WorldWideScience

Sample records for facility profiles ag-ch

  1. World Energy Data System (WENDS). Volume VII. Nuclear facility profiles, AG--CH

    International Nuclear Information System (INIS)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile

  2. World Energy Data System (WENDS). Volume VII. Nuclear facility profiles, AG--CH. [Brief tabulated information

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.

  3. File list: InP.Bld.10.AllAg.CH12 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.CH12 mm9 Input control Blood CH12 SRX140380,SRX185839,SRX145049,SR...X153161,SRX140381,SRX097685 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.10.AllAg.CH12.bed ...

  4. Silver(I) complexes of the weakly coordinating solvents SO(2) and CH(2)Cl(2): crystal structures, bonding, and energetics of [Ag(OSO)][Al{OC(CF(3))(3)}(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(CH(2)Cl(2))(2)][SbF(6)].

    Science.gov (United States)

    Decken, Andreas; Knapp, Carsten; Nikiforov, Grigori B; Passmore, Jack; Rautiainen, J Mikko; Wang, Xinping; Zeng, Xiaoqing

    2009-06-22

    Pushing the limits of coordination chemistry: The most weakly coordinated silver complexes of the very weakly coordinating solvents dichloromethane and liquid sulfur dioxide were prepared. Special techniques at low temperatures and the use of weakly coordinating anions allowed structural characterization of [Ag(OSO)][Al{OC(CF(3))(3)}(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(Cl(2)CH(2))(2)][SbF(6)] (see figure). An investigation of the bonding shows that these complexes are mainly stabilized by electrostatic monopole-dipole interactions.The synthetically useful solvent-free silver(I) salt Ag[Al(pftb)(4)] (pftb=--OC(CF(3))(3)) was prepared by metathesis reaction of Li[Al(pftb)(4)] with Ag[SbF(6)] in liquid SO(2). The solvated complexes [Ag(OSO)][Al(pftb)(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(CH(2)Cl(2))(2)][SbF(6)] were prepared and isolated by special techniques at low temperatures and structurally characterized by single-crystal X-ray diffraction. The SO(2) complexes provide the first examples of coordination of the very weak Lewis base SO(2) to silver(I). The SO(2) molecule in [Ag(OSO)][Al(pftb)(4)] is eta(1)-O coordinated to Ag(+), while the SO(2) ligands in [Ag(OSO)(2/2)][SbF(6)] bridge two Ag(+) ions in an eta(2)-O,O' (trans,trans) manner. [Ag(CH(2)Cl(2))(2)][SbF(6)] contains [Ag(CH(2)Cl(2))(2)](+) ions linked through [SbF(6)](-) ions to give a polymeric structure. The solid-state silver(I) ion affinities (SIA) of SO(2) and CH(2)Cl(2), based on bond lengths and corresponding valence units in the corresponding complexes and tensimetric titrations of Ag[Al(pftb)(4)] and Ag[SbF(6)] with SO(2) vapor, show that SO(2) is a weaker ligand to Ag(+) than the commonly used weakly coordinating solvent CH(2)Cl(2) and indicated that binding strength of SO(2) to silver(I) in the silver(I) salts increases with increasing size of the corresponding counteranion ([Al(pftb)(4)](-)>[SbF(6)](-)). The experimental findings are in good agreement with theoretical gas-phase ligand

  5. Electrical Resistance of Ag-TS-S(CH2)(n-1)CH3//Ga2O3/EGaln Tunneling Junctions

    NARCIS (Netherlands)

    Cademartiri, Ludovico; Thuo, Martin M.; Nijhuis, Christian A.; Reus, William F.; Tricard, Simon; Barber, Jabulani R.; Sodhi, Rana N. S.; Brodersen, Peter; Kim, Choongik; Chiechi, Ryan C.; Whitesides, George M.

    2012-01-01

    Tunneling junctions having the structure Ag-TS-S(CH2)(n-1)CH3//Ga2O3/EGaIn allow physical-organic studies of charge transport across self-assembled monolayers (SAMs). In ambient conditions, the surface of the liquid metal electrode (EGaIn, 75.5 wt % Ga, 24.5 wt % In, mp 15.7 degrees C) oxidizes and

  6. A multi-wire beam profile monitor in the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Buxton, W.; Castillo, V.; Glenn, J.W. [and others

    1997-07-01

    A multi-wire beam profile monitor which can be used to directly monitor and control the optical matching between the Booster and AGS rings has been installed and tested in the AGS. Placement of a multi-wire monitor directly in the AGS provides profile measurements taken upon injection and the first two or more revolutions of the beam. The data from such measurements can be used to determine the optical properties of the beam transport line leading into the AGS.

  7. CATCHprofiles: Clustering and Alignment Tool for ChIP Profiles

    DEFF Research Database (Denmark)

    G. G. Nielsen, Fiona; Galschiøt Markus, Kasper; Møllegaard Friborg, Rune

    2012-01-01

    IP-profiling data and detect potentially meaningful patterns, the areas of enrichment must be aligned and clustered, which is an algorithmically and computationally challenging task. We have developed CATCHprofiles, a novel tool for exhaustive pattern detection in ChIP profiling data. CATCHprofiles is built upon...... a computationally efficient implementation for the exhaustive alignment and hierarchical clustering of ChIP profiling data. The tool features a graphical interface for examination and browsing of the clustering results. CATCHprofiles requires no prior knowledge about functional sites, detects known binding patterns...... it an invaluable tool for explorative research based on ChIP profiling data. CATCHprofiles and the CATCH algorithm run on all platforms and is available for free through the CATCH website: http://catch.cmbi.ru.nl/. User support is available by subscribing to the mailing list catch-users@bioinformatics.org....

  8. Ag1 Pd1 Nanoparticles-Reduced Graphene Oxide as a Highly Efficient and Recyclable Catalyst for Direct Aryl C-H Olefination.

    Science.gov (United States)

    Hu, Qiyan; Liu, Xiaowang; Wang, Guoliang; Wang, Feifan; Li, Qian; Zhang, Wu

    2017-12-14

    The efficient and selective palladium-catalyzed activation of C-H bonds is of great importance for the construction of diverse bioactive molecules. Despite significant progress, the inability to recycle palladium catalysts and the need for additives impedes the practical applications of these reactions. Ag 1 Pd 1 nanoparticles-reduced graphene oxide (Ag 1 Pd 1 -rGO) was used as highly efficient and recyclable catalyst for the chelation-assisted ortho C-H bond olefination of amides with acrylates in good yields with a broad substrate scope. The catalyst can be recovered and reused at least 5 times without losing activity. A synergistic effect between the Ag and Pd atoms on the catalytic activity was found, and a plausible mechanism for the AgPd-rGO catalyzed C-H olefination is proposed. These findings suggest that the search for such Pd-based bimetallic alloy nanoparticles is a new method towards the development of superior recyclable catalysts for direct aryl C-H functionalization under mild conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Metal ion displacements in noncentrosymmetric chalcogenides La{sub 3}Ga{sub 1.67}S{sub 7}, La{sub 3}Ag{sub 0.6}GaCh{sub 7} (Ch=S, Se), and La{sub 3}MGaSe{sub 7} (M=Zn, Cd)

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Abishek K. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G2G2 (Canada); Yin, Wenlong [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G2G2 (Canada); Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900 (China); Rudyk, Brent W. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G2G2 (Canada); Lin, Xinsong [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G2G2 (Canada); Centre for Oil Sands Sustainability, Northern Alberta Institute of Technology, Edmonton, Alberta, Canada T6N1E5 (Canada); Nilges, Tom [Department of Chemistry, Technical University of Munich, 85748 Garching b. München (Germany); Mar, Arthur, E-mail: arthur.mar@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G2G2 (Canada)

    2016-11-15

    The quaternary Ga-containing chalcogenides La{sub 3}Ag{sub 0.6}GaS{sub 7}, La{sub 3}Ag{sub 0.6}GaSe{sub 7}, La{sub 3}ZnGaSe{sub 7}, and La{sub 3}CdGaSe{sub 7}, as well as the related ternary chalcogenide La{sub 3}Ga{sub 1.67}S{sub 7}, were prepared by reactions of the elements at 950 °C. They adopt noncentrosymmetric hexagonal structures (space group P6{sub 3}, Z=2) with cell parameters (a=10.2 Å, c=6.1 Å for the sulfides; a=10.6 Å, c=6.4 Å for the selenides) that are largely controlled by the geometrical requirements of one-dimensional stacks of Ga-centered tetrahedra separated by the La atoms. Among these compounds, which share the common formulation La{sub 3}M{sub 1–x}GaCh{sub 7} (M=Ga, Ag, Zn, Cd; Ch=S, Se), the M atoms occupy sites within a stacking of trigonal antiprisms formed by Ch atoms. The location of the M site varies between extremes with trigonal antiprismatic (CN6) and trigonal planar (CN3) geometry. Partial occupation of these sites and intermediate ones accounts for the considerable versatility of these structures and the occurrence of large metal displacement parameters. The site occupations can be understood in a simple way as being driven by the need to satisfy appropriate bond valence sums for both the M and Ch atoms. Band structure calculations rationalize the substoichiometry observed in the Ag-containing compounds (La{sub 3}Ag{sub 0.6}GaS{sub 7}, La{sub 3}Ag{sub 0.6}GaSe{sub 7}) as a response to overbonding. X-ray photoelectron spectroscopy supports the presence of monovalent Ag atoms in these compounds, which are not charge-balanced. - Graphical abstract: Partial occupation of metal atoms in multiple sites accounts for versatility in Ga-containing chalcogenides La{sub 3}M{sub 1–x}GaCh{sub 7} with noncentrosymmetric hexagonal structures. - Highlights: • La{sub 3}M{sub 1–x}GaCh{sub 7} (M =Ga, Ag, Zn, Cd; Ch =S, Se) adopt related hexagonal structures. • Large displacements of M atoms originate from partial occupation of multiple

  10. A High Intensity Hadron Facility, AGS II

    International Nuclear Information System (INIS)

    Lee, Y.Y.; Lowenstein, D.I.

    1988-01-01

    We have present one of several possibilities for the evolution of the AGS complex into a high intensity hadron facility. One could consider other alternatives, such as using the AGS as the Collector and constructing a new 9-30 GeV machine. We believe the most responsible scenario must minimize the cost and downtime to the ongoing physics program. With a stepwise approach, starting with the Booster, the physics program can evolve without a single major commitment in funds. At each step an evaluation of the funds versus physics merit can be made. As a final aside, each upgrade at the AGS and Booster is presently being implemented to support an interleaved operation of both protons and ions. 1 fig., 6 tabs

  11. Photoinduced formation of Ag nanoparticles on the surface of As2S3/Ag thin bilayer

    International Nuclear Information System (INIS)

    Binu, S; Khan, Pritam; Barik, A R; Sharma, Rituraj; Adarsh, K V; Golovchak, R; Jain, H

    2014-01-01

    In this article, we demonstrate the combined effect of photodoping and photoinduced-surface deposition in a bilayer of chalcogenide glass (ChG) and Ag as an alternative method to optically synthesize Ag nanoparticles (AgNP) on the surface of ChG. In our experiment, AgNP formation occurs through two distinct stages: In the first stage, Ag is transported through the As 2 S 3 layer as Ag + ions, and in the second stage Ag + ions are photo-deposited as AgNP. The ex situ x-ray photoelectron spectroscopy measurements and AFM observations show photoinduced Ag mass transport and the formation of AgNP. (paper)

  12. The rate of charge tunneling is insensitive to polar terminal groups in self-assembled monolayers in Ag(TS)S(CH2)(n)M(CH2)(m)T//Ga2O3/EGaIn junctions.

    Science.gov (United States)

    Yoon, Hyo Jae; Bowers, Carleen M; Baghbanzadeh, Mostafa; Whitesides, George M

    2014-01-08

    This paper describes a physical-organic study of the effect of uncharged, polar, functional groups on the rate of charge transport by tunneling across self-assembled monolayer (SAM)-based large-area junctions of the form Ag(TS)S(CH2)(n)M(CH2)(m)T//Ga2O3/EGaIn. Here Ag(TS) is a template-stripped silver substrate, -M- and -T are "middle" and "terminal" functional groups, and EGaIn is eutectic gallium-indium alloy. Twelve uncharged polar groups (-T = CN, CO2CH3, CF3, OCH3, N(CH3)2, CON(CH3)2, SCH3, SO2CH3, Br, P(O)(OEt)2, NHCOCH3, OSi(OCH3)3), having permanent dipole moments in the range 0.5 < μ < 4.5, were incorporated into the SAM. A comparison of the electrical characteristics of these junctions with those of junctions formed from n-alkanethiolates led to the conclusion that the rates of charge tunneling are insensitive to the replacement of terminal alkyl groups with the terminal polar groups in this set. The current densities measured in this work suggest that the tunneling decay parameter and injection current for SAMs terminated in nonpolar n-alkyl groups, and polar groups selected from common polar organic groups, are statistically indistinguishable.

  13. Replacing -CH2CH2- with -CONH- does not significantly change rates of charge transport through Ag(TS)-SAM//Ga2O3/EGaIn junctions.

    Science.gov (United States)

    Thuo, Martin M; Reus, William F; Simeone, Felice C; Kim, Choongik; Schulz, Michael D; Yoon, Hyo Jae; Whitesides, George M

    2012-07-04

    This paper describes physical-organic studies of charge transport by tunneling through self-assembled monolayers (SAMs), based on systematic variations of the structure of the molecules constituting the SAM. Replacing a -CH(2)CH(2)- group with a -CONH- group changes the dipole moment and polarizability of a portion of the molecule and has, in principle, the potential to change the rate of charge transport through the SAM. In practice, this substitution produces no significant change in the rate of charge transport across junctions of the structure Ag(TS)-S(CH(2))(m)X(CH(2))(n)H//Ga(2)O(3)/EGaIn (TS = template stripped, X = -CH(2)CH(2)- or -CONH-, and EGaIn = eutectic alloy of gallium and indium). Incorporation of the amide group does, however, increase the yields of working (non-shorting) junctions (when compared to n-alkanethiolates of the same length). These results suggest that synthetic schemes that combine a thiol group on one end of a molecule with a group, R, to be tested, on the other (e.g., HS~CONH~R) using an amide-based coupling provide practical routes to molecules useful in studies of molecular electronics.

  14. A facile method for electrospinning of Ag nanoparticles/poly (vinyl alcohol)/carboxymethyl-chitosan nanofibers

    International Nuclear Information System (INIS)

    Zhao, Yinghui; Zhou, Ying; Wu, Xiaomian; Wang, Lu; Xu, Ling; Wei, Shicheng

    2012-01-01

    Highlights: ► AgNPs/PVA/CM-chitosan nanofibers were prepared via electrospinning method. ► AgNPs were in situ synthesized in electrospinning solution via a facile method. ► AgNPs distributed homogeneously on the surface of nanofibers. ► The prepared nanofibers possessed certain antibacterial ability against Escherichia coli. ► The AgNPs containing nanofibers had potential as antibacterial biomaterial. - Abstract: A facile method to prepare silver nanoparticles (AgNPs) containing nanofibers via electrospinning has been demonstrated. AgNPs were in situ synthesized in poly (vinyl alcohol) (PVA)/carboxymethyl-chitosan (CM-chitosan) blend aqueous solution before electrospinning. UV–vis spectra, viscosity and conductivity of the electrospinning solution were measured to investigate their effects on the electrospinning procedure. The morphology of AgNPs/PVA/CM-chitosan nanofibers was observed by Field Emission Scanning Electron Microscopy. The formation and morphology of AgNPs were investigated by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. The resulted nanofibers have smooth surface and uniform diameters ranging from 295 to 343 nm. The diameters of AgNPs mainly distributed in the range of 4–14 nm, and the electrostatic interaction between AgNPs and fibers was observed. Finally, in vitro Ag release from the nanofibers was measured and the antibacterial behavior of the nanofibers against Escherichia coli was studied by bacterial growth inhibition halos and bactericidal kinetic testing. The AgNPs/PVA/CM-chitosan nanofibers possessed certain antibacterial ability, which makes them capable for antibacterial biomaterials.

  15. Facility management - efektivní správa stavebních objektů

    OpenAIRE

    Helekalová, Denisa

    2013-01-01

    Diplomová práce „ Facility management – efektivní správa stavebních objektů“ je zaměřena na stavební objekty a přínos pro ně při využívání služeb facility managementu. Práce se snaží přiblížit, co je facility management kdo ho poskytuje v České republice a jak přispívá k úsporám. Zmíněny jsou také informační technologie využívané ve facility managementu, protože bez těch se v dnešní době téměř žádný obor neobejde. První část je též zaměřena na stavbu, její životní cyklus a náklady s ním spoje...

  16. A facility design for repackaging ORNL CH-TRU legacy waste in Building 3525

    International Nuclear Information System (INIS)

    Huxford, T.J.; Cooper, R.H. Jr.; Davis, L.E.; Fuller, A.B.; Gabbard, W.A.; Smith, R.B.; Guay, K.P.; Smith, L.C.

    1995-07-01

    For the last 25 years, the Oak Ridge National Laboratory (ORNL) has conducted operations which have generated solid, contact-handled transuranic (CH-TRU) waste. At present the CH-TRU waste inventory at ORNL is about 3400 55-gal drums retrievably stored in RCRA-permitted, aboveground facilities. Of the 3400 drums, approximately 2600 drums will need to be repackaged. The current US Department of Energy (DOE) strategy for disposal of these drums is to transport them to the Waste Isolation Pilot Plant (WIPP) in New Mexico which only accepts TRU waste that meets a very specific set of criteria documented in the WIPP-WAC (waste acceptance criteria). This report describes activities that were performed from January 1994 to May 1995 associated with the design and preparation of an existing facility for repackaging and certifying some or all of the CH-TRU drums at ORNL to meet the WIPP-WAC. For this study, the Irradiated Fuel Examination Laboratory (IFEL) in Building 3525 was selected as the reference facility for modification. These design activities were terminated in May 1995 as more attractive options for CH-TRU waste repackaging were considered to be available. As a result, this document serves as a final report of those design activities

  17. A facile method for electrospinning of Ag nanoparticles/poly (vinyl alcohol)/carboxymethyl-chitosan nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yinghui; Zhou, Ying [Beijing Key Laboratory for Solid Waste Utilization and Management, College of Engineering, Peking University, Beijing 100871 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wu, Xiaomian [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Orthodontics College of Stomatology, Chongqing Medical University, Chongqing 401147 (China); Wang, Lu [Beijing Key Laboratory for Solid Waste Utilization and Management, College of Engineering, Peking University, Beijing 100871 (China); Xu, Ling, E-mail: lingxu@pku.edu.cn [Beijing Key Laboratory for Solid Waste Utilization and Management, College of Engineering, Peking University, Beijing 100871 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057 (China); Wei, Shicheng, E-mail: sc-wei@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081 (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer AgNPs/PVA/CM-chitosan nanofibers were prepared via electrospinning method. Black-Right-Pointing-Pointer AgNPs were in situ synthesized in electrospinning solution via a facile method. Black-Right-Pointing-Pointer AgNPs distributed homogeneously on the surface of nanofibers. Black-Right-Pointing-Pointer The prepared nanofibers possessed certain antibacterial ability against Escherichia coli. Black-Right-Pointing-Pointer The AgNPs containing nanofibers had potential as antibacterial biomaterial. - Abstract: A facile method to prepare silver nanoparticles (AgNPs) containing nanofibers via electrospinning has been demonstrated. AgNPs were in situ synthesized in poly (vinyl alcohol) (PVA)/carboxymethyl-chitosan (CM-chitosan) blend aqueous solution before electrospinning. UV-vis spectra, viscosity and conductivity of the electrospinning solution were measured to investigate their effects on the electrospinning procedure. The morphology of AgNPs/PVA/CM-chitosan nanofibers was observed by Field Emission Scanning Electron Microscopy. The formation and morphology of AgNPs were investigated by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. The resulted nanofibers have smooth surface and uniform diameters ranging from 295 to 343 nm. The diameters of AgNPs mainly distributed in the range of 4-14 nm, and the electrostatic interaction between AgNPs and fibers was observed. Finally, in vitro Ag release from the nanofibers was measured and the antibacterial behavior of the nanofibers against Escherichia coli was studied by bacterial growth inhibition halos and bactericidal kinetic testing. The AgNPs/PVA/CM-chitosan nanofibers possessed certain antibacterial ability, which makes them capable for antibacterial biomaterials.

  18. BOREAS TGB-1 Soil CH4 and CO2 Profile Data from NSA Tower Sites

    Science.gov (United States)

    Crill, Patrick; Varner, Ruth K.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-1 team made numerous measurements of trace gas concentrations and fluxes at various NSA sites. This data set contains methane (CH4) and carbon dioxide (CO2) concentrations in soil profiles from the NSA-OJP, NSA-OBS, NSA-YJP, and NSA-BP sites during the period of 23-May to 20-Sep-1994. The soil gas sampling profiles of CH 4 and CO 2 were completed to quantify controls on CO2 and CH4 fluxes in the boreal forest. The data are provided in tabular ASCII files.

  19. Synthesis and Characterization of Ag(I) and Pd(II) Complexes with a Pyridine Substituted N-Heterocyclic Carbene Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ga Young; Jung, Hyun Jin; Lee, Dong Heon [Chonbuk National Univ., Jeonju (Korea, Republic of); Park, Gyung Se [Kunsan National Univ., Kunsan (Korea, Republic of)

    2010-06-15

    We have used our new tridentate pyridine substituted N-heterocyclic carbene to generate an interesting trinuclear [((MepyCH{sub 2}){sub 2}-Im){sub 3}Ag{sub 3}]{sup 3+} complex, displaying very short Ag-Ag separations. A Pd(II)-NHC complex was prepared from [((MepyCH{sub 2}){sub 2}-Im){sub 3}Ag{sub 3}]{sup 3+} via a facile transmetallation, leading to a dimeric [(MepyCH{sub 2}){sub 2}-ImPdCl]{sub 2}{sup 2+} complex. Future plans are underway for the survey of the potential applications of these new NHC complexes as luminesent materials or homogeneous catalysts. Since Arduengo's discovery of the first isolable free carbene in 1991, N-heterocyclic carbenes (NHC) have been extensively utilized as ligands for transition metals. NHC are generally more stable than two extreme types of carbenes, the Fischer and the Schrock carbenes. They are good σ donors like most tertiary phosphins, PR{sub 3}, but the π-bonding with the metal is rather weak. The thriving studies of NHC-coordinated metal complexes produced a wide range of applications from homogeneous catalysts to materials science.

  20. Facile preparation of Ag-Cu bifunctional electrocatalysts for zinc-air batteries

    International Nuclear Information System (INIS)

    Jin, Yachao; Chen, Fuyi

    2015-01-01

    Highlights: • Ag-Cu dendrites are observed for the first time to exhibit high catalytic activity for oxygen reduction reaction. • Ag-Cu dendrites are directly synthesized through galvanic displacement on the current collector layer made of Ni foams. • A bifunctional air cathode is fabricated using Ag-Cu dendrites as a carbon-free, binder-free catalyst layer. • Both the primary and rechargeable zinc–air batteries fabricated by Ag-Cu catalysts exhibit excellent performance. - ABSTRACT: An inexpensive, facile galvanic displacement reaction for the direct growth of silver–copper (Ag-Cu) catalysts on nickel foams is developed for the first time. The resulting Ag-Cu catalysts exhibit dendritic morphologies. Ag and Cu atoms are in their metallic state while the presence of CuO and Cu 2 O are limited on the surface of catalyst. The catalysts demonstrate high catalytic activity for oxygen reduction reaction (ORR) in alkaline solution, as evaluated by both linear scanning voltammetry and rotating disk electrode polarization measurements. The ORR catalysed by Ag-Cu catalyst in alkaline solution proceeds through a four-electron pathway. An air cathode is fabricated using Ag-Cu catalyst as a carbon-free, binder-free catalyst layer. Using this Ag-Cu catalyst based air cathode, both the primary and rechargeable zinc-air batteries show excellent battery performance. The specific capacity of the primary zinc-air battery is 572 mAh g −1 . Especially, the rechargeable zinc-air battery shows high round-trip efficiency, appealing stability at a long charge-discharge cycle period

  1. SignalSpider: Probabilistic pattern discovery on multiple normalized ChIP-Seq signal profiles

    KAUST Repository

    Wong, Kachun

    2014-09-05

    Motivation: Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-Seq) measures the genome-wide occupancy of transcription factors in vivo. Different combinations of DNA-binding protein occupancies may result in a gene being expressed in different tissues or at different developmental stages. To fully understand the functions of genes, it is essential to develop probabilistic models on multiple ChIP-Seq profiles to decipher the combinatorial regulatory mechanisms by multiple transcription factors. Results: In this work, we describe a probabilistic model (SignalSpider) to decipher the combinatorial binding events of multiple transcription factors. Comparing with similar existing methods, we found SignalSpider performs better in clustering promoter and enhancer regions. Notably, SignalSpider can learn higher-order combinatorial patterns from multiple ChIP-Seq profiles. We have applied SignalSpider on the normalized ChIP-Seq profiles from the ENCODE consortium and learned model instances. We observed different higher-order enrichment and depletion patterns across sets of proteins. Those clustering patterns are supported by Gene Ontology (GO) enrichment, evolutionary conservation and chromatin interaction enrichment, offering biological insights for further focused studies. We also proposed a specific enrichment map visualization method to reveal the genome-wide transcription factor combinatorial patterns from the models built, which extend our existing fine-scale knowledge on gene regulation to a genome-wide level. Availability and implementation: The matrix-algebra-optimized executables and source codes are available at the authors\\' websites: http://www.cs.toronto.edu/∼wkc/SignalSpider. Contact: Supplementary information: Supplementary data are available at Bioinformatics online.

  2. Facile synthesis of the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaohua [School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, 453007 (China); School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 (China); Su, Shuai; Wu, Guangli; Li, Caizhu [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 (China); Qin, Zhe [School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, 453007 (China); Lou, Xiangdong [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 (China); Zhou, Jianguo, E-mail: zhoujgwj@163.com [School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, 453007 (China)

    2017-06-01

    Highlights: • Flower-like Ag/ZnO encapsulating carbon spheres (Ag/ZnO@C) was synthesized. • A green facile synthesis method was used. • Ag/ZnO@C exhibited better photocatalytic performance than Ag/ZnO, ZnO@C, and ZnO. • Dye and metronidazole both can be decomposed by Ag/ZnO@C. - Abstract: To utilize sunlight more effectively in photocatalytic reactions, the flower-like ternary heterostructure of Ag/ZnO encapsulating carbon spheres (Ag/ZnO@C) was successfully synthesized by a green and facile one-pot hydrothermal method. The carbon spheres (CSs) were wrapped by ZnO nanosheets, forming flower-like microstructures, and Ag nanoparticles (Ag NPs) were deposited on the surface of the ZnO nanosheets. The Ag/ZnO@C ternary heterostructure exhibited enhanced photocatalytic activity compared to those of Ag/ZnO, ZnO@C and pure ZnO for the degradation of Reactive Black GR and metronidazole under sunlight and visible light irradiation. This was attributed to the enhanced visible light absorption and effective charge separation based on the synergistic effect of ZnO, Ag NPs, and CSs. Due to the surface plasmon resonance effect of Ag NPs and surface photosensitizing effect of CSs, Ag/ZnO@C exhibited enhanced visible light absorption. Meanwhile, Ag NPs and CSs can both act as rapid electron transfer units to improve the separation of photogenerated charge carriers in Ag/ZnO@C. The primary active species were determined, and the photocatalytic mechanism was proposed. This work demonstrates an effective way to improve the photocatalytic performance of ZnO and provides information for the facile synthesis of noble metal/ZnO@C ternary heterostructure.

  3. Support vector machine-based differentiation between aggressive and chronic periodontitis using microbial profiles.

    Science.gov (United States)

    Feres, Magda; Louzoun, Yoram; Haber, Simi; Faveri, Marcelo; Figueiredo, Luciene C; Levin, Liran

    2018-02-01

    The existence of specific microbial profiles for different periodontal conditions is still a matter of debate. The aim of this study was to test the hypothesis that 40 bacterial species could be used to classify patients, utilising machine learning, into generalised chronic periodontitis (ChP), generalised aggressive periodontitis (AgP) and periodontal health (PH). Subgingival biofilm samples were collected from patients with AgP, ChP and PH and analysed for their content of 40 bacterial species using checkerboard DNA-DNA hybridisation. Two stages of machine learning were then performed. First of all, we tested whether there was a difference between the composition of bacterial communities in PH and in disease, and then we tested whether a difference existed in the composition of bacterial communities between ChP and AgP. The data were split in each analysis to 70% train and 30% test. A support vector machine (SVM) classifier was used with a linear kernel and a Box constraint of 1. The analysis was divided into two parts. Overall, 435 patients (3,915 samples) were included in the analysis (PH = 53; ChP = 308; AgP = 74). The variance of the healthy samples in all principal component analysis (PCA) directions was smaller than that of the periodontally diseased samples, suggesting that PH is characterised by a uniform bacterial composition and that the bacterial composition of periodontally diseased samples is much more diverse. The relative bacterial load could distinguish between AgP and ChP. An SVC classifier using a panel of 40 bacterial species was able to distinguish between PH, AgP in young individuals and ChP. © 2017 FDI World Dental Federation.

  4. Facile synthesis of PdAgTe nanowires with superior electrocatalytic activity

    Science.gov (United States)

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-12-01

    In this work, ultrathin Te nanowires (NWs) with high-aspect-ratio are prepared by a simple hydrothermal method. By using Te NWs as the sacrificial template, we demonstrate a facile and efficient method for the synthesis of PdAgTe NWs with high-quality through the partly galvanic replacement between Te NWs and the corresponding noble metal salts precursors in an aqueous solution. The compositions of PdAgTe NWs can be tuned by simply altering the concentration of the precursors. After cyclic voltammetry treatment, multi-component PdAgTe NW with a highly active and stable surface can be obtained. The structure and composition of the as-prepared nanomaterials are analyzed by transmission electron microscope, X-ray diffraction, energy dispersive X-ray spectroscopy, inductively coupled plasma-mass spectroscopy and X-ray photoelectron spectroscopy. Electrochemical catalytic measurement results prove that the as synthesized PdAgTe NWs present superior catalytic activity toward ethanol electrooxidation in alkaline solution than the commercial Pd/C catalyst, which making them can be used as effective catalysts for the direct ethanol fuel cells.

  5. Facile synthesis, structure, and properties of Ag{sub 2}S/Ag heteronanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, S. I., E-mail: sadovnikov@ihim.uran.ru; Gusev, A. I. [Ural Branch of the Russian Academy of Sciences, Institute of Solid State Chemistry (Russian Federation)

    2016-09-15

    Ag{sub 2}S/Ag heteronanostructure has been produced by a simple one-stage chemical deposition from aqueous solutions of silver nitrate, sodium sulfide, and sodium citrate with the use of monochromatic light irradiation. For simultaneous synthesis of Ag{sub 2}S and Ag nanoparticles, deposition has been performed from reaction mixtures with reduced sodium sulfide concentration. The size of Ag{sub 2}S and Ag nanoparticles is 45–50 and 15–20 nm, respectively. It is established that in the contact layer between silver sulfide and silver, nonconducting α-Ag{sub 2}S acanthite transforms into superionic β-Ag{sub 2}S argentite under the action of external electric field. The scheme of the operation of a resistive switch based on an Ag{sub 2}S/Ag heteronanostructure is proposed. The UV–Vis optical absorption spectra of colloidal solutions of Ag{sub 2}S/Ag heteronanostructures have been studied.Graphical Abstract.

  6. Improved performance of inkjet-printed Ag source/drain electrodes for organic thin-film transistors by overcoming the coffee ring effects

    Science.gov (United States)

    Liu, Cheng-Fang; Lin, Yan; Lai, Wen-Yong; Huang, Wei

    2017-11-01

    Inkjet printing is a promising technology for the scalable fabrication of organic electronics because of the material conservation and facile patterning as compared with other solution processing techniques. In this study, we have systematically investigated the cross-sectional profile control of silver (Ag) electrode via inkjet printing. A facile methodology for achieving inkjet-printed Ag source/drain with improved profiles is developed. It is demonstrated that the printing conditions such as substrate temperature, drop spacing and printing layers affect the magnitude of the droplet deposition and the rate of evaporation, which can be optimized to greatly reduce the coffee ring effects for improving the inkjet-printed electrode profiles. Ag source/drain electrodes with uniform profiles were successfully inkjet-printed and incorporated into organic thin-film transistors (OTFTs). The resulting devices showed superior electrical performance than those without special treatments. It is noted to mention that the strategy for modulating the inkjet-printed Ag electrodes in this work does not demand the ink formulation or complicated steps, which is beneficial for scaling up the printing techniques for potential large-area/mass manufacturing.

  7. Serological profile of incidentally detected asymptomatic HBsAg positive subjects (IDAHS)

    International Nuclear Information System (INIS)

    Khokhar, N.; Gill, M.L.

    2004-01-01

    Objective: To evaluate the serological profile of patients with incidentally detected positive hepatitis-B surface antigen (HBsAg) and to asses the risk factors. Design: An observational study. Place and Duration of Study: This study was conducted at Shifa International Hospital, Islamabad from 1999 to 2003. Patients and Methods: All patients who presented to gastroenterology clinic of Shifa Intentional Hospital, Islamabad with positive HBsAg, detected incidentally, were tested for alamine transaminase (ALT), hepatitis Beantigen (HBeAg) and in certain cases hepatitis-B virus DNA (HBV DNA) by polymerase chain reaction (PCR). Their risk factors for acquisition of infection were assessed with specific questions. Results: A total of 224 patients were examined. One hundred sixty-four (73.2%) were male and 60 (26.8%) female. Mean age of all the subjects was 32.45 plus minus 11.85 years. Out of 224 patients, 48 (21.4%) were positive for HBeAg and 176 (78.6%) were negative. Out of 48 subjects who were positive for HBeAg, 36 underwent HBV DNA determination and 32 (88.8%) were positive for HBV DNA. Out of 176 subjects who had negative HBeAg, 46 had elevated ALT and in those HBV DNA was performed and 14 had positive HBV DNA. Most common risk factors detected in these patients were intramuscular injections and surgery, however, in a large number, risk factors were unknown. Conclusion: Twenty-one percent asymptomatic subjects with positive HBsAg were found to be HBeAg positive. A large number of subjects with negative HBeAg had HBV DNA positive suggesting presence of precore mutants. Intramuscular injections and surgery were noted to be frequent risk factors in these subjects. (author)

  8. Amidines for versatile ruthenium(II)-catalyzed oxidative C-H activations with internal alkynes and acrylates.

    Science.gov (United States)

    Li, Jie; John, Michael; Ackermann, Lutz

    2014-04-25

    Cationic ruthenium complexes derived from KPF6 or AgOAc enabled efficient oxidative CH functionalizations on aryl and heteroaryl amidines. Thus, oxidative annulations of diversely decorated internal alkynes provided expedient access to 1-aminoisoquinolines, while catalyzed C-H activations with substituted acrylates gave rise to structurally novel 1-iminoisoindolines. The powerful ruthenium(II) catalysts displayed a remarkably high site-, regio- and, chemoselectivity. Therefore, the catalytic system proved tolerant of a variety of important electrophilic functional groups. Detailed mechanistic studies provided strong support for the cationic ruthenium(II) catalysts to operate by a facile, reversible C-H activation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. World Energy Data System (WENDS). Volume X. Nuclear facility profiles, PO--ZA

    International Nuclear Information System (INIS)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile

  10. World Energy Data System (WENDS). Volume VIII. Nuclear facility profiles, CO--HU

    International Nuclear Information System (INIS)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile

  11. World Energy Data System (WENDS). Volume IX. Nuclear facility profiles, IN--PL

    International Nuclear Information System (INIS)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile

  12. Gene expression profiles associated with depression in patients with chronic hepatitis C (CH-C).

    Science.gov (United States)

    Birerdinc, Aybike; Afendy, Arian; Stepanova, Maria; Younossi, Issah; Baranova, Ancha; Younossi, Zobair M

    2012-09-01

    The standard treatment for CH-C, pegylated interferon-α and ribavirin (PEG-IFN + RBV), is associated with depression. Recent studies have proposed a new role for cytokines in the pathogenesis of depression. We aimed to assess differential gene expression related to depression in CH-C patients treated with PEG-IFN + RBV. We included 67 CH-C patients being treated with PEG-IFN+RBV. Of the entire study cohort, 22% had pre-existing depression, while another 37% developed new depression in course of the treatment. Pretreatment blood samples were collected into PAXgene™ RNA tubes, the RNAs extracted from peripheral blood mononuclear cells (PBMCs) were used for one step RT-PCR to profile 160 mRNAs. Differentially expressed genes were separated into up- and down-regulated genes according to presence or absence of depression at baseline (pre-existing depression) or following the initiation of treatment (treatment-related depression). The mRNA expression profile associated with any depression and with treatment-related depression included four and six genes, respectively. Our data demonstrate a significant down-regulation of TGF-β1 and the shift of Th1-Th2 cytokine balance in the depression associated with IFN-based treatment of HCV infection. We propose that TGF-β1 plays an important role in the imbalance of Th1/Th2 in patients with CH-C and depression. With further validation, TGF-β1 and other components of Th1/Th2 regulation pathway may provide a future marker for CH-C patients predisposed to depression.

  13. Virus-specific immune response in HBeAg-negative chronic hepatitis B: relationship with clinical profile and HBsAg serum levels.

    Directory of Open Access Journals (Sweden)

    Elisabetta Loggi

    Full Text Available BACKGROUND AIMS: The immune impairment characterizing chronic hepatitis B (cHBV infection is thought to be the consequence of persistent exposure to viral antigens. However, the immune correlates of different clinical stages of cHBV and their relation with different levels of HBsAg have not been investigated. The aim of the present study was to evaluate the relationship between HBV-specific T cells response and the degree of in vivo HBV control and HBsAg serum levels in HBeAg-HBeAb+ cHBV. METHODS: Peripheral blood mononuclear cells from 42 patients with different clinical profiles (treatment-suppressed, inactive carriers and active hepatitis of cHBV, 6 patients with resolved HBV infection and 10 HBV-uninfected individuals were tested with overlapping peptides spanning the entire HBV proteome. The frequency and magnitude of HBV-specific T cell responses was assessed by IFNγ ELISPOT assay. Serum HBsAg was quantified with a chemiluminescent immunoassay. RESULTS: The total breadth and magnitude of HBV-specific T cell responses did not differ significantly between the four groups. However, inactive carriers targeted preferentially the core region. In untreated patients, the breadth of the anti-core specific T cell response was inversely correlated with serum HBsAg concentrations as well as HBV-DNA and ALT levels and was significantly different in patients with HBsAg levels either above or below 1000 IU/mL. The same inverse association between anti-core T cell response and HBsAg levels was found in treated patients. CONCLUSIONS: Different clinical outcomes of cHBV infection are associated with the magnitude, breadth and specificity of the HBV-specific T cell response. Especially, robust anti-core T cell responses were found in the presence of reduced HBsAg serum levels, suggesting that core-specific T cell responses can mediate a protective effect on HBV control.

  14. High intensity hadron facility, AGS II

    International Nuclear Information System (INIS)

    Lee, Y.Y.; Lowenstein, D.I.

    1989-01-01

    There is a large and growing community of particle and nuclear physicists around the world who are actively lobbying for the construction of an accelerator that could provide 1-2 orders of magnitude increase in proton intensity above that of the present AGS. There have been a series of proposals from Canada, Europe, Japan, and the USA. They can all be characterized as machines varying in energy from 12-60 GeV and intensities of 30-100 μA. The community of physicists using the AGS are in a unique position however. The AGS is the only machine available that can provide the beams to execute the physics program that this large international community is interested in. The BNL approach to the communities interests involves a stepwise intensity upgrade program. At present the AGS slow extracted beam current is 1 μA. With the completion of the Booster in 1990 and the associated AGS modifications, the current will rise to 4-5 μA. With the subsequent addition of the Stretcher which is under design, the current will rise to 8-10 μA and approximately 100% duty factor. The possibility of a further enhancement to a current level of 40-50 μA CW is now being examined. 2 figures, 6 tables

  15. Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq

    NARCIS (Netherlands)

    Johannes, Frank; Wardenaar, Rene; Colomé Tatché, Maria; Mousson, Florence; de Graaf, Petra; Mokry, Michal; Guryev, Victor; Timmers, H. Th. Marc; Cuppen, Edwin; Jansen, Ritsert C.; Bateman, Alex

    2010-01-01

    Motivation: ChIP-chip and ChIP-seq technologies provide genomewide measurements of various types of chromatin marks at an unprecedented resolution. With ChIP samples collected from different tissue types and/ or individuals, we can now begin to characterize stochastic or systematic changes in

  16. Facile synthesis of silver/silver thiocyanate (Ag@AgSCN plasmonic nanostructures with enhanced photocatalytic performance

    Directory of Open Access Journals (Sweden)

    Xinfu Zhao

    2017-12-01

    Full Text Available A nanostructured plasmonic photocatalyst, silver/silver thiocyanate (Ag@AgSCN, has been prepared by a simple precipitation method followed by UV-light-induced reduction. The ratio of Ag to silver thiocyanate (AgSCN can be controlled by simply adjusting the photo-induced reduction time. The formation mechanism of the product was investigated based on the time-dependent experiments. Further experiments indicated that the prepared Ag@AgSCN nanostructures with an atomic ratio of Ag/AgSCN = 0.0463 exhibited high photocatalytic activity and long-term stability for the degradation of oxytetracycline (84% under visible-light irradiation. In addition to the microstructure and high specific surface area, the enhanced photocatalytic activity was mainly caused by the surface plasmon resonance of Ag nanoparticles, and the high stability of AgSCN resulted in the long-term stability of the photocatalyst product.

  17. Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq

    NARCIS (Netherlands)

    Johannes, F.; Wardenaar, R.; Colome-Tatche, M.; Mousson, F.; de Graaf, P.; Mokry, M.; Guryev, V.; Timmers, H.T.; Cuppen, E.; Jansen, R.

    2010-01-01

    MOTIVATION: ChIP-chip and ChIP-seq technologies provide genome-wide measurements of various types of chromatin marks at an unprecedented resolution. With ChIP samples collected from different tissue types and/or individuals, we can now begin to characterize stochastic or systematic changes in

  18. Construction of Ag/AgCl nanostructures from Ag nanoparticles as high-performance visible-light photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Liu, Dongzhi; Wang, Tianyang; Li, Wei [Tianjin University, School of Chemical Engineering and Technology (China); Hu, Wenping [Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (China); Zhou, Xueqin, E-mail: zhouxueqin@tju.edu.cn [Tianjin University, School of Chemical Engineering and Technology (China)

    2016-11-15

    A combined strategy of in situ oxidation and assembly is developed to prepare Ag/AgCl nanospheres and nanocubes from Ag nanoparticles under room temperature. It is a new facile way to fabricate Ag/AgCl with small sizes and defined morphologies. Ag/AgCl nanospheres with an average size of 80 nm were achieved without any surfactants, while Ag/AgCl nanocubes with a mean edge length of 150 nm were obtained by introduction of N-dodecyl-N,N-dimethyl-2-ammonio-acetate. The possible formation mechanism involves the self-assembly of AgCl nanoparticles, Ostwald ripening and photoreduction of Ag{sup +} into Ag{sup 0} by the room light. The as-prepared Ag/AgCl nanospheres and nanocubes exhibit excellent photocatalytic activity and stability toward degradation of organic pollutants under visible-light irradiation. It is demonstrated that Ag/AgCl nanocubes display enhanced photocatalytic activity in comparison with Ag/AgCl nanospheres due to the more efficient charge transfer. This work may pave an avenue to construct various functional materials via the assembly strategy using nanoparticles as versatile building blocks.

  19. A research-based profile of a Dutch excellent facility manager

    NARCIS (Netherlands)

    Roos-Mink, Anke; Offringa, Johan; de Boer, Esther; Heijne-Penninga, Marjolein; Mobach, Mark P.; Wolfensberger, Marca; Balslev Nielsen, S.; Anker Jensen, P.

    2016-01-01

    Purpose - This paper aims to establish the profile of an excellent facility manager in The Netherlands.Design/methodology/approach − As part of a large-scale study on profiles of excellent professionals, a study was carried out to find the key characteristics of an excellent facility manager. Three

  20. Enhanced visible-light photocatalytic activities of Ag{sub 3}PO{sub 4}/MWCNT nanocomposites fabricated by facile in situ precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bo [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Li, Zhongyu, E-mail: zhongyuli@mail.tsinghua.edu.cn [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Changzhou Expansion New Stuff Technology Limited Company, Changzhou 213122 (China); Jilin Institute of Chemical Technology, Jilin 132022 (China); Xu, Song, E-mail: cyanine123@163.com [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Han, Dandan; Lu, Dayong [Jilin Institute of Chemical Technology, Jilin 132022 (China)

    2014-05-01

    Highlights: • Ag{sub 3}PO{sub 4}/MWCNT composites were facilely fabricated via in situ precipitation method. • Ag{sub 3}PO{sub 4}/MWCNT composites exhibited enhanced visible-light photocatalytic activity. • Ag{sub 3}PO{sub 4}/MWCNT composites showed good photostability compared with Ag{sub 3}PO{sub 4} particles. • Possible photocatalytic mechanism under visible-light irradiation was proposed. - Abstract: The Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were facilely fabricated via in situ precipitation method by adding (NH{sub 4}){sub 2}HPO{sub 4} into the mixture of multi-walled carbon nanotube (MWCNT) and AgNO{sub 3} solution under stirring. The as-prepared Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), the Brunauer–Emmett–Teller surface area (BET) and UV–vis diffuse reflectance spectroscopy. The TEM results showed that the Ag{sub 3}PO{sub 4} nanoparticles were distributed on the surface of MWCNT uniformly with an average diameter of 70 nm, indicating excellent loading result. The photocatalytic activities of Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were investigated by degrading methylene blue (MB) and malachite green (MG) under visible-light irradiation. It was found that the Ag{sub 3}PO{sub 4}/MWCNT nanocomposite exhibited excellent photocatalytic performance with enhanced photocatalytic efficiency and good photostability compared with bare Ag{sub 3}PO{sub 4}. Furthermore, a possible mechanism for the photocatalytic oxidative degradation was also discussed.

  1. Upgrading the AGS polarized beam facility

    International Nuclear Information System (INIS)

    Ratner, L.G.

    1991-01-01

    Although present techniques for crossing depolarizing resonances in circular accelerators work, they are very time-consuming to implement and were only able to provide about a 40% polarized beam at 22 GeV in the Alternating Gradient Synchrotron (AGS). We propose to install a partial ''Siberian Snake'' solenoid in the AGS to eliminate the need to correct imperfection resonances and to make other modifications in our intrinsic resonance correctors. This will allow us to reach an energy of 25 GeV with 70% polarization and will enable the AGS to be an efficient injector of polarized protons into the Relativistic Heavy Ion Collider (RHIC), as well as being able to carry on a fixed-target program with minimum set-up time. 3 refs., 5 figs., 1 tab

  2. Facile Synthesis of Bimetallic Pt-Ag/Graphene Composite and Its Electro-Photo-Synergistic Catalytic Properties for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Shuhong Xu

    2016-09-01

    Full Text Available A Pt-Ag/graphene composite (Pt-Ag/GNs was synthesized by the facile aqueous solution method, in which Ag+ was first transformed into Ag2O under UV light irradiation, and then Ag2O, Pt2+, and graphene oxide (GO were simultaneously reduced by formic acid. It was found that Pt-Ag bimetallic nanoparticles were highly dispersed on the surface of graphene, and their size distribution was narrow with an average diameter of 3.3 nm. Electrocatalytic properties of the Pt-Ag/GNs composite were investigated by cyclic voltammograms (CVs, chronoamperometry (CA, CO-stripping voltammograms, and electrochemical impedance spectrum (EIS techniques. It was shown that the Pt-Ag/GNs composite has much higher catalytic activity and stability for the methanol oxidation reaction (MOR and better tolerance toward CO poisoning when compared with Pt/GNs and the commercially available Johnson Matthey 20% Pt/C catalyst (Pt/C-JM. Furthermore, the Pt-Ag/GNs composite showed efficient electro-photo-synergistic catalysis for MOR under UV or visible light irradiation. Particularly in the presence of UV irradiation, the Pt-Ag/GNs composite exhibited an ultrahigh mass activity of 1842.4 mA·mg−1, nearly 2.0 times higher than that without light irradiation (838.3 mA·mg−1.

  3. Facile synthesis of AgCl/polydopamine/Ag nanoparticles with in-situ laser improving Raman scattering effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Zhang, Wenqi; Wang, Lin; Wang, Feng, E-mail: wangfeng@shnu.edu.cn; Yang, Haifeng

    2017-01-15

    Highlights: • AgCl/PDA/AgNPs (polydopamine (PDA) adlayer covered cubic AgCl core inlaid with Ag nanoparticles (AgNPs)) was fabricated for in-situ SERS detection. • Such SERS substrate shows in-situ laser improving Raman scattering effect due to the generation of more AgNPs. • Enhancement factor could reach 10{sup 7}. • Such SERS substrate shows good reproducibility and long term stability. - Abstract: We reported a simple and fast method to prepare a composite material of polydopamine (PDA) adlayer covered cubic AgCl core, which was inlaid with Ag nanoparticles (NPs), shortly named as AgCl/PDA/AgNPs. The resultant AgCl/PDA/AgNPs could be employed as surface-enhanced Raman scattering (SERS) substrate for in-situ detection and the SERS activity could be further greatly improved due to the production of more AgNPs upon laser irradiation. With 4-mercaptopyridine (4-Mpy) as the probe molecule, the enhancement factor could reach 10{sup 7}. Additionally, such SERS substrate shows good reproducibility with relative standard deviation of 7.32% and long term stability (after storage for 100 days under ambient condition, SERS intensity decay is less than 25%). In-situ elevating SERS activity of AgCl/PDA/AgNPs induced by laser may be beneficial to sensitive analysis in practical fields.

  4. Facile One-Step Sonochemical Synthesis and Photocatalytic Properties of Graphene/Ag3PO4 Quantum Dots Composites

    Science.gov (United States)

    Reheman, Abulajiang; Tursun, Yalkunjan; Dilinuer, Talifu; Halidan, Maimaiti; Kadeer, Kuerbangnisha; Abulizi, Abulikemu

    2018-03-01

    In this study, a novel graphene/Ag3PO4 quantum dot (rGO/Ag3PO4 QD) composite was successfully synthesized via a facile one-step photo-ultrasonic-assisted reduction method for the first time. The composites were analyzed by various techniques. According to the obtained results, Ag3PO4 QDs with a size of 1-4 nm were uniformly dispersed on rGO nanosheets to form rGO/Ag3PO4 QD composites. The photocatalytic activity of rGO/Ag3PO4 QD composites was evaluated by the decomposition of methylene blue (MB). Meanwhile, effects of the surfactant dosage and the amount of rGO on the photocatalytic activity were also investigated. It was found that rGO/Ag3PO4 QDs (WrGO:Wcomposite = 2.3%) composite exhibited better photocatalytic activity and stability with degrading 97.5% of MB within 5 min. The improved photocatalytic activities and stabilities were majorly related to the synergistic effect between Ag3PO4 QDs and rGO with high specific surface area, which gave rise to efficient interfacial transfer of photogenerated electrons and holes on both materials. Moreover, possible formation and photocatalytic mechanisms of rGO/Ag3PO4 QDs were proposed. The obtained rGO/Ag3PO4 QDs photocatalysts would have great potentials in sewage treatment and water splitting.

  5. Facile synthesis of Ag nanocubes and Au nanocages.

    Science.gov (United States)

    Skrabalak, Sara E; Au, Leslie; Li, Xingde; Xia, Younan

    2007-01-01

    This protocol describes a method for the synthesis of Ag nanocubes and their subsequent conversion into Au nanocages via the galvanic replacement reaction. The Ag nanocubes are prepared by a rapid (reaction time nanocubes. With this method, Ag nanocubes can be prepared and isolated for use within approximately 3 h. The Ag nanocubes can then serve as sacrificial templates for the preparation of Au nanocages, with a method for their preparation also described herein. The procedure for Au nanocage preparation and isolation requires approximately 5 h.

  6. World Energy Data System (WENDS). Volume VIII. Nuclear facility profiles, CO--HU. [Brief tabulated information

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.

  7. World Energy Data System (WENDS). Volume IX. Nuclear facility profiles, IN--PL. [Brief tabulated information

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.

  8. World Energy Data System (WENDS). Volume X. Nuclear facility profiles, PO--ZA. [Brief tabulated information

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then by facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.

  9. Development of chemical profiles for U.S. Department of Energy low-level mixed wastes

    International Nuclear Information System (INIS)

    Wang, Y.Y.; Wilkins, B.D.; Meshkov, N.K.; Dolak, D.A.

    1995-01-01

    Chemical and radiological profiles of waste streams from US Department of Energy (DOE) low-level mixed wastes (LLMWs) have been developed by Argonne National Laboratory (ANL) to provide technical support information for evaluating waste management alternatives in the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS). The chemical profiles were developed for LLMW generated from both Waste Management (WM) operations and from Environmental Restoration (ER) activities at DOE facilities. Information summarized in the 1994 DOE Mixed Waste Inventory Report (MWIR-2), the Pacific Northwest Laboratory (PNL) Automated Remedial Assessment Methodology (ARAM), and associated PNL supporting data on ER secondary waste streams that will be treated in WM treatment facilities were used as the sources for developing chemical profiles. The methodology for developing the LLMW chemical profiles is discussed, and the chemical profiles developed from data for contact-handled (CH) non-alpha LLMW are presented in this paper. The hazardous chemical composition of remote-handled (RH) LLMW and alpha LLMW follow the chemical profiles developed for CH non-alpha LLMW

  10. Green synthesis of graphene/Ag nanocomposites

    International Nuclear Information System (INIS)

    Yuan Wenhui; Gu Yejian; Li Li

    2012-01-01

    Graphical abstract: A facile and green approach to synthesis of GNS/AgNPs is reported by employing sodium citrate as reductant, and this study represents the use of biocompounds for nontoxic and scalable production of GNS/AgNPs under a suitable concentration of silver ions and the prepared GNS/AgNPs can be used in the field of disinfection. Highlights: ► Graphene/Ag nanocomposites were prepared by a green and facile strategy based on sodium citrate. ► The influence of AgNO 3 amount on particle size and size range of AgNPs was studied. ► The surface plasmon resonance properties of AgNPs on graphene was investigated. ► The antibacterial activity of silver nanoparticles was retained in the nanocomposites. - Abstract: Graphene/Ag nanocomposites (GNS/AgNPs) were fabricated via a green and facile method, employing graphite oxide (GO) as a precursor of graphene, AgNO 3 as a precursor of Ag nanoparticles, and sodium citrate as an environmentally friendly reducing and stabilizing agent. The synthesized GNS/AgNPs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Raman spectra (RS), respectively. The results indicated that graphite oxide was completely reduced to graphene, and the silver ion was reduced by sodium citrate simultaneously. Under a suitable dosage of silver ions, well-dispersed AgNPs on the graphene sheets mostly centralized at 20–25 nm. The surface plasmon resonance property of AgNPs on graphene showed that there was a interaction between AgNPs and graphene supports. In addition, antibacterial activity of silver nanoparticles was retained in the nanocomposites, suggesting that they can be potentially used as a graphene-based biomaterial.

  11. Facile synthesis of dispersed Ag nanoparticles on chitosan-TiO2 composites as recyclable nanocatalysts for 4-nitrophenol reduction

    Science.gov (United States)

    Xiao, Gang; Zhao, Yilin; Li, Linghui; Pratt, Jonathan O.; Su, Haijia; Tan, Tianwei

    2018-04-01

    This paper presents a facile, rapid, and controllable procedure for the recovery of trace Ag+ ions and in situ assembly of well dispersed Ag nanoparticles on chitosan-TiO2 composites through bioaffinity adsorption followed by photocatalytic reduction. The prepared Ag nanoparticles are proven to be efficient and recyclable nanocatalysts for the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4. Well dispersed quasi-spherical Ag NPs are synthesized in 20 min in the designed inner-irradiated photocatalytic system under a wide range of Ag+ concentrations (50-200 mg l-1), temperatures (10 °C-25 °C) conditions, and UV or visible light irradiation. The synthesized Ag NPs can catalyze the reduction of 4-nitrophenol by NaBH4 at 100% conversion in 120 min and preserve the catalytic activity in five successive cycles. This procedure for trace Ag+ ions recovery and Ag NPs assembly has the potential to be scaled up for the mass production of recyclable Ag nanocatalysts. The present work provides a green and efficient procedure for the conversion of hazardous 4-nitrophenol to industrially important 4-aminophenol and also sheds a light on designing scaled-up procedures for treating high volumes of wastewater with dilute heavy metals to produce recyclable metallic nanocatalysts in aqueous systems.

  12. The combined removal of methyl mercaptan and hydrogen sulfide via an electro-reactor process using a low concentration of continuously regenerable Ag(II) active catalyst

    International Nuclear Information System (INIS)

    Muthuraman, Govindan; Chung, Sang Joon; Moon, Il Shik

    2011-01-01

    Highlights: → Simultaneous removal of H 2 S and CH 3 SH was achieved at electro-reactor. → Active catalyst Ag(II) perpetually regenerated in HNO 3 medium by electrochemical cell. → CH 3 SH destruction follows two reaction pathways. → H 2 S induced destruction of CH 3 SH has identified. → Low concentration of active Ag(II) (12.5 x 10 -4 mol L -1 ) is enough for complete destruction. - Abstract: In this study, an electrocatalytic wet scrubbing process was developed for the simultaneous removal of synthetic odorous gases namely, methyl mercaptan (CH 3 SH) and hydrogen sulfide (H 2 S). The initial process consists of the absorption of CH 3 SH and H 2 S gases by an absorbing solution, followed by their mediated electrochemical oxidation using a low concentration of active Ag(II) in 6 M HNO 3 . Experiments were conducted under different reaction conditions, such as CH 3 SH and H 2 S loadings, active Ag(II) concentrations and molar flow rates. The cyclic voltammetry for the oxidation of CH 3 SH corroborated the electro-reactor results, in that the silver in the 6 M HNO 3 reaction solution significantly influences the oxidation of CH 3 SH. At a low active Ag(II) concentration of 0.0012 M, the CH 3 SH removal experiments demonstrated that the CH 3 SH degradation was steady, with 100% removal at a CH 3 SH loading of 5 g m -3 h -1 . The electro-reactor and cyclic voltammetry results indicated that the removal of H 2 S (100%) follows a mediated electrocatalytic oxidation reaction. The simultaneous removal of 100% of the CH 3 SH and H 2 S was achieved, even with a very low active Ag(II) concentration (0.0012 M), as a result of the high efficiency of the Ag(II). The parallel cyclic voltammetry results demonstrated that a process of simultaneous destruction of both CH 3 SH and H 2 S follows an H 2 S influenced mediated electrocatalytic oxidation. The use of a very low concentration of the Ag(II) mediator during the electro-reactor process is promising for the complete

  13. Visible light driven photocatalysis and antibacterial activity of AgVO3 and Ag/AgVO3 nanowires

    International Nuclear Information System (INIS)

    Singh, Anamika; Dutta, Dimple P.; Ballal, A.; Tyagi, A.K.; Fulekar, M.H.

    2014-01-01

    Graphical abstract: - Highlights: • Ag/AgVO 3 and pure AgVO 3 nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO 3 within 45 min. • Antibacterial activity of Ag/AgVO 3 demonstrated. - Abstract: Ag/AgVO 3 nanowires and AgVO 3 nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO 3 nanowires. The photocatalytic studies revealed that the Ag/AgVO 3 nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO 3 nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO 3 nanorods prove that in case of the Ag dispersed Ag/AgVO 3 nanowires, the enhanced antibacterial action is also due to contribution from the AgVO 3 support

  14. Facile and eco-friendly fabrication of AgNPs coated silk for antibacterial and antioxidant textiles using honeysuckle extract.

    Science.gov (United States)

    Zhou, Yuyang; Tang, Ren-Cheng

    2018-01-01

    Recently, there is a growing trend towards the functionalization of silk through nanotechnology for the prevention of fiber damage from microbial attack and the enhancement of hygienic aspects. Considering sustainable development and environmental protection, the eco-friendly fabrication of silver nanoparticles (AgNPs)-modified silk using natural extracts has currently become a hot research area. This study presents a facile strategy for the fabrication of colorful and multifunctional silk fabric using biogenic AgNPs prepared by honeysuckle extract as natural reductant and stabilizing agents. The influences of pH and reactant concentrations on the AgNPs synthesis were investigated. The color characteristics and functionalities of AgNPs treated silk were evaluated. The results revealed that the particle size of AgNPs decreased with increasing pH. The diameter of AgNPs decreased with increasing amount of honeysuckle extract and reducing amount of silver nitrate. The transmission electron microscopy image showed that the AgNPs were spherical in shape with a narrow size distribution. The treated silk showed excellent antibacterial activities against E. coli and S. aureus, and certain antioxidant activity. Both of the antibacterial and antioxidant activities were well maintained even after 30 washing cycles. This work provides a sustainable and eco-friendly approach to the fabrication of AgNPs coated silk for colorful and long-term multifunctional textiles using honeysuckle extract. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Interdiffusion in epitaxial, single-crystalline Au/Ag thin films studied by Auger electron spectroscopy sputter-depth profiling and positron annihilation

    International Nuclear Information System (INIS)

    Noah, Martin A.; Flötotto, David; Wang, Zumin; Reiner, Markus; Hugenschmidt, Christoph; Mittemeijer, Eric J.

    2016-01-01

    Interdiffusion in epitaxial, single-crystalline Au/Ag bilayered thin films on Si (001) substrates was investigated by Auger electron spectroscopy (AES) sputter-depth profiling and by in-situ positron annihilation Doppler broadening spectroscopy (DBS). By the combination of these techniques identification of the role of vacancy sources and sinks on interdiffusion in the Au/Ag films was possible. It was found that with precise knowledge of the concentration-dependent self-diffusion and impurity diffusion coefficients a distinction between the Darken-Manning treatment and Nernst-Planck treatment can be made, which is not possible on the basis of the determined concentration-depth profiles alone.

  16. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    International Nuclear Information System (INIS)

    Rubina, M.S.; Kamitov, E.E.; Zubavichus, Ya. V.; Peters, G.S.; Naumkin, A.V.; Suzer, S.; Vasil’kov, A.Yu.

    2016-01-01

    Graphical abstract: - Highlights: • Biocompatible collagen-chitosan scaffolds were modified by Au and Ag nanoparticles via the metal-vapor synthesis. • Structural and morphological parameters of the nanocomposites were assessed using a set of modern instrumental techniques, including electron microscopy, X-ray diffraction, small-angle X-ray scattering, EXAFS, XPS. • Potential application of the nanocomposites are envisaged. - Abstract: Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  17. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    Energy Technology Data Exchange (ETDEWEB)

    Rubina, M.S.; Kamitov, E.E. [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation); Zubavichus, Ya. V.; Peters, G.S. [National Research center «Kurchatov Institute», Moscow, 123182 Russian Federation (Russian Federation); Naumkin, A.V. [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation); Suzer, S. [Department of Chemistry, Bilkent University, Ankara, 06800 Turkey (Turkey); Vasil’kov, A.Yu., E-mail: alexandervasilkov@yandex.ru [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation)

    2016-03-15

    Graphical abstract: - Highlights: • Biocompatible collagen-chitosan scaffolds were modified by Au and Ag nanoparticles via the metal-vapor synthesis. • Structural and morphological parameters of the nanocomposites were assessed using a set of modern instrumental techniques, including electron microscopy, X-ray diffraction, small-angle X-ray scattering, EXAFS, XPS. • Potential application of the nanocomposites are envisaged. - Abstract: Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  18. Altered Baseline and Nicotine-Mediated Behavioral and Cholinergic Profiles in ChAT-Cre Mouse Lines.

    Science.gov (United States)

    Chen, Edison; Lallai, Valeria; Sherafat, Yasmine; Grimes, Nickolas P; Pushkin, Anna N; Fowler, J P; Fowler, Christie D

    2018-02-28

    baseline and/or nicotine-mediated behavioral profiles were discovered in transgenic mice from the ChAT (BAC) -Cre and ChAT (IRES) -Cre lines. Given that these cre-expressing mice have become increasingly used by the scientific community, either independently with chemicogenetic and optogenetic viral vectors or crossed with other transgenic lines, the current studies highlight important considerations for the interpretation of data from previous and future experimental investigations. Moreover, the current findings detail the behavioral effects of either increased or decreased baseline cholinergic signaling mechanisms on locomotor, anxiety, learning/memory, and intravenous nicotine self-administration behaviors. Copyright © 2018 the authors 0270-6474/18/382177-12$15.00/0.

  19. One-pot synthesis of Ag-SiO2-Ag sandwich nanostructures

    International Nuclear Information System (INIS)

    Li Chaorong; Mei Jie; Li Shuwen; Lu Nianpeng; Wang Lina; Chen Benyong; Dong Wenjun

    2010-01-01

    Ag-SiO 2 -Ag sandwich nanostructures were prepared by a facile one-pot synthesis method. The Ag core, SiO 2 shell and Ag nanoparticle shell were all synthesized with polyvinylpyrrolidone, catalysed by ammonia, in the one-pot reaction. The polyvinylpyrrolidone, acting as a smart reducing agent, reduced the Ag + to Ag cores and Ag shells separately. Furthermore, the polyvinylpyrrolidone served as a protective agent to prevent the silver cores from aggregating. The SiO 2 shell and outer layer Ag nanoparticles were obtained when tetraethyl orthosilicate and ammonia were added to the silver core solution. Ammonia, acting as the catalyst, accelerated the hydrolysis of the tetraethyl orthosilicate to SiO 2 , which coated the silver cores. Furthermore, Ag(NH 3 ) 2 + ions were formed when aqueous ammonia was added to the solution, which increased the reduction capability. Then the polyvinylpyrrolidone reduced the Ag(NH 3 ) 2 + ions to small Ag nanoparticles on the surface of the Ag-SiO 2 and formed Ag-SiO 2 -Ag sandwich structures with a standard deviation of less than 4%. This structure effectively prevented the Ag nanoparticles on the silica surface from aggregating. Furthermore, the Ag-SiO 2 -Ag sandwich structures showed good catalysis properties due to the large surface area/volume value and activity of surface atoms of Ag particles.

  20. Microwave assisted facile synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite and their application as active SERS substrate

    International Nuclear Information System (INIS)

    Wadhwa, Heena; Kumar, Devender; Mahendia, Suman; Kumar, Shyam

    2017-01-01

    The present paper represents the facile and rapid synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite with the help of microwave irradiation. The graphene oxide (GO) solution has been prepared in bulk using Hummer's method followed by microwave assisted in-situ reduction of GO and silver nitrate (AgNO_3) by hydrazine hydrate in a short spam of 5 min. The prepared nanocomposite has been characterized using Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) Scanning Electron Microscopy (SEM) and UV–Visible spectroscopy. TEM analysis shows that Ag nanoparticles with average size 32 nm are uniformly entangled with in RGO layers. The UV–Visible absorption spectrum of nanocomposite depicts the reduction of GO to RGO along with the formation of Ag nanoparticles with the presence of characteristic surface Plasmon resonance (SPR) peak of Ag nanoparticles at 422 nm. The performance of prepared nanocomposite has been tested as the active Surface Enhanced Raman Scattering (SERS) substrate for Rhodamine 6G with detection limit 0.1 μM. - Highlights: • The RGO and RGO-Ag nanocomposite were synthesized with microwave irradiation. • Ag nanoparticles of average size 32 nm are uniformly entangled within RGO layers. • RGO itself is a florescence quencher with SERS detection limit 1 μM for R6G. • RGO-Ag nanocomposite show good SERS activity for R6G with detection limit 0.1 μM.

  1. Visible light driven photocatalysis and antibacterial activity of AgVO{sub 3} and Ag/AgVO{sub 3} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anamika [Department of Life Sciences, University of Mumbai, Santacruz (E), Mumbai 400 098 (India); Dutta, Dimple P., E-mail: dimpled@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ballal, A. [Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Fulekar, M.H. [School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382 030, Gujarat (India)

    2014-03-01

    Graphical abstract: - Highlights: • Ag/AgVO{sub 3} and pure AgVO{sub 3} nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO{sub 3} within 45 min. • Antibacterial activity of Ag/AgVO{sub 3} demonstrated. - Abstract: Ag/AgVO{sub 3} nanowires and AgVO{sub 3} nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO{sub 3} nanowires. The photocatalytic studies revealed that the Ag/AgVO{sub 3} nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO{sub 3} nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO{sub 3} nanorods prove that in case of the Ag dispersed Ag/AgVO{sub 3} nanowires, the enhanced antibacterial action is also due to contribution from the AgVO{sub 3} support.

  2. Impact of genome assembly status on ChIP-Seq and ChIP-PET data mapping

    Directory of Open Access Journals (Sweden)

    Sachs Laurent

    2009-12-01

    Full Text Available Abstract Background ChIP-Seq and ChIP-PET can potentially be used with any genome for genome wide profiling of protein-DNA interaction sites. Unfortunately, it is probable that most genome assemblies will never reach the quality of the human genome assembly. Therefore, it remains to be determined whether ChIP-Seq and ChIP-PET are practicable with genome sequences other than a few (e.g. human and mouse. Findings Here, we used in silico simulations to assess the impact of completeness or fragmentation of genome assemblies on ChIP-Seq and ChIP-PET data mapping. Conclusions Most currently published genome assemblies are suitable for mapping the short sequence tags produced by ChIP-Seq or ChIP-PET.

  3. Transformation from Ag@Ag{sub 3}PO{sub 4} to Ag@Ag{sub 2}SO{sub 4} hybrid at room temperature: preparation and its visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ting; Gao, Shanmin, E-mail: gaosm@ustc.edu; Wang, Qingyao; Xu, Hui [Ludong University, College of Chemistry and Materials Science (China); Wang, Zeyan; Huang, Baibiao, E-mail: bbhuang@sdu.edu.cn; Dai, Ying [Shandong University, State Key Laboratory of Crystal Materials (China)

    2017-02-15

    In the present study, Ag/Ag{sub 2}SO{sub 4} hybrid photocatalysts were obtained via a facile redox–precipitation reaction approach by using Ag@Ag{sub 3}PO{sub 4} nanocomposite as the precursor and KMnO{sub 4} as the oxidant. Multiple techniques, such as X-ray diffraction pattern (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS) and Brunauer–Emmett–Teller (BET), photocurrent and electrochemical impedance spectroscopy (EIS), were applied to investigate the structures, morphologies, optical, and electronic properties of as-prepared samples. The photocatalytic activities were evaluated by photodegradation of organic rhodamine B (RhB) and methyl orange (MO) under visible light irradiation. It was found that pure Ag{sub 2}SO{sub 4} can partially transform into metallic Ag during the photocatalytic degradation of organic pollutants, but the Ag/Ag{sub 2}SO{sub 4} hybrids can maintain its structure stability and show enhanced visible light photocatalytic activity because of the surface plasma resonance effect of the metallic Ag.

  4. Tunable differentiation of tertiary C-H bonds in intramolecular transition metal-catalyzed nitrene transfer reactions.

    Science.gov (United States)

    Corbin, Joshua R; Schomaker, Jennifer M

    2017-04-13

    Metal-catalyzed nitrene transfer reactions are an appealing and efficient strategy for accessing tetrasubstituted amines through the direct amination of tertiary C-H bonds. Traditional catalysts for these reactions rely on substrate control to achieve site-selectivity in the C-H amination event; thus, tunability is challenging when competing C-H bonds have similar steric or electronic features. One consequence of this fact is that the impact of catalyst identity on the selectivity in the competitive amination of tertiary C-H bonds has not been well-explored, despite the potential for progress towards predictable and catalyst-controlled C-N bond formation. In this communication, we report investigations into tunable and site-selective nitrene transfers between tertiary C(sp 3 )-H bonds using a combination of transition metal catalysts, including complexes based on Ag, Mn, Rh and Ru. Particularly striking was the ability to reverse the selectivity of nitrene transfer by a simple change in the identity of the N-donor ligand supporting the Ag(i) complex. The combination of our Ag(i) catalysts with known Rh 2 (ii) complexes expands the scope of successful catalyst-controlled intramolecular nitrene transfer and represents a promising springboard for the future development of intermolecular C-H N-group transfer methods.

  5. Microwave assisted facile synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite and their application as active SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wadhwa, Heena, E-mail: heenawadhwa1988@gmail.com; Kumar, Devender, E-mail: devkumsaroha@kuk.ac.in; Mahendia, Suman, E-mail: mahendia@gmail.com; Kumar, Shyam, E-mail: profshyam@gmail.com

    2017-06-15

    The present paper represents the facile and rapid synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite with the help of microwave irradiation. The graphene oxide (GO) solution has been prepared in bulk using Hummer's method followed by microwave assisted in-situ reduction of GO and silver nitrate (AgNO{sub 3}) by hydrazine hydrate in a short spam of 5 min. The prepared nanocomposite has been characterized using Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) Scanning Electron Microscopy (SEM) and UV–Visible spectroscopy. TEM analysis shows that Ag nanoparticles with average size 32 nm are uniformly entangled with in RGO layers. The UV–Visible absorption spectrum of nanocomposite depicts the reduction of GO to RGO along with the formation of Ag nanoparticles with the presence of characteristic surface Plasmon resonance (SPR) peak of Ag nanoparticles at 422 nm. The performance of prepared nanocomposite has been tested as the active Surface Enhanced Raman Scattering (SERS) substrate for Rhodamine 6G with detection limit 0.1 μM. - Highlights: • The RGO and RGO-Ag nanocomposite were synthesized with microwave irradiation. • Ag nanoparticles of average size 32 nm are uniformly entangled within RGO layers. • RGO itself is a florescence quencher with SERS detection limit 1 μM for R6G. • RGO-Ag nanocomposite show good SERS activity for R6G with detection limit 0.1 μM.

  6. Enhanced photocatalytic performance of RGO/Ag nanocomposites produced via a facile microwave irradiation for the degradation of Rhodamine B in aqueous solution

    Science.gov (United States)

    Divya, K. S.; Chandran, Akash; Reethu, V. N.; Mathew, Suresh

    2018-06-01

    A series of RGO/Ag nanocomposites with different weight addition ratios of graphene oxide (GO) have been successfully prepared in situ through the simultaneous reduction of GO and AgNO3 via a facile microwave irradiation. X-ray diffraction analysis, Fourier Transform Infrared Spectroscopy, UV-vis diffuse reflectance spectra, Scanning electron microscopy, Photoluminescence spectra, Raman spectra, Atomic Force Microscopy, X-ray photoelectron spectroscopy (XPS) and Transmission electron microscopy are employed to determine the properties of the samples. It is found that RGO/Ag nanocomposites with a proper weight addition ratios of GO exhibit higher photocatalytic activity toward liquid phase photodegradation of Rhodamine B under visible light irradiation. The improved photoactivity of RGO/Ag nanocomposites can be ascribed to the integrative synergestic effect of enhanced adsorption capacity, the prolonged lifetime of photogenerated electron-hole pairs and effective interfacial hybridization between RGO and Ag nanoparticles. This study also shows that graphene sheets act as electronic conductive channels to efficiently separate charge carriers from Ag nanoparticles.

  7. Bifunctional Ag@Pd-Ag Nanocubes for Highly Sensitive Monitoring of Catalytic Reactions by Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Li, Jumei; Liu, Jingyue; Yang, Yin; Qin, Dong

    2015-06-10

    We report a route to the facile synthesis of Ag@Pd-Ag nanocubes by cotitrating Na2PdCl4 and AgNO3 into an aqueous suspension of Ag nanocubes at room temperature in the presence of ascorbic acid and poly(vinylpyrrolidone). With an increase in the total titration volume, we observed the codeposition of Pd and Ag atoms onto the edges, corners, and side faces of the Ag nanocubes in a site-by-site fashion. By maneuvering the Pd/Ag ratio, we could optimize the SERS and catalytic activities of the Ag@Pd-Ag nanocubes for in situ SERS monitoring of the Pd-catalyzed reduction of 4-nitrothiophenol by NaBH4.

  8. The reaction of fluorine atoms with methanol: yield of CH3O/CH2OH and rate constant of the reactions CH3O + CH3O and CH3O + HO2.

    Science.gov (United States)

    Assaf, Emmanuel; Schoemaecker, Coralie; Vereecken, Luc; Fittschen, Christa

    2018-04-25

    Xenondifluoride, XeF2, has been photolysed in the presence of methanol, CH3OH. Two reaction pathways are possible: F + CH3OH → CH2OH + HF and F + CH3OH → CH3O + HF. Both products, CH2OH and CH3O, will be converted to HO2 in the presence of O2. The rate constants for the reaction of both radicals with O2 differ by more than 3 orders of magnitude, which allows an unequivocal distinction between the two reactions when measuring HO2 concentrations in the presence of different O2 concentrations. The following yields have then been determined from time-resolved HO2 profiles: φCH2OH = (0.497 ± 0.013) and φCH3O = (0.503 ± 0.013). Experiments under low O2 concentrations lead to reaction mixtures containing nearly equal amounts of HO2 (converted from the first reaction) and CH3O (from the second reaction). The subsequent HO2 decays are very sensitive to the rate constants of the reaction between these two radicals and the following rate constants have been obtained: k(CH3O + CH3O) = (7.0 ± 1.4) × 10-11 cm3 s-1 and k(CH3O + HO2) = (1.1 ± 0.2) × 10-10 cm3 s-1. The latter reaction has also been theoretically investigated on the CCSD(T)//M06-2X/aug-cc-pVTZ level of theory and CH3OH + O2 have been identified as the main products. Using μVTST, a virtually pressure independent rate constant of k(CH3O + HO2) = 4.7 × 10-11 cm3 s-1 has been obtained, in good agreement with the experiment.

  9. Green and facile synthesis of fibrous Ag/cotton composites and their catalytic properties for 4-nitrophenol reduction

    Science.gov (United States)

    Li, Ziyu; Jia, Zhigang; Ni, Tao; Li, Shengbiao

    2017-12-01

    Natural cotton, featuring abundant oxygen-containing functional groups, has been utilized as a reductant to synthesize Ag nanoparticles on its surface. Through the facile and environment-friendly reduction process, the fibrous Ag/cotton composite (FAC) was conveniently synthesized. Various characterization techniques including XRD, XPS, TEM, SEM, EDS and FT-IR had been utilized to study the material microstructure and surface properties. The resulting FAC exhibited favorable activity on the catalytic reduction of 4-nitrophenol with high reaction rate. Moreover, the fibrous Ag/cotton composites were capable to form a desirable catalytic mat for catalyzing and simultaneous product separation. Reactants passing through the mat could be catalytically transformed to product, which is of great significance for water treatment. Such catalyst (FAC) was thus expected to have the potential as a highly efficient, cost-effective and eco-friendly catalyst for industrial applications. More importantly, this newly developed synthetic methodology could serve as a general tool to design and synthesize other metal/biomass composites catalysts for a wider range of catalytic applications.

  10. Facile synthesis and enhanced visible-light photocatalytic activity of micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jin [School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001 (China); Zhang, Gaoke, E-mail: gkzhang@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China)

    2015-03-15

    Graphical abstract: - Highlights: • Micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres were synthesized by a facile method. • The formation mechanism for the Ag{sub 2}ZnGeO{sub 4} hollow spheres was investigated. • The catalyst exhibited an enhanced visible-light photocatalytic activity. • The reactive species in the photocatalytic process were studied. - Abstract: Micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres were successfully synthesized by a one-step and low-temperature route under ambient pressure. The micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres have a diameter of 1–2 μm and their shells are composed of numerous nanoparticles and nanorods. The growth process of the micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres was investigated in detail. The results indicated that the morphologies and composition of Ag{sub 2}ZnGeO{sub 4} samples were strongly dependent on the dose of the AgNO{sub 3} and reaction time. Excessive AgNO{sub 3} was favorable for the nucleation and growth rate of Ag{sub 2}ZnGeO{sub 4} crystals and the formation of pure Ag{sub 2}ZnGeO{sub 4}. Moreover, the formation mechanism of the micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres is related to the Ostwald ripening. Under the same conditions, the photocatalytic activity of micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres is about 1.7 times and 11 times higher than that of bulk Ag{sub 2}ZnGeO{sub 4} and Degussa P25, respectively. These interesting findings could provide new insight on the synthesis of micro/nanostructured ternary-metal oxides with enhanced photocatalytic activity.

  11. Facile synthesis of Ag@CeO{sub 2} core–shell plasmonic photocatalysts with enhanced visible-light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Linen; Fang, Siman [State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Ge, Lei, E-mail: gelei08@sina.com [State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China); Han, Changcun; Qiu, Ping; Xin, Yongji [Department of Materials Science and Engineering, College of Science, China University of Petroleum Beijing, No. 18 Fuxue Rd., Beijing 102249 (China)

    2015-12-30

    Highlights: • Novel Ag@CeO{sub 2} core–shell nanostructures with well-controlled shape and shell thickness were successfully synthesized. • The Ag@CeO{sub 2} showed dramatic photocatalytic activity than pure CeO{sub 2}. • Improving activity is from a combination of SPR effect and hybrid effects. • The mechanism was proposed and confirmed by ESR and PL results. - Abstract: Novel Ag@CeO{sub 2} core–shell nanostructures with well-controlled shape and shell thickness were successfully synthesized via a green and facile template-free approach in aqueous solution. As-prepared samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflection spectroscopy (DRS), electron spin resonance (ESR) and photoluminescence spectroscopy (PL). The structures with different core shapes and controllable shell thickness exhibited unique optical properties. It is found that the nanoscale Ag@CeO{sub 2} core–shell photocatalysts exhibit significantly enhanced photocatalytic activities in the O{sub 2} evolution and MB dye degradation compared to pure CeO{sub 2} nanoparticals. The enhancement in photocatalytic activities can be ascribed to the localized surface plasmon resonance (SPR) of Ag cores. Moreover, larger active interfacial areas and contact between metal/semiconductor in the core–shell structure facilitate transfer of charge carriers and prolong lifetime of photogenerated electron-hole pairs. It is expected that the Ag@CeO{sub 2} core–shell structure may have great potential in a wider range of light-harvesting applications.

  12. Facile synthesis of Ag dendrites on Al foil via galvanic replacement reaction with [Ag(NH3)2]Cl for ultrasensitive SERS detecting of biomolecules

    International Nuclear Information System (INIS)

    Fu, Jiajia; Ye, Weichun; Wang, Chunming

    2013-01-01

    Symmetric silver dendrites have been synthesized on commercial aluminum foil via galvanic replacement reaction with [Ag(NH 3 ) 2 ]Cl. This process is facile and environmentally friendly, without the use of any templates, surfactants or oxidants, and also avoiding the introduction of fluoride anions as a strong toxicity resulting in hypocalcemia. The products were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and X-ray diffraction (XRD). SEM characterizations and electrochemical measurements including an electrochemical direct current polarization method and OCP-t technique demonstrate that chloride has proven to be the key factor to the formation of well-defined dendritic shape. The as-prepared Ag dendrites are developed as a surface-enhanced Raman scattering (SERS)-active platform for detection of folic acid, DNA and RNA with well resolved bands and high Raman intensities. The detection concentration for the three biomolecules reaches the level of 10 −12 M, and thus the symmetric silver dendrites can potentially be employed as effective SERS sensors for label-free and ultrasensitive biomolecule detection. - Highlights: • Simple galvanic replacement is used to synthesize Ag dendrites on commercial Al foils. • This method avoids the introduction of fluoride anions. • The as-prepared dendrites exhibit high SERS activities for biomolecules. • The detection concentration for the biomolecules reaches the level of 10 −12 M

  13. Comparison of the GOSAT TANSO-FTS TIR CH volume mixing ratio vertical profiles with those measured by ACE-FTS, ESA MIPAS, IMK-IAA MIPAS, and 16 NDACC stations

    Directory of Open Access Journals (Sweden)

    K. S. Olsen

    2017-10-01

    Full Text Available The primary instrument on the Greenhouse gases Observing SATellite (GOSAT is the Thermal And Near infrared Sensor for carbon Observations (TANSO Fourier transform spectrometer (FTS. TANSO-FTS uses three short-wave infrared (SWIR bands to retrieve total columns of CO2 and CH4 along its optical line of sight and one thermal infrared (TIR channel to retrieve vertical profiles of CO2 and CH4 volume mixing ratios (VMRs in the troposphere. We examine version 1 of the TANSO-FTS TIR CH4 product by comparing co-located CH4 VMR vertical profiles from two other remote-sensing FTS systems: the Canadian Space Agency's Atmospheric Chemistry Experiment FTS (ACE-FTS on SCISAT (version 3.5 and the European Space Agency's Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on Envisat (ESA ML2PP version 6 and IMK-IAA reduced-resolution version V5R_CH4_224/225, as well as 16 ground stations with the Network for the Detection of Atmospheric Composition Change (NDACC. This work follows an initial inter-comparison study over the Arctic, which incorporated a ground-based FTS at the Polar Environment Atmospheric Research Laboratory (PEARL at Eureka, Canada, and focuses on tropospheric and lower-stratospheric measurements made at middle and tropical latitudes between 2009 and 2013 (mid-2012 for MIPAS. For comparison, vertical profiles from all instruments are interpolated onto a common pressure grid, and smoothing is applied to ACE-FTS, MIPAS, and NDACC vertical profiles. Smoothing is needed to account for differences between the vertical resolution of each instrument and differences in the dependence on a priori profiles. The smoothing operators use the TANSO-FTS a priori and averaging kernels in all cases. We present zonally averaged mean CH4 differences between each instrument and TANSO-FTS with and without smoothing, and we examine their information content, their sensitive altitude range, their correlation, their a priori dependence, and the

  14. A Flying Wire System in the AGS

    International Nuclear Information System (INIS)

    Huang, H.; Buxton, W.; Mahler, G.; Marusic, A.; Roser, T.; Smith, G.; Syphers, M.; Williams, N.; Witkover, R.

    1999-01-01

    As the AGS prepares to serve as the injector for RHIC, monitoring and control of the beam transverse emittance become a major and important topic. Before the installation of the flying wire system, the emittance was measured with ionization profile monitors in the AGS, which require correction for space charge effects. It is desirable to have a second means of measuring profile that is less dependent on intensity. A flying wire system has been installed in the AGS recently to perform this task. This paper discusses the hardware and software setup and the capabilities of the system

  15. Fast and facile preparation of CTAB based gels and their applications in Au and Ag nanoparticles synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ravi Kant, E-mail: rkupadhyay85@gmail.com [Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India); Soin, Navneet, E-mail: n.soin@bolton.ac.uk [Knowledge Centre for Materials Chemistry (KCMC), Institute for Materials Research and Innovation (IMRI), University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom); Saha, Susmita, E-mail: ssaha@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Barman, Anjan, E-mail: abarman@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Sinha Roy, Susanta, E-mail: susanta.roy@snu.edu.in [Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India)

    2015-04-15

    We have demonstrated that the gel-like mesophase of Cetyltrimethylammonium bromide (CTAB) can be synthesized by judicial adjustment of water to surfactant molar ratio (W{sub 0}), without using any additional salts, gelating agents or co-surfactants. Gel formation was found to be highly dependent on the water to surfactant molar ratio (W{sub 0}), with the lowest value of W{sub 0} (41.5) resulting in rapid gel formation. Environmental scanning electron microscope (ESEM) analysis revealed that the gel was comprised of interconnected cylindrical structures. The presence of hydrogen bonding in the gel-like mesophase was confirmed by Fourier Transform Infrared spectroscopy (FTIR) analysis. Rheology measurements revealed that all the gel samples were highly viscoelastic in nature. Furthermore, Au and Ag containing CTAB gels were explored as precursors for the preparation of spherical Gold (Au) and Silver (Ag) nanoparticles using Sodium borohydride (NaBH{sub 4}) as reducing agent. The effects of NaBH{sub 4} concentration on the particle size and morphology of the Au and Ag nanoparticles have also been studied. - Highlights: • A facile synthesis of CTAB based gel-like mesophase is reported. • CTAB gels were obtained by adjusting water to surfactant molar ratio (W{sub 0}). • FTIR analysis revealed that hydrogen bonding plays a key role in gel formation. • Au, Ag nanoparticles were synthesized by using CTAB gel and NaBH{sub 4}.

  16. Hospitality and Facility Care Services. Ohio's Competency Analysis Profile.

    Science.gov (United States)

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Developed through a modified DACUM (Developing a Curriculum) process involving business, industry, labor, and community agency representatives in Ohio, this document is a comprehensive and verified employer competency profile for hospitality and facility care occupations. The list contains units (with and without subunits), competencies, and…

  17. Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties

    Science.gov (United States)

    Xie, Jinlei; Yang, Yefeng; He, Haiping; Cheng, Ding; Mao, Minmin; Jiang, Qinxu; Song, Lixin; Xiong, Jie

    2015-11-01

    Heterostructured semiconductor nanostructures have provoked great interest in the areas of energy, environment and catalysis. Herein, we report a novel hierarchical Ag3PO4/TiO2 heterostructure consisting of nearly spherical Ag3PO4 particles firmly coupled on the surface of TiO2 nanofibers (NFs). The construction of Ag3PO4/TiO2 heterostructure with tailored morphologies, compositions and optical properties was simply achieved via a facile and green synthetic strategy involving the electrospinning and solution-based processes. Owing to the synergetic effects of the components, the resulting hybrid heterostructures exhibited much improved visible light photocatalytic performance, which could degrade the RhB dye completely in 7.5 min. In addition, the coupling of Ag3PO4 particles with UV-light-sensitive TiO2 NFs enabled full utilization of solar energy and less consumption of noble metals, significantly appealing for their practical use in new energy sources and environmental issues. The developed synthetic strategy was considered to be applicable for the rational design and construction of other heterostructured catalysts.

  18. Photolysis of CH3CHO at 248 nm: Evidence of triple fragmentation from primary quantum yield of CH3 and HCO radicals and H atoms

    Science.gov (United States)

    Morajkar, Pranay; Bossolasco, Adriana; Schoemaecker, Coralie; Fittschen, Christa

    2014-06-01

    Radical quantum yields have been measured following the 248 nm photolysis of acetaldehyde, CH3CHO. HCO radical and H atom yields have been quantified by time resolved continuous wave Cavity Ring Down Spectroscopy in the near infrared following their conversion to HO2 radicals by reaction with O2. The CH3 radical yield has been determined using the same technique following their conversion into CH3O2. Absolute yields have been deduced for HCO radicals and H atoms through fitting of time resolved HO2 profiles, obtained under various O2 concentrations, to a complex model, while the CH3 yield has been determined relative to the CH3 yield from 248 nm photolysis of CH3I. Time resolved HO2 profiles under very low O2 concentrations suggest that another unknown HO2 forming reaction path exists in this reaction system besides the conversion of HCO radicals and H atoms by reaction with O2. HO2 profiles can be well reproduced under a large range of experimental conditions with the following quantum yields: CH3CHO + hν248nm → CH3CHO*, CH3CHO* → CH3 + HCO ϕ1a = 0.125 ± 0.03, CH3CHO* → CH3 + H + CO ϕ1e = 0.205 ± 0.04, CH3CHO*{to 2pc{rArrfill}}limits^{o2}CH3CO + HO2 ϕ1f = 0.07 ± 0.01. The CH3O2 quantum yield has been determined in separate experiments as φ_{CH3} = 0.33 ± 0.03 and is in excellent agreement with the CH3 yields derived from the HO2 measurements considering that the triple fragmentation (R1e) is an important reaction path in the 248 nm photolysis of CH3CHO. From arithmetic considerations taking into account the HO2 and CH3 measurements we deduce a remaining quantum yield for the molecular pathway: CH3CHO* → CH4 + CO ϕ1b = 0.6. All experiments can be consistently explained with absence of the formerly considered pathway: CH3CHO* → CH3CO + H ϕ1c = 0.

  19. Photocatalytic oxidation removal of Hg"0 using ternary Ag/AgI-Ag_2CO_3 hybrids in wet scrubbing process under fluorescent light

    International Nuclear Information System (INIS)

    Zhang, Anchao; Zhang, Lixiang; Chen, Xiaozhuan; Zhu, Qifeng; Liu, Zhichao; Xiang, Jun

    2017-01-01

    Highlights: • Ag/AgI-Ag_2CO_3 hybrids were employed for Hg"0 removal under fluorescent light. • Superoxide radical (·O_2"−) played a key role in Hg"0 removal. • NO exhibited a significant effect on Hg"0 removal in comparison to SO_2. • The mechanism for enhanced Hg"0 removal over Ag/AgI-Ag_2CO_3 was proposed. - Abstract: A series of ternary Ag/AgI-Ag_2CO_3 photocatalysts synthesized using a facile coprecipitation method were employed to investigate their performances of Hg"0 removal in a wet scrubbing reactor. The hybrids were characterized by N_2 adsorption-desorption, XRD, SEM-EDS, HRTEM, XPS, DRS and ESR. The photocatalytic activities of Hg"0 removal were evaluated under fluorescent light. The results showed that AgI content, fluorescent light irradiation, reaction temperature all showed significant influences on Hg"0 removal. NO exhibited significant effect on Hg"0 removal in comparison to SO_2. Among these ternary Ag/AgI-Ag_2CO_3 hybrids, Ag/AgI(0.1)-Ag_2CO_3 showed the highest Hg"0 removal efficiency, which could be ascribed to the effective separation of photogenerated electron-hole pairs between AgI and Ag_2CO_3 and the surface plasmon resonance (SPR) effect in the visible region by metallic silver nanoparticles (Ag"0 NPs). The trapping studies of reactive radicals showed that the superoxide radicals (·O_2"−) may play a key role in Hg"0 removal under fluorescent light. According to the experimental and characterization results, a possible photocatalytic oxidation mechanism for enhanced Hg"0 removal over Ag/AgI(0.1)-Ag_2CO_3 hybrid under fluorescent light was proposed.

  20. Palladium-catalyzed meta-selective C-H bond activation with a nitrile-containing template: computational study on mechanism and origins of selectivity.

    Science.gov (United States)

    Yang, Yun-Fang; Cheng, Gui-Juan; Liu, Peng; Leow, Dasheng; Sun, Tian-Yu; Chen, Ping; Zhang, Xinhao; Yu, Jin-Quan; Wu, Yun-Dong; Houk, K N

    2014-01-08

    Density functional theory investigations have elucidated the mechanism and origins of meta-regioselectivity of Pd(II)-catalyzed C-H olefinations of toluene derivatives that employ a nitrile-containing template. The reaction proceeds through four major steps: C-H activation, alkene insertion, β-hydride elimination, and reductive elimination. The C-H activation step, which proceeds via a concerted metalation-deprotonation (CMD) pathway, is found to be the rate- and regioselectivity-determining step. For the crucial C-H activation, four possible active catalytic species-monomeric Pd(OAc)2, dimeric Pd2(OAc)4, heterodimeric PdAg(OAc)3, and trimeric Pd3(OAc)6-have been investigated. The computations indicated that the C-H activation with the nitrile-containing template occurs via a Pd-Ag heterodimeric transition state. The nitrile directing group coordinates with Ag while the Pd is placed adjacent to the meta-C-H bond in the transition state, leading to the observed high meta-selectivity. The Pd2(OAc)4 dimeric mechanism also leads to the meta-C-H activation product but with higher activation energies than the Pd-Ag heterodimeric mechanism. The Pd monomeric and trimeric mechanisms require much higher activation free energies and are predicted to give ortho products. Structural and distortion energy analysis of the transition states revealed significant effects of distortions of the template on mechanism and regioselectivity, which provided hints for further developments of new templates.

  1. Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances

    Directory of Open Access Journals (Sweden)

    D. Noone

    2012-02-01

    Full Text Available Thermal infrared (IR radiances measured near 8 microns contain information about the vertical distribution of water vapor (H2O, the water isotopologue HDO, and methane (CH4, key gases in the water and carbon cycles. Previous versions (Version 4 or less of the TES profile retrieval algorithm used a "spectral-window" approach to minimize uncertainty from interfering species at the expense of reduced vertical resolution and sensitivity. In this manuscript we document changes to the vertical resolution and uncertainties of the TES version 5 retrieval algorithm. In this version (Version 5, joint estimates of H2O, HDO, CH4 and nitrous oxide (N2O are made using radiances from almost the entire spectral region between 1100 cm−1 and 1330 cm−1. The TES retrieval constraints are also modified in order to better use this information. The new H2O estimates show improved vertical resolution in the lower troposphere and boundary layer, while the new HDO/H2O estimates can now profile the HDO/H2O ratio between 925 hPa and 450 hPa in the tropics and during summertime at high latitudes. The new retrievals are now sensitive to methane in the free troposphere between 800 and 150 mb with peak sensitivity near 500 hPa; whereas in previous versions the sensitivity peaked at 200 hPa. However, the upper troposphere methane concentrations are biased high relative to the lower troposphere by approximately 4% on average. This bias is likely related to temperature, calibration, and/or methane spectroscopy errors. This bias can be mitigated by normalizing the CH4 estimate by the ratio of the N2O estimate relative to the N2O prior, under the assumption that the same systematic error affects both the N2O and CH4 estimates. We demonstrate that applying this ratio theoretically reduces the CH4 estimate for non-retrieved parameters that jointly affect both the N2O and CH4 estimates. The relative upper troposphere to lower troposphere bias is approximately 2.8% after this bias

  2. Facile synthesis of Ag nanoparticles supported on TiO2 inverse opal with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhao Yongxun; Yang Beifang; Xu Jiao; Fu Zhengping; Wu Min; Li Feng

    2012-01-01

    TiO 2 inverse opal films loaded with silver nanoparticles (ATIO) were synthesized on glass substrates. TiO 2 inverse opal (TIO) films were prepared via a sol–gel process using self-assembly of SiO 2 colloidal crystal template and a facile wet chemical route featuring an AgNO 3 precursor solution to fabricate silver nanoparticles on the TIO films. The inverse opal structure and Ag deposition physically and chemically modify titania, respectively. The catalysts were characterized by Raman spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), UV–vis absorption spectra, X-ray photoelectron spectroscopy and photoluminescence spectroscopy. The HRTEM results show that Ag nanoparticles measuring 5–10 nm were evenly distributed on TIO. Both the UV- and visible-light photocatalytic activities of the samples were evaluated by analyzing the degradation of methylene blue (MB) in aqueous solution. The results reveal that the apparent reaction rate constant (k app ) of MB degradation of the sample ATIO under UV-light irradiation is approximately 1.5 times that of the conventional Ag-loaded TiO 2 film (ATF) without an ordered porous structure at an AgNO 3 concentration of 5 mM in the precursor solution. At an AgNO 3 concentration of 10 mM, the sample exhibits a k app value approximately 4.2 times that of ATF under visible-light irradiation. This enhanced visible-light photocatalytic performance can be attributed to the synergistic effect of optimized Ag nanoparticle deposition and an ordered macroporous TIO structure. Repeated cycling tests revealed that the samples showed stable photocatalytic activity, even after six repeated cycles. - Highlights: ►TiO 2 inverse opal films loaded with silver nanoparticles were synthesized. ►Physical and chemical modifications of TiO 2 were achieved simultaneously. ►The catalysts exhibited enhanced visible-light photocatalytic activity. ►The mechanism for enhanced

  3. Combining soil and tree-stem flux measurements and soil gas profiles to understand CH4 pathways in Fagus sylvatica forests

    Czech Academy of Sciences Publication Activity Database

    Maier, M.; Macháčová, Kateřina; Lang, F.; Svobodová, Kateřina; Urban, Otmar

    2018-01-01

    Roč. 181, č. 1 (2018), s. 31-35 ISSN 1436-8730 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : ch4 * soil gas profile * gas flux * co2 * methanogenesis Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 2.102, year: 2016

  4. Facile synthesis of Ag dendrites on Al foil via galvanic replacement reaction with [Ag(NH{sub 3}){sub 2}]Cl for ultrasensitive SERS detecting of biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiajia; Ye, Weichun [Department of Chemistry, Lanzhou University, Lanzhou 73000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 73000 (China); Wang, Chunming, E-mail: wangcm@lzu.edu.cn [Department of Chemistry, Lanzhou University, Lanzhou 73000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 73000 (China)

    2013-08-15

    Symmetric silver dendrites have been synthesized on commercial aluminum foil via galvanic replacement reaction with [Ag(NH{sub 3}){sub 2}]Cl. This process is facile and environmentally friendly, without the use of any templates, surfactants or oxidants, and also avoiding the introduction of fluoride anions as a strong toxicity resulting in hypocalcemia. The products were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and X-ray diffraction (XRD). SEM characterizations and electrochemical measurements including an electrochemical direct current polarization method and OCP-t technique demonstrate that chloride has proven to be the key factor to the formation of well-defined dendritic shape. The as-prepared Ag dendrites are developed as a surface-enhanced Raman scattering (SERS)-active platform for detection of folic acid, DNA and RNA with well resolved bands and high Raman intensities. The detection concentration for the three biomolecules reaches the level of 10{sup −12} M, and thus the symmetric silver dendrites can potentially be employed as effective SERS sensors for label-free and ultrasensitive biomolecule detection. - Highlights: • Simple galvanic replacement is used to synthesize Ag dendrites on commercial Al foils. • This method avoids the introduction of fluoride anions. • The as-prepared dendrites exhibit high SERS activities for biomolecules. • The detection concentration for the biomolecules reaches the level of 10{sup −12} M.

  5. Ag/AgCl Loaded Bi2WO6 Composite: A Plasmonic Z-Scheme Visible Light-Responsive Photocatalyst

    Directory of Open Access Journals (Sweden)

    Xiangchao Meng

    2016-01-01

    Full Text Available Hierarchical flower-like Bi2WO6 was successfully synthesized by facile hydrothermal method at low pH. And Ag/AgCl was loaded by photoreduction on its surface. As-prepared photocatalysts were characterized by various techniques. Bi2WO6 was successfully synthesized at a size of 2-3 μm. Depositing Ag/AgCl did not destroy the crystal structure, and both Ag+ and metallic Ag0 were found. The band gap of the composite was 2.57 eV, which indicates that visible light could be the activating irradiation. In the photocatalytic activity test, the composite with 10 wt% Ag/AgCl boasted the highest removal efficiency (almost 100% in 45 min. The significant enhancement can be attributed to the surface plasmon resonance (SPR effect and the establishment of heterostructures between Ag/AgCl and Bi2WO6. A possible mechanism of photocatalytic oxidation in the presence of Ag/AgCl-Bi2WO6 was proposed. This work sheds light on the potential applications of plasmonic metals in photocatalysis to enhance their activities.

  6. RHIC FY15 pp Run RHIC and AGS polarization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Adams, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-20

    The polarization information is important for the spin physics program in Relativistic Heavy Ion Collider (RHIC). There are discrepancies between AGS and RHIC polarization measurements. First, the face value of AGS polarization is higher than RHIC ones in general. Second, the measured polarization profile (described by the profile ratio R) is stronger in AGS than in RHIC. This note analyzes the polarization data from FY15 pp run period. The results show that the differences between AGS and RHIC polarization measurements are reasonable, but the R value difference is puzzling. The difference between blue and yellow ring is worth of spin simulation to explain.

  7. Synthesis of biocompatible AuAgS/Ag2S nanoclusters and their applications in photocatalysis and mercury detection

    International Nuclear Information System (INIS)

    Zhao, Qian; Chen, Shenna; Zhang, Lingyang; Huang, Haowen; Liu, Fengping; Liu, Xuanyong

    2014-01-01

    In this paper, a facile approach for preparation of AuAgS/Ag 2 S nanoclusters was developed. The unique AuAgS/Ag 2 S nanoclusters capped with biomolecules exhibit interesting excellent optical and catalytic properties. The fluorescent AuAgS/Ag 2 S nanoclusters show tunable luminescence depending on the nanocluster size. The apoptosis assay demonstrated that the AuAgS/Ag 2 S nanoclusters showed low cytotoxicity and good biocompatibility. Therefore, the nanoclusters can be used not only as a probe for labeling cells but also for their photocatalytic activity for photodegradation of organic dye. Moreover, a highly selective and sensitive assay for detection of mercury including Hg 2+ and undissociated mercury complexes was developed based on the quenching fluorescent AuAgS/Ag 2 S nanoclusters, which provides a promising approach for determining various forms of Hg in the mercury-based compounds in environment. These unique nanoclusters may have potential applications in biological labeling, sensing mercury, and photodegradation of various organic pollutants in waste water.Graphical Abstract

  8. Recent hypernuclear research at the Brookhaven AGS

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1985-01-01

    Recent AGS experiments contributing to our knowledge of hypernuclei are reviewed. These experiments have suggested new areas of research on hypernuclei. With the proper beam line facilities, the AGS will be able to perform experiments in these areas and provide a transition to the future era of ''kaon factories''. 20 refs., 14 figs

  9. The Drivers of the CH4 Seasonal Cycle in the Arctic and What Long-Term Observations of CH4 Imply About Trends in Arctic CH4 Fluxes

    Science.gov (United States)

    Sweeney, C.; Karion, A.; Bruhwiler, L.; Miller, J. B.; Wofsy, S. C.; Miller, C. E.; Chang, R. Y.; Dlugokencky, E. J.; Daube, B.; Pittman, J. V.; Dinardo, S. J.

    2012-12-01

    The large seasonal change in the atmospheric column for CH4 in the Arctic is driven by two dominant processes: transport of CH4 from low latitudes and surface emissions throughout the Arctic region. The NOAA ESRL Carbon Cycle Group Aircraft Program along with the NASA funded Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) have initiated an effort to better understand the factors controlling the seasonal changes in the mole fraction of CH4 in the Arctic with a multi-scale aircraft observing network in Alaska. The backbone of this network is multi-species flask sampling from 500 to 8000 masl that has been conducted every two weeks for the last 10 years over Poker Flat, AK. In addition regular profiles at the interior Alaska site at Poker Flat, NOAA has teamed up with the United States Coast Guard to make profiling flights with continuous observations of CO2, CO, CH4 and Ozone between Kodiak and Barrow every 2 weeks. More recently, CARVE has significantly added to this observational network with targeted flights focused on exploring the variability of CO2, CH4 and CO in the boundary layer both in the interior and the North Slope regions of Alaska. Taken together with the profiling of HIAPER Pole-to-Pole Observations (HIPPO), ground sites at Barrow and a new CARVE interior Alaska surface site just north of Fairbanks, AK, we now have the ability to investigate the full evolution of the seasonal cycle in the Arctic using both the multi-scale sampling offered by the different aircraft platforms as well as the multi-species sampling offered by in-situ and flask sampling. The flasks also provide a valuable tie-point between different platforms so that spatial and temporal gradients can be properly interpreted. In the context of the seasonal cycle observed by the aircraft platforms we will look at long term ground observations over the last 20 years to assess changes in Arctic CH4 emissions which have occurred as a result of 0.6C/decade changes in mean surface

  10. Ag as an alternative for Ni in direct hydrocarbon SOFC anodes

    Energy Technology Data Exchange (ETDEWEB)

    Cantos-Gomez, A.; Van Duijn, J. [Instituto de Energias Renovables, Universidad de Castilla La Mancha, Paseo de la Investigacion 1, 02006 Albacete (Spain); Ruiz-Bustos, R. [Instituto de Energias Renovables, Parque Cientifico y Tecnologico de Albacete, Paseo de la Investigacion 1, 02006 Albacete (Spain)

    2011-02-15

    Ag has been shown to be a good metal for SOFC anode cermets using CO fuel. Here we have expanded on the work reported by testing Ag-YSZ cermets against different hydrocarbon based fuel (H{sub 2} and CH{sub 4}). This study shows that while Ag is a good current collector, it alone does not have the required catalytic activity for the direct oxidation of hydrocarbon based fuels needed to be used in SOFC anodes. As such an additional catalytic material (e.g. CeO{sub 2}) needs to be present when using fuels other then CO. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Activity enhancement of Ag/mordenite catalysts by addition of palladium for the removal of nitrogen oxides from diesel engine exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, K.; Tsujimura, K. [New A.C.E. Institute Co., Ltd., Ibaraki (Japan); Shinoda, K.; Kato, T. [Mitsui Mining and Smelting Co., Ltd., Saitama (Japan)

    1998-01-15

    Various Ag-Pd/mordenite catalysts were prepared on washcoated honeycombs and tested in terms of NO{sub x} removal from diesel exhaust gas with (CH{sub 3}){sub 2}O as a reducing agent at a practical high level of space velocity. The activity was dependent upon the palladium loading. In terms of NO{sub x} removal, the order of catalytic activity was Ag(3)/Pd(0.01)/mordenite Ag(3)/Pd(0.1)/mordenite Ag(3)/mordenite catalyst Ag(3)/Pd(1.0)/mordenite. It was found that a relatively small loading of palladium on Ag/mordenite catalysts led to a significant improvement in catalytic activity over a wide range of temperatures. The properties of these catalysts were also investigated by the NH{sub 3} temperature programed desorption (TPD) and BET method. It was found that Ag(3)/Pd(0.01)/mordenite had a larger amount of acid sites. It was concluded that Ag/mordenite catalyst with a small amount of palladium can effectively remove NO{sub x} over a wide range of temperatures using (CH{sub 3}){sub 2}O as a reducing agent

  12. iTAR: a web server for identifying target genes of transcription factors using ChIP-seq or ChIP-chip data.

    Science.gov (United States)

    Yang, Chia-Chun; Andrews, Erik H; Chen, Min-Hsuan; Wang, Wan-Yu; Chen, Jeremy J W; Gerstein, Mark; Liu, Chun-Chi; Cheng, Chao

    2016-08-12

    Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) or microarray hybridization (ChIP-chip) has been widely used to determine the genomic occupation of transcription factors (TFs). We have previously developed a probabilistic method, called TIP (Target Identification from Profiles), to identify TF target genes using ChIP-seq/ChIP-chip data. To achieve high specificity, TIP applies a conservative method to estimate significance of target genes, with the trade-off being a relatively low sensitivity of target gene identification compared to other methods. Additionally, TIP's output does not render binding-peak locations or intensity, information highly useful for visualization and general experimental biological use, while the variability of ChIP-seq/ChIP-chip file formats has made input into TIP more difficult than desired. To improve upon these facets, here we present are fined TIP with key extensions. First, it implements a Gaussian mixture model for p-value estimation, increasing target gene identification sensitivity and more accurately capturing the shape of TF binding profile distributions. Second, it enables the incorporation of TF binding-peak data by identifying their locations in significant target gene promoter regions and quantifies their strengths. Finally, for full ease of implementation we have incorporated it into a web server ( http://syslab3.nchu.edu.tw/iTAR/ ) that enables flexibility of input file format, can be used across multiple species and genome assembly versions, and is freely available for public use. The web server additionally performs GO enrichment analysis for the identified target genes to reveal the potential function of the corresponding TF. The iTAR web server provides a user-friendly interface and supports target gene identification in seven species, ranging from yeast to human. To facilitate investigating the quality of ChIP-seq/ChIP-chip data, the web server generates the chart of the

  13. Quantification Of Greenhouse Gases From Three Danish Composting Facilities

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Andersen, Jacob Kragh; Samuelsson, J.

    2011-01-01

    A measurement method combining a controlled trace gas release with downwind concentrations measurements was successfully used to quantify greenhouse gas (GHG) emissions from three Danish open windrow composting facilities. Overall, the results showed that composting of organic waste generate GHG...... emissions in terms of methane (CH4) and nitrous oxide (N2O) and thus contribute to climate change. At all three facilities significant CH4 emissions were occurring. The CH4 emission varied between 0.50 and 5.73 kg CH4 h-1. The highest CH4 emission (5.73 kg CH4 h-1) were measured at the Aarhus composting...... facility and was believed to be a result of the windrow lay-out with very broad and high windrows and a low turning frequency. The lowest CH4 emission (0.50 kg CH4 h-1) was measured at Fakse composting area and was most likely a result of the relatively small windrows and frequent weekly turnings. For all...

  14. A facile fabrication of plasmonic g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4}/Ag ternary heterojunction visible-light photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Kai, E-mail: daikai940@chnu.edu.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000 (China); Lv, Jiali [College of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000 (China); Lu, Luhua, E-mail: lhlu@cug.edu.cn [Faculty of Material Science and Chemical Engineering, China University of Geosciences, Wuhan, 430074 (China); Liang, Changhao [College of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000 (China); Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 (China); Geng, Lei; Zhu, Guangping [College of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000 (China)

    2016-07-01

    It's important to reduce recombination of electrons and holes and enhance charge transfer through fine controlled interfacial structure. In this work, novel graphitic-C{sub 3}N{sub 4} (g-C{sub 3}N{sub 4})/Ag{sub 2}WO{sub 4}/Ag ternary photocatalyst has been synthesized by deposition of Ag{sub 2}WO{sub 4} onto g-C{sub 3}N{sub 4} template and followed by sun light reduction of Ag{sub 2}WO{sub 4} into Ag{sub 2}WO{sub 4}/Ag. As-prepared g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4}/Ag presented significantly enhanced photocatalytic performance in degrading methylene blue (MB) under 410 nm LED light irradiation. Metallic Ag{sup 0} is used as plasmonic hot spots to generate high energy charge carriers. Optimal g-C{sub 3}N{sub 4} content has been confirmed to be 40 wt%, corresponding to apparent pseudo-first-order rate constant kapp of 0.0298 min{sup −1}, which is 3.3 times and 37.3 times more than that of pure g-C{sub 3}N{sub 4} and Ag{sub 2}WO{sub 4}, respectively. This novel ternary g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4}/Ag structure material is an ideal candidate in environmental treatment and purifying applications. - Graphical abstract: A high efficient plasmonic graphitic-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4}/Ag ternary nanocomposite photocatalyst was synthesized. - Highlights: • g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4}/Ag ternary nanocomposite photocatalyst was prepared. • g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4}/Ag showed high photocatalytic activity. • g-C{sub 3}N{sub 4}/Ag{sub 2}WO{sub 4}/Ag showed long reusable life.

  15. A Simple Method for the Preparation of TiO2 /Ag-AgCl@Polypyrrole Composite and Its Enhanced Visible-Light Photocatalytic Activity.

    Science.gov (United States)

    Yao, Tongjie; Shi, Lei; Wang, Hao; Wang, Fangxiao; Wu, Jie; Zhang, Xiao; Sun, Jianmin; Cui, Tieyu

    2016-01-01

    A novel and facile method was developed to prepare a visible-light driven TiO2 /Ag-AgCl@polypyrrole (PPy) photocatalyst with Ag-AgCl nanoparticles supported on TiO2 nanofibers and covered by a thin PPy shell. During the synthesis, the PPy shell and Ag-AgCl nanoparticles were prepared simultaneously onto TiO2 nanofibers, which simplified the preparation procedure. In addition, because Ag-AgCl aggregates were fabricated via partly etching the Ag nanoparticles, their size was well controlled at the nanoscale, which was beneficial for improvement of the contact surface area. Compared with reference photocatalysts, the TiO2 /Ag-AgCl@PPy composite exhibited an enhanced photodegradation activity towards rhodamine B under visible-light irradiation. The superior photocatalytic property originated from synergistic effects between TiO2 nanofibers, Ag-AgCl nanoparticles and the PPy shell. Furthermore, the TiO2 /Ag-AgCl@PPy composite could be easily separated and recycled without obvious reduction in activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A research on shape-controllable synthesis of Ag3PO4/AgBr and its degradation of ciprofloxacin.

    Science.gov (United States)

    Chen, Jingran; Yang, Xingyu; Zhu, Chenyu; Xie, Xin; Lin, Cuiping; Zhao, Yalei; Yan, Qishe

    2018-03-01

    Antibiotic ciprofloxacin is one of the commonly used broad spectrum fluoroquinolone human and veterinary drugs. Because of the overuse of human beings, the presence of ciprofloxacin has been detected in a variety of environmental matrices. To solve this problem, a facile, environmentally-friendly Ag 3 PO 4 /AgBr composite photocatalyst was synthesized by a simple precipitation method at room temperature in the presence of cetyltrimethyl ammonium bromide (CTAB). CTAB was served as surfactant and the source of bromide ions. The as-prepared Ag 3 PO 4 /AgBr microspheres were characterized by means of powder X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The results revealed that the Ag 3 PO 4 /AgBr sample (synthesized with CTAB, 0.8 g) exhibited the highest photocatalytic activity to the photodegradation rate of 96.36%. Moreover, mechanism detection experiment indicated that h + was the major active species in the degradation process. So the enhanced photocatalytic activity of Ag 3 PO 4 /AgBr composites is attributed to its excellent separation of photogenerated electron-hole pairs through Ag 3 PO 4 /AgBr heterojunction. Also, Ag 3 PO 4 /AgBr heterojunction has a lower band gap compared to pure Ag 3 PO 4 and pure AgBr, so higher efficiency of light harvesting is equipped.

  17. Dose profile of a dental facilities

    International Nuclear Information System (INIS)

    Silva Borges, D. da; Lava, D.D.; Moreira, M. de L.; Ferreira Guimaraes, A.C.; Silva, L. Fernandes da

    2015-01-01

    The determination of the dose profile is important to classify the level of danger which the individuals are exposed (considering their positioning) in dental facilities. From this, this paper aims to present a methodology capable of mapping the dose within dental rooms in three dimensions. The methodology used for dose mapping in conjunction with techniques for calculating shielding for dental facilities, provided by the National Council on Radiation Protection and Measurements (NCRP), form a complete system able to generate meaningful data on the safety of occupationally Exposed Individuals (IOEs) and of the public. As the dose is strongly dependent on the distance, the estimated value of the initial dose was made in the isocenter of the source. This value was adopted because the model of dose calculus tends to infinity when it is desired to analyze points very close of the source. The model of room to be presented, as a case of illustration of the methodology, was arbitrarily constructed to generate better understanding of the problem. Its inclusion in the calculus was made through discretizations performed with the aid of high-performance computers. This discretizations allowed the obtain of dose values for an infinitesimal distance after the start point. (authors)

  18. Substrate-Mediated C-C and C-H Coupling after Dehalogenation.

    Science.gov (United States)

    Kong, Huihui; Yang, Sha; Gao, Hongying; Timmer, Alexander; Hill, Jonathan P; Díaz Arado, Oscar; Mönig, Harry; Huang, Xinyan; Tang, Qin; Ji, Qingmin; Liu, Wei; Fuchs, Harald

    2017-03-15

    Intermolecular C-C coupling after cleavage of C-X (mostly, X = Br or I) bonds has been extensively studied for facilitating the synthesis of polymeric nanostructures. However, the accidental appearance of C-H coupling at the terminal carbon atoms would limit the successive extension of covalent polymers. To our knowledge, the selective C-H coupling after dehalogenation has not so far been reported, which may illuminate another interesting field of chemical synthesis on surfaces besides in situ fabrication of polymers, i.e., synthesis of novel organic molecules. By combining STM imaging, XPS analysis, and DFT calculations, we have achieved predominant C-C coupling on Au(111) and more interestingly selective C-H coupling on Ag(111), which in turn leads to selective synthesis of polymeric chains or new organic molecules.

  19. Photocatalytic oxidation removal of Hg{sup 0} using ternary Ag/AgI-Ag{sub 2}CO{sub 3} hybrids in wet scrubbing process under fluorescent light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Anchao, E-mail: aczhang@qq.com [School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Zhang, Lixiang; Chen, Xiaozhuan; Zhu, Qifeng; Liu, Zhichao [School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Xiang, Jun, E-mail: xiangjun@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2017-01-15

    Highlights: • Ag/AgI-Ag{sub 2}CO{sub 3} hybrids were employed for Hg{sup 0} removal under fluorescent light. • Superoxide radical (·O{sub 2}{sup −}) played a key role in Hg{sup 0} removal. • NO exhibited a significant effect on Hg{sup 0} removal in comparison to SO{sub 2}. • The mechanism for enhanced Hg{sup 0} removal over Ag/AgI-Ag{sub 2}CO{sub 3} was proposed. - Abstract: A series of ternary Ag/AgI-Ag{sub 2}CO{sub 3} photocatalysts synthesized using a facile coprecipitation method were employed to investigate their performances of Hg{sup 0} removal in a wet scrubbing reactor. The hybrids were characterized by N{sub 2} adsorption-desorption, XRD, SEM-EDS, HRTEM, XPS, DRS and ESR. The photocatalytic activities of Hg{sup 0} removal were evaluated under fluorescent light. The results showed that AgI content, fluorescent light irradiation, reaction temperature all showed significant influences on Hg{sup 0} removal. NO exhibited significant effect on Hg{sup 0} removal in comparison to SO{sub 2}. Among these ternary Ag/AgI-Ag{sub 2}CO{sub 3} hybrids, Ag/AgI(0.1)-Ag{sub 2}CO{sub 3} showed the highest Hg{sup 0} removal efficiency, which could be ascribed to the effective separation of photogenerated electron-hole pairs between AgI and Ag{sub 2}CO{sub 3} and the surface plasmon resonance (SPR) effect in the visible region by metallic silver nanoparticles (Ag{sup 0} NPs). The trapping studies of reactive radicals showed that the superoxide radicals (·O{sub 2}{sup −}) may play a key role in Hg{sup 0} removal under fluorescent light. According to the experimental and characterization results, a possible photocatalytic oxidation mechanism for enhanced Hg{sup 0} removal over Ag/AgI(0.1)-Ag{sub 2}CO{sub 3} hybrid under fluorescent light was proposed.

  20. Introducing ionic and/or hydrogen bonds into the SAM//Ga2O3 top-interface of Ag(TS)/S(CH2)nT//Ga2O3/EGaIn junctions.

    Science.gov (United States)

    Bowers, Carleen M; Liao, Kung-Ching; Yoon, Hyo Jae; Rappoport, Dmitrij; Baghbanzadeh, Mostafa; Simeone, Felice C; Whitesides, George M

    2014-06-11

    Junctions with the structure Ag(TS)/S(CH2)nT//Ga2O3/EGaIn (where S(CH2)nT is a self-assembled monolayer, SAM, of n-alkanethiolate bearing a terminal functional group T) make it possible to examine the response of rates of charge transport by tunneling to changes in the strength of the interaction between T and Ga2O3. Introducing a series of Lewis acidic/basic functional groups (T = -OH, -SH, -CO2H, -CONH2, and -PO3H) at the terminus of the SAM gave values for the tunneling current density, J(V) in A/cm(2), that were indistinguishable (i.e., differed by less than a factor of 3) from the values observed with n-alkanethiolates of equivalent length. The insensitivity of the rate of tunneling to changes in the terminal functional group implies that replacing weak van der Waals contact interactions with stronger hydrogen- or ionic bonds at the T//Ga2O3 interface does not change the shape (i.e., the height or width) of the tunneling barrier enough to affect rates of charge transport. A comparison of the injection current, J0, for T = -CO2H, and T = -CH2CH3--two groups having similar extended lengths (in Å, or in numbers of non-hydrogen atoms)--suggests that both groups make indistinguishable contributions to the height of the tunneling barrier.

  1. Synthesis of β-AgVO3 nanowires decorated with Ag2CrO4, with improved visible light photocatalytic performance

    Science.gov (United States)

    Ouyang, Qi; Li, Zhonghua; Liu, Jiawen

    2018-05-01

    Silver chromate‑silver vanadate (Ag2CrO4/β-AgVO3) heterojunction composites are synthesized through a facile precipitation process. The Ag2CrO4/β-AgVO3 hybrids obtained exhibit better photocatalytic activity in degradation of RhB than both pure Ag2CrO4 and β-AgVO3 under visible light irradiation. The 20 wt% Ag2CrO4/β-AgVO3 heterojunction possesses the best photocatalytic ability for degrading RhB: 24.4 times that of pristine β-AgVO3 nanowires and 3.2 times that of individual Ag2CrO4 particles. The phase of the nanocomposites was analyzed using x-ray diffraction as well as x-ray photoelectron spectroscopy. Their morphology was observed via scanning electron microscopy and transmission electron microscopy. The improvement in photocatalytic performance is chiefly ascribed to the synergies between Ag2CrO4/β-AgVO3 heterostructure, which can enhance the light absorbance ability and also accelerate the separation and transfer of photoinduced electrons and holes under visible light irradiation; this is also confirmed by UV–vis diffuse reflection spectrometry and fluorescence emission spectra.

  2. Facile fabrication of Ag3VO4/attapulgite composites for highly efficient visible light-driven photodegradation towards organic dyes and tetracycline hydrochloride

    Science.gov (United States)

    Luo, Yuting; Luo, Jie; Duan, Guorong; Liu, Xiaoheng

    2017-12-01

    An efficient one-dimensional attapulgite (ATP)-based photocatalyst, Ag3VO4/ATP nanocomposite, was fabricated by a facile deposition precipitation method with well-dispersed Ag3VO4 nanoparticles anchored on the surface of natural ATP fibers. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectroscopy (UV-vis DRS) were employed to investigate the morphologies, structure, and optical property of the prepared photocatalysts. The photocatalytic experiments indicated that the Ag3VO4/ATP nanocomposites exhibited enhanced visible light-driven photocatalytic activity towards the degradation of rhodamine B (RhB), methyl orange (MO), and tetracycline hydrochloride (TCH), of which the 20 wt% Ag3VO4/ATP sample showed superb photocatalytic performance. As demonstrated by N2 adsorption-desorption, photocurrent measurements, electrochemical impedance spectroscopy (EIS), and photoluminescence (PL) spectra analyses, the improved photocatalytic activity arose from the enlarged surface area, the facilitated charge transfer, and the suppressed recombination of photogenerated charge carriers in Ag3VO4/ATP system. Furthermore, radical scavengers trapping experiments and recycling tests were also conducted. This work gives a new insight into fabrication of highly efficient, stable, and cost-effective visible light-driven photocatalyst for practical application in wastewater treatment and environmental remediation.

  3. Removal of radioiodine species from gaseous stream on inorganic absorbents

    International Nuclear Information System (INIS)

    Vujisic, L.

    1978-11-01

    As a contribution to the development of an impregnated absorbent for the removal of airborne iodine species in the off-gas streams of nuclear facilities the adsorption of 131 l-labelled methyl iodide on impregnated alumina was investigated. Alcoa alumina H-151 was impregnated with metal nitrates (Ag, Ag+Cd, Ag+Pb) and with triethylenediamine (TEDA). The removal efficiency of CH 3 l was experimentally evaluated, as functions of relative humidity of air-stream, its temperature and flow rate and of the amount of impregnated materials. Under constant temperature, relative humidity and face velocity, the retention of CH 3 l increases as the total amount of Ag impregnation increases. In a wet air-stream the only efficient impregnation was found to be with silver nitrate. At constant temperature the CH 3 l retention decreases with increasing relative humidity or face velocity of the stream. An increase of temperature favours the CH 3 l retention. Very low retention of CH 3 l was found on TEDA impregnated alumina

  4. Antifungal activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites prepared by a facile microwave-assisted method

    Directory of Open Access Journals (Sweden)

    Abolghasem Hoseinzadeh

    2016-08-01

    Full Text Available In the present work, magnetically separable Fe3O4/ZnO/AgBr nanocomposites with different weight ratios of Fe3O4 to ZnO/AgBr were prepared by a facile microwave-assisted method. The resultant samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive analysis of X-rays (EDX, and vibrating sample magnetometery (VSM. Antifungal activity of the as-prepared samples was evaluated against Fusarium graminearum and Fusarium oxysporum as two phytopathogenic fungi. Among the nanocomposites, the sample with 1:8 weight ratio of Fe3O4 to ZnO/AgBr was selected as the best nanocomposite. This nanocomposite inactivates Fusarium graminearum and Fusarium oxysporum at 120 and 60 min, respectively. Moreover, it was observed that the microwave irradiation time has considerable influence on the antifungal activity and the sample prepared by irradiation for 10 min showed the best activity. Moreover, the nanocomposite without any thermal treatment displayed the superior activity.

  5. Multiplexed ChIP-Seq Using Direct Nucleosome Barcoding: A Tool for High-Throughput Chromatin Analysis.

    Science.gov (United States)

    Chabbert, Christophe D; Adjalley, Sophie H; Steinmetz, Lars M; Pelechano, Vicent

    2018-01-01

    Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) or microarray hybridization (ChIP-on-chip) are standard methods for the study of transcription factor binding sites and histone chemical modifications. However, these approaches only allow profiling of a single factor or protein modification at a time.In this chapter, we present Bar-ChIP, a higher throughput version of ChIP-Seq that relies on the direct ligation of molecular barcodes to chromatin fragments. Bar-ChIP enables the concurrent profiling of multiple DNA-protein interactions and is therefore amenable to experimental scale-up, without the need for any robotic instrumentation.

  6. Synthesis and properties of new CdSe-AgI-As2Se3 chalcogenide glasses

    International Nuclear Information System (INIS)

    Kassem, M.; Le Coq, D.; Fourmentin, M.; Hindle, F.; Bokova, M.; Cuisset, A.; Masselin, P.; Bychkov, E.

    2011-01-01

    Research highlights: → Determination of the glass-forming region in the pseudo-ternary CdSe-AgI-As 2 Se 3 system. → Characterization of macroscopic properties of the new CdSe-AgI-As 2 Se 3 glasses. → Far infrared transmission of chalcogenide glasses. → Characterization of the total conductivity of CdSe-AgI-As 2 Se 3 glasses. -- Abstract: The glass-forming region in the pseudo-ternary CdSe-AgI-As 2 Se 3 system was determined. Measurements including differential scanning calorimetry (DSC), density, and X-ray diffraction were performed. The effect resulting from the addition of CdSe or AgI has been highlighted by examining three series of different base glasses. The characteristic temperatures of the glass samples, including glass transition (T g ), crystallisation (T x ), and melting (T m ) temperatures are reported and used to calculate their ΔT = T x - T g and their Hruby, H r = (T x - T g )/(T m - T x ), criteria. Evolution of the total electrical conductivity σ and the room temperature conductivity σ 298 was also studied. The terahertz transparency domain in the 50-600 cm -1 region was pointed for different chalcogenide glasses (ChGs) and the potential of the THz spectroscopy was suggested to obtain structural information on ChGs.

  7. Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+

    International Nuclear Information System (INIS)

    Fan, Lulu; Luo, Chuannan; Lv, Zhen; Lu, Fuguang; Qiu, Huamin

    2011-01-01

    Highlights: → Coating modified chitosan on magnetic fluids, which were using Ag(I) as imprinted ions, is a new method to expand function of the chitosan. → The method can improve the surface area for adsorption of Ag + and reduce the required dosage for the adsorption of Ag(I). → The imprinted magnetic chitosan can be used effectively and selectively to remove Ag(I) ions from aqueous solutions. → It shows the facile, fast separation process of magnetic chitosan during the experiments. The absorbent has a good application prospect. - Abstract: A novel, thiourea-chitosan coating on the surface of magnetite (Fe 3 O 4 ) (Ag-TCM) was successfully synthesized using Ag(I) as imprinted ions for adsorption and removal of Ag(I) ions from aqueous solutions. The thermal stability, chemical structure and magnetic property of the Ag-TCM were characterized by the scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR) and vibrating sample magnetometer (VSM), respectively. Batch adsorption experiments were performed to evaluate the adsorption conditions, selectivity and reusability. The results showed that the maximum adsorption capacity was 4.93 mmol/g, observed at pH 5 and temperature 30 o C. Equilibrium adsorption was achieved within 50 min. The kinetic data, obtained at the optimum pH 5, could be fitted with a pseudo-second order equation. Adsorption process could be well described by Langmuir adsorption isotherms and the maximum adsorption capacity calculated from Langmuir equation was 5.29 mmol/g. The selectivity coefficient of Ag(I) ions and other metal cations onto Ag-TCM indicated an overall preference for Ag(I) ions, which was much higher than non-imprinted thiourea-chitosan beads. Moreover, the sorbent was stable and easily recovered, the adsorption capacity was about 90% of the initial saturation adsorption capacity after being used five times.

  8. Facile synthesis of hollow dendritic Ag/Pt alloy nanoparticles for enhanced methanol oxidation efficiency.

    Science.gov (United States)

    Sui, Ning; Wang, Ke; Shan, Xinyao; Bai, Qiang; Wang, Lina; Xiao, Hailian; Liu, Manhong; Colvin, Vicki L; Yu, William W

    2017-11-14

    Hollow dendritic Ag/Pt alloy nanoparticles were synthesized by a double template method: Ag nanoparticles as the hard template to obtain hollow spheres by a galvanic replacement reaction between PtCl 6 2- and metallic Ag and surfactant micelles (Brij58) as the soft template to generate porous dendrites. The formation of a Ag/Pt alloy phase was confirmed by XRD and HRTEM. Elemental mapping and line scanning revealed the formation of the hollow architecture. We studied the effects of the Ag/Pt ratio, surfactant and reaction temperature on the morphology. In addition, we explored the formation process of hollow dendritic Ag/Pt nanoparticles by tracking the morphologies of the nanostructures formed at different stages. In order to improve the electrocatalytic property, we controlled the size of the nanoparticles and the thickness of the shell by adjusting the amount of the precursor. We found that these Ag/Pt alloy nanoparticles exhibited high activity (440 mA mg -1 ) and stability as an electrocatalyst for catalyzing methanol oxidation.

  9. (Phosphinoalkyl)silanes. 4.(1) Hydrozirconation as a Non-Photochemical Route to (Phosphinopropyl)silanes: Facile Assembly of the Bis(3-(diphenylphosphino)propyl)silyl ("biPSi") Ligand Framework. Access to the Related Poly(3-(dimethylsilyl)propyl)phosphines R(n)()P(CH(2)CH(2)CH(2)SiMe(2)H)(3)(-)(n)() (n = 1, R = Ph; n = 0).

    Science.gov (United States)

    Zhou, Xiaobing; Stobart, Stephen R.; Gossage, Robert A.

    1997-08-13

    Treatment of SiEt(3)(CH=CH(2)) with ZrCp(2)HCl (Schwartz's reagent) followed by reaction with PPh(2)Cl provides a high-yield (75%) route to Ph(2)PCH(2)CH(2)SiEt(3), and accordingly hydrozirconation of CH(2)=CHCH(2)SiHMe(2) affords the intermediate ZrCp(2)(CH(2)CH(2)CH(2)SiHMe(2))Cl (2). The latter, which is very sensitive to hydrolysis and reacts with HCl forming SiHMe(2)Pr(n)() and with NBS or I(2) affording SiHMe(2)CH(2)CH(2)CH(2)X (X = Br (3), I (4)), behaves similarly with PPh(2)Cl, PPhCl(2), or PBr(3) undergoing cleavage to the known Ph(2)PCH(2)CH(2)CH(2)SiMe(2)H (i.e. chelH, A) and the novel bis- and tris(silylpropyl)phosphines PhP(CH(2)CH(2)CH(2)SiMe(2)H)(2) (5) and P(CH(2)CH(2)CH(2)SiMe(2)H)(3) (6), respectively, with concomitant formation of ZrCp(2)Cl(2). Corresponding hydroboration of allylsilanes is facile, but subsequent phosphine halide cleavage yields (phosphinoalkyl)silanes only as constituents of intractable mixtures. Hydrozirconation followed by phosphination with PPh(2)Cl also converts SiHMe(CH(2)CH=CH(2))(2) to SiHMe(CH(2)CH(2)CH(2)PPh(2))(2) (i.e. biPSiH, B) together with a propyl analogue Ph(2)PCH(2)CH(2)CH(2)SiMe(Pr(n)())H (7) of A (ca. 2:1 ratio), as well as SiH(CH(2)CH=CH(2))(3) to a mixture (ca. 5:2:1 ratio) of SiH(CH(2)CH(2)CH(2)PPh(2))(3) (i.e. triPSiH, C), a new analogue SiH(Pr(n)())(CH(2)CH(2)CH(2)PPh(2))(2) (8) of B, and a further analogue Ph(2)PCH(2)CH(2)CH(2)SiHPr(n)()(2) (9) of A. A further analogue SiH(2)(CH(2)CH(2)CH(2)PPh(2))(2) (10) of biPSiH (B) is obtained similarly starting from SiH(2)(CH(2)CH=CH(2))(2). Steric control of silylalkyl cleavage from 2 is indicated by the fact that, like PPh(2)Cl (which forms B), two further biPSiH analogues SiH(Me)[CH(2)CH(2)CH(2)P(n-hex)(2)](2) (11) and SiH(Me)(CH(2)CH(2)CH(2)PPhBz)(2) (12) were obtained using P(n-hex)(2)Cl (i.e. n-hex = CH(3)(CH(2))(4)CH(2)-) or PPhBzCl (i.e. Bz = -CH(2)C(6)H(5)), respectively, whereas neither PPr(i)(2)Cl nor PBu(t)(2)Cl led to (phosphinoalkyl)silane formation

  10. Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tao [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Liu, Yong [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Solmont Technology Wuxi Co., Ltd. 228 Linghu Blvd. Tianan Tech Park, A1-602, Xinwu District, Wuxi, Jiangsu 214135 (China); Zhu, Yan, E-mail: zhuyan@kmust.edu.cn [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Yang, De-Quan, E-mail: dequan.yang@gmail.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Solmont Technology Wuxi Co., Ltd. 228 Linghu Blvd. Tianan Tech Park, A1-602, Xinwu District, Wuxi, Jiangsu 214135 (China); Sacher, Edward [Regroupement Québécois de Matériaux de Pointe, Department of Engineering Physics, École Polytechnique de Montréal, Case Postale 6079, succursale Centre-Ville, Montréal, Québec H3C 3A7 (Canada)

    2017-07-31

    Highlights: • A two-step process has been developed to enhance the adhesion of immobilized Ag NPs to the PET surface. • The method is simple, easy to use and low-cost for mass production. • The increased density of active sites (−OH, −CH=O and COOH) at the PET surface, after plasma treatment, permits increased reaction with 3-aminopropyltriethoxysilane (APTES). • The presence of APTES with high surface density permits −NH{sub 2}-Ag complex formation, increasing the adhesion of the Ag NPs. - Abstract: Ag nanoparticles (NPs) have been widely applied, as important antibacterial materials, on textile and polymer surfaces. However, their adhesion to nonreactive polymer surfaces is generally too weak for many applications. Here, we propose a two-step process, atmospheric plasma treatment followed by a surface chemical modification process, which enhances their adhesion to polyethylene terephthalate (PET) surfaces. We found that, compared to either plasma treatments or surface chemical functionalizations, alone, this combination greatly enhanced their adhesion. The plasma treatment resulted in an increase of active sites (−OH, −CH=O and COOH) at the PET surface, permitting increased bonding to 3-aminopropyltriethoxysilane (APTES), whose −NH{sub 2} groups were then able to form a bonding complex with the Ag NPs.

  11. Single-tube linear DNA amplification (LinDA) for robust ChIP-seq

    NARCIS (Netherlands)

    Shankaranarayanan, P.; Mendoza-Parra, M.A.; Walia, M.; Wang, L.; Li, N.; Trindade, L.M.; Gronemeyer, H.

    2011-01-01

    Genome-wide profiling of transcription factors based on massive parallel sequencing of immunoprecipitated chromatin (ChIP-seq) requires nanogram amounts of DNA. Here we describe a high-fidelity, single-tube linear DNA amplification method (LinDA) for ChIP-seq and reChIP-seq with picogram DNA amounts

  12. Quantitative ChIP-Seq Normalization Reveals Global Modulation of the Epigenome

    Directory of Open Access Journals (Sweden)

    David A. Orlando

    2014-11-01

    Full Text Available Epigenomic profiling by chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq is a prevailing methodology used to investigate chromatin-based regulation in biological systems such as human disease, but the lack of an empirical methodology to enable normalization among experiments has limited the precision and usefulness of this technique. Here, we describe a method called ChIP with reference exogenous genome (ChIP-Rx that allows one to perform genome-wide quantitative comparisons of histone modification status across cell populations using defined quantities of a reference epigenome. ChIP-Rx enables the discovery and quantification of dynamic epigenomic profiles across mammalian cells that would otherwise remain hidden using traditional normalization methods. We demonstrate the utility of this method for measuring epigenomic changes following chemical perturbations and show how reference normalization of ChIP-seq experiments enables the discovery of disease-relevant changes in histone modification occupancy.

  13. Enhanced Visible Light Photocatalytic Degradation of Organic Pollutants over Flower-Like Bi2O2CO3 Dotted with Ag@AgBr

    Directory of Open Access Journals (Sweden)

    Shuanglong Lin

    2016-10-01

    Full Text Available A facile and feasible oil-in-water self-assembly approach was developed to synthesize flower-like Ag@AgBr/Bi2O2CO3 micro-composites. The photocatalytic activities of the samples were evaluated through methylene blue degradation under visible light irradiation. Compared to Bi2O2CO3, flower-like Ag@AgBr/Bi2O2CO3 micro-composites show enhanced photocatalytic activities. In addition, results indicate that both the physicochemical properties and associated photocatalytic activities of Ag@AgBr/Bi2O2CO3 composites are shown to be dependent on the loading quantity of Ag@AgBr. The highest photocatalytic performance was achieved at 7 wt % Ag@AgBr, degrading 95.18% methylene blue (MB after 20 min of irradiation, which is over 1.52 and 3.56 times more efficient than that of pure Ag@AgBr and pure Bi2O2CO3, respectively. Bisphenol A (BPA was also degraded to further demonstrate the degradation ability of Ag@AgBr/Bi2O2CO3. A photocatalytic mechanism for the degradation of organic compounds over Ag@AgBr/Bi2O2CO3 was proposed. Results from this study illustrate an entirely new approach to fabricate semiconductor composites containing Ag@AgX/bismuth (X = a halogen.

  14. Site-Selective Carving and Co-Deposition: Transformation of Ag Nanocubes into Concave Nanocrystals Encased by Au-Ag Alloy Frames.

    Science.gov (United States)

    Ahn, Jaewan; Wang, Daniel; Ding, Yong; Zhang, Jiawei; Qin, Dong

    2018-01-23

    We report a facile synthesis of Ag nanocubes with concave side faces and Au-Ag alloy frames, namely Ag@Au-Ag concave nanocrystals, by titrating HAuCl 4 solution into an aqueous mixture of Ag nanocubes, ascorbic acid (H 2 Asc), NaOH, and cetyltrimethylammonium chloride (CTAC) at an initial pH of 11.6 under ambient conditions. Different from all previous studies involving poly(vinylpyrrolidine), the use of CTAC at a sufficiently high concentration plays an essential role in carving away Ag atoms from the side faces through galvanic replacement. Concurrent co-deposition of Au and Ag atoms via chemical reduction at orthogonal sites on the surface of Ag nanocubes leads to the generation of Ag@Au-Ag concave nanocrystals with well-defined and controllable structures. Specifically, in the presence of CTAC-derived Cl - ions, the titrated HAuCl 4 is maintained in the AuCl 4 - species, enabling its galvanic replacement with the Ag atoms located on the side faces of nanocubes. The released Ag + ions can be retained in the soluble form of AgCl 2 - by complexing with the Cl - ions. Both the AuCl 4 - and AgCl 2 - in the solution are then reduced by ascorbate monoanion, a product of the neutralization reaction between H 2 Asc and NaOH, to Au and Ag atoms for their preferential co-deposition onto the edges and corners of the Ag nanocubes. Compared with Ag nanocubes, the Ag@Au-Ag concave nanocrystals exhibit much stronger SERS activity at an excitation of 785 nm, making it feasible to monitor the Au-catalyzed reduction of 4-nitrothiophenol by NaBH 4 in situ. When the Ag cores are removed, the concave nanocrystals evolve into Au-Ag nanoframes with controllable ridge thicknesses.

  15. Lidar sprectroscopy instrument (LISSI): An infrastructure facility for chemical aerosol profiling at the University of Hertfordshire

    Science.gov (United States)

    Tesche, Matthias; Tatarov, Boyan; Noh, Youngmin; Müller, Detlef

    2018-04-01

    The lidar development at the University of Hertfordshire explores the feasibility of using Raman backscattering for chemical aerosol profiling. This paper provides an overview of the new facility. A high-power Nd:YAG/OPO setup is used to excite Raman backscattering at a wide range of wavelengths. The receiver combines a spectrometer with a 32-channel detector or an ICCD camera to resolve Raman signals of various chemical compounds. The new facility will open new avenues for chemical profiling of aerosol pollution from measurements of Raman scattering by selected chemical compounds, provide data that allow to close the gap between optical and microphysical aerosol profiling with lidar and enables connecting lidar measurements to parameters used in atmospheric modelling.

  16. Comparisons of the error budgets associated with ground-based FTIR measurements of atmospheric CH4 profiles at Île de la Réunion and Jungfraujoch.

    Science.gov (United States)

    Vanhaelewyn, Gauthier; Duchatelet, Pierre; Vigouroux, Corinne; Dils, Bart; Kumps, Nicolas; Hermans, Christian; Demoulin, Philippe; Mahieu, Emmanuel; Sussmann, Ralf; de Mazière, Martine

    2010-05-01

    The Fourier Transform Infra Red (FTIR) remote measurements of atmospheric constituents at the observatories at Saint-Denis (20.90°S, 55.48°E, 50 m a.s.l., Île de la Réunion) and Jungfraujoch (46.55°N, 7.98°E, 3580 m a.s.l., Switzerland) are affiliated to the Network for the Detection of Atmospheric Composition Change (NDACC). The European NDACC FTIR data for CH4 were improved and homogenized among the stations in the EU project HYMN. One important application of these data is their use for the validation of satellite products, like the validation of SCIAMACHY or IASI CH4 columns. Therefore, it is very important that errors and uncertainties associated to the ground-based FTIR CH4 data are well characterized. In this poster we present a comparison of errors on retrieved vertical concentration profiles of CH4 between Saint-Denis and Jungfraujoch. At both stations, we have used the same retrieval algorithm, namely SFIT2 v3.92 developed jointly at the NASA Langley Research Center, the National Center for Atmospheric Research (NCAR) and the National Institute of Water and Atmosphere Research (NIWA) at Lauder, New Zealand, and error evaluation tools developed at the Belgian Institute for Space Aeronomy (BIRA-IASB). The error components investigated in this study are: smoothing, noise, temperature, instrumental line shape (ILS) (in particular the modulation amplitude and phase), spectroscopy (in particular the pressure broadening and intensity), interfering species and solar zenith angle (SZA) error. We will determine if the characteristics of the sites in terms of altitude, geographic locations and atmospheric conditions produce significant differences in the error budgets for the retrieved CH4 vertical profiles

  17. Facile synthesis and enhanced magnetic, photocatalytic properties of one-dimensional Ag@Fe{sub 3}O{sub 4}-TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaohua, E-mail: xhjia2003@126.com [School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Dai, Rongrong; Lian, Dandan; Han, Song [School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Wu, Xiangyang, E-mail: wuxy@ujs.edu.cn [School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Song, Haojie [Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2017-01-15

    Highlights: • One-dimensional triple heterostructure Ag@Fe{sub 3}O{sub 4}-TiO{sub 2} was successfully achieved by a facile co-precipitation and chemical-solution-deposition process method. • One-dimensional triple heterostructure Ag@Fe{sub 3}O{sub 4}-TiO{sub 2} exhibited enhanced photocatalytic properties and can be easily recovered by an extemal magnetic field. • The mechanisms for the enhanced photocatalytic effect of the heterostructure were discussed. - Abstract: Fe{sub 3}O{sub 4}-TiO{sub 2} heterostructures were synthesized through co-precipitation method based on TiO{sub 2} nanobelts. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibration sample magnetometry (VSM) were used to characterize the heterostructure nanocomposites. The results of XRD proved that the TiO{sub 2} nanobelt was anatase which was the most suitable crystal form for photocatalysis. SEM and TEM analysis indicated that Fe{sub 3}O{sub 4} nanoparticles were adhere to TiO{sub 2} nanobelts which have one-dimensional structure with 100–200 nm in width. The VSM measurements showed that the photocatalyst can be easily recovered by an extemal magnetic field. X-ray photoelectron spectroscopy (XPS) of Ag@Fe{sub 3}O{sub 4}-TiO{sub 2} nanocomposites studies confirm that Ag is in Ag{sup 0} state. Finally, the photodegradation of rhodamine B (RhB) by the obtained magnetic photocatalyst was investigated via UV–vis absorption spectra. The photocatalytic activity of the composites was observed to be lower compared to bare TiO{sub 2} due to the higher degree of recombination reactions after combined with Fe{sub 3}O{sub 4} nanoparticles. After coated the composite of 15% Fe{sub 3}O{sub 4}-TiO{sub 2} with Ag, the new nanocomposite of Ag@Fe{sub 3}O{sub 4}-TiO{sub 2} can be easily recovered after photocatalysis by an extemal magnetic field and showed enhanced photocatalytic activity. The mechanisms for the exhibited enhanced photocatalytic effect of

  18. Synthesis and characterization of Ag@Cu nano/microstructure ordered arrays as SERS-active substrates

    Science.gov (United States)

    Zhang, Pinhua; Cui, Guangliang; Xiao, Chuanhai; Zhang, Mingzhe; Chen, Li; Shi, Changmin

    2016-06-01

    We fabricated an Ag decorated Cu (Ag@Cu) nano/microstructure ordered array by facile template-free 2D electrodeposition combined with a galvanic reduction method for SERS applications. The Cu nano/microstructure ordered arrays were first synthesized by a 2D electrodeposition method, then Ag nanocubes were decorated on the arrays by galvanic reduction without any capping agent. The pollution-free surface and edge-to-face heterostructure of Ag nanocubes and Cu nano/microstructure arrays provide the powerful field-enhancements for SERS performance. The results verified that the Ag@Cu nano/microstructure ordered arrays have excellent activity for 4-Mercaptopyridine, and the sensitivity limit is as low as 10-8 M. Therefore, this facile route provides a useful platform for the fabrication of a SERS substrate based on nano/microstructure ordered arrays.

  19. Facile synthesis of microporous SiO2/triangular Ag composite nanostructures for photocatalysis

    Science.gov (United States)

    Sirohi, Sidhharth; Singh, Anandpreet; Dagar, Chakit; Saini, Gajender; Pani, Balaram; Nain, Ratyakshi

    2017-11-01

    In this article, we present a novel fabrication of microporous SiO2/triangular Ag nanoparticles for dye (methylene blue) adsorption and plasmon-mediated degradation. Microporous SiO2 nanoparticles with pore size aminopropyl) trimethoxysilane) to introduce amine groups. Amine-functionalized microporous silica was used for adsorption of triangular silver (Ag) nanoparticles. The synthesized microporous SiO2 nanostructures were investigated for adsorption of different dyes including methylene blue, congo red, direct green 26 and curcumin crystalline. Amine-functionalized microporous SiO2/triangular Ag nanostructures were used for plasmon-mediated photocatalysis of methylene blue. The experimental results revealed that the large surface area of microporous silica facilitated adsorption of dye. Triangular Ag nanoparticles, due to their better charge carrier generation and enhanced surface plasmon resonance, further enhanced the photocatalysis performance.

  20. AGS vertical beta function measurements for Run 15

    Energy Technology Data Exchange (ETDEWEB)

    Harper, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ahrens, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-10-07

    One key parameter for running the AGS efficiently is by maintaining a low emittance. To measure emittance, one needs to measure the beta function throughout the cycle. This can be done by measuring the beta function at the ionization profile monitors (IPM) in the AGS. This tech note delves into the motivation, the measurement, and some strides that were made throughout Run15.

  1. Formation and properties of hyaluronan/nano Ag and hyaluronan-lecithin/nano Ag films.

    Science.gov (United States)

    Khachatryan, Gohar; Khachatryan, Karen; Grzyb, Jacek; Fiedorowicz, Maciej

    2016-10-20

    A facile and environmentally friendly method of the preparation of silver nanoparticles embedded in hyaluronan (Hyal/Ag) and hyaluronan-lecithin (Hyal-L/Ag) matrix was developed. Thin, elastic foils were prepared from gels by an in situ synthesis of Ag in an aqueous solution of sodium hyaluronate (Hyal), using aq. d-(+)-xylose solution as a reducing agent. The gels were applied to a clean, smooth, defatted Teflon surface and left for drying in the air. The dry foils were stored in a closed container. UV-vis spectroscopy, transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectra confirmed formation of about 10nm ball-shaped Ag nanoparticles situated within the polysaccharide template. Thermal properties of the composites were characterized involving differential scanning calorimetry (DSC) and thermogravimetric (TGA) analyses, whereas molecular weights of polysaccharide chains of the matrix were estimated with the size exclusion chromatography coupled with multiangle laser light scattering and refractometric detectors (HPSEC-MALLS-RI). An increase in the molecular weight of the hyaluronate after generation of Ag nanoparticles was observed. The foils showed specific properties. The study confirmed that silver nanoparticles can be successfully prepared with environmentally friendly method, using hyaluronan as a stabilizing template. Hyaluronan and hyaluronan-lecithin matrices provide nanocrystals uniform in size and shape. The composites demonstrated a bacteriostatic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Novel ternary g-C3N4/Ag3VO4/AgBr nanocomposites with excellent visible-light-driven photocatalytic performance for environmental applications

    Science.gov (United States)

    Barzegar, Javid; Habibi-Yangjeh, Aziz; Akhundi, Anise; Vadivel, S.

    2018-04-01

    Novel visible-light-induced photocatalysts were fabricated by integration of Ag3VO4 and AgBr semiconductors with graphitic carbon nitride (g-C3N4) through a facile refluxing method. The fabricated photocatalysts were extensively characterized by XRD, EDX, SEM, TEM, FT-IR, UV-vis DRS, BET, TGA, and PL instruments. The photocatalytic performance of these samples was studied by degradations of three dye contaminants under visible-light exposure. Among the ternary photocatalysts, the g-C3N4/Ag3VO4/AgBr (10%) nanocomposite displayed the maximum activity for RhB degradation with rate constant of 1366.6 × 10-4 min-1, which is 116, 7.23, and 38.5 times as high as those of the g-C3N4, g-C3N4/AgBr (10%), and g-C3N4/Ag3VO4 (30%) photocatalysts, respectively. The effects of synthesis time and calcination temperature were also investigated and discussed. Furthermore, according to the trapping experiments, it was found that superoxide anion radicals were the predominant reactive species in this system. Finally, the ternary photocatalyst displayed superlative activity in removal of the contaminants under visible-light exposure, displaying great potential of this ternary photocatalyst for environmental remediation, because of a facile synthesis route and outstanding photocatalytic performance.

  3. Ultraviolet photosensors fabricated with Ag nanowires coated with ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guan-Hung [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Hong, Franklin Chau-Nan, E-mail: hong@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China); NCKU Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-11-03

    We have developed a simple low temperature process to coat zinc oxide (ZnO) nanoparticles (NPs) on Ag nanowires (NWs) with well-controlled morphology. Triethanolamine (TEA) was employed to react with zinc acetate (Zn(CH{sub 3}COO){sub 2}) forming ZnO NPs. TEA was also found to enhance the nucleation and binding of ZnO NPs on the Ag nanowire surfaces facilitating a complete coverage of Ag nanowire surfaces with ZnO NPs. The effects of the process parameters including reaction time and reaction temperature were studied. The surfaces of 60 nm diameter Ag NWs could be completely covered with ZnO NPs with the final diameters of Ag-NWs@ZnO (core–shell NWs) turning into the range from 100 nm to 450 nm. The Ag-NWs@ZnO was characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray mapping analysis, X-ray diffraction, and photoluminescence spectra. Finally, ultraviolet (UV) photosensors were fabricated using Ag-NWs@ZnO. They were found to improve photosensitivity with greatly enhanced fast response by reducing the recovery time by 2 orders, in comparison with the UV-sensors using single-crystalline ZnO NWs. - Highlights: • Solution process to coat ZnO nanoparticles on Ag nanowires has been developed. • Ultraviolet photosensing of ZnO nanoparticles coated on the Ag nanowires was found. • High defect concentration of ZnO nanoparticles enhanced the photosensing properties.

  4. SignalSpider: Probabilistic pattern discovery on multiple normalized ChIP-Seq signal profiles

    KAUST Repository

    Wong, Kachun; Li, Yue; Peng, Chengbin; Zhang, Zhaolei

    2014-01-01

    Motivation: Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-Seq) measures the genome-wide occupancy of transcription factors in vivo. Different combinations of DNA-binding protein occupancies may result in a gene

  5. Facile Preparation and Enhanced Capacitance of the Ag-PEDOT:PSS/Polyaniline Nanofiber Network for Supercapacitors

    International Nuclear Information System (INIS)

    Patil, Dipali S.; Pawar, Sachin A.; Kim, Jin Hyeok; Patil, Pramod S.; Shin, Jae Cheol

    2016-01-01

    Graphical abstract: Fig. shows the steps involved in the development of the AgNW-PEDOT:PSS/PANI electrode. The bright silver nanocubes were observed onto the PANI nanofibers. This means that during the electrodeposition of PANI, there is an electrostatic interaction between AgNWs and PANI; the AgNWs are segmented into the small nanocubes. These nanocubes are distributed equally all over the interconnected network of the PANI nanofibers. This provides a continuous path for the electrons during the charge/discharge process. - Highlights: • Ag-PEDOT:PSS/PANI hybrid nanostructure was prepared. • Dip coating and electrodeposition techniques are used for electrodes preparation. • Symmetric supercapacitor based on AgNW-PEDOT:PSS/PANI was developed. • The positive synergistic effect of AgNW, PEDOT:PSS and PANI was observed. - Abstract: This paper reports the synthesis of a silver − Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/Polyaniline(Ag-PEDOT:PSS/PANI)hybrid nanostructure using a simple dip coating technique followed by potentiodynamic electrodeposition to achieve an electrochemical supercapacitor with excellent electrochemical performance. In this sandwich type structure, the Ag nanostructure-blended PEDOT: PSS acts as a current collector, where electrons can be transferred easily through this network to the PANI nanofibers and vice versa. The AgNW-PEDOT:PSS/PANI showed a specific capacitance of 643 Fg −1 at 10 mVs −1 and an energy density of 86.19 Whkg −1 at 0.1 mA, indicating the positive synergistic effect of silver nanowires (AgNW), PEDOT:PSS and PANI. The Ag nanostructure incorporated PEDOT:PSS helps to improve the electronic conductivity and the electrochemical stability of the PANI electrodes. Promising electrochemical properties achieved from the measurement of symmetric device demonstrate the ideal capacitive behavior of our prepared electrodes.

  6. Ag2WO4 nanorods decorated with AgI nanoparticles: Novel and efficient visible-light-driven photocatalysts for the degradation of water pollutants

    Directory of Open Access Journals (Sweden)

    Shijie Li

    2018-04-01

    Full Text Available To develop efficient and stable visible-light-driven (VLD photocatalysts for pollutant degradation, we synthesized novel heterojunction photocatalysts comprised of AgI nanoparticle-decorated Ag2WO4 nanorods via a facile method. Various characterization techniques, including XRD, SEM, TEM, EDX, and UV–vis DRS were used to investigate the morphology and optical properties of the as-prepared AgI/Ag2WO4 catalyst. With AgI acting as the cocatalyst, the resulting AgI/Ag2WO4 heterostructure shows excellent performance in degrading toxic, stable pollutants such as rhodamine B (RhB, methyl orange (MO and para-chlorophenol (4-CP. The high performance is attributed to the enhanced visible-light absorption properties and the promoted separation efficiency of charge carriers through the formation of the heterojunction between AgI and Ag2WO4. Additionally, AgI/Ag2WO4 exhibits durable stability. The active species trapping experiment reveals that active species (O2•− and h+ dominantly contribute to RhB degradation. The AgI/Ag2WO4 heterojunction photocatalyst characterized in this work holds great potential for remedying environmental issues due to its simple preparation method and excellent photocatalytic performance.

  7. In situ fabrication of AgI films on various substrates

    International Nuclear Information System (INIS)

    Zheng, Z.; Liu, A.R.; Wang, S.M.; Huang, B.J.; Ma, X.M.; Zhao, H.X.; Li, D.P.; Zhang, L.Z.

    2008-01-01

    A facile solution-phase chemical route is developed to directly construct silver iodide (AgI) films/crystals on various substrates including silver foil, silicon wafer and glass, etc. The resulting AgI films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The AgI films with different morphologies can be obtained by controlling the reaction parameters. This method is a simple and fast way for in situ deposition of AgI crystals/films on different substrates. These films may be applied in chemical sensing systems and solid-state batteries as solid electrolytes

  8. A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Jasmine; Mukherjee, Tulsi; Kapoor, Sudhir, E-mail: sudhirk@barc.gov.in

    2012-10-01

    We present a simple and straightforward approach for the synthesis and stabilization of relatively monodisperse Ag, Au and bimetallic (Ag/Au) nanoparticles by using cruciferous vegetable (green/red) extracts by simply adjusting the pH environment in the aqueous medium. The vegetable extracts act both as reducing and capping agents. The monometallic and bimetallic nanoparticles of Ag and Au so obtained were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is shown that red cabbage extract can be used for the preparation of anisotropic Au nanoparticles. The formation of Au anisotropic nanoparticles was found to depend on a number of environmental factors, such as the pH of the reaction medium, reaction time, and initial reactant concentrations. Additionally, it is shown that these extract-stabilized Au and Ag nanoparticles can be used as a seed for preparation of bimetallic Au/Ag nanoparticles. For bimetallic alloy nanoparticles the absorption peak was observed between the two maxima of the corresponding metallic particles. The surface plasmon absorption maxima for bimetallic nanoparticles changed linearly with increasing Au mole ratio content in various alloy compositions. It has been shown that the formation of hollow Au spheres depends on the experimental conditions. - Graphical abstract: TEM image of gold nanoparticles at pH 3.27 formed by red cabbage extract. Highlights: Black-Right-Pointing-Pointer First report on the reactivity of the extracts toward metal ions using a spectrophotometric technique. Black-Right-Pointing-Pointer Red cabbage extract has better reducing properties than green cabbage extract. Black-Right-Pointing-Pointer Red cabbage extract can reduce metal ions at any pH. Black-Right-Pointing-Pointer Reduction of metal ions can have important consequences in the study of soil chemistry.

  9. A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts

    International Nuclear Information System (INIS)

    Jacob, Jasmine; Mukherjee, Tulsi; Kapoor, Sudhir

    2012-01-01

    We present a simple and straightforward approach for the synthesis and stabilization of relatively monodisperse Ag, Au and bimetallic (Ag/Au) nanoparticles by using cruciferous vegetable (green/red) extracts by simply adjusting the pH environment in the aqueous medium. The vegetable extracts act both as reducing and capping agents. The monometallic and bimetallic nanoparticles of Ag and Au so obtained were characterized by UV–visible spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is shown that red cabbage extract can be used for the preparation of anisotropic Au nanoparticles. The formation of Au anisotropic nanoparticles was found to depend on a number of environmental factors, such as the pH of the reaction medium, reaction time, and initial reactant concentrations. Additionally, it is shown that these extract-stabilized Au and Ag nanoparticles can be used as a seed for preparation of bimetallic Au/Ag nanoparticles. For bimetallic alloy nanoparticles the absorption peak was observed between the two maxima of the corresponding metallic particles. The surface plasmon absorption maxima for bimetallic nanoparticles changed linearly with increasing Au mole ratio content in various alloy compositions. It has been shown that the formation of hollow Au spheres depends on the experimental conditions. - Graphical abstract: TEM image of gold nanoparticles at pH 3.27 formed by red cabbage extract. Highlights: ► First report on the reactivity of the extracts toward metal ions using a spectrophotometric technique. ► Red cabbage extract has better reducing properties than green cabbage extract. ► Red cabbage extract can reduce metal ions at any pH. ► Reduction of metal ions can have important consequences in the study of soil chemistry.

  10. Durch intrinsische defekte induzierte uphill-diffusion von Ag und Cu in CdTe

    CERN Document Server

    Wagner, Frank

    In the framework of the present thesis, the diffusion of Ag in CdTe was investigated by the radiotracer $^{111}$Ag. Thereby the focus was on the possibility to create a Ag flux from regions of low Ag concentration to regions of high Ag concentration (uphill diffusion). The experimentally observed diffusion profiles are explained in the framework of a thermodynamic diffusion model, taking into account the defect charge state and the defect interaction. The distribution of the charged defects produces a electric field, which leads to a drift of the charged defects. The experimental data are well explained assuming that Ag is incorporated interstitially and ionized (Agi$^{+}$). The Agi$^{+}$ concentration then reflects the profile of the Fermi level, which again is determined by the intrinsic defect distribution or, more precisely, the deviation from stoichiometry. On the basis of the experimental data it is possible to gather information on the thermodynamic properties of extrinsic as well as intrinsic defects....

  11. AgBr and g-C{sub 3}N{sub 4} co-modified Ag{sub 2}CO{sub 3} photocatalyst: A novel multi-heterostructured photocatalyst with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hua, E-mail: tanghua@mail.ujs.edu.cn [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013 (China); Chang, Shufang [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013 (China); Tang, Guogang [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013 (China); School of Chemistry and Materials Engineering, Zhenjiang College, Zhenjiang, Jiangsu Province 212003 (China); Liang, Wei [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013 (China)

    2017-01-01

    Highlights: • Novel g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr nanocomposites were prepared by a facile method. • g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr-6% has superior activity in degradation of dyes. • The synergetic effect of g-C{sub 3}N{sub 4} and AgBr was the origin of the higher performance. • The photocatalytic mechanism of the g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr was proposed. - Abstract: Novel and highly efficient visible-light-driven g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr multi-heterostructured photocatalysts are achieved from the surface modification of g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3} with AgBr nanoparticles by a facile and efficient ion-exchange method. The as-prepared g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scaning electron microscopy (SEM) and UV–vis diffuse reflectance spectrometry (DRS). Compared with g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}, g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr hybrids exhibit enhanced the degradation activity for typical RhB, MB, and MO dyes under visible light excitation (>420 nm). Photoluminescence (PL), photo-induced current and electrochemical impedance spectroscopy (EIS) results demonstrate the g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr heterojunctions can effectively suppress the recombination of the generated electron–hole pairs. The higher photocatalytical performance of g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr can be ascribed to the efficient separation of photogenerated electron–hole pairs due to the formation of multi-heterojunctions, in which the Ag nanoparticles acted as the charge transmission bridge. In addition, the possible transferred and separated behavior of electron–hole pairs and photocatalytic mechanisms based on the experimental results are also proposed in detail.

  12. Synthesis and characterization of novel plasmonic Ag/AgX-CNTs (X = Cl, Br, I) nanocomposite photocatalysts and synergetic degradation of organic pollutant under visible light.

    Science.gov (United States)

    Shi, Huixian; Chen, Jiangyao; Li, Guiying; Nie, Xin; Zhao, Huijun; Wong, Po-Keung; An, Taicheng

    2013-08-14

    A series of novel well-defined Ag/AgX (X = Cl, Br, I) loaded carbon nanotubes (CNTs) composite photocatalysts (Ag/AgX-CNTs) were fabricated for the first time via a facile ultrasonic assistant deposition-precipitation method at the room temperature (25 ± 1 °C). X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption-desorption analysis, scanning electron microscopy, and ultraviolet-visible light absorption spectra analysis were used to characterize the structure, morphology, and optical properties of the as-prepared photocatalysts. Results confirmed the existence of the direct interfacial contact between Ag/AgX nanoparticles and CNTs, and Ag/AgX-CNTs nanocomposites exhibit superior absorbance in the visible light (VL) region owing to the surface plasmon resonance (SPR) of Ag nanoparticles. The fabricated composite photocatalysts were employed to remove 2,4,6-tribromophenol (TBP) in aqueous phase. A remarkably enhanced VL photocatalytic degradation efficiency of Ag/AgX-CNTs nanocomposites was observed when compared to that of pure AgX or CNTs. The photocatalytic activity enhancement of Ag/AgX-CNTs was due to the effective electron transfer from photoexcited AgX and plasmon-excited Ag(0) nanoparticles to CNTs. This can effectively decrease the recombination of electron-hole pairs, lead to a prolonged lifetime of the photoholes that promotes the degradation efficiency.

  13. Scattering of atomic and molecular ions from single crystal surfaces of Cu, Ag and Fe

    International Nuclear Information System (INIS)

    Zoest, J.M. van.

    1986-01-01

    This thesis deals with analysis of crystal surfaces of Cu, Ag and Fe with Low Energy Ion scattering Spectroscopy (LEIS). Different atomic and molecular ions with fixed energies below 7 keV are scattered by a metal single crystal (with adsorbates). The energy and direction of the scattered particles are analysed for different selected charge states. In that way information can be obtained concerning the composition and atomic and electronic structure of the single crystal surface. Energy spectra contain information on the composition of the surface, while structural atomic information is obtained by direction measurements (photograms). In Ch.1 a description is given of the experimental equipment, in Ch.2 a characterization of the LEIS method. Ch.3 deals with the neutralization of keV-ions in surface scattering. Two different ways of data interpretation are presented. First a model is treated in which the observed directional dependence of neutralization action of the first atom layer of the surface is presented by a laterally varying thickness of the neutralizing layer. Secondly it is shown that the data can be reproduced by a more realistic, physical model based on atomic transition matrix elements. In Ch.4 the low energy hydrogen scattering is described. The study of the dissociation of H 2 + at an Ag surface r0230ted in a model based on electronic dissociation, initialized by electron capture into a repulsive (molecular) state. In Ch.5 finally the method is applied to the investigation of the surface structure of oxidized Fe. (Auth.)

  14. Wire Scanner Beam Profile Measurements for the LANSCE Facility

    International Nuclear Information System (INIS)

    Gilpatrick, John D.; Gruchalla, Michael E.; Martinez, Derwin; Pillai, Chandra; Rodriguez Esparza, Sergio; Sedillo, James Daniel; Smith, Brian G.

    2012-01-01

    The Los Alamos Neutron Science Center (LANSCE) is replacing beam profile measurement systems, commonly known as Wire Scanners (WS). Using the principal of secondary electron emission, the WS measurement system moves a wire or fiber across an impinging particle beam, sampling a projected transverse-beam distribution. Because existing WS actuators and electronic components are either no longer manufactured or home-built with antiquated parts, a new WS beam profile measurement is being designed, fabricated, and tested. The goals for these new WS's include using off-the-shelf components while eliminating antiquated components, providing quick operation while allowing for easy maintainability, and tolerating external radioactivation. The WS measurement system consists of beam line actuators, a cable plant, an electronics processor chassis, and software located both in the electronics chassis (National Instruments LabVIEW) and in the Central Control Room (EPICS-based client software). This WS measurement system will measure Hand H + LANSCE-facility beams and will also measure less common beams. This paper describes these WS measurement systems.

  15. Lidar sprectroscopy instrument (LISSI: An infrastructure facility for chemical aerosol profiling at the University of Hertfordshire

    Directory of Open Access Journals (Sweden)

    Tesche Matthias

    2018-01-01

    The new facility will open new avenues for chemical profiling of aerosol pollution from measurements of Raman scattering by selected chemical compounds, provide data that allow to close the gap between optical and microphysical aerosol profiling with lidar and enables connecting lidar measurements to parameters used in atmospheric modelling.

  16. Fabrication of graphene oxide enwrapped Z-scheme Ag{sub 2}SO{sub 3}/AgBr nanoparticles with enhanced visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yujuan; Liang, Chunyan; Xia, Yue, E-mail: xiayue_chem@126.com; Huang, Wei; Li, Zelin

    2017-02-28

    Highlights: • A novel GO/Ag{sub 2}SO{sub 3}/AgBr composite was prepared via a solution method. • It showed enhanced photocatalytic performance to degrade dyes under visible light irradiation. • Its photocatalytic ability was effectively maintained for 4 cycles without sacrificial reagents. - Abstract: A novel graphene oxide (GO) enwrapped Ag{sub 2}SO{sub 3}/AgBr (GO/Ag{sub 2}SO{sub 3}/AgBr) composite was fabricated through a facile solution approach via electrostatic interaction and precipitation transformation reaction for the first time. The results of XRD, Raman, SEM, TEM and XPS confirmed the structure, morphology and composition of the GO/Ag{sub 2}SO{sub 3}/AgBr composite very well. The Ag{sub 2}SO{sub 3}/AgBr nanoparticles were found to be encapsulated by GO sheets. The photocatalytic activity of the composite was investigated by the degradation of methyl orange (MO), rhodamine B (RhB) and methylene blue (MB) in water under visible light. The incorporation of GO sheets not only significantly enhanced the photocatalytic activity but also improved the reusability of Ag{sub 2}SO{sub 3}/AgBr nanoparticles. The photocatalytic ability of GO/Ag{sub 2}SO{sub 3}/AgBr can be maintained at a high level for 4 times cycle experiments. The trapping experiments confirmed that holes and superoxide ion radicals were the main active species responsible for the degradation reaction. A plasmonic Z-scheme photocatalytic mechanism was proposed to illustrate the possible transferred and separated behavior of electron-hole pairs among Ag, Ag{sub 2}SO{sub 3}, AgBr and GO quaternary system under visible light irradiation.

  17. Facile biosynthesis of Ag-NPs using Otostegia limbata plant extract: Physical characterization and auspicious biological activities

    Directory of Open Access Journals (Sweden)

    Rizwan Kausar

    2016-09-01

    Full Text Available Silver nanoparticles (Ag-NPs synthesized through reduction by Otostegia limbata green extract are, hereby, reported for the first time. It is very interesting to observe that in this case, O. limbata plant extract acts as a strong chelating agent in Ag-NPs formation through AgNO3. Scanning electron microscope (SEM studies expose that Ag-NPs formation is highly homogenous and spherical with mean particle size of 32±0.8 nm. A typical Ag absorption peak has been observed at 419 nm by ultra violet (UV-visible spectroscopy which have endorsed the successful formation of single phase Ag-NPs. X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FTIR examination further validates the crystalline pure phase structure of Ag-NPs. Promising results have been recorded against protein kinase inhibition assay and antibacterial assay having prominent pathogenic strains. Our present study explores that biosynthesized eco-friendly Ag-NPs have great potential, in the future, for anticancer drug development with wide range pharmaceutical applications.

  18. Facile Synthesis of Mono-Dispersed Polystyrene (PS/Ag Composite Microspheres via Modified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Wen Zhu

    2013-12-01

    Full Text Available A modified method based on in situ chemical reduction was developed to prepare mono-dispersed polystyrene/silver (PS/Ag composite microspheres. In this approach; mono-dispersed PS microspheres were synthesized through dispersion polymerization using poly-vinylpyrrolidone (PVP as a dispersant at first. Then, poly-dopamine (PDA was fabricated to functionally modify the surfaces of PS microspheres. With the addition of [Ag(NH32]+ to the PS dispersion, [Ag(NH32]+ complex ions were absorbed and reduced to silver nanoparticles on the surfaces of PS-PDA microspheres to form PS/Ag composite microspheres. PVP acted both as a solvent of the metallic precursor and as a reducing agent. PDA also acted both as a chemical protocol to immobilize the silver nanoparticles at the PS surface and as a reducing agent. Therefore, no additional reducing agents were needed. The resulting composite microspheres were characterized by TEM, field emission scanning electron microscopy (FESEM, energy-dispersive X-ray spectroscopy (EDS, XRD, UV-Vis and surface-enhanced Raman spectroscopy (SERS. The results showed that Ag nanoparticles (NPs were homogeneously immobilized onto the PS microspheres’ surface in the presence of PDA and PVP. PS/Ag composite microspheres were well formed with a uniform and compact shell layer and were adjustable in terms of their optical property.

  19. H α and H β Raman scattering line profiles of the symbiotic star AG Pegasi

    Science.gov (United States)

    Lee, Seong-Jae; Hyung, Siek

    2018-04-01

    The H α and H β line profiles of the symbiotic star AG Pegasi, observed in 1998 September (phase ϕ = 10.24), display top narrow double Gaussian components and bottom broad components (FWHM = 200-400 km s-1). The photoionization model indicates that the ionized zone, responsible for the hydrogen Balmer and Lyman lines, is radiation-bounded, with a hydrogen gas number density of nH ˜ 109.85 cm-3 and a gas temperature of Te = 12 000-15 000 K. We have carried out Monte Carlo simulations to fit the Raman scattering broad wings, assuming that the hydrogen Ly β and Ly γ lines emitted within the radiation-bounded H II zone around a white dwarf have the same double Gaussian line profile shape as the hydrogen Balmer lines. The simulation shows that the scattering H I zones are attached to (or located just outside) the inner H II shells. The best fit to the observed broad H I line profiles indicates that the column density of the scattering neutral zone is NH ≃ 3-5 × 1019 cm-2. We have examined whether the geometrical structure responsible for the observed H α and H β line profiles is a bipolar conical shell structure, consisting of the radiation-bounded ionized zone and the outer material bounded neutral zone. The expanding bipolar structure might be two opposite regions of the common envelope or the outer shell of the Roche lobe around the hot white dwarf, formed through the mass inflows from the giant star and pushed out by the fast winds from the hot white dwarf.

  20. Laser safety at high profile laser facilities

    International Nuclear Information System (INIS)

    Barat, K.

    2010-01-01

    Complete text of publication follows. Laser safety has been an active concern of laser users since the invention of the laser. Formal standards were developed in the early 1970's and still continue to be developed and refined. The goal of these standards is to give users guidance on the use of laser and consistent safety guidance and requirements for laser manufacturers. Laser safety in the typical research setting (government laboratory or university) is the greatest challenge to the laser user and laser safety officer. This is due to two factors. First, the very nature of research can put the user at risk; consider active manipulation of laser optics and beam paths, and user work with energized systems. Second, a laser safety culture that seems to accept laser injuries as part of the graduate student educational process. The fact is, laser safety at research settings, laboratories and universities still has long way to go. Major laser facilities have taken a more rigid and serious view of laser safety, its controls and procedures. Part of the rationale for this is that these facilities draw users from all around the world presenting the facility with a work force of users coming from a wide mix of laser safety cultures. Another factor is funding sources do not like bad publicity which can come from laser accidents and a poor safety record. The fact is that injuries, equipment damage and lost staff time slow down progress. Hence high profile/large laser projects need to adapt a higher safety regimen both from an engineering and administrative point of view. This presentation will discuss all these points and present examples. Acknowledgement. This work has been supported by the University of California, Director, Office of Science.

  1. The diffusion of Ag in the graphitic matrices A3-3 and A3-27

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1994-01-01

    Ag-110m contributes significantly to the plate-out activity in the coolant circuit of pebble bed reactors. The diffusion coefficient in graphitic matrices is needed to estimate the core release rate. The diffusion of Ag-110m in original, oxidized and fast neutron irradiated graphitic Matrix A3-3 and in original A3-27 was studied in vacuum by measuring the release kinetics from cylindrical specimens. The latter were previously doped with carrier-free Ag-110m at 1000 C. Concentration profiles were measured after the release of a part of the Ag-110m present initially. The release kinetics and the concentration profiles satisfied Ficks second law. In the temperature range of 800-1300 C at Ag concentrations < 4 appm the diffusion coefficient data are given. Oxidation of A3-3 accelerated the Ag migration. Ag-110m was found to be strongly enriched in the binder carbon which links the graphite grains in the matrix. (orig./HP)

  2. Synthesis and properties of new CdSe-AgI-As{sub 2}Se{sub 3} chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M. [Univ Lille Nord de France, F-59000 Lille (France); ULCO, LPCA, EAC CNRS 4493 F-59140 Dunkerque (France); Le Coq, D., E-mail: david.lecoq@univ-littoral.fr [Univ Lille Nord de France, F-59000 Lille (France); ULCO, LPCA, EAC CNRS 4493 F-59140 Dunkerque (France); Fourmentin, M.; Hindle, F.; Bokova, M.; Cuisset, A.; Masselin, P.; Bychkov, E. [Univ Lille Nord de France, F-59000 Lille (France); ULCO, LPCA, EAC CNRS 4493 F-59140 Dunkerque (France)

    2011-02-15

    Research highlights: {yields} Determination of the glass-forming region in the pseudo-ternary CdSe-AgI-As{sub 2}Se{sub 3} system. {yields} Characterization of macroscopic properties of the new CdSe-AgI-As{sub 2}Se{sub 3} glasses. {yields} Far infrared transmission of chalcogenide glasses. {yields} Characterization of the total conductivity of CdSe-AgI-As{sub 2}Se{sub 3} glasses. -- Abstract: The glass-forming region in the pseudo-ternary CdSe-AgI-As{sub 2}Se{sub 3} system was determined. Measurements including differential scanning calorimetry (DSC), density, and X-ray diffraction were performed. The effect resulting from the addition of CdSe or AgI has been highlighted by examining three series of different base glasses. The characteristic temperatures of the glass samples, including glass transition (T{sub g}), crystallisation (T{sub x}), and melting (T{sub m}) temperatures are reported and used to calculate their {Delta}T = T{sub x} - T{sub g} and their Hruby, H{sub r} = (T{sub x} - T{sub g})/(T{sub m} - T{sub x}), criteria. Evolution of the total electrical conductivity {sigma} and the room temperature conductivity {sigma}{sub 298} was also studied. The terahertz transparency domain in the 50-600 cm{sup -1} region was pointed for different chalcogenide glasses (ChGs) and the potential of the THz spectroscopy was suggested to obtain structural information on ChGs.

  3. Effects of plant species on soil microbial processes and CH4 emission from constructed wetlands

    International Nuclear Information System (INIS)

    Wang, Yanhua; Yang, Hao; Ye, Chun; Chen, Xia; Xie, Biao; Huang, Changchun; Zhang, Jixiang; Xu, Meina

    2013-01-01

    Methane (CH 4 ) emission from constructed wetland has raised environmental concern. This study evaluated the influence of mono and polyculture constructed wetland and seasonal variation on CH 4 fluxes. Methane emission data showed large temporal variation ranging from 0 to 249.29 mg CH 4 m −2 h −1 . Results indicated that the highest CH 4 flux was obtained in the polyculture system, planted with Phragmites australis, Zizania latifolia and Typha latifolia, reflecting polyculture system could stimulate CH 4 emission. FISH analysis showed the higher amount of methanotrophs in the profile of Z. latifolia in both mono and polyculture systems. The highest methanogens amount and relatively lower methanotrophs amount in the profile of polyculture system were obtained. The results support the characteristics of CH 4 fluxes. The polyculture constructed wetland has the higher potential of global warming. -- Highlights: ► The polyculture constructed wetland has the higher contribution to CH 4 emission. ► The CH 4 –C conversion ranged from 0 to 3.7%. ► The Z. latifolia played important roles in methanotrophs growth and CH 4 consumption. ► Major influence of T-N, TOC and plant cover on CH 4 emission was obtained. -- The polyculture constructed wetland has the higher contribution to global warming

  4. Forensic Reconstructions of Radioactive Particulate Releases at the Chernobyl and the Al Tuwaitha Nuclear Facilities

    International Nuclear Information System (INIS)

    Chesser, R. K.; Rogers, B. E.; Philips, C. J.

    2007-01-01

    Evaluating dispersion of nuclear materials released by accidental, operational, or clandestine means is important to the international community. Our research team has performed forensic reconstructions of radionuclide releases at the Chernobyl Nuclear Power Plant (ChNPP) in Ukraine and the Al Tuwaitha Nuclear Facility (ATNF) near Baghdad, Iraq. Our objectives at ChNPP were to determine the influences of extant atmospheric conditions on particle size distributions and their depositions in the near-field (less than 12 km) regions surrounding the complex. We derived mathematical models of particulate fluid-flow in varying velocity and turbulence fields to fit with 3000 geographically-referenced measurements. Conformity of predicted and empirical fallout patterns was excellent, enabling accurate reconstructions of the particle size contributions, weather conditions, and release energies from the accident. The objectives at ATNF were to evaluate means of dispersion and characterization of nuclear materials within and outside of the compound. Normal facility operations, military actions, and looting of the facility could have contributed to the release of radioactivity, but would yield quite different geographic and radionuclide profiles. Detailed gamma, alpha, and beta radiation profiles were examined for 400 geographically-referenced soil samples collected from ATNF and the villages of Ishtar and Al Ryhad. Natural uranium clusters were identified in several locations clearly showing that looting of yellowcake was the primary means of dispersion. No dispersion of nuclear materials was shown to result from military operations at the site. Our programs demonstrate the precision of geographic-based forensic reconstructions and show that forecast models are robust.(author)

  5. Morbidity profile of elderly outpatients attending selected sub-district Siddha health facilities in Tamil Nadu, India

    Science.gov (United States)

    Selvaraj, Kalaiselvi; Srinivasan, Manikandan; Duraisamy, Venkatachalam; Ramaswamy, Gomathi; Venugopal, Vinayagamurthy; Chinnakali, Palanivel

    2016-01-01

    Background: Recently, under National Health Mission alternate systems of Medicine are mainstreamed in public health care system. Effective action plan generation, logistic arrangement and roll out of these alternate systems of Medicine needs understanding on profile of morbidities among attendees who come to these facilities. Objectives: This study was planned to report profile of morbidities, age and sex differentials in specific morbidities among geriatric attendees in secondary level siddha health facilities. Materials and Methods: A facility based cross sectional study was conducted among elderly person (60 years and above) attending Siddha outpatient department (OPD) from two of the randomly selected sub district level siddha facilities in Erode district, Tamil Nadu, India. Information on socio-demographic variables like age, gender, education and clinical profile (diagnosis) were collected from records already maintained in the siddha OPD. Morbidities were summarized in terms of proportions based on age and gender. Age and sex specific differentials on specific morbidities were compared using ‘z’ test. Results: Of 2710 patients who visited these two siddha facilities during the reference period, 763 (28.1%) patients were elderly. Arthritis (45.2%), neuritis (8.8%), diabetes (6.6%), bronchial asthma (5.2%), hemiplegia (3.7%) were the top five morbidities diagnosed and treated among elderly attending the siddha OPD. There was a predilection towards elderly male for morbidities such as bronchial asthma and hemiplegia compared to elderly female. Similarly, higher proportions of lumbar spondylosis, hypertension and fungal skin diseases were reported among aged 80 years or more compared to elderly aged 60-79 years. Conclusion: Elderly constitute more than one fourth of outpatients load from siddha health facilities. Degenerative diseases like arthritis and non-communicable diseases were the common morbidities in this age group. Geriatric clinics and mobile

  6. Measurement of profile and intensity of proton beam by an integrating current transformer and a segmented parallel-plate ion chamber for the AGS-spallation target experiment (ASTE)

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Nakashima, Hiroshi; Takada, Hiroshi

    2001-03-01

    Profile and intensity of proton beams incident to a mercury target were measured for the experiments under AGS-spallation Target Experiment (ASTE) collaboration. Protons of 1.94, 12 and 24 GeV energy were measured for a temperature, pressure wave and neutronics in the mercury target. For the beam profile measurement, segmented parallel-plate ion chamber (CHIDORI) was used as the online detector. Imaging plates (IP) were also used for the profile measurement with aluminum activation foils as the image converter. An integrating current transformer (ICT) and activation method by Cu foil were used for the measurement of beam intensity. The beam profile obtained by CHIDORI gives a good agreement with the results with the IP. The beam intensity obtained by ICT agrees with the data obtained by the activation technique within ±3% for 12 and 24 GeV cases. Furthermore, these results show in good agreement with those obtained by the monitor of segmented wire ionization chamber (SWIC) and secondary emission chamber (SEC) installed by the AGS team. Therefore, a reliable beam monitor technique was established, so that the analysis of the experiment such as temperature and pressure wave can be normalized by the number of incident protons. (author)

  7. First principles study of the Ag nanoclusters adsorption effect on the photocatalytic properties of AgBr(1 1 0) surface

    Science.gov (United States)

    Chi, Yuhua; Zhao, Lianming; Li, Xue; Zhu, Houyu; Guo, Wenyue

    2018-05-01

    The electronic structures and photocatalytic performance of Agn/AgBr(1 1 0)(n = 7-13) are studied using density functional theory (DFT). The adsorption of Agn (n = 7-13) nanoclusters on AgBr(1 1 0) surface induces a new metal-induced gap band (MIGB) located between the valence band (VB) and the conduction band (CB), the variety of the electronic characters of AgBr(1 1 0) favor the visible and infrared light absorption, which improves the sunlight utilization. The dominant localization of the photo-excited electrons on the Agn clusters of Agn/AgBr(1 1 0)(n = 7-13) facilitates the oxidation-reduction reactions occurring on the surface and also effectively reduces the photolysis of AgBr under the sunlight irradiation. The overpotentials of the CB and VB edges indicate that photocatalytic conversion of CO2 with H2O to methanol is possible on AgBr(1 1 0) deposited with the Agn nanoclusters, which has been realized experimentally (An et al., 2012). The substantial strengthening of visible and infrared light absorption and the free energy profiles for the conversion of CO2 with H2O to methanol indicate that Ag13/AgBr(1 1 0) surface can be expected to be the excellent photocatalysts.

  8. Radiative forcing calculations for CH3Cl

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.; Wuebbles, D.J.

    1994-06-01

    Methyl chloride, CH 3 Cl, is the major natural source of chlorine to the stratosphere. The production of CH 3 Cl is dominated by biological sources from the oceans and biomass burning. Production has a seasonal cycle which couples with the short lifetime of tropospheric CH 3 Cl to produce nonuniform global mixing. As an absorber of infrared radiation, CH 3 Cl is of interest for its potential affect on the tropospheric energy balance as well as for its chemical interactions. In this study, we estimate the radiative forcing and global warming potential (GWP) of CH 3 Cl. Our calculations use an infrared radiative transfer model based on the correlated k-distribution algorithm for band absorption. Global and annual average vertical profiles of temperature and trace gas concentration were assumed. The effects of clouds are modeled using three layers of global and annual average cloud optical properties. A radiative forcing value of 0.0053 W/m 2 ppbv was obtained for CH 3 Cl and is approximately linear in the background abundance. This value is about 2 percent of the forcing of CFC-11 and about 300 times the forcing of CO 2 , on a per molecule basis. The radiative forcing calculation for CH 3 Cl is used to estimate the global warming potential (GWP) of CH 3 Cl. The results give GWPs for CH 3 Cl of the order of 25 at a time of 20 years(CO 2 = 1). This result indicates that CH 3 Cl has the potential to be a major greenhouse gas if significant human related emissions were introduced into the atmosphere

  9. Synthesis of Ag2Se–graphene–TiO2 nanocomposite and analysis of ...

    Indian Academy of Sciences (India)

    2017-11-16

    Nov 16, 2017 ... Synthesis of Ag2Se–graphene–TiO2 nanocomposite and analysis of photocatalytic ... photoactivity, obtaining a total CH3OH yield of 3.52μmol g. −1 h. −1 after 48h. .... a = b = 3.78 Å and c = 9.51 Å (JCPDS PDF#00-021-1279).

  10. Electromigration and morphological changes in Ag nanostructures

    Science.gov (United States)

    Chatterjee, A.; Bai, T.; Edler, F.; Tegenkamp, C.; Weide-Zaage, K.; Pfnür, H.

    2018-02-01

    Electromigration (EM) as a structuring tool was investigated in Ag nanowires (width 300 nm, thickness 25 nm) and partly in notched and bow-tie Ag structures on a Si(1 0 0) substrate in ultra-high vacuum using a four-tip scanning tunneling microscope in combination with a scanning electron microscope. From simulations of Ag nanowires we got estimates of temperature profiles, current density profiles, EM and thermal migration (TM) mass flux distributions within the nanowire induced by critical current densities of 108 A cm-2. At room temperature, the electron wind force at these current densities by far dominates over thermal diffusion, and is responsible for formation of voids at the cathode and hillocks at the anode side. For current densities that exceed the critical current densities necessary for EM, a new type of wire-like structure formation was found both at room temperature and at 100 K for notched and bow-tie structures. This suggests that the simultaneous action of EM and TM is structure forming, but with a very small influence of TM at low temperature.

  11. Rapid Access to Ortho-Alkylated Vinylarenes from Aromatic Acids by Dearomatization and Tandem Decarboxylative C-H Olefination/Rearomatization.

    Science.gov (United States)

    Tsai, Hung-Chang; Huang, Yen-Hsiang; Chou, Chih-Ming

    2018-03-02

    A two-step straightforward method for the preparation of ortho-alkylated vinylarenes from readily available benzoic acids is described. The synthetic route involves the dearomatization of benzoic acids by Birch reduction providing alkylated cyclohexa-2,5-dienyl-1-carboxylic acids. The diene subsequently undergoes a decarboxylative C-H olefination followed by rearomatization to deliver ortho-alkylated vinylarene. Mechanistic studies suggest that a Pd/Ag bimetallic catalytic system is important in the tandem decarboxylative C-H olefination/rearomatization step.

  12. An oil-in-water self-assembly synthesis, characterization and photocatalytic properties of nano Ag@AgCl surface-sensitized K2Ti4O9

    International Nuclear Information System (INIS)

    Liang, Yinghua; Lin, Shuanglong; Liu, Li; Hu, Jinshan; Cui, Wenquan

    2014-01-01

    Highlights: • The plasmatic Ag@AgCl surface-sensitized K 2 Ti 4 O 9 composite photocatalysts. • Ag@AgCl greatly increased visible light absorption for K 2 Ti 4 O 9 . • The photocatalysts exhibited enhanced photocatalytic dye degradation. - Abstract: Nano-sized plasmonic Ag@AgCl surface-sensitized K 2 Ti 4 O 9 composite photocatalysts (hereafter designated as Ag@AgCl/K 2 Ti 4 O 9 ) was synthesized via a facile oil-in-water self-assembly method. The photocatalytic activity of the prepared materials for RhB (Rhodamine B) degradation was examined under visible light irradiation. The results reveal that the size of Ag@AgCl, which evenly dispersed on the surface of K 2 Ti 4 O 9 , distributes about 20–50 nm. The UV–vis diffuse reflectance spectra indicate that Ag@AgCl/K 2 Ti 4 O 9 samples have a significantly enhanced optical absorption in 380–700 nm. The photocatalytic activities of the Ag@AgCl/K 2 Ti 4 O 9 samples increase first and then decrease with increasing amount of loading Ag@AgCl and the Ag@AgCl(20 wt.%)/K 2 Ti 4 O 9 sample exhibits the best photocatalytic activity and 94.47% RhB was degraded after irradiation for 2 h. Additionally, studies performed using radical scavengers indicated that O 2 · − and Cl 0 acted as the main reactive species. The electronic interaction was systematically studied and confirmed by the photo-electrochemical measurements

  13. Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag

    International Nuclear Information System (INIS)

    Gomes, Tânia; Pereira, Catarina G.; Cardoso, Cátia; Bebianno, Maria João

    2013-01-01

    Highlights: •Different protein expression profiles between tissues and Ag forms. •Ag NPs and Ag + presented different mechanisms of toxic action. •Ag NPs toxicity is mediated by oxidative stress-induced cell signalling cascades. •New biomarkers for Ag NPs were proposed, i.e. MVP, ras partial and precol-P. -- Abstract: Ag NPs are one of the most commonly used NPs in nanotechnology whose environmental impacts are to date unknown and the information about bioavailability, mechanisms of biological uptake and toxic implications in organisms is scarce. So, the main objective of this study was to investigate differences in protein expression profiles in gills and digestive gland of mussels Mytilus galloprovincialis exposed to Ag NPs and Ag + (10 μg L −1 ) for a period of 15 days. Protein expression profiles of exposed gills and digestive glands were compared to those of control mussels using two–dimensional electrophoresis to discriminate differentially expressed proteins. Different patterns of protein expression were obtained for exposed mussels, dependent not only on the different redox requirements of each tissue but also to the Ag form used. Unique sets of differentially expressed proteins were affected by each silver form in addition to proteins that were affected by both Ag NPs and Ag + . Fifteen of these proteins were subsequently identified by MALDI–TOF–TOF and database search. Ag NPs affected similar cellular pathways as Ag + , with common response mechanisms in cytoskeleton and cell structure (catchin, myosin heavy chain), stress response (heat shock protein 70), oxidative stress (glutathione s-transferase), transcriptional regulation (nuclear receptor subfamily 1G), adhesion and mobility (precollagen-P) and energy metabolism (ATP synthase F0 subunit 6 and NADH dehydrogenase subunit 2). Exposure to Ag NPs altered the expression of two proteins associated with stress response (major vault protein and ras partial) and one protein involved in

  14. Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Tânia; Pereira, Catarina G.; Cardoso, Cátia; Bebianno, Maria João, E-mail: mbebian@ualg.pt

    2013-07-15

    Highlights: •Different protein expression profiles between tissues and Ag forms. •Ag NPs and Ag{sup +} presented different mechanisms of toxic action. •Ag NPs toxicity is mediated by oxidative stress-induced cell signalling cascades. •New biomarkers for Ag NPs were proposed, i.e. MVP, ras partial and precol-P. -- Abstract: Ag NPs are one of the most commonly used NPs in nanotechnology whose environmental impacts are to date unknown and the information about bioavailability, mechanisms of biological uptake and toxic implications in organisms is scarce. So, the main objective of this study was to investigate differences in protein expression profiles in gills and digestive gland of mussels Mytilus galloprovincialis exposed to Ag NPs and Ag{sup +} (10 μg L{sup −1}) for a period of 15 days. Protein expression profiles of exposed gills and digestive glands were compared to those of control mussels using two–dimensional electrophoresis to discriminate differentially expressed proteins. Different patterns of protein expression were obtained for exposed mussels, dependent not only on the different redox requirements of each tissue but also to the Ag form used. Unique sets of differentially expressed proteins were affected by each silver form in addition to proteins that were affected by both Ag NPs and Ag{sup +}. Fifteen of these proteins were subsequently identified by MALDI–TOF–TOF and database search. Ag NPs affected similar cellular pathways as Ag{sup +}, with common response mechanisms in cytoskeleton and cell structure (catchin, myosin heavy chain), stress response (heat shock protein 70), oxidative stress (glutathione s-transferase), transcriptional regulation (nuclear receptor subfamily 1G), adhesion and mobility (precollagen-P) and energy metabolism (ATP synthase F0 subunit 6 and NADH dehydrogenase subunit 2). Exposure to Ag NPs altered the expression of two proteins associated with stress response (major vault protein and ras partial) and one

  15. Sn-In-Ag phase equilibria and Sn-In-(Ag)/Ag interfacial reactions

    International Nuclear Information System (INIS)

    Chen Sinnwen; Lee Wanyu; Hsu Chiaming; Yang Chingfeng; Hsu Hsinyun; Wu Hsinjay

    2011-01-01

    Research highlights: → Thermodynamic models of Sn-In and Sn-In-Ag are developed using the CALPHAD approach. → Reaction layer in the Sn-In-(Ag)/Ag couples at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. → Reactions in the Sn-20 wt%In-2.8 wt%Ag/Ag couples are faster than those in the Sn-20 wt%In/Ag couples. - Abstract: Experimental verifications of the Sn-In and Sn-In-Ag phase equilibria have been conducted. The experimental measurements of phase equilibria and thermodynamic properties are used for thermodynamic modeling by the CALPHAD approach. The calculated results are in good agreement with experimental results. Interfacial reactions in the Sn-In-(Ag)/Ag couples have been examined. Both Ag 2 In and AgIn 2 phases are formed in the Sn-51.0 wt%In/Ag couples reacted at 100 and 150 deg. C, and only the Ag 2 In phase is formed when reacted at 25, 50 and 75 deg. C. Due to the different growth rates of different reaction phases, the reaction layer at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. In the Sn-20.0 wt%In/Ag couples, the ζ phase is formed at 250 deg. C and ζ/AgIn 2 phases are formed at 125 deg. C. Compared with the Sn-20 wt%In/Ag couples, faster interfacial reactions are observed in the Sn-20.0 wt%In-2.8 wt%Ag/Ag couples, and minor Ag addition to Sn-20 wt%In solder increases the growth rates of the reaction phases.

  16. Facile NOx interconversion over preoxidized Ag(111)

    Science.gov (United States)

    Klacar, S.; Martin, N. M.; Gustafson, J.; Blomberg, S.; Liu, Z.; Axnanda, S.; Chang, R.; Lundgren, E.; Grönbeck, H.

    2013-11-01

    X-ray photoelectron spectroscopy and density functional theory calculations are used to investigate NO adsorption at low (100 K) and room temperature (RT) over preoxidized Ag(111). At 100 K, the data indicates presence of NO and N2O2, with little or no nitrite/nitrate formation. This is consistent with the calculated surface core level shifts and the pronounced barrier for nitrite formation. At RT, the recorded spectra indicate a complex interconversion between adsorbed species with an initial formation of a p(4 × 4) nitrate overlayer. With increasing NO pressure, the experimental results are best rationalized by partial nitrate decomposition into nitrites and subsequent NO physisorption, which leads to the formation of N2O3-like species.

  17. Wire Scanner Beam Profile Measurements for the LANSCE Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing beam profile measurement systems, commonly known as Wire Scanners (WS). Using the principal of secondary electron emission, the WS measurement system moves a wire or fiber across an impinging particle beam, sampling a projected transverse-beam distribution. Because existing WS actuators and electronic components are either no longer manufactured or home-built with antiquated parts, a new WS beam profile measurement is being designed, fabricated, and tested. The goals for these new WS's include using off-the-shelf components while eliminating antiquated components, providing quick operation while allowing for easy maintainability, and tolerating external radioactivation. The WS measurement system consists of beam line actuators, a cable plant, an electronics processor chassis, and software located both in the electronics chassis (National Instruments LabVIEW) and in the Central Control Room (EPICS-based client software). This WS measurement system will measure Hand H{sup +} LANSCE-facility beams and will also measure less common beams. This paper describes these WS measurement systems.

  18. Improved kaon beam and spectrometer for the AGS

    International Nuclear Information System (INIS)

    Hungerford, E.V. III.

    1979-01-01

    The properties of the existing low energy separated kaon beams at the Brookhaven AGS, and the preliminary plans to construct an improved kaon beam line with a high resolution spectrometer for this facility are reported. 10 references

  19. Analysis of Ozone And CO2 Profiles Measured At A Diary Facility

    Science.gov (United States)

    Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.

    2015-12-01

    Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the

  20. Nano Ag@AgBr surface-sensitized Bi{sub 2}WO{sub 6} photocatalyst: oil-in-water synthesis and enhanced photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shuanglong; Liu, Li; Hu, Jinshan; Liang, Yinghua, E-mail: liangyh@heuu.edu.cn; Cui, Wenquan, E-mail: wkcui@163.com

    2015-01-01

    Graphical abstract: - Highlights: • The plasmatic Ag@AgBr surface-sensitized Bi{sub 2}WO{sub 6} composite photocatalysts. • Ag@AgBr greatly increased visible-light absorption for Bi{sub 2}WO{sub 6}. • The plasmonic photocatalysts exhibited enhanced activity for the degradation of MB, phenol and salicylic acid. - Abstract: Nano Ag@AgBr decorated on the surface of flower-like Bi{sub 2}WO{sub 6} (hereafter designated Ag@AgBr/Bi{sub 2}WO{sub 6}) were prepared via a facile oil-in-water self-assembly method. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS), etc. The characterization results indicated that nano Ag@AgBr was observed to be evenly dispersed on the surface of Bi{sub 2}WO{sub 6}, and was approximately 20 nm in size. Ag@AgBr/Bi{sub 2}WO{sub 6} composites exhibited excellent UV–vis absorption, due to quantum dimension effect of Ag@AgBr, the surface plasmonic resonance (SPR) of Ag nanoparticles and the special flower-like structure of Bi{sub 2}WO{sub 6}. The photoelectrochemical measurement verified that the suitable band potential of Ag@AgBr and Bi{sub 2}WO{sub 6} and the existence of metal Ag resulted in the high efficiency in charge separation of the composite. The photocatalytic activities of the Ag@AgBr/Bi{sub 2}WO{sub 6} samples were examined under visible-light irradiation for the degradation of methylene blue (MB). The composite presented excellent photocatalytic activity due to the synergetic effect of Bi{sub 2}WO{sub 6}, AgBr, and Ag nanoparticles. The Ag@AgBr(20 wt.%)/Bi{sub 2}WO{sub 6} sample exhibited the best photocatalytic activity, degrading 95.03% MB after irradiation for 2 h, which was respectively 1.29 times and 1.28 times higher than that of Ag@AgBr and Bi{sub 2}WO{sub 6} photocatalyst. Meanwhile, phenol and salicylic acid were degraded to further prove the degradation ability of Ag@AgBr/Bi{sub 2

  1. New and improved CH implosions at the National Ignition Facility

    Science.gov (United States)

    Hinkel, D. E.; Doeppner, T.; Kritcher, A. L.; Ralph, J. E.; Jarrott, L. C.; Albert, F.; Benedetti, L. R.; Field, J. E.; Goyon, C. S.; Hohenberger, M.; Izumi, N.; Milovich, J. L.; Bachmann, B.; Casey, D. T.; Yeamans, C. B.; Callahan, D. A.; Hurricane, O. A.

    2017-10-01

    Improvements to the hohlraum for CH implosions have resulted in near-record hot spot pressures, 225 Gbar. Implosion symmetry and laser energy coupling are improved by using a hohlraum that, compared to the previous high gas-fill hohlraum, is longer, larger, at lower gas fill density, and is fielded at zero wavelength separation to minimize cross-beam energy transfer. With a capsule at 90% of its original size in this hohlraum, implosion symmetry changes from oblate to prolate, at 33% cone fraction. Simulations highlight improved inner beam propagation as the cause of this symmetry change. These implosions have produced the highest yield for CH ablators at modest power and energy, i.e., 360 TW and 1.4 MJ. Upcoming experiments focus on continued improvement in shape as well as an increase in implosion velocity. Further, results and future plans on an increase in capsule size to improve margin will also be presented. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  2. CH-TRU Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2005-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  3. CH-TRU Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-10-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  4. Profile formation and sustainment of autonomous tokamak plasma with current hole configuration

    International Nuclear Information System (INIS)

    Hayashi, N.; Takizuka, T.; Ozeki, T.

    2005-01-01

    We have investigated the profile formation and sustainment of tokamak plasmas with the current hole (CH) configuration by using 1.5D time-dependent transport simulations. A model of the current limit inside the CH on the basis of the Axisymmetric Tri-Magnetic-Islands equilibrium is introduced into the transport simulation. We found that a transport model with the sharp reduction of anomalous transport in the reversed-shear (RS) region can reproduce the time evolution of profiles observed in JT-60U experiments. The transport becomes neoclassical-level in the RS region, which results in the formation of profiles with internal transport barrier (ITB) and CH. The CH plasma has an autonomous property because of the strong interaction between a pressure profile and a current profile through the large bootstrap current fraction. The ITB width determined by the neoclassical-level transport agrees well with that measured in JT-60U. The energy confinement inside the ITB agrees with the scaling based on the JT-60U data. The scaling means the autonomous limitation of energy confinement in the CH plasma. The plasma with the large CH is sustained with the full current drive by the bootstrap current. The plasma with the small CH and the small bootstrap current fraction shrinks due to the penetration of inductive current. This shrink is prevented and the CH size can be controlled by the appropriate external current drive (CD). The CH plasma is found to respond autonomically to the external CD. (author)

  5. Parallel factor ChIP provides essential internal control for quantitative differential ChIP-seq.

    Science.gov (United States)

    Guertin, Michael J; Cullen, Amy E; Markowetz, Florian; Holding, Andrew N

    2018-04-17

    A key challenge in quantitative ChIP combined with high-throughput sequencing (ChIP-seq) is the normalization of data in the presence of genome-wide changes in occupancy. Analysis-based normalization methods were developed for transcriptomic data and these are dependent on the underlying assumption that total transcription does not change between conditions. For genome-wide changes in transcription factor (TF) binding, these assumptions do not hold true. The challenges in normalization are confounded by experimental variability during sample preparation, processing and recovery. We present a novel normalization strategy utilizing an internal standard of unchanged peaks for reference. Our method can be readily applied to monitor genome-wide changes by ChIP-seq that are otherwise lost or misrepresented through analytical normalization. We compare our approach to normalization by total read depth and two alternative methods that utilize external experimental controls to study TF binding. We successfully resolve the key challenges in quantitative ChIP-seq analysis and demonstrate its application by monitoring the loss of Estrogen Receptor-alpha (ER) binding upon fulvestrant treatment, ER binding in response to estrodiol, ER mediated change in H4K12 acetylation and profiling ER binding in patient-derived xenographs. This is supported by an adaptable pipeline to normalize and quantify differential TF binding genome-wide and generate metrics for differential binding at individual sites.

  6. A cationic Ag-I(PNPtBu) species acting as PNP transfer agent: Facile synthesis of Pd(PNPtBu)(alkyl) complexes and their reactivity compared to PCPtBu analogues

    NARCIS (Netherlands)

    van der Vlugt, J.I.; Siegler, M.A.; Janssen, M.; Vogt, D.; Spek, A.L.

    2009-01-01

    The straightforward Synthesis of cationic complex 1, [Ag(PNtBu)]BF4 (PNPtBu = 1,2-bis[(di-tert-butylphosphino)methyl]pyridine), and its facile transmetalating properties toward gold and palladium are described. The corresponding Au complex [Au(PNPtBu)](2)(BF4)(2) (2) exists its a dimer in the solid

  7. Relationships between methane production and milk fatty acid profiles in dairy cattle

    NARCIS (Netherlands)

    Dijkstra, J.; Zijderveld, van S.M.; Apajalahti, J.A.; Bannink, A.; Gerrits, W.J.J.; Newbold, J.R.; Perdok, H.B.; Berends, H.

    2011-01-01

    There is a need to develop simple ways of quantifying and estimating CH4 production in cattle. Our aim was to evaluate the relationship between CH4 production and milk fatty acid (FA) profile in order to use milk FA profiles to predict CH4 production in dairy cattle. Data from 3 experiments with

  8. Tunneling-recombination luminescence between Ag0 and Ag2+ in KCl:AgCl

    International Nuclear Information System (INIS)

    Delbecq, C.J.; Dexter, D.L.; Yuster, P.H.

    1978-01-01

    Appropriate treatment of a KCl:AgCl crystal results in the trapping of electrons as silver atoms, Ag 0 , and positive holes as AgCl 4 2- , Ag 2+ , centers. Optical excitation of Ag 0 in such a crystal at T 0 and Ag 2+ pairs, similar to the Ag 0 -Cl 2 - tunneling-recombination studies we previously reported. We have shown that Ag 2+ centers are involved in the emission process by preferentially orienting the anisotropic Ag 2+ at 6 K by excitation with polarized light and observing that the afterglow is polarized. Upon warming to 50 K, where the preferentially oriented Ag 2+ can change orientation, a strong reversal in the degree of polarization occurs which finally decays to zero. The characteristics of this luminescence can be understood if we assume: (i) a tunneling-recombination mechanism in which the orientation of the electric vector of the emitted radiation depends on the position of the Ag 0 relative to the Ag 2+ and (ii) the tunneling is anisotropic and depends on the location of the Ag 0 relative to the anisotropic Ag 2+ . The latter assumption is based on the tetragonal (d-like) symmetry of the Ag 2+ complex. Good quantitative agreement between theory and experiment has been obtained on the decay kinetics, the degree of polarization, and the polarization reversal

  9. Amplification of pico-scale DNA mediated by bacterial carrier DNA for small-cell-number transcription factor ChIP-seq

    DEFF Research Database (Denmark)

    Jakobsen, Janus S; Bagger, Frederik O; Hasemann, Marie S

    2015-01-01

    BACKGROUND: Chromatin-Immunoprecipitation coupled with deep sequencing (ChIP-seq) is used to map transcription factor occupancy and generate epigenetic profiles genome-wide. The requirement of nano-scale ChIP DNA for generation of sequencing libraries has impeded ChIP-seq on in vivo tissues of low...... transcription factor (CEBPA) and histone mark (H3K4me3) ChIP. We further demonstrate that genomic profiles are highly resilient to changes in carrier DNA to ChIP DNA ratios. CONCLUSIONS: This represents a significant advance compared to existing technologies, which involve either complex steps of pre...... cell numbers. RESULTS: We describe a robust, simple and scalable methodology for ChIP-seq of low-abundant cell populations, verified down to 10,000 cells. By employing non-mammalian genome mapping bacterial carrier DNA during amplification, we reliably amplify down to 50 pg of ChIP DNA from...

  10. Sensors based on Ag-loaded hematite (α-Fe2O3 nanoparticles for methyl mercaptan detection at room temperature

    Directory of Open Access Journals (Sweden)

    Daniel Garcia

    2017-06-01

    Full Text Available Sensors based on Ag/α-Fe2O3 nanoparticles have been prepared by the coprecipitation method for sensing methyl mercaptan at room temperature. X-ray diffraction patterns of samples matched perfectly with characteristic peaks of hematite with no peaks assigned to Ag even at the highest concentration. STEM images and EDX analysis revealed the presence of Ag nanoparticles (from 2 to 5 nm which were highly dispersed onto α-Fe2O3 surface with an Ag/Fe ratio from 0.014 to 0.099. The Ag nanoparticles were deposited on the hematite surface. Sensing tests of Ag-loaded hematite nanoparticles showed much higher response signal than the unmodified sensor. Hematite loaded with 3%(Wt Ag showed the highest response with a linear dependence from 20 to 80 ppm. The sensor also depicted a good selectivity and stability during 4 days with short recovery time. The high dispersion of reduced Ag evaluated by XPS analysis played an important chemical role in the sensing mechanism that favored the contact of CH3SH with oxygen.

  11. Stanovení vybraných vonných látek v kosmetických prostředcích

    OpenAIRE

    Novotná, Petra

    2011-01-01

    Tato diplomová práce se zabývá stanovením vybraných vonných látek v kosmetických prostředcích. Úvodem je popsán výskyt, metody získávání a využití těchto látek. Jsou nepostradatelnou součástí především kosmetických výrobků, avšak u citlivých jedinců mohou vyvolat alergickou reakci. O příčinách vzniku a průběhu těchto nežádoucích projevů je v teoretické části také pojednáno. Je známo několik stovek až tisíc vonných látek používaných v parfumérském průmyslu, z nichž je 26 ustanoveno evropskými ...

  12. High efficient multifunctional Ag_3PO_4 loaded hydroxyapatite nanowires for water treatment

    International Nuclear Information System (INIS)

    Li, Yaling; Zhou, Hangyu; Zhu, Genxing; Shao, Changyu; Pan, Haihua; Xu, Xurong; Tang, Ruikang

    2015-01-01

    Highlights: • The multifunctional Ag_3PO_4 loaded hydroxyapatite (HAP) nanowires were synthesized via a facile in-situ precipitation method. • By optimizing the initial concentration of AgNO_3, the well-distributed Ag_3PO_4/HAP composites could be achieved. • The Ag_3PO_4/HAP composites showed excellent photocatalytic performance for the decomposition of dyes under visible light irradiation. • The maximum absorption capacity of the Ag_3PO_4/HAP composites for Pb(II) was 250 mg/g, approximately three times as that of pure HAP. • The Ag_3PO_4/HAP composites also exhibited excellent antibacterial activities even at relative low concentrations. - Abstract: Organic, inorganic, and biological pollutants are typical water contaminants and they seriously affect water quality. In this study, we suggested that a novel multifunctional Ag_3PO_4 loaded hydroxyapatite (HAP) material can remove the typical pollutants from water. The Ag_3PO_4/HAP composites were synthesized facilely via in-situ precipitation of Ag_3PO_4 on the pre-existing HAP nanowires. By optimizing the composition of Ag_3PO_4 and HAP, the material could achieve an optimal photocatalytic activity to decompose rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) under visible light irradiations with enhanced pH stability. Besides, the adsorption of Pb(II) on the Ag_3PO_4/HAP reached a maximum capacity of 250 mg/g and this value was approximately three times as that of pure HAP. Furthermore, the composite material exhibited excellent antibacterial activities towards gram-negative bacterium (Escherichia coli) and gram-positive bacterium (Stphylococcus aureus). The results highlighted the cooperative effect between Ag_3PO_4 and hydroxyapatite (HAP). The simultaneous removals of dyes, toxic metal ions, and bacteria with a high efficiency followed an easy approach for the purification of contaminated water via the rationally designed material, in which the Ag_3PO_4/HAP composite might be developed

  13. Preparation and characterization of visible light-driven AgCl/PPy photocatalyst

    International Nuclear Information System (INIS)

    Gu Shuna; Li Bing; Zhao Chongjun; Xu Yunlong; Qian Xiuzhen; Chen, Guorong

    2011-01-01

    Graphical abstract: AgCl/PPy composite exhibits improved photocatalytic performance and high stability under visible light. Display Omitted Highlights: → AgCl/(PPy) nanocomposites as visible light driven photocatalyst. → Composites exhibited high visible light-driven photocatalytic activity and stability. → Photocatalytic process on MO followed photoreduction mechanisms. → Used photocatalyst can be regenerated in aqueous FeCl 3 solution. - Abstract: Visible light photoactive AgCl/polypyrrole (PPy) composites were prepared via the reaction between excessive Ag + and Cl - ions in the presence of PPy . The AgCl/PPy composites were systematically characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectra, X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM) and Thermal gravity analysis (TGA). It was found that face-centered cubic AgCl nanocrystallite and 0.2 wt% PPy component existed in the composite and spherical AgCl/PPy nanoparticles were in the range of 200-600 nm. The AgCl/PPy composites showed higher visible light-driven photocatalytic activity and stability than that of AgCl. A photoreduction mechanism was postulated for AgCl/PPy photocatalyst on dye methyl orange (MO). The used AgCl/PPy photocatalyst was facilely regenerated by an oxidation process in aqueous FeCl 3 solution.

  14. Preparation and characterization of visible light-driven AgCl/PPy photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Gu Shuna; Li Bing [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao Chongjun, E-mail: chongjunzhao@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xu Yunlong; Qian Xiuzhen; Chen, Guorong [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2011-05-05

    Graphical abstract: AgCl/PPy composite exhibits improved photocatalytic performance and high stability under visible light. Display Omitted Highlights: > AgCl/(PPy) nanocomposites as visible light driven photocatalyst. > Composites exhibited high visible light-driven photocatalytic activity and stability. > Photocatalytic process on MO followed photoreduction mechanisms. > Used photocatalyst can be regenerated in aqueous FeCl{sub 3} solution. - Abstract: Visible light photoactive AgCl/polypyrrole (PPy) composites were prepared via the reaction between excessive Ag{sup +} and Cl{sup -} ions in the presence of PPy{sub .} The AgCl/PPy composites were systematically characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectra, X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM) and Thermal gravity analysis (TGA). It was found that face-centered cubic AgCl nanocrystallite and 0.2 wt% PPy component existed in the composite and spherical AgCl/PPy nanoparticles were in the range of 200-600 nm. The AgCl/PPy composites showed higher visible light-driven photocatalytic activity and stability than that of AgCl. A photoreduction mechanism was postulated for AgCl/PPy photocatalyst on dye methyl orange (MO). The used AgCl/PPy photocatalyst was facilely regenerated by an oxidation process in aqueous FeCl{sub 3} solution.

  15. Hot Isostatic Pressing of Engineered Forms of I-AgZ

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Watkins, Thomas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jordan, Jacob A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parks, Mackenzie L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-01

    Hot isostatic pressing (HIP) is being considered for direct conversion of 129I-bearing materials to a radiological waste form. The removal of volatile radioactive 129I from the off-gas of a nuclear fuel reprocessing facility will be necessary to comply with regulatory requirements regarding reprocessing facilities sited within the United States, and any iodine-containing media or solid sorbents generated by offgas abatement will require disposal. Zeolite minerals such as silver-exchanged mordenite (AgZ) have been studied as potential iodine sorbents and will contain 129I as chemisorbed AgI. Oak Ridge National Laboratory (ORNL) has conducted several recent studies on the HIP of both iodine-loaded AgZ (I-AgZ) and other iodine-bearing zeolite minerals. The goal of these research efforts is to achieve a stable, highly leach resistant material that is reduced in volume as compared to bulk iodine-loaded I-AgZ. Through the use of HIP, it may be possible to achieve this with the addition of little or no additional materials (waste formers). Other goals for the process include that the waste form will be tolerant to high temperatures and pressures, not chemically hazardous, and that the process will result in minimal secondary waste generation. This document describes the preparation of 27 samples that are distinct from previous efforts in that they are prepared exclusively with an engineered form of AgZ that is manufactured using a binder. Iodine was incorporated solely by chemisorption. This base material is expected to be more representative of an operational system than were samples prepared previously with pure minerals.

  16. Effect of triethanolamine and heliotropin on cathodic polarization of weakly acidic baths and properties of Sn-Ag-Cu alloy electrodeposits

    International Nuclear Information System (INIS)

    Zhang Jinqiu; An Maozhong; Chang Limin; Liu Guiyuan

    2008-01-01

    The effect of triethanolamine (TEA) and heliotropin (HT) on the cathodic polarization of weakly acidic baths and the properties of Sn-Ag-Cu alloy electrodeposits were investigated. Lead-free Sn-Ag-Cu solder alloy were electrodeposited in weakly acidic baths (pH 5.5) containing Sn(CH 3 SO 3 ) 2 , AgI, Cu(CH 3 SO 3 ) 2 , K 4 P 2 O 7 , KI, hydroquinone, TEA, HT and methylsulfonic acid (MSA). The cathodic polarization of baths and the properties of electrodeposits were evaluated by Liner sweep voltammetry (LSV), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS). The results indicate that HT is a main brightening agent that increases the cathodic polarization of baths and refines the grains of electrodeposits; TEA is a complexing agent for copper ions and a brightening promoter that decreases the cathodic polarization of baths and densifies the electrodeposits. The bright, compact, and smooth Sn-Ag-Cu alloy electrodeposits contain 88-95 wt% tin, 5-10 wt% silver and 0.5-2 wt% copper. Organic compounds used in the baths neither adsorb on the electrodeposits surfaces nor are included in the electrodeposits. It can be therefore concluded that the use of both TEA and HT is better than that of them either in the process of electroplating bright Sn-Ag-Cu alloy

  17. Relative tropospheric photolysis rates of acetaldehyde and formaldehyde measured at the European Photoreactor Facility

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Bache-Andreassen, Lihn; Johnson, Matthew Stanley

    2009-01-01

    The photolysis rates of HCHO, DCDO, CH3CHO, and CH3CDO are studied by long-path FTIR spectroscopy in natural tropospheric conditions at the European Photoreactor Facility (EUPHORE) in Valencia, Spain. Average relative photolysis rates jHCHO/jDCDO ) 3.15 ( 0.08 and jCH3CHO/jCH3CDO ) 1.26 ( 0.03 ar.......03 are obtained from three days of experiments for each reaction in the period June 17 to July 7, 2006.......The photolysis rates of HCHO, DCDO, CH3CHO, and CH3CDO are studied by long-path FTIR spectroscopy in natural tropospheric conditions at the European Photoreactor Facility (EUPHORE) in Valencia, Spain. Average relative photolysis rates jHCHO/jDCDO ) 3.15 ( 0.08 and jCH3CHO/jCH3CDO ) 1.26 ( 0...

  18. Spectroscopic observations of the symbiotic star AG Draconis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S E; Bopp, B W [Toledo Univ., OH (USA)

    1981-06-01

    Spectroscopic observations, covering the lambdalambda 3500-7000 region, of the symbiotic star AG Draconis are reported. The Balmer and He I line profiles were found to show pronounced blueward asymmetries. Changes in the line profiles of the Balmer lines were observed, and found to be well correlated with the 554-day photometric period of Meinunger, with a second, blueward component being visible in the Balmer emissions at photometric minimum. The weak, blueshifted component in the Balmer emission lines is explained in terms of a stellar wind from the hot secondary at of the order of 60 kms s/sup -1/. The behaviour of the broad emission feature at lambda6380 has been investigated. This feature was found to originate from an ion with an ionization potential in the range 77-101 eV. Various models for AG Dra are discussed.

  19. Effect of interannual variation in winter vertical mixing on CH4 dynamics in a subtropical reservoir

    Science.gov (United States)

    Itoh, Masayuki; Kobayashi, Yuki; Chen, Tzong-Yueh; Tokida, Takeshi; Fukui, Manabu; Kojima, Hisaya; Miki, Takeshi; Tayasu, Ichiro; Shiah, Fuh-Kwo; Okuda, Noboru

    2015-07-01

    Although freshwaters are considered to be substantial natural sources of atmospheric methane (CH4), in situ processes of CH4 production and consumption in freshwater ecosystems are poorly understood, especially in subtropical areas, leading to uncertainties in the estimation of global CH4 emissions. To improve our understanding of physical and biogeochemical factors affecting CH4 dynamics in subtropical lakes, we examined vertical and seasonal profiles of dissolved CH4 and its carbon isotope ratio (δ13C) and conducted incubation experiments to assess CH4 production and oxidation in the deep subtropical Fei-Tsui Reservoir (FTR; Taiwan). The mixing pattern of the FTR is essentially monomixis, but the intensity of winter vertical mixing changes with climatic conditions. In years with incomplete vertical mixing (does not reach the bottom) and subsequent strong thermal stratification resulting in profundal hypoxia, we observed increases in sedimentary CH4 production and thus profundal CH4 storage with the development of reducing conditions. In contrast, in years with strong winter vertical mixing to the bottom of the reservoir, CH4 production was suppressed under NO3--rich conditions, during which denitrifiers have the competitive advantage over methanogens. Diffusive emission from profundal CH4 storage appeared to be negligible due to the efficiency of CH4 oxidation during ascent through methane-oxidizing bacteria (MOB) activity. Most of the profundal CH4 was rapidly oxidized by MOB in both oxic and anoxic layers, as characterized by its carbon isotope signature. In contrast, aerobic CH4 production in the subsurface layer, which may be enhanced under high temperatures in summer, may account for a large portion of atmospheric CH4 emissions from this reservoir. Our CH4 profiling results provide valuable information for future studies predicting CH4 emissions from subtropical lakes with the progress of global warming.

  20. BNL ACCELERATOR-BASED RADIOBIOLOGY FACILITIES

    International Nuclear Information System (INIS)

    LOWENSTEIN, D.I.

    2000-01-01

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40--3,000 MeV/nucleon with maximum beam intensities of 10 10 to 10 11 ions per pulse. The BAF Project is described and the future AGS and BAF operation plans are presented

  1. Synthesis,Characterization and Properties of Ag/InP Composites

    Directory of Open Access Journals (Sweden)

    LIU Shu-ling

    2017-10-01

    Full Text Available InP microcrystal was successfully synthesized via a facile hydrothermal route, and then Ag nanoparticles were loaded on the surface of InP microcrystal using UV lamp to reduce silver versions. The as-prepared composites were characterized by X-ray diffraction (XRD and field-emission scanning electron microscopy (FE-SEM. The results show that Ag/InP composite is composed of lots of spherical microcrystals with a size of 500nm and Ag nanoparticles with a diameter of 20 nm loaded uniformly on the surface of cubic phase InP microspheres,the surface is rough. Using Congo red as model organic pollutant, the photo-catalytic performance of Ag/InP microspheres is further detected by fluorescence and UV-vis spectra. It is found that the as-prepared composite exhibits a superior photo-catalytic degradation activity as compared to InP, which might be the effective separation of electrons and holes after Ag nanoparticles loaded on the surface of InP microspheres.In addition,the photo-catalytic performance of Ag/InP microspheres with different Ag loads was studied,and the results show that when the loading is 73.3%,the photocatalytic activity of the product is the best,and the degradation rate is 64%.

  2. Study on Synthesis and Antibacterial Properties of Ag NPs/GO Nanocomposites

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2016-01-01

    Full Text Available Using graphene oxide as substrate and stabilizer for the silver nanoparticles, silver nanoparticles-graphene oxide (Ag NPs/GO composites with different Ag loading were synthesized through a facile solution-phase method. During the synthesis process, AgNO3 on GO matrix was directly reduced by NaBH4. The structure characterization was studied through X-ray diffraction (XRD, atomic force microscopy (AFM, high-resolution transmission electron microscope (HRTEM, ultraviolet-visible spectroscopy (UV-Vis, and selected area electron diffraction (SAED. The results show that Ag nanoparticles (Ag NPs with the sizes ranging from 5 to 20 nm are highly dispersed on the surfaces of GO sheets. The shape and size of the Ag NPs are decided by the volume of initial AgNO3 solution added in the GO. The antibacterial activities of Ag NPs/GO nanocomposites were investigated and the result shows that all the produced composites exhibit good antibacterial activities against Gram-negative (G− bacterial strain Escherichia coli (E. coli and Gram-positive (G+ strain Staphylococcus aureus (S. aureus. Moreover, the antibacterial activities of Ag NPs/GO nanocomposites gradually increased with the increasing of volume of initial AgNO3 solution added in the GO and this improvement of the antibacterial activities results from the combined action of size effect and concentration effect of Ag NPs in Ag NPs/GO nanocomposites.

  3. CH-TRU Waste Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2007-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  4. CH-TRU Waste Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2006-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  5. CH-TRU Waste Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2005-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  6. CH-TRU Waste Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2004-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  7. CH-TRU Waste Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2008-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  8. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-09-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-05-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  10. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-02-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  13. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-01-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codesand corresponding shipping categories for "Controlled Shipments

  14. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-12-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  15. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  16. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-01-18

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2004-10-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  18. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-03-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  19. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-09-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  20. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  1. CH-TRU Waste Content Codes (CH TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2004-12-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  2. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-11-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  3. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-12-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  4. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-01-30

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  5. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  6. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-06-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  7. Synthesis, characterization and antibacterial study on the chitosan-functionalized Ag nanoparticles.

    Science.gov (United States)

    Biao, Linhai; Tan, Shengnan; Wang, Yuanlin; Guo, Ximin; Fu, Yujie; Xu, Fengjie; Zu, Yuangang; Liu, Zhiguo

    2017-07-01

    This study provided a facile, one-step hydrothermal method to synthesize stable Ag colloid in aqueous solution by utilizing chitosan as both reductant and stabilizer. The formation of chitosan-functionalized Ag nanoparticles was verified by UV-Vis, FTIR, TEM, AFM and XRD measurements. FTIR results revealed that the primary amine groups and amide groups of chitosan have specific interactions with the surface of Ag nanoparticles. The average diameter of the Ag nanoparticles is 10.0±5.4nm as determined by TEM. Ag nanoparticles are highly crystalline as revealed by HR-TEM and XRD measurements. The size and shape of Ag nanoparticles are also found to depend on the pH condition in the synthesis. Ag nanoparticles were the main products at pH5.0 whereas large Ag nanotriangle and truncated triangular nanoplate were dominant at pH4.0 in the synthesis. Due to its monodispersity and good stability, the chitosan-functionalized Ag colloid synthesized at pH5.0 was further tested for its antibacterial activities against gram-positive bacteria, gram-negative bacteria and fungus. The results of zone of inhibition, inhibition ratio and SEM characterization revealed that chitosan-functionalized Ag nanoparticles have great bactericidal efficiency against both bacteria and fungus. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthesis of g-C3N4/Ag3PO4 heterojunction with enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    He, Peizhi; Song, Limin; Zhang, Shujuan; Wu, Xiaoqing; Wei, Qingwu

    2014-01-01

    Graphical abstract: g-C 3 N 4 /Ag 3 PO 4 heterojunction photocatalyst with visible-light response was prepared by a facile coprecipitation method. The results show that g-C 3 N 4 /Ag 3 PO 4 possesses a much higher activity for the decomposition of RhB than that of the pure Ag 3 PO 4 particles. The most mechanism is that g-C 3 N 4 /Ag 3 PO 4 heterojunction photocatalyst can efficiently separate the photogenerated electron–hole pairs, enhancing the photocatalytic activity of g-C 3 N 4 /Ag 3 PO 4 composites. - Highlights: • g-C 3 N 4 /Ag 3 PO 4 heterojunction showed much higher activity than that of Ag 3 PO 4 . • The high activity could be attributed to g-C 3 N 4 for modifying Ag 3 PO 4 . • More ·OH radicals may be significant reason to improve Ag 3 PO 4 activity. - Abstract: g-C 3 N 4 /Ag 3 PO 4 heterojunction photocatalyst with visible-light response was prepared by a facile coprecipitation method. The photocatalysts were characterized by X-ray powder diffraction, transmission electron microscopy, UV–vis absorption spectroscopy and Fourier transform infrared spectroscopy. The photocatalytic activities of the obtained samples were tested by using Rhodamine B (RhB) as the degradation target under visible light irradiation. g-C 3 N 4 /Ag 3 PO 4 decomposed RhB more effectively than the pure Ag 3 PO 4 particles did, and 2 wt.% g-C 3 N 4 had the highest activity. Furthermore, 2 wt.% g-C 3 N 4 /Ag 3 PO 4 degraded high-concentration RhB more potently than unmodified Ag 3 PO 4 did, probably because g-C 3 N 4 /Ag 3 PO 4 heterojunction photocatalyst enhanced the photocatalytic activity by efficiently separating the photogenerated electron–hole pairs

  9. Use of the Wilkinson catalyst for the ortho-C-H heteroarylation of aromatic amines: facile access to highly extended π-conjugated heteroacenes for organic semiconductors.

    Science.gov (United States)

    Huang, Yumin; Wu, Di; Huang, Jingsheng; Guo, Qiang; Li, Juan; You, Jingsong

    2014-11-03

    An unprecedented catalytic system composed of the Wilkinson catalyst [Rh(PPh3)3Cl] and CF3COOH enabled the highly regioselective cross-coupling of aromatic amines with a variety of heteroarenes through dual C-H bond cleavage. This protocol provided a facile and rapid route from readily available substrates to (2-aminophenyl)heteroaryl compounds, which may be conveniently transformed into highly extended π-conjugated heteroacenes. The experimental studies and calculations showed that thianaphtheno[3,2-b]indoles have large HOMO-LUMO energy gaps and low-lying HOMO levels, and could therefore potentially be high-performance organic semiconductors. Herein we report the first use of a rhodium(I) catalyst for oxidative C-H/C-H coupling reactions. The current innovative catalyst system is much less expensive than [RhCp*Cl2]2/AgSbF6 and could open the door for the application of this approach to other types of C-H activation processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hydrothermal Synthesis and Mechanism of Unusual Zigzag Ag2Te and Ag2Te/C Core-Shell Nanostructures

    Directory of Open Access Journals (Sweden)

    Saima Manzoor

    2014-01-01

    Full Text Available A single step surfactant-assisted hydrothermal route has been developed for the synthesis of zigzag silver telluride nanowires with diameter of 50–60 nm and length of several tens of micrometers. Silver nitrate (AgNO3 and sodium tellurite (Na2TeO3, are the precursors and polyvinylpyrrolidone (PVP is used as surfactant in the presence of the reducing agent, that is, hydrazine hydrate (N2H4·H2O. In addition to the zigzag nanowires a facile hydrothermal reduction-carbonization route is proposed for the preparation of uniform core-shell Ag2Te/C nanowires. In case of Ag2Te/C synthesis process the same precursors are employed for Ag and Te along with the ethylene glycol used as reducing agent and glucose as the carbonizing agent. Morphological and compositional properties of the prepared products are analyzed with the help of scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The detailed formation mechanism of the zigzag morphology and reduction-carbonization growth mechanism for core-shell nanowires are illustrated on the bases of experimental results.

  11. Ternary ZnO/AgI/Ag2CO3 nanocomposites: Novel visible-light-driven photocatalysts with excellent activity in degradation of different water pollutants

    International Nuclear Information System (INIS)

    Golzad-Nonakaran, Behrouz; Habibi-Yangjeh, Aziz

    2016-01-01

    ZnO/AgI/Ag 2 CO 3 nanocomposites with different Ag 2 CO 3 contents were fabricated by a facile ultrasonic-irradiation method. The resultant samples were fairly characterized using XRD, EDX, SEM, TEM, UV–vis DRS, FT-IR, and PL techniques to reveal their microstructure, purity, morphology, and spectroscopic properties. Photocatalytic activity of the prepared samples was investigated by photodegradation of four dye pollutants (rhodamine B, methyl orange, methylene blue, and fuchsine) under visible-light irradiation. The photocatalytic experiments in degradation of rhodamine B showed that the ternary ZnO/AgI/Ag 2 CO 3 (30%) nanocomposite has an enhanced activity nearly 19 and 14 times higher than those of the binary ZnO/Ag 2 CO 3 and ZnO/AgI photocatalysts, respectively. Based on the obtained results, the highly enhanced activity was attributed to generation of more electron-hole pairs under visible-light irradiation and separation of the photogenerated charge carriers due to formation of tandem n-n heterojunctions between counterparts of the nanocomposite. The active species trapping experiments were also examined and it was showed that superoxide ion radicals play a vital role in the photocatalytic degradation reaction. More importantly, the ternary photocatalyst demonstrated good photostability. - Highlights: • ZnO/AgI/Ag 2 CO 3 nanocomposites were fabricated by an ultrasonic-irradiation method. • The activity was investigated by photodegradation of four dyes under visible light. • ZnO/AgI/Ag 2 CO 3 (30%) nanocomposite has the best activity under visible light. • Activity is 19 and 14-folds higher than ZnO/Ag 2 CO 3 and ZnO/AgI in degradation of RhB.

  12. Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ho-Kyun; Kim, Han-Ki [Department of Display Materials Research Center, Materials Research Center for Information Displays (MRCID), Kyung Hee University, 1 Seocheon-dong, Youngin-si, Gyeonggi-do 446-701 (Korea); Kang, Jae-Wook [Department of Material Processing, Korea Institute of Materials Science(KIMS), 66 Sangnam-dong, Changwon-si, Gyeongnam 641-831 (Korea); Na, Seok-In; Kim, Don-Yu. [Heeger Center for Advanced Materials, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryoung-dong, Gwangju 500-712 (Korea)

    2009-11-15

    We compared the electrical, optical, structural and surface properties of indium-free Ga-doped ZnO (GZO)/Ag/GZO and Al-doped ZnO (AZO)/Ag/AZO multilayer electrodes deposited by dual target direct current sputtering at room temperature for low-cost organic photovoltaics. It was shown that the electrical and optical properties of the GZO/Ag/GZO and AZO/Ag/AZO multilayer electrodes could be improved by the insertion of an Ag layer with optimized thickness between oxide layers, due to its very low resistivity and surface plasmon effect. In addition, the Auger electron spectroscopy depth profile results for the GZO/Ag/GZO and AZO/Ag/AZO multilayer electrodes showed no interfacial reaction between the Ag layer and GZO or AZO layer, due to the low preparation temperature and the stability of the Ag layer. Moreover, the bulk heterojunction organic solar cell fabricated on the multilayer electrodes exhibited higher power conversion efficiency than the organic solar cells fabricated on the single GZO or AZO layer, due to much lower sheet resistance of the multilayer electrode. This indicates that indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrodes are a promising low-cost and low-temperature processing electrode scheme for low-cost organic photovoltaics. (author)

  13. Assessment of winter fluxes of CO2 and CH4 in boreal forest soils of central Alaska estimated by the profile method and the chamber method: a diagnosis of methane emission and implications for the regional carbon budget

    International Nuclear Information System (INIS)

    Kim, Yongwon; Ueyama, Masahito; Harazono, Yoshinobu; Tanaka, Noriyuki; Nakagawa, Fumiko; Tsunogai, Urumu

    2007-01-01

    This research was carried out to estimate the winter fluxes of CO 2 and CH 4 using the concentration profile method and the chamber method in black spruce forest soils in central Alaska during the winter of 2004/5. The average winter fluxes of CO 2 and CH 4 by chamber and profile methods were 0.24 ± 0.06 (SE; standard error) and 0.21 ± 0.06 gCO 2 -C/m2/d, and 21.4 ± 5.6 and 21.4 ± 14 μgCH 4 -C/m2/hr. This suggests that the fluxes estimated by the two methods are not significantly different based on a one-way ANOVA with a 95% confidence level. The hypothesis on the processes of CH 4 transport/production/emission in underlying snow-covered boreal forest soils is proven by the pressure differences between air and in soil at 30 cm depth. The winter CO 2 emission corresponds to 23% of the annual CO 2 emitted from Alaska black spruce forest soils, which resulted in the sum of mainly root respiration and microbial respiration during the winter based on the (delta) 13 CO 2 of -2.25%. The average wintertime emissions of CO 2 and CH 4 were 49 ± 13 gCO 2 -C/m 2 /season and 0.11 ± 0.07 gCH 4 -C/m 2 /season, respectively. This implies that winter emissions of CO 2 and CH 4 are an important part of the annual carbon budget in seasonally snow-covered terrain of typical boreal forest soils

  14. Occurrence, characterisation and fate of (nano)particulate Ti and Ag in two Norwegian wastewater treatment plant

    DEFF Research Database (Denmark)

    Polesel, Fabio; Farkas, Julia; Kjos, Marianne

    2018-01-01

    was conducted in two full-scale WWTPs in Trondheim (Norway) employing only primary treatment. We assessed the occurrence and elimination of Ti and Ag, and conducted size-based fractionation using sequential filtration of influent samples to separate particulate, colloidal and dissolved fractions. Eight......-hour composite influent samples were collected to assess diurnal variations in total Ti and Ag influx. Measured influent Ti concentrations (up to 290 μg L−1) were significantly higher than Ag (solids (>0.7 μm). Removal efficiencies ≥70% were observed....... Diurnal profiles of influent Ti were correlated to flow and pollutant concentration patterns (especially total suspended solids), with peaks during the morning and/or evening and minima at night, indicating household discharges as predominant source. Irregular profiles were exhibited by influent Ag...

  15. AGS BOOSTER BEAM POSITION, TUNE, AND LONGITUDINAL PROFILE DATA ACQUISITION SYSTEM

    International Nuclear Information System (INIS)

    BROWN, K.A.; AHRENS, L.; SEVERINO, F; SMITH, K.; WILINSKI, M

    2003-01-01

    In this paper we will describe a data acquisition system designed and developed for the AGS Booster. The system was motivated by the need to get high quality beam diagnostics from the AGS Booster. This was accomplished by locating the electronics and digital data acquisition close to the Booster ring, to minimize loss of bandwidth in the original signals. In addition we had to develop the system rapidly and at a low cost. The system consists of a Lecroy digital oscilloscope which is interfaced through a National Instruments LabView(trademark) server application, developed for this project. This allows multiple client applications to time share the scope without interfering with each other. We will present a description of the system design along with example clients that we have implemented

  16. Profiling of aerosol microphysical properties at several EARLINET/AERONET sites during the July 2012 ChArMEx/EMEP campaign

    Directory of Open Access Journals (Sweden)

    M. J. Granados-Muñoz

    2016-06-01

    Full Text Available The simultaneous analysis of aerosol microphysical properties profiles at different European stations is made in the framework of the ChArMEx/EMEP 2012 field campaign (9–11 July 2012. During and in support of this campaign, five lidar ground-based stations (Athens, Barcelona, Bucharest, Évora, and Granada performed 72 h of continuous lidar measurements and collocated and coincident sun-photometer measurements. Therefore it was possible to retrieve volume concentration profiles with the Lidar Radiometer Inversion Code (LIRIC. Results indicated the presence of a mineral dust plume affecting the western Mediterranean region (mainly the Granada station, whereas a different aerosol plume was observed over the Balkans area. LIRIC profiles showed a predominance of coarse spheroid particles above Granada, as expected for mineral dust, and an aerosol plume composed mainly of fine and coarse spherical particles above Athens and Bucharest. Due to the exceptional characteristics of the ChArMEx database, the analysis of the microphysical properties profiles' temporal evolution was also possible. An in-depth analysis was performed mainly at the Granada station because of the availability of continuous lidar measurements and frequent AERONET inversion retrievals. The analysis at Granada was of special interest since the station was affected by mineral dust during the complete analyzed period. LIRIC was found to be a very useful tool for performing continuous monitoring of mineral dust, allowing for the analysis of the dynamics of the dust event in the vertical and temporal coordinates. Results obtained here illustrate the importance of having collocated and simultaneous advanced lidar and sun-photometer measurements in order to characterize the aerosol microphysical properties in both the vertical and temporal coordinates at a regional scale. In addition, this study revealed that the use of the depolarization information as input in LIRIC in the

  17. A partial snake for the AGS

    International Nuclear Information System (INIS)

    Ratner, L.G.

    1990-01-01

    Based on snake experiments at the Indian University Cyclotron Facility and computer simulations at Brookhaven National Laboratory, as well as the conclusions of a BNL mini-workshop, we feel that a partial Siberian snake is a practical device for the AGS. It is anticipated that such a device could reduce the polarized beam tune-up time from 2--3 weeks to 2--3 days

  18. Plants for H- acceleration in the AGS Linac

    International Nuclear Information System (INIS)

    Barton, D.S.; Witkover, R.L.

    1979-01-01

    Since its commissioning in 1970, the 200 MeV Linac at the Brookhaven AGS has been capable of producing peak proton beam current of greater than 100 mA with pulse lengths up to 300 μsec at a repetition rate of 10 pulses/second. The linac typically runs at 5 pulses per second, providing a 60 mA pulse of 120 μsec duration every 1.6 to 2.4 seconds for conventional multiturn injection into the AGS. The intervening pulses of length up to 300 μsec are used by the radio-isotope production, chemistry and medical facilities. Preparations are now being made to inject and accelerate H - ions in order to implement charge exchange injection into the AGS. This paper describes the aspects of this work leading to an H - beam at 200 MeV

  19. Polarimeters for the AGS polarized-proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed.

  20. Polarimeters for the AGS polarized-proton beam

    International Nuclear Information System (INIS)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed

  1. Electroreductions on silver-based electrocatalysts: the use of Ag nanoparticles for CHCl{sub 3} to CH{sub 4} conversion

    Energy Technology Data Exchange (ETDEWEB)

    Aricci, G.; Locatelli, C.; Minguzzi, A.; Vertova, A. [Department of Physical Chemistry and Electrochemistry, University of Milan (Italy); Krpetic, Z.; Porta, F. [Department of Inorganic, Metallorganic and Analytical Chemistry Lamberto Malatesta, University of Milan (Italy); Rondinini, S.

    2009-06-15

    A preliminary investigation on a new class on electrocatalytic materials for the electroreduction of organic halides is presented and discussed. The electrocatalysts are based on silver nanoparticles (Ag-NP), ad hoc synthesised by chemical reduction of an aqueous silver salt in the presence of six different stabilising agents. The colloids are then supported on carbon powder (10% loading) for further characterisation and use. The electrocatalytic properties of the Ag-NP/carbon composites towards the dehalogenation of halocompounds are tested by cyclic voltammetry and by preparative electrolysis. The hydrodehalogenation of trichloromethane, extensively studied by this group, is selected as a model reaction, because of its relevance for the detoxification of wastes. The voltammetric characterisation is performed in an aqueous solution, supporting the composites on cavity microelectrodes. Gas-diffusion electrodes (GDE) based on the most promising Ag-NP composite - and, for reference, on a commercial Ag/C oxygen reduction electrocatalyst - are then tested in an electrolytic process for the progressive conversion of gaseous trichloromethane to less chlorinated compounds, and ultimately to methane. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. Secretaries: A Profile.

    Science.gov (United States)

    Fusselman, Kay

    1987-01-01

    Consists of the results of a profile survey completed by more than 12,000 members of Professional Secretaries International. Information is included on secretarial titles, salaries, employer types, and secretaries' personal characteristics. (CH)

  3. Atmospheric Chemistry of CH3CH2OCH3

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Bjørn Svendsen, Sissel; Østerstrøm, Freja From

    2017-01-01

    The atmospheric chemistry of methyl ethyl ether, CH3CH2OCH3, was examined using FT-IR/relative-rate methods. Hydroxyl radical and chlorine atom rate coefficients of k(CH3CH2OCH3+OH) = (7.53 ± 2.86) × 10−12 cm3 molecule−1 s−1 and k(CH3CH2OCH3+Cl) = (2.35 ± 0.43) × 10−10 cm3 molecule−1 s−1 were...

  4. Cu-Ag core–shell nanoparticles with enhanced oxidation stability for printed electronics

    International Nuclear Information System (INIS)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Lee, Yung Jong; Lee, Hyuck Mo

    2015-01-01

    In this work, we synthesized uniform Cu–Ag core–shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core–shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu–Ag core–shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu–Ag core–shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu–Ag core–shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu–Ag core–shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties. (paper)

  5. Correlation of HBV DNA PCR and HBeAg in hepatitis carriers

    International Nuclear Information System (INIS)

    Hussain, A.B.; Karamat, K.A.; Kazmi, S.Y.; Anwar, M.; Tariq, W.Z.

    2004-01-01

    Objective: To correlate hepatitis B HBV DNA polymerase chain reaction (PCR) results with HBeAg and serum ala- nine transferase (ALT) in carriers. Materials and Methods: Fifty hepatitis B carriers, with known HBsAg positive serostatus, raised serum ALT and detectable HBV DNA, were selected out of the patients reporting at AFIP for their blood test for HBV DNA. HBV DNA testing in these cases was carried out using PCR kit of Accugen-USA. After confirmation of their carrier status and raised serum ALT levels, the sera were tested for HBeAg and results of HBeAg testing were correlated with those of HBV DNA testing. Results: Out of the total 50 HBV DNA PCR positive hepatitis B carriers, 48 samples were positive for HBeAg. All the 50 HBV DNA positive cases had raised serum ALT levels. Conclusion: In case of non-availability of facility for HBV PCR, detectable HBeAg should be taken as a surrogate marker for HBV DNA in hepatitis B carriers with raised serum ALT. (author)

  6. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis

    Science.gov (United States)

    Malhotra, Deepti; Portales-Casamar, Elodie; Singh, Anju; Srivastava, Siddhartha; Arenillas, David; Happel, Christine; Shyr, Casper; Wakabayashi, Nobunao; Kensler, Thomas W.; Wasserman, Wyeth W.; Biswal, Shyam

    2010-01-01

    The Nrf2 (nuclear factor E2 p45-related factor 2) transcription factor responds to diverse oxidative and electrophilic environmental stresses by circumventing repression by Keap1, translocating to the nucleus, and activating cytoprotective genes. Nrf2 responses provide protection against chemical carcinogenesis, chronic inflammation, neurodegeneration, emphysema, asthma and sepsis in murine models. Nrf2 regulates the expression of a plethora of genes that detoxify oxidants and electrophiles and repair or remove damaged macromolecules, such as through proteasomal processing. However, many direct targets of Nrf2 remain undefined. Here, mouse embryonic fibroblasts (MEF) with either constitutive nuclear accumulation (Keap1−/−) or depletion (Nrf2−/−) of Nrf2 were utilized to perform chromatin-immunoprecipitation with parallel sequencing (ChIP-Seq) and global transcription profiling. This unique Nrf2 ChIP-Seq dataset is highly enriched for Nrf2-binding motifs. Integrating ChIP-Seq and microarray analyses, we identified 645 basal and 654 inducible direct targets of Nrf2, with 244 genes at the intersection. Modulated pathways in stress response and cell proliferation distinguish the inducible and basal programs. Results were confirmed in an in vivo stress model of cigarette smoke-exposed mice. This study reveals global circuitry of the Nrf2 stress response emphasizing Nrf2 as a central node in cell survival response. PMID:20460467

  7. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum rind extract

    Directory of Open Access Journals (Sweden)

    Hui Yang

    Full Text Available Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV–Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of NH2, OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism. Keywords: Pomegranate rind, Biosynthesis, Ag/Ag+/Ag3+ nanoparticle composites, Antibacterial activity

  8. OH yields from the CH3CO+O-2 reaction using an internal standard\\ud

    OpenAIRE

    Carr, S.A.; Baeza-Romero, M.T.; Blitz, M.A.; Pilling, M.J.; Heard, D.E.; Seakins, P.W.

    2007-01-01

    Laser flash photolysis of CH3C(O)OH at 248 nm was used to create equal zero time yields of CH3CO and OH. The absolute OH yield from the CH3CO + O2 (+M) reaction was determined by following the OH temporal profile using the zero time\\ud OH concentration as an internal standard. The OH yield from CH3CO + O2 (+M) was observed to decrease with increasing pressure with an extrapolated zero pressure yield\\ud close to unity (1.1 ± 0.2, quoted uncertainties correspond to 95% confidence limits). The r...

  9. The role of Ag precipitates in Cu-12 wt% Ag

    Energy Technology Data Exchange (ETDEWEB)

    Yao, D.W.; Song, L.N. [Department of Materials Science and Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, Zhejiang 310027 (China); Dong, A.P.; Wang, L.T. [China Railway Construction Electrification Bureau Group Co.,Ltd., Beijing 100036 (China); Zhang, L. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Meng, L., E-mail: mengliang@zju.edu.cn [Department of Materials Science and Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, Zhejiang 310027 (China)

    2012-12-15

    The Cu-12 wt% Ag was prepared to investigate the role of Ag precipitates on the properties of the alloy. Two kinds of heat treatment procedures were adopted to produce different amount of Ag precipitates in the Cu-12 wt% Ag. The microstructure of Ag precipitates was systematically observed by optical microscopy and electron microscopy. The Cu-12 wt% Ag with more Ag precipitates exhibits higher strength and lower electrical conductivity. More Ag precipitates results in more phase interface and less Ag atoms dissolved in Cu matrix. By comparing the strengthening effect and electron scattering effect of phase interface and dissolved Ag atoms, it is conclude that the interface between Cu matrix and Ag precipitates could significantly block dislocation movement and enhance electron scattering in Cu-Ag alloys.

  10. Determination of the rate coefficients of the CH{sub 4} + O{sub 2} → HO{sub 2}+CH{sub 3} and HCO+O{sub 2} → HO{sub 2} + CO reactions at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Si Ok [School of Chemical Engineering, Yeungnam University, Gyeongsan (Korea, Republic of); Shin, Kuan Soo [Dept. of Chemistry, Soongsil University, Seoul (Korea, Republic of); Hwang, Soon Muk [Science Applications International Corp oration, 3000 Aerospace Park way, Brook Park, Ohio (United States)

    2017-02-15

    Rate coefficients of the title reactions, R1 (CH{sub 4} + O{sub 2} → HO{sub 2}+CH{sub 3}) and R{sub 2} (HCO+O{sub 2} → HO{sub 2} + CO) were obtained over T = 1610 ⁓ 1810 K and T = 200 ⁓ 1760 K, respectively, and at ρ = 7.1 μmol/cm{sup 3}. A lean CH{sub 4}/O{sub 2}/Ar mixture (0.1% CH{sub 4}, ϕ = 0.02) was heated behind reflected shock waves and the temporal OH absorption profiles were measured using a laser absorption spectroscopy. Reaction rate coefficients were elucidated by matching the experimental profiles via optimization of k1 and k2 values in the reaction simulation. The rate coefficient expressions derived are k{sub 1} = 1.46 × 10{sup 14} exp (−26 210 K/T) cm{sup 3}/mol/s, T = 1610 ⁓ 1810 K and k{sub 2} = 1.9 × 10{sup 12} T{sup 0.1{sup 6}} exp (−245 K/T) cm{sup 3}/mol/s, T = 200 ⁓ 1760 K.

  11. Waste Receiving and Processing (WRAP) facility engineering study

    International Nuclear Information System (INIS)

    Christie, M.A.; Cammann, J.W.; McBeath, R.S.; Rode, H.H.

    1985-01-01

    A new Hanford waste management facility, the Waste Receiving and Processing (WRAP) facility (planned to be operational by FY 1994) will receive, inspect, process, and repackage contact-handled transuranic (CH-TRU) contaminated solid wastes. The wastes will be certified according to the waste acceptance criteria for disposal at the Waste Isolation Pilot Plant (WIPP) geologic repository in southeast New Mexico. Three alternatives which could cost effectively be applied to certify Hanford CH-TRU waste to the WIPP Waste Acceptance Criteria (WIPP-WAC) have been examined in this updated engineering study. The alternatives differed primarily in the reference processing systems used to transform nonconforming waste into an acceptable, certified waste form. It is recommended to include the alternative of shredding and immobilizing nonconforming wastes in cement (shred/grout processing) in the WRAP facility. Preliminary capital costs for WRAP in mid-point-of-construction (FY 1991) dollars were estimated at $45 million for new construction and $37 million for modification and installation in an existing Hanford surplus facility (231-Z Building). Operating, shipping, and decommissioning costs in FY 1986 dollars were estimated at $126 million, based on a 23-y WRAP life cycle (1994 to 2017). During this period, the WRAP facility will receive an estimated 38,000 m 3 (1.3 million ft 3 ) of solid CH-TRU waste. The study recommends pilot-scale testing and evaluation of the processing systems planned for WRAP and advises further investigation of the 231-Z Building as an alternative to new facility construction

  12. Probing the Effect of Ag2S Quantum Dots on Human Serum Albumin Using Spectral Techniques

    Directory of Open Access Journals (Sweden)

    Yiying Fu

    2017-01-01

    Full Text Available The understanding of the interaction between protein and quantum dots (QDs has significant implications for biological applications of QDs. Herein, we studied the effect of Ag2S QDs on human serum albumin (HSA using UV-Vis absorption spectra and fluorescence spectroscopy and found that the fluorescence intensity of HSA was gradually decreased with increasing Ag2S QDs concentrations. By using the Stern-Volmer equation for the fluorescence quenching constant (KSV of the response of Ag2S QDs to HSA as well as thermodynamic equations, the values of thermodynamic enthalpy change (ΔHθ, entropy change (ΔSθ, and free energy change (ΔGθ were calculated to be −10.79 KJ·mol−1, 37.80 J·mol−1·K−1, and −22.27 KJ·mol−1, respectively. The results indicate that Ag2S QDs exert an obvious static fluorescence quenching effect on HSA and electrostatic interaction plays a key role in the binding process. Furthermore, Raman spectral analysis reveals that Ag2S QDs alter the external environment of tyrosine and tryptophan or the C-H bending of HSA but not the α-helical content.

  13. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract

    Science.gov (United States)

    Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang

    Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.

  14. Influence of etching process parameters on the antireflection property of Si SWSs by thermally dewetted Ag and Ag/SiO{sub 2} nanopatterns

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Jung Woo; Yu, Jae Su [Department of Electronics and Radio Engineering, Kyung Hee University, 446-701 Yongin (Korea, Republic of); Song, Young Min; Lee, Yong Tak [Department of Information and Communications, Gwangju Institute of Science and Technology, 500-712 Gwangju (Korea, Republic of)

    2011-08-15

    The etching parameter dependent antireflection characteristics of disordered Si subwavelength structures (SWSs) by inductively coupled plasma (ICP) etching in a mixture gas of SiCl{sub 4}/Ar using thermally dewetted Ag and Ag/SiO{sub 2} nanopatterns are investigated. The average size and period of Si SWSs are closely correlated with thermal dewetting conditions. For desirable Ag nanoparticle patterns, the profile of Si SWSs is optimized by changing the ICP etching process parameters to obtain the lowest reflectance spectrum. The most tapered SWS with the highest height leads to a relatively low reflectance. The Ag nanopatterns result in more tapered and rough surface SWSs compared to the Ag/SiO{sub 2} nanopatterns, indicating a slightly reduced reflectance. The Si SWS etched using Ag nanopatterns by SiCl{sub 4}/Ar of 5 sccm/10 sccm at 50 W RF power, 200 W ICP power, and 10 mTorr process pressure exhibits a very low total reflectance of <{proportional_to}2.4% in the wavelength range of 400-1000 nm, maintaining a specular reflectance of <16% at 350-1100 nm up to the incident angle of {theta}{sub i} = 50 . (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Plasmonic Ag{sub 2}MoO{sub 4}/AgBr/Ag composite: Excellent photocatalytic performance and possible photocatalytic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongliao [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Zhang, Jinfeng, E-mail: zjf_y2004@126.com [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Lv, Jiali [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Dai, Kai, E-mail: daikai940@chnu.edu.cn [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Liang, Changhao [College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000 (China); Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031 (China)

    2017-02-28

    Highlights: • Novel Ag{sub 2}MoO{sub 4}/AgBr/Ag photocatalyst was prepared. • Ag{sub 2}MoO{sub 4}/AgBr/Ag showed high photocatalytic activity. • Ag{sub 2}MoO{sub 4}/AgBr/Ag showed long reusable life. - Abstract: Plasmonic Ag{sub 2}MoO{sub 4}/AgBr/Ag composite is fabricated by in-situ ion exchange and reduction methods at room temperature. The samples are characterized by X-ray diffraction (XRD), UV–vis diffuse reflectance (DRS), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscope (SEM) and photoluminescence (PL) measurements. The results show that butterfly-like Ag{sub 2}MoO{sub 4} nanosheets served as the precursor, and Ag{sub 2}MoO{sub 4}/AgBr/Ag is formed in phase transformation with MoO{sub 4}{sup 2−} displaced by Br{sup −}. The ternary Ag{sub 2}MoO{sub 4}/AgBr/Ag composite photocatalysts show greatly enhanced photocatalytic activity in photodegrading methylene blue (MB) under visible light irradiation compared with AgBr and Ag{sub 2}MoO{sub 4}. The pseudo-first-order rate constant k{sub app} of Ag{sub 2}MoO{sub 4}/AgBr/Ag is 0.602 min{sup −1}, which is 11.6 and 18.3 times as high as that of AgBr and Ag{sub 2}MoO{sub 4}, respectively. Meanwhile, the efficiency of degradation still kept 90% after ten times cyclic experiments. Eventually, possible photocatalytic mechanism was proposed.

  16. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data.

    Science.gov (United States)

    Zhou, Ke-Ren; Liu, Shun; Sun, Wen-Ju; Zheng, Ling-Ling; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu

    2017-01-04

    The abnormal transcriptional regulation of non-coding RNAs (ncRNAs) and protein-coding genes (PCGs) is contributed to various biological processes and linked with human diseases, but the underlying mechanisms remain elusive. In this study, we developed ChIPBase v2.0 (http://rna.sysu.edu.cn/chipbase/) to explore the transcriptional regulatory networks of ncRNAs and PCGs. ChIPBase v2.0 has been expanded with ∼10 200 curated ChIP-seq datasets, which represent about 20 times expansion when comparing to the previous released version. We identified thousands of binding motif matrices and their binding sites from ChIP-seq data of DNA-binding proteins and predicted millions of transcriptional regulatory relationships between transcription factors (TFs) and genes. We constructed 'Regulator' module to predict hundreds of TFs and histone modifications that were involved in or affected transcription of ncRNAs and PCGs. Moreover, we built a web-based tool, Co-Expression, to explore the co-expression patterns between DNA-binding proteins and various types of genes by integrating the gene expression profiles of ∼10 000 tumor samples and ∼9100 normal tissues and cell lines. ChIPBase also provides a ChIP-Function tool and a genome browser to predict functions of diverse genes and visualize various ChIP-seq data. This study will greatly expand our understanding of the transcriptional regulations of ncRNAs and PCGs. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. A simple solution-phase approach to synthesize high quality ternary AgInSe2 and band gap tunable quaternary AgIn(S1-xSe x)2 nanocrystals

    KAUST Repository

    Bai, Tianyu

    2014-01-01

    A facile solution-phase route for the preparation of AgInSe2 nanocrystals was developed by using silver nitrate, indium stearate, and oleylamine-selenium (OAm-Se) as precursors. The evolution process of the AgInSe2 nanocrystals is discussed in detail and different reaction conditions all have a great impact on the growth and morphology of the nanocrystals. Alloyed AgIn(S1-xSex)2 nanocrystals with controlled composition across the entire range (0 ≤ x ≤ 1) was also successfully prepared by modulating the S/Se reactant mole ratio. X-ray diffraction (XRD), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) were used to confirm that the alloyed AgIn(S1-xSex)2 nanocrystals are homogeneous. The UV-vis absorption spectra revealed that the band gap energies of the alloyed AgIn(S1-xSex)2 nanocrystals could be continuously tuned by increasing the Se content. © The Royal Society of Chemistry 2014.

  18. Ag K- and L3-edge XAFS study on Ag species in Ag/Ga2O3 photocatalysts

    International Nuclear Information System (INIS)

    Yamamoto, M; Yamamoto, N; Yoshida, T; Nomoto, T; Yamamoto, A; Yoshida, H; Yagi, S

    2016-01-01

    Ag loaded Ga 2 O 3 (Ag/Ga 2 O 3 ) shows photocatalytic activity for reduction of CO 2 with water. Ag L 3 -edge XANES and K-edge EXAFS spectra were measured for various Ag/Ga 2 O 3 samples, which suggested that structural and chemical states of Ag species varied with the loading amount of Ag and the preparation method. The Ag species were metallic Ag particles with an AgGaO 2 -like interface structure in the sample with high loading amount of Ag while predominantly Ag metal clusters in the sample with low loading amount of Ag. The XANES feature just above the edge represented the interaction between the Ag species and the Ga 2 O 3 surface, showing that the Ag metal clusters had more electrons in the d -orbitals by interacting with the Ga 2 O 3 surface, which would contribute the high photocatalytic activity. (paper)

  19. anti p and anti n facilities at the BNL AGS

    International Nuclear Information System (INIS)

    Lowenstein, D.I.

    The typical AGS operating conditions are given, and the six antiproton beams and the one antineutron beam currently under test are described. Information on the following is given in tabular form: (1) the possible beam running configurations; (2) the status and availability of beams at the end of FY75; (3) a brief synopsis of the experiments that have gotten beam time during the present year; and (4) a description of new experiments which will use antiproton beams. (U.S.)

  20. Comparative Compton scattering studies in Cu2O and Ag2O

    International Nuclear Information System (INIS)

    Bandyopadhyay, S.; Chatterjee, A.K.; Saha, S.K.; Chatterjee, A.

    1994-01-01

    Compton scattering studies in polycrystalline Cu 2 O and Ag 2 O with 59.54 keV γ radiation are reported. A comparison has been made between the valance Compton profiles of these two components scaled to lattice momentum by normalizing them to equal electron density for outer valence electrons, and this comparison shows some differences between the bonding characters of Cu 2 O and Ag 2 O. (author)

  1. Near-surface and bulk behavior of Ag in SiC

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Zhang, Y.; Snead, L.L.; Shutthanandan, V.; Xue, H.Z.; Weber, W.J.

    2012-01-01

    Highlights: ► Ag release from SiC poses problems in safe operation of nuclear reactors. ► Near-surface and bulk behavior of Ag are studied by ab initio and ion beam methods. ► Ag prefers to adsorb on the surface rather than in the bulk SiC. ► At high temperature Ag desorbs from the surface instead of diffusion into bulk SiC. ► Surface diffusion may be a dominating mechanism accounting for Ag release from SiC. - Abstract: The diffusive release of fission products, such as Ag, from TRISO particles at high temperatures has raised concerns regarding safe and economic operation of advanced nuclear reactors. Understanding the mechanisms of Ag diffusion is thus of crucial importance for effective retention of fission products. Two mechanisms, i.e., grain boundary diffusion and vapor or surface diffusion through macroscopic structures such as nano-pores or nano-cracks, remain in debate. In the present work, an integrated computational and experimental study of the near-surface and bulk behavior of Ag in silicon carbide (SiC) has been carried out. The ab initio calculations show that Ag prefers to adsorb on the SiC surface rather than in the bulk, and the mobility of Ag on the surface is high. The energy barrier for Ag desorption from the surface is calculated to be 0.85–1.68 eV, and Ag migration into bulk SiC through equilibrium diffusion process is not favorable. Experimentally, Ag ions are implanted into SiC to produce Ag profiles buried in the bulk and peaked at the surface. High-temperature annealing leads to Ag release from the surface region instead of diffusion into the interior of SiC. It is suggested that surface diffusion through mechanical structural imperfection, such as vapor transport through cracks in SiC coatings, may be a dominating mechanism accounting for Ag release from the SiC in the nuclear reactor.

  2. Ternary ZnO/AgI/Ag{sub 2}CO{sub 3} nanocomposites: Novel visible-light-driven photocatalysts with excellent activity in degradation of different water pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Golzad-Nonakaran, Behrouz; Habibi-Yangjeh, Aziz, E-mail: ahabibi@uma.ac.ir

    2016-12-01

    ZnO/AgI/Ag{sub 2}CO{sub 3} nanocomposites with different Ag{sub 2}CO{sub 3} contents were fabricated by a facile ultrasonic-irradiation method. The resultant samples were fairly characterized using XRD, EDX, SEM, TEM, UV–vis DRS, FT-IR, and PL techniques to reveal their microstructure, purity, morphology, and spectroscopic properties. Photocatalytic activity of the prepared samples was investigated by photodegradation of four dye pollutants (rhodamine B, methyl orange, methylene blue, and fuchsine) under visible-light irradiation. The photocatalytic experiments in degradation of rhodamine B showed that the ternary ZnO/AgI/Ag{sub 2}CO{sub 3} (30%) nanocomposite has an enhanced activity nearly 19 and 14 times higher than those of the binary ZnO/Ag{sub 2}CO{sub 3} and ZnO/AgI photocatalysts, respectively. Based on the obtained results, the highly enhanced activity was attributed to generation of more electron-hole pairs under visible-light irradiation and separation of the photogenerated charge carriers due to formation of tandem n-n heterojunctions between counterparts of the nanocomposite. The active species trapping experiments were also examined and it was showed that superoxide ion radicals play a vital role in the photocatalytic degradation reaction. More importantly, the ternary photocatalyst demonstrated good photostability. - Highlights: • ZnO/AgI/Ag{sub 2}CO{sub 3} nanocomposites were fabricated by an ultrasonic-irradiation method. • The activity was investigated by photodegradation of four dyes under visible light. • ZnO/AgI/Ag{sub 2}CO{sub 3} (30%) nanocomposite has the best activity under visible light. • Activity is 19 and 14-folds higher than ZnO/Ag{sub 2}CO{sub 3} and ZnO/AgI in degradation of RhB.

  3. Synthesis of Ag{sub 2}S nanorods by biomimetic method in the lysozyme matrix

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Dezhi, E-mail: dezhiqin@163.com; Zhang, Li; He, Guoxu; Zhang, Qiuxia

    2013-09-01

    Graphical abstract: - Highlights: • Firstly, Ag{sub 2}S nanorods were synthesized by biomimetic method in the lysozyme solutions. • The study of the interaction between Ag{sup +} and the lysozyme. • Discussion of possible formation mechanism of Ag{sub 2}S nanorods. • The synthesis process of lyso-conjugated Ag{sub 2}S nanocrystals is facile, effective and environment friendly. - Abstract: Ag{sub 2}S nanorods were successfully synthesized by biomimetic route in the lysozyme solution at physiological temperature and atmospheric pressure. The transmission electron microscopy (TEM) images revealed that the prepared nanorods are uniform and monodisperse with homogeneous size about 50 nm in diameter and 150 nm in length. The optical property of Ag{sub 2}S nanocrystals was studied by the ultraviolet–visible (UV–vis) and photoluminescence (PL) spectroscopy, the results show that the products exhibit well-defined emission at 471 nm and 496 nm excited by 292 nm. The interaction of Ag{sup +}/Ag{sub 2}S with the lysozyme was investigated through Fourier transform infrared (FT-IR) spectroscopy, which shows that the cooperation effect of the lysozyme and Ag{sup +} could be responsible for the formation of as obtained Ag{sub 2}S nanorods.

  4. Review of proposed kaon factory facilities

    International Nuclear Information System (INIS)

    Macek, R.J.

    1985-01-01

    A number of proton accelerator facilities, popularly called ''Kaon Factories,'' have been proposed to extend the intensity frontier from about 1 GeV to higher energies in the range of 15 to 45 GeV. Seven proposed facilities - LAMPF II, TRIUMF II, SIN II, AGS II, KEK, MUNICH, and KYOTO - are reviewed with emphasis on capabilities of the experimental facilities. Costs and the choice of energy and current are also discussed. 7 refs., 29 figs., 7 tabs

  5. Facile pyrolysis preparation of rosin-derived biochar for supporting silver nanoparticles with antibacterial activity

    DEFF Research Database (Denmark)

    Huang, Jian Fei; Shi, Qing Shan; Feng, Jin

    2017-01-01

    -step preparation process and a low loading capacity of nanoparticles. A facile preparation route for the preparation of antibacterial metallic nanocomposites would be especially beneficial for industrial fabrication. In this study, we provided a facile strategy for the preparation of a rosin-derived biochar matrix...... loaded with silver nanoparticles (Ag NPs) as the fillers. The results demonstrated that the preparation of these rosin-derived biochar silver nanocomposites (Rc/Ag nanocomposites) was achieved by a rapid pyrolysis process and a large amount of Ag NPs were in-situ obtained and homogeneously dispersed...

  6. Sensory and Volatile Profiles of Monovarietal North Tunisian Extra Virgin Olive Oils from 'Chétoui' Cultivar.

    Science.gov (United States)

    Essid, Faten; Sifi, Samira; Beltrán, Gabriel; Sánchez, Sebastián; Raïes, Aly

    2016-07-01

    The quality of olive oil is defined as a combination of characteristics that significantly determine its acceptance by consumers. This study was carried out to compare sensorial and chemical characteristics of sixty 'Chétoui' extra virgin olive oils (EVOOc) samples from six northern areas in Tunisia (Tebourba (EVOOT); Other regions (EVOON): Mornag, Sidi Amor, El Kef, Béjà and Jendouba). Trained panel taste detected ten sensory attributes. EVOOT and EVOON were defined by 'tomato' and 'grass/ leave notes, respectively. Twenty one volatile compounds from EVOOc were extracted and identified by Headspace Solid-Phase Microextraction followed by Gas Chromatography- Flame Ionization Detector. Principal component and cluster analysis of all studied parameters showed that EVOOT differed from EVOON. Sensory and volatile profiles of EVOOc revealed that the perception of different aromas, in monovarietal olive oil, was the result of synergic effect of oils' various components, whose composition was influenced by the geographical growing area.

  7. The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Sohrabnezhad, Sh.; Seifi, A.

    2016-01-01

    Highlights: • Ag/ZnO was loaded in MMT support by green synthesis method. • MMT support increased absorption of dye and separation of electron-hole in ZnO. • Ag nanoparticles improved photocatalytic properties of ZnO-MMT. • The particles size of Ag in ZnO-MMT was 2–4 nm. • In contrast ZnO-MMT, Ag/ZnO-MMT was a visible light driven photocatalyst. - Abstract: The Ag/ZnO-MMT nanocomposite was prepared using urtica dioica leaf extract. To improve the photocatalytic properties of ZnO-MMT nanocomposite, silver metal nanoparticles was deposited over nanocomposite. Zn(CH 3 COO) 2 , AgNO 3 and Urtica dioica leaf extract were used as a zinc, silver precursor and reducing agent, respectively. The nanocomposite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The powder X-ray diffraction showed that Ag/ZnO nanoparticles located on the surface MMT layers. The diffuse reflectance spectra of nanocomposite indicated a strong surface plasmon resonance (SPR) absorption band in the visible region, resulting from metallic Ag nanoparticles. TEM image demonstrated the presence of silver nanoparticles with an average size of 2–4 nm over both MMT and flower-shape ZnO. The photocatalytic activity of nanocomposite was studied for destructive reaction methylene blue dye under visible light. In addition, the effects of different parameters such as amount of nanocomposite, concentration of the dye and pH of the solution were studied. The results showed that modiffication of ZnO-MMT nanocomposite with silver nanoparticles increased the percentage of discoloration methylene blue (MB) from 38.95 to 91.95. MMT matrix showed an important role in the reduction of recombination of electron-hole in nanocomposite.

  8. The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sohrabnezhad, Sh., E-mail: sohrabnezhad@guilan.ac.ir; Seifi, A.

    2016-11-15

    Highlights: • Ag/ZnO was loaded in MMT support by green synthesis method. • MMT support increased absorption of dye and separation of electron-hole in ZnO. • Ag nanoparticles improved photocatalytic properties of ZnO-MMT. • The particles size of Ag in ZnO-MMT was 2–4 nm. • In contrast ZnO-MMT, Ag/ZnO-MMT was a visible light driven photocatalyst. - Abstract: The Ag/ZnO-MMT nanocomposite was prepared using urtica dioica leaf extract. To improve the photocatalytic properties of ZnO-MMT nanocomposite, silver metal nanoparticles was deposited over nanocomposite. Zn(CH{sub 3}COO){sub 2}, AgNO{sub 3} and Urtica dioica leaf extract were used as a zinc, silver precursor and reducing agent, respectively. The nanocomposite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The powder X-ray diffraction showed that Ag/ZnO nanoparticles located on the surface MMT layers. The diffuse reflectance spectra of nanocomposite indicated a strong surface plasmon resonance (SPR) absorption band in the visible region, resulting from metallic Ag nanoparticles. TEM image demonstrated the presence of silver nanoparticles with an average size of 2–4 nm over both MMT and flower-shape ZnO. The photocatalytic activity of nanocomposite was studied for destructive reaction methylene blue dye under visible light. In addition, the effects of different parameters such as amount of nanocomposite, concentration of the dye and pH of the solution were studied. The results showed that modiffication of ZnO-MMT nanocomposite with silver nanoparticles increased the percentage of discoloration methylene blue (MB) from 38.95 to 91.95. MMT matrix showed an important role in the reduction of recombination of electron-hole in nanocomposite.

  9. Formation of complex wedding-cake morphologies during homoepitaxial film growth of Ag on Ag(111): atomistic, step-dynamics, and continuum modeling

    International Nuclear Information System (INIS)

    Li Maozhi; Han, Yong; Thiel, P A; Evans, J W

    2009-01-01

    An atomistic lattice-gas model is developed which successfully describes all key features of the complex mounded morphologies which develop during deposition of Ag films on Ag(111) surfaces. We focus on this homoepitaxial thin film growth process below 200 K. The unstable multilayer growth mode derives from the presence of a large Ehrlich-Schwoebel step-edge barrier, for which we characterize both the step-orientation dependence and the magnitude. Step-dynamics modeling is applied to further characterize and elucidate the evolution of the vertical profiles of these wedding-cake-like mounds. Suitable coarse-graining of these step-dynamics equations leads to instructive continuum formulations for mound evolution.

  10. Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Tian-Long [Key Laboratory for Anisotropy and Texture of Materials, School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Advanced Materials Processing Unit, National Institute for Materials Science, Namiki 1–1, Tsukuba, Ibaraki 305-0044 (Japan); Li, Ji-Guang, E-mail: LI.Jiguang@nims.go.jp [Key Laboratory for Anisotropy and Texture of Materials, School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Advanced Materials Processing Unit, National Institute for Materials Science, Namiki 1–1, Tsukuba, Ibaraki 305-0044 (Japan); Sun, Xudong, E-mail: xdsun@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Sakka, Yoshio [Advanced Materials Processing Unit, National Institute for Materials Science, Namiki 1–1, Tsukuba, Ibaraki 305-0044 (Japan)

    2016-04-01

    Galvanic growth of Ag nano/micro-structures on Cu micro-grid was systematically studied for surface-enhanced Raman scattering (SERS) applications. Detailed characterizations via FE-SEM and HR-TEM showed that processing parameters, (reaction time, Ag{sup +} concentration, and PVP addition) all substantially affect thermodynamics/kinetics of the replacement reaction to yield substrates of significantly different microstructures/homogeneities and thus varied SERS performances (sensitivity, enhancement factor, and reproducibility) of the Ag substrates in the detection of R6G analyte. PVP as an additive was shown to notably alter nucleation/growth behaviors of the Ag crystals and promote the deposition of dense and uniform Ag films of nearly monodisperse polyhedrons/nanoplates through suppressing dendrites crystallization. Under optimized synthesis (50 mM of Ag{sup +}, 30 s of reaction, and 700 wt.% of PVP), Ag substrates exhibiting a high Raman signal enhancement factor of ~ 1.1 × 10{sup 6} and a low relative standard deviation of ~ 0.13 in the repeated detection of 10 μM R6G were obtained. The facile deposition and excellent performance reported in this work may allow the Ag microstructures to find wider SERS applications. Moreover, growth mechanisms of the different Ag nano/micro-structures were discussed based on extensive FE-SEM and HR-TEM analysis. - Highlights: • A facile synthetic technique of growing SERS active Ag substrates onto Cu micro-grid has been systematically studied. • Changing processing parameters has yielded Ag crystals of various morphologies and SERS performances. • PVP additive was observed to suppress Ag dendrite crystallization for nearly monodispersed Ag polyhedrons/nanoplates. • PVP modified SERS substrate exhibits excellent EF and RSD values in the repeated detection of 10 μM R6G analyte.

  11. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction

    Science.gov (United States)

    Yamei, Wu; Ruixia, Yang; Hanmin, Tian; Shuai, Chen

    2016-05-01

    Organic-inorganic hybrid perovskite CH3NH3PbI3 film is prepared on p-type silicon substrate using the one-step solution method to form a CH3NH3PbI3/p-Si heterojunction. The film morphology and structure are characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The photoelectric properties of the CH3NH3PbI3/p-Si heterojunction are studied by testing the current-voltage (I-V) with and without illumination and capacitance-voltage (C-V) characteristics. It turns out from the I-V curve without illumination that the CH3NH3PbI3/p-Si heterojunction has a rectifier feature with the rectification ratio over 70 at the bias of ±5 V. Also, there appears a photoelectric conversion phenomenon on this heterojunction with a short circuit current (Isc) of 0.16 μA and an open circuit voltage (Voc) of about 10 mV The high frequency C-V characteristic of the Ag/CH3NH3PbI3/p-Si heterojunction turns out to be similar to that of the metal-insulator-semiconductor (MIS) structure, and a parallel translation of the C-V curve along the forward voltage axis is found. This parallel translation means the existence of defects at the CH3NH3PbI3/p-Si interface and positive fixed charges in the CH3NH3PbI3 layer. The defects at the interface of the CH3NH3PbI3/p-Si heterojunction result in the dramatic decline of the Voc. Besides, the C-V test of CH3NH3PbI3 film shows a non-linear dielectric property and the dielectric value is about 4.64 as calculated. Project supported by the Hebei Province Natural Science Foundation of China (No. F2014202184) and the Tianjin Natural Science Foundation of China (No. 15JCZDJC37800).

  12. Argentina: Overview of activities on Neutron Imaging (NI) and Cultural Heritage (CH) studies

    International Nuclear Information System (INIS)

    Sánchez, Fernando

    2012-01-01

    In Argentina there exists a community of researchers of national institutions involved in CH studies and also periodic congresses about the topic since 2007. A new group on neutron imaging is beginning at Bariloche Atomic Center (CNEA). The plan of this group is: - Characterize the facility: flux, doses, collimation, etc;. - Establish contact with CH researchers for offering neutron imaging; - Demonstrate capabilities of the technique with 2D imaging; - In the future, a 3D tomography improvement will be developed

  13. Thermochemical properties of silver tellurides including empressite (AgTe) and phase diagrams for Ag-Te and Ag-Te-O

    Science.gov (United States)

    Voronin, Mikhail V.; Osadchii, Evgeniy G.; Brichkina, Ekaterina A.

    2017-10-01

    This study compiles original experimental and literature data on the thermodynamic properties (ΔfG°, S°, ΔfH°) of silver tellurides (α-Ag2Te, β-Ag2Te, Ag1.9Te, Ag5Te3, AgTe) obtained by the method of solid-state galvanic cell with the RbAg4I5 and AgI solid electrolytes. The thermodynamic data for empressite (AgTe, pure fraction from Empress Josephine Mine, Colorado USA) have been obtained for the first time by the electrochemical experiment with the virtual reaction Ag + Te = AgTe. The Ag-Te phase diagrams in the T - x and log fTe2 (gas) - 1/ T coordinates have been refined, and the ternary Ag-Te-O diagrams with Ag-Te-TeO2 (paratellurite) composition range have been calculated.

  14. Správa nemovitosti versus facility management

    OpenAIRE

    Rázga, Štěpán

    2008-01-01

    Problematiku facility managementu a správy nemovitostí práce uceleně shrnuje a porovnává teoretické předpoklady a metodické postupy plynoucí z výuky facility managementu na VŠE v Praze s výkonem daných činností v praxi.

  15. Biopolymer mediated nanoparticles synthesized from Adenia hondala for enhanced tamoxifen drug delivery in breast cancer cell line

    Science.gov (United States)

    Varadharajaperumal, Pradeepa; Subramanian, Balakumar; Santhanam, Amutha

    2017-09-01

    Silver nanoparticles (AgNPs) are an important class of nanomaterials, which have used as antimicrobial and disinfectant agents due to their detrimental effect on target cells. In the present study it was explored to deliver a novel tamoxifen drug system that can be used in breast cancer treatment, based on chitosan coated silver nanoparticles on MCF-7 human breast cancer cells. AgNPs synthesized from Adenia hondala tuber extract were used to make the chitosan coated AgNPs (Ch-AgNPs), in which the drug tamoxifen was loaded on chitosan coated silver nanoparticles (Tam-Ch-AgNPs) to construct drug loaded nanoparticles as drug delivery system. The morphology and characteristics of the Ch-AgNPs were investigated by UV, FTIR, zeta potential and FESEM. Furthermore, the toxicity of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs was evaluated through cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3, DNA laddering, and TUNEL assay in human breast cancer cells (MCF-7) and HBL-100 continuous cell line as a control. Treatment of cancer cells with various concentrations of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs for 24 h revealed that Tam-Ch-AgNPs could inhibit cell viability and induce significant membrane leakage in a dose-dependent manner. Cells exposed to Tam-Ch-AgNPs showed increased reactive oxygen species and hydroxyl radical production when compared to AgNPs, Ch-AgNPs. Furthermore, the apoptotic effects of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs were confirmed by activation of caspase-3 and DNA nuclear fragmentation. The present findings suggest that Tam-Ch-AgNPs could contribute to the development of a suitable anticancer drug delivery.

  16. Profile of hepatitis B and C virus infection in prisoners in Lubuk Pakam correctional facilities

    Science.gov (United States)

    Rey, I.; Saragih, R. H.; Effendi-YS, R.; Sembiring, J.; Siregar, G. A.; Zain, L. H.

    2018-03-01

    Prisoners in correctional facilities are predisposed to chronic viral infections because of their high-risk behaviors or unsafe lifestyle. The economic and public health burden of chronic hepatitis B and C and its sequelae need to be addressed, such as by finding the risk factors and therefore reducing the spread of HCV and HBV infection in prisons. This study aimed to see the profile of Hepatitis B and C Virus Infection in prisoners in Lubuk Pakam Correctional Facilities. This cross-sectional study was in Lubuk Pakam Correctional Facilities in 2016. From 1114 prisoners in Lubuk Pakam correctional facility, we randomly examined 120 prisoners for HBV and HCV serology markers. From 120 prisoners, six prisoners were HBV positive, 21 prisoners were HCV positive and one prisoner positive for both HCV and HBV infection. The most common risk factors for prisoners getting HBV infection are tattoos and free sex (36.4% and 36.4%, respectively). The most common risk factors for HCV infection in prisoners are tattoos and free sex (40% and 35%, respectively).

  17. High efficient multifunctional Ag{sub 3}PO{sub 4} loaded hydroxyapatite nanowires for water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaling; Zhou, Hangyu; Zhu, Genxing [Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou (China); Shao, Changyu; Pan, Haihua; Xu, Xurong [Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou (China); Qiushi Academy for Advanced Studies, Zhejiang University (China); Tang, Ruikang, E-mail: rtang@zju.edu.cn [Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou (China); Qiushi Academy for Advanced Studies, Zhejiang University (China)

    2015-12-15

    Highlights: • The multifunctional Ag{sub 3}PO{sub 4} loaded hydroxyapatite (HAP) nanowires were synthesized via a facile in-situ precipitation method. • By optimizing the initial concentration of AgNO{sub 3}, the well-distributed Ag{sub 3}PO{sub 4}/HAP composites could be achieved. • The Ag{sub 3}PO{sub 4}/HAP composites showed excellent photocatalytic performance for the decomposition of dyes under visible light irradiation. • The maximum absorption capacity of the Ag{sub 3}PO{sub 4}/HAP composites for Pb(II) was 250 mg/g, approximately three times as that of pure HAP. • The Ag{sub 3}PO{sub 4}/HAP composites also exhibited excellent antibacterial activities even at relative low concentrations. - Abstract: Organic, inorganic, and biological pollutants are typical water contaminants and they seriously affect water quality. In this study, we suggested that a novel multifunctional Ag{sub 3}PO{sub 4} loaded hydroxyapatite (HAP) material can remove the typical pollutants from water. The Ag{sub 3}PO{sub 4}/HAP composites were synthesized facilely via in-situ precipitation of Ag{sub 3}PO{sub 4} on the pre-existing HAP nanowires. By optimizing the composition of Ag{sub 3}PO{sub 4} and HAP, the material could achieve an optimal photocatalytic activity to decompose rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) under visible light irradiations with enhanced pH stability. Besides, the adsorption of Pb(II) on the Ag{sub 3}PO{sub 4}/HAP reached a maximum capacity of 250 mg/g and this value was approximately three times as that of pure HAP. Furthermore, the composite material exhibited excellent antibacterial activities towards gram-negative bacterium (Escherichia coli) and gram-positive bacterium (Stphylococcus aureus). The results highlighted the cooperative effect between Ag{sub 3}PO{sub 4} and hydroxyapatite (HAP). The simultaneous removals of dyes, toxic metal ions, and bacteria with a high efficiency followed an easy approach for the purification

  18. Flower-like Ag/AgCl microcrystals: Synthesis and photocatalytic activity

    International Nuclear Information System (INIS)

    Daupor, Hasan; Wongnawa, Sumpun

    2015-01-01

    Silver/silver chloride (Ag/AgCl) composites with a novel flower-like morphology were prepared via a hot precipitation assisted by the vinyl acetate monomer (VAM) route. An aqueous solution of AlCl 3 was mixed with the vinyl acetate monomer and acetic acid before adding a AgNO 3 solution at a temperature of 100 °C. The octapod shaped flower-like Ag/AgCl particles (or “flower-like Ag/AgCl” hereinafter) has eight petals each of which was about 7–11 μm in length. The flower-like octapods were formed by preferential overgrowth along the <111> directions of the cubic seeds. Detailed studies of the growth process at different AlCl 3 concentrations revealed that the concave cube developed into a Rubik's cube where eight corners grew further into the flower-like structures. The VAM and acetic acid concentration strongly affected the growth of the Ag/AgCl to the flower-like structure and their optimum concentrations were determined. The morphologies of these particles were carefully examined by scanning electron microscopy (SEM). The crystal structures and orientation relationship were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–visible diffused reflectance spectroscopy (DRS). The flower-like Ag/AgCl microcrystals were tested for their photocatalytic degradation of orange G dye (OG) catalyzed by visible light. From comparative test runs, the flower-like Ag/AgCl exhibited better photocatalytic activity than simple and commercial Ag/AgCl particles. - Highlights: • Interesting transformation of microcrystals Ag/AgCl from concave cube via Rubik's cube to flower-like shape. • The first to use VAM as morphology control reagent. • High photocatalytic activity under visible light irradiation

  19. Rietveld refinement of the crystal structure of perovskite solar cells using CH3NH3PbI3 and other compounds

    Science.gov (United States)

    Ando, Yuji; Ohishi, Yuya; Suzuki, Kohei; Suzuki, Atsushi; Oku, Takeo

    2018-01-01

    The crystal structures of perovskite thin films including CH3NH3PbI3, CH3NH3Pb1-xSbxI3, and CH3NH3PbI3-yCly in the solar cell configuration were studied by using Rietveld refinement. For the CH3NH3PbI3 and CH3NH3Pb1-xSbxI3 samples, satisfactory agreement with the measured profiles was obtained with a weighted profile R-factor (Rwp) of as low as 3%. It was shown that the site occupancy of methylammonium (MA) was decreased in the antimonized cell due to the compensation effect of an increased positive charge brought about by replacing Pb2+ with Sb3+. Photovoltaic measurements showed that the power conversion efficiency was enhanced by adding a small amount of Sb to the CH3NH3PbI3 cell, but it was monotonically decreased as the mole fraction of Sb exceeded 0.03. This variation of the conversion efficiency was considered as a result of suppressed crystallization of PbI2 and carrier recombination via MA vacancies in the antimonized cells. In the case of CH3NH3PbI2.88Cl0.12 sample, the agreement with the measured profile with an Rwp of as high as 7% suggested the co-existence of cubic and tetragonal phases in the chlorinated cell.

  20. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  1. libChEBI: an API for accessing the ChEBI database.

    Science.gov (United States)

    Swainston, Neil; Hastings, Janna; Dekker, Adriano; Muthukrishnan, Venkatesh; May, John; Steinbeck, Christoph; Mendes, Pedro

    2016-01-01

    ChEBI is a database and ontology of chemical entities of biological interest. It is widely used as a source of identifiers to facilitate unambiguous reference to chemical entities within biological models, databases, ontologies and literature. ChEBI contains a wealth of chemical data, covering over 46,500 distinct chemical entities, and related data such as chemical formula, charge, molecular mass, structure, synonyms and links to external databases. Furthermore, ChEBI is an ontology, and thus provides meaningful links between chemical entities. Unlike many other resources, ChEBI is fully human-curated, providing a reliable, non-redundant collection of chemical entities and related data. While ChEBI is supported by a web service for programmatic access and a number of download files, it does not have an API library to facilitate the use of ChEBI and its data in cheminformatics software. To provide this missing functionality, libChEBI, a comprehensive API library for accessing ChEBI data, is introduced. libChEBI is available in Java, Python and MATLAB versions from http://github.com/libChEBI, and provides full programmatic access to all data held within the ChEBI database through a simple and documented API. libChEBI is reliant upon the (automated) download and regular update of flat files that are held locally. As such, libChEBI can be embedded in both on- and off-line software applications. libChEBI allows better support of ChEBI and its data in the development of new cheminformatics software. Covering three key programming languages, it allows for the entirety of the ChEBI database to be accessed easily and quickly through a simple API. All code is open access and freely available.

  2. Measurements of electron density profiles using an angular filter refractometer

    Energy Technology Data Exchange (ETDEWEB)

    Haberberger, D., E-mail: dhab@lle.rochester.edu; Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14636 (United States)

    2014-05-15

    A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10{sup 21} cm{sup −3} with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ∼9 kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres.

  3. Measurements of electron density profiles using an angular filter refractometer

    International Nuclear Information System (INIS)

    Haberberger, D.; Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H.

    2014-01-01

    A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10 21  cm −3 with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ∼9 kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres

  4. Development of a superconducting CH-accelerator-structure for light and heavy ions; Entwicklung einer supraleitenden CH-Beschleuniger-Struktur fuer leichte und schwere Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Liebermann, Holger

    2007-07-01

    This work deals with the development of the prototype of a superconducting CH accelerator structure. The simulations were calculated with the program CST Microwave Studio. It is based on the finite integration theory, which the Maxwell equations in a two-grid matrix form convicted so they can be solved numerically. In another chapter, a method for determining the coupling strength is discussed. The conditions that previously were created for the optimization of the prototype of the superconducting CH structure are described. It was for the optimization of the field distribution on the beam axis by adjusting the end cell design, optimization of support for the magnetic and electric fields, leading to reduction of the quadrupole component of the CH-structure, the coupling and, finally, the possibility of static tuning during the completion of the structure. On the basis of these investigations the completion of an initial prototype superconducting at the company ACCEL in Bergisch Gladbach was commissioned. Finally simulations for an operation accelerator facility, and a look at possible areas of the superconducting CH-structure are presented. The optimizations performed for the high power injector led to a more stable operation of the plant. Through this work it could be shown that the newly-CH structure is very well suited for use in superconducting accelerators. (orig.)

  5. Graphene–Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation

    International Nuclear Information System (INIS)

    Ahmad, M.; Ahmed, E.; Hong, Z.L.; Khalid, N.R.; Ahmed, W.; Elhissi, A.

    2013-01-01

    Highlights: •Synthesis of Graphene–Ag/ZnO composite photocatalysts by facile one-step nontoxic approach. •Enhanced visible light absorption and efficient charge separation of ZnO by graphene modification and silver doping. •Effective utilization of photo-induced conduction band electron and valance band hole to photocatalytic degradation process. •Excellent photocatalytic performance of composites over pure ZnO. •The reduction in COD and TOC confirms the destruction of the organic molecules in the effluents along with colour removal. -- Abstract: Visible-light-responsive Graphene–Ag/ZnO nanocomposites were fabricated using a facile, one-pot, nontoxic solvothermal process for the photodegradation of organic dyes. During the solvothermal process reduction of graphene oxide and loading of Ag-doped ZnO nanoparticles on two-dimensional graphene sheets were achieved. Electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray analysis, BET surface area measurements, X-ray photoelectron spectroscopy and powder X-ray diffraction were used to confirm that the Ag-doped ZnO nanoparticles as randomly dispersed and effectively decorated on graphene sheets via covalent bonds between Zn and C atoms. Optical properties studied using UV–vis diffuse reflectance spectroscopy confirmed that the absorption edge of Ag-doped ZnO shifted to visible-light region with the incorporation of graphene. The as-synthesized Graphene–Ag/ZnO nanocomposites showed unprecedented photodecomposition efficiency compared to the Ag-doped ZnO, pristine ZnO and commercial ZnO under visible-light. The textile mill effluent containing organic substances was also treated using photocatalysis and the reduction in the chemical oxygen demand (COD) of the treated effluent revealed a complete destruction of the organic molecules along with colour removal. This dramatically enhanced photoactivity of the composite which is attributed to retarded charge recombination rate

  6. Interdiffusion and stress development in single-crystalline Pd/Ag bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Noah, Martin A., E-mail: m.noah@is.mpg.de; Flötotto, David [Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstr. 3, 70569 Stuttgart (Germany); Wang, Zumin [Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstr. 3, 70569 Stuttgart (Germany); School of Materials Science and Engineering, Tianjin University, Tianjin 300052 (China); Mittemeijer, Eric J. [Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstr. 3, 70569 Stuttgart (Germany); Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, 70569 Stuttgart (Germany)

    2016-04-14

    Interdiffusion and stress evolution in single-crystalline Pd/single-crystalline Ag thin films were investigated by Auger electron spectroscopy sputter-depth profiling and in-situ X-ray diffraction, respectively. The concentration-dependent chemical diffusion coefficient, as well as the impurity diffusion coefficient of Ag in Pd could be determined in the low temperature range of 356 °C–455 °C. As a consequence of the similarity of the strong concentration-dependences of the intrinsic diffusion coefficients, the chemical diffusion coefficient varies only over three orders of magnitude over the whole composition range, despite the large difference of six orders of magnitude of the self-diffusion coefficients of Ag in Ag and Pd in Pd. It is shown that the Darken-Manning treatment should be adopted for interpretation of the experimental data; the Nernst-Planck treatment yielded physically unreasonable results. Apart from the development of compressive thermal stress, the development of stress in both sublayers separately could be ascribed to compositional stress (tensile in the Ag sublayer and compressive in the Pd sublayer) and dominant relaxation processes, especially in the Ag sublayer. The effect of these internal stresses on the values determined for the diffusion coefficients is shown to be negligible.

  7. Fabrication of Heterostructured g-C{sub 3}N{sub 4}/Ag-TiO{sub 2} Hybrid Photocatalyst with Enhanced Performance in Photocatalytic Conversion of CO{sub 2} Under Simulated Sunlight Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hailong [School of Energy Science and Engineering, Central South University, Changsha, 410083 (China); Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Gao, Yan; Wu, Xianying [School of Energy Science and Engineering, Central South University, Changsha, 410083 (China); Lee, Po-Heng [Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region (Hong Kong); Shih, Kaimin, E-mail: kshih@hku.hk [Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong)

    2017-04-30

    Highlights: • Combination of g-C{sub 3}N{sub 4} and Ag-TiO{sub 2} resulted in significant synergy for CO{sub 2} reduction. • The optimal electron consumption rate for CN/AgTi was 12.7 times higher than that for TiO{sub 2}. • CN/AgTi was superior than g-C{sub 3}N{sub 4} and Ag-TiO{sub 2} in use of sunlight for CO{sub 2} conversion. - Abstract: Heterostructured g-C{sub 3}N{sub 4}/Ag-TiO{sub 2} (CN/AgTi) hybrid catalysts were fabricated through a facile solvent evaporation followed by a calcination process, using graphitic carbon nitride (g-C{sub 3}N{sub 4}) and Ag-TiO{sub 2} (AgTi) as precursors. The phase compositions, optical properties, and morphologies of the catalysts were systematically characterized. The heterostructured combination of g-C{sub 3}N{sub 4}, titania (TiO{sub 2}) and silver nanoparticles (Ag NPs) resulted in significant synergy for catalytic conversion of CO{sub 2} in the presence of water vapor under simulated sunlight irradiation. The optimal CN/AgTi composite with a g-C{sub 3}N{sub 4} to AgTi mass ratio of 8% exhibited the maximum CO{sub 2} photoreduction activity, achieving a CO{sub 2} conversion of 47 μmol, CH{sub 4} yield of 28 μmol, and CO yield of 19 μmol per gram of catalyst during a 3 h simulated sunlight irradiation. Under the experimental conditions, the rate of electron consumption was calculated to be 87.3 μmol/g·h, which was 12.7 times, 7.9 times, and 2.0 times higher than those for TiO{sub 2}, g-C{sub 3}N{sub 4} and AgTi, respectively. The combination of g-C{sub 3}N{sub 4} and AgTi resulted in more sunlight harvesting for electron and hole generations. Photoinduced electrons transferred through the heterjunction between g-C{sub 3}N{sub 4} and TiO{sub 2}, and further from TiO{sub 2} to Ag NPs with lower Fermi level greatly suppressed the recombination of electron-hole pairs, and hence resulted in electron accumulation on Ag NPs deposited on the TiO{sub 2} surface in the CN/AgTi. Abundant electrons accumulated on the Ag

  8. WISMUT AG: Past, present and future of the largest uranium producer in Europe

    International Nuclear Information System (INIS)

    Madel, J.

    1990-01-01

    The author gives a brief summary of WISMUT AG the largest uranium producer operating in Europe. The jointly owned German-Soviet company operates its production facilities in the southern part of the former German Democratic Republic. Given the new political and economic frame in Germany and the Soviet Union WISMUT AG will receive due recognition. Uranium exploration, mining, and milling activities are summarized from 1946-1989, and a summary of present activities and projections of future activities in the area of decontamination, restoration, and recultivation of present and abandoned mining and milling sites are noted. A statement of WISMUT AG's projected role in the international nuclear fuels market is made

  9. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane.

    Science.gov (United States)

    Yang, Lan; Luo, Wei; Cheng, Gongzhen

    2013-08-28

    Well-dispersed magnetically recyclable core-shell Ag@M (M = Co, Ni, Fe) nanoparticles (NPs) supported on graphene have been synthesized via a facile in situ one-step procedure, using methylamine borane (MeAB) as a reducing agent under ambient condition. Their catalytic activity toward hydrolysis of ammonia borane (AB) were studied. Although the Ag@Fe/graphene NPs are almost inactive, the as-prepared Ag@Co/graphene NPs are the most reactive catalysts, followed by Ag@Ni/graphene NPs. Compared with AB and NaBH4, the as-synthesized Ag@Co/graphene catalysts which reduced by MeAB exert the highest catalytic activity. Additionally, the Ag@Co NPs supported on graphene exhibit higher catalytic activity than the catalysts with other conventional supports, such as the SiO2, carbon black, and γ-Al2O3. The as-synthesized Ag@Co/graphene NPs exert satisfied catalytic activity, with the turnover frequency (TOF) value of 102.4 (mol H2 min(-1) (mol Ag)(-1)), and the activation energy Ea value of 20.03 kJ/mol. Furthermore, the as-synthesized Ag@Co/graphene NPs show good recyclability and magnetically reusability for the hydrolytic dehydrogenation of AB and MeAB, which make the practical reusing application of the catalysts more convenient. Moreover, this simple synthetic method indicates that MeAB could be used as not only a potential hydrogen storage material but also an efficient reducing agent. It can be easily extended to facile preparation of other graphene supported metal NPs.

  10. Thermodynamic assessments of the Ag-Gd and Ag-Nd systems

    International Nuclear Information System (INIS)

    Wang, S.L.; Wang, C.P.; Liu, X.J.; Ishida, K.

    2009-01-01

    The phase diagrams and thermodynamic properties in the Ag-Re (Re: Gd, Nd) binary systems have been assessed by using the CALPHAD (Calculation of Phase Diagrams) method on the basis of the experimental data including the thermodynamic properties and phase equilibria. The Gibbs free energies of the liquid, bcc, fcc, dhcp and hcp phases were described by the subregular solution model with the Redlich-Kister equation, and those of the intermetallic compounds (Ag 51 Gd 14 , Ag 2 Gd, AgGd, Ag 51 Nd 14 , αAg 2 Nd, βAg 2 Nd and AgNd phases) in these two binary systems were described by the sublattice model. The thermodynamic parameters of each phase in the Ag-Re (Re: Gd, Nd) binary systems were obtained, and an agreement between the calculated results and experimental data was obtained in each binary system.

  11. Impact of artefact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data.

    Directory of Open Access Journals (Sweden)

    Thomas Samuel Carroll

    2014-04-01

    Full Text Available With the advent of ChIP-seq multiplexing technologies and the subsequent increase in ChIP-seq throughput, the development of working standards for the quality assessment of ChIP-seq studies has received significant attention. The ENCODE consortium’s large scale analysis of transcription factor binding and epigenetic marks as well as concordant work on ChIP-seq by other laboratories has established a new generation of ChIP-seq quality control measures. The use of these metrics alongside common processing steps has however not been evaluated. In this study, we investigate the effects of blacklisting and removal of duplicated reads on established metrics of ChIP-seq quality and show that the interpretation of these metrics is highly dependent on the ChIP-seq preprocessing steps applied. Further to this we perform the first investigation of the use of these metrics for ChIP-exo data and make recommendations for the adaptation of the NSC statistic to allow for the assessment of ChIP-exo efficiency.

  12. Atmospheric chemistry of CF3CH2CH2OH

    DEFF Research Database (Denmark)

    Hurley, Michael D.; Misner, Jessica A.; Ball, James C.

    2005-01-01

    Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with CF3CH2C(O)H and CF3CH2CH2OH in 700 Torr of N-2 or air diluent at 296 2 K. The rate constants determined were k(Cl+CF3CH2C(O)H) = (1.81 +/- 0.27) x 10(-11), k(OH+CF3CH2C(O)H) = (2.57 +/- 0.44...

  13. The ChArMEx database

    Science.gov (United States)

    Ferré, Hélène; Descloitres, Jacques; Fleury, Laurence; Boichard, Jean-Luc; Brissebrat, Guillaume; Focsa, Loredana; Henriot, Nicolas; Mastrorillo, Laurence; Mière, Arnaud; Vermeulen, Anne

    2013-04-01

    (SEVIRI, TRIMM, PARASOL...) stored in the ICARE data archive using OpeNDAP protocole The website will soon propose new facilities. In particular, many in situ datasets will be homogenized and inserted in a relational database, in order to enable more accurate data selection and download of different datasets in a shared format. In order to meet the operational needs of the airborne and ground based observational teams during the ChArMEx 2012 pre-campaign and the 2013 experiment, a day-to-day quick look and report display website has been developed too: http://choc.sedoo.org. It offers a convenient way to browse weather conditions and chemical composition during the campaign periods.

  14. Synthesis and electromagnetic absorption properties of Ag-coated reduced graphene oxide with MnFe_2O_4 particles

    International Nuclear Information System (INIS)

    Wang, Yan; Wu, Xinming; Zhang, Wenzhi; Huang, Shuo

    2016-01-01

    A ternary composite of Ag/MnFe_2O_4/reduced graphene oxide (RGO) was synthesized by a facile hydrothermal method. The morphology, microstructure, magnetic and electromagnetic properties of as-prepared Ag/MnFe_2O_4/RGO composite were characterized by means of XRD, TEM, XPS, VSM and vector network analyzer. The maximum reflection loss (R_L) of Ag/ MnFe_2O_4/RGO composite shows maximum absorption of −38 dB at 6 GHz with the thickness of 3.5 mm, and the absorption bandwidth with the R_L below −10 dB is up to 3.5 GHz (from 3.7 to 7.2 GHz). The result demonstrates that the introduction of Ag significantly leads to the multiple absorbing mechanisms. It is believed that such composite could serve as a powerful candidate for microwave absorber. - Highlights: • A ternary composite of Ag/MnFe_2O_4/reduced graphene oxide (RGO) was synthesized by a facile method. • The morphology, microstructure, magnetic and electromagnetic properties were characterized. • The maximum reflection loss of Ag/MnFe_2O_4/RGO is −38 dB at 6 GHz with a thickness of 3.5 mm. • The composite shows a wide absorption band.

  15. Electrically conductive nanostructured silver doped zinc oxide (Ag:ZnO) prepared by solution-immersion technique

    International Nuclear Information System (INIS)

    Afaah, A. N.; Asib, N. A. M.; Aadila, A.; Khusaimi, Z.; Mohamed, R.; Rusop, M.

    2016-01-01

    p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO_3 as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films were characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.

  16. Facile preparation of dendritic Ag-Pd bimetallic nanostructures on the surface of Cu foil for application as a SERS-substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yi Zao [College of Physics and Electronics, Central South University, Changsha 410083 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Tan Xiulan; Niu Gao [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Xu Xibin [College of Physics and Electronics, Central South University, Changsha 410083 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li Xibo; Ye Xin; Luo Jiangshan; Luo Binchi; Wu Weidong; Tang Yongjian [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yi Yougen, E-mail: yougenyi@mail.csu.edu.cn [College of Physics and Electronics, Central South University, Changsha 410083 (China)

    2012-05-01

    Dendritic Ag-Pd bimetallic nanostructures have been synthesized on the surface of Cu foil via a multi-stage galvanic replacement reaction (MGRR) of Ag dendrites in a Na{sub 2}PdCl{sub 4} solution. After five stages of replacement reaction, one obtained structures with protruding Ag-Pd flakes; these will mature into many porous structures with a few Ag atoms that are left over dendrites. The dendritic Ag-Pd bimetallic nanostructures were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), selected area electron diffraction (SAED) and X-ray photoelectron spectroscopy (XPS). The morphology of the products strongly depended on the stage of galvanic replacement reaction and reaction temperature. The morphology and composition-dependent surface-enhanced Raman scattering (SERS) of the as-synthesized Ag-Pd bimetallic nanostructures were investigated. The effectiveness of these dendritic Ag-Pd bimetallic nanostructures on the surface of Cu foil as substrates toward SERS detection was evaluated by using rhodamine 6G (R6G) as a probe molecule. The results indicate that as-synthesized dendritic Ag-Pd bimetallic nanostructures are good candidates for SERS spectroscopy.

  17. Enzyme-free hydrogen peroxide sensor based on Au@Ag@C core-double shell nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yancai, E-mail: liyancai@mnnu.edu.cn [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Zhang, Yayun; Zhong, Yanmei [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Li, Shunxing [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China)

    2015-08-30

    Graphical abstract: - Highlights: • A facile method was designed to synthesize Au@Ag@C core-double shell nanocomposites. • Carbon nanomaterials at the outermost layer could protect Au and Ag nanoparticles from oxidation and aggregation. • The Au@Ag@C core-double shell nanocomposites showed high sensitivity and selectivity to electrocatalytic reduction of hydrogen peroxide. • The hydrogen peroxide sensor has a wide linear range of 5.0 μM to 4.75 mM and a limit of detection as low as 0.14 μM. - Abstract: The well-designed Au@Ag@C core-double shell nanocomposites were synthesized via a facile method, and were used to fabricate an enzyme-free amperometric hydrogen peroxide (H{sub 2}O{sub 2}) sensor. The size, shape, elementary composition and structure of the nanocomposites were characterized by transmission electron microscope (TEM), energy-dispersed spectrum (EDS) and X-ray diffraction (XRD). The outermost layer of the nanocomposites was amorphous carbon, the second layer was Ag and the core was Au. The Au@Ag@C core-double shell nanocomposites exhibit attractive activity for electrocatalytic reduction of H{sub 2}O{sub 2} according to the electrochemical experiments. It also demonstrates the H{sub 2}O{sub 2} sensor possess well performance with a wide linear range of 5.0 μM to 4.75 mM and a limit of detection (LOD) as low as 0.14 μM (S/N = 3). Furthermore, the interference from the common interfering species, such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided. In a word, the Au@Ag@C nanocomposites are promising candidates for enzyme-free H{sub 2}O{sub 2} sensor.

  18. Antimicrobial and anticancer activity of AgNPs coated with Alphonsea sclerocarpa extract.

    Science.gov (United States)

    Doddapaneni, Suman Joshi D S; Amgoth, Chander; Kalle, Arunasree M; Suryadevara, Surya Narayana; Alapati, Krishna Satya

    2018-03-01

    The synthesis and characterization of an aggregate of AgNPs coated with plant extract (PE) from Alphonsea sclerocarpa and its significant antimicrobial activity and inhibition on K562 (blood cancer) cells have been appended in the article. Synthesis of aggregate [(AgNPs)-(PE)] has been followed by a facile eco-friendly approach without using any harmful chemicals. The morphology of an aggregate [(AgNPs)-(PE)] was confirmed by TEM and SEM microscopic characterizations. Properties like solid state, the presence of functional groups, and elemental composition have been characterized through the XRD, FTIR, and EDAX. The biocompatibility of synthesized aggregate of [(AgNPs)-(PE)] was confirmed by the MTT assay. An in vitro cell (HEK293)-based studies were performed for the biocompatibility tests and it is found that the aggregate [(AgNPs)-(PE)] is not harmful to normal/healthy cells. Even though A. sclerocarpa show the antimicrobial (antibacterial and antifungal) activity, it has been further enhanced with the developed aggregate of [(AgNPs)-(PE)]. Furthermore, it has been extended to examine the cellular inhibition on K562 cells and obtained > 75% cell inhibition for 24 h treated cells.

  19. An approach for scalable production of silver (Ag) decorated WS2 nanosheets

    Science.gov (United States)

    Sumesh, C. K.; Kapatel, Sanni; Chaudhari, Arti

    2018-05-01

    In the Present study we report the synthesis of Ag nanoparticles (NPs) decorated WS2 nanosheets by sonochemical exfoliation followed by simple chemical reduction process at room temperature. The morphology and microstructure of the as-synthesized Ag-WS2 nanocomposite were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and optical absorption (UV-Vis.) spectroscopy. X-ray and TEM analysis shows the presence of Ag with significant peak over 38.08°, 44.22°, 64.37° and 77.33° at 2θ angle for (111), (200), (220) and (311) respectively. The Ag nanoparticles are randomly distributed throughout the surface of the WS2 nanosheets without undergoing further oxidation during the formation of composites. The formation of Ag-WS2 nanocomposites shows a clear blue shift in the absorption as we obtained the characteristics absorption valleys at 456, 536 and 631 nm from the UV Vis spectroscopy analysis compared to pure WS2 nanosheets. Henceforth a facile method for the Ag decoration on WS2 nanosheets was put forward and briefly discussed. The proposed synthesis method is very promising for the low cost and large-scale synthesis of other noble metal incorporation TMDC compounds.

  20. Measurement and modelling of the radiation damage of silicon by MeV Ag ions

    International Nuclear Information System (INIS)

    Lindner, J.K.N.; Eder, J.; Stritzker, B.

    1999-01-01

    Depth profiles of the radiation damage produced by 4 MeV Ag ions in Si(111) at temperatures of 210--450 K are studied by optical reflectivity depth profiling and TEM for doses between 10 12 and 10 15 Ag/cm 2 . For high implantation temperatures, the depth of maximum damage is shown to be dose dependent. Point defect diffusion is shown to result in long tails of defect depth profiles. High-temperature amorphization is observed to proceed via the formation and bridge-like coalescence of isolated amorphous volumina. The damage at the depth of the maximum in the nuclear stopping power is described as a function of dose and temperature by the Hecking model. The model parameters and a comparison with those obtained for lighter ions reflect the particular properties of heavy ion collision cascades

  1. The high-temperature modification of LuAgSn and high-pressure high-temperature experiments on DyAgSn, HoAgSn, and YbAgSn

    Energy Technology Data Exchange (ETDEWEB)

    Heying, B.; Rodewald, U.C.; Hermes, W.; Schappacher, F.M.; Riecken, J.F.; Poettgen, R. [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Heymann, G.; Huppertz, H. [Muenchen Univ. (Germany). Dept. fuer Chemie und Biochemie; Sebastian, C.P. [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany)

    2008-02-15

    The high-temperature modification of LuAgSn was obtained by arc-melting an equiatomic mixture of the elements followed by quenching the melt on a water-cooled copper crucible. HT-LuAgSn crystallizes with the NdPtSb-type structure, space group P6{sub 3}mc: a = 463.5(1), c = 723.2(1) pm, wR2 = 0.0270, 151 F{sup 2}, and 11 variables. The silver and tin atoms build up two-dimensional, puckered [Ag{sub 3}Sn{sub 3}] networks (276 pm Ag-Sn) that are charge-balanced and separated by the lutetium atoms. The Ag-Sn distances between the [Ag{sub 3}Sn{sub 3}] layers of 294 pm are much longer. Single crystals of isotypic DyAgSn (a = 468.3(1), c = 734.4(1) pm, wR2 = 0.0343, 411 F{sup 2}, and 11 variables) and HoAgSn (a = 467.2(1), c = 731.7(2) pm, wR2 = 0.0318, 330 F{sup 2}, and 11 variables) were obtained from arc-melted samples. Under high-pressure (up to 12.2 GPa) and high-temperature (up to 1470 K) conditions, no transitions to a ZrNiAl-related phase have been observed for DyAgSn, HoAgSn, and YbAgSn. HT-TmAgSn shows Curie-Weiss paramagnetism with {mu}{sub eff} = 7.53(1) {mu}{sub B}/Tm atom and {theta}P = -15.0(5) K. No magnetic ordering was evident down to 3 K. HT-LuAgSn is a Pauli paramagnet. Room-temperature {sup 119}Sn Moessbauer spectra of HT-TmAgSn and HT-LuAgSn show singlet resonances with isomer shifts of 1.78(1) and 1.72(1) mm/s, respectively. (orig.)

  2. Results of RCRA groundwater quality assessment at the 216-B-3 Pond Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Teel, S.S.

    1997-06-01

    This document describes a groundwater quality assessment of the 216-B-3 pond system, a Resources Conservation and Recovery act of 1976 (RCRA) waste facility. In 1990, sampling and chemical analysis of groundwater underlying the facility indicated that the contamination indicator parameters, total organic halogens (TOX), and total organic carbon (TOC) had exceeded established limits in two wells. This discovery placed the facility into RCRA groundwater assessment status and subsequently led to a more detailed hydrochemical analysis of groundwater underlying the facility. Comprehensive chemical analyses of groundwater samples from 1994 through 1996 revealed one compound, tris (2-chloroethyl) phosphate (TRIS2CH), that may have contributed to elevated TOX concentrations. No compound was identified as a contributor to TOC. Detailed evaluations of TOX, TOC, and TRIS2CH and comparison of occurrences of these parameters led to conclusions that (1) with few exceptions, these constituents occur at low concentrations below or near limits of quantitation; (2) it is problematic whether the low concentrations of TRIS2CH represent a contaminant originating from the facility or if it is a product of well construction; and (3) given the low and diminishing concentration of TOX, TOC, and TRIS2CH, no further investigation into the occurrent of these constituents is justified. Continued groundwater monitoring should include an immediate recalculation of background critical means of upgradient/downgradient comparisons and a return to seminannual groundwater monitoring under a RCRA indicator parameter evaluation program

  3. Louisiana SIP: LAC 33:III Ch 2132. Stage II Vapor Recovery Systems for Control of Vehicle Refuelling Emissions at Gasoline Dispensing Facilities; SIP effective 2011-08-04 (LAd34) and 2016-02-29 (LAd47) to 2017-09-27

    Science.gov (United States)

    Louisiana SIP: LAC 33:III Ch 2132. Stage II Vapor Recovery Systems for Control of Vehicle Refuelling Emissions at Gasoline Dispensing Facilities; SIP effective 2011-08-04 (LAd34) and 2016-02-29 (LAd47) to 2017-09-27

  4. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit

    Science.gov (United States)

    Pan, Weicheng; Wu, Haodi; Luo, Jiajun; Deng, Zhenzhou; Ge, Cong; Chen, Chao; Jiang, Xiaowei; Yin, Wan-Jian; Niu, Guangda; Zhu, Lujun; Yin, Lixiao; Zhou, Ying; Xie, Qingguo; Ke, Xiaoxing; Sui, Manling; Tang, Jiang

    2017-11-01

    Sensitive X-ray detection is crucial for medical diagnosis, industrial inspection and scientific research. The recently described hybrid lead halide perovskites have demonstrated low-cost fabrication and outstanding performance for direct X-ray detection, but they all contain toxic Pb in a soluble form. Here, we report sensitive X-ray detectors using solution-processed double perovskite Cs2AgBiBr6 single crystals. Through thermal annealing and surface treatment, we largely eliminate Ag+/Bi3+ disordering and improve the crystal resistivity, resulting in a detector with a minimum detectable dose rate as low as 59.7 nGyair s-1, comparable to the latest record of 0.036 μGyair s-1 using CH3NH3PbBr3 single crystals. Suppressed ion migration in Cs2AgBiBr6 permits relatively large external bias, guaranteeing efficient charge collection without a substantial increase in noise current and thus enabling the low detection limit.

  5. In situ solid-state fabrication of hybrid AgCl/AgI/AgIO3 with improved UV-to-visible photocatalytic performance.

    Science.gov (United States)

    Xie, Jing; Cao, Yali; Jia, Dianzeng; Li, Yizhao; Wang, Kun; Xu, Hui

    2017-09-28

    The AgCl/AgI/AgIO 3 composites were synthesized through a one-pot room-temperature in situ solid-state approach with the feature of convenient and eco-friendly. The as-prepared composites exhibit superior photocatalytic performance than pure AgIO 3 for the degradation of methyl orange (MO) under both UV and visible light irradiation. The photodegradation rate toward MO of the AgCl/AgI/AgIO 3 photocatalyst can reach 100% after 12 min irradiation under UV light, or 85.4% after 50 min irradiation under visible light, being significantly higher than AgCl, AgI, AgIO 3 and AgI/AgIO 3 . In addition, the AgCl/AgI/AgIO 3 photocatalyst possesses strong photooxidation ability for the degradation of rhodamine B (RhB), methylene blue (MB), phenol, bisphenol A (BPA) and tetracycline hydrochloride under visible light irradiation. The reactive species capture experiments confirmed that the h + and •O 2- play an essential role during the photocatalytic process under UV light or visible light irradiation. The enhanced effect may be beneficial from the enhanced light adsorption in full spectrum and increased separation efficiency of photogenerated hole-electron pairs, which can be ascribed to the synergistic effect among AgCl, AgI and AgIO 3 nanoplates in AgCl/AgI/AgIO 3 composites.

  6. Protective effect of ascorbic acid on netilmicin-induced lipid profile and peroxidation parameters in rabbit blood plasma.

    Science.gov (United States)

    Devbhuti, Pritesh; Sikdar, Debasis; Saha, Achintya; Sengupta, Chandana

    2011-01-01

    A drug may cause alteration in blood-lipid profile and induce lipid peroxidation phenomena on administration in the body. Antioxidant may play beneficial role to control the negative alteration in lipid profile and lipid peroxidation. In view of this context, the present in vivo study was carried out to evaluate the role of ascorbic acid as antioxidant on netilmicin-induced alteration of blood lipid profile and peroxidation parameters. Rabbits were used as experimental animals and blood was collected to estimate blood-lipid profiles, such as total cholesterol (TCh), high density lipoprotein cholesterol (HDL-Ch), low density lipoprotein cholesterol (LDL-Ch), very low density lipoprotein cholesterol (VLDL-Ch), triglycerides (Tg), phospholipids (PL), and total lipids (TL), as well as peroxidation parameters, such as malondialdehyde (MDA), 4-hydroxy-2-nonenal (HNE), reduced glutathione (GSH) and nitric oxide (NO). The results revealed that netilmicin caused significant enhancement of MDA, HNE, TCh, LDL-Ch, VLDL-Ch, Tg levels and reduction in GSH, NO, HDL-Ch, PL, TL levels. On co-administration, ascorbic acid was found to be effective in reducing netilmicin-induced negative alterations of the above parameters.

  7. Synergetic effect of Ag_2O as co-catalyst for enhanced photocatalytic degradation of phenol on N-TiO_2

    International Nuclear Information System (INIS)

    Chu, Haipeng; Liu, Xinjuan; Liu, Junying; Li, Jinliang; Wu, Tianyang; Li, Haokun; Lei, Wenyan; Xu, Yan; Pan, Likun

    2016-01-01

    Graphical abstract: Ag_2O/N-TiO_2 composites were synthesized via a co-precipitation method for visible light photocatalytic degradation of organic pollutions with excellent photocatalytic activity. - Highlights: • Ag_2O/N-TiO_2 composites were synthesized via a facile precipitation method. • Ag_2O/N-TiO_2 composites exhibited enhanced photocatalytic activity. • Ag_2O acts as co-catalyst to separate the photo-generated electron-hole pairs. - Abstract: A facile precipitation method was developed to synthesize the Ag_2O/N-TiO_2 composites. Their morphology, structure and photocatalytic performance in the degradation of methylene blue (MB) and phenol under visible light irradiation were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, photoluminescence spectroscopy and UV–vis absorption spectroscopy, respectively. The results show that the Ag_2O/N-TiO_2 composites exhibit excellent photocatalytic performance. The maximum degradation rates of MB and phenol are about 8.9 and 2.9 times that of pure N-TiO_2, respectively. The excellent photocatalytic performance is mainly ascribed to the synergetic effects of Ag_2O and N-TiO_2 including the increased light absorption and the reduced electron-hole pair recombination in N-TiO_2 with the presence of Ag_2O.

  8. TiO2/SiO2 prepared via facile sol-gel method as an ideal support for green synthesis of Ag nanoparticles using Oenothera biennis extract and their excellent catalytic performance in the reduction of 4-nitrophenol

    Directory of Open Access Journals (Sweden)

    Bahar Khodadadi

    2017-01-01

    Full Text Available In the present study, the extract of the plant of Oenothera biennis was used to green synthesis of silver nanoparticles (Ag NPs as an environmentally friendly, simple and low cost method. And Additionally, TiO2/SiO2 was prepared via facile sol-gel method using starch as an important, naturally abundant organic polymer as an ideal support. The Ag NPs/TiO2/SiO2 as an effective catalyst was prepared through reduction of Ag+ ions using Oenothera biennis extract as the reducing and stabilizing agent and Ag NPs immobilization on TiO2/SiO2 surface in the absence of any stabilizer or surfactant. Several techniques such as FT-IR spectroscopy, UV-Vis spectroscopy, X-ray Diffraction (XRD, sScanning eElectron mMicroscopy (FE-SEM, Eenergy dDispersive X-ray sSpectroscopy (EDS, and Ttransmission Eelectron Mmicroscopy (TEM were used to characterize TiO2/SiO2, silver nanoparticles (Ag NPs, and Ag NPs/TiO2/SiO2. Moreover, the catalytic activity of the Ag NPs/ TiO2/SiO2 was investigated in the reduction of 4-nitrophenol (4-NP at room temperature. On the basis of the results, the Ag NPs/TiO2/SiO2 was found to be high catalytic activity highly active catalyst according to the experimental results in this study. In addition, Ag NPs/TiO2/SiO2 can be recovered and reused several times in the reduction of 4-NP with no significant loss of catalytic activity.

  9. Mechanism of nitric acid generation on Ag-X Zeolite

    International Nuclear Information System (INIS)

    Kanazawa, T.; Kishimoto, T.; Haseba, S.; Mitoh, Y.; Itoh, S.; Nakai, I.

    1983-01-01

    When Ag-X Zeolite is used for the removal of iodine from the off gas streams of nuclear facilities, it is possible that nitric acid is formed on Ag-X Zeolite from co-existing nitrogen dioxide and water vapor. If nitric acid is formed on the surface of Ag-X zeolite, Ag-X zeolite is damaged and is not able to operate for a long time. When Ag-X zeolite is used in NO 2 -O 2 -H 2 O mixture, the nitric acid generation reaction is varied, depending upon the reaction temperature, and concentration of NO 2 and H 2 O. At a temperature of more than 40 deg. C, however, only the surface reaction will be progressed on the zeolite surface. The generation of nitric acid solution on the zeolite can be forecasted through the relationship between the concentration of nitric acid solution, equilibrium vapor pressure of H 2 O, and equilibrium vapor pressure of HNO 3 . Concerning the surface reaction caused on the zeolite, the adsorption water reacts on NO 2 , and the resulting HNO 3 is adsorbed firmly by the zeolite, which is thought to interfere with the surface reaction for generation of the HNO 3 . When the adsorption bed is long, the time required for adsorbed HNO 3 to saturate is increased in proportion to the bed length

  10. Inverse modelling of European CH4 emissions during 2006-2012 using different inverse models and reassessed atmospheric observations

    Science.gov (United States)

    Bergamaschi, Peter; Karstens, Ute; Manning, Alistair J.; Saunois, Marielle; Tsuruta, Aki; Berchet, Antoine; Vermeulen, Alexander T.; Arnold, Tim; Janssens-Maenhout, Greet; Hammer, Samuel; Levin, Ingeborg; Schmidt, Martina; Ramonet, Michel; Lopez, Morgan; Lavric, Jost; Aalto, Tuula; Chen, Huilin; Feist, Dietrich G.; Gerbig, Christoph; Haszpra, László; Hermansen, Ove; Manca, Giovanni; Moncrieff, John; Meinhardt, Frank; Necki, Jaroslaw; Galkowski, Michal; O'Doherty, Simon; Paramonova, Nina; Scheeren, Hubertus A.; Steinbacher, Martin; Dlugokencky, Ed

    2018-01-01

    We present inverse modelling (top down) estimates of European methane (CH4) emissions for 2006-2012 based on a new quality-controlled and harmonised in situ data set from 18 European atmospheric monitoring stations. We applied an ensemble of seven inverse models and performed four inversion experiments, investigating the impact of different sets of stations and the use of a priori information on emissions. The inverse models infer total CH4 emissions of 26.8 (20.2-29.7) Tg CH4 yr-1 (mean, 10th and 90th percentiles from all inversions) for the EU-28 for 2006-2012 from the four inversion experiments. For comparison, total anthropogenic CH4 emissions reported to UNFCCC (bottom up, based on statistical data and emissions factors) amount to only 21.3 Tg CH4 yr-1 (2006) to 18.8 Tg CH4 yr-1 (2012). A potential explanation for the higher range of top-down estimates compared to bottom-up inventories could be the contribution from natural sources, such as peatlands, wetlands, and wet soils. Based on seven different wetland inventories from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP), total wetland emissions of 4.3 (2.3-8.2) Tg CH4 yr-1 from the EU-28 are estimated. The hypothesis of significant natural emissions is supported by the finding that several inverse models yield significant seasonal cycles of derived CH4 emissions with maxima in summer, while anthropogenic CH4 emissions are assumed to have much lower seasonal variability. Taking into account the wetland emissions from the WETCHIMP ensemble, the top-down estimates are broadly consistent with the sum of anthropogenic and natural bottom-up inventories. However, the contribution of natural sources and their regional distribution remain rather uncertain. Furthermore, we investigate potential biases in the inverse models by comparison with regular aircraft profiles at four European sites and with vertical profiles obtained during the Infrastructure for Measurement of the European Carbon

  11. Theoretical study on the mechanism of CH3NH2 and O3 ...

    Indian Academy of Sciences (India)

    CH3NH + OH + O2 adducts with one transition state is the most favoured path. Keywords. Ozone; calculation; reaction mechanism; potential energy profile; transition state. 1. Introduction ..... University of. Applied Science, Bielefeld, Germany.

  12. Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF(3)COOAg as a precursor.

    Science.gov (United States)

    Zhang, Qiang; Li, Weiyang; Wen, Long-Ping; Chen, Jingyi; Xia, Younan

    2010-09-03

    This paper describes a new protocol to synthesize Ag nanocubes of 30 to 70 nm in edge length with the use of CF(3)COOAg as a precursor to elemental silver. By adding a trace amount of NaSH and HCl to the polyol synthesis, Ag nanocubes were obtained with good quality, high reproducibility, and on a scale up to 0.19 g per batch for the 70 nm Ag nanocubes. The Ag nanocubes were found to grow in size at a controllable pace over the course of synthesis. The linear relationship between the edge length of the Ag nanocubes and the position of localized surface plasmon resonance (LSPR) peak provides a simple method for finely tuning and controlling the size of the Ag nanocubes by monitoring the UV/Vis spectra of the reaction at different times.

  13. Facile Synthesis of Ag Nanocubes of 30 to 70 nm in Edge Length with CF3COOAg as a Precursor

    Science.gov (United States)

    Zhang, Qiang; Li, Weiyang; Wen, Long-Ping; Chen, Jingyi; Xia, Younan

    2010-01-01

    This paper describes a new protocol for producing Ag nanocubes of 30 to 70 nm in edge length with the use of CF3COOAg as a precursor to elemental silver. By adding a trace amount of sodium hydrosulfide (NaHS) and hydrochloric acid (HCl) into the polyol synthesis, Ag nanocubes were obtained with good quality, high reproducibility, and on a scale up to 0.19 g per batch for the 70-nm Ag nanocubes. The Ag nanocubes were found to grow in size at a controllable pace over the course of synthesis. The linear relationship between the edge length of the Ag nanocubes and the position of localized surface plasmon resonance (LSPR) peak provides a simple method for finely tuning and controlling the size of the Ag nanocubes by monitoring the UV-vis spectra of the reaction at different times. PMID:20593441

  14. Automatic installation of separating 13CH4 from natural CH4, representing a profiled cascade, achieved on the basis of the thermodiffusion column study

    International Nuclear Information System (INIS)

    Ghete, P.

    1976-01-01

    In order to enrich 13 CH 4 from natural CH 4 , an installation, partly automated, has been achieved, using thermodifussion as a separation process for stable isotopes. The thermodifussion columns is original both as construction and solution used for heating the concentric tube. It has been studied the heat transfer properties of the column, the mass transfer and it has been realized an original calculation program concerning the T.D. cascade performances, pointing out an energetical optimum. The experimental results are presented in diagrams each point representing the result of the statistical processing of at least 10 experimental measurements. (author)

  15. Photoreduction of Ag{sup +} in Ag/Ag{sub 2}S/Au memristor

    Energy Technology Data Exchange (ETDEWEB)

    Mou, N.I.; Tabib-Azar, M., E-mail: azar.m@utah.edu

    2015-06-15

    Highlights: • The effect of illumination on the operating voltages and switching speed of Ag/Ag{sub 2}S/Au memristors is studied • Illumination decreased the average switching time from high to low resistance states by ∼19% and decreased the turn-off voltages dramatically from −0.8 V to −0.25 V. • Photo-induced reduction of silver in Ag{sub 2}S may be used in three dimensional optical memories that can be electronically read and reset. • Illumination changed sulfur's valency and modified its oxidation/reduction potential. - Abstract: Silver halides and chalcogenides are excellent memristor materials that have been extensively used in the past as photosensitive layers in photography. Here we examine the effect of illumination on the operating voltages and switching speed of Ag/Ag{sub 2}S/Au memristors using a green laser (473–523 nm). Our results indicate that illumination decreases the average switching time from high to low resistance states by ∼19% and decreases the turn-off voltages dramatically from −0.8 V to −0.25 V that we attribute to the change in sulfur valency and a photo-induced change in its oxidation/reduction potential. Photo-induced reduction of silver in Ag{sub 2}S may be used in three dimensional optical memories that can be electronically read and reset.

  16. Rational design of organic superconductors through the use of the large, discrete molecular anions M(CF3)4-(M = Cu, Ag, Au) and SO3CF2CH2SF5-

    International Nuclear Information System (INIS)

    Schlueter, J.A.; Geiser, U.; Williams, J.M.

    1996-01-01

    A new approach to synthesis of organic superconductors has recently been pioneered which involves the use of large discrete molecular anions as the charge-compensating entities in these charge transfer salts. The organic electron-donor molecule bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF or ET) has been electrocrystallized with the novel organometallic M(CF 3 ) 4 - (M=Cu, Ag, Au) anions in a variety of 1,1,2-trihaloethane solvents. Over 20 organic superconductors have been synthesized which can be described by (ET) 2 M(CF 3 ) 4 (1,1,2- trihaloethane). These solvated salts are shown to have highly anisotropic physical properties which can be tuned via modifications of each of their three molecular components: ET electron donor molecule, M(CF 3 ) 4 - anion, and neutral 1,1,2- trihaloethane solvent molecule. Superconductivity has also been observed in an ET salt containing the discrete SF 5 CH 2 CF 2 SO 3 - anion with onset temperature near 5.2 K

  17. Fabrication of Ag/ZnO heterostructure and the role of surface coverage of ZnO microrods by Ag nanoparticles on the photophysical and photocatalytic properties of the metal-semiconductor system

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Bikash; Sarma, Bimal K., E-mail: sarmabimal@gmail.com

    2017-07-15

    Highlights: • Fabrication of Ag/ZnO heterostructure by facile chemical processes. • Decoration of plasmonic Ag nanoparticles on ZnO microrods through direct attachment. • Quenching of photoluminescence is observed in Ag/ZnO heterostructure. • Extent of surface coverage governs photophysical and photochemical properties. - Abstract: This report presents findings on microstructural, photophysical, and photocatalytic properties of Ag/ZnO heterostructure grown on flexible and silicon substrates. ZnO microrods are prepared by thermal decomposition method for different solute concentrations and Ag/ZnO heterostructure are fabricated by photo-deposition of Ag nanoparticles on ZnO microrods. X-ray diffraction and electron microscopy studies confirm that ZnO microrods belong to the hexagonal wurtzite structure and grown along [001] direction with random alignment showing that majority microrods are aligned with (100) face parallel to the sample surface. Plasmonic Ag nanoparticles are attached to different faces of ZnO. In the optical reflection spectra of Ag/ZnO heterostructure, the surface plasmon resonance peak due to Ag nanoparticles appears at 445 nm. Due to the oxygen vacancies the band gaps of ZnO microrods turn out to be narrower compared to that of bulk ZnO. The presence of Ag nanoparticles decreases the photoluminescence intensity which might be attributed to the non-radiative energy and direct electron transfer in the plasmon–exciton system. The quenching of photoluminescence in Ag/ZnO heterostructure at different growth conditions depend on the extent of surface coverage of ZnO by plasmonic Ag nanoparticles. Photocatalytic degradation efficiency of Ag/ZnO heterostructure is higher than that of ZnO microrods. The extent of surface coverage of ZnO microrods by Ag nanoparticles is crucial for the observed changes in photophysical and photochemical properties.

  18. Synthesis and characterization of Ag nanoparticles decorated mesoporous sintered activated carbon with antibacterial and adsorptive properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenxia; Xiao, Kaijun, E-mail: fekjxiao@scut.edu.cn; He, Tinglin; Zhu, Liang, E-mail: zhuliang@scut.edu.cn

    2015-10-25

    In this study, the sliver nanoparticles (AgNPs) immobilized on the sintered activated carbon (Ag/SAC) were synthesized by the ultrasonic-assisted impregnation method and were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption. SEM showed that the AgNPs were well embedded in the SAC and immersion time had an important influence on final morphologies of AgNPs. Longer immersing duration caused significant aggregation of the AgNPs. The XRD data revealed that the successful synthesis of AgNPs on the SAC and immobilizing AgNPs on sintered active carbon did not change the crystalline degree of SAC. Texture characteristics were determined by analysis of the N{sub 2}/77 K isotherms. The minimum inhibitory concentration (MIC) of Ag/SAC against Escherichia coli (DH5α) and Staphyloccocus aureus (ATCC 29213) was evaluated by a broth dilution method. MICs such as 5 mg/L (against E. coli) and 10 mg/L (against S. aureus) suggest that Ag/SAC have predominant antibacterial activity compared to active carbon. - Highlights: • Sintered active carbon (SAC) was coated with Ag via a facile approach. • The Ag/SAC exhibit good adsorption properties and excellent antibacterial effects. • The Ag/SAC was durable and stable in the application of water purification.

  19. Room-temperature Pd-catalyzed C-H chlorination by weak coordination: one-pot synthesis of 2-chlorophenols with excellent regioselectivity.

    Science.gov (United States)

    Sun, Xiuyun; Sun, Yonghui; Zhang, Chao; Rao, Yu

    2014-02-07

    A room-temperature Pd(II)-catalyzed regioselective chlorination reaction has been developed for a facile one-pot synthesis of a broad range of 2-chlorophenols. The reaction demonstrates an excellent regioselectivity and reactivity for C-H chlorination. This reaction represents one of the rare examples of mild C-H functionalization at ambient temperature.

  20. Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate

    Science.gov (United States)

    Zhang, Cong-yun; Lu, Ya; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2016-07-01

    A novel surface enhanced Raman scattering (SERS)-active substrate has been successfully developed, where Ag-dendrites are assembled on the surface and embedded in the channels of anodic aluminum oxide (AAO) membrane, via electrodeposition in AgNO3/PVP aqueous system. Reaction conditions were systematically investigated to attain the best Raman enhancement. The growth mechanism of Ag dendritic nanostructures has been proposed. The Ag dendrite-integrated AAO membrane with unique hierarchical structures exhibits high SERS activity for detecting rhodamine 6G with a detection limit as low as 1 × 10-11 M. Furthermore, the three-dimensional (3D) substrates display a good reproducibility with the average intensity variations at the major Raman peak less than 12%. Most importantly, the 3D SERS substrates without any surface modification show an outstanding SERS response for the molecules with weak affinity for noble metal surfaces. The potential application for the detection of polycyclic aromatic hydrocarbons (PAHs) was evaluated with fluoranthene as Raman target molecule and a sensitive SERS detection with a limit down to 10-8 M was reached. The 3D SERS-active substrate shows promising potential for rapid detection of trace organic pollutants even weak affinity molecules in the environment.

  1. The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity

    Science.gov (United States)

    Sohrabnezhad, Sh.; Seifi, A.

    2016-11-01

    The Ag/ZnO-MMT nanocomposite was prepared using urtica dioica leaf extract. To improve the photocatalytic properties of ZnO-MMT nanocomposite, silver metal nanoparticles was deposited over nanocomposite. Zn(CH3COO)2, AgNO3 and Urtica dioica leaf extract were used as a zinc, silver precursor and reducing agent, respectively. The nanocomposite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The powder X-ray diffraction showed that Ag/ZnO nanoparticles located on the surface MMT layers. The diffuse reflectance spectra of nanocomposite indicated a strong surface plasmon resonance (SPR) absorption band in the visible region, resulting from metallic Ag nanoparticles. TEM image demonstrated the presence of silver nanoparticles with an average size of 2-4 nm over both MMT and flower-shape ZnO. The photocatalytic activity of nanocomposite was studied for destructive reaction methylene blue dye under visible light. In addition, the effects of different parameters such as amount of nanocomposite, concentration of the dye and pH of the solution were studied. The results showed that modiffication of ZnO-MMT nanocomposite with silver nanoparticles increased the percentage of discoloration methylene blue (MB) from 38.95 to 91.95. MMT matrix showed an important role in the reduction of recombination of electron-hole in nanocomposite.

  2. Natural gas facility methane emissions: measurements by tracer flux ratio in two US natural gas producing basins

    Directory of Open Access Journals (Sweden)

    Tara I. Yacovitch

    2017-11-01

    Full Text Available Methane (CH4 emission rates from a sample of natural gas facilities across industry sectors were quantified using the dual tracer flux ratio methodology. Measurements were conducted in study areas within the Fayetteville shale play, Arkansas (FV, Sept–Oct 2015, 53 facilities, and the Denver-Julesburg basin, Colorado, (DJ, Nov 2014, 21 facilities. Distributions of methane emission rates at facilities by type are computed and statistically compared with results that cover broader geographic regions in the US (Allen et al., 2013, Mitchell et al., 2015. DJ gathering station emission rates (kg CH4 hr–1 are lower, while FV gathering and production sites are statistically indistinguishable as compared to these multi-basin results. However, FV gathering station throughput-normalized emissions are statistically lower than multi-basin results (0.19% vs. 0.44%. This implies that the FV gathering sector is emitting less per unit of gas throughput than would be expected from the multi-basin distribution alone. The most common emission rate (i.e. mode of the distribution for facilities in this study is 40 kg CH4 hr–1 for FV gathering stations, 1.0 kg CH4 hr–1 for FV production pads, and 11 kg CH4 hr–1 for DJ gathering stations. The importance of study design is discussed, including the benefits of site access and data sharing with industry and of a scientist dedicated to measurement coordination and site choice under evolving wind conditions.

  3. Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br

    Science.gov (United States)

    Hsu, K.-J.; Demore, W. B.

    1994-01-01

    Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.

  4. CMT: a constrained multi-level thresholding approach for ChIP-Seq data analysis.

    Directory of Open Access Journals (Sweden)

    Iman Rezaeian

    Full Text Available Genome-wide profiling of DNA-binding proteins using ChIP-Seq has emerged as an alternative to ChIP-chip methods. ChIP-Seq technology offers many advantages over ChIP-chip arrays, including but not limited to less noise, higher resolution, and more coverage. Several algorithms have been developed to take advantage of these abilities and find enriched regions by analyzing ChIP-Seq data. However, the complexity of analyzing various patterns of ChIP-Seq signals still needs the development of new algorithms. Most current algorithms use various heuristics to detect regions accurately. However, despite how many formulations are available, it is still difficult to accurately determine individual peaks corresponding to each binding event. We developed Constrained Multi-level Thresholding (CMT, an algorithm used to detect enriched regions on ChIP-Seq data. CMT employs a constraint-based module that can target regions within a specific range. We show that CMT has higher accuracy in detecting enriched regions (peaks by objectively assessing its performance relative to other previously proposed peak finders. This is shown by testing three algorithms on the well-known FoxA1 Data set, four transcription factors (with a total of six antibodies for Drosophila melanogaster and the H3K4ac antibody dataset.

  5. Exceptional Structural Compliance of the B12F122- Superweak Anion.

    Science.gov (United States)

    Peryshkov, Dmitry V; Strauss, Steven H

    2017-04-03

    The single-crystal X-ray structures, thermogravimetric analyses, and/or FTIR spectra of a series of salts of the B 12 F 12 2- anion and homoleptic Ag(L) n + cations are reported (L = CH 2 Cl 2 , n = 2; L = PhCH 3 , n = 3; L = CH 3 CN; n = 2-4; L = CO, n = 1, 2). The superweak-anion nature of B 12 F 12 2- (Y 2- ) was demonstrated by the rapid reaction of microcrystalline Ag 2 (Y) with 1 atm of CO to form a nonclassical silver(I) carbonyl compound with an FTIR ν(CO) band at 2198 cm -1 (and with the proposed formula [Ag(CO) n ] 2 [Y]). In contrast, microcrystalline Ag 2 (B 12 Cl 12 ) did not exhibit ν(CO) bands and therefore did not form Ag(CO) + species, even after 32 h under 24 atm of CO. When Ag 2 (Y) was treated with carbon monoxide pressures higher than 1 atm, a new ν(CO) band at 2190 cm -1 appeared, which is characteristic of a Ag(CO) 2 + dicarbonyl cation. Both Ag 2 (CH 3 CN) 8 (Y) and Ag 2 (CH 3 CN) 5 (Y) rapidly lost coordinated CH 3 CN at 25 °C to form Ag 2 (CH 3 CN) 4 (Y), which formed solvent-free Ag 2 (Y) only after heating above 100 °C. Similarly, Ag 2 (PhCH 3 ) 6 (Y) rapidly lost coordinated PhCH 3 at 25 °C to form Ag 2 (PhCH 3 ) 2 (Y), which formed Ag 2 (Y) after heating above 150 °C, and Ag 2 (CH 2 Cl 2 ) 4 (Y) rapidly lost three of the four coordinated CH 2 Cl 2 ligands between 25 and 100 °C and formed Ag 2 (Y) when it was heated above 200 °C. Solvent-free Ag 2 (Y) was stable until it was heated above 380 °C. The rapid evaporative loss of coordinated ligands at 25 °C from nonporous crystalline solids requires equally rapid structural reorganization of the lattice and is one of three manifestations of the structural compliance of the Y 2- anion reported in this work. The second, more quantitative, manifestation is that Ag + bond-valence sums for Ag 2 (CH 3 CN) n (Y) are virtually constant, 1.20 ± 0.03, for n = 8, 5, 4, because the Y 2- anion precisely compensated for the lost CH 3 CN ligands by readily forming the necessary number of weak

  6. Contribution to depth profiling by particle induced X-ray emission application to the study of zinc diffusion in AgZn alloy

    International Nuclear Information System (INIS)

    Frontier, J.P.

    1987-08-01

    A contribution of the study of the capacities of Particle Induced X-ray Emission (P.I.X.E.) for depth profiling, in the range of 1 to 10 micrometers and over, is presented here. It is shown that, in a non destructuve way, the concentration profile of a given element can be obtained, in principle, by deconvoluting the X-ray yields of this element, measured in a set of experiments in which the energy of the impinging protons, hence their range, is systematically varied. Direct deconvolution procedure, which leads to the inversion of an ill-conditionned matrix is unsuitable. So we generalized the iterative procedure previously used by Vegh to solve a similar problem. Alternatively we also used a fitting procedure of several parameters which gave us somewhat better than those of the iterative procedure. Both algorithms where applied to a set of X-ray yields induced by protons of energy between 0.45 to 2 MeV, corresponding to the first 6 micrometers of various depletion profiles of zinc in an initially homogeneous Ag-3 at % Zn annealed under vacuum. For investigation of deeper layers, a sectionning technique which consists in analysing thin film hydroxide targets by specific chemistry of tiny turning, was developped with success. Cross-reference of all the obtained profiles was made with electron microprobe determination on transverse section, and with the predictions of the theory of atomic diffusion. In addition, the possibilities of increasing the depth resolution by developping techniques either of controled sanding of the surface, or analysis of the sample is discussed [fr

  7. Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, N.K., E-mail: nora.sousa@dem.uc.pt [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); Calderon, S. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); Carvalho, I. [GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); CEB—Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga (Portugal); Henriques, M. [CEB—Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Carvalho, S. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal)

    2016-07-30

    Highlights: • Amorphous carbon (a-C), Ag/a-C and Ag coatings were deposited by magnetron sputtering. • a-C/Ag coating shows antibacterial activity against S. epidermidis. • The formation of nano-galvanic couples in a-C/Ag enhances the Ag{sup +} ionization rate. • The Ag{sup +} ionization occurs along with Ag nanoparticles agglomeration in 0.9% NaCl. - Abstract: Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano-galvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against Staphylococcus epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive OCP value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag{sup +} due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 h, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.

  8. Growth rate of YBCO-Ag superconducting single grains

    Science.gov (United States)

    Congreve, J. V. J.; Shi, Y. H.; Dennis, A. R.; Durrell, J. H.; Cardwell, D. A.

    2017-12-01

    The large scale use of (RE)Ba2Cu3O7 bulk superconductors, where RE=Y, Gd, Sm, is, in part, limited by the relatively poor mechanical properties of these inherently brittle ceramic materials. It is reported that alloying of (RE)Ba2Cu3O7 with silver enables a significant improvement in the mechanical strength of bulk, single grain samples without any detrimental effect on their superconducting properties. However, due to the complexity and number of inter-related variables involved in the top seeded melt growth (TSMG) process, the growth of large single grains is difficult and the addition of silver makes it even more difficult to achieve successful growth reliably. The key processing variables in the TSMG process include the times and temperatures of the stages within the heating profile, which can be derived from the growth rate during the growth process. To date, the growth rate of the YBa2Cu3O7-Ag system has not been reported in detail and it is this lacuna that we have sought to address. In this work we measure the growth rate of the YBCO-Ag system using a method based on continuous cooling and isothermal holding (CCIH). We have determined the growth rate by measuring the side length of the crystallised region for a number of samples for specified isothermal hold temperatures and periods. This has enabled the growth rate to be modelled and from this an optimized heating profile for the successful growth of YBCO-Ag single grains to be derived.

  9. The negative temperature coefficient resistivities of Ag2S-Ag core–shell structures

    International Nuclear Information System (INIS)

    Yu, Mingming; Liu, Dongzhi; Li, Wei; Zhou, Xueqin

    2014-01-01

    In this paper, the conductivity of silver nanoparticle films protected by 3-mercaptopropionic acid (Ag/MPA) has been investigated. When the nanoparticles were annealed in air at 200 °C, they converted to stable Ag 2 S-Ag core–shell structures. The mechanism for the formation of the Ag 2 S-Ag core–shell structures along with the compositional changes and the microstructural evolution of the Ag/MPA nanoparticles during the annealing process are discussed. It is proposed that the Ag 2 S-Ag core–shell structure was formed through a solid-state reduction reaction, in which the Ag + ions coming from Ag 2 S were reduced by sulfonate species and sulfur ions. The final Ag 2 S-Ag films display an exponentially decreased resistivity with increasing temperature from 25 to 170 °C. The negative temperature coefficient resistivity of Ag 2 S-Ag films can be adjusted by changing the S/Ag molar ratio used for the synthesis of the Ag/MPA nanoparticles, paving the way for the preparation of negative temperature-coefficient thermistors via printing technology for use in the electronics.

  10. Study on synthesis of ultrafine Cu–Ag core–shell powders with high electrical conductivity

    International Nuclear Information System (INIS)

    Peng Yuhsien; Yang Chihhao; Chen Kuanting; Popuri, Srinivasa R.; Lee, Ching-Hwa; Tang, Bo-Shin

    2012-01-01

    Highlights: ► This synthesis method is relatively facile, novel and eco-friendly. ► Toxic agents were not used for chelating agent, reductant or dispersant in our method. ► The reaction can under room temperature for energy saving purpose. ► Cu–Ag core–shell powders with homogeneous cover-silver layer. ► The resistivity of Cu–Ag core–shell powders has the same value as the pure silver. - Abstract: Cu–Ag composite powders with high electrical conductivity were synthesized by electroless plating of silver sulfate, copper powders with eco-friendly sodium citrate as reducing agent, dispersant and chelating agent in an aqueous system. The influences of sodium citrate/Ag ratio on Ag coatings of Cu powders were investigated. Ag was formed a dense coating on the surface of Cu powders at a molar ratio of sodium citrate/Ag = 0.07/1. SEM showed an uniformity of Ag coatings on Cu powders. SEM-EDX also revealed that Cu cores were covered by Ag shells on the whole. The surface composition analysis by XPS indicated that without Cu or Ag atoms in the surface were oxidized. The resistivity measurements of Cu–Ag paste shows that they have closer resistivity as the pure silver paste's after 250 °C for 30 min heat-treatment (2.55 × 10 −4 Ω cm) and 350 °C for 30 min heat-treatment (1.425 × 10 −4 Ω cm).

  11. Organic Iodine Adsorption by AgZ under Prototypical Vessel Off-Gas Conditions

    International Nuclear Information System (INIS)

    Bruffey, Stephanie H.; Jubin, Robert Thomas; Jordan, J. A.

    2016-01-01

    U.S. regulations will require the removal of 129 I from the off-gas streams of any used nuclear fuel (UNF) reprocessing plant prior to discharge of the off-gas to the environment. Multiple off-gas streams within a UNF reprocessing plant combine prior to release, and each of these streams contains some amount of iodine. For an aqueous UNF reprocessing plant, these streams include the dissolver off-gas, the cell off-gas, the vessel off-gas (VOG), the waste off-gas and the shear off-gas. To achieve regulatory compliance, treatment of multiple off-gas streams within the plant must be performed. Preliminary studies have been completed on the adsorption of I 2 onto silver mordenite (AgZ) from prototypical VOG streams. The study reported that AgZ did adsorb I 2 from a prototypical VOG stream, but process upsets resulted in an uneven feed stream concentration. The experiments described in this document both improve the characterization of I 2 adsorption by AgZ from dilute gas streams and further extend it to include characterization of the adsorption of organic iodides (in the form of CH 3 I) onto AgZ under prototypical VOG conditions. The design of this extended duration testing was such that information about the rate of adsorption, the penetration of the iodine species, and the effect of sorbent aging on iodine removal in VOG conditions could be inferred.

  12. Organic Iodine Adsorption by AgZ under Prototypical Vessel Off-Gas Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jordan, J. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-30

    U.S. regulations will require the removal of 129I from the off-gas streams of any used nuclear fuel (UNF) reprocessing plant prior to discharge of the off-gas to the environment. Multiple off-gas streams within a UNF reprocessing plant combine prior to release, and each of these streams contains some amount of iodine. For an aqueous UNF reprocessing plant, these streams include the dissolver off-gas, the cell off-gas, the vessel off-gas (VOG), the waste off-gas and the shear off-gas. To achieve regulatory compliance, treatment of multiple off-gas streams within the plant must be performed. Preliminary studies have been completed on the adsorption of I2 onto silver mordenite (AgZ) from prototypical VOG streams. The study reported that AgZ did adsorb I2 from a prototypical VOG stream, but process upsets resulted in an uneven feed stream concentration. The experiments described in this document both improve the characterization of I2 adsorption by AgZ from dilute gas streams and further extend it to include characterization of the adsorption of organic iodides (in the form of CH3I) onto AgZ under prototypical VOG conditions. The design of this extended duration testing was such that information about the rate of adsorption, the penetration of the iodine species, and the effect of sorbent aging on iodine removal in VOG conditions could be inferred.

  13. Transformation of Ag nanocubes into Ag-Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability.

    Science.gov (United States)

    Yang, Yin; Zhang, Qiang; Fu, Zheng-Wen; Qin, Dong

    2014-03-12

    We report a strategy to complement the galvanic replacement reaction between Ag nanocubes and HAuCl4 with co-reduction by ascorbic acid (AA) for the formation of Ag-Au hollow nanostructures with greatly enhanced SERS activity. Specifically, in the early stage of synthesis, the Ag nanocubes are sharpened at corners and edges because of the selective deposition of Au and Ag atoms at these sites. In the following steps, the pure Ag in the nanocubes is constantly converted into Ag(+) ions to generate voids owing to the galvanic reaction with HAuCl4, but these released Ag(+) ions are immediately reduced back to Ag atoms and are co-deposited with Au atoms onto the nanocube templates. We observe distinctive SERS properties for the Ag-Au hollow nanostructures at visible and near-infrared excitation wavelengths. When plasmon damping is eliminated by using an excitation wavelength of 785 nm, the SERS activity of the Ag-Au hollow nanostructures is 15- and 33-fold stronger than those of the original Ag nanocubes and the Ag-Au nanocages prepared by galvanic replacement without co-reduction, respectively. Additionally, Ag-Au hollow nanostructures embrace considerably improved stability in an oxidizing environment such as aqueous H2O2 solution. Collectively, our work suggests that the Ag-Au hollow nanostructures will find applications in SERS detection and imaging.

  14. Analysis of the residual strain change of Bi2212, Ag alloy and Ag during the heating and cooling process in Bi2212/Ag/Ag alloy composite wire

    International Nuclear Information System (INIS)

    Shin, J K; Ochiai, S; Okuda, H; Mukai, Y; Sugano, M; Sato, M; Oh, S S; Ha, D W; Kim, S C

    2008-01-01

    The residual strain change of Bi2212 and Ag during the cooling and heating process in the Bi2212/Ag/Ag alloy composite superconductor was studied. First, the residual strain of Bi2212 filaments at room temperature was measured by the x-ray diffraction method. Then, the Young's moduli of the constituents (Bi2212 filaments, Ag and Ag alloy) and yield strains of Ag and Ag alloy were estimated from the analysis of the measured stress-strain curve, based on the rule of mixtures. Also, the coefficient of thermal expansion of the Bi2212 filaments was estimated from the analysis of the measured thermal expansion curve of the composite wire. From the modeling analysis using the estimated property values and the residual strain of Bi2212 filaments, the changes of residual strain of Bi2212, Ag alloy and Ag with temperature during the cooling and heating process were revealed

  15. Cholinesterase (ChE) response and related mortality among birds fed ChE inhibitors

    Science.gov (United States)

    Ludke, J.L.; Hill, E.F.; Dieter, M.P.

    1975-01-01

    Patterns of mortality and inhibition of brain and plasma ChE in birds treated with ChE inhibitors were studied in an attempt to determine the validity of using ChE activity as a monitoring and diagnostic technique. Analysis of brain ChE activity proved to be reliable for diagnosing and monitoring effects of selected ChE inhibitors in birds. Brain ChE inhibition exceeding 20% indicated exposure, and inhibition greater than 50% was sufficient for diagnosing cause of death. Individuals that died from dietary exposure to parathion or carbofuran had brain ChE activities below 55% of normal; although individuals could survive with brain ChE activity lower than 50%. Problems associated with collection, storage, and analysis of tissues for ChE activity are discussed.

  16. High surface enhanced Raman scattering activity of BN nanosheets–Ag nanoparticles hybrids

    International Nuclear Information System (INIS)

    Yang, Shanshan; Zhang, Zhaochun; Zhao, Jun; Zheng, Houli

    2014-01-01

    Highlights: • Boron nitride–silver nanohybrid was acquired through a liquid-phase reducing route. • The composite shown a high-quality SERS activity. • 2-Mercaptobenzimidazole was chemisorbed on silver surface in vertical orientation. -- Abstract: A facile liquid-phase reducing route was developed to modify boron nitride (BN) nanosheets with silver nanoparticles (AgNPs) in order to fabricate BN–AgNPs hybrids with high surface enhanced Raman scattering (SERS) activity. The layered structure and morphology of BN–AgNPs nanohybrids were characterized by transmission electron microscopy and atomic force microscopy, meanwhile, Fourier transform infrared spectroscopy and ultraviolet–visible were used for studying optical properties and surface plasmon resonance applied to the optical sensor. The SERS of adsorbed 2-mercaptobenzimidazole (MBI) molecule was investigated which shown that the BN–AgNPs substrate exhibited a very strong SERS activity, offering a great potential application in molecular probe sensor. On the basis of the analysis of SERS and the Raman surface selection rules, we could draw a conclusion that the MBI molecule was adsorbed upright on the AgNPs surface through the sulphur and nitrogen atoms. What is more, the cyclic voltammetry experiment indicated the electrochemically irreversible behavior of BN–AgNPs nanohybrids in KCl solution

  17. Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration

    International Nuclear Information System (INIS)

    Sun, Yanjuan; Xiong, Ting; Ni, Zilin; Liu, Jie; Dong, Fan; Zhang, Wei; Ho, Wing-Kei

    2015-01-01

    Graphical abstract: Ag/g-C 3 N 4 nanocomposites were prepared via a facile method for enhanced photocatalytic NO x removal due to surface plasmon resonance of Ag. - Highlights: • The Ag/g-C 3 N 4 nanocomposites were prepared using urea as the precursor. • The Ag/g-C 3 N 4 nanocomposites were applied in removal of NO x in air. • The Ag nanoparticles enhanced the photocatalytic activity of g-C 3 N 4 . • The surface plasmon resonance of Ag played a key role in photocatalysis. - Abstract: In order to overcome the intrinsic drawback of pristine g-C 3 N 4 , we prepared g-C 3 N 4 nanosheets with enhanced photocatalytic performance by Ag nanoparticles decoration using urea as the precursor. It was revealed that the monodispersed Ag nanoparticles were deposited on the surface of g-C 3 N 4 nanosheets. The Ag/g-C 3 N 4 nanocomposites were applied in removal of NO x in air under visible light irradiation. The results showed that the decoration of Ag nanoparticles not only enhanced the photocatalytic activity of g-C 3 N 4 nanosheets, but also benefited the oxidation of NO to final products. The increased visible light absorption arising from the surface plasmon resonance of Ag and improved separation and transfer of photoinduced carriers over Ag/g-C 3 N 4 composites were demonstrated by the UV–vis diffuse reflectance spectra and photoluminescence spectra, respectively. It was therefore proposed that the enhanced photocatalytic activity of Ag/g-C 3 N 4 composites could be attributed to the extended light response range and enhanced charge separation due to the introduction of Ag nanoparticles.

  18. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs)

    Science.gov (United States)

    Suchomel, Petr; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Hrbac, Jan; Vecerova, Renata; Zboril, Radek

    2015-01-01

    The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains. PMID:25781988

  19. The fabrication and photocatalytic performances of flower-like Ag nanoparticles/ZnO nanosheets-assembled microspheres

    International Nuclear Information System (INIS)

    Deng, Quan; Tang, Haibin; Liu, Gang; Song, Xiaoping; Xu, Guoping; Li, Qian; Ng, Dickon H.L.; Wang, Guozhong

    2015-01-01

    Graphical abstract: - Highlights: • ZnO nanosheets-assembled microspheres (ZnOs) were prepared. • Ag nanoparticles (Ag-NPs) were decorated onto the whole surface of the ZnOs. • The Ag-NPs/ZnOs composite showed enhanced photocatalytic performance to MB and MO. • Cyclic voltammetry and impedance spectra revealed enhanced charge transportation. - Abstract: A new micro/nanostructure photocatalyst, Ag nanoparticles decorated ZnO nanosheets-assembled microspheres (Ag-NPs/ZnOs), was synthesised by a two-step method. The flower-like micron-sized ZnO spheres assembled with ∼25 nm thick ZnO nanosheets were initially fabricated via a facile solvothermal method. Then, highly dispersed Ag nanoparticles (Ag-NPs) with dimension ranging from 15 to 50 nm were anchored onto the surface of the each ZnO nanosheet by the Sn(II) ion activation method. The as-prepared Ag-NPs/ZnOs demonstrated enhanced photocatalytic performance in eliminating methylene blue and methyl orange aqueous solutions under UV irradiation, showing twice faster reaction rate than the bare ZnOs. The enhanced photocatalytic activity was due to the suppression of electron/hole pair recombination and the acceleration of surface charge transfer induced by the highly dispersive Ag-NPs, which was further demonstrated by the cyclic voltammetry and impedance spectra measurements

  20. Facile Synthesis of Ag Nanocubes of 30 to 70 nm in Edge Length with CF3COOAg as a Precursor

    OpenAIRE

    Zhang, Qiang; Li, Weiyang; Wen, Long-Ping; Chen, Jingyi; Xia, Younan

    2010-01-01

    This paper describes a new protocol for producing Ag nanocubes of 30 to 70 nm in edge length with the use of CF3COOAg as a precursor to elemental silver. By adding a trace amount of sodium hydrosulfide (NaHS) and hydrochloric acid (HCl) into the polyol synthesis, Ag nanocubes were obtained with good quality, high reproducibility, and on a scale up to 0.19 g per batch for the 70-nm Ag nanocubes. The Ag nanocubes were found to grow in size at a controllable pace over the course of synthesis. Th...

  1. Ag/MnO₂ Nanorod as Electrode Material for High-Performance Electrochemical Supercapacitors.

    Science.gov (United States)

    Guo, Zengcai; Guan, Yuming; Dai, Chengxiang; Mu, Jingbo; Che, Hongwei; Wang, Guangshuo; Zhang, Xiaoliang; Zhang, Zhixiao; Zhang, Xiliang

    2018-07-01

    A one-dimensional hierarchical Ag nanoparticle (AgNP)/MnO2 nanorod (MND) nanocomposite was synthesized by combining a simple solvothermal method and a facile reduction approach in situ. Owing to its high electrical conductivity, the resulting AgNP/MND nanocomposite displayed a high specific capacitance of 314 F g-1 at a current density of 2 A g-1, which was much higher than that of pure MNDs (178 F g-1). Resistances of the electrolyte (Rs) and charge transportation (Rct) of the nanocomposite were much lower than that of pure MNDs. Moreover, the nanocomposite exhibited outstanding long-term cycling ability (9% loss of initial capacity after 1000 cycles). These results indicated that the nanocomposite could serve as a promising and useful electrode material for future energy-storage applications.

  2. Polypropylene fibers modified by plasma treatment for preparation of Ag nanoparticles.

    Science.gov (United States)

    Tseng, Chun-Hao; Wang, Cheng-Chien; Chen, Chuh-Yung

    2006-03-09

    A novel method for preparing poly(propylene-graft-2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester)-silver fibers (PPG-IAg fibers) by plasma-induced grafting polymerization is presented in this study. The chelating groups, -N(CH2COO-)2 (GMA-IDA), on the surface of the PPG-I fibers are the coordination sites for chelating silver ions. At these sites, Ag nanoparticles were grown first by reduction with UV light with a wavelength of 366 nm, and second, through immersion in a 24% formaldehyde solution with pH values set variously at 2, 5, 8, and 11. The characteristics of the PPG-I fibers with differing durations of plasma treatment were monitored by using a Fourier transform infrared (FT-IR) spectroscope. Scanning electronic microscopy (SEM) and elemental analysis show that the percentage of GMA-IDA grafted onto PP fiber reaches a maximum when the plasma treatment time is 3 min. Plasma treatment time beyond a certain length of time results in an abundance of free radicals and causes considerable cross-linking on the fiber surface which thus decreases the extent of grafting. Moreover, the crystalline phase of Ag nanoparticles is identified by using X-ray diffraction (XRD). When the PPG-I fibers are reduced by the UV light method, SEM and TEM microscopes reveal that the size of the Ag nanoparticles on the fiber surface decreases significantly with the increase of pH values in aqueous solutions. Notably, in the reduction of formaldehyde solution, the particle size of Ag nanoparticles reaches a minimum at the lowest pH value. The TEM observations show that Ag nanoparticles are distributed both in the exterior and interior of the grafting layer. In addition, under high pH values the distribution of the Ag nanoparticles permeate more deeply in the GMA-IDA grafting layer due to the swelling effect of the GMA-IDA polymer.

  3. Au@Ag Core-Shell Nanocubes with Finely Tuned and Well-Controlled Sizes, Shell Thicknesses, and Optical Properties

    OpenAIRE

    Ma, Yanyun; Li, Weiyang; Cho, Eun Chul; Li, Zhiyuan; Yu, Taekyung; Zeng, Jie; Xie, Zhaoxiong; Xia, Younan

    2010-01-01

    This paper describes a facile method for generating Au@Ag core-shell nanocubes with edge lengths controllable in the range of 13.4 to 50 nm. The synthesis involved the use of single-crystal, spherical Au nanocrystals of 11 nm in size as the seeds in an aqueous system, with ascorbic acid serving as the reductant and cetyltrimethylammonium chloride (CTAC) as the capping agent. The thickness of the Ag shells could be finely tuned from 1.2 to 20 nm by varying the ratio of AgNO3 precursor to Au se...

  4. A beam-profile monitor for the BNL Accelerator Test Facility (ATF)

    International Nuclear Information System (INIS)

    Russell, D.P.; McDonald, K.T.

    1989-01-01

    A beam-profile monitor has been designed to diagnose the 5-MeV high-brightness electron beam from the rf gun of the BNL Accelerator Test Facility (ATF). The monitor consists of a phosphor screen viewed by a CCD camera. The video images are digitized and stored by a framegrabber and analyzed by an IBM PC-AT to extract the emittance. Details of the hardware configuration are presented, along with the spatial resolution of the system measured as a function of phosphor-screen thickness. The strategies which will be used to measure the transverse and longitudinal emittances are briefly mentioned. The system should be capable of measuring a transverse geometric emittance of around 1 mm-mrad, as will be typical of the ATF beam. 6 refs., 2 figs

  5. Soil CO2, CH4 and N2O effluxes and concentrations in soil profiles down to 15.5m depth in eucalypt plantations under contrasted rainfall regimes

    Science.gov (United States)

    Germon, A.; Nouvellon, Y.; Christophe, J.; Chapuis-Lardy, L.; Robin, A.; Rosolem, C. A.; Gonçalves, J. L. D. M.; Guerrini, I. A.; Laclau, J. P.

    2017-12-01

    Silvicultural practices in planted forests affect the fluxes of greenhouse gases at the soil surface and the major factors driving greenhouse gas production in forest soils (substrate supply, temperature, water content,…) vary with soil depth. Our study aimed to assess the consequences of drought on the temporal variability of CO2, CH4 and N2O fluxes throughout very deep soil profiles in Eucalyptus grandis plantations 3 months before the harvest then in coppice, the first 18 months after clear-cutting. Two treatments were compared: one with 37% of throughfall excluded by plastic sheets (TE), and one without rainfall exclusion (WE). Measurements of soil CO2 efflux were made every two weeks for 30 months using a closed-path Li8100 system in both treatment. Every two weeks for 21 months, CO2, CH4 and N2O surface effluxes were measured using the closed-chamber method and concentrations in the soil were measured at 7 depths down to 15.5 m in both TE and WE. At most measurement dates, soil CO2 efflux were significantly higher in TE than in WE. Across the two treatments and the measurement dates, CO2 concentrations increased from 4446 ± 2188 ppm at 10 cm deep to 15622 ± 3523 ppm at 15.5 m, CH4 concentrations increased from 0.41 ± 0.17 ppm at 10 cm deep to 0.77 ± 0.24 ppm at 15.5 m and N2O concentrations remained roughly constant and were on average 478 ± 55 ppb between soil surface and 15.5 m deep. CO2 and N2O concentrations were on average 20.7 and 7.6% lower in TE than in WE, respectively, across the sampling depths. However, CH4 concentrations in TE were on average 44.4% higher than in WE, throughout the soil profile. Those results suggest that extended drought periods might reduce the production of CO2 and N2O but increase the accumulation of CH4 in eucalypt plantations established in deep tropical soils. Very deep tropical soils cover huge areas worldwide and improving our understanding of the spatiotemporal dynamics of gas concentrations in deep soil layers

  6. Definice vnitřních zisků jako okrajových podmínek pro energetickou simulaci administrativních budov

    NARCIS (Netherlands)

    Duska, M; Drkal, F.; Hensen, J.L.M.

    2006-01-01

    Clánek zduraznuje význam volby vhodných okrajových podmínek pro správnost energetických simulacních výpoctu. Okrajové podmínky musí být vázány na úcel, pro který se simulacní výpocty provádí. Je predložen teoretický rozbor, metodologie a výsledky výpoctu ruzných okrajových podmínek stanovených z

  7. Ag_3PO_4 Microcrystals Synthesized by Room-Temperature Solid State Reaction: Enhanced Photocatalytic Activity and Photoelectronchemistry Performance

    International Nuclear Information System (INIS)

    Hao Chen-Chun; Xu Jie; Shi Hong-Long; Fu Jun-Li; Zou Bin; Meng Shan; Wang Wen-Zhong; Jia Ying

    2015-01-01

    Ag_3PO_4 microcrystals with highly enhanced visible light photocatalytic activity are prepared by a facile and simple solid state reaction at room temperature. The composition, morphology and optical properties of the as-prepared Ag_3PO_4 microcrystals are characterized by x-ray diffraction, scanning electron microscopy and UV-vis diffuse reflectance spectra. The photocatalytic properties of Ag_3PO_4 are investigated by the degradation of both methylene blue and methyl orange dyes under visible light irradiation. The as-prepared Ag_3PO_4 microcrystals possess high photocatalytic oxygen production with the rate of 673 μmolh"−"1 g"−"1. Moreover, the as-prepared Ag_3PO_4 microcrystals show an enhanced photoelectrochemistry performance under irradiation of visible light. (paper)

  8. Design and construction of the facility for neutron depth profiling in research reactor RECH-1

    International Nuclear Information System (INIS)

    Mutis P, Octavio; Navarro A, Gustavo; Henriquez A, Carlos; Pereda B, Claudio

    2002-01-01

    Here is described the experimental facility for Neutron Depth Profiling, NDP, constructed at the CCHEN laboratories, as well as some general aspects of the technique. It is also shown applications to the concentration analysis of 10 B and 6 Li as a function of depth for borophosphosilicate glass, BPSG, and for a thick sinter of 6 Li in a zinc-nickel-manganese oxide. Achieved depth resolution is comparable to that obtained in reference advanced laboratories. (author)

  9. New superhindered polydentate polyphosphine ligands P(CH2CH2P(t)Bu2)3, PhP(CH2CH2P(t)Bu2)2, P(CH2CH2CH2P(t)Bu2)3, and their ruthenium(II) chloride complexes.

    Science.gov (United States)

    Gilbert-Wilson, Ryan; Field, Leslie D; Bhadbhade, Mohan M

    2012-03-05

    The synthesis and characterization of the extremely hindered phosphine ligands, P(CH(2)CH(2)P(t)Bu(2))(3) (P(2)P(3)(tBu), 1), PhP(CH(2)CH(2)P(t)Bu(2))(2) (PhP(2)P(2)(tBu), 2), and P(CH(2)CH(2)CH(2)P(t)Bu(2))(3) (P(3)P(3)(tBu), 3) are reported, along with the synthesis and characterization of ruthenium chloro complexes RuCl(2)(P(2)P(3)(tBu)) (4), RuCl(2)(PhP(2)P(2)(tBu)) (5), and RuCl(2)(P(3)P(3)(tBu)) (6). The bulky P(2)P(3)(tBu) (1) and P(3)P(3)(tBu) (3) ligands are the most sterically encumbered PP(3)-type ligands so far synthesized, and in all cases, only three phosphorus donors are able to bind to the metal center. Complexes RuCl(2)(PhP(2)P(2)(tBu)) (5) and RuCl(2)(P(3)P(3)(tBu)) (6) were characterized by crystallography. Low temperature solution and solid state (31)P{(1)H} NMR were used to demonstrate that the structure of RuCl(2)(P(2)P(3)(tBu)) (4) is probably analogous to that of RuCl(2)(PhP(2)P(2)(tBu)) (5) which had been structurally characterized.

  10. AgI/Ag3PO4 hybrids with highly efficient visible-light driven photocatalytic activity

    International Nuclear Information System (INIS)

    Katsumata, Hideyuki; Hayashi, Takahiro; Taniguchi, Masanao; Suzuki, Tohru; Kaneco, Satoshi

    2015-01-01

    Highlights: • AgI/Ag 3 PO 4 hybrid was prepared via an in situ anion-exchange method. • AgI/Ag 3 PO 4 displays the excellent photocatalytic activity under visible light. • AgI/Ag 3 PO 4 readily transforms to be Ag@AgI/Ag 3 PO 4 system. • h + and O 2 ·− play the major role in the AO 7 decolorization over AgI/Ag 3 PO 4 . • The activity enhancement is ascribed to a Z-scheme system composed of Ag 3 PO 4 , Ag and AgI. - Abstract: Highly efficient visible-light-driven AgI/Ag 3 PO 4 hybrid photocatalysts with different mole ratios of AgI were prepared via an in situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgI/Ag 3 PO 4 photocatalysts displayed the higher photocatalytic activity than pure Ag 3 PO 4 and AgI for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgI/Ag 3 PO 4 with 80% of AgI exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgI/Ag 3 PO 4 readily transformed to be Ag@AgI/Ag 3 PO 4 system while the photocatalytic activity of AgI/Ag 3 PO 4 remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h + and O 2 ·− play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgI/Ag 3 PO 4 hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag 3 PO 4 , Ag and AgI, in which Ag nanoparticles act as the charge separation center

  11. Preparation and Characterization of γ-AgI in Superionic Composite Glasses (AgIx(AgPO31-x

    Directory of Open Access Journals (Sweden)

    S. Suminta

    2007-07-01

    Full Text Available The γ-AgI phase was stabilized at room temperature in the composites glasses (AgIx(AgPO31-x with x = 0.6 and 0.7 via rapid quenching of their molten mixture. The measurement of the crystal structure has been carried out using an X-ray Difractometer at the Physics Departement of Ibaraki University, Japan. The micro strain and crystal size are derived from Hall’s equation. The X-ray diffraction pattern shows some Bragg peaks that correspond to the crystalline γ-AgI. By increasing the concentration of AgI, the peak width becomes more narrow and the position shifts to the higher angle. This indicates that the crystalline size and microstrain are increasing. The increase of micro strain (η, and particle size (D will increase the ionic mobility, thus increasing the ionic conductivity. It is concluded that solidification process on melt AgI into glass matrix AgPO3 not only decreases the micro strain and the particle size, but it also increases the ionic conductivity.

  12. Computer Profile of School Facilities Energy Consumption.

    Science.gov (United States)

    Oswalt, Felix E.

    This document outlines a computerized management tool designed to enable building managers to identify energy consumption as related to types and uses of school facilities for the purpose of evaluating and managing the operation, maintenance, modification, and planning of new facilities. Specifically, it is expected that the statistics generated…

  13. Direct C-H alkylation and indole formation of anilines with diazo compounds under rhodium catalysis.

    Science.gov (United States)

    Mishra, Neeraj Kumar; Choi, Miji; Jo, Hyeim; Oh, Yongguk; Sharma, Satyasheel; Han, Sang Hoon; Jeong, Taejoo; Han, Sangil; Lee, Seok-Yong; Kim, In Su

    2015-12-18

    The rhodium(III)-catalyzed direct functionalization of aniline C-H bonds with α-diazo compounds is described. These transformations provide a facile construction of ortho-alkylated anilines with diazo malonates or highly substituted indoles with diazo acetoacetates.

  14. ON THE ORIGIN OF C_4H AND CH_3OH IN PROTOSTELLAR ENVELOPES

    International Nuclear Information System (INIS)

    Lindberg, Johan E.; Charnley, Steven B.; Cordiner, Martin A.

    2016-01-01

    The formation pathways of different types of organic molecules in protostellar envelopes and other regions of star formation are subjects of intense current interest. We present here observations of C_4H and CH_3OH, tracing two distinct groups of interstellar organic molecules, toward 16 protostars in the Ophiuchus and Corona Australis molecular clouds. Together with observations in the literature, we present C_4H and CH_3OH data from single-dish observations of 40 embedded protostars. We find no correlation between the C_4H and CH_3OH column densities in this large sample. Based on this lack of correlation, a difference in line profiles between C_4H and CH_3OH, and previous interferometric observations of similar sources, we propose that the emission from these two molecules is spatially separated, with the CH_3OH tracing gas that has been transiently heated to high (∼70–100 K) temperatures and the C_4H tracing the cooler large-scale envelope where CH_4 molecules have been liberated from ices. These results provide insight in the differentiation between hot corino and warm carbon-chain chemistry in embedded protostars.

  15. Production of radioactivity in local soil at AGS [Alternating Gradient Synchrotron] fast neutrino beam

    International Nuclear Information System (INIS)

    Gollon, P.J.; Rohrig, N.; Hauptmann, M.G.; McIntyre, K.; Miltenberger, R.; Naidu, J.

    1989-10-01

    Brookhaven National Laboratory (BNL) has constructed a new neutrino production target station at the Alternating Gradient Synchrotron (AGS). A study has been conducted in the vicinity of the old target area to determine the radiological consequences of operating this experimental facility. Results from all areas of the study are presented along with estimates of the potential environmental impact of the old and new facilities. 12 refs., 15 figs., 3 tabs

  16. Genome-wide profiling of DNA-binding proteins using barcode-based multiplex Solexa sequencing.

    Science.gov (United States)

    Raghav, Sunil Kumar; Deplancke, Bart

    2012-01-01

    Chromatin immunoprecipitation (ChIP) is a commonly used technique to detect the in vivo binding of proteins to DNA. ChIP is now routinely paired to microarray analysis (ChIP-chip) or next-generation sequencing (ChIP-Seq) to profile the DNA occupancy of proteins of interest on a genome-wide level. Because ChIP-chip introduces several biases, most notably due to the use of a fixed number of probes, ChIP-Seq has quickly become the method of choice as, depending on the sequencing depth, it is more sensitive, quantitative, and provides a greater binding site location resolution. With the ever increasing number of reads that can be generated per sequencing run, it has now become possible to analyze several samples simultaneously while maintaining sufficient sequence coverage, thus significantly reducing the cost per ChIP-Seq experiment. In this chapter, we provide a step-by-step guide on how to perform multiplexed ChIP-Seq analyses. As a proof-of-concept, we focus on the genome-wide profiling of RNA Polymerase II as measuring its DNA occupancy at different stages of any biological process can provide insights into the gene regulatory mechanisms involved. However, the protocol can also be used to perform multiplexed ChIP-Seq analyses of other DNA-binding proteins such as chromatin modifiers and transcription factors.

  17. Preparation and photocatalytic degradation performance of Ag_3PO_4 with a two-step approach

    International Nuclear Information System (INIS)

    Li, Jiwen; Ji, Xiaojing; Li, Xian; Hu, Xianghua; Sun, Yanfang; Ma, Jingjun; Qiao, Gaowei

    2016-01-01

    Highlights: • Ag_3PO_4 photocatalysts were synthesized via one-step and two-step ion-exchange reaction. • Photocatalytic properties of Ag_3PO_4 photocatalysts was investigated, the result indicated the Ag_3PO_4 (2) was higher than that of Ag_3PO_4 (1) under the same experimental condition. • Ag_3PO_4 (2) particles were larger than Ag_3PO_4 (1) particles and many polygonal-shaped surfaces could be clearly observed in the Ag_3PO_4 (2) particles. - Abstract: Ag_3PO_4 photocatalysts were prepared via two and one-step through a facile ion-exchange route. The photocatalysts were then characterized through powder X-ray diffraction, scanning electron microscopy and UV–vis diffuse reflectance spectroscopy. The photocatalytic activity of the samples was evaluated on the basis of the photocatalytic degradation of methyl orange (MO) and methylene blue (MB) under solar irradiation. The MO degradation rate of the Photocatalyst synthesized by the two-step ion-exchange route was 89.18% in 60 min. This value was four times that of the Photocatalyst synthesized by the one-step approach.The MB degradation rate was 97% in 40 min. After six cycling runs were completed, the MO degradation rate was 73%

  18. RRR and thermal conductivity of Ag and Ag0.2wt%Mg alloy in Ag/Bi-2212 wires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pei [Fermilab; Ye, L. [North Carolina State U.; Jiang. J., Jiang. J. [Natl. High Mag. Field Lab.; Shen, T. [Fermilab

    2015-08-19

    The residual resistivity ratio (RRR) and thermal conductivity of metal matrix in metal/superconductor composite wires are important parameters for designing superconducting magnets. However, the resistivity of silver in reacted Ag/Bi-2212 wires has yet to be determined over temperature range from 4.2 K to 80 K because Bi-2212 filaments have a critical transition temperature Tc of ~ 80 K, and because it is unknown whether the RRR of Ag/Bi-2212 degrades with Cu diffusing from Bi-2212 filaments into silver sheathes at elevated temperatures and to what degree it varies with heat treatment. We measured the resistivity of stand-alone Ag and AgMg (Ag-0.2wt%Mg) wires as well as the resistivity of Ag and Ag- 0.2wt%Mg in the state-of-the-art Ag/Bi-2212 round wires reacted in 1 bar oxygen at 890 °C for 1, 8, 24 and 48 hours and quickly cooled to room temperature. The heat treatment was designed to reduce the critical current Ic of Bi-2212 wires to nearly zero while allowing Cu loss to fully manifest itself. We determined that pure silver exhibits a RRR of ~ 220 while the oxide-dispersion strengthened AgMg exhibits a RRR of ~ 5 in stand-alone samples. A surprising result is that the RRR of silver in the composite round wires doesn’t degrade with extended time at 890 °C for up to 48 hours. This surprising result may be explained by our observation that the Cu that diffuses into the silver tends to form Cu2O precipitates in oxidizing atmosphere, instead of forming Ag-Cu solution alloy. We also measured the thermal conductivity and the magneto-resistivity of pure Ag and Ag-0.2 wt%Mg from 4.2 K to 300 K in magnetic fields up to 14.8 T and summarized them using a Kohler plot.

  19. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers

    KAUST Repository

    Pang, Maolin

    2010-08-11

    Ag2S and Ag are important functional materials that have received considerable research interest in recent years. In this work, we develop a solution-based synthetic method to combine these two materials into hollow/solid Ag2S/Ag heterodimers at room temperature. Starting from monodisperse Cu2O solid spheres, CuS hollow spheres can be converted from Cu2O through a modified Kirkendall process, and the obtained CuS can then be used as a solid precursor for preparation of the Ag2S/Ag heterodimers through ion exchange and photo-assisted reduction. We have found that formation of the Ag2S/Ag heterodimers is instantaneous, and the size of Ag nanocrystals on the hollow spheres of Ag2S can be controlled by changing the concentration and power of reducing agents in the synthesis. The growth of Ag nanoparticles on hollow spheres of Ag2S in the dimers is along the [111] direction of the silver crystal; the light absorption properties have also been investigated. Furthermore, coupling or tripling of Ag2S/Ag heterodimers into dumbbell-like trimers ((Ag 2S)2/Ag, linear) and triangular tetramers ((Ag 2S)3/Ag, coplanar) can also be attained at 60°C by adding the bidentate ligand ethylenediamine as a cross-linking agent. To test the applicability of this highly asymmetric dipolar composite, photocatalytic inactivation of Escherichia coli K-12 in the presence of the as-prepared Ag 2S/Ag heterodimers has been carried out under UV irradiation. The added Ag2S/Ag heterodimers show good chemical stability under prolonged UV irradiation, and no appreciable solid dissolution is found. Possible mechanisms regarding the enhanced antibacterial activity have also been addressed. © 2010 American Chemical Society.

  20. Effects of UV/Ag-TiO2/O3 advanced oxidation on unicellular green alga Dunaliella salina: implications for removal of invasive species from ballast water.

    Science.gov (United States)

    Wu, Donghai; You, Hong; Du, Jiaxuan; Chen, Chuan; Jin, Darui

    2011-01-01

    The UV/Ag-TiO2/O3 process was investigated for ballast water treatment using Dunaliella salina as an indicator. Inactivation curves were obtained, and the toxicity of effluent was determined. Compared with individual unit processes using ozone or UV/Ag-TiO2, the inactivation efficiency of D. salina by the combined UV/Ag-TiO2/O3 process was enhanced. The presence of ozone caused an immediate decrease in chlorophyll a (chl-a) concentration. Inactivation efficiency and ch1-a removal efficiency were positively correlated with ozone dose and ultraviolet intensity. The initial total residual oxidant (TRO) concentration of effluent increased with increasing ozone dose, and persistence of TRO resulted in an extended period of toxicity. The results suggest that UV/Ag-TiO2/O3 has potential for ballast water treatment.

  1. Time-course profiling of molecular stress responses to silver nanoparticles in the earthworm Eisenia fetida

    DEFF Research Database (Denmark)

    Hayashi, Yuya; Heckmann, Lars-Henrik; Simonsen, Vibeke

    2013-01-01

    ) with reference to dissolved silver salt (AgNO3). Principal component analysis of selected gene and enzyme response profiles revealed dissimilar patterns between AgNO3 and AgNP treatments and also over time. Despite the observed difference in molecular profiles, the body burdens of total Ag were within the same...... range (10–40 mg/kg dry weight worm) for both treatments with apparent correlation to the induction pattern of metallothionein. AgNO3 induced the genes and enzymes related to oxidative stress at day 1, after which markers of energy metabolism were all suppressed at day 2. Exposure to AgNPs likewise led...... to induction of oxidative stress genes at day 2, but with a temporal pattern shift to immune genes at day 14 following metabolic upregulation at day 7. The involvement of oxidative stress and subsequent alterations in immune gene regulation were as predicted by our in vitro study reported previously...

  2. Band Structure Engineering of Cs2AgBiBr6 Perovskite through Order-Disordered Transition: A First-Principle Study.

    Science.gov (United States)

    Yang, Jingxiu; Zhang, Peng; Wei, Su-Huai

    2018-01-04

    Cs 2 AgBiBr 6 was proposed as one of the inorganic, stable, and nontoxic replacements of the methylammonium lead halides (CH 3 NH 3 PbI 3 , which is currently considered as one of the most promising light-harvesting material for solar cells). However, the wide indirect band gap of Cs 2 AgBiBr 6 suggests that its application in photovoltaics is limited. Using the first-principle calculation, we show that by controlling the ordering parameter at the mixed sublattice, the band gap of Cs 2 AgBiBr 6 can vary continuously from a wide indirect band gap of 1.93 eV for the fully ordered double-perovskite structure to a small pseudodirect band gap of 0.44 eV for the fully random alloy. Therefore, one can achieve better light absorption simply by controlling the growth temperature and thus the ordering parameters and band gaps. We also show that controlled doping in Cs 2 AgBiBr 6 can change the energy difference between ordered and disordered Cs 2 AgBiBr 6 , thus providing further control of the ordering parameters and the band gaps. Our study, therefore, provides a novel approach to carry out band structure engineering in the mixed perovskites for optoelectronic applications.

  3. Simulation study of 3–5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, G. E., E-mail: kemp10@llnl.gov; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M. [Lawrence Livermore National Laboratory, Livermore, California 94550-9698 (United States)

    2015-05-15

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3–5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (∼n{sub c}/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using HYDRA, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from CRETIN, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3–5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ∼100–150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (∼20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3–5 keV x-ray source on NIF.

  4. Ag-Modified In2O3 Nanoparticles for Highly Sensitive and Selective Ethanol Alarming

    Directory of Open Access Journals (Sweden)

    Jinxiao Wang

    2017-09-01

    Full Text Available Pure In2O3 nanoparticles are prepared by a facile precipitation method and are further modified by Ag. The synthesized samples are characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Raman and UV-Vis spectra. The results show the successful heterojunction formation between Ag and In2O3. Gas sensing property measurements show that the 5 mol % Ag-modified In2O3 sensor has the response of 67 to 50 ppm ethanol, and fast response and recovery time of 22.3 and 11.7 s. The response is over one magnitude higher than that of pure In2O3, which can be attributed to the enhanced catalytic activity of Ag-modified In2O3 as compared with the pure one. The mechanism of the gas sensor can be explained by the spillover effect of Ag, which enhances the oxygen adsorption onto the surface of In2O3 and thus give rise to the higher activity and larger surface barrier height.

  5. Synthesis and electromagnetic absorption properties of Ag-coated reduced graphene oxide with MnFe{sub 2}O{sub 4} particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan, E-mail: wangyan287580632@126.com; Wu, Xinming; Zhang, Wenzhi; Huang, Shuo

    2016-04-15

    A ternary composite of Ag/MnFe{sub 2}O{sub 4}/reduced graphene oxide (RGO) was synthesized by a facile hydrothermal method. The morphology, microstructure, magnetic and electromagnetic properties of as-prepared Ag/MnFe{sub 2}O{sub 4}/RGO composite were characterized by means of XRD, TEM, XPS, VSM and vector network analyzer. The maximum reflection loss (R{sub L}) of Ag/ MnFe{sub 2}O{sub 4}/RGO composite shows maximum absorption of −38 dB at 6 GHz with the thickness of 3.5 mm, and the absorption bandwidth with the R{sub L} below −10 dB is up to 3.5 GHz (from 3.7 to 7.2 GHz). The result demonstrates that the introduction of Ag significantly leads to the multiple absorbing mechanisms. It is believed that such composite could serve as a powerful candidate for microwave absorber. - Highlights: • A ternary composite of Ag/MnFe{sub 2}O{sub 4}/reduced graphene oxide (RGO) was synthesized by a facile method. • The morphology, microstructure, magnetic and electromagnetic properties were characterized. • The maximum reflection loss of Ag/MnFe{sub 2}O{sub 4}/RGO is −38 dB at 6 GHz with a thickness of 3.5 mm. • The composite shows a wide absorption band.

  6. IR Laser-induced Ablation of Ag in Dielectric Breakdown of Gaseous Hydrocarbons: Simultaneous Occurrence of Metastable HCP and Stable FCC Ag Nanostructures in C:H Shell

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Markéta; Pokorná, Dana; Bakardjieva, Snejana; Šubrt, Jan; Bastl, Zdeněk; Bezdička, Petr; Pola, Josef

    2010-01-01

    Roč. 213, 2-3 (2010), s. 114-122 ISSN 1010-6030 R&D Projects: GA AV ČR IAA400720619; GA MŠk LC523 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : ir laser * dielectric breakdown * ablation Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 2.243, year: 2010

  7. Synergetic effect of Ag{sub 2}O as co-catalyst for enhanced photocatalytic degradation of phenol on N-TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Haipeng [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Xinjuan, E-mail: lxj669635@126.com [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Junying [Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Jinliang [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials Science, East China Normal University, Shanghai 200062 (China); Wu, Tianyang; Li, Haokun; Lei, Wenyan; Xu, Yan [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Pan, Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials Science, East China Normal University, Shanghai 200062 (China)

    2016-09-15

    Graphical abstract: Ag{sub 2}O/N-TiO{sub 2} composites were synthesized via a co-precipitation method for visible light photocatalytic degradation of organic pollutions with excellent photocatalytic activity. - Highlights: • Ag{sub 2}O/N-TiO{sub 2} composites were synthesized via a facile precipitation method. • Ag{sub 2}O/N-TiO{sub 2} composites exhibited enhanced photocatalytic activity. • Ag{sub 2}O acts as co-catalyst to separate the photo-generated electron-hole pairs. - Abstract: A facile precipitation method was developed to synthesize the Ag{sub 2}O/N-TiO{sub 2} composites. Their morphology, structure and photocatalytic performance in the degradation of methylene blue (MB) and phenol under visible light irradiation were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, photoluminescence spectroscopy and UV–vis absorption spectroscopy, respectively. The results show that the Ag{sub 2}O/N-TiO{sub 2} composites exhibit excellent photocatalytic performance. The maximum degradation rates of MB and phenol are about 8.9 and 2.9 times that of pure N-TiO{sub 2}, respectively. The excellent photocatalytic performance is mainly ascribed to the synergetic effects of Ag{sub 2}O and N-TiO{sub 2} including the increased light absorption and the reduced electron-hole pair recombination in N-TiO{sub 2} with the presence of Ag{sub 2}O.

  8. One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Tian Chungui; Li Wei; Pan Kai; Zhang Qi; Tian Guohui; Zhou Wei; Fu Honggang

    2010-01-01

    Ag nanoparticles (NPs) modified ZnO microspheres (Ag/ZnO microspheres) were prepared by a facile one pot strategy in ethylene glycol (EG) medium. The EG played two important roles in the synthesis: it could act as a reaction media for the formation of ZnO and reduce Ag + to Ag 0 . A series of the characterizations indicated the successful combination of Ag NPs with ZnO microspheres. It was shown that Ag modification could greatly enhance the photocatalytic efficiency of ZnO microspheres by taking the photodegradation of Rhodamine B as a model reaction. With appropriate ratio of Ag and ZnO, Ag/ZnO microspheres showed the better photocatalytic performance than commercial Degussa P-25 TiO 2 . Photoluminescence and surface photovoltage spectra demonstrated that Ag modification could effectively inhibit the recombination of the photoinduced electron and holes of ZnO. This is responsible for the higher photocatalytic activity of Ag/ZnO composites. -- Graphical abstract: A 'one-pot' strategy was developed for preparing the Ag/ZnO microspheres in ethylene glycol. The composites exhibited superior photocatalytic performance for photodegradation of Rhodamine B dye in water. Display Omitted

  9. High prevalence of impaired glucose homeostasis and myopathy in asymptomatic and oligosymptomatic 3243A>G mitochondrial DNA mutation-positive subjects

    DEFF Research Database (Denmark)

    Frederiksen, A.L.; Jeppesen, T.D.; Vissing, J.

    2009-01-01

    combinations. Consequently, it is difficult to predict the "phenotypic risk profile" of 3243A>G mutation-positive subjects. The 3243A>G mutation coexists in cells with wild-type mtDNA, a phenomenon called heteroplasmy. The marked variability in mutation loads in different tissues is the main explanation...

  10. Budoucnost benzinových dvoutaktních motorů

    OpenAIRE

    Kříž, Jakub

    2015-01-01

    Práce se zabývá historickým vývojem dvoudobých benzínových motorů od samých počátků vzniku dvoudobého cyklu, mapuje technologický vývoj těchto motorů až do dnešní doby, kde je v druhé polovině pozornost věnována přímému srovnání motoru dvoudobého se čtyřdobým v oblasti ultralightových letounů. My thesis deals with the historical development of two-stroke petrol engines from the very establishment of a two-stroke cycle, mapping the technological development of these engines up to present da...

  11. Plasmon-resonance-enhanced visible-light photocatalytic activity of Ag quantum dots/TiO2 microspheres for methyl orange degradation

    Science.gov (United States)

    Yu, Xin; Shang, Liwei; Wang, Dongjun; An, Li; Li, Zhonghua; Liu, Jiawen; Shen, Jun

    2018-06-01

    We successfully prepared Ag quantum dots modified TiO2 microspheres by facile solvothermal and calcination method. The as-prepared Ag quantum dots/TiO2 microspheres were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The Ag quantum dots/TiO2 photocatalyst showed excellent visible light absorption and efficient photocatalytic activity for methyl orange degradation. And the sample with the molar ratio of 0.05 (Ag to Ti) showed the best visible light photocatalytic activity for methyl orange degradation, mainly because of the surface plasmon resonance (SPR) effects of Ag quantum dots to generate electron and hole pairs for enhanced visible light photocatalysis. Finally, possible visible light photocatalytic mechanism of Ag quantum dots/TiO2 microspheres for methyl orange degradation was proposed in detail.

  12. Measuring the Distribution and Excitation of Cometary CH3OH Using ALMA

    Science.gov (United States)

    Cordiner, M. A.; Charnley, S. B.; Mumma, M. J.; Bockelée-Morvan, D.; Biver, N.; Villanueva, G.; Paganini, L.; Milam, S. N.; Remijan, A. J.; Lis, D. C.; Crovisier, J.; Boissier, J.; Kuan, Y.-J.; Coulson, I. M.

    2016-10-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) was used to obtain measurements of spatially and spectrally resolved CH3OH emission from comet C/2012 K1 (PanSTARRS) on 28-29 June 2014. Detection of 12-14 emission lines of CH3OH on each day permitted the derivation of spatially-resolved rotational temperature profiles (averaged along the line of sight), for the innermost 5000 km of the coma. On each day, the CH3OH distribution was centrally peaked and approximately consistent with spherically symmetric, uniform outflow. The azimuthally-averaged CH3OH rotational temperature (T rot) as a function of sky-projected nucleocentric distance (ρ), fell by about 40 K between ρ= 0 and 2500 km on 28 June, whereas on 29 June, T rot fell by about 50 K between ρ =0 km and 1500 km. A remarkable (~50 K) rise in T rot at ρ = 1500-2500 km on 29 June was not present on 28 June. The observed variations in CH3OH rotational temperature are interpreted primarily as a result of variations in the coma kinetic temperature due to adiabatic cooling, and heating through Solar irradiation, but collisional and radiative non-LTE excitation processes also play a role.

  13. Core/shell AgNi/PtAgNi nanoparticles as methanol-tolerant oxygen reduction electrocatalysts

    International Nuclear Information System (INIS)

    Wu, Dengfeng; Cheng, Daojian

    2015-01-01

    A core/shell AgNi/PtAgNi nanoparticle (NP) was synthesized via a new seed-mediated growth method in organic solvent medium. The as-synthesized AgNi/PtAgNiNP exhibits an AgNi core coated with PtAgNi shell, which was confirmed by transmission electron microscopy (TEM), ultraviolet–visible absorption spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The AgNi/PtAgNiNPs/C catalyst possesses higher oxygen reduction reaction (ORR) activity and better durability compared with the commercial Pt/C catalyst. It is found that the ORR polarization curve of the AgNi/PtAgNiNPs/C catalyst shows an onset potential of 0.91 V vs. RHE, which is superior to the commercial Pt/C (0.88 V vs. RHE). In addition, the AgNi/PtAgNiNPs/C catalyst shows much better durability than the commercial Pt/C catalyst. More interestingly, the AgNi/PtAgNiNPs/C catalyst displays much higher methanol tolerance than the commercial Pt/C catalyst in 0.1 M KOH solution in the presence of 0.5 M methanol. Our results show that core/shell AgNi/PtAgNiNPs possess selective activity for ORR even in the presence of methanol, showing potential application as methanol-tolerant cathode catalysts in direct methanol fuel cells.

  14. Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R. solani AG1-IA, AG1-IB, AG3 and AG8 Isolates.

    Directory of Open Access Journals (Sweden)

    Daniel Wibberg

    Full Text Available Rhizoctonia solani, a soil-born plant pathogenic basidiomycetous fungus, affects various economically important agricultural and horticultural crops. The draft genome sequence for the R. solani AG1-IB isolate 7/3/14 as well as a corresponding transcriptome dataset (Expressed Sequence Tags--ESTs were established previously. Development of a specific R. solani AG1-IB gene model based on GMAP transcript mapping within the eukaryotic gene prediction platform AUGUSTUS allowed detection of new genes and provided insights into the gene structure of this fungus. In total, 12,616 genes were recognized in the genome of the AG1-IB isolate. Analysis of predicted genes by means of different bioinformatics tools revealed new genes whose products potentially are involved in degradation of plant cell wall components, melanin formation and synthesis of secondary metabolites. Comparative genome analyses between members of different R. solani anastomosis groups, namely AG1-IA, AG3 and AG8 and the newly annotated R. solani AG1-IB genome were performed within the comparative genomics platform EDGAR. It appeared that only 21 to 28% of all genes encoded in the draft genomes of the different strains were identified as core genes. Based on Average Nucleotide Identity (ANI and Average Amino-acid Identity (AAI analyses, considerable sequence differences between isolates representing different anastomosis groups were identified. However, R. solani isolates form a distinct cluster in relation to other fungi of the phylum Basidiomycota. The isolate representing AG1-IB encodes significant more genes featuring predictable functions in secondary metabolite production compared to other completely sequenced R. solani strains. The newly established R. solani AG1-IB 7/3/14 gene layout now provides a reliable basis for post-genomics studies.

  15. Heavy ion program at BNL: AGS, RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Barton, D.S.

    1987-01-01

    With the recent commissioning of fixed target, heavy ion physics at the AGS, Brookhaven National Laboratory (BNL) has embarked on a long range program in support of relativistic heavy ion research. Acceleration of low mass heavy ions (up to sulfur) to an energy of about 14.5 GeV/nucleon is possible with the direct connection of the BNL Tandem Van de Graaff and AGS accelerators. When completed, the new booster accelerator will provide heavy ions over the full mass range for injection and subsequent acceleration in the AGS. BNL is now engaged in an active R and D program directed toward the proposed Relativistic Heavy Ion Collider (RHIC). The results of the first operation of the low mass heavy ion program will be reviewed, and future expectations discussed. The expected performance for the heavy ion operation of the booster will be described and finally, the current status and outlook for the RHIC facility will be presented

  16. AGS experiments - 1994, 1995, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here.

  17. AGS experiments - 1994, 1995, 1996

    International Nuclear Information System (INIS)

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here

  18. AGS experiments -- 1991, 1992, 1993

    International Nuclear Information System (INIS)

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments ≥ FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments

  19. Asymmetric interfaces in Fe/Ag and Ag/Fe bilayers prepared by molecular beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Tunyogi, A. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)]. E-mail: tunyogi@rmki.kfki.hu; Paszti, F. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Osvath, Z. [MTA Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest (Hungary); Tancziko, F. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Major, M. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2006-08-15

    Single layers of Fe and Ag, as well as Fe/Ag (iron deposited first) and Ag/Fe bilayers were prepared by molecular beam evaporation onto Si. The samples were investigated with backscattering spectrometry (BS) and atomic force microscopy (AFM). BS spectra of Fe/Ag and Ag/Fe indicate a significant difference at the interface. In the case of Fe/Ag the Ag peak has a long tail at the interface, while for Ag/Fe the interface is abrupt. The tail in the Fe/Ag spectrum is too large to be caused by double or plural scattering. According to AFM, the effect of surface roughness is also negligible. In spite of the fact that Fe and Ag are completely immiscible in equilibrium, this tail, however, suggests that some Ag is located in the Fe layer. After annealing, both samples show mixing between the two layers; this is much larger again for Fe/Ag.

  20. Facile And Reversible Co Insertion Into The Ir-ch3 Bond Of [ir4(ch3)(co)8(μ4- η3-ph2pccph)(μ-pph2)

    OpenAIRE

    Vargas M.D.; Pereira R.M.S.; Braga D.; Grepioni F.

    1993-01-01

    Reaction of [Ir4H(CO)10(mu-PPh2)) with BuLi, Ph2PC=CPh and then Mel gives [Ir4(CH3)(CO)8(mu4-eta3-Ph2PCCPh)(mu-PPh2)], which undergoes a reversible two-step CO insertion under extremely mild conditions to yield Ir4{(CH3C(O)}(CO)8-(mu4:eta3-Ph2PCCPh)(mu-PPh2)] as the final product; the structures of both species have been established by X-ray diffraction studies.

  1. AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2

    Directory of Open Access Journals (Sweden)

    O. Membrive

    2017-06-01

    Full Text Available An original and innovative sampling system called AirCore was presented by NOAA in 2010 (Karion et al., 2010. It consists of a long (>  100 m and narrow (<  1 cm stainless steel tube that can retain a profile of atmospheric air. The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming to improve resolution along the vertical with the objectives to (i better capture the vertical distribution of CO2 and CH4, (ii provide a tool to compare AirCores and validate the estimated vertical resolution achieved by AirCores. This (high-resolution AirCore-HR consists of a 300 m tube, combining 200 m of 0.125 in. (3.175 mm tube and a 100 m of 0.25 in. (6.35 mm tube. This new configuration allows us to achieve a vertical resolution of 300 m up to 15 km and better than 500 m up to 22 km (if analysis of the retained sample is performed within 3 h. The AirCore-HR was flown for the first time during the annual StratoScience campaign from CNES in August 2014 from Timmins (Ontario, Canada. High-resolution vertical profiles of CO2 and CH4 up to 25 km were successfully retrieved. These profiles revealed well-defined transport structures in the troposphere (also seen in CAMS-ECMWF high-resolution forecasts of CO2 and CH4 profiles and captured the decrease of CO2 and CH4 in the stratosphere. The multi-instrument gondola also carried two other low-resolution AirCore-GUF that allowed us to perform direct comparisons and study the underlying processing method used to convert the sample of air to greenhouse gases vertical profiles. In particular, degrading the AirCore-HR derived profiles to the low resolution of AirCore-GUF yields an excellent match between both sets of CH4 profiles and shows a good consistency in terms of vertical structures. This fully validates the theoretical vertical resolution achievable by AirCores. Concerning CO2 although a

  2. One-pot, facile fabrication of a Ag3PO4-based ternary Z-scheme photocatalyst with excellent visible-light photoactivity and anti-photocorrosion performance

    Science.gov (United States)

    Xie, Mingyuan; Zhang, Tailiang

    2018-04-01

    Ag3PO4 can-not be widely used as an efficient photocatalyst in practical applications because of its susceptibility to photocorrosion. In this study, a novel, ternary Z-scheme photocatalytic system containing graphene oxide (GO), Ag3PO4 and SnS2 was fabricated by a one-pot, mild, in-situ precipitation method successfully. Using Rhodamine B (RhB) as the target of elimination, GO/Ag3PO4/SnS2 exhibited outstanding photocatalytic and anti-photocorrosion properties compared with those of Ag3PO4, Ag3PO4/SnS2 and GO/Ag3PO4. RhB was thoroughly degraded over the optimized GO/Ag3PO4/SnS2 nanocomposite after only 15 min under visible-light irradiation; this result is approximately 2.14, 3.33 and 5.83 times faster than that of GO/Ag3PO4, Ag3PO4/SnS2 and Ag3PO4, respectively. After three reuses, the photocatalytic activity of the ternary composite slightly decreased but remained 2.36, 4.08 and 12.70 times higher than those of the reused GO/Ag3PO4, Ag3PO4/SnS2 and Ag3PO4, respectively. In this system, the efficient separation and migration of the photoinduced current carriers in Ag3PO4 was realized through a double Z-scheme electron-transfer mechanism in which the GO nanosheets acted as the photocatalyst and electron mediator, thereby enhancing the photoactivity and stability of Ag3PO4. The present study provides a new perspective for enhancing photocatalytic and anti-photocorrosion performances in perishable photocatalysts for organic sewage and other environmental contamination treatments.

  3. Thermodynamic properties of solid solutions in the system Ag2S–Ag2Se

    International Nuclear Information System (INIS)

    Pal’yanova, G.A.; Chudnenko, K.V.; Zhuravkova, T.V.

    2014-01-01

    We have summarized experimental data on the phase diagram of the system Ag 2 S–Ag 2 Se. Standard thermodynamic functions of four solid solutions in this system have been calculated using the model of regular and subregular solutions: a restricted fcc solid solution γ-Ag 2 S-Ag 2 S 1−x Se x (x 2 S–Ag 2 Se, monoclinic solid solution (α) from Ag 2 S to Ag 2 S 0.4 Se 0.6 , and orthorhombic solid solution (α) from Ag 2 S 0.3 Se 0.7 to the Ag 2 Se. G mix and S mix have been evaluated using the subregular model for asymmetric solution for the region Ag 2 S 0.4 Se 0.6 –Ag 2 S 0.3 Se 0.7 . The thermodynamic data can be used for modeling in complex natural systems and in matters of semiconductor materials

  4. Model based controls and the AGS booster controls system architecture

    International Nuclear Information System (INIS)

    Casella, R.A.

    1987-01-01

    For the past three years the Accelerator Controls Section has been responsible for the development of the Heavy Ion Transfer Line (HITL) used to inject heavy ions created at the Tandem Van de Graaff into the Alternating Gradient Synchrotron (AGS). This was recognized as an opportunity to test new ideas for control of a beam line, which if successful, could be implemented in an upgrade of the existing control system for the AGS. The in place control system for the AGS consisted of DEC PDP10 computer as the primary computer interface to the accelerator via three control room consoles, and keeper of the device database. For the HITL project it was decided to make the control system a true distributed network putting more computing power down at the device level via intelligent subsystems. A network of Apollo workstations was added at the host level. Apollos run a distributed operating system and are connected to each other by the Domain Token Ring Network. The Apollos were seen as the new primary computers for consoles with each console containing at least one Apollo. These hosts and all other subsystems are connected to each other via an in house developed LAN (RELWAY). The design of the control system developed for HITL was mostly successful. The proposed AGS Booster is designed to be a synchrotron injector for the AGS. With the forthcoming development of the Booster for the AGS an opportunity has again developed to implement new ideas for accelerator control. One weakness of the HITL control system is the limited cpu power and poor debugging facilities of the stations

  5. In situ controllable synthesis of novel surface plasmon resonance-enhanced Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} composite for enhanced and stable visible light photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jiali [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Dai, Kai, E-mail: daikai940@chnu.edu.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Zhang, Jinfeng [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Lu, Luhua, E-mail: lhlu@cug.edu.cn [Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Liang, Changhao, E-mail: chliang@issp.ac.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 23003 (China); Geng, Lei; Wang, Zhongliao; Yuan, Guangyu; Zhu, Guangping [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China)

    2017-01-01

    Highlights: • Novel Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} ternary photocatalyst was prepared. • Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} showed enhanced catalytic activity. • Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} showed long reusable life. - Abstract: A novel hierarchical Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} ternary visible-light-driven photocatalyst was successfully synthesized by in situ doping Ag{sub 2}WO{sub 4} with Bi{sub 2}MoO{sub 6} nanosheets through a facile hydrothermal and photochemical process. The morphology, structure, optical performance and crystallinity of the products were measured by field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS), UV–vis diffuse reflectance spectroscopy (DRS) and X-ray diffraction (XRD). The results showed that Ag{sub 2}WO{sub 4}/Ag was uniformly dispersed on the surface of Bi{sub 2}MoO{sub 6} nanosheets. The photocatalytic performance of Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} heterostructures was evaluated by the degradation of methylene blue (MB) under 410 nm LED arrays. The ternary Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} nanocomposite exhibits higher photocatalytic activity than Bi{sub 2}MoO{sub 6} and Ag{sub 2}WO{sub 4}. The synergistic effect of Ag{sub 2}WO{sub 4} and Bi{sub 2}MoO{sub 6} could generated more heterojunctions which promoted photoelectrons transfer from Ag{sub 2}WO{sub 4} to Bi{sub 2}MoO{sub 6}, leading to the improvement of photocatalytic performance by photoelectrons-holes recombination suppression. At the same time, the surface plasmon resonance of Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} is another crucial reason for the high photocatalytic performance of organic pollutants degradation. And the 20 wt% Ag{sub 2}WO{sub 4}-loaded Bi{sub 2}MoO{sub 6} shows the optimal photocatalytic performance in the degradation of MB. In addition, the ternary composites can be easily reclaimed by precipitation and exhibits high stability of photocatalytic

  6. Enhanced selective photocatalytic CO{sub 2} reduction into CO over Ag/CdS nanocomposites under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zezhou; Qin, Jiani; Jiang, Min; Ding, Zhengxin; Hou, Yidong, E-mail: ydhou@fzu.edu.cn

    2017-01-01

    Highlights: • Ag/CdS nanocomposites were prepared by a facile photodeposition method. • Ag/CdS was more effective as a photocatalyst for CO{sub 2} reduction than CdS. • Ag as cocatalyst served as electron trap as well as active site for CO{sub 2} reduction reaction. - Abstract: Photocatalytic reduction of carbon dioxide can convert chemically inert carbon dioxide into useful chemical fuel in a mild manner. Herein, Ag-CdS nanocomposites were prepared by photodeposition method and examined for photocatalytic CO{sub 2} reduction under visible light. Meanwhile, the nanocomposites were characterized by XRD, SEM, TEM, XPS, DRS and PL in detail. The results show that, the deposition of Ag improves the photocatalytic performance of CdS, especially in the selectivity of CO{sub 2}-to-CO. The highest photocatalytic activity is achieved over 1.0 wt.% Ag/CdS, with an increase by 3 times in comparison to CdS. In this reaction system, Ag can serve as electron trap as well as active site for CO{sub 2} reduction, which is probably responsible for the enhanced activity and selectivity of CO{sub 2} to CO over Ag/CdS. The possible mechanism of CO{sub 2} photoreduction over Ag/CdS was proposed in view of the abovementioned analysis.

  7. A first principles study on the electronic origins of silver segregation at the Ag-Au (111) surface

    Science.gov (United States)

    Hoppe, Sandra; Müller, Stefan

    2017-12-01

    The special electronic structure of gold gives rise to many interesting phenomena, such as its color. The surface segregation of the silver-gold system has been the subject of numerous experimental and theoretical studies, yielding conflicting results ranging from strong Ag surface enrichment to Au surface segregation. Via a combined approach of density functional theory (DFT) and statistical physics, we have analyzed the segregation at the Ag-Au (111) surface with different Ag bulk concentrations. Interestingly, we observe a moderate Au surface segregation, which is due to a charge transfer from the less electronegative Ag to Au. Canonical Monte Carlo simulations suggest that the calculated concentration profile with a Au-enriched surface layer remains stable up to higher temperatures. However, the presence of adsorbed oxygen reverses the segregation behavior and leads to strong Ag enrichment of the surface layer.

  8. PROSES BRAZING Cu-Ag BERBAHAN BAKAR BIOGAS TERMURNIKAN

    Directory of Open Access Journals (Sweden)

    Ali Kusrijadi

    2015-01-01

    Full Text Available Pemanfaatan biogas sebagai salah satu alternatif bahan bakar  pada proses brazing merupakan langkah diversifikasi biogas, yang diharapkan dapat meningkatkan tingkat efisiensi dan keramahan teknologi. Permasalahan yang bersifat teknis dan menjadi kendala dalam pemanfaatan biogas ini adalah rendahnya konsentrasi CH4 dikarenakan adanya pengotor utama berupa air, karbondioksida dan asam disulfida. Penelitian dilakukan melalui dua tahap yaitu  tahap  pressureized storage process meliputi pemisahan komponen pengotor yang terdapat dalam biogas melalui teknik absorbsi sehingga dihasilkan biogas yang berkualitas gas alam terbarukan dan proses injeksi ke dalam suatu tangki penyimpanan, dan tahap selanjutnya adalah menggunakan biogas tersebut pada proses brazing logam Cu (tembaga dengan bahan tambah Ag (silver. Analisis hasil brazing dilakukan melalui analisis struktur mikro (metalografi untuk melihat kualitas tampak dari hasil brazing, serta analisis kekerasan mikro dan analisis parameter fisik standar terhadap hasil proses brazing. Penelitian ini telah menghasilkan perangkat alat pemurnian biogas yang dapat memurnikan biogas menjadi metana mendekati 100% dan sistem pengemasan (storage system  biogas bertekanan hingga 2 bar. Dari hasil analisis struktur mikro dan uji kekerasan mikro diketahui bahwa hasil proses brazing dengan biogas menghasilkan kualitas yang sama dengan hasil proses brazing dengan gas acetylene sehingga disimpulkan bahwa biogas dapat menjadi bahan bakar alternatif untuk proses brazing, khususnya untuk logam Cu dengan bahan tambah Ag.  Kata kunci : Biogas, Pressureized Storage, Brazing

  9. Assessing fugitive emissions of CH4 from high-pressure gas pipelines

    Science.gov (United States)

    Worrall, Fred; Boothroyd, Ian; Davies, Richard

    2017-04-01

    The impact of unconventional natural gas production using hydraulic fracturing methods from shale gas basins has been assessed using life-cycle emissions inventories, covering areas such as pre-production, production and transmission processes. The transmission of natural gas from well pad to processing plants and its transport to domestic sites is an important source of fugitive CH4, yet emissions factors and fluxes from transmission processes are often based upon ver out of date measurements. It is important to determine accurate measurements of natural gas losses when compressed and transported between production and processing facilities so as to accurately determine life-cycle CH4 emissions. This study considers CH4 emissions from the UK National Transmission System (NTS) of high pressure natural gas pipelines. Mobile surveys of CH4 emissions using a Picarro Surveyor cavity-ring-down spectrometer were conducted across four areas in the UK, with routes bisecting high pressure pipelines and separate control routes away from the pipelines. A manual survey of soil gas measurements was also conducted along one of the high pressure pipelines using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from these joints. When scaled up to the UK's National Transmission System pipeline length of 7600 km gives a fugitive CH4 flux of 4700 ± 2864 kt CH4/yr - this fugitive emission from high pressure pipelines is 0.016% of the annual gas supply.

  10. Dynamics of the F(-) + CH3I → HF + CH2I(-) Proton Transfer Reaction.

    Science.gov (United States)

    Zhang, Jiaxu; Xie, Jing; Hase, William L

    2015-12-17

    Direct chemical dynamics simulations, at collision energies Erel of 0.32 and 1.53 eV, were performed to obtain an atomistic understanding of the F(-) + CH3I reaction dynamics. There is only the F(-) + CH3I → CH3F + I(-) bimolecular nucleophilic substitution SN2 product channel at 0.32 eV. Increasing Erel to 1.53 eV opens the endothermic F(-) + CH3I → HF + CH2I(-) proton transfer reaction, which is less competitive than the SN2 reaction. The simulations reveal proton transfer occurs by two direct atomic-level mechanisms, rebound and stripping, and indirect mechanisms, involving formation of the F(-)···HCH2I complex and the roundabout. For the indirect trajectories all of the CH2I(-) is formed with zero-point energy (ZPE), while for the direct trajectories 50% form CH2I(-) without ZPE. Without a ZPE constraint for CH2I(-), the reaction cross sections for the rebound, stripping, and indirect mechanisms are 0.2 ± 0.1, 1.2 ± 0.4, and 0.7 ± 0.2 Å(2), respectively. Discarding trajectories that do not form CH2I(-) with ZPE reduces the rebound and stripping cross sections to 0.1 ± 0.1 and 0.7 ± 0.5 Å(2). The HF product is formed rotationally and vibrationally unexcited. The average value of J is 2.6 and with histogram binning n = 0. CH2I(-) is formed rotationally excited. The partitioning between CH2I(-) vibration and HF + CH2I(-) relative translation energy depends on the treatment of CH2I(-) ZPE. Without a CH2I(-) ZPE constraint the energy partitioning is primarily to relative translation with little CH2I(-) vibration. With a ZPE constraint, energy partitioning to CH2I(-) rotation, CH2I(-) vibration, and relative translation are statistically the same. The overall F(-) + CH3I rate constant at Erel of both 0.32 and 1.53 eV is in good agreement with experiment and negligibly affected by the treatment of CH2I(-) ZPE, since the SN2 reaction is the major contributor to the total reaction rate constant. The potential energy surface and reaction dynamics for F

  11. Design and fabrication of a CH/Al dual-layer perturbation target for hydrodynamic instability experiments in ICF

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Xie, Zhiyong [Shanghai Institute of Laser Plasma, Shanghai 201800 (China); Du, Ai [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Ye, Junjian [Shanghai Institute of Laser Plasma, Shanghai 201800 (China); Zhang, Zhihua; Shen, Jun [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Zhou, Bin, E-mail: zhoubin863@tongji.edu.cn [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China)

    2014-04-15

    Highlights: • Sinusoidal perturbed Al foil was prepared by single-point diamond turning. • Perturbed Al foil was measured by surface profiler and white light interferometer. • Perturbed Al foil and CH layer adhered with each other via a hot-press process. • Parameters and cross-section of the CH–Al perturbation target was characterized. - Abstract: A polystyrene (CH)/aluminum (Al) dual-layer perturbation target for hydrodynamic instability experiments in inertial confinement fusion (ICF) was designed and fabricated. The target was composed of a perturbed 40 μm Al foil and a CH layer. The detailed fabrication method consisted of four steps. The 40 μm Al foil was first prepared by roll and polish process; the perturbation patterns were then introduced on the surface of the Al foil by the single-point diamond turning (SPDT) technology; the CH layer was prepared via a simple method which called spin-coating process; finally, the CH layer was directly coated on the perturbation surface of Al foil by a hot-press process to avoid the use of a sticker and to eliminate the gaps between the CH layer and the Al foil. The parameters of the target, such as the perturbation wavelength (T) and perturbation amplitude (A), were characterized by a QC-5000 tool microscope, an alpha-step 500 surface profiler and a NT1100 white light interferometer. The results showed that T and A of the target were about 52 μm and 7.34 μm, respectively. Thickness of the Al foil (H1), thickness of the CH layer (H2), and cross-section of the dual-layer target were characterized by a QC-5000 tool microscope and a scanning electron microscope (SEM). H1 and H2 were about 40 μm and 15 μm, respectively, the cross-sectional photographs of the target showed that the CH layer and the Al foil adhered perfectly with each other.

  12. Pentacene Multilayers On Ag(111) Surface

    International Nuclear Information System (INIS)

    Mete, E.

    2010-01-01

    The structural profiles and electronic properties of pentacene (C 2 2H 1 4) multilayers on Ag(111) surface has been studied within the density functional theory (DFT) framework. We have performed first-principle total energy calculations based on the projector augmented wave (PAW) method to investigate the initial growth patterns of pentacene (Pn) on Ag(111) surface. In its bulk phase, pentacene crystallizes with a triclinic symmetry while a thin film phase having an orthorhombic unit cell is energetically less favorable by 0.12 eV/cell. Pentacene prefers to stay planar on Ag(111) surface and aligns perfectly along lattice vector (1,-1,0) without any molecular deformation at a height of 3.9 angstroms. At one monolayer (ML) coverage the separation between the molecular layer and the surface plane extends to 4.1 angstroms due to intermolecular interactions weakening surface-pentacene attraction. While the first ML remains flat, the molecules on a second full pentacene layer deposited on the surface rearrange so that they become skewed with respect to each other. This adsorption mode is energetically more preferable than the one for which the molecules form a flat pentacene layer by an energy difference similar to that obtained for bulk and thin film phases. Moreover, as new layers added, pentacenes assemble to maintain this skewness for 3 and 4 ML similar to its bulk phase while the first ML always remains flat. Therefore, our calculations indicate bulk-like initial stages for the growth pattern.

  13. Ag nanocrystals anchored CeO2/graphene nanocomposite for enhanced supercapacitor applications

    International Nuclear Information System (INIS)

    Vanitha, M.; Keerthi; Cao, P.; Balasubramanian, N.

    2015-01-01

    Highlights: • Quasi spherical Ag and CeO 2 nanoparticles were decorated on rGO matrix. • The Ag/CeO 2 /rGO nanocomposite exhibits specific capacitance of 710 F g −1 . • Ag plays an imperative role in improving the electrochemical performance. - Abstract: A novel ternary Ag decorated CeO 2 /reduced graphene oxide (rGO) nanocomposite was synthesized by a facile hydrothermal method with polyvinylpyrrolidone (PVP) as surface directing agent and was designed as an electrode material for supercapacitors application. The structure and morphology of the nanocomposites were analyzed by X-ray diffraction analysis (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The synergistic effect between the CeO 2 nanoparticles wrapped rGO matrix with Ag nanoparticles gives rise to a nanostructure, empowering the material with enhanced electrochemical performance. The electrochemical characterization was performed using cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopic studies in 3 M KOH aqueous electrolyte. The nanocomposite electrode materials possess a high specific capacitance of 710.42 F g −1 at an applied current density of 0.2 A g −1 , which was nearly two fold higher than CeO 2 /rGO nanocomposite. This work endows a new route for building Ag/CeO 2 /rGO ternary nanocomposite which will have some impact on the exploitation of novel ternary electrode materials for supercapacitor applications

  14. The forced flow high field test facility SULTAN

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Weymuth, P.

    1984-01-01

    The construction of the 8 Tesla, 1 m bore Test Facility SULTAN - I, a common action of ENEA (I-Frascati), ECN (NL-Petten) and SIN (CH-Villigen), is completed. Results on assembly, cooldown and the first operation of the whole system are presented. The SULTAN facility provides a wide range of capability of parameter variations (field, current, cooling) for the investigation of steady state performance and stability of technical superconductors unders nominal and limiting conditions

  15. Homogeneous synthesis of Ag nanoparticles-doped water-soluble cellulose acetate for versatile applications.

    Science.gov (United States)

    Cao, Jie; Sun, Xunwen; Zhang, Xinxing; Lu, Canhui

    2016-11-01

    We report a facile and efficient approach for synthesis of well-dispersed and stable silver nanoparticles (Ag NPs) using water-soluble cellulose acetate (CA) as both reductant and stabilizer. Partially substituted CA with highly active hydroxyl groups and excellent water-solubility is able to reduce silver ions in homogeneous aqueous medium effectively. The synthesized Ag NPs were characterized by UV-vis spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscope analysis. The as-prepared Ag NPs were well-dispersed, showing a surface plasmon resonance peak at 426nm. The resulted Ag NPs@CA nanohybrids exhibit high catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH 4 . Meanwhile, the nanohybrids are also effective in inhibiting the growth of bacterial. This environmentally friendly method promotes the use of renewable natural resources to prepare a variety of inorganic-organic materials for catalysis, antibacterial, sensors and other applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Capture and dissociation in the complex-forming CH + H2 → CH2 + H, CH + H2 reactions.

    Science.gov (United States)

    González, Miguel; Saracibar, Amaia; Garcia, Ernesto

    2011-02-28

    The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.

  17. Synthesis and antibacterial evaluation of calcinated Ag-doped nano-hydroxyapatite with dispersibility.

    Science.gov (United States)

    Furuzono, Tsutomu; Motaharul, Mazumder; Kogai, Yasumichi; Azuma, Yoshinao; Sawa, Yoshiki

    2015-05-01

    Dispersible hydroxyapatite (HAp) nanoparticles are very useful for applying a monolayer to implantable medical devices using the nano-coating technique. To improve tolerance to infection on implanted medical devices, silver-doped HAp (Ag-HAp) nanoparticles with dispersiblity and crystallinity were synthesized, avoiding calcination-induced sintering, and evaluated for antibacterial activity. The Ca10-xAgx(PO4)6(OH)2 with x = 0 and 0.2 were prepared by wet chemical processing at 100°C. Before calcination at 700°C for 2 h, two kinds of anti-sintering agents, namely a Ca(NO3)2 (Ca salt) and a polyacrylic acid/Ca salt mixture (PAA-Ca), were used. Escherichia coli was used to evaluate the antibacterial activity of the nanopowder. When PAA-Ca was used as an anti-sintering agent in calcination to prepare the dispersible nanoparticles, strong metallic Ag peaks were observed at 38.1° and 44.3° (2θ) in the X-ray diffraction (XRD) profile. However, the Ag peak was barely observed when Ca salt was used alone as the anti-sintering agent. Thus, using Ca salt alone was more effective for preparation of dispersible Ag-HAp than PAA-Ca. The particle average size of Ag-HAp with 0.5 mol% of Ag content was found to be 325 ± 70 nm when the formation of large particleaggregations was prevented, as determined by dynamic light scattering instrument. The antibacterial activity of the Ag-HAp nanoparticles possessing 0.5 mol% against E. coli was greater than 90.0%. Dispersible and crystalline nano Ag-HAp can be obtained by using Ca salt alone as an anti-sintering agent. The nanoparticles showed antibacterial activity.

  18. The effects of burner stabilization on Fenimore NO formation in low-pressure, fuel-rich premixed CH4/O2/N2 flames

    NARCIS (Netherlands)

    van Essen, Vincent; Sepman, Alexey; Mokhov, A. V.; Levinsky, H. B.

    We investigate the effects of varying the degree of burner stabilization on Fenimore NO formation in fuel-rich low-pressure flat CH4/O-2/N-2 flames. Towards this end, axial profiles of flame temperature and OH, NO and CH mole fractions are measured using laser-induced fluorescence (LIF). The

  19. Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis

    International Nuclear Information System (INIS)

    Leong, Kah Hon; Sim, Lan Ching; Jang, Min; Ibrahim, Shaliza; Bahnemann, Detlef; Saravanan, Pichiah

    2015-01-01

    A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO 2 nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO 2 were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag well degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%

  20. AGS experiments: 1993 - 1994 - 1995

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1996-04-01

    This report contains: FY 1995 AGS Schedule as Run; FY 1996-97 AGE Schedule (working copy); AGS Beams 1995; AGS Experimental Area FY 1993 Physics Program; AGS Experimental Area FY 1994 Physics Program; AGS Experimental Area FY 1995 Physics Program; AGS Experimental Area FY 1996 Physics Program (In progress); A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Listing of publications of AGS experiments begins here; and Listing of AGS experimenters begins here. This is the twelfth edition.

  1. AGS experiments: 1993 - 1994 - 1995

    International Nuclear Information System (INIS)

    Depken, J.C.

    1996-04-01

    This report contains: FY 1995 AGS Schedule as Run; FY 1996-97 AGE Schedule (working copy); AGS Beams 1995; AGS Experimental Area FY 1993 Physics Program; AGS Experimental Area FY 1994 Physics Program; AGS Experimental Area FY 1995 Physics Program; AGS Experimental Area FY 1996 Physics Program (In progress); A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Listing of publications of AGS experiments begins here; and Listing of AGS experimenters begins here. This is the twelfth edition

  2. Application for approval to construct the Waste Receiving And Processing facility

    International Nuclear Information System (INIS)

    1993-02-01

    The following Application For Approval Of Construction is being submitted by the US Department of Energy, Richland Field Office pursuant to 40 CFR 61.07, ''Application for Approval of Construction or Modification,'' for the Waste Receiving and Processing (WRAP) Module 1 facility (also referred to as WRAP 1). The WRAP 1 facility will be a new source of radioactive emissions to the atmosphere. The WRAP 1 facility will be housed in the new 2336-W Building, which will be located in the 200 West Area south of 23rd Street and west of Dayton Avenue. The 200 West Area is located within the boundary of the Hanford Site. The mission of the WRAP 1 facility is to examine, assay, characterize, treat, and repackage solid radioactive and mixed waste to enable permanent disposal of the waste in accordance with all applicable regulations. The solid wastes to be handled in the WRAP 1 facility include low-level waste (LLW), Transuranic (TRU) waste, TRU mixed waste, and low-level mixed waste (LLMW). The WRAP 1 facility will only accept contact handled (CH) waste containers. CH waste is a waste category whose external surface dose rate does not exceed 200 mrem/h. These containers have a surface dose rate of less than 200 mrem/h

  3. Sonochemical synthesis of Ag/AgCl nanocubes and their efficient visible-light-driven photocatalytic performance.

    Science.gov (United States)

    Chen, Deliang; Yoo, Seung Hwa; Huang, Qingsong; Ali, Ghafar; Cho, Sung Oh

    2012-04-23

    A novel one-step sonochemical approach to synthesize a plasmonic photocatalyst of AgCl nanocubes (ca. 115 nm in edge length) with a small amount of Ag metal species is presented. The nanoscale Ag/AgCl hybrid photocatalysts with cubic morphology are readily formed under ambient ultrasonic conditions and neither external heat treatment nor reducing agents are required. The size of the Ag/AgCl photocatalysts could be controlled by changing the concentrations of Ag(+) ions and polyvinylpyrrolidone molecules in precursor solutions. The compositions, microstructures, influencing factors, and possible growth mechanism of the Ag/AgCl hybrid nanocubes were systematically investigated. The Ag/AgCl photocatalysts show excellent photocatalytic performance for degradation of various dye molecules under visible light. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 76 FR 14590 - Defense Federal Acquisition Regulation Supplement; Safety of Facilities, Infrastructure, and...

    Science.gov (United States)

    2011-03-17

    ... makes it unlikely that a small business could afford to sustain the infrastructure required to perform...-AG73 Defense Federal Acquisition Regulation Supplement; Safety of Facilities, Infrastructure, and... facilities, infrastructure, and equipment that are intended for use by military or civilian personnel of the...

  5. CH-53K Heavy Lift Replacement Helicopter (CH-53K)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-390 CH-53K Heavy Lift Replacement Helicopter (CH-53K) As of FY 2017 President’s Budget...December 2015 SAR March 4, 2016 10:04:18 UNCLASSIFIED 4 Col Henry Vanderborght PMA-261 Heavy Lift Helicopters Program Executive Office - Air, Anti...757-5780 Fax: 301-757-5109 DSN Phone: 757-5780 DSN Fax: 757-5109 Date Assigned: May 29, 2014 Program Information Program Name CH-53K Heavy Lift

  6. Advisory Service Marketing Profiles for Soybeans over 2002-2004

    OpenAIRE

    Colino, Evelyn V.; Cabrini, Silvina M.; Aulerich, Nicole M.; Brandenberger, Tracy L.; Merrin, Robert P.; Shi, Wei; Irwin, Scott H.; Good, Darrel L.; Martines-Filho, Joao Gomes

    2006-01-01

    This report presents marketing profiles and loan deficiency payment/marketing loan gain profiles for the advisory services followed by the AgMAS Project for the 2002, 2003 and 2004 soybean crops. Marketing profiles are constructed by plotting the cumulative net amount priced under each program’s set of recommendations throughout the crop year. Loan deficiency payment/marketing loan gain (LDP/MLG) profiles are constructed by plotting the cumulative percentage of the crop on which the LDP/MLG w...

  7. Advisory Service Marketing Profiles for Corn over 2002-2004

    OpenAIRE

    Colino, Evelyn V.; Cabrini, Silvina M.; Aulerich, Nicole M.; Brandenberger, Tracy L.; Merrin, Robert P.; Shi, Wei; Irwin, Scott H.; Good, Darrel L.; Martines-Filho, Joao Gomes

    2006-01-01

    This report presents marketing profiles and loan deficiency payment/marketing loan gain profiles for the advisory services followed by the AgMAS Project for the 2002, 2003 and 2004 corn crops. Marketing profiles are constructed by plotting the cumulative net amount priced under each program’s set of recommendations throughout the crop year. Loan deficiency payment/marketing loan gain (LDP/MLG) profiles are constructed by plotting the cumulative percentage of the crop on which the LDP/MLG was ...

  8. Quantifying 12/13CH4 migration and fate following sub-surface release to an agricultural soil

    International Nuclear Information System (INIS)

    Shaw, G.; Atkinson, B.; Meredith, W.; Snape, C.; Steven, M.; Hoch, A.; Lever, D.

    2014-01-01

    Following gas generation in a Geological Disposal Facility (GDF), 14 C-containing gases could migrate through the geosphere, eventually diffusing into soils at the Earth's surface. This paper reports summary results from laboratory and field experiments to obtain information on the probable rates of a) diffusive transport and b) oxidation of 12/13 CH 4 (as a surrogate for 14 CH 4) in a typical agricultural soil in the UK. Rates of CH 4 oxidation were generally low in the field and undisturbed soil columns, though a re-packed column of homogenised topsoil oxidised ambient atmospheric CH 4 20× faster than an undisturbed soil column. In contrast to low observed rates of CH 4 oxidation, the effective diffusion of CH 4 through the soil was rapid. Isotopically labelled CH 4 injected at a depth of 45 cm in the field diffused to the surface and exited the soil over a time period ranging from 8 to 24 h. The rate of CH 4 diffusion through the soil was increased by the presence of ryegrass roots which increased soil porosity and decreased water content. δ 13 C values for laboratory column soils after labelled CH 4 injection experiments showed no sign of residual 13 C, despite the extremely high δ 13 C values of the injected 12/13 CH 4 . If laboratory observations are confirmed by measurements in field samples it can be concluded that the majority of 14 CH 4 from a GDF which enters a soil with low methanotrophic activity will be lost to the free atmosphere after diffusing rapidly through the soil column

  9. Optical properties of silicene, Si/Ag(111), and Si/Ag(110)

    Science.gov (United States)

    Hogan, C.; Pulci, O.; Gori, P.; Bechstedt, F.; Martin, D. S.; Barritt, E. E.; Curcella, A.; Prevot, G.; Borensztein, Y.

    2018-05-01

    We present a state-of-the-art study of the optical properties of free-standing silicene and of single-layer Si one- and two-dimensional (1D and 2D) nanostructures supported on Ag(110) and Ag(111) substrates. Ab initio simulations of reflectance anisotropy spectroscopy (RAS) and surface differential reflectivity spectroscopy (SDRS) applied to the clean Ag surface and Si/Ag interfaces are compared with new measurements. For Si/Ag(110), we confirm a pentagonal nanoribbon geometry, strongly bonded to the substrate, and rule out competing zigzag chain and silicenelike models. For Si/Ag(111), we reproduce the main experimental features and isolate the optical signal of the epitaxial silicene overlayer. The absorption spectrum of a silicene sheet computed including excitonic and local field effects is found to be quite similar to that calculated within an independent particle approximation and shows strong modifications when adsorbed on a Ag substrate. Important details of the computational approach are examined and the origins of the RAS and SDRS signals are explained in terms of the interface and substrate response functions. Our study does not find any evidence for Si adlayers that retain the properties of freestanding silicene.

  10. Evaluation of colloidal Ag and Ag-alloys as anode electrocatalysts for direct borohydride fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Atwan, Mohammed H.; Northwood, Derek O. [Mechanical, Auto, and Materials Engineering, University of Windsor, Windsor, N9B 3P4 (Canada); Gyenge, Elod L. [Chemical and Biological Engineering, The University of British Colombia, Vancouver, BC, V6T 1Z4 (Canada)

    2007-10-15

    In this study, colloidal silver and silver-alloys (Ag-Pt, Ag-Au, Ag-Ir, and Ag-Pd) prepared by the Boenneman technique were evaluated as anode catalysts for sodium borohydride oxidation using cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP) and rotating disk electrode (RDE) voltammetry. The CV results show that the colloidal Ag-alloys were electrochemically active towards borohydride oxidation with oxidation potentials ranging between -0.7 and 0.4 V vs. Hg/HgO (MOE). The most negative oxidation potential was recorded on Ag-Pt. CA results show that the steady state current density was highest on Ag-Pt, followed by Ag-Ir, Ag-Au, and Ag-Pd. The lowest overpotential was recorded on Ag-Ir for a current step change of 10mAcm{sup -2}. A significant temperature effect and a small rotation speed effect were found in the rotating disc voltammetry for all the investigated colloids. The highest peak current was recorded on Ag-Au, while the most negative peak potential was recorded on Ag-Ir. (author)

  11. Photoelectron and Auger-electron spectra of Cl{sub 3}SiSi(CH{sub 3}){sub 3} obtained by using monochromatized synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Shin-ichi, E-mail: nagaoka@ehime-u.ac.jp [Department of Chemistry, Faculty of Science and Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Endo, Hikaru; Nagai, Kanae [Department of Chemistry, Faculty of Science and Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Takahashi, Osamu [Institute for Sustainable Sciences and Development, Hiroshima University, Higashi-Hiroshima 739-8511 (Japan); Tamenori, Yusuke [Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5198 (Japan); Suzuki, Isao H. [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Advanced Institute of Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568 (Japan)

    2014-08-15

    Highlights: • Various photo- and Auger-electron spectra of Cl{sub 3}SiSi(CH{sub 3}){sub 3} vapor were measured. • The measured spectra were interpreted with the aid of some calculations. • The spectra showed profiles close to those expected from SiCl{sub 4} and Si(CH{sub 3}){sub 4}. • These results were discussed in conjunction with site-specific fragmentation. - Abstract: A variety of photoelectron and Auger-electron spectra of 1,1,1-trimethyltrichlorodisilane vapor (Cl{sub 3}SiSi(CH{sub 3}){sub 3}) were measured by using monochromatized synchrotron radiation and a hemispherical electron energy analyzer. The measured spectra were interpreted with the aid of some calculations by means of the outer valence Green's function (OVGF) method or the density-functional-theory (DFT) method. Since Cl{sub 3}SiSi(CH{sub 3}){sub 3} consists of -SiCl{sub 3} and -Si(CH{sub 3}){sub 3} moieties, the experimental core-electron binding-energies were compared with those of tetrachlorosilane and tetramethylsilane (SiCl{sub 4} and Si(CH{sub 3}){sub 4}, respectively). This comparison showed that electronic properties of Cl{sub 3}SiSi(CH{sub 3}){sub 3} hold a close correlation with those of SiCl{sub 4} and Si(CH{sub 3}){sub 4}. Si:L{sub 23}VV, Cl:L{sub 23}VV and C:KVV Auger-electron spectra of Cl{sub 3}SiSi(CH{sub 3}){sub 3} also showed profiles close to those expected from the spectra of SiCl{sub 4} and Si(CH{sub 3}){sub 4}. The results obtained here were discussed in conjunction with electronic relaxation leading to site-specific fragmentation.

  12. Synthesis and characterizations of AgSCN nanospheres using AgCl as the precursor

    International Nuclear Information System (INIS)

    Yang Ming; Ma Jing

    2009-01-01

    Nanospheres of AgSCN with an average radius of 30-80 nm have been prepared by a simple reaction between AgCl suspension and KSCN in the presence of gelatin. Gelatin played a decisive role as an inhibitor of the direct attack of SCN - ions to AgCl surfaces and coagulation of the growing AgSCN in producing the spherical AgSCN nanoparticles. The products were characterized by X-ray powder diffraction, transmission electron microscopy and X-ray photoelectron spectra techniques. The electrical conductivity of thin films of as-prepared AgSCN nanoparticles and polyethylene oxide (PEO) at room temperature was measured. The maximum value of electrical conductivity of as-prepared AgSCN-PEO was 1.53 x 10 -5 S cm -1 .

  13. Vývoj kompozitních maltových a cementových směsí

    OpenAIRE

    Hlavinková, Eva

    2014-01-01

    Předkládaná diplomová práce se zabývá návrhem složení a studiem vlastností ternárního pojivého systému na bázi účelového vzniku ettringitu, následně užitého k přípravě samonivelačních podlahových hmot typu potěr a stěrka. U navržených skladeb daných směsí je posléze zaměřena pozornost na optimalizaci dávkování dvou druhů plastifikační přísady s následným posouzením jejich vlivu na technologické vlastnosti těchto hmot. This diploma thesis deals with the design of composition and the study o...

  14. Structure determination of AgPO3 and (AgPO3)0.5(AgI)0.5 glasses by neutron diffraction and small angle neutron scattering

    International Nuclear Information System (INIS)

    Tachez, M.; Mercier, R.; Malugani, J.P.; Chieux, P.

    1987-01-01

    Neutron diffraction and small angle neutron scattering (SANS) were performed on AgPO 3 and (AgPO 3 ) 0.5 (AgI) 0.5 glasses. AgPO 3 glass is made up of long chains of PO 4 tetrahedra joined together by Ag atoms. When silver iodide is added, the radial distribution function shows a large peak at 2.83 A, due to Ag-I interactions. AgI does not modify the network forming unit. The existence of small clusters is confirmed by analysing the coordination number of Ag-I pairs obtained by subtracting the experimental structure function of the AgPO 3 glass from that of the corresponding AgI-doped glasses. A rough estimation of their size is given by SANS experiments. Not all the AgI pairs are involved in AgI cluster units. The compatibility of the results obtained with recent structural investigations by non diffractometric techniques is examined. 23 refs.; 5 figs.; 3 tabs

  15. Radiation hardness of LuAG:Ce and LuAG:Pr scintillator crystals

    CERN Document Server

    Derdzyan, M V; Belsky, A; Dujardin, C; Lecoq, P; Lucchini, M; Ovanesyan, K L; Pauwels, K; Pedrini, C; Petrosyan, A G

    2012-01-01

    Single crystals of LuAG:Ce, LuAG:Pr and un-doped LuAG were grown by the vertical Bridgman method and studied for radiation hardness under gamma-rays with doses in the range 10-10(5) Gy (Co-60). A wide absorption band peaking at around 600 nm springs up in all three types of crystals after the irradiations. The second band peaking at around 375 nm appears in both LuAG:Pr and un-doped LuAG. Compositional variations have been done to reveal the spectral behavior of induced color centers in more detail and to understand their origin. Similarities in behavior of Yb2+ centers in as-grown garnets are found, indicating that radiation induced color centers can be associated with residual trace amounts of Yb present in the raw materials. Un-doped LuAG and LuAG:Ce demonstrate moderate radiation hardness (the induced absorption coefficients being equal to 0.05-0.08 cm(-1) for accumulated doses of 10(3)-10(4) Gy), while LuAG:Pr is less radiation hard. The ways to improve the radiation hardness are discussed.

  16. Thermal expansion properties of Bi-2212 in Ag or an Ag-alloy matrix

    International Nuclear Information System (INIS)

    Tenbrink, J.; Krauth, H.

    1994-01-01

    The thermal expansion properties of polycrystalline Bi 2 Sr 2 Ca 1 Cu 2 O 8+x melt-processed bulk specimens, and Bi 2 Sr 2 Ca 1 Cu 2 O 8+x monocore as well as multifilamentary round wires in Ag or Ag-alloy matrix have been investigated over the temperature range from -150 to 800 degrees C. Although the thermal expansion of Bi 2 Sr 2 Ca 1 Cu 2 O 8+x is distinctly lower compared with Ag, the thermal expansion properties of the Bi 2 Sr 2 Ca 1 Cu 2 O 8+x -Ag or AgNiMg-alloy composite conductors are essentially governed by the matrix material. The thermal expansion of the encountered oxide-dispersion-strengthened AgNiMg alloys is only slightly lower compared with that of pure Ag. Therefore the thermal expansion of all investigated Bi 2 Sr 2 Ca 1 Cu 2 O 8+x -Ag or Ag-alloy composite wires was found to be close to that of pure Ag. The reason for this striking behaviour is shown to be related to a surprisingly low elastic modulus of the polycrystalline Bi-2212 wire cores of the order of 10 to a maximum 40 GPa. (author)

  17. Synthesis of AgI/Bi2MoO6 nano-heterostructure with enhanced visible-light photocatalytic property

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2018-04-01

    Full Text Available A novel nano-heterostructure of AgI/Bi2MoO6 photocatalyst was successfully synthesized via a facile deposition-precipitation method. The samples were systematically characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoemission spectroscopy, UV–Vis absorption spectroscopy, and photoluminescence spectra. While sole Bi2MoO6 or AgI showed poor activity toward photocatalytic rhodamine B degradation, the nano-heterostructure was found with superior performance. The AgI/Bi2MoO6 composite with an optimal content of 20 wt% AgI exhibited the highest photocatalytic degradation rate. Rhodamine B was totally degraded within 75 min visible-light irradiation. Moreover, the hybrid photocatalyst also showed a fairly good stability for several-cycle reuse. This study indicates that the AgI/Bi2MoO6 nano-heterostructure can be used as an effective candidate for photocatalytic degradation of organic pollutants. Keywords: Heterostructure, Photocatalyst, RhB-degradation

  18. BOREAS TGB-1/TGB-3 CH4 Chamber Flux Data over the NSA Fen

    Science.gov (United States)

    Bubier, Jill L.; Moore, Tim R.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-3 team collected methane (CH4) chamber flux measurements at the NSA fen site during May-September 1994 and June-October 1996. Gas samples were extracted approximately every 7 days from chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  19. Ultraviolet absorption spectra and kinetics of CH3S and CH2SH radicals

    DEFF Research Database (Denmark)

    Anastasi, C.; Broomfield, M.; Nielsen, O.J.

    1991-01-01

    The ultraviolet absorption spectra of CH3S and CH2SH radicals have been measured between 215 and 380 nm using the pulse-radiolysis/kinetic-absorption method. One absorption band between 250 and 300 nm and one around 215 nm have been tentatively assigned to the CH2SH and CH3S radicals, respectively....... This spectrum has been used to measure the self-reaction rates of these radicals. Rate constants of 4 x 10(-11) and 7 x 10(-11) cm3 molecule-1 s-1 have been measured at 298 K for CH3S and CH2SH recombination, respectively. The possible reaction pathways are discussed....

  20. Effect of Different CH3NH3PbI3 Morphologies on Photovoltaic Properties of Perovskite Solar Cells

    Science.gov (United States)

    Chen, Lung-Chien; Lee, Kuan-Lin; Wu, Wen-Ti; Hsu, Chien-Feng; Tseng, Zong-Liang; Sun, Xiao Hong; Kao, Yu-Ting

    2018-05-01

    In this study, the perovskite layers were prepared by two-step wet process with different CH3NH3I (MAI) concentrations. The cell structure was glass/FTO/TiO2-mesoporous/CH3NH3PbI3 (MAPbI3)/spiro-OMeTAD/Ag. The MAPbI3 perovskite films were prepared using high and low MAI concentrations in a two-step process. The perovskite films were optimized at different spin coating speed and different annealing temperatures to enhance the power conversion efficiency (PCE) of perovskite solar cells. The PCE of the resulting device based on the different perovskite morphologies was discussed. The PCE of the best cell was up to 17.42%, open circuit voltage of 0.97 V, short current density of 24.06 mA/cm2, and fill factor of 0.747.

  1. Sultan - forced flow, high field test facility

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1981-01-01

    Three European laboratories: CNEN (Frascati, I) ECN (Petten, NL) and SIN (Villigen, CH) decided to coordinate their development efforts and to install a common high field forced flow test facility at Villigen Switzerland. The test facility SULTAN (Supraleiter Testanlage) is presently under construction. As a first step, an 8T/1m bore solenoid with cryogenic periphery will be ready in 1981. The cryogenic system, data acquisition system and power supplies which are contributed by SIN are described. Experimental feasibilities, including cooling, and instrumentation are reviewed. Progress of components and facility construction is described. Planned extension of the background field up to 12T by insert coils is outlined. 5 refs

  2. Social-demographic profile and dose evaluation of the radiopharmaceutical facility workers

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, Matias P.; Carneiro, Janete C. Gaburo; Sordi, Gian Maria A.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: msanches@ipen.br

    2009-07-01

    The main aims of this work are to identify the social-demographic profile of the workers based on stratification variables such as gender, age, and tasks performed by the workers, and to evaluate the annual collective doses of workers with potential risk of ionizing radiation exposure at the workplace during the years 2004 to 2008. In this context, the knowledge of the workforce composition in the facility responsible for the radioisotope production and its distribution was used. The individual monitoring programme has been carried out by individual dosimeters, TLDs, and internal contamination monitoring (in vivo method). The reported doses, in the period studied, suggest that the external exposure was the main source of occupational exposure in radioisotope production and distribution areas. The internal exposure was not included in the doses estimated, because it was negligible. This study has an important exploratory character, in order to analyze possible correlations related to adverse health effects, aiming to provide directions for occupational epidemiology research. (author)

  3. Social-demographic profile and dose evaluation of the radiopharmaceutical facility workers

    International Nuclear Information System (INIS)

    Sanches, Matias P.; Carneiro, Janete C. Gaburo; Sordi, Gian Maria A.A.

    2009-01-01

    The main aims of this work are to identify the social-demographic profile of the workers based on stratification variables such as gender, age, and tasks performed by the workers, and to evaluate the annual collective doses of workers with potential risk of ionizing radiation exposure at the workplace during the years 2004 to 2008. In this context, the knowledge of the workforce composition in the facility responsible for the radioisotope production and its distribution was used. The individual monitoring programme has been carried out by individual dosimeters, TLDs, and internal contamination monitoring (in vivo method). The reported doses, in the period studied, suggest that the external exposure was the main source of occupational exposure in radioisotope production and distribution areas. The internal exposure was not included in the doses estimated, because it was negligible. This study has an important exploratory character, in order to analyze possible correlations related to adverse health effects, aiming to provide directions for occupational epidemiology research. (author)

  4. Ultrafine Ag/MnO{sub x} nanowire-constructed hair-like nanoarchitecture: In situ synthesis, formation mechanism and its supercapacitive property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yonghe; Wang, Zhenyu; Zhang, Yuefei, E-mail: yfzhang@bjut.edu.cn

    2015-09-25

    Graphical abstract: In this work, novel hair-like (HL) nanoarchitectures constructed by ultrafine MnO{sub x} nanowires (∼7 nm) entrapped with Ag nanoparticle were first synthesized by facile in situ reaction between Ag nanowires and KMnO{sub 4}, and a following hydrothermal method. The as-prepared HL Ag/MnO{sub x} nanocomposites as electrode delivered a high specific capacitance and good cycle stability. - Highlights: • Ultrafine MnO{sub x} nanowires with Ag nanoparticle dispersed on were in situ prepared. • Kirkendall effect and Ostwald ripening mechanism ascribed to developed morphology. • Desirable specific capacitance and cyclability made it candidate for supercapacitors. - Abstract: Hair-like (HL) nanoarchitectures constructed by ultrafine MnO{sub x} nanowires (∼7 nm) with ultrafine Ag nanoparticles anchored on were synthesized by in situ facile reaction between silver (Ag) nanowires and potassium permanganate (KMnO{sub 4}), and followed by a following hydrothermal method. Based on a serious of time-dependent experiments, an orderly merged Kirkendall effect and dissolution-recrystallization (Ostwald ripening) mechanism were proposed for the formation of this novel morphology. The as-prepared HL Ag/MnO{sub x} nanocomposites as electrode exhibited a high specific capacitance (526 Fg{sup −1} at scan rate of 5 mV s{sup −1} and 450 Fg{sup −1} at current density of 0.1 Ag{sup −1}), good rate capability (ca. 45.5% retention with reference to 205 Fg{sup −1} at 50 times higher current density of 5 Ag{sup −1}) and desirable cycle stability (ranging from initial of 237 Fg{sup −1} to 185 Fg{sup −1} after 800 cycles and still maintaining 87% retention compared to 800th cycle after another 2800 cycles at current density of 2 Ag{sup −1}). Such desirable performance could be attributed to HL Ag/MnO{sub x} nanocomposites core (tubular nanosheets) with uniform dispersion of the ultrafine Ag nanoparticals provides a direct pathway for electron

  5. Conformational and spectroscopic study of xanthogen ethyl formates, ROC(S)SC(O)OCH2CH3. Isolation of CH3CH2OC(O)SH

    Science.gov (United States)

    Juncal, Luciana C.; Cozzarín, Melina V.; Romano, Rosana M.

    2015-03-01

    ROC(S)SC(O)OCH2CH3, with R = CH3sbnd , (CH3)2CHsbnd and CH3(CH2)2sbnd , were obtained through the reaction between potassium xanthate salts, ROC(S)SK, and ethyl chloroformate, ClC(O)OCH2CH3. The liquid compounds were identified and characterized by 1H and 13C NMR and mass spectrometry. The conformations adopted by the molecules were studied by DFT methods. 6 conformers were theoretically predicted for R = CH3sbnd and (CH3)2CHsbnd , while the conformational flexibility of the n-propyl substituent increases the total number of feasible rotamers to 21. For the three molecules, the conformers can be associated in 3 groups, being the most stable the AS forms - the Cdbnd S double bond anti (A) with respect to the Csbnd S single bond and the Ssbnd C single bond syn (S) with respect to the Cdbnd O double bond - followed by AA and SS conformers. The vibrational spectra were interpreted in terms of the predicted conformational equilibrium, presenting the ν(Cdbnd O) spectral region signals corresponding to the three groups of conformers. A moderated pre-resonance Raman enhancement of the ν(Cdbnd S) vibrational mode of CH3(CH2)2OC(S)SC(O)OCH2CH3 was detected, when the excitation radiation approaches the energy of a n → π∗ electronic transition associated with the Cdbnd S chromophore. UV-visible spectra in different solvents were measured and interpreted in terms of TD-DFT calculations. The unknown molecule CH3CH2OC(O)SH was isolated by the UV-visible photolysis of CH3OC(S)SC(O)OCH2CH3 isolated in Ar matrix, and also obtained as a side-product of the reaction between potassium xanthate salts, ROC(S)SK, and ethyl chloroformate, ClC(O)OCH2CH3.

  6. Hydrothermal Method Using DMF as a Reducing Agent for the Fabrication of PdAg Nanochain Catalysts towards Ethanol Electrooxidation

    Directory of Open Access Journals (Sweden)

    Yue Feng

    2016-07-01

    Full Text Available In this article, we developed a facile one-step hydrothermal method using dimethyl formamide (DMF as a reducing agent for the fabrication of PdAg catalyst. The scanning electron microscope (SEM and transmission electron microscopy (TEM images have shown that the as-synthesized PdAg catalyst had a nanochain structure. The energy-dispersive X-ray analyzer (EDX spectrum presented the actual molar ratio of Pd and Ag in the PdAg alloy. Traditional electrochemical measurements, such as cyclic voltammetry (CV, chronoamperometry (CA and electrochemical impedance spectrometry (EIS, were performed using a CHI 760D electrochemical analyzer to characterize the electrochemical properties of the as-synthesized catalyst. The results have shown that the PdAg catalyst with a nanochain structure displays higher catalytic activity and stability than pure Pd and commercial Pd/C catalysts.

  7. Ag-Decorated Fe3O4@SiO2 Nanorods: Synthesis, Characterization, and Applications in Degradation of Organic Dyes

    Directory of Open Access Journals (Sweden)

    Chao Li

    2016-01-01

    Full Text Available Well-dispersed Ag nanoparticles (NPs are successfully decorated on Fe3O4@SiO2 nanorods (NRs via a facile step-by-step strategy. This method involves coating α-Fe2O3 NRs with uniform silica layer, reduction in 10% H2/Ar atmosphere at 450°C to obtain Fe3O4@SiO2 NRs, and then depositing Ag NPs on the surface of Fe3O4@SiO2 NRs through a sonochemical step. It was found that the as-prepared Ag-decorated magnetic Fe3O4@SiO2 NRs (Ag-MNRs exhibited a higher catalytic efficiency than bare Ag NPs in the degradation of organic dye and could be easily recovered by convenient magnetic separation, which show great application potential for environmental protection applications.

  8. Ab Initio Chemical Kinetics for the CH3 + O((3)P) Reaction and Related Isomerization-Decomposition of CH3O and CH2OH Radicals.

    Science.gov (United States)

    Xu, Z F; Raghunath, P; Lin, M C

    2015-07-16

    The kinetics and mechanism of the CH3 + O reaction and related isomerization-decomposition of CH3O and CH2OH radicals have been studied by ab initio molecular orbital theory based on the CCSD(T)/aug-cc-pVTZ//CCSD/aug-cc-pVTZ, CCSD/aug-cc-pVDZ, and G2M//B3LYP/6-311+G(3df,2p) levels of theory. The predicted potential energy surface of the CH3 + O reaction shows that the CHO + H2 products can be directly generated from CH3O by the TS3 → LM1 → TS7 → LM2 → TS4 path, in which both LM1 and LM2 are very loose and TS7 is roaming-like. The result for the CH2O + H reaction shows that there are three low-energy barrier processes including CH2O + H → CHO + H2 via H-abstraction and CH2O + H → CH2OH and CH2O + H → CH3O by addition reactions. The predicted enthalpies of formation of the CH2OH and CH3O radicals at 0 K are in good agreement with available experimental data. Furthermore, the rate constants for the forward and some key reverse reactions have been predicted at 200-3000 K under various pressures. Based on the new reaction pathway for CH3 + O, the rate constants for the CH2O + H and CHO + H2 reactions were predicted with the microcanonical variational transition-state/Rice-Ramsperger-Kassel-Marcus (VTST/RRKM) theory. The predicted total and individual product branching ratios (i.e., CO versus CH2O) are in good agreement with experimental data. The rate constant for the hydrogen abstraction reaction of CH2O + H has been calculated by the canonical variational transition-state theory with quantum tunneling and small-curvature corrections to be k(CH2O + H → CHO + H2) = 2.28 × 10(-19) T(2.65) exp(-766.5/T) cm(3) molecule(-1) s(-1) for the 200-3000 K temperature range. The rate constants for the addition giving CH3O and CH2OH and the decomposition of the two radicals have been calculated by the microcanonical RRKM theory with the time-dependent master equation solution of the multiple quantum well system in the 200-3000 K temperature range at 1 Torr to

  9. Synthesis of Gold Nanoparticle-Embedded Silver Cubic Mesh Nanostructures Using AgCl Nanocubes for Plasmonic Photocatalysis.

    Science.gov (United States)

    Joo, Jang Ho; Kim, Byung-Ho; Lee, Jae-Seung

    2017-11-01

    A novel room-temperature aqueous synthesis for gold nanoparticle-embedded silver cubic mesh nanostructures using AgCl templates via a template-assisted coreduction method is developed. The cubic AgCl templates are coreduced in the presence of AuCl 4 - and Ag + , resulting in the reduction of AuCl 4 - into gold nanoparticles on the outer region of AgCl templates, followed by the reduction of AgCl and Ag + into silver cubic mesh nanostructures. Removal of the template clearly demonstrates the delicately designed silver mesh nanostructures embedded with gold nanoparticles. The synthetic mechanism, structural properties, and surface functionalization are spectroscopically investigated. The plasmonic photocatalysis of the cubic mesh nanostructures for the degradation of organic pollutants and removal of highly toxic metal ions is investigated; the photocatalytic activity of the cubic mesh nanostructures is superior to those of conventional TiO 2 catalysts and they are catalytically functional even in natural water, owing to their high surface area and excellent chemical stability. The synthetic development presented in this study can be exploited for the highly elaborate, yet, facile design of nanomaterials with outstanding properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Facility Management's Role in Organizational Sustainability

    Science.gov (United States)

    Adams, Gregory K.

    2013-01-01

    Facility managers have questions about sustainability. How do an organization's physical facilities--its built environment--and the management of them, influence the sustainability of the organization or institution as a whole? How important is Facility Management (FM) to the overall sustainability profile of an organization? Facility managers…

  11. Silver-promoted catalyst for removal of nitrogen oxides from emission of diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, K.; Tsujimura, K. [New ACE Institute Co., Ltd., Ibaraki (Japan); Shinoda, K.; Kato, T. [Mitsui Mining and Smelting Co., Ltd. Ageo, Saitama (Japan)

    1996-02-29

    Removal of NO{sub x} from diesel exhaust gas using C{sub 3}H{sub 6}, CH{sub 3}OH or (CH{sub 3}){sub 2}O as a reducing agent was investigated on Ag/Al{sub 2}O{sub 3}, Ag/ZSM-5 and Ag/mordenite catalysts over a wide range of temperatures. Among them, (CH{sub 3}){sub 2}O was found to be suitable for the elimination of NO{sub x} over Ag/mordenite catalyst at the relatively low temperature of 200C to 350C. CH{sub 3}OH was suitable over Ag/Al{sub 2}O{sub 3} catalyst from 350C to 450C while the Ag/mordenite catalyst using (CH{sub 3}){sub 2}O was superior to the Ag/Al{sub 2}O{sub 3} catalyst using CH{sub 3}OH with respect to the temperature range. The Ag/ZSM-5 catalyst had a poor elimination ability when compared with Ag/Al{sub 2}O{sub 3} and Ag/mordenite catalysts. The effects of Ag on mordenite and Al{sub 2}O{sub 3} were also investigated. It was found that Ag improved the removal of NO{sub x} in the higher range of temperatures with mordenite, while Ag improved the removal of NO{sub x} in the lower temperature range with Al{sub 2}O{sub 3}. It was concluded that Ag/mordenite catalyst using (CH{sub 3}){sub 2}O as a reducing agent has a good ability for NO{sub x} removal over a wide range of temperatures

  12. Multiwire secondary-emission monitor and the emittance measurement of the AGS beam

    International Nuclear Information System (INIS)

    Weng, W.T.; Chiang, I.H.; Smith, G.A.; Soukas, A.

    1983-01-01

    For CBA injection the transverse emittances and the Twiss parameters of the AGS beam have to be well defined to minimize the phase space dilution in CBA. Althoug there exists a profile monitor device at U165, there are three reasons why construction of multiwire profile monitor system at three locations from U500 to U168 is required: (1) the dispersion function is not zero at U165 which makes it harder to interpret the measurement; (2) the original single wire device takes five minutes to traverse the whole beam; (3) a three station multiwire system can provide the profile information at all locations in one pulse which makes on-line analysis possible. In summary, a set of three stations of Multiwire Secondary Emission Monitor (MSEM) has been built and installed in the fast external beam line for the measurement of beam profiles. Each unit consists of two planes each with 30 nickel wires having a diameter of 5 mils. The signal is linear within the range of 10 10 to 10 13 incident protons on the wire and the resolution of the signal is well within a few percent. A least-square fitting routine has been used to extract the emittance and phase space parameters of the beam. The emittances obtained at various intensities will help us to understand the AGS acceleration process and to choose the optimal injection scheme for CBA

  13. Medium-range correlation of Ag ions in superionic melts of Ag{sub 2}Se and AgI by reverse Monte Carlo structural modelling-connectivity and void distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Shuta; Ohno, Satoru [Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Ueno, Hiroki; Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Ohara, Koji; Kohara, Shinji [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kawakita, Yukinobu [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2011-06-15

    High-energy x-ray diffraction measurements on molten Ag{sub 2}Se were performed. Partial structure factors and radial distribution functions were deduced by reverse Monte Carlo (RMC) structural modelling on the basis of our new x-ray and earlier published neutron diffraction data. These partial functions were compared with those of molten AgI. Both AgI and Ag{sub 2}Se have a superionic solid phase prior to melting. New RMC structural modelling for molten AgI was performed to revise our previous model with a bond-angle restriction to reduce the number of unphysical Ag triangles. The refined model of molten AgI revealed that isolated unbranched chains formed by Ag ions are the cause of the medium-range order of Ag. In contrast with molten AgI, molten Ag{sub 2}Se has 'cage-like' structures with approximately seven Ag ions surrounding a Se ion. Connectivity analysis revealed that most of the Ag ions in molten Ag{sub 2}Se are located within 2.9 A of each other and only small voids are found, which is in contrast to the wide distribution of Ag-void radii in molten AgI. It is conjectured that the collective motion of Ag ions through small voids is required to realize the well-known fast diffusion of Ag ions in molten Ag{sub 2}Se, which is comparable to that in molten AgI.

  14. Ag-related alloy formation and magnetic phases for Ag/Co/Ir(111) ultrathin films

    International Nuclear Information System (INIS)

    Tsay, Jyh-Shen; Tsai, Du-Cheng; Chang, Cheng-Hsun-Tony; Chen, Wei-Hsiang

    2013-01-01

    The Kerr intensity versus the Ag thickness for Ag grown on the top of Co/Ir(111) exhibits an oscillating behavior with a period around one monolayer which should be due to the morphological change related electronic structure differences of the Ag layer. From systematical investigations of Ag/Co/Ir(111) films with the Co layer thinner than 4 monolayers at temperatures below 900 K, a magnetic phase diagram has been established. As the annealing temperature increases for Ag/Co/Ir(111) films, enhancements of the coercive force occur in both the polar and longitudinal configurations due to the intermixing of Ag and Co at the interface and the formation of Co–Ir alloy. The disappearance of ferromagnetism is mainly attributed to the reduced atomic percent of cobalt in Co–Ir alloy, the lowered Curie temperature by a reduction of the thickness of magnetic layers, and the intermixing of Ag and Co at the Ag/Co interface. - Highlights: • An oscillating behavior occurs due to the morphological change for Ag on Co/Ir(111). • A magnetic phase diagram has been established for Ag/Co/Ir(111). • Some Ag atoms intermix with the underlying Co layer at high temperatures. • Polar coercive force is enhanced due to the compositional change

  15. Rate Constants for the Reactions of OH with CH(sub 3)Cl, CH(sub 2) C1(sub 2), CHC1(sub 3)and CH(sub 3)Br

    Science.gov (United States)

    Hsu, H-J.; DeMore, W.

    1994-01-01

    Rate constants for the reactions of OH with CH3C1, CH2Cl2, CHCl3 and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2)and for CH2Cl2, HFC-161 (CH3CH2F).

  16. Experimental and theoretical investigation on photocatalytic activities of 1D Ag/Ag2WO4 nanostructures

    Science.gov (United States)

    Liu, Danqing; Huang, Weicheng; Li, Long; Liu, Lu; Sun, Xiaojun; Liu, Bo; Yang, Bin; Guo, Chongshen

    2017-09-01

    Ag2WO4 is a significant photocatalyst that responds to UV light irradiation only, which greatly hinders it for further practical application for solar light. To address this problem, herein, 1D plasmonic Ag/Ag2WO4 photocatalysts have been fabricated by a successive process including hydrothermal synthesis to obtain Ag2WO4 followed by an additional in situ chemical-reduction process for Ag decoration. Then, the structural features, optical properties, and electronic structures of Ag2WO4 and Ag/Ag2WO4 nanowires were systematically investigated via a combination of theoretical calculations and experimental evidence. The plasmon-enhanced Ag/Ag2WO4 nanowires exhibited higher visible-light-driven photocatalytic activity, which performed a desired photodestruction ratio of 91.2% on methylene blue within 60 min and good stability in five cycles. The Ag decoration greatly facilitates visible-light harvesting and thus promotes photogenerated radical oxidation to dye, which is evidenced by the higher hydroxyl radical level of Ag/Ag2WO4 detected in the ESR test during the photocatalytic process. The theoretical calculation based on density functional theory indicates that Ag nanoparticles formed on the surface of Ag2WO4 could narrow the band gap of Ag2WO4. In addition, the surface plasmon resonance absorption effect and fast charge transfer effect in the metal-semiconductor system contribute to the photocatalytic performance of Ag/Ag2WO4.

  17. Reducing strength prevailing at root surface of plants promotes reduction of Ag+ and generation of Ag(0/Ag2O nanoparticles exogenously in aqueous phase.

    Directory of Open Access Journals (Sweden)

    Peddisetty Pardha-Saradhi

    Full Text Available Potential of root system of plants from wide range of families to effectively reduce membrane impermeable ferricyanide to ferrocyanide and blue coloured 2,6-dichlorophenol indophenol (DCPIP to colourless DCPIPH2 both under non-sterile and sterile conditions, revealed prevalence of immense reducing strength at root surface. As generation of silver nanoparticles (NPs from Ag+ involves reduction, present investigations were carried to evaluate if reducing strength prevailing at surface of root system can be exploited for reduction of Ag+ and exogenous generation of silver-NPs. Root system of intact plants of 16 species from 11 diverse families of angiosperms turned clear colorless AgNO3 solutions, turbid brown. Absorption spectra of these turbid brown solutions showed silver-NPs specific surface plasmon resonance peak. Transmission electron microscope coupled with energy dispersive X-ray confirmed the presence of distinct NPs in the range of 5-50 nm containing Ag. Selected area electron diffraction and powder X-ray diffraction patterns of the silver NPs showed Bragg reflections, characteristic of crystalline face-centered cubic structure of Ag(0 and cubic structure of Ag2O. Root system of intact plants raised under sterile conditions also generated Ag(0/Ag2O-NPs under strict sterile conditions in a manner similar to that recorded under non-sterile conditions. This revealed the inbuilt potential of root system to generate Ag(0/Ag2O-NPs independent of any microorganism. Roots of intact plants reduced triphenyltetrazolium to triphenylformazon and impermeable ferricyanide to ferrocyanide, suggesting involvement of plasma membrane bound dehydrogenases in reduction of Ag+ and formation of Ag(0/Ag2O-NPs. Root enzyme extract reduced triphenyltetrazolium to triphenylformazon and Ag+ to Ag(0 in presence of NADH, clearly establishing potential of dehydrogenases to reduce Ag+ to Ag(0, which generate Ag(0/Ag2O-NPs. Findings presented in this manuscript put

  18. Synchrotron-based valence shell photoionization of CH radical

    Energy Technology Data Exchange (ETDEWEB)

    Gans, B., E-mail: berenger.gans@u-psud.fr, E-mail: christian.alcaraz@u-psud.fr; Falvo, C. [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Holzmeier, F.; Röder, A. [Institut of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg (Germany); Krüger, J.; Garcia, G. A. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP 48, F-91192 Gif sur Yvette Cedex (France); Lopes, A.; Alcaraz, C., E-mail: berenger.gans@u-psud.fr, E-mail: christian.alcaraz@u-psud.fr [Laboratoire de Chimie Physique, UMR 8000 CNRS—Univ. Paris-Sud, Univ. Paris-Saclay, Bât. 350, Centre Universitaire Paris-Sud, F-91405 Orsay Cedex (France); Fittschen, C. [Université Lille, CNRS, UMR 8522–PC2A–Physicochimie des Processus de Combustion et de l’Atmosphère, F-59000 Lille (France); Loison, J.-C. [Institut des Sciences Moléculaires, UMR 5255 CNRS—Université de Bordeaux, Bât. A12, 351 cours de la Libération, F-33405 Talence Cedex (France)

    2016-05-28

    We report the first experimental observations of X{sup +} {sup 1}Σ{sup +}←X {sup 2}Π and a{sup +} {sup 3}Π←X {sup 2}Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg states of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.

  19. Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes MdSAUR37, MdPP2CH and MdALMTII.

    Science.gov (United States)

    Jia, Dongjie; Shen, Fei; Wang, Yi; Wu, Ting; Xu, Xuefeng; Zhang, Xinzhong; Han, Zhenhai

    2018-05-11

    Many efforts have been made to map quantitative trait loci (QTLs) to facilitate practical marker-assisted selection (MAS) in plants. In the present study, we identified four genome-wide major QTLs responsible for apple fruit acidity by MapQTL and BSA-seq analyses using two independent pedigree-based populations. Candidate genes were screened in major QTL regions, and three functional gene markers, including a non-synonymous A/G single nucleotide polymorphism (SNP) in the coding region of MdPP2CH, a 36-bp insertion in the promoter of MdSAUR37, and a previously reported SNP in MdALMTII, were validated to influence the malate content of apple fruits. In addition, MdPP2CH inactivated three vacuolar H + -ATPases (MdVHA-A3, MdVHA-B2 and MdVHA-D2) and one aluminium-activated malate transporter (MdALMTII) via dephosphorylation and negatively influenced fruit malate accumulation. The dephosphotase activity of MdPP2CH was suppressed by MdSAUR37, which implied a higher hierarchy of genetic interaction. Therefore, the MdSAUR37/MdPP2CH/MdALMTII chain cascaded hierarchical epistatic genetic effects to precisely determine apple fruit malate content. An A/G SNP (-1010) on MdMYB44 promoter region from a major QTL (qtl08.1) was closely associated with fruit malate content. The predicted phenotype values (PPVs) were estimated using the tentative genotype values of the gene markers, and the PPVs were significantly correlated with the observed phenotype values. Our findings provide an insight into plant genome-based selection in apples and will aid in conducting research to understand the physiological fundamentals of quantitative genetics. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Waste Receiving and Processing Facility Module 1: Volume 1, Preliminary Design report

    International Nuclear Information System (INIS)

    1992-03-01

    The Preliminary Design Report (Title 1) for the Waste Receiving and Processing (WRAP) Module 1 provides a comprehensive narrative description of the proposed facility and process systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title 1 design. The primary mission of the WRAP 1 Facility is to characterize and certify contact-handled (CH) waste in 55-gallon drums for disposal. Its secondary function is to certify CH waste in Standard Waste Boxes (SWBs) for disposal. The preferred plan consist of retrieving the waste and repackaging as necessary in the Waste Receiving and Processing (WRAP) facility to certify TRU waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. WIPP is a research and development facility designed to demonstrate the safe and environmentally acceptable disposal of TRU waste from National Defense programs. Retrieved waste found to be Low-Level Waste (LLW) after examination in the WRAP facility will be disposed of on the Hanford site in the low-level waste burial ground. The Hanford Site TRU waste will be shipped to the WIPP for disposal between 1999 and 2013

  1. Glass formation in AgI:Ag2O:V2O5 and AgI:Ag2O:(V2O5+B2O3) systems

    International Nuclear Information System (INIS)

    Kaushik, R.; Hariharan, K.

    1988-01-01

    Transport properties of glasses in the system AgI:Ag 2 O: V 2 O 5 and AgI:Ag 2 O: (V 2 O 5 +B 2 O 3 ) have ben investigated. It was found that, at high AgI concentrations, the addition of another glass former (B 2 O 3 ) did not improve the conduction characteristics of the pure vanadate glasses, the best conducting composition of which had ambient temperature, ionic conductivity comparable to that of conventional liquid electrolytes. The highest conducting composition was used as an electrolyte in the study of silver solid state cells. The discharge characteristics of different cells fabricated with the glassy electrolyte, have been compared with those having the best conducting polycrystalline ompositions as electrolytes. 11 refs.; 4 figs.; 1 table

  2. Partial structures in molten AgBr

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Hiroki [Department of Condensed Matter Chemistry and Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan)], E-mail: ueno@gemini.rc.kyushu-u.ac.jp; Tahara, Shuta [Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Science, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Kawakita, Yukinobu [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Kohara, Shinji [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan)

    2009-02-21

    The structure of molten AgBr has been studied by means of neutron and X-ray diffractions with the aid of structural modeling. It is confirmed that the Ag-Ag correlation has a small but well-defined first peak in the partial pair distribution function whose tail penetrates into the Ag-Br nearest neighbor distribution. This feature on the Ag-Ag correlation is intermediate between that of molten AgCl (non-superionic melt) and that of molten AgI (superionic melt). The analysis of Br-Ag-Br bond angle reveals that molten AgBr preserves a rocksalt type local ordering in the solid phase, suggesting that molten AgBr is clarified as non-superionic melt like molten AgCl.

  3. BOREAS TGB-1 NSA CH4 and CO2 Chamber Flux Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Crill, Patrick; Varner, Ruth K.

    2000-01-01

    The BOREAS TGB-1 team made methane (CH4) and carbon dioxide (CO2) dark chamber flux measurements at the NSA-OJP, NSA-OBS, NSA-BP, and NSA-YJP sites from 16-May-1994 through 13-Sep-1994. Gas samples were extracted approximately every 7 days from dark chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  4. Reduced graphene oxide and Ag wrapped TiO{sub 2} photocatalyst for enhanced visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Leong, Kah Hon; Sim, Lan Ching; Jang, Min; Ibrahim, Shaliza [Environmental Engineering Laboratory, Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Bahnemann, Detlef [Institut fuer Technische Chemie, Leibniz Universität Hannover, Callinstrasse 3, D-30167 Hannover (Germany); Saravanan, Pichiah, E-mail: pichiahsaravanan@gmail.com [Environmental Engineering Laboratory, Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nanotechnology & Catalysis Research Center (NANOCAT), University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-10-01

    A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO{sub 2} nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO{sub 2} were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag well degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%.

  5. Ag nanocrystals anchored CeO{sub 2}/graphene nanocomposite for enhanced supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Vanitha, M.; Keerthi [Department of Chemical Engineering, A.C Tech, Anna University, Chennai 600025 (India); Cao, P. [Department of Chemical and Materials Engineering, The University of Auckland, PB 92019, Auckland 1142 (New Zealand); Balasubramanian, N., E-mail: nbsbala@annauniv.edu [Department of Chemical Engineering, A.C Tech, Anna University, Chennai 600025 (India)

    2015-09-25

    Highlights: • Quasi spherical Ag and CeO{sub 2} nanoparticles were decorated on rGO matrix. • The Ag/CeO{sub 2}/rGO nanocomposite exhibits specific capacitance of 710 F g{sup −1}. • Ag plays an imperative role in improving the electrochemical performance. - Abstract: A novel ternary Ag decorated CeO{sub 2}/reduced graphene oxide (rGO) nanocomposite was synthesized by a facile hydrothermal method with polyvinylpyrrolidone (PVP) as surface directing agent and was designed as an electrode material for supercapacitors application. The structure and morphology of the nanocomposites were analyzed by X-ray diffraction analysis (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The synergistic effect between the CeO{sub 2} nanoparticles wrapped rGO matrix with Ag nanoparticles gives rise to a nanostructure, empowering the material with enhanced electrochemical performance. The electrochemical characterization was performed using cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopic studies in 3 M KOH aqueous electrolyte. The nanocomposite electrode materials possess a high specific capacitance of 710.42 F g{sup −1} at an applied current density of 0.2 A g{sup −1}, which was nearly two fold higher than CeO{sub 2}/rGO nanocomposite. This work endows a new route for building Ag/CeO{sub 2}/rGO ternary nanocomposite which will have some impact on the exploitation of novel ternary electrode materials for supercapacitor applications.

  6. AGS experiments -- 1995, 1996 and 1997

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

  7. AGS experiments - 1995, 1996 and 1997

    International Nuclear Information System (INIS)

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments

  8. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms

    Science.gov (United States)

    Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.

    2015-09-01

    We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDF matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.

  9. Bimolecular reaction of CH3 + CO in solid p-H2: Infrared absorption of acetyl radical (CH3CO) and CH3-CO complex

    Science.gov (United States)

    Das, Prasanta; Lee, Yuan-Pern

    2014-06-01

    We have recorded infrared spectra of acetyl radical (CH3CO) and CH3-CO complex in solid para-hydrogen (p-H2). Upon irradiation at 248 nm of CH3C(O)Cl/p-H2 matrices, CH3CO was identified as the major product; characteristic intense IR absorption features at 2990.3 (ν9), 2989.1 (ν1), 2915.6 (ν2), 1880.5 (ν3), 1419.9 (ν10), 1323.2 (ν5), 836.6 (ν7), and 468.1 (ν8) cm-1 were observed. When CD3C(O)Cl was used, lines of CD3CO at 2246.2 (ν9), 2244.0 (ν1), 1866.1 (ν3), 1046.7 (ν5), 1029.7 (ν4), 1027.5 (ν10), 889.1 (ν6), and 723.8 (ν7) cm-1 appeared. Previous studies characterized only three vibrational modes of CH3CO and one mode of CD3CO in solid Ar. In contrast, upon photolysis of a CH3I/CO/p-H2 matrix with light at 248 nm and subsequent annealing at 5.1 K before re-cooling to 3.2 K, the CH3-CO complex was observed with characteristic IR features at 3165.7, 3164.5, 2150.1, 1397.6, 1396.4, and 613.0 cm-1. The assignments are based on photolytic behavior, observed deuterium isotopic shifts, and a comparison of observed vibrational wavenumbers and relative IR intensities with those predicted with quantum-chemical calculations. This work clearly indicates that CH3CO can be readily produced from photolysis of CH3C(O)Cl because of the diminished cage effect in solid p-H2 but not from the reaction of CH3 + CO because of the reaction barrier. Even though CH3 has nascent kinetic energy greater than 87 kJ mol-1 and internal energy ˜42 kJ mol-1 upon photodissociation of CH3I at 248 nm, its energy was rapidly quenched so that it was unable to overcome the barrier height of ˜27 kJ mol-1 for the formation of CH3CO from the CH3 + CO reaction; a barrierless channel for formation of a CH3-CO complex was observed instead. This rapid quenching poses a limitation in production of free radicals via bimolecular reactions in p-H2.

  10. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers

    KAUST Repository

    Pang, Maolin; Hu, Jiangyong; Zeng, Huachun

    2010-01-01

    of this highly asymmetric dipolar composite, photocatalytic inactivation of Escherichia coli K-12 in the presence of the as-prepared Ag 2S/Ag heterodimers has been carried out under UV irradiation. The added Ag2S/Ag heterodimers show good chemical stability under

  11. 108mAg and 110mAg in crassostrea gigas

    International Nuclear Information System (INIS)

    Ishikawa, Y.; Sato, N.; Nakamura, E.; Sekine, T.; Yoshihara, K.

    1992-01-01

    Accumulation of radiosilver 108m Ag and 110m Ag in oysters (Crassostrea gigas) and their behavior in marine environments has been studied in the northeast Pacific coast in Japan. Enrichment of radiosilver in oysters depends on topographical conditions; significant bioaccumulation occurred in open bays, while it was hardly observed in bays with narrow shaped entrances. From these observations difference of the behavior of radiosilver between open and nearly closed bays is suggested. 110m Ag in oysters decayed with an effective half-life of about 150 days for both the Chinese nuclear weapon test and the Chernobyl accident. In contrast to radiosilver, the fission product nuclide 137 Cs was almost independent of topographical conditions, and its concentration was constant. 110m Ag bioaccumulation in oysters after the Chernobyl accident in 1986 was found in both open and nearly closed bays, the lattershowing much lower concentration of radiosilver than the former. Specific activity of 108m Ag in oysters was determined in bays open to the Pacific Oceans. (author) 13 refs.; 4 figs.; 3 tabs

  12. Microstructure and tribological properties of NbN-Ag composite films by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hongbo; Xu, Junhua, E-mail: jhxu@just.edu.cn

    2015-11-15

    Highlights: • NbN-Ag films were deposited by reactive magnetron sputtering. • The fcc-NbN, hcp-NbN and fcc-Ag coexisted in NbN-Ag films. • The incorporation of Ag into NbN matrix led to the decrease of hardness. • The films (9.2–13.5 at.% Ag) were found to be optimized for wear resistance tools. - Abstract: Recently, the chameleon thin films were developed with the purpose of adjusting their chemistry at self-mating interfaces in response to environmental changes at a wide temperature range. However, very few studies have focused on what state the lubricious noble metal exists in the films and the tribological properties at room temperature (RT). Composite NbN-Ag films with various Ag content (Ag/(Nb + Ag)) were deposited using reactive magnetron sputtering to investigate the crystal structure, mechanical and tribological properties. A combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) analyses showed that face-centered cubic (fcc) NbN, hexagonal close-packed (hcp) NbN and fcc silver coexisted in NbN-Ag films. The incorporation of soft Ag into NbN matrix led to the hardness decrease from 29.6 GPa at 0 at.% Ag to 11.3 GPa at 19.9 at.% Ag. Tribological properties of NbN-Ag films performed using dry pin-on-disc wear tests against Al{sub 2}O{sub 3} depended on Ag content to a large extent. The average friction coefficient and wear rate of NbN-Ag films decreased as Ag content increased from 4.0 to 9.2 at.%. With a further increase of Ag content, the average friction coefficient further decreased, while the wear rate increased gradually. The optimal Ag content was found to be 9.2–13.5 at.%, which showed low average friction coefficient values of 0.46–0.40 and wear rate values of 1.1 × 10{sup −8} to 1.7 × 10{sup −8} mm{sup 3}/(mm N). 3D Profiler and Raman spectroscopy measurements revealed that the lubricant tribo-film AgNbO{sub 3} detected on the surface of the

  13. Controlled synthesis and photocatalytic properties of rhombic dodecahedral Ag3PO4 with high surface energy

    International Nuclear Information System (INIS)

    Xie, Yao; Huang, Zhaohui; Zhang, Zhijie; Zhang, Xiaoguang; Wen, Ruilong; Liu, Yangai; Fang, Minghao; Wu, Xiaowen

    2016-01-01

    Graphical abstract: The high amount of rhombic dodecahedral Ag 3 PO 4 particles with a high exposure of the {110} facets and high surface energy (the surface energy of the {110} facets was 1.31 J/m 2 , greater than that of the {100} facet (1.12 J/m 2 ).) exhibited excellent photocatalytic activity. - Highlights: • High contents of rhombic dodecahedral Ag 3 PO 4 photocatalysts are prepared. • Excessive EG can destroy the morphology of Ag 3 PO 4 in synthesis process. • The rhombic dodecahedral Ag 3 PO 4 exhibits high surface energy. • High surface energy implies high photocatalytic activity. - Abstract: In this study, a series of Ag 3 PO 4 photocatalysts with different contents of rhombic dodecahedral particles were prepared in one pot by a facile, novel hydrothermal method using ethylene glycol (EG), which served as both a morphology modifier and reducing agent. The effects of EG content on the morphologies of Ag 3 PO 4 photocatalysts were discussed. The photocatalytic activity of the Ag 3 PO 4 photocatalysts was evaluated by the degradation of methylene blue trihydrate under visible-light irradiation. With the use of 0.8% EG in the reaction solvent, the sample exhibited excellent photocatalytic activity, attributed to the high amount of rhombic dodecahedral Ag 3 PO 4 particles with a high exposure of the {110} facets and high surface energy. The surface energy of the {110} facets was 1.31 J/m 2 , greater than that of the {100} facet (1.12 J/m 2 ). However, with 1% EG in the reaction solvent, although the Ag 3 PO 4 photocatalysts were composed of a majority of rhombic dodecahedral Ag 3 PO 4 particles, tiny Ag particles formed from Ag + under the action of EG attached on the surface of the sample decreased the absorption of visible light, resulting in low photocatalytic activity.

  14. H2O2 rejuvenation-mediated synthesis of stable mixed-morphology Ag3PO4 photocatalysts

    Directory of Open Access Journals (Sweden)

    Henry Agbe

    2018-04-01

    Full Text Available Ag3PO4 photocatalyst has attracted interest of the scientific community in recent times due to its reported high efficiency for water oxidation and dye degradation. However, Ag3PO4 photo-corrodes if electron accepter such as AgNO3 is not used as scavenger. Synthesis of efficient Ag3PO4 followed by a simple protocol for regeneration of the photocatalyst is therefore a prerequisite for practical application. Herein, we present a facile method for the synthesis of a highly efficient Ag3PO4, whose photocatalytic efficiency was demonstrated using 3 different organic dyes: Methylene Blue (MB, Methyl orange (MO and Rhodamine B (RhB organic dyes for degradation tests. Approximately, 19 % of Ag3PO4 is converted to Ag0 after 4.30 hours of continuous UV-Vis irradiation in presence of MB organic dye. We have shown that the Ag/Ag3PO4 composite can be rejuvenated by a simple chemical oxidation step after several cycles of photocatalysis tests. At an optimal pH of 6.5, a mixture of cubic, rhombic dodecahedron, nanosphere and nanocrystals morphologies of the photocatalyst was formed. H2O2 served as the chemical oxidant to re-insert the surface metallic Ag into the Ag3PO4 photocatalyst but also as the agent that can control morphology of the regenerated as-prepared photocatalyst without the need for any other morphology controlling Agent (MCA. Surprisingly, the as- regenerated Ag3PO4 was found to have higher photocatalytic reactivity than the freshly made material and superior at least 17 times in comparison with the conventional Degussa TiO2, and some of TiO2 composites tested in this work. Keywords: Materials chemistry, Materials science, Engineering

  15. Precipitation of Ag2Te in the thermoelectric material AgSbTe2

    International Nuclear Information System (INIS)

    Sugar, Joshua D.; Medlin, Douglas L.

    2009-01-01

    The microstructure of AgSbTe 2 , prepared by solidification, is investigated using electron microscopy. During solidification and thermal treatment, the material separates into a two-phase mixture of a rocksalt phase, which is Ag 22 Sb 28 Te 50 , and silver telluride, Ag 2 Te. Ag 2 Te formation results either from eutectic solidification (large lamellar structures), or by solid-state precipitation (fine-scale particles). The crystal structure of the AgSbTe 2 phase determined by electron diffraction is consistent with a rocksalt structure that has a disordered cation sublattice. A preferred crystallographic orientation relationship at the interface between the matrix and the low-temperature monoclinic Ag 2 Te phase is defined and discussed. This orientation relationship is observed for both second-phase morphologies. In both cases, the orientation relationship originates from a topotactic (cube-on-cube) alignment of the Te sublattices in the initially cubic Ag 2 Te and the matrix at elevated temperature. This Te sublattice alignment is retained as the Ag 2 Te undergoes a cubic-to-monoclinic transformation during cooling. This orientation relationship is observed for both second-phase morphologies.

  16. Atividade das glicosidases na presença de chá verde e de chá preto

    OpenAIRE

    Pereira,L.L.S.; Souza,S.P.; Silva,M.C; Carvalho,G.A.; Santos,C.D.; Corrêa,A.D.; Abreu,C.M.P.

    2010-01-01

    Várias plantas têm sido consideradas produtos terapêuticos, dentre elas destacam-se os chás verde e preto, popularmente utilizados para controle da hiperglicemia e obesidade. Objetivou-se neste trabalho avaliar o potencial inibitório sobre as enzimas α-amilase, α e β-glicosidases e o teor de compostos fenólicos do chá verde e do chá preto. O teor de compostos fenólicos encontrados foram de 80,8 ± 0,43 mg g-1 no chá preto e 32,0 ± 0,12 mg g-1 no chá verde. O chá verde e o chá pr...

  17. CH-TRU Waste Content Codes

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2008-01-16

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  18. Determination of the compositions of the DIGM zone in nanocrystalline Ag/Au and Ag/Pd thin films by secondary neutral mass spectrometry

    Directory of Open Access Journals (Sweden)

    Gábor Y. Molnár

    2016-03-01

    Full Text Available Alloying by grain boundary diffusion-induced grain boundary migration is investigated by secondary neutral mass spectrometry depth profiling in Ag/Au and Ag/Pd nanocrystalline thin film systems. It is shown that the compositions in zones left behind the moving boundaries can be determined by this technique if the process takes place at low temperatures where solely the grain boundary transport is the contributing mechanism and the gain size is less than the half of the grain boundary migration distance. The results in Ag/Au system are in good accordance with the predictions given by the step mechanism of grain boundary migration, i.e., the saturation compositions are higher in the slower component (i.e., in Au or Pd. It is shown that the homogenization process stops after reaching the saturation values and further intermixing can take place only if fresh samples with initial compositions, according to the saturation values, are produced and heat treated at the same temperature. The reversal of the film sequence resulted in the reversal of the inequality of the compositions in the alloyed zones, which is in contrast to the above theoretical model, and explained by possible effects of the stress gradients developed by the diffusion processes itself.

  19. Reversible conversion between AgCl and Ag in AgCl-doped RSiO{sub 3/2}-TiO{sub 2} films prepared by a sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Go, E-mail: gokawamura@ee.tut.ac.jp [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Tsurumi, Yuuki [Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Muto, Hiroyuki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Sakai, Mototsugu; Inoue, Mitsuteru [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Matsuda, Atsunori [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan)

    2011-10-17

    Highlights: {center_dot} The reversible redox behavior between AgCl and Ag in RSiO{sub 3/2}-TiO{sub 2} film is studied. {center_dot} TiO{sub 2} component induces Cl to remain in the film after conversion of AgCl to Ag. {center_dot} The survival of Cl is essential for reconversion of Ag to AgCl. {center_dot} The film shows potential to be applied as rewritable holographic material. - Abstract: The reversible redox behavior exhibited by AgCl-doped organosilsesquioxane-titania gel films is studied. Films prepared by the sol-gel method show reversible color changes with blue laser irradiation and subsequent heat treatment, which is based on the formation of Ag and AgCl nanoparticles, respectively. Two-beam interference exposure experiments reveal that the films have potential to be applied as rewritable holographic materials. A large titania content is essential for the conversion of Ag to AgCl because it induces the Cl to remain near the Ag nanoparticles during blue laser irradiation, allowing the Cl to react with neighboring Ag nanoparticles to reform AgCl upon subsequent heat treatment.

  20. Enhanced Electrochemical Performance of Electrospun Ag/Hollow Glassy Carbon Nanofibers as Free-standing Li-ion Battery Anode

    International Nuclear Information System (INIS)

    Shilpa; Sharma, Ashutosh

    2015-01-01

    Silver with a high theoretical capacity for lithium storage is an attractive alloy based anode for Li-ion batteries, but large volume changes associated with AgLi x alloy formation leads to electrode cracking, pulverization and rapid capacity fading. A buffer matrix, like the electrospun hollow carbon nanofibers, can reduce this problem to a great extent. Herein, we demonstrate the facile synthesis of a free-standing, binder free Ag-C hybrid electrode through co-axial electrospinning, where well dispersed Ag nanoparticles are embedded in hollow carbon nanofibers. Using this approach, the long cycle life of carbon is complemented with the high lithium storage capacity of Ag, resulting in a high performance anode. The Ag-C composite electrode delivers a capacity of 739 mAh g −1 (>conventional graphite anodes) at 50 mA g −1 , with ∼85% capacity retention after 100 cycles. In addition, the Ag-C composite nanofibers are highly porous and exhibit a large accessible surface area (∼726.9 m 2 g −1 ) with an average pore diameter of ∼6.07 nm. The encapsulation of Ag in the hollow interiors not only provides additional lithium storage sites but also enhances the electronic conductivity, which combined with the reduced lithium diffusion path lengths in the nanofibers result in faster charge-discharge kinetics and hence a high rate performance

  1. Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules.

    Science.gov (United States)

    Guo, Tian-Long; Li, Ji-Guang; Sun, Xudong; Sakka, Yoshio

    2016-04-01

    Galvanic growth of Ag nano/micro-structures on Cu micro-grid was systematically studied for surface-enhanced Raman scattering (SERS) applications. Detailed characterizations via FE-SEM and HR-TEM showed that processing parameters, (reaction time, Ag(+) concentration, and PVP addition) all substantially affect thermodynamics/kinetics of the replacement reaction to yield substrates of significantly different microstructures/homogeneities and thus varied SERS performances (sensitivity, enhancement factor, and reproducibility) of the Ag substrates in the detection of R6G analyte. PVP as an additive was shown to notably alter nucleation/growth behaviors of the Ag crystals and promote the deposition of dense and uniform Ag films of nearly monodisperse polyhedrons/nanoplates through suppressing dendrites crystallization. Under optimized synthesis (50mM of Ag(+), 30s of reaction, and 700 wt.% of PVP), Ag substrates exhibiting a high Raman signal enhancement factor of ~1.1 × 10(6) and a low relative standard deviation of ~0.13 in the repeated detection of 10 μM R6G were obtained. The facile deposition and excellent performance reported in this work may allow the Ag microstructures to find wider SERS applications. Moreover, growth mechanisms of the different Ag nano/micro-structures were discussed based on extensive FE-SEM and HR-TEM analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Characterization of exposure to silver nanoparticles in a manufacturing facility

    Science.gov (United States)

    Park, Junsu; Kwak, Byoung Kyu; Bae, Eunjoo; Lee, Jeongjin; Kim, Younghun; Choi, Kyunghee; Yi, Jongheop

    2009-10-01

    An assessment of the extent of exposure to nanomaterials in the workplace will be helpful in improving the occupational safety of workers. It is essential that the exposure data in the workplace are concerned with risk management to evaluate and reduce worker exposure. In a manufacturing facility dealing with nanomaterials, some exposure data for gas-phase reactions are available, but much less information is available regarding liquid-phase reactions. Although the potential for inhaling nanomaterials in a liquid-phase process is less than that for gas-phase, the risks of exposure during wet-chemistry processes are not negligible. In this study, we monitored and analyzed the exposure characteristics of silver nanoparticles during a liquid-phase process in a commercial production facility. Based on the measured exposure data, the source of Ag nanoparticles emitted during the production processes was indentified and a mechanism for the growth of Ag nanoparticle released is proposed. The data reported in this study could be used to establish occupational safety guidelines in the nanotechnology workplace, especially in a liquid-phase production facility.

  3. Advanced surface characterization of silver nanocluster segregation in Ag-TiCN bioactive coatings by RBS, GDOES, and ARXPS.

    Science.gov (United States)

    Escobar Galindo, R; Manninen, N K; Palacio, C; Carvalho, S

    2013-07-01

    Surface modification by means of wear protective and antibacterial coatings represents, nowadays, a crucial challenge in the biomaterials field in order to enhance the lifetime of bio-devices. It is possible to tailor the properties of the material by using an appropriate combination of high wear resistance (e.g., nitride or carbide coatings) and biocide agents (e.g., noble metals as silver) to fulfill its final application. This behavior is controlled at last by the outmost surface of the coating. Therefore, the analytical characterization of these new materials requires high-resolution analytical techniques able to provide information about surface and depth composition down to the nanometric level. Among these techniques are Rutherford backscattering spectrometry (RBS), glow discharge optical emission spectroscopy (GDOES), and angle resolved X-ray photoelectron spectroscopy (ARXPS). In this work, we present a comparative RBS-GDOES-ARXPS study of the surface characterization of Ag-TiCN coatings with Ag/Ti atomic ratios varying from 0 to 1.49, deposited at room temperature and 200 °C. RBS analysis allowed a precise quantification of the silver content along the coating with a non-uniform Ag depth distribution for the samples with higher Ag content. GDOES surface profiling revealed that the samples with higher Ag content as well as the samples deposited at 200 °C showed an ultrathin (1-10 nm) Ag-rich layer on the coating surface followed by a silver depletion zone (20-30 nm), being the thickness of both layers enhanced with Ag content and deposition temperature. ARXPS analysis confirmed these observations after applying general algorithm involving regularization in addition to singular value decomposition techniques to obtain the concentration depth profiles. Finally, ARXPS measurements were used to provide further information on the surface morphology of the samples obtaining an excellent agreement with SEM observations when a growth model of silver islands with

  4. Preparation of Ag/TiO{sub 2}/SiO{sub 2} films via photo-assisted deposition and adsorptive self-assembly for catalytic bactericidal application

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Baojuan, E-mail: baojuanxi@gmail.com [Department of Electrical and Computer Engineering, 10 Kent Ridge Crescent, Singapore 119260 (Singapore); Chu, Xiaona; Hu, Jiangyong [Department of Civil and Environmental Engineering, 10 Kent Ridge Crescent, Singapore 119260 (Singapore); Bhatia, Charanjit Singh; Danner, Aaron James; Yang, Hyunsoo [Department of Electrical and Computer Engineering, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)

    2014-08-30

    Highlights: • We prepared controlledly the silver nanoparticles on TiO{sub 2}/SiO{sub 2} film by the facile photoreduction under the aid of structure-directing agents. • We studied the effect of silver loading on the antibactierial behavior of TiO{sub 2} film and optimized the content of silver. • We extended the route to fabricate other metals on substrates. - Abstract: The deterioration of water supply quality due to the waterborne bacteria is an environmental problem requiring the urgent attention. Due to the excellent and synergic antimicrobial capability, Ag-loaded TiO{sub 2} photocatalyst emerges as a feasible measure to guard the water. In our work, Ag nanoparticles have been prepared by the photoassisted reduction of AgNO{sub 3} on the TiO{sub 2} film fabricated by solution-based adsorptive self-assembly approach. The role of surfactant on the growth rate and size controlling of particles is also studied. In this connection, different kinds of surfactants, such as PVP, Tween-20, Tween-40 and so on, are applied in the system to investigate the formation of Ag nanoparticles. The surface profile and elemental analysis of Ag/TiO{sub 2}/SiO{sub 2} films are examined by scanning electron microscopy and attached energy-dispersive X-ray spectroscopy, respectively. In the anti-bacteria detection, Ag nanoparticles are found to enhance the bactericidal efficiency strongly comparing with the pure TiO{sub 2} film under the same condition. In addition, by comparison with Ag/TiO{sub 2}/SiO{sub 2} film in the dark environment as the reference experiment, UV–visible light plays a vital role in the improved bactericidal behavior, demonstrating the more efficient charge separation induced by metal silver. Because of the versatility of the method, the present photoreductive route is also exploited for the synthesis of Au nanoparticles on TiO{sub 2}/SiO{sub 2} films. The corresponding photocatalytical detection results demonstrate the loading of Au nanoparticles can

  5. [Ag(NH3)2]Ag(OsO3N)2: a new nitridoosmate(VIII)

    International Nuclear Information System (INIS)

    Wickleder, M.S.; Pley, Martin

    2004-01-01

    Dark brown single crystals of [Ag(NH 3 ) 2 ]Ag(OsO 3 N) 2 were obtained from the reaction of Ag 2 CO 3 , OsO 4 , and NH 3 in aqueous solution. The crystal structure was solved in the monoclinic space group C2/m, with the following unit-cell dimensions: a=1962.5(3), b=633.1(1), c=812.6(1) pm, β=96.71(1) deg. The final reliability factor was R=0.0256 for 1034 reflections with I>2σ(I). Linear [Ag(NH 3 ) 2 ] + ions are present oriented perpendicular to the [010] direction, leading to short Ag + -Ag + distances of 316 pm. A second type of Ag + ions in the crystal structure present coordination number '6+1' and are surrounded by oxygen and nitrogen atoms of the nitridoosmate groups. Within the first of the two crystallographically distinguishable anions one can clearly differentiate between oxygen and nitrogen atoms while the second one exhibits a N/O disorder over two positions. The infrared spectrum of [Ag(NH 3 ) 2 ]Ag(OsO 3 N) 2 shows the typical absorptions which can be attributed to the complex anions and the NH 3 ligands

  6. AGS intensity record

    International Nuclear Information System (INIS)

    Bleser, Ed

    1994-01-01

    As flashed in the September issue, this summer the Brookhaven Alternating Gradient Synchrotron (AGS) reached a proton beam intensity of 4.05 x 10 13 protons per puise, claimed as the highest intensity ever achieved in a proton synchrotron. It is, however, only two-thirds of the way to its final goal of 6 x 10 13 . The achievement is the resuit of many years of effort. The Report of the AGS II Task Force, issued in February 1984, laid out a comprehensive programme largely based on a careful analysis of the PS experience at CERN. The AGS plan had two essential components: the construction of a new booster, and major upgrades to the AGS itself.

  7. Study of Ag+/PAA (polyacrylic acid) and Ag0/PAA aqueous system at equilibrium

    International Nuclear Information System (INIS)

    Keghouche, N.; Mostafavi, M.; Delcourt, M.O.

    1991-01-01

    When submitted to gamma radiation the system Ag + -PAA-water leads to clusters Ag 0 n /PAA (3 420 nm) interacting with the clusters. Potentiometric measurements carried out on Ag + solutions in the presence of PAA at various pH show that the deprotonated form (polyacrylate anion) is strongly bonded to Ag + , on the opposite of the protonated form of PAA. One of the oligomer clusters can be stabilized for more than one year. Studying it by infra-red spectrometry reveals important modifications in the vibration bands of the COO - group circa 1400 and 1600 cm -1 according to the bonding of PAA with Ag + or Ag 0 [fr

  8. Bimetallic AgCu/Cu2O hybrid for the synergetic adsorption of iodide from solution.

    Science.gov (United States)

    Mao, Ping; Liu, Ying; Liu, Xiaodong; Wang, Yuechan; Liang, Jie; Zhou, Qihang; Dai, Yuexuan; Jiao, Yan; Chen, Shouwen; Yang, Yi

    2017-08-01

    To further improve the capacity of Cu 2 O to absorb I - anions from solution, and to understand the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents, bimetallic AgCu was doped into Cu 2 O through a facile solvothermal route. Samples were characterized and employed to adsorb I - anions under different experimental conditions. The results show that the Cu content can be tuned by adding different volumes of Ag sols. After doping bimetallic AgCu, the adsorption capacity of the samples can be increased from 0.02 mmol g -1 to 0.52 mmol g -1 . Moreover, the optimal adsorption is reached within only 240 min. Meanwhile, the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents was verified, and the cooperative adsorption mechanism of the AgCu/Cu 2 O hybrid was proposed and verified. In addition, the AgCu/Cu 2 O hybrid showed excellent selectivity, e.g., its adsorption efficiencies are 85.1%, 81.9%, 85.9% and 85.7% in the presence of the Cl - , CO 3 2- , SO 4 2- and NO 3 - competitive anions, respectively. Furthermore, the AgCu/Cu 2 O hybrid can worked well in other harsh environments (e.g., acidic, alkaline and seawater environments). Therefore, this study is expected to promote the development of Cu 2 O into a highly efficient adsorbent for the removal of iodide from solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cytotoxicity of serum protein-adsorbed visible-light photocatalytic Ag/AgBr/TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Seo, Ji Hye; Jeon, Won Il; Dembereldorj, Uuriintuya; Lee, So Yeong; Joo, Sang-Woo

    2011-01-01

    Highlights: ► Photocytotoxicity of visible-light catalytic NPs was examined in vitro. ► Ag/AgBr/TiO 2 NPs were well internalized in cells after adsorption of serum proteins. ► Cell viability was decreased by 40–60% using ∼8 ppm NPs and 60 W/cm 2 visible light within 5 h. ► Mitochondria activity test indicated the reactive oxygen species for photo-destruction of cells. ► Ag/AgBr/TiO 2 NPs were found to eliminate xenograft tumors significantly in vivo. - Abstract: Photocytotoxicity of visible-light catalytic Ag/AgBr/TiO 2 nanoparticles (NPs) was examined both in vitro and in vivo. The Ag/AgBr/TiO 2 NPs were prepared by the deposition–precipitation method. Their crystalline structures, atomic compositions, and light absorption property were examined by X-ray diffraction (XRD) patterns, X-ray photoelectron (XPS) intensities, and ultraviolet-visible (UV–vis) diffuse reflectance spectroscopic tools. The Ag/AgBr/TiO 2 NPs appeared to be well internalized in human carcinoma cells as evidenced by transmission electron microscopy (TEM). The cytotoxicity of cetylmethylammonium bromide (CTAB) appeared to be significantly reduced by adsorption of serum proteins in the cellular medium on the NP surfaces. Two types of human cervical HeLa and skin A431 cancer cells were tested to check their viability after the cellular uptake of the Ag/AgBr/TiO 2 NPs and subsequent exposure to an illumination of visible light from a 60 W/cm 2 halogen lamp. Fluorescence images taken to label mitochondria activity suggest that the reactive oxygen species should trigger the photo-destruction of cancer cells. After applying the halogen light illumination for 50–250 min and ∼8 ppm (μg/mL) of photocatalytic Ag/AgBr/TiO 2 NPs, we observed a 40–60% selective decrease of cell viability. Ag/AgBr/TiO 2 NPs were found to eliminate xenograft tumors significantly by irradiating visible light in vivo for 10 min.

  10. Inhibition of Ps Formation in Benzene and Cyclohexane by CH3CI and CH3Br

    DEFF Research Database (Denmark)

    Wikander, G.; Mogensen, O. E.; Pedersen, Niels Jørgen

    1983-01-01

    Positron-annihilation lifetime spectra have been measured for mixtures of CH3Cl and CH3Br in cyclohexane and of CH3Cl in benzene. The ortho-positronium (Ps) yield decreased monotonically from 38% and 43% in cyclohexane and benzene respectively to 11% in pure CH3Cl and 6% in pure CH3Br. The strength......− anions to form Ps. while it forms a bound state with the halides. X−. CH3Cl was a roughly three times weaker Ps inhibitor in benzene than in cyclohexane, which shows that CH3Cl− does not dechlorinate in times comparable to or shorter than 400–500 ps in benzene. An improved model for the explanation of Ps...

  11. Occurrence, characterisation and fate of (nano)particulate Ti and Ag in two Norwegian wastewater treatment plants

    DEFF Research Database (Denmark)

    Polesel, Fabio; Farkas, Julia; Kjos, Marianne

    2018-01-01

    was conducted in two full-scale WWTPs in Trondheim (Norway) employing only primary treatment. We assessed the occurrence and elimination of Ti and Ag, and conducted size-based fractionation using sequential filtration of influent samples to separate particulate, colloidal and dissolved fractions. Eight...... concentration patterns (especially total suspended solids), with peaks during the morning and/or evening and minima at night, indicating household discharges as predominant source. Irregular profiles were exhibited by influent Ag, with periodic concentration spikes suggesting short-term discharges from one...

  12. A Facile Method for Preparing Transparent, Conductive, and Paper-Like Silver Nanowire Films

    Directory of Open Access Journals (Sweden)

    Yajie Wang

    2011-01-01

    Full Text Available Transparent, conductive, and flexible silver nanowire (AgNW films have been fabricated by a facile two-step method. Firstly, the well-dispersed AgNW suspension is vacuum filtered using mixed esters of cellulose (MCE membranes as filters. Then, the AgNW-MCE films are treated with acetone vapor. After the infiltration of acetone vapor, the white and porous MCE membranes change into transparent and pore-free, and AgNW-MCE films are obtained with extraordinary optical, conductive, and mechanical properties. An optimal result is obtained with transmittance of 85% at 550 nm and sheet resistance about 50 Ohm/sq. The flexibility of AgNW-MCE films is remarkable, which is comparable to that of the AgNW film on flexible polyethylene terephthalate (PET. More important, AgNW-MCE films show an excellent adhesion to the substrate, which causes a stable electrical conductivity even after scotch tape test and finger friction test. As a result of improved adhesion to the substrate, the sheet resistance of AgNW-MCE films is about 20% smaller than that of AgNW-PET films.

  13. Submillimeter laboratory identification of CH{sup +} and CH{sub 2}D{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Amano, T. [Department of Chemistry and Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2015-01-22

    Laboratory identification of two basic and important interstellar molecular ions is presented. The J = 1 - 0 rotational transition of {sup 12}CH{sup +} together with those of {sup 13}CH{sup +} and {sup 12}CD{sup +} was observed in the laboratory. The newly obtained frequencies were found to be different from those reported previously. Various experimental evidences firmly support the new measurements. In addition, the Zeeman effect and the spin-rotation hyperfine interaction enforce the laboratory identification with no ambiguity. Rotational lines of CH{sub 2}D{sup +} were observed in the submillimeter-wave region. This laboratory observation is consistent with a recent tentative identification of CH{sub 2}D{sup +} toward Ori IRc2.

  14. Diffusion of single Au, Ag and Cu atoms inside Si(111)-(7 × 7) half unit cells: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qin [Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China); Department of Physics, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong (China); Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908 (China); Fu, Qiang [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin (Germany); Shao, Xiji; Ma, Xuhang; Wu, Xuefeng [Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China); Wang, Kedong, E-mail: wangkd@sustc.edu.cn [Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China); Xiao, Xudong, E-mail: xdxiao@phy.cuhk.edu.hk [Department of Physics, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong (China)

    2017-04-15

    Highlights: • Diffusions of Au, Ag and Cu atoms in the half unit cells of Si(111)-(7×7) have been studied by using a STM-based I-t method. • Despite their similar absorption sites, the diffusion dynamics show obvious differences between Ag and the other two. • Theoretical calculations suggest that different potential energy profiles are responsible for the observed differences. - Abstract: The diffusion behaviors of single Au, Ag and Cu atoms on Si(111)-(7 × 7) half unit cells have been investigated via combining scanning tunneling microscopy and first-principles calculations. Despite the similar adsorption sites between both half unit cells among these elements, the diffusion dynamics show obvious differences between Ag and the other two. Although obvious asymmetry has been found in the diffusion behaviors of Au and Cu atoms in two half unit cells of Si(111)-(7 × 7), the asymmetry behaves in a way different from that of Ag atoms and no dual-time character has been observed for the diffusions of Au and Cu in both half unit cells. Theoretical calculations suggest a different potential energy profile caused by the stronger hybridization between d states of Au (Cu) and Si states make the concept of basin useless for the diffusion of Au and Cu atoms inside the half unit cells of Si(111)-(7 × 7).

  15. Continuous Synthesis of Ag/TiO2 Nanoparticles with Enhanced Photocatalytic Activity by Pulsed Laser Ablation

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2017-01-01

    Full Text Available A facile and environmental friendly synthesis strategy based on pulsed laser ablation has been developed for potential mass production of Ag-loaded TiO2 (Ag/TiO2 nanoparticles. By sequentially irradiating titanium and silver target substrates, respectively, with the same 1064 nm 100 ns fiber laser, Ag/TiO2 particles can be fabricated. A postannealing process leads to the crystallization of TiO2 to anatase phase with high photocatalytic activity. The phase composition, microstructure, and surface state of the elaborated Ag/TiO2 are characterized by X-ray diffraction (XRD, energy dispersive X-ray (EDX, field emission scanning electron microscope (FESEM, transmission electron microscope (TEM, and X-ray photoelectron spectroscopy (XPS techniques. The results suggest that the presence of silver clusters deposited on the surface of TiO2 nanoparticles. The nanostructure is formed through laser interaction with materials. Photocatalytic activity evaluation shows that silver clusters could significantly enhance the photocatalytic activity of TiO2 in degradation of methylene blue (MB under UV light irradiation, which is attributed to the efficient electron traps by Ag clusters. Our developed Ag/TiO2 nanoparticles synthesized via a straightforward, continuous, and green pathway could have great potential applications in photocatalysis.

  16. Below and above boiling point comparison of microwave irradiation and conductive heating for municipal sludge digestion under identical heating/cooling profiles.

    Science.gov (United States)

    Hosseini Koupaie, E; Eskicioglu, C

    2015-01-01

    This research provides a comprehensive comparison between microwave (MW) and conductive heating (CH) sludge pretreatments under identical heating/cooling profiles at below and above boiling point temperatures. Previous comparison studies were constrained to an uncontrolled or a single heating rate due to lack of a CH equipment simulating MW under identical thermal profiles. In this research, a novel custom-built pressure-sealed vessel which could simulate MW pretreatment under identical heating/cooling profiles was used for CH pretreatment. No statistically significant difference was proven between MW and CH pretreatments in terms of sludge solubilization, anaerobic biogas yield and organics biodegradation rate (p-value>0.05), while statistically significant effects of temperature and heating rate were observed (p-value<0.05). These results explain the contradictory results of previous studies in which only the final temperature (not heating/cooling rates) was controlled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Synthesis of Au@Ag core-shell nanocubes containing varying shaped cores and their localized surface plasmon resonances.

    Science.gov (United States)

    Gong, Jianxiao; Zhou, Fei; Li, Zhiyuan; Tang, Zhiyong

    2012-06-19

    We have synthesized Au@Ag core-shell nanocubes containing Au cores with varying shapes and sizes through modified seed-mediated methods. Bromide ions are found to be crucial in the epitaxial growth of Ag atoms onto Au cores and in the formation of the shell's cubic shape. The Au@Ag core-shell nanocubes exhibit very abundant and distinct localized surface plasmon resonance (LSPR) properties, which are core-shape and size-dependent. With the help of theoretical calculation, the physical origin and the resonance mode profile of each LSPR peak are identified and studied. The core-shell nanocrystals with varying shaped cores offer a new rich category for LSPR control through the plasmonic coupling effect between core and shell materials.

  18. Ag-rich precipitates formation in the Cu–11%Al–10%Mn–3%Ag alloy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.G., E-mail: galdino.ricardo@gmail.com [Departamento de Ciências Exatas e da Terra, UNIFESP, 09972-270 Diadema, SP (Brazil); Paganotti, A.; Jabase, L. [Departamento de Ciências Exatas e da Terra, UNIFESP, 09972-270 Diadema, SP (Brazil); Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A. [Departamento de Físico-Química, Instituto de Química, UNESP, 14801-970 Araraquara, SP (Brazil)

    2014-12-05

    Highlights: • Cu-rich nanoprecipitates are formed in the presence of Ag. • Bainite precipitation is shifted to higher temperatures in the Cu–11%Al–10%Mn–3%Ag alloy. • The eutectoid α phase and bainite α{sub 1} phase compete by the Cu atoms during precipitation process. - Abstract: The formation of Ag-rich precipitates in the Cu–11%Al–10%Mn–3%Ag alloy initially quenched from 1123 K was analyzed. The results showed that nanoprecipitates of a Cu-rich phase are produced at about 523 K. In higher temperatures these nanoparticles grow and the relative fraction of Ag dissolved in it is increased, thus forming the Ag-rich phase.

  19. Mix and instability growth seeded at the inner surface of CH-ablator implosions on the National Ignition Facility

    Science.gov (United States)

    Haan, S. W.; Celliers, P. M.; Collins, G. W.; Orth, C. D.; Clark, D. S.; Amendt, P.; Hammel, B. A.; Robey, H. F.; Huang, H.

    2014-10-01

    Mix and hydro instability growth are key issues in implosions of ignition targets on NIF. The implosions are designed so that the amplitude of perturbations is thought to be determined by initial seeds to the hydrodynamic instabilities, amplified by an instability growth factor. Experiments have indicated that growth factors can be calculated fairly well, but characterizing the initial seeds is an ongoing effort. Several threads of investigation this year have increased our understanding of growth seeded at the CH/DT interface. These include: more detailed characterization of the CH inner surface; possible other seeds, such as density irregularities either from fabrication defects or arising during the implosion; experiments on the Omega laser measuring velocity modulations on shock fronts shortly after breaking out from the CH, which can seed subsequent growth; and the possible significance of non-hydrodynamic effects such as plasma interpenetration or spall-like ejecta upon shock breakout. This presentation describes these developments, the relationships between them, and their implications for ignition target performance. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  20. Nature of the precipitate in (AgI)0.7(AgPO3)0.3 glass

    International Nuclear Information System (INIS)

    Kartini, E.; Collins, M.F.

    1999-01-01

    Complete text of publication follows. Interest of this material arises from its superionic conducting properties, i.e. the conductivity at ambient temperature is a few order of magnitudes larger than in the pure AgI. On quenching the molten miacture from 600 deg C into liquid nitrogen, β-AgI crystal precipitates in the glassy matrix. Neutron powder diffraction studies on (AgI) 0.7 (AgPO 3 ) 0.3 are presented and the powder pattern from the crystalline precipitate is compared with that of pure AgI. The measurements show identical diffraction patterns from the precipitate and from β-AgI with the same lattice parameters. On heating, the precipitate shows a β→α phase transformation at 435 K while AgI shows this transformation at 438 K. At higher temperature in the α phase the powder pattern of the precipitate is again the same as that of pure α-AgI. On cooling the reverse transformation takes place at 415 K and 410 K, respectively. It is concluded that the precipitate is more-or-less pure AgI. (author)

  1. Synthesis and characterization of Ag/AgBrO{sub 3} photocatalyst with high photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Limin, E-mail: songlmnk@sohu.com [College of Environment and Chemical Engineering & State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387 (China); Li, Tongtong [College of Environment and Chemical Engineering & State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387 (China); Zhang, Shujuan [College of Science, Tianjin University of Science & Technology, Tianjin, 300457 (China)

    2016-10-01

    A new Ag/AgBrO{sub 3} photocatalyst was prepared by mixing aqueous solutions of AgNO{sub 3} and NaBrO{sub 3}. The catalyst’s structure and performance were investigated with X-ray powder diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The UV–vis absorption spectrum of Ag/AgBrO{sub 3} exhibits a band gap of 3.97 eV. The results show that the Ag/AgBrO{sub 3} semiconductor can be excited by ultraviolet–visible light. The photodegradation of Rhodamine B displayed much higher photocatalytic activity than that of N-doped TiO{sub 2} under the same experimental conditions. Moreover, ·OH and ·O{sub 2}{sup −} generated in the photocatalysis played a key role of the photodegradation of Rhodamine B. - Highlights: • Ag/AgBrO{sub 3} with higher photodegradation ability was synthesized. • ·OH and ·O{sub 2}{sup −} radicals were the main active species in the oxidation of RhB. • The possible reaction mechanism was discussed in details.

  2. Effect of cysteine and humic acids on bioavailability of Ag from Ag nanoparticles to a freshwater snail

    Science.gov (United States)

    Luoma, Samuel N.; Tasha Stoiber,; Croteau, Marie-Noele; Isabelle Romer,; Ruth Merrifeild,; Lead, Jamie

    2016-01-01

    Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.

  3. Improving g-C{sub 3}N{sub 4} photocatalysis for NO{sub x} removal by Ag nanoparticles decoration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yanjuan [Air Environmental Modelling and Pollution Controlling Key Laboratory of Sichuan Higher Education Institutes, College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225 (China); Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Xiong, Ting; Ni, Zilin [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Liu, Jie [Air Environmental Modelling and Pollution Controlling Key Laboratory of Sichuan Higher Education Institutes, College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225 (China); Dong, Fan, E-mail: dfctbu@126.com [Air Environmental Modelling and Pollution Controlling Key Laboratory of Sichuan Higher Education Institutes, College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225 (China); Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Zhang, Wei, E-mail: andyzhangwei@163.com [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Ho, Wing-Kei [Department of Science and Environmental Studies, The Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Hong Kong (China)

    2015-12-15

    Graphical abstract: Ag/g-C{sub 3}N{sub 4} nanocomposites were prepared via a facile method for enhanced photocatalytic NO{sub x} removal due to surface plasmon resonance of Ag. - Highlights: • The Ag/g-C{sub 3}N{sub 4} nanocomposites were prepared using urea as the precursor. • The Ag/g-C{sub 3}N{sub 4} nanocomposites were applied in removal of NO{sub x} in air. • The Ag nanoparticles enhanced the photocatalytic activity of g-C{sub 3}N{sub 4}. • The surface plasmon resonance of Ag played a key role in photocatalysis. - Abstract: In order to overcome the intrinsic drawback of pristine g-C{sub 3}N{sub 4}, we prepared g-C{sub 3}N{sub 4} nanosheets with enhanced photocatalytic performance by Ag nanoparticles decoration using urea as the precursor. It was revealed that the monodispersed Ag nanoparticles were deposited on the surface of g-C{sub 3}N{sub 4} nanosheets. The Ag/g-C{sub 3}N{sub 4} nanocomposites were applied in removal of NO{sub x} in air under visible light irradiation. The results showed that the decoration of Ag nanoparticles not only enhanced the photocatalytic activity of g-C{sub 3}N{sub 4} nanosheets, but also benefited the oxidation of NO to final products. The increased visible light absorption arising from the surface plasmon resonance of Ag and improved separation and transfer of photoinduced carriers over Ag/g-C{sub 3}N{sub 4} composites were demonstrated by the UV–vis diffuse reflectance spectra and photoluminescence spectra, respectively. It was therefore proposed that the enhanced photocatalytic activity of Ag/g-C{sub 3}N{sub 4} composites could be attributed to the extended light response range and enhanced charge separation due to the introduction of Ag nanoparticles.

  4. Electronic and electrochemical properties of platinum(II) and platinum-mercury-carboxylato complexes containing 2-Me2NCH2C6H4, 2,6-(Me2NCH2)2C6H3- and 2-Me2NC6H4CH2 - ligands

    NARCIS (Netherlands)

    Koten, G. van; Ploeg, A.F.M.J. van der; Schmitz, J.E.J.; Linden, J.G.M. van der

    1982-01-01

    The organoplatinum(II) compounds [{2, 6-(Me{2}NCH{2}){2}C{6}H{3}}PtBr] and cis-[(C-N){2}Pt] (C-N = 2-Me{2}NCH{2}C{6}H{4}, 2-Me{2}NC{6}H{4}CH{2}) can be chemically irreversibly oxidized in the potential range 1.00 to 1.35 V vs. an Ag/AgCl electrode, whereas the organoplatinum@?mercury complexes

  5. Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3

    Science.gov (United States)

    The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...

  6. Ag loaded WO_3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation

    International Nuclear Information System (INIS)

    Zhu, Wenyu; Liu, Jincheng; Yu, Shuyan; Zhou, Yan; Yan, Xiaoli

    2016-01-01

    Highlights: • WO_3/Ag heterogeneous composites were fabricated with simply photo-reduction method. • Property changes due to Ag loading were systematically studied. • WO_3/Ag composites efficiently degraded sulfanilamide under visible light irradiation. • WO_3/Ag composites exhibited bactericidal effectS under visible light irradiation. - Abstract: Sulfonamides (SAs) are extensively used antibiotics and their residues in the water bodies propose potential threat to the public. In this study, degradation efficiency of sulfanilamide (SAM), which is the precursor of SAs, using WO_3 nanoplates and their Ag heterogeneous as photocatalysts was investigated. WO_3 nanoplates with uniform size were synthesized by a facile one step hydrothermal method. Different amount of Ag nanoparticles (Ag NPs) were loaded onto WO_3 nanoplates using a photo-reduction method to generate WO_3/Ag composites. The physio-chemical properties of synthesized nanomaterials were systematically characterized. Photodegradation of SAM by WO_3 and WO_3/Ag composites was conducted under visible light irradiation. The results show that WO_3/Ag composites performed much better than pure WO_3 where the highest removal rate was 96.2% in 5 h. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO_3, and 100% removal efficiency against Escherichia Coli and Bacillus subtilis could be achieved in 2 h under visible light irradiation for all three WO_3/Ag composites synthesized. The improved performance in terms of SAM degradation and antibacterial activity of WO_3/Ag can be attributed to the improved electron-hole pair separation rate where Ag NPs act as effective electron trapper during the photocatalytic process.

  7. Two-step flash light sintering process for crack-free inkjet-printed Ag films

    International Nuclear Information System (INIS)

    Park, Sung-Hyeon; Kim, Hak-Sung; Jang, Shin; Lee, Dong-Jun; Oh, Jehoon

    2013-01-01

    In this paper, a two-step flash light sintering process for inkjet-printed Ag films is investigated with the aim of improving the quality of sintered Ag films. The flash light sintering process is divided into two steps: a preheating step and a main sintering step. The preheating step is used to remove the organic binder without abrupt vaporization. The main sintering step is used to complete the necking connections among the silver nanoparticles and achieve high electrical conductivity. The process minimizes the damage on the polymer substrate and the interface between the sintered Ag film and polymer substrate. The electrical conductivity is calculated by measuring the resistance and cross-sectional area with an LCR meter and 3D optical profiler, respectively. It is found that the resistivity of the optimal flash light-sintered Ag films (36.32 nΩ m), which is 228.86% of that of bulk silver, is lower than that of thermally sintered ones (40.84 nΩ m). Additionally, the polyimide film used as the substrate is preserved with the inkjet-printed pattern shape during the flash light sintering process without delamination or defects. (paper)

  8. Construction of a non-enzymatic sensor based on the poly(o-phenylenediamine)/Ag-NPs composites for detecting glucose in blood

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinxiang; Wang, Meirong [College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si–Wang–Ting Road, Yangzhou 225002 (China); Guan, Jun [Clinical Medical College of Yangzhou University, Subei People' s Hospital of Jiangsu Province, Yangzhou 225002 (China); Wang, Chengyin, E-mail: wangcy@yzu.edu.cn [College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si–Wang–Ting Road, Yangzhou 225002 (China); Wang, Guoxiu [School of Mathematical and Physical Sciences, University of Technology Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia)

    2017-02-01

    A non-enzymatic glucose sensor, based on the silver nanoparticles (Ag-NPs)/poly (o-phenylenediamine) (PoPD) composites, is developed by the electrochemical polymerization of o-phenylenediamine and electrodeposition of silver nanoparticles on an indium tin oxide electrode. The Ag-NPs/PoPD composites are characterized by atomic force microscopy, scanning electronic microscopy and energy dispersive spectrometer. Under the optimized experimental conditions, the proposed glucose sensor demonstrates a wide linear range from 0.15 to 13 mmol L{sup −1} with a correlation coefficient of 0.998. The proposed glucose sensor can be used to detect glucose in blood sample with a satisfactory result. In addition, the proposed sensor presents the advantages, such as facile preparation, low cost, high sensitivity and fast response time. It also exhibits good anti-interference performance and stability. - Highlights: • A facile AgNPs/PoPD/ITO modified sensor was developed for the first time. • The non-enzymatic sensor can detect glucose in human blood directly with a wide detection range. • This sensor is of rapid response, low cost, high sensitivity, and long-time stability.

  9. Normalization and experimental design for ChIP-chip data

    Directory of Open Access Journals (Sweden)

    Alekseyenko Artyom A

    2007-06-01

    Full Text Available Abstract Background Chromatin immunoprecipitation on tiling arrays (ChIP-chip has been widely used to investigate the DNA binding sites for a variety of proteins on a genome-wide scale. However, several issues in the processing and analysis of ChIP-chip data have not been resolved fully, including the effect of background (mock control subtraction and normalization within and across arrays. Results The binding profiles of Drosophila male-specific lethal (MSL complex on a tiling array provide a unique opportunity for investigating these topics, as it is known to bind on the X chromosome but not on the autosomes. These large bound and control regions on the same array allow clear evaluation of analytical methods. We introduce a novel normalization scheme specifically designed for ChIP-chip data from dual-channel arrays and demonstrate that this step is critical for correcting systematic dye-bias that may exist in the data. Subtraction of the mock (non-specific antibody or no antibody control data is generally needed to eliminate the bias, but appropriate normalization obviates the need for mock experiments and increases the correlation among replicates. The idea underlying the normalization can be used subsequently to estimate the background noise level in each array for normalization across arrays. We demonstrate the effectiveness of the methods with the MSL complex binding data and other publicly available data. Conclusion Proper normalization is essential for ChIP-chip experiments. The proposed normalization technique can correct systematic errors and compensate for the lack of mock control data, thus reducing the experimental cost and producing more accurate results.

  10. Room temperature synthesis and photocatalytic property of AgO/Ag2Mo2O7 heterojunction nanowires

    International Nuclear Information System (INIS)

    Hashim, Muhammad; Hu, Chenguo; Wang, Xue; Wan, Buyong; Xu, Jing

    2012-01-01

    Graphical abstract: The AgO nanoparticles are attached on the surface of the Ag 2 Mo 2 O 7 nanowires to form a heterojunction structure. The AgO nanoparticles start embedding into the nanowires with increasing reaction temperature or time. Highlights: ► AgO/Ag 2 Mo 2 O 7 heterojunction NWs were synthesized at room temperature for the first time. ► AgO particles embed into the Ag 2 Mo 2 O 7 NWs with increase in reaction time and temperature. ► The heterojunction NWs display much better photocatalytic activity than the none-heterojunction NWs. ► The catalytic mechanism was proposed. -- Abstract: AgO/Ag 2 Mo 2 O 7 heterojunction nanowires were synthesized at temperatures of 25 °C, 50 °C, 80 °C, and 110 °C, under magnetic stirring in solution reaction. The catalytic activity of AgO/Ag 2 Mo 2 O 7 nanowires was evaluated by the degradation of Rhodmine B dye under the irradiation of the simulated sunlight. The synthesized samples were characterized by X-ray diffractometer, energy dispersive spectrometry, X-ray photoelectron spectrometer, scanning electron microscopy, and transmission electron microscopy. The results show that the AgO nanoparticles are attached on the surface of the Ag 2 Mo 2 O 7 nanowires to form a heterojunction structure. The length of the nanowires is up to 10 μm and the size of the AgO nanoparticles is 10–20 nm. The length of nanowires increases with increasing reaction time and temperature while the AgO particles are gradually embedded into the nanowires. The photocatalytic activity is greatly improved for the AgO/Ag 2 Mo 2 O 7 heterojunction nanowires compared with that of the pure Ag 2 Mo 2 O 7 nanowires, indicating a remarkable role of AgO particles on the Ag 2 Mo 2 O 7 nanowires in the photodegradation.

  11. Ag@Ag_8W_4O_1_6 nanoroasted rice beads with photocatalytic, antibacterial and anticancer activity

    International Nuclear Information System (INIS)

    Selvamani, Muthamizh; Krishnamoorthy, Giribabu; Ramadoss, Manigandan; Sivakumar, Praveen Kumar; Settu, Munusamy; Ranganathan, Suresh; Vengidusamy, Narayanan

    2016-01-01

    Increasing resistance of pathogens and cancer cell line towards antibiotics and anticancer agents has caused serious health problems in the past decades. Due to these problems in recent years, researchers have tried to combine nanotechnology with material science to have intrinsic antimicrobial and anticancer activity. The metals and metal oxides were investigated with respect to their antimicrobial and anticancer effects towards bacteria and cancer cell line. In the present work metal@metal tungstate (Ag@Ag_8W_4O_1_6 nanoroasted rice beads) is investigated for antibacterial activity against Escherichia coli and Staphylococcus aureus using Mueller-Hinton broth and the anticancer activity against B16F10 cell line was studied. Silver decorated silver tungstate (Ag@Ag_8W_4O_1_6) was synthesized by the microwave irradiation method using Cetyl Trimethyl Ammonium Bromide (CTAB). Ag@Ag_8W_4O_1_6 was characterized by using various spectroscopic techniques. The phase and crystalline nature were analyzed by using XRD. The morphological analysis was carried out using Field Emission Scanning Electron Microscopy (FE-SEM), and High Resolution Transmission Electron Microscopy (HR-TEM). Further, Fourier Transform Infrared Spectroscopy (FT-IR) and Raman spectral analysis were carried out in order to ascertain the presence of functional groups in Ag@Ag_8W_4O_1_6. The optical property was investigated using Diffuse Reflectance Ultraviolet–Visible Spectroscopy (DRS-UV–Vis) and the band gap was found to be 3.08 eV. Surface area of the synthesized Ag@Ag_8W_4O_1_6 wasanalyzed by BET analysis and Ag@Ag_8W_4O_1_6 was utilized for the degradation of organic dyes methylene blue and rhodamine B. The morphology of the Ag@Ag_8W_4O_1_6 resembles roasted rice beads with breath and length in nm range. The oxidation state of tungsten (W) and silver (Ag) was investigated using X-ray photoelectron spectroscopy (XPS). - Highlights: • Synthesis of Ag@Ag_8W_4O_1_6 nanoroasted rice beads using

  12. AGS intensity upgrades

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    After the successful completion of the AGS Booster and several upgrades of the AGS, a new intensity record of 6.3 x 10 13 protons per pulse accelerated to 24 GeV was achieved. The high intensity slow-extracted beam program at the AGS typically serves about five production targets and about eight experiments including three rare Kaon decay experiments. Further intensity upgrades are being discussed that could increase the average delivered beam intensity by up to a factor of four

  13. Inference of hierarchical regulatory network of estrogen-dependent breast cancer through ChIP-based data

    Directory of Open Access Journals (Sweden)

    Parvin Jeffrey

    2010-12-01

    Full Text Available Abstract Background Global profiling of in vivo protein-DNA interactions using ChIP-based technologies has evolved rapidly in recent years. Although many genome-wide studies have identified thousands of ERα binding sites and have revealed the associated transcription factor (TF partners, such as AP1, FOXA1 and CEBP, little is known about ERα associated hierarchical transcriptional regulatory networks. Results In this study, we applied computational approaches to analyze three public available ChIP-based datasets: ChIP-seq, ChIP-PET and ChIP-chip, and to investigate the hierarchical regulatory network for ERα and ERα partner TFs regulation in estrogen-dependent breast cancer MCF7 cells. 16 common TFs and two common new TF partners (RORA and PITX2 were found among ChIP-seq, ChIP-chip and ChIP-PET datasets. The regulatory networks were constructed by scanning the ChIP-peak region with TF specific position weight matrix (PWM. A permutation test was performed to test the reliability of each connection of the network. We then used DREM software to perform gene ontology function analysis on the common genes. We found that FOS, PITX2, RORA and FOXA1 were involved in the up-regulated genes. We also conducted the ERα and Pol-II ChIP-seq experiments in tamoxifen resistance MCF7 cells (denoted as MCF7-T in this study and compared the difference between MCF7 and MCF7-T cells. The result showed very little overlap between these two cells in terms of targeted genes (21.2% of common genes and targeted TFs (25% of common TFs. The significant dissimilarity may indicate totally different transcriptional regulatory mechanisms between these two cancer cells. Conclusions Our study uncovers new estrogen-mediated regulatory networks by mining three ChIP-based data in MCF7 cells and ChIP-seq data in MCF7-T cells. We compared the different ChIP-based technologies as well as different breast cancer cells. Our computational analytical approach may guide biologists to

  14. Biosphere-Atmosphere Exchange of NOx, CH4, and O3 in Central Amazon

    Science.gov (United States)

    Wiedemann, K. T.; Munger, J. W.; Wofsy, S. C.; Budney, J.; Rizzo, L. V.; Campos, K.; Rocha, H.; Freitas, H.

    2016-12-01

    Oxidation by OH is the dominant pathway for removing important trace gases such as CH4, CO, CH3Br, and HCFCs. The primary source of atmospheric OH is the photolysis of O3 in the presence of water vapor, and NOx are the main precursors of O3 and OH. Thus, in NOx-rich environments that have both high humidity and high solar radiation, OH concentrations are enhanced, and therefore, tropical forests dominate global oxidation of long-lived gases. The Amazon rain forest has a unique combination of vegetation with diverse characteristics, climate, and a dynamic land use, factors that altogether govern the emission and fate of trace-gases and control particle formation and atmospheric chemistry. Understanding the interactions among the mechanisms that govern local precursor emissions will lead to a better description of the local atmospheric chemistry, which have global impacts. As part of the GoAmazon project, an array of complementary measurements was conducted in a research site in central Amazon, southeast of Santarem (PA, Brazil), situated inside the Tapajos National Forest. The site where the measurements were taken is surrounded by intact rain forest in a 6 km radius, and a 45 m closed canopy. In the east side out of this radius (upwind), some settlements are distributed in a stripe along a road, which were cleared for agriculture and are sparsely populated. The 67 m tower was assembled in the site in 2001 for flux measurements (CO2 and H2O), and included CO in order to assess local and regional biomass burning. In mid 2014 additional instrumentation were added, measuring NOx, O3, CH4, and SO2 fluxes and profiles. The SO2 measurements (until early 2015) showed concentrations up to 0.1 ppb during the peak of the dry season, and a small vertical gradient, suggesting the predominance of biogenic sources. Preliminary results show no significant seasonality in the daytime and nighttime O3 vertical profiles. Occasionally, nighttime profiles showed high concentrations for

  15. Microstructure evolution during 300 °C storage of sintered Ag nanoparticles on Ag and Au substrates

    Energy Technology Data Exchange (ETDEWEB)

    Paknejad, S.A. [King’s College London, Physics Department, Strand, London WC2R 2LS (United Kingdom); Dumas, G. [Eltek Semiconductors Ltd, Nelson Road Industrial Estate, Dartmouth, Devon TQ6 9LA (United Kingdom); West, G. [Loughborough University, Materials Department, Loughborough LE11 3TU (United Kingdom); Lewis, G. [Eltek Semiconductors Ltd, Nelson Road Industrial Estate, Dartmouth, Devon TQ6 9LA (United Kingdom); Mannan, S.H., E-mail: samjid.mannan@kcl.ac.uk [King’s College London, Physics Department, Strand, London WC2R 2LS (United Kingdom)

    2014-12-25

    Highlights: • Shear strength of pressure-free sintered Ag found to increase during ageing at 300 °C on Ag substrate. • Rapid collapse of void number density after 24 h ageing in the sintered Ag layer. • Higher porosity at edge of joint compared to the middle. • Shear strength of pressure-free sintered Ag decreases during ageing at 300 °C due to high porosity layer growth. • Void free layer and high porosity layer growth explained in terms of atomic diffusion and grain boundary migration. - Abstract: A silver nanoparticle based die attach material was used in a pressure free process to bond 2.5 mm square Ag plated Si die to Ag and Au plated substrates. The assemblies were stored at 300 °C for up to 500 h and the morphology of the sintered Ag and the shear strength were monitored as a function of time. On Ag substrate it was found that die shear strength increased and that the Ag grains grew in size and porosity decreased over time. There was also a clear difference in morphology between sintered Ag at the die edge and centre. On Au substrate, it was observed that the initially high die shear strength decreased with storage time and that voids migrated away from the Ag/Au interface and into the Ag joint. This has led to the formation of a void free layer at the interface followed by a high porosity region, which weakened the joint. The microstructure reveals a high density of grain and twin boundaries which facilitate the Ag and Au atomic diffusion responsible. The grain structure of the plated Au led to diffusion of Au into the Ag via high-angle tilt grain boundaries, and grain boundary migration further dispersed the Au into the Ag layer.

  16. Hierarchical Ag/AgCl-TiO{sub 2} hollow spheres with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu Long; Yin, Hao Yong [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Nie, Qiu Lin, E-mail: nieqiulin@hdu.edu.cn [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Wei Wei [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhang, Yang; LiYuan, Qiu [College of Science, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2017-01-01

    The hierarchical Ag/AgCl-TiO{sub 2} hollow spheres were synthesized by depositing Ag/AgCl nanoparticles on TiO{sub 2} hollow spheres via a precipitation photoreduction method, and they were further characterized using TGA, SEM, TEM, XRD, XPS, UV–vis DRS and photoelectric chemical analysis. The analysis showed that the hierarchical Ag/AgCl-TiO{sub 2} hollow spheres exhibited the highest photocatalytic activity, which was approximately 13 times higher than that of TiO{sub 2} hollow spheres. The high photocatalytic activity of the composites is due to efficient electron-hole pairs separation at the photocatalyst interfaces, and localized surface plasmon resonance of Ag nanoparticles formed on AgCl particles in the degradation reaction. - Highlights: • TiO{sub 2} hollow spheres were prepared by a sacrificial template method. • The hollow spheres were modified with Ag/AgCl to form the heterojunctions. • The modification may produce synergistic effect of LSPR and hollow structure. • Visible light photocatalytic activity was enhanced on this hollow catalyst. • The mechanism of the improved photocatalytic performance was discussed.

  17. Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle

    NARCIS (Netherlands)

    Lingen, van H.J.; Crompton, L.A.; Hendriks, W.H.; Reynolds, C.K.; Dijkstra, J.

    2014-01-01

    Various studies have indicated a relationship between enteric methane (CH4) production and milk fatty acid (FA) profiles of dairy cattle. However, the number of studies investigating such a relationship is limited and the direct relationships reported are mainly obtained by variation in CH4

  18. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties.

    Science.gov (United States)

    Ma, Yanyun; Li, Weiyang; Cho, Eun Chul; Li, Zhiyuan; Yu, Taekyung; Zeng, Jie; Xie, Zhaoxiong; Xia, Younan

    2010-11-23

    This paper describes a facile method for generating Au@Ag core-shell nanocubes with edge lengths controllable in the range of 13.4-50 nm. The synthesis involved the use of single-crystal, spherical Au nanocrystals of 11 nm in size as the seeds in an aqueous system, with ascorbic acid serving as the reductant and cetyltrimethylammonium chloride (CTAC) as the capping agent. The thickness of the Ag shells could be finely tuned from 1.2 to 20 nm by varying the ratio of AgNO(3) precursor to Au seeds. We also investigated the growth mechanism by examining the effects of seeds (capped by CTAC or cetyltrimethylammonium bromide(CTAB)) and capping agent (CTAC vs CTAB) on both size and shape of the resultant core-shell nanocrystals. Our results clearly indicate that CTAC worked much better than CTAB as a capping agent in both the syntheses of Au seeds and Au@Ag core-shell nanocubes. We further studied the localized surface plasmon resonance properties of the Au@Ag nanocubes as a function of the Ag shell thickness. By comparing with the extinction spectra obtained from theoretical calculations, we derived a critical value of ca. 3 nm for the shell thickness at which the plasmon excitation of the Au cores would be completely screened by the Ag shells. Moreover, these Au@Ag core-shell nanocubes could be converted into Au-based hollow nanostructures containing the original Au seeds in the interiors through a galvanic replacement reaction.

  19. Využití separačních metod pro studium biologicky aktivních látek ve vodách

    OpenAIRE

    Vydrová, Lucie

    2011-01-01

    Léčiva patří mezi biologicky aktivní látky, které se odlišují různými funkčními skupinami, fyzikálně-chemickými a biologickými vlastnostmi. Tyto chemické látky, v současnosti zařazované mezi „nové“ kontaminanty, se kumulují v různých složkách životního prostředí. Do životního prostředí se dostávají v průběhu jejich průmyslové výroby, dále v důsledku používání v léčebných zařízeních nebo v domácnostech. Protože se jedná o látky biologicky aktivní, mohou v různých složkách životního prostředí n...

  20. Production of radioactivity in local soil at AGS fast neutrino beam

    International Nuclear Information System (INIS)

    Gollon, P.J.; Hauptmann, M.G.; McIntyre, K.; Miltenberger, R.; Naidu, J.

    1984-01-01

    Brookhaven National Laboratory (BNL) has recently decided to construct a new neutrino production target station at the Alternating Gradient Synchrotron (AGS). To determine the environmental impact of this addition, a study is being conducted in the vicinity of the old target area to determine the radiological consequences of operating this experimental facility. Typical BNL soil samples were placed at two locations near an operating target: at right angles to the target and behind thick shielding close to the direction of the incident beam. These samples were used to determine radionuclide production and leaching information. A core was taken from beneath the concrete floor of the old target area and a monitoring well was installed down-gradient of the facility. Preliminary results from all areas of the study are presented along with estimates of the potential environmental impact of the old and new facilities. 9 figures

  1. Identification of Ag-acceptors in $^{111}Ag^{111}Cd$ doped ZnTe and CdTe

    CERN Document Server

    Hamann, J; Deicher, M; Filz, T; Lany, S; Ostheimer, V; Strasser, F; Wolf, H; Wichert, T

    2000-01-01

    Nominally undoped ZnTe and CdTe crystals were implanted with radioactive /sup 111/Ag, which decays to /sup 111/Cd, and investigated by photoluminescence spectroscopy (PL). In ZnTe, the PL lines caused by an acceptor level at 121 meV are observed: the principal bound exciton (PBE) line, the donor-acceptor pair (DAP) band, and the two-hole transition lines. In CdTe, the PBE line and the DAP band that correspond to an acceptor level at 108 meV appear. Since the intensities of all these PL lines decrease in good agreement with the half-life of /sup 111/Ag of 178.8 h, both acceptor levels are concluded to be associated with defects containing a single Ag atom. Therefore, the earlier assignments to substitutional Ag on Zn- and Cd-lattice sites in the respective II-VI semiconductors are confirmed. The assignments in the literature of the S/sub 1/, S /sub 2/, and S/sub 3/ lines in ZnTe and the X/sub 1//sup Ag/, X/sub 2 //sup Ag//C/sub 1//sup Ag/, and C/sub 2//sup Ag/ lines in CdTe to Ag- related defect complexes are ...

  2. Synthesis of a ternary Ag/RGO/ZnO nanocomposite via microwave irradiation and its application for the degradation of Rhodamine B under visible light.

    Science.gov (United States)

    Surendran, Divya Kollikkara; Xavier, Marilyn Mary; Viswanathan, Vandana Parakkal; Mathew, Suresh

    2017-06-01

    Reduced graphene oxide supporting plasmonic photocatalyst (Ag) on ZnO has been synthesized via a facile two-step microwave synthesis using RGO/ZnO and AgNO 3 . First step involves fabrication of RGO/ZnO via microwave irradiation. The nanocomposites were characterized by X-ray diffraction analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Ag/RGO/ZnO shows enhanced photoactivity under visible light for the degradation of Rhodamine B. Enhanced charge separation and migration have been assigned using UV-vis diffuse reflectance spectra, photoluminescence spectra, electrochemical impedance spectra, and TCSPC analysis. The improved photoactivity of Ag/RGO/ZnO can be ascribed to the prolonged lifetime of photogenerated electron-hole pairs and effective interfacial hybridization between RGO and Ag with ZnO nanoparticles. Ag nanoparticles can absorb visible light via surface plasmon resonance to enhance photocatalytic activity.

  3. Removal of I by adsorption with AgX (Ag-impregnated X Zeolite) from high-radioactive seawater waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eil Hee; Lee, Keun Young; Kim, Kwang Wook; Kim, Hyung Ju; Kim, Ik Soo; Chung, Dong Yong; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    This study aimed to the adsorption-removal of high- radioactive iodide (I) contained in the initially generated high-radioactive seawater waste (HSW), with the use of AgX (Ag-impregnated X zeolite). Adsorption of I by AgX (hereafter denoted as AgX-I adsorption) was increased by increasing the Ag-impregnated concentration in AgX, and its concentration was suitable at about 30 wt%. Because of AgCl precipitation by chloride ions contained in seawater waste, the leaching yields of Ag from AgX (Ag-impregnated concentration : about 30-35 wt%) was less than those in distilled water (< 1 mg/L). AgX-I adsorption was above 99% in the initial iodide concentration (Ci) of 0.01-10 mg/L at m/V (ratio of weight of adsorbent to solution volume)=2.5 g/L. This shows that efficient removal of I is possible. AgX-I adsorption was found to be more effective in distilled water than in seawater waste, and the influence of solution temperature was insignificant. Ag-I adsorption was better described by a Freundlich isotherm rather than a Langmuir isotherm. AgX-I adsorption kinetics can be expressed by a pseudo-second order rate equation. The adsorption rate constants (k2) decreased by increasing Ci, and conversely increased by increasing the ratio of m/V and the solution temperature. This time, the activation energy of AgX-I adsorption was about 6.3 kJ/mol. This suggests that AgX-I adsorption is dominated by physical adsorption with weaker bonds. The evaluation of thermodynamic parameters (a negative Gibbs free energy and a positive Enthalpy) indicates that AgX-I adsorption is a spontaneous reaction (forward reaction), and an endothermic reaction indicating that higher temperatures are favored.

  4. Highly efficient degradation of thidiazuron with Ag/AgCl- activated carbon composites under LED light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yisi [College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China); Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000 (China); College of Chemical Engineering, Huanggang Normal University, Huanggang 438000 (China); Zhang, Yan [Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000 (China); College of Chemical Engineering, Huanggang Normal University, Huanggang 438000 (China); Dong, Mingguang; Yan, Ting; Zhang, Maosheng [College of Chemical Engineering, Huanggang Normal University, Huanggang 438000 (China); Zeng, Qingru, E-mail: 40083763@qq.com [College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China)

    2017-08-05

    Highlights: • Photocatalytic degradation of thidiazuron was performed in a neutral water matrix. • This was carried out in the presence of Ag/AgCl-activated carbon composites and LED light. • The pH effect and the dominant active species were explored. • Degradation products and pathways in water were studied for the first time. - Abstract: Thidiazuron (TDZ; 1-phenyl-3-(1,2,3-thiadiazol-5-yl)urea) is one of the most widely used defoliant and easy to dissolve in surface water. Risk associated with the pesticide is not clearly defined, so it is important to remove/degrade TDZ with an efficient and environment friendly technology. Here, we investigated the use of Ag/AgCl-activated carbon (Ag/AgCl–AC) composites in photocatalytic degradation of TDZ under LED light. By the synergic effect of Ag/AgCl and AC, the optimum Ag/carbon weight ratio of 2:1 exhibited superior visible-light photocatalytic activity, the highest removal efficiency was close to 91% in pH 7 matrix. Different types of Ag/AgCl–AC composites were tested, all showed much faster photodegradation kinetics than bare Ag/AgCl in 210 min. The degradation products as identified by HPLC–MS revealed that the hydroxylation by hydroxyl radicals and that of oxidation by superoxide radicals as well as holes were the two main pathways for TDZ degradation. Results revealed that the adsorption concentrated TDZ molecules and the photocatalytically generated radicals rapidly degradated TDZ, the two contributions functioned together for removal of the pollutant from water.

  5. Highly efficient degradation of thidiazuron with Ag/AgCl- activated carbon composites under LED light irradiation

    International Nuclear Information System (INIS)

    Yang, Yisi; Zhang, Yan; Dong, Mingguang; Yan, Ting; Zhang, Maosheng; Zeng, Qingru

    2017-01-01

    Highlights: • Photocatalytic degradation of thidiazuron was performed in a neutral water matrix. • This was carried out in the presence of Ag/AgCl-activated carbon composites and LED light. • The pH effect and the dominant active species were explored. • Degradation products and pathways in water were studied for the first time. - Abstract: Thidiazuron (TDZ; 1-phenyl-3-(1,2,3-thiadiazol-5-yl)urea) is one of the most widely used defoliant and easy to dissolve in surface water. Risk associated with the pesticide is not clearly defined, so it is important to remove/degrade TDZ with an efficient and environment friendly technology. Here, we investigated the use of Ag/AgCl-activated carbon (Ag/AgCl–AC) composites in photocatalytic degradation of TDZ under LED light. By the synergic effect of Ag/AgCl and AC, the optimum Ag/carbon weight ratio of 2:1 exhibited superior visible-light photocatalytic activity, the highest removal efficiency was close to 91% in pH 7 matrix. Different types of Ag/AgCl–AC composites were tested, all showed much faster photodegradation kinetics than bare Ag/AgCl in 210 min. The degradation products as identified by HPLC–MS revealed that the hydroxylation by hydroxyl radicals and that of oxidation by superoxide radicals as well as holes were the two main pathways for TDZ degradation. Results revealed that the adsorption concentrated TDZ molecules and the photocatalytically generated radicals rapidly degradated TDZ, the two contributions functioned together for removal of the pollutant from water.

  6. Head office GELSENWASSER AG. Heating and cooling with geothermal energy; Hauptverwaltung GELSENWASSER AG. Heizen und Kuehlen mit Erdwaerme

    Energy Technology Data Exchange (ETDEWEB)

    Bockelmann, Franziska; Fisch, M. Norbert [Technische Univ. Braunschweig (Germany). Inst. fuer Gebaeude- und Solartechnik; Abendroth, Franz-Josef; Koring, Reinhold [Gelsenwasser AG, Gelsenkirchen (Germany)

    2011-10-24

    As part of the research project 'Heat and cold storage in the foundation area of energy-efficient office buildings' at the Institute for Building and Solar Technology of the Technical University Braunschweig (Federal Republic of Germany) the head office of Gelsenwasser AG (Gelsenkirchen, Federal Republic of Germany) in practice is studied. Optimization potentials for the energy efficiency and user comfort were developed. Detailed investigations on the operation and efficiency of the geothermal probe system for heating and cooling of the building were performed. By means of the consumption analysis, the success of the implemented optimization measures is derived and analyzed in order to develop further recommendations for the operation of buildings and facilities.

  7. Au, Ag and Au:Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates

    Directory of Open Access Journals (Sweden)

    M. Vinod

    2014-12-01

    Full Text Available Chemically pure colloidal suspensions of gold and silver nanoparticles were synthesized using pulsed laser ablation. The dependence of laser fluence on the surface plasmon characteristics of the nanoparticles was investigated. Au:Ag colloidal suspensions were prepared by mixing highly monodisperse Au and Ag nanocolloids. The plasmon band of these mixtures was found to be highly sensitive to Au:Ag concentration ratio and wavelength of the laser beam used in the ablation process. The Au:Ag mixture consists of almost spherical shaped nanostructures with a tendency to join with adjacent ones. The surface enhanced Raman scattering activity of the Au, Ag and Au:Ag colloidal suspensions was tested using crystal violet as probe molecules. Enhancement in Raman signal obtained with Au:Ag substrates was found to be promising and strongly depends on its plasmon characteristics.

  8. Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

    KAUST Repository

    Chng, Ting Ting; Polavarapu, Lakshminarayana; Xu, Qing Hua; Ji, Wei; Zeng, Hua Chun

    2011-01-01

    Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse Aux

  9. HDV Seroprevalence in HBsAg Positive Patients

    International Nuclear Information System (INIS)

    Abbasi, A.; Bhutto, A. R.; Mahmood, K.; Butt, N.

    2014-01-01

    Objective: To find out the frequency of HDV seroprevalence and the demographic characteristics or HBsAg-HDV positive patients. Study Design: Cross-sectional analytical study. Place and Duration of Study: Jinnah Postgraduate Medical Centre and Civil Hospital, Medical Unit-III, Karachi, from March 2007 to April 2011. Methodology: Patients with positive HBsAg were included in the study. Those having co-infection with HCV or HIV, autoimmune hepatitis, alcoholic hepatitis, Wilson's disease and haemochromatosis were excluded. After detailed history and physical examination all the patients underwent laboratory workup including complete blood count, liver function test, viral profile (HAV, HCV, HIV and anti-HDV) and prothrombin time. While in selected patients, HBc (core) antibodies, ultrasound abdomen, serum iron profile, ANA and liver biopsy were also carried out whenever needed to establish a clinical stage of liver disease. Results: There were 374 patients with 266 (71.1%) males and 108 (28.9%) females with overall mean age of 31.64 +- 8.66 years. Overall frequency of anti-HDV antibodies positivity was found in 28.1% (n = 105) patients. HDV seropositivity was slightly more prevalent in males as compared to females (28.57% vs. 26.57%). HDV seropositivity frequency was significantly higher in patients who presented with acute hepatitis/hepatic failure as compared to other clinical diagnoses (p = 0.027) and in those sub-sets of patients who had raised ALT levels (p = 0.012). Conclusion: There was a high frequency of HDV seropositivity in the studied population particularly in males with acute hepatitis or hepatic failure, having raised ALT levels. The emphasis should be on preventive measures taken by other countries to reduce the prevalence of these treatment challenging infections. (author)

  10. Association Between Hospital Admission Risk Profile Score and Skilled Nursing or Acute Rehabilitation Facility Discharges in Hospitalized Older Adults.

    Science.gov (United States)

    Liu, Stephen K; Montgomery, Justin; Yan, Yu; Mecchella, John N; Bartels, Stephen J; Masutani, Rebecca; Batsis, John A

    2016-10-01

    To evaluate whether the Hospital Admission Risk Profile (HARP) score is associated with skilled nursing or acute rehabilitation facility discharge after an acute hospitalization. Retrospective cohort study. Inpatient unit of a rural academic medical center. Hospitalized individuals aged 70 and older from October 1, 2013 to June 1, 2014. Participant age at the time of admission, modified Folstein Mini-Mental State Examination score, and self-reported instrumental activities of daily living 2 weeks before admission were used to calculate HARP score. The primary predictor was HARP score, and the primary outcome was discharge disposition (home, facility, deceased). Multivariate analysis was used to evaluate the association between HARP score and discharge disposition, adjusting for age, sex, comorbidities, and length of stay. Four hundred twenty-eight individuals admitted from home were screened and their HARP scores were categorized as low (n = 162, 37.8%), intermediate (n = 157, 36.7%), or high (n = 109, 25.5%). Participants with high HARP scores were significantly more likely to be discharged to a facility (55%) than those with low HARP scores (20%) (P risk of skilled nursing or acute rehabilitation facility discharge. Early identification for potential facility discharges may allow for targeted interventions to prevent functional decline, improve informed shared decision-making about post-acute care needs, and expedite discharge planning. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  11. Profiles of facilities used for HTR research and testing

    International Nuclear Information System (INIS)

    1980-05-01

    This report contains a current description of facilities supporting HTR research and development submitted by countries participating in the IWGFR. It has the purpose of providing an overview of the facilities available for use and of the types of experiments that can be conducted therein

  12. DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP.

    Science.gov (United States)

    Mitra, Sneha; Biswas, Anushua; Narlikar, Leelavati

    2018-04-23

    Genome-wide in vivo protein-DNA interactions are routinely mapped using high-throughput chromatin immunoprecipitation (ChIP). ChIP-reported regions are typically investigated for enriched sequence-motifs, which are likely to model the DNA-binding specificity of the profiled protein and/or of co-occurring proteins. However, simple enrichment analyses can miss insights into the binding-activity of the protein. Note that ChIP reports regions making direct contact with the protein as well as those binding through intermediaries. For example, consider a ChIP experiment targeting protein X, which binds DNA at its cognate sites, but simultaneously interacts with four other proteins. Each of these proteins also binds to its own specific cognate sites along distant parts of the genome, a scenario consistent with the current view of transcriptional hubs and chromatin loops. Since ChIP will pull down all X-associated regions, the final reported data will be a union of five distinct sets of regions, each containing binding sites of one of the five proteins, respectively. Characterizing all five different motifs and the corresponding sets is important to interpret the ChIP experiment and ultimately, the role of X in regulation. We present diversity which attempts exactly this: it partitions the data so that each partition can be characterized with its own de novo motif. Diversity uses a Bayesian approach to identify the optimal number of motifs and the associated partitions, which together explain the entire dataset. This is in contrast to standard motif finders, which report motifs individually enriched in the data, but do not necessarily explain all reported regions. We show that the different motifs and associated regions identified by diversity give insights into the various complexes that may be forming along the chromatin, something that has so far not been attempted from ChIP data. Webserver at http://diversity.ncl.res.in/; standalone (Mac OS X/Linux) from https

  13. (CH4)-C-14 Measurements in Greenland Ice: Investigating Last Glacial Termination CH4 Sources

    DEFF Research Database (Denmark)

    Petrenko, V. V.; Smith, A. M.; Brook, E. J.

    2009-01-01

    by direct cosmogenic C-14 production in ice. C-14 of CO was measured to better understand this process and correct the sample (CH4)-C-14. Corrected results suggest that wetland sources were likely responsible for the majority of the Younger Dryas-Preboreal CH4 rise.......The cause of a large increase of atmospheric methane concentration during the Younger Dryas-Preboreal abrupt climatic transition (similar to 11,600 years ago) has been the subject of much debate. The carbon-14 (C-14) content of methane ((CH4)-C-14) should distinguish between wetland and clathrate...... contributions to this increase. We present measurements of (CH4)-C-14 in glacial ice, targeting this transition, performed by using ice samples obtained from an ablation site in west Greenland. Measured (CH4)-C-14 values were higher than predicted under any scenario. Sample (CH4)-C-14 appears to be elevated...

  14. Outline of NUCEF facility

    International Nuclear Information System (INIS)

    Takeshita, Isao

    1996-01-01

    NUCEF is a multipurpose research facility in the field of safety and advanced technology of nuclear fuel cycle back-end. Various experiment facilities and its supporting installations, in which nuclear fuel materials, radio isotopes and TRU elements can be handled, are arranged in more than one hundred rooms of two experiment buildings. Its construction was completed in middle of 1994 and hot experiments have been started since then. NUCEF is located on the site (30,000 m 2 ) of southeastern part in the Tokai Research Establishment of JAERI facing to the Pacific Ocean. The base of Experiment Buildings A and B was directly founded on the rock existing at 10-15 m below ground level taking the aseismatic design into consideration. Each building is almost same sized and composed of one basement and three floors of which area is 17,500 m 2 in total. In the basement, there are exhaust facilities of ventilation system, treatment system of solution fuel and radioactive waste solution and storage tanks of them. Major experiment facilities are located on the first or the second floors in each building. An air-inlet facility of ventilation system for each building is equipped on the third floor. Most of experiment facilities for criticality safety research including two critical facilities: Static Experiment Critical Facility (STACY) and Transient Experiment Critical Facility (TRACY) are installed in Experiment Building A. Experiment equipments for research on advanced fuel reprocessing process and on TRU waste management, which are named BECKY (Back End Fuel Cycle Key Elements Research Facility), are installed in laboratories and a-g cells in Experiment Building B. (J.P.N.)

  15. Changes in mass loss and chemistry of AG-80 epoxy resin after 160 keV proton irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yu [Space Materials and Environment Engineering Lab, Harbin Institute of Technology, Harbin, 150001 (China)]. E-mail: czq04@yahoo.com.cn; Sun Mingren [College of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 (China); Yang Dezhuang [Space Materials and Environment Engineering Lab, Harbin Institute of Technology, Harbin, 150001 (China); He Shiyu [Space Materials and Environment Engineering Lab, Harbin Institute of Technology, Harbin, 150001 (China); Wang Jinhe [Precision Engineering Research Institute, Harbin Institute of Technology, Harbin, 150001 (China); Xiao Jingdong [Space Materials and Environment Engineering Lab, Harbin Institute of Technology, Harbin, 150001 (China); Li Zhijun [39th Institute, China Electronic Science and Technology Groups Inc., Xi-an 710065 (China)

    2005-06-01

    The AG-80 resin is a new type of thermosetting matrix for advanced carbon/epoxy composites. Mass loss effect and the related outgassing are major concerns for its application in space. The changes in mass loss, outgassing and chemical structure under 160 keV proton exposure were investigated for the AG-80 epoxy resin. The variation in chemistry was characterized by X-ray photoelectron spectroscopy. Experimental results show that with increasing the proton fluence, the surface colour of specimens is getting darker. Mass loss ratios ascend remarkably until the fluence of approximately 5.5 x 10{sup 15} cm{sup -2}, and then tend to leveling off. The surface roughness of specimens exhibits an increasing trend followed by decreasing as a function of proton fluence. Under the exposure, the C-C, C-H, C-N and C-O bonds are broken, a variety of molecule ions with smaller molecule weight are formed, and carbon is enriched in the surface layer of specimens. The changes in mass loss and surface roughness of the AG-80 epoxy resin could be attributed to the formation of the molecule ions and the enrichment of carbon content in the surface layer due to proton radiation.

  16. Bandgap Engineering of Lead-Free Double Perovskite Cs2 AgBiBr6 through Trivalent Metal Alloying.

    Science.gov (United States)

    Du, Ke-Zhao; Meng, Weiwei; Wang, Xiaoming; Yan, Yanfa; Mitzi, David B

    2017-07-03

    The double perovskite family, A 2 M I M III X 6 , is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH 3 NH 3 PbI 3 . Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs 2 AgBiBr 6 as host, band-gap engineering through alloying of In III /Sb III has been demonstrated in the current work. Cs 2 Ag(Bi 1-x M x )Br 6 (M=In, Sb) accommodates up to 75 % In III with increased band gap, and up to 37.5 % Sb III with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs 2 Ag(Bi 0.625 Sb 0.375 )Br 6 . Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. First-principles study of surface plasmons on Ag(111) and H/Ag(111)

    DEFF Research Database (Denmark)

    Yan, Jun; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2011-01-01

    Linear-response time-dependent density functional theory is used to investigate the relation between molecular bonding and surface plasmons for the model system H/Ag(111). We employ an orbital-dependent exchange-correlation functional to obtain a correct description of the Ag 3d band, which...... is crucial to avoid overscreening the plasmon by the s-d interband transitions. For the clean surface, this approach reproduces the experimental plasmon energies and dispersion to within 0.15 eV. Adsorption of hydrogen shifts and damps the Ag(111) surface plasmon and induces a new peak in the loss function...... at 0.6 eV below the Ag(111) plasmon peak. This feature originates from interband transitions between states located on the hydrogen atoms and states on the Ag surface atoms....

  18. Problematika stanovení reziduí léčiv v odpadních vodách

    OpenAIRE

    Lisá, Hana

    2011-01-01

    Předložená práce se zabývá stanovením tetracyklinů a sulfonamidů s trimethoprimem v odpadních vodách. Tetracykliny a sulfonamidy patří mezi široce používaná léčiva v humánní i veterinární medicíně. Jedná se o látky biologicky aktivní, které blokující biologické procesy v čistírnách odpadních vod a svou přítomností mohou negativně ovlivnit mikroorganismy v povrchových vodách. Bylo také prokázáno, že díky přítomnosti nízkých koncentrací těchto látek v životním prostředí si mohou mikroorganismy ...

  19. Effects of Boreal Lake Wetlands on Atmospheric 13CH3D and 12CH2D2

    Science.gov (United States)

    Haghnegahdar, M. A.; Kohl, I. E.; Schauble, E. A.; Walter Anthony, K. M.; Young, E. D.

    2017-12-01

    Recently, we developed a theoretical model to investigate the potential use of 13CH3D and 12CH2D2 as tools for tracking atmospheric methane budget. We used electronic structure methods to estimate kinetic isotope fractionations associated with the major sink reactions of CH4 in air (reactions with •OH and Cl•), and literature data with reconnaissance measurements of the relative abundances of 13CH3D and 12CH2D2 to estimate the compositions of the largest atmospheric sources. Here we present new methane rare isotopologue data from boreal wetlands, comprising one of the most important sources, in order to evaluate the robustness of the model. Boreal wetlands (>55° N) account for more than half of the wetland area in the Northern hemisphere. We analyzed methane samples from high latitude lakes representing different geographical regions, geological and ecological contexts, methane fluxes, and isotopic signatures. Using clumped isotopes of CH4 we are able to determine the likely production mechanism for natural CH4 samples. So far, all of our analyzed samples except one plot in the microbial pure-culture methanogenesis field (Young et al. 2017) with ranges of -0.2‰ to +1.2‰ for Δ13CH3D, and -29.6‰ to -18.2‰ for Δ12CH2D2. These compositions are far from equilibrium. The one exception, from Lake Doughnut, Alaska, exhibits Δ13CH3D and Δ12CH2D2 values of +5.2‰ and +18.7‰, respectively, which fall near ambient thermodynamic equilibrium values. This may be an effect of methanotrophy. Mean Δ13CH3D and Δ12CH2D2 for all lake samples are +1.7‰ and -15.4‰ respectively, compared to our original estimate of +6.1‰ and +21.2‰ for the wetland methane source based on an assumption of equilibrium. If we assume that these samples are representative of the overall wetland source, Δ13CH3D decreases by 0.8‰ and Δ12CH2D2 decreases by 0.6‰ in our model of bulk atmospheric methane. Δ13CH3D and Δ12CH2D2 values of air (including •OH and Cl• sink

  20. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    International Nuclear Information System (INIS)

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu; Iz, Sultan Gulce; Tihminlioglu, Funda; Oks, Efim; Nikolaev, Alexey; Ila, Daryush

    2009-01-01

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Ag and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.