WorldWideScience

Sample records for facility project w-520

  1. Design requirements document for project W-520, immobilized low-activity waste disposal

    International Nuclear Information System (INIS)

    Ashworth, S.C.

    1998-01-01

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity

  2. Design requirements document for project W-520, immobilized low-activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, S.C.

    1998-08-06

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity.

  3. Conceptual design statement of work for the immobilized low-activity waste disposal facility, project W-520

    International Nuclear Information System (INIS)

    Pickett, W.W.

    1998-01-01

    This Statement of Work outlines the deliverables and schedule for preparation of the Project W-520 Conceptual Design Report, including, work plans, site development plan, preliminary safety evaluation, and conceptual design

  4. Project W-049H disposal facility test report

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1995-01-01

    The purpose of this Acceptance Test Report (ATR) for the Project W-049H, Treated Effluent Disposal Facility, is to verify that the equipment installed in the Disposal Facility has been installed in accordance with the design documents and function as required by the project criteria

  5. 77 FR 47671 - TA-W-81,520, T-Mobile USA, Inc., Call Center, Allentown, PA; TA-W-81,520G, T-Mobile USA, Inc...

    Science.gov (United States)

    2012-08-09

    ... DEPARTMENT OF LABOR Employment and Training Administration TA-W-81,520, T-Mobile USA, Inc., Call Center, Allentown, PA; TA- W-81,520G, T-Mobile USA, Inc., Headquarters Office, Bellevue, WA; Amended... of T-Mobile USA, Inc., Call Center, Allentown, Pennsylvania (TA-W-81,520), Fort Lauderdale, Florida...

  6. Packaging design criteria (onsite) project W-520 immobilized low-activity waste transportation system

    International Nuclear Information System (INIS)

    BOEHNKE, W.M.

    2001-01-01

    A plan is currently in place to process the high-level radioactive wastes that resulted from uranium and plutonium recovery operations from Spent Nuclear Fuel at the Hanford Site, Richland, Washington. Currently, millions of gallons of high-level radioactive waste in the form of liquids, sludges, and saltcake are stored in many large underground tanks onsite. This waste will be processed and separated into high-level and low-activity fractions. Both fractions will then be vitrified (i.e., blended with molten borosilicate glass) in order to encapsulate the toxic radionuclides. The immobilized low-activity waste (ILAW) glass will be poured into LAW canisters, allowed to cool and harden to solid form, sealed by welding, and then transported to a double-lined trench in the 200 East Area for permanent disposal. This document presents the packaging design criteria (PDC) for an onsite LAW transportation system, which includes the ILAW canister, ILAW package, and transport vehicle and defines normal and accident conditions. This PDC provides the basis for the ILAW onsite transportation system design and fabrication and establishes the transportation safety criteria that the design will be evaluated against in the Package Specific Safety Document (PSSD). It provides the criteria for the ILAW canister, cask and transport vehicles and defines normal and accident conditions. The LAW transportation system is designed to transport stabilized waste from the vitrification facility to the ILAW disposal facility developed by Project W-520. All ILAW transport will take place within the 200 East Area (all within the Hanford Site)

  7. Interface control document for tank waste remediation system privatization phase 1 infrastructure support Project W-519

    International Nuclear Information System (INIS)

    Parazin, R.J.

    1998-01-01

    This document describes the functional and physical interfaces between the Tank Waste Remediation System (TWRS) Privatization Phase 1 Infrastructure Project W-519 and the various other projects (i.e., Projects W-314, W-464, W-465, and W-520) supporting Phase 1 that will require the allocation of land in and about the Privatization Phase 1 Site and/or interface with the utilities extended by Project W-519. Project W-519 will identify land use allocations and upgrade/extend several utilities in the 200-East Area into the Privatization Phase 1 Site (formerly the Grout Disposal Compound) in preparation for the Privatization Contractors (PC) to construct treatment facilities. The project will upgrade/extend: Roads, Electrical Power, Raw Water (for process and fire suppression), Potable Water, and Liquid Effluent collection. The replacement of an existing Sanitary Sewage treatment system that may be displaced by Phase 1 site preparation activities may also be included

  8. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    International Nuclear Information System (INIS)

    Smith, K.E.

    1994-01-01

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design

  9. Test report for run-in acceptance testing of Project W-151 300 HP mixing pumps

    International Nuclear Information System (INIS)

    Berglin, B.G.

    1998-01-01

    This report documents the results of a performance demonstration and operational checkout of three 300 HP mixer pumps in accordance with WHC-SD-WI51-TS-001 ''Mixer Pump Test Specification for Project W-151'' and Statement of Work 8K520-EMN-95-004 ''Mixer Pump Performance Demonstration at MASF'' in the 400 Area Maintenance and Storage Facility (MASF) building. Testing of the pumps was performed by Fast Flux Test Facility (FFTF) Engineering and funded by the Tank Waste Remediation System (TWRS) Project W-151. Testing began with the first pump on 04-01-95 and ended with the third pump on 11-01-96. Prior to testing, the MASF was modified and prepared to meet the pump testing requirements set forth by the Test Specification and the Statement of Work

  10. Project W-441 cold vacuum drying facility design requirements document

    International Nuclear Information System (INIS)

    O'Neill, C.T.

    1997-01-01

    This document has been prepared and is being released for Project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility. This document sets forth the physical design criteria, Codes and Standards, and functional requirements that were used in the design of the Cold Vacuum Drying Facility. This document contains section 3, 4, 6, and 9 of the Cold Vacuum Drying Facility Design Requirements Document. The remaining sections will be issued at a later date. The purpose of the Facility is to dry, weld, and inspect the Multi-Canister Overpacks before transport to dry storage

  11. 340 Facility Secondary Containment and Leak Detection Project W-302 Functional Design Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Stordeur, R.T.

    1995-03-01

    This functional design criteria for the upgrade to the 340 radioactive liquid waste storage facility (Project W-302) specifically addresses the secondary containment issues at the current vault facility of the 340 Complex. This vault serves as the terminus for the Radioactive Liquid Waste System (RLWS). Project W-302 is necessary in order to bring this portion of the Complex into full regulatory compliance. The project title, ``340 Facility Secondary Containment and Leak Detection``, illustrates preliminary thoughts of taking corrective action directly upon the existing vault (such as removing the tanks, lining the vault, and replacing tanks). However, based on the conclusion of the engineering study, ``Engineering Study of the 300 Area Process Wastewater Handling System``, WHC-SD-WM-ER-277 (as well as numerous follow-up meetings with cognizant staff), this FDC prescribes a complete replacement of the current tank/vault system. This offers a greater array of tanks, and provides greater operating flexibility and ease of maintenance. This approach also minimizes disruption to RLWS services during ``tie-in``, as compared to the alternative of trying to renovate the old vault. The proposed site is within the current Complex area, and maintains the receipt of RLWS solutions through gravity flow.

  12. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    International Nuclear Information System (INIS)

    Pickett, W.W.

    1997-01-01

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations

  13. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, W.W.

    1997-12-30

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

  14. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    International Nuclear Information System (INIS)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment

  15. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  16. River Protection Project (RPP) Immobilized Low- Ativity Waste (ILAW) Disposal Plan

    International Nuclear Information System (INIS)

    BRIGGS, M.G.

    2000-01-01

    This document replaces HNF-1517, Rev 2 which is deleted. It incorporates updates to reflect changes in programmatic direction associated with the vitrification plant contract change and associated DOE/ORP guidance. In addition it incorporates the cancellation of Project W-465, Grout Facility, and the associated modifications to Project W-520, Immobilized High-Level Waste Disposal Facility. It also includes document format changes and section number modifications consistent with CH2M HILL Hanford Group, Inc. procedures

  17. Design review plan for Multi-Function Waste Tank Facility (Project W-236A)

    International Nuclear Information System (INIS)

    Renfro, G.G.

    1994-01-01

    This plan describes how the Multi-Function Waste Tank Facility (MWTF) Project conducts reviews of design media; describes actions required by Project participants; and provides the methodology to ensure that the design is complete, meets the technical baseline of the Project, is operable and maintainable, and is constructable. Project W-236A is an integrated project wherein the relationship between the operating contractor and architect-engineer is somewhat different than that of a conventional project. Working together, Westinghouse Hanford Company (WHC) and ICF Karser Hanford (ICF KH) have developed a relationship whereby ICF KH performs extensive design reviews and design verification. WHC actively participates in over-the-shoulder reviews during design development, performs a final review of the completed design, and conducts a formal design review of the Safety Class I, ASME boiler and Pressure Vessel Code items in accordance with WHC-CM-6-1, Standard Engineering Practices

  18. Project management plan for Project W-178, 219-S secondary containment

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1995-01-01

    This Project Management Plan (PMP) establishes the organizational responsibilities, control systems, and procedures for managing the execution of project activities for Project W-178, the 219-S Secondary Containment Upgrade. The scope of this project will provide the 219-S Facility with secondary containment for all tanks and piping systems. Tank 103 will be replaced with a new tank which will be designated as Tank 104. Corrosion protection shall be installed as required. The cells shall be cleaned and the surface repaired as required. The 219-S Waste Handling Facility (219-S Facility), located in the 200 West Area, was constructed in 1951 to support the 222-S Laboratory Facility. The 219-S Facility has three tanks, TK-101, TK-102, and TK-103, which receive and neutralize low level radioactive wastes from the 222-S Laboratory. For purposes of the laboratory, the different low level waste streams have been designated as high activity and intermediate activity. The 219-S Facility accumulates and treats the liquid waste prior to transferring it to SY Tank Farm in the 200-W Area. Transfers are normally made by pipeline from the 219-S Facility to the 241-SY Tank Farm. Presently transfers are being made by tanker truck to the 200-E Area Tank Farms due to the diversion box catch tank which has been removed from service

  19. The Remote Handled Immobilization Low-Activity Waste Disposal Facility Environmental Permits and Approval Plan

    International Nuclear Information System (INIS)

    DEFFENBAUGH, M.L.

    2000-01-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational

  20. Design criteria document, Maintenance Shop/Support Facility, K-Basin Essential Systems Recovery, Project W-405

    International Nuclear Information System (INIS)

    Strehlow, M.W.B.

    1994-01-01

    During the next 10 years a substantial amount of work is scheduled in the K-Basin Area related to the storage and eventual removal of irradiated N-Reactor fuel. Currently, maintenance support activities are housed in existing structures that were constructed in the early 1950's. These forty-year-old facilities and their supporting services are substandard, leading to inefficiencies. Because of numerous identified deficiencies and the planned increase in the numbers of K-Basin maintenance personnel, adequate maintenance support facilities that allow efficient operations are needed. The objective of this sub-project of Project W-405 is to provide a maintenance and storage facility which meets the K-Basin Maintenance Organization requirements as defined in Attachment 1. In Reference A, existing guidelines and requirements were used to allocate space for the maintenance activities and to provide a layout concept (See Attachment 2). The design solution includes modifying the existing 190 K-E building to provide space for shops, storage, and administration support functions. The primary reason for the modification is to simplify siting/permitting and make use of existing infrastructure. In addition, benefits relative to design loads will be realized by having the structure inside 190K-E. The new facility will meet the Maintenance Organization approved requirements in Attachment 1 relating to maintenance activities, storage areas, and personnel support services. This sub-project will also resolve outstanding findings and/or deficiencies relating to building fire protection, HVAC requirements, lighting replacement/upgrades, and personnel facilities. Compliance with building codes, local labor agreements and safety standards will result

  1. Position paper: Live load design criteria for Project W-236A Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Giller, R.A.

    1995-01-01

    The purpose of this paper is to discuss the live loads applied to the underground storage tanks of the Multi Function Waste Tank Facility, and to provide the basis for Project W-236A live load criteria. Project 236A provides encompasses building a Weather Enclosure over the two underground storage tanks at the 200-West area. According to the Material Handling Study, the Groves AT 1100 crane used within the Weather Enclosure will have a gross vehicle weight of 66.5 tons. Therefore, a 100-ton concentrated live load is being used for the planning of the construction of the Weather Enclosure

  2. The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan

    Energy Technology Data Exchange (ETDEWEB)

    DEFFENBAUGH, M.L.

    2000-08-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement

  3. Project Specific Quality Assurance Plan Project (QAPP) W-211 Initial Tank Retrieval Systems (ITRS)

    International Nuclear Information System (INIS)

    HALL, L.R.

    2000-01-01

    This Quality Assurance Program Plan (QAPP) provides information on how the Project Hanford Quality Assurance Program is implemented by CH2M HILL Hanford Group Inc (CHG) for managing the Initial Tank Retrieval Systems (ITRS), Project W-211. This QAPP is responsive to the CHG Quality Assurance Program Description (QAPD) (LMH-MP-599) which provides direction for compliance to 10 CFR 830 120, ''Nuclear Safety Management, Quality Assurance Requirements'', and DOE Order 5700 6C, ''Quality Assurance'' Project W-211 modifies existing facilities and provides systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for future processing plants, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. This project includes the design, procurement, construction, startup and turnover of these retrieval systems This QAPP identifies organizational structures and responsibilities. Implementing procedures used by CHG project management can be found in the CHG Quality Assurance Program (CHG QAP) Implementation Matrix located in HNF-IP-0842, Volume XI, Attachment Proposed verification and inspection activities for critical items within the scope of project W-211 are identified in Attachment 1 W-211. Project participants will identify the implementing procedures used by their organization within their QAF'Ps. This project specific QAPP is used to identify requirements in addition to the QAPD and provide, by reference, additional information to other project documents

  4. Conceptual design report, 219-S secondary containment upgrade, Project W-178

    International Nuclear Information System (INIS)

    Beyer, J.J.

    1993-05-01

    The 219-S Facility is located in the 200-West Area on the Hanford Site and was constructed in 1951. The facility receives and treats liquid, low-level mixed waste from the 222-S Laboratory prior to transfer of that waste to the SY Tank Farm. The 219-S Facility consists of Cell A containing Tanks 101 and 102 and Cell B containing Tank 103 and a spare space. Project W-178 will modify the 219-S Facility to bring it into compliance with the tank system standards in WAC 173-303-640. The secondary containment upgrade will consist of a stainless steel cell liner in both Cell A and the spare space in Cell B. Additionally, Cell B will be modified by taking Tank 103 out of service and installing a new tank: Tank 104. The construction work will be accomplished in phases to minimize service interruption to the 222-S Laboratory. The proposed design and construction method is the most cost effective of four alternatives evaluated during a value engineering session. Project W-178 is a fiscal year 1995 Line Item. Total estimated construction costs of the project are $2,600,000; other project costs are $710,000. The total project cost is $3,300,000

  5. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  6. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    International Nuclear Information System (INIS)

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site

  7. Supplemental design requirements document enhanced radioactive and mixed waste storage Phase V Project W-112

    International Nuclear Information System (INIS)

    Ocampo, V.P.; Boothe, G.F.; Greager, T.M.; Johnson, K.D.; Kooiker, S.L.; Martin, J.D.

    1994-11-01

    This document provides additional and supplemental information to WHC-SD-W112-FDC-001, Project W-112 for radioactive and mixed waste storage. It provides additional requirements for the design and summarizes Westinghouse Hanford Company key design guidance and establishes the technical baseline agreements to be used for definitive design of the Project W-112 facilities

  8. Tank waste remediation system privatization Phase 1 infrastructure, project W-519, project execution plan

    International Nuclear Information System (INIS)

    Parazin, R.J.

    1998-01-01

    This Project Execution Plan (PEP) defines the overall strategy, objectives, and contractor management requirements for the execution phase of Project W-519 (98-D403), Privatization Phase 1 Infrastructure Support, whose mission is to effect the required Hanford site infrastructure physical changes to accommodate the Privatization Contractor facilities. This plan provides the project scope, project objectives and method of performing the work scope and achieving objectives. The plan establishes the work definitions, the cost goals, schedule constraints and roles and responsibilities for project execution. The plan also defines how the project will be controlled and documented

  9. System Safety Program Plan for Project W-314, tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Boos, K.A.

    1996-01-01

    This System Safety Program Plan (SSPP) outlines the safety analysis strategy for project W-314, ''Tank Farm Restoration and Safe Operations.'' Project W-314 will provide capital improvements to Hanford's existing Tank Farm facilities, with particular emphasis on infrastructure systems supporting safe operation of the double-shell activities related to the project's conceptual Design Phase, but is planned to be updated and maintained as a ''living document'' throughout the life of the project to reflect the current safety analysis planning for the Tank Farm Restoration and Safe Operations upgrades. This approved W-314 SSPP provides the basis for preparation/approval of all safety analysis documentation needed to support the project

  10. Functions and requirements for tank farm restoration and safe operations, Project W-314. Revision 3

    International Nuclear Information System (INIS)

    Garrison, R.C.

    1995-01-01

    This Functions and Requirements document (FRD) establishes the basic performance criteria for Project W-314, in accordance with the guidance outlined in the letter from R.W. Brown, RL, to President, WHC, ''Tank Waste Remediation System (TWRS) Project Documentation Methodology,'' 94-PRJ-018, dated 3/18/94. The FRD replaces the Functional Design Criteria (FDC) as the project technical baseline documentation. Project W-314 will improve the reliability of safety related systems, minimize onsite health and safety hazards, and support waste retrieval and disposal activities by restoring and/or upgrading existing Tank Farm facilities and systems. The scope of Project W-314 encompasses the necessary restoration upgrades of the Tank Farms' instrumentation, ventilation, electrical distribution, and waste transfer systems

  11. Project Execution Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    International Nuclear Information System (INIS)

    VAN BEEK, J.E.

    2000-01-01

    This Project Execution Plan documents the methodology for managing Project W-211. Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for the future waste treatment plant, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AN-102, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the River Protection Project (RF'P) Waste Treatment Facility and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump-based retrieval system for any DST. This Project Execution Plan (PEP), derived from the predecessor Project Management Plan, documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering

  12. Preliminary Design Requirements Document for Project W-314

    Energy Technology Data Exchange (ETDEWEB)

    MCGREW, D.L.

    2000-04-27

    This document sets forth functional requirements, performance requirements, and design constraints for the tank farm systems elements identified in Section 3.1 of this document. These requirements shall be used to develop the Design Requirements Baseline for those system elements. System Overview--The tank farm system at Hanford Site currently consists of 149 single shell tanks and 28 double shell tanks with associated facilities and equipment, located in 18 separate groupings. Each grouping is known as a tank farm. They are located in the areas designated as 200 West and 200 East. Table 1-1 shows the number of tanks in each farm. The farms are connected together through a transfer system consisting of piping, diversion boxes, Double Contained Receiver Tanks (DCRT) and other miscellaneous facilities and elements. The tank farm system also connects to a series of processing plants which generate radioactive and hazardous wastes. The primary functions of the tank farm system are to store, transfer, concentrate, and characterize radioactive and hazardous waste generated at Hanford, until the waste can be safely retrieved, processed and dispositioned. The systems provided by Project W-314 support the store and transfer waste functions. The system elements to be upgraded by Project W-314 are identified in Section 3.1.

  13. Preliminary Design Requirements Document for Project W-314

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    This document sets forth functional requirements, performance requirements, and design constraints for the tank farm systems elements identified in Section 3.1 of this document. These requirements shall be used to develop the Design Requirements Baseline for those system elements. System Overview--The tank farm system at Hanford Site currently consists of 149 single shell tanks and 28 double shell tanks with associated facilities and equipment, located in 18 separate groupings. Each grouping is known as a tank farm. They are located in the areas designated as 200 West and 200 East. Table 1-1 shows the number of tanks in each farm. The farms are connected together through a transfer system consisting of piping, diversion boxes, Double Contained Receiver Tanks (DCRT) and other miscellaneous facilities and elements. The tank farm system also connects to a series of processing plants which generate radioactive and hazardous wastes. The primary functions of the tank farm system are to store, transfer, concentrate, and characterize radioactive and hazardous waste generated at Hanford, until the waste can be safely retrieved, processed and dispositioned. The systems provided by Project W-314 support the store and transfer waste functions. The system elements to be upgraded by Project W-314 are identified in Section 3.1

  14. TWRS phase 1 infrastructure project (W-519) characterization

    International Nuclear Information System (INIS)

    Mitchell, C.J.

    1998-01-01

    In order to treat the mixed radioactive and hazardous waste stored in 177 underground tanks, the Tank Waste Remediation System (TWRS) program is developing a 'demonstration' site for treatment and immobilization of these wastes by a private contractor. Project W-519 is providing the infrastructure support to this site by developing the designs and emplacing required pipelines, roads, electrical, etc. In support of the TWRS Phase 1 Infrastructure Project (W-519) Characterization, Numatec Hanford Corporation (NHC) contracted with Waste Management Federal Services, Inc., Northwest Operations (WMNW) to investigate a number of locations in and just outside the 200 East Area eastern fenceline boundary. These areas consisted of known or suspected waste lines or waste sites that could potentially impact the construction and emplacement of the proposed facility improvements, including waterlines and roads. These sites were all located subsurface and sugaring would be required to obtain sample material from the desired depth. The soils would then be sampled and submitted to the laboratory for analysis of radioactivity

  15. Recommendation on changing interfaces of W-058 and W-236A

    International Nuclear Information System (INIS)

    Light, J.M.

    1994-01-01

    This position paper recommends changes to improve the interface between the Cross-Site Transfer System (Project W-058) and the Multi-Function Waste Tank Facility (Project W-236A) to handle planned waste retrieval and storage operations. Appendix A includes cost estimates and schedule impacts for each project. The cost estimates, schedule impacts, and this position paper will be the basis for writing a change request to formally implement these changes on Project W-236A and Project W-058/W-028. Recommendations are made on pipeline rerouting, pump and configuration, and flushing configuration

  16. Project W.A.T.E.R.

    Science.gov (United States)

    EnviroTeach, 1992

    1992-01-01

    Introduces networking projects for studying rivers and water quality. Describes two projects in South Africa (Project W.A.T.E.R and SWAP) associated with the international network, Global Rivers Environmental Education Network. Discusses water test kits and educational material developed through Project W.A.T.E.R. (Water Awareness through…

  17. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.R.

    1995-05-30

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

  18. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    International Nuclear Information System (INIS)

    Hall, L.R.

    1995-01-01

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1

  19. PROJECT W-551 DETERMINATION DATA FOR EARLY LAW INTERIM PRETREATMENT SYSTEM SELECTION

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR

    2008-08-11

    This report provides the detailed assessment forms and data for selection of the solids separation and cesium separation technology for project W-551, Interim Pretreatment System. This project will provide early pretreated low activity waste feed to the Waste Treatment Plant to allow Waste Treatment Plan Low Activity Waste facility operation prior to construction completion of the Pretreatment and High Level Waste facilities. The candidate solids separations technologies are rotary microfiltration and crossflow filtration, and the candidate cesium separation technologies are fractional crystallization, caustic-side solvent extraction, and ion-exchange using spherical resorcinol-formaldehyde resin. This data was used to prepare a cross-cutting technology summary, reported in RPP-RPT-37740.

  20. Project W-049H collection system Acceptance Test Procedure

    International Nuclear Information System (INIS)

    Carrigan, M.C.

    1994-01-01

    The purpose of this Acceptance Test Procedure (ATP) for the Project W-049H, Treated Effluent Disposal Facility, is to verify that the collection system equipment installed as Pump Station No. 1 (225-W) and Pump Station No. 2 (225-E) have been installed in accordance with the design documents and function as required by the project criteria. This will be a wet test with potable water being introduced into the pump pits to test for leakage. Potable water will also be employed in the testing of the pumps and related mechanical equipment. All Instrument and Control equipment related to the pump stations will be checked electronically with simulated inputs/outputs when actual input/output signals are unavailable. Water from Pump Station 1 will be moved through the TEDF piping system and discharged into the disposal ponds. This will check the proper function of the air/vac valves not tested during construction, and the automated samplers

  1. Design criteria document, Fire Protection Task, K Basin Essential Systems Recovery, Project W-405

    International Nuclear Information System (INIS)

    Johnson, B.H.

    1994-01-01

    The K Basin were constructed in the early 1950's with a 20 year design life. The K Basins are currently in their third design life and are serving as a near term storage facility for irradiated N Reactor fuel until an interim fuel storage solution can be implemented. In April 1994, Project W-405, K Basin Essential Systems Recovery, was established to address (among other things) the immediate fire protection needs of the 100K Area. A Fire Barrier Evaluation was performed for the wall between the active and inactive areas of the 105KE and 105KW buildings. This evaluation concludes that the wall is capable of being upgraded to provide an equivalent level of fire resistance as a qualified barrier having a fire resistance rating of 2 hours. The Fire Protection Task is one of four separate Tasks included within the scope of Project W405, K Basin Essential systems Recovery. The other three Tasks are the Water Distribution System Task, the Electrical System Task, and the Maintenance Shop/Support Facility Task. The purpose of Project W-405's Fire Protection Task is to correct Life Safety Code (NFPA 101) non-compliances and to provide fire protection features in Buildings 105KE, 105KW and 190KE that are essential for assuring the safe operation and storage of spent nuclear fuel at the 100K Area Facilities' Irradiated Fuel Storage Basins (K Basins)

  2. The rare isotope accelerator (RIA) facility project

    International Nuclear Information System (INIS)

    Christoph Leemann

    2000-01-01

    The envisioned Rare-Isotope Accelerator (RIA) facility would add substantially to research opportunities for nuclear physics and astrophysics by combining increased intensities with a greatly expanded variety of high-quality rare-isotope beams. A flexible superconducting driver linac would provide 100 kW, 400 MeV/nucleon beams of any stable isotope from hydrogen to uranium onto production targets. Combinations of projectile fragmentation, target fragmentation, fission, and spallation would produce the needed broad assortment of short-lived secondary beams. This paper describes the project's background, purpose, and status, the envisioned facility, and the key subsystem, the driver linac. RIA's scientific purposes are to advance current theoretical models, reveal new manifestations of nuclear behavior, and probe the limits of nuclear existence [3]. Figures 1 and 2 show, respectively, examples of RIA research opportunities and the yields projected for pursuing them. Figure 3 outlines a conceptual approach for delivering the needed beams

  3. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    International Nuclear Information System (INIS)

    Shank, D.R.

    1994-01-01

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  4. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  5. Project management plan for Project W-320, Tank 241-C-106 sluicing. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, D.R.

    1994-07-01

    A major mission of the US Department of Energy (DOE) is the permanent disposal of Hanford Site defense wastes by utilizing safe, environmentally acceptable, and cost-effective disposal methods that meet applicable regulations. The Tank Waste Remediation System (TWRS) Program was established at the Hanford Site to manage and control activities specific to the remediation of safety watch list tanks, including high-heat-producing tanks, and for the ultimate characterization, retrieval, pretreatment, and disposal of the low- and high-level fractions of the tank waste. Project W-320, Tank 241-C-106 Sluicing, provides the methodology, equipment, utilities, and facilities necessary for retrieving the high-heat waste from single-shell tank (SST) 24-C-106. Project W-320 is a fiscal year (FY) 1993 expense-funded major project, and has a design life of 2 years. Retrieval of the waste in tank 241-C-106 will be accomplished through mobilization of the sludge into a pumpable slurry using past-practice sluicing. The waste is then transferred directly to a double-shell tank for interim storage, subsequent pretreatment, and eventual disposal. A detailed description of the management organization and responsibilities of all participants is presented in this document.

  6. Project management plan for Project W-320, Tank 241-C-106 sluicing. Revision 2

    International Nuclear Information System (INIS)

    Phillips, D.R.

    1994-07-01

    A major mission of the US Department of Energy (DOE) is the permanent disposal of Hanford Site defense wastes by utilizing safe, environmentally acceptable, and cost-effective disposal methods that meet applicable regulations. The Tank Waste Remediation System (TWRS) Program was established at the Hanford Site to manage and control activities specific to the remediation of safety watch list tanks, including high-heat-producing tanks, and for the ultimate characterization, retrieval, pretreatment, and disposal of the low- and high-level fractions of the tank waste. Project W-320, Tank 241-C-106 Sluicing, provides the methodology, equipment, utilities, and facilities necessary for retrieving the high-heat waste from single-shell tank (SST) 24-C-106. Project W-320 is a fiscal year (FY) 1993 expense-funded major project, and has a design life of 2 years. Retrieval of the waste in tank 241-C-106 will be accomplished through mobilization of the sludge into a pumpable slurry using past-practice sluicing. The waste is then transferred directly to a double-shell tank for interim storage, subsequent pretreatment, and eventual disposal. A detailed description of the management organization and responsibilities of all participants is presented in this document

  7. Study of W boson polarisations and Triple Gauge boson Couplings in the reaction $e^{+}e^{-} \\to W^{+}W^{-}$ at LEP 2

    CERN Document Server

    Abdallah, J.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, Sandra F.; Anashkin, E.; Andreazza, A.; Andringa, Sofia; Anjos, N.; Antilogus, Pierre; Apel, W-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, Jean-Eudes; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, Antonio; Battaglia, Marco; Baubillier, M.; Becks, K-H.; Begalli, M.; Behrmann, A.; Ben-Haim, Eli; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, Mikael; Bertrand, D.; Besancon, Marc; Besson, N.; Bloch, Daniel; Blom, M.; Bluj, Michal; Bonesini, Maurizio; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, Olga; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, Marko; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, Tiziano; Canale, V.; Carena, F.; Castro, Nuno Filipe; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, Paolo; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, Suh-Urk; Cieslik, K.; Collins, P.; Contri, Roberto; Cosme, G.; Cossutti, Fabio; Costa, M.J.; Crennell, D.; Cuevas, Javier; D'Hondt, J.; da Silva, T.; Da Silva, W.; Della Ricca, Giuseppe; De Angelis, Alessandro; De Boer, W.; De Clercq, C.; De Lotto, Barbara; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Eigen, G.; Ekelof, Tord; Ellert, Mattias; Elsing, M.; Espirito Santo, Maria Catarina; Fanourakis, George K.; Feindt, Michael; Fernandez, J.; Ferrer, Antonio; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, Miriam; Garcia, C.; Gavillet, Philippe; Gazis, Evangelos; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, Klaus; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, Vincent; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S-O.; Holt, P.J.; Houlden, M.A.; Jackson, John Neil; Jarlskog, Goran; Jarry, P.; Jeans, D.; Johansson, E.K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, Frederic; Katsanevas, S.; Katsoufis, E.; Kernel, Gabrijel; Kerzel, U.; King, B.T.; Kjaer, N.J.; Kluit, Peter; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, Jacques; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, Pierre; Lyons, Louis; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Nulty, R.Mc; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Muller, Ulrich; Muenich, K.; Mulders, M.; Mundim Filho, Luiz Martins; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, Henryk; Papadopoulou, Th.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, Andrea; Petrolini, Alessandro; Piedra, Jonatan; Pieri, L.; Pierre, Francois; Pimenta, M.; Piotto, E.; Poireau, V.; Pol, M.E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rames, J.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, Peter; Richard, F.; Ridky, Jan; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, Paolo; Roudeau, P.; Rovelli, T.; Ruhlmann, Vanina; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, Martin; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, Andrei Valerevich; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli de Fatis, T.; Taffard, A.C.; Tegenfeldt, F.; Timmermans, Jan; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, Petr; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, Clara; Turluer, M-L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, Giovanni; Van Dam, P.; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, Filipe; Venus, W.; Verdier, Patrice; Verzi, V.; Vilanova, D.; Vitale, Lorenzo; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, Danilo; Zhuravlov, V.; Zimine, N.I.; Zintchenko, Alexandre

    2008-01-01

    A determination of the single W Spin Density Matrix (SDM) elements in the reaction e+e- -> W+W- -> l nu q qbar (l=e/mu) is reported at centre-of-mass energies between 189 and 209 GeV. The data sample used corresponds to an integrated luminosity of 520 pb^{-1} taken by DELPHI between 1998 and 2000. The single W SDM elements, rho_{tau tau'}^{W+-} (tau,tau' = +/-1 or 0), are determined as a function of the W- production angle with respect to the e- beam direction and are obtained from measurements of the W decay products by the application of suitable projection operators, Lambda_{tau tau'}, which assume the V-A coupling of the W boson to fermions. The measured SDM elements are used to obtain the fraction of longitudinally polarised Ws, with the result: sigma_L/sigma_tot = 24.9 +/- 4.5(stat) +/- 2.2(syst) % at a mean energy of 198 GeV. The SDM elements are also used to determine the Triple Gauge Couplings Delta g_1^Z, Delta kappa_gamma, lambda_gamma and g_4^Z, ~kappa_Z and ~lambda_Z. For the CP-violating couplin...

  8. Conceptual design report for tank farm restoration and safe operations, project W-314

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  9. Permitting plan for Project W-340, Tank 241-C-106 manipulator retrieval arm

    International Nuclear Information System (INIS)

    Tollefson, K.S.

    1995-01-01

    This document describes the regulatory requirements and describes alternative strategies for obtaining permits and approvals for Project W-340, Tank 241-C-106 Manipulator Retrieval Arm. A comprehensive review of environmental regulations has indicated that several environmental reviews, permits, and approvals are required before design, construction, and operation of the facility. The environmental reviews, permits, and approvals, as well the regulatory authority potentially applicable to the Project W-340 Long Reach Manipulator Arm include the following: National Environmental Policy Act of 1969 -- US Department of Energy, Headquarters; State Environmental Policy Act of 1971 -- State of Washington Department of Ecology; Air Permitting; Dangerous Waste Permitting; Miscellaneous Reviews/Permits/Approvals. This document describes the environmental reviews, permits, and approval requirements for the project. It provides a summary of permit application data requirements, alternative strategies for permit completion and approval, as well as the estimated probability of success for each alternative strategy

  10. Advanced conceptual design report: T Plant secondary containment and leak detection upgrades. Project W-259

    International Nuclear Information System (INIS)

    Hookfin, J.D.

    1995-01-01

    The T Plant facilities in the 200-West Area of the Hanford site were constructed in the early 1940s to produce nuclear materials in support of national defense activities. T Plant includes the 271-T facility, the 221-T facility, and several support facilities (eg, 2706-T), utilities, and tanks/piping systems. T Plant has been recommended as the primary interim decontamination facility for the Hanford site. Project W-259 will provide capital upgrades to the T Plant facilities to comply with Federal and State of Washington environmental regulations for secondary containment and leak detection. This document provides an advanced conceptual design concept that complies with functional requirements for the T Plant Secondary Containment and Leak Detection upgrades

  11. Position paper, need for additional waste storage capacity and recommended path forward for project W-236a, Multi-function Waste Tank Facility

    International Nuclear Information System (INIS)

    Awadalla, N.G.

    1994-01-01

    Project W-236a, Multi-function waste Tank Facility (MWTF), was initiated to increase the safe waste storage capacity for the Tank Waste Remediation System (TWRS) by building two new one million gallon underground storage tanks in the 200 West Area and four tanks in the 200 East Area. Construction of the tanks was scheduled to begin in September 1994 with operations beginning in calendar year (CY) 1998. However, recent reviews have raised several issues regarding the mission, scope, and schedule of the MWTF. The decision to build new tanks must consider several elements, such as: Operational risk and needs -- Operational risk and flexibility must be managed such that any identified risk is reduced as soon as practicable; The amount of waste that will be generated in the future -- Additional needed tank capacity must be made available to support operations and maintain currently planned safety improvement activities; Safety issues -- The retrieval of waste from single-shell tanks (SSTs) and watch list tanks will add to the total amount of waste that must be stored in a double-shell tank (DST); Availability of existing DSTs -- The integrity of the 28 existing DSTs must be continuously managed; and Affect on other projects and programs -- Because MWTF systems have been integrated with other projects, a decision on one project will affect another. In addition the W-236a schedule is logically tied to support retrieval and safety program plans. Based on the above, two new tanks are needed for safe waste storage in the 200 West Area, and they need to be built as soon as practicable. Design should continue for the tanks in the 200 East Area with a decision made by September, on whether to construct them. Construction of the cross-site transfer line should proceed as scheduled. To implement this recommendation several actions need to be implemented

  12. Project W-026, Waste Receiving and Processing (WRAP) Facility Module 1: Maximum possible fire loss (MPFL) decontamination and cleanup estimates. Revision 1

    International Nuclear Information System (INIS)

    Hinkle, A.W.; Jacobsen, P.H.; Lucas, D.R.

    1994-01-01

    Project W-026, Waste Receiving and Processing (WRAP) Facility Module 1, a 1991 Line Item, is planned for completion and start of operations in the spring of 1997. WRAP Module 1 will have the capability to characterize and repackage newly generated, retrieved and stored transuranic (TRU), TRU mixed, and suspect TRU waste for shipment to the Waste isolation Pilot Plant (WIPP). In addition, the WRAP Facility Module 1 will have the capability to characterize low-level mixed waste for treatment in WRAP Module 2A. This report documents the assumptions and cost estimates for decontamination and clean-up of a maximum possible fire loss (MPFL) as defined by DOE Order 5480.7A, FIRE PROTECTION. The Order defines MPFL as the value of property, excluding land, within a fire area, unless a fire hazards analysis demonstrates a lesser (or greater) loss potential. This assumes failure of both automatic fire suppression systems and manual fire fighting efforts. Estimates were developed for demolition, disposal, decontamination, and rebuilding. Total costs were estimated to be approximately $98M

  13. Project W-320 ALARA Plan

    International Nuclear Information System (INIS)

    Harty, W.M.

    1995-01-01

    This supporting document establishes the As Low As Reasonable Achievable (ALARA) Plan to be followed during Sluicing Project W-320 design and construction activities to minimize personnel exposure to radiation and hazardous materials

  14. Project W-320 ALARA Plan

    Energy Technology Data Exchange (ETDEWEB)

    Harty, W.M.

    1995-06-06

    This supporting document establishes the As Low As Reasonable Achievable (ALARA) Plan to be followed during Sluicing Project W-320 design and construction activities to minimize personnel exposure to radiation and hazardous materials.

  15. Nozzle evaluation for Project W-314

    International Nuclear Information System (INIS)

    Galbraith, J.D.

    1998-01-01

    Revisions to the waste transfer system piping to be implemented by Project W-314 will eliminate the need to access a majority of interfarm jumper connections associated with specific process pits. Additionally, connections that formerly facilitated waste transfers from the Plutonium-Uranium Extraction (PUREX) Plant are no longer required. This document identified unneeded process pit jumper connections, describes former designated routing, denotes current status (i.e., open or blanked), and recommends appropriate disposition for all. Blanking of identified nozzles should be accomplished by Project W-314 upon installation of jumpers and acceptance by Tank Waste Remediation System (TWRS) Tank Farm Operations

  16. Risk management program for the 283-W water treatment facility

    International Nuclear Information System (INIS)

    Green, W.E.

    1999-01-01

    This Risk Management (RM) Program covers the 283-W Water Treatment Facility (283W Facility), located in the 200 West Area of the Hanford Site. A RM Program is necessary for this facility because it stores chlorine, a listed substance, in excess of or has the potential to exceed the threshold quantities defined in Title 40 of the Code of Federal Regulations (CFR) Part 68 (EPA, 1998). The RM Program contains data that will be used to prepare a RM Plan, which is required by 40 CFR 68. The RM Plan is a summary of the RM Program information, contained within this document, and will be submitted to the U.S. Environmental Protection Agency (EPA) ultimately for distribution to the public. The RM Plan will be prepared and submitted separately from this document

  17. Acceptance test procedure for Project W-049H

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1994-01-01

    The Acceptance Test Procedure (ATP) program for Project W-049H (200 Area Treated Effluent Disposal Facility [TEDF]) covers three activities as follows: (1) Disposal System; (2) Collection System; and (3) Instrumentation and Control System. Each activity has its own ATP. The purpose of the ATPs is to reverify that the systems have been constructed in accordance with the construction documents and to demonstrate that the systems function as required by the Project criteria. The Disposal System ATP covers the testing of the following: disposal line flowmeters, room air temperatures in the Disposal Station Sampling Building, effluent valves and position indicators, disposal pond level monitors, automated sampler, pressure relief valves, and overflow diversion sluice gates. The Collection System ATP covers the testing of the two pump stations and all equipment installed therein. The Instrumentation and Control (I and C) ATP covers the testing of the entire TEDF I and C system. This includes 3 OCS units, modem, and GPLI cabinets in the ETC control room; 2 pump stations; disposal station sampling building; and all LCUs installed in the field

  18. 24 CFR 266.520 - Program monitoring and compliance.

    Science.gov (United States)

    2010-04-01

    ... AUTHORITIES HOUSING FINANCE AGENCY RISK-SHARING PROGRAM FOR INSURED AFFORDABLE MULTIFAMILY PROJECT LOANS Project Management and Servicing § 266.520 Program monitoring and compliance. HUD will monitor the...

  19. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water.

  20. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    International Nuclear Information System (INIS)

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water

  1. W-1 Sodium Loop Safety Facility experiment centerline fuel thermocouple performance

    International Nuclear Information System (INIS)

    Meyers, S.C.; Henderson, J.M.

    1980-05-01

    The W-1 Sodium Loop Safety Facility (SLSF) experiment is the fifth in a series of experiments sponsored by the Department of Energy (DOE) as part of the National Fast Breeder Reactor (FBR) Safety Assurance Program. The experiments are being conducted under the direction of Argonne National Laboratory (ANL) and Hanford Engineering Development Laboratory (HEDL). The irradiation phase of the W-1 SLSF experiment was conducted between May 27 and July 20, 1979, and terminated with incipient fuel pin cladding failure during the final boiling transient. Experimental hardware and facility performed as designed, allowing completion of all planned tests and test objectives. This paper focuses on high temperature in-fuel thermocouples and discusses their development, fabrication, and performance in the W-1 experiment

  2. The SPES project of INFN: Facility and detectors

    Directory of Open Access Journals (Sweden)

    de Angelis G.

    2015-01-01

    Full Text Available The SPES Radioactive Ion Beam facility at INFN-LNL is presently in the construction phase. The facility is based on the Isol (Isotope separation on-line method with an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced Uranium fission at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting Linac at energies of 10A MeV for masses in the region A = 130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES project is to provide a facility for high intensity radioactive ion beams for nuclear physics research as well as to develop an interdisciplinary research center based on the cyclotron proton beam.

  3. The I-35W bridge Project Website

    DEFF Research Database (Denmark)

    Kampf, Constance

    How can websites be used to rebuild trust?  In August 2007, the Interstate Highway 35-W bridge in Minneapolis, MN collapsed during rush hour.  Although many people were rescued and casualties were as limited as could be expected due to quick and effective intervention, the image of a major bridge...... collapsing during rush hour damaged the Minnesota Department of Transportation's reputation and resulted in the loss of public trust for the organization.  The ensuing bridge reconstruction project included a project website intended to rebuild this trust through transparency, community involvement......, and the use of multimodal features.  This paper looks at the I35-W bridge reconstruction project in Minneapolis through web-based communication by the Minnesota Department of Transportation (MnDOT) about the project. The MnDOT bridge reconstruction website will be examined using a combination of 1). Weick...

  4. Project W-420 stack monitoring system upgrades

    International Nuclear Information System (INIS)

    CARPENTER, K.E.

    1999-01-01

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420

  5. Fire hazards analysis for the replacement cross-site transfer system, project W-058

    International Nuclear Information System (INIS)

    Sepahpur, J.B.

    1996-01-01

    The fire hazards analysis assess the risk from fire and determines compliance with the applicable criteria of DOE 5480.7A, DOE 6430.1A, and RLID 5480.7. (Project W-058 will provide encased pipelines to connect the SY Tank Farms in 200 West Area with the tank farms in 200 East Area via an interface with the 244-A lift station. Function of the cross-site transfer system will be to transfer radioactive waste from the SY Tank Farm to treatment, storage, and disposal facilities in 200 East Area.)

  6. Nonradioactive air emissions notice of construction, Project W-320, 241-C-106 tank sluicing

    International Nuclear Information System (INIS)

    Hays, C.B.

    1998-01-01

    This document serves as a Notice of Construction for the Phase 2 activities of Project W-320, 241-C-106 Tank Sluicing, pursuant to the requirements of Washington Administrative Codes (WAC) 173-400 and 173-460. Phased permitting for Project W-320 was discussed with the Washington State Department of Ecology (Ecology) on November 2, 1993. In April 1994, it was deemed unnecessary because the Phase 1 activities did not constitute a new source of emissions and therefore did not require approval from Ecology. The 241-C-106 tank is a 2-million liter capacity, single-shell tank (SST) used for radioactive waste storage since 1947. Between mid-1963 and mid-1969, 241-C-106 tank received high-heat waste, PUREX (plutonium-uranium extraction) Facility high-level waste, and strontium-bearing solids from the strontium and cesium recovery activities. In 1971, temperatures exceeding 99 C were observed in the tank, and therefore, a ventilation system was installed to cool the tank. In addition, approximately 22,712 liters of cooling water are added to the tank each month to prevent the sludge from drying out and overheating. Excessive drying of the sludge could result in possible structural damage. The current radiolytic heat generation rate has been calculated at 32 kilowatts (kW) plus or minus 6 kW. The 241-C-106 tank was withdrawn from service in 1979 and currently is categorized as not leaking. The heat generation in 241-C-106 tank has been identified as a key safety issue on the Hanford Site. The evaporative cooling provided by the added water during operation and/or sluicing maintains the 241-C-106 tank within its specified operating temperature limits. Project W-320, 241-C-106 Tank Sluicing, will mobilize and remove the heat-generating sludge, allowing the water additions to cease. Following sludge removal, the 241-C-106 tank could be placed in a safe, interim stabilized condition. Tank-to-tank sluicing, an existing, proven technology, will provide the earliest possible

  7. Nonradioactive air emissions notice of construction, Project W-320, 241-C-106 tank sluicing

    Energy Technology Data Exchange (ETDEWEB)

    Hays, C.B.

    1998-01-28

    This document serves as a Notice of Construction for the Phase 2 activities of Project W-320, 241-C-106 Tank Sluicing, pursuant to the requirements of Washington Administrative Codes (WAC) 173-400 and 173-460. Phased permitting for Project W-320 was discussed with the Washington State Department of Ecology (Ecology) on November 2, 1993. In April 1994, it was deemed unnecessary because the Phase 1 activities did not constitute a new source of emissions and therefore did not require approval from Ecology. The 241-C-106 tank is a 2-million liter capacity, single-shell tank (SST) used for radioactive waste storage since 1947. Between mid-1963 and mid-1969, 241-C-106 tank received high-heat waste, PUREX (plutonium-uranium extraction) Facility high-level waste, and strontium-bearing solids from the strontium and cesium recovery activities. In 1971, temperatures exceeding 99 C were observed in the tank, and therefore, a ventilation system was installed to cool the tank. In addition, approximately 22,712 liters of cooling water are added to the tank each month to prevent the sludge from drying out and overheating. Excessive drying of the sludge could result in possible structural damage. The current radiolytic heat generation rate has been calculated at 32 kilowatts (kW) plus or minus 6 kW. The 241-C-106 tank was withdrawn from service in 1979 and currently is categorized as not leaking. The heat generation in 241-C-106 tank has been identified as a key safety issue on the Hanford Site. The evaporative cooling provided by the added water during operation and/or sluicing maintains the 241-C-106 tank within its specified operating temperature limits. Project W-320, 241-C-106 Tank Sluicing, will mobilize and remove the heat-generating sludge, allowing the water additions to cease. Following sludge removal, the 241-C-106 tank could be placed in a safe, interim stabilized condition. Tank-to-tank sluicing, an existing, proven technology, will provide the earliest possible

  8. New synchrotron radiation facility project. Panel on new synchrotron radiation facility project

    CERN Document Server

    Sato, S; Kimura, Y

    2003-01-01

    The project for constructing a new synchrotron radiation facility dedicated to the science in VUV (or EUV) and Soft X-ray (SX) region has been discussed for these two years at the Panel on New Synchrotron Radiation Facility Project. The Panel together with the Accelerator Design Working Group (WG), Beamline Design WG and Research Program WG suggested to the Ministry of Education, Science, Culture and Sports the construction of a 1.8 GeV electron storage ring suitable for 'Top-Up' operation and beamlines and monochromators designed for undulator radiation. The scientific programs proposed by nationwide scientists are summarized with their requirements of the characteristics of the beam. (author)

  9. PROJECTIZING AN OPERATING NUCLEAR FACILITY

    International Nuclear Information System (INIS)

    Adams, N

    2007-01-01

    This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to successfully

  10. Project W-320, waste retrieval sluicing system: BIO/SER implementation matrices

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    This document provides verification that the safety related commitments specified in HNF-SD-WM-810-001, Addendum 1 for the Waste Retrieval Sluicing System, Project W-320 and Project W-320 Safety Evaluation Report (SER), have been implemented in the project hardware, procedures and administrative controls. Four appendices include matrices which show where the 810 commitments are implemented for limiting conditions of operation and surveillance requirements controls, administrative controls, defense-in-depth controls and controls discussed in 810 Addendum 1. A fifth appendix includes the implementation of Project W-320 SER issues and provisions

  11. Ten years of cryo-magnetic W7-X test facility construction and operation

    International Nuclear Information System (INIS)

    Renard, B.; Dispau, G.; Donati, A.; Genini, L.; Gournay, J.F.; Kuster, O.; Molinie, F.; Schild, T.; Touzery, R.; Vieillard, L.; Walter, C.

    2011-01-01

    The construction, commissioning, and operation phases of the W7-X cryo-magnetic test facility in CEA Saclay lasted ten years. The large diversity of equipments called, specialties involved and problems solved attest the expertise that was required to operate the test facility and test the coils. Nearly one hundred cryogenic tests were performed on the seventy W7-X coils, at a rate always increasing, using two cryostats each holding two coils. This paper presents the test facility and its operation first, the cryogenic difficulties that were confronted with their solutions, the electro-magnetic difficulties encountered along with corrective actions, and finally the instrumentation and data acquisition aspects. (authors)

  12. Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser

    Science.gov (United States)

    Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.

    2013-10-01

    We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.

  13. Project quality assurance plant: Sodium storage facility, project F-031

    International Nuclear Information System (INIS)

    Shultz, J.W.; Shank, D.R.

    1994-11-01

    The Sodium Storage Facility Project Quality Assurance Plan delineates the quality assurance requirements for construction of a new facility, modifications to the sodium storage tanks, and tie-ins to the FFTF Plant. This plan provides direction for the types of verifications necessary to satisfy the functional requirements within the project scope and applicable regulatory requirements determined in the Project Functional Design Criteria (FDC), WHC-SD-FF-FDC-009

  14. Campania Region's Educational Quality Facilities Project

    Science.gov (United States)

    Ponti, Giorgio

    2009-01-01

    This article describes the Educational Quality Facilities project undertaken by Italy's Campania Region to provide quality facilities to all of its communities basing new spaces on the "Flexible Learning Module". The objectives of the five-year project are to: build and equip new educational spaces; improve the quality of existing…

  15. Project Management Plan for Initial Tank Retrieval Systems, Project W-211

    International Nuclear Information System (INIS)

    VAN BEEK, J.E.

    1999-01-01

    Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for future processing plants, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AP-108, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the Privatized waste processing plant and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump based retrieval system for any DST. This Project Management Plan (PMP) documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering

  16. Supplemental design requirements document, Project W026

    International Nuclear Information System (INIS)

    Weidert, J.R.

    1993-01-01

    This document supplements and extends the Functional Design Criteria, SP-W026-FDC-001, for the Waste Receiving and Processing Facility (WRAP), Module 1. It provides additional detailed requirements, summarizes key Westinghouse Hanford Company design guidance, and establishes baseline technical agreements to be used in definitive design of the WRAP-1 facility. Revision 3 of the Supplemental Design Requirements Document has been assigned an Impact Level of 3ESQ based on the content of the entire revision. The actual changes made from Revision 2 have an Impact Level of 3S and the basis for these changes was previously reviewed and approved per WHC correspondence No. 9355770

  17. W-320 Project thermal modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sathyanarayana, K., Fluor Daniel Hanford

    1997-03-18

    This report summarizes the results of thermal analysis performed to provide a technical basis in support of Project W-320 to retrieve by sluicing the sludge in Tank 241-C-106 and to transfer into Tank 241-AY-102. Prior theraml evaluations in support of Project W-320 safety analysis assumed the availability of 2000 to 3000 CFM, as provided by Tank Farm Operations, for tank floor cooling channels from the secondary ventilation system. As this flow availability has no technical basis, a detailed Tank 241-AY-102 secondary ventilation and floor coating channel flow model was developed and analysis was performed. The results of the analysis show that only about 150 cfm flow is in floor cooLing channels. Tank 241-AY-102 thermal evaluation was performed to determine the necessary cooling flow for floor cooling channels using W-030 primary ventilation system for different quantities of Tank 241-C-106 sludge transfer into Tank 241-AY-102. These sludge transfers meet different options for the project along with minimum required modification of the ventilation system. Also the results of analysis for the amount of sludge transfer using the current system is presented. The effect of sludge fluffing factor, heat generation rate and its distribution between supernatant and sludge in Tank 241-AY-102 on the amount of sludge transfer from Tank 241-C-106 were evaluated and the results are discussed. Also transient thermal analysis was performed to estimate the time to reach the steady state. For a 2 feet sludge transfer, about 3 months time will be requirad to reach steady state. Therefore, for the purpose of process control, a detailed transient thermal analysis using GOTH Computer Code will be required to determine transient response of the sludge in Tank 241-AY-102. Process control considerations are also discussed to eliminate the potential for a steam bump during retrieval and storage in Tanks 241-C-106 and 241-AY-102 respectively.

  18. Project W-211 initial tank retrieval systems year 2000 compliance assessment project plan

    International Nuclear Information System (INIS)

    BUSSELL, J.H.

    1999-01-01

    This document contains a limited assessment of Year 2000 compliance for Project W-211. Additional information is provided as a road map to project documents and other references that may be used to verify Year 2000 compliance

  19. Tank farm restoration and safe operation, Project W-314, upgrade scope summary report (USSR)

    International Nuclear Information System (INIS)

    Gilbert, J.L.

    1998-01-01

    The revision to the Project W-314 Upgrade Scope Summary Report (USSR), incorporates changes to the project scope from customer guidance. Included are incorporation of the recommendations from HNF-2500, agreements regarding interfaces with Project W-211, and assumption of scope previously assigned to Project W-454

  20. W-030, AY/AZ tank farm cooling and miscellaneous instrumentation

    International Nuclear Information System (INIS)

    Cole, D.B.

    1996-01-01

    This is the acceptance test report for construction functional testing of Project W-030 cooling systems and related instrumentation. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The Tank Farm Cooling System consists of four forced draft cooling towers, a chilled water system, and associated controls

  1. Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2

    International Nuclear Information System (INIS)

    Roscha, V.

    1994-01-01

    The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate

  2. Waste receiving and processing facility module 1 data management system software project management plan

    International Nuclear Information System (INIS)

    Clark, R.E.

    1994-01-01

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  3. Implementing partnerships in nonreactor facility safety analyses

    International Nuclear Information System (INIS)

    Courtney, J.C.; Perry, W.H.; Phipps, R.D.

    1996-01-01

    Faculty and students from LSU have been participating in nuclear safety analyses and radiation protection projects at ANL-W at INEL since 1973. A mutually beneficial relationship has evolved that has resulted in generation of safety-related studies acceptable to Argonne and DOE, NRC, and state regulatory groups. Most of the safety projects have involved the Hot Fuel Examination Facility or the Fuel Conditioning Facility; both are hot cells that receive spent fuel from EBR-II. A table shows some of the major projects at ANL-W that involved LSU students and faculty

  4. Orifice Mass Flow Calculation in NASA's W-8 Single Stage Axial Compressor Facility

    Science.gov (United States)

    Bozak, Richard F.

    2018-01-01

    Updates to the orifice mass flow calculation for the W-8 Single Stage Axial Compressor Facility at NASA Glenn Research Center are provided to include the effect of humidity and incorporate ISO 5167. A methodology for including the effect of humidity into the inlet orifice mass flow calculation is provided. Orifice mass flow calculations provided by ASME PTC-19.5-2004, ASME MFC-3M-2004, ASME Fluid Meters, and ISO 5167 are compared for W-8's atmospheric inlet orifice plate. Differences in expansion factor and discharge coefficient given by these standards give a variation of about +/- 75% mass flow except for a few cases. A comparison of the calculations with an inlet static pressure mass flow correlation and a fan exit mass flow integration using test data from a 2017 turbofan rotor test in W-8 show good agreement between the inlet static pressure mass flow correlation, ISO 5167, and ASME Fluid Meters. While W-8's atmospheric inlet orifice plate violates the pipe diameter limit defined by each of the standards, the ISO 5167 is chosen to be the primary orifice mass flow calculation to use in the W-8 facility.

  5. Test and evaluation plan for Project W-314 tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    The ''Tank Farm Restoration and Safe Operations'' (TFRSO), Project W-314 will restore and/or upgrade existing Hanford Tank Farm facilities and systems to ensure that the Tank Farm infrastructure will be able to support near term TWRS Privatization's waste feed delivery and disposal system and continue safe management of tank waste. The capital improvements provided by this project will increase the margin of safety for Tank Farms operations, and will aid in aligning affected Tank Farm systems with compliance requirements from applicable state, Federal, and local regulations. Secondary benefits will be realized subsequent to project completion in the form of reduced equipment down-time, reduced health and safety risks to workers, reduced operating and maintenance costs, and minimization of radioactive and/or hazardous material releases to the environment. The original regulatory (e.g., Executive Orders, WACS, CFRS, permit requirements, required engineering standards, etc.) and institutional (e.g., DOE Orders, Hanford procedures, etc.) requirements for Project W-314 were extracted from the TWRS S/RIDs during the development of the Functions and Requirements (F and Rs). The entire family of requirements were then validated for TWRS and Project W-314. This information was contained in the RDD-100 database and used to establish the original CDR. The Project Hanford Management Contract (PHMC) team recognizes that safety, quality, and cost effectiveness in the Test and Evaluation (T and E) program is achieved through a planned systematic approach to T and E activities. It is to this end that the Test and Evaluation Plan (TEP) is created. The TEP for the TFRSO Project, was developed based on the guidance in HNF-IP-0842, and the Good Practice Guide GPG-FM-005, ''Test and Evaluation,'' which is derived from DOE Order 430.1, ''Life Cycle Asset Management.'' It describes the Test and Evaluation program for the TFRSO project starting with the definitive design phase and ending

  6. Facility Interface Capability Assessment (FICA) project report

    International Nuclear Information System (INIS)

    Pope, R.B.; MacDonald, R.R.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified

  7. Facility Interface Capability Assessment (FICA) project report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, R.B. [ed.] [Oak Ridge National Lab., TN (United States); MacDonald, R.R. [ed.] [Civilian Radioactive Waste Management System, Vienna, VA (United States); Viebrock, J.M.; Mote, N. [Nuclear Assurance Corp., Norcross, GA (United States)

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified.

  8. The South African isotope facility project

    Science.gov (United States)

    Bark, R. A.; Barnard, A. H.; Conradie, J. L.; de Villiers, J. G.; van Schalkwyk, P. A.

    2018-05-01

    The South African Isotope Facility (SAIF) is a project in which iThemba LABS plans to build a radioactive-ion beam (RIB) facility. The project is divided into the Accelerator Centre of Exotic Isotopes (ACE Isotopes) and the Accelerator Centre for Exotic Beams (ACE Beams). For ACE Isotopes, a high-current, 70 MeV cyclotron will be acquired to take radionuclide production off the existing Separated Sector Cyclotron (SSC). A freed up SSC will then be available for an increased tempo of nuclear physics research and to serve as a driver accelerator for the ACE Beams project, in which protons will be used for the direct fission of Uranium, producing beams of fission fragments. The ACE Beams project has begun with "LeRIB" - a Low Energy RIB facility, now under construction. In a collaboration with INFN Legnaro, the target/ion-source "front-end" will be a copy of the front-end developed for the SPES project. A variety of targets may be inserted into the SPES front-end; a uranium-carbide target has been designed to produce up to 2 × 1013 fission/s using a 70 MeV proton beam of 150 µA intensity.

  9. Project Management Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-04-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project will further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities, that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  10. Failure analysis at a 2 kW helium liquefaction facility; Fehleranalyse bei einer 2kW- Heliumverfluessigungsanlage

    Energy Technology Data Exchange (ETDEWEB)

    Klenk, Rafael; Bobien, Steffen; Neumann, Holger [KIT Campus Nord, Eggenstein-Leopoldshafen (Germany). Bereich Kryotechnik

    2016-07-01

    At the Institute for Technical Physics of the KIT Campus Nord helium is cooled respectively liquefied by means of the Claude process. This process is beside the Brayton and Joule-Thomson process meanwhile a standard process for the liquefaction of helium. As example here a 2 kW low-temperature helium facility shall be evaluated by means of different, superordinated failure sources. This consists of condensers, heat exchangers, expansion turbines and a Joule-Thomson valve. The facility respectively component failures are divided in failures of the condenser, turbine units and failures by external factors. For this entries of the last twelve years are token. This listing shall give information about repeating events, so that here directed facility improvements can be token up.

  11. Performance and Facility Background Pressure Characterization Tests of NASAs 12.5-kW Hall Effect Rocket with Magnetic Shielding Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard; hide

    2015-01-01

    NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.

  12. Project W-420 Ventilation Stack Monitoring System Year 2000 Compliance Assessment Project Plan

    International Nuclear Information System (INIS)

    BUSSELL, J.H.

    1999-01-01

    This document contains a limited assessment of Year 2000 compliance for Project W-420. Additional information is provided as a road map to project documents and other references that may be used to verify Year 2000 compliance. This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K Compliance for Project W-420, Ventilation Stack Monitoring Systems Upgrades. The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. The project work scope includes upgrades to ventilation stacks and generic effluent monitoring systems (GEMS) at the 244-A Double Contained Receiver Tank (DCRT), the 244-BX DCRT, the 244-CR Vault, tanks 241-C-105 and 241-C-106, the 244-S DCRT, and the 244-TX DCRT. A detailed description of system dates, functions, interfaces, potential Y2K problems, and date resolutions can not be described since the project is in the definitive design phase, This assessment will describe the methods, protocols, and practices to ensure that equipment and systems do not have Y2K problems

  13. Vitrification facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project's vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project's background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing

  14. Project W-519 TWRS privatization phase 1 infrastructure year 2000 compliance assessment project plan

    International Nuclear Information System (INIS)

    BUSSELL, J.H.

    1999-01-01

    This document contains a limited assessment of Year 2000 compliance for Project W-519. Additional information is provided as a road map to project documents and other references that may be used to verify Year 2000 compliance

  15. 24 CFR 232.520 - Maximum fees and charges by lender.

    Science.gov (United States)

    2010-04-01

    ... HOUSING AND URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER AUTHORITIES MORTGAGE INSURANCE FOR NURSING HOMES, INTERMEDIATE CARE FACILITIES, BOARD AND CARE HOMES, AND... of Fire Safety Equipment Fees and Charges § 232.520 Maximum fees and charges by lender. The lender...

  16. Design of 20 W fiber-coupled green laser diode by Zemax

    Science.gov (United States)

    Qi, Yunfei; Zhao, Pengfei; Wu, Yulong; Chen, Yongqi; Zou, Yonggang

    2017-09-01

    We represent a design of a 20 W, fiber-coupled diode laser module based on 26 single emitters at 520 nm. The module can produce more than 20 W output power from a standard fiber with core diameter of 400 μm and numerical aperture (NA) of 0.22. To achieve a 20 W laser beam, the spatial beam combination and polarization beam combination by polarization beam splitter are used to combine output of 26 single emitters into a single beam, and then an aspheric lens is used to couple the combined beam into an optical fiber. The simulation shows that the total coupling efficiency is more than 95%. Project supported by the National Key R& D Program of China (No. 2016YFB0402105), the Key Deployment Program of the Chinese Academy of Sciences (No. KGZD-SW-T01-2), and the National Natural Science Foundation of China (No. 61404135).

  17. Statement of work for the immobilized high-level waste transportation system, Project W-464

    Energy Technology Data Exchange (ETDEWEB)

    Mouette, P.

    1998-06-24

    The objective of this Statement of Work (SOW) is to present the scope, the deliverables, the organization, the technical and schedule expectations for the development of a Package Design Criteria (PDC), cost and schedule estimate for the acquisition of a transportation system for the Immobilized High-Level Waste (IHLW). This transportation system which includes the truck, the trailer, and a shielded cask will be used for on-site transportation of the IHLW canisters from the private vendor vitrification facility to the Hanford Site interim storage facility, i.e., vaults 2 and 3 of the Canister Storage Building (CSB). This Statement of Work asks Waste Management Federal Services, Inc., Northwest Operations, to provide Project W-464 with a Design Criteria Document, plus a life-cycle schedule and cost estimate for the acquisition of a transportation system (shielded cask, truck, trailer) for IHLW on-site transportation.

  18. Project W-049H Collection System Acceptance Test

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1994-01-01

    The Acceptance Test Procedure (ATP) Program for Project W-049H covers the following activities: Disposal system, Collection system, Instrumentation and control system. Each activity has its own ATP. The purpose of the ATPs is to verify that the systems have been constructed in accordance with the construction documents and to demonstrate that the systems function as required by the Project criteria. This ATP has been prepared to demonstrate that the Collection System Instrumentation functions as required by project criteria

  19. Design of 500kW grate fired test facility using CFD

    DEFF Research Database (Denmark)

    Rosendahl, Lasse Aistrup; Kær, Søren Knudsen; Jørgensen, K.

    2005-01-01

    A 500kW vibrating grate fired test facility for solid biomass fuels has been designed using numerical models including CFD. The CFD modelling has focussed on the nozzle layout and flowpatterns in the lower part of the furnace, and the results have established confidence in the chosen design...

  20. Acceptance test procedure: RMW Land Disposal Facility Project W-025

    International Nuclear Information System (INIS)

    Roscha, V.

    1994-01-01

    This ATP establishes field testing procedures to demonstrate that the electrical/instrumentation system functions as intended by design for the Radioactive Mixed Waste Land Disposal Facility. Procedures are outlined for the field testing of the following: electrical heat trace system; transducers and meter/controllers; pumps; leachate storage tank; and building power and lighting

  1. The National Ignition Facility Project

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in ICF targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effect testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule and costs associated with the construction project

  2. 10 CFR 434.520 - Speculative buildings.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Speculative buildings. 434.520 Section 434.520 Energy... RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.520 Speculative buildings. 520... for the lighting power provided for the common areas of the building. 520.4Documentation for future...

  3. 340 Facility secondary containment and leak detection

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1995-01-01

    This document presents a preliminary safety evaluation for the 340 Facility Secondary Containment and Leak Containment system, Project W-302. Project W-302 will construct Building 340-C which has been designed to replace the current 340 Building and vault tank system for collection of liquid wastes from the Pacific Northwest Laboratory buildings in the 300 Area. This new nuclear facility is Hazard Category 3. The vault tank and related monitoring and control equipment are Safety Class 2 with the remainder of the structure, systems and components as Safety Class 3 or 4

  4. The National Ignition Facility Project

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project

  5. Project W-151 Tank 101-AZ Waste Retrieval System Year 2000 Compliance Assessment Project Plan

    International Nuclear Information System (INIS)

    BUSSELL, J.H.

    1999-01-01

    This document contains a limited assessment of Year 2000 compliance for Project W-151. Additional information is provided as a road map to project documents and other references that may be used to verify Year 2000 compliance

  6. Project W-030 safety class upgrade summary report

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    This document presents a summary of safety class criteria for the 241-AY/AZ Tank Farm primary ventilation system upgrade under Project W-030, and recommends acceptance of the system as constructed, based on a review of supporting documentation

  7. Study on archive management for nuclear facility decommissioning projects

    International Nuclear Information System (INIS)

    Huang Ling; Gong Jing; Luo Ning; Liao Bing; Zhou Hao

    2011-01-01

    This paper introduces the main features and status of the archive management for nuclear facility decommissioning projects, and explores and discusses the countermeasures in its archive management. Taking the practice of the archive management system of a reactor decommissioning project as an example, the paper illustrates the establishment of archive management system for the nuclear facility decommissioning projects. The results show that the development of a systematic archive management principle and system for nuclear decommissioning projects and the construction of project archives for the whole process from the design to the decommissioning by digitalized archive management system are one effective route to improve the complete, accurate and systematic archiving of project documents, to promote the standardization and effectiveness of the archive management and to ensure the traceability of the nuclear facility decommissioning projects. (authors)

  8. National Ignition Facility project acquisition plan

    International Nuclear Information System (INIS)

    Callaghan, R.W.

    1996-04-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF

  9. Project W-058 monitor and control system logic

    International Nuclear Information System (INIS)

    ROBERTS, J.B.

    1999-01-01

    This supporting document contains the printout of the control logic for the Project W-058 Monitor and Control System, as developed by Programmable Control Services, Inc. The logic is arranged in five appendices, one for each programmable logic controller console

  10. Project W-340 tank 241-C-106 manipulator system closeout summary

    International Nuclear Information System (INIS)

    McDaniel, L.B.

    1995-02-01

    This document summarizes the work that was ongoing when Project W-340 was put on hold. Project W-340: Tank 241-C-106 Manipulator Retrieval System, was a candidate FY98 Major System Acquisition. The project was to develop, procure and deploy a Long Reach Manipulator (LRM) waste retrieval system to provide an alternate method to completing the in-tank demonstration of Single Shell Tank waste retrieval technology. The need for enhanced capabilities derives from (1) the inability of the baseline technology to retrieve certain hard waste forms; (2) uncertainty in the quantity of leakage which will be allowed. Numerous studies over the years have identified an arm architecture as a promising retrieval technology to overcome these concerns. The W340 project was intended to further develop and demonstrate this alternative, as part of selecting the best approach for all tanks. Prior to completing the effort, it was determined that an LRM system was too architecture specific and was envisioned to be too expensive for a one time demonstration of retrieval technology. At the time the work was stopped, an effort was underway to broaden the project scope to allow alternatives to an arm-based system

  11. Risk Management Plan for Tank Farm Restoration and Safe Operations, Project W-314

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    The Risk Management Plan for Project W-314 describes the systems, processes and procedures for implementation of applicable risk management practices described in HNF-0842, Volume IV, Section 2.6, ''Risk Management''. This plan is tailored specifically for use by Project W-314

  12. Quality Assurance program plan - plutonium stabilization and handling project W-460

    International Nuclear Information System (INIS)

    SCHULTZ, J.W.

    1999-01-01

    This Quality Assurance Program Plan (QAPP) identifies Project Quality Assurance (QA) program requirements for all parties participating in the design, procurement, demolition, construction, installation, inspection and testing for Project W-460

  13. Japan Hadron Facility (JHF) project

    International Nuclear Information System (INIS)

    Nagamiya, S.

    1999-01-01

    The Japan Hadron Facility (JHF) is the next accelerator project proposed at KEK to promote exciting sciences by utilising high-intensity proton beams. The project is characterised by three unique features: hadronic beams of the world's highest intensity; a variety of beams from one accelerator complex; frontier sciences to cover a broad research area including nuclear physics, particle physics, material sciences and life sciences by utilising a common accelerator complex. (author)

  14. W.A. Parish Post Combustion CO2 Capture and Sequestration Project Final Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Armpriester, Anthony [Petra Nova Parish Holdings, Washington, DC (United States)

    2017-02-17

    The Petra Nova Project is a commercial scale post-combustion carbon dioxide capture project that is being developed by a joint venture between NRG Energy (NRG) and JX Nippon Oil and Gas Exploration (JX). The project is designed to separate and capture carbon dioxide from an existing coal-fired unit's flue gas slipstream at NRG's W.A. Parish Generation Station located southwest of Houston, Texas. The captured carbon dioxide will be transported by pipeline and injected into the West Ranch oil field to boost oil production. The project, which is partially funded by financial assistance from the U.S. Department of Energy will use Mitsubishi Heavy Industries of America, Inc.'s Kansai Mitsubishi Carbon Dioxide Recovery (KM-CDR(R)) advanced amine-based carbon dioxide absorption technology to treat and capture at least 90% of the carbon dioxide from a 240 megawatt equivalent flue gas slipstream off of Unit 8 at W.A. Parish. The project will capture approximately 5,000 tons of carbon dioxide per day or 1.5 million tons per year that Unit 8 would otherwise emit, representing the largest commercial scale deployment of post-combustion carbon dioxide capture at a coal power plant to date. The joint venture issued full notice to proceed in July 2014 and when complete, the project is expected to be the world's largest post-combustion carbon dioxide capture facility on an existing coal plant. The detailed engineering is sufficiently complete to prepare and issue the Final Public Design Report.

  15. 46 CFR 520.3 - Publication responsibilities.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Publication responsibilities. 520.3 Section 520.3... AUTOMATED TARIFFS § 520.3 Publication responsibilities. (a) General. Unless otherwise exempted by § 520.13... agents to meet their publication requirements under this part. (d) Notification. Each common carrier and...

  16. Accident consequence calculations for project W-058 safety analysis

    International Nuclear Information System (INIS)

    Van Keuren, J.C.

    1997-01-01

    This document describes the calculations performed to determine the accident consequences for the W-058 safety analysis. Project W-058 is the replacement cross site transfer system (RCSTS), which is designed to transort liquid waste between the 200 W and 200 E areas. Calculations for RCSTS safety analyses used the same methods as the calculations for the Tank Waste Remediation System (TWRS) Basis for Interim Operation (BIO) and its supporting calculation notes. Revised analyses were performed for the spray and pool leak accidents since the RCSTS flows and pressures differ from those assumed in the TWRS BIO. Revision 1 of the document incorporates review comments

  17. Solid Waste Operations Complex W-113: Project cost estimate. Preliminary design report. Volume IV

    International Nuclear Information System (INIS)

    1995-01-01

    This document contains Volume IV of the Preliminary Design Report for the Solid Waste Operations Complex W-113 which is the Project Cost Estimate and construction schedule. The estimate was developed based upon Title 1 material take-offs, budgetary equipment quotes and Raytheon historical in-house data. The W-113 project cost estimate and project construction schedule were integrated together to provide a resource loaded project network

  18. The radioactive ion beams facility project for the legnaro laboratories

    Science.gov (United States)

    Tecchio, Luigi B.

    1999-04-01

    In the frame work of the Italian participation to the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involving in the design and construction of prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has been already financially supported and the work is actually in progress. In this context, the LNL has been proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by using the ISOL method. The final goal consists in the production of neutron rich RIBs with masses ranging from 80 to 160 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is proposed to be developed in about 10 years from now and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). In such period of time is proposed the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production, to the BNCT applications and to the neutron physics. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed.

  19. 21 CFR 520.1660 - Oxytetracycline.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Oxytetracycline. 520.1660 Section 520.1660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1660 Oxytetracycline. ...

  20. 12 CFR 308.520 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Discovery. 308.520 Section 308.520 Banks and... PROCEDURE Program Fraud Civil Remedies and Procedures § 308.520 Discovery. (a) The following types of discovery are authorized: (1) Requests for production of documents for inspection and copying; (2) Requests...

  1. DSN Aperture Enhancement Project Office

    Science.gov (United States)

    Marina, Miguel

    2012-01-01

    All contracts are underway for antennas, associated facilities modifications and new transmitters. High risk CPI 100kW klystron and JPL high power uplink microwave components have been designed, prototyped and successfully tested at GDSCC to support the 80kW transmitter implementation and testing at vendor facility. Open issues, which might affect project delivery date, have plans in place or are being created, to maintain DSS-35 Operational Date. There are no known open issues that affect performance. Overall good progress has been made in all areas (procurements, contracts, design and development) and the project is confident that DSS-35 & 36 antennas and the three 80kW Uplink systems will be delivered according to plan.

  2. 21 CFR 520.2455 - Tiamulin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Tiamulin. 520.2455 Section 520.2455 Food and Drugs..., AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2455 Tiamulin. (a) Specifications. (1) Each ounce of concentrate solution contains 3.64 grams (12.3 percent) tiamulin hydrogen fumarate. (2...

  3. 46 CFR 8.520 - Application.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Application. 8.520 Section 8.520 Shipping COAST GUARD... Streamlined Inspection Program § 8.520 Application. To apply for SIP enrollment, a company will submit an application, in writing, to the cognizant OCMI. The application must contain the following: (a) A statement...

  4. 6th July 2010 - United Kingdom Science and Technology Facilities Council W. Whitehorn signing the guest book with Head of International relations F. Pauss, visiting the Computing Centre with Information Technology Department Head Deputy D. Foster, the LHC superconducting magnet test hall with Technology Department P. Strubin,the Centre Control Centre with Operation Group Leader M. Lamont and the CLIC/CTF3 facility with Project Leader J.-P. Delahaye.

    CERN Multimedia

    Teams : M. Brice, JC Gadmer

    2010-01-01

    6th July 2010 - United Kingdom Science and Technology Facilities Council W. Whitehorn signing the guest book with Head of International relations F. Pauss, visiting the Computing Centre with Information Technology Department Head Deputy D. Foster, the LHC superconducting magnet test hall with Technology Department P. Strubin,the Centre Control Centre with Operation Group Leader M. Lamont and the CLIC/CTF3 facility with Project Leader J.-P. Delahaye.

  5. 36 CFR 520.7 - Gambling.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Gambling. 520.7 Section 520.7... BUILDINGS AND GROUNDS OF THE NATIONAL ZOOLOGICAL PARK OF THE SMITHSONIAN INSTITUTION § 520.7 Gambling. Participating in games for money or other personal property or the operation of gambling devices, the conduct of...

  6. 21 CFR 520.309 - Carprofen.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carprofen. 520.309 Section 520.309 Food and Drugs..., AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.309 Carprofen. (a) Specifications. (1) Each caplet contains 25, 75, or 100 milligrams (mg) carprofen. (2) Each chewable tablet contains 25, 75...

  7. 50 CFR 520.7 - Fees.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Fees. 520.7 Section 520.7 Wildlife and Fisheries MARINE MAMMAL COMMISSION PUBLIC AVAILABILITY OF AGENCY MATERIALS § 520.7 Fees. (a) The following... Counsel or the Director determines that waiver or reduction of the fee is in the public interest because...

  8. 78 FR 28627 - TA-W-80,340; TA-W-80,340A; TA-W-80,340B

    Science.gov (United States)

    2013-05-15

    ...] Bush Industries, Inc., Mason Drive Facility, Including On-Site Leased Workers From Morris Security...., Mason Drive Facility, Jamestown, New York (TA-W-80,340) and Bush Industries, Inc., Allen Street Facility... applicable to TA-W-80,340 is hereby issued as follows: All workers of Bush Industries, Inc., Mason Drive...

  9. Project management plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place nineteen former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project win further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  10. The 400W at 1.8K Test Facility at CEA-Grenoble

    Science.gov (United States)

    Roussel, P.; Girard, A.; Jager, B.; Rousset, B.; Bonnay, P.; Millet, F.; Gully, P.

    2006-04-01

    A new test facility with a cooling capacity respectively of 400W at 1.8K or 800W at 4.5K, is now under nominal operation in SBT (Low Temperature Department) at CEA Grenoble. It has been recently used for thermohydraulic studies of two phase superfluid helium in autumn 2004. In the near future, this test bench will allow: - to test industrial components at 1.8K (magnets, cavities of accelerators) - to continue the present studies on thermohydraulics of two phase superfluid helium - to develop and simulate new cooling loops for ITER Cryogenics, and other applications such as high Reynolds number flows This new facility consists of a cold box connected to a warm compressor station (one subatmospheric oil ring pump in series with two screw compressors). The cold box, designed by AIR LIQUIDE, comprises two centrifugal cold compressors, a cold turbine, a wet piston expander, counter flow heat exchangers and two phase separators at 4.5K and 1.8K. The new facility uses a Programmable Logic Controller (PLC) connected to a bus for the measurements. The design is modular and will allow the use of saturated fluid flow (two phase flow at 1.8K or 4.5K) or single phase fluid forced flow. Experimental results and cooling capacity in different operation modes are detailed.

  11. Project W-420 Stack Monitoring system upgrades conceptual design report

    International Nuclear Information System (INIS)

    TUCK, J.A.

    1998-01-01

    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks

  12. Project W-420 Stack Monitoring system upgrades conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    TUCK, J.A.

    1998-11-06

    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks.

  13. Analysis of the accident with the coolant discharge into the plasma vessel of the W7-X fusion experimental facility

    Energy Technology Data Exchange (ETDEWEB)

    Ušpuras, E.; Kaliatka, A.; Kaliatka, T., E-mail: tadas@mail.lei.lt

    2013-06-15

    Highlights: • The accident with water ingress into the plasma vessel in Wendelstein nuclear fusion device W7-X was analyzed. • The analysis of the processes in the plasma vessel and ventilation system was performed using thermal-hydraulic RELAP5 Mod3.3 code. • The suitability of pressure increase prevention system was assessed. • All analyses results will be used for the optimization of W7-X design and to ensure safe operation of this nuclear fusion device. -- Abstract: Fusion is the energy production technology, which could potentially solve problems with growing energy demand of population in the future. Starting 2007, Lithuanian Energy Institute (LEI) is a member of European Fusion Development Agreement (EFDA) organization. LEI is cooperating with Max Planck Institute for Plasma Physics (IPP, Germany) in the frames of EFDA project by performing safety analysis of fusion device W7-X. Wendelstein 7-X (W7-X) is an experimental stellarator facility currently being built in Greifswald, Germany, which shall demonstrate that in the future energy could be produced in such type of fusion reactors. In this paper the safety analysis of 40 mm inner diameter coolant pipe rupture in cooling circuit and discharge of steam–water mixture through the leak into plasma vessel during the W7-X no-plasma “baking” operation mode is presented. For the analysis the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers) and plasma vessel was developed by employing system thermal-hydraulic state-of-the-art RELAP5 Mod3.3 code. This paper demonstrated that the developed RELAP5 model enables to analyze the processes in divertor cooling system and plasma vessel. The results of analysis demonstrated that the proposed burst disc, connecting the plasma vessel with venting system, opens and pressure inside plasma vessel does not exceed the limiting 1.1 × 10{sup 5} Pa absolute pressure. Thus, the plasma vessel remains intact after loss

  14. Baseline comparison report for Project W-058, Replacement of the cross-site transfer system. Revision 1

    International Nuclear Information System (INIS)

    Mendoza, D.P.

    1995-01-01

    This BCR compares the Project W-058 Functional Design Criteria with the Project W-058 Preliminary Design Requirements Document, and identifies the differences between the two documents in the mission definition, project requirements, system functions, and interfaces. Impacts these differences have on current project design are also discussed

  15. Supplement analysis for the proposed upgrades to the tank farm ventilation, instrumentation, and electrical systems under Project W-314 in support of tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    1997-05-01

    The mission of the TWRS program is to store, treat, and immobilize highly radioactive tank waste in an environmentally sound, safe, and cost-effective manner. Within this program, Project W-314, Tank Farm Restoration and Safe Operations, has been established to provide upgrades in the areas of instrumentation and control, tank ventilation, waste transfer, and electrical distribution for existing tank farm facilities. Requirements for tank farm infrastructure upgrades to support safe storage were being developed under Project W-314 at the same time that the TWRS EIS alternative analysis was being performed. Project W-314 provides essential tank farm infrastructure upgrades to support continued safe storage of existing tank wastes until the wastes can be retrieved and disposed of through follow-on TWRS program efforts. Section4.0 provides a description of actions associated with Project W-314. The TWRS EIS analyzes the environmental consequences form the entire TWRS program, including actions similar to those described for Project W-314 as a part of continued tank farm operations. The TWRS EIS preferred alternative was developed to a conceptual level of detail to assess bounding impact areas. For this Supplement Analysis, in each of the potential impact areas for Project W-314, the proposed action was evaluated and compared to the TWRS EIS evaluation of the preferred alternative (Section 5.0). Qualitative and/or quantitative comparisons are then provided in this Supplement Analysis to support a determination on the need for additional National Environmental Policy Act (NEPA) analysis. Based on this Supplement Analysis, the potential impacts for Project W-314 would be small in comparison to and are bounded by the impacts assessed for the TWRS EIS preferred alternative, and therefore no additional NEPA analysis is required (Section 7.0)

  16. 200 Area Deactivation Project Facilities Authorization Envelope Document

    International Nuclear Information System (INIS)

    DODD, E.N.

    2000-01-01

    Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation

  17. National Ignition Facility project acquisition plan revision 1

    International Nuclear Information System (INIS)

    Clobes, A.R.

    1996-01-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager

  18. Project management plan for the isotopes facilities deactivation project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    Purpose of the deactivation project is to place former isotopes production facilities at ORNL in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance. This management plan was prepared to document project objectives, define organizational relationships and responsibilities, and outline the management control systems. The project has adopted the strategy of deactivating the simple facilities first. The plan provides a road map for the quality assurance program and identifies other documents supporting the Isotopes Facilities Deactivation Project

  19. Project and feedback experience on nuclear facility decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J.L. [ENRESA (Spain); Benest, T.G. [United Kingdom Atomic Energy Authority, Windscale, Cumbria (United Kingdom); Tardy, F.; Lefevre, Ph. [Electricite de France (EDF/CIDEN), 69 - Villeurbanne (France); Willis, A. [VT Nuclear Services (United Kingdom); Gilis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R. [Belgoprocess (Belgium); Jeanjacques, M. [CEA Saclay, 91 - Gif sur Yvette (France); Bohar, M.P.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.; Binet, C. [CEA Fontenay aux Roses, 92 (France); Fontana, Ph.; Fraize, G. [CEA Marcoule 30 (France); Seurat, Ph. [AREVA NC, 75 - Paris (France); Chesnokov, A.V.; Fadin, S.Y.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Pavlenko, V.I.; Semenov, S.G.; Shisha, A.D.; Volkov, V.G.; Zverkov, Y.A. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2008-11-15

    This series of 6 short articles presents the feedback experience that has been drawn from various nuclear facility dismantling and presents 3 decommissioning projects: first, the WAGR project that is the UK demonstration project for power reactor decommissioning (a review of the tools used to dismantle the reactor core); secondly, the dismantling project of the Bugey-1 UNGG reactor for which the dismantling works of the reactor internals is planned to be done underwater; and thirdly, the decommissioning project of the MR reactor in the Kurchatov Institute. The feedback experience described concerns nuclear facilities in Spain (Vandellos-1 and the CIEMAT research center), in Belgium (the Eurochemic reprocessing plant), and in France (the decommissioning of nuclear premises inside the Fontenay-aux-roses Cea center and the decommissioning of the UP1 spent fuel reprocessing plant at the Marcoule site). (A.C.)

  20. Project and feedback experience on nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Santiago, J.L.; Benest, T.G.; Tardy, F.; Lefevre, Ph.; Willis, A.; Gilis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.; Jeanjacques, M.; Bohar, M.P.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.; Binet, C.; Fontana, Ph.; Fraize, G.; Seurat, Ph.; Chesnokov, A.V.; Fadin, S.Y.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Pavlenko, V.I.; Semenov, S.G.; Shisha, A.D.; Volkov, V.G.; Zverkov, Y.A.

    2008-01-01

    This series of 6 short articles presents the feedback experience that has been drawn from various nuclear facility dismantling and presents 3 decommissioning projects: first, the WAGR project that is the UK demonstration project for power reactor decommissioning (a review of the tools used to dismantle the reactor core); secondly, the dismantling project of the Bugey-1 UNGG reactor for which the dismantling works of the reactor internals is planned to be done underwater; and thirdly, the decommissioning project of the MR reactor in the Kurchatov Institute. The feedback experience described concerns nuclear facilities in Spain (Vandellos-1 and the CIEMAT research center), in Belgium (the Eurochemic reprocessing plant), and in France (the decommissioning of nuclear premises inside the Fontenay-aux-roses Cea center and the decommissioning of the UP1 spent fuel reprocessing plant at the Marcoule site). (A.C.)

  1. Permitting plan for project W-320 tank 241-C-106 waste retrieval sluicing system (WRSS)

    International Nuclear Information System (INIS)

    Symons, G.A.

    1997-01-01

    This document describes the permitting plan for Project W-320, Tank 241-C-106 Waste Retrieval Sluicing System (WRSS). A comprehensive review of environmental regulations have indicated that several environmental reviews [e.g. National Environmental Policy Act (NEPA), State Environmental Policy Act (SEPA)], permits, and approvals are required prior to construction or operation of the facility. The environmental reviews, permits and approvals, as well the regulatory authority, potentially applicable to the Tank 241-C-106 WRSS include the following: for NEPA - U.S. Department of Energy-Headquarters: Action Description Memorandum, Environmental Assessment, Categorical Exclusion, and Environmental Impact Statement; and for SEPA - State of Washington Department of Ecology (Ecology) Determination of Nonsignificance, Mitigated Determination of Nonsignificance, Determination of Significance, and SEPA Environmental Checklist

  2. FY-1981 project status for the Transuranic Waste Treatment Facility

    International Nuclear Information System (INIS)

    Benedetti, R.L.; Tait, T.D.

    1981-11-01

    The primary objective of the Transuranic Waste Treatment Facility (TWTF) Project is to provide a facility to process low-level transuranic waste stored at the Idaho National Engineering Laboratory (INEL) into a form acceptable for disposal at the Waste Isolation Pilot Plant. This report provides brief summary descriptions of the project objectives and background, project status through FY-1981, planned activities for FY-1982, and the EG and G TWTF Project office position on processing INEL transuranic waste

  3. Sodium Loop Safety Facility W-2 experiment fuel pin rupture detection system

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Kirchner, T.L.; Meyers, S.C.

    1980-05-01

    The objective of the Sodium Loop Safety Facility (SLSF) W-2 experiment is to characterize the combined effects of a preconditioned full-length fuel column and slow transient overpower (TOP) conditions on breeder reactor (BR) fuel pin cladding failures. The W-2 experiment will meet this objective by providing data in two technological areas: (1) time and location of cladding failure, and (2) early post-failure test fuel behavior. The test involves a seven pin, prototypic full-length fast test reactor (FTR) fuel pin bundle which will be subjected to a simulated unprotected 5 cents/s reactivity transient overpower event. The outer six pins will provide the necessary prototypic thermal-hydraulic environment for the center pin

  4. Project W-320, 241-C-106 sluicing: Civil/structural calculations. Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.

    1998-07-24

    This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The purpose of this calculation is to conservatively estimate the weight of equipment and structures being added over Tank 241-C-106 as a result of Project W-320 and combine these weights with the estimated weights of existing structures and equipment as calculated in Attachment 1. The combined weights will be compared to the allowable live load limit to provide a preliminary assessment of loading conditions above Tank 241-C-106.

  5. Project W-236A, work plan for preparation of a design requirements document

    International Nuclear Information System (INIS)

    Groth, B.D.

    1995-01-01

    This work plan outlines the tasks necessary, and defines the organizational responsibilities for preparing a Design Requirements Document (DRD) for project W-236A, Multi-Function Waste Tank Facility (MWTF). A DRD is a Systems Engineering document which bounds, at a high level, the requirements of a discrete system element of the Tank Waste Remediation System (TWRS) Program. This system element is usually assigned to a specific project, in this case the MWTF. The DRD is the document that connects the TWRS program requirements with the highest level projects requirements and provides the project's link to the overall TWRS mission. The MWTF DRD effort is somewhat unique in that the project is already in detailed design, whereas a DRO is normally prepared prior to preliminary design. The MWTF design effort was initiated with a Functional Design Criteria (FDC) and a Supplemental Design Requirements Document (SDRD) bounding the high level requirements. Another unique aspect of this effort is that some of the TWRS program requirements are still in development. Because of these unique aspects of the MWTF DRD development, the MWTF will be developed from existing TWRS Program requirements and project specific requirements contained in the FDC and SDRD. The following list describes the objectives of the MWTF DRD: determine the primary functions of the tanks through a functional decomposition of the TWRS Program high level functions; allocate the primary functions to a sub-system architecture for the tanks; define the fundamental design features in terms of performance requirements for the system and subsystems; identify system interfaces and design constraints; and document the results in a DRD

  6. Project W-314 specific test and evaluation plan 241-AN-B valve pit

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AN-B Valve Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP)

  7. Cold Vacuum Drying (CVD) Facility, Diesel Generator Fire Protection

    CERN Document Server

    Singh, G

    2000-01-01

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications.

  8. Cold Vacuum Drying (CVD) Facility, Diesel Generator Fire Protection

    International Nuclear Information System (INIS)

    SINGH, G.

    2000-01-01

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications

  9. Project W-320, tank 241-C-106 sluicing acceptance for beneficial use

    International Nuclear Information System (INIS)

    BAILEY, J.W.

    1999-01-01

    The purpose of this document is to identify the Project W-320 Chiller Documentation required to be turned over from the Projects Organization to Tank Farm Operations as part of the acceptance of the new equipment for beneficial use

  10. Fast Flux Test Facility project plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  11. Fast Flux Test Facility project plan. Revision 2

    International Nuclear Information System (INIS)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition

  12. 46 CFR 119.520 - Bilge pumps.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bilge pumps. 119.520 Section 119.520 Shipping COAST... Ballast Systems § 119.520 Bilge pumps. (a) Each vessel must be provided with bilge pumps in accordance... have a portable hand bilge pump that must be: (1) Capable of pumping water, but not necessarily...

  13. Project W-314 Polyurea Special Protective Coating (SPC) Test Report Chemical Compatibility and Physical Characteristics Testing

    International Nuclear Information System (INIS)

    MAUSER, R.W.

    2001-01-01

    This Engineering Test report outlines the results obtained from testing polyurea on its decon factor, tank waste compatibility, and adhesion strength when subjected to a high level of gamma radiation. This report is used in conjunction with RPP-7187 Project W-314 Pit Coatings Repair Requirements Analysis, to document the fact polyurea meets the project W-314 requirements contained in HNF-SD-W314-PDS-005 and is therefore an acceptable SPC for use in W-314 pit refurbishments

  14. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD. INTEGRATED DISPOSAL FACILITY (IDF)

    International Nuclear Information System (INIS)

    MCLELLAN, G.W.

    2007-01-01

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal issues as well as challenges with

  15. W.A. Parish Post-Combustion CO{sub 2} Capture and Sequestration Project Phase 1 Definition

    Energy Technology Data Exchange (ETDEWEB)

    Armpriester, Anthony; Smith, Roger; Scheriffius, Jeff; Smyth, Rebecca; Istre, Michael

    2014-02-01

    For a secure and sustainable energy future, the United States (U.S.) must reduce its dependence on imported oil and reduce its emissions of carbon dioxide (CO{sub 2}) and other greenhouse gases (GHGs). To meet these strategic challenges, the U.S. wiU have to create fundamentally new technologies with performance levels far beyond what is now possible. Developing advanced post-combustion clean coal technologies for capturing CO{sub 2} from existing coal-fired power plants can play a major role in the country's transition to a sustainable energy future, especially when coupled with CO{sub 2}-enhanced oil recovery (CO{sub 2}-EOR). Pursuant to these goals, NRG Energy, Inc. (NRG) submitted an application and entered into a cost-shared collaboration with the U.S. Department of Energy (DOE) under Round 3 of the Clean Coal Power Initiative (CCPI) to advance low-emission coal technologies. The objective of the NRG W A Parish Post-Combustion CO{sub 2} Capture and Sequestration Demonstration Project is to establish the technical feasibility and economic viability of post-combustion CO{sub 2} capture using flue gas from an existing pulverized coal-fired boiler integrated with geologic sequestration via an enhanced oil recovery (EOR) process. To achieve these objectives, the project will be executed in three phases. Each phase represents a distinct aspect of the project execution. The project phases are: • Phase I. Project Definition/Front-End Engineering Design (FEED) • Phase ll. Detailed Engineering, Procurement & Construction • Phase III. Demonstration and Monitoring The purpose of Phase I is to develop the project in sufficient detail to facilitate the decision-making process in progressing to the next stage of project delivery. Phase n. This report provides a complete summary of the FEED study effort, including pertinent project background information, the scope of facilities covered, decisions, challenges, and considerations made regarding configuration and

  16. 21 CFR 520.812 - Enrofloxacin tablets.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Enrofloxacin tablets. 520.812 Section 520.812 Food... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.812 Enrofloxacin tablets. (a) Specifications. Each tablet contains either 22.7, 68.0, or 136.0 milligrams of enrofloxacin. (b) Sponsor. See No...

  17. Mixed and Low-Level Waste Treatment Facility Project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies

  18. Project W-320, 241-C-106 sluicing: Construction specification W-320-C2

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    This supporting document has been prepared to make the construction specifications for Project W-320 readily available. Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits

  19. Project W-320, 241-C-106 sluicing: Construction specification W-320-C2

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.

    1998-07-20

    This supporting document has been prepared to make the construction specifications for Project W-320 readily available. Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits.

  20. Project W-320, 241-C-106 sluicing: Construction specification W-320-C6

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    This supporting document has been prepared to make the construction specifications for Project W-320 readily available. Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits

  1. Project W-320, 241-C-106 sluicing: Construction specification W-320-C5

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    This supporting document has been prepared to make the construction specifications for Project W-320 readily available. Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits

  2. Project W-320, 241-C-106 sluicing: Construction specification W-320-C7

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    This supporting document has been prepared to make the construction specifications for Project W-320 readily available. Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits

  3. Project W-320, 241-C-106 sluicing: Construction specification W-320-C5

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.

    1998-07-20

    This supporting document has been prepared to make the construction specifications for Project W-320 readily available. Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits.

  4. Project W-320, 241-C-106 sluicing: Construction specification W-320-C7

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.

    1998-07-20

    This supporting document has been prepared to make the construction specifications for Project W-320 readily available. Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits.

  5. Project W-320, 241-C-106 sluicing: Construction specification W-320-C6

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.

    1998-07-20

    This supporting document has been prepared to make the construction specifications for Project W-320 readily available. Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits.

  6. Decontamination and decommissioning project for the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. (and others)

    2007-02-15

    The final goal of this project is to complete the decommissioning of the Korean Research Reactor no.1 and no. 2(KRR-1 and 2) and uranium conversion plant safely and successfully. The goal of this project in 2006 is to complete the decontamination of the inside reactor hall of the KRR-2 which will be operating as a temporary storage for the radioactive waste until the construction and operation of the national repository site. Also the decommissioning work of the KRR-1 and auxiliary facilities is being progress. As the compaction of decommissioning project is near at hand, a computer information system was developed for a systematically control and preserve a technical experience and decommissioning data for the future reuse. The nuclear facility decommissioning, which is the first challenge in Korea, is being closed to the final stages. We completed the decommissioning of all the bio-shielding concrete for KRR-2 in 2005 and carried out the decontamination and waste material grouping of the roof, wall and bottom of the reactor hall of the KRR-2. The decommissioning for nuclear facility were demanded the high technology, remote control equipment and radioactivity analysis. So developed equipment and experience will be applied at the decommissioning for new nuclear facility in the future.

  7. Project W-320, backup: 1000 CFM portable exhausters acceptance for beneficial use

    International Nuclear Information System (INIS)

    Nelson, O.D.

    1998-01-01

    This document is to identify the Project W-320 1000 CFM portable exhauster documentation required to be turned over from the Projects Organization to the Tank Farm Operations as part of the acceptance of the 1000 CFM portable exhausters for beneficial use

  8. National Biomedical Tracer Facility: Project definition study

    International Nuclear Information System (INIS)

    Heaton, R.; Peterson, E.; Smith, P.

    1995-01-01

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design

  9. National Biomedical Tracer Facility: Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R.; Peterson, E. [Los Alamos National Lab., NM (United States); Smith, P. [Smith (P.A.) Concepts and Designs (United States)

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  10. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental ampersand Regulatory Planning ampersand Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria

  11. The National Ignition Facility Project. Revision 1

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project

  12. Integrated assessment of thermal hydraulic processes in W7-X fusion experimental facility

    Energy Technology Data Exchange (ETDEWEB)

    Kaliatka, T., E-mail: tadas.kaliatka@lei.lt; Uspuras, E.; Kaliatka, A.

    2017-02-15

    Highlights: • The model of Ingress of Coolant Event experiment facility was developed using the RELAP5 code. • Calculation results were compared with Ingress of Coolant Event experiment data. • Using gained experience, the numerical model of Wendelstein 7-X facility was developed. • Performed analysis approved pressure increase protection system for LOCA event. - Abstract: Energy received from the nuclear fusion reaction is one of the most promising options for generating large amounts of carbon-free energy in the future. However, physical and technical problems existing in this technology are complicated. Several experimental nuclear fusion devices around the world have already been constructed, and several are under construction. However, the processes in the cooling system of the in-vessel components, vacuum vessel and pressure increase protection system of nuclear fusion devices are not widely studied. The largest amount of radioactive materials is concentrated in the vacuum vessel of the fusion device. Vacuum vessel is designed for the vacuum conditions inside the vessel. Rupture of the in-vessel components of the cooling system pipe may lead to a sharp pressure increase and possible damage of the vacuum vessel. To prevent the overpressure, the pressure increase protection system should be designed and implemented. Therefore, systematic and detailed experimental and numerical studies, regarding the thermal-hydraulic processes in cooling system, vacuum vessel and pressure increase protection system, are important and relevant. In this article, the numerical investigation of thermal-hydraulic processes in cooling systems of in-vessel components, vacuum vessels and pressure increase protection system of fusion devices is presented. Using the experience gained from the modelling of “Ingress of Coolant Event” experimental facilities, the numerical model of Wendelstein 7-X (W7-X) experimental fusion device was developed. The integrated analysis of the

  13. Congressional hearing reviews NSF major research and facilities projects

    Science.gov (United States)

    Showstack, Randy

    2012-03-01

    An 8 March congressional hearing about the U.S. National Science Foundation's Major Research Equipment and Facilities Construction (NSF MREFC) account focused on fiscal management and accountability of projects in that account and reviewed concerns raised by NSF's Office of Inspector General (OIG). NSF established the MREFC account in 1995 to better plan and manage investments in major equipment and facilities projects, which can cost from tens of millions to hundreds of millions of dollars, and the foundation has funded 17 MREFC projects since then. The Obama administration's proposed fiscal year (FY) 2013 budget includes funding for four MREFC projects: Advanced Laser Gravitational-Wave Observatory (AdvLIGO), Advanced Technology Solar Telescope (ATST), National Ecological Observatory (NEON), and Ocean Observatories Initiative (OOI). The hearing, held by a subcommittee of the House of Representatives' Committee on Science, Space, and Technology, reviewed management oversight throughout the life cycles of MREFC projects and concerns raised in recent OIG reports about the use of budget contingency funds. NSF's February 2012 manual called "Risk management guide for large facilities" states that cost contingency is "that portion of the project budget required to cover `known unknowns,'" such as planning and estimating errors and omissions, minor labor or material price fluctuations, and design developments and changes within the project scope. Committee members acknowledged measures that NSF has made to improve the MREFC oversight process, but they also urged the agency to continue to take steps to ensure better project management.

  14. Groundwater screening evaluation/monitoring plan: 200 Area Treated Effluent Disposal Facility (Project W-049H). Revision 1

    International Nuclear Information System (INIS)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-05-01

    This report consists of the groundwater screening evaluation required by Section S.8 of the State Waste Discharge Permit for the 200 Area TEDF. Chapter 1.0 describes the purpose of the groundwater monitoring plan. The information in Chapter 2.0 establishes a water quality baseline for the facility and is the groundwater screening evaluation. The following information is included in Chapter 2.0: Facility description;Well locations, construction, and development data; Geologic and hydrologic description of the site and affected area; Ambient groundwater quality and current use; Water balance information; Hydrologic parameters; Potentiometric map, hydraulic gradients, and flow velocities; Results of infiltration and hydraulic tests; Groundwater and soils chemistry sampling and analysis data; Statistical evaluation of groundwater background data; and Projected effects of facility operation on groundwater flow and water quality. Chapter 3.0 defines, based on the information in Chapter 2.0, how effects of the TEDF on the environment will be evaluated and how compliance with groundwater quality standards will be documented in accordance with the terms and conditions of the permit. Chapter 3.0 contains the following information: Media to be monitored; Wells proposed as the point of compliance in the uppermost aquifer; Basis for monitoring well network and evidence of monitoring adequacy; Contingency planning approach for vadose zone monitoring wells; Which field parameters will be measured and how measurements will be made; Specification of constituents to be sampled and analyzed; and Specification of the sampling and analysis procedures that will be used. Chapter 4.0 provides information on how the monitoring results will be reported and the proposed frequency of monitoring and reporting. Chapter 5.0 lists all the references cited in this monitoring plan. These references should be consulted for additional or more detailed information

  15. Decontamination and Decommissioning Project for the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. and others

    2006-02-15

    The final goal of this project is to complete safely and successfully the decommissioning of the Korean Research Reactor no.1 (KRR-1) and the Korean Research Reactor no.2 (KRR-2), and uranium conversion plant (UCP). The dismantling of the reactor hall of the KRR-2 was planned to complete till the end of 2004, but it was delayed because of a few unexpected factors such as the development of a remotely operated equipment for dismantling of the highly radioactive parts of the beam port tubes. In 2005, the dismantling of the bio-shielding concrete structure of the KRR-2 was finished and the hall can be used as a temporary storage space for the radioactive waste generated during the decommissioning of the KRR-1 and KRR-2. The cutting experience of the shielding concrete by diamond wire saw and the drilling experience by a core boring machine will be applied to another nuclear facility dismantling. An effective management tool of the decommissioning projects, named DECOMIS, was developed and the data from the decommissioning projects were gathered. This system provided many information on the daily D and D works, waste generation, radiation dose, etc., so an effective management of the decommissioning projects is expected from next year. The operation experience of the uranium conversion plant as a nuclear fuel cycle facility was much contributed to the localization of nuclear fuels for both HWR and PWR. It was shut down in 1993 and a program for its decontamination and dismantling was launched in 2001 to remove all the contaminated equipment and to achieve the environment restoration. The decommissioning project is expected to contribute to the development of the D and D technologies for the other domestic fuel cycle facilities and the settlement of the new criteria for decommissioning of the fuel cycle related facilities.

  16. 7 CFR 520.2 - Definition.

    Science.gov (United States)

    2010-01-01

    ... agricultural crop or animal such as through elimination of a pest. ... 7 Agriculture 6 2010-01-01 2010-01-01 false Definition. 520.2 Section 520.2 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF...

  17. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs

  18. Project W-320, 241-C-106 sluicing: Piping calculations. Volume 8

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The objective of this calculation is to perform the hydraulic analysis on the slurry line and the supernate line for W-320. This calculation will use the As-Built conditions of the slurry line and the supernate line. Booster Pump Curves vs System Curves shall be generated for the supernate system and the slurry system

  19. Design considerations for the Yucca Mountain project exploratory shaft facility

    International Nuclear Information System (INIS)

    Bullock, R.L. Sr.

    1990-01-01

    This paper reports on the regulatory/requirements challenges of this project which exist because this is the first facility of its kind to ever be planned, characterized, designed, and built under the purview of a U.S. Nuclear Regulatory Agency. The regulations and requirements that flow down to the Architect/Engineer (A/E) for development of the Exploratory Shaft Facility (ESF) design are voluminous and unique to this project. The subsurface design and construction of the ESF underground facility may eventually become a part of the future repository facility and, if so, will require licensing by the Nuclear Regulatory Commission (NRC). The Fenix and Scisson of Nevada-Yucca Mountain Project (FSN-YMP) group believes that all of the UMP design and construction related activities, with good design/construct control, can be performed to meet all engineering requirements, while following a strict quality assurance program that will also meet regulatory requirements

  20. Cold vacuum drying facility design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.J.

    1997-09-24

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  1. Cold vacuum drying facility design requirements

    International Nuclear Information System (INIS)

    Irwin, J.J.

    1997-01-01

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility

  2. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)

    Energy Technology Data Exchange (ETDEWEB)

    MCLELLAN, G.W.

    2007-02-07

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal

  3. 46 CFR 520.6 - Retrieval of information.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Retrieval of information. 520.6 Section 520.6 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING OCEAN SHIPPING IN FOREIGN COMMERCE CARRIER AUTOMATED TARIFFS § 520.6 Retrieval of information. (a) General. Tariffs systems shall present retrievers with the...

  4. Project W-314 specific test and evaluation plan for 241-AY-02A pump pit upgrade

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    This Specific Test and Evaluation Plan (STEP) defines the test and evaluation activities encompassing the upgrade of the 241-AY-02A Pump Pit for the W-314 Project. The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AY-02A Pump Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP)

  5. Project W-314 specific test and evaluation plan for 241-AY-01A pump pit upgrade

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    This Specific Test and Evaluation Plan (STEP) defines the test and evaluation activities encompassing the upgrade of the 241-AY-0IA Pump Pit for the W-314 Project. The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AY-01A Pump Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP)

  6. Project W-314 specific test and evaluation plan for 241-AN-A valve pit

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AN-A Valve Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP)

  7. Sodium Loop Safety Facility W-2 experiment fuel pin rupture detection system. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.A.; Kirchner, T.L.; Meyers, S.C.

    1980-05-01

    The objective of the Sodium Loop Safety Facility (SLSF) W-2 experiment is to characterize the combined effects of a preconditioned full-length fuel column and slow transient overpower (TOP) conditions on breeder reactor (BR) fuel pin cladding failures. The W-2 experiment will meet this objective by providing data in two technological areas: (1) time and location of cladding failure, and (2) early post-failure test fuel behavior. The test involves a seven pin, prototypic full-length fast test reactor (FTR) fuel pin bundle which will be subjected to a simulated unprotected 5 cents/s reactivity transient overpower event. The outer six pins will provide the necessary prototypic thermal-hydraulic environment for the center pin.

  8. 46 CFR 181.520 - Installation and location.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Installation and location. 181.520 Section 181.520... TONS) FIRE PROTECTION EQUIPMENT Portable Fire Extinguishers § 181.520 Installation and location... the space being protected. The installation and location must be to the satisfaction of the Officer in...

  9. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S&M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S&M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  10. Project No. 4 - Waste incineration facility

    International Nuclear Information System (INIS)

    2000-01-01

    There are currently 12000 m 3 of combustible waste stored at the Ignalina NPP site. It is estimated that by 2005 the volume will have increase to 15000 m 3 (filters, personnel protection, clothing and plastics). As a part of the preparation for the closure of the Ignalina NPP an incineration facility will be required to process combustible wastes to reduce the overall volume of short-lived radioactive wastes stored at the Ignalina NPP site, thus reducing the overall risk to the environment. Project activities includes the design, construction and commissioning of the proposed facility, including all licensing documentation

  11. Project W-420 Ventilation Stack Monitoring System Year 2000 Compliance Assessment Project Plan

    International Nuclear Information System (INIS)

    BUSSELL, J.H.

    1999-01-01

    This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K Compliance for Project W-420, Ventilation Stack Monitoring Systems Upgrades. The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. The project work scope includes upgrades to ventilation stacks and generic effluent monitoring systems (GEMS) at the 244-A Double Contained Receiver Tank (DCRT), the 244-BX DCRT, the 244-CR Vault, tanks 241-C-105 and 241-C-106, the 244-S DCRT, and the 244-TX DCRT. A detailed description of system dates, functions, interfaces, potential Y2K problems, and date resolutions can not be described since the project is in the definitive design phase, This assessment will describe the methods, protocols, and practices to ensure that equipment and systems do not have Y2K problems

  12. 21 CFR 520.1157 - Iodinated casein tablets.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iodinated casein tablets. 520.1157 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1157 Iodinated casein tablets. (a) Specifications. Each 1-gram tablet contains 25 milligrams of iodinated casein. (b) Sponsor...

  13. 21 CFR 520.1660d - Oxytetracycline powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Oxytetracycline powder. 520.1660d Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1660d Oxytetracycline... concentrations of oxytetracycline hydrochloride (independent of the various net weights) as follows: (1) Each 18...

  14. 7 CFR 1493.520 - Recovery of losses.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Recovery of losses. 1493.520 Section 1493.520... Supplier Credit Guarantee Program Operations § 1493.520 Recovery of losses. (a) Notification. Upon payment of loss to the exporter or the exporter's assignee, CCC will notify the importer of CCC's rights...

  15. 21 CFR 520.905a - Fenbendazole suspension.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Fenbendazole suspension. 520.905a Section 520.905a... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.905a Fenbendazole suspension. (a) Specifications. Each milliliter of suspension contains 100 milligrams (mg) fenbendazole. (b...

  16. 21 CFR 520.905b - Fenbendazole granules.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Fenbendazole granules. 520.905b Section 520.905b... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.905b Fenbendazole granules. (a) Specifications. Each gram of granules contains 222 milligrams (mg) fenbendazole. (b) Sponsor. See...

  17. Functional design criteria for project W-252, phase II liquid effluent treatment and disposal. Revision 2

    International Nuclear Information System (INIS)

    Hatch, C.E.

    1995-05-01

    This document is the Functional Design Criteria for Project W-252. Project W-252 provides the scope to provide BAT/AKART (best available technology...) to 200 Liquid Effluent Phase II streams (B-Plant). This revision (Rev. 2) incorporates a major descoping of the project. The descoping was done to reflect a combination of budget cutting measures allowed by a less stringent regulatory posture toward the Phase II streams

  18. Project W-521, waste feed delivery systems environmental permits and approvals plan

    International Nuclear Information System (INIS)

    TOLLEFSON, K.S.

    1999-01-01

    This document has been prepared to define the specific environmental requirements applicable to Project W-521. The document describes the permits and approvals necessary for the project to design, construct, and install planned upgrades, and provides a schedule of activities and provides cost estimates to complete the required permitting and approval activities

  19. 21 CFR 520.550 - Dextrose/glycine/electrolyte.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dextrose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Dextrose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and dextrose 44.0 grams. (b) Sponsor...

  20. 21 CFR 520.905e - Fenbendazole blocks.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Fenbendazole blocks. 520.905e Section 520.905e... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.905e Fenbendazole blocks. (a) Specifications. (1) Each pound of molasses block contains 750 milligrams of fenbendazole. (2) Each pound of...

  1. System Engineering Management and Implementation Plan for Project W-211, ''Initial Tank Retrieval Systems'' (ITRS)

    International Nuclear Information System (INIS)

    VAN BEEK, J.E.

    2000-01-01

    This systems Engineering Management and Implementation Plan (SEMIP) describes the Project W-211 implementation of the Tank Farm Contractor Systems Engineering Management Plan (TFC SEMP). The SEMIP defines the systems engineering products and processes used by the project to comply with the TFC SEMP, and provides the basis for tailoring systems engineering processes by applying a graded approach to identify appropriate systems engineering requirements for W-211

  2. System Engineering Management and Implementation Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    Energy Technology Data Exchange (ETDEWEB)

    VAN BEEK, J.E.

    2000-05-05

    This systems Engineering Management and Implementation Plan (SEMIP) describes the Project W-211 implementation of the Tank Farm Contractor Systems Engineering Management Plan (TFC SEMP). The SEMIP defines the systems engineering products and processes used by the project to comply with the TFC SEMP, and provides the basis for tailoring systems engineering processes by applying a graded approach to identify appropriate systems engineering requirements for W-211.

  3. 21 CFR 520.1182 - Iron dextran suspension.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron dextran suspension. 520.1182 Section 520.1182... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1182 Iron dextran suspension... hydroxide in complex with a low molecular weight dextran. (b) Sponsor. See No. 051311 in § 510.600(c) of...

  4. 21 CFR 520.905d - Fenbendazole powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Fenbendazole powder. 520.905d Section 520.905d... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.905d Fenbendazole powder. (a) Specifications. (1) Each 2-ounce packet contains 2.27 grams (4 percent) of fenbendazole plus other inert...

  5. 21 CFR 520.45b - Albendazole paste.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Albendazole paste. 520.45b Section 520.45b Food... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.45b Albendazole paste. (a) Specifications. The product contains 30 percent albendazole. (b) Sponsor. See No. 000069 in § 510.600(c) of this...

  6. Project specific quality assurance plan for Project W-178, 219-S secondary containment

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1994-01-01

    The scope of this Quality Assurance Program Plan (QAPP) is to provide a system of Quality Assurance reviews and verifications on the design, procurement and construction of the 219-S Secondary Containment Upgrade. The reviews and verifications will be on activities associated with design, procurement, and construction of the Secondary Containment Upgrade which includes, but is not limited to demolition, removal, new tank installation, tank 103 isolation, tank cell refurbishment, electrical, instrumentation, piping/tubing including supports, pump and valves, and special coatings. The full project scope is defined in the project Functional Design Criteria (FDC), SD-W178-FDC-001, and all activities must be in compliance with this FDC and related design documentation

  7. Discussion on the post-project assessment of environmental impact for nuclear facilities

    International Nuclear Information System (INIS)

    Shang Zhaorong

    2013-01-01

    The paper introduces the background of post-project assessment of environmental impact in the world and focuses on the characteristic of environmental impact assessment for Chinese nuclear facilities construction projects, analyzes the necessity, principle and contents of post-project assessment of environmental impact on current Chinese nuclear facilities operation. It is considered that to start the post-project assessment of environmental impact, perfect the post-project assessment mechanism, introduce the post-project assessment into environmental impact assessment system are just at the night time. (author)

  8. Project W-320, 241-C-106 sluicing supporting documentation bibliography

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    This supporting document has been prepared to make the listing of documentation used to develop, or in support of Project W-320, readily retrievable. All documents are sorted by document number and list the document type. Tank 241-C-106 has been included on the High Heat Load Watch List

  9. 21 CFR 520.1430 - Mibolerone.

    Science.gov (United States)

    2010-04-01

    ... purposes. (3) Limitations. Administer daily, orally or in a small amount of food, at least 30 days before... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Mibolerone. 520.1430 Section 520.1430 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS...

  10. Design criteria tank farm storage and staging facility. Revision 1

    International Nuclear Information System (INIS)

    Lott, D.T.

    1994-01-01

    Tank Farms Operations must store/stage material and equipment until work packages are ready to work. Consumable materials are also required to be stored for routine and emergency work. Connex boxes and open storage is currently used for much of the storage because of the limited space at 272AW and 272WA. Safety issues based on poor housekeeping and material deteriorating due to weather damage has resulted from this inadequate storage space. It has been determined that a storage building in close proximity to the Tank Farm work force would be cost effective. Project W-402 and W-413 will provide a storage/staging area in 200 East and West Areas by the construction of two new storage facilities. The new facilities will be used by Operations, Maintenance and Materials groups to adequately store material and equipment. These projects will also furnish electrical services to the facilities for lighting and HVAC. Fire Protection shall be extended to the 200 East facility from 272AW if necessary

  11. The muon science facility at the JAERI/KEK joint project

    International Nuclear Information System (INIS)

    Miyake, Y.; Nishiyama, K.; Makimura, S.; Kawamura, N.; Shimomura, K.; Kadono, R.; Higemoto, W.; Fukuchi, K.; Beveridge, J.L.; Ishida, K.; Matsuzaki, T.; Watanabe, I.; Matsuda, Y.; Sakamoto, S.; Nakamura, S.N.; Nagamine, K.

    2003-01-01

    The Muon Science Facility is one of the experimental arenas of the JAERI/KEK Joint Project, which also includes neutron science, particle and nuclear physics, neutrino physics and nuclear transmutation science. Following the recommendations by the review committees, the Joint Project was finally approved for construction at the end of December, 2000. The approval is for Phase 1 of 1335 Oku Yen out of the total project cost of 1890 Oku Yen. It is planned to locate the muon science experimental area together with the neutron facility in an integrated building, as a facility for materials and life science studies. Because its construction will be started in April 2003, we are now working to complete the detailed design of the building structure, shielding, electrical services, cooling water, primary proton beam line, one muon target and secondary beam lines

  12. PROJECT EXPERIENCE REPORT DEMOLITION OF HANFORDS 233-S PLUTONIUM CONCENTRATION FACILITY

    International Nuclear Information System (INIS)

    BERLIN, G.T.; ORGILL, T.K.

    2004-01-01

    This report provides a summary of the preparation, operations, innovative work practices, and lessons learned associated with demolition of the 2334 Plutonium Concentration Facility. This project represented the first open-air demolition of a highly-contaminated plutonium facility at the Hanford Site. This project may also represent the first plutonium facility in the US. Department of Energy (DOE) complex to have been demolished without first decontaminating surfaces to near ''free release'' standards. Demolition of plutonium contaminated structures, if not properly managed, can subject cleanup personnel and the environment to significant risk. However, with proper sequencing and innovative use of commercially available equipment, materials, and services, this project demonstrated that a plutonium processing facility can be demolished while avoiding the need to perform extensive decontamination or to construct large enclosures. This project utilized an excavator with concrete shears, diamond circular saws, water misting and fogging equipment, commercially available fixatives and dust suppressants, conventional mobile crane and rigging services, and near real-time modeling of meteorological and radiological conditions. Following a significant amount of preparation, actual demolition of the 233-S Facility began in October 2003 and was completed in late April 2004. The knowledge and experience gained on this project are important to the Hanford Site as additional plutonium processing facilities are scheduled for demolition in the near future. Other sites throughout the DOE Complex may also be faced with similar challenges. Numerous innovations and effective work practices were implemented on this project. Accordingly, a series of ''Lessons Learned and Innovative Practices Fact Sheets'' were developed and are included as an appendix to this report. This collection of fact sheets is not intended to capture every innovative work practice and lesson learned, but rather

  13. PROJECT EXPERIENCE REPORT DEMOLITION OF HANFORDS 233-S PLUTONIUM CONCENTRATION FACILITY

    International Nuclear Information System (INIS)

    BERLIN, G.T.

    2004-01-01

    This report provides a summary of the preparation, operations, innovative work practices, and lessons learned associated with demolition of the 2334 Plutonium Concentration Facility. This project represented the first open-air demolition of a highly-contaminated plutonium facility at the Hanford Site. This project may also represent the first plutonium facility in the US. Department of Energy (DOE) complex to have been demolished without first decontaminating surfaces to near ''free release'' standards. Demolition of plutonium contaminated structures, if not properly managed, can subject cleanup personnel and the environment to significant risk. However, with proper sequencing and innovative use of commercially available equipment, materials, and services, this project demonstrated that a plutonium processing facility can be demolished while avoiding the need to perform extensive decontamination or to construct large enclosures. This project utilized an excavator with concrete shears, diamond circular saws, water misting and fogging equipment, commercially available fixatives and dust suppressants, conventional mobile crane and rigging services, and near real-time modeling of meteorological and radiological conditions. Following a significant amount of preparation, actual demolition of the 2333 Facility began in October 2003 and was completed in late April 2004. The knowledge and experience gained on this project are important to the Hanford Site as additional plutonium processing facilities are scheduled for demolition in the near future. Other sites throughout the DOE Complex may also be faced with similar challenges. Numerous innovations and effective work practices were implemented on this project. Accordingly, a series of ''Lessons Learned and Innovative Practices Fact Sheets'' were developed and are included as an appendix to this report. This collection of fact sheets is not intended to capture every innovative work practice and lesson learned, but rather to

  14. Design of the 50 kW neutron converter for SPIRAL2 facility

    Energy Technology Data Exchange (ETDEWEB)

    Avilov, M.S. [Budker Institute of Nuclear Physics, 630090 Novosibirsk, SB RAS (Russian Federation); Tecchio, L.B., E-mail: tecchio@lnl.infn.i [Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Titov, A.T. [Boreskov Institute of Catalysis, 630090 Novosibirsk, SB RAS (Russian Federation); Tsybulya, V.S. [Trofimuk Institute of Geology, 630090 Novosibirsk, SB RAS (Russian Federation); Zhmurikov, E.I. [Budker Institute of Nuclear Physics, 630090 Novosibirsk, SB RAS (Russian Federation)

    2010-06-21

    SPIRAL2 is a facility for the study of fundamental nuclear physics and multidisciplinary research. SPIRAL2 represents a major advance for research on exotic nuclei. The radioactive ion beam (RIB) production system is comprised of a neutron converter, a target and an ion source. This paper is dedicated to the designing of the 50 kW neutron converter for the SPIRAL2 facility. Among the different variants of the neutron converter, the one based on a rotating solid disk seems quite attractive due to its safety, ease in production and relatively low cost. Dense graphite used as the converter's material allows the production of high-intensity neutron flux and, at the same time, the heat removal from the converter by means of radiation cooling. Thermo-mechanical simulations performed in order to determine the basic geometry and physical characteristics of the neutron production target for SPIRAL2 facility, to define the appropriate beam power distribution, and to predict the target behaviour under the deuteron beam of nominal parameters (40 MeV, 1.2 mA, 50 kW) are presented. To study the main physical and mechanical properties and serviceability under operating conditions, several kinds of graphite have been analyzed and tested. The paper reports the results of such measurements. Radiation damage is the most important issue for the application of graphite as neutron converter. It is well known that the thermal conductivity of the neutron-irradiated graphite is reduced by a factor of 10 from the initial value after irradiation. Difference in volume expansions between the matrix and the fiber results in serious damage of neutron-irradiated C/C composites. Calculations showed that at high temperature the effect of neutron radiation is not so critical and that the change in thermal conductivity does not prevent the use of graphite as neutron converter.

  15. Design of the 50 kW neutron converter for SPIRAL2 facility

    International Nuclear Information System (INIS)

    Avilov, M.S.; Tecchio, L.B.; Titov, A.T.; Tsybulya, V.S.; Zhmurikov, E.I.

    2010-01-01

    SPIRAL2 is a facility for the study of fundamental nuclear physics and multidisciplinary research. SPIRAL2 represents a major advance for research on exotic nuclei. The radioactive ion beam (RIB) production system is comprised of a neutron converter, a target and an ion source. This paper is dedicated to the designing of the 50 kW neutron converter for the SPIRAL2 facility. Among the different variants of the neutron converter, the one based on a rotating solid disk seems quite attractive due to its safety, ease in production and relatively low cost. Dense graphite used as the converter's material allows the production of high-intensity neutron flux and, at the same time, the heat removal from the converter by means of radiation cooling. Thermo-mechanical simulations performed in order to determine the basic geometry and physical characteristics of the neutron production target for SPIRAL2 facility, to define the appropriate beam power distribution, and to predict the target behaviour under the deuteron beam of nominal parameters (40 MeV, 1.2 mA, 50 kW) are presented. To study the main physical and mechanical properties and serviceability under operating conditions, several kinds of graphite have been analyzed and tested. The paper reports the results of such measurements. Radiation damage is the most important issue for the application of graphite as neutron converter. It is well known that the thermal conductivity of the neutron-irradiated graphite is reduced by a factor of 10 from the initial value after irradiation. Difference in volume expansions between the matrix and the fiber results in serious damage of neutron-irradiated C/C composites. Calculations showed that at high temperature the effect of neutron radiation is not so critical and that the change in thermal conductivity does not prevent the use of graphite as neutron converter.

  16. Near-facility environmental monitoring quality assurance project plan

    International Nuclear Information System (INIS)

    McKinney, S.M.

    1997-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site

  17. Project W-314 phase I environmental permits and approvals plan

    International Nuclear Information System (INIS)

    TOLLEFSON, K.S.

    1999-01-01

    This document describes the range of environmental actions, including required permits and other agency approvals, for Project W-314 activities in the Hanford Site's Tank Waste Remediation System. This document outlines alternative approaches to satisfying applicable environmental standards, and describes selected strategies for acquiring permits and other approvals needed for waste feed delivery to proceed. This document also includes estimated costs and schedule to obtain the required permits and approvals based on the selected strategy. It also provides estimated costs for environmental support during design and construction based on the preliminary project schedule provided

  18. Groundwater monitoring plan: 200 Areas treated effluent disposal facility (Project W-049H)

    International Nuclear Information System (INIS)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-04-01

    This groundwater monitoring plan provides information that supports the US Department of Energy's application (DOE-RL 1994) for waste water discharge permit No. WA-ST-4502 from the State of Washington, under the auspices of Washington Administrative Code 173-216. The monitoring plan has two functions: (1) to summarize the results of a 3-yr characterization of the current hydrogeology and groundwater quality of the discharge site and (2) to provide plans for evaluating the effects of the facility's operation on groundwater quality and document compliance with applicable groundwater quality standards. Three wells were drilled to define the stratigraphy, evaluate sediment characteristics, and establish a groundwater monitoring net work for the discharge facility. These wells monitor groundwater quality upgradient and downgradient in the uppermost aquifer. This report proposes plans for continuing the monitoring of groundwater quality and aquifer characteristics after waste water discharges begin

  19. Pre-Project planning of Capital Facilities at NASA

    OpenAIRE

    Barrow, Benjamin John

    1999-01-01

    This thesis details the development of a NASA specific Project Definition Rating Index (PDRI) tool. This tool is to be used as a checklist for determining the necessary steps to follow in defining project scope and as a means to monitor progress and assess scope definition completeness at various stages during the NASA Pre-Project Planning process. This thesis also describes and identifies specific points in the NASA Capital Facility Programming Cycle for the performance of PDRI assessments ...

  20. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    International Nuclear Information System (INIS)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2012-01-01

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W PandT) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012

  1. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dorr, Kent A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Freeman-Pollard, Jhivaun R. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-11-14

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

  2. Project W-320, 241-C-106 sluicing piping calculations, Volume 7

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    The object of this report is to calculate the hydraulic forces imposed at the sluicer nozzle. This is required by Project W-320 waste retrieval for tank 241-C-106. The method of analysis used is Bernoulli's momentum equation for stead flow

  3. Ross In Situ Uranium Recovery Project NESHAP Subpart W Construction Approval

    Science.gov (United States)

    On May 5, 2015, EPA issued a Construction Approval under the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at 40 CFR Part 61, subpart W, to Strata Energy, Inc., for their Ross In Situ Recovery (ISR) Uranium Project in Crook County, WY.

  4. Nuclear facility projects in Finland: quality of environmental impact assessment (EIA) processes

    International Nuclear Information System (INIS)

    Vaatainen, A.

    2001-01-01

    In Finland, three public EIA hearings arranged by the contact authority concerning nuclear facilities were organised in 1999: the EIAs of two reactors planned to be constructed in Eurajoki (Olkiluoto) and in Loviisa, and the EIA of a final disposal facility of spent nuclear fuel, to be situated either in Olkiluoto, Loviisa, Romuvaara or Kivetty. Additionally, an application for a decision-in-principle concerning a final disposal facility to be constructed in Olkiluoto was submitted. The Ministry of Trade and Industry is the contact authority in all nuclear projects in Finland. Probably due to the simultaneity of the processes and the great importance of nuclear facility projects to the whole of society, the public opinions did not include only views about environmental impacts of each project, but also opposing and overall views about the use of nuclear energy and its safety. As for the final disposal project, alternative methods were introduced and opposition to the project itself was expressed instead of or in addition to the environmental impacts. (author)

  5. 9 CFR 590.520 - Breaking room facilities.

    Science.gov (United States)

    2010-01-01

    ..., clean towels or other facilities for drying hands, odorless soap, and containers for used towels. Hand... egg products are not acceptable as liquid egg buckets. (g) A suitable container conspicuously identified shall be provided for the disposal of rejected liquid. (h) Strainers, filters, or centrifugal...

  6. 46 CFR 15.520 - Mobile offshore drilling units.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Mobile offshore drilling units. 15.520 Section 15.520... REQUIREMENTS Manning Requirements; Inspected Vessels § 15.520 Mobile offshore drilling units. (a) The requirements in this section for mobile offshore drilling units (MODUs) supplement other requirements in this...

  7. 32 CFR 196.520 - Job classification and structure.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Job classification and structure. 196.520 Section 196.520 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE... Activities Prohibited § 196.520 Job classification and structure. A recipient shall not: (a) Classify a job...

  8. 45 CFR 2555.520 - Job classification and structure.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Job classification and structure. 2555.520 Section 2555.520 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND... Activities Prohibited § 2555.520 Job classification and structure. A recipient shall not: (a) Classify a job...

  9. 36 CFR 1211.520 - Job classification and structure.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Job classification and structure. 1211.520 Section 1211.520 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS... Activities Prohibited § 1211.520 Job classification and structure. A recipient shall not: (a) Classify a job...

  10. G.W. Ritchey's Optical Work for the Army during WWI.

    Science.gov (United States)

    Abrahams, Peter

    2015-01-01

    During the first World War, the Mount Wilson optical shop was remodeled into a production facility, making lenses and prisms for military optics. G.W. Ritchey, H.S. Kinney, and J.S. Dalton managed the project, joined by Ritchey's son Willis and a large team of workers. Tens of thousands of lenses and prisms were produced, notably the exacting roof prisms needed for altimeters.This sizeable project is documented in correspondence and a 'Report on Technical Details of Optical Work', authored by G.W. Ritchey and reproduced in typewriter carbon copy with tipped-in photographs. The retrofitting of the MWO optical shop, and the complicated production methods, are detailed in the report.

  11. SOLAR PANELS ON HUDSON COUNTY FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    BARRY, KEVIN

    2014-06-06

    This project involved the installation of an 83 kW grid-connected photovoltaic system tied into the energy management system of Hudson County's new 60,000 square foot Emergency Operations and Command Center and staff offices. Other renewable energy features of the building include a 15 kW wind turbine, geothermal heating and cooling, natural daylighting, natural ventilation, gray water plumbing system and a green roof. The County intends to seek Silver LEED certification for the facility.

  12. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

    1997-11-14

    Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

  13. Near-Facility Environmental Monitoring Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    MCKINNEY, S.M.

    2000-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards

  14. Final Design Report for the RH LLW Disposal Facility (RDF) Project, Revision 3

    International Nuclear Information System (INIS)

    Austad, Stephanie Lee

    2015-01-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  15. Preliminary safety evaluation for 241-C-106 waste retrieval, project W-320

    International Nuclear Information System (INIS)

    Conner, J.C.

    1994-01-01

    This document presents the Preliminary Safety Evaluation for Project W-320, Tank 241-C-106 Waste Retrieval Sluicing System (WRSS). The US DOE has been mandated to develop plans for response to safety issues associated with the waste storage tanks at the Hanford Site, and to report the progress of implementing those plans to Congress. The objectives of Project W-230 are to design, fabricate, develop, test, and operate a new retrieval system capable of removing a minimum of about 75% of the high-heat waste contained in C-106. It is anticipated that sluicing operations can remove enough waste to reduce the remaining radiogenic heat load to levels low enough to resolve the high-heat safety issue as well as allow closure of the tank safety issue

  16. Project W-211, initial tank retrieval systems, retrieval control system software configuration management plan

    International Nuclear Information System (INIS)

    RIECK, C.A.

    1999-01-01

    This Software Configuration Management Plan (SCMP) provides the instructions for change control of the W-211 Project, Retrieval Control System (RCS) software after initial approval/release but prior to the transfer of custody to the waste tank operations contractor. This plan applies to the W-211 system software developed by the project, consisting of the computer human-machine interface (HMI) and programmable logic controller (PLC) software source and executable code, for production use by the waste tank operations contractor. The plan encompasses that portion of the W-211 RCS software represented on project-specific AUTOCAD drawings that are released as part of the C1 definitive design package (these drawings are identified on the drawing list associated with each C-1 package), and the associated software code. Implementation of the plan is required for formal acceptance testing and production release. The software configuration management plan does not apply to reports and data generated by the software except where specifically identified. Control of information produced by the software once it has been transferred for operation is the responsibility of the receiving organization

  17. 21 CFR 520.1696 - Penicillin oral dosage forms.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Penicillin oral dosage forms. 520.1696 Section 520.1696 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1696 Penicillin oral...

  18. 24 CFR 3.520 - Job classification and structure.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Job classification and structure. 3.520 Section 3.520 Housing and Urban Development Office of the Secretary, Department of Housing and... Activities Prohibited § 3.520 Job classification and structure. A recipient shall not: (a) Classify a job as...

  19. 46 CFR 108.520 - Type of survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Type of survival craft. 108.520 Section 108.520 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Lifesaving Equipment § 108.520 Type of survival craft. (a) Each lifeboat must be a fire-protected...

  20. 21 CFR 520.45 - Albendazole oral dosage forms.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Albendazole oral dosage forms. 520.45 Section 520.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.45 Albendazole oral...

  1. Project W320 52-inch diameter equipment container load test: Test report

    International Nuclear Information System (INIS)

    Bellomy, J.R.

    1995-01-01

    This test report summarizes testing activities and documents the results of the load tests performed on-site and off-site to structural qualify the 52-inch equipment containers designed and fabricated under Project W-320

  2. 28 CFR 42.520 - Discrimination prohibited.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Discrimination prohibited. 42.520 Section...-Implementation of Section 504 of the Rehabilitation Act of 1973 Accessibility § 42.520 Discrimination prohibited... participation in, or otherwise subjected to discrimination under any program or activity receiving Federal...

  3. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    International Nuclear Information System (INIS)

    Hsu, R.H.; Oji, L.N.

    1997-01-01

    Under the Tritium Facility Modernization ampersand Consolidation (TFM ampersand C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM ampersand C Project also provides for a new replacement R ampersand D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H

  4. Project W-320, 241-C-106 sluicing: Piping calculations. Volume 4

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The objective of this calculation is to perform the structural analysis of the Pipe Supports designed for Slurry and Supernate transfer pipe lines in order to meet the requirements of applicable ASME codes. The pipe support design loads are obtained from the piping stress calculations W320-27-I-4 and W320-27-I-5. These loads are the total summation of the gravity, pressure, thermal and seismic loads. Since standard typical designs are used for each type of pipe support such as Y-Stop, Guide and Anchors, each type of support is evaluated for the maximum loads to which this type of supports are subjected. These loads are obtained from the AutoPipe analysis and used to check the structural adequacy of these supports

  5. Project W-320, 241-C-106 sluicing: Piping calculations. Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.

    1998-07-24

    This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The objective of this calculation is to perform the structural analysis of the Pipe Supports designed for Slurry and Supernate transfer pipe lines in order to meet the requirements of applicable ASME codes. The pipe support design loads are obtained from the piping stress calculations W320-27-I-4 and W320-27-I-5. These loads are the total summation of the gravity, pressure, thermal and seismic loads. Since standard typical designs are used for each type of pipe support such as Y-Stop, Guide and Anchors, each type of support is evaluated for the maximum loads to which this type of supports are subjected. These loads are obtained from the AutoPipe analysis and used to check the structural adequacy of these supports.

  6. Tank farm restoration and safe operation, project W-314, upgrade scope summary report (USSR)

    International Nuclear Information System (INIS)

    Jacobson, R.W.

    1997-01-01

    This revision to the Project W-314 Upgrade Scope Summary Report (USSR), incorporates changes to the project scope from Alternative Generation Analysis (AGA), customer guidance, and changing requirements. It defines the actual upgrades currently in scope, and provides traceability to the requirements and/or drivers

  7. Facile Oxidative Desulfurisation of Benzothiophene Using Polyoxometalate H4[α-SiW12O40]/Zr Catalyst

    Directory of Open Access Journals (Sweden)

    Aldes Lesbani

    2015-07-01

    Full Text Available A highly active catalyst H4[α-SiW12O40]/Zr based polyoxometalete Keggin type was prepared by wet impregnation method and was characterized by FTIR spectroscopy, X-ray diffractometer, surface textural property by SEM, and analysis of porosity by BET method. H4[α-SiW12O40]/Zr was successfully synthesized and showed uniform properties with block solid structure which was applied as heterogeneous stable catalyst for oxidative desulfurization of benzothiophene under simple and mild condition using H2O2 as oxidant. Facile conversion of benzothiophene to sulfone by using heterogeneus                    H4[α-SiW12O40]/Zr catalyst up to 99% was observed to show the active catalytically. Keggin             H4[α-SiW12O40]/Zr cage structure after reaction was different from fresh catalyst which was indicated by the instability of H4[α-SiW12O40]/Zr  under reaction condition. © 2015 BCREC UNDIP. All rights reservedReceived: 9th November 2014; Revised: 31st March 2015; Accepted: 23rd April 2015How to Cite: Lesbani, A., Agnes, A., Saragih, R.O., Verawaty, M., Mohadi, R., Zulkifli, H. (2015.    Facile Oxidative Desulfurisation of Benzothiophen Using Polyoxometalate H4[α-SiW12O40]/Zr Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2, 185-191. (doi:10.9767/bcrec.10.2.7734.185-191 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7734.185-191 

  8. Facility Effluent Monitoring Plan for the 284-E and 284-W power plants

    International Nuclear Information System (INIS)

    Herman, D.R.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The 284-E and 284-W Power Plants are coal-fired plants used to generate steam. Electricity is not generated at these facilities. The maximum production of steam is approximately 159 t (175 tons)/h at 101 kg (225 lb)/in 2 . Steam generated at these facilities is used in other process facilities (i. e., the B Plant, Plutonium-Uranium Extraction Plant, 242-A Evaporator) for heating and process operations. The functions or processes associated with these facilities do not have the potential to generate radioactive airborne effluents or radioactive liquid effluents, therefore, radiation monitoring equipment is not used on the discharge of these streams. The functions or processes associated with the production of steam result in the use, storage, management and disposal of hazardous materials

  9. Conceptual design report, plutonium stabilization and handling,project W-460

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, E.V.

    1997-03-06

    Project W-460, Plutonium Stabilization and Handling, encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. This Conceptual Design Report (CDR) provides conceptual design details for the vault modification, site preparation and site interface with the purchased SPS. Two concepts are described for vault configuration; acceleration of this phase of the project did not allow completion of analysis which would clearly identify a preferred approach.

  10. 200 Area Liquid Effluent Facilities -- Quality assurance program plan

    International Nuclear Information System (INIS)

    Fernandez, L.

    1995-01-01

    This Quality Assurance Program Plan (QAPP) describes the quality assurance and management controls used by the 200 Area Liquid Effluent Facilities (LEF) to perform its activities in accordance with DOE Order 5700.6C. The 200 Area LEF consists of the following facilities: Effluent Treatment Facility (ETF); Treated Effluent Disposal Facility (TEDF); Liquid Effluent Retention facility (LERF); and Truck Loading Facility -- (Project W291). The intent is to ensure that all activities such as collection of effluents, treatment, concentration of secondary wastes, verification, sampling and disposal of treated effluents and solids related with the LEF operations, conform to established requirements

  11. 5 MeV 300 kW electron accelerator project

    International Nuclear Information System (INIS)

    Auslender, V.L.; Cheskidov, V.G.; Gornakov, I.V.

    2004-01-01

    The paper presents a project of a high power linear accelerator for industrial applications. The accelerator has a modular structure and consists of the chain of accelerating cavities connected by the axis-located coupling cavities with coupling slots in the common walls. Main parameters of the accelerator are: operating frequency of 176 MHz, electron energy of up to 5 MeV, average beam power of 300 kW. The required RF pulse power can be supplied by the TH628 diacrode

  12. Argonne-West facility requirements for a radioactive waste treatment demonstration

    International Nuclear Information System (INIS)

    Dwight, C.C.; Felicione, F.S.; Black, D.B.; Kelso, R.B.; McClellan, G.C.

    1995-01-01

    At Argonne National Laboratory-West (ANL-W), near Idaho Falls, Idaho, facilities that were originally constructed to support the development of liquid-metal reactor technology are being used and/or modified to meet the environmental and waste management research needs of DOE. One example is the use of an Argonne-West facility to conduct a radioactive waste treatment demonstration through a cooperative project with Science Applications International Corporation (SAIC) and Lockheed Idaho Technologies Company. The Plasma Hearth Process (PBP) project will utilize commercially-adapted plasma arc technology to demonstrate treatment of actual mixed waste. The demonstration on radioactive waste will be conducted at Argonne's Transient Reactor Test Facility (TREAT). Utilization of an existing facility for a new and different application presents a unique set of issues in meeting applicable federal state, and local requirements as well as the additional constraints imposed by DOE Orders and ANL-W site requirements. This paper briefly describes the PHP radioactive demonstrations relevant to the interfaces with the TREAT facility. Safety, environmental design, and operational considerations pertinent to the PHP radioactive demonstration are specifically addressed herein. The personnel equipment, and facility interfaces associated with a radioactive waste treatment demonstration are an important aspect of the demonstration effort. Areas requiring significant effort in preparation for the PBP Project being conducted at the TREAT facility include confinement design, waste handling features, and sampling and analysis considerations. Information about the facility in which a radioactive demonstration will be conducted, specifically Argonne's TREAT facility in the case of PHP, may be of interest to other organizations involved in developing and demonstrating technologies for mixed waste treatment

  13. IAEA Nuclear Security Assessment Methodologies (NUSAM) Project for Regulated Facilities

    International Nuclear Information System (INIS)

    Jang, Sung Soon

    2016-01-01

    Nuclear Security Assessment Methodologies (NUSAM) is a coordinate research project. The objectives of the NUSAM project is to establish a risk informed, performance-based methodological framework in a systematic, structured, comprehensive and appropriately transparent manner; to provide an environment for the sharing and transfer of knowledge and experience; and to provide guidance on, and practical examples of good practices in assessing the security of nuclear and other radioactive materials, as well as associated facilities and activities. The author worked as an IAEA scientific secretary of the NUAM project from 2013 to 2015. IAEA launched this project in 2013 and performed many activities: meetings, document development, table-top exercises and computer simulations. Now the project is in the final stage and will be concluded in the late 2016. The project will produce documents on NUSAM assessment methods and case study documents on NPP, Irradiator Facility and Transport. South Korea as a main contributor to this project will get benefits from the NUSAM. In 2014, South Korea introduced force-on-force exercises, which could be used as the assessment of physical protection system by the methods of NUSAM

  14. IAEA Nuclear Security Assessment Methodologies (NUSAM) Project for Regulated Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sung Soon [Korea Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    Nuclear Security Assessment Methodologies (NUSAM) is a coordinate research project. The objectives of the NUSAM project is to establish a risk informed, performance-based methodological framework in a systematic, structured, comprehensive and appropriately transparent manner; to provide an environment for the sharing and transfer of knowledge and experience; and to provide guidance on, and practical examples of good practices in assessing the security of nuclear and other radioactive materials, as well as associated facilities and activities. The author worked as an IAEA scientific secretary of the NUAM project from 2013 to 2015. IAEA launched this project in 2013 and performed many activities: meetings, document development, table-top exercises and computer simulations. Now the project is in the final stage and will be concluded in the late 2016. The project will produce documents on NUSAM assessment methods and case study documents on NPP, Irradiator Facility and Transport. South Korea as a main contributor to this project will get benefits from the NUSAM. In 2014, South Korea introduced force-on-force exercises, which could be used as the assessment of physical protection system by the methods of NUSAM.

  15. 13 CFR 107.520 - Management Expenses of a Licensee.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Management Expenses of a Licensee. 107.520 Section 107.520 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES Managing the Operations of a Licensee Management and Compensation § 107.520 Management...

  16. 7 CFR 4290.520 - Management Expenses of a RBIC.

    Science.gov (United States)

    2010-01-01

    ...) PROGRAM Managing the Operations of a RBIC Management and Compensation § 4290.520 Management Expenses of a... 7 Agriculture 15 2010-01-01 2010-01-01 false Management Expenses of a RBIC. 4290.520 Section 4290.520 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE...

  17. Project W-320, 241-C-106 sluicing HVAC calculations, Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.

    1998-07-30

    This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. The report contains the following design calculations: Cooling load in pump pit 241-AY-102; Pressure relief seal loop design; Process building piping stress analysis; Exhaust skid maximum allowable leakage criteria; and Recirculation heat, N509 duct requirements.

  18. ANL-W 779 pond seepage test

    International Nuclear Information System (INIS)

    Braun, D.R.

    1992-11-01

    The ANL-W 779 sanitary wastewater treatment ponds are located on the Idaho National Engineering Laboratory (INEL), north of the Argonne National Laboratory -- West (ANL-W) site A seepage test was performed for two Argonne National Laboratory -- West (ANL-W) sanitary wastewater treatment ponds, Facility 779. Seepage rates were measured to determine if the ponds are a wastewater land application facility. The common industry standard for wastewater land application facilities is a field-measured seepage rate of one quarter inch per day or greater

  19. Project W-320, operational test procedure OTP-320-003 test report

    International Nuclear Information System (INIS)

    Bevins, R.R.

    1998-01-01

    This report documents and summarizes the results of OTP-320-003 Project W-320 Operational Testing of the WRSS Supernate Transfer System. Project W-320 Operational Test OTP-320-003 was performed to verify components of the Waste Retrieval Sluicing System (WRSS) supernate transfer system functioned as designed following construction completion and turnover to operations. All equipment operation was performed by Tank Farms Operations personnel following the operational test procedure and referenced operating procedures. Supernate Transfer line Flushing System Testing was completed over the course of approximately 4 weeks as tank farm conditions and configuration, equipment availability, and operations resources allowed. All testing was performed with the 702-AZ ventilation system and the 296-P-16 ventilation systems in operation. Test procedure OTP-320-003 required two revisions during testing to incorporate Procedure Changes Authorizations (PCAs) necessary to facilitate testing. Various sections of testing are documented on each procedure revision. The completed test procedure is included as Attachment A. Exception Reports generated during the course of testing are included as Attachment B

  20. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Frazier, T.P.

    1994-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans

  1. 5W intracavity frequency-doubled green laser for laser projection

    Science.gov (United States)

    Yan, Boxia; Bi, Yong; Li, Shu; Wang, Dongdong; Wang, Dongzhou; Qi, Yan; Fang, Tao

    2014-11-01

    High power green laser has many applications such as high brightness laser projection and large screen laser theater. A compact and high power green-light source has been developed in diode-pumped solid-state laser based on MgO doped periodically poled LiNbO3 (MgO:PPLN). 5W fiber coupled green laser is achieved by dual path Nd:YVO4/MgO:PPLN intra-cacity frequency-doubled. Single green laser maximum power 2.8W at 532nm is obtained by a 5.5W LD pumped, MgO:PPLN dimensions is 5mm(width)×1mm(thickness)×2mm(length), and the optical to optical conversion efficiency is 51%. The second LD series connected with the one LD, the second path green laser is obtained using the same method. Then the second path light overlap with the first path by the reflection mirrors, then couple into the fiber with a focus mirror. Dual of LD, Nd:YVO4, MgO:PPLN are placed on the same heat sink using a TEC cooling, the operating temperature bandwidth is about 12°C and the stablity is 5% in 96h. A 50×50×17mm3 laser module which generated continuous-wave 5 W green light with high efficiency and width temperature range is demonstrated.

  2. 21 CFR 520.434 - Chlorphenesin carbamate tablets.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Chlorphenesin carbamate tablets. 520.434 Section 520.434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Chlorphenesin carbamate tablets. (a) Specifications. Each tablet contains 400 milligrams of chlorphenesin...

  3. Isotopes facilities deactivation project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Eversole, R.E.

    1997-01-01

    The production and distribution of radioisotopes for medical, scientific, and industrial applications has been a major activity at Oak Ridge National Laboratory (ORNL) since the late 1940s. As the demand for many of these isotopes grew and their sale became profitable, the technology for the production of the isotopes was transferred to private industry, and thus, many of the production facilities at ORNL became underutilized. In 1989, the U.S. Department of Energy (DOE) instructed ORNL to identify and prepare various isotopes production facilities for safe shutdown. In response, ORNL identified 19 candidate facilities for shutdown and established the Isotopes Facilities Shutdown Program. In 1993, responsibility for the program was transitioned from the DOE Office of Nuclear Energy to the DOE Office of Environmental Management and Uranium Enrichment Operation's Office of Facility Transition and Management. The program was retitled the Isotopes Facilities Deactivation Project (IFDP), and implementation responsibility was transferred from ORNL to the Lockheed Martin Energy Systems, Inc. (LMES), Environmental Restoration (ER) Program

  4. Isotopes facilities deactivation project at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Eversole, R.E.

    1997-05-01

    The production and distribution of radioisotopes for medical, scientific, and industrial applications has been a major activity at Oak Ridge National Laboratory (ORNL) since the late 1940s. As the demand for many of these isotopes grew and their sale became profitable, the technology for the production of the isotopes was transferred to private industry, and thus, many of the production facilities at ORNL became underutilized. In 1989, the U.S. Department of Energy (DOE) instructed ORNL to identify and prepare various isotopes production facilities for safe shutdown. In response, ORNL identified 19 candidate facilities for shutdown and established the Isotopes Facilities Shutdown Program. In 1993, responsibility for the program was transitioned from the DOE Office of Nuclear Energy to the DOE Office of Environmental Management and Uranium Enrichment Operation`s Office of Facility Transition and Management. The program was retitled the Isotopes Facilities Deactivation Project (IFDP), and implementation responsibility was transferred from ORNL to the Lockheed Martin Energy Systems, Inc. (LMES), Environmental Restoration (ER) Program.

  5. Project W-314 specific test and evaluation plan for 241-AN-A valve pit

    International Nuclear Information System (INIS)

    Hays, W.H.

    1997-01-01

    The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AN-A Valve Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a ''lower tier'' document based on the W-314 Test and Evaluation Plan (TEP) This STEP encompasses all testing activities required to demonstrate compliance to the project design criteria as it relates to the modifications of the AN-A valve pit. The Project Design Specifications (PDS) identify the specific testing activities required for the Project. Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities), Factory Acceptance Tests (FATs), installation tests and inspections, Construction Acceptance Tests (CATs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). It should be noted that POTPs are not required for testing of the modifications to the 241-AN-A Valve Pit. The STEP will be utilized in conjunction with the TEP for verification and validation

  6. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies

  7. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-08-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year

  8. 21 CFR 520.2042 - Pyrantel pamoate tablets.

    Science.gov (United States)

    2010-04-01

    ... and Uncinaria stenocephala). (3) Limitations. Administer orally directly or in a small amount of food... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pyrantel pamoate tablets. 520.2042 Section 520.2042 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  9. 13 CFR 124.520 - Mentor/protege program.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Mentor/protege program. 124.520... § 124.520 Mentor/protege program. (a) General. The mentor/protege program is designed to encourage approved mentors to provide various forms of assistance to eligible Participants. This assistance may...

  10. Systems Engineering Management Plan for Tank Farm Restoration and Safety Operations, Project W-314

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    The Systems Engineering Management Plan for Project W-314 has been prepared within the guidelines of HNF-SD-WM-SEMP-002, TWRS Systems Engineering Management Plan. The activities within this SEMP have been tailored, in accordance with the TWRS SEMP and DOE Order 430.1, Life Cycle Asset Management, to meet the needs of the project

  11. Environmental permits and approvals plan for high-level waste interim storage, Project W-464

    International Nuclear Information System (INIS)

    Deffenbaugh, M.L.

    1998-01-01

    This report discusses the Permitting Plan regarding NEPA, SEPA, RCRA, and other regulatory standards and alternatives, for planning the environmental permitting of the Canister Storage Building, Project W-464

  12. 30 CFR 72.520 - Diesel equipment inventory.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel equipment inventory. 72.520 Section 72... Mines § 72.520 Diesel equipment inventory. (a) The operator of each mine that utilizes diesel equipment underground, shall prepare and submit in writing to the District Manager, an inventory of diesel equipment...

  13. WHC-SD-W252-FHA-001, Rev. 0: Preliminary fire hazard analysis for Phase II Liquid Effluent Treatment and Disposal Facility, Project W-252

    International Nuclear Information System (INIS)

    Barilo, N.F.

    1995-01-01

    A Fire Hazards Analysis was performed to assess the risk from fire and other related perils and the capability of the facility to withstand these hazards. This analysis will be used to support design of the facility

  14. 21 CFR 520.1242d - Levamisole resinate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Levamisole resinate. 520.1242d Section 520.1242d Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... the following morning. Do not withhold water during fasting. Do not treat within 72 hours of slaughter...

  15. 21 CFR 520.2520f - Trichlorfon granules.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Trichlorfon granules. 520.2520f Section 520.2520f Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL.... Do not fast horses before or after treatment. Treatment of mares in late pregnancy is not recommended...

  16. Application of demography to energy facility development projects. Working Paper No. 39

    International Nuclear Information System (INIS)

    Krannich, R.S.; Stanfield, G.G.

    1977-01-01

    The emergence of concern regarding socioeconomic consequences of large-scale development projects has resulted in a growing literature directed as estimating the types and levels of various impact dimensions which can be expected to result in human communities experiencing such development. Among these dimensions, a focus on population change has been prevalent. Accurate demographic predictions may be viewed as critical for the adequate comprehension of and preparation for impacts deriving from projects such as energy facility developments. Unfortunately, the state of the art in projecting demographic consequences of energy projects has been generally inadequate. Several of the more influential prior methods for estimating local demographic effects of developing energy facilities are critiqued, although their specific prediction figures are not summarized. The studies reviewed were found to be of dubious practical utility, probably due in part to the failure of basic demography to provide a base of support for applied demographic research. This report sets forth recommendations for the development of a theoretical perspective which would more adequately serve the needs of practitioners attempting to predict local demographic effects of energy facility development

  17. The Sanford underground research facility at Homestake

    International Nuclear Information System (INIS)

    Heise, J.

    2014-01-01

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability

  18. 21 CFR 520.905 - Fenbendazole oral dosage forms.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Fenbendazole oral dosage forms. 520.905 Section 520.905 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Fenbendazole oral dosage forms. ...

  19. 21 CFR 520.90a - Ampicillin capsules.

    Science.gov (United States)

    2010-04-01

    .... Use of the drug is contraindicated in animals with a history of an allergic reaction to any of the... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ampicillin capsules. 520.90a Section 520.90a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL...

  20. Project W-320 thermal hydraulic model benchmarking and baselining

    International Nuclear Information System (INIS)

    Sathyanarayana, K.

    1998-01-01

    Project W-320 will be retrieving waste from Tank 241-C-106 and transferring the waste to Tank 241-AY-102. Waste in both tanks must be maintained below applicable thermal limits during and following the waste transfer. Thermal hydraulic process control models will be used for process control of the thermal limits. This report documents the process control models and presents a benchmarking of the models with data from Tanks 241-C-106 and 241-AY-102. Revision 1 of this report will provide a baselining of the models in preparation for the initiation of sluicing

  1. 36 CFR 520.5 - Conformity with signs and emergency directions.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Conformity with signs and emergency directions. 520.5 Section 520.5 Parks, Forests, and Public Property SMITHSONIAN INSTITUTION RULES... INSTITUTION § 520.5 Conformity with signs and emergency directions. Persons in or on the premises shall comply...

  2. Project W-314 specific test and evaluation plan for AZ tank farm upgrades

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made by the addition of the SN-631 transfer line from the AZ-O1A pit to the AZ-02A pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation P1 an (TEP). Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities, etc), Factory Tests and Inspections (FTIs), installation tests and inspections, Construction Tests and Inspections (CTIs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). The STEP will be utilized in conjunction with the TEP for verification and validation

  3. FAIR - Facility, Research Program and Status of the Project

    International Nuclear Information System (INIS)

    Majka, Z.

    2011-01-01

    The international Facility for Antiproton and Ion Research (FAIR) in Europe will provide a worldwide science community with a unique and technically innovative accelerator system to perform forefront research in the sciences concerned with the basic structure of matter, and in intersections with other fields. The facility will deliver an extensive range of primary and secondary particle beams from protons and their antimatter partners, antiprotons, to ion beams of all chemical elements up to the heaviest, uranium, with in many respects unique properties and intensities. The paper will include overview of the new facility design and research programs to be carried out there. The current status of the FAIR project will be also presented. (author)

  4. Improvements of present radioactive beam facilities and new projects

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1995-01-01

    A short overview is given over scheduled improvements of present radioactive beam facilities and of new projects. In order to put these into a coherent context the paper starts with a general section about the making of radioactive beams. (author)

  5. 13 CFR 113.520 - Job classification and structure.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Job classification and structure. 113.520 Section 113.520 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NONDISCRIMINATION... males or for females; (b) Maintain or establish separate lines of progression, seniority lists, career...

  6. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 3: Specifications

    International Nuclear Information System (INIS)

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 3 is a compilation of the construction specifications that will constitute the Title II materials and performance specifications. This volume contains CSI specifications for non-equipment related construction material type items, performance type items, and facility mechanical equipment items. Data sheets are provided, as necessary, which specify the equipment overall design parameters

  7. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 3: Specifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 3 is a compilation of the construction specifications that will constitute the Title II materials and performance specifications. This volume contains CSI specifications for non-equipment related construction material type items, performance type items, and facility mechanical equipment items. Data sheets are provided, as necessary, which specify the equipment overall design parameters.

  8. Design review report: AN valve pit upgrades for Project W-314, tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Boes, K.A.

    1998-01-01

    This Design Review Report (DRR) documents the contractor design verification methodology and records associated with project W-314's AN Valve Pit Upgrades design package. The DRR includes the documented comments and their respective dispositions for this design. Acceptance of the comment dispositions and closure of the review comments is indicated by the signatures of the participating reviewers. Project W-314, Tank Farm Restoration and Safe Operations, is a project within the Tank Waste Remediation System (TWRS) Tank Waste Retrieval Program. This project provides capital upgrades for the existing Hanford tank farms' waste transfer, instrumentation, ventilation, and electrical infrastructure systems. To support established TWRS programmatic objectives, the project is organized into two distinct phases. The initial focus of the project (i.e., Phase 1) is on waste transfer system upgrades needed to support the TWRS Privatization waste feed delivery system. Phase 2 of the project will provide upgrades to support resolution of regulatory compliance issues, improve tank infrastructure reliability, and reduce overall plant operating/maintenance costs. Within Phase 1 of the W-314 project, the waste transfer system upgrades are further broken down into six major packages which align with the project's work breakdown structure. Each of these six sub-elements includes the design, procurement, and construction activities necessary to accomplish the specific tank farm upgrades contained within the package. The first package to be performed is the AN Valve Pit Upgrades package. The scope of the modifications includes new pit cover blocks, valve manifolds, leak detectors, transfer line connections (for future planned transfer lines), and special protective coating for the 241-AN-A and 241-AN-B valve pits

  9. A new cryogenic test facility for large superconducting devices at CERN

    CERN Document Server

    Perin, A; Serio, L; Stewart, L; Benda, V; Bremer, J; Pirotte, O

    2015-01-01

    To expand CERN testing capability to superconducting devices that cannot be installed in existing test facilities because of their size and/or mass, CERN is building a new cryogenic test facility for large and heavy devices. The first devices to be tested in the facility will be the S-FRS superconducting magnets for the FAIR project that is currently under construction at the GSI Research Center in Darmstadt, Germany. The facility will include a renovated cold box with 1.2 kW at 4.5 K equivalent power with its compression system, two independent 15 kW liquid nitrogen precooling and warm-up units, as well as a dedicated cryogenic distribution system providing cooling power to three independent test benches. The article presents the main input parameters and constraints used to define the cryogenic system and its infrastructure. The chosen layout and configuration of the facility is presented and the characteristics of the main components are described.

  10. Spent Nuclear Fuel Project Cold Vacuum Drying Facility Operations Manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, (Cold Vacuum Drying Facility Design Requirements), Rev. 4. and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  11. West Valley Demonstration Project facilities utilization plan for the existing facilities at the Western New York Nuclear Service Center

    International Nuclear Information System (INIS)

    Skillern, C.G.

    1986-05-01

    In 1980, Congress passed Public Law 96-368, the West Valley Demonstration Project (WVDP) Act. As a primary objective, the Act authorized the US Department of Energy (DOE) to solidify the high-level waste (HLW) stored at the Western New York Nuclear Service Center (WNYNSC) into a form suitable for transportation and disposal in a federal repository. This report will describe how WVDP proposes to use the existing WNYNSC Facilities in an efficient and technically effective manner to comply with Public Law 96-368. In support of the above cited law, the DOE has entered into a ''Cooperative agreement between the United States Department of Energy and the New York State Energy Research and Development Authority on the Western New York Nuclear Service Center at West Valley, New York.'' The state-owned areas turned over to the DOE for use are as follows: Process Plant, Waste Storage, Low-Level Waste Treatment Facility, Service Facilities, Plant Security, and Additional Facilities. The Facilities Utilization Plan (FUP) describes how the state-owned facilities will be utilized to complete the Project; it is divided into five sections as follows: Executive Summary - an overview; Introduction - the WVDP approach to utilizing the WNYNSC Facilities; WVDP Systems - a brief functional description of the system, list of equipment and components to be used and decontamination and decommissioning (D and D) support; WVDP Support Facilities; and Caveats that could effect or change the potential usage of a particular area

  12. Quality assurance program plan for cesium legacy project

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the Cesium Legacy Project. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP). These activities include all aspects of cask transportation, project related operations within the 324 Building, and waste management as it relates to the specific activities of this project. General facility activities (i.e. 324 Building Operations, Central Waste Complex Operations, etc.) are covered in other appropriate QAPPs. The 324 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a B and W Hanford Company (BWHC) managed facility. During this transition process existing PNNL procedures and documents will be utilized until replaced by BWHC procedures and documents

  13. Facility effluent monitoring plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Lavey, G.H.

    1992-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  14. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b) Specifications...

  15. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    International Nuclear Information System (INIS)

    Groth, B.D.

    1995-01-01

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements

  16. 36 CFR 520.12 - Photographs for news, advertising, or commercial purposes.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Photographs for news, advertising, or commercial purposes. 520.12 Section 520.12 Parks, Forests, and Public Property SMITHSONIAN... SMITHSONIAN INSTITUTION § 520.12 Photographs for news, advertising, or commercial purposes. No photographs for...

  17. 24 CFR 291.520 - Eligible law enforcement officers.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Eligible law enforcement officers. 291.520 Section 291.520 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT HUD-OWNED...

  18. 47 CFR 10.520 - Common audio attention signal.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Common audio attention signal. 10.520 Section... Equipment Requirements § 10.520 Common audio attention signal. A Participating CMS Provider and equipment manufacturers may only market devices for public use under part 10 that include an audio attention signal that...

  19. 36 CFR 520.11 - Dogs and other animals.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Dogs and other animals. 520.11 Section 520.11 Parks, Forests, and Public Property SMITHSONIAN INSTITUTION RULES AND REGULATIONS... Dogs and other animals. Dogs and other animals, except seeing-eye dogs, shall not be brought upon the...

  20. 45 CFR 618.520 - Job classification and structure.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Job classification and structure. 618.520 Section 618.520 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...

  1. 6 CFR 17.520 - Job classification and structure.

    Science.gov (United States)

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Job classification and structure. 17.520 Section 17.520 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY NONDISCRIMINATION... classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...

  2. Multi-site risk-based project planning, optimization, sequencing and budgeting process and tool for the integrated facility disposition project - 59394

    International Nuclear Information System (INIS)

    Nelson, Jerel; Castillo, Carlos; Huntsman, Julie; Lucek, Heather; Marks, Tim

    2012-01-01

    Document available in abstract form only. Full text of publication follows: Faced with the DOE Complex Transformation, NNSA was tasked with developing an integrated plan for the decommissioning of over 400 facilities and 300 environmental remediation units, as well as the many reconfiguration and modernization projects at the Oak Ridge National Laboratory (ORNL) and Y-12 Complex. Manual scheduling of remediation activities is time-consuming, labor intensive, and inherently introduces bias and unaccounted for aspects of the scheduler or organization in the process. Clearly a tool was needed to develop an objective, unbiased baseline optimized project sequence and schedule with a sound technical foundation for the Integrated Facility Disposition Project (IFDP). In generating an integrated disposition schedule, each project (including facilities, environmental sites, and remedial action units) was identified, characterized, then ranked relative to other projects. Risk matrices allowed for core project data to be extrapolated into probable contamination levels, relative risks to the public, and other technical and risk parameters to be used in the development of an overall ranking. These matrices ultimately generated a complete data set that were used in the Ranking and Sequencing Model (RSM), commonly referred to as the SUPER model, for its numerous abilities to support D and D planning, prioritization, and sequencing

  3. National Ignition Facility Project Site Safety Program

    International Nuclear Information System (INIS)

    Dun, C

    2003-01-01

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES and H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES and H requirements are consistent with the ''LLNL ES and H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B

  4. Design review report: 200 East upgrades for Project W-314, tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Boes, K.A.

    1998-01-01

    This Design Review Report (DRR) documents the contractor design verification methodology and records associated with project W-314's 200 East (200E) Upgrades design package. The DRR includes the documented comments and their respective dispositions for this design. Acceptance of the comment dispositions and closure of the review comments is indicated by the signatures of the participating reviewers. Project W-314 is a project within the Tank Waste Remediation System (TWRS) Tank Waste Retrieval Program. This project provides capital upgrades for the existing Hanford tank farm waste transfer, instrumentation, ventilation, and electrical infrastructure systems. To support established TWRS programmatic objectives, the project is organized into two distinct phases. The initial focus of the project (i.e., Phase 1) is on waste transfer system upgrades needed to support the TWRS Privatization waste feed delivery system. Phase 2 of the project will provide upgrades to support resolution of regulatory compliance issues, improve tank infrastructure reliability, and reduce overall plant operating/maintenance costs. Within Phase 1 of the W-314 project, the waste transfer system upgrades are further broken down into six major packages which align with the project's work breakdown structure. Each of these six sub-elements includes the design, procurement, and construction activities necessary to accomplish the specific tank farm upgrades contained within the package. The first design package (AN Valve Pit Upgrades) was completed in November 1997, and the associated design verification activities are documented in HNF-1893. The second design package, 200 East (200E) Upgrades, was completed in March 1998. This design package identifies modifications to existing valve pits 241-AX-B and 241-A-B, as well as several new waste transfer pipelines to be constructed within the A Farm Complex of the 200E Area. The scope of the valve pit modifications includes new pit cover blocks, valve

  5. The SARAF Project - Soreq Applied Research Accelerator Facility

    International Nuclear Information System (INIS)

    Nagler, A.; Mardor, I.; Berkovits, D.; Piel, C.

    2004-01-01

    The relevance of particle accelerators to society, in the use of their primary and secondary beams for the analysis of physical, chemical and biological samples and for modification of properties of materials, is well recognized and documented. Nevertheless, apart of the construction of small accelerators for nuclear research in the 1960's and 70's, Israel has so far neglected this important and growing field. Furthermore, there is an urgent need in Israel for a state of the art research facility to attract and introduce students to current advanced physics techniques and technologies and to train the next generation of experimental scientists in various branches and disciplines. Therefore, Soreq NRC recently initiated the establishment of a new accelerator facility, named SARAF Soreq Applied Research Accelerator Facility. SARAF will be a continuous wave (CW), proton and deuteron RF superconducting linear accelerator with variable energy (5 - 40 MeV) and current (0.04 -2 mA). SARAF is designed to enable hands-on maintenance, which means that its beam loss will be below 10 -5 for the entire accelerator. These specifications will place SARAF in line with the next generation of accelerators world wide. Soreq expects that this fact will attract the Israeli and international research communities to use this facility extensively. Soreq NRC intends to use SARAF for basic, medical and biological research, and non-destructive testing (NDT). Another major activity will be the research and development of radio-isotopes production techniques. Given the availability of high current (up to 2 mA) protons and deuterons, a major activity will be research and development of high power density (up to 80 kW on a few cm 2 ) irradiation targets

  6. Noxious facility impact projection: Incorporating the effects of risk aversion

    International Nuclear Information System (INIS)

    Nieves, L.A.

    1993-01-01

    Developing new sites for noxious facilities has become a complex process with many potential pitfalls. In addition to the need to negotiate conditions acceptable to the host community, siting success may depend on the facility proposer's ability to identify a candidate site that not only meets technical requirements, but that is located in a community or region whose population is not highly averse to the risks associated with the type of facility being proposed. Success may also depend on the proposer accurately assessing potential impacts of the facility and offering an equitable compensation package to the people affected by it. Facility impact assessments, as typically performed, include only the effects of changes in population, employment and economic activity associated with facility construction and operation. Because of their scope, such assessments usually show a short-run, net economic benefit for the host region, making the intensely negative public reaction to some types and locations of facilities seem unreasonable. The impact component excluded from these assessments is the long-run economic effect of public perceptions of facility risk and nuisance characteristics. Recent developments in psychological and economic measurement techniques have opened the possibility of correcting this flaw by incorporating public perceptions in projections of economic impacts from noxious facilities

  7. 21 CFR 520.1448 - Monensin oral dosage forms.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monensin oral dosage forms. 520.1448 Section 520.1448 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... distance the spots travel from the starting line divided by the distance the solvent front travels from the...

  8. 43 CFR 41.520 - Job classification and structure.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Job classification and structure. 41.520 Section 41.520 Public Lands: Interior Office of the Secretary of the Interior NONDISCRIMINATION ON THE... classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...

  9. 18 CFR 1317.520 - Job classification and structure.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Job classification and structure. 1317.520 Section 1317.520 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY... classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...

  10. 31 CFR 28.520 - Job classification and structure.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Job classification and structure. 28.520 Section 28.520 Money and Finance: Treasury Office of the Secretary of the Treasury... classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...

  11. Project W-320, 241-C-106 sluicing HVAC calculations, Volume 1

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. The report contains the following calculations: Exhaust airflow sizing for Tank 241-C-106; Equipment sizing and selection recirculation fan; Sizing high efficiency mist eliminator; Sizing electric heating coil; Equipment sizing and selection of recirculation condenser; Chiller skid system sizing and selection; High efficiency metal filter shielding input and flushing frequency; and Exhaust skid stack sizing and fan sizing

  12. Project W-320, 241-C-106 sluicing HVAC calculations, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.

    1998-08-07

    This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. The report contains the following calculations: Exhaust airflow sizing for Tank 241-C-106; Equipment sizing and selection recirculation fan; Sizing high efficiency mist eliminator; Sizing electric heating coil; Equipment sizing and selection of recirculation condenser; Chiller skid system sizing and selection; High efficiency metal filter shielding input and flushing frequency; and Exhaust skid stack sizing and fan sizing.

  13. Phase V storage (Project W-112) Central Waste Complex operational readiness review, final report

    International Nuclear Information System (INIS)

    Wight, R.H.

    1997-01-01

    This document is the final report for the RFSH conducted, Contractor Operational Readiness Review (ORR) for the Central Waste Complex (CWC) Project W-112 and Interim Safety Basis implementation. As appendices, all findings, observations, lines of inquiry and the implementation plan are included

  14. Phase 5 storage (Project W-112) Central Waste Complex operational readiness review, final report

    Energy Technology Data Exchange (ETDEWEB)

    Wight, R.H.

    1997-05-30

    This document is the final report for the RFSH conducted, Contractor Operational Readiness Review (ORR) for the Central Waste Complex (CWC) Project W-112 and Interim Safety Basis implementation. As appendices, all findings, observations, lines of inquiry and the implementation plan are included.

  15. 33 CFR 183.520 - Fuel tank vent systems.

    Science.gov (United States)

    2010-07-01

    ...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.520 Fuel tank vent systems. (a) Each fuel tank must have a vent system that prevents pressure in the tank from exceeding 80... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank vent systems. 183.520...

  16. Project W-519 CDR supplement: Raw water and electrical services for privatization contractor, AP tank farm operations

    International Nuclear Information System (INIS)

    Parazin, R.J.

    1998-01-01

    This supplement to the Project W-519 Conceptual Design will identify a means to provide RW and Electrical services to serve the needs of the TWRS Privatization Contractor (PC) at AP Tank Farm as directed by DOE-RL. The RW will serve the fire suppression and untreated process water requirements for the PC. The purpose of this CDR supplement is to identify Raw Water (RW) and Electrical service line routes to the TWRS Privatization Contractor (PC) feed delivery tanks, AP-106 and/or AP-108, and establish associated cost impacts to the Project W-519 baseline

  17. Defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.; Maher, R.; Mellen, J.B.; Shafranek, L.F.; Stevens, W.R. III.

    1984-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level waste at the Savannah River Plant near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes produced by defense activities at the site. At the present time engineering and design are 45% complete, the site has been cleared, and startup is expected in 1989. This paper will describe project status as well as features of the design. 9 figures

  18. Scrap of gloveboxes No. 801-W and No. 802-W

    CERN Document Server

    Ohuchi, S; Kurosawa, M; Okane, S; Usui, T

    2002-01-01

    Both gloveboxes No. 801-W for measuring samples of uranium or plutonium and No. 802-W for analyzing the quantity of uranium or plutonium are established at twenty five years ago in the analyzing room No. 108 of Plutonium Fuel Research Facility. It was planned to scrap the gloveboxes and to establish new gloveboxes. This report describes the technical view of the scrapping works.

  19. Recycling entire DOE facilities: The National Conversion Pilot Project

    International Nuclear Information System (INIS)

    Floyd, D.R.

    1996-01-01

    The Mission of the National Conversion Pilot Project - to demonstrate, at the Rocky Flats Site, the feasibility of economic conversion of DOE Sites - is succeeding. Contaminated facilities worth $92 million are being cleaned and readied for reuse by commercial industry to manufacture products needed in the DOE cleanup and elsewhere. Former Rocky Flats workers have been hired, recultured, are conducting the cleanup and are expected to perform the future manufacturing by recycling DOE RSM and other metals requiring special environmental controls. Stakeholder sway over project activities is welcome and strong

  20. Project W-151 flexible receiver radiation detector system acceptance test plan. Revision 1

    International Nuclear Information System (INIS)

    Troyer, G.L.

    1994-01-01

    The attached document is the Acceptance Test Plan for the portion of Project W-151 dealing with acceptance of gamma-ray detectors and associated electronics manufactured at the Idaho National Engineering Laboratory (INEL). The document provides a written basis for testing the detector system, which will take place in the 305 building (300 Area)

  1. Project W-314 performance mock-up test procedure

    International Nuclear Information System (INIS)

    CARRATT, R.T.

    1999-01-01

    The purpose of this Procedure is to assist construction in the pre-operational fabrication and testing of the pit leak detection system and the low point drain assembly by: (1) Control system testing of the pit leak detection system will be accomplished by actuating control switches and verifying that the control signal is initiated, liquid testing and overall operational requirements stated in HNF-SD-W314-PDS-003, ''Project Development Specification for Pit Leak Detection''. (2) Testing of the low point floor drain assembly by opening and closing the drain to and from the ''retracted'' and ''sealed'' positions. Successful operation of this drain will be to verify that the seal does not leak on the ''sealed'' position, the assembly holds liquid until the leak detector actuates and the assembly will operate from on top of the mock-up cover block

  2. Systems engineering management and implementation plan for Project W-464, immobilized high-level waste storage

    International Nuclear Information System (INIS)

    Wecks, M.D.

    1998-01-01

    The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-46 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan. (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented

  3. Systems engineering management and implementation plan for Project W-465, immobilized low-activity waste storage

    International Nuclear Information System (INIS)

    Kaspar, J.R.; Latray, D.A.

    1998-01-01

    The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-465 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented

  4. Highlights from the Future Earth Water-Energy-Food (W-E-F) Nexus Cluster Project Consultations

    Science.gov (United States)

    Lawford, R. G.

    2017-12-01

    Future Earth launched its W-E-F Nexus project in 2015. The focus of the project was to explore how improved governance and integrated information systems could support sustainability in the W-E-F Nexus. Workshops were held in four regions of the world (North America, Europe, Eastern Asia, and Southern Africa) which facilitated a better understanding of the current role of information in decision-making within the W-E-F Nexus. In each of these workshops, needs and options for improving the provision of relevant integrated data and information to support decision-making were discussed. The workshops provided distinct perspectives on W-E-F issues for each region and each sector. Regional differences arise from climate, geomorphology, natural resources and existing infrastructure as well as the economic and social policies within each country. While the needs associated with this diversity are large, it is still possible to identify unifying themes and requirements for data and information which appeared very similar in all the regions. Important themes involve developing a common rigorous definition of the Nexus, ensuring the availability of data of all types are available in the scales, frequencies, and accuracies needed to support better decision making; and promoting the gathering, analysis and use of information to break down the silos associated with the three sectors are made. Information is also needed to monitor the effects of land ownership and land management on W-E-F issues, to maximize the efficiencies that can be realized from joint planning and increased coherence in the sectoral policy approaches to address climate and environmental issues. After commenting on these opportunities the presentation will outline possible elements of a research agenda for moving the W-E-F Nexus approach forward.

  5. Operational test report - Project W-320 cathodic protection systems

    International Nuclear Information System (INIS)

    Bowman, T.J.

    1998-01-01

    Washington Administrative Code (WAC) 173-303-640 specifies that corrosion protection must be designed into tank systems that treat or store dangerous wastes. Project W-320, Waste Retrieval Sluicing System (WRSS), utilizes underground encased waste transfer piping between tanks 241-C-106 and 241-AY-102. Corrosion protection is afforded to the encasements of the WRSS waste transfer piping through the application of earthen ionic currents onto the surface of the piping encasements. Cathodic protection is used in conjunction with the protective coatings that are applied upon the WRSS encasement piping. WRSS installed two new two rectifier systems (46 and 47) and modified one rectifier system (31). WAC 173-303-640 specifies that the proper operation of cathodic protection systems must be confirmed within six months after initial installation. The WRSS cathodic protection systems were energized to begin continuous operation on 5/5/98. Sixteen days after the initial steady-state start-up of the WRSS rectifier systems, the operational testing was accomplished with procedure OTP-320-006 Rev/Mod A-0. This operational test report documents the OTP-320-006 results and documents the results of configuration testing of integrated piping and rectifier systems associated with the W-320 cathodic protection systems

  6. Projects at the component development and integration facility. Quarterly technical progress report, April 1, 1994--June 30, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY94. The CDIF is a major Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; and Spray Casting Project

  7. Report of preliminary investigations on the next-generation large-scale synchrotron radiation facility projects

    International Nuclear Information System (INIS)

    1990-01-01

    The Special Committee for Future Project of the Japanese Society for Synchrotron Radiation Research investigated the construction-projects of the large-scaled synchrotron radiation facilities which are presently in progress in Japan. As a result, the following both projects are considered the very valuable research-project which will carry the development of Japan's next-generation synchrotron radiation science: 1. the 8 GeV synchrotron radiation facilities (SPring-8) projected to be constructed by Japan Atomic Energy Research Institute and the Institute of Physical and Chemical Research under the sponsorship of Science Technology Agency at Harima Science Park City, Hyogo Pref., Japan. 2. The project to utilize the Tristan Main Ring (MR) of the National Laboratory for High Energy Physics as the radiation source. Both projects are unique in research theme and technological approach, and complemental each other. Therefore it has been concluded that both projects should be aided and ratified by the Society. (M.T.)

  8. Tank waste remediation system privatization phase I infrastructure, project W-519, Quality Assurance implementation plan

    International Nuclear Information System (INIS)

    HUSTON, J.J.

    1999-01-01

    This document has been prepared to identify the quality requirements for all products/activities developed by or for Project W-519. This plan is responsive to the Numatec Hanford Corporation, Quality Assurance Program Plan, NHC-MP-001

  9. 21 CFR 520.2100 - Selenium, vitamin E capsules.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Selenium, vitamin E capsules. 520.2100 Section 520... to 1 milligram of selenium) and 56.2 milligrams of vitamin E (68 I.U.) (as d-alpha tocopheryl acid... of vitamin E (17 I.U.) (as d-alpha tocopheryl acid succinate.) (b) Sponsor. See No. 000061 in § 510...

  10. Supplmental design requirements document enhanced radioactive and mixed waste storage: Phase 5, Project W-113

    International Nuclear Information System (INIS)

    Ocampo, V.P.

    1994-11-01

    This Supplemental Design Requirements Document (SDRD) is used to communicate Project W-113 specific plant design information from Westinghouse Hanford Company (WHC) to the United States Department of Energy (DOE) and the cognizant Architect Engineer (A/E). The SDRD is prepared after the completion of the project Conceptual Design report (CDR) and prior to the initiation of definitive design. Information in the SDRD serves two purposes: to convey design requirements that are too detailed for inclusion in the Functional Design Criteria (FDC) report and to serve as a means of change control for design commitments in the Title I and Title II design. The Solid Waste Retrieval Project (W-113) SDRD has been restructured from the equipment based outline used in previous SDRDs to a functional systems outline. This was done to facilitate identification of deficiencies in the information provided in the initial draft SDRD and aid design confirmation. The format and content of this SDRD adhere as closely as practicable to the requirements of WHC-CM-6-1, Standard Engineering Practices for Functional Design Criteria

  11. Safety Assessment Methodologies and Their Application in Development of Near Surface Waste Disposal Facilities--ASAM Project

    International Nuclear Information System (INIS)

    Batandjieva, B.; Metcalf, P.

    2003-01-01

    Safety of near surface disposal facilities is a primary focus and objective of stakeholders involved in radioactive waste management of low and intermediate level waste and safety assessment is an important tool contributing to the evaluation and demonstration of the overall safety of these facilities. It plays significant role in different stages of development of these facilities (site characterization, design, operation, closure) and especially for those facilities for which safety assessment has not been performed or safety has not been demonstrated yet and the future has not been decided. Safety assessments also create the basis for the safety arguments presented to nuclear regulators, public and other interested parties in respect of the safety of existing facilities, the measures to upgrade existing facilities and development of new facilities. The International Atomic Energy Agency (IAEA) has initiated a number of research coordinated projects in the field of development and improvement of approaches to safety assessment and methodologies for safety assessment of near surface disposal facilities, such as NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study) and ISAM (Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities) projects. These projects were very successful and showed that there is a need to promote the consistent application of the safety assessment methodologies and to explore approaches to regulatory review of safety assessments and safety cases in order to make safety related decisions. These objectives have been the basis of the IAEA follow up coordinated research project--ASAM (Application of Safety Assessment Methodologies for Near Surface Disposal Facilities), which will commence in November 2002 and continue for a period of three years

  12. Getting the most D and D ''know how'' before starting to plan your decommissioning project

    International Nuclear Information System (INIS)

    Boing, L. E.

    1999-01-01

    Over the last 20 years, the Decommissioning Program of the ANL-East Site has successfully decommissioned numerous facilities including: three research reactors (a 100 MW BWR, a smaller 250 kW biological irradiation reactor and a 10 kW research reactor), a critical assembly, a suite of 61 plutonium gloveboxes in 9 laboratories, a fuels fabrication facility and several non-reactor (waste management and operations) facilities. In addition, extensive decontamination work was performed on 5 hot cells formerly used in a joint ANL/US Navy R and D program. Currently the D and D of the CP-5 research reactor is underway as is planning for several other future D and D projects. The CP-5 facility was also used as a test bed for the evaluation of select evolving D and D technologies to ascertain their value for use in future D and D projects

  13. Dynamical simulations of the interacting galaxies in the NGC 520/UGC 957 system

    Science.gov (United States)

    Stanford, S. A.; Balcells, Marc

    1991-01-01

    Numerical simulations of the interacting galaxies in the NGC 520/UGC 957 system are presented. Two sets of models were produced to investigate the postulated three-galaxy system of two colliding disk galaxies within NGC 520 and the dwarf galaxy UGC 957. The first set of models simulated a dwarf perturbing one-disk galaxy, which tested the possibility that NGC 520 contains only one galaxy disturbed by the passage of UGC 957. The resulting morphology of the perturbed single disk in the simulation fails to reproduce the observed tidal tails and northwest mass condensation of NGC 520. A second set of models simulated two colliding disks, which tested the hypothesis that NGC 520 itself contains two galaxies in a strong collision and UGC 957 is unimportant to the interaction. These disk-disk models produced a good match to the morphology of the present NGC 520. It is concluded that (1) NGC 520 contains two colliding disk galaxies which have produced the brighter southern half of the long tidal tail and (2) UGC 957, which may originally have been a satellite of one of the disk galaxies, formed the diffuse northern tail as it orbited NGC 520.

  14. Mine subsidence control projects associated with solid waste disposal facilities

    International Nuclear Information System (INIS)

    Wood, R.M.

    1994-01-01

    Pennsylvania environmental regulations require applicant's for solid waste disposal permits to provide information regarding the extent of deep mining under the proposed site, evaluations of the maximum subsidence potential, and designs of measures to mitigate potential subsidence impact on the facility. This paper presents three case histories of deep mine subsidence control projects at solid waste disposal facilities. Each case history presents site specific mine grouting project data summaries which include evaluations of the subsurface conditions from drilling, mine void volume calculations, grout mix designs, grouting procedures and techniques, as well as grout coverage and extent of mine void filling evaluations. The case studies described utilized basic gravity grouting techniques to fill the mine voids and fractured strata over the collapsed portions of the deep mines. Grout mixtures were designed to achieve compressive strengths suitable for preventing future mine subsidence while maintaining high flow characteristics to penetrate fractured strata. Verification drilling and coring was performed in the grouted areas to determine the extent of grout coverage and obtain samples of the in-place grout for compression testing. The case histories presented in this report demonstrate an efficient and cost effective technique for mine subsidence control projects

  15. 21 CFR 520.623 - Diethylcarbamazine citrate, oxibendazole chewable tablets.

    Science.gov (United States)

    2010-04-01

    ... tablets. 520.623 Section 520.623 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS... dogs—(1) Amount. Administer orally to dogs at a dosage level of 6.6 milligrams of diethylcarbamazine...

  16. Feasibility study of the underwater neutron radiography facility using the University of Utah 100 kW TRIGA (UUTR) reactor

    International Nuclear Information System (INIS)

    Choe, D.; Xiao, S.; Jevremovic, T.; Yang, X.

    2010-01-01

    The University of Utah 100 kW TRIGA (UUTR) reactor provides usable neutron yields for neutron radiography. Currently, UUTR reactor has three irradiators (Central, Pneumatic, and Thermal irradiators) and one Fast neutron Irradiation Facility (FNIF). These irradiators are very small so they are not suitable for neutron radiography. UUTR has three beam ports but they are not available due to the structure of the core. All sides of the core are occupied by FNIF, Thermal Irradiator, and three ion chambers. The only available position for underwater vertical beam port is on the top of the FNIF. There are two factors necessary to fulfill to be able to realize vertical underwater beam port: noninterruption to other facilities and radiation shielding. Designing the vertical beam port as movable ensures good access to the core and pool, while still providing a good neutron radiography environment. Keeping the top of the beam port below the surface of the pool the water represents biological shield. Neutron radiographs, with a simple setup of efficient neutron converters and digital camera systems, can produce acceptable resolution with an exposure time as short as a few minutes. It is important to validate the design with calculations before constructing the beam port. The design of the beam port is modeled using the MCNP5 transport code. A minimum of 10 5 neutrons/cm 2 -sec thermal neutron flux is required for high resolution neutron radiography. Currently, the UUTRIGA is in the process of upgrading its power from 100 kW to 250 kW. Upon the completion of the upgrading, the maximum neutron flux in the core will be ∼7x10 12 neutrons/cm 2 -sec. This paper discusses a modeling and evaluation of capability for a neutron radiography facility. (author)

  17. PROJECT W-551 INTERIM PRETREATMENT SYSTEM TECHNOLOGY SELECTION SUMMARY DECISION REPORT AND RECOMMENDATION

    International Nuclear Information System (INIS)

    CONRAD EA

    2008-01-01

    This report provides the conclusions of the tank farm interim pretreatment technology decision process. It documents the methodology, data, and results of the selection of cross-flow filtration and ion exchange technologies for implementation in project W-551, Interim Pretreatment System. This selection resulted from the evaluation of specific scope criteria using quantitative and qualitative analyses, group workshops, and technical expert personnel

  18. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  19. Multi-site risk-based project planning, optimization, sequencing, & budgeting process and tool for the integrated facility disposition project

    International Nuclear Information System (INIS)

    Nelson, J.G.; Castillo, C.; Huntsman, J.; Killoy, S.; Lucek, H.; Marks, T.C.

    2011-01-01

    Faced with the Department of Energy (DOE) Complex Transformation, National Nuclear Security Administration (NNSA) was tasked with developing an integrated plan for the decommissioning of over 400 facilities and 300 environmental remediation units, as well as the many reconfiguration and modernization projects at the Oak Ridge National Laboratory (ORNL) and Y-12 Complex. Manual scheduling of remediation activities is time-consuming and inherently introduces bias of the scheduler or organization into the process. Clearly a well-defined process, quantitative risk-based tool was needed to develop an objective, unbiased baseline sequence and schedule with a sound technical foundation for the Integrated Facility Disposition Project (IFDP). Faced with limited available data, innovation was needed to extrapolate intelligent relative data for key risk parameters based on known data elements. The IFDP Supermodel was customized and expanded to provide this capability for conceptual planning of diverse project portfolios and multiple sites. (author)

  20. 21 CFR 520.2604 - Trimeprazine tartrate and prednisolone tablets.

    Science.gov (United States)

    2010-04-01

    .... 520.2604 Section 520.2604 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... chapter. (c) Conditions of use. (1) The drug is administered orally to dogs for the relief of itching regardless of cause; reduction of inflammation commonly associated with most skin disorders of dogs such as...

  1. 21 CFR 520.2612 - Trimethoprim and sulfadiazine oral suspension.

    Science.gov (United States)

    2010-04-01

    ... blood dyscrasia, nor in those with a history of sulfonamide sensitivity. Federal law restricts this drug... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Trimethoprim and sulfadiazine oral suspension. 520.2612 Section 520.2612 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  2. 21 CFR 520.2380a - Thiabendazole top dressing and mineral protein block.

    Science.gov (United States)

    2010-04-01

    ... block. 520.2380a Section 520.2380a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... § 520.2380a Thiabendazole top dressing and mineral protein block. (a) Chemical name. 2-(4-Thiazolyl... for food. (2) Cattle—(i) Route of administration. In feed block. (ii) Amount. 3.3 percent block...

  3. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS: Executive summary

    International Nuclear Information System (INIS)

    1994-01-01

    The Southeast Regional Wastewater Treatment Plant (SERWTP) Facilities Improvement Plan and Geysers Effluent Pipeline and Effluent Injection Project are proposed as a plan to provide expanded wastewater treatment capabilities and to dispose of the effluent by injection in The Geysers geothermal field for purposes of power production. The project is located predominantly in the County of Lake, California, and also in part of Sonoma County. The plan includes various conventional facilities improvements in wastewater treatment to a secondary level of treatment at the SWERWTP. The plan includes facilities to convey the treated effluent in a 26-mile, 24-inch inside diameter pipeline to the Southeast Geysers. The wastewater from the SERWTP would be supplemented by raw lake water diverted from nearby Clear Lake. At The Geysers, the effluent would be directed into a system of distribution lines to wells. In the geothermal reservoir, the water will be converted to steam and collected in production wells that will direct the steam to six existing power plants. This document is a summary of a combined full Environmental Impact Report (EIR) and Environmental Impact Statement (EIS). The EIR/EIS describes the environmental impacts of the various components of the project. Mitigation measures are suggested for reducing impacts to a less than significant level

  4. 41 CFR 101-4.520 - Job classification and structure.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Job classification and structure. 101-4.520 Section 101-4.520 Public Contracts and Property Management Federal Property Management... structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or...

  5. Manhattan Project buildings and facilities at the Hanford Site: A construction history

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1993-09-01

    This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

  6. Manhattan Project buildings and facilities at the Hanford Site: A construction history

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1993-09-01

    This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures

  7. Facility Effluent Monitoring Plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    Carter, G.J.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updates as a minimum every three years

  8. Facilities projects performance measurement system

    International Nuclear Information System (INIS)

    Erben, J.F.

    1979-01-01

    The two DOE-owned facilities at Hanford, the Fuels and Materials Examination Facility (FMEF), and the Fusion Materials Irradiation Test Facility (FMIT), are described. The performance measurement systems used at these two facilities are next described

  9. Kaiser Engineers Hanford internal position paper -- Project W-236A, Multi-function Waste Tank Facility -- Peer reviews of selected activities

    International Nuclear Information System (INIS)

    Stine, M.D.

    1995-01-01

    The purpose of this paper is to develop and document a proposed position on the performance of independent peer reviews on selected design and analysis components of the Title 1 [Preliminary] and Title 2 [Final] design phases of the Multi-Function Waste Tank Facility [MWTF] project. An independent, third-party peer review is defined as a documented critical review of documents, data, designs, design inputs, tests, calculations, or related materials. The peer review should be conducted by persons independent of those who performed the work, but who are technically qualified to perform the original work. The peer review is used to assess the validity of assumptions and functional requirements, to assess the appropriateness and logic of selected methodologies and design inputs, and to verify calculations, analyses and computer software. The peer review can be conducted at the end of the design activity, at specific stages of the design process, or continuously and concurrently with the design activity. This latter method is often referred to as ''Continuous Peer Review.''

  10. The DE-PHARM Project: A Pharmacist-Driven Deprescribing Initiative in a Nursing Facility.

    Science.gov (United States)

    Pruskowski, Jennifer; Handler, Steven M

    2017-08-01

    Many residents with life-limiting illnesses are being prescribed and taking potentially inappropriate medications (PIMs) and questionably beneficial medications either near or at the end of life. These medications can contribute to adverse drug reactions, increase morbidity, and increase unnecessary burden and cost. It is crucial that the process of deprescribing be incorporated into the care of these residents. After developing a clinical pharmacist-driven deprescribing initiative in the nursing facility, the objective of this project was to reduce the number of PIMs via accepted recommendations from the clinical pharmacist to the primary team. The Discussion to Ensure the Patient-centered, Health-focused, prognosis-Appropriate, and Rational Medication regimen (DE-PHARM) quality improvement-approved project was conducted in an urban, academic nursing facility in Pittsburgh, Pennsylvania. The pilot phase occurred between October 2015 and April 2016. To be included in this study, participants had to be a custodial resident of the nursing facility with a previously documented comfort-focused treatment plan. All medications used for the management of chronic comorbid diseases were eligible for review. Forty-seven residents managed by eight different primary teams met inclusion criteria. Thirty-nine recommendations for 23 residents were made by the clinical pharmacist, with an average of 0.82 and range of 0-5 recommendations per resident, respectively. Of those, only 10 (26%) were accepted, 1 (3%) was modified, 3 (7%) were rejected, and 25 (64%) had no response within the 120-day response period. Additionally, two residents died during the project, and one resident was readmitted to the hospital for a prolonged period of time. The pilot phase of the DE-PHARM project, a clinical pharmacist-driven deprescribing initiative, was designed and assessed. This project demonstrated the feasibility of such an initiative. Because of the complexity of such a process, special

  11. Evaluation of Nuclear Facility Decommissioning Projects program

    International Nuclear Information System (INIS)

    Baumann, B.L.

    1983-01-01

    The objective of the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program is to provide the NRC licensing staff with data which will allow an assessment of radiation exposure during decommissioning and the implementation of ALARA techniques. The data will also provide information to determine the funding level necessary to ensure timely and safe decommissioning operations. Actual decommissioning costs, methods and radiation exposures are compared with those estimated by the Battelle-PNL and ORNL NUREGs on decommissioning. Exposure reduction techniques applied to decommissioning activities to meet ALARA objectives are described. The lessons learned concerning various decommissioning methods are evaluated

  12. Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities

    International Nuclear Information System (INIS)

    MITCHELL, R.M.

    2000-01-01

    This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey

  13. Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL, R.M.

    2000-10-12

    This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

  14. Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL, R.M.

    2000-09-28

    This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

  15. U.S. Environmental Protection Agency Clear Air Act notice of construction for the spent nuclear fuel project - Cold Vacuum Drying Facility, project W-441

    International Nuclear Information System (INIS)

    Turnbaugh, J.E.

    1996-01-01

    This document provides information regarding the source and the estimated quantity of potential airborne radionuclide emissions resulting from the operation of the Cold Vacuum Drying (CVD) Facility. The construction of the CVD Facility is scheduled to commence on or about December 1996, and will be completed when the process begins operation. This document serves as a Notice of Construction (NOC) pursuant to the requirements of 40 Code of Federal Regulations (CFR) 61 for the CVD Facility. About 80 percent of the U.S. Department of Energy's spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters, while the SNF in the K East Basin is in open canisters, which allow release of corrosion products to the K East Basin water. Storage of the current inventory in the K Basins was originally intended to be on an as-needed basis to sustain operation of the N Reactor while the Plutonium-Uranium Extraction (PUREX) Plant was refurbished and restarted. The decision in December 1992 to deactivate the PURF-X Plant left approximately 2,100 MT (2,300 tons) of uranium as part of the N Reactor SNF in the K Basins with no means for near-term removal and processing. The CVD Facility will be constructed in the 100 Area northwest of the 190 K West Building, which is in close proximity to the K East and K West Basins (Figures 1 and 08572). The CVD Facility will consist of five processing bays, with four of the bays fully equipped with processing equipment and the fifth bay configured as an open spare bay. The CVD Facility will have a support area consisting of a control room, change rooms, and other functions required to support operations

  16. Operating test report for project W-417, T-plant steam removal upgrade, waste transfer portion

    International Nuclear Information System (INIS)

    Myers, N.K.

    1997-01-01

    This Operating Test Report (OTR) documents the performance results of the Operating Test Procedure HNF-SD-W417-OTP-001 that provides steps to test the waste transfer system installed in the 221-T Canyon under project W-417. Recent modifications have been performed on the T Plant Rail Car Waste Transfer System. This Operating Test Procedure (OTP) will document the satisfactory operation of the 221-T Rail Car Waste Transfer System modified by project W-417. Project W-417 installed a pump in Tank 5-7 to replace the steam jets used for transferring liquid waste. This testing is required to verify that operational requirements of the modified transfer system have been met. Figure 2 and 3 shows the new and existing system to be tested. The scope of this testing includes the submersible air driven pump operation in Tank 5-7, liquid waste transfer operation from Tank 5-7 to rail car (HO-IOH-3663 or HO-IOH-3664), associated line flushing, and the operation of the flow meter. This testing is designed to demonstrate the satisfactory operation-of the transfer line at normal operating conditions and proper functioning of instruments. Favorable results will support continued use of this system for liquid waste transfer. The Functional Design Criteria for this system requires a transfer flow rate of 40 gallons per minute (GPM). To establish these conditions the pump will be supplied up to 90 psi air pressure from the existing air system routed in the canyon. An air regulator valve will regulate the air pressure. Tank capacity and operating ranges are the following: Tank No. Capacity (gal) Operating Range (gal) 5-7 10,046 0 8040 (80%) Rail car (HO-IOH-3663 HO-IOH-3664) 097219,157 Existing Tank level instrumentation, rail car level detection, and pressure indicators will be utilized for acceptance/rejection Criteria. The flow meter will be verified for accuracy against the Tank 5-7 level indicator. The level indicator is accurate to within 2.2 %. This will be for information only

  17. The Los Alamos National Laboratory Chemistry and Metallurgy Research Facility upgrades project - A model for waste minimization

    International Nuclear Information System (INIS)

    Burns, M.L.; Durrer, R.E.; Kennicott, M.A.

    1996-07-01

    The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Facility, constructed in 1952, is currently undergoing a major, multi-year construction project. Many of the operations required under this project (i.e., design, demolition, decontamination, construction, and waste management) mimic the processes required of a large scale decontamination and decommissioning (D ampersand D) job and are identical to the requirements of any of several upgrades projects anticipated for LANL and other Department of Energy (DOE) sites. For these reasons the CMR Upgrades Project is seen as an ideal model facility - to test the application, and measure the success of - waste minimization techniques which could be brought to bear on any of the similar projects. The purpose of this paper will be to discuss the past, present, and anticipated waste minimization applications at the facility and will focus on the development and execution of the project's open-quotes Waste Minimization/Pollution Prevention Strategic Plan.close quotes

  18. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 1: Title II design report

    International Nuclear Information System (INIS)

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 1 provides a comprehensive narrative description of the proposed facility and systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title II design. The intent of the system description presented is to provide WHC an understanding of the facilities and equipment provided and the A/E's perspective on how these systems will operate

  19. The integral analysis of 40 mm diameter pipe rupture in cooling system of fusion facility W7-X with ASTEC code

    Energy Technology Data Exchange (ETDEWEB)

    Kačegavičius, Tomas, E-mail: Tomas.Kacegavicius@lei.lt; Povilaitis, Mantas, E-mail: Mantas.Povilaitis@lei.lt

    2015-12-15

    Highlights: • The analysis of loss-of-coolant accident (LOCA) in W7-X facility. • Burst disc is sufficient to prevent pressure inside the plasma vessel exceeding 110 kPa. • Developed model of the cooling system adequately represents the expected phenomena. - Abstract: Fusion is the energy production technology, which could potentially solve problems with growing energy demand of population in the future. Wendelstein 7-X (W7-X) is an experimental facility of stellarator type, which is currently being built at the Max-Planck-Institute for Plasmaphysics located in Greifswald, Germany. W7-X shall demonstrate that in future the energy could be produced in such type of fusion reactors. The safety analysis is required before the operation of the facility could be started. A rupture of 40 mm diameter pipe, which is connected to the divertor unit (module for plasma cooling) to ensure heat removal from the vacuum vessel in case of no-plasma operation mode “baking” is one of the design basis accidents to be investigated. During “baking” mode the vacuum vessel structures and working fluid – water are heated to the temperature 160 °C. This accident was selected for the detailed analysis using integral code ASTEC, which is developed by IRSN (France) and GRS mbH (Germany). This paper presents the integral analysis of W7-X response to a selected accident scenario. The model of the main cooling circuit and “baking” circuit was developed for ASTEC code. There were analysed two cases: (1) rupture of a pipe connected to the upper divertor unit and (2) rupture of a pipe connected to the lower divertor unit. The results of analysis showed that in both cases the water is almost completely released from the units into the plasma vessel. In both cases the pressure in the plasma vessel rapidly increases and in 28 s the set point for burst disc opening is reached preventing further pressurisation.

  20. 13 CFR 108.520 - Management Expenses of a NMVC Company.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Management Expenses of a NMVC Company. 108.520 Section 108.520 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM Managing the Operations of a NMVC Company Management and Compensation...

  1. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results. This report is based upon the accomplishments made by the Accelerator Group and others of the Project Team, which is organized on the basis of the Agreement between JAERI and KEK on the Construction and Research and Development of the High-Intensity Proton Accelerator Facility. (author)

  2. 41 CFR 102-37.520 - What is the authority for public airport donations?

    Science.gov (United States)

    2010-07-01

    ... for public airport donations? 102-37.520 Section 102-37.520 Public Contracts and Property Management... 37-DONATION OF SURPLUS PERSONAL PROPERTY Donations to Public Airports § 102-37.520 What is the authority for public airport donations? The authority for public airport donations is 49 U.S.C. 47151. 49 U...

  3. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    2000-02-03

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  4. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  5. Facilities management innovation in public-private collaborations: Danish ESCO projects

    DEFF Research Database (Denmark)

    Nardelli, Giulia; Jensen, Jesper Ole; Nielsen, Susanne Balslev

    2015-01-01

    The purpose of the article is to investigate how Facilities Management (FM) units navigate Energy Service Company (ESCO) collaborations, here defined as examples of public collaborative innovation within the context of FM. The driving motivation is to inform and inspire internal FM units of local...... institutions on how to navigate and manage collaboration of different, intra- and inter-organisational actors throughout ESCO projects.......The purpose of the article is to investigate how Facilities Management (FM) units navigate Energy Service Company (ESCO) collaborations, here defined as examples of public collaborative innovation within the context of FM. The driving motivation is to inform and inspire internal FM units of local...

  6. Overhead remote handling systems for the process facility modifications project

    International Nuclear Information System (INIS)

    Wiesener, R.W.; Grover, D.L.

    1987-01-01

    Each of the cells in the process facility modifications (PFM) project complex is provided with a variety of general purpose remote handling equipment including bridge cranes, monorail hoist, bridge-mounted electromechanical manipulator (EMM) and an overhead robot used for high efficiency particulate air (HEPA) filter changeout. This equipment supplements master-slave manipulators (MSMs) located throughout the complex to provide an overall remote handling system capability. The overhead handling equipment is used for fuel and waste material handling operations throughout the process cells. The system also provides the capability for remote replacement of all in-cell process equipment which may fail or be replaced for upgrading during the lifetime of the facility

  7. Lessons Learned Report for the radioactive mixed waste land disposal facility (Trench 31, Project W-025)

    International Nuclear Information System (INIS)

    Irons, L.G.

    1995-01-01

    This report presents the lessons learned from a project that involved modification to the existing burial grounds at the Hanford Reservation. This project has been focused on the development and operation of a Resource Conservation and Recovery Act compliant landfill which will accept low-level radioactive wastes that have been placed in proper containers

  8. The AGP-Project conceptual design for a Spanish HLW final disposal facility

    International Nuclear Information System (INIS)

    Biurrun, E.; Engelmann, H.-J.; Huertas, F.; Ulibarri, A.

    1992-01-01

    Within the framework of the AGP Project a Conceptual Design for a HLW Final Disposal Facility to be eventually built in an underground salt formation in Spain has been developed. The AGP Project has the character of a system analysis. In the current project phase I several alternatives has been considered for different subsystems and/or components of the repository. The system variants, developed to such extent as to allow a comparison of their advantages and disadvantages, will allow the selection of a reference concept, which will be further developed to technical maturity in subsequent project phases. (author)

  9. Highlights of the ISOLDE Facility and the HIE-ISOLDE Project

    CERN Document Server

    Borge, M.J.G.

    2016-01-01

    The ISOLDE radioactive beam facility is the dedicated CERN installation for the production and acceleration of radioactive nuclei. Exotic nuclei of most chemical elements are available for the study of nuclear structure, nuclear astrophysics, fundamental symmetries and atomic physics, as well as for applications in condensed matter and life sciences. In order to broaden the scientific opportunities beyond the reach of the present facility, the on-going HIE-ISOLDE (High Intensity and Energy) project provides major improvements in energy range, beam intensity and beam quality. A major element of the project is the increase of the final energy of the post-accelerated beams to 10 MeV/u throughout the periodic table. Physics with post-accelerated beams at 4 MeV/u has started this autumn. The increase in energy up to 10 MeV/u is fully funded and it will be implemented at the rate of one cryo-module per year reaching 10 MeV/u for A∕q = 4.5 at the start of 2018. In this contribution, a description of the ISOLDE fac...

  10. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Mendiratta, O.P.; Ploetz, D.K.

    2000-01-01

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste processing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999

  11. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  12. Design requirements document for Project W-465, immobilized low-activity waste interim storage

    International Nuclear Information System (INIS)

    Burbank, D.A.

    1998-01-01

    The scope of this Design Requirements Document (DRD) is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste (ILAW) produced by the privatized Tank Waste Remediation System (TWRS) treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the TWRS ILAW Interim Storage facility project and provides traceability from the program level requirements to the project design activity. Technical and programmatic risk associated with the TWRS planning basis are discussed in the Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The design requirements provided in this document will be augmented by additional detailed design data documented by the project

  13. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 5: Design validation assessments and lists

    International Nuclear Information System (INIS)

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. The following Code Evaluation analyzes the applicable sections of the National Fire Protection Association (NFPA) 101, Life Safety Code, 1994 Edition and the 1994 Edition of the Uniform Building Code (UBC) to the W113 Trench Enclosure. A Building Code Analysis generally establishes four primary design criteria: occupancy classification; separation requirements; egress requirements; and construction type. The UBC establishes requirements for all criteria. This analysis is limited to the Trench Enclosure Building. The General Office Building and the Retrieval Staff Change Building is not within the scope of this analysis

  14. Expedited technology demonstration project (Revised mixed waste management facility project) Project baseline revision 4.0 and FY98 plan

    International Nuclear Information System (INIS)

    Adamson, M. G.

    1997-01-01

    The re-baseline of the Expedited Technology Demonstration Project (Revised Mixed Waste Facility Project) is designated as Project Baseline Revision 4.0. The last approved baseline was identified as Project Baseline Revision 3.0 and was issued in October 1996. Project Baseline Revision 4.0 does not depart from the formal DOE guidance followed by, and contained in, Revision 3.0. This revised baseline document describes the MSO and Final Forms testing activities that will occur during FY98, the final year of the ETD Project. The cost estimate for work during FY98 continues to be $2.OM as published in Revision 3.0. However, the funds will be all CENRTC rather than the OPEX/CENTRC split previously anticipated. LLNL has waived overhead charges on ETD Project CENRTC funds since the beginning of project activities. By requesting the $2.OM as all CENTRC a more aggressive approach to staffing and testing can be taken. Due to a cost under- run condition during FY97 procurements were made and work was accomplished, with the knowledge of DOE, in the Feed Preparation and Final Forms areas that were not in the scope of Revision 3.0. Feed preparation activities for FY98 have been expanded to include the drum opening station/enclosure previously deleted

  15. SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT and M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS

    International Nuclear Information System (INIS)

    RYAN GW

    2008-01-01

    In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized

  16. Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget

    Energy Technology Data Exchange (ETDEWEB)

    Kollar, Lenka; Mathews, Caroline E.

    2009-07-01

    This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In order to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.

  17. Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget

    International Nuclear Information System (INIS)

    Kollar, Lenka; Mathews, Caroline E.

    2009-01-01

    This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In order to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.

  18. Suggestions and comments about preliminary plans of ABNT 20:04.002-001 standard 'Seismic actions for nuclear facilities project'

    International Nuclear Information System (INIS)

    Soares, W.A.

    1984-01-01

    This paper presents an analysis of preliminary plans of standard 'seismic actions for nuclear facilities project'. This document presents since seismic event characterization up to details of structural project of nuclear facilities construction. (C.M.)

  19. Accident consequence calculations for project W-058 safetyanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.

    1997-06-10

    Accident consequence analyses have been performed for Project W-058, the Replacement Cross Site Transfer System. using the assumption and analysis techniques developed for the Tank Remediation Waste system Basis for Interim Operation. most potential accident involving the FISTS are bounded by the TWRS BIO analysis. However, the spray leak and pool leak scenarios require revised analyses since the RCSTS design utilizes larger diameter pipe and higher pressures than those analyzed in the TWRS BIO. Also the volume of diversion box and vent station are larger than that assumed for the valve pits in the TWRS BIO, which effects results of sprays or spills into the pits. the revised analysis for the spray leak is presented in Section 2, for the above ground spill in Section 3, for the presented in Section 2, for the above ground spill in Section 3, for the subsurface spill forming a pool in Section 4, and for the subsurface pool remaining subsurface in Section 5. The conclusion from these sections are summarized below.

  20. Quality assurance program plan fuel supply shutdown project

    International Nuclear Information System (INIS)

    Metcalf, I.L.

    1998-01-01

    This Quality Assurance Program plan (QAPP) describes how the Fuel Supply Shutdown (FSS) project organization implements the quality assurance requirements of HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) and the B and W Hanford Company Quality Assurance Program Plan (QAPP), FSP-MP-004. The QAPP applies to facility structures, systems, and components and to activities (e.g., design, procurement, testing, operations, maintenance, etc.) that could affect structures, systems, and components. This QAPP also provides a roadmap of applicable Project Hanford Policies and Procedures (PHPP) which may be utilized by the FSS project organization to implement the requirements of this QAPP

  1. The Sanford Underground Research Facility at Homestake

    International Nuclear Information System (INIS)

    Heise, J.

    2015-01-01

    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability

  2. The Sanford Underground Research Facility at Homestake

    International Nuclear Information System (INIS)

    Heise, J

    2015-01-01

    The former Homestakegold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinolessdouble-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low- background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long- baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability. (paper)

  3. 21 CFR 520.2483 - Triamcinolone.

    Science.gov (United States)

    2010-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2483 Triamcinolone. (a..., if response to the smaller dose is inadequate. Therapy may be initiated with a single injection of...

  4. 21 CFR 520.2640 - Tylosin.

    Science.gov (United States)

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2640 Tylosin. (a) Specifications. Each... sensitive to tylosin at time of vaccination or other stress in chickens. For the control of chronic...

  5. 21 CFR 520.980 - Fluoxetine.

    Science.gov (United States)

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.980 Fluoxetine. (a) Specifications. Each... conjunction with a behavior modification plan. (3) Limitations. Federal law restricts this drug to use by or...

  6. Body composition and metabolic changes during a 520-day mission simulation to Mars.

    Science.gov (United States)

    Strollo, F; Macchi, C; Eberini, I; Masini, M A; Botta, M; Vassilieva, G; Nichiporuk, I; Monici, M; Santucci, D; Celotti, F; Magni, P; Ruscica, M

    2018-03-12

    The "Mars-500 project" allowed to evaluate the changes in psychological/physiological adaptation over a prolonged confinement, in order to gather information for future missions. Here, we evaluated the impact of confinement and isolation on body composition, glucose metabolism/insulin resistance and adipokine levels. The "Mars-500 project" consisted of 520 consecutive days of confinement from June 3, 2010 to Nov 4, 2011. The crew was composed of six male subjects (three Russians, two Europeans, and one Chinese) with a median age of 31 years (range 27-38 years). During the 520-day confinement, total body mass and BMI progressively decreased, reaching a significant difference at the end (417 days) of the observation period (- 9.2 and - 5.5%, respectively). Fat mass remained unchanged. A progressive and significant increase of fasting plasma glucose was observed between 249 and 417 days (+ 10/+ 17% vs baseline), with a further increase at the end of confinement (up to + 30%). Median plasma insulin showed a non-significant early increment (60 days; + 86%). Total adiponectin halved (- 47%) 60 days after hatch closure, remaining at this nadir (- 51%) level for a further 60 days. High molecular weight adiponectin remained significantly lower from 60 to 168 days. Based on these data, countermeasures may be envisioned to balance the potentially harmful effects of prolonged confinement, including a better exercise program, with accurate monitoring of (1) the individual activity and (2) the relationship between body composition and metabolic derangement.

  7. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  8. Project W-314 241-AN-A valve pit upgrade acceptance for beneficial use

    Energy Technology Data Exchange (ETDEWEB)

    HAMMERS, J.S.

    1999-07-21

    This report identifies the responsibilities and requirements, applicable to the 241-AN-A Valve Pit Upgrades portion of Project W-314, for Acceptance for Beneficial Use in accordance with HNF-IP-0842, Vol IV, Sec 3.12. At project turnover, the end user accepts the affected Structures, Systems, and Components (SSCs) for beneficial use. This checklist is used to help the end user ensure that all documentation, training, and testing requirements are met prior to turnover. This checklist specifically identifies those items related to the upgrading of the 241-AN-A valve pit. The upgrades include: the installation of jumper/valve manifolds with position sensors, replacement pit leak detection systems, construction of replacement cover blocks, and electrical upgrades to support the instrumentation upgrades.

  9. Project W-314 241-AN-A valve pit upgrade acceptance for beneficial use

    International Nuclear Information System (INIS)

    HAMMERS, J.S.

    1999-01-01

    This report identifies the responsibilities and requirements, applicable to the 241-AN-A Valve Pit Upgrades portion of Project W-314, for Acceptance for Beneficial Use in accordance with HNF-IP-0842, Vol IV, Sec 3.12. At project turnover, the end user accepts the affected Structures, Systems, and Components (SSCs) for beneficial use. This checklist is used to help the end user ensure that all documentation, training, and testing requirements are met prior to turnover. This checklist specifically identifies those items related to the upgrading of the 241-AN-A valve pit. The upgrades include: the installation of jumper/valve manifolds with position sensors, replacement pit leak detection systems, construction of replacement cover blocks, and electrical upgrades to support the instrumentation upgrades

  10. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    International Nuclear Information System (INIS)

    Sullivan, N.

    1995-01-01

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD)

  11. Iraq nuclear facility dismantlement and disposal project

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J R; Danneels, J [Sandia National Laboratories, Albuquerque, NM (United States); Kenagy, W D [U.S. Department of State, Bureau of International Security and Nonproliferation, Office of Nuclear Energy, Safety and Security, Washington, DC (United States); Phillips, C J; Chesser, R K [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX (United States)

    2007-07-01

    The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)

  12. Functional design criteria radioactive liquid waste line replacement, Project W-087. Revision 3

    International Nuclear Information System (INIS)

    McVey, C.B.

    1994-01-01

    This document provides the functional design criteria for the 222-S Laboratory radioactive waste drain piping and transfer pipeline replacement. The project will replace the radioactive waste drain piping from the hot cells in 222-S to the 219-S Waste Handling Facility and provide a new waste transfer route from 219-S to the 244-S Catch Station in Tank Farms

  13. PNC/DOE Remote Monitoring Project at Japan's Joyo Facility

    International Nuclear Information System (INIS)

    Ross, M.; Hashimoto, Yu; Sonnier, C.; Dupree, S.; Ystesund, K.; Hale, W.

    1996-01-01

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan and the US Department of Energy (DOE) are cooperating on the development of a remote monitoring system for nuclear nonproliferation efforts. This cooperation is part of a broader safeguards agreement between PNC and DOE. A remote monitoring system is being installed in a spent fuel storage area at PNC's experimental reactor facility Joyo in Oarai. The system has been designed by Sandia National Laboratories (SNL) and is closely related to those used in other SNL remote monitoring projects. The Joyo project will particularly study the unique aspects of remote monitoring in contribution to nuclear nonproliferation. The project will also test and evaluate the fundamental design and implementation of the remote monitoring system in its application to regional and international safeguards efficiency. This paper will present a short history of the cooperation, the details of the monitoring system and a general schedule of activities

  14. Results of high heat flux qualification tests of W monoblock components for WEST

    Science.gov (United States)

    Greuner, H.; Böswirth, B.; Lipa, M.; Missirlian, M.; Richou, M.

    2017-12-01

    One goal of the WEST project (W Environment in Steady-state Tokamak) is the manufacturing, quality assessment and operation of ITER-like actively water-cooled divertor plasma facing components made of tungsten. Six W monoblock plasma facing units (PFUs) from different suppliers have been successfully evaluated in the high heat flux test facility GLADIS at IPP. Each PFU is equipped with 35 W monoblocks of an ITER-like geometry. However, the W blocks are made of different tungsten grades and the suppliers applied different bonding techniques between tungsten and the inserted Cu-alloy cooling tubes. The intention of the HHF test campaign was to assess the manufacturing quality of the PFUs on the basis of a statistical analysis of the surface temperature evolution of the individual W monoblocks during thermal loading with 100 cycles at 10 MW m-2. These tests confirm the non-destructive examinations performed by the manufacturer and CEA prior to the installation of the WEST platform, and no defects of the components were detected.

  15. Results of high heat flux qualification tests of W monoblock components for WEST

    International Nuclear Information System (INIS)

    Greuner, H; Böswirth, B; Lipa, M; Missirlian, M; Richou, M

    2017-01-01

    One goal of the WEST project (W Environment in Steady-state Tokamak) is the manufacturing, quality assessment and operation of ITER-like actively water-cooled divertor plasma facing components made of tungsten. Six W monoblock plasma facing units (PFUs) from different suppliers have been successfully evaluated in the high heat flux test facility GLADIS at IPP. Each PFU is equipped with 35 W monoblocks of an ITER-like geometry. However, the W blocks are made of different tungsten grades and the suppliers applied different bonding techniques between tungsten and the inserted Cu-alloy cooling tubes. The intention of the HHF test campaign was to assess the manufacturing quality of the PFUs on the basis of a statistical analysis of the surface temperature evolution of the individual W monoblocks during thermal loading with 100 cycles at 10 MW m −2 . These tests confirm the non-destructive examinations performed by the manufacturer and CEA prior to the installation of the WEST platform, and no defects of the components were detected. (paper)

  16. Mission Need Statement: Idaho Spent Fuel Facility Project

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Beller

    2007-09-01

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  17. Project No.3 - Cement solidification facility for spent ion exchange resins

    International Nuclear Information System (INIS)

    2000-01-01

    The existing storage capacity remaining for radioactive liquid wastes at the Ignalina NPP site is approximately 800 m 3 . The condition of the tanks is not fully known; however, recent engineering assessments have indicated that the tanks are unsuitable for interim storage of the liquid waste. The liquid waste currently stored in the tanks will need to be immobilised and the storage tanks emptied before they begin to deteriorate. The potential environment impact of these facilities must be reduced significantly. Project activities includes the design, construction and commissioning of the proposed facility, including all licensing documentation

  18. Use of the project management methodology to establish physical protection system at nuclear facility

    International Nuclear Information System (INIS)

    Gramotkin, F.; Kuzmyak, I.; Kravtsov, V.

    2015-01-01

    The paper considers the possibility of using the project management methodology developed by the Project Management Institute (USA) in nuclear security in terms of modernization or development of physical protection system at nuclear facility. It was demonstrated that this methodology allows competent and flexible management of the projects on physical protection, ensuring effective control of their timely implementation in compliance with the planned budget and quality

  19. Project W-320, 241-C-106 sluicing: Construction specification W-320-C1

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    Project W-320, Waste Retrieval Sluicing System (WRSS), specification is for procurement, fabrication and installation of equipment at the C Tank Farm, including Operator Station and some equipment just outside the C Tank Farm fence, necessary to support the sluicing operation. Work consists of furnishing labor, equipment, and materials to provide the means to procure materials and equipment, fabricate items, excavate and place concrete, and install equipment, piping, wiring, and structures in accordance with the Contract Documents. Major work elements include: Excavation for process and fire protection piping, electrical conduit trenches, and foundations for small structures; Placement of concrete cover blocks, foundations, and equipment pads; Procurement and installation of double walled piping, electrical conduit, fire and raw water piping, chilled water piping, and electrical cable; Procurement and installation of above-ground ventilation system piping between the (HVAC) Process building and Tank C-106; Core drill existing concrete; Furnish and installation of electrical distribution equipment; Installation of the concrete foundation, and assembly installation of the two Seismic Shutdown Systems with Environmental Enclosures; Fabrication and installation of in-pit pipe jumpers, including related valves, instruments and wiring; and Installation of a vertical submersible pump, horizontal booster pump, and winch assembly into tank access riser pits

  20. Health and safety plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    This HASP describes the process for identifying the requirements, written safety documentation, and procedures for protecting personnel involved in the Isotopes Facilities Deactivation Project. Objective of this project is to place 19 former isotope production facilities at ORNL in a safe condition in anticipation of an extended period of minimum surveillance and maintenance

  1. Quality assurance project plan for the UMTRA technical assistance contractor hydrochemistry facility. Final report

    International Nuclear Information System (INIS)

    1993-07-01

    The Uranium Mill Tailings Remedial Action (UMTRA) hydrochemistry facility is used to perform a limited but important set of services for the UMTRA Project. Routine services include support of field-based hydrological and geochemical operations and water sampling activities. Less commonly, the hydrology and geochemistry staff undertake special studies and site characterization studies at this facility. It is also used to train hydrologists, geochemists, and groundwater sampling crews. A review of this Quality Assurance Project Plan (QAPP) shall be accomplished once each calendar year. This review will be targeted to be accomplished not sooner than 6 months and not later than 18 months after the last review

  2. Project summary plan for HTGR recycle reference facility

    International Nuclear Information System (INIS)

    Baxter, B.J.

    1979-11-01

    A summary plan is introduced for completing conceptual definition of an HTGR Recycle Reference Facility (HRRF). The plan describes a generic project management concept, often referred to as the requirements approach to systems engineering. The plan begins with reference flow sheets and provides for the progressive evolution of HRRF requirements and definition through feasibility, preconceptual, and conceptual phases. The plan lays end-to-end all the important activities and elements to be treated during each phase of design. Identified activities and elements are further supported by technical guideline documents, which describe methodology, needed terminology, and where relevant a worked example

  3. Proceedings of the workshops on 'JAEA project researches at J-PARC/MLF'

    International Nuclear Information System (INIS)

    Kajimoto, Ryoichi; Maekawa, Fujio; Arima, Hiroshi; Yoshinari, Shizuka; Arai, Masatoshi

    2011-06-01

    The operation for public use of Materials and Life Science Experimental Facility (MLF) at Japan Proton Accelerator Research Complex (J-PARC) has started since the end of 2008. Rather stable neutron and muon beams at 120 kW are being supplied throughout 2010. Some of the instruments have already produced several good scientific outputs. Furthermore, operation at 200 kW, which exceeds the beam power of the ISIS facility in UK, has started since December 2010. In this promising situation for MLF, we hold three workshops for five neutron instruments which conducted researches for projects by Japan Atomic Energy Agency (JAEA) (project researches): 'Workshop on BL19 (Sep. 29)', 'Workshop on BL04+BL10 (Oct. 28)', and 'Workshop on BL01+BL14 (Oct. 29)'. There, status of the instruments and recent results of the project researches as well as a part of researches by general users were reported, and future directions and issues to be solved of the researches were discussed. This report includes abstracts, materials of the presentations and summary of discussions in the workshops. (author)

  4. Feasibility Investigation for a Solar Power Generation Facility

    Science.gov (United States)

    Nathan, Lakshmi

    2010-01-01

    The Energy Policy Act of 2005 states that by fiscal year 2013, at least 7.5% of the energy consumed by the government must be renewable energy. In an effort to help meet this goal, Johnson Space Center (JSC) is considering installing a solar power generation facility. The purpose of this project is to conduct a feasibility investigation for such a facility. Because Kennedy Space Center (KSC) has a solar power generation facility, the first step in this investigation is to learn about KSC's facility and obtain information on how it was constructed. After collecting this information, the following must be determined: the amount of power desired, the size of the facility, potential locations for it, and estimated construction and maintenance costs. Contacts with JSC's energy provider must also be established to determine if a partnership would be agreeable to both parties. Lastly, all of this data must be analyzed to decide whether or not JSC should construct the facility. The results from analyzing the data collected indicate that a 200 kW facility would provide enough energy to meet 1% of JSC's energy demand. This facility would require less than 1 acre of land. In the map below, potential locations are shown in green. The solar power facility is projected to cost $2 M. So far, the information collected indicates that such a facility could be constructed. The next steps in this investigation include contacting JSC's energy provider, CenterPoint Energy, to discuss entering a partnership; developing a life cycle cost analysis to determine payback time; developing more detailed plans; and securing funding.

  5. J-PARC Transmutation Experimental Facility Programme

    International Nuclear Information System (INIS)

    Sasa, T.; Takei, H.; Saito, S.; Obayashi, H.; Nishihara, K.; Sugawara, T.; Iwamoto, H.; Yamaguchi, K.; Tsujimoto, K.; Oigawa, H.

    2015-01-01

    Since the Fukushima accident, nuclear transmutation is considered as an option for waste management. Japan Atomic Energy Agency proposes the transmutation of minor actinides (MA) in accelerator-driven system (ADS) using lead-bismuth eutectic alloy (LBE) as a spallation target and a coolant of subcritical core. To obtain the data required for ADS design, we plan the building of a transmutation experimental facility (TEF) is planned within the J-PARC project. TEF consists of an ADS target test facility (TEF-T), which will be installed 400 MeV-250 kW LBE spallation target for material irradiations, and a transmutation physics experimental facility (TEF-P), which set up a fast critical/subcritical assembly driven by low power proton beam with MA fuel to study ADS neutronics. At TEF-T, various research plans to use emitted neutrons from LBE target are discussed. The paper summarises a road-map to establish the ADS transmuter and latest design activities for TEF construction. (authors)

  6. Higher dimensional uniformisation and W-geometry

    International Nuclear Information System (INIS)

    Govindarajan, S.

    1995-01-01

    We formulate the uniformisation problem underlying the geometry of W n -gravity using the differential equation approach to W-algebras. We construct W n -space (analogous to superspace in supersymmetry) as an (n-1)-dimensional complex manifold using isomonodromic deformations of linear differential equations. The W n -manifold is obtained by the quotient of a Fuchsian subgroup of PSL(n,R) which acts properly discontinuously on a simply connected domain in bfCP n-1 . The requirement that a deformation be isomonodromic furnishes relations which enable one to convert non-linear W-diffeomorphisms to (linear) diffeomorphisms on the W n -manifold. We discuss how the Teichmueller spaces introduced by Hitchin can then be interpreted as the space of complex structures or the space of projective structures with real holonomy on the W n -manifold. The projective structures are characterised by Halphen invariants which are appropriate generalisations of the Schwarzian. This construction will work for all ''generic'' W-algebras. (orig.)

  7. Waste Receiving and Processing Facility, Module 1: Volume 7, Project design criteria

    International Nuclear Information System (INIS)

    1992-03-01

    This Project Design Criteria document for the WRAP facility at the Hanford Site is presented within a systems format. The WRAP Module 1 facility has been categorized into eight (8) engineering systems for design purposes. These systems include: receiving, shipping and storage, nondestructive assay/nondestructive examination (NDA/NDE), waste process, internal transportation, building, heating ventilation and air conditioning (HVAC), process control, and utilities. Within each system section of this document, the system-specific requirements are identified. The scope of the system is defined, the design goals are identified and the functional requirements are detailed

  8. Advanced conceptual design report. Phase II. Liquid effluent treatment and disposal Project W-252

    International Nuclear Information System (INIS)

    1995-01-01

    This Advanced Conceptual Design Report (ACDR) provides a documented review and analysis of the Conceptual Design Report (CDR), WHC-SD-W252-CDR-001, June 30, 1993. The ACDR provides further design evaluation of the major design approaches and uncertainties identified in the original CDR. The ACDR will provide a firmer basis for the both the design approach and the associated planning for the performance of the Definitive Design phase of the project

  9. 21 CFR 520.1284 - Sodium liothyronine tablets.

    Science.gov (United States)

    2010-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1284 Sodium... be considered for initiating therapy and then titrated downward for optimum maintenance effect. Twice...

  10. Integration of a functionally graded W/Cu transition for divertor components of fusion facilities

    International Nuclear Information System (INIS)

    Pintsuk, G.

    2004-01-01

    /Cu-interlayer, OFHC-Cu (Oxygen free high conductivity) and CuCrZr will be done by hot isostatic pressing. Parameters are a temperature of 550 C an a pressure of 195 MPa. Electrochemical deposited copper and nickel are added. Copper is used as surface layer of the graded W/Cu-composite and nickel for the strengthening of the diffusion bonding. Ultra-sonic-testing revealed narrow areas with inhomogeneous bonding at the interface, mainly nearby the outer surface of the module. The module containing the macro-brush has been tested at the electron-beam test facility JUDITH. It survived power loads at steady state operation of 23.8 MW/m 2 and 150 cycles at 20 MW/m 2 during thermal fatigue experiments. These results verify, that the insertion of a graded W/Cu-interlayer increases the resistance against thermal loads. Especially in the combination with the castellated structure. (orig.)

  11. Experimental determination of the transient heat absorption of W divertor materials

    International Nuclear Information System (INIS)

    Greuner, H; Böswirth, B; Eich, T; Herrmann, A; Maier, H; Sieglin, B

    2014-01-01

    Fast infrared (IR) thermography resolves the transient edge localized mode (ELM) induced heat fluxes on divertor components on time scales of a few hundred microseconds. These heat loads range from 10 to several 100 MW m −2 and energy densities of 15–200 kJ m −2 . The calculation of the local ELM heat flux depends on the so-called surface heat transfer coefficient very sensitively. Therefore we performed dedicated experiments in the high heat flux test facility GLADIS with well-defined temporal and spatial shape of heat fluxes to reduce the uncertainties of the ELM heat flux calculations in JET. We have experimentally determined the surface heat transfer coefficient for the W components used as divertor components of the JET ILW project. Based on the results of the measured transient heat absorption, the coefficient was deduced in a temperature range from 400 to 1200 °C for the bulk W lamella and for 10 and 20 μm W-coated carbon fibre reinforced carbon tiles, respectively. The measurements allow an improved estimation of ELM heat loads in JET on W and W-coated tiles and an error estimate of the absorbed heat flux. (paper)

  12. Education & Collection Facility GSHP Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Joplin, Jeff [Denver Museum of Nature and Science, Denver, CO (United States)

    2015-03-28

    The Denver Museum of Nature & Science (DMNS) designed and implemented an innovative ground source heat pump (GSHP) system for heating and cooling its new Education and Collection Facility (ECF) building addition. The project goal was to successfully design and install an open-loop GSHP system that utilized water circulating within an underground municipal recycled (non-potable) water system as the heat sink/source as a demonstration project. The expected results were to significantly reduce traditional GSHP installation costs while increasing system efficiency, reduce building energy consumption, require significantly less area and capital to install, and be economically implemented wherever access to a recycled water system is available. The project added to the understanding of GSHP technology by implementing the first GSHP system in the United States utilizing a municipal recycled water system as a heat sink/source. The use of this fluid through a GSHP system has not been previously documented. This use application presents a new opportunity for local municipalities to develop and expand the use of underground municipal recycled (non-potable) water systems. The installation costs for this type of technology in the building structure would be a cost savings over traditional GSHP costs, provided the local municipal infrastructure was developed. Additionally, the GSHP system functions as a viable method of heat sink/source as the thermal characteristics of the fluid are generally consistent throughout the year and are efficiently exchanged through the GSHP system and its components. The use of the recycled water system reduces the area required for bore or loop fields; therefore, presenting an application for building structures that have little to no available land use or access. This GSHP application demonstrates the viability of underground municipal recycled (non-potable) water systems as technically achievable, environmentally supportive, and an efficient

  13. The ISOL exotic beam facility at LNS: the EXCYT project

    International Nuclear Information System (INIS)

    Ciavola, G.; Calabretta, L.; Cuttone, G.; Di Bartolo, G.; Finocchiaro, P.; Gammino, S.; Gu, M.; Migneco, E.; Raia, G.; Rifuggiato, D.; Rovelli, A.; Vinciguerra, D.; Qin, J.; Wollnik, H.

    1997-01-01

    The aim of the EXCYT project (exotics with cyclotron and tandem) is the development of a facility for producing and accelerating exotic beams from 0.2 up to 8 MeV/amu. EXCYT is based on the ''two accelerators'' method. A K=800 superconducting cyclotron, axially injected by the ECR ion source SERSE, will deliver the primary beam. Such a beam will produce the required nuclear species in a modified ISOLDE type target-source complex. When required, a 15 MV tandem Van der Graaff will accelerate the secondary beams. Both accelerators are existing and operational at Laboratorio Nazionale del Sud. Concerning the status of the project, progress has been made in most of the key issues of the project, like the construction of SERSE, cyclotron upgrading, modification of the existing building, high resolution mass separator, and diagnostic equipment for low energy, low intensity beams. (orig.)

  14. The ISOL exotic beam facility at LNS: the EXCYT project

    Energy Technology Data Exchange (ETDEWEB)

    Ciavola, G.; Calabretta, L.; Cuttone, G.; Di Bartolo, G.; Finocchiaro, P.; Gammino, S.; Gu, M.; Migneco, E.; Raia, G.; Rifuggiato, D.; Rovelli, A.; Vinciguerra, D. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Qin, J. [Institute of Atomic Energy, Beijing (China); Wollnik, H. [Giessen Univ. (Germany)

    1997-04-01

    The aim of the EXCYT project (exotics with cyclotron and tandem) is the development of a facility for producing and accelerating exotic beams from 0.2 up to 8 MeV/amu. EXCYT is based on the ``two accelerators`` method. A K=800 superconducting cyclotron, axially injected by the ECR ion source SERSE, will deliver the primary beam. Such a beam will produce the required nuclear species in a modified ISOLDE type target-source complex. When required, a 15 MV tandem Van der Graaff will accelerate the secondary beams. Both accelerators are existing and operational at Laboratorio Nazionale del Sud. Concerning the status of the project, progress has been made in most of the key issues of the project, like the construction of SERSE, cyclotron upgrading, modification of the existing building, high resolution mass separator, and diagnostic equipment for low energy, low intensity beams. (orig.). 8 refs.

  15. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system

  16. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  17. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs.

  18. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    International Nuclear Information System (INIS)

    1992-01-01

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs

  19. 17 CFR 201.520 - Suspension of registration of brokers, dealers, or other Exchange Act-registered entities...

    Science.gov (United States)

    2010-04-01

    ... brokers, dealers, or other Exchange Act-registered entities: Application. 201.520 Section 201.520... Rules Relating to Temporary Orders and Suspensions § 201.520 Suspension of registration of brokers... of a registered broker, dealer, municipal securities dealer, government securities broker, government...

  20. Safety impacts of the I-35W improvements done under Minnesota's urban partnership agreement (UPA) project : final report.

    Science.gov (United States)

    2017-06-01

    As part of an Urban Partnership Agreement project, the Minnesota Department of Transportation added lanes : and began operating a priced dynamic shoulder lane (PDSL) on parts of Interstate 35W. Following the opening of : these improvements, the frequ...

  1. 19 CFR 351.520 - Export insurance.

    Science.gov (United States)

    2010-04-01

    ... Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Identification and Measurement of Countervailable Subsidies § 351.520 Export insurance. (a) Benefit—(1) In general. In the case of export insurance, a benefit exists if the premium rates charged are inadequate to...

  2. Project W-320, 241-C-106 sluicing electrical calculations, Volume 2

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. These calculations are required: To determine the power requirements needed to power electrical heat tracing segments contained within three manufactured insulated tubing assemblies; To verify thermal adequacy of tubing assembly selection by others; To size the heat tracing feeder and branch circuit conductors and conduits; To size protective circuit breaker and fuses; and To accomplish thermal design for two electrical heat tracing segments: One at C-106 tank riser 7 (CCTV) and one at the exhaust hatchway (condensate drain). Contents include: C-Farm electrical heat tracing; Cable ampacity, lighting, conduit fill and voltage drop; and Control circuit sizing and voltage drop analysis for the seismic shutdown system

  3. W-320 Department of Health documentation

    International Nuclear Information System (INIS)

    Bailey, J.W.

    1998-01-01

    The purpose of this document is to gather information required to show that Project W-320 is in compliance with Washington State Department of Health requirements as specified in Radioactive Air Emissions Notice of Construction Project W-320, Tank 241-C-106 Sluicing, DOE/RL-95-45. Specifically, that W-320 is in compliance with ASME N509-1989 (Nuclear Power Plant Air-Cleaning Units and Components) and ASME N5 10-1989 (Testing of Nuclear Air Treatment Systems) for the 296-C-006 exhaust system

  4. W-320 Department of Health documentation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.

    1998-08-07

    The purpose of this document is to gather information required to show that Project W-320 is in compliance with Washington State Department of Health requirements as specified in Radioactive Air Emissions Notice of Construction Project W-320, Tank 241-C-106 Sluicing, DOE/RL-95-45. Specifically, that W-320 is in compliance with ASME N509-1989 (Nuclear Power Plant Air-Cleaning Units and Components) and ASME N5 10-1989 (Testing of Nuclear Air Treatment Systems) for the 296-C-006 exhaust system.

  5. Readiness assessment plan for the Radioactive Mixed Waste Land Disposal Facility (Trench 31)

    International Nuclear Information System (INIS)

    Irons, L.G.

    1994-01-01

    This document provides the Readiness Assessment Plan (RAP) for the Project W-025 (Radioactive Mixed Waste Land Disposal Facility) Readiness Assessment (RA). The RAP documents prerequisites to be met by the operating organization prior to the RA. The RAP is to be implemented by the RA Team identified in the RAP. The RA Team is to verify the facility's compliance with criteria identified in the RAP. The criteria are based upon the open-quotes Core Requirementsclose quotes listed in DOE Order 5480.31, open-quotes Startup and Restart of Nuclear Facilitiesclose quotes

  6. 21 CFR 520.784 - Doxylamine succinate tablets.

    Science.gov (United States)

    2010-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.784 Doxylamine... use. (1) The drug is used in conditions in which antihistaminic therapy may be expected to alleviate...

  7. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  8. Test and User Facilities | NREL

    Science.gov (United States)

    Test and User Facilities Test and User Facilities Our test and user facilities are available to | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z B Battery Thermal and Life Test Facility Biochemical Conversion Pilot Plant C Controllable Grid Interface Test System D Dynamometer Test Facilities

  9. RCRA [Resource Conservation and Recovery Act] ground-water monitoring projects for Hanford facilities: Annual progress report for 1988

    International Nuclear Information System (INIS)

    Fruland, R.M.; Lundgren, R.E.

    1989-04-01

    This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs

  10. RADON-type disposal facility safety case for the co-ordinated research project on improvement of safety assessment methodologies for near surface radioactive waste disposal facilities (ISAM)

    International Nuclear Information System (INIS)

    Guskov, A.; Batanjieva, B.; Kozak, M.W.; Torres-Vidal, C.

    2002-01-01

    The ISAM safety assessment methodology was applied to RADON-type facilities. The assessments conducted through the ISAM project were among the first conducted for these kinds of facilities. These assessments are anticipated to lead to significantly improved levels of safety in countries with such facilities. Experience gained though this RADON-type Safety Case was already used in Russia while developing national regulatory documents. (author)

  11. 21 CFR 520.2098 - Selegiline hydrochloride tablets.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2098 Selegiline... physical examination findings after 2 months of therapy, increase dose to a maximum of 2 milligrams per...

  12. The IAEA research project on improvement of safety assessment methodologies for near surface disposal facilities

    International Nuclear Information System (INIS)

    Torres-Vidal, C.; Graham, D.; Batandjieva, B.

    2002-01-01

    The International Atomic Energy Agency (IAEA) Research Coordinated Project on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM) was launched in November 1997 and it has been underway for three years. The ISAM project was developed to provide a critical evaluation of the approaches and tools used in long-term safety assessment of near surface repositories. It resulted in the development of a harmonised approach and illustrated its application by way of three test cases - vault, borehole and Radon (a particular range of repository designs developed within the former Soviet Union) type repositories. As a consequence, the ISAM project had over 70 active participants and attracted considerable interest involving around 700 experts from 72 Member States. The methodology developed, the test cases, the main lessons learnt and the conclusions have been documented and will be published in the form of an IAEA TECDOC. This paper presents the work of the IAEA on improvement of safety assessment methodologies for near surface waste disposal facilities and the application of these methodologies for different purposes in the individual stages of the repository development. The paper introduces the main objectives, activities and outcome of the ISAM project and summarizes the work performed by the six working groups within the ISAM programme, i.e. Scenario Generation and Justification, Modelling, Confidence Building, Vault, Radon Type Facility and Borehole test cases. (author)

  13. Requirements Verification Report AN Farm to 200E Waste Transfer System for Project W-314, Tank Farm Restoration and Safe Operations

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    1999-01-01

    This Requirements Verification Report (RVR) for Project W-314 ''AN Farm to 200E Waste Transfer System'' package provides documented verification of design compliance to all the applicable Project Development Specification (PDS) requirements. Additional PDS requirements verification will be performed during the project's procurement, construction, and testing phases, and the RVR will be updated to reflect this information as appropriate

  14. 21 CFR 520.1468 - Naproxen granules.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1468 Naproxen granules. (a... musculoskeletal system of the horse. (2)(i) For oral maintenance therapy following initial intravenous dosage...

  15. 21 CFR 520.804 - Enalapril tablets.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.804 Enalapril tablets. (a...). Enalapril maleate is administered as conjunctive therapy with furosemide and digoxin in the treatment of...

  16. Lifecycle baseline summary for ADS 6504IS isotopes facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-08-01

    The scope of this Activity Data Sheet (ADS) is to provide a detailed plan for the Isotopes Facilities Deactivation Project (IFDP) at the Oak Ridge National Laboratory (ORNL). This project places the former isotopes production facilities in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) until the facilities are included in the Decontamination and Decommissioning (D ampersand D) Program. The facilities included within this deactivation project are Buildings 3026-C, 3026-D, 3028, 3029, 3038-AHF, 3038-E, 3038-M, 3047, 3517, 7025, and the Center Circle Facilities (Buildings 3030, 3031, 3032, 3033, 3033-A, 3034, and 3118). The scope of deactivation identified in this Baseline Report include surveillance and maintenance activities for each facility, engineering, contamination control and structural stabilization of each facility, radioluminescent (RL) light removal in Building 3026, re-roofing Buildings 3030, 3118, and 3031, Hot Cells Cleanup in Buildings 3047 and 3517, Yttrium (Y) Cell and Barricades Cleanup in Building 3038, Glove Boxes ampersand Hoods Removal in Buildings 3038 and 3047, and Inventory Transfer in Building 3517. For a detailed description of activities within this Work Breakdown Structure (WBS) element, see the Level 6 and Level 7 Element Definitions in Section 3.2 of this report

  17. Accident consequence calculations for project W-058 safety analysis

    International Nuclear Information System (INIS)

    Van Keuren, J.C.

    1997-01-01

    Accident consequence analyses have been performed for Project W-058, the Replacement Cross Site Transfer System. using the assumption and analysis techniques developed for the Tank Remediation Waste system Basis for Interim Operation. most potential accident involving the FISTS are bounded by the TWRS BIO analysis. However, the spray leak and pool leak scenarios require revised analyses since the RCSTS design utilizes larger diameter pipe and higher pressures than those analyzed in the TWRS BIO. Also the volume of diversion box and vent station are larger than that assumed for the valve pits in the TWRS BIO, which effects results of sprays or spills into the pits. the revised analysis for the spray leak is presented in Section 2, for the above ground spill in Section 3, for the presented in Section 2, for the above ground spill in Section 3, for the subsurface spill forming a pool in Section 4, and for the subsurface pool remaining subsurface in Section 5. The conclusion from these sections are summarized below

  18. Project W-320 SAR and process control thermal analyses

    International Nuclear Information System (INIS)

    Sathyanarayana, K.

    1997-01-01

    This report summarizes the results of thermal hydraulic computer modeling supporting Project W-320 for process control and SAR documentation. Parametric analyses were performed for the maximum steady state waste temperature. The parameters included heat load distribution, tank heat load, fluffing factor and thermal conductivity. Uncertainties in the fluffing factor and heat load distribution had the largest effect on maximum waste temperature. Safety analyses were performed for off normal events including loss of ventilation, loss of evaporation and loss of secondary chiller. The loss of both the primary and secondary ventilation was found to be the most limiting event with saturation temperature in the bottom waste reaching in just over 30 days. An evaluation was performed for the potential lowering of the supernatant level in tank 241-AY-102. The evaluation included a loss of ventilation and steam bump analysis. The reduced supernatant level decreased the time to reach saturation temperature in the waste for the loss of ventilation by about one week. However, the consequence of a steam bump were dramatically reduced

  19. Project W-314 specific test and evaluation plan for SN-633 transfer line (241-AX-B to 241-AY-02A)

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made by the addition of the SN-633 transfer line by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP). This STEP encompasses all testing activities required to demonstrate compliance to the project design criteria as it relates to the addition of transfer line SN-633. The Project Design Specifications (PDS) identify the specific testing activities required for the Project. Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities), Factory Acceptance Tests (FATs), installation tests and inspections, Construction Acceptance Tests (CATs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). It should be noted that POTPs are not required for testing of the transfer line addition. The STEP will be utilized in conjunction with the TEP for verification and validation

  20. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  1. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Krabacher, J.E.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  2. 40 CFR 80.520 - What are the standards and dye requirements for motor vehicle diesel fuel?

    Science.gov (United States)

    2010-07-01

    ... requirements for motor vehicle diesel fuel? 80.520 Section 80.520 Protection of Environment ENVIRONMENTAL... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.520 What are the standards and dye requirements for motor vehicle diesel...

  3. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  4. Latest development in project site radwaste treatment facility (SRTF) Sanmen

    International Nuclear Information System (INIS)

    Mennicken, K.; Lohmann, P.

    2015-01-01

    Westinghouse Electric Germany GmbH (WEG) was successful in being awarded a contract as to the planning, delivery, installation and commissioning of radwaste treatment systems for the AP1000 units at Sanmen site, PR China. Operational low and intermediate level radioactive waste will be processed in the Site Radwaste Treatment Facility (SRTF). This paper explains the latest developments of the project, especially the experience with customer-hired Chinese planning partners, installation companies and Customer operating personnel. (authors)

  5. 5-nJ Femtosecond Ti3+:sapphire laser pumped with a single 1 W green diode

    Science.gov (United States)

    Muti, Abdullah; Kocabas, Askin; Sennaroglu, Alphan

    2018-05-01

    We report a Kerr-lens mode-locked, extended-cavity femtosecond Ti3+:sapphire laser directly pumped at 520 nm with a 1 W AlInGaN green diode. To obtain energy scaling, the short x-cavity was extended with a q-preserving multi-pass cavity to reduce the pulse repetition rate to 5.78 MHz. With 880 mW of incident pump power, we obtained as high as 90 mW of continuous-wave output power from the short cavity by using a 3% output coupler. In the Kerr-lens mode-locked regime, the extended cavity produced nearly transform-limited 95 fs pulses at 776 nm. The resulting energy and peak power of the pulses were 5.1 nJ and 53 kW, respectively. To our knowledge, this represents the highest pulse energy directly obtained to date from a mode-locked, single-diode-pumped Ti3+:sapphire laser.

  6. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5x10 19 m -2 ·sec -1 . Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities

  7. Sparse Reconstruction of the Merging A520 Cluster System

    Energy Technology Data Exchange (ETDEWEB)

    Peel, Austin [Département d’Astrophysique, IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Lanusse, François [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Starck, Jean-Luc, E-mail: austin.peel@cea.fr [Université Paris Diderot, AIM, Sorbonne Paris Cité, CEA, CNRS, F-91191 Gif-sur-Yvette (France)

    2017-09-20

    Merging galaxy clusters present a unique opportunity to study the properties of dark matter in an astrophysical context. These are rare and extreme cosmic events in which the bulk of the baryonic matter becomes displaced from the dark matter halos of the colliding subclusters. Since all mass bends light, weak gravitational lensing is a primary tool to study the total mass distribution in such systems. Combined with X-ray and optical analyses, mass maps of cluster mergers reconstructed from weak-lensing observations have been used to constrain the self-interaction cross-section of dark matter. The dynamically complex Abell 520 (A520) cluster is an exceptional case, even among merging systems: multi-wavelength observations have revealed a surprising high mass-to-light concentration of dark mass, the interpretation of which is difficult under the standard assumption of effectively collisionless dark matter. We revisit A520 using a new sparsity-based mass-mapping algorithm to independently assess the presence of the puzzling dark core. We obtain high-resolution mass reconstructions from two separate galaxy shape catalogs derived from Hubble Space Telescope observations of the system. Our mass maps agree well overall with the results of previous studies, but we find important differences. In particular, although we are able to identify the dark core at a certain level in both data sets, it is at much lower significance than has been reported before using the same data. As we cannot confirm the detection in our analysis, we do not consider A520 as posing a significant challenge to the collisionless dark matter scenario.

  8. Hohlraum energetics scaling to 520 TW on the National Ignition Facilitya)

    Science.gov (United States)

    Kline, J. L.; Callahan, D. A.; Glenzer, S. H.; Meezan, N. B.; Moody, J. D.; Hinkel, D. E.; Jones, O. S.; MacKinnon, A. J.; Bennedetti, R.; Berger, R. L.; Bradley, D.; Dewald, E. L.; Bass, I.; Bennett, C.; Bowers, M.; Brunton, G.; Bude, J.; Burkhart, S.; Condor, A.; Di Nicola, J. M.; Di Nicola, P.; Dixit, S. N.; Doeppner, T.; Dzenitis, E. G.; Erbert, G.; Folta, J.; Grim, G.; Glenn, S.; Hamza, A.; Haan, S. W.; Heebner, J.; Henesian, M.; Hermann, M.; Hicks, D. G.; Hsing, W. W.; Izumi, N.; Jancaitis, K.; Jones, O. S.; Kalantar, D.; Khan, S. F.; Kirkwood, R.; Kyrala, G. A.; LaFortune, K.; Landen, O. L.; Lagin, L.; Larson, D.; Pape, S. Le; Ma, T.; MacPhee, A. G.; Michel, P. A.; Miller, P.; Montincelli, M.; Moore, A. S.; Nikroo, A.; Nostrand, M.; Olson, R. E.; Pak, A.; Park, H. S.; Patel, J. P.; Pelz, L.; Ralph, J.; Regan, S. P.; Robey, H. F.; Rosen, M. D.; Ross, J. S.; Schneider, M. B.; Shaw, M.; Smalyuk, V. A.; Strozzi, D. J.; Suratwala, T.; Suter, L. J.; Tommasini, R.; Town, R. P. J.; Van Wonterghem, B.; Wegner, P.; Widmann, K.; Widmayer, C.; Wilkens, H.; Williams, E. A.; Edwards, M. J.; Remington, B. A.; MacGowan, B. J.; Kilkenny, J. D.; Lindl, J. D.; Atherton, L. J.; Batha, S. H.; Moses, E.

    2013-05-01

    Indirect drive experiments have now been carried out with laser powers and energies up to 520 TW and 1.9 MJ. These experiments show that the energy coupling to the target is nearly constant at 84% ± 3% over a wide range of laser parameters from 350 to 520 TW and 1.2 to 1.9 MJ. Experiments at 520 TW with depleted uranium hohlraums achieve radiation temperatures of ˜330 ± 4 eV, enough to drive capsules 20 μm thicker than the ignition point design to velocities near the ignition goal of 370 km/s. A series of three symcap implosion experiments with nearly identical target, laser, and diagnostics configurations show the symmetry and drive are reproducible at the level of ±8.5% absolute and ±2% relative, respectively.

  9. Final report of the decontamination and decommissioning of Building 44 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Building 44 was radiologically contaminated and the building was demolished in 1994. The soil area within the footprint of the building was not contaminated; it complies with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  10. Final report of the decontamination and decommissioning of Building 34 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, was also the remedial action contractor. Building 34 was radiologically contaminated and the building was demolished in 1996. The soil area within the footprint of the building was analyzed and found to be not contaminated. The area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual closeout report for each contaminated GJPO building

  11. 21 CFR 520.2002 - Propiopromazine hydrochloride.

    Science.gov (United States)

    2010-04-01

    ... 520.2002 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...) Conditions of use. (1) The drug is intended for oral administration to dogs as a tranquilizer. It is used as an aid in handling difficult, excited, and unruly dogs, and in controlling excessive kennel barking...

  12. 21 CFR 520.1380 - Methocarbamol tablets.

    Science.gov (United States)

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1380 Methocarbamol tablets...) Conditions of use. (1) The drug is administered to dogs and cats as an adjunct to therapy for acute...

  13. 7 CFR Appendix D to Subpart E of... - Alcohol Production Facilities Planning, Performing, Development and Project Control

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Alcohol Production Facilities Planning, Performing... of Part 1980—Alcohol Production Facilities Planning, Performing, Development and Project Control (I..., without recourse to the Government, for the settlement and satisfaction of all contractual and...

  14. On the origin of W-algebras

    International Nuclear Information System (INIS)

    Bilal, A.; Kogan, I.I.

    1991-01-01

    We show that the complex and projective structures on 2D Riemann surfaces are determined by the solutions to the linear differential equations obtained by the hamiltonian reduction of Sl(2,C) connections by the gauge parabolic subgroup. The compatibility of complex (μ) and projective (T) structures appears as the associated zero-curvature condition on the reduced symplectic manifold and is nothing but the conformal Ward identity. Generalizing this construction to the reduction of Sl(n,C) connections by the maximal parabolic gauge subgroup, we obtain generalized complex (μ,ρ,...) and projective (T,W,...) structures. From their compatibility conditions we explicitly obtain the Ward identities of W n -gravity and the operator product expansions of the W n -algebras. The associated linear differential equations (one of which involves the basic differential operator of the nth reduction of the KP hierarchy) allow for a geometric interpretation of the W-symmetries in terms of deformations of flag configurations in the jet bundle Γ (n-1) . We also show how to derive the W n -Ward identities from the quantization of the (2+1)-dimensional Chern-Simons theory. (orig.)

  15. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    Science.gov (United States)

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry. © The Author(s) 2016.

  16. Lessons Learned from the On-Site Disposal Facility at Fernald Closure Project

    International Nuclear Information System (INIS)

    Kumthekar, U.A.; Chiou, J.D.

    2006-01-01

    The On-Site Disposal Facility (OSDF) at the U.S. Department of Energy's (DOE) Fernald Closure Project near Cincinnati, Ohio is an engineered above-grade waste disposal facility being constructed to permanently store low level radioactive waste (LLRW) and treated mixed LLRW generated during Decommissioning and Demolition (D and D) and soil remediation performed in order to achieve the final land use goal at the site. The OSDF is engineered to store 2.93 million cubic yards of waste derived from the remediation activities. The OSDF is intended to isolate its LLRW from the environment for at least 200 years and for up to 1,000 years to the extent practicable and achievable. Construction of the OSDF started in 1997 and waste placement activities will complete by the middle of April 2006 with the final cover (cap) placement over the last open cell by the end of Spring 2006. An on-site disposal alternative is considered critical to the success of many large-scale DOE remediation projects throughout the United States. However, for various reasons this cost effective alternative is not readily available in many cases. Over the last ten years Fluor Fernald Inc. has cumulated many valuable lessons learned through the complex engineering, construction, operation, and closure processes of the OSDF. Also in the last several years representatives from other DOE sites, State agencies, as well as foreign government agencies have visited the Fernald site to look for proven experiences and practices, which may be adapted for their sites. This paper present a summary of the major issues and lessons leaned at the Fernald site related to engineering, construction, operation, and closure processes for the disposal of remediation waste. The purpose of this paper is to share lessons learned and to benefit other projects considering or operating similar on-site disposal facilities from our successful experiences. (authors)

  17. Transition plan: Project C-018H, 200-E Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Connor, M.D.

    1994-01-01

    The purpose of this transition plan is to ensure an orderly transfer of project information to operations to satisfy Westinghouse Hanford Company (WHC) operational requirements and objectives, and ensure safe and efficient operation of Project C-018H, the 200-E Area Effluent Treatment Facility (ETF). This plan identifies the deliverables for Project C-018H upon completion of construction and turnover to WHC for operations, and includes acceptance criteria to objectively assess the adequacy of the contract deliverables in relation to present requirements. The scope of this plan includes a general discussion of the need for complete and accurate design basis documentation and design documents as project deliverables. This plan also proposes that a configuration management plan be prepared to protect and control the transferred design documents and reconstitute the design basis and design requirements, in the event that the deliverables and project documentation received from the contractor are less than adequate at turnover

  18. Final report of the HFIR [High Flux Isotope Reactor] irradiation facilities improvement project

    International Nuclear Information System (INIS)

    Montgomery, B.H.; Thoms, K.R.; West, C.D.

    1987-09-01

    The High-Flux Isotope Reactor (HFIR) has outstanding neutronics characteristics for materials irradiation, but some relatively minor aspects of its mechanical design severely limited its usefulness for that purpose. In particular, though the flux trap region in the center of the annular fuel elements has a very high neutron flux, it had no provision for instrumentation access to irradiation capsules. The irradiation positions in the beryllium reflector outside the fuel elements also have a high flux; however, although instrumented, they were too small and too few to replace the facilities of a materials testing reactor. To address these drawbacks, the HFIR Irradiation Facilities Improvement Project consisted of modifications to the reactor vessel cover, internal structures, and reflector. Two instrumented facilities were provided in the flux trap region, and the number of materials irradiation positions in the removable beryllium (RB) was increased from four to eight, each with almost twice the available experimental space of the previous ones. The instrumented target facilities were completed in August 1986, and the RB facilities were completed in June 1987

  19. The novel C-terminal KCNQ1 mutation M520R alters protein trafficking

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Calloe, Kirstine; Nielsen, Nathalie Hélix

    2007-01-01

    The long QT-syndrome is characterized by a prolongation of the QT-interval and tachyarrhythmias causing syncopes and sudden death. We identified the missense mutation M520R in the calmodulin binding domain of the Kv7.1 channel from a German family with long QT-syndrome. Heterologous expression...... an immunopositive labeling of the plasma membrane. For M520R no plasma membrane staining was visible, instead a strong signal in the ER was observed. These results indicate that the LQT1 mutation M520R leads to ER-retention and dysfunctional trafficking of the mutant channel resulting in haploinsufficiency...

  20. Behaviour of a VVER-1000 fuel element with boron carbide/steel absorber tested under severe fuel damage conditions in the CORA facility (Results of experiment CORA-W2)

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Schanz, G.; Schumacher, G.; Sepold, L.

    1994-10-01

    The 'Severe Fuel Damage' (SFD) experiments of the Kernforschungszentrum Karlsruhe (KfK), Federal Republic of Germany, were carried out in the out-of-pile facility 'CORA' as part of the international Severe Fuel Damage (SFD) research. The experimental program was set up to provide information on the failure mechanisms of Light Water Reactor (LWR) fuel elements in a temperature range from 1200 C to 2000 C and in few cases up to 2400 C. Between 1987 and 1992 a total of 17 CORA experiments with two different bundle configurations, i.e. PWR (Pressurized Water Reactor) and BWR (Boiling Water Reactor) bundles were performed. These assemblies represented 'Western-type' fuel elements with the pertinent materials for fuel, cladding, grid spacer, and absorber rod. At the end of the experimental program two VVER-1000 specific tests were run in the CORA facility with identical objectives but with genuine VVER-type materials. The experiments, designated CORA-W1 and CORA-W2 were conducted on February 18, 1993 and April 21, 1993, respectively. Test bundle CORA-W1 was without absorber material whereas CORA-W2 contained one absorber rod (boron carbide/steel). As in the earlier CORA tests the test bundles were subjected to temperature transients of a slow heatup rate in a steam environment. The transient phases of the tests were initiated with a temperature ramp rate of 1 K/s. With these conditions a so-called small-break LOCA was simulated. The temperature escalation due to the exothermal zircon/niobium-steam reaction started at about 1200 C, leading the bundles to maximum temperatures of approximately 1900 C. The thermal response of bundle CORA-W2 is comparable to that of CORA-W1. In test CORA-W2, however, the temperature front moved faster from the top to the bottom compared to test CORA-W1 [de

  1. State Waste Discharge Permit application: 200-W Powerhouse Ash Pit

    Energy Technology Data Exchange (ETDEWEB)

    Atencio, B.P.

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations; the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-W Powerhouse Ash Pit. The 200-W Powerhouse Ash Waste Water discharges to the 200-W Powerhouse Ash Pit via dedicated pipelines. The 200-W Powerhouse Ash Waste Water is the only discharge to the 200-W Powerhouse Ash Pit. The 200-W Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  2. 49 CFR 520.5 - Guidelines for identifying major actions significantly affecting the environment.

    Science.gov (United States)

    2010-10-01

    ... significantly affecting the environment. 520.5 Section 520.5 Transportation Other Regulations Relating to... significantly affecting the environment. (a) General guidelines. The phrase, “major Federal actions significantly affecting the quality of the human environment,” as used in this part, shall be construed with a...

  3. 20 CFR 669.520 - What information is required in the NFJP grant plans?

    Science.gov (United States)

    2010-04-01

    ... grant plans? 669.520 Section 669.520 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR NATIONAL FARMWORKER JOBS PROGRAM UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT..., including the specific goals of the grantee's program for the two Program Years involved; (e) The method the...

  4. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS, Volume 2 of 2: Appendices

    International Nuclear Information System (INIS)

    1994-01-01

    The Southeast Regional Wastewater Treatment Plant (SERWTP) Facilities Improvement Plan and Geysers Effluent Pipeline and Effluent Injection Project are proposed as a plan to provide expanded wastewater treatment capabilities and to dispose of the effluent by injection in The Geysers geothermal field for purposes of power production. The project is located predominantly in the County of Lake, California, and also in part of Sonoma County. The plan includes various conventional facilities improvements in wastewater treatment to a secondary level of treatment at the SWERWTP. The plan includes facilities to convey the treated effluent in a 26-mile, 24-inch inside diameter pipeline to the Southeast Geysers. The wastewater from the SERWTP would be supplemented by raw lake water diverted from nearby Clear Lake. At The Geysers, the effluent would be directed into a system of distribution lines to wells. In the geothermal reservoir, the water will be converted to steam and collected in production wells that will direct the steam to six existing power plants. This document is a summary of a combined full Environmental Impact Report (EIR) and Environmental Impact Statement (EIS). The EIR/EIS describes the environmental impacts of the various components of the project. Mitigation measures are suggested for reducing impacts to a less than significant level. This report contains appendices A and B. Appendix A contains notices of preparation/notices of intent and EIR/EIS scoping comments. Appendix B contains GeothermEx, Inc., analysis of Geothermal Reservoir Effects and Induced Seismicity

  5. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  6. Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility

    Energy Technology Data Exchange (ETDEWEB)

    Widdop, M.R.

    1995-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate the facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.

  7. MiR-520b suppresses proliferation of hepatoma cells through targeting ten-eleven translocation 1 (TET1) mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiying; Lu, Zhanping; Gao, Yuen [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China); Ye, Lihong [State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin (China); Song, Tianqiang, E-mail: tjchi@hotmai.com [Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China)

    2015-05-08

    Accumulating evidence indicates that microRNAs are able to act as oncogenes or tumor suppressor genes in human cancer. We previously reported that miR-520b was down-regulated in hepatocellular carcinoma (HCC) and its deregulation was involved in hepatocarcinogenesis. In the present study, we report that miR-520b suppresses cell proliferation in HCC through targeting the ten-eleven translocation 1 (TET1) mRNA. Notably, we identified that miR-520b was able to target 3′-untranslated region (3′UTR) of TET1 mRNA by luciferase reporter gene assays. Then, we revealed that miR-520b was able to reduce the expression of TET1 at the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blotting analysis. In terms of function, 5-ethynyl-2-deoxyuridine (EdU) incorporation and colony formation assays demonstrated that the forced miR-520b expression remarkably inhibited proliferation of hepatoma cells, but TET1 overexpression could rescue the inhibition of cell proliferation mediated by miR-520b. Furthermore, anti-miR-520b enhanced proliferation of hepatoma cells, whereas silencing of TET1 abolished anti-miR-520b-induced acceleration of cell proliferation. Then, we validated that the expression levels of miR-520b were negatively related to those of TET1 mRNA in clinical HCC tissues. Thus, we conclude that miR-520b depresses proliferation of liver cancer cells through targeting 3′UTR of TET1 mRNA. Our finding provides new insights into the mechanism of hepatocarcinogenesis. - Highlights: • TET1 is a novel target gene of miR-520b. • TET1 is upregulated in clinical HCC tissues. • MiR-520b is negatively correlated with TET1 in clinical HCC tissues. • MiR-520b depresses the proliferation of HCC cells through targeting TET1 mRNA.

  8. 40 CFR 1065.520 - Pre-test verification procedures and pre-test data collection.

    Science.gov (United States)

    2010-07-01

    ... corrective action does not resolve the deficiency, you may request to use the contaminated system as an... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Pre-test verification procedures and pre-test data collection. 1065.520 Section 1065.520 Protection of Environment ENVIRONMENTAL PROTECTION...

  9. The JAERI-KEK joint project on high intensity proton accelerator and overview of nuclear transmutation experimental facilities

    International Nuclear Information System (INIS)

    Ikeda, Yujiro

    2001-01-01

    A status of the JAERI/KEK joint project on High Intensity Proton Accelerator is overviewed. It is highlighted that Experimental facilities for development of the accelerator driven system (ADS) for nuclear transmutation technology is proposed under the project. (author)

  10. Anticipated Radiological Dose to Worker for Plutonium Stabilization and Handling at PFP - Project W-460

    International Nuclear Information System (INIS)

    WEISS, E.V.

    2000-01-01

    This report provides estimates of the expected whole body and extremity radiological dose, expressed as dose equivalent (DE), to workers conducting planned plutonium (Pu) stabilization processes at the Hanford Site Plutonium Finishing Plant (PFP). The report is based on a time and motion dose study commissioned for Project W-460, Plutonium Stabilization and Handling, to provide personnel exposure estimates for construction work in the PFP storage vault area plus operation of stabilization and packaging equipment at PFP

  11. Anticipated Radiological Dose to Worker for Plutonium Stabilization and Handling at PFP - Project W-460

    CERN Document Server

    Weiss, E V

    2000-01-01

    This report provides estimates of the expected whole body and extremity radiological dose, expressed as dose equivalent (DE), to workers conducting planned plutonium (Pu) stabilization processes at the Hanford Site Plutonium Finishing Plant (PFP). The report is based on a time and motion dose study commissioned for Project W-460, Plutonium Stabilization and Handling, to provide personnel exposure estimates for construction work in the PFP storage vault area plus operation of stabilization and packaging equipment at PFP.

  12. Emerging Trends of the Owner-Contractor Relationship for Capital Facility Projects: From the Contractor Perspective

    National Research Council Canada - National Science Library

    Geertsema, Cameron

    2003-01-01

    .... Specifically, this document will focus on how the outcome of capital facility projects are affected by human resources practices, and the management principles and practices of the contractor-owner...

  13. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Final EIR/EIS

    International Nuclear Information System (INIS)

    1994-01-01

    On May 26, 1994, the Lake County Sanitation District and the US Bureau of Land Management released for public review a Draft Environmental Impact Report/Environmental Impact Statement (EIR/EIS) on the proposed Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. A minimum 45-day review and comment period began on that date and notices were published in the Federal Register. The public review and comment period closed on July 26, 1994. Public hearings on the Draft EIMIS were held in Lakeport, CA, on June 30 and July 14, 1994. The first part of this document contains copies of the written comments submitted on the Draft EIR/EIS. It also contains summary paraphrased comments of the public hearings. The second part of this document contains responses to the comments

  14. GEOSAF Part II. Demonstration of the operational and long-term safety of geological disposal facilities for radioactive waste. IAEA international intercomparison and harmonization project

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Yumiko; Bruno, Gerard [International Atomic Energy Agency, Vienna (Austria). Vienna International Centre; Tichauer, Michael [IRSN, Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Hedberg, Bengt [Swedish Radiation Safety Authority, Stockholm (Sweden)

    2015-07-01

    International intercomparison and harmonization projects are one of the mechanisms developed by the IAEA for examining the application and use of safety standards, with a view to ensuring their effectiveness and working towards harmonization of approaches to the safety of radioactive waste management. The IAEA has organized a number of international projects on the safety of radioactive waste management; in particular on the issues related to safety demonstration for radioactive waste management facilities. In 2008, GEOSAF, Demonstration of The Operational and Long-Term Safety of Geological Disposal Facilities for Radioactive Waste, project was initiated. This project was completed in 2011 by delivering a project report focusing on the safety case for geological disposal facilities, a concept that has gained in recent years considerable prominence in the waste management area and is addressed in several international safety standards. During the course of the project, it was recognized that little work was undertaken internationally to develop a common view on the safety approach related to the operational phase of a geological disposal although long-term safety of disposal facility has been discussed for several decades. Upon completion of the first part of the GEOSAF project, it was decided to commence a follow-up project aiming at harmonizing approaches on the safety of geological disposal facilities for radioactive waste through the development of an integrated safety case covering both operational and long-term safety. The new project was named as GEOSAF Part II, which was initiated in 2012 initially as 2-year project, involving regulators and operators. GEOSAF Part II provides a forum to exchange ideas and experience on the development and review of an integrated operational and post-closure safety case for geological disposal facilities. It also aims at providing a platform for knowledge transfer. The project is of particular interest to regulatory

  15. W-025, acceptance test report

    International Nuclear Information System (INIS)

    Roscha, V.

    1994-01-01

    This acceptance test report (ATR) has been prepared to establish the results of the field testing conducted on W-025 to demonstrate that the electrical/instrumentation systems functioned as intended by design. This is part of the RMW Land Disposal Facility

  16. 21 CFR 520.763a - Dithiazanine iodide tablets.

    Science.gov (United States)

    2010-04-01

    ... weeks after therapy for adult worms. (2) The drug is contraindicated in animals sensitive to...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763a Dithiazanine...

  17. National Biomedical Tracer Facility (NBTF). Project definition study: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Lagunas-Solar, M.C.

    1995-02-15

    This report describes a five-year plan for the construction and commissioning of a reliable and versatile NBTF facility for the production of high-quality, high-yield radioisotopes for research, biomedical, and industrial applications. The report is organized in nine sections providing, in consecutive order, responses to the nine questions posed by the U.S. Department of Energy in its solicitation for the NBTF Project Definition Study. In order to preserve direct correspondence (e.g., Sec. 3 = 3rd item), this Introduction is numbered {open_quotes}0.{close_quotes} Accelerator and facility designs are covered in Section 1 (Accelerator Design) and Section 2 (Facility Design). Preliminary estimates of capital costs are detailed in Section 3 (Design and Construction Costs). Full licensing requirements, including federal, state, and local ordinances, are discussed in Section 4 (Permits). A plan for the management of hazardous materials to be generated by NBTF is presented in Section 5 (Waste Management). An evaluation of NBTF`s economic viability and its potential market impact is detailed in Section 6(Business Plan), and is complemented by the plans in Section 7 (Operating Plan) and Section 8 (Radioisotope Plan). Finally, a plan for NBTF`s research, education, and outreach programs is presented in Section 9 (Research and Education Programs).

  18. Enhancing resiliency for elderly populations : Shelter-in-place planning and training at facilities serving elderly populations through the Rhode Island Senior Resiliency Project.

    Science.gov (United States)

    Smith, Richard; Mozzer, Michael; Albanese, Joseph; Paturas, James; Gold, Julia

    2017-06-01

    Elderly populations are disproportionately affected by disasters. In part, this is true because for many older adults, special assistance is needed to mitigate the consequences of disasters on their health and wellbeing. In addition, many older adults may reside in diverse living complexes such as long-term care facilities, assisted living facilities and independent-living senior housing complexes. Planning for each type of facility is different and the unique features of these facilities must be considered to develop readiness to deal with disasters. Based on this, the Rhode Island Department of Health established the Senior Resiliency Project to bolster the level of resiliency for the types of living facilities housing older adults. The project involves performing onsite assessments of energy resources, developing site-specific sheltering-inplace and energy resiliency plans, and educating and training facility employees and residents on these plans and steps they can take to be better prepared. Based on the feasibility of conducting these activities within a variety of facilities housing older adults, the project is segmented into three phases. This paper describes survey findings, outcomes of interventions, challenges and recommendations for bridging gaps observed in phases 1 and 2 of the project.

  19. Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Jessica D.

    2013-05-29

    On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project – Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the City’s hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the City’s Project Engineer, who had overseen the application, resigned and left the City’s employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently

  20. 21 CFR 520.763b - Dithiazanine iodide powder.

    Science.gov (United States)

    2010-04-01

    ... therapy for adult worms. (2) The drug is contraindicated in animals sensitive to dithiazanine iodide and...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763b Dithiazanine...

  1. TA-55 facility control system upgrade project - human-system interface functional requirements

    International Nuclear Information System (INIS)

    Atkins, W.H.; Pope, N.G.; Turner, W.J.; Brown, R.E.

    1995-11-01

    The functional requirements for that part of the Technical Area (TA)-55 Operations Center Upgrade Project that involves the human-system interface (HSI) are described in this document. The upgrade project seeks to replace completely the center's existing computerized data acquisition and display system, which consists of the field multiplexer units, Data General computer systems, and associated peripherals and software. The upgrade project has two parts-the Facility Data Acquisition Interface System (FDAIS) and the HSI. The HSI comprises software and hardware to provide a high-level graphical operator interface to the data acquisition system, as well as data archiving, alarm annunciation, and logging. The new system will be built with modern, commercially available components; it will improve reliability and maintainability, and it can be expanded for future needs

  2. Decontamination and dismantlement of the building 594 waste ion exchange facility at Argonne National Laboratory-East project final report

    International Nuclear Information System (INIS)

    Wiese, E. C.

    1998-01-01

    The Building 594 D and D Project was directed toward the following goals: Removal of any radioactive and hazardous materials associated with the Waste Ion Exchange Facility; Decontamination of the Waste Ion Exchange Facility to unrestricted use levels; Demolition of Building 594; and Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure) These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the Waste Ion Exchange Facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The ion exchange system and the resin contained in the system were the primary areas of concern, while the condition of the building which housed the system was of secondary concern. ANL-E health physics technicians characterized the Building 594 Waste Ion Exchange Facility in September 1996. The characterization identified a total of three radionuclides present in the Waste Ion Exchange Facility with a total activity of less than 5 microCi (175 kBq). The radionuclides of concern were Co 60 , Cs 137 , and Am 241 . The highest dose rates observed during the project were associated with the resin in the exchange vessels. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem (50 mSv)/yr; the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr)

  3. Evalution of NDA techniques and instruments for assay of nuclear waste at a waste terminal storage facility

    International Nuclear Information System (INIS)

    Blakeman, E.D.; Allen, E.J.; Jenkins, J.D.

    1978-05-01

    The use of Nondestructive Assay (NDA) instrumentation at a nuclear waste terminal storage facility for purposes of Special Nuclear Material (SNM) accountability is evaluated. Background information is given concerning general NDA techniques and the relative advantages and disadvantages of active and passive NDA methods are discussed. The projected characteristics and amounts of nuclear wastes that will be delivered to a waste terminal storage facility are presented. Wastes are divided into four categories: High Level Waste, Cladding Waste, Intermediate Level Waste, and Low Level Waste. Applications of NDA methods to the assay of these waste types is discussed. Several existing active and passive NDA instruments are described and, where applicable, results of assays performed on wastes in large containers (e.g., 55-gal drums) are given. It is concluded that it will be difficult to routinely achieve accuracies better than approximately 10--30% with ''simple'' NDA devices or 5--20% with more sohpisticated NDA instruments for compacted wastes. It is recommended that NDA instruments not be used for safeguards accountability at a waste storage facility. It is concluded that item accountability methods be implemented. These conclusions and recommendations are detailed in a concurrent report entitled ''Recommendations on the Safeguards Requirements Related to the Accountability of Special Nuclear Material at Waste Terminal Storage Facilities'' by J.D. Jenkins, E.J. Allen and E.D. Blakeman

  4. Management aspects of Gemini's base facility operations project

    Science.gov (United States)

    Arriagada, Gustavo; Nitta, Atsuko; Adamson, A. J.; Nunez, Arturo; Serio, Andrew; Cordova, Martin

    2016-08-01

    Gemini's Base Facilities Operations (BFO) Project provided the capabilities to perform routine nighttime operations without anyone on the summit. The expected benefits were to achieve money savings and to become an enabler of the future development of remote operations. The project was executed using a tailored version of Prince2 project management methodology. It was schedule driven and managing it demanded flexibility and creativity to produce what was needed, taking into consideration all the constraints present at the time: Time available to implement BFO at Gemini North (GN), two years. The project had to be done in a matrix resources environment. There were only three resources assigned exclusively to BFO. The implementation of new capabilities had to be done without disrupting operations. And we needed to succeed, introducing the new operational model that implied Telescope and instrumentation Operators (Science Operations Specialists - SOS) relying on technology to assess summit conditions. To meet schedule we created a large number of concurrent smaller projects called Work Packages (WP). To be reassured that we would successfully implement BFO, we initially spent a good portion of time and effort, collecting and learning about user's needs. This was done through close interaction with SOSs, Observers, Engineers and Technicians. Once we had a clear understanding of the requirements, we took the approach of implementing the "bare minimum" necessary technology that would meet them and that would be maintainable in the long term. Another key element was the introduction of the "gradual descent" concept. In this, we increasingly provided tools to the SOSs and Observers to prevent them from going outside the control room during nighttime operations, giving them the opportunity of familiarizing themselves with the new tools over a time span of several months. Also, by using these tools at an early stage, Engineers and Technicians had more time for debugging

  5. New developments in instrumentation at the W. M. Keck Observatory

    Science.gov (United States)

    Adkins, Sean M.; Armandroff, Taft E.; Fitzgerald, Michael P.; Johnson, James; Larkin, James E.; Lewis, Hilton A.; Martin, Christopher; Matthews, Keith Y.; Prochaska, J. X.; Wizinowich, Peter

    2014-07-01

    The W. M. Keck Observatory continues to develop new capabilities in support of our science driven strategic plan which emphasizes leadership in key areas of observational astronomy. This leadership is a key component of the scientific productivity of our observing community and depends on our ability to develop new instrumentation, upgrades to existing instrumentation, and upgrades to supporting infrastructure at the observatory. In this paper we describe the as measured performance of projects completed in 2014 and the expected performance of projects currently in the development or construction phases. Projects reaching completion in 2014 include a near-IR tip/tilt sensor for the Keck I adaptive optics system, a new center launch system for the Keck II laser guide star facility, and NIRES, a near-IR Echelle spectrograph for the Keck II telescope. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, a deployable tertiary mirror for the Keck I telescope, upgrades to the spectrograph detector and the imager of the OSIRIS instrument, and an upgrade to the telescope control systems on both Keck telescopes.

  6. 21 CFR 520.2613 - Trimethoprim and sulfadiazine powder.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2613..., for 5 to 7 days. Continue therapy for 2 to 3 days after clinical signs have subsided. If no...

  7. Waste Receiving and Processing Facility Module 1 Data Management System software requirements specification

    International Nuclear Information System (INIS)

    Rosnick, C.K.

    1996-01-01

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-0126). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  8. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    International Nuclear Information System (INIS)

    Brann, E.C. II.

    1994-01-01

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  9. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    Energy Technology Data Exchange (ETDEWEB)

    Brann, E.C. II

    1994-09-09

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  10. 21 CFR 520.540a - Dexamethasone powder.

    Science.gov (United States)

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.540a Dexamethasone powder. (a... such as acute arthritic lameness, and for various stress conditions where corticosteroids are required...

  11. Thermal-hydraulic tests with out-of-pile test facility for BOCA development

    International Nuclear Information System (INIS)

    Kitagishi, Shigeru; Aoyama, Masashi; Tobita, Masahiro; Inaba, Yoshitomo; Yamaura, Takayuki

    2012-01-01

    The fuel transient test facility was prepared for power ramping tests of light-water-reactor (LWR) fuels in the Japan Materials Testing Reactor (JMTR) under a contract project with the Nuclear Industrial Safety Agent (NISA) of the Ministry of Economy, Trade and Industry (METI). It is necessary to develop high accuracy analysis procedure for power ramping tests after restart of the JMTR. The out-of-pile test facility to simulate thermal-hydraulic conditions of the fuel transient test facility was therefore developed. Applicability of the analysis code ACE-3D was examined for thermal-hydraulic analysis of power ramping tests for 10x10 BWR fuels by the fuel transient test facility. As the results, the calculated temperature was 304°C in comparison with measured value of 304.9-317.4°C in the condition of 600 W/cm. There is a bright prospect of high accuracy power ramping tests by the fuel transient test facility in JMTR. (author)

  12. 49 CFR 520.21 - Preparation of environmental reviews, negative declarations, and notices of intent.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Preparation of environmental reviews, negative declarations, and notices of intent. 520.21 Section 520.21 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURES FOR CONSIDERING ENVIRONMENTAL...

  13. Life cycle baseline summary for ADS 6504IS Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-11-01

    The purpose of the Isotopes Facility Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. This baseline plan establishes the official target schedule for completing the deactivation work and the associated budget required for deactivation and the necessary S ampersand M. Deactivation of the facilities 3026C, 3026D, 3028, 3029, 3038E, 3038M, and 3038AHF, the Center Circle buildings 3047, 3517, and 7025 will continue though Fiscal Year (FY) 1999. The focus of the project in the early years will be on the smaller buildings that require less deactivation and can bring an early return in reducing S ampersand M costs. This baseline plan covers the period from FY1995 throughout FY2000. Deactivation will continue in various facilities through FY1999. A final year of S ampersand M will conclude the project in FY2000. The estimated total cost of the project during this period is $51M

  14. Royal Military College of Canada SLOWPOKE-2 facility. Integrated regulating and instrumentation system (SIRCIS) upgrade project

    International Nuclear Information System (INIS)

    Corcoran, W.P.; Nielsen, K.S.; Kelly, D.G.; Weir, R.D.

    2013-01-01

    The SLOWPOKE-2 Facility at the Royal Military College of Canada has operated the only digitally controlled SLOWPOKE reactor since 2001 (Version 1.0). The present work describes ongoing project development to provide a robust digital reactor control system that is consistent with Aging Management as summarized in the Facility's Life Cycle Management and Maintenance Plan. The project has transitioned from a post-graduate research activity to a comprehensively managed project supported by a team of RMCC professional and technical staff who have delivered an update of the V1.1 system software and hardware implementation that is consistent with best Canadian nuclear industry practice. The challenges associated with the implementation of Version 2.0 in February 2012, the lessons learned from this implementation, and the applications of these lessons to a redesign and rewrite of the RMCC SLOWPOKE-2 digital instrumentation and regulating system (Version 3) are discussed. (author)

  15. Final Technical Report: The Water-to-Wire (W2W) Project

    Energy Technology Data Exchange (ETDEWEB)

    Lissner, Daniel N. [Free Flow Power Corporation, Boston, MA (United States); Edward, Lovelace C. [Free Flow Power Corporation, Boston, MA (United States)

    2013-12-24

    The purpose of the Free Flow Power (FFP) Water-to-Wire Project (Project) was to evaluate and optimize the performance, environmental compatibility, and cost factors of FFP hydrokinetic turbines through design analyses and deployments in test flumes and riverine locations.

  16. 20 CFR 628.520 - Individual service strategy.

    Science.gov (United States)

    2010-04-01

    ... demands within the labor market. (2) Decisions concerning appropriate services shall be customer-centered... the ISS and may not reference other documents. (h) The ISS is a customer-centered case management tool... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Individual service strategy. 628.520 Section...

  17. 21 CFR 520.903e - Febantel tablets.

    Science.gov (United States)

    2010-04-01

    ...) Limitations. Do not use in pregnant animals. Consider alternative therapy or use with caution in animals with... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.903e Febantel tablets. (a...

  18. 21 CFR 520.530 - Cythioate oral liquid.

    Science.gov (United States)

    2010-04-01

    ... greyhounds or in animals that are pregnant, sick, under stress, or recovering from surgery. Federal law... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.530 Cythioate oral liquid. (a...

  19. 21 CFR 520.88f - Amoxicillin trihydrate tablets.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.88f Amoxicillin... days, review diagnosis and change therapy. Federal law restricts this drug to use by or on the order of...

  20. Safety assessment methodologies and their application in development of near surface waste disposal facilities - the ASAM project

    International Nuclear Information System (INIS)

    Metcalf, P.

    2003-01-01

    The scope of ASAM project covers near surface disposal facilities for all types of low and intermediate level wastes with emphasis of the post-closure safety assessment.The objectives are to explore practical application to a range of disposal facilities for a number of purposes e.g. development of design concepts, safety re-assessment, upgrading safety and to develop practical approaches to assist regulators, operators and other experts in review of safety assessment. The task of the Co-ordination Group are: reassessment of existing facilities - use of safety assessment in decision making on selection of options (volunteer site Hungary); disused sealed sources - evaluation of disposability of disused sealed sources in near surface facilities (volunteer site Saratov, Russia); mining and minerals processing waste - evaluation of long-term safety (volunteer site pmc S. Africa). An agreement on the scope and objectives of the project are reached and the further consideration, such as human intrusion/institutional control/security; waste from oil/gas industry; very low level waste; categorization of sealed sources coordinated with other IAEA activities are outlined