinitol also abrogated constitutive NF-kappaB activation noted in most tumor cells. The suppression of NF-kappaB activation by pinitol occurred through inhibition of the activation of IkappaBalpha kinase, leading to sequential suppression of IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation, p65 nuclear translocation, and NF-kappaB-dependent reporter gene expression. Pinitol also suppressed the NF-kappaB reporter activity induced by tumor necrosis factor receptor (TNFR)-1, TNFR-associated death domain, TNFR-associated factor-2, transforming growth factor-beta-activated kinase-1 (TAK-1)/TAK1-binding protein-1, and IkappaBalpha kinase but not that induced by p65. The inhibition of NF-kappaB activation thereby led to down-regulation of gene products involved in inflammation (cyclooxygenase-2), proliferation (cyclin D1 and c-myc), invasion (matrix metalloproteinase-9), angiogenesis (vascular endothelial growth factor), and cell survival (cIAP1, cIAP2, X-linked inhibitor apoptosis protein, Bcl-2, and Bcl-xL). Suppression of these gene products by pinitol enhanced the apoptosis induced by TNF and chemotherapeutic agents and suppressed TNF-induced cellular invasion. Our results show that pinitol inhibits the NF-kappaB activation pathway, which may explain its ability to suppress inflammatory cellular responses.

  16. [Antifibrillatory activity of dipeptide antagonist of nerve growth factor].

    Science.gov (United States)

    Kryzhanovskiĭ, S A; Stoliarchuk, V N; Vititnova, M B; Tsorin, I B; Pekel'dina, E S; Gudasheva, T A

    2012-01-01

    In experiments on anesthetized rats were assessed antifibrillatoty action of dipeptide GK-1. This compound is the fragment of fourth loop of nerve growth factor (NGF) and manifests antagonistic activity in respect to TrkA receptor, that specified for NGF. It is shown that this compound is able to significantly increase the threshold of electrical fibrillation of the heart and its effectiveness is not inferior to the reference antiarrhythmics I and III class on Vaughan Williams classification. However, unlike the latter, antifibrillatory action of dipeptide GK-1 was delayed and realized within 40-60 minutes after its administration. It is discussed possible mechanisms underlying antifibrillatory action of dipeptide GK-1, that, to some extent, may be associated with its ability to change the reactivity of beta-adrenergic structures of the heart.

  17. Arenavirus nucleoprotein targets interferon regulatory factor-activating kinase IKKε.

    Science.gov (United States)

    Pythoud, Christelle; Rodrigo, W W Shanaka I; Pasqual, Giulia; Rothenberger, Sylvia; Martínez-Sobrido, Luis; de la Torre, Juan Carlos; Kunz, Stefan

    2012-08-01

    Arenaviruses perturb innate antiviral defense by blocking induction of type I interferon (IFN) production. Accordingly, the arenavirus nucleoprotein (NP) was shown to block activation and nuclear translocation of interferon regulatory factor 3 (IRF3) in response to virus infection. Here, we sought to identify cellular factors involved in innate antiviral signaling targeted by arenavirus NP. Consistent with previous studies, infection with the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) prevented phosphorylation of IRF3 in response to infection with Sendai virus, a strong inducer of the retinoic acid-inducible gene I (RIG-I)/mitochondrial antiviral signaling (MAVS) pathway of innate antiviral signaling. Using a combination of coimmunoprecipitation and confocal microscopy, we found that LCMV NP associates with the IκB kinase (IKK)-related kinase IKKε but that, rather unexpectedly, LCMV NP did not bind to the closely related TANK-binding kinase 1 (TBK-1). The NP-IKKε interaction was highly conserved among arenaviruses from different clades. In LCMV-infected cells, IKKε colocalized with NP but not with MAVS located on the outer membrane of mitochondria. LCMV NP bound the kinase domain (KD) of IKKε (IKBKE) and blocked its autocatalytic activity and its ability to phosphorylate IRF3, without undergoing phosphorylation. Together, our data identify IKKε as a novel target of arenavirus NP. Engagement of NP seems to sequester IKKε in an inactive complex. Considering the important functions of IKKε in innate antiviral immunity and other cellular processes, the NP-IKKε interaction likely plays a crucial role in arenavirus-host interaction.

  18. Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice.

    Science.gov (United States)

    Umemura, Mariko; Ogura, Tae; Matsuzaki, Ayako; Nakano, Haruo; Takao, Keizo; Miyakawa, Tsuyoshi; Takahashi, Yuji

    2017-01-01

    Activating transcription factor 5 (ATF5) is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5(-/-)) mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5(-/-) mice were less aggressive than ATF5(+/+) mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5(-/-) mice and wild type littermates. ATF5(-/-) mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5(-/-) mice displayed reduced social interaction in the Crawley's social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5(-/-) mice compared with wild type. In addition, we demonstrated that ATF5(-/-) mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5(-/-) mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5(-/-) mice may be a unique animal model of some psychiatric disorders.

  19. Glutathione depletion regulates both extrinsic and intrinsic apoptotic signaling cascades independent from multidrug resistance protein 1

    OpenAIRE

    2014-01-01

    Glutathione (GSH) depletion is an important hallmark of apoptosis. We previously demonstrated that GSH depletion, by its efflux, regulates apoptosis by modulation of executioner caspase activity. However, both the molecular identity of the GSH transporter(s) involved and the signaling cascades regulating GSH loss remain obscure. We sought to determine the role of multidrug resistance protein 1 (MRP1) in GSH depletion and its regulatory role on extrinsic and intrinsic pathways of apoptosis. In...

  20. Transcription factor PIF4 controls the thermosensory activation of flowering

    KAUST Repository

    Kumar, S. Vinod

    2012-03-21

    Plant growth and development are strongly affected by small differences in temperature. Current climate change has already altered global plant phenology and distribution, and projected increases in temperature pose a significant challenge to agriculture. Despite the important role of temperature on plant development, the underlying pathways are unknown. It has previously been shown that thermal acceleration of flowering is dependent on the florigen, FLOWERING LOCUS T (FT). How this occurs is, however, not understood, because the major pathway known to upregulate FT, the photoperiod pathway, is not required for thermal acceleration of flowering. Here we demonstrate a direct mechanism by which increasing temperature causes the bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) to activate FT. Our findings provide a new understanding of how plants control their timing of reproduction in response to temperature. Flowering time is an important trait in crops as well as affecting the life cycles of pollinator species. A molecular understanding of how temperature affects flowering will be important for mitigating the effects of climate change. © 2012 Macmillan Publishers Limited. All rights reserved.

  1. Targeted disruption of fibrinogen like protein-1 accelerates hepatocellular carcinoma development

    Energy Technology Data Exchange (ETDEWEB)

    Nayeb-Hashemi, Hamed; Desai, Anal; Demchev, Valeriy [Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine. Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Bronson, Roderick T. [Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115 (United States); Hornick, Jason L. [Department of Pathology, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Cohen, David E. [Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine. Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Ukomadu, Chinweike, E-mail: cukomadu@partners.org [Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine. Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2015-09-18

    Fibrinogen like protein-1 (Fgl1) is a predominantly liver expressed protein that has been implicated as both a hepatoprotectant and a hepatocyte mitogen. Fgl1 expression is decreased in hepatocellular carcinoma (HCC) and its loss correlates with a poorly differentiated phenotype. To better elucidate the role of Fgl1 in hepatocarcinogenesis, we treated mice wild type or null for Fgl1 with diethyl nitrosamine and monitored for incidence of hepatocellular cancer. We find that mice lacking Fgl1 develop HCC at more than twice the rate of wild type mice. We show that hepatocellular cancers from Fgl1 null mice are molecularly distinct from those of the wild type mice. In tumors from Fgl1 null mice there is enhanced activation of Akt and downstream targets of the mammalian target of rapamycin (mTOR). In addition, there is paradoxical up regulation of putative hepatocellular cancer tumor suppressors; tripartite motif-containing protein 35 (Trim35) and tumor necrosis factor super family 10b (Tnfrsf10b). Taken together, these findings suggest that Fgl1 acts as a tumor suppressor in hepatocellular cancer through an Akt dependent mechanism and supports its role as a potential therapeutic target in HCC. - Highlights: • Fgl1 knockout mice (Fgl1KO) are more prone to carcinogen-induced liver cancer compared to wild type (WT) mates. • Tumors from the Fgl1KO are molecularly distinct with enhanced Akt and mTOR activity in comparison with Fgl1WT tumors. • Tumors from the Fgl1KO have enhanced expression of Trim35 and Tnfrsf10b, putative HCC tumor suppressors.

  2. Role of macrophage chemoattractant protein-1 in acute inflammation after lung contusion.

    Science.gov (United States)

    Suresh, Madathilparambil V; Yu, Bi; Machado-Aranda, David; Bender, Matthew D; Ochoa-Frongia, Laura; Helinski, Jadwiga D; Davidson, Bruce A; Knight, Paul R; Hogaboam, Cory M; Moore, Bethany B; Raghavendran, Krishnan

    2012-06-01

    Lung contusion (LC), commonly observed in patients with thoracic trauma is a leading risk factor for development of acute lung injury/acute respiratory distress syndrome. Previously, we have shown that CC chemokine ligand (CCL)-2, a monotactic chemokine abundant in the lungs, is significantly elevated in LC. This study investigated the nature of protection afforded by CCL-2 in acute lung injury/acute respiratory distress syndrome during LC, using rats and CC chemokine receptor (CCR) 2 knockout (CCR2(-/-)) mice. Rats injected with a polyclonal antibody to CCL-2 showed higher levels of albumin and IL-6 in the bronchoalveolar lavage and myeloperoxidase in the lung tissue after LC. Closed-chest bilateral LC demonstrated CCL-2 localization in alveolar macrophages (AMs) and epithelial cells. Subsequent experiments performed using a murine model of LC showed that the extent of injury, assessed by pulmonary compliance and albumin levels in the bronchoalveolar lavage, was higher in the CCR2(-/-) mice when compared with the wild-type (WT) mice. We also found increased release of IL-1β, IL-6, macrophage inflammatory protein-1, and keratinocyte chemoattractant, lower recruitment of AMs, and higher neutrophil infiltration and phagocytic activity in CCR2(-/-) mice at 24 hours. However, impaired phagocytic activity was observed at 48 hours compared with the WT. Production of CCL-2 and macrophage chemoattractant protein-5 was increased in the absence of CCR2, thus suggesting a negative feedback mechanism of regulation. Isolated AMs in the CCR2(-/-) mice showed a predominant M1 phenotype compared with the predominant M2 phenotype in WT mice. Taken together, the above results show that CCL-2 is functionally important in the down-modulation of injury and inflammation in LC.

  3. PSYCHOLOGICAL FACTORS OF LABOR ACTIVITY OF ELDERLY MAN

    Directory of Open Access Journals (Sweden)

    Lyusova O.V.

    2016-04-01

    Full Text Available In modern Russian society occurred deformation traditions of respect and maintain the credibility of the elderly, and the socio-economic situation has deteriorated. An important condition to characterize the elderly is related to labor activity. expressed doubts surrounding their professionalism and high-quality and modern education. In society there are negative stereotypes about the elderly: Edil accusations of conservatism, the inability to take risks, tolerance for young. Old age pensioners perceived themselves as age losses, shrinking circle of social contacts, there is social exclusion, significant interpersonal contacts become strained. The psychological diagnosis of labor socialization of older employees 40 people participated. Conducted an empirical study it possible to identify the factors of labor activity in old age: the age and state of health; desire to raise the level of material well-being, the need to work, enthusiasm labor process, achievement motivation, the need for communication with the team; desire for samooaktualizatsii, positive self-esteem, internal locus of control. Working pensioners have high situational anxiety, adequate to the achievement of the objectives, an adequate assessment of its internal and external quality, high life satisfaction, motivation tends to focus on the process and result, reflexivity, subjectivity, have no fear of being rejected, is well adapted to society. Workers older people have average values of introversion, neuroticism, psychoticism.

  4. Platelet-Activating Factor Induces Th17 Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Anne-Marie Drolet

    2011-01-01

    Full Text Available Th17 cells have been implicated in a number of inflammatory and autoimmune diseases. The phospholipid mediator platelet-activating factor (PAF is found in increased concentrations in inflammatory lesions and has been shown to induce IL-6 production. We investigated whether PAF could affect the development of Th17 cells. Picomolar concentrations of PAF induced IL-23, IL-6, and IL-1β expression in monocyte-derived Langerhans cells (LCs and in keratinocytes. Moreover, when LC were pretreated with PAF and then cocultured with anti-CD3- and anti-CD28-activated T cells, the latter developed a Th17 phenotype, with a significant increase in the expression of the transcriptional regulator RORγt and enhanced expression of IL-17, IL-21, and IL-22. PAF-induced Th17 development was prevented by the PAF receptor antagonist WEB2086 and by neutralizing antibodies to IL-23 and IL-6R. This may constitute a previously unknown stimulus for the development and persistence of inflammatory processes that could be amenable to pharmacologic intervention.

  5. Complement factor B activation in patients with preeclampsia.

    Science.gov (United States)

    Velickovic, Ivan; Dalloul, Mudar; Wong, Karen A; Bakare, Olufunke; Schweis, Franz; Garala, Maya; Alam, Amit; Medranda, Giorgio; Lekovic, Jovana; Shuaib, Waqas; Tedjasukmana, Andreas; Little, Perry; Hanono, Daniel; Wijetilaka, Ruvini; Weedon, Jeremy; Lin, Jun; Toledano, Roulhac d'Arby; Zhang, Ming

    2015-06-01

    Preeclampsia is a leading cause of maternal and fetal morbidity and mortality. Bb, the active fragment of complement factor B (fB), has been reported to be a predictor of preeclampsia. However, conflicting results have been found by some investigators. We hypothesized that the disagreement in findings may be due to the racial/ethnic differences among various study groups, and that fB activation is significant in women of an ethnic minority with preeclampsia. We investigated the maternal and fetal levels of Bb (the activated fB fragment) in pregnant women of an ethnic minority with or without preeclampsia. We enrolled 291 pregnant women (96% of an ethnic minority, including 78% African-American). Thirteen percent of these were diagnosed with preeclampsia. Maternal venous blood was collected from all participants together with fetal umbilical cord blood samples from 154 deliveries in the 291 women. The results were analyzed using the Mann-Whitney U test and multivariate analyses. Maternal Bb levels were significantly higher in the preeclamptic group than in the nonpreeclamptic group. Levels of Bb in fetal cord blood were similar in both groups. Subgroup analyses of African-American patients' results confirmed the study hypothesis that there would be a significant increase in Bb in the maternal blood of the preeclamptic group and no increase in Bb in the fetal cord blood of this group. These results suggest that a maternal immune response through complement fB might play a role in the development of preeclampsia, particularly in African-American patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2009-02-27

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  7. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2012-02-01

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  8. Proteolipid protein 1 gene sequencing of hereditary spastic paraplegia

    Institute of Scientific and Technical Information of China (English)

    Yu Gao; Lumei Chi; Yinshi Jin; Guangxian Nan

    2012-01-01

    PCR amplification and sequencing of whole blood DNA from an individual with hereditary spastic paraplegia, as well as family members, revealed a fragment of proteolipid protein 1 (PLP1) gene exon 1, which excluded the possibility of isomer 1 expression for this family. The fragment sequence of exon 3 and exon 5 was consistent with the proteolipid protein 1 sequence at NCBI. In the proband samples, a PLP1 point mutation in exon 4 was detected at the basic group of position 844, T→C, phenylalanine→leucine. In proband samples from a male cousin, the basic group at position 844 was C, but gene sequencing signals revealed mixed signals of T and C, indicating possible mutation at this locus. Results demonstrated that changes in PLP1 exon 4 amino acids were associated with onset of hereditary spastic paraplegia.

  9. Activation of nuclear factor-kappa B via endogenous tumor necrosis factor alpha regulates survival of axotomized adult sensory neurons

    NARCIS (Netherlands)

    Fernyhough, P; Smith, DR; Schapansky, J; Van Der Ploeg, R; Gardiner, NJ; Tweed, CW; Kontos, A; Freeman, L; Purves-Tyson, TD; Glazner, GW

    2005-01-01

    Embryonic dorsal root ganglion (DRG) neurons die after axonal damage in vivo, and cultured embryonic DRG neurons require exogenous neurotrophic factors that activate the neuroprotective transcription factor nuclear factor-kappaB(NF-kappaB) for survival. In contrast, adult DRG neurons survive permane

  10. Activation of nuclear factor-kappa B via endogenous tumor necrosis factor alpha regulates survival of axotomized adult sensory neurons

    NARCIS (Netherlands)

    Fernyhough, P; Smith, DR; Schapansky, J; Van Der Ploeg, R; Gardiner, NJ; Tweed, CW; Kontos, A; Freeman, L; Purves-Tyson, TD; Glazner, GW

    2005-01-01

    Embryonic dorsal root ganglion (DRG) neurons die after axonal damage in vivo, and cultured embryonic DRG neurons require exogenous neurotrophic factors that activate the neuroprotective transcription factor nuclear factor-kappaB(NF-kappaB) for survival. In contrast, adult DRG neurons survive

  11. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice

    Directory of Open Access Journals (Sweden)

    LaFerla Frank M

    2005-10-01

    Full Text Available Abstract Background Alzheimer's disease is a complex neurodegenerative disorder characterized pathologically by a temporal and spatial progression of beta-amyloid (Aβ deposition, neurofibrillary tangle formation, and synaptic degeneration. Inflammatory processes have been implicated in initiating and/or propagating AD-associated pathology within the brain, as inflammatory cytokine expression and other markers of inflammation are pronounced in individuals with AD pathology. The current study examines whether inflammatory processes are evident early in the disease process in the 3xTg-AD mouse model and if regional differences in inflammatory profiles exist. Methods Coronal brain sections were used to identify Aβ in 2, 3, and 6-month 3xTg-AD and non-transgenic control mice. Quantitative real-time RT-PCR was performed on microdissected entorhinal cortex and hippocampus tissue of 2, 3, and 6-month 3xTg-AD and non-transgenic mice. Microglial/macrophage cell numbers were quantified using unbiased stereology in 3xTg-AD and non-transgenic entorhinal cortex and hippocampus containing sections. Results We observed human Aβ deposition at 3 months in 3xTg-AD mice which is enhanced by 6 months of age. Interestingly, we observed a 14.8-fold up-regulation of TNF-α and 10.8-fold up-regulation of MCP-1 in the entorhinal cortex of 3xTg-AD mice but no change was detected over time in the hippocampus or in either region of non-transgenic mice. Additionally, this increase correlated with a specific increase in F4/80-positive microglia and macrophages in 3xTg-AD entorhinal cortex. Conclusion Our data provide evidence for early induction of inflammatory processes in a model that develops amyloid and neurofibrillary tangle pathology. Additionally, our results link inflammatory processes within the entorhinal cortex, which represents one of the earliest AD-affected brain regions.

  12. Serum Monocyte Chemoattractant Protein-1 in Pancreatic Cancer

    OpenAIRE

    Jennifer Sullivan; Qiaoke Gong; Terry Hyslop; Harish Lavu; Galina Chipitsyna; Yeo, Charles J.; Arafat, Hwyda A

    2011-01-01

    Background/Aims. Pancreatic ductal adenocarcinoma (PDA) has etiological association with chronic inflammation. Elevated circulating levels of inflammatory mediators, such as monocyte chemoattractant protein-1 (MCP-1), are found in obese individuals. We hypothesized that serum MCP-1 levels are elevated in obese PDA patients. Methods. ELISA was used to analyze MCP-1 serum levels in PDA (n = 62) and intraductal papillary mucinous neoplasms (IPMN) (n = 27). Recursive partitioning statistical anal...

  13. Factoring - financial instrument supporting the current activity of an enterprise

    Directory of Open Access Journals (Sweden)

    Dorota Czerwińska-Kayzer

    2009-01-01

    Full Text Available Small and medium enterprises have a difficult access to classic financial sources. Therefore the factoring could be a financial instrument supporting effective management of the liabilities. Factoring improves the financial situation of a company, first of all financial liquidity. Moreover, factoring improves structure of financial statement and creates a possibility of risk transfer of debtor insolvency on factor.

  14. 胰岛素样生长因子结合蛋白-1诊断胎膜早破的临床价值%Clinical Value of Insulin-Like Growth Factor Binding Protein-1 in Diagnosis of Premature Rupture of Membranes

    Institute of Scientific and Technical Information of China (English)

    孙素梅; 李守忠

    2016-01-01

    Objective To evaluate the clinical value of insulin-like growth factor binding pro-tein-1(IGFBP-1)in the diagnosis of premature rupture of membranes(PROM).Methods The vaginal secretion smear microscopy,pH test paper method and IGFBP-1 detection were performed in 276 PROM patients(PROM group)and 284 pregnant women without PROM(control group). Results were analyzed statistically.Results The positive rates achieved by IGFBP-1 detection, pH test paper method and vaginal secretion smear microscopy in PROM group were significantly higher than those in control group(all P < 0.01).The IGFBP-1 detection had a sensitivity of 97.1%(268/276),a specificity of 98.2%(279/284)and an accuracy of 95.3%,with a false posi-tive rate of 1.8%(5/284)and a false negative rate of 2.9%(8/276);The pH test paper method had a sensitivity of 80.8% (223/276 ),a specificity of 89.8% (255/284)and an accuracy of 70.6%,with a false positive rate of 10.2%(29/284)and a false negative rate of 19.2%(53/276);The vaginal secretion smear microscopy had a sensitivity of 63.0% (174/276),a specificity of 95.1%(270/284)and an accuracy of 58.1%,with a false positive rate of 4.9%(14/284)and a false negative rate of 37.0%(102/276).Compared with pH test paper method or vaginal secretion smear microscopy,IGFBP-1 detection resulted in an increase in sensitivity,specificity and accuracy and a decrease in false positive rate and false negative rate(all P <0.05).Conclusion IGFBP-1 detection is more accurate and sensitive than pH test paper method and vaginal secretion smear microscopy for diagnosing PROM,especially for diagnosing minor rupture of membranes.There-fore,GFBP-1 detection has clinical and practical value in the diagnosis of PROM.%目的:探讨胰岛素样生长因子结合蛋白-1诊断胎膜早破的临床价值。方法采用阴道分泌物涂片镜检、pH 试纸法、胰岛素样生长因子结合蛋白-1检测法检测276例胎膜早破患者(胎膜早破组)和284例行孕期体检的孕妇(

  15. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Pangburn Heather A

    2005-09-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  16. 特应性皮炎患者RANTES、MIP-1α及趋化因子受体CCR5测定及其意义%Detection of regulated on activation normal T cell expressed and secreted,macrophage inflammatory protein-1 alpha and chemokine receptor CCR5 in patients with atopic dermatitis

    Institute of Scientific and Technical Information of China (English)

    胡建中; 胡南; 赵武能; 蔡锐; 伍参荣; 卢芳国

    2007-01-01

    目的 探讨调节正常T细胞表达和分泌活性因子(Regulated on activation normal T cell expressed and secreted,RANTES) ,巨噬细胞炎性蛋白(Macrophage inflammatory protein-1,MIP-1α)及趋化因子受体CCR5在特应性皮炎(AD)发病中的作用.方法 采集30例AD患者及10例健康对照者血液,分离血清和外周血单个核细胞(PBMC),双抗体夹心ELISA法检测PBMC产生的RANTES、MIP-1α含量,荧光定量PCR检测外周血PBMC表达的CCR5 mRNA水平.结果 特应性皮炎患者与健康对照者血清RANTES含量分别为(55.7±3.4)μg/L和(35.6±1.8)μg/L,差异有显著性(t=3.036,P<0.01),且RANTES水平与SCORAD呈正相关(r=0.889,P<0.05);MIP-1α含量分别为(51.8±3.6) μg/L和(44.7±4.3) μg/L,差异有显著性(t=2.465,P<0.05).CCR5 AD患者为1.284±0.088,健康对照为1.133±0.075,差异有显著性(t=2.752,P<0.05).结论 RANTES和MIP-1α及特异性受体CCR5在特应性皮炎患者中均显著增高,差异有显著性,在AD的发病中可能起重要作用.

  17. Synthesis and characterization of 18F-labeled active site inhibited factor VII (ASIS)

    DEFF Research Database (Denmark)

    Erlandsson, Maria; Nielsen, Carsten Haagen; Jeppesen, Troels Elmer

    2015-01-01

    Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example, th...

  18. Differential expression of sphingolipids in P-glycoprotein or multidrug resistance-related protein 1 expressing human neuroblastoma cell lines

    NARCIS (Netherlands)

    Dijkhuis, AJ; Douwes, J; Kamps, W; Sietsma, H; Kok, JW

    2003-01-01

    The sphingolipid composition and multidrug resistance status of three human neuroblastoma cell lines were established. SK-N-FI cells displayed high expression and functional (efflux) activity of P-glycoprotein, while multidrug resistance-related protein 1 was relatively abundant and most active in S

  19. Differential expression of sphingolipids in P-glycoprotein or multidrug resistance-related protein 1 expressing human neuroblastoma cell lines

    NARCIS (Netherlands)

    Dijkhuis, AJ; Douwes, J; Kamps, W; Sietsma, H; Kok, JW

    2003-01-01

    The sphingolipid composition and multidrug resistance status of three human neuroblastoma cell lines were established. SK-N-FI cells displayed high expression and functional (efflux) activity of P-glycoprotein, while multidrug resistance-related protein 1 was relatively abundant and most active in

  20. Immunomodulator CD200 promotes neurotrophic activity by interacting with and activating the fibroblast growth factor receptor

    DEFF Research Database (Denmark)

    Pankratova, Stanislava; Bjornsdottir, Halla; Christensen, Claus;

    2016-01-01

    in the suppression of microglia activation. We for the first time demonstrated that CD200 can interact with and transduce signaling through activation of the fibroblast growth factor receptor (FGFR), thereby inducing neuritogenesis and promoting neuronal survival in primary neurons. CD200-induced FGFR...... phosphorylation was abrogated by CD200R, whereas FGF2-induced FGFR activation was inhibited by CD200. We also identified a sequence motif located in the first Ig-like module of CD200, likely representing the minimal CD200 binding site for FGFR. The FGFR binding motif overlaps with the CD200R binding site......, suggesting that they can compete for CD200 binding in cells that express both receptors. We propose that CD200 in neurons functions as a ligand of FGFR....

  1. Differential effects of black raspberry and strawberry extracts on BaPDE-induced activation of transcription factors and their target genes.

    Science.gov (United States)

    Li, Jingxia; Zhang, Dongyun; Stoner, Gary D; Huang, Chuanshu

    2008-04-01

    The chemopreventive properties of edible berries have been demonstrated both in vitro and in vivo, however, the specific molecular mechanisms underlying their anti-cancer effects are largely unknown. Our previous studies have shown that a methanol extract fraction of freeze-dried black raspberries inhibits benzoapyrene (BaP)-induced transformation of Syrian hamster embryo cells. This fraction also blocks activation of activator protein-1 (AP-1) and nuclear factor kappaB (NF-kappaB) induced by benzoapyrene diol-epoxide (BaPDE) in mouse epidermal JB6 Cl 41 cells. To determine if different berry types exhibit specific mechanisms for their anti-cancer effects, we compared the effects of extract fractions from both black raspberries and strawberries on BaPDE-induced activation of various signaling pathways in Cl 41 cells. Black raspberry fractions inhibited the activation of AP-1, NF-kappaB, and nuclear factor of activated T cells (NFAT) by BaPDE as well as their upstream PI-3K/Akt-p70(S6K) and mitogen-activated protein kinase pathways. In contrast, strawberry fractions inhibited NFAT activation, but did not inhibit the activation of AP-1, NF-kappaB or the PI-3K/Akt-p70(S6K) and mitogen-activated protein kinase pathways. Consistent with the effects on NFAT activation, tumor necrosis factor-alpha (TNF-alpha) induction by BaPDE was blocked by extract fractions of both black raspberries and strawberries, whereas vascular endothelial growth factor (VEGF) expression, which depends on AP-1 activation, was suppressed by black raspberry fractions but not strawberry fractions. These results suggest that black raspberry and strawberry components may target different signaling pathways in exerting their anti-carcinogenic effects.

  2. Oxidatively fragmented phosphatidylcholines activate human neutrophils through the receptor for platelet-activating factor.

    Science.gov (United States)

    Smiley, P L; Stremler, K E; Prescott, S M; Zimmerman, G A; McIntyre, T M

    1991-06-15

    Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) activates neutrophils (polymorphonuclear leukocytes, PMN) through a receptor that specifically recognizes short sn-2 residues. We oxidized synthetic [2-arachidonoyl]phosphatidylcholine to fragment and shorten the sn-2 residue, and then examined the phospholipid products for the ability to stimulate PMN. 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine was fragmented by ozonolysis to 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine. This phospholipid activated human neutrophils at submicromolar concentrations, and is effects were inhibited by specific PAF receptor antagonists WEB2086, L659,989, and CV3988. 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine next was fragmented by an uncontrolled free radical-catalyzed reaction: it was treated with soybean lipoxygenase to form its sn-2 15-hydroperoxy derivative (which did not activate neutrophils) and then allowed to oxidize under air. The secondary oxidation resulted in the formation of numerous fragmented phospholipids (Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11095-11103), some of which activated PMN. Hydrolysis of sn-2 residues with phospholipase A2 destroyed biologic activity, as did hydrolysis with PAF acetylhydrolase. PAF acetylhydrolase is specific for short or intermediate length sn-2 residues and does not hydrolyze the starting material (Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11095-11103). Neutrophil activation was completely blocked by L659,989, a specific PAF receptor antagonist. We conclude that diacylphosphatidylcholines containing an sn-2 polyunsaturated fatty acyl residue can be oxidatively fragmented to species with sn-2 residues short enough to activate the PAF receptor of neutrophils. This suggests a new mechanism for the appearance of biologically active phospholipids, and shows

  3. Stimulation of Leishmania tropica protein kinase CK2 activities by platelet-activating factor (PAF).

    Science.gov (United States)

    Dutra, Patricia M L; Vieira, Danielle P; Meyer-Fernandes, Jose R; Silva-Neto, Mario A C; Lopes, Angela H

    2009-09-01

    Leishmania tropica is one of the causative agents of cutaneous leishmaniasis. Platelet-activating factor (PAF) is a phospholipid mediator in diverse biological and pathophysiological processes. Here we show that PAF promoted a three-fold increase on ecto-protein kinase and a three-fold increase on the secreted kinase activity of L. tropica live promastigotes. When casein was added to the reaction medium, along with PAF, there was a four-fold increase on the ecto-kinase activity. When live L. tropica promastigotes were pre-incubated for 30 min in the presence of PAF-plus casein, a six-fold increase on the secreted kinase activity was observed. Also, a protein released from L. tropica promastigotes reacted with polyclonal antibodies for the mammalian CK2 alpha catalytic subunit. Furthermore, in vitro mouse macrophage infection by L. tropica was doubled when promastigotes were pre-treated for 2 h with PAF. Similar results were obtained when the interaction was performed in the presence of purified CK2 or casein. TBB and DRB, CK2 inhibitors, reversed PAF enhancement of macrophage infection by L. tropica. WEB 2086, a competitive PAF antagonist, reversed all PAF effects here described. This study shows for the first time that PAF promotes the activation of two isoforms of CK2, secreted and membrane-bound, correlating these activities to infection of mouse macrophages.

  4. Recombinant activated factor VII in post partum haemorrhage

    Directory of Open Access Journals (Sweden)

    Navneet Magon

    2013-01-01

    Full Text Available Post-partum haemorrhage (PPH is a life-threatening obstetric complication and the leading cause of maternal death. Any bleeding that results in or could result in haemodynamic instability, if untreated, must be considered as PPH. There is no controversy about the need for prevention and treatment of PPH. The keystone of management of PPH entails first, non-invasive and nonsurgical methods and then invasive and surgical methods. However, mortality remains high. Therefore, new advancements in the treatment are most crucial. One such advancement has been the use of recombinant activated factor VII (rFVIIa in PPH. First used 12 years back in PPH, this universal haemostatic agent has been effectively used in controlling PPH. The best available indicator of rFVIIa efficacy is the arrest of haemorrhage, which is judged by visual evidence and haemodynamic stabilization. It also reduces costs of therapy and the use of blood components in massive PPH. In cases of intractable PPH with no other obvious indications for hysterectomy, administration of rFVIIa should be considered before surgery. We share our experience in a series of cases of PPH, successfully managed using rFVIIa.

  5. Factors influencing quality of life in patients with active tuberculosis

    Directory of Open Access Journals (Sweden)

    Cox Victoria C

    2004-10-01

    Full Text Available Abstract Background With effective treatment strategies, the focus of tuberculosis (TB management has shifted from the prevention of mortality to the avoidance of morbidity. As such, there should be an increased focus on quality of life (QoL experienced by individuals being treated for TB. The objective of our study was to identify areas of QoL that are affected by active TB using focus groups and individual interviews. Methods English, Cantonese, and Punjabi-speaking subjects with active TB who were receiving treatment were eligible for recruitment into the study. Gender-based focus group sessions were conducted for the inner city participants but individual interviews were conducted for those who came to the main TB clinic or were hospitalized. Facilitators used open-ended questions and participants were asked to discuss their experiences of being diagnosed with tuberculosis, what impact it had on their lives, issues around adherence to anti-TB medications and information pertaining to their experience with side effects to these medications. All data were audio-recorded, transcribed verbatim, and analyzed using constant comparative analysis. Results 39 patients with active TB participated. The mean age was 46.2 years (SD 18.4 and 62% were male. Most were Canadian-born being either Caucasian or Aboriginal. Four themes emerged from the focus groups and interviews. The first describes issues related to the diagnosis of tuberculosis and sub-themes were identified as 'symptoms', 'health care provision', and 'emotional impact'. The second theme discusses TB medication factors and the sub-themes identified were 'adverse effects', 'ease of administration', and 'adherence'. The third theme describes social support and functioning issues for the individuals with TB. The fourth theme describes health behavior issues for the individuals with TB and the identified sub-themes were "behavior modification" and "TB knowledge." Conclusion Despite the ability to

  6. Influence of Environmental Factors on Feammox Activity in Soil Environments

    Science.gov (United States)

    Huang, S.; Jaffe, P. R.

    2015-12-01

    The oxidation of ammonium (NH4+) under iron reducing conditions, referred to as Feammox, has been described in recent years by several investigators. The environmental characteristics in which the Feammox process occurs need to be understood in order to determine its contribution to the nitrogen cycle. In this study, a total of 66 locations were selected covering 4 different types of soils/sediments: wetland soils (W), river sediments (R), forest soils (F), and paddy soils (P) from several locations in central New Jersey, at Tims Branch at Savannah River in South Carolina, both in the Unities States, and at several locations in the Guangdong province in China. Though soil chemical analyses, serial culturing experiments, analysis of microbial communities, and using a canonical correspondence analysis, the occurrence of the Feammox reaction and the presence of Acidimicrobiaceae bacterium A6, which plays a key role in the Feammox process(1), were found in 17 samples. Analyses showed that the soil pH, as well as its Fe(III) and NH4+ content were the most important factors controlling the distribution of these Feammox microorganisms. Based on the results, soils in the subtropical forests and soils that are near agricultural areas could be Feammox hotspot. Under the conditions that favor the presence and activity of Feammox microorganisms and their oxidation of NH4+, denitrification bacteria were also active. However, the presence of nitrous oxide (N2O) reducers was limited under these conditions, implying that at locations where the Feammox process is active, conditions are favoring a higher ratio of N2O: N2 as the nitrogen (N) end products. Incubations of soils where the presence of Acidimicrobiaceae bacterium A6 was detected, were conducted for 120 days under two different DO levels (DO ammonia-oxidizing bacteria and anammox bacteria) decreased, while in the incubations with DO = 0.8~1.0 mg/L the opposite trend was observed. References Huang S., and Jaffé P.R., 2015

  7. B-cell activation in cats with feline infectious peritonitis (FIP) by FIP-virus-induced B-cell differentiation/survival factors.

    Science.gov (United States)

    Takano, Tomomi; Azuma, Natsuko; Hashida, Yoshikiyo; Satoh, Ryoichi; Hohdatsu, Tsutomu

    2009-01-01

    It has been suggested that antibody overproduction plays a role in the pathogenesis of feline infectious peritonitis (FIP). However, only a few studies on the B-cell activation mechanism after FIP virus (FIPV) infection have been reported. The present study shows that: (1) the ratio of peripheral blood sIg(+) CD21(-) B-cells was higher in cats with FIP than in SPF cats, (2) the albumin-to-globulin ratio has negative correlation with the ratio of peripheral blood sIg(+) CD21(-) B-cell, (3) cells strongly expressing mRNA of the plasma cell master gene, B-lymphocyte-induced maturation protein 1 (Blimp-1), were increased in peripheral blood in cats with FIP, (4) mRNA expression of B-cell differentiation/survival factors, IL-6, CD40 ligand, and B-cell-activating factor belonging to the tumor necrosis factor family (BAFF), was enhanced in macrophages in cats with FIP, and (5) mRNAs of these B-cell differentiation/survival factors were overexpressed in antibody-dependent enhancement (ADE)-induced macrophages. These data suggest that virus-infected macrophages overproduce B-cell differentiation/survival factors, and these factors act on B-cells and promote B-cell differentiation into plasma cells in FIPV-infected cats.

  8. The anti-inflammatory effect of kaempferol in aged kidney tissues: the involvement of nuclear factor-kappaB via nuclear factor-inducing kinase/IkappaB kinase and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Park, Min Ju; Lee, Eun Kyeong; Heo, Hyoung-Sam; Kim, Min-Sun; Sung, Bokyoung; Kim, Mi Kyung; Lee, Jaewon; Kim, Nam Deuk; Anton, Stephen; Choi, Jae Sue; Yu, Byung Pal; Chung, Hae Young

    2009-04-01

    Kaempferol, one of the phytoestrogens, is found in berries and Brassica and Allium species and is known to have antioxidative and anti-inflammatory properties. In the present study, we examined the molecular mechanisms underlying the anti-inflammation effect of kaempferol in an aged animal model. To examine the effect of kaempferol in aged Sprague-Dawley rats, kaempferol was fed at 2 or 4 mg/kg/day for 10 days. The data show that kaempferol exhibited the ability to maintain redox balance. Kaempferol suppressed nuclear factor-kappaB (NF-kappaB) activation and expression of its target genes cyclooxygenase-2, inducible nitric oxide synthase, monocyte chemoattractant protein-1, and regulated upon activation, and normal T-cell expressed and secreted in aged rat kidney and in tert-butylhydroperoxide-induced YPEN-1 cells. Furthermore, kaempferol suppressed the increase of the pro-inflammatory NF-kappaB cascade through modulation of nuclear factor-inducing kinase (NIK)/IkappaB kinase (IKK) and mitogen-activated protein kinases (MAPKs) in aged rat kidney. Based on these results, we concluded that anti-oxidative kaempferol suppressed the activation of inflammatory NF-kappaB transcription factor through NIK/IKK and MAPKs in aged rat kidney.

  9. Genome-wide signatures of transcription factor activity: connecting transcription factors, disease, and small molecules.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Identifying transcription factors (TF involved in producing a genome-wide transcriptional profile is an essential step in building mechanistic model that can explain observed gene expression data. We developed a statistical framework for constructing genome-wide signatures of TF activity, and for using such signatures in the analysis of gene expression data produced by complex transcriptional regulatory programs. Our framework integrates ChIP-seq data and appropriately matched gene expression profiles to identify True REGulatory (TREG TF-gene interactions. It provides genome-wide quantification of the likelihood of regulatory TF-gene interaction that can be used to either identify regulated genes, or as genome-wide signature of TF activity. To effectively use ChIP-seq data, we introduce a novel statistical model that integrates information from all binding "peaks" within 2 Mb window around a gene's transcription start site (TSS, and provides gene-level binding scores and probabilities of regulatory interaction. In the second step we integrate these binding scores and regulatory probabilities with gene expression data to assess the likelihood of True REGulatory (TREG TF-gene interactions. We demonstrate the advantages of TREG framework in identifying genes regulated by two TFs with widely different distribution of functional binding events (ERα and E2f1. We also show that TREG signatures of TF activity vastly improve our ability to detect involvement of ERα in producing complex diseases-related transcriptional profiles. Through a large study of disease-related transcriptional signatures and transcriptional signatures of drug activity, we demonstrate that increase in statistical power associated with the use of TREG signatures makes the crucial difference in identifying key targets for treatment, and drugs to use for treatment. All methods are implemented in an open-source R package treg. The package also contains all data used in the analysis

  10. Mechanism of surface-mediated activation of bovine Factor XII and prekallikrein.

    Science.gov (United States)

    Sugo, T; Ohno, Y; Shimada, T; Kato, H; Iwanaga, S

    1983-01-01

    The mechanism of kaolin-mediated activation of bovine Factor XII was studied in the presence of prekallikrein and HMW kininogen. The activated enzymes were assayed using fluorogenic peptides, Boc-Glu (OBzl)-Gly-Arg-4-methylcoumaryl-7-amide (MCA) for Factor XIIa and Z-Phe-Arg-MCA for plasma kallikrein. The rates of activation of the zymogens were separately measured by blocking either of the active enzymes with specific inhibitors, corn inhibitor for Factor XIIa (Ki = 6.7 nM) and Trasylol for plasma kallikrein (Ki = 3.9 nM). The result was as follows: (1) At the early stage of the activation reaction, kallikrein activity was first generated after short lag time, and then Factor XIIa activity was generated with a sigmoidal curve. In the presence of corn inhibitor, the activation of prekallikrein was observed, but in the presence of Trasylol, the activation of Factor XII was not observed. In the presence of high concentration of Ala-Phe-Arg-Ch2Cl, which inactivates immediately both of the active enzymes, the cleavage of a single chain prekallikrein into the two chain form by Factor XII was shown by SDS-PAGE, using nonlabelled and tritiated prekallikrein. (2) The incubation of Factor XII alone in a quartz cuvette or in the presence of kaolin and HMW kininogen did not result in the activation of Factor XII. The concave upward curve due to an autocatalytic activation was not observed even after the addition of Factor XIIa to Factor XII preparation. Moreover, no structural change of Factor XII during the incubation with kaolin and HMW kininogen was shown by SDS-PAGE, using 3H-Factor XII. (3) The rates of activation of prekallikrein by Factor XII and by Factor XIIa were approximately the same at higher concentration of prekallikrein. However, at lower concentration of prekallikrein the rate of activation of prekallikrein by Factor XII was shown to be a sigmoidal curve and slower than that by Factor XIIa. These results indicate that the activation of bovine Factor XII is

  11. The nonstructural protein 1 papain-like cysteine protease was necessary for porcine reproductive and respiratory syndrome virus nonstructural protein 1 to inhibit interferon-β induction.

    Science.gov (United States)

    Shi, Xibao; Zhang, Gaiping; Wang, Li; Li, Xuewu; Zhi, Yubao; Wang, Fangyu; Fan, Jianming; Deng, Ruiguang

    2011-06-01

    Porcine reproductive and respiratory syndrome virus nonstructural protein 1 (nsp1) could be auto-cleaved into nsp1α and nsp1β, both of which had the papain-like cysteine protease activities. Previous studies have shown that porcine reproductive and respiratory syndrome virus nsp1 was an interferon (IFN) antagonist. However, the mechanism by which nsp1 inhibited IFN-β production was unclear. Here, we used site-directed mutagenesis that inactivated the papain-like cysteine protease activities of nsp1 to explore whether the papain-like cysteine protease activities were required for nsp1 to disrupt IFN-β production. The results showed that mutations that inactivated papain-like cysteine protease activity of nsp1α made nsp1 lose its IFN antagonism activity, whereas mutations that inactivated papain-like cysteine protease activity of nsp1β did not influence the IFN antagonism activity of nsp1. In conclusion, our present work indicated that the papain-like cysteine protease activity of nsp1α was necessary for nsp1 to inhibit IFN-β induction.

  12. Adipocyte spliced form of X-box-binding protein 1 promotes adiponectin multimerization and systemic glucose homeostasis

    NARCIS (Netherlands)

    Sha, H.; Yang, L.; Liu, M.; Xia, S.; Liu, Y.; Liu, F.; Kersten, A.H.; Qi, L.

    2014-01-01

    The physiological role of the spliced form of X-box–binding protein 1 (XBP1s), a key transcription factor of the endoplasmic reticulum (ER) stress response, in adipose tissue remains largely unknown. In this study, we show that overexpression of XBP1s promotes adiponectin multimerization in

  13. Diminished expression of multidrug resistance-associated protein 1 (MRP1) in bronchial epithelium of COPD patients

    NARCIS (Netherlands)

    van der Deen, Margaretha; Marks, Hendrik; Willemse, Brigitte W. M.; Postma, Dirkje S.; Muller, Michael; Smit, Egbert F.; Scheffer, George L.; Scheper, Rik J.; de Vries, Elisabeth G. E.; Timens, Wim

    2006-01-01

    Cigarette smoke is the principal risk factor for chronic obstructive pulmonary disease (COPD). Multidrug resistance proteins, such as multidrug resistance-associated protein-1 (MRP1), P-glycoprotein (P-gp), and lung resistance-related protein (LRP), may protect against oxidative stress and toxic com

  14. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2012-04-01

    Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

  15. Monocyte chemotactic protein-1 deficiency reduces spontaneous metastasis of Lewis lung carcinoma in mice fed a high-fat diet

    Science.gov (United States)

    Obesity is a risk factor for cancer. Adipose tissue produces pro-inflammatory adipokines that contribute obesity-related malignant progression. This study investigated the effects of monocyte chemotactic protein-1 (MCP-1) deficiency on pulmonary metastasis of Lewis lung carcinoma (LLC) in male C57...

  16. Peroxisome proliferator-activated receptor-gamma agonists suppress tissue factor overexpression in rat balloon injury model with paclitaxel infusion.

    Directory of Open Access Journals (Sweden)

    Jun-Bean Park

    Full Text Available The role and underlying mechanisms of rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-γ agonist, on myocardial infarction are poorly understood. We investigated the effects of this PPAR-γ agonist on the expression of tissue factor (TF, a primary molecule for thrombosis, and elucidated its underlying mechanisms. The PPAR-γ agonist inhibited TF expression in response to TNF-α in human umbilical vein endothelial cells, human monocytic leukemia cell line, and human umbilical arterial smooth muscle cells. The overexpression of TF was mediated by increased phosphorylation of mitogen-activated protein kinase (MAPK, which was blocked by the PPAR-γ agonist. The effective MAPK differed depending on each cell type. Luciferase and ChIP assays showed that transcription factor, activator protein-1 (AP-1, was a pivotal target of the PPAR-γ agonist to lower TF transcription. Intriguingly, two main drugs for drug-eluting stent, paclitaxel or rapamycin, significantly exaggerated thrombin-induced TF expression, which was also effectively blocked by the PPAR-γ agonist in all cell types. This PPAR-γ agonist did not impair TF pathway inhibitor (TFPI in three cell types. In rat balloon injury model (Sprague-Dawley rats, n = 10/group with continuous paclitaxel infusion, the PPAR-γ agonist attenuated TF expression by 70±5% (n = 4; P<0.0001 in injured vasculature. Taken together, rosiglitazone reduced TF expression in three critical cell types involved in vascular thrombus formation via MAPK and AP-1 inhibitions. Also, this PPAR-γ agonist reversed the paclitaxel-induced aggravation of TF expression, which suggests a possibility that the benefits might outweigh its risks in a group of patients with paclitaxel-eluting stent implanted.

  17. Platelet-activating factor (PAF) receptor-binding antagonist activity of Malaysian medicinal plants.

    Science.gov (United States)

    Jantan, I; Rafi, I A A; Jalil, J

    2005-01-01

    Forty-nine methanol extracts of 37 species of Malaysian medicinal plants were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets, using 3H-PAF as a ligand. Among them, the extracts of six Zingiberaceae species (Alpinia galanga Swartz., Boesenbergia pandurata Roxb., Curcuma ochorrhiza Val., C. aeruginosa Roxb., Zingiber officinale Rosc. and Z. zerumbet Koenig.), two Cinnamomum species (C. altissimum Kosterm. and C. pubescens Kochummen.), Goniothalamus malayanus Hook. f. Momordica charantia Linn. and Piper aduncum L. are potential sources of new PAF antagonists, as they showed significant inhibitory effects with IC50 values ranging from 1.2 to 18.4 microg ml(-1).

  18. MicroRNA-200a mediates nasopharyngeal carcinoma cell proliferation through the activation of nuclear factor-κB.

    Science.gov (United States)

    Shi, Zhuliang; Hu, Zhiqiang; Chen, Delu; Huang, Jie; Fan, Jie; Zhou, Subo; Wang, Xin; Hu, Jiandao; Huang, Fei

    2016-02-01

    In nasopharyngeal carcinoma (NPC), the nuclear factor-κB (NF-κB) signaling pathway is highly active. The constitutive activation of NF-κB prompts malignant cell proliferation, and microRNAs are considered an important mediator in regulating the NF-κB signaling pathway. The current study investigated the effect of microRNA-200a (miR-200a) on NF-κB activation. Reverse transcription-quantitative polymerase chain reaction was used to quantify the relative level of miR-200a in NPC tissue samples and CNE2 cells. An MTT assay was used to investigate the effect of miR-200a on cell proliferation. To investigate the activation of NF-κB, western blotting was used to measure the protein levels of NF-κB and its downstream targets. To identify the target genes of miR-200a, a luciferase reporter assay was used. The current study demonstrated that miR-200a was upregulated in NPC tissue samples and cell lines. Overexpression of miR-200a resulted in the proliferation of CNE2 cells. Western blot analysis indicated that the protein levels of p65 increased when CNE2 cells were transfected with miR-200a mimics. Additionally, the downstream targets of miR-200a were upregulated, including vascular cell adhesion molecule, intercellular adhesion molecule and monocyte chemoattractant protein-1. The luciferase assay indicated that IκBα was the target gene of miR-200a. In conclusion, miR-200a was demonstrated to enhance NPC cell proliferation by activating the NF-κB signaling pathway.

  19. Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1 Mutant Zebrafish.

    Directory of Open Access Journals (Sweden)

    Brian P Grone

    Full Text Available Mutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1, are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish. Homozygous stxbp1a mutants exhibited a profound lack of movement, low electrical brain activity, low heart rate, decreased glucose and mitochondrial metabolism, and early fatality compared to controls. On the other hand, homozygous stxbp1b mutants had spontaneous electrographic seizures, and reduced locomotor activity response to a movement-inducing "dark-flash" visual stimulus, despite showing normal metabolism, heart rate, survival, and baseline locomotor activity. Our findings in these newly generated mutant lines of zebrafish suggest that zebrafish recapitulate clinical phenotypes associated with human syntaxin-binding protein 1 mutations.

  20. State support as factor of increase of innovative activity of industrial enterprises

    Directory of Open Access Journals (Sweden)

    N.N. Bondarenko

    2011-10-01

    Full Text Available The article is devoted research of factors of increase of innovative activity of enterprise, the indexes of innovative activity of industrial enterprises are analysed in Ukraine, the necessity of creation of attractive terms is grounded for development of innovative activity and increase of innovative activity of management subjects at state level, the forms of state support as factor of increase of innovative activity of industrial enterprises are considered.

  1. Expression of B7-related protein-1 on B lymphocytes in peripheral blood from patients with systemic lupus erythematosus and its relationship with disease activity%SLE患者外周血B细胞B7RP-1的表达及其与疾病活动度的相关性

    Institute of Scientific and Technical Information of China (English)

    陈国平; 潘海峰; 李文先; 张滔; 李静; 朱青青; 叶冬青

    2009-01-01

    Objeetive To explore the differentiation of B lymphocytes and expression of B7-related protein-1 (B7RP-1)on B lymphocytes in patients with systemic lupus erythematosus(SLE).Methods Three-color immunofluorescent staining and flow cytometric assay were used to analyze the frequency of three types of B lymphocytes,I.e.,plasma cells,memory B lyphocytes and naive B lymphocytes,as well as the expression of B7RP-1 on these cells in peripheral blood from 23 patients with SLE and 16 normal human controls.Clinical data of these patients with SLE were collected.and SLE disease activi index(SLEDAI)was also evaluated.The relationship was assessed between the expression of B7RP-1 and SLEDAI.Results The frequency of plasma cells was highest in patients with active SLE.followed by patients with inactive SLE and normal human controls(P<0.01).A significant decrease was observed in the frequency of memory B lymphocytes in patients with active SLE compared with normal controls (P<0.01),but no significant difference was found between patients with inactive SLE and those with active SLE(P>0.05).Regarding the frequency of naive B lymphocytes,there was no significant difierence among the three groups.Increased frequency of plasma cells was also noted in patients with lupus nephritis(LN)compared with those without LN [(6.15±3.12)%vs(3.31±1.41)%,P<0.05 ],but no significant difierence was found with regard to the frequency of memory or naive B lymphocytes between these two groups.The expression rate Of B7RP-1 was significantly lower on total lymphocytes from patients with SLE than from normal human controls (46.51%vs 63.75%,P<0.05),which was the case with B7RP-1 on plasma cells,memory B lyphocytes and naive B lymphocytes (all P<0.01),whereas no significant difierence was found between patients with inactive SLE and active SLE or between patients with and without LN.In addition.no correlation was found between the expression of B7RP-1 and SLEDAI(r=0.035,P>0.05).Conclusions In

  2. Effect of montelukast on platelet activating factor- and tachykinin induced mucus secretion in the rat

    Directory of Open Access Journals (Sweden)

    Groneberg David A

    2008-02-01

    Full Text Available Abstract Background Platelet activating factor and tachykinins (substance P, neurokinin A, neurokinin B are important mediators contributing to increased airway secretion in the context of different types of respiratory diseases including acute and chronic asthma. Leukotriene receptor antagonists are recommended as add-on therapy for this disease. The cys-leukotriene-1 receptor antagonist montelukast has been used in clinical asthma therapy during the last years. Besides its inhibitory action on bronchoconstriction, only little is known about its effects on airway secretions. Therefore, the aim of this study was to evaluate the effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity. Methods The effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity in the rat were assessed by quantification of secreted 35SO4 labelled mucus macromolecules using the modified Ussing chamber technique. Results Platelet activating factor potently stimulated airway secretion, which was completely inhibited by the platelet activating factor receptor antagonist WEB 2086 and montelukast. In contrast, montelukast had no effect on tachykinin induced tracheal secretory activity. Conclusion Cys-leukotriene-1 receptor antagonism by montelukast reverses the secretagogue properties of platelet activating factor to the same degree as the specific platelet activating factor antagonist WEB 2086 but has no influence on treacheal secretion elicited by tachykinins. These results suggest a role of montelukast in the signal transduction pathway of platelet activating factor induced secretory activity of the airways and may further explain the beneficial properties of cys-leukotriene-1 receptor antagonists.

  3. Factor XI and Contact Activation as Targets for Antithrombotic Therapy

    OpenAIRE

    Gailani, David; Bane, Charles E.; Gruber, Andras

    2015-01-01

    The most commonly used anticoagulants produce therapeutic antithrombotic effects either by inhibiting thrombin or factor Xa, or by lowering the plasma levels of the precursors of these key enzymes, prothrombin and factor X. These drugs do not distinguish between thrombin generation contributing to thrombosis from thrombin generation required for hemostasis. Thus, anticoagulants increase bleeding risk, and many patients who would benefit from therapy go untreated because of comorbidities that ...

  4. High Mobility Group Box Protein-1 correlates with renal function in chronic kidney disease (CKD).

    Science.gov (United States)

    Bruchfeld, Annette; Qureshi, Abdul Rashid; Lindholm, Bengt; Barany, Peter; Yang, Lihong; Stenvinkel, Peter; Tracey, Kevin J

    2008-01-01

    Chronic kidney disease (CKD) is associated with inflammation and malnutrition and carries a markedly increased risk of cardiovascular disease (CVD). High Mobility Group Box Protein-1 (HMGB-1) is a 30-kDa nuclear and cytosolic protein known as a transcription and growth factor, recently identified as a proinflammatory mediator of tissue injury. Recent data implicates HMGB-1 in endotoxin lethality, rheumatoid arthritis, and atherosclerosis. The aim of this post-hoc, cross-sectional study was to determine whether HMGB-1 serum levels are elevated in CKD patients. The study groups were categorized as follows: 110 patients starting dialysis defined as CKD 5; 67 patients with moderately to severely reduced renal function or CKD 3-4; and 48 healthy controls. High-sensitivity C-reactive-protein (hs-CRP), interleukin-6 (IL-6), tumor necrosis factor (TNF), serum-albumin (S-albumin), hemoglobin A(1c) (HbA(1c)), hemoglobin, subjective global nutritional assessment (SGA), and glomerular filtration rate (GFR) were analyzed. Kruskal-Wallis test was used to compare groups and Spearman's rank correlation test was used for continuous variables. HMGB-1, measured by Western blot, was significantly (P < 0.001) elevated in CKD 5 (146.7 +/- 58.6 ng/mL) and CKD 3-4 (85.6 +/- 31.8) compared with controls (10.9 +/- 10.5). HMGB-1 levels were correlated positively with TNF (Rho = 0.52; P < 0.001), hs-CRP (Rho = 0.38; P < 0.001), IL-6 (Rho = 0.30; P < 0.001), HbA(1c) (Rho = 0.14; P = 0.02) and SGA (Rho = 0.21; P = 0.002) and negatively correlated with GFR (Rho = -0.69; P = 0.0001), Hb (Rho = -0.60; P < 0.001), S-albumin (Rho = -0.31; P < 0.001). The current study has revealed that HMGB-1 is elevated significantly in CKD patients and correlates with GFR as well as markers of inflammation and malnutrition. Future studies may delineate whether HMGB-1 is also a marker of disease activity and severity as well as a predictor of outcome in CKD.

  5. Structural studies of human glioma pathogenesis-related protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu [College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495 (United States); Koski, Raymond A.; Bonafé, Nathalie [L2 Diagnostics LLC, 300 George Street, New Haven, CT 06511 (United States); College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495 (United States)

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.

  6. Cannabinoid Receptor–Interacting Protein 1a Modulates CB1 Receptor Signaling and Regulation

    OpenAIRE

    Smith, Tricia H.; Blume, Lawrence C.; Straiker, Alex; Cox, Jordan O.; David, Bethany G.; McVoy, Julie R. Secor; Sayers, Katherine W.; Poklis, Justin L.; Abdullah, Rehab A.; Egertová, Michaela; Chen, Ching-Kang; Mackie, Ken; Maurice R. Elphick; Howlett, Allyn C; Selley, Dana E

    2015-01-01

    Cannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor–interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca2+ channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated ...

  7. Tumour necrosis factor production and natural killer cell activity in peripheral blood during treatment with recombinant tumour necrosis factor

    OpenAIRE

    Männel, Daniela N.; Kist, A.; Ho, A D; Räth, U.; Reichardt, P; Wiedenmann, B; Schlick, E.; Kirchner, H.

    1989-01-01

    Tumour necrosis factor (TNF) has been found to be an important immunomodulator. Among other functions TNF activates natural killer (NK) cells and stimulates monocytes/macrophages in an autocrine fashion. TNF production and NK activity in peripheral blood mononuclear cells were determined in a clinical phase I study in which recombinant human (rh) TNF was administered as a continuous infusion weekly for a period of 8 weeks. Even though TNF production and NK activity were significantly reduced ...

  8. Physical Activity among Older People and Related Factors

    Science.gov (United States)

    Persson, Ann; While, Alison

    2012-01-01

    Objective: To investigate the duration, intensity and type of physical activity undertaken by people aged 60 years and over in relation to their reported levels of participation in social activities and their perceptions of their neighbourhood. Design: A cross-sectional questionnaire survey of older people attending two luncheon and eight social…

  9. Id1 interacts and stabilizes the Epstein-Barr virus latent membrane protein 1 (LMP1 in nasopharyngeal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Pok Man Hau

    Full Text Available The EBV-encoded latent membrane protein 1 (LMP1 functions as a constitutive active form of tumor necrosis factor receptor (TNFR and activates multiple downstream signaling pathways similar to CD40 signaling in a ligand-independent manner. LMP1 expression in EBV-infected cells has been postulated to play an important role in pathogenesis of nasopharyngeal carcinoma. However, variable levels of LMP1 expression were detected in nasopharyngeal carcinoma. At present, the regulation of LMP1 levels in nasopharyngeal carcinoma is poorly understood. Here we show that LMP1 mRNAs are transcribed in an EBV-positive nasopharyngeal carcinoma (NPC cell line (C666-1 and other EBV-negative nasopharyngeal carcinoma cells stably re-infected with EBV. The protein levels of LMP1 could readily be detected after incubation with proteasome inhibitor, MG132 suggesting that LMP1 protein is rapidly degraded via proteasome-mediated proteolysis. Interestingly, we observed that Id1 overexpression could stabilize LMP1 protein in EBV-infected cells. In contrary, Id1 knockdown significantly reduced LMP1 levels in cells. Co-immunoprecipitation studies revealed that Id1 interacts with LMP1 by binding to the CTAR1 domain of LMP1. N-terminal region of Id1 is required for the interaction with LMP1. Furthermore, binding of Id1 to LMP1 suppressed polyubiquitination of LMP1 and may be involved in stabilization of LMP1 in EBV-infected nasopharyngeal epithelial cells.

  10. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    Science.gov (United States)

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  11. Enhanced expression of WD repeat-containing protein 35 via nuclear factor-kappa B activation in bupivacaine-treated Neuro2a cells.

    Directory of Open Access Journals (Sweden)

    Lei Huang

    Full Text Available The family of WD repeat proteins comprises a large number of proteins and is involved in a wide variety of cellular processes such as signal transduction, cell growth, proliferation, and apoptosis. Bupivacaine is a sodium channel blocker administered for local infiltration, nerve block, epidural, and intrathecal anesthesia. Recently, we reported that bupivacaine induces reactive oxygen species (ROS generation and p38 mitogen-activated protein kinase (MAPK activation, resulting in an increase in the expression of WD repeat-containing protein 35 (WDR35 in mouse neuroblastoma Neuro2a cells. It has been shown that ROS activate MAPK through phosphorylation, followed by activation of nuclear factor-kappa B (NF-κB and activator protein 1 (AP-1. The present study was undertaken to test whether NF-κB and c-Jun/AP-1 are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Bupivacaine activated both NF-κB and c-Jun in Neuro2a cells. APDC, an NF-κB inhibitor, attenuated the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. GW9662, a selective peroxisome proliferator-activated receptor-γ antagonist, enhanced the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. In contrast, c-Jun siRNA did not inhibit the bupivacaine-induced increase in WDR35 mRNA expression. These results indicate that bupivacaine induces the activation of transcription factors NF-κB and c-Jun/AP-1 in Neuro2a cells, while activation of NF-κB is involved in bupivacaine-induced increases in WDR35 expression.

  12. Role of CC chemokines (macrophage inflammatory protein-1 beta, monocyte chemoattractant protein-1, RANTES) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Bless, N M; Huber-Lang, M; Guo, R F

    2000-01-01

    were cloned, the proteins were expressed, and neutralizing Abs were developed. mRNA and protein expression for MIP-1 beta and MCP-1 were up-regulated during the inflammatory response, while mRNA and protein expression for RANTES were constitutive and unchanged during the inflammatory response...... that in chemokine-dependent inflammatory responses in lung CC chemokines do not necessarily demonstrate redundant function.......The role of the CC chemokines, macrophage inflammatory protein-1 beta (MIP-1 beta), monocyte chemotactic peptide-1 (MCP-1), and RANTES, in acute lung inflammatory injury induced by intrapulmonary deposition of IgG immune complexes injury in rats was determined. Rat MIP-1 beta, MCP-1, and RANTES...

  13. The Role of Platelet-Activating Factor in Chronic Inflammation, Immune Activation, and Comorbidities Associated with HIV Infection

    Science.gov (United States)

    Kelesidis, Theodoros; Papakonstantinou, Vasiliki; Detopoulou, Paraskevi; Fragopoulou, Elizabeth; Chini, Maria; Lazanas, Marios C.; Antonopoulou, Smaragdi

    2016-01-01

    With the advent of highly effective antiretroviral therapy, cardiovascular disease has become an important cause of morbidity and mortality among people with treated HIV-1, but the pathogenesis is unclear. Platelet-activating factor is a potent lipid mediator of inflammation that has immunomodulatory effects and a pivotal role in the pathogenesis of inflammatory disorders and cardiovascular disease. Limited scientific evidence suggests that the platelet-activating factor pathway may be a mechanistic link between HIV-1 infection, systemic inflammation, and immune activation that contribute to pathogenesis of chronic HIV-related comorbidities, including cardiovascular disease and HIV-associated neurocognitive disorders. In this review, we examine the mechanisms by which the cross-talk between HIV-1, immune dysregulation, inflammation, and perturbations in the platelet-activating factor pathway may directly affect HIV-1 immunopathogenesis. Understanding the role of platelet-activating factor in HIV-1 infection may pave the way for further studies to explore therapeutic interventions, such as diet, that can modify platelet-activating factor activity and use of platelet-activating factor inhibitors that might improve the prognosis of HIV-1 infected patients. PMID:26616844

  14. Impact of nonsynonymous mutations of factor X on the functions of factor X and anticoagulant activity of edoxaban.

    Science.gov (United States)

    Noguchi, Kengo; Morishima, Yoshiyuki; Takahashi, Shinichi; Ishihara, Hiroaki; Shibano, Toshiro; Murata, Mitsuru

    2015-03-01

    Edoxaban is an oral direct factor Xa (FXa) inhibitor and its efficacy as an oral anticoagulant is less subject to drug-food and drug-drug interaction than existing vitamin K antagonists. Although this profile of edoxaban suggests it is well suited for clinical use, it is not clear whether genetic variations of factor X influence the activity of edoxaban. Our aim was to investigate a possible impact of single-nucleotide polymorphisms (SNPs) in the factor X gene on the functions of factor X and the activity of edoxaban. Two nonsynonymous SNPs within mature factor X, Ala152Thr and Gly192Arg, were selected as possible candidates that might affect the functions of FXa and the activity of edoxaban. We measured catalytic activities of wild type and mutant FXas in a chromogenic assay using S-2222 and coagulation times including prothrombin time (PT) and activated partial thrombin time (aPTT) of plasma-containing recombinant FXs in the presence and absence of edoxaban. Michaelis-Menten kinetic parameters of FXas, Km and Vmax values, PT and aPTT were not influenced by either mutation indicating these mutations do not affect the FXa catalytic and coagulation activities. The Ki values of edoxaban for the FXas and the concentrations of edoxaban required to double PT and aPTT were not different between wild type and mutated FXas indicating that both mutations have little impact on the activity of edoxaban. In conclusion, these data suggest that edoxaban has little interpatient variability stemming from SNPs in the factor X gene.

  15. Factors affecting teachers' participation in professional learning activities

    NARCIS (Netherlands)

    Kwakman, C.H.E.

    2003-01-01

    This paper describes two studies into teacher workplace learning. The first study aimed at developing a definition of teacher learning at the workplace and at exploring factors that may affect teacher learning at the workplace. Based on a conceptualization of teacher workplace learning as

  16. Active von Willebrand factor in thrombotic thrombocytopenic purpura and malaria

    NARCIS (Netherlands)

    Groot, E.

    2009-01-01

    Thrombotic thrombocytopenic purpura (TTP) and malaria are two diseases of distinct origin. TTP is a rare disorder caused by a deficiency of the von Willebrand factor (VWF) cleaving protease ADAMTS13. Malaria is a poverty-related disease caused by protozoan parasites from the genus Plasmodium. TTP an

  17. Key factors governing alkaline pretreatment of waste activated sludge

    Institute of Scientific and Technical Information of China (English)

    Xianli Shi; Li Deng; Fangfang Sun; Jieyu Liang; Xu Deng

    2015-01-01

    Alkaline pretreatment is an effective technology to disintegrate sewage sludge, where alkali dosage and sludge concentration are two important factors. pH value or alkali concentration is usually adjusted in order to deter-mine a proper dosage of alkali. Our work has found that this is not a good strategy. A new parameter, the ratio of alkali to sludge (Ra/s), is more sensitive in controlling the alkali dosage. The sludge concentration Cs and reten-tion time t are two other important factors to consider. The validity of these arguments is confirmed with model-ing and experiments. The individual effect of Ra/s, Cs and t was studied separately. Then the combined effect of these three factors was evaluated. The sludge disintegration degree of 44.7%was achieved with the optimized factors. Furthermore, an alkaline-microwave combined pretreatment process was carried out under these optimized conditions. A high disintegration degree of 62.3%was achieved while the energy consumption of microwave was much lower than previously reported.

  18. A MATHEMATICAL MODEL FOR ASSESSING THE FACTORING ACTIVITY

    Directory of Open Access Journals (Sweden)

    Madalina Radoi

    2013-11-01

    Full Text Available Originally–being over 4,000 years old–factoring was first used in the fertile territory of old Mesopotamia at a time when the famous Code of Hammurabi was drawn up. However, many years passed until the British colonists started to use it on a large scale at a time when the metropolis would pay them sums of money for the merchandise that colonists sent to the old continent until they collected the invoices.In Romania factoring started to play a major role in financial operations for it led to the increase of liquidities on the market.According to the Romanian legislation, factoring is a contract concluded between a party known as “the client”, which supplies merchandise or provides services, and a banking institution or specialized financial institution known as “the factor”, whereby the latter ensures the financing source, collects the receivables and protects credit risks, while the client assigns to the factor the receivables resulting from the sale of goods or the provision of services to third parties.

  19. Situational and Personality Factors: Interactive Effects on Attitude - Active Consistency

    Science.gov (United States)

    Albrecht, Stan L.; Warner, Lyle G.

    1975-01-01

    An examination of the combined effect of a situational factor, disclosure, and two personality variables, "need for approval" and "inner-other directedness" on attitude - action relationships with respect to marijuana related attitudes and behavior of college students. Subjects with different personality characteristics were found to respond…

  20. Factors influencing quality of life in patients with active tuberculosis

    OpenAIRE

    Cox Victoria C; Marra Fawziah; Marra Carlo A; Palepu Anita; FitzGerald J Mark

    2004-01-01

    Abstract Background With effective treatment strategies, the focus of tuberculosis (TB) management has shifted from the prevention of mortality to the avoidance of morbidity. As such, there should be an increased focus on quality of life (QoL) experienced by individuals being treated for TB. The objective of our study was to identify areas of QoL that are affected by active TB using focus groups and individual interviews. Methods English, Cantonese, and Punjabi-speaking subjects with active T...

  1. (111)Indium Labelling of Recombinant Activated Coagulation Factor VII

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Buch, Inge; Sigvardt, Maibritt

    2012-01-01

    . administration of 1.6-1.8 MBq (111)In-DTPA-rFVIIa up to 120-130 min. Five min after administration of (111)In-DTPA-rFVIIa, percentage of (111)In activity was 6.0% in the cardiac region and 24.5% in the liver region. After 2 hours activity was decreased to 3.3% in heart while it had increased to 42...

  2. Inositol-requiring protein 1 - X-box-binding protein 1 pathway promotes epithelial-mesenchymal transition via mediating snail expression in pulmonary fibrosis.

    Science.gov (United States)

    Mo, Xiao-Ting; Zhou, Wen-Cheng; Cui, Wen-Hui; Li, De-Lin; Li, Liu-Cheng; Xu, Liang; Zhao, Ping; Gao, Jian

    2015-08-01

    Epithelial-mesenchymal transition (EMT) is a complex biological program during which cells loss epithelial phenotype and acquire mesenchymal features. EMT is thought to be involved in the pathogenesis of various fibrotic diseases including pulmonary fibrosis (PF). Recent studies suggest that endoplasmic reticulum (ER) stress is associated with EMT in the progression of PF. However, the exact mechanism is unclear. Here, we developed a PF model with bleomycin (BLM) administration in rats and conducted several simulation experiments in alveolar epithelial cell (AECs) RLE-6TN to unravel the role of inositol-requiring protein 1 (IRE1) - X-box-binding protein 1 (XBP1) signal pathway in ER stress-induced EMT in PF. First, we observed that ER stress was occurred in type II AECs accompanied by EMT in BLM-induced PF. Then we explored the role of IRE1-XBP1-snail pathway in transforming growth factor (TGF)-β1/tunicamycin (TM)-induced EMT. When TGF-β1/TM was treated on AECs, IRE1 and XBP1 were overexpressed, meanwhile, snail expression was upregulated accompanied with EMT. However, when IRE1 or XBP1 was knockdown, TGF-β1/TM-induced EMT were blocked while the expression of snail was inhibited. Then we silenced snail and found that TGF-β1/TM-induced EMT were also suppressed, but it had no effect on the up-regulated expression of IRE1 and XBP1. Thus, we concluded that IRE1-XBP1 pathway promotes EMT via mediating snail expression in PF. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Cisplatin induces cytotoxicity through the mitogen-activated protein kinase pathways and activating transcription factor 3.

    Science.gov (United States)

    St Germain, Carly; Niknejad, Nima; Ma, Laurie; Garbuio, Kyla; Hai, Tsonwin; Dimitroulakos, Jim

    2010-07-01

    The mechanisms underlying the proapoptotic effect of the chemotherapeutic agent, cisplatin, are largely undefined. Understanding the mechanisms regulating cisplatin cytotoxicity may uncover strategies to enhance the efficacy of this important therapeutic agent. This study evaluates the role of activating transcription factor 3 (ATF3) as a mediator of cisplatin-induced cytotoxicity. Cytotoxic doses of cisplatin and carboplatin treatments consistently induced ATF3 expression in five tumor-derived cell lines. Characterization of this induction revealed a p53, BRCA1, and integrated stress response-independent mechanism, all previously implicated in stress-mediated ATF3 induction. Analysis of mitogen-activated protein kinase (MAPK) pathway involvement in ATF3 induction by cisplatin revealed a MAPK-dependent mechanism. Cisplatin treatment combined with specific inhibitors to each MAPK pathway (c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38) resulted in decreased ATF3 induction at the protein level. MAPK pathway inhibition led to decreased ATF3 messenger RNA expression and reduced cytotoxic effects of cisplatin as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay. In A549 lung carcinoma cells, targeting ATF3 with specific small hairpin RNA also attenuated the cytotoxic effects of cisplatin. Similarly, ATF3-/- murine embryonic fibroblasts (MEFs) were shown to be less sensitive to cisplatin-induced cytotoxicity compared with ATF3+/+ MEFs. This study identifies cisplatin as a MAPK pathway-dependent inducer of ATF3, whose expression influences cisplatin's cytotoxic effects.

  4. Differential requirement of the epidermal growth factor receptor for G protein-mediated activation of transcription factors by lysophosphatidic acid

    Directory of Open Access Journals (Sweden)

    Dent Paul

    2010-01-01

    Full Text Available Abstract Background The role of the epidermal growth factor receptor (EGFR and other receptor tyrosine kinases (RTKs in provoking biological actions of G protein-coupled receptors (GPCRs has been one of the most disputed subjects in the field of GPCR signal transduction. The purpose of the current study is to identify EGFR-mediated mechanisms involved in activation of G protein cascades and the downstream transcription factors by lysophosphatidic acid (LPA. Results In ovarian cancer cells highly responsive to LPA, activation of AP-1 by LPA was suppressed by inhibition of EGFR, an effect that could be reversed by co-stimulation of another receptor tyrosine kinase c-Met with hepatocyte growth factor, indicating that LPA-mediated activation of AP-1 requires activity of a RTK, not necessarily EGFR. Induction of AP-1 components by LPA lied downstream of Gi, G12/13, and Gq. Activation of the effectors of Gi, but not Gq or G12/13 was sensitive to inhibition of EGFR. In contrast, LPA stimulated another prominent transcription factor NF-κB via the Gq-PKC pathway in an EGFR-independent manner. Consistent with the importance of Gi-elicited signals in a plethora of biological processes, LPA-induced cytokine production, cell proliferation, migration and invasion require intact EGFR. Conclusions An RTK activity is required for activation of the AP-1 transcription factor and other Gi-dependent cellular responses to LPA. In contrast, activation of G12/13, Gq and Gq-elicited NF-κB by LPA is independent of such an input. These results provide a novel insight into the role of RTK in GPCR signal transduction and biological functions.

  5. Alternative complement pathway and factor B activities in rats with altered blood levels of thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Bitencourt, C.S. [Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Duarte, C.G.; Azzolini, A.E.C.S.; Assis-Pandochi, A.I. [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-03-02

    Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production.

  6. Alternative complement pathway and factor B activities in rats with altered blood levels of thyroid hormone

    Directory of Open Access Journals (Sweden)

    C.S. Bitencourt

    2012-03-01

    Full Text Available Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP activity in male Wistar rats (180 ± 10 g after altering their thyroid hormone levels by treatment with triiodothyronine (T3, propylthiouracil (PTU or thyroidectomy. T3 and thyroxine (T4 levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg. Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01. In contrast, increased factor B concentration and activity (32% were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production.

  7. Differential procoagulant activity of microparticles derived from monocytes, granulocytes, platelets and endothelial cells: impact of active tissue factor.

    Science.gov (United States)

    Shustova, Olga N; Antonova, Olga A; Golubeva, Nina V; Khaspekova, Svetlana G; Yakushkin, Vladimir V; Aksuk, Svetlana A; Alchinova, Irina B; Karganov, Mikhail Y; Mazurov, Alexey V

    2016-12-06

    Microparticles released by activated/apoptotic cells exhibit coagulation activity as they express phosphatidylserine and some of them - tissue factor. We compared procoagulant properties of microparticles from monocytes, granulocytes, platelets and endothelial cells and assessed the impact of tissue factor in observed differences. Microparticles were sedimented (20 000g, 30 min) from the supernatants of activated monocytes, monocytic THP-1 cells, granulocytes, platelets and endothelial cells. Coagulation activity of microparticles was examined using plasma recalcification assay. The size of microparticles was evaluated by dynamic light scattering. Tissue factor activity was measured by its ability to activate factor X. All microparticles significantly accelerated plasma coagulation with the shortest lag times for microparticles derived from monocytes, intermediate - for microparticles from THP-1 cells and endothelial cells, and the longest - for microparticles from granulocytes and platelets. Average diameters of microparticles ranged within 400-600 nm. The largest microparticles were produced by endothelial cells and granulocytes, smaller - by monocytes, and the smallest - by THP-1 cells and platelets. The highest tissue factor activity was detected in microparticles from monocytes, lower activity - in microparticles from endothelial cells and THP-1 cells, and no activity - in microparticles from platelets and granulocytes. Anti-tissue factor antibodies extended coagulation lag times for microparticles from monocytes, endothelial cells and THP-1 cells and equalized them with those for microparticles from platelets and granulocytes. Higher coagulation activity of microparticles from monocytes, THP-1 cells and endothelial cells in comparison with microparticles from platelets and granulocytes is determined mainly by the presence of active tissue factor.

  8. Structure activity relationship of phenolic diterpenes from Salvia officinalis as activators of the nuclear factor E2-related factor 2 pathway.

    Science.gov (United States)

    Fischedick, Justin T; Standiford, Miranda; Johnson, Delinda A; Johnson, Jeffrey A

    2013-05-01

    Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to activate cytoprotective genes which may be useful in the treatment of neurodegenerative disease. In order to better understand the structure activity relationship of phenolic diterpenes from Salvia officinalis L., we isolated carnosic acid, carnosol, epirosmanol, rosmanol, 12-methoxy-carnosic acid, sageone, and carnosaldehyde using polyamide column, centrifugal partition chromatography, and semi-preparative high performance liquid chromatography. Isolated compounds were screened in vitro for their ability to active the Nrf2 and general cellular toxicity using mouse primary cortical cultures. All compounds except 12-methoxy-carnosic acid were able to activate the antioxidant response element. Furthermore both carnosol and carnoasldehyde were able to induce Nrf2-dependent gene expression as well as protect mouse primary cortical neuronal cultures from H(2)O(2) induced cell death.

  9. Relation of physical activity to cardiovascular disease mortality and the influence of cardiometabolic risk factors.

    Science.gov (United States)

    Reddigan, Jacinta I; Ardern, Chris I; Riddell, Michael C; Kuk, Jennifer L

    2011-11-15

    Physical activity can improve several metabolic risk factors associated with cardiovascular disease (CVD) and is associated with a lower risk of CVD mortality. We sought to evaluate the extent to which metabolic risk factors mediate the association between physical activity and CVD mortality and whether physical activity provides protective effects against CVD mortality in healthy adults and those with metabolic risk factors. A sample of 10,261 adults from the Third National Health and Nutrition Examination Survey with public-access mortality data linkage (follow-up 13.4 ± 3.9 years) was used. Physical activity was assessed by questionnaire and classified into inactive, light, and moderate/vigorous activity categories. Metabolic risk factors (dyslipidemia, type 2 diabetes mellitus, obesity, hypertension, inflammation, and insulin resistance) were categorized using clinical thresholds. After adjusting for basic confounders, engaging in light or moderate/vigorous physical activity was associated with a lower risk of CVD mortality (p activity remained at lower risk of CVD mortality. In addition, physical activity provided protective effects for CVD mortality in healthy subjects and those with metabolic risk factors in isolation or in clusters. In conclusion, physical activity was associated with a lower risk of CVD mortality independent of traditional and inflammatory risk factors. Taken together these results suggest that physical activity may protect against CVD mortality regardless of the presence of metabolic risk factors.

  10. A Highly Active Isoform of Lentivirus Restriction Factor SAMHD1 in Mouse.

    Science.gov (United States)

    Bloch, Nicolin; Gläsker, Sabine; Sitaram, Poojitha; Hofmann, Henning; Shepard, Caitlin N; Schultz, Megan L; Kim, Baek; Landau, Nathaniel R

    2017-01-20

    The triphosphohydrolase SAMHD1 (sterile α motif and histidine-aspartate domain-containing protein 1) restricts HIV-1 replication in nondividing myeloid cells by depleting the dNTP pool, preventing reverse transcription. SAMHD1 is also reported to have ribonuclease activity that degrades the virus genomic RNA. Human SAMHD1 is regulated by phosphorylation of its carboxyl terminus at Thr-592, which abrogates its antiviral function yet has only a small effect on its phosphohydrolase activity. In the mouse, SAMHD1 is expressed as two isoforms (ISF1 and ISF2) that differ at the carboxyl terminus due to alternative splicing of the last coding exon. In this study we characterized the biochemical and antiviral properties of the two mouse isoforms of SAMHD1. Both are antiviral in nondividing cells. Mass spectrometry analysis showed that SAMHD1 is phosphorylated at several amino acid residues, one of which (Thr-634) is homologous to Thr-592. Phosphomimetic mutation at Thr-634 of ISF1 ablates its antiviral activity yet has little effect on phosphohydrolase activity in vitro dGTP caused ISF1 to tetramerize, activating its catalytic activity. In contrast, ISF2, which lacks the phosphorylation site, was significantly more active, tetramerized, and was active without added dGTP. Neither isoform nor human SAMHD1 had detectable RNase activity in vitro or affected HIV-1 genomic RNA stability in newly infected cells. These data support a model in which SAMHD1 catalytic activity is regulated through tetramer stabilization by the carboxyl-terminal tail, phosphorylation destabilizing the complexes and inactivating the enzyme. ISF2 may serve to reduce the dNTP pool to very low levels as a means of restricting virus replication.

  11. Revisiting Apoplastic Auxin Signaling Mediated by AUXIN BINDING PROTEIN 1.

    Science.gov (United States)

    Feng, Mingxiao; Kim, Jae-Yean

    2015-10-01

    It has been suggested that AUXIN BINDING PROTEIN 1 (ABP1) functions as an apoplastic auxin receptor, and is known to be involved in the post-transcriptional process, and largely independent of the already well-known SKP-cullin-F-box-transport inhibitor response (TIR1) /auxin signaling F-box (AFB) (SCF(TIR1/AFB)) pathway. In the past 10 years, several key components downstream of ABP1 have been reported. After perceiving the auxin signal, ABP1 interacts, directly or indirectly, with plasma membrane (PM)-localized transmembrane proteins, transmembrane kinase (TMK) or SPIKE1 (SPK1), or other unidentified proteins, which transfer the signal into the cell to the Rho of plants (ROP). ROPs interact with their effectors, such as the ROP interactive CRIB motif-containing protein (RIC), to regulate the endocytosis/exocytosis of the auxin efflux carrier PIN-FORMED (PIN) proteins to mediate polar auxin transport across the PM. Additionally, ABP1 is a negative regulator of the traditional SCF(TIR1/AFB) auxin signaling pathway. However, Gao et al. (2015) very recently reported that ABP1 is not a key component in auxin signaling, and the famous abp1-1 and abp1-5 mutant Arabidopsis lines are being called into question because of possible additional mutantion sites, making it necessary to reevaluate ABP1. In this review, we will provide a brief overview of the history of ABP1 research.

  12. Structural plasticity in human heterochromatin protein 1β.

    Directory of Open Access Journals (Sweden)

    Francesca Munari

    Full Text Available As essential components of the molecular machine assembling heterochromatin in eukaryotes, HP1 (Heterochromatin Protein 1 proteins are key regulators of genome function. While several high-resolution structures of the two globular regions of HP1, chromo and chromoshadow domains, in their free form or in complex with recognition-motif peptides are available, less is known about the conformational behavior of the full-length protein. Here, we used NMR spectroscopy in combination with small angle X-ray scattering and dynamic light scattering to characterize the dynamic and structural properties of full-length human HP1β (hHP1β in solution. We show that the hinge region is highly flexible and enables a largely unrestricted spatial search by the two globular domains for their binding partners. In addition, the binding pockets within the chromo and chromoshadow domains experience internal dynamics that can be useful for the versatile recognition of different binding partners. In particular, we provide evidence for the presence of a distinct structural propensity in free hHP1β that prepares a binding-competent interface for the formation of the intermolecular β-sheet with methylated histone H3. The structural plasticity of hHP1β supports its ability to bind and connect a wide variety of binding partners in epigenetic processes.

  13. Expression and Activation of STAT Transcription Factors in Breast Cancer

    Science.gov (United States)

    1998-05-08

    clinicians. J~, 273: 577-585, 1995. 183 Hundertmark 5, Buhler H, Rudolf M, Weitzel HK, Ragosch V: Inhibition of 11 beta-hydroxysteroid dehydrogenase...activated protein kinase through a Jakl-dependent pathway. Mol. Cell. Bioi., 17:3833-40, 1997. Stewart JF, Rubens RO, King RJ, Minton MJ, Steiner R

  14. Physical activity and cardiovascular risk factors in children

    DEFF Research Database (Denmark)

    Andersen, Lars Bo; Riddoch, Chris; Kriemler, Susi

    2011-01-01

    A number of recent systematic reviews have resulted in changes in international recommendations for children's participation in physical activity (PA) for health. The World Health Authority (WHO) has recently released new recommendations. The WHO still recommends 60 min of moderate to vigorous ph...

  15. No evidence for a putative involvement of platelet-activating factor in systemic lupus erythematosus without active nephritis

    Directory of Open Access Journals (Sweden)

    Yves Denizot

    2003-01-01

    Full Text Available Background: Platelet-activating factor (PAF seems to be implicated in systemic lupus erythematosus (SLE patients with associated renal diseases.Aims: In this study, we ensured the role of PAF in SLE patients without renal complications.

  16. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents

    DEFF Research Database (Denmark)

    Ekelund, Ulf; Luan, Jian'an; Sherar, Lauren B

    2012-01-01

    Sparse data exist on the combined associations between physical activity and sedentary time with cardiometabolic risk factors in healthy children.......Sparse data exist on the combined associations between physical activity and sedentary time with cardiometabolic risk factors in healthy children....

  17. Activating Transcription Factor 3 (ATF3 and the Nervous System

    Directory of Open Access Journals (Sweden)

    Patrick Norval Anderson

    2012-02-01

    Full Text Available It has been recognised for over a century that the ability of axons to regenerate in peripheral nerves is fundamentally greater than that of axons in the brain, spinal cord or optic nerves [early literature was reviewed in (Ramon y Cajal, 1928]. One factor that contributes to the successful regeneration of the axons in peripheral nerves is the complex cell body response the neurons show to axotomy. That transcription factors must play an important role in enabling neurons to regrow their axons is implicit to the observation that several hundred genes are regulated in neurons during axonal regeneration (Costigan et al., 2002; Boeshore et al., 2004. In addition, similarly large numbers of genes are regulated in the non-neuronal cells present in injured peripheral nerves [especially Schwann cells (Barrette et al., 2010] and CNS tissue. Of the transcription factors that regulate these changes in gene expression, the function of c-jun is best understood but ATF-3 (also known as LRF-1, LRG-21, CRG-5 and TI-241 is also upregulated in most of the neurons (Fig. 1 and Schwann cells that express c-jun. Indeed, ATF-3 has become a standard marker for neurons axotomised by peripheral nerve injury (Tsuzuki et al., 2001; Yamanaka et al., 2005; Yano et al., 2008; Linda et al., 2011 and its expression by injured neurons is closely correlated with a regenerative response. None the less, surprisingly little is known about the functions of ATF3 in neurons or glia within the injured nervous system, especially when compared with those of its potential binding partner, c-Jun.

  18. Hemolysin coregulated protein 1 as a molecular gluing unit for the assembly of nanoparticle hybrid structures

    Directory of Open Access Journals (Sweden)

    Tuan Anh Pham

    2016-03-01

    Full Text Available Hybrid nanoparticle (NP structures containing organic building units such as polymers, peptides, DNA and proteins have great potential in biosensor and electronic applications. The nearly free modification of the polymer chain, the variation of the protein and DNA sequence and the implementation of functional moieties provide a great platform to create inorganic structures of different morphology, resulting in different optical and magnetic properties. Nevertheless, the design and modification of a protein structure with functional groups or sequences for the assembly of biohybrid materials is not trivial. This is mainly due to the sensitivity of its secondary, tertiary and quaternary structure to the changes in the interaction (e.g., hydrophobic, hydrophilic, electrostatic, chemical groups between the protein subunits and the inorganic material. Here, we use hemolysin coregulated protein 1 (Hcp1 from Pseudomonas aeruginosa as a building and gluing unit for the formation of biohybrid structures by implementing cysteine anchoring points at defined positions on the protein rim (Hcp1_cys3. We successfully apply the Hcp1_cys3 gluing unit for the assembly of often linear, hybrid structures of plasmonic gold (Au NP, magnetite (Fe3O4 NP, and cobalt ferrite nanoparticles (CoFe2O4 NP. Furthermore, the assembly of Au NPs into linear structures using Hcp1_cys3 is investigated by UV–vis spectroscopy, TEM and cryo-TEM. One key parameter for the formation of Au NP assembly is the specific ionic strength in the mixture. The resulting network-like structure of Au NPs is characterized by Raman spectroscopy, showing surface-enhanced Raman scattering (SERS by a factor of 8·104 and a stable secondary structure of the Hcp1_cys3 unit. In order to prove the catalytic performance of the gold hybrid structures, they are used as a catalyst in the reduction reaction of 4-nitrophenol showing similar catalytic activity as the pure Au NPs. To further extend the

  19. High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy.

    Science.gov (United States)

    Parker, Katherine H; Horn, Lucas A; Ostrand-Rosenberg, Suzanne

    2016-09-01

    Myeloid-derived suppressor cells are immune-suppressive cells that are elevated in most individuals with cancer, where their accumulation and suppressive activity are driven by inflammation. As myeloid-derived suppressor cells inhibit anti-tumor immunity and promote tumor progression, we are determining how their viability is regulated. Previous studies have established that the damage-associated molecular pattern molecule high-mobility group box protein 1 drives myeloid-derived suppressor cell accumulation and suppressive potency and is ubiquitously present in the tumor microenvironment. As high-mobility group box protein 1 also facilitates tumor cell survival by inducing autophagy, we sought to determine if high-mobility group box protein 1 regulates myeloid-derived suppressor cell survival through induction of autophagy. Inhibition of autophagy increased the quantity of apoptotic myeloid-derived suppressor cells, demonstrating that autophagy extends the survival and increases the viability of myeloid-derived suppressor cells. Inhibition of high-mobility group box protein 1 similarly increased the level of apoptotic myeloid-derived suppressor cells and reduced myeloid-derived suppressor cell autophagy, demonstrating that in addition to inducing the accumulation of myeloid-derived suppressor cells, high-mobility group box protein 1 sustains myeloid-derived suppressor cell viability. Circulating myeloid-derived suppressor cells have a default autophagic phenotype, and tumor-infiltrating myeloid-derived suppressor cells are more autophagic, consistent with the concept that inflammatory and hypoxic conditions within the microenvironment of solid tumors contribute to tumor progression by enhancing immune-suppressive myeloid-derived suppressor cells. Overall, these results demonstrate that in addition to previously recognized protumor effects, high-mobility group box protein 1 contributes to tumor progression by increasing myeloid-derived suppressor cell viability by

  20. Factor B structure provides insights into activation of the central protease of the complement system

    NARCIS (Netherlands)

    Milder, F.J.; Gomes, L.; Schouten, A.; Janssen, B.J.C.; Huizinga, E.G.; Romijn, R.A.; Hemrika, W.; Roos, A; Daha, M.R.; Gros, P.

    2007-01-01

    Factor B is the central protease of the complement system of immune defense. Here, we present the crystal structure of human factor B at 2.3-A° resolution, which reveals how the five-domain proenzyme is kept securely inactive. The canonical activation helix of the Von Willebrand factor A (VWA) domai

  1. Role of HMW kininogen in surface-mediated activation of Factor XII.

    Science.gov (United States)

    Shimada, T; Sugo, T; Kato, H; Iwanaga, S

    1983-01-01

    We have shown that bovine HMW kininogen remarkably accelerates the activation of Factor XII and prekallikrein in the presence of kaolin, adsorbing on kaolin through the fragment 1.2 region and forming a complex with prekallikrein through the light chain region (Sugo et al., 1980; Ikari et al., 1981). The present study was undertaken to examine the role of HMW kininogen in the activation of Factor XII and prekallikrein with other negatively-charged surfaces. The activation system used here was as follows; (1) Activation of prekallikrein by Factor XII, (2) Activation of Factor XII by plasma kallikrein and (3) Activation of prekallikrein by Factor XIIa. Among a variety of foreign surfaces, amylose sulfate and sulfatide were the most efficient in the activation reaction of Factor XII and prekallikrein. Bovene HMW kininogen accelerated all the three reactions triggered by these surfaces. However, the accelerating effect of HMW kininogen on the activation of Factor XII by plasma kallikrein was very weak, when amylose sulfate or sulfatide was used as surface. The three reactions were highly dependent on the amounts of HMW kininogen and surfaces contained in the reaction mixtures. Excess amount of them inhibited these reactions. Among the various fragments, which were prepared from HMW kininogen digests with plasma and urinary kallikreins (Sugo et al., 1980), a large fragment consisting of fragment 1.2 and light chain accelerated the reactions. Thus both fragment 1.2 and the light chain region in HMW kininogen were essential for these activation reactions.

  2. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells.

    OpenAIRE

    Cushing, S D; Berliner, J A; Valente, A. J.; Territo, M C; Navab, M; Parhami, F; Gerrity, R; Schwartz, C J; Fogelman, A M

    1990-01-01

    After exposure to low density lipoprotein (LDL) that had been minimally modified by oxidation (MM-LDL), human endothelial cells (EC) and smooth muscle cells (SMC) cultured separately or together produced 2- to 3-fold more monocyte chemotactic activity than did control cells or cells exposed to freshly isolated LDL. This increase in monocyte chemotactic activity was paralleled by increases in mRNA levels for a monocyte chemotactic protein 1 (MCP-1) that is constitutively produced by the human ...

  3. Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mRNA expression in spleens of mice exposed to the trichothecene vomitoxin.

    Science.gov (United States)

    Zhou, Hui-Ren; Islam, Zahidul; Pestka, James J

    2003-03-01

    Since proinflammatory cytokine mRNA expression is induced within lymphoid tissue in vivo by the trichothecene vomitoxin (VT) in a rapid (1-2 h) and transient (4-8 h) fashion, it was hypothesized that mitogen-activated protein kinases (MAPKs) and transcription factors associated upstream with gene transcription of these cytokines are activated prior to or within these time windows. To test this hypothesis, mice were first treated with a single oral dose of VT and then analyzed for MAPK phosphorylation in the spleen. As little as 1 mg/kg of VT induced JNK 1/2, ERK 1/2, and p38 phosphorylation with maximal effects being observed at 5 to 100 mg/kg of VT. VT transiently induced JNK and p38 phosphorylation over a 60-min time period with peak effects being observed at 15 and 30 min, respectively. In contrast, ERK remained phosphorylated from 15 to 120 min. Next, the binding of activating protein 1 (AP-1), CCAAT enhancer-binding protein (C/EBP), CRE-binding protein (CREB), and nuclear factor-kappaB (NF-kappaB) was measured by electrophoretic mobility shift assay (EMSA) using four different consensus transcriptional control motifs at 0, 0.5, 1.5, 4, and 8 h after oral exposure to 25 mg/kg of VT. AP-1 binding activity was differentially elevated from 0.5 h to 8 h, whereas C/EBP binding was elevated only at 0.5 h. CREB binding decreased slightly at 0.5 h but gradually increased, reaching a maximum at 4 h. NF-kappaB binding was increased only slightly at 4 and 8 h. The specificities of AP-1, C/EBP, CREB, and NF-kappaB for relevant DNA motifs were verified by competition assays, using an excess of unlabeled consensus and mutant oligonucleotides. Supershift EMSAs and Western blot analysis identified specific VT-inducible DNA binding proteins for AP-1 (cJun, phospho c-jun, JunB, and JunD), C/EBP (C/EBPbeta), CREB (CREB-1 and ATF-2), and NF-kappaB (p50 and cRel). Finally, when the effects of oral VT exposure on proinflammatory gene expression were assessed at 3, 6, and 9 h

  4. THE TIME FACTOR IN MARITIME TRANSPORT AND PORT LOGISTICS ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Florin NICOLAE

    2016-06-01

    Full Text Available Execution of the carriage contract requires compliance to all the conditions in it, by all those involved in the transport. Main obligations incumbent upon the vessel, and obviously, to other transporters, who must provide transportation according to deadlines and safety. Contract compliance is certifying transport participants about their seriousness and an appropriate market quotation. Therefore, present work pragmatically sets schematics reference time associated implementation of the carriage contract. Also, are demonstrated relationships established between maritime transport “players” and sequence of activities related to the operation of the vessel in port. The authors propose a set of concepts and terms whose utility is established to solve practical problems in this area of activity.

  5. Are intestinal helminths risk factors for developing active tuberculosis?

    DEFF Research Database (Denmark)

    Elias, Daniel; Mengistu, Getahun; Akuffo, Hannah

    2006-01-01

    OBJECTIVES: To determine the prevalence of intestinal helminth infections in active tuberculosis patients and their healthy household contacts and to assess its association with active TB in an area endemic for both types of infections. METHODS: Smear-positive pulmonary TB patients and healthy...... household contacts were tested for intestinal helminths using direct microscopy and the formol-ether concentration techniques. Three consecutive stool samples were examined before the start of TB chemotherapy. Sputum microscopy was done using the sodium hypochlorite concentration techniques. Participants...... were also tested for HIV by commercial sandwich enzyme linked immunosorbent assay. RESULTS: The study population consisted of 230 smear-positive TB patients and 510 healthy household contacts. The prevalence of intestinal helminths was 71% in patients and 36% in controls. HIV seroprevalence...

  6. Platelet-Derived Short-Chain Polyphosphates Enhance the Inactivation of Tissue Factor Pathway Inhibitor by Activated Coagulation Factor XI

    Science.gov (United States)

    Puy, Cristina; Tucker, Erik I.; Ivanov, Ivan S.; Gailani, David; Smith, Stephanie A.; Morrissey, James H.; Gruber, András; McCarty, Owen J. T.

    2016-01-01

    Introduction Factor (F) XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa) promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα), in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP) derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin. Methods and Results Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma. Conclusions Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP. PMID:27764259

  7. Factors V and VII anticoagulant activities in the salivary glands of feeding Dermacentor andersoni ticks.

    Science.gov (United States)

    Gordon, J R; Allen, J R

    1991-02-01

    The salivary glands of Dermacentor andersoni ticks possess anticoagulant activities that can alter the clotting time of rabbit whole blood. Salivary gland extracts from female ticks inhibit both the intrinsic and extrinsic coagulation systems, and maximal activities against both pathways occur when the ticks attain about 250 mg feeding weight. These anticoagulants are directed against both coagulation factors V and VII, but they do not affect factors II or X. Despite this salivary anticoagulant activity, heavily tick-infested rabbits suffer no visible alteration of their peripheral blood coagulability and have no detectable circulating fibrin degradation products, suggesting that the ticks do not secrete a factor with fibrinolytic activity.

  8. Platelet-activating factor, tumor necrosis factor, hypoxia and necrotizing enterocolitis.

    Science.gov (United States)

    Hsueh, W; Caplan, M S; Sun, X; Tan, X; MacKendrick, W; Gonzalez-Crussi, F

    1994-01-01

    The pathogenesis of necrotizing enterocolitis (NEC) is poorly understood. We have established several animal models of NEC by using a combination of various stimuli and stress, including endotoxin, PAF, TNF, and hypoxia. We discuss the mechanism of their actions and the possible roles of these factors in the pathogenesis of human NEC.

  9. Physical activity, and physical activity related to sports, leisure and occupational activity as risk factors for ALS: A systematic review.

    Science.gov (United States)

    Lacorte, Eleonora; Ferrigno, Luigina; Leoncini, Emanuele; Corbo, Massimo; Boccia, Stefania; Vanacore, Nicola

    2016-07-01

    Amyotrophic lateral sclerosis (ALS) is considered a multifactorial, multisystem neurodegenerative disease due to an interaction between environmental and genetic factors. This systematic review aims at gathering all available evidence on the association between physical activity (PA) and the risk of ALS. Relevant literature published up to January 2015 was gathered through structured searches on Medline, The Cochrane Library, and the ISI Web of Science databases. Studies considering any type of PA as the main exposure and a diagnosis of ALS or motor neuron disease were selected. Data were extracted in standardized forms, and the quality of included studies was assessed using the Newcastle-Ottawa Scale (NOS). Bibliographic searches yielded 3168 records. Nineteen case control studies and 7 cohort studies met the inclusion criteria, and were included in the analysis. Evidence on cumulative measures of PA as a risk factor for ALS remain inconclusive. However, cohort studies report a significantly higher number of cases of ALS in professional soccer and American football players, and a slightly increased risk of ALS in varsity athletes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. X-box binding protein 1 (XBP1s is a critical determinant of Pseudomonas aeruginosa homoserine lactone-mediated apoptosis.

    Directory of Open Access Journals (Sweden)

    Cathleen D Valentine

    Full Text Available Pseudomonas aeruginosa infections are associated with high mortality rates and occur in diverse conditions including pneumonias, cystic fibrosis and neutropenia. Quorum sensing, mediated by small molecules including N-(3-oxo-dodecanoyl homoserine lactone (C12, regulates P. aeruginosa growth and virulence. In addition, host cell recognition of C12 initiates multiple signalling responses including cell death. To gain insight into mechanisms of C12-mediated cytotoxicity, we studied the role of endoplasmic reticulum stress in host cell responses to C12. Dramatic protection against C12-mediated cell death was observed in cells that do not produce the X-box binding protein 1 transcription factor (XBP1s. The leucine zipper and transcriptional activation motifs of XBP1s were sufficient to restore C12-induced caspase activation in XBP1s-deficient cells, although this polypeptide was not transcriptionally active. The XBP1s polypeptide also regulated caspase activation in cells stimulated with N-(3-oxo-tetradecanoyl homoserine lactone (C14, produced by Yersinia enterolitica and Burkholderia pseudomallei, and enhanced homoserine lactone-mediated caspase activation in the presence of endogenous XBP1s. In C12-tolerant cells, responses to C12 including phosphorylation of p38 MAPK and eukaryotic initiation factor 2α were conserved, suggesting that C12 cytotoxicity is not heavily dependent on these pathways. In summary, this study reveals a novel and unconventional role for XBP1s in regulating host cell cytotoxic responses to bacterial acyl homoserine lactones.

  11. Giving children a voice: Exploring qualitative perspectives on factors influencing recess physical activity

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Schipperijn, Jasper; Tjørnhøj-Thomsen, Tine

    2017-01-01

    Facilitators and barriers to recess physical activity are not well understood. To date, research on recess physical activity has predominantly focused on quantitative measures typically focusing on a narrow set of predefined factors, often constructed by adults. To really understand the factors...... affecting recess physical activity it is crucial to observe and listen to children to know how they engage in and perceive recess physical activity. The aim of this paper was to gain knowledge on children’s perceptions and experiences of factors influencing their physical activity behaviour during recess...... 11–12-year-old children. The socio-ecological model was used as the overall theoretical framework. Twelve factors were identified as influencing the children’s recess physical activity: bodily self-esteem and ability; gender; gendered school culture; peer influence; conflicts and exclusion; space...

  12. The Drosophila Transcription Factors Tinman and Pannier Activate and Collaborate with Myocyte Enhancer Factor-2 to Promote Heart Cell Fate.

    Directory of Open Access Journals (Sweden)

    TyAnna L Lovato

    Full Text Available Expression of the MADS domain transcription factor Myocyte Enhancer Factor 2 (MEF2 is regulated by numerous and overlapping enhancers which tightly control its transcription in the mesoderm. To understand how Mef2 expression is controlled in the heart, we identified a late stage Mef2 cardiac enhancer that is active in all heart cells beginning at stage 14 of embryonic development. This enhancer is regulated by the NK-homeodomain transcription factor Tinman, and the GATA transcription factor Pannier through both direct and indirect interactions with the enhancer. Since Tinman, Pannier and MEF2 are evolutionarily conserved from Drosophila to vertebrates, and since their vertebrate homologs can convert mouse fibroblast cells to cardiomyocytes in different activator cocktails, we tested whether over-expression of these three factors in vivo could ectopically activate known cardiac marker genes. We found that mesodermal over-expression of Tinman and Pannier resulted in approximately 20% of embryos with ectopic Hand and Sulphonylurea receptor (Sur expression. By adding MEF2 alongside Tinman and Pannier, a dramatic expansion in the expression of Hand and Sur was observed in almost all embryos analyzed. Two additional cardiac markers were also expanded in their expression. Our results demonstrate the ability to initiate ectopic cardiac fate in vivo by the combination of only three members of the conserved Drosophila cardiac transcription network, and provide an opportunity for this genetic model system to be used to dissect the mechanisms of cardiac specification.

  13. [Risk factors in police activities: operational criticism in surveillance programs].

    Science.gov (United States)

    Ciprani, Fabrizio; Moroni, Maria; Conte, Giovanni

    2014-01-01

    The planning of specific health surveillance programs for police officers is extremely complex due to difficulty in predictability and variety of occupational hazards. Even in the case of conventional occupational risk factors clearly identified by current regulations, particular working conditions may require specific assessment to effectively identify and quantify the risk of occupational exposure. An extensive program of health surveillance, aimed at promoting overall health and effectiveness of the operators, would be really desirable, in order to help better address a number of risks that cannot be easily predicted. The progressive increase in the average age of the working population and the increasing prevalence of chronic degenerative diseases, may also suggest the need for health surveillance procedures designed to verify continued unqualified suitability to police service, providing for the identification of diversified suitability profiles in relation to age and state of health: accordingly, in regard to our field of interest, there is a close link between medico-legal eligibility and occupational medicine.

  14. THE FACTORS THAT INFLUENCE THE ACTIVITY OF ECONOMIC ENTITIES

    Directory of Open Access Journals (Sweden)

    SINTEA(ANGHEL LUCICA

    2014-02-01

    Full Text Available In the current situation many experts and ordinary people are asking themselves: Where is the economy heading? How can we counteract the disruptive factors? Which strategies must be employed? How should the risks be properly assessed in order to diminish them to the lowest level? What measures should be taken to improve the situation? This requires a necessary economic and financial analysis, based on the data from the financial statements, the discovery and application of risk assessment methods and the detection of procedures to mitigate this risk. It is also necessary to draw a comparison between the expected results of a rational and scientific research, and those obtained through empirical processes by means of marketing.

  15. [Family factors influence active commuting to school in Spanish children].

    Science.gov (United States)

    Rodríguez-López, Carlos; Villa-González, Emilio; Pérez-López, Isaac J; Delgado-Fernández, Manuel; Ruiz, Jonatan R; Chillón, Palma

    2013-01-01

    Introducción: El desplazamiento activo al colegio contribuye a aumentar los niveles de actividad física en niños. Los factores familiares pueden determinar dicho comportamiento. Objetivo: El objetivo fue analizar la asociación de la actividad laboral y el desplazamiento al trabajo de los padres con el modo de desplazamiento de sus hijos. Método: Participaron 721 familias de 4 colegios de la provincia de Granada. Las familias completaron un cuestionario sobre el modo de desplazamiento de sus hijos, la actividad laboral y el modo de desplazamiento de los padres, y la distancia y tiempo del trayecto al colegio de sus hijos. Las asociaciones entre la actividad laboral de las familias y modo de desplazamiento al trabajo con el desplazamiento activo al colegio de sus hijos se estudiaron con regresión logística binaria ajustando por distancia al colegio y edad de los hijos. Resultados: Los niños cuyos padres y madres no trabajaban eran más propensos a ir de forma activa al colegio que aquellos donde ambos trabajaban (p = 0,023; OR: 2,67; 95% IC: 1,14-6,23). Los niños cuyos padres y madres se desplazaban de forma activa al trabajo eran más propensos a ir de forma activa al colegio que aquellos donde ambos padres se desplazaban de forma pasiva al trabajo (p = 0,014; OR: 6,30; 95% IC: 1,45-27,26). Conclusión: Los factores familiares estaban relacionados con el modo de desplazamiento de los niños al colegio: en familias con desempleo y en familias con empleo donde los padres se desplazan al trabajo de forma activa, los hijos parecen ser más activos.

  16. WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes

    Directory of Open Access Journals (Sweden)

    Bol John F

    2011-05-01

    Full Text Available Abstract Background Increased defense against a variety of pathogens in plants is achieved through activation of a mechanism known as systemic acquired resistance (SAR. The broad-spectrum resistance brought about by SAR is mediated through salicylic acid (SA. An important step in SA biosynthesis in Arabidopsis is the conversion of chorismate to isochorismate through the action of isochorismate synthase, encoded by the ICS1 gene. Also AVRPPHB SUSCEPTIBLE 3 (PBS3 plays an important role in SA metabolism, as pbs3 mutants accumulate drastically reduced levels of SA-glucoside, a putative storage form of SA. Bioinformatics analysis previously performed by us identified WRKY28 and WRKY46 as possible regulators of ICS1 and PBS3. Results Expression studies with ICS1 promoter::β-glucuronidase (GUS genes in Arabidopsis thaliana protoplasts cotransfected with 35S::WRKY28 showed that over expression of WRKY28 resulted in a strong increase in GUS expression. Moreover, qRT-PCR analyses indicated that the endogenous ICS1 and PBS3 genes were highly expressed in protoplasts overexpressing WRKY28 or WRKY46, respectively. Electrophoretic mobility shift assays indentified potential WRKY28 binding sites in the ICS1 promoter, positioned -445 and -460 base pairs upstream of the transcription start site. Mutation of these sites in protoplast transactivation assays showed that these binding sites are functionally important for activation of the ICS1 promoter. Chromatin immunoprecipitation assays with haemagglutinin-epitope-tagged WRKY28 showed that the region of the ICS1 promoter containing the binding sites at -445 and -460 was highly enriched in the immunoprecipitated DNA. Conclusions The results obtained here confirm results from our multiple microarray co-expression analyses indicating that WRKY28 and WRKY46 are transcriptional activators of ICS1 and PBS3, respectively, and support this in silico screening as a powerful tool for identifying new components of stress

  17. Low-Density Lipoprotein Receptor-Related Protein-1 Protects Against Hepatic Insulin Resistance and Hepatic Steatosis

    Directory of Open Access Journals (Sweden)

    Yinyuan Ding

    2016-05-01

    Full Text Available Low-density lipoprotein receptor-related protein-1 (LRP1 is a multifunctional uptake receptor for chylomicron remnants in the liver. In vascular smooth muscle cells LRP1 controls reverse cholesterol transport through platelet-derived growth factor receptor β (PDGFR-β trafficking and tyrosine kinase activity. Here we show that LRP1 regulates hepatic energy homeostasis by integrating insulin signaling with lipid uptake and secretion. Somatic inactivation of LRP1 in the liver (hLRP1KO predisposes to diet-induced insulin resistance with dyslipidemia and non-alcoholic hepatic steatosis. On a high-fat diet, hLRP1KO mice develop a severe Metabolic Syndrome secondary to hepatic insulin resistance, reduced expression of insulin receptors on the hepatocyte surface and decreased glucose transporter 2 (GLUT2 translocation. While LRP1 is also required for efficient cell surface insulin receptor expression in the absence of exogenous lipids, this latent state of insulin resistance is unmasked by exposure to fatty acids. This further impairs insulin receptor trafficking and results in increased hepatic lipogenesis, impaired fatty acid oxidation and reduced very low density lipoprotein (VLDL triglyceride secretion.

  18. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  19. Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Ingrid Stroo

    Full Text Available Temporal expression of chemokines is a crucial factor in the regulation of renal ischemia/reperfusion (I/R injury and repair. Beside their role in the migration and activation of inflammatory cells to sites of injury, chemokines are also involved in other processes such as angiogenesis, development and migration of stem cells. In the present study we investigated the role of the chemokine MCP-1 (monocyte chemoattractant protein-1 or CCL2, the main chemoattractant for monocytes, during renal I/R injury. MCP-1 expression peaks several days after inducing renal I/R injury coinciding with macrophage accumulation. However, MCP-1 deficient mice had a significant decreased survival and increased renal damage within the first two days, i.e. the acute inflammatory response, after renal I/R injury with no evidence of altered macrophage accumulation. Kidneys and primary tubular epithelial cells from MCP-1 deficient mice showed increased apoptosis after ischemia. Taken together, MCP-1 protects the kidney during the acute inflammatory response following renal I/R injury.

  20. Increasing body condition score is positively associated interleukin-6 and monocyte chemoattractant protein-1 in Labrador retrievers.

    Science.gov (United States)

    Frank, Lauren; Mann, Sabine; Levine, Corri B; Cummings, Bethany P; Wakshlag, Joseph J

    2015-10-15

    The accumulation of excess body fat is a growing problem in dogs as well as people. Contrary to prior understanding of adipose tissue, fat is now considered to be an active endocrine organ that promotes a chronic low-grade inflammatory state often characterized by an increase in pro-inflammatory cytokines and chemokines. These have been implicated in several obesity-related disorders such as insulin resistance, cardiovascular disease, and neoplasia. The purpose of this study was to characterize fasting plasma cytokine concentrations in ninety-two healthy client-owned Labrador retriever dogs of various ages and body condition scores. The dogs were grouped according to body condition score (BCS) into three categories, lean, overweight and obese. The following cytokines and chemokines were evaluated; tumor necrosis factor-alpha, interleukin-2, interleukin-6, interleukin-8, and monocyte chemotactic protein-1 (TNF-α, IL-2, IL-6, IL-8, MCP-1). Our results indicated that fasting plasma IL-6 and MCP-1 concentrations are associated with increasing BCS. This data suggest that certain markers of inflammation increase with increasing body condition score, and that dogs, similar to humans, may be fostering a chronic inflammatory state due to obesity.

  1. Complement 5a Enhances Hepatic Metastases of Colon Cancer via Monocyte Chemoattractant Protein-1-mediated Inflammatory Cell Infiltration.

    Science.gov (United States)

    Piao, Chunmei; Cai, Lun; Qiu, Shulan; Jia, Lixin; Song, Wenchao; Du, Jie

    2015-04-24

    Complement 5a (C5a), a potent immune mediator generated by complement activation, promotes tumor growth; however, its role in tumor metastasis remains unclear. We demonstrate that C5a contributes to tumor metastases by modulating tumor inflammation in hepatic metastases of colon cancer. Colon cancer cell lines generate C5a under serum-free conditions, and C5a levels increase over time in a murine syngeneic colon cancer hepatic metastasis model. Furthermore, in the absence of C5a receptor or upon pharmacological inhibition of C5a production with an anti-C5 monoclonal antibody, tumor metastasis is severely impaired. A lack of C5a receptor in colon cancer metastatic foci reduces the infiltration of macrophages, neutrophils, and dendritic cells, and the role for C5a receptor on these cells were further verified by bone marrow transplantation experiments. Moreover, C5a signaling increases the expression of the chemokine monocyte chemoattractant protein-1 and the anti-inflammatory molecules arginase-1, interleukin 10, and transforming growth factor β, but is inversely correlated with the expression of pro-inflammatory molecules, which suggests a mechanism for the role of C5a in the inflammatory microenvironment required for tumor metastasis. Our results indicate a new and potentially promising therapeutic application of complement C5a inhibitor for the treatment of malignant tumors.

  2. Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury.

    Science.gov (United States)

    Stroo, Ingrid; Claessen, Nike; Teske, Gwendoline J D; Butter, Loes M; Florquin, Sandrine; Leemans, Jaklien C

    2015-01-01

    Temporal expression of chemokines is a crucial factor in the regulation of renal ischemia/reperfusion (I/R) injury and repair. Beside their role in the migration and activation of inflammatory cells to sites of injury, chemokines are also involved in other processes such as angiogenesis, development and migration of stem cells. In the present study we investigated the role of the chemokine MCP-1 (monocyte chemoattractant protein-1 or CCL2), the main chemoattractant for monocytes, during renal I/R injury. MCP-1 expression peaks several days after inducing renal I/R injury coinciding with macrophage accumulation. However, MCP-1 deficient mice had a significant decreased survival and increased renal damage within the first two days, i.e. the acute inflammatory response, after renal I/R injury with no evidence of altered macrophage accumulation. Kidneys and primary tubular epithelial cells from MCP-1 deficient mice showed increased apoptosis after ischemia. Taken together, MCP-1 protects the kidney during the acute inflammatory response following renal I/R injury.

  3. Monocyte Chemoattractant Protein-1 and Large Artery Structure and Function in Young Individuals: The African-PREDICT Study.

    Science.gov (United States)

    Kriel, Johanna I; Fourie, Carla M T; Schutte, Aletta E

    2017-01-01

    To better understand hypertension development, the authors determined whether monocyte chemoattractant protein-1 (MCP-1) is associated with arterial stiffness (pulse wave velocity [PWV]) and carotid intima-media wall thickness (cIMT) in a young apparently healthy black and white population (N=403, aged 20-30 years). Carotid-femoral PWV, central systolic blood pressure, and cIMT were measured, and MCP-1, reactive oxygen species, inflammatory markers (interleukin 6, tumor necrosis factor α), and endothelial activation (intercellular adhesion molecule, vascular cell adhesion molecule) were determined from blood samples. Although carotid-femoral PWV and cIMT were similar between blacks and whites, black men and women showed higher central systolic blood pressure, MCP-1, and reactive oxygen species than whites (all P<.05). In addition, black women had higher brachial blood pressure and interleukin 6 (all P<.001). A consistent positive association only in black women between cIMT and MCP-1 in multiple regression analyses was found (R²=0.151, β=0.248; P=.021). In this model, cIMT was also independently associated with vascular cell adhesion molecule (β=0.251; P=.022). The authors found elevated central systolic blood pressure and MCP-1 in young blacks, where cIMT was independently associated with MCP-1 in black women.

  4. Involvement of platelet-tumor cell interaction in immune evasion. Potential role of podocalyxin-like protein 1

    Directory of Open Access Journals (Sweden)

    Laura eAmo

    2014-09-01

    Full Text Available Besides their essential role in hemostasis and thrombosis, platelets are involved in the onset of cancer metastasis by interacting with tumor cells. Platelets release secretory factors that promote tumor growth, angiogenesis, and metastasis. Furthermore, the formation of platelet-tumor cell aggregates in the bloodstream provides cancer cells with an immune escape mechanism by protecting circulating malignant cells from immune-mediated lysis by natural killer (NK cells. Platelet-tumor cell interaction is accomplished by specific adhesion molecules, including integrins, selectins, and their ligands. Podocalyxin-like protein 1 (PCLP1 is a selectin ligand protein which overexpression has been associated with several aggressive cancers. PCLP1 expression enhances cell adherence to platelets in an integrin-dependent process and through the interaction with P-selectin expressed on activated platelets. However, the involvement of PCLP1-induced tumor-platelet interaction in tumor immune evasion still remains unexplored. The identification of selectin ligands involved in the interaction of platelets with tumor cells may provide help for the development of effective therapies to restrain cancer cell dissemination. This article summarizes the current knowledge on molecules that participate in platelet-tumor cell interaction as well as discusses the potential role of PCLP1 as a molecule implicated in tumor immune evasion.

  5. Activation of the Nuclear Factor E2-Related Factor 2/Antioxidant Response Element Pathway Is Neuroprotective after Spinal Cord Injury

    Science.gov (United States)

    Wang, Xiaoliang; de Rivero Vaccari, Juan Pablo; Wang, Handong; Diaz, Paulo; German, Ramon; Marcillo, Alex E.

    2012-01-01

    Abstract The activation of oxidative damage, neuroinflammation, and mitochondrial dysfunction has been implicated in secondary pathomechanisms following spinal cord injury (SCI). These pathophysiological processes lead to cell death and are tightly regulated by nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE) signaling. Here, we investigated whether activation of Nrf2/ARE is neuroprotective following SCI. Female Fischer rats were subjected to mild thoracic SCI (T8) using the New York University injury device. As early as 30 min after SCI, levels of Nrf2 transcription factor were increased in both nuclear and cytoplasmic fractions of neurons and astrocytes at the lesion site and remained elevated for 3 days. Treatment of injured rats with sulforaphane, an activator of Nrf2/ARE signaling, significantly increased levels of Nrf2 and glutamate-cysteine ligase (GCL), a rate-limiting enzyme for synthesis of glutathione, and decreased levels of inflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) thus leading to a reduction in contusion volume and improvement in coordination. These results show that activation of the Nrf2/ARE pathway following SCI is neuroprotective and that sulforaphane is a viable compound for neurotherapeutic intervention in blocking pathomechanisms following SCI. PMID:21806470

  6. Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective after spinal cord injury.

    Science.gov (United States)

    Wang, Xiaoliang; de Rivero Vaccari, Juan Pablo; Wang, Handong; Diaz, Paulo; German, Ramon; Marcillo, Alex E; Keane, Robert W

    2012-03-20

    The activation of oxidative damage, neuroinflammation, and mitochondrial dysfunction has been implicated in secondary pathomechanisms following spinal cord injury (SCI). These pathophysiological processes lead to cell death and are tightly regulated by nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE) signaling. Here, we investigated whether activation of Nrf2/ARE is neuroprotective following SCI. Female Fischer rats were subjected to mild thoracic SCI (T8) using the New York University injury device. As early as 30 min after SCI, levels of Nrf2 transcription factor were increased in both nuclear and cytoplasmic fractions of neurons and astrocytes at the lesion site and remained elevated for 3 days. Treatment of injured rats with sulforaphane, an activator of Nrf2/ARE signaling, significantly increased levels of Nrf2 and glutamate-cysteine ligase (GCL), a rate-limiting enzyme for synthesis of glutathione, and decreased levels of inflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) thus leading to a reduction in contusion volume and improvement in coordination. These results show that activation of the Nrf2/ARE pathway following SCI is neuroprotective and that sulforaphane is a viable compound for neurotherapeutic intervention in blocking pathomechanisms following SCI.

  7. Hypoperfusion in severely injured trauma patients is associated with reduced coagulation factor activity.

    Science.gov (United States)

    Jansen, Jan O; Scarpelini, Sandro; Pinto, Ruxandra; Tien, Homer C; Callum, Jeannie; Rizoli, Sandro B

    2011-11-01

    Recent studies have shown that acute traumatic coagulopathy is associated with hypoperfusion, increased plasma levels of soluble thrombomodulin, and decreased levels of protein C but with no change in factor VII activity. These findings led to the hypothesis that acute traumatic coagulopathy is primarily due to systemic anticoagulation, by activated protein C, rather than decreases in serine protease activity. This study was designed to examine the effect of hypoperfusion secondary to traumatic injury on the activity of coagulation factors. Post hoc analysis of prospectively collected data on severely injured adult trauma patients presenting to a single trauma center within 120 minutes of injury. Venous blood was analyzed for activity of factors II, V, VII, VIII, IX, X, and XI. Base deficit from arterial blood samples was used as a marker of hypoperfusion. Seventy-one patients were identified. The activity of factors II, V, VII, IX, X, and XI correlated negatively with base deficit, and after stratification into three groups, based on the severity of hypoperfusion, a statistically significant dose-related reduction in the activity of factors II, VII, IX, X, and XI was observed. Hypoperfusion is also associated with marked reductions in factor V activity levels, but these appear to be relatively independent of the degree of hypoperfusion. The activity of factor VIII did not correlate with base deficit. Hypoperfusion in trauma patients is associated with a moderate, dose-dependent reduction in the activity of coagulation factors II, VII, IX, X, and XI, and a more marked reduction in factor V activity, which is relatively independent of the severity of shock. These findings suggest that the mechanisms underlying decreased factor V activity--which could be due to activated protein C mediated cleavage, thus providing a possible link between the proposed thrombomodulin/thrombin-APC pathway and the serine proteases of the coagulation cascade--and the reductions in factors

  8. Common Salivary Protein 1 in Serum of Diabetes Patients.

    Science.gov (United States)

    Wang, HongTao; Heo, Seok-Mo; Jin, Heung Yong; Choi, Eui Yul; Oh, Sang Wook

    2016-11-01

    Recently, the human common salivary protein 1 (CSP1) was identified as an ortholog of the Demilune cell and parotid protein of mouse. However, its function remains to be determined. Here, we show that the serum CSP1 concentration of diabetes mellitus (DM) patients is much higher than that of healthy controls. Recombinant human CSP1 was expressed as a Glutathione-S-transferase (GST)-tagged protein, and the purified fusion protein was used as an immunogen to generate monoclonal antibody (mAb) to CSP1. The produced mAb was tested as a probe in Western blotting of human saliva and in immunohistochemistry of various human tissues. The serum CSP1 levels of 31 DM patients and 38 normal adults were quantified by a house-fabricated CSP1 sandwich enzyme-linked immunosorbent assay (ELISA) system. Immunoblot analysis by mAb-hCSP1#4 showed that CSP1 in human saliva exists in a 27 kDa glycosylated form. Among the various human tissues tested, the salivary gland was the only tissue stained with mAb-hCSP1#4 by immunohistochemistry. Quantification of serum CSP1 concentration by CSP1 ELISA showed that the median values (25th-75th percentile) of DM patients and healthy adults were 22.2 (15.8-28.2) and 3.2 (0-11.4), respectively. Student's t-test results indicated that there was a statistically significant difference between the two groups (P < 0.01). The significant difference between the CSP1 levels of the two groups indicated that CSP1 would be a potential biomarker for detection or screening of DM patients. © 2016 Wiley Periodicals, Inc.

  9. Specific features of domestic banks activity in the factoring services market

    OpenAIRE

    Trygub Olena V.

    2014-01-01

    The article analyses specific features of formation and development of the domestic factoring market. In the result of the study the article establishes that development of factoring in Ukraine took place due to active participation of banking institutions in this process and nowadays they are leaders in the domestic factoring services market due to possessing significant competitive advantages if compared with non-banking companies that specialise in factoring. The article detects that nowad...

  10. Specific features of domestic banks activity in the factoring services market

    Directory of Open Access Journals (Sweden)

    Trygub Olena V.

    2014-01-01

    Full Text Available The article analyses specific features of formation and development of the domestic factoring market. In the result of the study the article establishes that development of factoring in Ukraine took place due to active participation of banking institutions in this process and nowadays they are leaders in the domestic factoring services market due to possessing significant competitive advantages if compared with non-banking companies that specialise in factoring. The article detects that nowadays the banks are not only offerers of factoring services and finance factoring operations of other market participants, but also take an active part in establishment of factoring branches and are consumers of factoring services. In order to accelerate development of international factoring in Ukraine, the article offers such forms of state support of banks, which render factoring services to domestic exporters. The article recommends to focus banks’ attention, under modern conditions that are characterised with volatility of financial markets, on factoring servicing of those clients, whom they have long business relations with, without jeopardising themselves through provision of factoring services to a big number of small debtors. The article provides schemes of banks’ co-operation in the sphere of “non-classic” factoring with accredited factoring companies.

  11. Heat Shock Factor-1 and Nuclear Factor-kappaB Are Systemically Activated in Human Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Derek A O’Reilly

    2006-03-01

    Full Text Available Context :Nuclear factor-kappa B (NFkappaB is a transcription factor for a wide range of proinflammatory mediators while heat shock factor-1 (HSF-1 transcribes stress proteins that protect against cellular damage. Both are attractive therapeutic targets, undergoing investigation in other acute inflammatory conditions, such as sepsis. Objective :To evaluate the role of the transcription factors NF-kappaB and HSF-1 in human acute pancreatitis and their relationship to cytokine/chemokine production, disease severity and outcome. Patients :Twenty-four patients with acute pancreatitis and 12 healthy controls. Main outcome measures :Peripheral blood mononuclear cells were isolated. NF-kappaB and HSF-1 were measured by electrophoretic mobility shift assay. Soluble tumor necrosis factor (TNF receptor II and interleukin-8 were measured by ELISA. Acute physiology scores (APS, APACHE II scores and final Atlanta designations of severity were also determined. Results: Systemic NF-kappaB activation occurs in acute pancreatitis compared to healthy controls (P=0.004. However, there was no significant difference between those with mild and severe disease (P=0.685. Systemic activation of HSF-1 was observed in acute pancreatitis compared to healthy controls although this did not reach statistical significance (P=0.053. Activation, however, was greatest in those who had a final Atlanta designation of mild pancreatitis compared to those who had a severe attack of acute pancreatitis (P=0.036. Furthermore, HSF-1 was inversely correlated with acute physiology score (APS; r=-0.49, P=0.019 and APACHE II score (r=-0.47, P=0.026. Conclusions: Both NF-kappaB and HSF-1 are systemically activated in human acute pancreatitis. HSF-1 activation may protect against severity of pancreatitis

  12. Vascular endothelial growth factor activities on osteoarthritic chondrocytes.

    Science.gov (United States)

    Pulsatelli, L; Dolzani, P; Silvestri, T; Frizziero, L; Facchini, A; Meliconi, R

    2005-01-01

    Evaluation of the role of VEGF in cartilage pathophysiology. VEGF release from chondrocytes in the presence of IL-1beta, TGFbeta and IL-10 was detected by immunoassay. VEGF receptor -1 and -2 expression and VEGF ability to modulate caspase -3 and cathepsin B expression were detected by immunohistochemistry on cartilage biopsies and cartilage explants. VEGF effects on chondrocyte proliferation was analysed by a fluorescent dye that binds nucleic acids. VEGF production by osteoartritis (OA) chondrocytes was significantly reduced by IL-1beta while it was increased in the presence of TGFbeta. Cartilage VEGFR-1 immunostaining was significantly downregulated in 'early' OA patients compared to normal controls (NC). VEGFR-2 expression was negligible both in OA and in NC. VEGF decreased the expression of caspase-3 and cathepsin B, whereas it did not affect proliferation. VEGF is able to down-modulate chondrocyte activities related to catabolic events involved in OA cartilage degradation.

  13. Transforming Growth Factor-β Signaling Pathway Activation in Keratoconus

    Science.gov (United States)

    ENGLER, CHRISTOPH; CHAKRAVARTI, SHUKTI; DOYLE, JEFFERSON; EBERHART, CHARLES G.; MENG, HUAN; STARK, WALTER J.; KELLIHER, CLARE; JUN, ALBERT S.

    2011-01-01

    PURPOSE To assess the presence of transforming growth factor-β (TGFβ) pathway markers in the epithelium of keratoconus patient corneas. DESIGN Retrospective, comparative case series of laboratory specimens. METHODS Immunohistochemistry results for TGFβ2, total TGFβ, mothers against decacentaplegic homolog (Smad) 2, and phosphorylated Smad2 was performed on formalin-fixed, paraffin-embedded sections of keratoconus patient corneas and normal corneas from human autopsy eyes. Keratoconus patient corneas were divided in two groups, depending on their severity based on keratometer readings and pachymetry. Autopsy controls were age-matched with the keratoconus cases. Immunohistochemistry signal quantification was performed using automated software. Real-time reverse-transcriptase polymerase chain reaction was performed on total ribonucleic acid of epithelium of keratoconus patient corneas and autopsy control corneas. RESULTS Immunohistochemistry quantification showed a significant increase in mean signal in the group of severe keratoconus cases compared with normal corneas for TGFβ2 and phosphorylated Smad2 (P keratoconus cases versus the autopsy controls. Reverse-transcriptase polymerase chain reaction exhibited elevated messenger ribonucleic acid levels of Smad2 and TGFβ2 in severe keratoconus corneal epithelium. CONCLUSIONS This work shows increased TGFβ pathway markers in severe keratoconus cases and provides the rationale for investigating TGFβ signaling further in the pathophysiology of keratoconus. PMID:21310385

  14. Brain-derived neurotrophic factor and epidermal growth factor activate neuronal m-calpain via mitogen-activated protein kinase-dependent phosphorylation.

    Science.gov (United States)

    Zadran, Sohila; Jourdi, Hussam; Rostamiani, Karoline; Qin, Qingyu; Bi, Xiaoning; Baudry, Michel

    2010-01-20

    Calpain is a calcium-dependent protease that plays a significant role in synaptic plasticity, cell motility, and neurodegeneration. Two major calpain isoforms are present in brain, with mu-calpain (calpain1) requiring micromolar calcium concentrations for activation and m-calpain (calpain2) needing millimolar concentrations. Recent studies in fibroblasts indicate that epidermal growth factor (EGF) can activate m-calpain independently of calcium via mitogen-activated protein kinase (MAPK)-mediated phosphorylation. In neurons, MAPK is activated by both brain-derived neurotrophic factor (BDNF) and EGF. We therefore examined whether these growth factors could activate m-calpain by MAPK-dependent phosphorylation using cultured primary neurons and HEK-TrkB cells, both of which express BDNF and EGF receptors. Calpain activation was monitored by quantitative analysis of spectrin degradation and by a fluorescence resonance energy transfer (FRET)-based assay, which assessed the truncation of a calpain-specific peptide flanked by the FRET fluorophore pair DABCYL and EDANS. In both cell types, BDNF and EGF rapidly elicited calpain activation, which was completely blocked by MAPK and calpain inhibitors. BDNF stimulated m-calpain but not mu-calpain serine phosphorylation, an effect also blocked by MAPK inhibitors. Remarkably, BDNF- and EGF-induced calpain activation was preferentially localized in dendrites and dendritic spines of hippocampal neurons and was associated with actin polymerization, which was prevented by calpain inhibition. Our results indicate that, in cultured neurons, both BDNF and EGF activate m-calpain by MAPK-mediated phosphorylation. These results strongly support a role for calpain in synaptic plasticity and may explain why m-calpain, although widely expressed in CNS, requires nonphysiological calcium levels for activation.

  15. Bone morphogenetic protein-1 and its related metalloproteinase%骨形态发生蛋白-1及其相关金属蛋白酶

    Institute of Scientific and Technical Information of China (English)

    陈冬瑛; 朱全胜; 丘钜世

    2004-01-01

    Bone morphogenetic protein-1(BMP-1) and its related molecules are members of metalloendoproteinase astacin family, including BMP-1, mTLD, mTLL-1 and mTLL-2. Even though all of them lack of the ability to induce bone or cartilage formation directly, they play key roles in numerable activities in ECM from embryo to adult, then affect the procedure and the result of osteogenesis and bone remodeling directly or indirectly. They are critical in maturation and deposition of some major collagen types, and in regulating the signaling of some growth factors in TGF-β superfamily by degradation of TGF-β inhibitor such as Chordin. The investigations about tissue distribution of BMP-1 and its related proteinases and also gene knock-out studies strongly indicate that they play key roles in osteogenesis and bone development.

  16. The enhancement of astrocytic-derived monocyte chemoattractant protein-1 induced by the interaction of opiate and HIV tat in HIV-associated dementia

    Institute of Scientific and Technical Information of China (English)

    Xiao Han

    2009-01-01

    HIV-assodated dementia (HAD) is a public health problem and is particularly prevalent in drug abusers. The neuropathogenesis of human immunodeficiency virus (HIV) infection involves a complex cascade of inflammatory events, including monocyte/macrophage infiltration in the brain, glial immune activation and release of neurotoxic substances. In these events, astrocytic-derived monocyte chemoattractant protein-1 (MCP-1) plays an important role, whose release is elevated by HIV transactivator of transcription (HIV tat) and could be further elevated by opiates. This review will also consider some critical factors and events in MCP-1 enhancement induced by the interactions of opiate and HIV tat, including the mediating role of mu opioid receptor (MOR) and CCR2 as well as the possible signal transduction pathways within the cells. Finally, it will make some future perspectives on the exact pathways, new receptors and target cells, and the vulnerability to neurodegeneration with HIV and opiates.

  17. Factors Associated with High Levels of Physical Activity among Adults with Intellectual Disability

    Science.gov (United States)

    Temple, Viviene A.

    2009-01-01

    The aim was to identify factors associated with physical activity participation among active (i.e. more than or equal to 10 000 steps per day) individuals with intellectual disability. Staff at day program and supported employment organizations were asked to identify individuals they believed were physically active. To verify participants were…

  18. Factor VII-activating protease in patients with acute deep venous thrombosis

    DEFF Research Database (Denmark)

    Sidelmann, Johannes J; Vitzthum, Frank; Funding, Eva;

    2008-01-01

    Factor VII-activating protease (FSAP) is involved in haemostasis and inflammation. FSAP cleaves single chain urokinase-type plasminogen activator (scu-PA). The 1601GA genotype of the 1601G/A polymorphism in the FSAP gene leads to the expression of a FSAP variant with reduced ability to activate scu...

  19. T cells activate the tumor necrosis factor-alpha system during hemodialysis, resulting in tachyphylaxis

    NARCIS (Netherlands)

    van Riemsdijk, I C; Baan, C C; Loonen, E H; Knoop, C J; Navarro Betonico, G; Niesters, H G; Zietse, R; Weimar, W

    2001-01-01

    BACKGROUND: The immunosuppressive state of hemodialysis (HD) patients is accompanied by activation of antigen-presenting cell-derived cytokines, for example, tumor necrosis factor-alpha (TNF-alpha), which are required for T-cell activation. To test whether an activated TNF-alpha system results in im

  20. Molecular Basis of Enhanced Activity in Factor VIIa-Trypsin Variants Conveys Insights into Tissue Factor-mediated Allosteric Regulation of Factor VIIa Activity

    DEFF Research Database (Denmark)

    Sorensen, Anders B.; Madsen, Jesper Jonasson; Svensson, L. Anders;

    2016-01-01

    The complex of coagulation factor VIIa (FVIIa), a trypsin-like serine protease, and membrane-bound tissue factor (TF) initiates blood coagulation upon vascular injury. Binding of TF to FVIIa promotes allosteric conformational changes in the FVIIa protease domain and improves its catalytic propert...

  1. Cisplatin Induces Cytotoxicity through the Mitogen-Activated Protein Kinase Pathways ana Activating Transcription Factor 3

    Directory of Open Access Journals (Sweden)

    Carly St. Germain

    2010-07-01

    Full Text Available The mechanisms underlying the proapoptotic effect of the chemotherapeutic agent, cisplatin, are largely undefined. Understanding the mechanisms regulating cisplatin cytotoxicity may uncover strategies to enhance the efficacy of this important therapeutic agent. This study evaluates the role of activating transcription factor 3 (ATF3 as a mediator of cisplatin-induced cytotoxicity. Cytotoxic doses of cisplatin and carboplatin treatments consistently induced ATF3 expression in five tumor-derived cell lines. Characterization of this induction revealed a p53, BRCA1, and integrated stress response-independent mechanism, all previously implicated in stress-mediated ATF3 induction. Analysis of mitogenactivated protein kinase (MAPK pathway involvement in ATF3 induction by cisplatin revealed a MAPK-dependent mechanism. Cisplatin treatment combined with specific inhibitors to each MAPK pathway (c-Jun N-terminal kinase, extracellularsignal-regulated kinase, and p38 resulted in decreasedATF3 induction at the protein level. MAPK pathway inhibition led to decreased ATF3 messenger RNA expression and reduced cytotoxic effects of cisplatin as measured by the 3-(4,5-dimethylthiazol-2-ylF2,5-diphenyltetrazolium bromide cell viability assay. In A549 lung carcinoma cells, targeting ATF3 with specific small hairpin RNA also attenuated the cytotoxic effects of cisplatin. Similarly, ATF3-/murine embryonic fibroblasts (MEFs were shown to be less sensitive to cisplatin-induced cytotoxicity compared with ATF3+/+ MEFs. This study identifies cisplatin as a MAPK pathway-dependent inducer of ATF3, whose expression influences cisplatin’s cytotoxic effects.

  2. Predicting involvement in prison gang activity: street gang membership, social and psychological factors.

    Science.gov (United States)

    Wood, Jane L; Alleyne, Emma; Mozova, Katarina; James, Mark

    2014-06-01

    The aim of this study was to examine whether street gang membership, psychological factors, and social factors such as preprison experiences could predict young offenders' involvement in prison gang activity. Data were collected via individual interviews with 188 young offenders held in a Young Offenders Institution in the United Kingdom. Results showed that psychological factors such as the value individuals attached to social status, a social dominance orientation, and antiauthority attitudes were important in predicting young offenders' involvement in prison gang activity. Further important predictors included preimprisonment events such as levels of threat, levels of individual delinquency, and levels of involvement in group crime. Longer current sentences also predicted involvement in prison gang activity. However, street gang membership was not an important predictor of involvement in prison gang activity. These findings have implications for identifying prisoners involved in prison gang activity and for considering the role of psychological factors and group processes in gang research.

  3. Sexual activity and cardiac risk: is depression a contributing factor?

    Science.gov (United States)

    Roose, S P; Seidman, S N

    2000-07-20

    There is a well-documented association between depression, ischemic heart disease, and cardiovascular mortality. This association has a number of dimensions including: (1) depressed patients have a higher than expected rate of sudden cardiovascular death; (2) over the course of a lifetime, patients with depression develop symptomatic and fatal ischemic heart disease at a higher rate compared with a nondepressed group; and (3) depression after myocardial infarction (MI) is associated with increased cardiac mortality. Depression is also associated with sexual dysfunction, particularly erectile dysfunction. If depression is the primary illness, then erectile dysfunction can be considered a symptom of the depressive illness. However, if the erectile dysfunction is primary, men may develop a depressive syndrome in reaction to the loss of sexual function. Regardless of whether erectile dysfunction is a symptom of depression or depression is a consequence of erectile dysfunction, these conditions are frequently comorbid. Thus, the patient with ischemic heart disease who is depressed is more likely to have erectile difficulties. An attempt by this patient to engage in sexual activity is therefore more likely to be unsuccessful and, given the increase in cardiac mortality associated with depression, it may result in a serious cardiac event.

  4. Pregnenolone sulfate activates basic region leucine zipper transcription factors in insulinoma cells: role of voltage-gated Ca2+ channels and transient receptor potential melastatin 3 channels.

    Science.gov (United States)

    Müller, Isabelle; Rössler, Oliver G; Thiel, Gerald

    2011-12-01

    The neurosteroid pregnenolone sulfate activates a signaling cascade in insulinoma cells involving activation of extracellular signal-regulated protein kinase and enhanced expression of the transcription factor Egr-1. Here, we show that pregnenolone sulfate stimulation leads to a significant elevation of activator protein-1 (AP-1) activity in insulinoma cells. Expression of the basic region leucine zipper (bZIP) transcription factors c-Jun and c-Fos is up-regulated in insulinoma cells and pancreatic β-cells in primary culture after pregnenolone sulfate stimulation. Up-regulation of a chromatin-embedded c-Jun promoter/luciferase reporter gene transcription in pregnenolone sulfate-stimulated insulinoma cells was impaired when the AP-1 binding sites were mutated, indicating that these motifs function as pregnenolone sulfate response elements. In addition, phosphorylation of cAMP response element (CRE)-binding protein is induced and transcription of a CRE-controlled reporter gene is stimulated after pregnenolone sulfate treatment, indicating that the CRE functions as a pregnenolone sulfate response element as well. Pharmacological and genetic experiments revealed that both L-type Ca(2+) channels and transient receptor potential melastatin 3 (TRPM3) channels are essential for connecting pregnenolone sulfate stimulation with enhanced AP-1 activity and bZIP-mediated transcription in insulinoma cells. In contrast, pregnenolone sulfate stimulation did not enhance AP-1 activity or c-Jun and c-Fos expression in pituitary corticotrophs that express functional L-type Ca(2+) channels but only trace amounts of TRPM3. We conclude that expression of L-type Ca(2+) channels is not sufficient to activate bZIP-mediated gene transcription by pregnenolone sulfate. Rather, additional expression of TRPM3 or depolarization of the cells is required to connect pregnenolone sulfate stimulation with enhanced gene transcription.

  5. Increasing Physical Activity Decreases Hepatic Fat and Metabolic Risk Factors.

    Science.gov (United States)

    Alderete, Tanya L; Gyllenhammer, Lauren E; Byrd-Williams, Courtney E; Spruijt-Metz, Donna; Goran, Michael I; Davis, Jaimie N

    2012-04-01

    This study assessed the changes in time spent in moderate to vigorous physical activity (MVPA) on fat depots, insulin action, and inflammation. Longitudinal data were generated from 66 Hispanic adolescents (15.6±1.1 yr; BMI percentile 97.1±3.0) who participated in a 16-wk nutrition or nutrition+exercise intervention. There were no effects of the intervention on PA, but there were inter-individual changes in PA. For purposes of this analysis, all intervention groups were combined to assess how changes in PA during 16 wk affected changes in adiposity, insulin action, and markers of inflammation. MVPA was assessed by 7-day accelerometry, total body fat via DXA, liver fat by MRI, and insulin, glucose and HOMA-IR via a fasting blood draw. A repeated measures ANCOVA was used to assess the effect of MVPA on fat depots, insulin action, and inflammatory markers. Sixty-two percent of participants increased MVPA (mean increase, 19.7±16.5 min/day) and 38% decreased MVPA (mean decrease, 10.7±10.1 min/day). Those who increased MVPA by as little as 20 min per day over 16 wk, compared to those who decreased MVPA, had significant reductions in liver fat (-13% vs. +3%; P=0.01), leptin levels (-18% vs. +4%; P=0.02), and fasting insulin (-23% vs. +5%; P=0.05). These findings indicate that a modest increase in MVPA can improve metabolic health in sedentary overweight Hispanic adolescents.

  6. A correction factor to f-chart predictions of active solar fraction in active-passive heating systems

    Science.gov (United States)

    Evans, B. L.; Beckman, W. A.; Duffie, J. A.; Mitchell, J. W.; Klein, S. A.

    1983-11-01

    The extent to which a passive system degrades the performance of an active solar space heating system was investigated, and a correction factor to account for these interactions was developed. The transient system simulation program TRNSYS is used to simulate the hour-by-hour performance of combined active-passive (hybrid) space heating systems in order to compare the active system performance with simplified design method predictions. The TRNSYS simulations were compared to results obtained using the simplified design calculations of the f-Chart method. Comparisons of TRNSYS and f-Chart were used to establish the accuracy of the f-Charts for active systems. A correlation was then developed to correct the monthly loads input into the f-Chart method to account for controller deadbands in both hybrid and active only buildings. A general correction factor was generated to be applied to the f-Chart method to produce more accurate and useful results for hybrid systems.

  7. Plasma levels of plasminogen activator inhibitor type 1, factor VIII, prothrombin activation fragment 1+2, anticardiolipin, and antiprothrombin antibodies are risk factors for thrombosis in hemodialysis patients.

    Science.gov (United States)

    Molino, Daniela; De Santo, Natale G; Marotta, Rosa; Anastasio, Pietro; Mosavat, Mahrokh; De Lucia, Domenico

    2004-09-01

    Patients with end-stage renal disease are prone to hemorrhagic complications and simultaneously are at risk for a variety of thrombotic complications such as thrombosis of dialysis blood access, the subclavian vein, coronary arteries, cerebral vessel, and retinal veins, as well as priapism. The study was devised for the following purposes: (1) to identify the markers of thrombophilia in hemodialyzed patients, (2) to establish a role for antiphospholipid antibodies in thrombosis of the vascular access, (3) to characterize phospholipid antibodies in hemodialysis patients, and (4) to study the effects of dialysis on coagulation cascade. A group of 20 hemodialysis patients with no thrombotic complications (NTC) and 20 hemodialysis patients with thrombotic complications (TC) were studied along with 400 volunteer blood donors. Patients with systemic lupus erythematosus and those with nephrotic syndrome were excluded. All patients underwent a screening prothrombin time, activated partial thromboplastin time, fibrinogen (Fg), coagulation factors of the intrinsic and extrinsic pathways, antithrombin III (AT-III), protein C (PC), protein S (PS), resistance to activated protein C, prothrombin activation fragment 1+2 (F1+2), plasminogen, tissue type plasminogen activator (t-PA), plasminogen tissue activator inhibitor type-1 (PAI-1), anticardiolipin antibodies type M and G (ACA-IgM and ACA-IgG), lupus anticoagulant antibodies, and antiprothrombin antibodies type M and G (aPT-IgM and aPT-IgG). The study showed that PAI-1, F 1+2, factor VIII, ACA-IgM, and aPT-IgM levels were increased significantly over controls both in TC and NTC, however, they could distinguish patients with thrombotic complications from those without, being increased maximally in the former group. The novelty of the study is represented by the significant aPT increase that was observed in non-systemic lupus erythematosus hemodialysis patients, and particularly in those with thrombotic events. In addition

  8. An increase in circulating B cell-activating factor in childhood-onset ocular myasthenia gravis.

    Science.gov (United States)

    Motobayashi, Mitsuo; Inaba, Yuji; Nishimura, Takafumi; Kobayashi, Norimoto; Nakazawa, Yozo; Koike, Kenichi

    2015-04-01

    Myasthenia gravis is a B cell-mediated autoimmune disorder. The pathophysiology of childhood-onset ocular myasthenia gravis remains unclear. We investigated serum B cell-activating factor levels and other immunological parameters in child patients with ocular myasthenia gravis. Blood samples were obtained from 9 children with ocular myasthenia gravis and 20 age-matched controls. We assayed serum concentrations of B cell-activating factor, anti-acetylcholine receptor antibody titers, 7 types of cytokines (interleukins-2, -4, -6, -10, and -17A; interferon-γ; tumor necrosis factor-α) as well as the percentages of peripheral blood CD4+, CD8+, and CD19+ cells. Serum B cell-activating factor levels were significantly higher before immunosuppressive therapy in patients with childhood-onset ocular myasthenia gravis than in controls and decreased after immunosuppressive therapy. A significant positive correlation was observed between serum B cell-activating factor levels and anti-acetylcholine receptor antibody titers in patients with myasthenia gravis. Serum B cell-activating factor concentrations did not correlate with the percentages of CD4+, CD8+, and CD19+ cells or the CD4+/CD8+ ratio. No significant differences were observed in the levels of the 7 different types of cytokines examined, including interleukin-17A, between preimmunosuppressive therapy myasthenia gravis patients and controls. Circulating B cell-activating factor may play a key role in the pathophysiology of childhood-onset ocular myasthenia gravis. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Topical application of recombinant activated factor VII during cesarean delivery for placenta previa.

    Science.gov (United States)

    Schjoldager, Birgit T B G; Mikkelsen, Emmeli; Lykke, Malene R; Præst, Jørgen; Hvas, Anne-Mette; Heslet, Lars; Secher, Niels J; Salvig, Jannie D; Uldbjerg, Niels

    2017-06-01

    During cesarean delivery in patients with placenta previa, hemorrhaging after removal of the placenta is often challenging. In this condition, the extraordinarily high concentration of tissue factor at the placenta site may constitute a principle of treatment as it activates coagulation very effectively. The presumption, however, is that tissue factor is bound to activated factor VII. We hypothesized that topical application of recombinant activated factor VII at the placenta site reduces bleeding without affecting intravascular coagulation. We included 5 cases with planned cesarean delivery for placenta previa. After removal of the placenta, the surgeon applied a swab soaked in recombinant activated factor VII containing saline (1 mg in 246 mL) to the placenta site for 2 minutes; this treatment was repeated once if the bleeding did not decrease sufficiently. We documented the treatment on video recordings and measured blood loss. Furthermore, we determined hemoglobin concentration, platelet count, international normalized ratio, activated partial thrombin time, fibrinogen (functional), factor VII:clot, and thrombin generation in peripheral blood prior to and 15 minutes after removal of the placenta. We also tested these blood coagulation variables in 5 women with cesarean delivery planned for other reasons. Mann-Whitney test was used for unpaired data. In all 5 cases, the uterotomy was closed under practically dry conditions and the median blood loss was 490 (range 300-800) mL. There were no adverse effects of recombinant activated factor VII and we did not measure factor VII to enter the circulation. Neither did we observe changes in thrombin generation, fibrinogen, activated partial thrombin time, international normalized ratio, and platelet count in the peripheral circulation (all P values >.20). This study indicates that in patients with placenta previa, topical recombinant activated factor VII may diminish bleeding from the placenta site without initiation

  10. Stimulation of the human CTP:phosphoethanolamine cytidylyltransferase gene by early growth response protein 1.

    Science.gov (United States)

    Zhu, Lin; Johnson, Christa; Bakovic, Marica

    2008-10-01

    Change in phosphoethanolamine pool size in tumor tissues is an important indicator of tumor prognosis and drug therapy efficacy. Phosphoethanolamine is the substrate of the regulatory enzyme CTP:phosphoethanolamine cytidylyltransfera